

Lecture Notes in Computer Science 4229
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Elie Najm Jean-François Pradat-Peyre
Véronique Viguié Donzeau-Gouge (Eds.)

Formal Techniques
for Networked and
Distributed Systems –
FORTE 2006

26th IFIP WG 6.1 International Conference
Paris, France, September 26-29, 2006
Proceedings

13

Volume Editors

Elie Najm
ENST
Dept. Informatique et Reseaux
46, rue Barrault, 75634 Paris, Cedex 13, France
E-mail: Elie.Najm@ENST.fr

Jean-François Pradat-Peyre
Véronique Viguié Donzeau-Gouge
Conservatoire National des Arts et Métiers
Lab. CEDRIC
292, rue Saint-Martin, 75 141 Paris Cedex 03, France
E-mail: {peyre,V.Viguie.Donzeau-Gouge}@cnam.fr

Library of Congress Control Number: 2006933226

CR Subject Classification (1998): C.2.4, D.2.2, C.2, D.2.4-5, D.2, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-46219-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46219-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11888116 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of Forte 2006, the 26th IFIP WG 6.1
International Conference on Formal Methods for Networked and Distributed Sys-
tems, which took place in Paris, September 26-29, 2006. Forte denotes a series
of international working conferences on formal description techniques applied
to computer networks and distributed systems. The conference series started in
1981 under the name PSTV. In 1988 a second series under the name Forte was
set up. Both series were united to Forte / PSTV in 1996. Five years ago the
conference changed the name to its current form.

Forte was held in Taiwan in 2005, in Madrid in 2004, in Berlin in 2003,
in Houston in 2002, etc. The 2006 edition took place in Paris in the buildings
of the CNAM (Conservatoire National des Arts et Métiers), which is a Public
Scientific, Cultural and Professional Institution. Forte 2006 was organized by
Cedric, the computer science research laboratory of the CNAM, and by the
Parisian multi-laboratories research group MeFoSyLoMa (Méthodes Formelles
pour les Systèmes Logiciels et Matériels). The conference comprised a three-
day technical program, during which papers contained in these proceedings were
presented. The technical program was preceded by a tutorial day.

Forte is dedicated to formal description techniques and their application to
distributed systems and cooperating applications. The focus of Forte 2006 was
on the construction of middleware and services using formalized and verified
approaches. In addition to the classic protocol specification, verification and
testing problems, Forte 2006 addressed the issues of composition of protocol
functions and of algorithms for distributed systems.

In total 99 abstracts and 78 full papers were submitted covering the special
focus of Forte 2006 and also more usual topics such as testing, slicing, and
verification techniques; highlighting different formalisms among them one can
cite Petri Nets, processes algebra or unified modelling languages. Out of the
submissions, 26 full papers and 4 shorts papers were selected by the Program
Committee for presentation. We would like to express our deepest appreciation
to the authors of all submitted papers, to the Program Committee and to ex-
ternal reviewers who did an outstanding job in selecting the best papers for
presentation (more than 300 referee reports were completed before closing the
selection phase). In addition to the submitted contributions, there were three
invited lectures: one by Daniel Krob (Ecole Polytechnique, France), who gave
his vision of complex systems in a talk entitled “Modelling of Complex Software
Systems: A Reasoned Overview”; one by Leslie Lamport (Microsoft, USA), who
presented a new way to describe algorithms with his talk entitled “The +cal
Algorithm Language”; and one by Martin Wirsing (Institut fur Informatikr,
Ludwig-Maximilians-Uńıversität München, Germany), who presented the Sen-
soria project in a talk entitled “Semantic-Based Service-Oriented Software

VI Preface

Development.” We thank them for the quality of their talks and of their papers.
Two very interesting tutorials were given on the first day, one by Rüdiger Valk
(Univ. Hamburg, Germany) on the use of Petri Nets for modelling and verify-
ing concurrent systems and one by Dominique Méry (Université Henri Poincaré
Nancy & LORIA, France) on the event B method. We thank them for their help
in disseminating knowledge in formal methods for system design.

We would like to thank the CNAM technical and organizational support,
Philippe Auger, Joel Berthelin, Frederic Lemoine, Gilles Lepage and Stephen
Robert. Special thanks to Kristina and Gabriele Santini (Ksw), who designed
the Forte 2006 Web site (http://forte2006.cnam.fr). We are also grateful to
Christine Choppy, who organized tutorials, Kirill Bogdanov for his work as Pub-
licity Chair, and to the Steering Committee members for their advice. We thank
also Joyce El Haddad, Sami Evangelista, Irfan Hamid, Christophe Pajault, Is-
abelle Perseil, Pierre Rousseau, and Emmanuel Paviot-Adet for all their work
before and during the conference.

Last, but not least, we would like to express our appreciation to speakers and
to all the participants who helped in achieving the goal of the conference: pro-
viding a forum for researchers and practitioners for the exchange of information
and ideas about formal methods for modelling, testing and verifying protocols
and distributed systems.

July 2006 Elie Najm
Jean-François Pradat-Peyre

Véronique Viguié Donzeau-Gouge

Organization

Organization Chairs

General Chair Véronique Viguié Donzeau-Gouge (Cedric-CNAM,
France)

Program Chairs Elie Najm (Infres-ENST, France)
Jean-François Pradat-Peyre (Cedric-CNAM,

France)
Tutorials Chair Christine Choppy (LIPN Univ. Paris-Nord, France)
Publicity Chair Kirill Bogdanov (University of Sheffield, UK)

Steering Committee

G. v. Bochmann (University of Ottawa, Canada)
T. Bolognesi (Istituto di Scienza e Tecnologie dell’Informazione, Italy)
J. Derrick (Department of Computer Science, University of Sheffield, UK)
K. Turner (University of Stirling, UK)

Program Committee

G. v. Bochmann (University of Ottawa, Canada)
T. Bolognesi (IEI Pisa, Italy)
M. Bravetti (University of Bologna, Italy)
A. Cavalli (INT Evry, France)
D. de Frutos-Escrig (Complutense University of Madrid,Spain)
J. Derrick (University of Sheffield, UK)
L. Duchien (LIFL, France)
A. Fantechi (Università di Firenze, Italy)
C. Fidge (Australia)
H. Garavel (INRIA, France)
R. Gotzhein (University of Kaiserslautern, Germany)
S. Haddad (Lamsade-Paris Dauphine, France)
T. Higashino (University of Osaka, Japan)
D. Hogrefe (University of Göttingen, Germany)
P. Inverardi (University of L’Aquila, Italia)
C. Jard (IRISA, France)
G. J. Holzmann (NASA/JPL, USA)
M. Kim (ICU Taejon, Korea)
H. König (Brandenburg University of Technology, Germany)
L. Logrippo (Université du Québec en Outaouais, Canada)
J. Magee (Imperial College of London, UK)
E. Najm (Infres ENST, France) Co-chair
M. Núñez (Complutense University of Madrid, Spain)

VIII Organization

D. A. Peled (University of Warwick, UK)
A. Petrenko (CRIM Montreal, Canada)
F. Plasil (Charles University, Prague)
J.-F. Pradat-Peyre (Cedric-Cnam, France) Co-chair
W. Reisig (Humboldt-Universität, Berlin)
J.B. Stefani (INRIA, France)
K. Suzuki (Kennisbron Co., Ltd, Japan)
P. Traverso (ITC-IRST, Italy)
K. Turner, (University of Stirling, UK)
H. Ural (University of Ottawa, Canada)
F. Wang (National Taiwan University, Taiwan)

External Referees

Jiri Adamek
Daniel Amyot
Marco Autili
Mehdi BenHmida
Béatrice Berard
Piergiorgio Bertoli
Laura Bocchi
Luciano Bononi
Sergiy Boroday
Céline Boutrous-Saab
Manuel Breschi
Tomas Bures
Thomas Chatain
Cheng Chih-Hong
José Manuel Colom
Bassel Daou
John Derrick
Véronique Donzeau-

Gouge
Arnaud Dury
Michael Ebner
Khaled El-Fakih
Edith Elkind
Emmanuelle Encrenaz
Sami Evangelista
Hubert Garavel
Andreas Glausch
Ruediger Grammes
Cyril Grepet
Andrey Gromyko
Hesham Hallal
Irfan Hamid

Toru Hasegawa
Wael Hassan
May Haydar
Viliam Holub
Kohei Honda
Geng-Dian Huang
Akira Idoue
Pavel Jezek
Rajeev Joshi
Guy-Vincent Jourdan
Sungwon Kang
Raman Kazhamiakin
Jan Kofron
Mounir Lallali
Frédéric Lang
Ranko Lazic
Stefan Leue
Li-Ping Lin
Cai Lin-Zan
Luis Llana-Dı́az
Luigi Logrippo
Niels Lohmann
Natalia López
Savi Maharaj
Wissam Mallouli
Annapaola Marconi
Olga Marroqun
Fabio Martinelli
Mieke Massink
Franco Mazzanti
Mercedes G. Merayo
Fabrizio Montesi

Gerardo Morales
Isabelle Mounier
Tomohiko Ogishi
Jean-Marie Orset
Christophe Pajault
Emmanuel Paviot-Adet
Patrizio Pelliccione
Isabelle Perseil
Marinella Petrocchi
Pascal Poizat
Nicolas Rouquette
Pierre Rousseau
Gwen Salaün
Koushik Sen
Soonuk Seol
Carron Shankland
Marianne Simonot
Isabelle Simplot-Ryl
Rene Soltwisch
Christian Stahl
Jean-Marc Talbot
Francesco Tapparo
Maurice ter Beek
Yann Thierry-Mieg
Francesco Tiezzi
Alberto Verdejo
Friedrich H. Vogt
Stephan Waack
Daniela Weinberg
Huang Wen-Ting
Constantin Werner
Jung-Hsuan Wu

Table of Contents

Invited Talks

Modelling of Complex Software Systems: A Reasoned Overview 1
Daniel Krob

The +CAL Algorithm Language . 23
Leslie Lamport

Semantic-Based Development of Service-Oriented Systems 24
Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Hölzl,
Alexander Knapp, Nora Koch, Andreas Schroeder

Services

JSCL: A Middleware for Service Coordination . 46
Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo

Analysis of Realizability Conditions for Web Service Choreographies 61
Raman Kazhamiakin, Marco Pistore

Web Cube . 77
I.S.W.B. Prasetya, T.E.J. Vos, S.D. Swierstra

Presence Interaction Management in SIP SOHO Architecture 93
Zohair Chentouf, Ahmed Khoumsi

Middleware

Formal Analysis of Dynamic, Distributed File-System Access Controls . . . 99
Avik Chaudhuri, Mart́ın Abadi

Analysing the MUTE Anonymous File-Sharing System Using the
Pi-Calculus . 115

Tom Chothia

Towards Fine-Grained Automated Verification of Publish-Subscribe
Architectures . 131

Luciano Baresi, Carlo Ghezzi, Luca Mottola

X Table of Contents

A LOTOS Framework for Middleware Specification 136
Nelson Souto Rosa, Paulo Roberto Freire Cunha

Composition and Synthesis

Automatic Synthesis of Assumptions for Compositional Model
Checking . 143

Bernd Finkbeiner, Sven Schewe, Matthias Brill

Refined Interfaces for Compositional Verification . 159
Frédéric Lang

On Distributed Program Specification and Synthesis in Architectures
with Cycles . 175

Julien Bernet, David Janin

Generalizing the Submodule Construction Techniques for Extended
State Machine Models . 191

Bassel Daou, Gregor v. Bochmann

Logics

Decidable Extensions of Hennessy-Milner Logic . 196
Radu Mardare, Corrado Priami

Symbolic Verification – Slicing

Symbolic Verification of Communicating Systems with Probabilistic
Message Losses: Liveness and Fairness . 212

C. Baier, Nathalie Bertrand, Philippe Schnoebelen

A New Approach for Concurrent Program Slicing . 228
Pierre Rousseau

Reducing Software Architecture Models Complexity: A Slicing
and Abstraction Approach . 243

Daniela Colangelo, Daniele Compare, Paola Inverardi,
Patrizio Pelliccione

Unified Modeling Languages

Branching Time Semantics for UML 2.0 Sequence Diagrams 259
Youcef Hammal

Table of Contents XI

Formalizing Collaboration Goal Sequences for Service Choreography 275
Humberto Nicolás Castejón, Rolv Bræk

Composition of Use Cases Using Synchronization and Model Checking . . . 292
R. Mizouni, A. Salah, S. Kolahi, R. Dssouli

Petri Nets

PN Standardisation: A Survey . 307
Lom-Messan Hillah, Fabrice Kordon, Laure Petrucci, Nicolas Trèves

Resource Allocation Systems: Some Complexity Results
on the S4PR Class . 323

Juan-Pablo López-Grao, José-Manuel Colom

Optimized Colored Nets Unfolding . 339
Fabrice Kordon, Alban Linard, Emmanuel Paviot-Adet

Parameterized Verification

Liveness by Invisible Invariants . 356
Yi Fang, Kenneth L. McMillan, Amir Pnueli, Lenore D. Zuck

Real Time

Extending EFSMs to Specify and Test Timed Systems with Action
Durations and Timeouts . 372

Mercedes G. Merayo, Manuel Núñez, Ismael Rodŕıguez

Scenario-Based Timing Consistency Checking for Time Petri Nets 388
Li Xuandong, Bu Lei, Hu Jun, Zhao Jianhua, Zhang Tao,
Zheng Guoliang

Effective Representation of RT-LOTOS Terms by Finite Time
Petri Nets . 404

Tarek Sadani, Marc Boyer, Pierre de Saqui-Sannes,
Jean-Pierre Courtiat

Testing

Grey-Box Checking . 420
Edith Elkind, Blaise Genest, Doron Peled, Hongyang Qu

XII Table of Contents

Integration Testing of Distributed Components Based on Learning
Parameterized I/O Models . 436

Keqin Li, Roland Groz, Muzammil Shahbaz

Minimizing Coordination Channels in Distributed Testing 451
Guy-Vincent Jourdan, Hasan Ural, Hüsnü Yenigün

Derivation of a Suitable Finite Test Suite for Customized Probabilistic
Systems . 467

Luis F. Llana-Dı́az, Manuel Núñez, Ismael Rodŕıguez

Author Index . 485

Modelling of Complex Software Systems:
A Reasoned Overview�

Daniel Krob

Laboratoire d’Informatique de l’Ecole Polytechnique (LIX)
CNRS & École Polytechnique,

Ecole Polytechnique – LIX – 91128 Palaiseau Cedex – France
dk@lix.polytechnique.fr

http://www.lix.polytechnique.fr/∼dk

Abstract. This paper is devoted to the presentation of the key concepts
on which a mathematical theory of complex (industrial) systems can be
based. We especially show how this formal framework can capture the
realness of modern information technologies. We also present some new
modelling problems that are naturally emerging in the specific context
of complex software systems.

Keywords: Complex system, Information system, Integrated system,
Modelling, Software system.

This paper is dedicated to the memory of M.P. Schützenberger

1 Introduction

In the modern world, complex industrial systems are just everywhere even if
they are so familiar for us that we usually forgot their underlying technological
complexity. Transportation systems (such as airplanes, cars or trains), indus-
trial equipments (such as micro-electronic or telecommunication components)
and information systems (such as commercial, production, financial or logistical
software systems) are for instance good examples of complex industrial systems
that we are using or dealing with in the everyday life.

At a superficial level, “complex” refers here to the fact that the design and the
engineering of these industrial systems are incredibly complicated technical and
managerial operations. Thousands of specialized engineers, dozens of different
scientific domains and hundreds of millions of euros can indeed be involved in
the construction of such systems. In the automobile industry, a new car project
lasts for instance typically 4 years, requires a total human working effort of more
than 1.500 years, involves 50 different technical fields and costs around 1 billion
of euros ! In the context of software systems, important projects have also the
same kind of complexity. Recently the unification of the information systems of
� This paper was supported by the Ecole Polytechnique and Thales’ chair “Engineering

of complex systems”.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 1–22, 2006.
c© IFIP International Federation for Information Processing 2006

2 D. Krob

two important French financial companies that merged, needed for example 6
months of preliminary studies followed by 2 years of work for a team of 1.000
computer specialists, in order to rebuild and to mix consistently more than 250
different business applications, leading to a total cost of around 500 millions
euros.

At a deeper level, complex industrial systems are characterized by the fact
that they are resulting of a complex integration process (cf. [38,39] for more
details). This means that such systems are obtained by integrating in a coherent
way – that is to say assembling through well defined interfaces – altogether a
tremendously huge number of heterogeneous sub-systems and technologies, that
belong in practice to the three following main categories:

1. Physical systems: these types of systems are manipulating and transform-
ing physical quantities (energy, momentum, etc.). The hardware components
of transportation, micro-electronic or telecommunication systems are for in-
stance typical physical systems.

2. Software systems: these systems are characterized by the fact that they are
managing and transforming data. Operating systems, compilers, databases,
Web applications and Business Intelligence (BI) systems are classical exam-
ples of software systems.

3. Human systems: human organizations1 can be considered as systems as soon
as their internal processes have reached a certain degree of normalization.
They will then be identified to the business processes that are structuring
them.

Note at this point that the difficulty of integrating coherently the different
parts of a complex industrial system reflects of course in the difficulty of inte-
grating coherently the heterogeneous formal and informal models – going from
partial differential equations and logical specifications to business process mod-
elling (BPM) methods (cf. [11]) – that one must handle in order to deal globally
with such systems. There is in particular still no real formal general models that
can be used for dealing with complex industrial systems from a global point of
view. This lack can also be seen in the fact that there are no unified tools for
managing all the aspects of the realization cycle of an industrial complex system
(which goes from the analysis of needs and the specification phase up to the final
integration, verification, validation and qualification processes).

More generally, one must clearly face a huge lack of theoretical tools that may
help to clarify the question of complexity in practice. Very few research works are
for instance studying directly “heterogeneous” systems in their whole, though
a rather important research effort has been done during the last decades to
understand better several important families of homogeneous systems (such as
Hamiltonian systems, dynamical systems, embedded systems, distributed sys-
tems, business organizations, etc.) which are involved within larger industrial
1 One must obligatory take into account these non technical systems in the modelling

of a global system as soon as the underlying human organizations are strongly in-
teracting with its physical and/or software components. This situation occurs for
instance naturally in the context of complex software systems (see Section 4).

Modelling of Complex Software Systems: A Reasoned Overview 3

systems. The key point is here to understand that the problematics are ab-
solutely not the same if one studies a complex industrial system at local levels
(the only ones that the classical approaches are addressing) and at a global level.
We however believe that the existing formal “local” theoretical frameworks can
and should be redeployed to analyze complex industrial system at a holistic level.

An interesting fact that militates in favor of the possibility of progressing
in these directions is the convergence, that can be currently observed in the
industry, between the approaches used for managing the engineering phases2 of
physical and of software systems. This convergence can in particular be seen
at a methodological level since system engineering (see [47,55]) and software
engineering (see [48,51]) are more or more expressing their methods in the same
way, but also at the level of the architectural principles used in physical and
software contexts (see [33]) and of the quasi-formal specifying and modelling
tools that are now taking into account both physical and software frameworks
(cf. for instance [8,53] for the description of SysML that extends the classical
Unified Modelling Language (UML) – [46] – for general systems).

The purpose of this short paper is to make a reasoned overview on what could
be a general theory of systems. After some preliminaries, we therefore present
in Section 3 a tentative formal framework, for approaching in a mathematical
way the notion of “complex industrial system”, that tries to capture the realness
both of these systems and of their engineering design processes (which are very
difficult to separate in practice). Section 4 is then devoted both to the analysis
of the modern software industrial ecosystem using the analysis grid provided
by our approach and to the illustration of new types of research problems – of
practical interest – that are naturally emerging from this new point of view on
complex software systems.

2 Preliminaries

As in the few previous attempts to discuss globally of systems (see for instance
[14,50,59]), these objects will be defined here as mechanisms that are able to re-
ceive, transform and emit physical and/or informational quantities among time.
This explains why we will first introduce two key definitions on which are re-
spectively based time and quantity modelling in our approach.

2.1 Time Scales

A time scale T refers to any mode of modelling all the possible moments of time
starting from some initial moment t0 ∈ R. Time scales can be of two different
kinds, i.e. continuous or discrete. The continuous time scales are of the form
T = t0+R+. One has more various (regular) discrete time scales which are of the
form T = t0+N τ where τ ∈ R+

∗ denotes their time step. One can consider as well
irregular discrete time scales that are of the form T = { t0 +τ1 + · · ·+τn, n ∈ N }
2 I.e. design, architecture, integration and qualification processes.

4 D. Krob

where (τi)i∈N is a given family of strictly positive real numbers. Note finally that
the above time scales were always deterministic, but that they could also be
probabilistic if the parameters involved in their definitions are random variables
with given probabilistic laws.

2.2 Quantity Spaces

A quantity space refers to any mode of modelling either physical quantities (like
energy, temperature, speed, position, etc.) or informational quantities (that is to
say data in the usual computer science meaning). There are therefore two types
of quantity spaces, i.e. continuous and discrete ones. On one hand, a continuous
quantity space can be any complete topological space such as Rn or Cm. On the
other hand, a discrete quantity space is either any finite set or a discrete infinite
set such as Nn, Zm or A∗ (where A stands for any finite alphabet). Note finally
that a quantity space Q must also always distinguish a special element – called
the missing quantity – that represents the absence of quantity (which is typically
0 is Q is a subset of C).

3 Complex Systems

3.1 Abstract Systems

In order to move towards the formal modelling of complex industrial systems, let
us introduce a first notion of system, identified here to an input/output behavior.

Definition 1. An abstract system S is defined as a 5-uple S = (I, O, Ti, To,F)
where

– I and O are two quantity spaces respectively called the input and output
spaces of S,

– Ti and To are two time scales, respectively called the input and output time
scales of S,

– F is a function from ITi into OTo which is called the transfer function of S.

Observe that the discrete or continuous structure of the input and output spaces
and of the input and output time scales defines naturally different kinds of
abstract systems in the meaning of Definition 1. To illustrate and understand
better this last definition, let us now study several examples of such systems
that are distinguished according to this new criterium.

Example 1. – Discrete systems – An abstract system will said to be discrete
when its input and output time scales are discrete. Discrete abstract systems
can for instance easily be described by means of finite automaton modelling ap-
proaches which capture quite well the event reacting dimension of a real system.
These types of formalisms all basically rely on the use of rational transducers –
or equivalently Mealy machines – (cf. [3,37]) for expressing the transfer function

Modelling of Complex Software Systems: A Reasoned Overview 5

of a discrete system. Figure 1 shows a simple example of this kind of formalism
for modelling the effect of the switch button of a lamp on its lighting perfor-
mance. The input space of the abstract system that models the lamp is here
I = {ρ, π} (where ρ and π respectively model the fact that the switch button is
released or pressed – note that ρ stands therefore for the empty quantity of I)
when its output space is O = {0, e} ⊂ R+ (an output real value represents the
amount of energy produced by the lamp). The corresponding input and output
time scales can finally here be any discrete regular time scales that are relevant
with respect to the modelling purposes (they are both re-normalized to N in our
example for the sake of simplicity). Note in particular that the discrete structure
of the output time scale is not a problem as soon as we are only interested by
a computer model for simulation purposes (one just has to take a sufficiently
small output time step). We will revisit this example in the sequel, especially
to see how to get more realistic models with respect to the lamp real physical
behavior (see Examples 2 and 3).

Fig. 1. Modelling the transfer function of a lamp by a rational transducer

Petri nets (cf. [42,45]), (min−max, +) systems (cf. [4]), Kahn networks (cf.
[27]), etc. are other examples – among numerous others – of basic automaton-
oriented formalisms that can be used (with slight modifications) for describing
discrete abstract systems in our meaning.

There is also a purely logical approach for representing discrete abstract
systems. The core modelling language in this direction is probably Lustre (cf.
[22,13]). This programming language is indeed structurally devoted to express
transformations of typed infinite sequences. The Lustre program that models
the (simple) behavior of our lamp is for instance given below.

node Lamp(X:bool) returns (Y:real);
var E,Z:real;
let
E = e -> pre E;
Z = 0 -> pre Z;
Y = if X then E else Z;
tel

Fig. 2. Modelling the transfer function of a lamp by a Lustre program

6 D. Krob

In this example, X stands for the infinite sequence of boolean entries a lamp
receives (false and true modelling respectively the fact that the switch button
of the lamp is released or pressed) when Y represents the infinite sequence of
the energy levels that can take the lamp (either 0 or e). The E and the Z
variables are then just used here for defining the constant infinite real sequences
E = (e, e, e, . . .) and Z = (0, 0, 0, . . .). The last line of the program expresses
finally that the n-th entry of Y is equal to the n-th entry of E (resp. Z), i.e. to
e (resp. 0), when the n-th entry of X is true (resp. false), i.e. when the button
switch is pressed (resp. released), which models correctly the expected behavior
of the lamp (initially switched off) we considered.

Other reactive languages such as Signal (see [32]) or Lucid (see [12]) are using
too the same global flow manipulating approach. Note that one can of course
also take any usual formal specification language such as B (cf. [1,57]), TLA+
(cf. [31]) or Z (cf. [52]), any modelling tool coming from the model checking
approach (cf. [6,49]) or even any classical programming language, to describe
the step-by-step behavior of an abstract system by a “logical” formalism.

Example 2. Continuous systems – An abstract system will said to be continuous
when its input and output time scales are continuous. Since continuous systems
occur naturally in physical contexts, all the various continuous models coming
from control theory, physics, signal processing, etc. can therefore be used to
represent continuous systems (see [14,50] for more details). These models rely
more or less all on the use of (partial) differential equations which can be seen as
the core modelling tool in such a situation. Going back again to the lamp system
considered in Example 1, one can easily see that the lamp behavior can now for
instance be modelled by a continuous signal y(t) – giving the value of the lamp
energy at each moment of time t – that respects an ordinary differential equation
of the following form:

y′(t) = e× x(t) − k × y(t), y(0) = 0, (1)

where x(t) stands for a continuous {0, 1}-signal that represents the behavior of
the button switch – x(t) being equal to 0 (resp. 1) at time t iff the button switch
is off (resp. on) at this moment of time – and where k > 0 is a real parameter
which models the speed of reactivity of the lamp light to the opening/closing of
the button switch. Figure 3 shows then the result (on the right side) of such a
modelling (obtained here with e = 2 and k = 1) for a given {0, 1}-input signal
(on the left side). Note that this model shows clearly the continuous initial or
final evolutions of the energy of the lamp when the button is switched on or off
(which are of course not immediate in reality as it was expressed in the discrete
models considered in Example 1).

Mathlab and Simulink are the typical software tools that can be used for
designing continuous systems (see [36]). Observe also that specific frameworks
exist for dealing with several important families of continuous systems such as
dynamical systems (cf. respectively [28] and [18] for the physical and the control
theory point of views), Hamiltonian systems (cf. [40]), etc.

Modelling of Complex Software Systems: A Reasoned Overview 7

0

0.5

1

1.5

2

10 20 30 40 50 60 0

0.5

1

1.5

2

10 20 30 40 50 60

Fig. 3. Modelling the physical behavior of a lamp by a differential equation

Example 3. Hybrid systems – An abstract system will said to be hybrid when
one of its input or output time scales is discrete when the other one is contin-
uous. It is interesting to know that two types of approaches exist for studying
hybrid systems, depending respectively whether one stresses on the discrete (see
for instance [2,24]) or the continuous point of view (see for instance [58]) with
respect to such systems. However hybrid systems will of course always be rep-
resented by hybrid formalisms that mix discrete and continuous frameworks.
Hybrid automata (see [24]) are for instance classical models for representing ab-
stract hybrid systems – in our meaning – with a discrete input time scale and
a continuous output time scale (but not for the converse situation, which shows
that our hybrid systems must not be mixed up with these last systems). Fig-
ure 4 shows an hybrid automaton that models the physical behavior of the lamp
which was already considered in the two previous examples. Three modes of the
lamp are modelled here: the “Init” mode (the switch button was never touched),
the “On” mode (the lamp was switched on at least once) and the “Off” mode
(the lamp was switched off at least once). The states corresponding to these
three different modes contain then the three generic evolution modes – modelled
by ordinary differential equations (see Figure 4) – of the continuous signal y(t)
that represents the output lamp energy at each moment of time t, taking here
again the notations of Example 2. On the other hand, the inputs are here just
sequences of π and ρ (that model respectively the fact that the switch button of
the lamp is either pressed or released).

Fig. 4. Modelling the physical behavior of a lamp by an hybrid automaton

8 D. Krob

Other families of hybrid formalisms – in our meaning – can be typically found
in signal processing (see [43]) for modelling demodulation or sampling (transfor-
mation of a continuous signal into a discrete one) and modulation (transforma-
tion of discrete signal into a continuous one). These last formalisms are radically
different from the previous one since they are all based on complex analysis (i.e.
z or Laplace transforms) or on distribution theory (see again [43]).

Example 4. Non functional properties are functional . . . – Let us now focus
on how to express some engineering oriented system aspects. The key point we
would like to stress is the fact that the classical non functional properties of a real
system – that is to say response times, costs, delays of realization, availability,
safety, quality of service, etc. – can easily be modelled by transfer functions in
our framework. A non functional property N of a system can indeed typically
always be measured either by some suited numerical indicator fN (t) or by an
adapted boolean predicate PN (t) (see for instance [60]), depending on internal
parameters of the considered system, that can be measured at each moment t
of the input time. Such non functional properties can then be expressed in our
framework by extending the output space of the underlying system in order to
send out the corresponding indicator or predicate values.

Note finally that the “real” systems that can be found in practice form only
a “small” sub-family of the abstract systems covered by Definition 1 (which
was only given here in such a generality for the sake of simplicity). One may
found in [29,30] a formal definition of a “good” global more restricted family
of abstract systems that tries to capture the full realness of systems, using a
Turing machine type formalism mixed with non standard analysis (cf. [16]) for
taking into account the continuous and discrete dimensions of systems in the
same framework.

3.2 Abstract Integration

Up to now, we only focused on “simple” models for dealing with systems. Quite
all these models are however not really very well adapted for describing hier-
archical systems, i.e. systems – in our meaning – that are recursively defined
as a coherent interfacing – i.e. an integration – of a collection of sub-systems
of different nature. Very surprisingly, while there is a large modelling diversity
for usual systems (as we saw in the previous subsection), it indeed appears that
there are only a few models that support homogeneous hierarchical design (the
key difficulty being to be able to take into account both quantities and tempo-
ral hierarchies) when the formal models that support heterogeneous hierarchical
design are even less (to our knowledge, the only framework which handles this
last situation is SysML – see [53] – which remains a rather informal modelling
approach). We will therefore devote this new subsection to introduce the key
concepts on which system integration rely. To this purpose, let us first define
the notion of abstract multi-system that extends slightly the notion of system
introduced in the previous section.

Modelling of Complex Software Systems: A Reasoned Overview 9

Definition 2. An abstract (n, m)-system S is defined as a 5-uple S = (I,O, Ti,
To,F) where

– I = (Ik)k=1...n and O = (Ol)l=1...m are two families of quantity spaces,
whose direct products are respectively called the input and output spaces of
S,

– Ti = (Tk
i)k=1...n and To = (Tl

o)l=1...m are two families of time scales, whose
direct products are respectively called the input and output time scales of S,

– F is a function from
n∏

k=1

IT
k
i

k into
m∏

l=1

OT
l
o

l which is called the transfer function

of S.

This last definition just expresses that a (n, m)-system – or equivalently a multi-
system – has several different typed and temporized input and output mech-
anisms (see Figure 5 for an example of “hybrid” multi-system with a mix of
discrete and continuous input and output time scales). Note also that systems
in the meaning of Definition 1 are now (1, 1)-multi-systems.

Fig. 5. Schematic description of a (n, m)-system

Multi-systems can easily be composed, using typed and temporized interaction
channels, in a way that reflects the realness of system integration. An interaction
channel stands for a medium between an output O and an input I of two multi-
systems that can only transmit quantities of a given quantity space, at a time
rate associated with some fixed time scale and with a constant temporal delay
(for bringing a quantity from O to I). This leads us to the following definition.

Definition 3. An interaction channel is a triple C = (Q, T, τ) where Q is a
quantity space, T is a time scale (of initial moment t0) and τ ∈ T − t0 is a
transmission delay.

Multi-system composition makes only sense in the context of interacting system
networks, another important notion that is defined below (see Figure 6 for a
graphical vision).

10 D. Krob

Definition 4. An interacting system network N is a triple N = (S, χ, C) where

– S = (Si)i=1...N is a family of multi-systems,

– χ : CO −→ CI is a bijective mapping between a subset of the output indices
of S into a subset of the input indices of S3,

– C = { (OIc, Tc
io, τ

c), c ∈ CO } is a family of interaction channels indexed by
CO,

such that the k-th output and l-th input quantity spaces and times scales of Si

and Sj are always equal – respectively to OIc and Tc
io – for every c = (i, k) ∈ CO

and (j, l) = χ(c) ∈ CI .

The input and output indices of S that belong (resp. do not belong) to CI or to
CO (with the above notations) are called constrained (resp. free) input or output
indices within S. Note also that an interacting system network will said to be
initialized if it is equipped with a initialization map ι that associates with each
constrained input index c = (i, k) ∈ CI of the underlying family S a quantity
q = ι(c) ∈ Ii

k where Ii
k is the k-th input quantity space of the i-th system of S.

Fig. 6. Example of an interacting system network

Since we will be obliged for technical reasons to restrict composition to specific
types of multi-systems defined topologically, let us equip any flow space F, i.e. any
set of the form F = IT where I and T stand respectively for a quantity space and a
time scale, with a sequential topology. We will indeed say that a sequence (xi)i≥0
of flows of F = IT, i.e. of elements of the form xi = (xt

i)t∈T ∈ F, has a limit
x = (xt)t∈T in F iff for every t ∈ T, xt

i is always equal to xt for i big enough. A
multi-system is then said to be continuous if its transfer function F satisfies

F(lim
i

xi) = lim
i
F(xi) , (2)

3 (i, k) is an input (resp. output) index within S iff Si has an k-th input (resp. output)
space.

Modelling of Complex Software Systems: A Reasoned Overview 11

for any sequence (xi)i≥0 of input multi-flows that has a limit in the previous
meaning (naturally extended to products of flows). We can now introduce the
notion of system composition, which is a bit tedious to define properly, but that
is easily graphically depicted (see again Figure 6).

Proposition 1. Let N = (S, χ, C) be an interacting system network constructed
over a family S of continuous multi-systems which is equipped with an initializa-
tion map ι. One defines then a new continuous multi-system S = (I, O, Ti, To, F)
– called the composition of S through the interactions χ×C with initialization ι
– by setting:

– I and Ti are respectively the families of all input quantity spaces and time
scales that are associated with free input indices within S (whose set will be
denoted by F I),

– O and To are respectively the families of all output quantity spaces and time
scales that are associated with free output indices within S (whose set will be
denoted by FO),

– the function F associates with any possible input multi-flow x = (xc)c∈F I an
output multi-flow y = (yc)c∈F O which is defined for each c = (i, k) ∈ FO by
setting

yc = Fk
i (Xχ−1(i,1),(i,1), . . . , Xχ−1(i,Ni),(i,Ni))

4

(Ni denoting here the number of inputs of Si), where X = (Xχ−1(c),c)c∈CI∪F I

is the smallest5 solution of the equational system with flow variables6 defined
by setting⎧⎪⎪⎪⎨⎪⎪⎪⎩

X(0,0),c = xc for c ∈ F I ,

Xt
χ−1(c),c = ι(c) for c ∈ CI and t ∈ [t0, t0 + τ c[∩ Ti

k ,

Xt
χ−1(c),c=Fk

i (Xχ−1(i,1),(i,1),. . ., Xχ−1(i,Ni),(i,Ni)))
t−τc

for c∈CIand t≥τ c∈Ti
k,

where we put c = (j, l) and χ−1(c) = (i, k) in all these last relations.

Proof. The proof follows by using a classical argument of complete partial order
theory (cf. [21]). Note that our result can be also seen as an extension of a
classical result of Kahn (see [27]). ��

This proposition translates now immediately in the following definition which
gives a formal and precise meaning to the notion of system integration.

4 We extend here χ−1 to F I by setting χ−1(c) = (0, 0) when c is a free input index
within S .

5 In the meaning of the product of the (complete) partial orders that are defined on
each flow space F = IT by setting f � g for two flows f and g of F iff the two
following conditions are fulfilled: 1. f and g coincide up to some moment t ∈ T; 2.
fu is equal to the missing quantity of I for each moment u > t in T.

6 Where Xχ−1(c),c lies in the flow space Ii
k

T
i
k for every c = (i, k) ∈ F I ∪ CI .

12 D. Krob

Definition 5. A (continuous) multi-system will said to be an integrated abstract
multi-system if it results of the composition of a series of other multi-systems.

Integration leads naturally to the fundamental design mechanism for systems
which consists in analyzing recursively any system as an interfacing of a series
of sub-systems. This design process is quite simple to understand (in software
context, it just reduces to the usual top-down design methodology), but rather
difficult to realize in practice for complex heterogeneous systems (the key prob-
lem being to be sure to interface sub-systems both consistently and without any
specification hole). The practical difficulty of integration reflects well in the fact
that there is probably no existing formal framework for dealing with integrated
systems at the generality level we tried to took here. As a consequence, one can
also not really find any unique global design formal tool for real systems. To be
totally complete, one should however stress that there are at least two interest-
ing frameworks – presented in the two forthcoming examples – for helping the
working engineers in his integration tasks, but which have both serious mod-
elling limitations as soon as one arrives at a system level, and moreover quite
deep semantical lacks.

Example 5. Continuous oriented formalisms – The most widely industrially
used system design tool is probably the Mathlab & Simulink environment (see
[36]). In this approach, systems are represented by “black boxes” whose trans-
fer functions, inputs and outputs have to be explicitly given by the user (see
Figure 7 for the graphical representation of a car window system modelled in
this framework). The main problem of Mathlab & Simulink is however related
to the fact that there is no unambiguous and/or crystal clear semantics behind
the manipulated diagrams. The self loops in the graphical formalism provided
by these tools does for instance not have a very well defined interpretation in
this framework, which may typically create causality problems at the modelling
level (i.e. lead to abstractly modelled systems whose past behavior depends on
their future one . . . 7). The discrete formalism used by Mathlab & Simulink –
i.e. Stateflow which is just the commercial name of the implementation of the
Statecharts framework (see the next example) – is also semantically rather weak
(one can find probably more than 20 different formal semantics in the literature
that were proposed for Statecharts). Altogether this shows that Mathlab and
Simulink, even if they are wonderful and efficient working tools for the engineer,
still suffer from really fundamental flaws from a formal point of view (which lim-
its in particular the possibility of automatically verifying and validating designs
made in this formalism).

Example 6. Discrete formalisms – The last model that we would like to discuss
in this section is Statecharts (see [23,35]). It is indeed probably the very first
model – introduced in 1987 – that allowed hierarchical design, one of the key idea
of this formalism. In Statecharts, it is indeed possible to deal with distributed

7 Note that we totally avoided this problem in the formalism we introduced above,
due to the fact that our interaction channels have always a response delay !

Modelling of Complex Software Systems: A Reasoned Overview 13

Fig. 7. A Matlab/Simulink TM integrated system model c©

Fig. 8. The lamp revisited with Statechart

hierarchical Mealy machines (see again Example 1) which allow to model multi-
flow production by integrating event oriented hierarchical mechanisms.

The example of Figure 8 illustrates these key aspects of Statecharts. We mod-
elled here a lamp with two working modes: a normal one, where the usual lamp
button switch – associated with π1 – allows to switch on or off the lamp, and a
flashing one, that one reachs or quits by pressing on a special button – repre-
sented by π2. The lamp is also controlled by a global reset button – modelled by
π0 – which allow to stop or activate all the functions of the lamp when pressing
on it. Note that from the point of view of this last button, the right state of the
above figure is therefore just the “ON” state which is hierarchically decomposed
into two states, corresponding to the two possible working modes for our lamp
(in which one should continue to descend in order to arrive to the finer level of
design in our example), plus a concurrent state representing a modulo 6 counter
working totally independently from the other internal mechanisms, which gives
permanently its value to the flashing mode management state8 .

8 Which is not a very safe approach, as one may imagine, for obvious synchronization
reasons . . .

14 D. Krob

The problem of Statecharts is however its poor semantics with respect to
distribution expressivity: the precise nature of the interactions between the two
automata separated by the dashed line (which models concurrency) in Figure 8 is
typically not totally clear. The Esterel language (see [7] or [5] where one can find
a good overview of all so-called synchronous languages) was typically designed in
order both to preserve the most interesting aspects of Statecharts’ approach and
to overcome its core flaws. For the sake of completeness, note finally that there
are also other formal discrete formalisms that allow hierarchical design (see [9]
and again [35]).

3.3 System Abstraction and Simulation

Abstraction and simulation are two classical notions that can also be re-adapted
to systems (we take below all the flow notations of the previous section extended
here to multi-flows).

Definition 6. A multi-system S1 with input multi-flow space Fi
1, output multi-

flow space Fo
1 and transfer function F1 is said to be an abstraction (resp. a

simulation) of a multi-system S2 with input multi-flow space Fi
2, output multi-

flow space Fo
2 and transfer function F2 iff there exists two injective functions σi

and σo such that the following diagram is commutative:

Fi
2 Fo

2
�

F2

Fi
1 Fo

1
�F1

�
σi

�
σo (resp.

Fi
1 Fo

1
�

F1

Fi
2 Fo

2
�F2

�
σi �

σo). (3)

Hence S1 is an abstraction of S2 if these two systems have homomorphic func-
tional behaviors, the first one being however less detailed than the second one.
On the same way, S1 is a simulation of S2 if one can mimic all the functional
behaviors of the second system by the first one.

Example 7. Assembling and high level programs – Let us fix a finite alphabet A
and a discrete time scale T. One can then identify any halting Turing machine
M – i.e. any Turing machine that eventually stop on all its entries – with entries
in A with a discrete system SM with A∗ as input and output quantity space, T
as input and output time scale and a transfer function FM defined as follows:
1. FM transforms any flow of the form Fx = (x, 1, 1, . . .), into the flow FM,x =
(1, 1, . . . , Mx, 1, 1, . . .), where Mx stands for the value computed by M on x,
produced at the moment given by the number of elementary steps of M required
to obtain it; 2. FM transforms any input flow different from a flow of the form
Fx into the empty output flow. Looking on programs in this way, one can then
easily check that each high level program P is an abstraction of some assembling
program A (the one produced by the corresponding compiler) and that such an
assembling program A is then a simulation of the program P .

Modelling of Complex Software Systems: A Reasoned Overview 15

Example 8. Interfaces – The interface theory which was recently developed by
de Alfaro and Henziger (see for instance [17]) can easily be transferred into the
system framework as presented here (with of course again a number of slight
reinterpretations). System interfaces provide then new generic interesting exam-
ples of system abstractions in our meaning . In this context, note that systems
appear then as simulations of their interfaces.

Note finally that there are of course other less constrained abstraction notions,
typically the ones coming from static analysis (see [15]), which are also of interest
in the system context.

3.4 Concrete Systems

We are now in position to model formally the usual way a concrete system is
designed.

Definition 7. A concrete system CS is a pair (FS,OS) of abstract integrated
systems, the first one (resp. the second one) being an abstraction (resp. a sim-
ulation) of the other one, which are respectively called the functional behavior9

and the organic structure10 of CS.

This definition reflects the fact that the design of a real system S follows usually
two main steps. The first one is a modelling step which defines the so-called
functional architecture of S, i.e. in other words the recursive integration structure
of a high level modelling of S constructed by following the point of view of the
external systems (hardware, software, users, etc.) that are interacting with S.
When the functional architecture of S is fixed, one can then define its organic
architecture, i.e. the real internal structure of S, by respecting the requirements
provided by the functional architecture (which appears as an abstraction of the
organic architecture).

In classical software engineering, the two architectural notions involved in Def-
inition 7 can be seen at different places. The pairs formed by a usual program and
its machine or assembling code or, at a higher level, by a software specification
and its programmed implementation are typical examples of concrete systems
in our meaning. However the underlying conceptual separation does only take
really all its importance when one is dealing with systems whose both functional
and organic decompositions are complicated, which occurs typically when a sys-
tem results from an highly heterogeneous integration process. Note that this last
property can in fact be seen as an informal characterization of complex systems.
Observe also finally that two totally different kinds of complex systems in this
meaning, that is to say embedded systems and information systems, naturally
arise in the software sphere (see below and Section 4.1).

9 The functional behavior models the input/output behavior of S as it can observed
by an external observer.

10 The organic structure models the intrinsic structure of the considered system.

16 D. Krob

Example 9. Embedded system design – When one deals with embedded system
design, one must have an holistic approach that integrates in the same com-
mon framework the software, the hardware, the physical and the control theory
points of views and constraints involved within such systems (see [25]). One
therefore naturally divides the design in two separated, but completely inter-
connected, main parts: the functional design that corresponds here to the global
environment and solution modelling where one will concentrate on the high level
algorithmic and mathematical problems, the organic design related then with
the low level system implementation where one must be sure to respect the
physical and electronic constraints, the key difficulty being of course to have a
good correspondence between these two levels of representation.

Example 10. Information system design – An information system can be seen as
a global (enterprise) environment where software systems, hardware devices and
human organizations interact in a coherent way (usually to fulfill a number of
business missions). The complexity of these systems lead therefore classically to
separate the corresponding design into two architectural levels: on one hand, the
functional architecture which is devoted to the description of the user services,
the business processes, the user and business data, the system environment,
etc. that have to be managed by the information system; on the other hand,
the associated organic architecture which is the concrete organization of the
software applications, servers, databases, middleware, communication networks,
etc. whose interactions will result in a working information system.

4 Complex Software Systems

4.1 Hierarchies of Complex Software Systems

Integration and abstraction mechanisms allow us to construct naturally a hier-
archy of complexity – taken here in an informal way – on software systems which
is organized around two axes, i.e. integration and abstraction complexity (see
Figure 9). The idea consists in classifying families of software systems according
both to their degree of integration, i.e. to their degree of internal systemic large-
ness and heterogeneity, or more formally to the size of the tree associated with
their organic architecture, and to the degree of abstraction which is required
to deal with them, i.e. equivalently to the size of the tree associated with their
functional architecture.

Such a classification lead us to identify two main classes of complex software
systems (the term complex referring here only at first analysis to the organic
integration complexity):

1. the software systems where the integration and abstraction complexity comes
from the mix of computer science frameworks with physics, signal processing
and control theory environments and models, that is typically to say the
so-called embedded systems,

Modelling of Complex Software Systems: A Reasoned Overview 17

Fig. 9. The complex software hierarchy

2. the software systems where the integration and abstraction complexity comes
from the mix of the computer science world with mainly “human” systems
and organizations (plus possibly hardware components), which can be them-
selves separated into three main subclasses that are presented hereafter by
increasing degree of integration and of abstraction (i.e. from the less to the
most complex underlying organic and functional architectures):
– integrated softwares: this corresponds to enterprise softwares that are

specifically devoted either to some category of business activities – such
as BI (global information consolidation inside a large company), CRM
(customer relationship management), ERP (financial and production ser-
vice management), SCM (supply chain management) or KM (documen-
tation management) softwares – or to some type of technical integration
purposes – such as B2Bi (external partner software integration), EAI
(internal software integration), ETL (batch data consolidation) or EII
(on the request data consolidation) softwares. We refer to [26] for an
overview of these software technology (see also [54,34]).

– information systems: an information system can be defined as a coher-
ent integration of several integrated softwares – in the above meaning
– that supports all the possible business missions of an organization,
taken at a global level. An information system can therefore be seen as
the integrated system that consists both of a human organization and
of all the computer systems that are supporting the specific business
processes of the considered organization (see [11,41] or Example 11 for
more details).

– systems of systems: this refers to an even higher level of integration, i.e.
to the situation where a number of independently designed information
systems have to cooperate in order to fulfill a common mission. Systems
of systems are characterized by the loose couplings existing structurally
between their organic components (that we will not discuss here since
this would lead us too far with respect to the integration model we took

18 D. Krob

within this survey paper). Network Centric Warfare (NCW) systems,
airport platforms management systems, etc. can be typically seen as
systems of systems in this meaning.

Example 11. Information system – As already pointed out, an information sys-
tem can be seen as the integration of a human organization and a software
system. The left side of Figure 10 shows for instance a very high level architec-
ture of an information system focusing on this point of view: the sub-systems
of the enterprise organization (i.e. the main business departments) are here at
the border of this map when the technical sub-systems (i.e. the main integrated
involved softwares) are in the center. One can also see on this map a number
of arrows that are refering to the main business processes, that is to say to the
main normalized interactions (or equivalently interfaces) existing between the
corresponding human and software systems.

Fig. 10. An information system architecture (Sysoft c©) and a business process model
(BPMN c© – [56])

A business profess refers typically to an enterprise process such as billing,
maintening, sourcing, producing, etc. Business process modelling (BPM) is there-
fore naturally one of the core methodology which is presently developed to rep-
resent better the functional behavior of an information system (see [10,41] or
Figure 10 which gives an example of a software testing procedure modeling).
Note however that BPM is not a formal approach in the line of the numerous
models we presented in Section 3. It indeed rather belongs to the family of infor-
mal UML-like models, which limits seriously its theoretical potential (but leaves
the door open for new research).

4.2 What Are the New Problems Emerging from This Framework ?

New types of problems are naturally arising with the most complex software sys-
tems. A rather important research effort is for instance presently done for under-
standing and designing better embedded systems, which are however probably
the “most simple” complex systems due to the “nice” underlying mathematical

Modelling of Complex Software Systems: A Reasoned Overview 19

environment in which they are living, even if they are already quite complex to
handle (see [25]). We will therefore not focus here on these systems on which
a lot was and continue to be made by numerous theoretical computer scien-
tists, but rather on the “human”-oriented complex systems which were, quite
surprisingly, not widely studied from a formal point of view, although they are
at the center of important economic challenges and of a large technological and
business literature (see for instance [11,41,48], etc.).

One of the key problems of these kind of software systems is clearly to be
able to take more formally into account the “man in the loop”, which appears to
be their common denominator. There are therefore naturally several important
research streams that could emerge in trying to develop operational modelling
formalisms for business processes and more generally for organizational para-
digms. We mean of course here formalisms with well defined semantics that
would allow to express precisely and unambiguously characteristic properties of
a business process (such as cost, speed of execution, probability of success, etc.)
in order to be able to formally verify these properties. Such a modelling research
effort could probably also help practically organizations to master better their
structures and processes.

At a more global level, there is still in the same way an important high level
formal modelling effort that must be done in order to give solid bases to a theory
of complex software systems. If there is a real business consensus on the nature of
an information system, no scientific consensus exists presently – at our knowledge
– with respect to a formal – that is to say a mathematical – definition of an
information system. For systems of systems, the situation is even worse since at
this moment of time, there is even no clearly shared business definition of these
more complex systems. The key point in this direction would therefore probably
to be able to give sound formal definitions of information systems and systems
of systems, taking of course integrated systems as primitive objects in such a
modelling approach. Such a framework would probably result in the development
of new methods for complex software quantitative analysis, an important subject
which is still under-developed in the classical context of information systems (see
[19,44]) and basically non existing for systems of systems.

One should finally not forget all the specific problems that are of course con-
tinuously emerging in the jungle of complex software systems. As a matter of
conclusion to this paper, one can find such two problems – among many others
– roughly and quickly presented below.

Example 12. Information system degeneracy – A classical operational problem
that arises in a real information system corresponds typically to the situation
where the system begins to emit too many information flows and crashes when
it is not able anymore to support the resulting treatment charge. Usually such
a crash is not immediate and appears as the consequence of a long intermediate
period where nothing is made to prevent it. It is therefore of main interest to
be able to predict it and to analyze its origins in order to react properly when
it is still time. If one models at high level an information system as a network
of multi buffered applications, one sees that the problem can be rephrased as a

20 D. Krob

problem of queuing networks that can probably be attacked both from a static
analysis and a distributed algorithmic point of view.

Example 13. Interoperability of systems of systems – When interoperability is a
well known problem which is quite well mastered for usual information systems
(see [20,34]), it is probably still an open subject at the level of systems of systems.
The key difficulty at this level comes from the fact that one must interface in a
coherent way a number of information systems that were not initially intended to
work together. For technical reasons, the usual interoperability approaches can
therefore not totally be applied in these contexts since it is typically not easy or
even possible to interface these systems through an EAI layer. New methods –
mixing semantical and syntactical approaches – are therefore required to solve
in a generic way this key problem.

Acknowledgements. The author would sincerely like to thank Herman Kuilder,
Matthieu Martel, Marc Pouzet and Jacques Printz for the numerous discussions
we had together during the maturation period that preceded the writing of this
paper, leading to several key evolutions of his point of view.

References

1. Abrial J.R., The B-book – Assigning programs to meanings, Cambridge University
Press, 1996.

2. Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.H.,
Nicollin X., Olivero A., Sifakis J., Yovine S., The algorithmic analysis of
hybrid systems, Theor. Comp. Sci., 1995; 138 (1): 3–34.

3. Autebert J.M., Boasson L., Transductions rationnelles – Applications aux lan-
gages algébriques, Collection ERI, Masson, 1988.

4. Baccelli F., Cohen G., Olsder G.J., Quadrat J.P., Synchronization and
linearity – An algebra for discrete event systems, Wiley, 1992.

5. Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le Guernic P., de
Simone R., The Synchronous Languages Twelve years later, Proc. of the IEEE,
Special issue on Embedded Systems, 2003; 91 (1): 64–83.

6. Bérard B., Bidoit M., Laroussinie F., Petit A., Schnoebelen P.,
Vérification de logiciels – Techniques et outils du model-checking, Vuibert Infor-
matique, 1999.

7. Berry G., Gonthier G., The Synchronous Programming Language ESTEREL:
Design, Semantics, Implementation Science of Computer Programming, 19, 83–
152, 1992.

8. Bock C., SysML and UML2 Support for Activity Modeling, Systems Engineering,
9, (2), 160–186, 2006.

9. Börger E., Stärk R., Abstract state machines – A method for high-level system
design and analysis, Springer, 2003.

10. Business Process Management Initiative – Object Management Group,
Business Process Modeling Notation, OMG, http://www.bpmn.org, 2006.

11. Caseau Y., Urbanisation et BPM : le point de vue d’un DSI, Dunod, 2006.
12. Caspi P., Hamon G., Pouzet M., Lucid Synchrone, un langage de programmation

des systèmes réactifs, in “Systèmes Temps-réel : Techniques de Description et de
Vérification - Théorie et Outils”, 217–260, Hermes International Publishing, 2006.

Modelling of Complex Software Systems: A Reasoned Overview 21

13. Caspi P., Pouzet M., Synchronous Kahn networks, Proc. of the first ACM SIG-
PLAN Int. Conf. on Functional Programming, 226–238, 1996.

14. Cha D.P., Rosenberg J.J., Dym C.L., Fundamentals of Modeling and Analyzing
Engineering Systems, Cambridge University Press, 2000.

15. Cousot P., Cousot R., Abstract interpretation: a unified lattice model for sta-
tic analysis of programs by construction or approximation of fixpoints, in “Conf.
Record of the Sixth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages”, Los Angeles, ACM Press, 238–252, 1977.

16. Cutland N., Nonstandard analysis and its applications, London Mathematical
Society Student Texts, 10, Cambridge University Press, 1988.

17. De Alfaro L., Henziger T.A., Interface-based design, in “Engineering Theories
of Software-intensive Systems”, M. Broy, J. Gruenbauer, D. Harel, and C.A.R.
Hoare, Eds., NATO Science Series: Mathematics, Physics, and Chemistry, Vol.
195, 83–104, Springer, 2005.

18. Fliess M., Fonctionnelles causales non linéaires et indéterminées non commuta-
tives, Bull. Soc. Math. France, 1981; 109: 3–40.

19. Garmus D., Herron D., Function Point Analysis: Measurement Practices
for Successful Software Projects, Addison-Wesley Information Technology Series,
Addison-Wesley, 2000.

20. Gold-Bernstein B., Ruh W., Enterprise Integration: The Essential Guide to
Integration Solutions, Addison-Wesley Information Technology Series, Addsison-
Wesley, 2004.

21. Gunter C.A., Scott D., Semantic domains, in “Handbook of Theoretical Com-
puter Science”, Vol. B, 633–674, Elsevier, 1990.

22. Halbwachs N., Caspi P., Raymond P., Pilaud D., The synchronous data-flow
programming language LUSTRE, Proceedings of the IEEE, 79, (9), 1305–1320,
1991.

23. Harel D., Statecharts: A visual formalism for complex systems, Science of Com-
puter Programming, 8, (3), 231–274, 1987.

24. Henzinger T.A., The theory of hybrid automata, in Proceedings of the 11th An-
nual IEEE Symposium on Logic in Computer Science, LICS’96, IEEE Society
Press, 1996, pp. 278–292.

25. Henzinger T.A., Sifakis J., The embedded systems design challenge, Proc. of the
14th Int. Symp. on Formal Methods (FM), LNCS, Springer, 2006 (to appear).

26. IT Tool box, http://www.ittoolbox.com.
27. Kahn G., The semantics of a simple language for paralell programming, Proc. of

the IFIP Congress 74, 471–475, 1974.
28. Katok A., Hasselblatt B., Introduction to the modern theory of dynamical sys-

tems, Cambridge, 1996.
29. Krob D., Bliudze S., Towards a Functional Formalism for Modelling Complex

Industrial Systems, in “European Conference on Complex Systems (ECCS05), P.
Bourgine, F. Kps, M. Schoenauer, Eds., (article 193), 20 pages, 2005.

30. Krob D., Bliudze S., Towards a Functional Formalism for Modelling Complex
Industrial Systems, in “Complex Systems: Selected Papers”, ComPlexUs (to ap-
pear).

31. Lamport L., Specifying systems – The TLA+ Language and Tools for Hardware
and Software Engineers, Addison-Wesley, 2003.

32. Le Guernic P., Gautier T., Data-Flow to von Neumann: the Signal approach,
in “Advanced Topics in Data-Flow Computing”, Gaudiot J.-L. and Bic L., Eds.,
Prentice-Hall, 413–438, 1991.

22 D. Krob

33. Maier M.W., System and Software Architecture Reconciliation, Systems Engineer-
ing, 9, (2), 146–59, 2006.

34. Manouvrier B., EAI – Intégration des applications d’entreprise, Hermès, 2001.
35. Marwedel P., Embedded systems design, Kluwer, 2003.
36. Mathworks, Mathlab and Simulink; http://www.mathworks.com.
37. Mealy G.H., A Method for Synthesizing Sequential Circuits, Bell System Tech. J.,

34, 1045-1079, 1955.
38. Meinadier J.P., Ingénierie et intégration de systèmes, Hermès, 1998.
39. Meinadier J.P., Le métier d’intégration de systèmes, Hermès-Lavoisier, 2002.
40. Meyer K.R., Hall G.R., Introduction to Hamiltonian Dynamical Systems and

the N-Body Problem, Applied Mathematical Sciences, 90, Springer Verlag, 1992.
41. Morley C., Hugues J., Leblanc B., Hugues O., Processus métiers et systèmes

d’information, Dunod, 2005.
42. Petri C.A., Fundamentals of a Theory of Asynchronous Information Flow, Proc.

of IFIP Congress 1962, 386–390, North Holland, 1963.
43. Proakis J., Digital Communications, 3rd Edition, McGraw Hill, 1995.
44. Printz J., Deh C., Mesdon B., Trèves B., Coûts et durée des projets informa-

tiques – Pratique des modèles d’estimation, Hermès Lavoisier, 2001.
45. Reisig W., Petri nets, Springer Verlag, 1985.
46. Rumbaugh J., Jacobson I., Booch G., The Unified Modeling Language Refer-

ence Manual, Addison Wesley, 1999.
47. Sage A.P., Armstrong J.E. Jr., Introduction to Systems Engineering, John

Wiley, 2000.
48. Satzinger J.W., Jackson R.B., Burd S., Simond M., Villeneuve M., Analyse

et conception de systèmes d’information, Les éditions Reynald Goulet, 2003.
49. Schneider K., Verification of reactive systems – Formal methods and algorithms,

Springer, 2004.
50. Severance F.L., System modeling and simulation – An introduction, John Wiley,

2001.
51. Sommerville I., Software Engineering, Addison Wesley, 6th Edition, 2001.
52. Spivey J.M., The Z notation – A reference manual, Prentice Hall, 1992.
53. SysML, Systems Modeling Language – Open Source Specification Project –

http://www.sysml.org.
54. Tomas J.L., ERP et progiciels de gestion intégrés – Sélection, déploiement et

utilisation opérationnelle – Les bases du SCM et du CRM, Dunod, 2002.
55. Turner W.C., Mize J.H., Case K.E., Nazemetz J.W., Introduction to indus-

trial and systems engineering, Prentice Hall, 1993.
56. White S.A., Introduction to BPMN, IBM, http://www.bpmn.org, 2006.
57. Wordsworth J.B., Software engineering with B, Addison-Wesley, 1996.
58. Zaytoon J., Ed., Systèmes dynamiques hybrides, Hermès, 2001.
59. Zeigler B.P., Praehofer H., Gon Kim T., Theory of modeling and simulation

– Integrating discrete event and continuous complex dynamic systems, Academic
Press, 2000.

60. Zschaler S., Formal Specification of Non-functional Properties of Component-
Based Software, in “Workshop on Models for Non-functional Aspects of
Component-Based Software” (NfC’04), Bruel J.M., Georg G., Hussmann H., Ober
I., Pohl C. Whittle J. and Zschaler S., Eds., Technische Universität Dresden, 2004.

The +CAL Algorithm Language

Leslie Lamport

Microsoft Corporation
1065 La Avenida

Mountain View, CA 94043
U.S.A

Algorithms are different from programs and should not be described with pro-
gramming languages. For example, algorithms are usually best described in terms
of mathematical objects like sets and graphs instead of the primitive objects like
bytes and integers provided by programming languages. Until now, the only
simple alternative to programming languages has been pseudo-code.

+CAL is an algorithm language based on TLA+. A +CAL algorithm is auto-
matically translated to a TLA+ specification that can be checked with the TLC
model checker or reasoned about formally. +CAL makes pseudo-code obsolete.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, p. 23, 2006.
c© IFIP International Federation for Information Processing 2006

Semantic-Based Development of
Service-Oriented Systems�

Martin Wirsing1, Allan Clark2, Stephen Gilmore2, Matthias Hölzl1,
Alexander Knapp1, Nora Koch1, 3, and Andreas Schroeder1

1 Ludwig-Maximilians-Universität München, Germany
2 University of Edinburgh, United Kingdom

3 F.A.S.T. GmbH, Germany

Abstract. Service-oriented computing is an emerging paradigm where services
are understood as autonomous, platform-independent computational entities that
can be described, published, categorised, discovered, and dynamically assembled
for developing massively distributed, interoperable, evolvable systems and appli-
cations. The IST-FET Integrated Project SENSORIA aims at developing a novel
comprehensive approach to the engineering of service-oriented software systems
where foundational theories, techniques and methods are fully integrated in a
pragmatic software engineering approach. In this paper we present first ideas for
the SENSORIA semantic-based development of service-oriented systems. This in-
cludes service-oriented extensions to the UML, a mathematical basis formed by a
family of process calculi, a language for expressing context-dependent soft con-
straints and preferences, qualitative and quantitative analysis methods, and model
transformations from UML to process calculi. The results are illustrated by a case
study in the area of automotive systems.

1 Introduction

Service-oriented computing is an emerging paradigm where services are understood as
autonomous, platform-independent computational entities that can be described, pub-
lished, categorised, discovered, and dynamically assembled for developing massively
distributed, interoperable, evolvable systems and applications. These characteristics
pushed service-oriented computing towards nowadays widespread success, demonstra-
ted by the fact that many large companies invested a lot of efforts and resources to pro-
mote service delivery on a variety of computing platforms, mostly through the Internet
in the form of Web services. Tomorrow, there will be a plethora of new services as re-
quired for e-government, e-business, and e-science, and other areas within the rapidly
evolving Information Society. These services will run over “global computers”, i.e.,
computational infrastructures available globally and able to provide uniform services
with variable guarantees for communication, co-operation and mobility, resource us-
age, security policies and mechanisms, etc., with particular regard to exploiting their
universal scale and the programmability of their services.

The aim of IST-FET Integrated Project SENSORIA is to develop a novel compre-
hensive approach to the engineering of service-oriented software systems where foun-
dational theories, techniques and methods are fully integrated in a pragmatic software
� This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 24–45, 2006.
c© IFIP International Federation for Information Processing 2006

Semantic-Based Development of Service-Oriented Systems 25

Service-Oriented Modeling

Q
u

a
lit

a
ti
ve

 a
n

d
 Q

u
a

n
ti
ta

ti
ve

 A
n

a
ly

si
s

Model-driven
Development

R
e-

E
n

g
in

ee
ri

n
g

L
eg

ac
y

S
ys

te
m

s

Core Calculi for Service Computing

Deployment

Legacy System Global ComputerGlobal Computer

Fig. 1. The SENSORIA approach to service-oriented systems development

engineering approach. This includes a new generalised concept of service, new seman-
tically well-defined modelling and programming primitives for services, new powerful
mathematical analysis and verification techniques and tools for system behaviour and
quality of service properties, and novel model-based transformation and development
techniques.

In the envisaged software development process, services are modelled in a platform-
independent architectural design layer; by using model transformations, these mod-
els are then transformed and refined to the service computing platform of SENSORIA

which, in turn, can be used for generating implementations over different global com-
puting platforms in a (semi-)automated way. On the other hand, legacy code is trans-
formed systematically into service oriented software models (see Fig. 1).

The added value of SENSORIA to this widely used process comes from the deep
mathematical foundations and their associated analysis methods. A typical scenario
could be as follows: A service engineer will write her design of a service-oriented sys-
tem for global computing in a precisely defined specialisation of UML for services on
global computers. This UML extension will be carefully designed to be automatically
connected with well-defined mathematical models of global computing services. These
models come with mathematical theories, techniques and tools for analysing their quali-
tative and quantitative properties such as performance, security, costs, mobility, and dis-
tribution. By automatic translation of the analysis results back to UML the service en-
gineer will get direct feedback on her system design from the mathematical models and
can revise her models accordingly. Then she can use again mathematically well-founded
transformation and refinement techniques for constructing the implementation or she
can use the SENSORIA analysis techniques for checking the appropriateness of the of-
fered or discovered services of other parties. She could also adopt the re-engineering
techniques of SENSORIA for bringing legacy code in a service compatible format.

In this paper we present first ideas for the SENSORIA semantic-based development
of service-oriented systems. This includes service-oriented extensions to the UML, a
mathematical basis formed by a family of process calculi, a language for expressing

26 M. Wirsing et al.

context-dependent soft constraints and preferences, qualitative and quantitative analy-
sis methods, and model transformations from UML to process calculi. The results are
illustrated by a case study in the area of automotive systems.

The paper is organised as follows: In Sect. 2 we present the running example, (an
excerpt of) the UML extension for services, and two process calculi PEPA [22] and
Sagas [13] which are used for analysing the UML designs and as semantic basis for
service transactions with compensation. Moreover, we show how soft constraints and
preferences can be used for choosing the best service offer. In Sect. 3 we present the
SENSORIA model transformation approach and show how we use the VIATRA2 [37,2]
model transformation tool for translating UML diagrams with compensation into the
Saga calculus and therefore giving semantics to compensations. In Sect. 4 we present
some of the SENSORIA methods for qualitative and quantitative analysis; in particular,
we show how the dynamic behaviour of a service orchestration can be model checked,
and how the performance aspects of a service level agreement for providing help in an
accident scenario can be analysed. We conclude the paper in Sect. 5 with some remarks
on further SENSORIA results.

2 Languages for Service-Oriented Systems

Current service description and composition languages such as WSDL [40] and
BPEL [9] are tailored to specific technological platforms such as Web Services and
the Grid, and address low-level concerns.

The languages that have emerged for composing services into business processes
such as WSFL [17], BizTalk [7], WSCI [39] and, most prominently, BPEL and
BPEL4WS [10] have limited expressive power. They offer restricted support for con-
currency and distribution and are mainly oriented towards programming workflows,
making use of interconnection mechanisms that are far too rigid to support modelling
business processes at the more abstract architectural layers.

SENSORIA aims at the definition of platform independent linguistic primitives for
modelling and programming global service-oriented systems. Language primitives for
services and their interactions are developed on two different abstraction levels, at the
architectural design level and at the programming abstraction level for service over-
lay computing. The scientific tools used for the definition of programming-level primi-
tives are category theory, process algebra and calculi as well as logics and constraints.
A UML (Unified Modelling Language) [30] extension to service-oriented modelling
makes the formal approaches available for practitioners and is the basis for many SEN-
SORIA verification techniques. An additional soft-constraint-based language for service
selection allows the declarative specification of orchestrations.

2.1 Automotive Case Study

Today’s embedded computers in cars can access communication networks like the Inter-
net and thereby provide a variety of new services for cars and drivers. A set of possible
scenarios of the automotive domain are examined within the scope of the SENSORIA

project, among which we select a car repair and an accident assistance scenario for
illustrating the different techniques presented in this article.

Semantic-Based Development of Service-Oriented Systems 27

In the car repair scenario, the diagnostic system reports a severe failure in the car en-
gine so that the car is no longer drivable. The car’s discovery system identifies garages,
car rentals and towing truck services in the car’s vicinity. The in-vehicle service plat-
form selects a set of adequate offers taking into account personalised policies and pref-
erences of the driver and tries to order them. We assume that the owner of the car has
to deposit a security payment before being able to order services.

In the accident assistance scenario, the car’s airbag is deployed after an accident.
This causes the safety system to report the car’s location to a accident report centre. This
centre attempts to determine the severity of the accident and take appropriate actions.

2.2 Language for Service Orchestration

In the car repair scenario, it is necessary to invoke services in a specific order. It is not
possible, e.g., to order any service before the security payment was deposited. Similarly,
when undoing orders of repair assistance services, the security payment may be returned
only after all orders were cancelled. That is to say, compensations of executed sequential
forward actions must be performed in reverse order.

To address such compensation scenarios within SENSORIA, Bruni et al. [13] defined
a calculus to provide a first semantic basis for service orchestration (a more elaborated
calculus is under development). This calculus builds upon sagas [18], which is a for-
malism for long running transactions (LRT) with compensations initially developed for
database systems. LRTs are transactions that require a very long time to complete (e.g.
hours or days). In such cases, traditional database techniques to guarantee the ACID
property, such as locking resources, are not suitable. Instead, sagas allow the specifi-
cation of compensation actions which are installed dynamically when forward actions
succeed.

As service orchestrations must be able to handle LRTs, most orchestration languages
allow the specification of compensation actions. Hence, the saga calculus is a suitable
semantic basis for service orchestrations. Within the calculus, one can specify com-
pensation (%), sequential (;) and parallel (|) composition of actions, as well as sub-
transactions ([]). The semantics of sub-transactions is elegant for the specification of or-
chestrations: if a sub-transaction fails and compensates successfully, the sub-transaction
is considered successful. If the enclosing transaction fails however, the sub-transaction
is required to compensate as well. This allows the specification of dependencies be-
tween, e.g., ordering of services, or the continuation of processes although other parallel
processes fail.

The compensation strategy defined by the calculus is interruption based, that is to
say, if a parallel branch fails all other branches are interrupted and compensate im-
mediately. They do not need to execute forward actions until their control flow joins.
In sequential composition, the compensation order is required to be the inverse of the
forward action ordering. For the car repair scenario for example, we assume that the
garage appointment is ordered next to the security payment deposit. This leads to the
specification

ChargeCreditCard %RevokeCharge ;
OrderGarageAppointment %CancelGarageAppointment

28 M. Wirsing et al.

If the forward flow ChargeCreditCard ;OrderGarageAppointment fails, it is com-
pensated by executing CancelGarageAppointment ;RevokeCharge in exactly that or-
dering, which is the behaviour required by the scenario specification.

The saga calculus supports further constructs such as nondeterministic choice, ex-
ception and failure handling, and by this covers the semantics of common orchestration
language constructs (see [13] for more details).

2.3 Language for Quantitative Analysis

Performance Evaluation Process Algebra (PEPA) [22] is a high-level language for quan-
titative analysis of systems. PEPA is a stochastic process algebra which extends classi-
cal process algebras by associating a duration with each activity used in a PEPA model.
Thus where classical process algebras such as CCS and CSP deal with instantaneous
actions which abstract away from time PEPA has instead continuous-time activities
whose durations are quantified by exponentially-distributed random variables. PEPA
models describe finite-state systems and via the operational semantics of the language
a PEPA model gives rise to a continuous-time finite-state stochastic process called a
Markov chain.

Continuous-time Markov Chains (CTMCs) are amenable to solution using standard
procedures of numerical linear algebra such as Gaussian elimination or conjugate gra-
dient methods. These can be applied to find the compute the steady-state or equilibrium
probability distribution over the model. From this it is straightforward to compute con-
ventional performance measures such as utilisation or throughput.

More advanced tools [27,11] can perform transient analysis of the CTMC where
one considers the probability distribution at a chosen instant of time. It is possible to use
these results to perform more complex quantitative analysis such as computing response
time measures and first passage time quantiles as used in service-level agreements.

The PEPA process algebra is a compact formal language with a small number of
combinators. Components perform activities. Activities have a type and rate specified
using prefix (.). Alternative behaviours can be composed in a choice (+). Parallel com-
position of components uses CSP-style synchronisation over a set of activity types (��).
Private behaviour can be hidden (/).

2.4 UML Extension for Service Oriented Architectures

Within the SENSORIA approach services are modelled with UML. For the static as-
pects of service-oriented software systems, this representation effort ranges from rather
simple, stereotyped language extensions for introducing services to more complicated
structures like dependency relations between services and their contextual relationships
to resources and legacy systems. The dynamic parts of service-oriented software, in par-
ticular orchestration and choreography of services are supported by developing primi-
tives for interaction and activity modelling that take into account possible failures and
quality-of-service aspects. The extensions will incorporate structural and behavioural
as well as functional and non-functional notions.

Semantic-Based Development of Service-Oriented Systems 29

Fig. 2. Simplified architecture of car and car environment

The structure of a service oriented architecture can be visualised by UML deploy-
ment and composite structure diagrams. A deployment diagram is used to represent
the—usually nested—nodes of the architecture, i.e. hardware devices or software execu-
tion environments. Fig. 2 shows a UML deployment diagram of the car and its environ-
ment as first approximation to an architecture model. The nodes are connected through
communication paths that show the three types of communication that characterise the
automotive domain: intra-vehicle communication, inter-vehicle communication, and
communication among vehicle and environment such as communication with the car
manufacturer or a remote discovery server. Note that the architecture comprises a local
as well as a remote discovery service in order to find services in the local repository.

Modelling Structural Aspects. Service oriented architectures are highly dynamic be-
cause services are only loosely coupled, i.e., a service often needs to be discovered
before it is connected and can be disconnected at run-time as well. Hence, different
modelling features are required to express evolving connections. In addition to UML
deployment diagrams, which give a static view of the architecture, a representation
showing the evolution of an architecture is required. Baresi, Heckel, Thöne and Varró
propose the construction of models visualising the functional aspects encapsulated in
business-related components [3]. We use these UML structure diagrams to represent
the evolving connections within the service oriented architecture of the vehicle and
its environment. Fig. 3 shows the car internal components, a temporary connection to
the discovery service of the car manufacturer, and a remote service (car rental) which
knows the remote service discovery and will (later) publish its description to the re-
mote service discovery. Other remote services such as tow truck and garage and their
relationship to the discovery service can be modelled analogously. After publishing, the

30 M. Wirsing et al.

«service»
RemoteDiscovery

«describes»

«describes»

«knows» «knows»

«knows»«service»
CarManufacturer

Discovery

High-level
Vehicle Platform

Low-level
VehiclePlatform

«permanent»

«temporary»

«service»
CarRental

«artifact»
CarRentalDesc.

«artifact»
DiscoveryDesc.

Vehicle

Fig. 3. Car components modelled with UML extension for SOA before service publishing

discovery service knows the description of the published services, so that it can pass
these descriptions to service requesters at service discovery time.

Three different types of connections are identified: discovery connection, permanent
connection (as in modelling of non service oriented architectures) and temporary con-
nections. For more details about the last two types the reader is referred to [3]. The
discovery connection is based on the information provided by a discovery service.

We can observe these three types of connections in the service oriented vehicle ar-
chitecture. In order to be invoked services need to be discovered before the binding
to the car’s on-board system takes place. This type of connection using a discovery
process is visualised with a �knows	 stereotyped dependency, see Fig. 3. A temporary
connection from the car on-board system to the car manufacturer discovery service is
graphically represented by a UML connector with interfaces. For a permanent service
we select a UML connector without interfaces as shown between components within
the vehicle in Fig. 3.

Three components are involved in the execution of service orderings: a service dis-
covery which may be local or external to the car, a reasoner for service selection and a
service orchestrator, see Fig. 4.

Modelling Behavioural Aspects. The most interesting aspect when modelling the be-
haviour of a service oriented system is the workflow describing the orchestration of
services. Modelling orchestration of services includes specifying non-functional prop-
erties of services such as performance and resource consumption, and also modelling
transactional business processes that may require a very long period of time in order to
complete. As discussed above, the key technique to handle long running transactions is
to install compensations which are not directly available in UML.

We start with the modelling of the accident assistance scenario. The accident assis-
tance scenario is concerned with road traffic accidents and dispatch of medical assis-
tance to crash victims. Drivers wishing to use the service must have in-car GPS location
tracking devices with communication capabilities and have pre-registered their mobile
phone information with the service. If a road traffic accident occurs, the deployment of

Semantic-Based Development of Service-Oriented Systems 31

provided:
 offer(Id, Service)
 noMoreOffers(Id)
required:
 getService(Id, Description)
 failed(Id, Service)
 reserved(Id, Service)

Local
Discovery

 Reasoner

Orchestrator

 «permanent»

 «permanent» provided:
 sendService(Service)
required:
 getService(Description)

«artifact»
Discovery

Description

«describe» External
Discovery

«know»

Fig. 4. Components for executing service orderings and their ports

the car airbag causes the on-board safety system to report the car’s current location (ob-
tained by GPS) to a pre-established accident report endpoint which in turn attempts to
call the registered driver’s mobile phone. If there is no answer to the call then medical
assistance is dispatched to the reported location of the car (presuming that the driver
has been incapacitated by injuries sustained in the accident).

We model this scenario in UML as state machine; to represent quantitative aspects
(e.g., answer time) we use stereotypes to attach rates to transitions, see Fig. 5. Fig 6
explains the meaning of the rates.

Regarding the modelling of the second scenario, “car repair”, the main focus lies on
the specification of an appropriate transactional business process. As discussed in sec-
tion 2.2, such a business process contains both forward actions and compensations. As
UML activity diagrams lack such compensations, we define a set of modelling primi-
tives and corresponding stereotypes for UML activity diagrams.

– Saga is an executable activity node that may have subordinate nodes as an
ActivityGroup with the ability to compensate long running transactions.

– CompensableAction specialises UML Action to own exactly one pair of actions
(forward action and compensation action).

To provide a more intuitive representation, both forward and compensation actions are
drawn separated by a line within CompensableAction instances, although this is not
completely UML compliant. The metamodel depicted in Fig. 7 shows how these com-
pensation elements are related to UML elements StructuredActivityNode, ActivityNode
and Action.

With these extensions, the orchestration for the car repair scenario can be compactly
formulated (Fig. 8). In the modelled business process, the driver’s credit card is charged
with the security deposit payment, which will be revoked if ordering the services failed.
Then, a garage appointment is searched for. The appointment with the garage will give
coordinates to tow the broken down car to, and also a location constraint that restricts the
car rental agency that may be ordered. If ordering the car rental fails, the overall process
does not fail, as the activity is enclosed in a sub-transaction. However, if ordering a tow
truck fails the garage appointment has to be cancelled as well. For this reason, the

32 M. Wirsing et al.

«performance»
rate=1.5..2.5

«performance»
callDriversPhone

sm accident

 «performance»
 timeoutDriversPhone

 «performance»
 rescue

«performance»
awaitRescue

 «performance»
 deployAirbag

 «performance»
 reportAccident

AirbagDeployed

 «performance»
 processReport

«performance»
rate=1.0..60.0

«performance»
rate=0.5..1.5

«performance»
rate=600.0..600.0

«performance»
rate=2.0..10.0 «performance»

rate=0.25..3.0

«performance»
rate=1.0..1.0

HelpSent

CallTimeout

DriverCalled

Passive

AccidentReported

ReportProcessed

Fig. 5. State machine of the accident assistance scenario

Value
Rate min max Meaning

r1 600.0 600.0 an airbag deploys in 1/10 of a second
r2 2.0 10.0 the car can transmit location data in 6 to 30 seconds
r3 0.5 1.5 it takes about one minute to register the incoming data
r4 1.5 2.5 it takes about thirty seconds to call the driver’s phone
r5 1.0 60.0 give the driver from a second to one minute to answer
r6 0.25 3.0 vary about one minute to decide to dispatch medical help
r7 1.0 1.0 arbitrary value — the driver is now awaiting rescue

Fig. 6. Table of minimum and maximum values of the rates from Fig. 5. All times are expressed
in minutes. Thus a rate of 1.0 means that something happens once a minute (on average). A rate
of 6.0 means that the associated activity happens six times a minute on average, or that its mean
or expected duration is ten seconds, which is an equivalent statement.

orchestrator will try to order a tow truck service until either no more service offers are
found or the ordering succeeds. If ordering a tow truck fails the rental car delivery will
be redirected to the driver’s actual location.

It is obviously possible to model the same orchestration with a plain UML ac-
tivity diagram, and handle compensations as exceptions (Fig. 9). This requires ex-
plicit programming of the compensations and the conditions under which they are ex-
ecuted. In addition to actions, activities and control nodes, the specification requires
an InterruptibleActivityRegion in order to terminate all active and pending activities
of the region in case an interruption occurs. Even in this simple scenario, this ap-
proach requires the verification of three conditions. For larger scenarios the diagram’s
complexity will increase and its usefulness will decrease rapidly. Furthermore, it is dif-
ficult to explicitly model the silent failure of the car rental.

Semantic-Based Development of Service-Oriented Systems 33

0..11
forwardAction

0..11
compensationAction

StructuredActivityNode
UML

 Saga

 0..1 0..*

ActivityNode
UML

CompensableActionAction
UML

Fig. 7. UML extension for sagas

«saga»
CarRepair

OrderRentalCar

RedirectRentalCar

Order repeateldy
until success or
no more services
available

OrderTowTruck

CancelTowTruck

OrderGarage
Appointment

CancelGarage
Appointment

«saga»
CarRental

ChargeCreditCard

RevokeCharge

Fig. 8. Modelling car repair workflow with UML extension for sagas

2.5 Soft Constraints for Selecting the Best Service

In many cases service-oriented systems can utilise different combinations of services to
achieve their goals. These combinations differ in functional and non-functional aspects
like cost, reliability or performance. The reasoning component (cf. Fig. 4) of a service-
oriented system decides how the available services are orchestrated so that the best
compromise between different goals of the system is achieved. Soft constraints are a
promising way to specify and implement reasoning mechanisms. In the case study, soft
constraints are used for service selection only.

Soft constraints are an extension of classical constraints to deal with non-functional
requirements, over-constrained problems and preferences. Instead of determining just a
subset of admissible domain elements, a soft constraint assigns a grade—to be chosen
from a set of finite or infinitely many “preference” values—to each element of the
application domain. Bistarelli, Montanari and Rossi [6,5] have developed a very elegant
semiring based theory of soft constraints where many different kinds of soft constraints
can be represented and combined in a uniform way over so-called constraint semirings

34 M. Wirsing et al.

Order Repeatedly
until success or
no more services
available

RedirectRentalCar

OrderRentalCar
does not throw an
exception on failure

OrderRentalCar

[CardCharged]

RevokeCharge

[GarageAppointed]

[CarRented]

CancelGarage
Appointment

OrderTowTruck

 [else]

 [else]

 [else]

OrderGarage
Appointment

ChargeCreditCard

Fig. 9. Modelling car repair workflow with plain UML activity diagrams

(c-semirings). Examples for c-semirings are the semiring of Boolean values Bool or
the “fuzzy natural numbers” FuzzyNat. The Bool semiring can be used to express hard
constraints in the c-semiring framework; in the FuzzyNat semiring the value 0 is used
to represent inadmissible solutions, higher values are used to represent increasingly
preferred solutions.

In SENSORIA we are developing a language which extends the c-semiring approach
with possibilities to specify preferences between constraints and to vary the constraints
according to a context. This simplifies the description of behaviours of systems in a
dynamically changing environment and with complex trade-offs between conflicting
properties.

A context is an expression in a suitable logic (e.g., predicate logic or temporal logic)
which can serve as a guard for a constraint. For example, the distance to the destination
might determine whether the quick availability of a rental car is important or not. In this
case, “distance < 20km” is a context that can restrict the applicability of a constraint
to situations where we are close to our destination. Variables appearing in contexts are
called context variables; variables appearing free in constraints but not in contexts are
called controlled variables. In the car repair scenario the context variables will contain,
among others, the distance to our destination, the time remaining until the appointment
starts, or whether the journey is work related. The controlled variables represent proper-
ties of offers. Each offer is identified by a serial number (offer-nr), and other controlled
variables are used to specify cost or quality of the offers, see Fig. 10.

A soft constraint is a mapping from (domains of) controlled variables into a c-
semiring. An expression of the constraint language consists of (1) a set of labelled
conditional rules where the constraints contained in the head of the rule depend on the
guard, and (2) a set of conditional inequalities between constraint labels which specify
preferences between constraints.

Semantic-Based Development of Service-Oriented Systems 35

Name Type Domain Meaning

distance context R+ The distance remaining to the target location (in
km)

Δt context N The time until the appointment starts (in
minutes)

work-related? context B Is the appointment work-related?

offer-nr controlled N The unique serial number of an offer

rental-car-cost controlled R+ The cost of the rental car in Euros
rental-car-availability controlled N The estimated availability time of the rental car

garage-cost controlled R+ The cost of the garage (in Euros)
garage-duration controlled N The estimated duration that the garage needs for

the repair (in hours)

Fig. 10. Examples for context variables and controlled variables

In the car repair scenario we maintain hard constraints named towTruckOffers, rental-
CarOffers and garageOffers containing disjunctions of the offers that the reasoner ob-
tained from the discovery mechanism. If a new offer is provided to the reasoner the
corresponding constraint or constraints are extended by another term.

Other constraints specify the preferences of the users. These constraints are soft con-
straints, for simplicity we use the fuzzy natural numbers as the domain of all these
constraints.

This constraint prefers garages that can repair the car as quickly as possible:

fastRepair : [garage-duration | n �→ �48/n]
We also may want the repair to be done cheaply, but only if we are paying ourselves.

Repairs costing more that 1000 Euros are still acceptable, but only barely.

cheapRepair : in context ¬work-related?

assert [garage-cost | n �→
1000/n�] end
We are content to use any kind of car for short distances as long as it is cheap. In this

case a cost of more than 100 Euros per day is unacceptable as the constraint evaluates
to 0.

shortDistance1 : in context distance < 20km
assert [rental-car-cost | n �→ �100/n] end

The following constraint means that we want to obtain a car as quickly as possible
if the appointment is work-related, the distance is short and we have limited time to go
to the appointment. If the rental car takes longer than Δt minutes we regard the offer
as unacceptable. In this constraint the preference value depends on the context as Δt

appears in the computation of a value.

shortDistance2 : in context work-related?

∧ distance < 20km ∧Δt < 60min
assert [rental-car-availability | (n �→ �Δt/n)] end

When determining the configuration of a system we might not consider all con-
straints to be equally important. For example, it might be most important that the car

36 M. Wirsing et al.

is repaired both quickly and cheaply, and that we consider the other constraints only if
we have several offers that are equal in that respect. This can be expressed by taking
the product of the grades computed by both constraints. On the other hand, we consider
shortDistance1 and shortDistance2 to be incomparable, i.e., we compare the grades of
these constraints individually and do not compute a combined value.

fastRepair ∗ cheapRepair > shortDistance1, shortDistance2

shortDistance1, shortDistance2 > fastRepair

fastRepair > cheapRepair

From a set of constraints and preferences the reasoner can compute either the best
solutions, or a set of all solutions that are better than a certain threshold. Two techniques
that are used for solving soft constraint systems are branch and bound search [38] and
dynamic programming [5].

3 Model Transformation

3.1 Use of Model Transformation in SENSORIA

In the field of service oriented computing, there is a large gain from using model trans-
formation languages, since data formats from different services can be easily mapped
to each other with the help of model transformation languages.

Model transformation is used in SENSORIA for several tasks such as e.g. model re-
finement, deployment, and model analysis. “Refinement” uses model transformations
to add additional details to the model, and remove degrees of freedom left in the ini-
tial model, trading abstraction for determinism. In SENSORIA we see “deployment” as
a special refinement mapping models from the SENSORIA platform level to platform
specific software artifacts. This use of model transformations is similar to the trans-
formation from PIMs to PSMs in the MDA approach [28]. Finally, “model analysis”
uses model transformations to translate models to logics or languages tailor-made for
model analysis, such as process algebras. With the help of these specific models, dif-
ferent crucial qualitative and quantitative properties of the modelled service oriented
software system can be verified. Furthermore, model transformations can be used to
back-annotate the initial model with analysis results provided by analysis tools. Thus,
the fact that analysis is performed on an internal representation can be made transparent
to the modeller.

There are several existing model transformation tools and frameworks, some of
which are MOF QVT [31], ATLAS ATL [25] and IBM MTF [29]. Unfortunately, all of
them have at best a partially defined formal semantics, which makes the use in semantic
based engineering hard. Furthermore, MOF QVT still lacks an implementation.

The SENSORIA project comprises two model transformation languages, one with
a pragmatic and easy usable programming model (VIATRA2) and one based on a
declarative model with strong mathematical foundations (AGG). By having both lan-
guages, SENSORIA covers both pragmatical and formal mathematical approaches to
model transformations.

VIATRA2 [37,2] (Visual Automated Model Transformations) is a model transfor-
mation language supporting graph transformation rules and imperative abstract state

Semantic-Based Development of Service-Oriented Systems 37

cs : Compensablecomp : Compensable
Action

comp: Compensable
Action

ct : ActivityTrace

ft : ActivityTrace

tr : ActivityTrace

comp: Action
name = cn

fwd: Action
name = fn

tr : ActivityTrace

'
compensationProcess

forwardProcess

scomp : Action
name = cn

comp : Action
name = cn

sfwd : Action
name = fn

fwd : Action
name = fn

'
cl: compensationAction

fl: forwardActionfl: forwardAction

'
cl: compensationAction

Fig. 11. Graph transformation rule for compensable actions

machine (ASM)-like code. VIATRA2 is a fully hybrid language since it allows to call
graph transformation rules from imperative code through rule application calls, and also
to call ASM code from declarative graph transformation rules. Nevertheless, VIATRA2
delivers a formal semantics of transformations along with the language. A big advantage
of VIATRA2 over other solutions is that it offers a good combination of both imperative
code with declarative graph patterns, as imperative constructs ease programming com-
plex transformations considerably [19]. A recursive processing of the source model can
be easily intertwined with graph transformation steps. In this way, the advantages from
both the declarative and the imperative approach can be brought together.

AGG [1] (Attributed Graph Grammar System) uses an algebraic model transforma-
tion approach based on attributed graphs grammars. AGG has a strong mathematical
basis in category theory, and follows a more declarative approach to transformation,
which allows for easy mathematical analysis of transformation properties.

A graph transformation rule in both VIATRA2 and AGG consists of a left hand
side and right hand side. The left hand side specifies the conditions under which the
rule applies. The right hand side specifies which changes are made to the model if
the rule applies. These changes reuse variables bound in the precondition and ma-
nipulates or remove the model elements to which the variables are bound (see, e.g.,
Fig. 11).

3.2 Model Transformation Examples

We discuss two examples of model transformation use in SENSORIA. The first, which
was implemented in VIATRA2, shows how UML activity diagrams can be transformed
to saga expressions. The activity diagram from the car repair scenario, Fig. 8, is trans-
formed into the following corresponding sagas expression:

[ChargeCreditCard %RevokeCharge ;
OrderGarageAppointment %CancelGarageAppointment ;
(OrderTowTruck %CancelTowTruck | [OrderRentalCar%RedirectRentalCar])]

The abstract syntax tree of this expression is created via a VIATRA2 model transfor-
mation. We will now give a brief overview of the transformation implementation.

In the UML activity to sagas transformation example, all compensable actions are
translated to simple sagas expressions with graph transformation rules (see Fig. 11).

38 M. Wirsing et al.

rule nodeToSagas(in StartNode, out EndNode, out Sagas) =
try choose with find p_activityNode(StartNode) do

try choose NextNode
with find p_nextNode(StartNode, NextNode) do

try choose with find p_parseableNode(NextNode) do
call handleSequence(StartNode, NextNode,

EndNode, Sagas);
else call handleActivity(StartNode, NextNode,

EndNode, Sagas);
else fail;

else try choose with find p_sagaNode(StartNode) do
call handleSagaNode(StartNode, EndNode, Sagas);

else try choose with find p_parallelStartNode(StartNode) do
call handleParallelNode(StartNode, EndNode, Sagas);

else try choose with find p_finalNode(StartNode) do
call handleFinalNode(StartNode, EndNode, Sagas);

else
call handleNOP(StartNode, EndNode, Sagas);

Fig. 12. Pattern Matching Dispatch. Called rules call nodeToSagas recursively

Non-compensable actions are translated with a similar graph transformation rule. These
rules are called as long as applicable. Note that the creation of a trace prevents the
repeated application of the rule (A second rule creates actions for activity nodes without
compensations).

In a second step, the parallel nodes, nested sagas as well as sequential edges between
activity nodes are translated into parallel, saga and sequence expressions respectively.
This is done with a recursive imperative rule, since the transformation is complex in
nature: saga’s parallel expressions may be nested arbitrarily. Starting from the initial
node, a node is transformed into a prefix of a saga expression and a recursive rule call
is performed on successor nodes to transform the remaining subgraph. Different cases
are distinguished by pattern matching (see Fig. 12). All names starting with p denote
patterns to be matched, while names starting with handle denote imperative rules
which call nodeToSagas recursively. After this second step terminates successfully,
the transformation is complete.

Another example for the use of model transformations is the transformation from
UML state and communication diagrams to PEPA. PEPA is, as elaborated above, an
algebra for performance analysis. It is possible to extract PEPA models by model trans-
formation from UML state and communication diagrams.

4 Qualitative and Quantitative Analysis

Qualitative and quantitative analysis methods for software systems aim at providing
transparent support for the designer throughout the software construction phases based
right on those notations used in development. However, proving the correctness of a de-
sign or measuring the performance, in general, relies on mathematical models and tool
support that are not offered on the level of general software development notations, let

Semantic-Based Development of Service-Oriented Systems 39

alone using specialised extensions for particular domains. In SENSORIA, model trans-
formations are employed to lift methods and tools from the well-founded, abstract,
mathematical level to the concrete UML-based design level for service-oriented archi-
tectures. Furthermore, backward transformations project analysis results, delivered in
terms of the underlying mathematical model, back to modelling notation (cf. section 3).
We demonstrate how model checking (qualitative analysis) and performance evaluation
(quantitative analysis) are applied to the automotive case study.

4.1 Model Checking Orchestration

The orchestration of services, like in the extended UML activity diagram description
in Fig. 8, has to be implemented in an orchestrator. We transform the saga-based
model into a conventional UML state machine model which details the handling of
service allocation and compensation. Using model checking we can prove that the im-
plementation model indeed preserves the compensation properties of the original UML
model.

The state machine in Fig. 13 describes an implementation of the car repair workflow
as depicted in Fig. 8. It relies on a reasoner for choosing services as in Fig. 4. The
general idea of the implementation is that every service needed is first requested from
the reasoner (getService). If the reasoner delivers an offer (offer) in a certain amount
of time (after(T)), the service first is reserved and ordered afterwards. If the reasoner
misses the deadline, or the reservation or the ordering fail the orchestrator terminates.
In the latter cases the reasoner is informed of the failure (fail) such that it can avoid
offering a failing service again. During the reservation phase the reasoner may send
better offers for the requested service (offer). If a service can be reserved eventually, the
reasoner is notified (reserved) and the offer is ordered. The compensation handling is
done using a global compensation handler, like suggested by the UML activity diagram
description in Fig. 9.

For the services “charge credit card”, “order tow truck”, and “order car rental”, how-
ever, different implementation details are to be realised: On the one hand, the credit card
charge need not be reserved; this is an implementation decision. Ordering the tow truck
has been marked as to be done repeatedly until no more offers are available. Thus every
possible offer has to be checked, that is, previous reservations may have to be compen-
sated in the orchestration process (compensateReservation). Finally, the car rental may
or may not fail without calling for overall compensation, as it is marked as a nested
�saga	.

In SENSORIA different tools are available for verifying the correct behaviour of
the orchestrator implementation. The UML model checker UMC [35] (developed by
ISTI) offers the verification of temporal properties described in the μ-calculus directly
on UML state machine. The UML model checking tool Hugo/RT [23] (developed by
LMU) translates UML state machines and collaborations into different off-the-shelf
model checkers like Spin [34] and UPPAAL [36] and also supports Java and SystemC
code generation. Here, we used the UPPAAL option of Hugo/RT. By instrumenting the
model, which we will not detail here, we checked, e.g., that whenever the global final
state is reached all services indeed have been ordered; if an order fails all orders and
reservations which have been done up to the point of failure of getting a service—i.e.,

40 M. Wirsing et al.

IdleTowTruck

ReserveTowTruck

OrderTowTruck

DoneTowTruck

IdleRentalCar

ReserveRentalCar

OrderRentalCar

DoneRentalCar

compensate /
if (reserved(rentalCar)) {

compensateReservation(rentalCar)
if (ordered(rentalCar))

redirect(rentalCar)
}
...

if (ordered(credit))
revoke(credit)

IdleGarage ReserveGarage OrderGarage

IdleCredit OrderCredit

CarRepair

noMoreOffers(id) /

compensate()

offer(id, towTruck) /

/ r.reserved(id, towTruck)
after(T) /

r.failed(id, towTruck)
r.getService(id, TowTruck)

after(T) /
r.failed(id, towTruck)

r.getService(id, TowTruck)
compensateReservation

offer(id, rentalCar) /

after(T) /

after(T) /

after(T) /

(towTruck)

offer(id,
rentalCar) /

offer(id, towTruck) /

TowTruckRentalCar

offer(id, garage) /

after(T) /
r.reserved(id, garage)

compensate()
r.failed(id, garage)

/

after(T) /
compensate()

r.failed(id, garage)

offer(id, credit) /

r.reserved(id, credit)

after(T) /
compensate()

r.failed(id, credit)

after(T) /
compensate()

compensate()
after(T) /

/ r.getService(id, Garage)

offer(id, garage) /

r.getService(id, TowTruck) r.getService(id, RentalCar)

/ r.getService(id, Credit)

r.failed(id, rentalCar)

r.failed(id, rentalCar)

/ r.reserved(id, rentalCar)

Fig. 13. Implementation state machine for car repair workflow

when one of the final states inside CarRepair is entered—are compensated. After be-
haviour verification, we have used Hugo/RT for generating Java code from the very
same model that has been verified by UPPAAL.

Semantic-Based Development of Service-Oriented Systems 41

4.2 Quantitative Analysis of the Accident Scenario

In this section we consider the assessment of a service level agreement offered by an
automotive collision support service. The scenario with which these systems are con-
cerned is road traffic accidents and dispatch of medical assistance to crash victims.

The Choreographer design platform [14] (developed by the DEGAS project [24])
can perform quantitative analysis via PEPA which starts and ends with UML models.
A PEPA model is extracted from a UML model decorated with rate information such
as the one shown in Fig. 5. This model is compiled into a CTMC and solved for its
steady-state probability distribution. The results from this analysis are reflected back
into a modified version of the input UML model with the quantitative analysis results
recorded on the state diagrams in the model. Here we use the more computationally
expensive but more informative method of transient analysis of the underlying CTMC
and focus on the analysis of the PEPA model.

We represent in the model the sequence of events which begins with the deployment
of the airbag after the crash and finishes with the dispatch of the medical response team.
The first phase of the sequence is concerned with relaying the information to the remote
service, reporting the accident. When the diagnostic report from the car is received the
service processes the report and matches it to the driver information stored on their
database.

Car1
def= (airbag, r1).Car2

Car2
def= (reportToService, r2).Car3

Car3
def= (processReport, r3).Car4

The second phase of this passage through the system focuses on the attempted di-
alogue between the service and the registered driver of the car. We consider the case
where the driver does not answer the incoming call because this is the case which leads
to the medical response team being sent.

Car4
def= (callDriversPhone, r4).Car5

Car5
def= (timeoutDriversPhone, r5).Car6

The service makes a final check on the execution of the procedure before the decision
is taken to send medical help. At this stage the driver is awaiting rescue.

Car6
def= (rescue, r6).Car7

Car7
def= (awaitRescue, r7).Car1

We assess the service against the following compound service level agreement(SLA):

At least 40% of airbag deployments lead to medical help being sent within five
minutes and at least 80% of airbag deployments lead to medical help being sent
within ten minutes.

We assess this SLA using the passage-time quantile computation capabilities provided
by the ipc/Hydra tool chain [11]. We vary rates r2 to r6 across five or six possible

42 M. Wirsing et al.

values leading to 5 × 5 × 5 × 5 × 6 = 3750 experiments to be performed. The
graphs of computed probability against experiment number for time bounds of five
minutes and ten minutes for all 3750 experiments are shown in Fig. 14. Using both of
these graphs we determine that the SLA is met across the values of the rates of the
model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

P
r

Experiment number

Probability of completion by time 5.0 against experiment number

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500
P

r
Experiment number

Probability of completion by time 10.0 against experiment number

Fig. 14. Graph of probability of completing the passage from airbag deployment to medical as-
sistance dispatch within five minutes and ten minutes plotted against experiment number over
all 3750 experiments

We now consider how the cumulative distribution function for the passage from
airbag deployment to dispatch of medical assistance is affected as the values of the
rates r2 to r6 are varied as specified in the table in Fig. 6. The results for r2 and r6 are
presented in Fig. 15.

These results show that variations in upstream rates (near the start of the passage of
interest) such as r2, r3 and r4 have less impact overall than variations in downstream
rates (near the end of the passage of interest) such as r5 and r6. This is true even when
the scale over which the upstream rates are varied is much more than the scale over
which the downstream rates are varied (contrast variation in r2 against variation in r6).

The conclusion to be drawn from such an observation is that, if failing to meet a
desired quality of service specified in an SLA then it is better to expend effort in making
a faster decision to dispatch medical help (governed by rate r6) than to expend effort in
trying to transmit location data faster (governed by rate r2), over the range of variability
in the rates considered in the present study.

Fig. 15. Graphs of cumulative distribution function sensitivity to changes in rates for the passage
from airbag deployment to dispatch of medical assistance

Semantic-Based Development of Service-Oriented Systems 43

5 Concluding Remarks

In this paper we have presented some of the first results of the SENSORIA semantic-
based development of service-oriented systems. We have shown service-oriented exten-
sions to the UML, a first mathematical basis formed by process calculi such as PEPA
and the saga calculus, a language for expressing soft constraints and preferences of
services, qualitative and quantitative methods for analysing service orchstrations and
service level agreements, and model transformations from UML to process calculi.

But these results represent only a small part of the SENSORIA project. In addition, the
SENSORIA project is developing a comprehensive service ontology and a (SENSORIA)
Reference Modelling Language (SRML) [16] for supporting service-oriented modelling
at high levels of abstraction of ”business” or ”domain” architectures (similar to the aims
of the service component architecture SCA [33]). To provide semantic foundations to
the dynamic behaviour of services a new process calculus SCC [8] has been designed
which features explicit notions of service definition, service invocation and session
handling. Other research strands of SENSORIA comprise a probabilistic extension of
a Linda-like language for service-oriented computing [12] and stochastic extensions of
KLAIM [32] and beta-binders [15]. SENSORIA addresses security issues ranging from
sandboxing for KLAIM [21], trust management for autonomic grid services [26], and
security of service composition [4] to a formal framework for security and trust in the
requirements phase of system development [20].

Moreover, SENSORIA is developing a model-driven approach for service-oriented
software engineering and a suite of tools and techniques for deploying service-oriented
systems and for re-engineering of legacy software into services. By integrating and
further developing these results SENSORIA will achieve its overall aim: a comprehen-
sive and pragmatic but theoretically well founded approach to software engineering for
service-oriented systems.

References

1. The Attributed Graph Grammar System (AGG). tfs.cs.tu-berlin.de/agg. Last visited: June
2006.

2. András Balogh and Dániel Varró. Advanced Model Transformation Language Constructs in
the VIATRA2 Framework. In Proc. ACM Symp. Applied Computing (SAC 2006) — Model
Transformation Track, 2006. To appear.

3. Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel Varró. Style-based Modelling
and Refinement of Service-oriented Architectures. Softw. Sys. Model., 2006. To appear.

4. M. Bartoletti, P. Degano, and Ferrari G.L. Security Issues in Service Composition. In Proc.
8th IFIP International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS), LNCS, 2006.

5. Stefano Bistarelli. Semirings for Soft Constraint Solving and Programming. LNCS 2962.
Springer, Berlin, 2004.

6. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-
tion and optimization. J. ACM, 44(2):201–236, 1997.

7. Microsoft BizTalk Server. www.microsoft.com/biztalk. Last visited: June 2006.
8. Michele Boreale, Roberto Bruni, Rocco DeNicola, Ivan Lanese, Michele Loreti, Ugo Mon-

tanari, Davide Sangiorgi, and Gianluigi Zavattaro. SCC: a Service Centered Calculus. De-
liverable 2.2, SENSORIA, 2006.

44 M. Wirsing et al.

9. Business Process Execution Language (BPEL). www.oasis-open.org. Last visited: June
2006.

10. BPEL for Web Services. www6.software.ibm.com/software/developer/library/ws-bpel.pdf.
Last visited: June 2006.

11. Jeremy T. Bradley and William J. Knottenbelt. The ipc/HYDRA tool chain for the analysis
of PEPA models. In Proc. 1st Int. Conf. on the Quantitative Evaluation of Systems (QEST
2004), pages 334–335, Enschede, Netherlands, September 2004.

12. Mario Bravetti and Gianluigi Zavattaro. Service Oriented Computing from a Process Alge-
braic Perspective. Journal of Logic and Algebraice Programming, 2005. To appear.

13. Roberto Bruni, Hernan Melgratti, and Ugo Montanari. Theoretical Foundations for Com-
pensations in Flow Composition Languages. In Proc. 32nd ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL’05), pages 209–220. ACM, 2004.

14. Mikael Buchholtz, Stephen Gilmore, Valentin Haenel, and Carlo Montangero. End-to-end
integrated security and performance analysis on the DEGAS Choreographer platform. In
I.J. Hayes J.S. Fitzgerald and A. Tarlecki, editors, Proc. of the Int. Symposium of Formal
Methods Europe (FM 2005), LNCS 3582, pages 286–301. Springer-Verlag, June 2005.

15. P. Degano, D. Prandi, C. Priami, and P. Quaglia. Beta-binders for biological quantitative
experiments. Proc. 4th Workshop on Quantitative Aspects of Programming Languages,
QAPL ’06, Electronic Notes in Theoretical Computer Science, 2006. To appear.

16. José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A Formal Approach to Service Com-
ponent Architecture. In In Proc. 3rd International Workshop on Web Services and Formal
Methods (WS-FM 06). 8-9 September 2006, Vienna, Austria, 2006. To appear.

17. Frank Leymann. Web Services Flow Language, version 1.0. Specification, IBM, 2001.
www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

18. Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD ’87: Proc. of ACM SIGMOD
Int. Conf. on Management of Data, pages 249–259, New York, 1987. ACM Press.

19. Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer Hauser. A Review of
OMG MOF 2.0 Query/Views/Transformations Submissions and Recommendations towards
the Final Standard. In Proc. Wsh. MetaModelling for MDA Workshop, York, 2003.
www.omg.org/docs/ad/03-08-02.pdf.

20. Paolo Giorgini, Fabio Massacci, and Nicola Zannone. Security and Trust Requirements
Engineering. In Foundations of Security Analysis and Design III - Tutorial Lectures, volume
3655 of LNCS, pages 237–272. Springer-Verlag GmbH, 2005.

21. René Rydhof Hansen, Christian W. Probst, and Flemming Nielson. Sandboxing in myKlaim.
In The First International Conference on Availability, Reliability and Security, ARES 2006,
2006.

22. Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

23. UML Model Translator for Model Checking (Hugo/RT). www.pst.ifi.lmu.de/projekte/hugo.
Last visited: June 2006.

24. IST-FET Global Computing I Initiative Project DEGAS. www.omnys.it/degas/. Last visited:
June 2006.

25. Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In MoDELS Satellite
Events, LNCS, pages 128–138. Springer, Berlin, 2005.

26. H. Koshutanski, F. Martinelli, P. Mori, and A. Vaccarelli. Fine-grained and history-based
access control with trust management for autonomic grid services. In Proc. of Internat.
Conf. on Autonomic and Autonomous Systems (ICAS06), IEEE Computer Society, 2006.

27. Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic symbolic
model checker. In A.J. Field and P.G. Harrison, editors, Proc. of the 12th Int. Conf. on Mod-
elling Tools and Techniques for Computer and Communication System Performance Evalu-
ation, LNCS 2324, pages 200–204, London, UK, April 2002. Springer-Verlag.

Semantic-Based Development of Service-Oriented Systems 45

28. Model Driven Architecture (OMG). www.omg.org/mda/. Last visited: June 2006.
29. Model Transformation Framework. www.alphaworks.ibm.com/tech/mtf. Last visited: June

2006.
30. Object Management Group (OMG). Unified Modeling Language: Superstructure, version

2.0. Specification, OMG, 2005. www.omg.org/cgi-bin/doc?formal/05-07-04.
31. Query/View/Transformation Specification Final Adopted Specification. www.omg.org/cgi-

bin/doc?ptc/2005-11-01. Last visited: June 2006.
32. De Nicola R., Katoen J.P., Latella D., and Massink M. STOKLAIM: A Stochastic Extension

of KLAIM. TR 2006-TR-01, ISTI, 2006.
33. SCA Consortium. Service Component Architecture, version 0.9. download.boulder.ibm.

com/ibmdl/pub/software/dw/specs/ws-sca/SCA White Paper1 09.pdf. Specification, 2005.
Last visited: June 2006.

34. SPIN Model Checker. www.spinroot.com. Last visited: June 2006.
35. Model Checker for UML Statechart Diagrams. fmt.isti.cnr.it/umc/. Last visited: June 2006.
36. UPPAAL Tool Environment. www.uppaal.com. Last visited: June 2006.
37. Dániel Varró and András Pataricza. Generic and Meta-Transformations for Model Trans-

formation Engineering. In Thomas Baar et al., editor, Proc. 7th Int. Conf. Unified Modeling
Language (UML’04), LNCS 3273, pages 290–304. Springer, Berlin, 2004.

38. Martin Wirsing, Grit Denker, Carolyn Talcott, Andy Poggio, and Linda Briesemeister. A
rewriting logic framework for soft constraints. In WRLA 2006, 6th International Workshop
on Rewriting Logic and its Applications, April 2006. To appear in ENTCS, 2006.

39. Web Services Choreography Interface (WSCI). www.w3.org/TR/wsci. Last visited: June
2006.

40. Web Service Description Language (WSDL). www.w3.org/TR/wsdl. Last visited: June 2006.

JSCL: A Middleware for Service Coordination	

Gianluigi Ferrari1, Roberto Guanciale2, and Daniele Strollo1,2

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy

{giangi, strollo}@di.unipi.it
2 Istituto Alti Studi IMT Lucca, Italy

{roberto.guanciale, daniele.strollo}@imtlucca.it

Abstract. This paper describes the design and the prototype implementation of
a middleware, called Java Signal Core Layer (JSCL), for coordinating distributed
services. JSCL supports the coordination of distributed services by exploiting an
event notification paradigm. The design and the implementation of JSCL has been
inspired and driven by its formal specification given as a process calculus, the
Signal Calculus (SC). At the experimental level JSCL has been exploited to im-
plement Long Running Transactions (LRTs).

1 Introduction

One important challenge of the Software Engineering field is represented by the so
called Service Oriented Architectures (SOAs) [20]. In the SOA approach applications
are developed by coordinating the behavior of autonomous components distributed over
an overlay network. Middleware for coordinating services are extremely important to
the success of SOAs. Several research and implementation efforts are currently de-
voted to design and to implement middleware for coordinating distributes services (see
ORC [18], BPEL [19], WS-CDL [23] and SIENA [12] to cite a few). However, re-
search is still underway. The aim of this paper is to contribute to this theme of research
by developing a middleware for coordinating services based upon a formal basis. The
strict integration between theory and practice is the key feature of our proposal. In par-
ticular, this paper describes the design and the prototype implementation of the JSCL
middleware. At the abstract level JSCL takes the form of a process calculus, SC, a di-
alect of the Ambient Calculus [11] with asynchronous communication facilities. At the
implementation level, JSCL takes the form of a collection of Java APIs.

The starting point of our work is the event-notification paradigm. We assume to co-
ordinate service behaviors through the exchange of (typed) signals. The basic building
blocks of our middleware are called components. A component represents a “simple”
service interacting though a signal passing mechanism. Components are basic compu-
tational units performing some internal operations and can be composed and distributed
over a network. Composition of components, yields a new one that can be used in fur-
ther compositions. Each component is identified by an unique name, which, intuitively,
can be through as the URI of the published service. In this paper we assume as given

	 Research partially supported by the EU, within the FET GC Project IST-2005-16004 Sensoria,
and FIRB Project TOCAI.IT.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 46–60, 2006.
c© IFIP International Federation for Information Processing 2006

JSCL: A Middleware for Service Coordination 47

the set of names of the components involved into a system with no assumption on the
mechanisms adopted to retrieve them (e.g. UDDI service directories, registries, etc.).

The signals exchanged among components are basically messages containing infor-
mation regarding the managed resources and the events raised during internal compu-
tations. Signals are tagged with a meta type representing the class of events they belong
to. Such meta type information is often referred to, in the literature (e.g. [15]), with the
term topic. Hence components are reactive blocks that declare the subset of signals they
are interested in together with their reactions upon event notifications. The reactions
are modeled by associating functional modules to topics of received signals. Once a
signal of a well defined topic is received, the proper reaction is activated.

The way the events are notified to the subscribed components is strictly related to the
specific coordination pattern chosen. Different conversational styles can be adopted to
implement the way the participants are involved into a coordination, mainly split into
two main groups: orchestration and choreography (as discussed in [4]). Briefly, the first
solution defines an intermediate agent, the orchestrator, that is responsible to decide,
at each step, which are the actions that must be performed by each component. The
choreography, instead, identifies a more distributed scenario in which, each participant
is responsible for its moves and the whole work-flow is executed following a pre-defined
plan. Basically, the orchestration suggests a centralization point that is responsible for
implementing the subscriptions and the notification forwarding. Such solution is closely
related to the ideas of tuple space based systems and brokered event notification. Using
the choreography, instead, each component can act both as publisher or subscriber for
other components and the delivering of signals is implemented through peer-to-peer
like structures. In this paper, we adopt the choreography approach since it better fits
with the signal passing paradigm.

This paper is organized as follows. Section 2 introduces the Signal Calculus (SC). SC
is a calculus for describing coordination primitives for components interacting through a
signal passing mechanism. Section 3 describes JSCL APIs and the way components can
be programmed. Basically, JSCL is a ligthweight framework for modeling distributed
services by composing components that use signals for notifying events to other inter-
ested components in the style of SC. In section 4, as a case study, we describe the usage
of JSCL as programming middleware for Long Running Transactions (LRTs) [10].

2 Signal Calculus: SC

The Signal Calculus (SC) is a process calculus in the style of [17, 11] specifically de-
signed to describe coordination policies of services distributed over a network. SC de-
scribes computation via the choreography of local service behavior. In this section, we
present the syntax and the operational semantics of SC.

2.1 SC Syntax

The main concepts of SC are signals, components, reactions, flows and networks. The
data carried by a signal are the signal name and the conversation schema. A signal
name represents an identifier of the current conversation (e.g. the session-id) and a

48 G. Ferrari, R. Guanciale, and D. Strollo

conversation schema represents the kind of event (e.g. onMouseOver). New signals
can be sent either by autonomous components or as reaction to other signals. In this
paper, we present SC focusing only on the primitives needed to design coordination
protocols. Hence, operations on conversation schemata are not defined, since they can
be expressed at a higher level detail of abstraction. Of course, SC can be extended by
adding types for conversation schemata (e.g. in the form of XML Schema) [2, 14, 8, 1].
A SC component is a wrapper for a behavior. Intuitively a SC component represents an
autonomous service available over a network. Each SC component is uniquely identified
by its name and contains a local behavior and an interface. Components can behave ei-
ther as signal emitters or as signal handlers. Similarly to the event-notification pattern,
signal handlers are associated to signals and are responsible for their management. The
SC component interface is structured into reactions and flows. Reactions describe com-
ponent behavior and the action of variable binding upon signal reception. Indeed, the
reception of a signal acts like a trigger that activates the execution of a new behavior
within the component.

Orchestration among components is implemented through flows. Flows represent the
local view (component view) of the choreography, that is the set of local communica-
tions that have to be performed to satisfy the choreography demands. Each component
flow declares the associations among signals, the conversation schema and the set of
handlers. The connections among components are strictly related to a particular con-
versation schema thus offering the possibility to express different topologies of connec-
tivity, depending on the schema of the outgoing signals. Both component reactions and
flows are programmable, and they can be dynamically modified by the components.

Components are structured to build a network of services. A network provides the
facility to transport envelopes containing the signals exchanged among components.

We now introduce the main syntactic categories of our calculus together with some
notational machineries. We assume a finite set of conversation schemata ranged by
τ1, ...,τk , a finite set of component names ranged by a,b,c... and a finite set of signal
names ranged by s1,s2, We also assume a set Var of variable names whose typical
elements are x,y,z.... We use a to denote a set of names a1, ...,an. Finally, we use σ to
denote a substitution from variable names to signal names.

Reactions (R) are described by the following grammar:

(REACTIONS) R ::= 0 Nil
∗(x : τ→ B) Unit reaction
R|R Composition

A reaction is a set (possibly empty) of unit reactions. A unit reaction ∗(x : τ → B)
triggers the execution of the behavior B upon reception of a signal tagged by the schema
τ. Notice that x : τ acts as a binder for the variable x within the behavior B. The syntax
of behaviors will be given below. As usual we assume to work up-to alpha-conversion.
Free and bound names are defined in the standard way.

Flows (F) are described by the following grammar:

(FLOWS) F ::= 0 Nil
τ
 a Unit flow
F •F Composition

JSCL: A Middleware for Service Coordination 49

A flow is a set (possibly empty) of unit flows. A unit flow τ
 a describes the set of
component names a where outgoing signals having τ as conversation schema have to
be delivered.

Reactions and flows are defined up-to a structural congruence (≡). Indeed, we as-
sume that • and | are associative, commutative and with 0 behaving as identity. Notice
that such equations allow us to freely rearrange reactions and flows.

We define two auxiliary schema functions S(R) and S(F) that, respectively, return
the set of conversation schemata on which the reaction R and the flow F are defined.

S(0) = /0 S(0) = /0
S(∗(x : τ→ B)) = {τ} S(τ
 a) = {τ}
S(R1|R2) = S(R1)∪S(R2) S(F1|F2) = S(F1)∪S(F2)

We say that a reaction is well-formed (and we write R�) if there is no overlay among
the conversation schemata triggered. The notion of well-formed reaction is inductively
defined below.

0� ∗(x : τ→ B)�
R1� R2� S(R1)∩S(R2)≡ /0

(R1|R2)�
We also introduce two projection functions R ↓s:τ and F ↓τ; the first takes a well-

formed reaction R and a signal s of schema τ and returns a pair consisting of the variable
substitution and the activated behavior. The second projection takes a flow F and a
schema τ and returns the set of component names linked to the flow having schema τ.
The two projections are defined below.

0 ↓s:τ = ({},0) 0 ↓τ = {}
(∗(x : τ→ B)|R) ↓s:τ = ({s/x},B) (τ
 a•F) ↓τ = a∪ (F ↓τ)
(∗(x : τ1 → B)|R) ↓s:τ = R ↓s:τ i f τ1 �= τ (τ1
 a•F) ↓τ = F ↓τ i f τ1 �= τ

Finally we say that a flow is well-formed (and we write F�) if there is no overlay
among the linked components for all conversation schemata. The notion of well-formed
flow is inductively defined below.

0� (τ
 a)�
F1� F2� ∀τ∈(S(F1)∪S(F2))(F1 ↓τ ∩F2 ↓τ≡ /0)

(F1 •F2)�

Hereafter, we assume that reactions and flows are always well-formed.
Component behaviors (B) are defined by the following grammar:

(BEHAVIORS) B ::= 0 Nil
+R[x : τ→ B] Reaction update
+F[τ
 a] Flow update
s̄ : τ.B Asynchronous signal emission
B|B Parallel composition
!B Bang

A reaction update +R[x : τ→ B] extends the reaction part of the component interface,
providing the ability to react to a signal of schema τ activating the behavior B. Such

50 G. Ferrari, R. Guanciale, and D. Strollo

operation ensures that the resulting reaction is well-formed and permits to dynamically
change the reaction interface. Similarly, a flow update +F [τ
a] extends the component
flows, appending the component names in a to the set of component names to which the
signals of schema τ are delivered. An asynchronous signal emission s̄ : τ.B first spawns
into the network a set of envelopes containing the signal s, one for each component
name declared in the flow having schema τ, and then activates B. As usual, the bang
replication !B represents a behavior that can always activate a new copy of the behavior
B. When it is clear from the context, we will omit the Nil behavior, writing s̄ : τ for
s̄ : τ.0 and B for B|0.

Networks (N) are defined by the following grammar:

(NETWORKS) N ::= /0 Empty net
a[B]RF Component
N||N Parallel composition
< s : τ@a > Signal envelope

A component a[B]RF describes a component of name a with behavior B, reaction R and
flow F . A signal envelope < s : τ@a > describes a message containing the signal s of
schema τ whose target component is the component named a. We use ∑x∈a B to denote
the parallel composition of B{n/x} for each name n in the set a. A SC component is
closely related to the notion of ambient [11] as it describes a behavior wrapped within a
named context. Differently from the ambient calculus, SC networks are flat, that means
there is no hierarchy of components.

Examples. To better present how the basic SC concepts can be used to model ser-
vice coordination we introduce a simple example. Suppose to have a producer p and
a consumer c both accessing a shared data space. We assume a synchronization pol-
icy, namely a consumer can get its resource only after a producer has produced it. The
problem can be modeled as displayed in Figure 1. P starts its execution performing the
(internal) behavior Bp that modifies the state of the data space that has to be read by C.
When the data have been modified, Bp executes a signal emission of a signal of schema
produced (s̄ : produced) in order to inform C that the required resources are now avail-
able. Upon notification, C automatically starts and takes the resource in the data space
performing its internal behavior Bc. We assume that Bc executes a signal emission of
a signal of schema consumed (x̄ : consumed) in order to inform P that it can produce
a new resource. Notice that the name of the signal emitted is the same of the signal
received. Moreover C is not a running process, it is an idle entity that is activated only
at signal reception.

P � p[s̄ : produced]x:consumed→x̄:produced
produced
c C � c[0]x:produced→x̄:consumed

consumed
p Net � P||C

Fig. 1. Components p and c share a data space

In the previous example, we presented two components with a statically defined
choreography. However the producer and the consumer can be dynamically linked

JSCL: A Middleware for Service Coordination 51

together (e.g. at the start up phase) using reaction update and flow update, thus pro-
viding a dynamic choreography scenario. This example is expressed in SC through the
components and the network defined in Figure 2. Notice that, since component name
passing has not been modeled in SC, we assume each component knows the names of
the externally published components. We can enrich the SC core providing component
name communication, thus yielding a true dynamic choreography in the style of the
π-calculus [17].

P � p[+F [produced
c]|+R[x : consumed → x̄ : produced.0]|s̄ : produced]00
C � c[+F [consumed
 p]|+R[x : produced → x̄ : consumed.0]]00
Net � P||C

Fig. 2. Components p and c share a data space

2.2 SC Semantics

SC semantics is defined in a reduction style [5]. We first introduce a structural congru-
ence over behaviors and networks. The structural congruence for component behaviors
(≡B) is defined by the following rules:

B1|B2 ≡B B2|B1 (B1|B2)|B3 ≡B B1|(B2|B3) /0|B≡B B !B≡B B|!B
As usual the bang operator allows us to express recursive behaviors.

Structural congruence for networks≡N is defined by the following rules:

N||M ≡N M||N (M||N)||O≡N M||(N||O) /0||N ≡N N

a[/0]0F ≡N /0
F1 ≡ F2 R1 ≡ R2 B1 ≡B B2

a[B1]R
1

F1 ≡N a[B2]R
2

F2

A component having nil behavior and empty reaction can be considered as the empty
network since it has no internal active behavior and cannot activate any behavior upon
reception of a signal. Two components are considered structurally congruent if their
internal behaviors, reactions and flows are structurally congruent. When it is clear from
the context, we will use the symbol≡ for both ≡B and ≡N .

The reduction relation of networks (→) is defined by the rules in Figure 3. The rule
(RUPD) extends the component reactions with a further unit reaction (the parameter
of the primitive). The rule requires that the resulting reaction is well-formed. The rule
(FUPD) extends the component flows with a unit flow. Also in this case a well-formed
resulting flow is required. The rule (OUT) first takes the set of component names a that
are linked to the component for the conversation schema τ and then spawns into the
network an envelope for each component name in the set. The rule (IN) allows a signal
envelope to react with the component whose name is specified inside the envelope.
Notice that signal emission rule (OUT) and signal receiving rule (IN) do not consume,
respectively, the flow and the reaction of the component. This feature provides SC with a
further form of recursion behavior. The rules (STRUCT) and (PAR) are standard rules.
In the following, we use N →+ N1 to represent a network N that is reduced to N1 after
a finite number of steps.

52 G. Ferrari, R. Guanciale, and D. Strollo

R| ∗ (x : τ→ B)�
(RUPD)

a[+R[x : τ→ B]|Q]RF → a[Q]R|∗(x:τ→B)
F

F •τ
a�
(FUPD)

a[+F [τ
a]|Q]FR → a[Q]RF•τ
a

F ↓τ= a
(OUT)

a[s̄ : τ.P|Q]RF → a[P|Q]RF | ∑
ai∈a

< s : τ@ai >

R ↓s:τ= (σ,B)
(IN)

< s : τ@a > |a[Q]RF → a[Q|σB]RF

N ≡ N1 →M2 ≡ N3
(ST RUCT)

N → N3

N → N1
(PAR)

N|N2 → N1|N2

Fig. 3. Semantic Rules

Examples. To describe how SC semantics rules work, we provide a short description
of the execution of the examples given in Figure 1 and 2. As a shorthand, we write τp

for the conversation schema produced and τc for consumed. The network in Figure 1
contains only one active component; namely the producer p emits the signal, spawning
into the network an envelope for the consumer c. This is represented by:

(τp
 c) ↓τp= c
(OUT)

p[s̄ : τp]
(x:τc→x̄:τp)
(τp
c) → p[0](x:τc→x̄:τp)

(τp
c) |< s : τp@c >

The envelope reacts with the consumer component, activating inside the component
the behavior of the corresponding reaction:

(x : τp → x̄ : τc) ↓s:τp= ({s/x}, x̄ : τc)
(IN)

< s : τp@c > |c[0](x:τp→x̄:τc)
(τc
p) → c[s̄ : τc]

(x:τp→x̄:τc)
(τc
p)

In a similarly way, the consumer component c sends an envelope to the producer p,
thus activating the proper internal behavior:

p[0](x:τc→x̄:τp)
(τp
c) |c[s̄ : τc]

(x:τp→x̄:τc)
(τc
p) →+ p[s̄ : τp]

(x:τc→x̄:τp)
(τp
c) |c[0](x:τp→x̄:τc)

(τc
p)

In the second example all the two components have active internal behaviors. The
producer can update its flow by adding the link to the consumer for signals of schema
τp, as follows:

(0 • τp
 c)�
p[+F[τp
 c] | + R[x : τc → x̄ : τp] | s̄ : τp]00 → p[+R[x : τc → x̄ : τp] | s̄ : τp]0(τp
c)

Then we apply the reduction rule for the reaction update of the producer:

(0|x : τc → x̄ : τp)�
p[+R[x : τc → x̄ : τp]|s̄ : τp]0(τp
c) → p[s̄ : τp]

(x:τc→x̄:τp)
(τp
c)

JSCL: A Middleware for Service Coordination 53

After these reductions the producer component has created a link to the consumer for
signals of schema τp and can receive signals of schema τc. In a similar way the con-
sumer component updates its reaction and flow:

p[s̄ : τp]
(x:τc→x̄:τp)
(τp
c) |c[+F [τc
 p]|+R[x : τp→ x̄ : τc]]00→+ p[s̄ : τp]

(x:τc→x̄:τp)
(τp
c) |c[0](x:τp→x̄:τc)

(τc
p)

3 Java Signal Core Layer

Java Signal Core Layer (JSCL) consists of a collection of Java API implementing the
coordination primitives formally described by SC. In JSCL, known concepts of the
event-based paradigm are considered in a distributed and open environment where com-
ponents can be allocated on different execution sites and can join existing execution of
other components. In the following, we often refer to components as services mean-
ing that the current version of JSCL is specifically tailored to coordinate web services.
However JSCL can be easily adapted to different technologies (e.g. CORBA). The es-
sential ingredients of JSCL are signals, components, signal links and input ports cor-
responding, respectively, to the concepts of signals, components, flows and reactions
defined in section 2. The notion of SC network is implemented by introducing an in-
termediate layer, the Inter Object Communication Layer (IOCL). The IOCL contains
the set of primitives for creating, publishing, retrieving and connecting components.
These operations are strictly related to the execution environment. To support multiple
definitions of IOCL, these primitives have been developed as plugins that can be di-
rectly accessed at run-time. Such layer has been introduced to make JSCL more flexible
and allows the interoperability of different technologies for inter object communication
like CORBA, Web Services (see [22] for more details). In particular, the IOCL layer
provides the mechanisms to implement the data serialization (e.g. SOAP message en-
velops for WSs, etc.) and the deployment phase (e.g. stub generation, dynamic proxy
binding, etc.). Moreover each IOCL plugin defines the way components are identified
by extending the basic interface ComponentAddress. The way components are named
in JSCL strictly depends over the underlying overlay network adopted (e.g. an URL if
the selected iocl plugin is based on WSs or CORBA, a couple (IP, port) if sockets are
used, an unique name if memory access is used etc.).

In JSCL, the set of information conveyed in each signal is split into two parts. The
first contains information useful for coordination: the unique name of the signal in-
stance and its type. The second part contains the payload of current request, the session
data. Notice that the session data are not modeled in SC since the calculus only deals
with the primitives needed for implementing the coordination among components. Sig-
nals are classified into signal types (types for short) that associate each signal to the
class of events they belong to. Signal types are namely the SC conversation schemata.
Signals have been modeled as non persistent entities; once the notification for an event
has been delivered to all the interested handlers, the corresponding signal is removed
from the system. This property is mandatory if we want to keep the distribution of the
connections and their management. This feature, however, is not a limitation: persis-
tent signals can be easily introduced in our middleware. Signals, in JSCL, are always
sent in non anonymous way, meaning that it is always possible to know the sender of

54 G. Ferrari, R. Guanciale, and D. Strollo

each signal. Such constraint is useful, at implementation level, if we want to extend the
middleware with authoring primitives on the links.

The event notification mechanism of subscription is implemented through the cre-
ation of input ports and signal links connecting components. These operations corre-
spond respectively to the primitives reaction update and flow update defined in SC.

An input port is a tuple i = (sigT ,Task) meaning that the port can receive signals of
type sigT whose handler is the process Task. Each component is able to specify only
one input port for each sigT . The notion of input port i, signal type sigT and handling
task Task map respectively the reaction R, the conversation schema τ and the behavior
B defined in SC. The component interface is obtained by taking the set of sigT for which
there is a bound input port, and the set of sigT for which there is at least a signal link
defined. Such sets in SC are given respectively by the auxiliary schema functions S(R)
and S(F). Figure 4 shows a graphical notation for JSCL input ports.

Fig. 4. JSCL input port

Connections between two components are implemented through signal links. A sig-
nal link is a tuple l = (sigT ,S,R) and represents an virtual channel among the signals
of type sigT emitted by S and the handler R. Creating a new link between S and R re-
quires that the input port corresponding to sigT has been previously created by R with
the right permissions for S. Basically, signal links are the linguistic device of JSCL for
subscription/notification. We already pointed out that several receivers can be linked
with the same signal type and the same sender. All the signal links created are well
formed conforming to the rules defined in section 2.1. Namely further creations of links
(sigT ,S,R) are idempotent. The primitive for creating new signal links can be invoked
outward the components by an external application that will connect all (or a subset
of) the components among them and this will be the only agent conscious of the topol-
ogy of the network. This assumption is useful to preserve the autonomy of the com-
ponents from the particular system in which they are acting. The creation of a link is
implemented through the IOCL component. Links in JSCL are typed, unidirectional and
“peer-to-peer”. More complex scenarios (e.g., multi-casting, bi-directionality, etc.) can
be obtained by introducing the suitable notions of links. For instance, multi-casting is
achieved by connecting the same emitter to several handlers.

Example. We now describe how the producer/consumer example modeled in SC in sec-
tion 2.2 can be implemented by exploiting the JSCL APIs. This provides a basic idea of
the programmability offered by the middleware. The Figure 5 displays the choreography
between two components P and C representing respectively the services implementing

JSCL: A Middleware for Service Coordination 55

a producer and a consumer. The topics of signals exchanged in the system are sigprod

and sigcons corresponding to notifications for events produced and consumed which can
be raised respectively from P and C.

Fig. 5. JSCL: producer-consumer example

The designing of the whole application can be logically split into three phases: i)
the creation of the components, ii) the declaration of the reactions associated to the
components and iii) the publication of services and the designing of the connections.
In the following, we assume to exploit the XSOAP [13] IOCL plugin, and to use the
ServiceAddress1 class, essentially an URL, to define component names.

IOCLPluginLoader l o a d e r = new IOCLPluginLoader (” j s c l . c o r e . IOCL . XSoap . IOCLImpl”) ;
I O C LPl u g i n I i o c l = l o a d e r . g e t I O C LI n s t an ce () ;
S e r v i c e A d d r e s s P a d d r e s s = new S e r v i c e A d d r e s s (” h t t p ” , ” j o r d i e ” , 9092 , ” ” , ” Pro d u cer ”) ;
S e r v i c e A d d r e s s C ad d ress = new S e r v i c e A d d r e s s (” h t t p ” , ” j o r d i e ” , 9092 , ” ” , ” Consumer ”) ;
GenericComponent p r o d u c e r = i o c l . c r ea t eC o mp o n en t (P a d d r e s s) ;
GenericComponent consumer = i o c l . c r ea t eC o mp o n en t (C ad d r ess) ;

Code 1. Producer & consumer creation

The Code 1 illustrates the JSCL code for creating the needed services. First we in-
stantiate a new IOCLPlugin that will be used to create the components. The creation of
new components occurs by invoking the method createComponent, whose parameter is
the address of the component itself. Alternatively, the iocl layer can be used to retrieve
already published services by invoking the method iocl.getComponent which, given
an address, returns a component proxy bound to it. Once our components have been
built, we must program their reactions by binding them to new input ports as shown
in Code 2. Roughly Code 2 describes the processes corresponding to the Taskcons and
Taskprod depicted in Figure 5.

The last step is the publication of the created services and the creation of links as
shown in Code 3.

Once the orchestration has been declared, we can start its execution by the signal
emission of the producer component, which is the only active internal behavior. Here,
for simplicity, the primitives for creating and publishing the components depicted in

1 ServiceAddress is an implementation of ComponentAddress defined in section 3.

56 G. Ferrari, R. Guanciale, and D. Strollo

consumer . a d d I n p u t P o r t (
new S i g n a l I n p u t P o r t (S i g n a l T y p e s . S i g p r o d ,

new S i g n a l H a n d l e r T a s k (consumer){
p u b l i c O b j e c t h a n d l e (S i g n a l s i g n a l){

t ry {
/ / Consumes t h e r e s o u r c e
. . .
s i g n a l . se t Ty p e (S i g n a l T y p e s . S i g c o n s) ;
t h i s . g e t P a r e n t () . e m i t S i g n a l (s i g n a l) ;
} ca tch (G e n e r i c E x c e p t i o n e){

e . p r i n t S t a c k T r a c e () ;
}

return n u l l ;
}
}

)
) ;

p r o d u c e r . a d d I n p u t P o r t (
new S i g n a l I n p u t P o r t (S i g n a l T y p e s . S i g co n s ,

new S i g n a l H a n d l e r T a s k (p r o d u c e r){
p u b l i c O b j e c t h a n d l e (S i g n a l s i g n a l){

t ry {
/ / Pro d u ces t h e r e s o u r c e
. . .
s i g n a l . se t Ty p e (S i g n a l T y p e s . S i g p r o d) ;
t h i s . g e t P a r e n t () . e m i t S i g n a l (s i g n a l) ;
} ca tch (G e n e r i c E x c e p t i o n e){

e . p r i n t S t a c k T r a c e () ;
}

return n u l l ;
}
}

)
) ;

Code 2. Binding of input ports

/ / Component p u b l i c a t i o n
i o c l . r e g i s t e r C o m p o n e n t (p r o d u c e r) ;
i o c l . r e g i s t e r C o m p o n e n t (consumer) ;

/ / C r e a t i o n o f l i n k s
i o c l . c r e a t e L i n k (S i g n a l T y p e s . S i g p r o d , Pad d r ess , C ad d r ess) ;
i o c l . c r e a t e L i n k (S i g n a l T y p e s . S i g co n s , C ad d ress , P a d d r e s s) ;

Code 3. Link creation

Code 1 and in Code 3, for simplicity, are collapsed into an unique block, using the same
machine. Obviously more sophisticated strategies can be adopted, e.g. the component
can be deployed into different machines, in such case the method createComponent is
replaced by the getComponent method.

JSCL Environment. We have presented above the primitives provided by JSCL for
declaring reactive components and for coordinating them via event notification. Other
systems have been introduced in [22] to describe these issues (service declaration and
coordination) in XML. On the one side, each component can be defined with an XML
structure giving the signal types to which it reacts, the iocl support and the address
to which it will be bound. These files are processed to obtain the corresponding Java
skeleton code. On the other side, the coordination among components can be described
in a separated XML document containing the definition of the services involved and
their connections. Such file can be interpreted so to create the required coordination
structure.

4 Long Running Transaction

JSCL has been adopted in [9] for implementing a framework for Long Running Transac-
tions. The deployment phase has been driven by Naı̈ve Sagas [10], a process calculus
for compensable transactions, which defines Long Running Transactions in terms of
logical blocks (transactional flows) orchestrating to reach a common goal. The build-
ing block of Naı̈ve Sagas is the compensation pair construct. Given two actions A and
B, the compensation pair A÷B corresponds to a process that uses B as compensation
for A. Intuitively, A÷B yields two flows of execution: the forward flow and the back-
ward flow. During the forward flow, A÷B starts its execution by running A and then,

JSCL: A Middleware for Service Coordination 57

when A finishes: (i) B is “installed” as compensation for A, and (ii) the control is for-
wardly propagated to the other stages of the transactions. In case of a failure in the rest
of the transaction, the backward flow starts so that the effects of executing A must be
rolled back. This is achieved by activating the installed compensation B and afterward
by propagating the rollback to the activities that were executed before A. Notice that B
is not installed if A is not executed.

With JSCL the transactional blocks are obtained by suitable wrappers, Transac-
tional Gates (TG), that use signal passing for activating the flows. The possible sig-
nal types that can be exchanged are: sigFW , which activates the forward flow, sigRB,
for activating the backward flow (rollback), sigCM , propagated to notify that the whole
orchestration has been successful executed (commit) and sigEX , exchanged to notify
that the rollback phase has failed and the state of the whole transaction is inconsistent
(also referred as abnormal termination). When a TG receives a signal typed sigFW , it
tries to execute the main activity A; whenever the execution of A normally terminates,
the signal is propagated to the next stage. On the contrary, if A throws an exception,
a signal typed sigRB is propagated to the previous stage (the rollback is propagated in
backward way). Analogously when a sigRB is received by a T G, it tries to execute the
compensating activity B, if it fails, throwing an exception, the signal is set to sigEX to
notify that the rollback phase has failed and the state of the whole transaction is incon-
sistent, otherwise the rollback signal is propagated. The JSCL implementation of Naı̈ve
Sagas provides components implementing parallel and sequential structural composi-
tion of transactional gates. The composition constructs keep the structure of T G and
can be reused in further compositions. In Figure 6 it is shown how a Naı̈ve Sagas com-
pensable process A1÷B1;A2÷B2;A3÷B3, is implemented using the JSCL graphical
notation.

Fig. 6. JSCL Transactional Gates: an example

The JSCL implementation of transactional flows can be formally described in SC as
follows. We assume given two functions [[A]] f w(x) and [[A]]rb(x) that translate the Naı̈ve
Sagas atomic activity A to SC internal behaviors, working on signal named x. We as-
sume that the first function translates the successful return statements into the signal
emission x̄ : f w.0 and the exception rising into x̄ : rb.0, and that the second function
translates the successful return statements into the signal emission x̄ : rb.0 and the ex-
ception rising into x̄ : ex.0. The example Naı̈ve Sagas compensable process, previously
described, is so represented by the SC network [[P]]:

58 G. Ferrari, R. Guanciale, and D. Strollo

[[A1÷B1]] � p1[0]
x: f w→[[A1]] f w(x) | x:rb→[[B1]]rb(x)
f w
p2

[[A2÷B2]] � p2[0]
x: f w→[[A2]] f w(x) | x:rb→[[B2]]rb(x)
f w
p3•rb
p1

[[A3÷B3]] � p3[0]
x: f w→[[A3]] f w(x) | x:rb→[[B3]]rb(x)
rb
p2

[[P]] � [[A1÷B1]] | [[A2÷B2]] | [[A3÷B3]]

5 Concluding Remarks

We have introduced a core framework to formally describe coordination of distributed
services. This framework has driven the implementation of a middleware for program-
ming coordination policies by exploiting the event notification paradigm. In our ap-
proach the event notification paradigm supports fully distribution.

Unlike the current industrial technologies concerning service coordination (e.g.
BPEL [19]), our solution is based on top of a clear foundational approach. This should
provide strategies to prove coordination properties based on model checking or type sys-
tems. A semantic definition of the basic set of primitives can also drive the implemen-
tation of translators from industrial specification languages (e.g. WS-CDL [23]) to our
framework. Our approach differs from other event based proposals (e.g. SIENA [12]),
since focuses the implementation on the more distributed environment of services.

Our formal approach is based on process calculus literature (e.g. ccs [16], π-calculus
[17]). Differently from π-calculus, the computation is boxed into components, in the
style of Ambient Calculus [11]. Moreover we avoid components nesting, to model a
flat topology of the network and to provide a more loose-coupled programming model.
As described before, SC models connections among components with peer-to-peer like
structures (flows). Moreover, such flows can be logically grouped into multicast-
channels, identified by the conversation schema. This provides a communication pattern
closed to the one presented in [21], even if SC does not deal with connection mobility.

There are several coordination models based on connection among components that
provide dynamic reconfiguration (e.g. Reo [3]). Our work mainly differs from Reo on
the communication model adopted for composition. Reo is a channel based framework,
while SC is an event based one. Hence, Reo handles component migration and channel
management as basic notions, while SC focuses on the activities performed and on the
coordination over dynamic network topologies.

In this paper, we focused on the coordination aspects. However the calculus SC can
be enriched by considering signals as tagged nested lists [2, 14], which represent XML
documents, and conversation schemata as abstractions for XML Schema types [1]. This
extension of conversation schemata lead to a more general notion of reaction based
on pattern matching or unification in the style of [6]. A further extension can provide
component and schema name passing, modelling a more dynamic scenario.

SC can describe dynamic orchestrations trough reaction and flow update primitives.
These primitives have effects only on the component view of the choreography, namely
a component cannot update the reaction or the flow of another component. Flow man-
agement can be enriched providing a primitive to update remote flows. This primitive

JSCL: A Middleware for Service Coordination 59

should spawn a flow update envelope into the network. The update of remote reaction
is more difficult, since a reaction contains code and than is necessary to formalize and
implement the code migration.

Bibliography

[1] Xml schema. Technical report, W3C, 2004.
[2] L. Acciai and M. Boreale. Xpi: A typed process calculus for xml messaging. In M. Steffen

and G. Zavattaro, editors, FMOODS, volume 3535 of Lecture Notes in Computer Science,
pages 47–66. Springer, 2005.

[3] F. Arbab. Reo: a channel-based coordination model for component composition. Mathe-
matical. Structures in Comp. Sci., 14(3):329–366, 2004.

[4] B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual modeling of web service
conversations. In J. Eder and M. Missikoff, editors, CAiSE, volume 2681 of Lecture Notes
in Computer Science, pages 449–467. Springer, 2003.

[5] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Comput. Sci.,
96(1):217–248, April 1992.

[6] M. Boreale, M. G. Buscemi, and U. Montanari. A general name binding mechanism. In
R. D. Nicola and D. Sangiorgi, editors, TGC, volume 3705 of Lecture Notes in Computer
Science, pages 61–74. Springer, 2005.

[7] M. Bravetti, L. Kloul, and G. Zavattaro, editors. Formal Techniques for Computer Systems
and Business Processes, European Performance Engineering Workshop, EPEW 2005 and
International Workshop on Web Services and Formal Methods, WS-FM 2005, Versailles,
France, September 1-3, 2005, Proceedings, volume 3670 of Lecture Notes in Computer
Science. Springer, 2005.

[8] A. Brown, C. Laneve, and L. G. Meredith. Piduce: A process calculus with native xml
datatypes. In Bravetti et al. [7], pages 18–34.

[9] R. Bruni, G. L. Ferrari, H. C. Melgratti, U. Montanari, D. Strollo, and E. Tuosto. From
Theory to Practice in Transactional Composition of Web Services. In Bravetti et al. [7],
pages 272–286.

[10] R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. In J. Palsberg and M. Abadi, editors, POPL, pages 209–220.
ACM, 2005.

[11] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, FoSSaCS, volume
1378 of Lecture Notes in Computer Science, pages 140–155. Springer, 1998.

[12] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design of a scalable event notification
service: Interface and architecture. Technical Report CU-CS-863-98, Department of Com-
puter Science, University of Colorado, Aug. 1998.

[13] Department of Computer Science. Indiana University. XSoap. www.extreme.indiana.
edu/xgws/xsoap/.

[14] H. Hosoya and B. C. Pierce. Xduce: A statically typed xml processing language. ACM
Trans. Internet Techn., 3(2):117–148, 2003.

[15] Y. Liu and B. Plale. Survey of publish subscribe event systems. Technical Report 574,
Department of Computer Science, Indiana University.

[16] R. Milner. Communication and Concurrency. Printice Hall, 1989.
[17] R. Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer, and H. Schwicht-

enberg, editors, Logic and Algebra of Specification, Proceedings of International NATO
Summer School (Marktoberdorf, Germany, 1991), volume 94 of Series F. NATO ASI, 1993.
Available as Technical Report ECS-LFCS-91-180, University of Edinburgh, October 1991.

60 G. Ferrari, R. Guanciale, and D. Strollo

[18] J. Misra. A programming model for the orchestration of web services. In SEFM, pages
2–11. IEEE Computer Society, 2004.

[19] OASIS Bpel Specifications. OASIS - BPEL. http://www.oasis-open.org/cover/
bpel4ws.html.

[20] M. Papazouglou and D. Georgakopoulos. Special issue on service oriented computing.
Commun. ACM, 46(10), 2003.

[21] F. Peschanski. Mobile agents in interaction space. In C. Canal and M. Viroli, editors,
FOCLASA’05, volume 154(1), pages 63–82, 2005.

[22] D. Strollo. Java Signal Core Layer (JSCL). Technical report, Dipartimento di Informatica,
Università di Pisa, 2005. Available at http://www.di.unipi.it/˜strollo.

[23] W3C. Web Services Choreography Description Language (v.1.0). Technical report.

Analysis of Realizability Conditions for Web
Service Choreographies�

Raman Kazhamiakin and Marco Pistore

DIT, University of Trento
via Sommarive 14, 38050, Trento, Italy

{raman, pistore}@dit.unitn.it

Abstract. Web service choreography languages allow for the description
of multipart collaborations from a global point of view, specifying the
information exchanged by the participants in order to accomplish a com-
mon business goal. An important issue, emerging from the choreography
modelling, is the protocol realizability, i.e., the possibility to extract the
local specifications of the participants, so that their interactions preserve
certain crucial properties of the global description.

In this paper, we present a formal framework for the definition of
both the global protocols and the local specifications. The key feature
of the approach is that it allows for arbitrary communication models
(synchronous/asynchronous, with/without buffers) in the composition of
the local specifications. We introduce a hierarchy of realizability notions
that allows for capturing various properties of the global specifications,
and associate specific communication models to each of them. We also
present an approach, based on the analysis of the communication models,
that allows to associate a particular level of realizability to the global
protocol specification.

1 Introduction

Web service technology facilitates the development of complex distributed sys-
tems that span across the enterprise boundaries. It enables the specification,
deployment, and enactment of heterogeneous software components accessible on
the web via standardized protocols. One of the fundamental ideas underlying
the Web service technology is the possibility to provide composite business ap-
plications by integrating existing services. To make this possibility realistic, it is
necessary to address the problem of the specification and design of such compo-
sitions, taking into account the various aspects of a composition description.

One of the key aspects of this description is the ability to represent the stateful
and coordinated behavior of the composite system. A wide range of standards
and languages has been proposed for capturing these aspects [1,2,3]. Among
them, the choreography specification languages, like e.g. Web Services Chore-
ography Description Language (WS-CDL, [3]), are particularly relevant for the
� This work is partially funded by the MIUR-FIRB project RBNE0195K5, “KLASE”,

by the MIUR-PRIN 2004 project “STRAP”, and by the EU-IST project FP6-016004
“SENSORIA”.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 61–76, 2006.
c© IFIP International Federation for Information Processing 2006

62 R. Kazhamiakin and M. Pistore

design phase of the composition, as they allow for the representation of the global
observable behavior of the distributed business application.

The choreography languages open up the possibility of applying a range of
formal techniques for the analysis of Web service compositions. Particularly rel-
evant is the problem of realizability of the choreography specifications, that is,
the possibility to automatically extract from the choreography the behavioral
skeletons of the participants so that the concrete implementations, built on the
basis of these skeletons, are guaranteed to satisfy the choreography specification.

This problem is made difficult by several crucial factors. First, the behavior of
the application strongly depends on the way the services are exchanging the in-
formation, that is the communication model of the composition. The hypothesis
of synchronous interactions, widely used for the analysis of service compositions,
is not satisfied by many existing real-world applications. Moreover, the underly-
ing interaction mechanism is not always known a priori, thus making problematic
the usage of a particular model. Second, the strictness to which the application
should satisfy the ordering constraints on messages and/or internal activities
may differ from one scenario to another. In order to address this diversity, the
realizability model has to be flexible, and should allow for an analysis which is
parametric with respect to the set of requirements.

In this paper we address the problem of analyzing the realizability of choreo-
graphic protocols. We present a hierarchy of realizability notions that allows for
capturing a variety of the choreography properties, thus providing a basis for a
more flexible analysis. The presented approach is based on our previous work
[4], where we give a formal model and analysis framework for the Web service
compositions defined as composition of local participants specification. The key
feature of that model is the definition of a parametric communication mecha-
nism. More precisely, it is possible to specify different communication models for
the interaction among the participants by changing the number of queues, their
alphabets, and ordering rules. Using this formalism, it is possible to determine
the communication model that is adequate for a given composition, that is the
one that allows for the most complete description of the composition behavior.

In this work, we extend the approach of [4] and introduce a formalism for the
global model that allows for the description of the compositions from a chore-
ographic point of view. Furthermore, we express the problem of choreography
realizability in terms of the composition of its local projections, and show how the
hierarchy of the realizability notions is related to the hierarchy of communication
models. Using this relation, we present an algorithm that allows to determine the
appropriate level of the realizability, and the corresponding required conditions.

The paper is structured as follows. Section 2 introduces the realizability prob-
lem using variants of a simple example. Sections 3 and 4 define the formal models
for the description of the underlying systems from the global perspective and as
a composition of interacting local services respectively. In Sect. 5 the realizability
problem is formalized and described, and various properties of the global proto-
cols are discussed in terms of the composition of local models. Section 6 presents
the algorithm that permits to reason on the realizability properties of the global

Analysis of Realizability Conditions for Web Service Choreographies 63

B: request :S

S: orderDelivery :H

H: delivery :B

Buyer Seller CCA Shipper

B: accept :S

S: offer :B

A: result :S

S: confirm :B

B: deliveryInfo :S

S: check :A

Fig. 1. RFQ case study: nominal case

protocols, which is based on the analysis of the communication models of the
compositions. Conclusions and related works are discussed in Sect. 7.

2 Choreography Models

We illustrate the problem of modelling and analyzing Web service choreogra-
phies by means of an example. In this example we model a composition of Web
services from the global point of view. We incrementally present several variants
of the scenario, illustrating the approach presented in this paper. The global
representation of the composition is modelled using the WS-CDL language that
allows to describe the observable behavior of the composite protocol.

In our example we describe a simple business collaboration protocol for pur-
chasing goods among a buyer, a seller, a credit card agency (CCA), and a shipper.
The nominal case, defined as a UML activity diagram, is presented in Fig. 1. The
protocol is defined as follows. First, the Buyer asks the Seller for a particular
good, sending a request. The quote offer is prepared and sent back to the Buyer
that accepts it (interaction accept). Given the payment details, the Seller asks
the CCA to verify the information, and after receiving a positive resultmessage,
sends a confirmation to the Buyer. The Buyer sends the address information to
the Seller, which forwards this data to the Shipper (orderDelivery message).
Finally, the Shipper sends the delivery confirmation to the Buyer (delivery).

Given this global description, a straightforward step is to extract from it the
local specifications of the participants. These specifications may be further de-
tailed and serve as the basis for the composition implementation. In this example,
the local specifications can be easily obtained by projection of the global model
onto a particular participant. Moreover, the composition of these projections
will behave exactly as the global specification, and therefore, the global model
is realizable.

This is, however, not always the case. Consider a modification of the nom-
inal case represented in Fig. 2(a). Here, after the orderDelivery interaction
has been performed, the internal activity prepareToDelivery is invoked in the
Buyer role. While the global model requires that the delivery is performed after
this activity, the composition of projections is not able to guarantee this. Indeed,

64 R. Kazhamiakin and M. Pistore

S: orderDelivery :H

H: delivery :B

Buyer Seller CCA Shipper

B: prepareToDelivery

B: deliveryInfo :S

S: confirm :B

(a)

S: orderDelivery :H

H: delivery :B

Buyer Seller CCA Shipper

B: deliveryInfo :S

S: confirm :B

B: notify :A

(b)

S: orderDelivery :H

H: delivery :B

Buyer Seller CCA Shipper

S: confirm :B

(c)

B: request :S

S: offer :B

B: accept :S

Buyer Seller

S: refresh :B

timeout

(d)

Fig. 2. RFQ case study: implementation variants

this internal activity of the Buyer is independent from the emission of delivery
notification of the Shipper, and therefore the realizability is violated. In order
to resolve this problem, either the specification should be modified and an addi-
tional synchronization interaction should be added, or the ordering requirement
should be relaxed, allowing for interleaving internal activities and interactions.

A different modification of the nominal case is presented in Fig. 2(b). Here,
after the orderDelivery interaction, the CCA is notified about the order by
the notify message. In this case, also the ordering of interactions is violated,
since the notification of CCA is independent from the emission of the delivery
notification. We remark however that, while the order of actions specified in the
global protocol is not respected, the states of the participants and the state of
the protocol is not affected. That is, this scenario satisfies the property that,
even if the actions are reordered, the outcome of the execution is the same.

In the implementation presented in Fig. 2(c) this property does not hold. In
this scenario the addressing information of the Buyer is not required, and the
confirmation and the order delivery activities may be invoked in parallel. This
may lead to the following problem in the composition. The local specification of
the Buyer requires that the delivery notification arrives after the confirmation
from the Seller. Due to the fact that the Seller and the Shipper are independent,
this order may be violated, and the final state of the Buyer depends on the im-
plementation of the underlying communication system. Indeed, if the messages
may be stored in queues, and, moreover, the messages from different partners
are managed independently, then the Buyer process is not blocked, the messages
are simply consumed in a different order. As a result, under certain assump-
tions on the middleware implementation and the usage of local variables, the
global protocol may still be considered correct regardless the message ordering
problems.

Analysis of Realizability Conditions for Web Service Choreographies 65

Contrary to the above examples, the acceptable conditions for the scenario
presented in Fig. 2(d) are much more difficult to define. Here, if the Buyer does
not provide an acceptance within a given period of time, the Seller refreshes the
good information, sending a corresponding message refresh. The first problem
is that the refresh message may be sent simultaneously with the acceptance
message, even if the good is not in the stock anymore. The refresh message is
ignored and the state of the protocol is incorrect. Second, if the time required
for the offer processing by the Buyer exceeds the refreshment timeout, then
the Seller will send more and more messages, and the queue of the Buyer will
grow unboundedly. Finally, when the Buyer sends an acceptance message after
several offer refresh messages, it is not clear which one is accepted due to possible
reorderings and intersections of messages leading again to an incorrect state.

This example shows the complexity of defining realizability in a way that
makes it possible to deal with scenarios like the ones illustrated above.

3 Global Model

In this section we introduce the formal model for representing the choreography
specification. This global model defines the dynamic aspects of the service com-
positions from a global point of view by defining the involved participants and
their interactions. The formalism follows the approach of [5,6] for modelling the
global interaction protocols of Web service compositions.

The model is based on the notion of roles and actions. A role represents
the behavior of a particular participant of the composed system. During the
protocol execution, the ith role can be in one of its possible states Si (one of
which is marked as an initial state s0i) and can evolve to new states as a result
of performing some actions.

We model message communications as interactions defined on a set of service
operations (or message types) M. The signature of the interaction ao has the form
(rs, rd, μ), where rs and rd are the roles of the sender and receiver respectively,
μ is the service operation. The set of interactions is denoted as AO.

We also define internal actions Aτ , which are used to represent evolutions
of the system that do not involve interactions between services. In particular,
such an action may represent the internal decision branching of a particular
participant (or even a group of participants1), or a modification of variables
being performed by one or more partners in parallel. An internal action aτ has
the form (Rτ , τ), whereRτ ⊆ R denotes a subset of roles that perform an action,
and τ is used to denote the internal action itself.

3.1 Global Protocol

We model choreography behavior as a global protocol. This behavior is defined by
the global transition relation T , which describes how the states of the participants
1 The possibility of a group of participants to perform an internal action is used in [3]

to model simultaneous evaluation of the branching condition by a group of roles.

66 R. Kazhamiakin and M. Pistore

can evolve on the basis of external and internal actions. We represent a global
state of the choreography as a vector s̄ = 〈s1, . . . , sn〉, where si is a local state
of the role ri. We denote a vector s̄ with component si updated to s′i as s̄[s′i/si].

Definition 1 (Global Protocol). A global protocol representing the collabo-
ration of n roles is a tuple P = 〈R,S, s̄0,A, T 〉, where

– R is a set of n roles;
– S ⊆ Si × · · · × Sn is a set of global states, and s̄0 ∈ S is an initial state;
– A = Aτ ∪ AO is a set of actions;
– T ⊆ S ×A× S is a global transition relation. A transition (s̄, a, s̄′) ∈ T if

• a = (ra, rb, μ) and s̄′ = s̄[s′a/sa, s′b/sb], or
• a = (Rτ , τ) and s̄′ agrees with s̄ except for the state of the roles in Rτ .

3.2 Behavior of the Global Model

We define the behavior of the global protocol using the notions of a run and a
conversation. A run describes the evolution of the system by specifying, which
actions were performed, and which global states were visited. The conversation,
on the contrary, records only the sequences of interactions being performed dur-
ing the evolution of the system.

More formally, the protocol behavior is defined as follows. We say that an
action a ∈ A is fireable in a state s̄, denoted as s̄

a→ s̄′, if there is a transition
(s̄, a, s̄′) ∈ T . Let π = s̄1, a1, s̄2, a2, . . . be a (possibly infinite) sequence of states
and actions. We say that the sequence is fireable from s̄1, written as s̄1

π→∗, if
∀k ≥ 1, s̄k

ak→ s̄k+1. Let us also denote as ρ(π) = μ1, μ2, . . . a sequence of all the
interactions appeared on the sequence π.

Definition 2. Let P = 〈R,S, s̄0,A, T 〉 be a global protocol. A run of the pro-
tocol is a sequence π = s̄0, a0, s̄1, a1, . . . such that s̄0

π→∗. The behavior of the
protocol is the set of all the runs of the protocol: B = {π | s̄0

π→∗}.
A conversation of the protocol ρ(π) is a sequence of interactions performed on
some run π. The set of all the conversations, denoted as Ω, is called the conver-
sation set of the protocol: Ω = {ρ(π) | s̄0

π→∗}.

4 Local Model

In the local model, the Web service composition is defined by a set of local pro-
tocols that separately describe the behavior of each participant of the compo-
sition. During their executions, the participants exchange messages with other
participants through a certain communication medium, thus forming the dy-
namic behavior of the composed system. This bottom-up representation of the
composition, inspired by the specification languages like BPEL [1], relies on the
notions of a local protocol, which describes the behavior of a particular actor of
the composition, and a communication model, which characterizes the interac-
tion mechanisms of the composition instance.

Analysis of Realizability Conditions for Web Service Choreographies 67

4.1 Composition of Local Protocols

The local behavior of the participant is given in terms of a local protocol that
specifies the states and actions performed by the participant. We distinguish
input actions I, which represent the reception of message, denoted as ←−μ ; out-
put actions O, which represent messages sent to other participants, denoted as
−→μ ; and internal actions, which characterize non-observable operations of the
participant, denoted as τ .

Definition 3 (Local protocol). A local protocol is a tuple 〈S, s0,A, T〉, where

– S and s0 ∈ S are the set of role states and the initial state respectively;
– A = I ∪ O ∪ {τ} is a set of role actions;
– T ⊆ S ×A× S is a local transition relation.

The behavior of the composition of local protocols depends on the communica-
tion model [4] adopted and used for the description of the message exchanges
between partners. Such a communication model is given by a set of communi-
cation channels (or queues), and is characterized by the number of the queues,
message ordering, bounds etc. The composition of the local projections is there-
fore parametric with regards to the communication model, and may exhibit
different behaviors.

More formally, let us model the interactions with set of m > 0 queues with
disjoint alphabets Mj ⊆ M. A queue qj may be declared as bounded, with the
corresponding capacity 0 < bj < ∞, or unbounded, in which case bj = ∞.

Definition 4. A communication model for the composition is a tuple Δ =
〈LB ,LM ,LO〉, where LB = 〈b1, . . . , bm〉, is a vector of queue bounds, LM :
M → [1 . . . m] is a function that associates an operation μ with a queue i, and
LO : [1 . . .m] → {�,⊥} is a function that declares the queue as either ordered
or unordered. The alphabet Mi of queue i is defined as Mi = {μ | LM (μ) = i}.

Let M∗ be a set of sequences (or strings) of elements from M. Let also NM be a set
of multisets of M, i.e. sets of mappings from M to the set N of natural numbers.
Given two elements w and w′, we write w.w′ to denote string concatenation, if
w, w′ ∈ M∗, and multiset union, if w, w′ ∈ NM.

We define a queue content as a vector C = 〈w1, . . . , wm〉, where wj ∈M∗
j and

jth queue is ordered, or wj ∈ NM and jth queue is unordered. We extend the
operator . to the queue content as follows: C.μ = 〈w′

1, . . . , w
′
m〉, where w′

j = wj .μ
if α ∈ Mj , and w′

j = wj otherwise. We write |C| ≤ LB to specify that |qi| ≤ bi.
We define the composition of the local protocols as a composition transition

system (CTS). The definition of the CTS is parametric with respect to the
communication model.

Definition 5 (CTS [4]). A composition transition system representing the
composition of n local protocols under a model Δ = 〈LB ,LM ,LO〉 is a tran-
sition system ΣΔ = 〈Γ, γ0,A, T 〉, where

68 R. Kazhamiakin and M. Pistore

– Γ is a set of configurations of the form γ = 〈s̄, C〉, and γ0 = 〈s̄0, 〈ε, . . . , ε〉〉
is an initial configuration;

– A =
⋃

iAi is a set of actions;
– T ⊆ Γ ×A× Γ is the global transition relation.

A transition (〈s̄, C〉, a, 〈s̄′, C′〉) is in T , if for some 1 ≤ i ≤ n, s̄′ = s̄[s′i/si],
and (si, a, s′i) ∈ T i, and one of the following holds:
• a = −→μ ∧ C′ = C.μ ∧ |C′| ≤ LB ;
• a = ←−μ ∧ C = μ.C′;
• a = τ ∧ C′ = C.

In the following, we say that the channel of a composition have a bounded growth
if, for each queue qi, either a finite bound bi < ∞ is declared, or there is some
constant Ki such that the queue contains at most Ki messages in all reachable
states. The composition is bounded if it has bounded growth.

We say that the composition is complete if all the terminating configurations
〈s̄, C〉 have empty queue content: C = 〈ε, . . . , ε〉. We remark that systems that
are not complete lose messages: indeed, at the end of the computation there are
unconsumed messages in queues.

4.2 Behavior of the Local Model

While the emission and the reception of the messages are indistinguishable in the
global protocol, this is not the case for the composition of projections. Depending
on the communication applied, the messages may be interleaved, reordered, and
even ignored. Moreover, the structure of the composition configuration is more
complex than that of the global protocol, and depends on the communication
model. This is reflected in the way behaviors and conversations are defined.
In particular, since the reception of a message does not necessarily follow the
emission (the message may be lost), we will define a conversation set in two
ways: we denote as −→ρ (π) = μ1, μ2, . . . the sequence of all the messages emitted
on the sequence π, and as ←−ρ (π) the sequence of received messages.

An action a ∈ A is fireable in γ, denoted as γ
a→ γ′, if there is a transition

(γ, a, γ′) ∈ T . Let ω = 〈s̄1, C1〉, a1, 〈s̄2, C2〉, a2, . . . be a (possibly infinite) se-
quence of configurations and actions. We say that the sequence is fireable from
〈s̄1, C1〉, written as 〈s̄1, C1〉 ω→∗, if ∀k ≥ 1, 〈s̄k, Ck〉

ak→ 〈s̄k+1, Ck+1〉. We denote
as π(ω) = s̄1, a1, s̄2, a2, . . . a corresponding sequence of states and actions.

Definition 6. Let ΣΔ = 〈Γ, γ0,A, T 〉 be a composition of local protocols. Given
a sequence ω = γ0, a0, γ1, a1 such that γ0

ω→ ∗, a run of the composition is a
sequence π(ω). The behavior of the composition is the set of all the runs of
the composition: B = {π(ω) | γ0

ω→ ∗}. An output conversation (respectively
input conversation) of the composition is a sequence of messages emitted (resp.
received) on some π ∈ B. The set of all the output (resp. input) conversations is
called the output conversation set

−→
Ω (resp. input conversation set

←−
Ω).

Analysis of Realizability Conditions for Web Service Choreographies 69

4.3 Communication Models

The behavior of the composition depends on the communication model. Indeed,
the certain ordering should be satisfied for the message to be consumed from the
queue, the queue bound should restrict the emission of new messages, etc. One of
the key problems for the analysis of the behavior of the protocol is to determine
the relations between the behaviors exhibited by different implementations of
the communication medium. This requires the introduction of certain relations
between communication models, namely simulation relations.

Definition 7. We say that a configuration γ2 = 〈s̄2, C2〉 of ΣΔ2
simulates a

configuration γ1 = 〈s̄1, C1〉 of ΣΔ1
, written as γ1 � γ2, iff

– s̄1 = s̄2,
– ∀ a, ∀ γ′

1, if γ1
a→ γ′

1, then ∃ γ′
2, s.t. γ2

a→ γ′
2, and γ′

1 � γ′
2.

We write ΣΔ1
� ΣΔ2

to denote that γ01 � γ02.
We also write ΣΔ1

≈ ΣΔ2
when ΣΔ1

� ΣΔ2
∧ ΣΔ2

� ΣΔ1
.

Proposition 1. ΣΔ1
≈ ΣΔ2

iff B(ΣΔ1
) = B(ΣΔ2

).

When the simulation relation among two communication models Δ1 and Δ2
holds for any set of local protocols, we say that Δ2 is more general than Δ1.

Definition 8. Communication model Δ2 simulates model Δ1, written as Δ1 !
Δ2, if for any composition of STSs, ΣΔ1

� ΣΔ2
.

Being reflexive and transitive, this relation forms a partial order on the set of
communication models. Below we will show that there is a “most general” model,
that is the model ΔMG, such that for any other model Δ holds Δ ! ΔMG.

The relation among communication models relies on the structure of the
queues. The models differ in two dimensions. First, the relation depends on the
queue bounds: the bigger a bound is, the more transitions are enabled. Second,
it depends on the distribution of the message alphabets: if the alphabet of each
ordered queue in one model is a subset of the alphabet of some ordered queue in
another model, then the first model is more general than the other. The following
theorem defines a relation between the models with different queue structures.

Theorem 1. Consider two communication models Δ1 = 〈L1B ,L1M ,L1O〉 and
Δ2 = 〈L2B ,L2M ,L2O〉. If for each queue q2i holds that

– if the queue q2i is ordered, then there exists an ordered queue q1j , s.t. M2i ⊆
M1j, and

– b2i ≥
∑

M2i∩M1j �=∅ b1j,

then Δ1 ! Δ2.

Let us define the most general model, that is the model that allows for the
largest set of behaviors. In order to respect the assumptions presented above, this
model has to allow for potentially unbounded queues, non-blocking emissions,
and arbitrary, unordered access to the content of any queue.

70 R. Kazhamiakin and M. Pistore

Definition 9. The Most General Communication Model (MG-model) is a com-
munication model ΔMG = 〈LB ,LM ,LO〉, with 1 unordered queue, b = ∞, and
LM (αi) = 1.

It is easy to see that such a model is indeed a generalization of any other com-
munication model w.r.t. the behavior of any composition of STSs.

Proposition 2 (from [4]). For any communication model Δ, Δ ! ΔMG.

Whenever a composition under a certain model Δ simulates the most general
composition, we say that this model is adequate for the description of the com-
position scenario.

Definition 10 (from [4]). A communication model Δ is said to be adequate
for the given composition scenario if ΣΔ ≈ ΣΔMG .

5 Protocol Realizability

A natural question that comes with the specification of the global choreography
protocol is the realizability of the specification. It consists in deciding whether
there is a way to extract the local implementations of the participating roles
such that, when composed together, they satisfy the protocol specifications. We
refer to these local implementations as projections. Sets of such projections will
be used as the implementation candidates for the composition.

Intuitively, a behavior of a projection is constructed from those transitions
of the global protocol, in which the participant is involved. The internal action
(Rτ , τ) is projected onto an internal action of each role ri ∈ Rτ . The interaction
action (rs, rd, μ) is projected onto the input action ←−μ of the role rd, and on the
output action −→μ of the role rs.

Definition 11 (Role Projection). Given a global protocol 〈R,S, s̄0,A, T 〉, a
projection on role ri is a local protocol 〈Si, s0i,Ai, Ti〉, where:

– Si is a set of states, and s0i is the initial state of ri respectively;
– Ai = Ii ∪ Oi ∪ {τ} is a set of actions of ri;
– Ti ⊆ Si ×Ai × Si is the transition relation of ri. Transition (si, ai, s

′
i) ∈ Ti,

if ∃ (s̄, a, s̄′) ∈ T , such that one of the following holds:
• a = (ri, rj , μ), ai = −→μ ∈ Oi;
• a = (rj , ri, μ), ai = ←−μ ∈ Ii;
• a = (Rτ , τ), ri ∈ Rτ , ai = τ .

Given the set of all role projections of a global protocol, we can compose them
into a CTS according to Definition 5. In the following we denote the composition
of role projections under the model Δ as Σp

Δ .
This composition enables the analysis of the realizability of the global proto-

col. In order to perform this analysis, a possibility to compare the behavior of
the global protocol with the behavior of the composition of the local projections
is needed. This comparison is based on the notion of the behavior expansion that
re-defines the behavior of the protocol in terms of the actions of the composition.

Analysis of Realizability Conditions for Web Service Choreographies 71

Definition 12 (Behavior Expansion). Given a run π of the global protocol
P , the expansion of the run is a sequence π of states and composition actions
obtained as follows:

– each interaction transition (ri, rj , μ) is projected onto a sequence of the cor-
responding send and receive transitions of ri and rj respectively;

– each internal transition (Rτ , τ) is projected onto a sequence of internal tran-
sitions of all roles in Rτ .

The set of all expansions generated by B(P) is denoted as B(P).

5.1 Synchronous Realizability

An intuitive candidate for realizability is the notion that requires that the com-
position of the projections behaves exactly as the given global specification re-
gardless the communication model that is applied. We refer to this notion as
synchronous realizability.

Definition 13 (Synchronous realizability). The global protocol P is syn-
chronously realizable if the behavior expansion of the protocol is equal to the
behavior of the composition of the projections under ΔMG: B(P) = B(Σp

ΔMG
).

The notion of synchronous realizability is closely related to the synchronizable
communication model. This is the most restricted communication model that
can be defined in the local model formalism. In this model there is only one
queue of capacity one.

Definition 14 (Synchronizable communications model). The synchro-
nizable communication model is the model Δ1

1 = 〈LB,LM ,LO〉, with LB = 〈1〉
and LM (μ) = 1 for all operations μ.

The following result immediately follows from the above definitions.

Proposition 3. If the protocol P is synchronously realizable, then the model Δ1
1

is adequate for the composition of the local projections of P .

Indeed, the synchronous realizability implies that the behavior of the composi-
tion under the MG-model is the same as that of the global protocol. Therefore,
in any configuration there is at most one message to be received, and from the
definition of composition follows that the model Δ1

1 is also adequate.
It is easy to see that the protocol represented in Fig. 1 is synchronously

realizable.

5.2 Strong Realizability

The restrictions imposed by the synchronous realizability are often too strong for
the implemented system. Indeed, it requires that the order of internal and exter-
nal actions is respected by the implementation, or that the next emission cannot

72 R. Kazhamiakin and M. Pistore

start before the previous message was received, even if the acting participants
are independent.

The notion of strong realizability relaxes these constraints. The ordering re-
strictions concern only the communication actions, and not the internal ones.
Intuitively, a protocol is strongly realizable if the set of conversations of the pro-
tocol and of the compositions is the same, the composition is bounded, and all
the emitted messages are received.

Definition 15 (Strong realizability). Given a protocol P and the composi-
tion of the projections under ΔMG, if the composition is bounded and Ω(P) =
−→
Ω(Σp

ΔMG
) =

←−
Ω(Σp

ΔMG
), then the protocol is said to be strongly synchronizable.

This notion is related to the globally ordered communication model.

Definition 16 (Globally ordered communications model). The globally
ordered communication model is the model Δgo = 〈LB ,LM ,LO〉, with one or-
dered queue, such that LB = 〈∞〉 and LM (μ) = 1 for all operations μ.

Proposition 4. The protocol P is strongly realizable iff Δgo is adequate for the
composition of the projections Σp

Δ, and the composition is complete and bounded.

The completeness and adequacy of Δgo immediately follows from strong real-

izability of P by the above definitions (
−→
Ω(Σp

ΔMG
) =

←−
Ω(Σp

ΔMG
)). To see the

converse, note that only one participant may send and only one may receive
messages at a time (otherwise the reordering would be possible). A sequence of
emissions of a participant is projected from the definition of the protocol, and
therefore, reflects the sequence of interactions. Thus, Ω(P) =

−→
Ω(Σp

ΔMG
).

While the protocol represented in Fig. 2(a) is not synchronously realizable
(the internal activity prepareToDelivery may be performed before the shipper
receives the orderDeliverymessage), one can see that it satisfies the strong real-
izability requirements. Indeed, the composition is bounded, all the messages are
eventually received, and there are no concurrent message emissions/receptions,
which makes the Δgo adequate for the composition.

5.3 Local Realizability

Strong realizability may appear to be too restrictive for a wide class of choreogra-
phy scenarios. Indeed, it does not allow for concurrent emissions and receptions
of messages by independent processes. For instance, if role A interacts with B,
and then C interacts with D, then the global order cannot be preserved by the
composition of projections. In many cases, however, this may be irrelevant. More-
over, since the variables are local for each role, the behavior and the information
of the local participant is not affected by these reorderings.

We relax the notion of strong realizability by omitting the requirement of
conversation equivalence. However, the local behavior of each role should not be
affected by possible reorderings of message emissions.

Analysis of Realizability Conditions for Web Service Choreographies 73

Definition 17 (Local Realizability). The protocol P is locally realizable if
the composition Σp

ΔMG
is complete, bounded, and for any run π ∈ B(Σp

ΔMG
), for

any role ri, −→πi =←−πi , where −→πi and ←−πi are the sequences of messages sent to and
received by the ith participant.

This property is especially important for monitoring, since it guarantees that
the external observed order of messages is locally respected by the receiver.

Definition 18. A locally ordered communication model for the composition of
n local protocols is a model Δlo = 〈LB,LM ,LO〉, with n ordered queues, bi =∞,
and ∀ α s.t. ←−α ∈ Ii, LM (α) = qi.

This communication model, exploited also in [7], requires that messages are
queued on a process-by-process way. The following result immediately follows
from the definition of the local realizability.

Proposition 5. The protocol P is locally realizable iff Δlo is adequate for the
composition of the projections Σp

Δ, and the composition is complete and bounded.

One can see that the global protocol presented in Fig. 2(b) is locally realizable.
While the reordering of messages is possible in the composition (thus violating
the strong realizability requirements), the local order of messages is respected.

5.4 Weak Realizability

The least restrictive model of realizability further relaxes the ordering con-
straints, requiring only that the message ordering of the interactions among a
pair of the participants is preserved. That is, each participant sending messages
to its partner knows that they will be processed and managed in turn. We refer
to this notion of realizability as weak realizability.

Definition 19 (Weak realizability). The protocol P is weakly realizable if
the composition Σp

ΔMG
is complete, bounded, and for any run π ∈ B(Σp

ΔMG
), for

any pair of roles ri and rj, −→πji = ←−πij , where −→πji and ←−πij are the sequences of
messages sent from rj to ri and received by ri from rj respectively.

This definition is related to the mutually ordered communication model.

Definition 20 (Mutually ordered communication model). A mutually
ordered asynchronous communication model is a model Δmo = 〈LB ,LM ,LO〉,
with n2−n ordered queues denoted as qi,j (i �= j) s.t. bi,j = ∞, and ∀ α, ←−α ∈
Ij ∧−→α ∈ Oj iff LM (α) = qi,j.

In this model, a pair of queues is defined for each pair of processes, with each
queue representing one direction of interaction between these processes. This
model, described in [8], provides a natural representation of communicating
processes since each process explicitly distinguishes each of its partners. The
main feature of this model is that each pair of communicating processes pre-
serves the order of partners’ events. In other words, the order of receptions is
equivalent for each pair of processes.

74 R. Kazhamiakin and M. Pistore

Proposition 6. The protocol P is weakly realizable iff Δmo is adequate for the
composition of the projections Σp

Δ, and the composition is complete and bounded.

The global protocol represented in Fig. 2(c) is weakly realizable, while the one
in Fig. 2(d) is not. Indeed, the composition of the local projections is incomplete
and unbounded, and, moreover, it allows for reorderings of updated quotes.

6 Realizability Analysis

The notions of realizability and the respective properties suggest an analysis
approach based on the analysis of communication models [4]. It is easy to see
that the following hierarchy holds for the models presented above:

Δ1
1 ! Δgo ! Δlo ! Δmo ! ΔMG

Moreover, an analogous hierarchy holds also for the notions of realizability2.
This allows for the application of the following analysis algorithm.

1. Find a minimal (w.r.t. simulation relation) adequate communication model
Δ for the composition of the local projections of the protocol P .

2. Check that the composition is complete and has bounded growth. If this is
not the case, the protocol is not realizable.

3. The appropriate level of realizability is determined by the corresponding
communication model.

The algorithm for the adequacy check is presented in Fig. 1. We briefly de-
scribe its behavior. The reachability tree of the composition is traversed recur-
sively, starting from the initial configuration. In each state the set of enabled
transitions is compared with the set of transitions enabled in the correspond-
ing configuration of the composition under the MG-model. If the sets are not
equivalent, the current model is not adequate.

Each newly reached configuration is checked for boundedness (the function
isUnbounded(γ′)). This is performed by checking whether there exists a loop
starting in a configuration with the same state, but with greater queue content.
If such a loop exists, the composition is unbounded. The completeness is checked
for each terminating state, i.e. a state without fireable transitions.

We remark, that whenever the inadequacy of a certain model is detected (as
well as the incompleteness or the unboundedness), the sequence of configurations
contained in the search stack represents a counterexample (or a witness), that
describes the violation of the analyzed realizability. This counterexample may
be used for further analysis of the protocol.

For the sake of simplicity we omitted the definition of variables and the data
flow in the global and local models. In [9] we show how the above formalisa-
tions and analysis techniques may be extended in order to capture both the
2 Strong realizability, however, requires an additional check that the internal actions

are not interleaved with the message receptions. This check may be easily introduced
in the presented algorithm.

Analysis of Realizability Conditions for Web Service Choreographies 75

Algorithm 1. Composition adequacy check
1: Stack := nil; {Stack of configurations}
2: V isited := nil; {Set of all visited configurations}
3: IS := nil; {Set of incomplete configurations}
4: US := nil; {Set of configurations, where unboundedness is detected}
5: explore(γ0);
6: procedure explore(γ)
7: push(γ, Stack);
8: Fireable := out(γ); {fireable transitions}
9: if Fireable 	= outMG(γ) then terminate; {the model is not adequate}

10: if Fireable 	= ∅ then
11: forall trans ∈ Fireable do
12: γ′ := trans.target;
13: if γ′ 	∈ Stack ∪ V isited then {check boundedness}
14: if isUnbounded(γ′) then US := US ∪ {γ′};
15: else explore(γ′);
16: else if ¬complete(γ) then IS := IS ∪ {γ};
17: V isited := V isited ∪ {γ};
18: pop(γ, Stack);
19: end procedure

control and data in the composition representation. In particular, we show that
the boundedness and adequacy results obtained on the data-less model may be
propagated to the full model (under certain conditions). Moreover, using the ab-
straction techniques the representation may be made finite, enabling the model
checking techniques as presented in [4].

7 Related Work and Conclusions

In this paper we presented a formal framework for the realizability analysis of
Web service choreographies. The framework is based on the formalism suitable
for modelling a composition both as a global protocol and as a set of interact-
ing local services. For the global protocol we exploit a simple model, which is
based on the notion of state transition systems, and allows for the automatic
extraction of local projections that can be used as the basis for the service im-
plementations. A composition of local services is formalized using the model
of [4]. The key feature of this approach is the ability to specify for the com-
position a communication mechanism with an arbitrary structure. The most
relevant original contribution of this paper is the definition of a hierarchy of
notions of choreography realizability, which allows for capturing a wide range
of properties of Web service choreographies. We also defined a correspondence
between this hierarchy and the hierarchy of communication models presented in
[4]. This correspondence allows us to exploit the analysis approach described
in [4] for determining the level of realizability of the given global protocol
specification.

76 R. Kazhamiakin and M. Pistore

The problem of the realizability of a global Web service protocol specification
has been addressed in [5], while the realizability is defined as the ability of the
composition of protocol projections to produce the same set of conversations.
Several necessary conditions are formalized in order to enable the protocol real-
izability analysis. Contrary to our framework, the formalization of [5] is glued to
a particular communication mechanism — the synchronous one — thus making
the analysis results more restrictive. The framework presented here is also more
flexible with respect to a notion of realizability.

The formalization and the analysis of the Web service choreography mod-
els are presented also in [6,10,11], while approaches to generate implementation
templates from the choreography models are presented in [12,13]. However, the
problem of realizability is not covered in these works, and the composition for-
malization is based on synchronous communications assumptions, which for a
large range of scenarios and systems is not realistic.

References

1. Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., Weeravarana, S.: Business Process
Execution Language for Web Services (version 1.1) (2003)

2. OMG: Business Process Modeling Language (BPML). (2005) [http://www.
bpmi.org].

3. W3C: Web Services Choreography Description Language Version 1.0. (2005)
[http://www.w3.org/TR/ws-cdl-10/].

4. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of Communication Models in
Web Service Compositions. In: Proc. WWW’06. (2006)

5. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci. 328 (2004)
19–37

6. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration: A Synergic Approach for System Design. In: Proc. ICSOC’05. (2005)

7. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proc.
WWW’04. (2004)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30
(1983) 323–342

9. Kazhamiakin, R., Pistore, M.: Static Verification of Control and Data in Web
Service Compositions. In: Proc. ICWS ’06. (2006)

10. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Services Chore-
ographies. In: Proc. WS-FM’04. (2004)

11. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-Based Analysis of Obligations
in Web Service Choreography. In: Proc. AICT-ICIW’06. (2006)

12. Mendling, J., Hafner, M.: From Inter-Organizational Workflows to Process Execu-
tion: Generating BPEL from WS-CDL. In: Proc. OTM’05. (2005)

13. Bravetti, M., Guidi, C., Lucchi, R., Zavattaro, G.: Supporting e-commerce systems
formalization with choreography languages. In: Proc. SAC ’05. (2005)

Web Cube

I.S.W.B. Prasetya1, T.E.J. Vos2,�, and S.D. Swierstra1

1 Dept. of Inf. and Comp. Sciences, Utrecht University, the Netherlands
2 Instituto Tecnológico de Informática, Valencia, Spain

Abstract. This paper introduces a refinement of Misra’s Seuss logic,
called Web Cube, that provides a model for programming and reasoning
over web applications. It features black box composition of web services
so that services offered by large systems, such as that of a back-end
database, can be treated abstractly and consistently. It inherits the light
weight feature of Seuss, which relies on an abstract view towards con-
currency control, which leads to a less error-prone style of distributed
programming, backed by a clean logic.

1 Introduction

Nowadays, sophisticated web applications are built using technologies like PHP,
ASP, and servlets. Most are built by directly implementing them over these tech-
nologies, resulting in implementations where it is hard to separate implementa-
tion details from the core design problems. Debugging, let alone verification,
is in general very hard. This is not a good practice. In theory, it is better to
first design an application in an abstract-level modelling language. This is the
development sequence that we will assume in this paper. At the design level,
verifying critical properties is still feasible. Once verified, the design can be im-
plemented. Subsequently, a more practical method, e.g. testing, can be used to
validate the consistency between the implementation and the design. Web Cube
is a programming model, which means it provides useful concepts and structures
for constructing models of web applications and specify their critical properties.
It also comes with a logic to verify a model against its properties. Web Cube is
based on Misra’s formalism for distributed and concurrent systems called Seuss
[14]. As a modelling language Seuss is quite generic. Web Cube is more concrete
than Seuss. It provides concepts which are quite specific for the domain of web
applications, so that a Web Cube model can be implemented more directly.

This paper explains Web Cube’s concepts and the semantics of its black box
logic, which is its strongest feature. We do not at the moment offer a public
implementation of Web Cube. There is a prototype, implemented by translat-
ing Web Cube source to Web Function library [10] written in the functional
language Haskell. It is worth mentioning that alternatively it is often possible
to implement a domain specific language by embedding it in a general purpose
language, e.g. as the embedding of financial contract combinators in Haskell
[11]. One could envisage a similar implementation of Web Cube in Haskell or in
� This work has been partially supported by the Generalitat Valenciana ref. GV05/261.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 77–92, 2006.
c© IFIP International Federation for Information Processing 2006

78 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

Java. An important benefit of embedding is that it gives a first class access to
the modelling framework from the same programming language that one uses to
write the application itself. This may help encouraging programmers to construct
designs.

In Web Cube, a web application is modelled by a set of passive Seuss pro-
grams called cubes whose task is to coordinate a set of web services and interface
them to users. Figure 1 shows an example of a Web Cube model of a simplified
web-based voting application —more will be said at the end of Section 3. As
in Seuss, we can specify temporal properties like: a valid vote submitted to the
webVote application in Figure 1 will eventually be counted, or that the applica-
tion never silently cancels a valid vote. Web Cube treats services as black boxes.
This sacrifices completeness, but allows an application to be verified in isola-
tion! —that is, without using the services’ source code. Indeed, abstraction is
now forced. But on the other hand, verification is also more feasible. Black box
reasoning is however also fundamentally difficult, because parallel composition
typically destroys progress properties of a component. Web Cube uses the theory
from [18,19] to get a reasonably powerful black box logic while remaining light
weight.

Contribution. Web Cube proposes a formal programming model for web ap-
plications with a Seuss logic support and the black box enhancement from our
previous work [18,19]. With respect to Seuss we contribute an extension, namely
the notions of web application and service. With respect to [18,19] the novelty
here is in showing its application in the domain of web programming.

Paper Overview. Section 2 briefly introduces Seuss. Section 3 explains Web
Cube’s concepts and computation model. The formal machinery is described in
Sections 4. Section 5 presents its black box logic. Section 6 discusses related
work.

application webVote{
service r = VoteServer ; -- its contract in in Fig.4

cube home {
method home() {
respond("<form method=post action=<@address.vote@>>

Enter your vote: <input type=text name=v>
<input type="submit" value="SUBMIT"> </form>
<p><a href=<@address.info@>>Click here to get vote info")}

method vote(v) { r.vote(v) }
method info() {
var n = r.info() ;
respond("<p>Total votes = <@n@>") ;
if r.open then respond("<p>Open.") else respond("<p>Closed.") } }}

Fig. 1. A simple Web Cube application for electronic voting

Web Cube 79

2 Seuss

In Seuss a box describes a reactive (non-terminating) program. It consists of a
set of variables, a set of atomic guarded actions, and a set of methods. The
variables define the state of the box. The execution of the box consists of an
infinite sequence of steps; at each step an action is non-deterministically, but
weakly fair, selected for execution. If the selected action’s guard evaluates to
true, the action is fully executed, else the effect is just a skip. The methods play
a different role. They form the only mechanism for the environment to alter the
state of the box. Methods may have parameters, actions can not.

For brevity we will not discuss the ’category’ (generic box) [14]. When declar-
ing a variable we omit its type specification. We only consider non-blocking
methods (called total in [14]). Parameters are passed by value, and a method
may return a value.

Figure 2 shows an example of a box called VoteServer—for now just consider
it to have nothing to do with the webVote application in Figure 1. The notation
[] denotes the empty list. The method vote allows the environment to submit a
vote to the box. The box continuously executes one of its two actions: move and
validate. The notation g -> S denotes a guarded (and atomic) action: g is the
guard, and S is the action to perform if the guard evaluates to true. The action
move swaps the entire content of the incoming vote-buffer (in) to an internal
buffer tmp —it can only do so if tmp is empty. The full code of validate is not
displayed; the action takes the votes from tmp and if they are valid votes, moves
them to votes; otherwise they are discarded. The environment can also call the
method info to inquire after the number of (valid) votes registered so far.

Seuss’ key feature is its abstract view towards multiprogramming. To program
the control flow it only offers, essentially, parallel composition and guarded ac-
tions. It advocates that a programmer should only be concerned with specifying,
essentially, the set of concurrent atomic tasks that constitute a system. He should
not be concerned with how to schedule these tasks for optimal performance —the
compiler and the run time system should figure this out. This abstract view leads
to a simple logic and clean designs.

Seuss is the evolution of UNITY [4]. With respect to UNITY, Seuss adds
methods (which are used to limit interference by the environment of a system)
and the ability to structure a system’s architecture as a hierarchy of boxes.

box VoteServer {
var in, votes, tmp = [] ;

open = True ;
method vote(v) { if open then in := insert(v,in) else skip }

info() { return length(votes) }
stop() { open := False }

action move :: null tmp -> tmp,in := in,[] ;
validate :: not(null tmp) -> ... }

Fig. 2. An example of a Seuss box

80 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

Seuss logic uses a slightly different set of operators. We will stick to the old
UNITY unless and �→ (leads-to) to specify temporal properties, which are derived
operators in Seuss. We will defer their discussion until Section 4 where we alter
their standard definition to deal with ’components’.

3 Web Cube

A Web Cube application, or simply application, models a server side program
that interacts with a client via an HTTP connection. Figure 3-left shows the
architecture of a hypothetical Web Cube execution system. Applications (e.g.
A1, A2, B1, . . .) may run different machines. We assume a Web Cube aware
HTTP server which can direct a client’s requests to the correct application,
collect the application’s reply, and forward it back to the client.

A1

B1

A2

application space

client2

service

service

client1

Web Cube HTTP server

application
se

rv
ic

e

se
rv

ic
e

x2

co
nt

ra
ct

x1

Fig. 3. Web Cube architecture

An application A is built, like in Figure 3-right, by composing so-called cubes
(x1 and x2) and web services. A cube x is a ’passive’ Seuss box —we will say more
on this later— that models a part of A that can interact with a client. A client
E interacts by calling x’s methods. In practice this will be encoded as HTTP
requests; x replies by sending back HTML responses. A web service, or simply
service, is a black box program described by a contract and can be remotely
interacted to (in practice this may happen over a SOAP/HTTP connection) by
cubes. We further assume that a service is a state-persistent reactive system.
Note that by attaching a contract to A it also becomes a service. A user can
use his web browser to enact A’s client E and interact with one of its cubes; the
browser will display the cube’s responses. However, E does not have to be a web
browser: it can be another application using A as a service.

The role of a cube is purely for computing the responses to client’s requests. It
does not have reactive behavior of its own; so, we describe it by a passive Seuss
box, which is a box with an empty set of actions. A service on the other hand,

Web Cube 81

may spontaneously execute actions to update its own state. Each client’s request
may trigger a coordinated computation over the services. For safety reason, the
client can only interact with A’s cubes; it cannot interact directly with A’s
services. So, the cubes can also be seen as providing a layer for orchestrating
the services. An orchestration language, e.g. [15], can be used in conjunction
to Seuss for convenient coding of the orchestration, taking into account the
atomicity restriction demanded by Web Cube (Subsection 4.5).

Since a service such as a corporate database is actually a large and complicated
system, we will view it as a black box specified by a contract. Such a contract
includes a Seuss box that abstractly (thus incompletely) specifies how the service
behaves as a reactive system. As in design by contract [13], some party, e.g. the
service owner, is assumed to guarantee the consistency between the service’s
implementation and its contract.

An application can be deployed as a state-persistent program serving multiple
clients. Another scheme, as common in e.g. servlets, is to create a fresh and
exclusive instance which lasts for a single session. We are not going to make the
distinction in our formal model. With respect to single-session applications, a
session is treated to last infinitely long, so the application can be treated in the
same way as a persistent application.

Example. Figure 1 shows a simple Web Cube application, called webVote, which
provides an electronic voting service. It consists of a single cube called home and
a service symbolically called r which is linked to the component VoteServer
from Figure 2. Each application should have a cube called home that contains
a method home. The method is called automatically when an instance of the
application is created and so resembles the home-page of the application. For
the webVote application this will cause the user’s browser to show a simple form
where the voter can type in his vote, a submit button, and a link to get the
voting status.

HTML Responses. A cube’s method m responds to a client’s call by sending
back its return value, encoded in HTML. Like in Java servlets, m can also gen-
erate responses by calling the respond method: it takes a HTML-code which
will be sent to the client. The entire response of m to a call consists of the
concatenation of strings produced by all the calls to respond in m, followed
by m’s HTML-encoded return value. A Web browser client may choose to dis-
play both; Web Cube applications acting as clients can only use the return
value.

Responses from respond are however ignored by our Seuss semantics, which
makes reasoning simpler. To do so safely we have to require that inlined expres-
sions (below) do not have side effects (which is not imposed in servlets).

As in servlets, inlined expressions are allowed, as in: respond "hello <@ e @>";
e will be evaluated and its result is inserted in the place where e appears. In-
lined expression of the form address.m will be substituted by m’s URI address,
causing m to be called when the user clicks on it.

82 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

4 Semantics

We have explained the building blocks of a Web Cube application and its execu-
tion model. We now give its semantics, operators for specifying properties, and
an extension to the Seuss logic for proving properties.

In the sequel a, b, c are actions, i and j are predicates intended to be invariants,
p, q, r are predicates, P, Q, R are action systems (explained later), x, y, z are
boxes.

4.1 Preliminaries

Selector. We use tuples to represent composite structures, and selectors to select
the various parts. For example, T = (a :: U, b :: V) defines a type T consisting
of pairs whose elements are of type U and V . If t = (u, v) is a value of type T ,
then t.a = u and t.b = v.

Actions. An action is an atomic, terminating, and non-deterministic state tran-
sition. We model it by a function from the universe of states, denoted by State,
to P(State). Guarded actions are denoted by g –> S, meaning that S will be only
executed if g is true, otherwise the action behaves as a skip —the latter implies
that in our model a s �= , for any action a and state s. If a and b are actions, a�b
is an action that either behaves as a or as b. So, (a � b) s = a s ∪ b s. If A is a
set of actions then �A denotes (�a : a ∈ A : a). If V is a set of variables, skip V
is an action that does not change the variables in V , but may change variables
outside V . The notation {p} a {q} denotes a Hoare triple over an action a with
p and q as pre- and post-condition.

Predicate Confinement. State predicates specify a set of program states. A
predicate p is confined by a set of variables V , written p conf V , if p can only be
falsified by actions that manipulate variables in V (it follows that p is confined
by its set of free variables). We write p, q conf V to abbreviate p conf V and
q conf V .

4.2 More Preliminaries: Box and Property

The methods of a (Seuss) box x only define the interface with which the envi-
ronment interacts with x. If we strip the methods we obtain the description of
the box’s own program. This stripped box is called the action system and cor-
responds to a UNITY program ([4], Seuss predecessor). For conciseness we only
define properties and parallel composition at the action system level, since this
is sufficient for presenting our theorems later. Technically, these notions can be
lifted quite naturally to the box and application level. Formally, we will represent
box and action system as follows.

Box
d= (main :: ActionSys,meths :: {Method}) (1)

ActionSys
d= (acts :: {Action}, init :: Pred, var :: {V ar}) (2)

Web Cube 83

If P is an action system, P.init is a predicate specifying P ’s possible initial states,
P.var is the set of P ’s variables. Implicitly, P.init has to be confined by P.var.
We will overload action system’s selectors so that they also work on boxes, e.g.
x.var means x.main.var.

A useful property is that of invariant, because it confines the set of states
reachable by a reactive program. A predicate i is a strong invariant of an action
system P , denoted by P " sinv i, if it holds initially, and is maintained by every
action in P :

P � sinv i
d= P.init ⇒ i ∧ (∀a : a ∈ P.acts : {i} a {i}) (3)

A predicate j is an invariant if there exists a strong invariant i implying j. For
specifying a broader range of safety properties, Seuss offers the unless opera-
tor. Let p and q be state predicates. When p unless q holds in P , this means,
intuitively, that each action in P will go from any state in p to some state in
p ∨ q. Note that the definition quantifies over all states. We will deviate from
this definition. We parameterize the property with an invariant (i), as in [20],
so that the quantification over states can be restricted to those which are actu-
ally reachable by P . Moreover, we require that p and q to be confined by P.var.
Although this seems more restrictive, it does not really limit the way in which
we usually use the operator. Technically, it makes the property more robust in
parallel compositions [16]. Together with the definition of unless we also give the
corresponding ensures operator, which specifies progress from p to q by executing
a single action:

Def. 1 : Basic Operators

1. P, i " p unless q
d= P � sinv i ∧ p, q conf P.var

∧ (∀a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {p ∨ q})
2. P, i " p ensures q

d= P, i � p unless q
∧ (∃a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {q})

The general progress operator �→ is usually defined as the least transitive and
disjunctive closure of ensures. Unfortunately, progress defined in this way is dif-
ficult to preserve when subjected to parallel composition —essentially, because
we do not put any constraint on the environment. We will return to this issue
in Section 4.4.

We only introduce one sort of program composition, namely parallel composi-
tion. If P and Q are action systems, P []Q denotes an action system that models
the parallel execution of P and Q:

P []Q d= (P.acts ∪ Q.acts, P.init ∧ Q.init, P.var ∪ Q.var) (4)

If x and y are two boxes, we also write x[]P to denote x.main[]P and x[]y to
denote x.main[]y.main.

4.3 The Underlying Component Based Approach

Web Cube assumes services to be available as black box entities, also called com-
ponents [25]. A component only reveals partial information about itself in the

84 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

form of a contract. In particular, it does not reveal its full code. The component
owner guarantees the consistency of the contract. Obviously a contract that
reveals more information allows stronger properties to be inferred from it. How-
ever, such a contract is also more constraining, hence making the component
less reusable, and the verification of the the component’s implementation more
costly. Consequently, when writing a contract, a developer will have to consider
a reasonable balance.

Essentially the relation between a component x and its contract c is a re-
finement/abstraction relation. That is, x has to refine c (or conversely, c is an
abstraction of x), usually denoted by c ! x. Such a relation preserves properties
of interest: a property φ inferred from the contract c is also a property of the
component x. In sequential programming refinement traditionally means reduc-
tion of non-determinism [2]. Lifted to distributed programming c ! x means
that every observable execution trace of x is allowed by c. This relation does
not however preserve progress properties. There are a number of stronger (more
restrictive) alternatives, e.g. Udink’s [26] and Vos’ [27], that preserve progress;
but these are expensive to verify. For Web Cube, we choose a weak notion of
refinement, taken from our previous work [18]. It is even weaker than simple
reduction of non-determinism, and thus has the advantage that it is less restric-
tive, and hence easier to verify. Like most refinement relations, it still preserves
safety, but surprisingly it also preserves a class of progress properties as we will
see below. Although the class is much smaller than for example Vos’ [27], we
believe it is still quite useful.

We start by defining the refinement at the action level. Let a and b be two
actions. Traditionally, a ! b means that b can simulate whatever a can do ([2]).
However, this is a bit too restrictive in the context of an action system. Imagine
that a is part of an action system P , then we can ignore what b does on variables
outside P.var or what its effect is on the states that are not reachable by P .
Furthermore, we can also allow b to do nothing, since doing nothing will not
break any safety properties of a. We capture these issues in our refinement
relation in the following formalization. Let V be a set of variables (intended
to be P.var), and i be a predicate (intended to be an invariant, thus specifying
P ’s reachable states). Action b weakly refines action a with respect to V and i
is defined as follows:

V, i � a � b
d= (∀p, q : p, q conf V : {i ∧ p} a � skip V {q} ⇒ {i ∧ p} b {q}) (5)

Lifting this definition to the action system level gives us:

Def. 2 : Refinement/Abstraction

i � P � Q
d= P.var ⊆ Q.var ∧ (i ∧ Q.init ⇒ P.init)

∧ (∀b : b ∈ Q.acts : P.var, i � � P.acts � b)

So, under the invariance of i, i " P ! Q means that every action of Q either
does not touch the variables of P , or if it does it will not behave worse than
some action of P . Parallel composition is !-monotonic in both its arguments.

Web Cube 85

4.4 Basic Results on Black Box Composition

Like in [3,26,27] the above refinement relation preserves safety but in general not
progress. However, consider the following restricted class of progress properties.
Let B be an environment for P . We write:

P�[]B, i " p �→ q

to express that under the invariance of i, the composed system P []B can progress
from p to q. Moreover, this progress is driven by P . That is, the progress is
realized even if B does nothing:

Def. 3 : Extended Progress Operators

1. P�[]B, i " p ensures q
d= P []B, i � p unless q

∧ (∃a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {q})
2. P�[]B, i " p �→ q is defined such that (λp, q. P�[]B, i " p �→ q) is the smallest

transitive and disjunctive closure of (λp, q. P�[]B, i " p ensures q).

The result from [18] below states that progress ’driven by x’ is preserved by
weak refinement over B:

Thm. 4 : Preservation of �→
x�[]B, i � p �→ q ∧ j � B � Q ∧ i ⇒ j

x[]Q, i � p �→ q

Note that the same does not hold for weak refinement over x.

Proof: The formal proof is by induction over �→; we refer to [18]. Informally:
assume i as an invariant of x[]Q. Since i ⇒ j, j is also an invariant. Since Q refines
B under j, throughout the computation of x[]Q every action of Q behaves, with
respect to variables of x and Q, as some action of B or as a skip. Consequently
Q cannot destroy any progress in terms of x�[]B, since this progress is driven by
x and cannot be destroyed by any action of B. �

The theorem below states that our notion of weak refinement also preserves
safety. We refer to [18] for the proof.

Thm. 5 : Preservation of unless

x, i � p unless q ∧ j � x � x′ ∧ i ⇒ j

x′, i � p unless q

4.5 Web Cube Atomicity Restriction

Let y be the environment of a box x in a parallel composition. Seuss allows
methods and actions of y to call x’s methods. In particular, this allows y to
perform multiple method calls to one or more boxes in a single action. Since
actions are atomic, this effectively empowers y to force an arbitrary level of
atomicity on its accesses to x. This is a very powerful feature, but unfortunately

86 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

it will also allow y to behave more destructively with respect to x’s temporal
properties. For this reason in Web Cube we will limit the feature, and define a
notion of worst allowed environment as follows:

x.env d= ({�m | m ∈ x.meth}, x.init, x.var) (6)

where �m is an action modeling the disjunction of all possible single calls to m.
So, if m is a 1-arity method, then �m = (�v :: m(v)).

Now, we define a box y to be a proper (allowed) environment of x under an
invariant i if it refines the worst allowed environment of x. More precisely:

y is a proper environment of x (under i) d= i " x.env ! y.main � y.env (7)

Intuitively, every action and method of x’s proper environment y can only
contain a single call to a state-altering method of x. This can be checked stati-
cally. The action (method) can however still contain an arbitrary number of calls
to x’s functional methods (i.e. methods that do not alter the state) and calls to
other boxes’ methods. The proper environment condition enforces a more deter-
ministic environment, but in return it will behave less destructively with respect
to x.

4.6 Contracts

We will use the following structure to represent contracts:

Contract = (smodel :: Box, inv :: Pred, progress :: {ProgressSpec})

If c is a contract, c.impl denotes a Seuss box which is a component associated
with c. Let x = c.impl. The methods of c.smodel specify the visible interface of
x. The action system of c.smodel specifies an abstraction over x, in the sense of
Def. 2. The inv section specifies an invariant. In the progress section we specify
the component’s critical progress properties. Only progress ’driven by’ the com-
ponent, in the sense of Def. 3, can be specified, so that we can use Thm. 4 to
infer its preservation. In practice a component like a database is not written in
Seuss. However, as long as its owner can produce the above form of contract, and
guarantee it, we can proceed. The relation between c and c.impl is formalized
by:

Def. 6 : Box-Contract Relation
If c is a contract and x = c.impl, there should exist a predicate i such that:

1. i is a strong invariant of x[]x.env and it implies c.inv.
2. c and x have a ’compatible’ interface. For brevity, here it means that both

specify exactly the same set of methods: c.smodel.meth = x.meth.
3. c.smodel is a consistent abstraction of x, i.e. i " c.smodel.main ! x.main
4. for every specification p �→ q in c.progress we have x�[]x.env, i " p �→ q.

Web Cube 87

contract VoteServer {
smodel
var in, votes = [] ;

open = True ;
method vote(v) { if open then in := insert(v,in) else skip } ;

info() { return length(votes)) } ;
stop() { open := False } ;

action fetch :: in := [] ;
count :: {var v ;

if isValid(v) then votes := insert(v,votes) else skip }

inv v in votes ==> isValid(v)

progress isValid(v)/\open ; vote(v) |--> v in votes
}

Fig. 4. A contract for the component VoteServer (Figure 2)

The invariant i mentioned above is called the concrete invariant of x, and will
be denoted by x.concreteInv. This concrete invariant i is partially specified by
c.inv, since i ⇒ c.inv. Its full details cannot be inferred from the contract though.
The first condition above also implies that i.inv is an invariant of x[]x.env, though
in general it is not a strong invariant of x[]x.env.

The above definition of ’compatible interface’ implies c.impl.env=c.smodel.env.
So, any environment which is proper according to a contract c is automatically
also a proper environment of c.impl. Actually, it would be sufficient to require
c.impl.env ! c.smodel.env such that we can weaken the definition of ’compatible
interface’ and make it more realistic. This, however, is outside the scope of this
paper.

Figure 4 shows an example of a contract, that could belong to the compo-
nent VoteServer in Figure 2. Free variables in the inv and progress sections are
assumed to be universally quantified. The contract’s action part reveals that
VoteServer may from time to time empty the incoming buffer in. It does not,
however, specify when exactly this will happen. The contract also says that the
server will only fill votes with valid votes though it leaves unspecified as to
where these votes should come from. Although a very weak one can infer a crit-
ical safety property from this abstraction: no invalid vote will be included in the
counting.

For convenience, we allow methods to be used when specifying state predicates
within a temporal specification in the following way. If p is a state predicate and
m(e) is a call to a method m, the predicate p; m(e) specifies the set of states
that result from executing m(e) on states satisfying p. So, the progress section
in Figure 4 states that after a valid vote is successfully submitted (which only
happens if open is true) through a call to the method vote, eventually the vote
will be counted by the server (captured by the predicate v in votes). With this
property the server guarantees there cannot be any loss of valid votes.

88 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

4.7 Semantics of Application

We can now give the semantics of a web application. An application consists of
cubes and services. The latter are components, so they are represented by their
contracts. Formally, we represent an application by this structure:

App
d= (svc :: {Contract}, cube :: {Box}) (8)

If C is a set of boxes, let []C denote the parallel composition of all the boxes in
C. Let A be an application. The Seuss semantics of A is the concrete program
induced by A, which is just the parallel composition of all its services and cubes:

A.impl d= ([]c : c ∈ A.svc : c.impl) [] ([] A.cube) (9)

Although this implementation is not visible, we can infer, from the cubes and
the contracts, an abstract model for the application:

A.model d= ([]c : c ∈ A.svc : c.smodel) [] ([] A.cube) (10)

A.client is A’s worst allowed client. It is the one that tries all possible calls to
the methods of A’s cubes:

A.client d= ([]x : x ∈ A.cube : c.smodel.env) (11)

Note that A.client is by definition an abstraction of any proper client of A.

Wrapping. Since semantically, A.impl[]client is a box, it can be treated as a
component by providing a contract. Semantically, it becomes a service. In the
implementation this may require some wrapping to make it SOAP-enabled. As
a service it can be used to build larger applications.

5 Inference

Seuss provides a logic [14] for proving safety and progress properties. Although
we have changed the definitions of Seuss temporal operators, it can be proven
in a quite standard way that they maintain basic Seuss laws, e.g. using our
general proof theory in [17]. We now add important results, namely theorems
for inferring properties of an application from the contracts of its services —with
just plain Seuss, this is not possible.

Let A be an application. Let A.inv denote the combined abstract invariant
of A, which is the conjunction of the invariants specified by the contracts in
A. Similarly, A.concreteInv denotes the combined concrete invariant of A. The
latter cannot be inferred from the contracts. However, we just need to infer that
properties inferred from A are consistent with it. Let client be a proper client
of A (under A.inv). We have:

Thm. 7 : Inferring Safety from Abstract Model

A.model[]client, A.inv � p unless q

A.impl[]client, A.concreteInv � p unless q

Web Cube 89

Proof: the Contract-Box relation (Def. 6) imposed on the services implies that
A.model is a consistent abstraction of A.impl:

A.concreteInv " A.model ! A.impl (12)

It follows, by Thm. 5, that any unless property proven on the abstract model is
also a property of the concrete system. �

For inferring progress we have:

Thm. 8 : Progress by Contract

c ∈ A.contract ∧ p �→ q ∈ c.progress
A.impl�[]client, A.concreteInv � p �→ q

Proof: by Def. 6, c.progress actually specifies this progress: c.impl�[]c.env " p �→
q. Imposing the constraint on the atomicity of method calls from Subsection 4.5,
makes the rest of the application and the client act as a proper environment for
c. Hence, by Thm. 4 the progress will be preserved in the entire system. �

Below is the dual of the theorem above, stating that progress solely driven by
the client, assuming A’s abstract model as the environment, will be preserved in
the entire system:

Thm. 9 : Client Progress

client�[]A.model, A.inv � p �→ q

client�[]A.impl, A.concreteInv � p �→ q

Proof: follows from (12) and Thm. 4.

Example. Consider again the example we mentioned in the Introduction: we
want a guarantee that a valid vote submitted to the webVote application in
Figure 1 will eventually be counted. The property is promised by the VoteServer
service in webVote. Now we can use Thm. 8 to conclude that the property will
indeed be preserved in the system.

Consider also the property info() ≥ N unless false. It is an important safety
property, stating that the application will not silently cancel an already counted
vote. In order to verify its correctness, Thm. 7 says that we can do so against
the abstract model of the application. This means isolated verification: we do
not need the full code of the services!

We cannot infer everything from a contract, because it is just an abstrac-
tion. For example, the component VoteServer in Figure 2 will not silently in-
sert a valid-but-fake vote. However, we cannot infer this from the contract in
Figure 4.

6 Related Work

Formal methods have been used to specify and verify document related proper-
ties of web applications. Semantic Web [5] is currently popular as a framework

90 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

to define the semantics of documents, thus enabling reasoning over them, e.g.
simply by using theorem provers. On top of it sophisticated properties can be
specified e.g. as [12] that offers a query language, in the spirit of SQL, over
documents. Automated verification has also been explored [22,9,1], though we
will have to limit ourselves to simple document properties, e.g. the reacha-
bility of different parts of a web page from multiple concurrent frames. Web
Cube logic focuses on temporal properties over the state maintained by a web
application, rather than on document properties —these two aspects are
complementary.

A Web Cube is primarily a programming model for constructing a web ap-
plication. Although it is based on services composition, it is not a dedicated
service orchestration language as e.g. BPEL, cl [8], or Orc [15]. Given a Web
Cube application A, requests from a client are translated to calls to A’s cubes’
methods. In turn a method may perform a series of calls to multiple services,
scripted as a plain Seuss statement. So, orchestration in Web Cube happens
at the method level, and is consequently limited by the atomicity constraint
over methods. Therefore, the full BPEL concurrency (of orchestration) can-
not be mapped to Web Cube’s orchestration. Though on the other hand we
get a nice back box temporal logic for Web Cube, whereas this would be a
problem for BPEL. Orc’s [15] type of orchestration matches better to Web
Cube. A top level Orc expression is atomic. So in principle it can be used to
specify a cube’s method. Formalisms like process algebra [6], Petri net [21],
or event-based temporal logic [24] have been used to reason over service or-
chestration. These are more suitable for work-flow oriented style of orches-
tration (e.g. as in BPEL). In Web Cube calls to services may cause side ef-
fect on the services’ persistent state. So, Web Cube uses a classical temporal
logic which is more suitable to reason over temporal properties over persistent
states.

Web Cube assumes a more classical development cycle, where Seuss is used to
abstractly describe a web application. Properties are reasoned at this Seuss level.
Actual implementation could be obtained by translating Seuss to an implemen-
tation language, e.g. Java. Language embedding [11] is also an interesting route
to obtain implementation. Others have used refinement to develop an application
[23]. Seuss is not a refinement calculus; refinement in Web Cube is used to bind
contracts. In reverse engineering people attempt to do the opposite direction: to
extract models from an existing implementation of a web application, e.g. as in
[7,22,9,1]. The models are subsequently subjected to analysis, e.g. verification.
Reverse engineering can yield high automation, but defining the procedure to
extract the models is not trivial, especially if the programming model used at
the model level differs too much from that of the implementation level. This is
likely the case with Web Cube, since it tries to be high level, and hence hard to
extract from e.g. an arbitrary Java code.

Compared to all the work mentioned above Web Cube is also different because
of its component based approach.

Web Cube 91

References

1. M. Alpuente, D. Ballis, and M. Falaschi. A rewriting-based framework for web sites
verification. In Proc. 5th Int. W.shop on Rule-based Programming RULE. Elsevier
Science, 2004.

2. R.J. R. Back. On the Correctness of Refinement Steps in Program Development.
PhD thesis, University of Helsinki, 1978. Also available as report A-1978-5.

3. R.J.R. Back and J. Von Wright. Refinement calculus, part II: Parallel and reactive
programs. Lecture Notes of Computer Science, 430:67–93, 1989.

4. K.M. Chandy and J. Misra. Parallel Program Design – A Foundation. Addison-
Wesley Publishing Company, Inc., 1988.

5. M.C. Daconta, L.J. Obrst, and K.T. Smith. The Semantic Web: A Guide to the
Future of XML, Web Services, and Knowledge Management. 2003.

6. A. Ferrara. Web services: a process algebra approach. In Proceedings of 2nd
International Conference Service-Oriented Computing (ICSOC), pages 242–251.
ACM, 2004.

7. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for model-
based verification of web service compositions and choreography. In Proceeding of
the 28th international conference on Software engineering, pages 771–774. ACM
Press, 2006.

8. S. Frolund and K. Govindarajan. cl: A language for formally defining web services
interactions. Technical Report HPL-2003-208, Hewlett Packard Laboratories, 2003.

9. M. Haydar. Formal framework for automated analysis and verification of web-based
applications. In Proc. 19th IEEE Int. Conf. on Automated Software Engineering
(ASE), pages 410–413. IEEE Computer Society, 2004.

10. R. Herk. Web functions, 2005. Master thesis, IICS, Utrecht Univ. No. INF/SCR-
2005-014.

11. S. Peyton Jones, J.-M. Eber, and J. Seward. Composing contracts: an adventure
in financial engineering. In Proc. 5th Int. Conf. on Functional Programming, pages
280–292, 2000.

12. A.O. Mendelzon and T. Milo. Formal models of Web queries. In Proc. of the 16th
ACM Sym. on Principles of Database Systems (PODS), pages 134–143, 1997.

13. B. Meyer. Applying design by contract. IEEE Computer, 25(10):40–51, 1992.
14. J. Misra. A Discipline of Multiprogramming. Springer-Verlag, 2001.
15. J. Misra. A programming model for the orchestration of web services. In 2nd Int.

Conf. on Software Engineering and Formal Methods (SEFM’04), pages 2–11, 2004.
16. I.S.W.B. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms.

PhD thesis, Inst. of Information and Computer Sci., Utrecht University, 1995.
17. I.S.W.B Prasetya, T.E.J. Vos, A. Azurat, and S.D. Swierstra. !UNITY: A HOL

theory of general UNITY. In Emerging Trends Proceedings of 16th Int. Conf.
Theorem Proving in Higher Order Logics, pages 159–176, 2003.

18. I.S.W.B Prasetya, T.E.J. Vos, A. Azurat, and S.D. Swierstra. A unity-based frame-
work towards component based systems. Technical Report UU-CS-2003-043, IICS,
Utrecht Univ., 2003.

19. I.S.W.B Prasetya, T.E.J. Vos, A. Azurat, and S.D. Swierstra. A unity-based frame-
work towards component based systems. In Proc. of 8th Int. Conf. on Principles
of Distributed Systems (OPODIS), 2004.

20. B.A. Sanders. Eliminating the substitution axiom from UNITY logic. Formal
Aspects of Computing, 3(2):189–205, 1991.

92 I.S.W.B. Prasetya, T.E.J. Vos, and S.D. Swierstra

21. K. Schmidt and C. Stahl. A petri net semantic for BPEL. In Proc. of 11th Workshop
Algorithms and Tools for Petri Nets, 2004.

22. E. Di Sciascio, F.M. Donini, M. Mongiello, and G. Piscitelli. AnWeb: a system for
automatic support to web application verification. In SEKE ’02, pages 609–616.
ACM Press, 2002.

23. G. Di Marzo Serugendo and N. Guelfi. Formal development of java based web
parallel applications. In Proc. of the Hawai Int. Conf. on System Sciences, 1998.

24. M.P. Singh. Distributed enactment of multiagent workflows: temporal logic for web
service composition. In AAMAS ’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 907–914. ACM
Press, 2003.

25. C. Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

26. R.T. Udink. Program Refinement in UNITY-like Environments. PhD thesis, Inst.
of Information and Computer Sci., Utrecht University, 1995.

27. T.E.J. Vos. UNITY in Diversity: A Stratified Approach to the Verification of Dis-
tributed Algorithms. PhD thesis, Inst. of Information and Computer Sci., Utrecht
University, 2000.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 93 – 98, 2006.
© IFIP International Federation for Information Processing 2006

Presence Interaction Management in SIP SOHO
Architecture

Zohair Chentouf1 and Ahmed Khoumsi2

1 Dialexia Communications Inc., Montreal, Canada
czohair@dialexia.com

2 Université de Sherbrooke, Sherbrooke, Canada
Ahmed.Khoumsi@USherbrooke.ca

Abstract. A SOHO (Small Office or Home Office) architecture can be sketched
as an architecture that involves an ITSP (Internet Telephony Service Provider)
and subscribers. The ITSP offers SIP protocol based telephony and presence
services for subscribers. A subscriber can have several presence capable devices
that periodically publish the user presence status. The paper defines and
proposes a solution to the presence interaction (PI) problem.

Keywords: SOHO, Presence interaction (PI) detection and resolution, PI
Management Agent (PIMA), PI Management Language (PIML), order relations.

1 Introduction

In this article, we consider a particular architecture, called SOHO (Small Office or
Home Office), containing an Internet Telephony Service Provider (ITSP) that offers
SIP based telephony and presence services for users. Each user can own one or more
devices. The devices that are presence capable, periodically publish the user presence
status to the ITSP presence server. A presence interaction (PI) arises when two or
more devices owned by the same user publish contradictory presence status, for
example, available and out-for-lunch.

We propose a multi-agents architecture for managing PI. The detection and
resolution procedure is based on order relations. A PI Management Language (PIML)
is used to express formally the relevant information for managing PI.

Section 2 introduces the presence service and our proposed architecture. In Section
3, we introduce PI and the approach used for solving them. In Section 4, we propose a
Multi-agents approach for managing PI. Section 5 presents PIML that is used to
model presence status and resolution policies. And we conclude in Section 6.

2 Presence Service and Proposed Architecture

SIP offers an architecture and communication mechanisms for implementing a
presence publishing service. The SIP presence architecture [1] encompasses user
terminals that publish presence information to a presence server, using the PUBLISH
message [2]. Users which publish their presence information are called presentities.

94 Z. Chentouf and A. Khoumsi

The presence server composes the presence information that is published by different
terminals that belong to a same presentity in order to produce a single presence
document. The users who are interested to be notified about the presence status of a
given presentity, subscribe to this service by sending a SUBSCRIBE message to the
presence server. Those users are called watchers. Every time his presence status is
changed, the presentity publishes the new presence information. The presence server
then notifies all the watchers of that presentity about his new presence information by
sending a NOTIFY message to every one, including the presence document. In [3],
presence information as well as filtering policies are coded in an XML-based
language called PIDF. In [4], Schulzrinne proposed RPID that extends PIDF.

We extend the SIP presence architecture by proposing the architecture depicted in
Figure 1. The SOHO (Small Office or Home Office) network gathers the devices
owned by the same user. The ITSP (Internet Telephony Service Provider) extends the
SIP presence server in order to manage the SOHO network.

Fig. 1. ITSP presence architecture

3 Presence Interactions and Solution Approach

For the purpose of the current work, we propose the following eight presence status,
which are for example used in [5] and [6]: Available (1), Away (2), Busy (3), In-a-
meeting (4), Not-available (5), On-the-phone (6), On-vacation (7), Out-for-lunch (8).
Notice that the On-the-phone status is special in that it is temporary and not
intentional. All the other presence status are intentionally set by the user.

We define the presence interaction (PI) problem as the situation where two or more
devices owned by the same user report two or more different presence status of the
user. This could happen, for example, when a device publishes Out-for-lunch while
another publishes On-the-phone. The resolution of a detected PI will consist in
keeping one among the conflicting presence status in the manner we will explain. For
simplicity, we consider here only PI involving exactly two (conflicting) devices.

 Presence Interaction Management in SIP SOHO Architecture 95

3.1 PI Classification, Order Relations

PI are classified into two categories, denoted OR and RP:

Obvious Resolution (OR) interactions: among two conflicting status, the selection
of the one to be excluded is obvious. In our case, OR interactions involve the On-the-
phone status, because the latter is special in that it is not intentional. All the other
presence status are intentionally set by the user. The On-the-phone status should not
contradict a user who, for example, receives a call on a device at a period during
which he has chosen to appear as Out-for-lunch on another device. The On-the-phone
status should be excluded and the other status should appear instead.

Resolution Policy (RP) interactions: among two conflicting status, the selection of
the one to be excluded needs to conform to a specified policy. The latter is based on
the following two types of order relations denoted SOR and DOR:

Status order relations (SOR): A SOR is an order relation between status. Let us
consider two status S1 and S2 and a SOR sor. If S1 sor S2, then the policy based on
sor consists in excluding S2. “is more precise than” is an example of SOR. For
example, Away is more precise than Not-available. For our eight presence status
identified by 1, 2, …, 8, the SOR “is more precise than” implies the following pairs
(2,5), (3,5), (7,2), (8,2), (4,3), where (i,j) means “i is more precise than j”.

Device order relations (DOR): A DOR is an order relation between devices. Let us
consider two devices D1 and D2 and a DOR dor. If D1 dor D2, then the policy based
on dor consists in excluding the status published by D2. “is more trustworthy than” is
an example of DOR, which can be used by assigning trustworthiness weights to
devices. For example, the user can decide to assign more trustworthiness to cell phone
than to office phone.

3.2 PI Resolution Procedure

PI resolution policies are specified by the SOHO administrator and the end users. We
suppose the ITSP provides the suitable interface for the SOHO administrator as well
the users in order to specify those policies. The ITSP presence resolution solution is
contained in a PIMA (Presence Interaction Management Agent) and is based on the
use or SOR and DOR. We consider that for every user, we may have a set of SORs
{sor1, …, sorn} which are ordered by priority, that is, sori has priority over sori+1. We
also may have a set of DORs {dor1, …, dorn} where dori has priority over dori+1. We
also assume that priorities may be defined between some pairs (sori, dorj).

Some order relations correspond to policies specified by the SOHO administrator
and will therefore be called admin-based order relations. Other order relations
correspond to policies specified by the users (presentities) themselves and will
therefore be called user-based order relations. For example, the SOR “is more precise
than” should be specified by the SOHO administrator, while the DOR “is more
trustworthy than” should be specified by the users.

Given two status S1 and S2 published by devices D1 and D2, respectively, PIMA
solves the interaction S1-S2 by applying the following resolution procedure:

96 Z. Chentouf and A. Khoumsi

Step 1: Comparison using SOR, assuming that each sori has priority over sori+1
Check if S1 and S2 are comparable using sor1, i.e., “S1 sor1 S2” or “S2 sor1 S1”.
If this is the case, the best status wrt sor1 is the solution of Step 1.
If this is not the case, check if S1 and S2 are comparable by sor2. And so on, we
iterate until either we reach a sori that permits to compare S1 and S2, or we reach
sorn without being able to compare S1 and S2. In the latter case, we say that S1
and S2 are SOR-incomparable. In the former case, the best status wrt sori is the
solution of Step 1.

Step 2: Comparison using DOR, assuming that each dori has priority over dori+1
We proceed iteratively as in Step 1, but by comparing devices instead of status. If
no dori permits to compare D1 and D2, we say that D1 and D2 are DOR-
incomparable. Otherwise, Step 2 provides a solution Dv (v = 1, 2).

Step 3: we have the following six situations:
3.a: Neither Step 1 nor Step 2 provides a solution. In this case, the resolution

procedure provides no solution.
3.b: Step 1 provides a status Su as a solution and Step 2 provides no solution.
 Su is the adopted solution.
3.c: Step 2 provides a device Dv as a solution and Step 1 provides no solution.
 The status published by Dv is the adopted solution.
3.d: Steps 1 and 2 provide compatible solutions, that is, the solution of Step 1 is

the status published by the device which is the solution of Step 2.
 This status is the adopted solution.
3.e: Step 1 and 2 provide incompatible (or contradictory) solutions, that is, the

solution of Step 1 is different from the status published by the device which is
the solution of Step 2. In this case, let sori and dorj be the two order relations
providing the solutions of Steps 1 and 2, respectively. Recall that a priority
may have been defined between sori and dorj.

3.e.1: if such a priority has effectively been defined: we select the solution
provided by the order relation that has priority over the other.

3.e.2: otherwise: the resolution procedure provides no solution.

4 Multi-agents Architecture for Managing PI

We propose a multi-agent architecture solution to manage the problem of PI. The
agents are called FIMA (Feature Interaction Management Agent) because the
proposed solution is aimed to be integrated with a method for managing feature
interactions (FI) proposed in [7]. Two types of FIMA are used: several UFIMA (User
FIMA) and one NFIMA (Network FIMA) (Fig. 2). A UFIMA is assigned to each
device and the NFIMA contains the PIMA and is assigned to the ITSP.

A user has a single interface to manage presence preferences. This interface may
be managed by any UFIMA that is located on any device owned by the user. At any
time, the user can access the interface in order to set his presence preferences. Those
preferences are used to specify the so-called user-based order relations, that is, order
relations corresponding to policies specified by the users (presentities). For simplicity,
in the following we consider we have a single user-based relation, namely the DOR
“is more trustworthy than”. The user presence preferences should contain the

 Presence Interaction Management in SIP SOHO Architecture 97

trustworthiness weighting of all the devices. UFIMA uses the SIP REGISTER
message to communicate the weighting information to PIMA (contained in NFIMA),
coded in PIML (Figure 2). The general purpose of PIML is to express formally the
relevant information for managing PI.

We suppose the registrar server (the server that is responsible of processing
REGISTER) located in the same node as the presence server. Otherwise, the registrar
has to communicate the received PIML models to the presence server in a suitable
manner. Based on this trustworthiness information (coded in PIML) provided by
UFIMA, PIMA constructs the DOR “is more trustworthy than” that will be used when
executing the resolution procedure for that user.

In the same way, the SOHO administrator has an interface to transmit to PIMA
(using REGISTER) necessary information (coded in PIML) for the construction of
admin-based order relations, that is, order relations corresponding to policies
specified by the SOHO administrator. The SOHO administration interface is managed
by any UFIMA that runs on any device owned by the SOHO administrator. For
simplicity, in the following we consider we have a single admin-based relation,
namely the SOR “is more precise than”.

Fig. 2. FIMA-SOHO architecture

5 Presence Interaction Management Language (PIML)

Example of PIMLcode using a SOR

1. Owner
2. caller = soho_admin@company.com
3. SOR: MorePrecise
4. AWAY, NOTAVAILABLE
5. BUSY, NOTAVAILABLE

98 Z. Chentouf and A. Khoumsi

6. VACATION, AWAY
7. LUNCH, AWAY
8. MEETING, BUSY

Lines 1-2 indicates that soho_admin@company.com is a SIP address that is bound to
the SOHO administrator currently used device.

Line 3: indicates that the following lines define a SOR called MorePrecise.
Lines 4-8: each line S1,S2 means that S1 is more precise than S2.

Example PIML code using a DOR

1. Owner
2. caller = user_21@company.com
3. DOR: MoreTrustworthy
4. user_21@company.com, beloxi@company.com
5. beloxi@company.com, manager@company.com

Line 3: indicates that the following lines define a DOR called MoreTrustworthy.
Lines 4-5: each line D1,D2 means that D1 is more trustworthy than S2.

6 Conclusion

In this article, we proposed a solution to the presence interaction (PI) problem that
arises when two or more devices owned by the same user publish contradictory
presence status. For future work, we plan to study PI involving more than two status
and to consider other types of relations. We also plan to consider status that can be
combined, instead of selecting a single status.

References

1. Day, M., Aggarwal, S., Mohr, G., Vincent, J.: Instant Messaging/Presence Protocol
Requirements. RFC 2779, IETF, February 2000.

2. Niemi, A.: Session Initiation Protocol (SIP) Extension for Event State Publication. RFC
3903, IETF, October 2004.

3. Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., Peterson, J.: Presence
Information Data Format (PIDF). RFC 3863, IETF, August 2004.

4. Schulzrinne, H.: RPID: Rich Presence Extensions to the Presence Information Data Format
(PIDF). draft-ietf-simple-rpid-10 (work in progress), December 2005.

5. http://www.dialexia.com/pub/products/dial_office.jsp Accessed on April 2006.
6. http://messenger.msn.com Accessed on April 2006.
7. Z. Chentouf, S. Cherkaoui, A. Khoumsi, “Service interaction management in SIP user

device using Feature Interaction Management Language”, NOTERE, June 2004, Saïdia,
Morocco.

Formal Analysis of
Dynamic, Distributed File-System Access Controls

Avik Chaudhuri1 and Martı́n Abadi1,2

1 Computer Science Department, University of California, Santa Cruz
2 Microsoft Research, Silicon Valley

Abstract. We model networked storage systems with distributed, cryptographi-
cally enforced file-access control in an applied pi calculus. The calculus contains
cryptographic primitives and supports file-system constructs, including access re-
vocation. We establish that the networked storage systems implement simpler,
centralized storage specifications with local access-control checks. More specif-
ically, we prove that the former systems preserve safety properties of the latter
systems. Focusing on security, we then derive strong secrecy and integrity guar-
antees for the networked storage systems.

1 Introduction

Storage systems are typically governed by access-control policies, and the security
of those systems depends on the sound enforcement of the necessary access-control
checks. Unfortunately, both the policies and their enforcement can be surprisingly prob-
lematic, for several reasons. In particular, the policies may be allowed to change over
time, often via interactions with the file-system environment; it is then crucial to prevent
unauthorized access-control administration, and to guarantee that authorized access-
control administration has correct, prompt effects. Another source of substantial diffi-
culties is distribution. In networked, distributed storage systems, file access is often not
directly guarded by access-control checks. Instead, file access is guarded by the inspec-
tion of capabilities; these capabilities certify that the relevant access-control checks
have been done elsewhere in the past. Yet other difficulties result from the scale and
complexity of systems, which present a challenge to consistent administration.

In this paper, we aim to simplify security analyses for storage systems. Specifically,
we model network-attached storage (NAS) systems [7,15,11]. We prove that NAS sys-
tems are as safe (from the point of view of passing tests [14]) as corresponding central-
ized storage systems with local access-control enforcement. In other words, reasoning
about the safety of the centralized storage systems can be applied for free to the sig-
nificantly more complicated NAS systems. As important special cases, we derive the
preservation of secrecy and integrity guarantees.

The systems that we study include distributed file-system management across a num-
ber of access-control servers and disks on the network; they also include dynamic ad-
ministration of access control. At the same time, we avoid commitments to certain spe-
cific choices that particular implementations might make—on file-operation and policy-
administration commands, algorithms for file allocation over multi-disk arrays, various
scheduling algorithms—so that our results remain simple and apply broadly. We de-
scribe those systems and analyze their security properties in an applied pi calculus [3].

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 99–114, 2006.
c© IFIP International Federation for Information Processing 2006

100 A. Chaudhuri and M. Abadi

This calculus includes cryptographic primitives and supports file-system constructs. It
also enables us to incorporate a basic but sufficient model of time, as needed for dy-
namic administration.

Background and Related Work. Various cryptographic implementations of distributed
access control have been proposed as part of the security designs of NAS protocols
[6,8,7,15,11,17]. However, the security analyses of these implementations have been
at best semi-formal. Some exceptions are the work of Mazières and Shasha on data
integrity for untrusted remote storage [10], and Gobioff’s security analysis of a NAS
protocol using belief logics [7].

In a recent paper [5], we consider a restricted class of NAS systems, with fixed
access-control policies and a single network-attached disk interface. We show that those
systems are fully abstract with respect to centralized file systems. Full abstraction [12]
is a powerful criterion for the security of implementations [1]: it prohibits any leakage
of information. It is also fairly fragile, and can be broken by many reasonable imple-
mentations in practice. In particular, capability revocation and expiry (more broadly,
dynamic administration, as we study it here) give rise to counterexamples to full ab-
straction that appear impossible to avoid in any reasonable implementation of NAS. We
discuss these issues in detail in Section 5. In sum, the systems that we study in this pa-
per are considerably more general and complex than those we consider in our previous
work, so much so that we cannot directly extend our previous full-abstraction result.
Fortunately, however, we can still obtain strong secrecy and integrity guarantees while
retaining the simplicity of our specifications.

We employ a variation of may-tests to observe the behaviour of systems. Proofs
based on may-testing for safety and security properties have also been studied else-
where (e.g., [14,4]). Our treatment of secrecy is also fairly standard (e.g., [4]). On the
other hand, our treatment of integrity properties is not. We formalize integrity properties
via “warnings”. Warnings signal violations that can be detected by monitoring system
execution. In this way, our approach to integrity is related to enforceable mechanisms
for security policies [16]. Warnings can also indicate the failure of correspondences be-
tween events, and hence may be used to verify correspondence assertions (e.g., [9]). On
the other hand, it does not seem convenient to use standard correspondence assertions
directly in implementation proofs such as ours.

Outline of the Paper. In the next section we give an overview of the applied pi calculus
that serves as our modeling language. In Section 3, we present a simple storage specifi-
cation based on a centralized file system with local access-control checks. In Section 4,
we show a NAS implementation that features distributed file-system management and
cryptographic access-control enforcement. Then, in Section 5, we extract specifications
from NAS systems, state our main theorem (safety preservation), and derive some im-
portant security consequences. We conclude in Section 6.

2 The Applied pi Calculus

We use a polyadic, synchronous, applied pi calculus [13,3] as the underlying language
to describe and reason about processes. The syntax is standard. We use the notation ϕ̃
to mean a sequence ϕ1, . . . , ϕk, where the length k of the sequence is given by |ϕ̃|.

Formal Analysis of Dynamic, Distributed File-System Access Controls 101

M, N ::= terms
m, n, . . . name
x, y, . . . variable
f(M̃) function application

The language of terms contains an infinite set of names and an infinite set of variables;
further, terms can be built from smaller ones by applying function symbols. Names can
be channel names, key names, and so on. Function symbols are drawn from a finite
ranked set F , called the signature. This signature is equipped with an equational theory.
Informally, the theory provides a set of equations over terms, and we say that F " M =
N for terms M and N if and only if M = N can be derived from those equations.

For our purposes, we assume symbols for shared-key encryption {·}· and message
authentication mac(·, ·), and list the only equations that involve these symbols below.
The first equation allows decryption of an encrypted message with the correct key; the
second allows extraction of a message from a message authentication code.

decrypt({x}y, y) = x message(mac(x, y)) = x

We also assume some standard data structures, such as tuples, numerals, and queues,
with corresponding functions, such as projection functions proj�. Several function
symbols are introduced in Sections 3 and 4. Next we show the language of processes.

P, Q ::= processes
M〈Ñ〉. P output
M(x̃). P input
P |Q composition
(νn) P restriction
0 nil
!P replication
if M = N then P else Q conditional

Processes have the following informal semantics.

– The nil process 0 does nothing.
– The composition process P |Q behaves as the processes P and Q in parallel.
– The input process M(x̃). P can receive any sequence of terms Ñ on M , where
|Ñ | = |x̃|, then execute P{Ñ/x̃}. The variables x̃ are bound in P in M(x̃).P . The
notation {M̃/x̃} represents the capture-free substitution of terms M̃ for variables x̃.
The input blocks if M is not a name at runtime.

– The synchronous output process M〈Ñ〉.P can send the sequence of terms Ñ on M ,
then execute P . The output blocks if M is not a name at runtime; otherwise, it waits
for a synchronizing input on M .

– The replication process !P behaves as an infinite number of copies of P running in
parallel.

– The restriction process (νn) P creates a new name n bound in P , then executes P .
This construct is used to create fresh, unguessable secrets in the language.

– The conditional process if M = N then P else Q behaves as P if F " M = N ,
and as Q otherwise.

102 A. Chaudhuri and M. Abadi

We elide F " in the sequel. The notions of free variables and names (fv and fn) are
as usual; so are various abbreviations (e.g., Π and Σ for indexed parallel composition
and internal choice, respectively). We call terms or processes closed if they do not
contain any free variables. We use a commitment semantics for closed processes [13,4].
Informally, a commitment reflects the ability to do some action, which may be output
(n), input (n), or silent (τ). More concretely,

– P
n−→ (νm̃) 〈M̃〉. Q means that P can output on name n the terms M̃ that contain

fresh names m̃, and continue as Q.
– P

n−→ (x̃).Q means that P can input terms on n, bind them to x̃ in Q, and continue
as Q instantiated.

– P
τ−→ Q means that P can silently transition to Q.

3 Specifying a Simple Centralized File System

In this section, we model a simple centralized file system. The model serves as a spec-
ification for the significantly more complex distributed file-system implementation of
Section 4. We begin with a summary of the main features of the model.

– The file system serves a number of clients who can remotely send their requests
over distinguished channels. The requests may be for file operations, or for admin-
istrative operations that modify file-operation permissions of other clients.

– Each request is subject to local access-control checks that decide whether the re-
quested operation is permitted. A request that passes these checks is then processed
in parallel with other pending requests.

– Any requested modification to existing file-operation permissions takes effect only
after a deterministic, finite delay. The delay is used to specify accurate correctness
conditions for the expiry-based, distributed access-control mechanism of Section 4.

We present a high-level view of this “ideal” file system, called IFS, by means of a
grammar of control states (see below). IFS can be coded as a process (in the syntax of
the previous section), preserving its exact observable semantics. An IFS control state
consists of the following components:

– a pool of threads, where each thread reflects a particular stage in the processing of
some pending request to the file system;

– an access-control policy, tagged with a schedule for pending policy updates;
– a storage state (or “disk”); and
– a clock, as required for scheduling modifications to the access-control policy.

IFS-Th ::= file-system thread
Reqk(op, n) file-operation request
App(op, n) approved file operation
Ret(n, r) return after file operation
PReqk(adm , n) administration request

Δ ::= thread pool
∅ empty

Formal Analysis of Dynamic, Distributed File-System Access Controls 103

IFS-Th, Δ thread in pool
IFS-Control ::= file-system control state

Δ : RH : ρ : Clk threads: tagged access policy : disk state : clock

The threads are of four sorts, explained below: Reqk(op, n), App(op, n), Ret(n, r),
and PReqk(adm , n). The clock Clk is a monotonically increasing integer. The storage
state ρ reflects the state maintained at the disk (typically file contents; details are left
abstract in the model). The access-control policyR decides which subjects may execute
operations on the storage state, and which administrators may make modifications to
the policy itself. The schedule H contains a queue of pending modifications to the
policy, with each modification associated with a clock that says when that modification
is due.

LetK be a set of indices that cover both the subjects and the administrators of access
control. We assume distinguished sets of channel names {βk |k ∈ K} and {αk |k ∈ K}
on which the file system receives requests for file operations and policy modifications,
respectively. A file-operation request consists of a term op that describes the operation
(typically, a command with arguments, some of which may be file names) and a channel
n for the result. When such a request arrives on βk, the file system spawns a new thread
of the form Reqk(op, n). The access-control policy then decides whether k has permis-
sion to execute op on the storage state. If not, the thread dies; otherwise, the thread
changes state to App(op, n). The request is then forwarded to the disk, which executes
the operation and updates the storage state, obtaining a result r. The thread changes
state to Ret(n, r). Later, r is returned on n, and the thread terminates successfully.

A policy-modification request consists of a term adm that describes the modification
to the policy and a channel n for the acknowledgment. When such a request arrives on
αk, the file system spawns a thread of the form PReqk(adm , n). Then, if the policy
does not allow k to do adm , the thread dies; otherwise, the modification is queued
to the schedule and an acknowledgment is returned on n, and the thread terminates
successfully. At each clock tick, policy modifications that are due in the schedule take
effect, and the policy and the schedule are updated accordingly.

Operationally, we assume functions may, execute, schedule, and update that satisfy
the following equations. (We leave abstract the details of the equational theory.)

– may(k, op,R) = yes (resp. may(k, adm ,R) = yes) if the policy R allows
k to execute file operation op (resp. make policy modification adm), and = no
otherwise.

– execute(op, ρ) = 〈ρ′, r〉, where ρ′ and r are the storage state and the result, re-
spectively, obtained after executing file operation op on storage state ρ.

– schedule(adm ,H, Clk) = H′, where H′ is the schedule after queuing an entry
of the form adm@Clk′ (with Clk′ ≥ Clk) to schedule H. The clock Clk′, deter-
mined by adm , H, and Clk, indicates the instant at which adm is due in the new
schedule.

– update(RH, Clk) = R′H′
, where R′ is the policy after making modifications to

policyR that are due at clock Clk in scheduleH, andH′ is the schedule left.

Further, we assume a function lifespan such that lifespan(k, op,H, Clk) ≥ 0 for
all k, op, H, and Clk. Informally, if lifespan(k, op,H, Clk) = λ and the file

104 A. Chaudhuri and M. Abadi

(Op Req)

Δ : RH : ρ : Clk
βk−→

(x, y). Reqk(x, y), Δ : RH : ρ : Clk

(Op Deny)
may(k, op,R) = no

Reqk(op, n), Δ : RH : ρ : Clk τ
−→ Δ : RH : ρ : Clk

(Op Ok)
may(k, op,R) = yes

Reqk(op, n), Δ : RH : ρ : Clk τ
−→

App(op, n), Δ : RH : ρ : Clk

(Op Exec)
execute(op, ρ) = 〈ρ′, r〉

App(op, n), Δ : RH : ρ : Clk τ
−→

Ret(n, r), Δ : RH : ρ′ : Clk

(Op Res Ret)

Ret(n, r),Δ : RH : ρ : Clk n
−→

〈r〉. Δ : RH : ρ : Clk

(Adm Req)

Δ : RH : ρ : Clk
αk−→

(x, y). PReqk(x, y), Δ : RH : ρ : Clk

(Adm Deny)
may(k, adm ,R) = no

PReqk(adm, n), Δ : RH : ρ : Clk τ
−→

Δ : RH : ρ : Clk

(Adm Ok Ack)
may(k, adm,R) = yes

schedule(adm,H, Clk) = H′

PReqk(adm, n), Δ : RH : ρ : Clk n
−→

〈〉. Δ : RH
′

: ρ : Clk
(Tick)

update(RH, Clk) = R′H
′

Δ : RH : ρ : Clk τ
−→ Δ : R′H

′

: ρ : Clk + 1

Fig. 1. Semantics of a file system with local access control

operation op is allowed to k at Clk, then op cannot be denied to k before Clk + λ. For-
mally, we extend schedule to sequences by letting schedule(∅,H, Clk) = H and
schedule(adm ′ãdm ,H, Clk) = schedule(ãdm , schedule(adm ′,H, Clk), Clk); we
require that if lifespan(k, op,H, Clk) = λ then there do not exist (possibly empty) se-
quences of policy-modification commands ãdmClk, ãdmClk+1, . . . , ãdmClk+λ and pol-
icyRClk such that the following hold at once:

– may(k, op,RClk) = yes
– HClk = H
– ĤClk′ = schedule(ãdmClk′ ,HClk′ , Clk′) for each Clk′ ∈ Clk . . . Clk + λ

– RHClk′+1
Clk′+1 = update(RHClk′

Clk′ , Clk′) for each Clk′ ∈ Clk . . . Clk + λ− 1
– may(k, op,RClk+λ) = no

For instance, lifespan(k, op,H, Clk) can return a constant delay λc for all k, op, H,
and Clk, and schedule(adm ,H, Clk) can return [H; adm@Clk+λc] for all adm . When
λc = 0, any requested modification to the policy takes effect at the next clock tick.

The formal semantics of the file system is shown as a commitment relation in Fig-
ure 1. The relation describes how the file system spawns threads, how threads evolve,
how access control is enforced and administered, how file operations are serviced, and
how time goes by, in terms of standard pi-calculus actions.

We assume a set of clients {Ck | k ∈ K} that interact with the file system. We
provide macros to request file operations and policy modifications; clients may use
these macros, or explicitly send appropriate messages to the file system on the channels
{αk, βk | k ∈ K}.

Formal Analysis of Dynamic, Distributed File-System Access Controls 105

Definition 1 (Macros for IFS clients).

File operation on port k: A file operation may be requested with the macro
fileopk op/x; P , which expands to (νn) βk〈op, n〉. n(x). P , where n /∈ fn(P).

Administration on port k: A policy modification may be requested with the macro
admink adm ; P , which expands to (νn) αk〈adm , n〉. n(). P , where n /∈ fn(P).

We select a subset of clients whom we call honest; these clients may be arbitrary
processes, as long as they use macros on their own ports for all interactions with the
file system. Further, as a consequence of Definitions 2 and 3 (see below), no other
client may send a request to the file system on the port of an honest client.

Definition 2. A set of honest IFS clients indexed by I ⊆ K is a set of closed processes
{Ci | i ∈ I}, so that each Ci in the set has the following properties:

– all macros in Ci are on port i,
– no name in {αi′ , βi′ | i′ ∈ I} appears free in Ci before expanding macros.

Let J = K \ I. We impose no restrictions on the “dishonest” clients Cj (j ∈ J),
except that they may not know the channels {αi, βi | i ∈ I} initially. In fact, we assume
that dishonest clients are part of an arbitrary environment, and as such, leave their code
unspecified. The restriction on their initial knowledge is expressed by leaving them
outside the initial scope of the channels {αi, βi | i ∈ I}.

Definition 3. An ideal storage system denoted by IS(CI ,R, ρ, Clk) is the closed pro-
cess (νi∈I αiβi) (Πi∈ICi |∅ : R∅ : ρ : Clk), where

– CI = {Ci | i ∈ I} is a set of honest IFS clients indexed by I,
– ∅ : R∅ : ρ : Clk is an initial IFS control state, and {αi, βi | i ∈ I}∩fn(R, ρ) = ∅.

4 An Implementation of Network-Attached Storage

In this section, we model a distributed file system based on network-attached storage
(NAS). A typical network-attached file system is distributed over a set of disks that are
“attached” to the network, and a set of servers (called managers). The disks directly
receive file-operation requests from clients, while the managers maintain file-system
metadata and file-access permissions, and serve administrative requests. In simple tra-
ditional storage designs, access-control checks and metadata lookups are done for every
request to the file system. In NAS, that per-request overhead is amortized, resulting in
significant performance gains. Specifically, a client who wishes to request a file op-
eration first contacts one of the managers; the manager does the relevant checks and
lookups, and returns a cryptographically signed capability to the client. The capabil-
ity is a certification of access rights for that particular operation, and needs to be ob-
tained only once. The client can then request that operation any number of times at
a disk, attaching to its requests the capability issued by the manager. The disk sim-
ply verifies the capability before servicing each of those requests. NAS implemen-
tations are further optimized by allocating different parts of the file system to dif-
ferent managers and disks. This kind of partitioning distributes load and increases
concurrency.

106 A. Chaudhuri and M. Abadi

Perhaps the most challenging aspect of NAS’s access-control mechanism, and indeed
of distributed access controls in general, is the sound enforcement of access revocation.
In particular, whenever some permissions are revoked, all previous capabilities that
certify those permissions must be invalidated. On the other hand, when issuing a capa-
bility, it is impossible to predict when a permission certified by that capability might be
revoked in the future. It is possible, in theory, to simulate immediate revocation by com-
municating with the disks: the disks then maintain a record of revoked permissions and
reject all capabilities that certify those permissions. However, this “solution” reduces
the performance and distribution benefits of NAS.

A sound, practical solution exists if we allow a deterministic finite delay in revoca-
tion. Informally, a capability is marked with an unforgeable timestamp that declares its
expiry, beyond which it is always rejected—and any revocation of the permissions cer-
tified by that capability takes effect only after the declared expiry. By letting the expiry
depend on various parameters, this solution turns out to be quite flexible and effective.

Following the design above, we model a fairly standard network-attached file system,
called NAFS. Much as in Section 3, we present the file system using a grammar of
control states and a semantics of commitments. A NAFS control state consists of the
following components:

– a pool of threads distributed between the managers and the disks;
– the local access-control policy and modification schedule at each manager;
– the local storage state at each disk; and
– a global clock shared between the managers and the disks.

NAFS-Th-Servera ::= thread at ath manager
AReqa.k(op, c) capability request
PReqa.k(adm , n) administration request

NAFS-Th-Diskb ::= thread at bth disk
Reqb(κ, n) authorized file-operation request
Appb(op, n) approved file operation
Ret(n, r) return after file operation

Δ̈ ::= distributed thread pool
∅ empty
NAFS-Th-Servera, Δ̈ ath-manager thread in pool
NAFS-Th-Diskb, Δ̈ bth-disk thread in pool

NAFS-Control ::= distributed file-system control state

Δ̈ : R̃H : ρ̃ : Clk threads: tagged policies: disk states : clock

Let A (resp. B) index the set of managers (resp. disks) used by the file system. For
each a ∈ A, we assume a distinguished set of names {αa.k | k ∈ K} on which the
ath manager receives requests for policy modifications. A request on αa.k is internally
forwarded to the manager a′ allocated to serve that request, thereby spawning a thread
of the form PReqa′.k(adm , n). This thread is then processed in much the same way
as PReqk(adm , n) in Section 3. At each tick of the shared clock, due modifications to
each of the local policies at the managers take effect.

Next, we elaborate on the authorization and execution of file operations. For each
a ∈ A and b ∈ B, we assume distinguished sets of names {α◦

a.k | k ∈ K} and

Formal Analysis of Dynamic, Distributed File-System Access Controls 107

{βb.k | k ∈ K} on which the ath manager and the bth disk receive requests for autho-
rization and execution of file operations, respectively. An authorization request consists
of a term op that describes the file operation and a channel c to receive a capability for
that operation. Such a request on α◦

a.k is internally forwarded to the manager a′ allo-
cated to serve that request, thereby spawning a thread of the form AReqa′.k(op, c). If
the access-control policy at a′ does not allow k to do op, the thread dies; otherwise,
a capability κ is returned on c, and the thread terminates successfully. The capability,
a term of the form mac(〈op, T, b〉, Kb), is a message authentication code whose mes-
sage contains op, an encrypted timestamp T , and the disk b responsible for executing
op. The timestamp T , of the form {〈m, Clk〉}Kb

, indicates the expiry Clk of κ, and ad-
ditionally contains a unique nonce m. (The only purpose of the nonce is to make the
timestamp unique.) A secret key Kb shared between the disk b and the manager is used
to encrypt the timestamp and sign the capability. (In concrete implementations, differ-
ent parts of the key may be used for encryption and signing.) The rationale behind the
design of the capability is discussed in Section 5. Intuitively, the capability is unforge-
able, and verifiable by the disk b; and the timestamp carried by the capability is unique,
and unintelligible to any other than the disk b.

An execution request consists of a capability κ and a return channel n. On receiv-
ing such a request on βb.k, the disk b spawns a thread of the form Reqb(κ, n). It then
extracts the claimed operation op from κ (if possible), checks that κ is signed with the
key Kb (thereby verifying the integrity of κ), and checks that the timestamp decrypts
under Kb to a clock no earlier than the current clock (thereby verifying that κ has not
expired). If these checks fail, the thread dies; otherwise, the thread changes state to
Appb(op, n). This thread is then processed in much the same way as App(op, n) in
Section 3.

Operationally, we assume a function manager (resp. disk) that allocates file op-
erations and policy modifications to managers (resp. file operations to disks). We also
assume functions maya, executeb, schedulea, and updatea for each a ∈ A and
b ∈ B, with the same specifications as their analogues in Section 3. Further, we assume
a function expirya for each a ∈ A with the following property (cf. the function lifes-
pan, Section 3): if expirya(k, op,H, Clk) = Clke, then Clke ≥ Clk and there do not
exist sequences of policy-modification commands ãdmClk, ãdmClk+1, . . . , ãdmClke

and
policyRClk such that the following hold at once:

– manager(ãdmClk′) = a for each Clk′ ∈ Clk . . . Clke

– maya(k, op,RClk) = yes
– HClk = H
– ĤClk′ = schedulea(ãdmClk′ ,HClk′ , Clk′) for each Clk′ ∈ Clk . . .Clke

– RHClk′+1

Clk′+1 = updatea(RHClk′
Clk′ , Clk′) for each Clk′ ∈ Clk . . . Clke − 1

– maya(k, op,RClke
) = no

In Section 5, we show how the functions expirya and lifespan are related: informally,
the lifespan of a permission can be defined as the duration between the current clock
and the expiry of any capability for that permission.

The formal semantics of NAFS is shown in Figure 2. Next we provide macros for
requesting file-operation capabilities and policy modifications at a manager, and autho-
rized file operations at appropriate disks.

108 A. Chaudhuri and M. Abadi

At the ath manager:

(Auth Req)

Δ̈ : gRH : eρ : Clk
α◦

a.k−→

(op, c). AReqa.k(op, c), Δ̈ : gRH : eρ : Clk

(Auth Deny)
manager(op) = a maya(k, op,Ra) = no

AReqa.k(op, c), Δ̈ : gRH : eρ : Clk τ
−→

Δ̈ : gRH : eρ : Clk
(Auth Ok Cap)

manager(op) = a maya(k, op,Ra) = yes disk(op) = b
{〈m, expirya(k, op,Ha, Clk)〉}Kb

= T for fresh m mac(〈op, T, b〉, Kb) = κ

AReqa.k(op, c), Δ̈ : gRH : eρ : Clk c
−→ (νm) 〈κ〉. Δ̈ : gRH : eρ : Clk

(Adm Req)

Δ̈ : gRH : eρ : Clk
αa.k−→

(adm, n). PReqa.k(adm, n), Δ̈ : gRH : eρ : Clk

(Adm Deny)
manager(adm) = a maya(k, adm,Ra) = no

PReqa.k(adm, n), Δ̈ : gRH : eρ : Clk τ
−→

Δ̈ : gRH : eρ : Clk
(Adm Ok Ack)

manager(adm) = a maya(k, adm,Ra) = yes
schedulea(adm,Ha, Clk) = H′

a ∀a′ �= a : H′

a′ = Ha′

PReqa.k(adm, n), Δ̈ : gRH : eρ : Clk n
−→ 〈〉. Δ̈ : gRH′ : eρ : Clk

Across managers:

(Auth Fwd)
manager(op) = a′ �= a

AReqa.k(op, c), Δ̈ : gRH : eρ : Clk τ
−→

AReqa′.k(op, c), Δ̈ : gRH : eρ : Clk

(Adm Fwd)
manager(adm) = a′ �= a

PReqa.k(adm, n), Δ̈ : gRH : eρ : Clk τ
−→

PReqa′.k(adm, n), Δ̈ : gRH : eρ : Clk

(Tick)

∀a : updatea(Ra
Ha , Clk) = R′

a

H
′

a

Δ̈ : gRH : eρ : Clk τ
−→ Δ̈ : R̃′H′ : eρ : Clk + 1

At the bth disk:

(Exec Req)

Δ̈ : gRH : eρ : Clk
βb.k−→

(κ, n). Reqb(κ, n), Δ̈ : gRH : eρ : Clk

(Op Ok)
κ = mac(〈op, T, b〉, Kb)

decrypt(T, Kb) = 〈m, Clk′〉 Clk ≤ Clk′

Reqb(κ, n), Δ̈ : gRH : eρ : Clk τ
−→ Appb(op, n), Δ̈ : gRH : eρ : Clk

(Exec Deny)
� ∃op, T, m,Clk′ s.t. mac(〈op, T, b〉, Kb) = κ,decrypt(T, Kb) = 〈m, Clk′〉, and Clk ≤ Clk′

Reqb(κ, n), Δ̈ : gRH : eρ : Clk τ
−→ Δ̈ : gRH : eρ : Clk

(Op Exec)
executeb(op, ρb) = 〈ρ′

b, r〉 ∀b′ �= b : ρ′

b′ = ρb′

Appb(op, n), Δ̈ : gRH : eρ : Clk τ
−→ Ret(n, r), Δ̈ : gRH : eρ′ : Clk

(Op Res Ret)

Ret(n, r), Δ̈ : gRH : eρ : Clk n
−→

〈r〉. Δ̈ : gRH : eρ : Clk

Fig. 2. Semantics of a network-attached file system with distributed access control

Formal Analysis of Dynamic, Distributed File-System Access Controls 109

Definition 4 (Macros for NAFS clients).

Authorization on port k: Authorization may be requested with authk x for op; P ,
which expands to (νc) α◦

a.k〈op, c〉. c(x). P , for some a ∈ A, and c /∈ fn(P).
The variable x gets bound to a capability at runtime.

File operation using κ on port k: An authorized file operation may be requested with
fileopauthk κ/x; P , which expands to (νn) βb.k〈κ, n〉. n(x). P , where n /∈ fn(P),
proj3(message(κ)) = b, and b ∈ B. (Recall that for a capability κ that autho-
rizes op, the third component of message(κ) is the disk responsible for op.)

Administration on port k: Administration may be requested with admink adm ; P ,
which expands to (νn) αa.k〈adm , n〉. n(). P , for some a ∈ A, and n /∈ fn(P).

As in Section 3, we select a subset of clients whom we call honest; these can be any
processes with certain static restrictions on their interactions with the file system. In
particular, an honest client uses macros only on its own port for sending requests to
the file system; each file-operation request is preceded by a capability request for that
operation; a capability that is obtained for a file operation is used only in succeeding ex-
ecution requests for that operation; and finally, as a consequence of Definitions 5 and 6,
no other client may send a request to the file system on the port of an honest client.

Definition 5. A set of honest NAFS clients indexed by I ⊆ K is a set of closed processes
{C̈i | i ∈ I}, so that each C̈i in the set has the following properties:

– all macros in C̈i are on port i,
– no name in {α◦

a.i′ , αa.i′ , βb.i′ | i′ ∈ I, a ∈ A, b ∈ B} appears free in C̈i before
expanding macros,

– for each subprocess in C̈i that is of the form authi κ for op; P , the only uses of κ
in P are in subprocesses of the form fileopauthi κ/x; Q,

– every subprocess Q in C̈i that is of the form fileopauthi κ/x; Q is contained in some
subprocess authi κ for op; P , such that no subprocess of P that strictly contains Q
binds κ.

Dishonest clients C̈j (j ∈ J) are, as in Section 3, left unspecified. They form part of
an arbitrary environment that does not have the names {Kb, α

◦
a.i, αa.i, βb.i | i ∈ I, a ∈

A, b ∈ B} initially.

Definition 6. A NAS system denoted by NAS(C̈I , R̃, ρ̃, Clk) is the closed process

(νi∈I,a∈A,b∈B α◦
a.iαa.iβb.i) (Πi∈IC̈i | (νb∈B Kb) (∅ : R̃∅ : ρ̃ : Clk)), where

– C̈I = {C̈i | i ∈ I} is a set of honest NAFS clients indexed by I,
– ∅ : R̃∅ : ρ̃ : Clk is an initial NAFS control state, and {Kb, α

◦
a.i, αa.i, βb.i | i ∈

I, a ∈ A, b ∈ B} ∩ fn(R̃, ρ̃) = ∅.

5 Safety and Other Guarantees for Network-Attached Storage

We now establish that IFS is a sound and adequate abstraction for NAFS. Specifically,
we show that network-attached storage systems safely implement their specifications as
ideal storage systems; we then derive consequences important for security.

110 A. Chaudhuri and M. Abadi

IFS functions derived from NAFS functions:

manager(op) = a

may(k, op, eR) = maya(k, op,Ra)

manager(adm) = a

may(k, adm, eR) = maya(k, adm,Ra)

disk(op) = b ∀b′ �= b : ρ′

b′ = ρb′

〈ρ′

b, r〉 = executeb(op, ρb)

execute(op, eρ) = 〈eρ′, r〉

manager(adm) = a ∀a′ �= a : H′

a′ = Ha′

H′

a = schedulea(adm,Ha, Clk)

schedule(adm, eH, Clk) = fH′

∀a : R′

a

H
′

a = updatea(Ra
Ha , Clk)

update(eR
eH, Clk) = fR′

fH′

manager(op) = a

lifespan(k, op, eH, Clk) = expirya(k, op,Ha, Clk) − Clk

Honest IFS-client code derived from honest NAFS-client code:

	0
 = 0 	(νn) P
 = (νn) 	P
 	u(ex). P
 = u(ex). 	P
 	u〈fM〉. P
 = u〈fM〉. 	P

	P |Q
 = 	P
 | 	Q
 	!P
 =!	P
 	if M = N thenP elseQ
 = if M = N then	P
else	Q

	admini adm; P
 = admini adm; 	P
 	authi κ for op; P
 = 	P

	fileopauthi κ/r; P
 = fileopi proj1(message(κ))/r; 	P

Fig. 3. Abstraction of NAS systems

In our analyses, we assume that systems interact with arbitrary (potentially hostile)
environments. We refer to such environments as attackers, and model them as arbitrary
closed processes. We study the behaviour of systems via quizzes. Quizzes are similar to
tests, more specifically to may-tests [14], which capture safety properties.

Definition 7. A quiz is of the form (E, c, ñ, M̃), where E is an attacker, c is a name, ñ is
a vector of names, and M̃ is a vector of closed terms, such that ñ ⊆ fn(M̃) \ fn(E, c).

Informally, a quiz provides an attacker that interacts with the system under analysis,
and a goal observation, described by a channel, a set of fresh names, and a message
that contains the fresh names. The system passes the quiz if it is possible to observe the
message on the channel, by letting the system evolve with the attacker. As the following
definition suggests, quizzes make finer distinctions than conventional tests, since they
can specify the observation of messages that contain names generated during execution.

Definition 8. A closed process P passes the quiz (E, c, ñ, M̃) iff E | P
τ−→

� c−→
(νñ) 〈M̃〉. Q for some Q.

Intuitively, we intend to show that a NAS system passes a quiz only if its specification
passes a similar quiz. Given a NAS system, we “extract” its specification by translating
it to an ideal storage system. (The choice of specification is justified by Theorem 2.)

Definition 9. Let NAS(C̈I , R̃, ρ̃, Clk) be a network-attached storage system. Then its
specification is the ideal storage system ΦNAS(
C̈I�, R̃, ρ̃, Clk), with
.� as defined
in Figure 3, and with the IFS functions may, execute, schedule, update, and
lifespan derived from their NAFS counterparts as shown in Figure 3.

Next, we map quizzes designed for NAS systems to quizzes that are “at least as potent”
on their specifications. Informally, the existence of this map implies that NAFS does not

Formal Analysis of Dynamic, Distributed File-System Access Controls 111

“introduce” any new attacks, i.e., any attack that is possible on NAFS is also possible on
IFS. We present the map by showing appropriate translations for attackers and terms.

Definition 10. Let E be an attacker (designed for NAS systems). Then ΦE is the code

E | (νb∈BKb) (Παa.j∈fn(E)!αa.j(adm , n). αj〈adm , n〉
| Πβb.j∈fn(E)!βb.j(κ, n). Σβb.j′∈fn(E)βj′〈proj1(message(κ)), n〉
| Πα◦

a.j∈fn(E)!α◦
a.j(op, c). Σb∈B(νm) c〈mac(〈op, {m}Kb

, b〉, Kb)〉)

Informally, E is composed with a “wrapper” that translates between the interfaces of
NAFS and IFS. Administrative requests on αa.j are forwarded on αj . A file-operation
request on βb.j , with κ as authorization, is first translated by extracting the operation
from κ, and then broadcast on all βj′ . Intuitively, κ may be a live, valid capability
that was issued in response to an earlier authorization request made on some α◦

a.j′ ,
and a request must now be made on βj′ to pass the same access-control checks. (This
pleasant correspondence is partly due to the properties of lifespan.) Finally, authoriza-
tion requests on α◦

a.j are “served” by returning fake capability-like terms. Intuitively,
these terms are indistinguishable from NAFS capabilities under all possible computa-
tions by E. To that end, fake secret keys replace the secret NAFS keys {Kb | b ∈ B}; the
disk b is non-deterministically “guessed” from the finite set B; and an encrypted unique
nonce replaces the NAFS timestamp. Notice that the value of the NAFS clock need not
be guessed to fake the timestamp, since by design, each NAFS timestamp is unique and
unintelligible to E.

We now formalize the translation of terms (generated by NAFS and its clients). As
indicated above, the translation preserves indistinguishability by attackers, which we
show by Proposition 1.

Definition 11. Let m range over names not in {Kb | b ∈ B}, and M range over se-
quences of terms. We define the judgmentM " % by the following rules:

∅ " %
M " %
M, m " %

M " % f is a function symbol M̃ ⊆M
M, f(M̃) " %

M " % {〈m, 〉}Kb
/∈M op ∈ M

M,mac(〈op, {〈m, Clk〉}Kb
, b〉, Kb), {〈m, Clk〉}Kb

" %
We say thatM is valid ifM" %, and define Φ on terms in a valid sequence:

Φm = m Φf(M̃) = f(Φ̃M) Φ{〈m, Clk〉}Kb
= {m}Kb

Φmac(〈op, {〈m, Clk〉}Kb
, b〉, Kb) = mac(〈Φop, {m}Kb

, b〉, Kb)

Proposition 1. Let M, M ′ belong to a valid sequence. Then M = M ′ iff ΦM = ΦM ′

(where = is equational, and not merely structural, equality).

Our main result, which we state next, says that whenever a NAS system passes a quiz,
its specification passes a quiz that is meaningfully related to the former:

Theorem 1 (Implementation soundness). Let NAS be a network-attached storage
system. If NAS passes some quiz (E, c, ñ, M̃), then M̃ belong to a valid sequence,
and ΦNAS passes the quiz (ΦE, c, ñ, Φ̃M).

112 A. Chaudhuri and M. Abadi

The converse of this theorem does not hold, since ΦE can always return a capability-
like term, while NAFS does not if an access check fails. Consequently, full abstraction
breaks. In [5], where the outcome of any access check is fixed, we achieve full ab-
straction by letting the file system return a fake capability whenever an access check
fails. (The wrapper can then naı̈vely translate execution requests, much as in here.)
However, it becomes impossible to translate attackers when dynamic administration is
allowed (even if we let NAFS return fake capabilities for failed access checks). Intu-
itively, ΦE cannot consistently guess the outcome of an access check when translating
file-operation requests at runtime—and for any choice of ΦE given E, this problem can
be exploited to show a counterexample to full abstraction.

Full abstraction can also be broken by honest clients, with the use of expired capabil-
ities. One can imagine more complex client macros that check for expiry before sending
requests. (Such macros require the NAFS clock to be shared with the clients.) Still, the
“late” check by NAFS (after receiving the request) cannot be replaced by any appropri-
ate “early” check (before sending the request) without making additional assumptions
on the scheduling of communication events over the network.

One might of course wonder if the specifications for NAS systems are “too weak”
(thereby passing quizzes by design), so as to make Theorem 1 vacuous. The following
standard completeness result ensures that this is not the case.

Theorem 2 (Specification completeness). Let two systems be distinguishable if there
exists a quiz passed by one but not the other. Then two ideal storage systems IS1 and IS2
are distinguishable only if there are distinguishable network-attached storage systems
NAS1 and NAS2 such that ΦNAS1 = IS1 and ΦNAS2 = IS2.

It follows that every quiz passed by an ideal storage system can be concretized to a quiz
passed by some NAS system with that specification.

Several safety properties can be expressed as quiz failures.Next we show two“safety-
preservation” theorems that follow as corollaries to Theorem 1. The first one concerns
secrecy; the second, integrity. We model the initial knowledge of an attacker with a set
of names, as in [2]; let S range over such sets.

Definition 12. Let S be a set of names. An attacker E is a S-adversary if fn(E) ⊆ S.

We may then express the hypothesis that a system keeps a term secret by claiming that
it fails any quiz whose goal is to observe that term on a channel that is initially known
to the attacker.

Definition 13. A closed process P keeps the closed term M secret from a set of names
S if P does not pass any quiz (E, s, ñ, M) where E is an S-adversary and s ∈ S.

We now derive preservation of secrecy by NAS implementations. For any S modeling
the initial knowledge of a NAS attacker, let ΦS be an upper bound on S, as follows:

ΦS = S ∪ {αj, α
◦
j′ , βj′′ | αa.j , α

◦
a.j′ , βb.j′′ ∈ S, a ∈ A, b ∈ B}

Note that for any S-adversary E, ΦE is a ΦS-adversary. Further, note that the inclusion
of the name αa.j (resp. α◦

a.j′ , βb.j′′) in S suggests that E knows how to impersonate the

NAFS client C̈j for requesting policy modifications (resp. capabilities, file operations);

Formal Analysis of Dynamic, Distributed File-System Access Controls 113

the corresponding inclusion of the name αj (resp. α◦
j′ , βj′′) in ΦS allows the abstract

attacker ΦE to impersonate the IFS client Cj . Thus, the following result says that a
secret that may be learnt from a NAS system may be also be learnt from its specification
with comparable initial knowledge; in other words, a NAS system protects a secret
whenever its specification protects the secret.

Corollary 1 (Secrecy preservation). Let NAS be a network-attached storage system,
S a finite set of names, and M a closed term that belongs to a valid sequence. Then
NAS keeps M secret from S if ΦNAS keeps ΦM secret from ΦS.

Next we derive preservation of integrity by NAS implementations. In fact, we treat
integrity as one of a larger class of safety properties whose violations may be detected
by letting a system adequately monitor itself, and we derive preservation of all such
properties in NAS. For this purpose, we hypothesize a set of monitoring channels that
may be used to communicate warnings between various parts of the system, and to
signal violations on detection; we protect such channels from attackers by construction.
In particular, clients can use monitoring channels to communicate about begin- and
end-events, and to warn whenever an end-event has no corresponding begin-event (thus
indicating the failure of a correspondence assertion [9]).

Definition 14. A name n is purely communicative in a closed process P if any occur-
rence of n in P is in the form n(x̃). Q or n〈M̃〉. Q. Let S be a finite set of names. Then
the set of names W monitors a closed process P under S if W ∩ S = ∅ and each
w ∈W is purely communicative in P .

Any message on a monitoring channel may be viewed as a warning.

Definition 15. Let W monitor P under S. Then S causes P to warn on W if for some
S-adversary E and w ∈W , P passes a quiz of the form (E, w, ñ, M̃).

The following result says that whenever an attack causes a warning in a NAS system,
an attack with comparable initial knowledge causes that warning in its specification.
In other words, since a specification may contain monitoring for integrity violations, a
NAS system protects integrity whenever its specification protects integrity.

Corollary 2 (Integrity preservation). Let W monitor an abstracted network-attached
storage system ΦNAS under ΦS. Then S does not cause NAS to warn on W if ΦS does
not cause ΦNAS to warn on W .

6 Conclusion

In this paper we study networked storage systems with distributed access control. In par-
ticular, we relate those systems to simpler centralized storage systems with local access
control. Viewing the latter systems as specifications of the former ones, we establish
the preservation of safety properties of the specifications in the implementations. We
derive the preservation of standard secrecy and integrity properties as corollaries. We
expect that such results will be helpful in reasoning about the correctness and the secu-
rity of larger systems (which may, for example, include non-trivial clients that rely on

114 A. Chaudhuri and M. Abadi

file storage). In that context, our results imply that we can do proofs using the simpler
centralized storage systems instead of the networked storage systems. In our current
work, we are developing proof techniques that leverage this simplification.

Acknowledgments. We thank Cédric Fournet and Ricardo Corin for helpful com-
ments. This work was partly supported by the National Science Foundation under Grants
CCR-0204162, CCR-0208800, and CCF-0524078, and by Livermore National Labora-
tory, Los Alamos National Laboratory, and Sandia National Laboratory under Contract
B554869.

References

1. M. Abadi. Protection in programming-language translations. In ICALP’98: International
Colloquium on Automata, Languages and Programming, pages 868–883. Springer-Verlag,
1998.

2. M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic pro-
grams. Journal of the ACM, 52(1):102–146, 2005.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
POPL’01: Principles of Programming Languages, pages 104–115. ACM, 2001.

4. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1–70, 1999.

5. A. Chaudhuri and M. Abadi. Formal security analysis of basic network-attached storage. In
FMSE’05: Formal Methods in Security Engineering, pages 43–52. ACM, 2005.

6. G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E. Feinberg, H. G. C. Lee, B. Ozceri,
E. Riedel, and D. Rochberg. A case for network-attached secure disks. Technical Report
CMU–CS-96-142, Carnegie Mellon University, 1996.

7. H. Gobioff. Security for a High Performance Commodity Storage Subsystem. PhD thesis,
Carnegie Mellon University, 1999.

8. H. Gobioff, G. Gibson, and J. Tygar. Security for network-attached storage devices. Techni-
cal Report CMU-CS-97-185, Carnegie Mellon University, 1997.

9. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication proto-
cols. Theoritical Computer Science, 300(1-3):379–409, 2003.

10. D. Mazières and D. Shasha. Building secure file systems out of byzantine storage. In
PODC’02: Principles of Distributed Computing, pages 108–117. ACM, 2002.

11. E. L. Miller, D. D. E. Long, W. E. Freeman, and B. Reed. Strong security for network-
attached storage. In FAST’02: File and Storage Technologies, pages 1–13. USENIX, 2002.

12. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,
4(1):1–22, 1977.

13. R. Milner. The polyadic pi-calculus: a tutorial. In Logic and Algebra of Specification, pages
203–246. Springer-Verlag, 1993.

14. R. D. Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Com-
puter Science, 34(1–2):83–133, 1984.

15. B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E. Long. Authenticating network-attached
storage. IEEE Micro, 20(1):49–57, 2000.

16. F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security, 3(1):30–50, 2000.

17. Y. Zhu and Y. Hu. SNARE: A strong security scheme for network-attached storage. In
SRDS’03: Symposium on Reliable Distributed Systems, pages 250–259. IEEE, 2003.

Analysing the MUTE Anonymous File-Sharing
System Using the Pi-Calculus

Tom Chothia

CWI, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

Abstract. This paper gives details of a formal analysis of the MUTE
system for anonymous file-sharing. We build pi-calculus models of a node
that is innocent of sharing files, a node that is guilty of file-sharing and
of the network environment. We then test to see if an attacker can dis-
tinguish between a connection to a guilty node and a connection to an
innocent node. A weak bi-simulation between every guilty network and
an innocent network would be required to show possible innocence. We
find that such a bi-simulation cannot exist. The point at which the bi-
simulation fails leads directly to a previously undiscovered attack on
MUTE. We describe a fix for the MUTE system that involves using au-
thentication keys as the nodes’ pseudo identities and give details of its
addition to the MUTE system.

1 Introduction

MUTE is one of the most popular anonymous peer-to-peer file-sharing systems.
Peers, or nodes, using MUTE will connect to a small number of other, known
nodes; only the direct neighbours of a node know its IP address. Communication
with remote nodes is provided by sending messages hop-to-hop across this overlay
network. Routing messages in this way allows MUTE to trade efficient routing
for anonymity. There is no way to find the IP address of a remote node, and
direct neighbours can achieve a level of anonymity by claiming that they are just
forwarding requests and files for other nodes. Every node picks a random pseudo
ID that it uses to identify itself. There is a danger that an attacker may be able
to link the pseudo ID and the IP address of it direct neighbours, and thus find
out which files the neighbours are requesting and offering.

We analyse MUTE by building pi-calculus processes that model a node that
is guilty of sharing files, a node that is innocent of sharing files (but does for-
ward messages) and a third pi-calculus process that models the rest of the net-
work. These processes are connected by channels, which can be bound by the
pi-calculus new operator or left free to give the attacker access. We use the pi-
calculus because it is expressive enough to define an accurate model of MUTE,
while still being simple enough to analyse by hand or with automatic tools. There
is also a large body of theoretical and implementational work to support analysis
in the pi-calculus. We do not make an explicit model of the attacker, rather we
aim to show that for every network in which the attacker connects to a guilty
node, there is another network in which the attacker connects to an innocent

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 115–130, 2006.
c© IFIP International Federation for Information Processing 2006

116 T. Chothia

node, and that the two networks are indistinguishable. For this we use weak bi-
simulation, which holds between pi-calculus processes if and only if all observable
inputs and outputs of a system are the same. We show that the environment can
provide “cover” for a guilty node by showing that for every guilty node G and
environment E there is an innocent node I and another environment E′ such
that G | E is weakly bi-similar to I | E′. In general, weak bi-simulation is nec-
essary, but not sufficient, to show anonymity because it says nothing about how
likely the actions of the two processes are. However, once a weak bi-simulation
is shown to hold, we can prove that the guilty nodes have “possible innocence”
[RR98] by showing that, assuming a fair scheduler, the matching actions in the
weak bi-simulation occur with a non-negligible probability.

The contributions of this paper are the formal model of the MUTE system,
the description of an attack on MUTE, found by analysing this model, and a
fix for the attack. We note that this attack was only found while testing the
model, the model was not built with this attack in mind, and while the checking
of the model was performed by hand, it is a mechanical procedure that does
not require any special insight. Furthermore, MUTE has an active development
community that, in over two years of development, had not found this serious
fault, as had a number of academic papers that tried to examine or extent MUTE
[ALRV05, BASM04, KKK05].

There are a number of other anonymous peer-to-peer file-sharing systems
[Ant03, was03] and theoretical designs [BASM04, SGRE04], for more infor-
mation we direct readers to our previous survey paper [CC05]. Also related
are anonymous publishing systems such as Freenet [CSWH01] or Free Haven
[DFM00], which hide the original author of a file rather than the up loader,
and the Tor middleware [DMS04]. Bhargava and Palamidessi [BP05] model the
dinning cryptographers protocol in the probabilistic pi-calculus [HP00]. They
propose a new notion of anonymity that makes a careful distinction between
non-deterministic and probabilistic actions. In other work Deng, Palamidessi and
Pang [DPP05] define “weak probabilistic anonymity” and use PRISM [KNP02]
to show that it holds for the dinning cryptographers protocol. Chatzikokolakis
and Palamidessi further explore the definition of “probable innocence” [CP05].
Garcia et al. [GHPvR05] develop a formal framework for proving anonymity
based on epistemic logic, Schnider and Sidiropoulos [SS96] use CSP to check
anonymity and Kremer and Ryan analyse a voting protocol in the applied pi-
calculus [KR05]. Their approaches do not take into account the probability of
observing actions.

In the next section we describe the MUTE system, then in Section 3 we
review the pi-calculus. We carry out our analysis of MUTE in Section 4, with
one sub-section on the pi-calculus model and another showing why we cannot
get a bi-simulation. We discuss how this break down in bi-simulation can be
turned into a real attack on a MUTE network in Section 5, and how MUTE can
be fixed in Section 6. Finally, Section 7 concludes and suggests further work.
Readers who are only interested in the attack and the fix may skip ahead to
sections 5 and 6.

Analysing the MUTE Anonymous File-Sharing System 117

2 The Ants Protocol and the MUTE System

The MUTE system [Roh06] is based on the Ant Colony Optimisation algorithm
(Ants Protocol) [DD99, GSB02]. This protocol is in turn based on the way ants
use pheromones when looking for food [BDG92] and was not originally designed
to keep users anonymous, rather it was designed for networks in which nodes do
not have fixed positions or well-known identities. In this setting, each node has
a pseudo identity that can be used to send messages to a node but does not give
any information about its true identity (i.e., the node’s IP address).

In order to search the network, a node broadcasts a search message with
its own pseudo ID, a unique message identifier and a time-to-live counter. The
search message is sent to all of the node’s neighbours, which in turn send the
message to all of their neighbours until the time-to-live counter runs out. Upon
receiving a message a node first checks the message identity and discards any
repeated messages, it then records the connection on which the message was
received and the pseudo ID of the sender, in this way each node dynamically
builds and maintains a routing table for all the pseudo identities it sees. To send
a message to a particular pseudo ID a node sends a message with the pseudo ID
as a “to ID”. If a node has that pseudo ID in its routing table, it forwards the
message along the most common connection. Otherwise, it forwards the message
to all its neighbours. Some random rerouting can be added to allow nodes to
discover new best routes, in case the network architecture has changed.

MUTE implements the Ants protocol with a non-deterministic time-to-live
counter, as well as a host of other features designed to make the system efficient
and user friendly. The kinds of attacker that MUTE defends against are nodes
in the system that wish to link the IP address of their direct neighbours with a
pseudo ID. Attackers may make as many connections to a node as they like but
we do not let an attacker monitor the whole network or even all of the connections
going into or out of a node; without the possibility of an unmonitored connection
to an honest node the target loses all anonymity. A complete summary of a piece
of software of the size of MUTE is beyond the scope of this paper, we highlight a
few key features and refer the interested reader to the MUTE developer web-page
for more information.

MUTE uses a complex three phase “Utility Counter” to control how far a
search message travels. The first phase is equivalent to the searcher picking a
time-to-live value from a long-tail distribution, which is then counted down to
zero before moving to the second phase. The aim of this phase is to stop an
attacker from being able to tell if their neighbour originated a search message.
Once this first phase is finished the counter moves to the second phase, which
is a standard time-to-live counter that counts up to 35 in increments of 7. This
means that the message is forwarded for a further 5 hops. The values of 35 and
7 are used to be compatible with an older version of MUTE that used a more
fine-grained, but less anonymous, version of the counter.

The third phase of the utility counter is a non-deterministic forwarding. Each
node decides when it starts up how many nodes it is going to forward phase-
3 messages to. A node will drop a phase-3 message with probability 3/4, and

118 T. Chothia

Process P, Q ::= 0 The stopped process
| rec a(x);P Input of x on channel a
| send a(b) Output of b on channel a
| new a; P New name declaration
| P | Q P running in parallel with Q
| repeat{ P } An infinite number of P s
| if (condition) then { P } Run P , if a = b
| j∈{a1,...,an} P (x) P (x) in parallel for all j

Fig. 1. The Pi-calculus Syntax

forward the message to n neighbours with probability 1/(3×2n). The aim of this
last phase is to quickly end the search and to stop an attacker from being able
to send a search message that it knows will not be forwarded to any other nodes.
There must always be a chance of forwarding more copies of a search message to
stop a number of attackers that are connected to the same node knowing when
they have received all of the forwarded copies of a search.

All of the probabilistic choices made by a MUTE node (such as the value of
the phase-1 counter or how many nodes phase-3 messages are forwarded to) are
fixed when the node first starts up. This protects against statistical attacks by
ensuring that the repetition of the same action yields no new information to the
attacker.

MUTE’s routing table stores information for the last one hundred different
IDs it has seen. For each ID the routing table stores the last fifty connections
over which a message from this ID was received. When either list is full the oldest
entries are dropped. When a node needs to forward a message to a particular
ID it randomly chooses one of the stored connections for that ID and forwards
the message along that connection. If the node does not have an entry for the
destination ID it sends the message to all of its neighbours.

3 The Pi-Calculus

We use the asynchronous pi-calculus [HT91, Mil93] to build a formal model of
the MUTE system. The pi-calculus can be thought of as a small concurrent
language that is simple enough to be formally analysed while still expressive
enough to capture the key elements of a system. The syntax of our version of
the pi-calculus is shown in Figure 1. It is an asynchronous, late version of the
calculus that includes conditional branching. We also include a product term
that effectively defines families of processes. To express some of the details of
the MUTE protocol, we extend the set of names to include tuples and natural
numbers. Process terms are identified by a structural congruence “≡”. The se-
mantics of the calculus is shown in Figure 2. The labels on the arrows indicate
the kind of reduction that is taking place, either an input a, an output ā or an
internal action τ . Output actions may carry new name declarations along with
them, indicated by the ν label. The side conditions on some of the rules ensure

Analysing the MUTE Anonymous File-Sharing System 119

send a(b)
ā〈b〉→ 0 rec a(x);P

a(x)→ P

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

P
ν�c.ā〈b〉→ P ′

new c′; P
νc′,�c.ā〈b〉P ′

→ P ′

P
a(x)→ P ′ Q

ν�c.ā〈b〉→ Q′

P | Q
τ→ new �c; (P [b/x] | Q)

�c ∩ fn(P) = ∅

P
α→ P ′

P | Q
α→ P ′ | Q

bn(α) ∩ fn(P) = ∅

P
α→ P ′

new a.P
α→ new a.P ′ a /∈ α

Fig. 2. Pi-calculus Semantics

than the new name declaration does not accidentally capture other names. We
further define α⇒ to be any number of internal (τ) actions followed by an α action
and then another sequence of internal actions.

The first piece of syntax stop represents a stopped process, all processes must
end with this term although we usually do not write it. The send a(b) oper-
ation broadcasts the name b over channel a. The receive operation receives a
name and substitutes it into the continuing process. The new operation cre-
ates a new communication channel. The repeat operator can perform recur-
sion by spinning off an arbitrary number of copies of a process, !P ≡ P | !P .
The bar | represents two processes running in parallel and the match opera-
tion, if (condition) then {P}, executes P if and only if the condition holds.
The product term defines the parallel composition of any number of processes∏

j∈{a1,...,an} P (x) ≡ P [a1/x] | P [a2/x] | . . . | P [an/x]. We will drop the set of
names from this operator when their meaning is clear.

The semantic rules of the calculus allow two processes to communicate:

send a(b) | rec a(x); P τ→ P [b/x]

Here, the name b has been sent over the channel a and substituted for x in
P . The τ on top of the arrow indicates that a communication has taken place.
bn is defined as the names that are bound by a new operator and fn are the
free names, i.e., those that are not bound. The side conditions on the reduction
rules stop names from becoming accidentally bound by a new operator. One of
the most important aspects of the pi-calculus is that new names are both new
and unguessable, for instance the process new a; rec a(x); P can never receive
a communication on the channel a, no matter what the surrounding processes
might try. For more information on the pi-calculus we refer the reader to one of
the many survey papers [Par01].

120 T. Chothia

4 Analysing MUTE in the Pi-Calculus

Our formal model of MUTE comes in three pieces. We make a process that
models an innocent node “I”, which forwards messages and searches for files
and another process that models a guilty node “G”, which will also return a
response to a request. A third kind of process “E”, models the rest of the en-
vironment. These processes are parameterised on the communication channels
that run between them. We can bind these channels with a new operator to
hide them from the attacker or leave them free to allow the attacker access. The
parameters also specify the probabilistic choices a node makes when it starts
up, such as the value of the phase-1 counter. The behaviour of a parameterised
node is non-deterministic, as oppose to probabilistic, i.e., the choice of which
actions happen is due to chance occurrences that cannot be meaningfully assign
a probability inside our framework, such as how often a user will search for a file.

Weak bi-simulation is often used as an equality relation between processes.
Two processes are weakly bi-similar if every visible action of one process can
be matched by the other process and the resulting processes are also weakly
bi-similar:

Definition 1 (Weakly bi-similar). Processes P and Q are weakly bi-similar
if there exists an equivalence relation ≈ such that P ≈ Q and for all P1 and Q1
such that P1 ≈ Q1, if P1

α⇒ P ′
1 then:

– if α is an output or an internal action there exists a process Q′
1 such that

Q1
α⇒ Q′

1 and P ′
1 ≈ Q′

1.
– if α is an input action, i.e., α = a(x), then for all names b, there exists a

process Q′
1 such that Q1

α⇒ Q′
1 and P ′

1[b/x] ≈ Q′
1[b/x].

A pi-calculus process cannot distinguish between two other pi-calculus processes
that are weakly bi-similar. So for any possible pi-calculus process Attacker that
models an attempt to break the anonymity of a node: if the two processes
A is Guilty and A is Innocent are bi-similar then we know that the processes
A is Guilty | Attacker and A is Innocent | Attacker are also bi-similar, so no
pi-calculus attacker can discern if A is guilty.

We would like to show that a network in which the attacker can connect to a
guilty node on channels c1, . . . , ci and to the environment on channels c′1, . . . , c

′
j :

new ci+1, .., ck; (G(c1, .., ci, ci+1, .., ck) | E(ci+1, .., ck, c′′1 , . . . , c′j))

is weakly bi-similar to a network in which an attacker can connect to an innocent
node and a slightly different environment:

new ci+1, .., ck; (I(c1, .., ci, ci+1, .., ck) | E′(ci+1, .., ck, c′′1 , . . . , c′j))

where c1, . . . , ci are the private communication channels between the nodes and
the environment, and ci+1, .., ck are channels that the attacker can use to com-
municate with I and G. In the next sub-section we give the process terms for
I, G and E and in the following sub-section we show that there can be no bi-
simulation between guilty and innocent networks.

Analysing the MUTE Anonymous File-Sharing System 121

4.1 A Model of MUTE in the Pi-Calculus

We make a number of abstractions while building our model; the aim of these
simplifications is to make the model small enough to check without losing its
overall correctness. These abstractions include the following:

(1) No actual files are transferred and no search keywords are used. Instead we
use a “search” message that is responded to with a “reply” message.

(2) We parameterise our nodes on a fixed time-to-live value for the phase-1
counter. This value is reduced by one each hop. The counter goes to phase-
2 when this value reaches zero.

(3) We simplify the nodes routing table: when forwarding a message to a partic-
ular ID the node picks any connection over which it has previously received
a message from that ID. The pi-calculus does not include a concept of ran-
dom access memory, so to represent storing an ID and a connection we send
a pair (id, connection) on a particular name. When we want to read from
memory we receive on the same channel and test the id, if it matches the ID
of the node we are looking for we use the connection otherwise we look for
another packet. This can be thought of as using a buffered communication
channel to store values.

(4) We assume that a node always knows the “to ID” of any reply message it
sees. A more realistic model would have to test for this and send the reply
message to all of the node’s neighbours if the “to ID” is unknown.

(5) We do not use message IDs and do not drop repeated messages. We also
allow a node to send a message back over the connection on which it was
received, returning the message to its sender. This does not give an attacker
any extra power because there is no way to limit an attacker to just one
connection.

(6) In closely packed networks a node may send a request over one connection
and receive the same request back over another. To simplify our model we
assume that these kinds of communications do not happen.

Point 6 removes details that may reveal some information to the attacker,
exactly what will depend on the arrangement of the network, we leave a fuller
investigation as further work.

The results of these simplifications are that the channels pass messages with
four fields:

Message format = (kind of message, the “to ID”, the “from ID”,
phase of the counter, value of the counter)

A message kind may be a “search” or a “reply” to a search. The from and to
IDs are the pseudo IDs of the originator of the message and its final destination
(not the IDs of the nodes that the message is being past between on the current
hop). Search messages are broadcast to the network and so do not use the “to
ID” field, in this case we will write “none” as the “to ID”.

The processes are parameterised on the communication channels they will use
to talk to the environment and the attacker. To stop a node communicating with

122 T. Chothia

I(connections, forward, ttl)
≡ new my id, memory; IID(my id, connections, forward , ttl, memory)

IID(my id, 〈 〈ci
1, c

o
1〉, .., 〈ci

n, co
n〉 〉, 〈 〈ci

for 1, c
o
for 1〉, .., 〈ci

for p, co
for p〉 〉, ttl, memory)

≡ Πj repeat { rec ci
j(kind, to id, from id , phase, counter);

send memory(from id, co
i)

| if (kind = search) then { FORWARDMESSAGE }
| if (kind = reply) then { REPLY }

}
| repeat { Πl send co

l (search, none, my id, 1, ttl)}

FORWARDMESSAGE ≡
if (phase = 1 and counter > 1) then

{Πk send co
k(kind, to id, from id , 1, counter − 1)}

| if (phase = 1 and counter = 1) then
{Πk send co

k(kind, to id, from id , 2, 0)}
| if (phase = 2 and counter < 35) then

{Πk send co
k(kind, to id, from id , 2, counter + 7)}

| if (phase = 2 and counter ≥ 35) then
{Πk send co

for k(search, to id, from id , 3, 0)}
| if (phase = 3) then {Πk send co

for k(search, to id, from id , 3, 0)} }

REPLY ≡ if (to id = my id) then {stop}
| if (to id
= my id) then

{ new loop; send loop;
repeat{ rec loop; rec memory(x, channel); (send memory(x, channel)

| if (x
= to id) then {send loop}
| if (x= to id) then

{send channel(kind, to id, from id , phase, counter)}) }

Fig. 3. An Innocent Node

itself we represent communication streams as a pair cj = 〈ci
j , c

o
j〉. The node will

use the ci
j channel for input and the co

j channel for output. In order not to clutter
our process terms, we will write “new cj” for “new ci

j , c
o
j”.

The process term for the innocent node is given in Figure 3. The node’s
parameters are defined as follows:

I(a tuple of connections to other nodes,
a tuple of the connections on which the node will forward phase 3 messages,
the initial time-to-live value used for phase-1 when generating a search message)

We define I in terms of another process IID that also states the node’s ID
and the channel name it uses for memory. The IID process listens repeatedly,
for a message on any of its input channels. When it receives a message it stores
the message’s “from ID” and the channel on which the message was received
by sending them on the memory channel. The node then tests the message’s

Analysing the MUTE Anonymous File-Sharing System 123

G(connections, forward, ttl)
≡ new my id, memory;GID(my id, connections, forward , ttl, memory)

GID(my id, 〈 〈ci
1, c

o
1〉, .., 〈ci

n, co
n〉 〉, 〈ci

for , c
o
for 〉, ttl,memory) ≡

Πj repeat{rec ci
j(kind, to id, from id , phase, counter);

send memory(from id , co
i)

| if(kind = search) then
{new loop; send loop;
repeat{rec loop; rec memory(x, channel); (send memory(x, channel)

| if (x
= from id) then {send loop}
| if (x = from id) then

{send channel(reply, from id , my id, none, none)}) }
| FORWARDMESSAGE }

| if (kind = reply) then { REPLY } }
| repeat { Πl send co

l (search, none, my id, 1, ttl)}

Fig. 4. A Guilty Node

kind to see if it is a search message or a reply message. If the message is a
search message the utility counter is tested and altered, and the message is
forwarded.

If the message received by the node is a reply message then the node checks
to see if the message is addressed to itself. If it is then this thread of the process
stops and the node continues to listen on its connections (this test and stop
has no functionality and is included for clarity). If the reply is addressed to
another node then the process looks up the “to ID” in its memory and forwards
the message. The last line of the IID process allows the node to send search
messages to any of its neighbours.

The process term for a guilty node is given in Figure 4. This process works
in the same way as the innocent node except that, after receiving any search
message, the node looks up the “from ID” and returns a reply.

Figure 5 contains a pi-calculus model of the environment which has one con-
nection to a node. The process E(c, n, j) models an environment that commu-
nicates over the channel c and includes n individual nodes that may search for
files, out of which j nodes will reply to requests for files. The parameters of the
EID process include the IDs of its nodes and meta-functions that map each ID
to a utility counter value. There is not a true structural equivalence between
E and EID because the meta-functions are not really part of the calculus, but
rather a device that allows us to define a family of processes.

In Figure 6 we expand this to the environment with m connections by over-
loading E and EID. This process uses a tuple of values for each of the single
values in the one connection environment. For i, ranging from 1 to m, the process
uses the channel ci over which ni individual nodes may search for files. These
nodes use the IDs id i1, . . . , id ini and the first ji of these will reply to requests
for files.

124 T. Chothia

E(c, n, j) ∼= new id1, . . . , idn; EID(c, 〈id1, . . . , idn〉, j, fp, fc)

EID(〈ci, co〉,〈id1, . . . , idn〉, j, fp, fc)
≡ repeat{rec ci(kind, to id, from id , phase, counter);

if(kind = search) then
{Πi∈{1,...,j} send channel(reply, from id , idj , 0, 0); } }

| Πi repeat { send co(search, none, idi, fp(idj), fc(idj)) }

Fig. 5. The Environment with one connection

EID(〈〈ci
1, c

o
1〉, . . . , 〈ci

m, co
m〉〉, 〈n1, . . . , nm〉, 〈j1, . . . , jm〉)

∼=new (id 11, . . . , id 1n1), (id 21, . . . , id 2n2), . . . , (id m1, . . . , id mnm);
EID(〈〈ci

1, c
o
1〉, . . . , 〈ci

m, co
m〉〉, 〈j1, . . . , jm〉,

〈〈id 11, . . . , id 1n1〉, 〈id 21, . . . , id 2n2〉, . . . , 〈id m1, . . . , id mnm〉〉,
〈fp

1 , . . . , fp
m〉, 〈fc

1 , . . . , f c
m〉)

EID(. . .) ≡ Πk∈{1,..,m}repeat{rec ci
k(kind, to id, from id , phase, counter);

ifi(knd = search) then
{Πi∈{1,..,jk} send channel(reply, from id , id kj , 0, 0); } }

| Πk∈{1,..,m}Πi∈{1,..,nk}repeat{send co
k(search, none, id ki, f

p
m(id ki), fc

m(id ki))}

Fig. 6. The Environment with m connections

4.2 No Bi-Simulations Between Guilty and Innocent Nodes

The environment should provide “cover” for guilty nodes. As an example, con-
sider the case in which a guilty node has one connection to the attacker and one
connection to the environment:

new c2; G(〈c1, c2〉, 〈c2〉, m) | E(c2, n, j)

The only communication channel in this process that is not new is the c1 channel,
therefore this is the only channel that the attacker may use to communicate with
the process. The guilty node will reply to a search request sent on c1, and so
expose its own ID. The environment will do likewise and expose its IDs along
with their utility counter values:

new c2; G(〈c1, c2〉, 〈c2〉, m) | E(c2, n, j)
∼= new c2; G(〈c1, c2〉, 〈c2〉, m) | new id1, . . . , idn; E(c2, 〈id1, . . . , idn〉, j, fp, fc)
�α⇒ new c2, mem; GID(g id, 〈c1, c2〉, 〈c2〉, m, mem) | send mem(id1, c2) . . .

| send mem(idj, c2) | new idj+1, . . . , idn; E(c2, 〈id1, . . . , idn〉, j, fp, fc))

where the �α actions are the search input from the attacker followed by some
permutation of the responses on channel c1.

The anonymity should come from the fact that the same observations may
come from an innocent node and an environment that provides one more response
with a phase-1 utility counter set to one higher than m. We can verify that this
innocent network can perform the same �α actions as the guilty network:

Analysing the MUTE Anonymous File-Sharing System 125

new c2; I(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j + 1)
∼= new c2; I(〈c1, c2〉, 〈c2〉,m) | new id1, . . . , idn; E(c2, 〈id1, . . . , idn〉, (j + 1), f ′

p, f
′
c)

�α⇒ new c2,mem, i id; IID(i id, 〈c1, c2〉, 〈c2〉, m, mem) | send mem(id1, c2) . . .
| send mem(idj+1, c2) | new idj+2, . . . , idn; E(c2, 〈id1, . . . , idn〉, j + 1, f ′

p, f
′
c))

where f ′
p(idj+1 = 1), f ′

c(idn+1) = m + 1. So, in order to be able to show some
level of anonymity, we would like to show the following bi-simulation:

new c2; G(〈c1, c2〉, 〈c2〉, m) | E(c2, n, j)
≈ new c2; I(〈c1, c2〉, 〈c2〉, m) | E(c2, n, j + 1)

where j < n, i.e., there are both innocent and guilty nodes in the environment.
Upon examination we find that relations of this kind do not hold. Let us start

with PG and PI as follows:

PG ≡ new c2; (G(〈c1, c2〉, 〈c2〉, m) | E(c2, n, j))
PI ≡ new c2; (I(〈c1, c2〉, 〈c2〉, m) | E(c2, n, j + 1))

We follow a fixed method to check the bi-similarity of two processes. We
enumerate all of the inputs, outputs and internal actions that a process can
perform and then look for matching actions in the other process. We then test
each pair of resulting processes for bi-similarity. Most possible actions will not
produce interesting reactions, for instance any node will discard messages that
do not use “search” or “reply” as its kind. Ultimately the processes may loop
around to processes that we already consider bi-similar, in which case we proceed
to check the other processes. If we find processes that do not match we backtrack
and see if there were any other possible matchings of actions that would have
worked. If processes are to complicated to effectively check by hand they can be
checked with automated tools such as the Mobility Workbench [VM94] or Level
0/1 [Tiu04].

One of the first actions that we must check for PG and PI is the input of a
well-formed search message. In response both processes return equivalent reply
messages. In the PG network these include the reply from the guilty note. The
innocent network can match these outputs with replies from the environment.
At this point the IDs are public and the node has recorded the IDs from the
environment:

PG
�α1⇒ new c2, mem; (GID(n id, 〈c1, c2〉, 〈c2〉, m, mem) | send mem(id1, c2) . . .

| send mem, (idj, c2) | E(c2, 〈id1, . . . , idn〉, j, f ′
p, f

′
c))

PI
�α1⇒ new c2, mem; (IID(n id, 〈c1, c2〉, 〈c2〉, m, mem) | send mem(id1, c2) . . .

| send mem(idj+1, c2) | E(c2, 〈id1, . . . , idn〉, j + 1, f ′
p, f

′
c))

The free names that are available to the attacker in PG now include id1, . . . , idj

and n id and in PI they include id1, . . . , idj , idj+1. As these are all new names
the attacker cannot distinguish between these two sets . . . yet.

We must now check to see if the two processes behave in the same way when
they receive inputs that use the names that have just been outputted. For the

126 T. Chothia

guilty network one message that must be checked is send c1(search, none, n id,
1, 7), i.e., a search message with the guilty node’s ID as the “from ID”. As n id is
just one of a set of free names this action can be matched by the innocent network
with a similar message using an ID from the environment, idk say, resulting in
the processes:

PG
�α3⇒ new c2, mem; GID(n id, 〈c1, c2〉, 〈c2〉, m, mem)

| send mem(n id, c1) | send mem(id1, c2) | . . .
| send mem(idj , c2) | E(c2, 〈id1, .., idn〉, j, f ′

p, f
′
c))

PI
�α3⇒ new c2, mem; IID(n id, 〈c1, c2〉, 〈c2〉, m, mem)

| send mem(idk, c1) | send mem(id1, c2) | . . .
| send mem(idj+1, c2) | E(c2, 〈id1, .., idn〉, j + 1, f ′

p, f
′
c))

For PG and PI to be bi-similar these processes must be bi-similar. Both of
them can indeed perform the same inputs and outputs. Including the input of a
reply message address to the ID that has just been used for the search message,
i.e., send c1(reply, n id, aid, 0, 0) for PG and send c1(reply, idk, aid, 0, 0) for PI

The innocent node looks up the ID, it may find the c1 connection and return the
request on c1 as output. The guilty node, on the other hand, recognises its own
ID and accepts the message. It cannot perform the same output as the innocent
node and therefore PG and PI cannot be bi-similar.

If we examine the actions that lead to these un-similar processes we can see
that the attacker tried to “steal” one of the IDs that it has seen as a “from ID”
of a reply to its message. The attacker can then use this process to test IDs to
see which one belongs to its neighbour because, out of all the IDs in all the reply
messages that an attacker may see, the guilty node’s ID is the only one that
cannot be stolen.

5 Description of the Attack on MUTE

The difference between the processes in the pi-calculus model was that the inno-
cent node might be able to perform an action, whereas the guilty node could not.
To build a real attack out of this we must force the innocent node to perform
the action so the guilty node will stand out. The idea behind the real attack is
that the attacker can “steal” an ID by sending fake messages using the target
ID as the “from ID”. If it sends enough messages then its neighbouring nodes
will forward messages addressed to the target ID over their connection with the
attacker. One exception to this is if the ID the attacker is trying to steal belongs
to the neighbour, as the neighbour will never forward messages addressed to
itself. Therefore the attacker can use this method of stealing IDs to test any IDs
it sees, if the ID cannot be stolen then the ID belongs to the neighbour.

We saw in Section 2 that MUTE looks at the last fifty messages when deciding
where to route a message. Only IDs that are seen on search messages with phase-
1 counters are possibilities for the neighbours ID and only search messages with
phase-3 counters can be dropped. Therefore, if the attacker sees some messages

Analysing the MUTE Anonymous File-Sharing System 127

with a phase-1 counter and others reach the neighbour with a phase-3 counter
and are dropped, we know that the messages that are dropped must be slower and
so they will not affect the routing table. This means that if the attacker can send
fifty messages with the target ID to its neighbour, without any messages with
that ID coming from the neighbour, then the attacker will receive any messages
send to that ID via the target node, unless the ID belongs to the target node.
There is still a small possibility that the neighbour is receiving or forwarding a
file from the real owner of the ID, in which case the large number of messages
that the neighbour is receiving might mean the attacker fails to steal an address
that does not belong to the target node. To avoid this possibility the attack can
be repeated at regular intervals.

The attack on MUTE would run as follows:

1. The attacker makes two connections to the target node, monitors these con-
nections and selects the “from ID” with the highest time-to-live counter.

2. The attacker forms new search messages using the selected ID as the “from
ID” and repeatedly sends them to the neighbour until it has sent fifty mes-
sages without receiving any messages from the ID it is trying to steal.

3. The attacker then sends a reply message addressed to the selected ID along
its other connection with the target node. If the message is not sent back to
the attacker then it is likely that the target ID belongs to the neighbour.

4. These steps can be repeated at regular intervals to discount the possibility
that the neighbour is receiving or forwarding a file from the target ID.

5. If the attacker receives the message back then the selected ID does not belong
to the target node, so the attacker must select another ID and start again.

6. If the neighbour still does not bounce the message back to the attacker then,
with a high degree of probability, the attacker has found the neighbour’s ID
and the attacker can then find out what files the neighbour is offering.

6 Fixing MUTE

This attack is made possible by the Ants Protocol’s adaptive routing system and
the fact that nodes will never forward messages addressed to themselves. Key
to the success of the attack is the attacker’s ability to corrupt its neighbour’s
routing table in a known way. This in turn is only possible because the attacker
can fake messages with another node’s ID.

We can solve this problem by stopping the attacker from being able to forge
messages. This can be done by having all nodes start by generating an authenti-
cation and signature key, from any suitably secure public key encryption scheme.
The nodes can then use the authentication keys as their IDs. This authentication
key would be used in exactly the same way as the node’s ID. However, each node
would also sign the message ID. When any node receives a message, it can check
the signed message ID using the “from ID”. As the attacker cannot correctly
sign the message ID it can no longer forge messages. Such a scheme also benefits
from a fair degree of backward compatibility. Older nodes need not be aware

128 T. Chothia

that the ID is also an authentication key. The checking is also optional; nodes
may choose to only check messages it they spot suspicious activity.

The level of popularity enjoyed by any system that offers anonymity to the
user will be partly based on the level of trust potential users place in these
claims. To maintain a level of trust in the MUTE system it is important to
implement this fix before the flaw is widely known. With this in mind we sent
an early copy of this paper to the lead programmer on the MUTE project.
They were happy to accept the results of the formal analysis and agreed to
implement the fix suggested above. To remain compatible with earlier versions
of the client the pseudo IDs could not be longer than 160-bits, which is too
short for a RSA public key. We briefly considered using an elliptic curve digital
signature algorithm that would allow for public keys of this length, but the use
of less well known cryptographic algorithms proved unpopular.

The final solution was to use a SHA1 hash of a 1024-bit RSA authentica-
tion key as the pseudo ID and include the authentication key in the message
header, along with the signed message ID. This would require changing the mes-
sage header from random a “From ID” and “Message ID” to a 1024-bit RSA
authentication key, the SHA1 hash of that key as the “From ID”, along with
the signed message ID. It was also found that nodes would only store message
IDs for a few hours so to avoid replay attacks a counter based timestamp was
included in the signature of the message. This solutions was added to the 0.5
release of MUTE; the C++ source code for the implementation is available at
http://mute-net.cvs.sourceforge.net/mute-net.

7 Conclusion and Further Work

We have modelled the MUTE system in the pi-calculus and we have shown that
it is not possible to have a bi-simulation between every network in which the
attacker connects to a guilty node and a network in which the attacker connects
to an innocent node. The point at which this bi-simulation fails leads to an attack
against the MUTE system. The attack, which involves “stealing” the name of
another node, is a serious problem that compromises the anonymity of any node
that neighbours an attacker. We suggested a fix for this attack based on using
an authentication key as the node’s pseudo ID.

Our general methodology was to try to show that the environment could
provide cover for any guilty node. In particular that for all parameters pg, pe

there exists some other parameters pi, p
′
e such that:

Guilty node(pg) | Environment (pe) ≈ Innocent node (pi) | Environment (p′e)

We hope that this method can be used to prove the anonymity of other systems
in which the environment provides cover for guilty nodes.

As further work we hope to be able to prove that some form of the Ants
protocol does provide anonymity. If we do not allow inputs to our model that
use IDs that have been observed as outputs we can show for every guilty network
there is a bi-similar innocent network. However a true correctness result will

Analysing the MUTE Anonymous File-Sharing System 129

require a more realistic model of the environment. We would expect a node not
to be anonymous when connected to some small, pathological environments. So
it would be necessary to find out what kind of environments provide adequate
cover for a node.

Acknowledgement

We would like to thank the Comète Team at the École Polytechnique for many
useful discussions about anonymity, and especially Jun Pang for comments on
an early draft of this paper. We would also like to thank Jason Rohrer, who is
responsible for creating MUTE and who implemented the fix described in this
paper.

References

[ALRV05] Andres Aristizabal, Hugo Lopez, Camilo Rueda, and Frank D. Valencia.
Formally reasoning about security issues in p2p protocols: A case study.
In Third Taiwanese-French Conference on Information Technology, 2005.

[Ant03] Ants p2p, http://antsp2p.sourceforge.net/, 2003.
[BASM04] Steve Bono, Christopher A, Soghoian, and Fabian Monrose. Mantis:

A high-performance, anonymity preserving, p2p network, 2004. Johns
Hopkins University Information Security Institute Technical Report TR-
2004-01-B-ISI-JHU.

[BDG92] R. Beckers, J. L. Deneubourg, and S. Goss. Trails and u-turns in the se-
lection of the shortest path by the ant lasius niger. Journal of Theoretical
Biology, 159:397–415, 1992.

[BP05] Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. In
CONCUR, LNCS 3653, pages 171–185, 2005.

[CC05] Tom Chothia and Konstantinos Chatzikokolakis. A survey of anony-
mous peer-to-peer file-sharing. In EUC Workshops, LNCS, pages 744–
755, 2005.

[CP05] Konstantinos Chatzikokolakis and Catuscia Palamidessi. Probable inno-
cence revisited. In Formal Aspects in Security and Trust, LNCS 3866,
pages 142–157, 2005.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. LNCS, 2009:46+, 2001.

[DD99] Marco Dorigo and Gianni Di Caro. The ant colony optimization meta-
heuristic. In David Corne, Marco Dorigo, and Fred Glover, editors, New
Ideas in Optimization, pages 11–32. McGraw-Hill, London, 1999.

[DFM00] Roger Dingledine, Michael J. Freedman, and David Molnar. The free
haven project: Distributed anonymous storage service. In Proceedings of
the Workshop on Design Issues in Anonymity and Unobservability, July
2000.

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, 2004.

130 T. Chothia

[DPP05] Y. Deng, C. Palamidessi, and J. Pang. Weak probabilistic anonymity.
In Proc. 3rd International Workshop on Security Issues in Concurrency
(SecCo’05), 2005.

[GHPvR05] Flavio D. Garcia, Ichiro Hasuo, Wolter Pieters, and Peter van Rossum.
Provable anonymity. In Proceedings of the 3rd ACM Workshop on Formal
Methods in Security Engineering (FMSE05), 2005.

[GSB02] Mesut Gunes, Udo Sorges, and Imed Bouazzi. Ara – the ant-colony
based routing algorithm for manets. In Proceedings of the International
Workshop on Ad Hoc Networking (IWAHN 2002), Vancouver, August
2002.

[HP00] Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchro-
nous pi-calculus. In Foundations of Software Science and Computation
Structure, pages 146–160, 2000.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In European Conference on Object-Oriented Program-
ming, LNCS, pages 133–147, 1991.

[KKK05] Byung Ryong Kim, Ki Chang Kim, and Yoo Sung Kim. Securing
anonymity in p2p network. In sOc-EUSAI ’05: Proceedings of the joint
conference on Smart objects and ambient intelligence. ACM Press, 2005.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic
symbolic model checker. In Proc. 12th International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation
(TOOLS’02), volume LNCS 2324, pages 200–204, 2002.

[KR05] Steve Kremer and Mark D. Ryan. Analysis of an electronic voting pro-
tocol in the applied pi-calculus. In Proceedings of the 14th European
Symposium on Programming (ESOP’05), LNCS, pages 186–200, 2005.

[Mil93] Robin Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra
of Specification, volume 94 of Computer and Systems Sciences, pages
203–246. 1993.

[Par01] Joachim Parrow. Handbook of Process Algebra, chapter An Introduction
to the pi-calculus. Elsevier, 2001.

[Roh06] Jason Rohrer. Mute technical details. http://mute-net.sourceforge.net/
technicalDetails.shtml, 2006.

[RR98] M. Reiter and A. Rubin. Crowds: anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998.

[SGRE04] Emin Gun Sirer, Sharad Goel, Mark Robson, and Doan Engin. Eluding
carnivores: File sharing with strong anonymity, 2004. Cornell Univ. Tech.
Rep.

[SS96] Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In
ESORICS, pages 198–218, 1996.

[Tiu04] Alwen Tiu. Level 0/1 prover: A tutorial. Avilable online at:
http://www.lix.polytechnique.fr/t̃iu/lincproject/, 2004.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — a tool for the
π-calculus. In CAV’94: Computer Aided Verification, LNCS 818, pages
428–440, 1994.

[was03] Waste, http://waste.sourceforge.net/, 2003.

Towards Fine-Grained Automated Verification of
Publish-Subscribe Architectures

Luciano Baresi, Carlo Ghezzi, and Luca Mottola

Dipartimento di Elettronica ed Informazione—Politecnico di Milano
{baresi, ghezzi, mottola}@elet.polimi.it

Abstract. The design and validation of distributed applications built on top of
Publish-Subscribe infrastructures remain an open problem. Previous efforts
adopted finite automata to specify the components’ behavior, and model check-
ing to verify global properties. However, existing proposals are far from being
applicable in real contexts, as strong simplifications are needed on the underlying
Publish-Subscribe infrastructure to make automatic verification feasible.

To face this challenge, we propose a novel approach that embeds the asynchro-
nous communication mechanisms of Publish-Subscribe infrastructures
within the model checker. This way, Publish-Subscribe primitives become avail-
able to the specification of application components as additional, domain-specific,
constructs of the modeling language. With this approach, one can develop a fine-
grained model of the Publish-Subscribe infrastructure without incurring in state
space explosion problems, thus enabling the automated verification of application
components on top of realistic communication infrastructures.

1 Introduction

The Publish-Subscribe interaction paradigm is rapidly emerging as an appealing solu-
tion to the needs of applications designed for highly-dynamic environments. Using this
paradigm, application components subscribe to event patterns and get notified when
other components publish events matching their subscriptions. Its asynchronous, im-
plicit and multi-point communication style is particularly amenable to those scenarios
where application components can be added or removed unpredictably, and the com-
munication must be decoupled both in time and in space [1]. Because of this flexibility,
Publish-Subscribe infrastructures have been developed for a wide range of application
scenarios, from wide-area notification services to wireless sensor networks.

However, the high degree of decoupling brings also several drawbacks. In partic-
ular, verifying how a federation of independently-written software components inter-
connected in such a loosely-coupled manner is often difficult because of the absence
of a precise specification of the behavior of the communication infrastructure. Model
checking has been proposed as a possible solution, but existing works do not propose
a precise characterisation of the different guarantees the underlying Publish-Subscribe
infrastructure can provide. For instance, different message delivery policies, reliability
guarantees or concurrency models can easily change the final outcome of the verifica-
tion effort.

The wide spectrum of deployment scenarios, and the consequent vast range of avail-
able systems, makes the aforementioned characterization non-trivial. In addition,

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 131–135, 2006.
c© IFIP International Federation for Information Processing 2006

132 L. Baresi, C. Ghezzi, and L. Mottola

modeling these features using the primitives of existing model checkers inevitably re-
sults in state space explosion problems, thus ultimately hindering the verification effort.

In this paper we argue that a fine-grained Publish-Subscribe model requires a dif-
ferent approach to the problem. We propose to augment an existing model-checker
with domain-specific constructs able to expose Publish-Subscribe primitives as con-
structs of the modeling language. This way, the mechanisms needed to implement the
Publish-Subscribe interaction style can be embedded within the model-checker, and one
can achieve a fine-grained characterization of the different guarantees of the Publish-
Subscribe system without incurring in state space explosion problems.

The rest of the paper is structured as follows. Section 2 briefly surveys the existing
approaches, and highlights how they miss important characteristics of existing Publish-
Subscribe infrastructures. Section 3 proposes our solution and reports on some initial
results demonstrating how our approach better scales to complex systems than existing
ones. Finally, Section 4 concludes the paper with an outlook on our current and future
research plans.

2 Modeling Publish-Subscribe Systems

The identification of the different guarantees provided by Publish-Subscribe infrastruc-
tures is a challenging task. This becomes even harder when we consider those charac-
teristics that would impact the verification of applications running on top. To this end,
Table 1 summarizes a set of QoS dimensions provided by existing Publish-Subscribe
infrastructures that could affect the outcome of the verification process. We claim that
the majority of available systems can be precisely classified along these different di-
mensions. However, existing proposals for automated verification of Publish-Subscribe
infrastructures fail to capture many of these different characteristics.

The work in [2, 3] is limited to the CORBA Communication Model (CCM) as mid-
dleware. Similarly, [4] concentrates on the addition of a Publish-Subscribe notification
service to an existing groupware protocol. On the other hand, the work in [5] develops a
compositional reasoning based on an assume-guarantee methodology. The technique is
shown to be applicable to particular instances of Publish-Subscribe middleware. In all
these cases, the proposed solution addresses just a very narrow scenario, i.e., a particular
instance of Publish-Subscribe system.

Garlan et al. [6] provide a set of pluggable modules that allow a modeler to choose
one possible instance out of a set of possible choices. However, the available models
are far from fully capturing the different characteristics of existing Publish-Subscribe
systems. For instance, application components cannot change their interests (i.e., sub-
scriptions) at run-time, and the event dispatching policy is only characterized in terms
of delivery policy (asynchronous, synchronous, immediate or delayed). The approach
is improved in [7] by adding more expressive events, dynamic delivery policies and dy-
namic event-method bindings. However, this proposal only deals with the specification
of different delivery policies depending on the state of the overall model, and still does
not capture finer-grained guarantees such as real-time constraints.

Finally, the work in [8] characterizes the Publish-Subscribe infrastructure in terms
of reliability, event delivery order (the same as publications, the same as publications

Towards Fine-Grained Automated Verification 133

Table 1. Publish-Subscribe QoS dimensions

QoS Class Possible Choices Description

Message Reliability Absent Notifications can be lost.
Present Notifications are guaranteed to eventually arrive at the interested subscribers.

Message Ordering None Notifications are delivered in random order.
Pair-wise FIFO Notifications are delivered to a given subscriber in FIFO order with respect to

publish operations from the same publisher.
System-wide FIFO Notifications are delivered to subscribers in the same order as publish opera-

tions, regardless of the component that published the message.
Causal Order Causally related notifications are delivered according to the causality chain

among them.
Total Order All components subscribed to the same events are notified in the same order

(which is not necessarily the order in which these events are published).
Filtering Precise Notifications are only delivered for subscribed events.

Approximate Components can be notified on events for which they are not subscribed (false
positives), or miss events in which they are interested. (Notice how approxi-
mate filtering is deterministic, while reliability problems are in general unpre-
dictable.)

Real-Time
Guarantees

None Notifications are delivered without time guarantees.

Soft RT On the average, notification are delivered in T time units after the publish
operation.

Hard RT Notifications are guaranteed to be delivered within T time units after the pub-
lish operation.

Subscription
Propagation Delay

Absent Subscriptions are immediately active and deliver event notifications.

Present Subscriptions start to deliver event notifications after a random time.
Repliable Messages Absent Subscriptions set up to convey replies travel independently of the original noti-

fication. If subscriptions are delayed, the deliver of the reply is not guaranteed.
Present Subscriptions used to convey replies travel with the originating message.

Therefore, they are guaranteed to be active at the time the reply is published.
Message Priorities Absent All notifications are treated in the same way.

Present Notifications are delivered according to specific priorities, no mechanism is
used to prevent starvation of messages.

Present
w/ Queue Scrunching

Notifications are delivered according to specific priorities, queue scrunching
dynamically raises the priority of messages that waited too long in their orig-
inal priority queue. This way, each message is eventually delivered.

Queue Drop Policy None Queues are of infinite length.
Tail Drop Given queues of length L, messages exceeding this threshold are dropped

upon arrival.
Priority Drop Given queues of length L, messages are dropped starting from lower priority

messages up to higher priority messages.

but only referring to the same publisher, or none), and subscription propagation delay.
Still, it does not consider several of the dimensions listed in Table 1.

3 Our Proposal

The definition of all the mechanisms described in Table 1 is clearly unfeasible if one
keeps the traditional approach of expressing both the application components and the
communication infrastructure in terms of the primitives of the model checker. Based on
this, we propose a novel approach to augment an existing model checker with Publish-
Subscribe-style constructs. This way, we build the communication infrastructure inside
the model checker, thus avoiding the aforementioned performance problems.

Our approach leverages off the simplicity of the Publish-Subscribe APIs (composed
of the basic operations publish(Event) and subscribe(EventPattern)),
and makes them available as additional constructs of the input language of the model

134 L. Baresi, C. Ghezzi, and L. Mottola

Table 2. Comparing our approach with [8]

Scenario Bogor with embedded Publish-Subscribe SPIN - Promela
Memory Time Memory Time

Causal2Publish 32.8 Mb 103 sec 298.3 Mb >15 min
Causal5Publish 45.6 Mb 132 sec 589.6 Mb >1 hour
Causal7Publish 52.3 Mb 158 sec OutOfMemory NotConcluded
Causal10Publish 61.1 Mb 189 sec OutOfMemory NotConcluded
Priorities2Publish 18.3 Mb 47 sec 192 Mb >10 min
Priorities5Publish 26.9 Mb 103 sec 471.2 Mb >30 min
Priorities7Publish 37.9 Mb 134 sec OutOfMemory NotConcluded
Priorities10Publish 49.1 Mb 163 sec OutOfMemory NotConcluded

checker. 1 Before performing the actual verification, the user binds this general Publish-
Subscribe API to a particular combination of the different guarantees highlighted in
Table 1, thus “instantiating” a particular communication infrastructure on top of which
the application model is run.

To implement our approach, we are currently embedding a Publish-Subscribe com-
munication mechanisms —with the various guarantees highlighted in Table 1— within
the model checker Bogor [9]. Its open architecture makes it easy to add domain-specific
mechanisms to the model checker. To check our additions, we devised a wide range of
test cases. Every test is represented by a set of Bogor processes expressed in BIR (Bo-
gor Intermediate Language), which make use of the aforementioned Publish-Subscribe
API as any other BIR construct.

The solution we propose impacts on two orthogonal aspects. Firstly, it enables au-
tomated verification of application components on top of realistic communication in-
frastructures. This way, the gap between the system model in the early design phases
and the actual implementation can be narrowed down, and potential problems caught
in advance. Secondly, it eases the translation of the behavior of application components
—usually expressed in a given specification formalism— into the input language of the
model checker, since the application components and the model checker rely on the
same communication primitives.

3.1 Early Results

To substantiate our claims, we report some initial results we gathered by comparing
our approach with the solution in [8], which uses SPIN and Promela. We designed a
set of possible interactions among five different processes with the only goal of making
processes coordinate by exchanging messages. We characterized the different scenar-
ios by means of the number of publish operations to be performed —on a per-process
basis— during each run of the test application. On the average, half of the processes are
subscribed to published events and receive the corresponding notifications. The prop-
erties we are interested in are simple assertions, whose only goal is to make sure that
messages are delivered according to the chosen policy (i.e., in causal order or accord-
ing to the respective priorities). In a sense, these assertions verify that the implemented
mechanisms are semantically correct.

1 Notice how the Publish-Subscribe APIs we consider explicitly deal with subscriptions to gen-
eral patterns of events, therefore overcoming the limitations of existing proposals (e.g., [6]).

Towards Fine-Grained Automated Verification 135

Table 2 illustrates the performance of the two approaches, both in terms of memory
consumption and time needed to complete the verification process. The experiments
were executed on a Pentium 4 with 1 Gb RAM. Our approach outperforms the one based
on SPIN in all cases. When the number of publish operations increases, our solution al-
lows the verification effort to terminate where SPIN would run out of memory. This
clearly highlights how the requirement of realistically modeling the communication in-
frastructure cannot be addressed by using only the primitives provided by conventional
model checkers.

4 Conclusions and Future Work

This paper presents a novel approach to the automated verification of applications built
on top of fine-grained and realistic models of Publish-Subscribe architectures. We argue
that such a level of detail cannot be achieved by means of conventional model checkers.
Our proposal flips the problem and augments the input language of an existing model
checker with the primitives of Publish-Subscribe communication infrastructures. The
first results summarized in this paper are encouraging and motivate further work.

We plan to conclude the implementation in Bogor of the different guarantees illus-
trated in Table 1, and further evaluate the effectiveness of our approach with meaningful
test cases. However, our ultimate objective is the development of a tool to enable auto-
mated verification of applications built on top of Publish-Subscribe systems.

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35 (2003)

2. Deng, X., Dwyer, M.B., Hatcliff, J., Jung, G.: Model-checking middleware-based event-driven
real-time embedded software. In: Proc. of the 1st Int. Symposium on Formal Methods for
Components and Objects. (2002)

3. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath, V.: Cadena: an integrated develop-
ment, analysis, and verification environment for component-based systems. In: Proc. of the
25th Int. Conf. on Software Engineering (ICSE03). (2003)

4. Beek, M.H., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: A case study
on the automated verification of groupware protocols. In: Proc. of the 27th Int. Conf. on
Software engineering (ICSE05). (2005)

5. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of middleware-based
software architecture descriptions. In: Proc. of the 19th Int. Conf. on Software engineering
(ICSE04). (2004)

6. Garlan, D., Khersonsky, S.: Model checking implicit-invocation systems. In: Proc. of the 10th

Int. Workshop on Software Specification and Design. (2000)
7. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of implicit invo-

cation systems. In: Proc. of the 9th European software engineering Conf. (2003)
8. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate publish/subscribe

architectures. In: Proc. of the SAVCBS’03 Workshop. (2003)
9. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software model

checking framework. In: Proc. of the 9th European software engineering Conf. (2003)

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 136 – 142, 2006.
© IFIP International Federation for Information Processing 2006

A LOTOS Framework for Middleware Specification

Nelson Souto Rosa and Paulo Roberto Freire Cunha

Universidade Federal de Pernambuco, Centro de Informática
Recife, Pernambuco

{nsr, prfc}@cin.ufpe.br

Abstract. This paper presents a LOTOS framework for the specification of mid-
dleware systems. The framework consists of a library of basic middleware com-
ponents and some guidelines on how to compose them. The components of the
framework facilitate the formal specification of different middleware systems.

1 Introduction

Middleware specifications are not trivial to be understood, as the middleware itself is
usually very complex [4]. Firstly, middleware systems have to hide the complexity
of underlying network mechanisms from the application. Secondly, the number of
services provided by the middleware is increasing, e.g., the CORBA specification
contains fourteen services. Finally, in addition to hide communication mechanisms,
the middleware also have to hide fails, mobility, changes in the network traffic con-
ditions and so on. On the point of view of application developers, they very often do
not know how the middleware really works. On the point of view of middleware
developers, the complexity places many challenges that include how to integrate
services in a single product [6] or how to satisfy new requirements of emerging
applications [Blair 98].

Formal description techniques have been used together middleware in the RM-
ODP, in which the trader service is formally specified in E-LOTOS. The Z notation
and High Level Petri Nests have been adopted for specifying CORBA services [2][3],
the Naming service [5], and the Security service [1]. Most recently, Rosa [8] adopted
software architecture principles for structuring LOTOS specifications of middleware
systems. Despite the adoption of formal techniques, they focus on specific aspects of
middleware systems, i.e., they address either a specific service or a specific middle-
ware model.

The main objective of this paper is to propose a framework that helps to formally
describe middleware behaviour in LOTOS by providing a set of basic abstractions.
These abstractions are generic in the sense that may be combined in different ways in
order to specify several middleware systems. Main in our approach is the fact that the
abstractions are defined and organised according to their role in relation to the mes-
sage request. Hence, instead of adopting the traditional approach of organising mid-
dleware systems in layers [9], the proposed abstractions are defined considering their
role in the message request. For example, the abstractions are grouped into classes
related to storage, communication, dispatching, and mapping of message requests. A

 A LOTOS Framework for Middleware Specification 137

message request is any message that an application (e.g., client, server, sender, trans-
mitter) sends to another application.

This paper is organised as follows: Section 2 presents a general overview of pro-
posed framework. Section 3 presents how the proposed framework may be used to
specify client-server and message-oriented middleware systems. Finally, last section
presents an evaluation of the research until now and some future work.

2 LOTOS Specifications of Middleware Components

As mentioned before, the proposed framework consists of a set of abstractions that
addresses a number of common functionalities of middleware systems. The frame-
work also defines how these abstractions work together to formalise different mid-
dleware models. For example, the abstractions may be combined to produce the
specification of a message-oriented middleware, whilst they also may be combined
to define a procedural middleware (client-server applications) or a tuple space based
middleware.

The whole framework is “message-centric” in the sense that basic elements of the
framework are grouped according to how they act on the message. Figure 1 shows a
general overview of the proposed approach in which the message is intercepted by
both middleware elements on the transmitter and receiver sides. It is worth observing
that the message may be either a request in which the transmitter ask for the execu-
tion of a task on the receiver side or a simple information between loosely-coupled
applications.

T
ra

ns
m

itt
er

R
ec

ei
ve

r

N
et

w
or

k

 Middleware

Message Abstractions

Middleware

Points of Interception

Fig. 1. Message-centric approach

The abstractions of the framework are categorised into four classes: mappers (e.g.,
stub and skeletons), multiplexers (e.g., dispatcher), communication (e.g., communica-
tion channel), and storage (e.g., queue and topic). Whatever the class of the middle-
ware element, it intercepts the message, processes it and forwards the message to the
next element. The next element may be a local or remote one. Only communication
elements may forward the message to a remote element, i.e., an element only accessi-
ble through the network. A non-communication element may need to communicate
with a remote element to carry out its task, but it does not send the message itself to a
remote element. For example, a transaction service may need to obtain a remote lock
before pass the request to the next element of the middleware.

138 N.S. Rosa and P.R.F. Cunha

2.1 Basic Abstractions

Mapper elements typically represent remote objects, serve as input points of the mid-
dleware, their basic function is to (un)marshal application data (arguments and re-
sults) into a common packet-level (e.g., GIIOP request), and are usually found in
middleware systems that support request/reply applications in heterogeneous envi-
ronments. Additionally, non-conventional mappers may also compress data. The
specification of a typical mapper, named Stub, is defined as shown in Figure 2.

(1) process Stub [iStub, oStub] : noexit :=
(2) iStub ?m : Message;
(3) oStub !marshalling (m);
(4) iStub ?m : Message;
(5) oStub !unmarshalling (m);
(6) Stub [iStub, oStub]
(7) endproc

iStub oStub
Stub

Fig. 2. Mapper Element

In this specification, the Stub receives a message sent by the transmitter and inter-
cepted by the middleware (2), marshals it (3), passes it to the next element (4), and then
waits for the reply from the receiver. The reply is also intercepted by the middleware
and passed to the Stub (4) that takes responsibility of unmarshalling the reply (5).

Communication elements get a message and communicate it to a remote element.
They act as an interface between the middleware and the operating system. The struc-
ture of a communication element, named Channel, is shown in Figure 3.

(1) process Channel [iCh, oCh, comm] : noexit :=
(2) Send [iCh, oCh, comm] ||| Receive [iCh, oCh, comm]
(3) where
(4) process Send [iCh, oCh, comm] : noexit :=
(5) iCh ?m : Message;
(6) comm !m;
(7) oCh;
(8) Send [iCh, oCh, comm]
(9) endproc …
(10) endproc

iCh

oCh

Channel

comm

Fig. 3. Communication Element

In a similar way to Stub, the input (iCh) and output (oCh) ports serves as inter-
ception points of the element. However, communication elements have an additional
port, named comm, used to communicate the message to a remote element. Addition-
ally, the Channel is composed by Send and Receive processes that are responsi-
ble to send and receive messages, respectively. In this case, the Channel receives
the message intercepted by the middleware (5) and then communicates it to a remote
element (6).Dispatchers get the request and forward it to the right object (service).
The destination object is defined by inspecting the message, in which the destination
has been set during the binding. In practical terms, the dispatcher acts as a multiplexer
inside the middleware. The general structure of a Dispatcher is depicted in Figure
4. The dispatcher receives a message (2) and inspects it, through the function mul-
tiplexer, to define the destination object (3).

 A LOTOS Framework for Middleware Specification 139

(1) process Dispatcher [iDis, oDis] : noexit :=
(2) iDis ?m : Message;
(3) oDis !m ! multiplexer(m);
(4) Dispatcher [iDis, oDis]
(5) endproc

iDis oDis
Dispatcher

Fig. 4. Dispatcher Element

Finally, storage elements express the need of some middleware systems of store
the message prior it to be sent, e.g., for asynchronous communication or to keep a
copy of the message for recovery reasons. The general structure of a Storage ele-
ment is shown in Figure 5.

(1) process Storage [iSto, oSto] (q: Queue): noexit :=

(2) hide enq, fst, empt, deq in

(3) Manager [iSto, oSto, enq, fst, empt, deq]
(4) |[enq, fst, empt, deq]|
(5) Queue [enq, fst, empt, deq] (q)
(6) where
(7) …

(8) endproc

process Queue [enq, fst, empt, deq] (q : Queue) : noexit :=

enq ?n : Nat;

Queue [enq, fst, empt, deq] (enqueue (q, n))
[] fst !first (q);

Queue [enq, fst, empt, deq] (q)
[] deq;

Queue [enq, fst, empt, deq] (dequeue (q))

endproc

Fig. 5. Storage Element

In this particular element, the storage element (left side) is modelled as a Queue
that is administered by the Manager. It is worth observing that with minor changes
to the storage element, it may be defined as a buffer or a file.

2.2 Putting the Basic Abstractions Together

By using the basic abstractions defined in the previous section, middleware systems
may be specified by composing them according to the desired distribution model. The
general structure of any middleware specified according to the framework is defined
as follows:

specification TemplateMiddleware [invC,terC,invS,terS,comm] : noexit
 …
behaviour
 (Transmitter[invC,terC]|[invC,terC]|LocalMiddleware[invC,terC, comm])
 |[comm]|
 RemoteMiddleware [invS,terS,comm] |[invS,terS]| Receiver[invS,terS])
 …
endspec

where a Transmitter sends a message to the Receiver through the middle-
ware, which is made up of a local (LocalMidleware) and remote middleware
(RemoteMidleware) that communicates through the port comm (e.g., it may ab-
stract the whole network). Whatever the middleware model, its internal structure is
defined as follows (except for the number of components):

140 N.S. Rosa and P.R.F. Cunha

process Middleware [invC, terC, comm] : noexit :=
 hide iC1, oC1, iC2, oC2 in
 ((C1 [iC1,oC1] ||| C2 [iC2,oC2,comm])
 |[iC1, oC1, iC2, oC2]|
 Interceptor [invC,terC,iC1,oC1,iC2,oC2])
 where …
endproc

The middleware is composed of a set of components (e.g., C1 and C2), depending
on its complexity. The composition is expressed in the process Interceptor. As
our approach is message-centric, each component “intercepts” the request in the port
iCN (iC refers to “input port of component CN” that represents the point where the
request enters in the component). Next, the request is processed inside the component
and then passed to the next component through the port oCN (oC refers to the “output
port of component N” that represents the point where the request exits the component)
according to the constraints imposed by the process Interceptor.

3 Adopting the Framework Elements

In order to illustrate how the elements introduced in the previous session may be used
to facilitate the middleware specification, we present the specification of a simple
middleware that has a similar structure as CORBA and a message-oriented middle-
ware (MOM).

process RemoteMiddleware [invS, terS, comm] : noexit :=

hide iSkeleton, oSkeleton, iTcp, oTcp, iDis, oDis in

((Skeleton [iSkeleton, oSkeleton] (1)

||| Skeleton [iSkeleton, oSkeleton] (2)

||| Channel [iTcp, oTcp, comm]

||| Dispatcher [iDis, oDis])

|[iSkeleton, oSkeleton, iTcp, oTcp, iDis, oDis]|

Interceptor [invS, terS, iSkeleton, oSkeleton, iTcp, oTcp, iDis, oDis])

where …

endproc

Stub

Channel

Client

Dispatcher

Skeleton

Service1

Channel

Skeleton

Service2

Lo
ca

lM
id

dl
ew

ar
e

R
em

ot
eM

id
dl

ew
ar

e

Fig. 6. Client-Server Middleware

Figure 6 presents a client-server middleware where the local middleware is a com-
position of a stub and channels elements. On the server side (remote), the middleware
is more complex, as it is composed by a communication element (Channel), a dis-
patcher (Dispatcher) that forwards the request to the proper skeleton, and some
skeletons (Skeleton). It is worth observing that additional middleware elements are
easily added to the middleware just including them in the parallel composition (|||) and
changing the Interceptor element.

A MOM is characterised by the use of a buffer to the asynchronous communication
and it is widely adopted to communicate loosely coupled applications. Figure 6 shows
a simple MOM specified by using the basic abstractions defined in Section 2.

 A LOTOS Framework for Middleware Specification 141

(1) Process LocalMiddleware [send, receive, comm]: Noexit :=

(2) hide iSto, oSto, iCh, oCh in

(3) ((Storage [iSto,oSto] ||| Channel [iCh, oCh, comm])

(5) |[iSto, oSto, iCh, oCh]|

(6) Interceptor [send, receive, iSto, oSto, iCh, oCh])

(7) where

(8) …

(9) endproc

Storage

Channel

Transmitter Receiver

Channel

Storage

Lo
ca

lM
id

dl
ew

ar
e

R
em

ot
eM

id
dl

ew
ar

e

Fig. 7. Message-Oriented Middleware

This MOM has two elements, namely Channel and Storage. The abstraction
Channel is similar to Figure 6, whilst Storage is defined as presented in
Section 2. MOMs that execute on the transmitter side are usually similar to one on the
receiver (remote) side.

4 Conclusion and Future Work

This paper has presented a framework useful to formalise middleware behaviour based
on LOTOS. The framework consists of a set of common elements usually found in the
development of middleware systems. The framework is now being defined, but it is
possible to observe that a formalisation approach centred on the message request in-
stead of middleware layer facilitates the treatment of middleware complexity: simple
abstractions are highly reusable (see abstraction Channel in Section 3) and easier to
find specification errors and verify desired behaviour properties; and the way of com-
posing middleware abstractions considering the order they intercept the message re-
quest enormously facilitate the composition of middleware abstractions.

We are now extending the proposed set of abstractions including more sophisti-
cated communication and concurrent elements. Meanwhile, it is also planned to in-
clude the specification of middleware services in such way that composition con-
straints may also consider middleware service composition.

References

[1] Basin, David, Rittinger, Frank and Viganò, Luca (2002) “A Formal Analysis of the
CORBA Security Service”, In: Lecture Notes in Computer Science, No. 2272, pp. 330-
349.

[2] Bastide, Rèmi, Palanque, Philippe, Sy, Ousmane and Navarre, David (2000) “Formal
Specification of CORBA Services: Experience and Lessons Learned”, In: OOPSLA’00, p.
105-117.

[3] Bastide, Rèmi, Sy, Ousmane, Navarre, David and Palanque, Philippe (2000) “A Formal
Specification of the CORBA Event Service”, In: FMOODS’00, p. 371-396.

[4] Campbell, Andrew T., Coulson, Geoff and Kounavis, Michael E. (1999) “Managing Com-
plexity: Middleware Explained”, IT Professional, IEEE Computer Society, Vol 1(5), pp.
22-28, October.

142 N.S. Rosa and P.R.F. Cunha

[5] Kreuz, Detlef (1998) “Formal Specification of CORBA Services using Object-Z”, In: Sec-
ond IEEE International Conference on Formal Engineering Methods, pp., December.

[6] Venkatasubramanian, Nalini (2002) “Safe Composability of Middleware Services”, Com-
munications of the ACM, Vol 45(6), pp. 49-52, June.

[7] Vinoski, Steve, (2002) “Where is Middleware?”, IEEE Internet Computing, Vol. 6(2), pp.
83-85.

[8] Rosa, Nelson and Cunha, Paulo (2004) “A Software Architecture-Based Approach for
Formalising Middleware Behaviour”, Electronic Notes in Theoretical Computer Science,
Vol. 108, pp. 39–51.

[9] Schmidt, Douglas and Buschmann, Frank (2003) “Patterns, Frameworks, and Middleware:
Their Synergistic Relationships”, Proceedings of the 25th international conference on
Software Engineering, pp. 694-704.

Automatic Synthesis of Assumptions
for Compositional Model Checking�

Bernd Finkbeiner1, Sven Schewe1, and Matthias Brill2

1 Universität des Saarlandes
66123 Saarbrücken, Germany

{finkbeiner, schewe}@cs.uni-sb.de
2 Carl von Ossietzky Universität

26121 Oldenburg, Germany
matthias.brill@informatik.uni-oldenburg.de

Abstract. We present a new technique for automatically synthesizing
the assumptions needed in compositional model checking. The compo-
sitional approach reduces the proof that a property is satisfied by the
parallel composition of two processes to the simpler argument that the
property is guaranteed by one process provided that the other process
satisfies an assumption A. Finding A manually is a difficult task that
requires detailed insight into how the processes cooperate to satisfy the
property. Previous methods to construct A automatically were based on
the learning algorithm L∗, which represents A as a deterministic automa-
ton and therefore has exponential worst-case complexity. Our new tech-
nique instead represents A as an equivalence relation on the states, which
allows for a quasi-linear construction. The model checker can therefore
apply compositional reasoning without risking an exponential penalty
for computing A.

1 Introduction

Compositional model checking is a divide-and-conquer approach to verification
that splits the correctness proof of a concurrent system into arguments over its
individual processes. Compositional reasoning [12,4,11,15,20,23] is always advis-
able when one tries to analyze a complex program; for model checking, which
automatically verifies a system by traversing its state space, compositionality is
particularly helpful, because the number of states grows exponentially with the
number of processes.

In order to check that a property P holds for the parallel composition M‖N of
two processes M and N , the compositional approach introduces an assumption
A such that P holds for M‖N if and only if P holds for M‖A. Because the
assumption A is an abstraction of the implementation N , neglecting details
not relevant for the property P , A can be much simpler than N . Recently,
� This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 143–158, 2006.
c© IFIP International Federation for Information Processing 2006

144 B. Finkbeiner, S. Schewe, and M. Brill

a

b h

ic d

e f g

M

r1
r2

c2
c1

r2

c2

n2 c1

n1

n2

n1

c2, n2

c2, n2

c2, n2, r2

n2, r2

c2, r2 c2, n2, r2c2, n2, r2

n2, r2

c2, r2

j

k q

rl m

n o p

N

r2
r1

c1
c2

r1

c1

n1 c2

n2

n1

n2

c1, n1

c1, n1

c1, n1, r1

n1, r1

c1, r1 c1, n1, r1c1, n1, r1

n1, r1

c1, r1

Fig. 1. Mutual exclusion protocol with two processes. Each process can request access
to a critical resource (r1, r2), obtain the resource (c1, c2), and release it (n1, n2).

there has been a lot of interest in finding A automatically. There are at least
three application scenarios for such a synthesis procedure. The first and most
obvious scenario is to use A as program documentation, to be used during system
optimization and maintenance: a modification to process N is safe as long as A
is still valid. In a second scenario, the model checker provides A as a certificate
(cf. [18]) for the validity of P : once A is known, revalidating the proof, possibly
using a different model checker, is simple. The third and most ambitious scenario
is to compute and use A during the same model checking run, accelerating the
verification by compositional reasoning.

An interesting candidate for A is the weakest environment assumption under
which process M guarantees P [8]. The weakest assumption is independent of N
and therefore only needs to be computed once if M is used in different environ-
ments. However, because the weakest assumption must account for all possible
environment behaviors, it usually has a large state space.

Several researchers have therefore investigated a different construction based
on the L∗ algorithm, a learning technique for deterministic automata [6,2,1]. In
this setting, a candidate assumption A′, represented as a deterministic automa-
ton, is evaluated against both N and P by model checking. As long as either A′

rejects some computation of N or M‖A′ accepts a computation that violates P ,
A′ is refined to eliminate the particular counter example. The advantage of this
approach is that it takes M into account and therefore produces assumptions
that are much smaller than the weakest assumption. However, it is a less general
technique: it will only yield an assumption if M‖N actually satisfies P (and
is therefore a compositional proof technique rather than a compositional veri-
fication technique). Furthermore, the structure of the deterministic automaton
does not correspond to the structure of the (possibly nondeterministic) process
N and is therefore usually not a good form of documentation. Also, learning (and

Automatic Synthesis of Assumptions for Compositional Model Checking 145

s

t

u

π

P
c1

c2

c2

c1

n1

n2

n1, n2, r1, r2

c1, n2, r1, r2

c2, n1, r1, r2

A

Fig. 2. Error LTS for the mutual exclusion property. Mutual exclusion forbids a second
access to the critical resource by c2 after a first access by c1 has occurred that has not
yet been released by n1, and, symmetrically, an access by c1 after an access by c2 before
the next n2. In these cases, the property reaches the error state π.

storing) a deterministic automaton is expensive. Experience with the LTSA
tool [6] suggests that the cost of computing the assumption in this way is
several orders of magnitude higher than verifying the property by simple non-
compositional model checking. In the worst case, the size of A (and therefore
also the cost of the learning process) is exponential in the size of N .

In this paper, we argue that the synthesis of the assumption should not be sig-
nificantly more expensive than solving the verification problem itself. We present
a new approach to finding A, where, rather than synthesizing a deterministic au-
tomaton, we compute in linear time an equivalence relation ∼ on the states of
N . The assumption A is the quotient of N with respect to ∼.

This reduction technique resembles the methods for process minimization used
in compositional reachability analysis [21,22,10,3], which reduce a partially com-
posed system to an observationally equivalent process. However, our equivalence
relation is different: rather than preserving the entire observational behavior of
a process, we only preserve the reachability of an error. Since this is a much
coarser equivalence, the resulting quotient is much smaller.

Consider the mutual exclusion protocol in Figure 1. Each of the two processes
can request access to a critical resource with the action r1 (for process M) or
r2 (for process N), then obtain the resource with c1 or c2, and finally release
the resource with n1 or n2. The protocol satisfies the mutual exclusion property,
which forbids the c2 action to occur after c1 has happened and before the next
n1 has happened, and, symmetrically, the c1 action to occur after a c2 and
before the next n2. Mutual exclusion can be proven by model checking, i.e., by
composing M‖N with the error system for the mutual exclusion property, shown
in Figure 2, and showing that the error state π is unreachable.

Compositional model checking considers the composition M‖A instead of the
full system M‖N . In our approach, the assumption A is the quotient of N with
respect to an equivalence relation on the states of N that merges two states into
a single equivalence class if they either both lead to an error in M‖N or both

146 B. Finkbeiner, S. Schewe, and M. Brill

j

k q

rl m

n o p

N

r2 r1

c1
c2

r1

c1

n1 c2

n2

n1

n2

c1, n1

c1, n1

c1, n1, r1

n1, r1

c1, r1 c1, n1, r1 c1, n1, r1

n1, r1

c1, r1

A

j

q, rk, l, m, n, o, p

r2
r1

n1

n2

c1, n1

n1, c1, r1n1, r1, c1, c2

Fig. 3. Assumption A = N/∼ for the compositional proof of mutual exclusion, defined
by the equivalence relation ∼ on the states of LTS N . The equivalence classes of ∼
are shown in grey.

avoid the error in M‖N . Figure 3 shows the equivalence relation for the example.
There are three equivalence classes: state j, states q, r, and states k, l, m, n, o, p.
The quotient A = N/∼ (where each equivalence class is a state, and there is an
edge from one equivalence class to another if there is an edge from one of the
members of the first class to a member of the second class) thus has only three
states.

Like the weakest assumption, the quotient A can be used as an assumption
both in proving and in disproving the property P . The full system M‖N satisfies
P if and only if the composition M‖A satisfies P . Our algorithm for constructing
the equivalence relation takes O(|M |·|N |·log |N |·|P |) time, exceeding the cost of
standard model checking only by a logarithmic factor. The generated assumption
A is related to the process N by a simple homomorphism. Our construction is
therefore a good solution for the first application scenario (documentation) as
well as for the second scenario (certification).

Can we furthermore use the construction of A in the third scenario, to ac-
celerate the model checking process by compositional reasoning? For this pur-
pose, the complexity of the basic construction is too expensive. We give a mod-
ified construction that runs in O(|M| · |N | · log |N | · |P |) time, where M is
an abstraction of M . The abstraction is computed in an automatic abstrac-
tion refinement loop that, starting with the trivial abstraction, incrementally
increases the size of the abstraction. The loop can be interrupted after any
number of iterations, yielding a sound (but not necessarily minimal) assump-
tion. The algorithm terminates when the assumption cannot be reduced any
further.

Automatic Synthesis of Assumptions for Compositional Model Checking 147

2 Labeled Transition Systems

We use labeled transition systems (LTS) to describe the behavior of processes.
A labeled transition system M = 〈V, E, v0, A〉 is given as a set V of states
with a designated initial state v0 ∈ V , a finite alphabet A of actions, and a set
E ⊆ V ×A× V of edges.

A sequence −→a = a1a2a3 . . . an ∈ A∗ of actions in the alphabet of an LTS M is
called a run of M if there is a sequence −→v = v0v1v2 . . . vn ∈ V +, starting in the
initial state v0, such that (vi−1, ai, vi) ∈ E is an edge of M for all i = {1, . . . , n}.
−→v is called a state trace of −→a . The set of runs of an LTS is called its language.

A system generally consists of multiple processes. The LTS of each process
restricts the possible behavior of the system: a sequence −→a of actions is a run of
the system iff it is a run of all processes.

Composition. The composition M‖N of two LTS M = 〈V1, E1, v
1
0 , A〉 and

N = 〈V2, E2, v
2
0 , A〉 is the LTS 〈V, E, v0, A〉 with

– V ′ = V1 × V2 and v0 = (v1
0 , v2

0),
– ((v1, v2), a, (v′1, v

′
2)) ∈ E′

⇔ (v1, a, v′1) ∈ E1 ∧ (v2, a, v′2) ∈ E2,
– V ⊆ V ′ is the set of reachable states of V ′, and
– E = E′ ∩ V ×A× V is the set of reachable transitions.

Specification. An LTS M = 〈V, E, v0, A〉 is called deterministic if, for all
states v ∈ V of M and all actions a ∈ A of the alphabet of M at most one edge
with label a exits (|E ∩ {v} × {a} × V | ≤ 1). A deterministic LTS P is called a
property.

An LTS S satisfies P , denoted by S |= P , iff the language of S is contained
in the language of P . For a (deterministic) property P = 〈V, E, v0, A〉, the LTS
P = 〈V ∪ {π}, Eπ, v0, A〉 with Eπ = E ∪ {π}×A×{π} ∪ {(v, a, π) | v ∈ V, a ∈ A
and {v} × {a} × V ∩ E = ∅} is called the error LTS of P .

The error state π is treated specially in the composition S‖P of a process S
and an error LTS. For S = 〈V1, E1, v

1
0 , A〉 and P = 〈V2, E2, v

2
0 , A〉, S‖P is the

LTS 〈V, E, v0, A〉 with

– V ′ = (V1 × V2) ∪ {π} and v0 = (v1
0 , v2

0),
– ((v1, v2), a, (v′1, v′2)) ∈ E′

⇔ (v1, a, v′1) ∈ E1 ∧ (v2, a, v′2) ∈ E2,
– (π, a, v) ∈ E′ ⇔ v = π,
– ((v1, v2), a, π) ∈ E′ ⇔ {v1} × {a} × V1 ∩ E1 �= ∅ and

{v2} × {a} × V2 ∩ E2 = ∅,
– V ⊆ V ′ is the set of reachable states of V ′, and
– E = E′ ∩ V ×A× V is the set or reachable transitions.

Model checking. The verification problem is to decide for a given system S
and a property P if S |= P . The verification problem can be solved by model
checking, which checks if the error state π is reachable in the composition S‖P .
If S = M‖N consists of two processes, the cost of model checking is in time and
space O(|M | · |N | · |P |).

148 B. Finkbeiner, S. Schewe, and M. Brill

Abstraction. Abstraction is a general verification technique, in which the be-
havior of a given process is approximated over a smaller state space. In this paper,
we consider homomorphic abstractions, as introduced by Clarke, Grumberg, and
Long [5]. An LTS A = 〈V ′, E′, v′0, A〉 is a (homomorphic) abstraction of an LTS
N = 〈V, E, v0, A〉 if there exists a total and surjective function h : A → A′, such
that h(v0) = v′0, and for all edges (v, a, v′) in E there is an edge (h(v), a, h(v′))
in E′.

In the following, we identify the homomorphism h with the induced equiva-
lence v ≈ v′ ≡ h(v) = h(v′) on the states. The canonic abstraction defined by
an equivalence relation ≈ is the quotient LTS with respect to ≈. We denote the
equivalence class of a state n with respect to ≈ by [n]≈, or, if ≈ is clear from the
context, by [n]. Let V/≈ = {[v] | v ∈ V } denote the set of equivalence classes of
a set V of states. The quotient of the LTS N = 〈V, E, v0, A〉 with respect to ≈
is the LTS N/≈ = 〈V/≈, E′, [v0], A〉, where ([v], a, [v′]) ∈ E′ iff there are two
states w ∈ [v] and w′ ∈ [v′] such that ([v], a, [v′]) ∈ E.

Compositional verification. Our approach is based on the following compo-
sitional verification rule [19,2]:

(1) M‖A |= P
(2) N |= A

M‖N |= P

To prove that a two-process system M‖N satisfies a property P , the rule replaces,
in premise (1), the process N by the assumption A, which, according to premise
(2), must be chosen such that its language contains the language of N . In our
setting, A = N/≈ is the quotient of N with respect to an equivalence relation
≈ on the states of N . Since the language of an LTS is always contained in the
language of its quotient, we obtain the following simplified rule:

M‖N/≈ |= P
M‖N |= P

For an arbitrary equivalence relation ≈, the rule is sound but not necessar-
ily invertible: the language of M‖N may be a proper subset of the language
of M‖N/≈. In order to use the assumption both for proving and for disprov-
ing properties, we are interested in equivalences ∼ such that M‖N/∼ |= P iff
M‖N |= P. In the following sections, we present methods to construct such
equivalences.

3 Forward Equivalence

We call two states n1 and n2 of N forward-equivalent if merging them does
not make additional states in M‖N‖P reachable. For example, in Figure 3, the
states m, n, o, and p are forward equivalent.

Let m0, n0, and p0 be the initial states of M , N , and P , respectively. The
forward equivalence relation ∼F is defined as follows.

Automatic Synthesis of Assumptions for Compositional Model Checking 149

s, a

s, b s, h

t, c

s, d

s, f t, g

u, a

u, b u, h

u, iu, d

u, e u, f

π

M‖P

r1
r2

c2

c1

r2

c2 c1

n1

n2

n1

r1
r2

c2
c1

r2

c2

n2

c1

c2

c2

c2

c2

n2

c2

n2

n2

n2

n2

n2

n2, r2

n2, r2

n2, r2
n2, r2

n2, r2

c2

c2

r2

c2, r2 c2, r2

r2

c2, r2

A

state VF VB

(s, a) {j} {k, l, R}
(s, b) {q} {j, k, l, R}
(s, d) ∅ {j, k, l, R}
(s, f) ∅ {j, k, l, R}
(s, h) {k} ∅
(t, c) {r} {j, k, l, R}
(t, g) ∅ {j, k, l, R}
(u, a) ∅ {j, k, l, q, r,R}
(u, b) ∅ {j, k, l, q, r,R}
(u, d) ∅ {j, k, l, R}
(u, e) ∅ {j, k, l, R}
(u, f) ∅ {j, k, l, q, r,R}
(u, h) ∅ ∅
(u, i) {l} ∅

π ∅ {j, k, l, q, r,R}

Fig. 4. Labeling of M‖P in the computation of the forward and backward equivalences
in the mutual exclusion example. The labeling with VF , obtained during the forward
traversal and shown in the second column, indicate that states m, n, o, and p of N are
forward equivalent and can be merged into a single equivalence class R (cf. Figure 5).
The labeling with VB, obtained during the backward traversal and shown in the third
column, indicates that states q and r, and states k, l and R of NF are backward
equivalent. Merging these states yields the assumption shown in Figure 3.

Two states n1 and n2 of N are forward equivalent, n1 ∼F n2, iff, for all
states m of M and all states p of P , there is a path from v0 = (m0, n0, p0)
to the (m, n1, p) if and only if there is a path from v0 to (m, n2, p).

The forward equivalence relation yields an invertible verification rule:
M‖N/∼F |= P iff M‖N |= P .

We compute ∼F in two steps. In the first step, we decorate the states of
Q = M‖P with sets VF of states of N such that the label of a state q of Q
contains a state n of N iff there is a path from v0 to (n, q) in N‖Q. In the
second step, we extract the equivalence relation from the labels: for two states
n1 and n2 of N , n1 ∼F n2 iff for every label VF on some state of Q, n1 is in VF

if and only if n2 is in VF .
The labeling process is carried out as a fixed point computation, beginning

with {n0} as the label on (m0, p0) and the empty set on all other states. If there is
an edge with action a from a state (m, p) labeled with set VF to a state (m′, p′),
then every state n of N that has an incoming edge with action a from some
state in VF is added to the label of (m′, p′). By traversing the graph forward in
a breadth-first manner, it suffices to consider each edge in M‖P at most once.
The fixed point is therefore reached after at most |M | · |N | · |P | steps. Let NF

be the quotient of N with respect to ∼F .

150 B. Finkbeiner, S. Schewe, and M. Brill

j

k q

rl R

r2
r1

c1
c2

r1

n2

n1
n2

c1, n1

c1, n1

c1, n1, r1 c1, n1, r1, c2

n1, r1

c1, r1

Fig. 5. The quotient NF of process N for the compositional proof of mutual exclusion.
States m, n, o, and p have been merged into the equivalence class R.

Figure 4 illustrates the computation of the forward equivalence on the states
of process N from the mutual exclusion example. The second column shows
the result VF of the forward labeling process. States m, n, o and p are forward-
equivalent, since they are not contained in the label of any state of M‖P . Figure 5
shows the resulting quotient NF .

A careful analysis shows that NF can be constructed in O(log |NF | · |M | · |N | ·
|P |) time. We fix an arbitrary order <M‖P on the states VM‖P of M‖P , and defer
a linear pre-order �N on the states VN of N , such that two states v, v′ ∈ VN are
identified iff they are forward equivalent (�N≡∼F). Let dec : VM‖P → 2VN be
the function that maps each state of M‖P to the set of states it is decorated with.
We define ≺N= {(v, v′) ∈ VN

2 | ∃w ∈ VM‖P . v /∈ dec(w) � v′ ∧ ∀w′ <M‖P w. v ∈
dec(w) ↔ v′ ∈ dec(w)} and �N= {(v, v′) ∈ VN

2 | ∀w ∈ VM‖P . v ∈ dec(w) ↔
v′ ∈ dec(w)}.

We can therefore construct the quotients by sorting the states of VN with
respect to �N , using AVL-trees. Concurrently to the sorting, we immediately
merge equivalent states. The nodes of the AVL-tree is therefore bound by the
number |NF | of quotients. Since comparing two elements of VN can be performed
in time O(M), NF can be constructed in time O(log |NF | · |M | · |N | · |P |).

4 Backward Equivalence

We call two states n1 and n2 of NF (cf. Figure 5) backward-equivalent if merging
them neither introduces nor removes an error path in M‖N . In the example of
Figure 3, the states k, l, R and the states q, r are backward equivalent.

Automatic Synthesis of Assumptions for Compositional Model Checking 151

Two states n1 and n2 of NF are backward equivalent, n1 ∼B n2, iff, for
all states m of M and all states p of P , there is a path from (m, n1, p)
to the error state π if and only if there is a path from (m, n2, p) to π.

Combining the backward equivalence relation with the forward equivalence
relation, we again obtain an invertible verification rule:

M‖NF /∼B |= P iff M‖NF |= P iff M‖N |= P.

The construction of ∼B is based on a labeling of the state graph of Q = M‖P
with sets VB of states of NF such that the label of a state q of Q contains a state
n of NF iff there is a path from (n, q) to π in NF ‖Q. We extract the equivalence
relation from the labels as follows: for two states n1 and n2 of NF , n1 ∼ n2 iff
for every label V on some state of Q, n1 is in V if and only if n2 is in V .

The labeling process is carried out as a fixed point computation beginning
with the entire state set of N as the label on the error state π and the empty
set on all other states. If there is an edge with action a between a state (m, p)
and a state (m′, p′) labeled with set V , then every state n of N that has an edge
with action a to some state in V is added to the label of (m, p). By following
the edges backwards from the error states in a breadth-first manner, it suffices
to consider each edge in M‖P at most once. The fixed point is therefore again
reached after at most |M | · |N | · |P | steps. The assumption A is defined by the
composition ∼ := ∼B ◦ ∼F of the two equivalence relations: for two states n1,
n2 of N , n1 ∼ n2 iff [n1]∼F ∼B [n2]∼F .

For the mutual exclusion example, the result VB of the backward labeling
is shown in the third column of the table in Figure 4. States k, l and R, and
states q and r occur in the label of the same states of M‖P . Consequently,
they are backward-equivalent, and ∼B reduces the forward quotient NF to the
assumption LTS depicted in Figure 3.

5 Assumptions from Abstractions

Traversing the state space of M‖P , as in the constructions of the previous sections,
is not feasible if M is large, for example because it is again composed from multi-
ple processes. In this section, we modify the algorithms to work on an abstraction
of M . We assume that the abstraction is defined by a given equivalence relation
≈. This equivalence relation is used to construct a modal transition system, which
in turn is used to compute upper and lower bounds for the labels VF (or VB) of
the states of M‖P . We present an algorithm for computing ≈ in Section 6.

Replacing M with an abstractionM introduces the possibility that two states
of N both lead to an error when composed with M, but only one of them leads
to an error when composed with M . The algorithm must therefore distinguish
situations that may lead to an error (i.e., the error is reached in the composition
with M but not necessarily in M) from situations that must lead to an error
(both in composition with M and in composition with M). Merging two states
of N is safe in two cases: (1) if they both must lead to an error and (2) if neither

152 B. Finkbeiner, S. Schewe, and M. Brill

of them may lead to an error. We formalize this idea using modal transition
systems. (The concept of modal transition systems has recently been successfully
applied in model checking for single processes [7,14,9].)

A modal transition system (MTS) [17,16] is a tupleM=〈V, Emust , Emay , v0, A〉
such that Mmust = 〈V, Emust , v0, A〉 and Mmay = 〈V, Emay , v0, A〉 are labeled
transition systems and Emust ⊆ Emay .

An abstraction, given as an equivalence ≈ on the states of a labeled transi-
tion system M = 〈V, E, v0, A〉, defines a modal transition system M = 〈V/≈,
Emust , Emay , [v0], A〉, where there is a may edge ([v], a, [v′]) ∈ Emay iff there is
a state w ∈ [v] and a state w′ ∈ [v′] such that (w, a, w′) ∈ E.

An intuitive symmetric definition for the must edges Emust , which can be
applied both for the computation of forward and backward equivalence classes,
would be Emust={([v], a, [v′]) ∈ Emay | ∀w∈[v] ∀w′∈[v′]. (w, a, w′) ∈ E}. Stronger
results can be obtained by using different sets of must edges for forward and
backward analysis:

– For the computation of forward equivalence classes, an edge ([v], a, [v′]) ∈
Emust is a must edge iff for all states w′ ∈ [v′] there is a state w ∈ [v] such
that (w, a, w′) ∈ E.

– For the computation of backward equivalence classes, an edge ([v], a, [v′]) ∈
Emust is a must edge iff for all states w ∈ [v] there is a state w′ ∈ [v′] such
that (w, a, w′) ∈ E.

We extend the composition operator to modal transition systems. The com-
position M‖N of an MTS M = 〈V1, E

must
1 , Emay

1 , v1
0 , A〉 and an LTS N =

〈V2, E2, v
2
0 , A〉 is constructed such that (M‖N)must = Mmust‖N and (M‖N)may

= Mmay‖N .
We construct the assumption A for the model checking problem M‖N |= P

again as an equivalence � := �B ◦ �F on the states of N . Let M be the MTS
defined by an abstraction of M , and let m0, n0, and p0 be the initial states of
M, N , and P , respectively. The forward equivalence relation �F is defined as
follows: for two states n1 and n2 of N ,

n1 �F n2 iff for all states m of M and all states p of P , one of the
following two conditions holds: (1) there is a path from (m0, n0, p0) to
(m, n1, p) and a path from (m0, n0, p0) to (m, n2, p) in Mmust‖N‖P , or
(2) there is no path from (m0, n0, p0) to (m, n1, p) and there is no path
from (m0, n0, p0) to (m, n2, p) in Mmay‖N‖P .

To compute �F , we apply the fixed point construction from Section 3 twice:
once on the graph Mmust‖P , labeling each state with a subset Vlower of the
states of N , and once on the graph Mmay‖P , labeling each node with a subset
Vupper of the states of N . If a state [s] ofMmust‖P is labeled with (Vlower , Vupper)
then all states t ∈ [s] of M‖P are labeled with a subset VF ⊆ Vupper of Vupper
(using the method suggested in Section 3). Likewise, if ≈ does not identify the
initial state with any other state ([(m0, p0)] = {(m0, p0)}), all states t ∈ [s] of
M‖P are labeled with a superset VF ⊇ Vlower of Vlower . These upper and lower

Automatic Synthesis of Assumptions for Compositional Model Checking 153

a

1 2

M

r1

r2

c1, c2, n2, r2

c2, n2

n1

n2

c2, n2

r2

s, 2 u, 2

s, a u, a

s, 1 u, 1

t, 1 π

Mmust‖P

c2

n2n1 n1

n2n2

n1

r2

n2

r2

c2

A

s, 2 u, 2

s, a u, a

s, 1 u, 1

t, 1 π

Mmay‖P

c2

n2

n2c2

n2

c2

n2

c2

n2r2

r1n1

c1

n1

r2

r1n1

c1

r2

n2

r2, n2

r2, n2

c2, r2

c2

c2, r2

A

state Vlower Vupper

(s, a) {j} {j, q}
(s, 1) ∅ {q}
(s, 2) ∅ {j, k}
(t, 1) ∅ {r}
(u, a) ∅ ∅
(u, 1) ∅ ∅
(u, 2) ∅ {l}

π ∅ ∅

Fig. 6. Computation of the forward equivalence in the mutual exclusion example, based
on an abstraction M of process M . The MTS M is the result of merging states
b, c, d, e, f and g of M into equivalence class 1 and states h and i into equivalence
class 2. States m, n, o, and p of N are forward-equivalent because they occur in none
of the Vupper labels. Merging these states results in the quotient NF shown in Figure 5.

bounds on the labeling of the single states of M‖P allow for the definition of an
equivalence relation �F : For two states n1 and n2 of N , n1 �F n2 iff for every
pair of labels Vlower and Vupper on some state, either n1 is in Vlower and n2 is in
Vlower , or n1 is in V � Vupper and n2 is in V � Vupper . Let NF be the quotient of
N with respect to �F .

Figure 6 illustrates the computation of �F for the mutual exclusion example.
The MTSM is the result of merging states b, c, d, e, f and g of M into equivalence
class 1 and merging states h and i into equivalence class 2. States m, n, o, and
p of N are forward-equivalent because they occur in none of the Vupper labels.
Merging these states results in the quotient NF shown in Figure 5.

To compute NF , we proceed in two steps. In a first step, we compute those
states V 1

N ⊆ VN of N , which are in Vupper but not in Vlower for some state
of M‖P . Since these states always form a quotient of their own, they can
be excluded from further consideration. The construction of NF is then com-
pleted by construction quotients for the states in VN � V 1

N using the sorting
approach suggested in the previous section. The overall construction again takes
O(log |NF | · |M | · |N | · |P |) time.

154 B. Finkbeiner, S. Schewe, and M. Brill

The backward equivalence relation �B can be defined and computed analog to
the forward equivalence relation�F . Since the equivalences∼F and ∼B obtained
without abstraction (by the algorithms in Sections 3 and 4) are always coarser
than the equivalences �F and �B obtained using M, we again obtain invertible
proof rules:

M‖N/�F |= P iff M‖N |= P, and

M‖NF /�B |= P iff M‖NF |= P.

6 Abstraction Refinement

In this section, we give a construction for the equivalence ≈ on the states of
M needed in the algorithms in Section 5. We begin with the trivial two-state
abstraction (that merges all non-initial states) and then incrementally increase
the size of the abstraction in an abstraction refinement loop.

Since the constructions in Section 5 produce some (not necessarily minimal)
assumption for any abstraction, the loop can be interrupted at any time. Other-
wise, the loop terminates as soon as the upper and lower bounds (Vlower , Vupper)
coincide for all states of M‖P .

As long as there is some state labeled with (Vlower , Vupper) such that Vlower �=
Vupper , we pick a may edge (s, a, s′) ofMmay‖P that does not occur inMmust‖P .

To obtain a coarser forward equivalence relation �F , we refine ≈ by distin-
guishing any two states m1 and m2 represented by s′ (m′

1, m
′
2 ∈ [s′]M , where

[s]M = [m] for s = ([m], p) and [π]M = VM) if there is an edge (m1, a, m′
1) in M

with m1 ∈ [s]M , but no edge (m2, a, m′
2) with m2 ∈ [s]M . I.e., the equivalence

relation ≈ is refined into the new equivalence ≈(s,a,s′), with

≈(s,a,s′) =≈ �{(m1, m2) ∈ [s′]2M | (∃m ∈ [s]M . (m, a, m1) ∈ EM)
� (∃m ∈ [s]M . (m, a, m2) ∈ EM)}.

Note that the previously computed upper and lower bounds remain valid after
the refinement of ≈. We preserve and use this information: The previous values
of Vlower can be used as a starting point for the fixed point construction of the
new Vlower . Since a split can introduce new may edges, this method does not
only accelerate the computation of the fixed point, but also provides sharper
lower bounds. The refinement loop is guaranteed to terminate: in the worst
case, the number of refinement steps is equal to the size of M . How fast the loop
terminates depends on the choice of the may edges to refine on.

We avoid the explicit computation of the upper bounds Vupper by choosing
an edge (s, a, s′) such that

– s and s′ were labeled during the forward traversal with Vlower and V ′
lower ,

respectively, and
– Vlower × {a} × VN � V ′

lower is not disjoint from the edges of N .

The second condition avoids the choice of edges that cause no difference in the
labeling of s′. If there are multiple such edges, we pick one where the distance
from the initial state to s is minimal in Mmust‖P .

Automatic Synthesis of Assumptions for Compositional Model Checking 155

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 25 50 75 100 125 150 175 200

nu
m

be
r

of
 s

ta
te

s
in

 q
uo

tie
nt

 o
f r

ec
ei

ve
r

pr
oc

es
s

(N
)

number of refinement steps = number of states in quotient of sender process (M)

Property A
Property B
Property C
Property D

Fig. 7. Experimental data from the sliding window protocol benchmark. Property A
expresses that the protocol does not invent messages, Property B and C express that
the sender process and the receiver process, respectively, do not invent messages, and
Property D expresses (incorrectly) that no messages are delivered. The figure shows
the number of states in the quotient of the receiver process (N) after a given number of
refinement steps. Since each refinement step introduces a new state in the abstraction
of the sender process (M), the number of refinement steps is equal to the number of
states in the quotient of M .

The refinement step for the backward equivalence �B can be defined
analogously.

7 Experimental Results

We have implemented the algorithms of this paper in a small prototype tool,
which is intended as a front-end to the model checker SPIN [13]. Our tool reads a
two-process system written in (a subset of) Promela and produces a modified sys-
tem, where the second process is replaced by the assumption LTS. The tool ap-
plies the abstraction refinement algorithm and switches every ten steps between
computing the forward and computing the backward equivalence. The process
can be interrupted after an arbitrary number of refinement steps and terminates
once the upper and lower bounds for the labels coincide in both constructions.

Figure 7 shows experimental data from the verification of the classic sliding
window protocol benchmark. In the sliding window protocol, the sender (process
M) transmits messages over an unreliable channel to the receiver (process N). To

156 B. Finkbeiner, S. Schewe, and M. Brill

ensure that no packets are lost, the sender stores the messages in a sliding buffer
until acknowledgments are received. In our benchmark, there are three different
types of messages (red, white, and blue) and the buffer stores two messages at a
time, which results in 192 states each for the sender and the receiver.

We consider four properties: Property A expresses that the protocol does not
invent messages (“if there is no white message in the input of the sender, then
there will be no white message in the output of the receiver”). Properties B
and C express the same condition locally for the two processes, i.e., Property B
specifies that the sender does not invent messages (“if there is no white message
in the input of the sender, then there will be no white message on the network”),
Property C specifies that the receiver does not invent messages (“if there is
no white message on the network, then there will be no white message in the
output”). Property D expresses that the receiver never produces any output.
While Properties A, B, and C are satisfied by the sliding window protocol,
Property D is violated.

The refinement process terminates after 169 steps for Property A, 18 steps
for Property B, 168 steps for Property C, and 15 steps for Property D. The
resulting assumption has 8 states for Property A, 1 state for Property B, 8
states for Property C, and 1 state for Property D. Not surprisingly, replacing
the receiver process with these assumptions reduces the model checking time
(Property A: 4s instead of 19s, Property B: 3s instead of 19s, Property C: 4s
instead of 18s, Property D: 3s instead of 18s, on an Athlon XP 2600+ with 2GB
RAM).

If the purpose of computing the assumption is to improve the time and mem-
ory performance of a single model checking run, it appears to be beneficial to
interrupt the refinement process early. Figure 7 shows the number of states in
the quotient of N that is reached when the refinement process is interrupted
after a certain number of steps. A significant drop in the number of states in the
assumption occurs already very early on, when only a small percentage of the
states of M have been considered.

8 Conclusions and Future Work

Compositionality and abstraction are generally considered the two key methods
in avoiding the state-space explosion problem. The combination of the two meth-
ods in our assumption synthesis algorithm adds a new twist to classic abstraction
refinement: rather than starting with a coarse abstraction of process N , which
would need to be corrected through a successive elimination of spurious counter
examples, we start with an abstraction of its environment (M), which always
(at any point in the refinement cycle) allows us to produce an assumption that
is free of spurious counter examples.

Our approach has several advantages. First, and perhaps most important,
the resulting assumption is acceptance preserving. The result of model checking
is the same if we use the assumption or the original process. Second, while
using the assumption may significantly accelerate the model checking, there is

Automatic Synthesis of Assumptions for Compositional Model Checking 157

no penalty in the form of increased complexity as introduced by the intermediate
state explosion problem [10,8] or by using deterministic automata [6,2,1,8]. In
the worst case, the generated assumption is as large as the process itself. Even
this, however, is unlikely to occur for well-designed software architectures.

A third advantage of our approach is that the generated assumptions have
applications beyond classic model checking. They are well-suited as certificates.
Using an arbitrary assumption automaton A for N , the language containment
check is PSPACE-hard in the size of N and EXPSPACE-hard in the size of A.
Since our method generates a homomorphic abstraction of N , language contain-
ment can be checked in linear time. For similar reasons, the generated abstraction
is useful both in the documentation of a process and in the maintenance phase.

In future work, we intend to expand on our prototype tool implementation.
In particular, the application to larger systems needs good heuristics for the
refinement of the modal LTSs. An interesting open question is the extension
of our method to obtain assumptions for more than one process. It is always
possible to replace one process after another by a homomorphic abstraction,
but more experience is needed to determine the sequence in which the processes
should be considered and to decide whether it is worthwile to alternate between
the processes during the refinement cycle.

References

1. Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong Nam. Synthesis of in-
terface specifications for Java classes. In Proc. POPL, pages 98–109, New York,
NY, USA, 2005. ACM Press.

2. Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolic compositional ver-
ification by learning assumptions. In Proc. CAV, volume 3576 of LNCS, pages
548–562, 2005.

3. Shing Chi Cheung and Jeff Kramer. Context constraints for compositional reach-
ability analysis. ACM Trans. Softw. Eng. Methodol., 5(4):334–377, 1996.

4. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proc.
LICS, pages 353–362, 1989.

5. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. In 19th ACM Symp. Princ. of Prog. Lang., pages 343–354, 1992.

6. Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learn-
ing assumptions for compositional verification. In Proc. TACAS, pages 331–346,
2003.

7. Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. Three-valued abstrac-
tions of games: Uncertainty, but with precision. In Proc. LICS, pages 170–179,
2004.

8. Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. Assump-
tion generation for software component verification. In Proc. ASE, pages 3–12,
Washington, DC, USA, 2002. IEEE Computer Society.

9. Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based model
checking using modal transition systems. In Proc. CONCUR, pages 426–440.
Springer-Verlag, 2001.

158 B. Finkbeiner, S. Schewe, and M. Brill

10. Susanne Graf, B. Steffen, and G. Lüttgen. Compositional minimization of finite
state systems using interface specifications. Formal Aspects of Computation, 8,
September 1996.

11. Orna Grumberg and David E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16(3):843–871, May
1994.

12. Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we
guarantee: Methodology and case studies. In Proc. CAV, pages 440–451, 1998.

13. G.J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

14. Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems:
A foundation for three-valued program analysis. In Proc. European Symposium on
Programming, pages 155–169. Springer-Verlag, 2001.

15. Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

16. Kim G. Larsen. Modal specifications. In Proc. Automatic Verification Methods for
Finite State Systems. Springer-Verlag, 1989.

17. Kim G. Larsen and Bent Thomsen. A modal process logic. In Proc. LICS, pages
203–210. IEEE Computer Society Press, 1988.

18. Kedar S. Namjoshi. Certifying model checkers. In Proc. CAV, pages 2–13. Springer-
Verlag, 2001.

19. Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional
reasoning. In Proc. CAV, pages 139–153. Springer-Verlag, 2000.

20. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and models of concurrent systems, pages 123–144. Springer-Verlag,
1985.

21. Krishan. K. Sabnani, Aleta M. Lapone, and M. Ümit Uyar. An algorithmic proce-
dure for checking safety properties of protocols. IEEE Trans. Commun., 37(9):940–
948, September 1989.

22. Kuo-Chung Tai and Pramod V. Koppol. An incremental approach to reachability
analysis of distributed programs. In Proc. IWSSD, pages 141–150, Los Alamitos,
CA, USA, 1993. IEEE Computer Society Press.

23. Qiwen Xu, Willem P. de Roever, and Jifeng He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Aspects of Computing,
9(2):149–174, 1997.

Refined Interfaces for Compositional Verification

Frédéric Lang

Inria Rhône-Alpes / Vasy
655 avenue de l’Europe, 38 334 St Ismier Cedex, France
Phone: +33 (0)4 76 61 55 11; Fax: +33 (0)4 76 61 52 52

Frederic.Lang@inria.fr

Abstract. The compositional verification approach of Graf & Steffen
aims at avoiding state space explosion for individual processes of a con-
current system. It relies on interfaces that express the behavioural con-
straints imposed on each process by synchronization with the other
processes, thus preventing the exploration of states and transitions that
would not be reachable in the global state space. Krimm & Mounier, and
Cheung & Kramer proposed two techniques to generate such interfaces
automatically. In this paper, we propose a refined interface generation
technique, in which the interface of a process is derived automatically
from the examination of (a subset of) concurrent processes. This tech-
nique is applicable to formalisms in which concurrent processes are com-
posed either using synchronization vectors or process algebra parallel
composition operators (including those of Ccs, Csp, μCrl, Lotos, and
E-Lotos), for which we developed a tool. Several experiments indicate
state space reductions by more than two orders of magnitude for the
largest processes.

1 Introduction

Enumerative verification is a popular technique that consists in exploring and
checking reachable states and transitions of a concurrent system. It is confronted
with the state explosion problem, which occurs when the number of states grows
exponentially as the number of concurrent processes increases. To avoid or reduce
state explosion, various approaches have been proposed, among which symbolic
verification, on-the-fly verification, partial order reductions, symmetries, data-
flow analysis, and compositional verification. This paper deals with the latter
approach, which assumes that the concurrent system under study can be ex-
pressed as a collection of communicating sequential processes, the behaviours
of which are modeled as finite state machines or Ltss (Labelled Transition Sys-
tems). The sequential processes are composed in parallel, either in a flat or
hierarchical manner.

In its simplest forms [10,28,32,38,33,34,36,31], compositional verification (also
called incremental reduction [32], incremental reachability analysis [33,34], com-
positional state space generation [36], or inductive compression [31]) consists in
replacing each sequential process by an abstraction, simpler than the original
process but still preserving the properties to be verified on the whole system.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 159–174, 2006.
c© IFIP International Federation for Information Processing 2006

160 F. Lang

Quite often, abstracting a process is done by minimizing its corresponding Lts
modulo an appropriate equivalence or preorder relation (e.g., a bisimulation re-
lation, such as strong, branching, or observational equivalence). If the system has
a hierarchical structure, minimization can also be applied at every intermediate
level in the hierarchy. Although this simple form of compositional verification has
been applied successfully to some complex systems (e.g., [11,5] in the case of the
Lotos language [22]), it may be counter-productive in some other cases: gen-
erating the Lts of each process separately may lead to state explosion, whereas
the generation of the whole system of concurrent processes might succeed if
processes constrain each other when composed in parallel. Indeed, there may
be many states of a process that, although useful in a general environment, are
useless (i.e., never explored) in a particular environment.

This issue has been addressed by enhanced compositional verification approa-
ches [19,7,37,8,9,18,26,6,16], which permit the generation of the Lts of an in-
dividual process by taking into account interface constraints (also known as
environment constraints or context constraints). These constraints express the
behavioural restrictions imposed on the considered process by synchronization
with its neighbour processes. Taking into account the environment of a process
permits local elimination of states and transitions unreachable in the Lts of the
whole system.

In general, interface constraints are expressed in the form of an Lts simply
called interface. There exist two approaches to restrict the behaviour of a process
w.r.t. an interface. In the first one, the process is composed in parallel with the
interface, which must have been transformed beforehand so that the composition
does not affect the global behaviour of the system (a property known as context
transparency) [6,7,8,9]. This approach is supported in the framework of Csp by
the Tracta tool [16]. In the second approach, the process is constrained using a
specific semi-composition operator [19,18,26], which cuts the process states and
transitions that cannot be reached when considering the traces of the interface
as the only possible interactions between the process and its environment. This
approach is supported in the framework of Lotos by the Projector [26] and
Svl [12] tools of Cadp (Construction and Analysis of Distributed Processes) [13]
and was used in the verification of an industrial protocol [35].

Interfaces can be either written by the user (and possibly checked automati-
cally [26]), or generated automatically. Although automated generation has the
neat advantage to relieve users from the burden of calculating appropriate con-
straints, existing automated interface generation techniques undergo two main
limitations: first, they are specific to a given composition operator and thus not
directly applicable in the framework of concurrent languages featuring different
and/or more general operators; second, as already observed in [7], they may fail
to capture effective interface constraints due to deficiencies in their analysis of
synchronizations between processes1.

In this paper, we propose to generate interfaces automatically using a new
technique that relies on a translation of the system into an intermediate

1 See in particular Examples 2 and 3, Section 3 of this paper.

Refined Interfaces for Compositional Verification 161

concurrent model, named network of Ltss, which describes the synchronization
between processes in a flat manner. This intermediate representation permits
the derivation of effective interface constraints imposed on a given process by
a set of its neighbour processes automatically, independently of the hierarchy
of processes and of the nature of the composition operators. This permits com-
bination of constraints induced by distant processes, and improvement of the
accuracy of interfaces by exploiting more precisely the synchronizations between
processes. For this reason, we qualify as refined the interfaces generated using
this technique.

As regards practical aspects, we implemented refined interface generation in
the Exp.Open 2.0 tool for on-the-fly verification of networks of Ltss [27] of
Cadp. Interfaces can be generated automatically from systems made of Ltss
composed using operators taken from several languages (Ccs [29], Csp [4],
μCrl [21], Lotos [22], the E-Lotos international standard [24], and general
concurrent specification formalisms). In the framework of Lotos specifications,
the Svl scripting language was also extended to facilitate the combined use of
the various Cadp tools involved to use refined interfaces in a compositional ver-
ification task. For behavioural restriction, we rely on Projector and its semi-
composition operator, which is general enough to be applicable in the framework
of the above concurrent languages, although originally designed for Lotos.

Using a flat intermediate concurrent model such as networks of Ltss is not
new, as most model-checkers start by flattening the process hierarchy, for in-
stance generating an intermediate Petri net [14] in the case of Lotos, Linear
Process Equations in the case of μCrl [20], or using a supercombinator -based
compilation mechanism called supercompilation [17] in the case of Csp. The
model we use in this paper is close to Mec synchronization vectors [1] and Fc2
synchronization networks [3]. The originality of our work resides in both the
treatment we make on the intermediate model to generate interfaces, and the
effective use of this model to handle many different operators in a compositional
verification setting.

This paper focuses on communication by rendez-vous between processes which
run asynchronously (i.e., at independent speeds). It naturally generalizes to com-
munication through bounded buffers if buffers are represented as finite processes
communicating by rendez-vous with the rest of the system2. The current ap-
proach can be used to constrain such buffers in the same way as any process.
Approaches to constrain processes communicating through buffers that are not
bounded a priori (i.e., the bound of each buffer, if any, is not known statically
but determined at execution time) have been proposed [25] but are out of the
scope of this paper.

The paper is organized as follows: Section 2 presents the technical background.
Section 3 recalls semi-composition and discusses the limitations of existing in-
terface generation methods. Section 4 defines refined interface generation, which

2 See http://www.inrialpes.fr/vasy/cadp/case-studies which references more
than 80 case studies in various application domains, many of which use bounded
buffers.

162 F. Lang

improves over existing interface generation methods. Section 5 describes the im-
plementation of refined interface generation in Cadp. Section 6 presents some
experimental results. Section 7 finally concludes.

2 Technical Background

Definition 1 (Vectors). A vector of length n over a set S is an element of
Sn, written t or (t1, . . . , tn). For i ∈ 1..n, t[i] denotes the ith element ti of t,
and t[i ← t′i] represents a copy of t where t[i] is replaced by t′i. Given t ∈ S, we
write tn the vector of length n such that (∀i ∈ 1..n) tn[i] = t. Given I ⊆ 1..n,
the projection t↓I is defined by: t↓I = (t[k1], . . . , t[km]) where {ki | i ∈ 1..m} =
I and (∀i < j) ki < kj .

Definition 2 (Labelled Transition System). Let A be a set of symbols
called observable actions, and τ /∈ A the unobservable action. Given A ⊆ A, we
write Aτ the set A ∪ {τ}. An Lts is a quadruple S = (Q, A, T , q0), where Q is
the set of states, A ⊆ A — also written act(S) — is the set of observable actions,
T ⊆ Q×Aτ×Q is the transition relation, and q0 ∈ Q is the initial state. As usual,
we may write q1

a−→T q2 (or q1
a−→ q2 when T is clear from the context) instead

of (q1, a, q2) ∈ T . A trace of S is a sequence of actions a1 . . . an≥0 ∈ (Aτ)n, such
that (∃q1, . . . , qn ∈ Q) (∀i ∈ 0..n − 1) qi

ai+1−−−→T qi+1 (note that the sequence
starts in the initial state q0 of S). An observable trace is a trace in which all
occurrences of τ have been removed. We write L(S) the set of observable traces
of S. An action a ∈ A is reachable if there is a trace containing a. A state q ∈ Q
is reachable if there exists a trace such that qn = q. A transition (q1, a, q2) ∈ T
is reachable if q1 is reachable. Two Ltss S1, S2 are equal, written S1 = S2, if and
only if they have the same initial states and reachable transitions.

3 Semi-composition

Semi-composition [26] (implemented in the Projector tool of Cadp) permits
restriction of the behaviour of a process on-the-fly by taking into account inter-
face constraints, usually derived from its environment. Since semi-composition
was designed in the framework of Lotos, its definition is tightly related to the
following Lotos-like parallel composition and hiding operators.

Definition 3 (Parallel Composition, Hiding). Let Si = (Qi, Ai, Ti, q0i)
(i = 1, 2) be two Ltss, and A ⊆ A. The parallel composition “S1 ‖A S2” models
the concurrent execution of S1 and S2 with forced synchronization on A. It is
defined as the Lts (Q, A1 ∪ A2, T , (q01, q02)), where Q and T are the smallest
sets satisfying both (q01, q02) ∈ Q and the following properties:

(q1, q2) ∈ Q, q1
a−→T1 q′1, q2

a−→T2 q′2, a ∈ A

(q′1, q
′
2) ∈ Q, (q1, q2)

a−→T (q′1, q
′
2)

(q1, q2) ∈ Q, q1
a−→T1 q′1, a /∈ A

(q′1, q2) ∈ Q, (q1, q2)
a−→T (q′1, q2)

(q1, q2) ∈ Q, q2
a−→T1 q′2, a /∈ A

(q1, q′2) ∈ Q, (q1, q2)
a−→T (q1, q′2)

Refined Interfaces for Compositional Verification 163

Note that, by construction, the states belonging to Q are reachable. A state p
of S1 (respectively S2) is said reachable in S1 ‖A S2 if there is a state (p, q)
(resp. (q, p)) in S1 ‖A S2. Similarly, a transition p

a−→ p′ of S1 (respectively
S2) is said reachable in S1 ‖A S2 if there is a transition (p, q) a−→ (p′, q′) (resp.
(q, p) a−→ (q′, p′)) in S1 ‖A S2. The expression “hide A in S1” denotes the Lts
(Q1, A1 \A, T ′

1, q01), where T ′
1 is defined as follows:

q
a−→T1 q′, a ∈ A

q
τ−→T ′

1
q′

q
a−→T1 q′, a /∈ A

q
a−→T ′

1
q′

Semi-composition takes as input two Ltss S1, S2 and a set of actions A, and
returns the Lts which contains exactly the states and transitions of S1 that are
reachable in S1 ‖A S2.

Definition 4 (Semi-Composition). Let Si = (Qi, Ai, Ti, q0i) (i = 1, 2) be
two Ltss, A ⊆ A, and (Q′, A′, T ′, q′0) = S1 ‖A S2. The semi-composition of
S1 and S2, written “S1 �|A S2”, is the Lts (Q, A1, T , q01), where Q = {p |
(p, q) ∈ Q′} and T = T1 ∩ {(p1, a, p2) | (p1, q1)

a−→T ′ (p2, q2)}. A is called the
synchronization set and the pair (A, S2) is called the interface3. We say that an
action a ∈ A1 is controlled by the interface (A, S2) if a ∈ A.

Example 1. The following holds:

dd

ccc

aaa

q3q2q1q0
�|{a,c,d} p3

p2

p1

p0 τ
c

ac

a

d

= cc

d

q2q1q0

aa

S1 S2 S3

State q3 and transitions q2
d−→ q2, q2

a−→ q3, and q3
c−→ q2 do not belong to S3

because they are not reachable in S1 ‖{a,c,d} S2.

Three properties of semi-composition are essential to ensure its practicability:

– Semi-composition is a state space reduction, since the sets of states and
transitions of S1 �|A S2 are by definition subsets of S1. The worst case is
when L(hide (A\A) in S1) ⊆ L(hide (A\A) in S2), yielding S1 �|A S2 = S1.

– (S1 �|A S2) ‖A S2 = S1 ‖A S2. Therefore semi-composition can be used to
reduce S1 given its environment S2 by removing the unreachable states and
transitions, without losing any temporal property of the system S1 ‖A S2.
Note that, unlike Cheung & Kramer’s approach, which requires that the
interface be context transparent — and thus be transformed into a deter-
ministic Lts using a well-known but expensive algorithm — no restriction
is made here on the shape of S2.

3 This definition of semi-composition is simpler but equivalent to that given in [26].

164 F. Lang

– S1 �|A S2 = S1 �|A S′
2 if L(hide (A \ A) in S2) = L(hide (A \ A) in S′

2).
Therefore, reductions of the interface can be achieved by first hiding uncon-
trolled actions and then minimizing the Lts modulo a relation preserving
observable traces (e.g., safety equivalence [2]), which permits reduction of the
number of states to explore while calculating semi-composition. Safety min-
imization is less expensive than determinization and, unlike determinization
which can induce a dramatic growth of the Lts, yields an Lts that contains
fewer states than the input. Minimization of the interface is not mandatory
but important to reduce the cost of semi-composition, the complexity of
which is the same as parallel composition, hence sensitive to the size of its
operands.

In practice, the equation S1 ‖A S2 = (S1 �|A S2) ‖A S2 is not sufficient to
compute interfaces in the case of systems consisting of more than two Ltss: it
may happen that S2 does not constrain S1 but that a more distant Lts in the
environment of S1 does. Krimm & Mounier proposed a method to compute an
exact interface in the framework of more general systems of communicating Ltss
built upon parallel composition and action hiding. Given two Ltss S1 and S2 in
such a system, this method permits to synthesize a synchronization set A such
that S1 can be replaced by S1 �|A S2 without changing the global Lts of the
system. It is defined inductively, based on the following semi-composition laws:

S1 ‖A S2 = (S1 �|A S2) ‖A S2 (1)
(S1 ‖A1 S3) ‖A2 S2 = ((S1 �|B S2) ‖A1 S3) ‖A2 S2 (2)

where B = A2 ∩ (A1 ∪ (act(S1) \ act(S3)))
(hide A1 in S1) ‖A2 S2 = (hide A1 in (S1 �|A2\A1

S2)) ‖A2 S2 (3)

Unfortunately, the interface (A, S2) built using Krimm & Mounier’s method
generally does not give the best account of environment constraints, as illustrated
by the following two examples.

Example 2. Let E = S1 ‖{a,b,d} (S2 ‖{c,d} S3) with S1, S2, and S3 as follows:

a

b

d

p0 p1

d

b

c

q0 q1

aaa

r3r2r1r0

dd

ccc

S1 S2 S3

According to the semi-composition laws, S3 can be replaced in E either by
S3 �|{a,d} S1, or by S3 �|{c,d} S2, but both expressions result in S3 itself. Yet, one
can see that actions a and c are executed with some alternation in E, due to the
mandatory synchronization on b between S1 and S2. As a consequence, state r3
is not reachable in E. To capture such a constraint, it should be possible to build
an interface that takes simultaneously into account the constraints induced by

Refined Interfaces for Compositional Verification 165

both S1 and S2, even though there is no sub-expression of E containing S1 and
S2 only. This is not possible with Krimm & Mounier’s method4.

Example 3. Let E = S1 ‖{a,b} (S2 ‖{a} S3) with S1, S2, and S3 as follows:

b

a

p0 p1 a, b

a

q2
b

q1

b

q0

a

b

d

r0 r1

S1 S2 S3

According to the semi-composition laws, S2 can be replaced by S2 �|{a} S1, but
this expression yields S2 itself. Yet, it is clear from S1 and the synchronizations
in E that state q2 of S2 is unreachable in E, as two successive b actions cannot
be fired without an a in between. A better interface should permit to take into
account the environment constraints due to synchronizations on b, even though
every b of S1 does not necessarily synchronize with a b of S2. Unfortunately, this
is not possible using the Krimm & Mounier’s method5.

In the sequel, we propose to generate interface constraints automatically in a
way that palliates these limitations.

4 Refined Interface Generation

Refined interface generation is a new method that permits the computation of an
interface capturing the constraints imposed on a given process P in a concurrent
system by one or several processes of its environment. This interface can then
be semi-composed with P on-the-fly, so as to restrict P ’s behaviour.

As regards the model of concurrency on which we establish our results, we use
the following network model named “network of Ltss”, in which the composition
hierarchy is completely flattened. The network of Ltss model is more general
than the parallel composition operator defined in the previous section, and the
parallel composition, renaming, hiding and cutting operators from many process
algebras can be translated into networks of Ltss [27]. Networks of Ltss thus
make our work non-specific to a particular process algebra and permit an easier
way of reasoning about the synchronization structure of systems.

Definition 5 (Network of LTSs). Let • /∈ Aτ be a special symbol denoting
that a particular Lts has no role in a given synchronization. A synchronization
rule is a pair (t, a), where t is a vector over Aτ ∪ {•} (called a synchronization
vector) and a ∈ Aτ . The components t and a are called respectively the left- and

4 This limitation holds similarly for Cheung & Kramer’s method, as mentioned in [7].
5 Cheung & Kramer do not provide a solution to this issue as their method relies on a

Csp-like parallel composition operator whose semantics states that synchronization
on b is mandatory between all processes containing b in their action set.

166 F. Lang

right-hand sides of the synchronization rule. A network of Ltss (or simply net-
work) N of dimension n > 0 is a pair (S, V) where S is a vector of Ltss of length
n and V is a set of synchronization rules, whose left-hand sides are all of length
n. Each left-hand side t expresses a synchronization constraint on S, all com-
ponents S[i] where t[i] �= • having to take a transition labeled respectively t[i]
altogether so that a transition labeled with the corresponding right-hand side a
be generated in the product. More formally, let S[i] = (Qi, Ai, Ti, q0i) (i ∈ 1..n).
To N = (S, V) corresponds an Lts (Q, A, T , q0), written sem(N) or sem(S, V),
such that A = {a | (t, a) ∈ V }, q0 = (q01, . . . , q0n), and Q and T are the smallest
sets satisfying both q0 ∈ Q and:

q ∈ Q, (t, a) ∈ V, (∀i ∈ 1..n) (t[i] = • ∧ q′[i] = q[i]) ∨ q[i]
t[i]−−→Ti q′[i]

q′ ∈ Q, (q, a, q′) ∈ T

Note that, by construction, the states that belong to Q are reachable. Syn-
chronization rules must obey the following admissibility properties, which forbid
cutting, synchronizations and renaming of τ transitions and therefore ensure
that safety equivalence and stronger relations (e.g., observational, branching,
and strong equivalences) are congruences for networks of Lts [27]:

((∃i ∈ 1..n) τ is reachable in S[i]) =⇒ (∃(t, τ) ∈ V) t[i] = τ
(∀(t, a) ∈ V) ((∃i ∈ 1..n) t[i] = τ) =⇒ (a = τ ∧ (∀j ∈ 1..n \ {i}) t[j] = •)

Example 4. Systems of communicating Ltss built upon various operators can be
translated into networks of Ltss. As an example, given S1 and S2, the parallel
composition (S1 ‖A S2) can be translated into ((S1, S2), Vsync ∪ Vasync), where:

Vsync = {((a, a), a) | a ∈ act(S1) ∩ act(S2) ∩A}
Vasync = {((a, •), a) | a ∈ act(S1)τ \A} ∪ {((•, a), a) | a ∈ act(S2)τ \A}

Given a network N = (S, V) and an Lts S[k] in this network, we address the
problem of computing automatically an interface of the form (A, C) that will
permit reduction of S[k] by taking into account its interactions with a subset
{S[i] | i ∈ I} (k /∈ I) of Ltss in its environment. The goal is to permit the
replacement of Lts S[k] by Lts S[k] �|A C in N without affecting the Lts of the
global system. To this aim, we define the following refined interface generation
procedure, whose inputs are N , k, and I. The refined interface generated consists
of a product of the Ltss S[i] (i ∈ I), synchronized by synchronization rules
derived systematically from the synchronization rules of N , each rule (t, a) being
transformed into a rule (t↓I , t[k]) if t[k] �= •, or (t↓I , τ) otherwise. Therefore,
whenever a transition q

a−→ q′ can be fired in sem(N) using a synchronization rule

(t, a) with t[k] �= •, then the participating transition q[k]
t[k]−−→ q′[k] of S[k] is also

a transition of S[k] �|A C. Conversely, transitions of S[k] that cannot participate
in any mandatory synchronization with C (i.e., the S[i]’s) are eliminated by the
semi-composition S[k] �|A C.

Definition 6 (Refined Interface Generation). Let ϕ : Aτ ∪ {•} → Aτ ,
defined by ϕ(•) = τ and (∀a ∈ Aτ) ϕ(a) = a. Let N = (S, V) be a network

Refined Interfaces for Compositional Verification 167

of dimension n, I a set of indices such that ∅ ⊂ I ⊂ 1..n, and k an index such
that k ∈ 1..n \ I. The refined interface of S[k] capturing constraints induced by
{S[i] | i ∈ I}, written refint(N, k, I), is the interface (A, sem(S↓I , V

′)), where
V ′ = {(t↓I , ϕ(t[k])) | (t, a) ∈ V }.

Example 5. Consider the network N displayed on the left below, with arbitrary
Ltss S1, . . . , S4. The refined interface of S1 capturing constraints induced by
S3 and S4, written refint(N, 1, {3, 4}), is the Lts corresponding to the network
displayed on the right below. Note the projection on S3 and S4, and observe
that the right-hand sides of synchronization rules in the result are the elements
of column S1, where • is renamed into τ .

refint

⎛⎜⎜⎝
⎛⎜⎜⎝

(S1, S2, S3, S4),⎧⎨⎩
((a1, a2, a3, a4), a),
((•, b2, b3, •), b),
((c1, c2, •, •), c)

⎫⎬⎭
⎞⎟⎟⎠ , 1, {3, 4}

⎞⎟⎟⎠ = sem

⎛⎜⎜⎝
(S3, S4),⎧⎨⎩

((a3, a4), a1),
((b3, •), τ),
((•, •), c1)

⎫⎬⎭
⎞⎟⎟⎠

The following theorem states that, in an arbitrary network N , any interface
refint(N, k, I) can be used to restrict S[k] using semi-composition because the
Lts of N and the Lts of N in which S[k] is replaced by its restriction are equal.

Theorem 1. Let N = (S, V) be a network of dimension n, I such that ∅ ⊂ I ⊂
1..n, k ∈ 1..n \ I, and (A, C) = refint(N, k, I). If S′ = S

[
k ← (S[k] �|A C)

]
then

sem(S, V) = sem(S′, V).

Proof. Since S[k] �|A C is a sub-Lts of S[k] by definition of semi-composition,
it follows that sem(S′, V) is a sub-Lts of sem(S, V). We show that, conversely,
sem(S, V) is a sub-Lts of sem(S′, V). To this aim, we consider an arbitrary
state q reachable in sem(S, V). In a first step we assume that q↓I is reachable in
C, (q[k], q↓I) is reachable in S[k] ‖A C, q[k] is reachable in S′[k], q is reachable
in sem(S′, V) and given a transition q

a−→ q′ of sem(S, V) induced by a vector
(t, a), we show simultaneously that (1) q′

↓I is reachable in C, (2) (q′[k], q′
↓I)

is reachable in S[k] ‖A C, which implies that q′[k] is reachable in S′[k], and
(3) q

a−→ q′ is a transition of sem(S′, V), which implies that q′ is reachable in
sem(S′, V). We consider two cases:

– If t[k] = • then by definition q[k] = q′[k] and property (3) is obvious. In
addition, by definition of refint , the transition q↓I

τ−→ q′
↓I belongs to C,

which implies properties (1) and (2).

– If t[k] �= • then by hypothesis q[k]
t[k]−−→ q′[k] belongs to S[k] and q↓I

t[k]−−→ q′
↓I

belongs to C by definition of refint, which implies property (1). Therefore,

(q[k], q↓I)
t[k]−−→ (q′[k], q′

↓I) belongs to S[k] ‖A C, which implies property (2).

By definition of semi-composition, q[k]
t[k]−−→ q′[k] belongs to S′[k], which

implies property (3).

In a second step, given q0 the initial state of sem(S, V), we observe that q0↓I ,
(q0[k], q0↓I), q0[k], and q0 are the initial states of, respectively, C, S[k] ‖A C,

168 F. Lang

S′[k], and sem(S′, V). Given a state q reachable in sem(S, V), an induction
using properties (1), (2), and (3) shows that q↓I , (q[k], q↓I), q[k], and q are
reachable in, respectively, C, S[k] ‖A C, S′[k], and sem(S′, V). Therefore, every
transition of sem(S, V) is also a transition of sem(S′, V), which implies that
sem(S, V) and sem(S′, V) are equal. !

The following examples show that refined interfaces solve the issues raised in
Examples 2 and 3 of Section 3.

Example 6 (back to Example 2 page 164). Expression E = S1 ‖{a,b,d} (S2 ‖{c,d}
S3) defined in Example 2 can be translated into the network N displayed below.
S3 may be restricted using a refined interface (A, sem(N ′)) = refint(N, 3, {1, 2})
that takes simultaneously both S1 and S2 into account, where N ′ and sem(N ′)
are displayed below. S3 �|A sem(N ′), also displayed below, reduces S3 by elimi-

nating the unreachable state r3 and transitions r2
a−→ r3, r3

c−→ r2, and r2
d−→ r2.

N =

⎛⎜⎜⎜⎜⎝
(S1, S2, S3),⎧⎪⎪⎨⎪⎪⎩

((a, •, a), a),
((b, b, •), b),
((•, c, c), c),
((d, d, d), d)

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎠ N ′ =

⎛⎜⎜⎜⎜⎝
(S1, S2),⎧⎪⎪⎨⎪⎪⎩

((a, •), a),
((b, b), τ),
((•, c), c),
((d, d), d)

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎠
c

ca

a

τ

d

q1
p1

q1
p0

q0
p1

q0
p0

r1 r2r0
cc

d

aa

sem(N ′) S3 �|A sem(N ′)

Example 7 (back to Example 3 page 165). Expression E = S1 ‖{a,b} (S2 ‖{a} S3)
defined in Example 3 can be translated into the network N displayed below. S2
may be restricted using a refined interface (A, sem(N ′)) = refint(N, 2, {1}) that
takes S1 into account, where N ′ and sem(N ′) are displayed below. In practice,
sem(N ′) can be minimized modulo safety equivalence, yielding an Lts with 2
states and 3 transitions. S2 �|A sem(N ′) is isomorphic to S1.

N =

⎛⎜⎜⎜⎜⎝
(S1, S2, S3),⎧⎪⎪⎨⎪⎪⎩

((a, a, a), a),
((b, b, •), b),
((b, •, b), b),
((•, •, d), d)

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎠ N ′ =

⎛⎜⎜⎜⎜⎝
(S1),⎧⎪⎪⎨⎪⎪⎩

((a), a),
((b), b),
((b), τ),
((•), τ)

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎠
τ

τ
p1p0

a

b

τ

sem(N ′)

This example shows that without using more Ltss from the environment of S2
than in Example 3, but simply by taking a better account of the synchronization
structure of the system, the refint operation permits refinement of the interface
with respect to that obtained using equation (2), turning the set of observable
traces of the interface from a∗ with b uncontrolled in Example 3 to a∗+b+(ba+)∗

in the current example. The latter set of traces does not contain any trace with

Refined Interfaces for Compositional Verification 169

two consecutive b’s, thus disabling the transition q1
b−→ q2 in S2 and making state

q2 and transitions q2
a−→ q2, q2

b−→ q2 also unreachable.

The refint operation may create synchronization rules of the form (•n, a),
which induce a self-looping transition labelled a in each state of the interface
(see for instance the last synchronization rule of the right-hand side network in
Example 5 and the last synchronization rule of network N ′ in Example 7, which
induces the τ -loops in states p0 and p1). Some of these synchronization rules can
be eliminated as follows:

– Every synchronization rule of the form (•n, τ) can merely be removed. In-
deed, for all S and V , L(sem(S, V ∪ (•n, τ))) = L(sem(S, V)).

– Every synchronization rule of the form (•n, a) where a �= τ can be removed if
the set of synchronization rules does not contain another rule with the same
action a as right-hand side. Indeed, for all S, S′, A, and V in which a does not
occur as a right-hand side, S′ �|A sem(S, V ∪ (•n, a)) = S′ �|A\a sem(S, V).
Eliminating this rule transforms the synchronization set of the interface from
A into A \ a.

Algorithmically, refined interface generation has the same complexity as the
synchronization product of the Ltss taken into account in the environment. In
practice, the cost of computing the interface can be reduced by minimizing the
individual Ltss participating in the interface modulo safety equivalence, which
is correct due to the above mentioned congruence property of safety equivalence.
In addition, well-known partial order reductions preserving observable traces can
be used to further reduce interfaces on-the-fly during their construction.

So far, refined interface generation required that each (high-level) process of
the concurrent system under verification was replaced by its Lts, which ap-
parently contradicts the claim that refined interfaces can be used to restrict
processes on-the-fly. However, it is clear from Definition 6 that the states and
transitions of Lts S[k] (corresponding to the process to restrict) are not needed
for interface generation. In practice, only the observable actions of S[k] are
needed to compute the synchronization rules of the network from higher level
operators as in Example 4. To do so, S[k] can be replaced by an abstraction
consisting of an arbitrary (and much smaller) Lts containing the same set of ac-
tions. In fact, the method remains correct if the abstraction contains a superset
of S[k]’s actions, although the reduction obtained on S[k] by semi-composition
generally increases while the set of actions of the abstraction gets closer to the
exact set of actions of S[k].

In practice, users must provide such an abstraction “by hand”, which is not
hard as it suffices to examine the gates (or channels) occurring in the process
specification and the types of their data, and to enumerate actions of this type
appropriately. If the abstraction provided by the user lacks some action of S[k],
then the generated interface might be wrong, but this is detected automatically
during the compositional verification task as explained in [26]. Calculating this
abstraction automatically from source code or from an internal representation
of processes would not present any difficulty.

170 F. Lang

5 Implementation in the CADP Toolbox

Our method was implemented in Cadp (Construction and Analysis of Distrib-
uted Processes) [13], a popular toolbox for protocol engineering. Refined inter-
face generation is implemented as an option (-interface) of the Exp.Open 2.0
tool [27] for on-the-fly verification of products of communicating Ltss, which
can be combined using the following operators:

– standard parallel composition, action cutting, action hiding, and action re-
naming from Ccs, Csp, Lotos, and μCrl;

– networks of Ltss and generalized parallel composition from E-Lotos, which
includes n-ary parallel composition, “n among m” parallel composition, and
parallel composition with synchronization interfaces [15];

– generalized forms of action hiding, action renaming, and transition cutting,
where actions can be defined using regular expressions.

Exp.Open 2.0 also implements several partial order reductions, one of which can
be used to partially reduce the interface on-the-fly while preserving its observable
traces (-weaktrace option).

To simplify the use of refined interfaces in the more specific framework of
Lotos descriptions, we have also extended the Svl scripting language [12] with
a new operator, named “refined abstraction”, which can be used in the con-
text of any parallel composition expression. As an example, given a Lotos file
"file.lotos" defining the system “(P |[A, C]| Q) |[A, B]| R”, where P, Q,
and R are Lotos processes, one may write the following Svl script:

% DEFAULT_LOTOS_FILE="file.lotos"
"file.bcg" = root leaf strong reduction of
((refined abstraction Q, R using "act.bcg" of P) |[A, C]| Q) |[A, B]| R

This script computes the Lts corresponding to the system by first restricting P
on-the-fly w.r.t. the constraints induced by Q and R, using the Lts "act.bcg"
as the abstraction of P. To this aim, Q and R are first minimized modulo safety
equivalence and an interface generated automatically using Exp.Open 2.0. Once
the Ltss corresponding to processes P (restricted using the refined interface),
Q, and R have been generated, the “root leaf strong reduction” operation
minimizes them modulo strong bisimulation, and then minimizes their product
once they have been composed in parallel. The result is stored in "file.bcg".

6 Applications

We applied refined interfaces to three case studies. The first one is a Lotos
description written by J. Romijn [30] of the Havi (Home Audio-Video) asyn-
chronous leader election protocol6, which consists of seven concurrent processes
named BUSRESET, DCM1, DCM2, CMM1, CMM2, MS1, and MS2. Given a Lotos process
ABS DCM1 containing the actions of DCM1, we made the following experiments:
6 See ftp://ftp.inrialpes.fr/pub/vasy/demos/demo 27

Refined Interfaces for Compositional Verification 171

Interface DCM1
generated minimized (safety) generated Total Max

Exp. states trans. states trans. states trans. time memory
E1 0 0 0 0 404,477 3,025,842 99.9 s 54 Mb
E2 3,904 42,697 3 37 365,923 2,514,848 182.1 s 46 Mb
E3 704 7,145 4 45 17,199 73,130 12.1 s 5.9 Mb
E4 2,328 14,158 52 613 645 2,020 10.7 s 8.5 Mb

Fig. 1. Lts sizes, computation time and memory consumption for experiments E1-E4

E1 Generation of DCM1 without interface.
E2 Generation of DCM1 using an interface consisting of the Lts of the sub-system

including CMM1, CMM2, MS1, and MS2, and of a synchronization set computed
as defined by Krimm & Mounier’s semi-composition laws.

E3 Generation of DCM1 using a refined interface capturing the constraints in-
duced by CMM1, CMM2, MS1, and MS2.

E4 Same as E3, capturing also the constraints induced by BUSRESET and DCM2.

The table in Figure 1 shows for each experiment E1 to E4 the size of the
interface before and after safety minimization, the size of DCM1 restricted by the
interface (if any), the total computation time, and the peak memory consump-
tion. It shows that refined interfaces permit state space reductions by more than
two orders of magnitude (from 404, 477 states reachable in a general environ-
ment down to 645 states reachable in an environment that takes an account of
all processes — experiment E4), while globally reducing verification time by a
factor of almost 10 and peak memory consumption by a factor of up to 9.

Experiments E2 and E3 take an account of the same processes to restrict
DCM1, the difference being that E2 uses Krimm & Mounier’s method and E3 the
refint operation to compute the interface. Figure 1 thus shows that refint yields
an Lts with more than 20 times fewer states and 35 times fewer transitions
than Krimm & Mounier’s method, while the execution time and peak memory
consumption are reduced by factors of 15 and 8 respectively. Note that Krimm
& Mounier’s method does not permit the computation of an interface that takes
an account of all processes in a way analogous to E4, because the processes in
the environment of DCM1 belong to different sub-expressions.

Second, we considered an Odp (Open Distributed Processing) trader [23], an
E-Lotos model of which was presented in [15]7. An Odp trader is an agent that
registers services that can be provided by distant servers, receives service requests
from distant clients, and provides to the requesting clients the address of a server
that can furnish the requested service. The client and server are then able to
exchange the service directly without communicating with the trader anymore.
Note that the trader is a central component in the Odp model in the sense
that the ability of two agents to communicate is initiated by the trader. Such
central components generally have large state spaces, especially in compositional
verification settings where their Lts have to be generated outside of any context.
7 See ftp://ftp.inrialpes.fr/pub/vasy/demos/demo 37

172 F. Lang

In our experiment, the components (trader, clients and services) are described
in Lotos and the synchronization structure describing their interactions in
Exp.Open 2.0 using the “n among m” E-Lotos parallel composition oper-
ator to model the dynamicity of object exchanges. In this example, the Odp
trader executes in an environment consisting of 4 objects and 5 services. A re-
fined interface is generated automatically from this environment to restrict the
Lts corresponding to the trader, which is thus limited to 256 states instead of
1 million otherwise.

At last, we studied a standard cache coherency protocol for multiprocessor
architectures, which consists of a remote directory process and several agent
processes accessing the directory concurrently8. In a configuration with 5 agents,
refined interface generation has allowed us to reduce the size of the Lts corre-
sponding to the remote directory from 1 million states and 40 million transitions
downto less than 60 states. This method has allowed us to generate easily the
Lts corresponding to larger configurations, which could not be generated using
other methods.

7 Conclusion

Compositional verification in which the behaviours of concurrent processes are
restricted using interface constraints is an effective method to avoid the state
explosion that may occur when the state space of a process is generated out of
its environment. This paper alleviates the lack of efficient methods to synthesize
constraints automatically, by proposing a method based on the analysis of the
synchronizations between concurrent processes.

Compared to prior work [7,9,26,6], our method performs a finer analysis of syn-
chronization constraints: our implementation in the Exp.Open 2.0 tool of Cadp
exhibits more than two orders of magnitude better state space reductions on an
industrial case study studied by Romijn [30]. Moreover, it provides a systematic
way of using the semi-composition operator of Krimm & Mounier [26] (which is
implemented in the Projector tool of Cadp) in the framework of languages
whose composition operators are not limited to Lotos parallel composition and
hiding; indeed, both synchronization vectors and a large number of parallel com-
position operators are supported, including those of Ccs, Csp, Lotos, μCrl,
and E-Lotos. Alternatively, we believe that we can also use parallel compo-
sition instead of semi-composition as advocated by Cheung & Kramer [7,9,6];
indeed the interfaces generated for semi-composition can be transformed into
“context-transparent” interfaces using the algorithm given in [7].

Acknowledgements. The author thanks the anonymous referees, and Hubert
Garavel, Radu Mateescu, Gwen Salaün, and Wendelin Serwe from the Vasy
team at Inria Rhône-Alpes for useful comments on this paper and on earlier
versions of this paper.

8 See ftp://ftp.inrialpes.fr/pub/vasy/demos/demo 28

Refined Interfaces for Compositional Verification 173

References

1. A. Arnold. MEC: A System for Constructing and Analysing Transition Systems.
In Proc. of the 1st Workshop on Automatic Verification Methods for Finite State
Systems, LNCS vol. 407, 1989.

2. A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodŕıguez, and J. Sifakis. Safety for
Branching Time Semantics. In Proc. of 18th ICALP. 1991.

3. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set: a Toolset
for the Verification of Concurrent Systems. In Proc. of CAV’96, LNCS vol. 1102,
1996.

4. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3):560–599, 1984.

5. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and
Verification of the PowerScale Bus Arbitration Protocol: An Industrial Experiment
with LOTOS. In Proc. of FORTE/PSTV’96. IFIP, Chapman & Hall, 1996. Full
version available as INRIA Research Report RR-2958.

6. K. H. Cheung. Compositional Analysis of Complex Distributed Systems. PhD
thesis, Hong Kong University of Science and Technology, 1998.

7. S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Analysis with
Context Constraints. In Proc. of the 1st ACM SIGSOFT International Symposium
on the Foundations of Software Engineering. ACM Press, 1993.

8. S. C. Cheung and J. Kramer. Compositional Reachability Analysis of Finite-State
Distributed Systems with User-Specified Constraints. In Proc. of the 3rd ACM
SIGSOFT International Symposium on the Foundations of Software Engineering.
ACM Press, 1995.

9. S. C. Cheung and J. Kramer. Context Constraints for Compositional Reachability.
ACM Transactions on Software Engineering Methodology, 5(4):334–377, 1996.

10. J.-C. Fernandez. ALDEBARAN : un système de vérification par réduction de
processus communicants. PhD thesis, Université Joseph Fourier (Grenoble), 1988.

11. J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodŕıguez, and J. Sifakis. A
Toolbox for the Verification of LOTOS Programs. In Proc. of ICSE. ACM, 1992.

12. H. Garavel and F. Lang. SVL: a Scripting Language for Compositional Verification.
In Proc. of FORTE’2001. IFIP, Kluwer Academic Publishers, 2001. Full version
available as INRIA Research Report RR-4223.

13. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. European
Association for Software Science and Technology Newsletter, 4:13–24, 2002. Also
available as INRIA Technical Report RT-0254 (2001).

14. H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications.
In Proc. of PSTV’90. IFIP, North-Holland, 1990.

15. H. Garavel and M. Sighireanu. A Graphical Parallel Composition Operator for
Process Algebras. In Proc. of FORTE/PSTV’99. IFIP, Kluwer, 1999.

16. D. Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD
thesis, Imperial College, University of London, 1999.

17. M. Goldsmith. Operational Semantics for Fun and Profit. In Proc. of the Sympo-
sium on the Occasion of 25 Years of Csp, LNCS vol. 3525, 2005.

18. S. Graf, B. Steffen, and G. Lüttgen. Compositional Minimisation of Finite State
Systems using Interface Specifications. Formal Aspects of Computation, 8(5):607–
616, 1996.

19. S. Graf and B. Steffen. Compositional Minimization of Finite State Systems. In
Proc. of the 2nd Workshop on Computer-Aided Verification, LNCS vol. 531, 1990.

174 F. Lang

20. J. F. Groote and M. Reniers. Algebraic Process Verification. In Handbook of Process
Algebra, chapter 17. North-Holland, 2001.

21. J.F. Groote and A. Ponse. Syntax and semantics of μ-CRL. In Proc. of Algebra
of Communicating Processes, Workshops in Computing, 1995.

22. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genève, 1989.

23. ISO/IEC. Open Distributed Processing – Reference Model. International Standard
10746, International Organization for Standardization — Information Processing
Systems, Genève, 1995.

24. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization — Information Tech-
nology, Genève, 2001.

25. J.-P. Krimm. Application des ordres partiels à la génération compositionnelle de
systèmes asynchrones. PhD thesis, Université Joseph Fourier, Grenoble, 2000.

26. J.-P. Krimm and L. Mounier. Compositional State Space Generation from LOTOS
Programs. In Proc. of TACAS’97, LNCS vol. 1217, 1997.

27. F. Lang. EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Composi-
tional, and On-the-fly Verification Methods. In Proc. of IFM’2005, LNCS vol. 3771,
2005. Full version available as INRIA Research Report RR-5673.

28. J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro. A Tool for Hierarchi-
cal Design and Simulation of Concurrent Systems. In Proc. of the BCS-FACS
Workshop on Specification and Verification of Concurrent Systems, 1988. British
Computer Society.

29. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
30. J. Romijn. Model Checking the HAVi Leader Election Protocol. Technical Report

SEN-R9915, CWI, Amsterdam, The Netherlands, 1999.
31. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
32. K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic Procedure for

Checking Safety Properties of Protocols. IEEE Transactions on Communications,
37(9):940–948, 1989.

33. K. C. Tai and V. Koppol. Hierarchy-Based Incremental Reachability Analysis
of Communication Protocols. In Proc. of the IEEE International Conference on
Network Protocols. IEEE Press, 1993.

34. K. C. Tai and V. Koppol. An Incremental Approach to Reachability Analysis of
Distributed Programs. In Proc. of the 7th International Workshop on Software
Specification and Design. IEEE Press, 1993.

35. F. Tronel, F. Lang, and H. Garavel. Compositional Verification Using CADP
of the ScalAgent Deployment Protocol for Software Components. In Proc. of
FMOODS’2003, LNCS vol. 2884, 2003. Full version available as INRIA Research
Report RR-5012.

36. A. Valmari. Compositional State Space Generation. In Proc. of Advances in Petri
Nets, LNCS vol. 674, 1993.

37. W. J. Yeh. Controlling State Explosion in Reachability Analysis. PhD thesis, Soft-
ware Engineering Research Center Laboratory, Purdue University, 1993. Technical
Report SERC-TR-147-P.

38. W. J. Yeh and M. Young. Compositional Reachability Analysis Using Process
Algebra. In Proc. of the ACM SIGSOFT Symposium on Testing, Analysis, and
Verification. ACM Press, 1991.

On Distributed Program Specification and
Synthesis in Architectures with Cycles

Julien Bernet and David Janin

LaBRI, Université de Bordeaux I,
351, cours de la libération,

F-33 405, Talence Cedex, France
{bernet, janin}@labri.fr

Abstract. In this paper, we consider discrete distributed synthesis pro-
blems, as defined by Pnueli and Rosner [17], on possibly cyclic architec-
tures with zero-delay semantics and global specifications.

We describe a uniform (and complete) translation of these problems
into distributed games problems. We prove the correctness of this trans-
lation and we also obtain, in this setting, a characterization of distributed
architectures with decidable synthesis problems.

It shall be noted that, as opposed to former approaches, zero-delay
semantics requires a specific treatment for modeling instantaneous value
propagation. Moreover, cyclic dependencies with zero-delay semantics
involve equations with potentially many solutions. Accordingly, several
variants of the distributed synthesis problem are proposed and studied.

Introduction

Automatic or semi-automatic synthesis of programs from specifications has been
for long a challenging research goal in formal methods.

In the context of distributed discrete events systems, Pnueli and Rosner gave
one of the first abstract definitions of this problem, proved its general undecid-
ability, and characterized a decidable class of problems: distributed synthesis on
the pipeline architecture [17].

Since then, distributed program synthesis has received a lot of attention:
in the framework defined by Pnueli and Rosner [5,10,11,12], in control theory
[2,13,1,4,20], or in the framework of true concurrency [7,6]. Many variations of
this problem have been considered and solved: cyclic or acyclic architectures,
from synchronous to asynchronous communications, interleaved or true con-
current models, with or without zero-delay semantics, with point to point or
broadcast communication channels.

From a theoretical point of view, solving a distributed synthesis problem -
where programs to be synthesized only have local knowledge of the global state
of the system - amounts to solving a multiplayer game with partial information.
This general problem has been defined and studied already in [16,19].

More recently, a regain of interest for distributed synthesis has led to a spe-
cialized version of multiplayer games, distributed games, that aims at defining a

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 175–190, 2006.
c© IFIP International Federation for Information Processing 2006

176 J. Bernet and D. Janin

common framework where distributed synthesis problems can be encoded and
solved [14]. In particular, these games have been equipped with various automata
based tools [3] that help in this process.

Objective of This Work

In this paper, we first aim at illustrating the relevance of this unifying approach
by giving a clear, uniform and complete reduction of distributed synthesis prob-
lems into distributed games. As a subgoal, we expect this reduction to be effi-
cient, both in the sense that decidable cases are strictly preserved, and in the
sense that the complexity of solving these problems does not increase through
the reduction.

In order to do so, we study the distributed synthesis problem in the case
of architectures with cycles, zero-delay semantics and branching time global
specifications; this case has not been considered so far. It occurs that zero-
delay semantics require a specific treatment for modeling instantaneous value
propagation. Moreover, cyclic dependencies with zero-delay semantics involve
equations with potentially many solutions. Accordingly, several variants of the
distributed synthesis problem are proposed and studied.

The relevance of studying cyclic architecture with zero-delay semantics first
comes from digital circuits design as illustrated, for instance, by the classical R/S
flip flop [8]. In this setting, one may consider extensions of Hardware Description
Languages such as VHDL [9] with modules for automatic program synthesis.
Studying zero-delay semantics also makes sense at the application level.

Investigating furthermore the relevance of this approach in various application
fields like telecommunication or web services, distributed database or parallel
scientific computing, etc. . . , is however not the purpose of this paper. Following
Pnueli and Rosner original works and motivations [17], we stick to a level of
abstraction that is application independent.

There is little doubt that application of automatic distributed synthesis still
requires a lot more research efforts for exhibiting both richer decidable frame-
works and more tractable solutions.

Organization of the Paper

A model of zero-delay synchronous behaviors is presented in the first section. On
architecture with cycles, it is shown that global behaviors may not be uniquely
defined by sets of local behaviors. Accordingly, three variants of the distributed
synthesis problem are defined: the angelic, the strict and the demonic variant.

The notion of hierarchical architectures is defined and studied in the second
section. It is equivalent to a similar notion defined in [5]. Our main result is
then stated: the angelic and strict variant of the distributed synthesis problem
with arbitrary MSO specification are decidable if and only if the underlying
architecture is hierarchical.

A proof of this theorem is given in the fourth part. More precisely, after briefly
reviewing the definition of distributed games, we prove that both variants of the

On Distributed Program Specification and Synthesis in Architectures 177

distributed synthesis problem can be encoded into distributed games that are
decidable when the underlying architecture is hierarchical.

Some open problems are presented as a conclusion.

Notations

A word on an alphabet A is a partial function w : ω → A with downward-closed
domain, i.e. w(i) is the i+1th letter of word w. When dom(w) is finite, we say w
is a finite word, otherwise w is an infinite word. The length |w| of a word w is the
cardinality of its domain. The set of finite words (resp. finite non empty words)
over alphabet A is written A∗ (resp. A+), the set of infinite words is written Aω ,
the set of finite or infinite words is written A∞. The empty word is written ε.
The concatenation of a word u ∈ A∗ and a word v ∈ A∞ is written u.v.

Given alphabet B, a B-labeled A-tree is a partial function t : A∗ → B with
prefix-closed domain.

Given two sets A and B, we write πA (resp. πB) for the left (resp. right)
projection from A × B to A (resp. from A × B to B). These notations are
extended to any subset of A×B and words on A×B. Given P ⊆ A×B, (resp.
w ∈ (A × B)∞), we may also write P [1] for πA(P) and P [2] for πB(P) (resp.
w[1] for πA(w) and w[2] for πB(w)). These notations are generalized to larger
products.

1 Distributed Program Synthesis with Zero-Delay
Semantics

In this section, we rephrase Pnueli and Rosner’s distributed synthesis problem
for zero-delay semantics and arbitrary - possibly cyclic - architectures. In this
context, behavior semantics and architecture structures are studied and interre-
lated one with the other.

1.1 Models of Behaviors

Programs considered in this paper produce a sequence of output events from a
sequence of input events. We assume moreover that programs are synchronous
and zero-delay: no output event is produced prior to any input event and every
input event produces one and only one output event.

Definition 1. A synchronous zero-delay behavior with input alphabet A and
output alphabet B is a mapping f : A∗ → B∗ such that there exists a mapping
kf : A∗ → (A → B), called the kernel of f such that f(ε) = ε and, for every
u ∈ A∗ and a ∈ A, f(u.a) = f(u).kf (u)(a).

In the remainder of the text, a synchronous zero-delay behavior f : A∗ → B∗

is simply called a sequential function and, for every u ∈ A∗, kf (u) : A → B is
called the one-step behavior of function f after input u.

178 J. Bernet and D. Janin

A sequential function f : A∗ → B∗ has finite memory when its kernel kf :
A∗ → (A → B) is eventually periodic, i.e. there are some integers m and n
such that, for every u ∈ A∗ with |u| > m, for every v ∈ A∗ with |v| = n,
kf (u.v) = kf (u).

One can easily check that each sequential function has a unique kernel and,
conversely, each mapping k : A∗ → (A → B) is the kernel of a unique se-
quential function. Specifying or synthesizing sequential functions thus amounts
to specifying and synthesizing their kernels. Moreover, since kernels are infinite
A → B-labeled A-trees, Monadic Second Order Logic (MSO) - or any of its
sub logics such as LTL, CTL or the mu-calculus - is available for specification
purposes and the related infinite tree-automata theory [18] can be applied for
synthesis algorithms.

Another interesting characteristic of this notion of kernel, especially for dis-
tributed synthesis, is the good behavior of kernels w.r.t. function composition
since, in some sense, it commutes with it. More precisely, writing f ; g for the
composition g ◦ f , for all sequential functions f : A∗ → B∗ and g : B∗ → C∗ and
for every input sequence u ∈ A∗, one has kf ;g(u) = kf (u); kg(f(u)).

In other words, the one-step behavior of the sequential composition of function
f with function g after some time is just the sequential composition of the one-
step behaviors of f with the next step behavior of g after the same amount of
time.

Remark. In the setting defined by Pnueli an Rosner [17] and considered in
subsequent works [5,14,10], a sequential behavior f : A∗ → B∗ is generated by
a A-branching B-labeled A-tree hf : A∗ → B (with irrelevant root value) by
f(ε) = ε and for every u ∈ A∗ and a ∈ A, f(u.a) = f(u).hf (u.a). In this model,
for every u ∈ A+, hf(u) ∈ B is the last output produced after input sequence u.

It shall be clear that these two approaches are equivalent in the sense that
they both define the same sequential functions. However, dealing with the latter
definition is much harder when composing functions. In fact, for all sequential
functions f : A∗ → B∗ and g : B∗ → C∗ and for every input sequence u ∈ A∗,
one has hf ;g(u) = hg(f(u)). This difficulty entails for instance, in the approach
presented in [14], an asynchronous encoding of synchronous distributed synthesis
problems into distributed games. This somehow artificial asynchronism is not
necessary as shown in the present paper.

Remark. A sequential function is, by definition, zero-delay. Still, we can provide
a semantical definition of a one-delay behavior. A sequential function f : A∗ →
B∗ is one delayed when, for every u ∈ A∗, every a1 and a2 ∈ A, f(u.a1) =
f(u.a2), i.e. the output event produced after a given input event only depends
on the previous input events.

Observe that one-delay sequential functions have a very simple characteriza-
tion in terms of their functional kernel. In fact, a sequential function f : A∗ → B∗

is one-delay if and only if, for every u ∈ A∗, the one-step behavior kf (u) is a
constant function.

On Distributed Program Specification and Synthesis in Architectures 179

1.2 Distributed Architectures

Our definition of distributed architecture is adapted from Pnueli and Rosner’s
definition [17] allowing single write/multiple read channels as in [5].

Definition 2. A distributed architecture H is defined as a tuple

H = 〈I, S, r, {Ac}c∈I∪S〉,

with a finite set I of (global) input channels, a disjoint finite set S of process
sites (identified with output channels), a mapping r : S → P(I ∪ S) that maps
every process p ∈ S to the set of channels r(p) where process p read input values,
and, for every channel c ∈ I ∪ S, the finite alphabet Ac of possible events on
channel c.

We always assume that alphabets are pairwise disjoint. We also always assume
that I ⊆

⋃
{r(p) : p ∈ S}, i.e. any input is read by at least one process.

As a notation, we write A for the alphabet of all possible channel events at
a given time, i.e. A = Πc∈I∪S. For every set of channels X ⊆ I ∪ S, we write
AX for the product alphabet Πc∈XAc. In particular, Ar(p) is the input alphabet
of process p on the bigger channel formed by all channels of r(p).

Given any sequence w ∈ A+ of channel input/output events in the architecture
H, we write in(w) for the corresponding sequence of events πAI (w) on architec-
ture input channels and we write out(w) for the corresponding sequence of events
πAS (w) on architecture output channels. Similarly, for every process p ∈ S, we
also write inp(w) for the corresponding sequence of events πAr(p)(w) on process
p input channels, and outp(w) for the corresponding sequence of events πAp(w)
on process p output -.

As a particular case, when r(p) = ∅, we define Ar(p) to be a singleton alphabet,
say Ar(p) = {1}, with, in this case, inp(w) = 1|w|. The intuition behind this case
is that, with no input channels, a process still receives time clicks.

Remark. Two processes that read on the same set of channels (and thus share
the same information) can be seen as a single process that writes on two distinct
channels.

1.3 Distributed Behaviors

In presence of loops, giving zero-delay semantics to a distributed architecture is
a priori non-trivial. Following Pnueli and Rosner [17], the intuitive idea would be
to define distributed behavior of an architecture as the global behavior resulting
from the composition of local sequential behaviors (one per process).

However, with zero-delay semantics, loops may create cyclic dependencies
between the values of the output channels, i.e. systems of equations that may
have several solutions. Zero, one or more global behaviors may be compatible
with a given set of local behaviors. Consider for instance the system drawn below,
where the left-hand process (resp. right-hand process) writes at each time the
logical OR (resp. AND) of the last values it reads on its two inputs. Suppose

180 J. Bernet and D. Janin

now that the value of x is 0 (in short x = 0) and that y = 1. Then, one can
either have a = 0 and b = 0, or a = 1 and b = 1 ; hence there are several global
behaviors corresponding to this set of local behaviors.

∨ ∧x y
a

b

Thus the notion of distributed realization of a global behavior defined by
Pnueli and Rosner [17] is no longer functional.

Definition 3. Let H=〈I, S, r, {Ac}c∈I∪S〉 be a distributed architecture. A global
behavior f : A∗

I → A∗
S of architecture H is realizable by a set of local behaviors

fp : A∗
r(p) → A∗

p, one per process p ∈ S, when the following condition is satisfied:

for every global input/output u ∈ A∗ with out(w) = f(in(w)), for every
p ∈ S, one has outp(w) = fp(inp(w)).

The set of local behaviors {fp}p∈S is incoherent (resp. ambiguous) when it real-
izes no (resp. more than one) global behavior.

In order to solve distributed synthesis problem, we need a more local definition
of realizable behavior.

Definition 4 (One-step realizability). A global one-step behavior k : AI →
AS is one-step realized by a set of local one-step behaviors kp : Ar(p) → Ap,
one per process p ∈ S, when the following condition is satisfied:

for every global input/output events a ∈ A, such that out(a) = k(in(a)),
one has, for every process p ∈ S, outp(a) = kp(outp(a)).

A set of local one-step behavior {kp}p∈S is called incoherent (resp. ambiguous)
when it realizes no (resp. more than one) global one-step behavior.

Remark. From this definition, one may be tempted to (re)define realizable
global behaviors as sequential functions f : A∗

I → A∗
S such that, for every u ∈ A∗

I ,
the one-step global behavior kf (u) has a one-step realization.

Unfortunately, such a definition would be wrong as it would miss the fact
that, for every process p, after any sequence of global input/output w ∈ A∗ with
out(w) = f(in(w)), the one-step behavior of every process p can only depend on
the input sequence inp(w) actually read by process p.

Both definitions of one-step and general realizability are still related as follows:

Lemma 1. A global behavior f : A∗
I → A∗

S of architecture H is realizable by a
set of local behaviors fp : A∗

r(p) → A∗
p, one per process p ∈ S, if and only if, for

every global input/output sequence of events w ∈ A∗ with out(w) = f(in(w)),
the set of one-step local behaviors {kfp(inp(w))}p∈S realizes the global one-step
behavior kf (in(w)).

On Distributed Program Specification and Synthesis in Architectures 181

Proof. For any w ∈ A∗, for any v ∈ A with f(in(w.v)) = out(w.v), for any
process p ∈ S, one has fp(inp(w.v)) = outp(w.v), thus :

kfp(inp(w))(inp(v)) = outp(w).outp(v)

Since fp(inp(w))=outp(w), it is clear that the global one-step behavior kf (in(w))
is realized by the set of local one-step behaviors {kfp(inp(w))}p∈S . The converse
is clearly true. �
Remark. Observe that, on acyclic architecture, a set of zero-delay local be-
haviors is always coherent and non ambiguous. Observe also that, on arbitrary
architecture, a set of one-delay local behaviors is also always coherent and non
ambiguous.

1.4 Distributed Synthesis Problems

The distributed synthesis problem is the following: given a specification of an
expected global behavior find a distributed realization of it, i.e. a set of local
behaviors, one for each process site, such that the corresponding global behaviors
meet the specification.

With arbitrary zero-delay local behaviors several cases are possible. This leads
us to consider three possible semantics for the synthesis problem.

Definition 5 (Distributed synthesis problem). Given an architecture H =
〈I, S, r, {Ac}c∈I∪S〉, given a specification ϕ of sequential functions with input al-
phabet AI and output alphabet AS, the angelic, strict or, resp. demonic distrib-
uted synthesis problem for 〈H, ϕ〉 is to find a set of finite memory local sequential
behavior {fp}p∈S such that :

– angelic case: there is at least one function f realized by {fp}p∈S such that
f |= ϕ,

– strict case: there is a unique function f realized by {fp}p∈S and, moreover,
f |= ϕ,

– or, demonic case: the set of local behaviors {fp}p∈S is coherent and for every
function f realized by {fp}p∈S, one has f |= ϕ.

Remark. The intuition behind these definitions is the following. In the angelic
case, the programmer has the opportunity to add extra (hopefully limited) con-
trol channels in the architecture that allow control over the choice of the global
behavior to be realized. In the strict case, these extra control channels described
above are no longer needed: the architecture and the global specification are per-
missive enough to allow their (implicit) encoding within the architecture itself.
Last, in the demonic case, extra control is just not available.

Observe that a distributed synthesis problem that has a solution with strict
semantics also has a solution with demonic semantics. The main issues about
these three semantics is the decidability problem.

It occurs that, as shown in the next section, both angelic and strict distributed
synthesis problem are, as in the one-delay or the acyclic case, decidable on architec-
tures called hierarchical. The demonic case remains an intriguing open problem.

182 J. Bernet and D. Janin

2 Distributed Synthesis on Hierarchical Architectures

We review here the notion of knowledge of a process in an architecture. This leads
to define hierarchical architecture and to state our main result in the angelic and
strict case.

2.1 Process Knowledge

A similar notion is defined by Finkbeiner and Schewe in [5]. Both lead to equiv-
alent notions of hierarchical architectures on the class of architecture common
to both approaches. However, since this notion is somehow subtle and for the
sake of completeness, we give here our own definition and related intuition.

Definition 6. Given architecture H as above, for every process p ∈ S, we define
the knowledge of process p to be the greatest set of channels Kp ⊆ I ∪ S such
that:

for all q ∈ Kp, either q ∈ I and q ∈ r(p), or q ∈ S with q �= p and
r(q) ⊆ Kp.

The knowledge relation �H is then defined on S to be the relation defined by
p �H q when q ∈ Kp, meaning, informally, that process p potentially knows
more than process q.

One can check that the knowledge relation �H is a preorder, i.e. it is reflexive
and transitive. In the sequel, we write �H for the induced equivalence relation,
i.e. p �H q when p �H q and q �H p.

At every moment in an running distributed architecture, the immediate knowl-
edge of a process p is just the sequence of inputs it is receiving on channels of
r(p) and the sequence of outputs it is producing on channel p. The intended
meaning of the knowledge relation is to capture a notion of deducible knowledge
process p may have from its own immediate knowledge.

The following lemma gives a semantical characterization of the knowledge
relation defined above:

Lemma 2. For every process p, Kp is the set of channels q such that, for
every k : AI → AS that is one-step realizable, for every a1 and a2 ∈ A, such
that out(a1) = k(in(a1)) and out(a2) = k(in(a2)), if inp(a1) = inp(a2) then
inq(a1) = inq(a2).

Proof. The full proof is omitted here due to space restrictions. Essentially, it
suffices to remark that each process site q that is not in Kp is such that there
exists an input channel x �∈ r(p) and a path from x to q that avoids p. Using the
fact that there is a one-step realization of k, one can show that inp(a1) = inp(a2)
and inq(a1) �= inq(a2) if and only if q satisfies this path condition. �

On Distributed Program Specification and Synthesis in Architectures 183

2.2 Hierarchical Architectures

We (re)define here the notion of hierarchical architectures that is induced by the
notion of process knowledge.

Definition 7. An architecture is called hierarchical when the knowledge relation
is total, i.e. for every p and q ∈ S, either p �H q or q �H p. Equivalently, an
architecture is hierarchical when the quotient set S/ �H is linearly ordered by
the relation �H.

It shall be clear that, on architectures that are common to both definitions, the
definition presented here and the one of Finkbeiner and Schewe [5] are the same.

p1 p3

p2 p4 p5

In the above example, one has p1 � p2 � p3 � p4 � p5 : it is therefore
hierarchical.

2.3 Main Result

Theorem 1. The angelic or strict distributed synthesis problem for architec-
ture H is decidable with arbitrary global MSO specification ϕ if and only if the
architecture H is hierarchical.

Proof. In section 3, both angelic and demonic distributed synthesis problem on
hierarchical architectures are encoded into pipeline distributed games (in the
sense of [14,3]) that are thus decidable.

Conversely, any non hierarchical architecture contains an undecidable pattern
(in the sense of [11]) or an information fork (in the sense of [5]) hence it is
undecidable (even with one-delay semantics). �

Since the one-delay semantics is a particular case of (say strict) zero-delay se-
mantics (the one-delay assumption can be encoded into the global specification)
this result generalizes previous result for distributed synthesis problems on ar-
chitecture with global specification.

3 Game Encodings of Distributed Synthesis Problems

In this section, we show that (strict or angelic) distributed synthesis problems can
be encoded into distributed games. On hierarchical architecture one gets pipeline
games. Since these games are decidable, this induces a decision procedure for the
distributed synthesis problem for hierarchical architectures (for both strict and
angelic semantics). .

184 J. Bernet and D. Janin

3.1 Distributed Games

Distributed games [14] are a special kind of multiplayer games with partial in-
formation [15] extended to infinite plays. In short, two-player games are played
on a bipartite graph, in which each position belongs to either the first player
(called the Process) or to the second player (called the Environment). Distrib-
uted games are an extension of two-player games, where n Process players play
together against one Environment player.

Definition 8 (Game arenas). A one-Process (or two players) game arena is
a tuple G = 〈P, E, T , s〉 where P is a set of Process position, E is a set of
Environment position, T ⊆ P ×E ∪E × P is a set of possible transition moves,
and s ∈ P ∪ E is an initial position.

Given n one-Process game arenas Gi = 〈Pi, Ei, Ti, si〉 for i ∈ [1, n], a synchro-
nous distributed game arena G built from the local game arenas G1, . . . , Gn, is
a game arena G = 〈P, E, T , s〉 with P =

∏
i Pi, E =

∏
i Ei and s = (s1, . . . , sn),

and such that the set of moves T satisfies the following conditions: for every
u ∈ P and v ∈ E:

– Process team: (u, v) ∈ T if and only if for every i ∈ [1, n], (u[i], v[i]) ∈ Ti,
– Environment: if (v, u) ∈ T then for every i ∈ [1, n], (v[i], u[i]) ∈ Ti.

Remark. Observe that there is a unique distributed game arena built from the
local arenas G1, . . . , Gn with maximal set of Environment moves. This arena,
written G1 ⊗ · · · ⊗ Gn, is called the free synchronous product of the arenas G1,
. . . , Gn.

Observe that any other distributed arena G built from the same local arenas
can just be seen as a subgame of the free product obtained by possibly disallowing
some Environment moves. It follows that, in the sequel, we will use the notation
G ⊆ G1 ⊗ · · · ⊗ Gn to denote this fact.

Remark. In [14] or in [3], a more general notion of distributed with asynchro-
nous moves is defined. For the study presented here, the additional expressive-
ness gained with asynchronism is not used in this paper. Since we are essentially
establishing lower bounds result, this fact makes our result even stronger.

Definition 9. Given a two player game arena G = 〈P, E, T , s〉, a strategy for
the Process player (resp. a strategy for the Environment player) is a mapping
σ : P+ → E (resp. a mapping τ : E+ → P).

From the initial position s ∈ E + T , the play induced by strategies σ and τ
from position s, written σ ∗ τ is defined to be the maximal word w ∈ (P + E)∞

such that w(0) = s and for every i ∈ dom(w) with i > 0, (w(i − 1), w(i)) ∈ T
and, given w′ = w(0) · · ·w(i− 1), if w(i− 1) ∈ P then w(i) = σ ◦ πP (w′) and if
w(i− 1) ∈ E then w(i) = τ ◦ πE(w′).

Strategy σ for Process is non blocking when, for every counter strategy τ , if
σ ∗ τ is finite then it ends in an Environment position.

Given an n-process game arena G ⊆ G1⊗· · ·⊗Gn, a Process strategy σ : P+ →
E is a distributed strategy where there is a set of local process strategies {σi :

On Distributed Program Specification and Synthesis in Architectures 185

P+
i → E}i∈[1,n] such that, for every word w ∈ P+, σ(w) = (σ1 ◦πP1(w), · · · , σn ◦

πPn(w).
In other words, a Process strategy is distributed when every local Process player

only plays following its own local view of the global play.

Until now, we didn’t specify how to win in such a game. For any play w
that ends in a position without successor, the convention we use is to de-
clare that w is won by the Processes (resp. by the Environment) if and only
if the last position of w belongs to E (resp. to P). This corresponds to the
idea that whenever a player may not make a game move anymore, it looses the
play.

Since loops are allowed in the game arena, a Process strategy may also induce
infinite plays. A winning condition for a distributed arena G = 〈P, E, T , s〉 should
therefore be defined as a set Acc of infinite plays won by the Process, i.e. infinite
words from (P +E)ω . In order to describe such a set in a finite way, one can either
use some decidable logic over infinite words (either monadic second order logic
MSO, or one of its specializations, such as μ-calculus or LTL). In the scope of
this paper, however, we do not want to be specific about the formalism chosen for
the specification; therefore we simply assume that Acc is an ω-regular language
(equivalently a language definable in MSO).

Definition 10 (Distributed games and winning strategies).A distributed
game is a tuple G = 〈P, E, T , s, Acc〉 where 〈P, E, T , s〉 is a distributed arena, and
Acc ⊆ (P + E)ω is an ω-regular winning condition.

A distributed Process strategy σ in game G is a winning strategy when it is
non blocking and for any strategy τ for the Environment, if the play σ ∗ τ (from
initial position s) is infinite then it belongs to Acc.

Observe that a distributed game arena can just be seen as a distributed game
with infinitary winning condition Acc = (P+E)ω. In this case, winning strategies
and non blocking strategies are the same.

3.2 Distributed Games for the Strict Case

We prove here that unambiguous realizable behaviors can be encoded as distrib-
uted non blocking strategies in distributed arenas.

Definition 11. Let H = 〈I, S, r, {Ac}c∈I∪S〉 with S = {1, . . . , n} a n-process
distributed architecture. We define the n-process strict distributed arena GS

H =
〈P, E, T , s〉 from a free synchronous product arena G1 ⊗ · · · ⊗ Gn of the game
arenas Gi as follows.

For every p ∈ {1, · · · , n}, the game arena Gp = 〈Pp, Ep, Tp, sp〉 is defined by
taking

1. Pp = {∗p,⊥p} ∪Ar(p)
2. Ep = (Ar(p) → Ap),
3. Tp is the union of the sets (Pp − {⊥p})× Ep and Ep × (Pp − {∗p}),
4. and sp = ∗p,

186 J. Bernet and D. Janin

The intended meaning of this game arena is that, at every step, Process p chooses
a one-step local behavior (in Ar(p) → Ap) and Environment answers by choosing
one local direction.

The distributed arena GS
H is then defined from the free product by restricting

Environment global moves as follows: from an Environment distributed position
e = (kp)p∈[1,n],

1. Environment checks that the set of one-step local behaviors {kp}p∈[1,n] is an
unambiguous one-step realization of a global one-step behavior ke,

2. if so, Environment chooses a global input event a = (ac)c∈I , compute the
corresponding global output event (ac)c∈S = ke(a), and distribute back to
processes their corresponding local inputs, i.e. Environment moves to Process
distributed position (bp)p∈[1,n] with bp = (ac)c∈r(p)), otherwise Environment
moves to the final position (⊥1,⊥2, · · · ,⊥n).

Unambiguous distributed behaviors of architecture H are encoded as non block-
ing distributed strategies in the distributed arena GS

H as follows. Every process
p ∈ S defines, step by step, in game Gp, the local behavior process p will have in
architectureH. The environment player checks that these choices are compatible
one with another in such a way that the resulting global behavior is well defined
(and thus has a coherent and unambiguous distributed realization).

Theorem 2. A distributed strategy σ = σ1 ⊗ · · · ⊗ σn is non blocking in the
game arena GS

H if and only if the set {fσp}p∈S of the behaviors defined on local
games G1, . . . , Gn by strategies σ1, . . . , σn is the distributed realization of an
unambiguously realizable sequential function fσ : A∗

I → A∗
S.

In particular, a strategy σ is finite memory if and only if the sequential func-
tion fσ is finitely generated (i.e. it has a finite memory kernel).

Proof. Let σ : P ∗ → E be a non blocking distributed strategy for the process
team with σ = σ1 ⊗ · · · ⊗ σn.

By definition, from every coherent and unambiguous e ∈ E there is a unique
mapping ke : AI → AS locally realized by e. Moreover, for every input value
a ∈ AI , there is one and only one position pe,a ∈ P where environment player
can move to and, moreover, value a can be read in values stored in pe,a hence
all positions {pe,a}a∈AI are distinct one from the other.

It follows that there is a unique mapping hσ : A∗
I → P+ such that hσ(ε) =

(∗1, · · · , ∗n) and, for every u ∈ A∗
I , for every a ∈ AI , given e = σ(hσ(u)), one

has h(u.a) = hσ(u).pe,a.
We define then the mapping kσ : A∗

I → (AI → AS), the functional kernel
of the sequential function induced by strategy σ, by taking, for every u ∈ AI ,
kσ(u) = ke with e = σ(hσ(u)).

By construction, kσ is the functional kernel of an unambiguously realizable
behavior fσ of architectureH. In fact, for every u ∈ A∗

I , the environment position
σ(hσ(u)) is the local realization of kσ(u) since it is a coherent and unambiguous
position hence Lemma 1 applies.

Conversely, let f : A∗
I → A∗

S be a distributed architecture behavior realized by
a coherent and unambiguous set of local process behaviors {fp}p∈S. Given, for

On Distributed Program Specification and Synthesis in Architectures 187

every p ∈ S a non blocking strategy σp in game Gp that corresponds to behavior
fp, it is not hard to see that the distributed strategy σf = σ1 ⊗ · · · ⊗ σn is non
blocking in the distributed arena GH. �

3.3 Distributed Games for the Angelic Case

We prove here that coherent realizable behaviors can be encoded as non blocking
distributed strategies in distributed arenas.

Definition 12. Again, let H = 〈I, S, r, {Ac}c∈I∪S〉 with S = {1, . . . , n} an n-
process distributed architecture. We define the n + 1-process angelic distributed
arena GA

H = 〈P, E, T , s〉 from a free synchronous product arena G0⊗G1⊗· · ·⊗Gn

as follows.
For every p ∈ {1, · · · , n}, the game arena Gp = 〈Pp, Ep, Tp, sp〉 is defined as

in the strict case (see Definition 12) and the game arena G0 = 〈P0, E0, T0, s0〉 is
defined as follows:

1. P0 = {∗0,⊥0} ∪AI

2. E0 = (AI → AS),
3. T0 is defined to be the union of the sets (P0−{⊥0})×E0 and E0×(P0−{∗0}),
4. and s0 = ∗0.

The intended meaning of this game arena is that, at every step, Process 0 chooses
a one-step global behavior and Environment answers by choosing one global
input.

The distributed arena GA
H is then defined from the free product by restricting

Environment global moves as follows: from an Environment distributed position
e = (kp)p∈[0,n],

1. Environment checks that the set of one-step local behaviors {kp}p∈[1,n] is a
one-step realization of the global one-step behavior k0,

2. if so, Environment chooses a global input event a = (ac)c∈I , compute the
corresponding global output event (ac)c∈S = ke(a), and distributes back to
processes their corresponding local inputs, i.e. Environment moves to Process
position (bp)p∈[0,n] with bp = (ac)c∈r(p) when p ∈ [1, n] and bp = a when p =
0, otherwise Environment moves to the final position (⊥0,⊥1,⊥2, · · · ,⊥n).

Coherent distributed behaviors of architecture H are encoded as non blocking
distributed strategies in the distributed game GH as follows. Every process p ∈ S
defines, step by step, in game Gp, the local behavior process p will have in
architectureH, and process 0 defines, step by step, the intended global realizable
behavior. The environment player checks that these choices are compatible one
with the other in such a way that the chosen global behavior defined by player 0
is realizable by the coherent (though possibly ambiguous) set of local behaviors
that are built by the other players.

Theorem 3. A distributed strategy σ = σ0 ⊗ σ1 ⊗ · · · ⊗ σn is non blocking in
game GA

H if and only if the set {fσp}p∈[1,n] of the local behaviors defined on local

188 J. Bernet and D. Janin

games G1, . . . , Gn by strategies σ1, . . . , σn is a distributed realization of the
global behavior fσ0 : A∗

I → A∗
S defined on local game G0.

In particular, strategy σ is finite memory if and only if the sequential function
fσ0 is finitely generated (i.e. it has a finite memory kernel).

Proof. The argument are essentially the same as in the proof of Theorem 2. �

3.4 Distributed Synthesis Problem in Distributed Games

Now we show that any n-process strict distributed synthesis problem on hierar-
chical architecture can be encoded into a n-process pipeline distributed game.

The first step is to prove that:

Lemma 3. If architecture H is hierarchical then both distributed games GS
H and

GA
H are pipeline game arenas in the sense of [14,3].

Proof. This follows immediately from the definition of hierarchical architecture
(see section 2.2), Lemma 2 and Definitions 11 or Definition 12. In fact, Envi-
ronment always transmit local inputs to Process players. It follows that any
linearization of the knowledge order on processes will give an order that process
the game is a pipeline game [14].

In the angelic case, Process 0 knows the global input and the global behavior.
It follows that he also knows every other process inputs. It is thus already a
leader (see [14,3]) and can be added as the least element in this total order. �
It follows:

Theorem 4. For every hierarchical architecture H = 〈I, S, r, {Ac}c∈I∪S〉 with n
Process players and every MSO specification ϕ of (kernel of) sequential function
from A∗

I to A∗
S there is an n + 1-process for the strict case (resp. n + 2-process

for the angelic case) decidable distributed game GS
〈H,ϕ〉 (resp. GA

〈H,ϕ〉) such that
there is an unambiguously realizable (resp. realizable) behavior for H that satis-
fies specification ϕ if and only if there is a (finite memory) distributed winning
strategy for the process team in game GS

〈H,ϕ〉 (resp. GA
〈H,ϕ〉).

Proof. First, one can easily translate the global specification ϕ to a global strat-
egy specification ψ that is satisfied only by global strategies that encode global
behaviors that satisfy ϕ. Then the result immediately follows from Theorem 2,
Theorem 3, Lemma 3 and the fact that, as described in [3], pipeline games with
such external conditions are decidable. �

4 Conclusion

We have shown that strict and angelic distributed synthesis problem are decid-
able on hierarchical architectures with zero-delay semantics.

The demonic case remain, so far, an open problem. For proving decidability,
one may try to adapt the above proof to this case by letting Environment (in-
stead of player 0 in the angelic case) choose any behaviors realized by the local

On Distributed Program Specification and Synthesis in Architectures 189

behaviors built by Processes. But this would break the pipeline structure of the
resulting game so this approach would be non conclusive.

On the other side, for proving undecidability in the presence of a cycle in the
architecture, one may try to force - by means of the external specification - some
subset of processes to choose coherent, but ambiguous, local behaviors that would
induce equations with multiple solutions. Then, following demonic semantics,
Environment could pick arbitrary values among these solutions, creating thus
another arbitrary input in the architecture that could behave such as a typical
undecidable architecture. But this approach is inconclusive too since we do not
know, so far, how to force in a global specification such a kind of set of ambiguous
local behaviors.

Less directly related with our proposal, one may observe that, in the case of non
hierarchical architecture, with the notable exception of local specifications[12],
hardly any restriction on the global specification have been established for in-
creasing the class of decidable distributed synthesis problems. This is certainly
a open research direction that could be followed. The notion of process knowledge
could be tuned to take into account the global specification. Distributed games,
where both architecture and specification have been merged, could serve as a tool
to achieve new results in this direction.

Even more distant from our present work, but still related, one can also ob-
serve that asynchronous behaviors, with fairness assumption that guarantees
only finitely many output events are produced after every single input event, can
be encoded by extending the notion of kernels to mapping from A∗ to A → B∗.
Though the resulting vertex labeling would be on an infinite alphabet, the dis-
tributed game techniques that are used here could be extended to this case.

Acknowledgment

We are grateful to anonymous referees. Their comments strongly helped us revis-
ing former versions of this work. We would also like to thank Dietmar Berwanger
for his suggestions for the final version of this paper.

References

1. L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. The control of synchronous
systems, part II. In CONCUR, volume 2154 of LNCS, pages 566–582, 2001.

2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controlers with
partial observation. Theoretical Comp. Science, 303(1):7–34, 2003.

3. J. Bernet and D. Janin. Tree automata and discrete distributed games. In Founda-
tion of Computing Theory, volume 3623 of LNCS, pages 540–551. Springer-Verlag,
2005.

4. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

5. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In IEEE Symp. on
Logic in Computer Science (LICS), pages 321–330, 2005.

190 J. Bernet and D. Janin

6. P. Gastin, B. Lerman, and M. Zeitoun. Causal memory distributed games are de-
cidable for series-parallel systems. In Proceedings of FSTTCS’04, LNCS. Springer-
Verlag, 2004. To appear.

7. P. Gastin, B. Lerman, and M. Zeitoun. Distributed games and distributed control
for asynchronous systems. In Proceedings of LATIN’04, volume 2976 of LNCS,
pages 455–465. Springer-Verlag, 2004.

8. J. L. Hennessy and D. A. Patterson. Computer organization and design (2nd ed.):
the hardware/software interface. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998.

9. IEEE Std 1076-1993. IEEE Standard VHDL, 1993.
10. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In IEEE Symp.

on Logic in Computer Science (LICS), pages 389–398, 2001.
11. P. Madhusudan. Control and Synthesis of Open Reactive Systems. PhD thesis,

University of Madras, 2001.
12. P. Madhusudan and P.S. Thiagarajan. Distributed control and synthesis for local

specifications. In Int. Call. on Aut. and Lang. and Programming (ICALP), volume
2076 of LNCS. Springer-Verlag, 2001.

13. P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchrnous distributed
controlers. In CONCUR’02, volume 2421 of LNCS, pages 145–160. Springer-Verlag,
2002.

14. S. Mohalik and I. Walukiewicz. Distributed games. In Found. of Soft. tech and
Theor. Comp. Science, volume 2914 of LNCS, pages 338–351. Springer-Verlag,
2003.

15. G.L. Peterson and J.H. Reif. Multiple-person alternation. In 20th Annual IEEE
Symposium on Foundations of Computer Sciences, pages 348–363, october 1979.

16. G.L. Peterson, J.H. Reif, and S. Azhar. Decision algorithms for multiplayer non-
cooperative games of incomplete information. Computers and Mathematics with
Applications, 43:179–206, january 2002.

17. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
IEEE Symposium on Foundations of Computer Science, pages 746–757, 1990.

18. M. O. Rabin. Decidability of second order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

19. J.H. Reif. Universal games of incomplete information. In 11th Annual ACM Sym-
posium on Theory of Computing, pages 288–308, 1979.

20. K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions on Automatic Control, 37(11):1692–1708, November
1992.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 191 – 195, 2006.
© IFIP International Federation for Information Processing 2006

Generalizing the Submodule Construction Techniques for
Extended State Machine Models

Bassel Daou and Gregor v. Bochmann

School of Information Technology and Engineering (SITE), University of Ottawa
bdaou@site.uottawa.ca, bochmann@site.uottawa.ca

Abstract. In previous research we extended the submodule construction tech-
niques to cover a more expressive and compact behavioral model that handles
data through parameterized interactions, state variables, and simple transition
guards. The model was based on extended Input/Output Automata, and the al-
gorithm on the Chaos concept. In this paper we generalize these extensions and
improve the submodule construction techniques and algorithms. The generaliza-
tions include regular transition guards including equality and inequality, nega-
tion, conjunction and disjunction of predicates. The algorithm is improved by
utilizing the concept of generic transitions (non refined transitions) that are re-
fined as needed instead of considering all possible refinements of the Chaos.
The algorithm selects needed refinements through dataflow relations bridging
which involves forward propagation of definitions and backward propagation of
usages. The new approach provides a more intuitive explanation of the sub-
module construction algorithm, gives justification for the number of variables in
the new module and results in a much smaller and compact solution.

1 Introduction

Submodule construction, also called equation solving or factorization, considers the
following situation: An overall system is to be constructed which consists of several
components. It is assumed that the specification S of the desired behavior of the sys-
tem is given, as well as a specification of the behavior of all the components, except
one. The process of submodule construction has the objective to find a specification
for the latter component X such that when joined with all other components , referred
to as the Context C, together provide a behavior consistent with the behavior specifi-
cation S. If the modeling paradigm for the behavior specifications is sufficiently lim-
ited, e.g. finite state models, an algorithm for submodule construction can be defined
[MeBo83, Parr89, LaXi90, JoLa91, LeQi90, PeYe98, DrBo99, CDFM01]. Submod-
ule construction finds application in the synthesis of controllers for discrete event sys-
tems [BrWo94], for communication gateway design and protocol conversion
[KeHa93, KNM97, TBD97].

Service Oriented Architecture (SOA) is an area of possible application for sub-
module construction. The submodule construction techniques may be used in Services
synthesis and implementation. However, these techniques need to be developed to fit
SOA requirements, such as data manipulation and handling nonfinite state models.

192 B. Daou and G.v. Bochmann

In this paper we report the continuation
of work published in FORTE 2005
[DaBo05] where we extended the sub-
module construction techniques that has
been limited in the past to finite state
models. In this work we ease the restric-
tions that were applied to these extensions
and we modify the solution approach and
parts of the algorithm to fit the new model
and to provide a smaller, more compact
and more intuitive solution.

2 Model Extensions

In the previous model [DaBo05], data manipulation and value passing were achieved
by extending finite automata models with parameterized interactions, local variables,
simple transition guards and variable assignments. Transition guards were limited to
the conjunction of equality predicates between variables and transition parameters.
In this paper we eliminate this restriction so that guards can include disjunction and
negation as well as inequality predicates between variables and parameters. More-
over, in the previous model, variables were only assigned parameter values; in the
new model we ease this restriction to allow assignment of variables between one an-
other.

3 New Solution Approach

Our previous algorithm followed the general steps of the submodule construction al-
gorithm for finite state machines. It starts with a general superset of behaviors, called
Chaos, it then removes unwanted behaviors through composition, hiding, determini-
zation and bad or uncontrollable state removal. These steps were adapted for the ex-
tended specification paradigm. During the construction of a deterministic model, the
effect of hidden guards and hidden variables was taken care of through state splitting
transformations based on previously collected information about variable configura-
tions. In the new approach we continue to use the same general outline of the algo-
rithm, however, we use the duality concept to obtain a superset of the wanted behav-
ior before hiding, instead of using Chaos machine concept.

We define the dual of a given behavior G as the most general matching behavior
G’ that when joined with G will never generate an output that is not specified
among inputs accepted by G. Besides, G’ always accepts as input any matching
output of G.

G’ puts no restrictions on inputs that are not generated by G. In our model G’ is ob-
tained from G by labeling inputs as outputs and outputs as inputs. So G’ has a set of
variables V’ matching the set of variables V of G.

Fig. 1. Submodule Construction: General
Architecture

Specification

X Context
Vc

Vs

Vx
System

 Generalizing the Submodule Construction Techniques 193

Thus, as shown in figure 2 the su-
perset of behaviors that is used in the
new submodule construction algo-
rithm will be the dual of C joined with
the dual of S, (C.S’)’, which is in gen-
eral a much smaller set of behaviors
than the Chaos machine. This ap-
proach provides the following bene-
fits:

1. A better explanation for the num-
ber of variables needed for de-
scribing the most general behavior of the new module (in fact, a copy of the vari-
ables in S and in C suffice).

2. A smaller representation of the most general behavior for the new module which
results from the fact that a single mapping of new module variables to the variables
of S and C can be used, instead of having a solution with all possible permutations
of variable mappings. Each variable of the new module is mapped to its original
variable in either C or S.

The other aspect of our new approach is the use of the concept of generic “unre-
fined” transitions instead of using “interaction chaos” and the means of selecting only
refinements that contribute to the solution. In our previous algorithm all possible re-
finements were explicitly considered, which though theoretically possible, becomes
very unpractical for rather simple submodule construction problems. We need to note
that in the behavior superset only transitions that are executed by the new module can
be refined since we have full control over the new module. And thus two types of re-
finements are possible. These are: conditions on what the new module sends or re-
ceives, and options of where the new module stores received values.

Traditionally to overcome the effect of hiding in the case of finite label transition
systems, transition closure and determinization were enough. However, when vari-
ables enter the picture as in our model we need to do something more, we basically
need to make sure that variables are used properly, that is variables use the right val-
ues as defined in the specifications. We are especially interested in dataflow relations
that cross machine borders. The Chaos solution explicitly generates all possible re-
finements and consequently all possible dataflow associations, however, not all these
dataflow relations are needed or at least need to be identified, we only need to find all
possible dataflow relations that simulate specification dataflow relations.

Thus the idea behind our approach is to perform dataflow analysis on the general
behavior in order to identify the needed refinements. Accordingly, parameter value
storage refinements are identified using forward propagation of definitions dataflow
analysis. Meanwhile, conditions on received and sent data refinements are identified
using backward propagation of usage dataflow analysis.

4 Algorithm Modifications

The new algorithm manipulates guards using the disjunctive normal form (disjunction
of conjuncts). So, a transition can be viewed as a group of transitions where each

Fig. 2. Dual Based Approach for Submodule
Construction

(S'.C)' C
Vc

Vs

Vs' Vc'

S'

194 B. Daou and G.v. Bochmann

transition has a guard formed of a single conjunct of the original transition’s con-
juncts. The algorithm handles the conjuncts collectively when possible and separately
when situation demands such as in some cases of the backward state and transition
splitting. Regarding negation and inequality their effect is limited to the conformance
predicate which checks whether a transition guard is enabled for a given matching re-
lations which we represent using a variable partition.

Alogrithm 1. Submodule Construc-
tion Algorithm Steps [DaBo05]:
Given C, S:, X Alphabet
1. G1:=Chaos(X , |S.V|+|C.V|).(S’. C)
2. R := ComputePartitions(G1)
3. G2 := Split(G1, X , R,)
4. G3:= Hide(G2, (C U S)- X, S.V U

C.V)
5. G4:= Determinize(G3)
6. X:=RemoveUncontrollableBehav-

ior(G4)
7. Return X

Algorithm 2. New Submodule Con-
struction Algorithm Steps:
Given C, S:, X Alphabet
1. G0:= (S.C)’.(S’.C)
2. G1 = AddRefinements(G0)
3. R := ComputePartitions(G1)
4. G2 = Split(G1, X , R,)
5. G3 :=Hide(G2, (C U S) - X , S.V U

C.V)
6. G4 := Determinize(G3)
7. X := RemoveUncontrollableBehavior(G4)
8. Return X

In the following we provide a high level outline of the new algorithm step “AddRe-
finements” sub-algorithm focusing on refinements added due to specification context
definition and corresponding new module usage.

Algorithm 3. AddRefinements (G)
• CX = { (t1, t2, c1, s1) | t1 is a transition where the definition of C variable c1 simulates

definition of specification variable s1 and t2 is the transition where the corresponding
usage of s1 takes place in X }

• Done = {} //represent handled define-use associations.
• Loop While not (CX = {})

 Remove (t1, t2, c1, s1) from CX
 Done := Done U {(t1, t2,c1, s1)}
 CX := CX U ({ (t3, t2, c3, s1) | t3 is a transition where c1 is used to define

c3 such as c3:=c4} – Done)
 For each t in {t | t has an output interaction sent from C to X, where a pa-

rameter p of t takes c1 value}
 If t already has an assigning s1 to a parameter p2 other than p

• Replicate t3 replace s1:= p2 with s1 = p
 Else Add s1:=p to t3

The algorithm is guaranteed to stop since the possible dataflow relations existing
are finite and the algorithm does not handle dataflow relation that has been already
handled.

5 Conclusion and Future Work

This paper continues the work done on extending submodule construction techniques
for finite state machines to more expressive behavioral models. We have eased the re-
striction on the model mainly allowing conjunction, disjunction, explicit negation and

 Generalizing the Submodule Construction Techniques 195

state variables equality predicates in state transition guards. We have presented a new
solution approach that improves the practicality and efficiency of the algorithm, justi-
fies the number of variables used in the new module, and results in a smaller solution
by considering a standard mapping of new module variables to context and specifica-
tion variables. We have provided an outline of the new algorithm that is based on
dataflow analysis mainly backward propagation of criteria and forward propagation of
definitions. This work will be the basis for adding more extensions to the behavioral
model, such as considering functions and general predicates over variables which we
are currently considering.

References

[BrWo94] B. A. Brandin, and W.M. Wonham. Supervisory Control of Timed Discrete
Event Systems. IEEE Transactions on Automatic Control, Vol. 39, No. 2, pp.
329-342, 1994.

[CDFM01] V. Carchiolo, N. De Francesco, A. Fantechi, G. Mangioni, "ESA: an approach to
Systems Design by Equation Solving". FMICS'2001, Paris, France, July 2001.

[DaBo05] B. Daou and G.V. Bochmann. Submodule Construction for Extended State ma-
chine Models. FORTE 05,pp. 396-410, 2005.

[DrBo99] J. Drissi, and G.V. Bochmann. Submodule Construction for Systems of I/O Auto-
mata. Tech. Rep. no. 1133, DIRO, University of Montreal, 1999.

[JoLa91] B. Jonsson, K.G. Larsen. On the complexity of equation solving in behavior ex-
pression algebra. TAPSOFT'91, vol. 1, LNCS 493, pp. 381-396, 1991.

[KeHa93] S.G. Kelekar, G. W. Hart. Synthesis of Protocols and Protocol Converters Using
the Submodule Construction Approach. PSTV93, pp. 307-322, 1993.

[KNM97] R. Kumar, S. Nelvagal, and S. I. Marcus. A Discrete Event Systems Approach
for Protocol Conversion. Discrete Event Dynamical Systems: Theory and Appli-
cations, Vol. 7, No. 3, pp. 295-315, 1997.

[LaXi90] K. Larsen, L. Xinxin. Equation solving using modal transition systems.
LICS'90, 1990.

[LeQi90] P. Lewis and H. Qin. Factorization of finite state machines under observational
equivalence. LNCS 458, Springer, 1990.

[MeBo83] P. Merlin, and G. v. Bochmann. On The Construction of Submodule Specifica-
tions and Communication Protocols, ACM Trans. On Programming Languages
and Systems. Vol. 5, No. 1, pp. 1-25, 1983

[PeYe98] A. Petrenko and N. Yevtushenko. Solving Asynchronous Equations. FORTE'98,
(1998), 231-247.

[Parr89] J. Parrow. Submodule Construction as Equation Solving in CCS. Theoretical
Computer Science, Vol. 68, 1989.

[TBD97] Z. Tao, G. v. Bochmann and R. Dssouli. A Formal Method For Synthesizing Op-
timized Protocol Converters And Its Application To Mobile Data Networks. Mo-
bile Networks & Applications, Vol.2, No. 3, pp. 259-69, 1997.

Decidable Extensions of Hennessy-Milner Logic�

Radu Mardare1 and Corrado Priami1,2

1 University of Trento, Italy
2 Microsoft Research - University of Trento

Center for Computational and Systems Biology, Trento, Italy

Abstract. We propose a new class of logics for specifying and model-
checking properties of distributed systems - Dynamic Epistemic Spatial
Logics. They have been designed as extensions of Hennessy-Milner logic
with spatial operators (inspired by Cardelli-Gordon-Caires spatial logic)
and epistemic operators (inspired by dynamic-epistemic logics). Our log-
ics focus on observers, agents placed in different locations of the system
having access to some subsystems. Treating them as epistemic agents, we
develop completely axiomatized and decidable logics that express the in-
formation flow between them in a dynamic and distributed environment.
The knowledge of an epistemic agent, is understood as the information,
locally available to our observer, about the overall-global system.

1 Introduction

The development of computer networks came with new paradigms of compu-
tation. The concept of monolithic computational systems (one-agent system)
was replaced by the concurrent distributed computing systems (multi-agent sys-
tems), representing programs or processors running in parallel and organized
in networks of subsystems. They interact, collaborate, communicate and inter-
rupt each other. Underlying this new paradigm is the assumption that each such
part has its own identity, as a subsystem. We shall associate to a subsystem
an agent.

The agents are needed for discriminating between the events of the systems
behavior. If we wish to identify a particular event, we have little choice but to
identify the agents involved. Hence the agents might be understood as (associ-
ated with) separate and independently observable units of behavior and com-
putation. They evolve in a given environment, following some primitive rules,
their evolution influencing the structure of the whole (multi-agent) system. The
main feature of the agents is their ability to communicate, that is to exchange
information inside their environment.

Such a multi-agent system reflects interactive, concurrent and distributed be-
haviors and computations of agents, thus is extremely complex. The success in
dealing with this complexity depends on the mathematical model we choose to
abstract the system. Further we focus on two major paradigms.

� Work partially supported by EU-IST project 016004 SENSORIA.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 196–211, 2006.
c© IFIP International Federation for Information Processing 2006

Decidable Extensions of Hennessy-Milner Logic 197

1.1 The Agent Is Nothing More But Its Behavior

Process Algebra [1] abstracts the agents of the system on the level of their be-
havior and using some algebraic calculi and operational semantics describes the
evolution of the whole system. Further, as the behavior of a concurrent system
is a succession of affine states in (possibly branching) time, it was considered the
possibility of applying modal (especially temporal) logics for specifying proper-
ties of the processes that modelled distributed systems.

In studying security problems, for example, we may want to be able to specify
systems composed by agents that deal with fresh or secret resources. We may
want to express properties such as “the agent has the key”, “eventually the agent
crosses the firewall” or “there is always at most one agent here able to decrypt
the message”.

Hennessy-Milner logic [2] is one of the first modal logics that proposes some
dynamic operators, indexed by CCS actions, 〈α〉φ to capture the weakest precon-
dition of a program w.r.t. a given post-specification φ. The idea was further de-
veloped in combination with temporal operators [3] and applied to other process
calculi [4,5,6]. All these logics are characterized by their extensional nature -
they distinguish processes up to their behavior.

The specific applications of mobile computing call for an increased degree of
expressiveness for specifying and reasoning about locations, resources, indepen-
dence, distribution, connectivity or freshness. Thus, Spatial logics [7,8] propose,
in addition to the modal-temporal operators, some modal-spatial operators such
as the parallel operator φ|ψ (meaning that the current system can be split into a
parallel composition of two subsystems, one satisfying φ and the other satisfying
ψ), and its adjoint - the guarantee operator φ�ψ, or ambient-location operators1

such as n[φ] (meaning that the current system can be described as a box n[P]
containing a subsystem P that satisfies φ), etc. A formula in a spatial logic de-
scribes a property of a particular part of the system at a particular time. These
spatial modalities have an intensional flavor, the properties they express being
invariant only for simple spatial rearrangements of the system.

Still most of the spatial logics face with decidability problems: it was proved
that the basic spatial operators, in combination with temporal operators, gen-
erate undecidable logics [11,12,13] even against a finite piece of CCS[14].

An Agent Is Defined by Its “Knowledge”

The other paradigm of modelling multi-agent systems is inspired by epistemic
logics: reasoning about systems in terms of knowledge of the agents [15]. The
knowledge of an agent is understood as the sum of actions the agent (subsystem)
may take as a function of its local state in a given environment. Thus the agent
“knows” its protocol in a given system, its knowledge consists in the information
related to evolution of this subsystem in an unknown environment.

1 These operators are characteristic for Ambient Logic [8], a special spatial logic de-
veloped for Ambient Calculus [9,10].

198 R. Mardare and C. Priami

Epistemic logics [15] formalize, in a direct manner, notions of knowledge,
possessed by an agent, or a group of agents, using modalities like KAφ (A knows
φ), or Ckφ (all the agents knows φ, i.e. φ is a common knowledge). These logics
supports Kripke-model based semantics, each basic modality being associated
with a binary accessibility relation in these models. Thus for each epistemic agent
A we devise an accessibility relation A−→ , called indistinguishability relation for
A, expressing the agent’s uncertainty about the current state. The states s′ such
that s

A−→ s′ are the epistemic alternatives of s to agent A: if the current state of
the whole system is s, A thinks that any of the alternatives s′ may be the current
state (as it does not have enough information to distinguish them). These logics
have been extensively studied and applied to model complex communication-
based multi-agent systems.

By mixing dynamic [16] and epistemic [15] formalisms have been developed
Dynamic Epistemic Logics [17,18,19]. These logics combine a rich expressivity
with low complexity ensuring decidability and complete axiomatizations.

Our Approach

The two paradigms of modelling concurrent distributed systems presented be-
fore were developed in parallel, but to our knowledge, there has been no unified
paradigm. We propose such a paradigm in this paper, used for constructing a
new logic for concurrency completely axiomatized and decidable that combines
the features of spatial logics with the epistemic logics thus obtaining a special
type of dynamic epistemic logic equipped with spatial operators. We call it Dy-
namic Epistemic Spatial Logic. While the dynamic and spatial features allow
to express complex spatial/temporal properties, the epistemic operators denote
the knowledge state of the agents. Thus we can express, for a security protocol,
that Alice knows the key k, but she also knows that Bob knows that she knows
this key. The hierarchic epistemic statements are relevant for expressing and
validating complex security protocols [20,17].

Formally, we extend Hennessy-Milner logic with the parallel operator and epis-
temic operators. In our logics the epistemic agents are named by the processes
they are related with. Thus KP φ means the agent related with P knows φ and
it holds iff φ is satisfied by any process having P as subprocess. The intuition is
that the agent related with P can see only P . So, it cannot differentiate between
the global states P , P |Q or P |R of the whole system, as in all these states it
sees only P . Thus its knowledge rests on the properties φ that are satisfied by
each of these states (processes).

We prove that Dynamic Epistemic Spatial Logic is decidable and we develop
sound-complete Hilbert-style axiomatic systems, against process semantics based
on a fragment of CCS [14], for two differently expressive such logics.

Concluding, the novelty of our logic with respect to the classical spatial logics
is the use of the epistemic operators for expressing global properties while ensur-
ing decidability. The epistemic operators allow to refer directly to agents of our
system by mean of their knowledge. By combining the partial knowledge of the
agents we can specify complex properties of distributed multi-agent systems.

Decidable Extensions of Hennessy-Milner Logic 199

Outline of the Paper

The paper is organized as follows. In section 2 we introduce and study a small
finite fragment of CCS on which we will focus for the rest of the paper2. Some
new concepts will be introduced and used further, such as structural bisimu-
lation and pruning processes and sets of processes. Starting with section 3 we
define our logics. Two such systems will be introduced LDS and its extension
LDES . For both we will prove the bounded finite model property and develop
sound complete Hilbert-style axiomatic systems against the chosen semantics.
Eventually we end the paper with some concluding remarks.

For the proofs of the theorems presented in this paper, and for additional
results the reader is referred to [21] for Dynamic Epistemic Spatial Logic and
to [22] for Dynamic Spatial Logic. Some extensions of these logics have been
presented in [23]

2 Processes and Contexts

In this section, focusing on the fragment of CCS introduced in definition 1, we
develop some concepts on which we will base the further constructs.

Definition 1 (Processes). Consider the fragment of CCS generated by the
next syntax, where A is a denumerable set of actions and α ∈ A:

P ::= 0 | α.P | P |P

Hereafter this calculus3 is the object of our paper. We will use α, β to range over
A and we will denote by P the class of processes. As standard, we consider defined
over P a structural congruence, Table 1, and a labelled transition system, Table 2.

Table 1. The axioms the structural congruence

P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R

Table 2. The transition system

α.P
α−→ P

P ≡ Q P
α−→ P ′

Q
α−→ P ′

P
α−→ P ′

P |Q α−→ P ′|Q

Assumption [Representativeness modulo structural congruence]: As
the structural congruence is the ultimate level of expressivity we want for our
logic, hereafter we will speak about processes up to structural congruence.
2 This calculus provides a semantics against which the classical spatial logic is unde-

cidable [11].
3 We can, additionally, consider an involution on A that associate to each action α ∈ A

an action α ∈ A, as usual in CCS, and also consider the silent action τ . But all these
represent just syntactic sugar, irrelevant from the point of view of the logic we
discuss.

200 R. Mardare and C. Priami

Definition 2. We call a process P guarded iff P ≡ α.Q for α ∈ A. We introduce
the notation P k def

= P |...|P︸ ︷︷ ︸
k

, and convey to denote P 0 ≡ 0.

We extend the operators from processes to sets of processes.

Definition 3. For any sets of processes M, N ⊂ P and any α ∈ A we define:
α.M

def
= {α.P | P ∈ M} M |N def

= {P |Q | P ∈ M, Q ∈ N}
As we speak about processes up to structural congruence, the parallel operator on
sets of processes will be commutative, associative and will have {0} as null.

Now we define the contexts. The intuition is that a context M is a (possibly
infinite) set of processes that contains, in a maximal manner, any process repre-
senting a possible state of our system or of a subsystem of our system. Hence if a
process belongs to a context then any process obtained by pruning its syntactic
tree should belong to the context, as it might represent a possible state of a. For
the same reason, the context should be also closed to transitions. π(P) denotes
the set of all processes obtained by pruning the syntactic tree of P .

Definition 4 (Pruning the syntactic tree). For P ∈ P define4 π(P) ⊂ P:

1. π(0)
def
= {0} 2. π(α.P)

def
= {0} ∪ α.π(P) 3. π(P |Q)

def
= π(P)|π(Q)

We extend the definition of π to sets of processes M⊂ P by π(M)
def
=
⋃

P∈M π(P).

Definition 5 (Context). A context is a nonempty set M⊆ P such that:
1. if P ∈M and P −→ P ′ then P ′ ∈ M 2. if P ∈ M then π(P) ⊂M

2.1 Size of a Process

Further we define the size of a process, following a similar idea developed in [24]
for sizes of trees. The intuition is that the process has a height given by the
vertical size of its syntactic tree, and a width equal to the maximum number of
bisimilar subprocesses that can be found in a node of the syntactic tree.

Definition 6 (Size of a process). We define, inductively, the size (h, w) (h
stays for height and w for width) of a process P , denoted by �P �:

1. �0�
def
= (0, 0) 2. �P �

def
= (h, w) iff

− P=(α1.Q1)k1 |(α2.Q2)k2 |...|(αj .Qj)kj ,�Qi�=(hi, wi), i ∈ 1..j
− h = 1 + max(h1, ..., hk), w = max(k1, ..., kj , w1, ..., wj)

We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and w1 ≤ w2 and (h1, w1) <
(h2, w2) for h1 < h2 and w1 < w2.

Definition 7 (Size of a set of processes). Let M ⊂ P. We write �M� =
(h, w) iff (h, w) = max{�P � | P ∈ M}5.
4 We consider also π(P) defined up to structural congruence.
5 Observe that not all the sets of processes have a size, as for an infinite one it might

be not possible to have the maximum required.

Decidable Extensions of Hennessy-Milner Logic 201

Example 1. We show the size for some processes:
1. �0� = (0, 0) 4. �α.0|α.0� = (1, 2)
2. �α.0� = (1, 1) 5. �α.α.0� = �α.β.0� = (2, 1)
3. �α.0|β.0� = (1, 1) 6. �α.(β.0|β.0)� = (2, 2)

2.2 Substitutions

For the future constructs is also useful to introduce the substitutions of actions
in a process.

Definition 8 (The set of actions of a process). We define Act(P) ⊂ A by:

1.Act(0)
def
= ∅ 2.Act(α.P)

def
= {α}∪Act(P) 3.Act(P |Q)

def
= Act(P)∪Act(Q)

For a set M ⊂ P of processes we define Act(M)
def
=
⋃

P∈M Act(P).

Definition 9 (Action substitution). We call action substitution any func-
tion σ : A −→ A. We syntactically extend it, from actions to processes, by:
1. σ(0)

def
= 0 2. σ(P |Q)

def
= σ(P)|σ(Q) 3. σ(α.P)

def
= σ(α).σ(P)

For M ⊂ P let σ(M)
def
= {σ(P) | P ∈ M}. We also use notation Mσ, P σ for

σ(M) and σ(P). The set of actions of σ, act(σ), is defined as

act(σ)
def
= {α, β ∈ A | α �= β, σ(α) = β}

2.3 Structural Bisimulation

The structural bisimulation is a congruence on processes (then extended to con-
texts) defined as an approximation of the structural congruence bound by two
sizes: the height (the depth of the syntactic tree) and the weight (the maximum
number of bisimilar subprocesses that can be found in a node of the syntactic
tree) of a process. A conceptually similar congruence was proposed in [24] for
analyzing trees of location for the static ambient calculus.

The structural bisimulation analyzes the behavior of a process focusing on a
boundary (h, w) of its syntactic tree. The intuition is that P ≈w

h Q (P and Q
are structurally bisimilar on size (h, w)) iff when we consider for both processes
their syntactic trees up to the depth h only (we prune them on the height h)
and we ignore the presence of more than w parallel bisimilar subprocesses in any
node of the syntactic trees (we prune the trees on weight w), we obtain identical
syntactic trees.

Definition 10 (Structural bisimulation). For P, Q ∈ P we define P ≈w
h Q

by:
P ≈w

0 Q always
P ≈w

h+1 Q iff for any i ∈ 1..w and any α ∈ A we have
• if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w

h Qj, for
j = 1..i

• if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w
h Pj, for

j = 1..i

202 R. Mardare and C. Priami

Theorem 1 (Congruence). ≈w
h is a congruence on processes.

We extend the definitions of structural bisimulation from processes to contexts.

Definition 11 (Structural bisimulation over contexts). Let M,N be two
contexts. We write M≈w

h N iff
1. for any P ∈M there is a Q ∈ N with P ≈w

h Q
2. for any Q ∈ N there is a P ∈M with P ≈w

h Q
We convey to write (M, P) ≈w

h (N , Q) for the case when P ∈ M, Q ∈ N ,
P ≈w

h Q and M≈w
h N .

Example 2. Consider the processes R ≡ α.(β.0|β.0|β.0)|α.β.0 and
S ≡ α.(β.0|β.0)|α.β.α.0. We can verify the requirements of the definition 10 and
decide that R ≈2

2 S. But R �≈2
3 S because on the depth 2 R has an action α

(in figure 1 marked with a dashed arrow) while S does not have it (because the
height of S is only 2). Also R �≈3

2 S because R contains only 2 (bisimilar) copies
of β.0 while S contains 3 (the extra one is marked with a dashed arrow). Hence,
for any weight bigger than 2 this feature will show the two processes as different.
But if we remain on depth 1 we have R ≈3

1 S, as on this deep the two processes
have the same number of bisimilar subprocesses, i.e. any of them can perform α
in two ways giving, further, processes in the relation ≈3

0. Indeed R ≡ αR′|αR′′,
where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0 and S ≡ α.S′|α.S′′, where S′ ≡ β.0|β.0
and S′′ ≡ β.α.0. By definition, R′ ≈3

0 S′ and R′′ ≈3
0 S′′.

S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

�� ��������������������

β.0|β.0|β.0

���������������

�� ��������� β.0

��
0 0 0 0

α.(β.0|β.0)|α.β.α.0

�� ��������������

β.0|β.0

��������������

��

β.α.0

��
0 0 α.0

���
�
�

0

Fig. 1. Syntactic trees

2.4 Pruning Processes and Contexts

We introduce an effective method to construct, given a process P , a minimal
process Q that has an established size (h, w) and is structurally bisimilar to P
on this size. Because the construction is based on pruning the syntactic tree of
P on a given size, we call this method bound pruning, and we refer to Q as the
pruned of P on the size (h, w).

Theorem 2 (Bound pruning theorem). For any process P ∈ P and any
(h, w) exists a process Q ∈ P with P ≈w

h Q and �Q� ≤ (h, w).

Decidable Extensions of Hennessy-Milner Logic 203

Proof. We describe the construction6 of Q by induction on h.
For h = 0: we just take Q ≡ 0, because P ≈w

0 Q and �0� = (0, 0).
For h + 1: suppose that P ≡ α1.P1|...|αn.Pn.

Let P ′
i be the result of pruning Pi by (h, w) (we use the inductive step of con-

struction) and P ′ ≡ α1.P
′
1|...|αn.P ′

n. As for any i = 1..n we have Pi ≈w
h P ′

i (by
the inductive hypothesis), we obtain, using theorem 1, that αi.Pi ≈w

h+1 αi.P
′
i

and further P ≈w
h+1 P ′.

Consider the canonical representation of P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km .
Let li = min(ki, w) for i = 1..m. Then we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm .
Obviously Q ≈w

h+1 P ′ and as P ≈w
h+1 P ′, we obtain P ≈w

h+1 Q. By construction,
�Q� ≤ (h + 1, w).

Definition 12 (Bound pruning processes). For a process P and for a tuple
(h, w) we denote by P(h,w) the process obtained by pruning P to the size (h, w)
by the method described in the proof of theorem 2.

Example 3. Consider the process P ≡ α.(β.(γ.0|γ.0|γ.0) | β.γ.0) | α.β.γ.0
Observe that �P � = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to
prune the syntactic tree of P such that to not exist, in any node, more than two
bisimilar branches. Hence P(3,2) = α.(β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0

If we want to prune P on the size (3, 1), we have to prune its syntactic tree such
that, in any node, there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.

For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and
in the new tree we have to let, in any node, a maximum of two bisimilar branches.
As a result of these modifications, we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going
further we obtain the smaller processes P(0,0) = 0, P(1,1) = α.0, P(1,2) = α.0|α.0,
P(2,1) = α.β.0.

Further we define the bound pruning of a context M as the context generated
by the set of pruned processes of M.

Definition 13 (Bound pruning contexts). We say that the set M ⊂ P is a
system of generators for the context M if M is the smallest context that contains
M . We denote this by M = M. For any context M and any (h, w) we define

M(h,w)
def
= {P(h,w) | P ∈ M}.

Theorem 3. For any context M, any P ∈ M, and any size (h, w) we have
(M, P) ≈h

w (M(h,w), P(h,w)).

Definition 14. Let A ⊂ A. Consider the sets:

PA
(h,w)

def
= {P ∈ P | Act(P) ⊆ A, �P � ≤ (h, w)}

MA
(h,w)

def= {M ⊂ P | Act(M) ⊆ A, �M� ≤ (h, w)}

6 This construction is not necessarily unique.

204 R. Mardare and C. Priami

Theorem 4. If A ⊂ A is a finite set of actions, then the following hold:

1. PA
(h,w) is finite 2. any M ∈ MA

(h,w) is a finite context 3. MA
(h,w) is finite.

Theorem 5 (Bound pruning theorem). Let M be a context. Then for any
(h, w) there is a context N ∈ M

Act(M)
(h,w) such that M ≈w

h N . Moreover, N =
M(h,w) has this property.

3 Logics for Specifying Distributed Systems

In this section we introduce Dynamic Spatial Logic, LDS , as an extension of
Hennessy-Milner logic with the parallel operator and Dynamic Epistemic Spa-
tial Logic, LDES , which extends LDS with the epistemic operators. The intuition
is to define the knowledge of the process P in the context M as the common
properties of the processes in M that contain P as subprocess. Hence the knowl-
edge implies a kind of universal quantifier over M.

The satisfiability relations will evaluate a formula to a process in a context.
For our logics, we propose Hilbert-style axiomatic systems proved to be sound

and complete with respect to process semantics. LDS and LDES satisfy the bond
finite model property against the process semantics that entails the decidability
for satisfiability, validity and model checking for both logics.

3.1 Syntax

Definition 15 (Languages). We define the language of Dynamic Spatial Logic,
FDS, and the language of Dynamic Epistemic Spatial Logic, FDES, for α ∈ A:

φ := 0 | % | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ (FDS)
φ := 0 | % | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | KQφ (FDES)

Definition 16 (Derived operators). In addition we have derived operators:

1. ⊥ def
= ¬% 4. [α]φ

def
= ¬(〈α〉(¬φ)) 6. 〈!α〉ψ def

= (〈α〉ψ) ∧ 1

2. φ ∨ ψ
def
= ¬((¬φ) ∧ (¬ψ)) 5. 1

def
= ¬((¬0) | (¬0)) 7.

∼
KQφ

def
= ¬KQ¬φ

3. φ → ψ
def
= (¬φ) ∨ ψ

We could also introduce, for each action α, a derived operator7 〈α, α〉 to express
communication by α, supposing that we have defined an involution co : A −→ A
which associates to each action α its co-action α:

〈α, α〉φ def
=

∨
φ↔φ1|φ2

〈α〉φ1|〈α〉φ2

7 The disjunction is considered up to logically-equivalent decompositions φ ↔ φ1|φ2

that ensures the use of a finitary formula.

Decidable Extensions of Hennessy-Milner Logic 205

3.2 Process Semantics

A formula of FDS , or of FDES , will be evaluated to processes in a given context,
by mean of a satisfaction relation M, P |= φ.

Definition 17 (Models and satisfaction). A model of LDS or of LDES is a
context M for which we define the satisfaction relation, for P ∈ M, as follows:

M, P |= % always
M, P |= 0 iff P ≡ 0
M, P |= ¬φ iff M, P � φ
M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ
M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ, M, R |= ψ

M, P |= 〈α〉φ iff there exists a transition P
α−→ P ′ and M, P ′ |= φ

M, P |= KQφ iff P ≡ Q|R and ∀Q|R′ ∈M we have M, Q|R′ |= φ

Then the semantics of the derived operators will be:

M, P |= [α]φ iff for any P ′ ∈M such that P
α−→ P ′ (if any), M, P ′ |= φ

M, P |= 1 iff P ≡ 0 or P ≡ α.Q (P is null or guarded)
M, P |= 〈!α〉φ iff P ≡ α.Q and M, Q |= φ

M, P |=
∼
KQφ iff either P �≡ Q|R, or it exists Q|S ∈M such thatM, Q|S |= φ

Remark the interesting semantics of the operators K0 and
∼
K0 that allow to

encode, in syntax, the validity and the satisfiability w.r.t. a context:

M, P |= K0φ iff for any Q ∈ M we have M, Q |= φ

M, P |=
∼
K0φ iff it exists a process Q ∈ M such that M, Q |= φ

3.3 Characteristic Formulas

In this subsection we use the peculiarities of the dynamic and epistemic opera-
tors to define characteristic formulas for processes and for finite contexts. Such
formulas will be useful in providing appropriate axiomatic systems for our logics
and, eventually, for proving the completeness.

Definition 18 (Characteristic formulas for processes). In FDS we define
a class of formulas (cP)P∈P, indexed by (≡-equivalence classes of) processes, by:

1. c0
def
= 0 2. cP |Q

def
= cP |cQ 3. cα.P

def
= 〈!α〉cP

Theorem 6. M, P |= cQ iff P ≡ Q.

As FDES is an extension of FDS , (cP)P∈P characterize processes also in FDES .
Specific for FDES only is the possibility to exploit the semantics of the operators

K0 and
∼
K0, as they can describe validity and satisfiability w.r.t a model, in

defining characteristic formulas for finite contexts.

206 R. Mardare and C. Priami

Definition 19 (Characteristic formulas for contexts). In FDES, if M is
a finite context, we can define its characteristic formula by:

cM = K0(
∨

Q∈M
cQ) ∧ (

∧
Q∈M

∼
K0cQ)

Suppose that N , P |= cM. Then the first conjunct K0(
∨

Q∈M cQ) tells us that∨
Q∈M cQ is a validity in N , hence each element of N is an element of M, N ⊆

M. The second conjunct tells us that for each Q ∈ M, N , P |=
∼
K0cQ. By the

semantics of
∼
K0 this means that it exists a process P ′ ∈ N such thatN , P ′ |= cQ,

i.e. P ′ ≡ Q. As the processes are identified up to structural congruence, M⊆N .
Hence M = N .

Theorem 7. If M is a finite context and P ∈ M then M, P |= cN iff N = M.

3.4 Bound Finite Model Property and Decidability

Now we prove the finite model property for Dynamic Epistemic Spatial Logic
that will entail the decidability against the process semantics. As a consequence,
we obtain decidability for Dynamic Spatial Logic (being less expressive). Antic-
ipating, we define a size for formulas φ; then we prove that if M, P |= φ then
substituting, by σ, all the actions in M (and implicitly in P) that are not in
the syntax of φ (as indexes of dynamic or epistemic operators) by a fixed action
with the same property, and then pruning Mσ and P σ to the size of φ we will
obtain a couple (N , Q) such that N , Q |= φ. The fixed action of substitution
can be chosen as the successor8 of the maximum action of φ, which is unique.
Hence N ∈ MA

(h,w) where (h, w) is the size of φ and A is the set of actions
of φ augmented with the successor of its maximum, thus A is finite. But then
theorem 4 ensures that the set of pairs (N , Q), with this property, is finite.

Definition 20 (Size of a formula). We define the sizes of a formula, �φ�
(height and width), inductively on FDES, by:

1.�0� = �%�
def
= (0, 0) 2.�¬φ�

def
= �φ�

and supposing that �φ� = (h, w), �ψ� = (h′, w′) and �R� = (hR, wR), further:

3.�φ|ψ�
def
= (max(h, h′), w + w′) 4.�φ ∧ ψ�

def
= (max(h, h′), max(w, w′))

5.�〈α〉φ�
def
= (1+h, 1+w) 6.�KRφ�

def
= (1+max(h, hR), 1+max(w, wR))

The next theorem states that φ is “sensitive” via satisfaction only up to size �φ�.
In other words, the relation M, P |= φ is conserved by substituting the couple
(M, P) with any other couple (N, P) structurally bisimilar to it at the size �φ�.

Theorem 8. If �φ� = (h, w), M, P |= φ and (M, P) ≈w
h (N , Q) then N , Q |= φ.

8 We consider defined, on the class of actions A, a lexicographical order.

Decidable Extensions of Hennessy-Milner Logic 207

Using this theorem, we conclude that if a process, in a context, satisfies φ then
by pruning the process and the context on the size �φ�, we still have satisfiability
for φ. Indeed the theorems 2 and 3 prove that if �φ� = (h, w) then (M, P) ≈h

w

(M�φ�, P�φ�). Hence M, P |= φ implies M�φ�, P�φ� |= φ.

Definition 21 (The set of actions of a formula). We define the set of
actions of a formula φ, act(φ) ⊂ A, inductively by:

1.act(0)
def
= ∅ 4.act(¬φ) = act(φ)

2.act(%)
def
= ∅ 5.act(KRφ)

def
= Act(R) ∪ act(φ)

3.act(φ ∧ ψ) = act(φ|ψ)
def
= act(φ) ∪ act(ψ) 6.act(〈α〉φ)

def
= {α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involve
more then the actions in its syntax. Thus if M, P |= φ then any substitution σ
having the elements of act(φ) as fix points preserves the satisfaction relation.

Theorem 9. If M, P |= φ and act(σ)
⋂

act(φ) = ∅ then Mσ, P σ |= φ.

Suppose that on A we have a lexicographical order &. So, for a finite set A ⊂ A
we can identify a maximal element that is unique. Hence the successor of this
element is unique as well. We convey to denote by A+ the set obtained by adding
to A the successor of its maximal element. Moreover, for a context N � P , for a
size (h, w) and for a finite set of actions A ⊂ A we denote byNA

(h,w) (and by PA
(h,w)

respectively) the context (respectively the process) obtained by substituting all
the actions α ∈ Act(N)\A (α ∈ Act(P)\A respectively) by the successor of the
maximum element of A and then pruning the context (the process) obtained to
size (h, w).

Theorem 10 (Bound finite model property).

If M, P |= φ then ∃N ∈ M
act(φ)+
�φ� and Q ∈ N such that N , Q |= φ.

Moreover N = Mact(φ)
�φ� and Q = P

act(φ)
�φ� fulfill the requirements of the theorem.

Because act(φ) is finite implying act(φ)+ finite, we apply theorem 4 ensuring
that M

act(φ)+
�φ� is finite and any context M ∈ M

act(φ)+
�φ� is finite as well. Thus we

obtain the bound finite model property for our logic. A consequence of theorem
10 is the decidability for satisfiability, validity and model checking against the
process semantics.

Theorem 11 (Decidability of LDES). For LDES validity, satisfiability and
model checking are decidable against the process semantics.

Corollary 1 (Decidability of LDS). For LDS validity, satisfiability and model
checking are decidable against the process semantics.

208 R. Mardare and C. Priami

3.5 Axiomatic Systems

In Table 3 we propose a Hilbert-style axiomatic system for LDS . We assume the
axioms and the rules of propositional logic. In addition we will have a set of
spatial axioms and rules, and a set of dynamic axioms and rules.

Concerning the axioms and rules we make two observations. The disjunction
involved in Axiom S6 is finitary, as we considered the processes up to structural
congruence level. Also the disjunction involved in Rule DR4 has a finite number
of terms, as a consequence of the finite model property.

Table 3. The axiomatic system of LDS

Spatial axioms
S1: � 	|⊥ → ⊥
S2: � (φ|ψ)|ρ → φ|(ψ|ρ)
S3: � φ|0 ↔ φ

S4: � φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)
S5: � φ|ψ → ψ|φ
S6: � (cP ∧ φ|ψ) → P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Spatial rules
SR1: � φ → ψ then � φ|ρ → ψ|ρ

Dynamic axioms
D7: � 〈α〉φ|ψ → 〈α〉(φ|ψ)
D8: � [α](φ → ψ) → ([α]φ → [a]ψ)
D9: � 0 → [α]⊥

D10: For αi �= β, � 〈!α1〉	|...|〈!αn〉	 → [β]⊥
D11: � 〈!α〉φ → [α]φ

Dynamic rules
DR2: � φ then � [α]φ
DR4: �

P∈P
act(φ)+
�φ�

cP → φ then � φ
DR3: If � φ1 → [α]φ′

1 and � φ2 → [α]φ′
2

then � φ1|φ2 → [α](φ′
1|φ2 ∨ φ1|φ′

2)

The axiomatic system for LDES is just an extension of the axiomatic system
of LDS with the set of epistemic axioms and rules presented in Table 4. Observe
that Rule DR4 has been replaced by Rule DR’4, as this logic is sensitive to
contexts (due to universal quantifier involved by the semantics of the epistemic
operator).

For the epistemic axioms and rules we point on their similarities with the
classic axioms of knowledge. Thus Axiom E12 is the classical (K)-axiom stat-
ing that our epistemic operator is a normal one, while Axiom E13 is just the
necessity axiom, for the epistemic operator. Also Axiom E14 is well known in
epistemic logics. It states that our epistemic agents satisfy the positive intro-
spection property: if P knows φ then it knows that it knows φ. Axiom E15
states a variant of the negative introspection, saying that if an agent P is active
and if it doesn’t know φ, then it knows that it doesn’t know φ. These axioms
are present in all the epistemic logics [15]. Axiom E16 is also interesting as
it states the equivalence between to be active and to know for our epistemic
agents.

Decidable Extensions of Hennessy-Milner Logic 209

Table 4. The axiomatic system LS
DES

Dynamic rule
DR’4: � M∈M

act(φ)+
�φ�

cM → φ then � φ

Epistemic axioms

E12: � KQφ ∧ KQ(φ → ψ) → KQψ
E13: � KQφ → φ
E14: � KQφ → KQKQφ
E15: � KQ	 → (¬KQφ → KQ¬KQφ)

E16: If P ∈ S then � KP 	 ↔ cP |	
E17: � KQφ ↔ (KQ	 ∧ K0(KQ	 → φ))
E18: � K0φ ∧ ψ|ρ → (K0φ ∧ ψ)|(K0φ ∧ ρ)
E19: � K0φ → [α]K0φ
E20: � K0φ → (KQ	 → KQK0φ)

Epistemic rules

ER5: � φ then � KQ	 → KQφ
ER6: If M � P is a finite context and

� cM ∧ cP → K0φ then � cM → φ

3.6 Soundness and Completeness

The choice of the axioms is motivated by the soundness theorem.

Theorem 12 (Soundness). The systems LDS and LDES are sound w.r.t.
process semantics.

Hence everything expressed by our axioms and rules about the process semantics
is correct and, in conclusion, using our system, we can derive only theorems that
can be meaningfully interpreted in CCS.

Further we state the completeness of LDS and of LDES with respect to process
semantics. The intuition is that, because cP is a characteristic formulas, we
should have an equivalence between M, P |= φ and ' cP → φ for LDS , and
between M, P |= φ and ' cM ∧ cP → φ for LDES (when M is a finite context).
Using this intuition we proved the completeness theorem. Observe that LDS logic
is not sensitive to contexts, while LDES is, because of the universal quantifier
involved in the semantics of the epistemic operator.

Theorem 13 (Completeness). The LDS and LDES are complete with respect
to process semantics.

The completeness ensures that everything that can be derived in the semantics
can be proved as theorem. In this way we have the possibility to syntactically
verify (prove) properties of distributed systems.

4 Concluding Remarks

In this paper we developed two decidable and complete axiomatized logics for
specifying and model-checking concurrent distributed systems: Dynamic Spa-
tial Logic - LDS and Dynamic Epistemic Spatial Logic - LDES . They extend
Hennessy-Milner logic with the parallel operator and respectively with epistemic

210 R. Mardare and C. Priami

operators. The lasts operators are meant to express global properties over con-
texts. We propose these operators as alternative to the guarantee operator of
the classical spatial logics, in order to obtaining a logic adequately expressive
and decidable.
LDES is less expressive than the classic spatial logic. Using the guarantee

operator and the characteristic formulas, we can express our epistemic operators
in classic spatial logic, while guarantee operator cannot be expressed by using
our logic: KQφ

def
= cQ|% ∧ (¬(cQ|% → φ) �⊥).

Validity and satisfiability in a model can be syntactically expressed in LDES .
Combining this feature with the possibility to characterize processes and finite
contexts, we may argue on utility of this logic.

In the context of decidability, our sound and complete Hilbert-style axiomatic
systems provide powerful tools for making predictions on the evolution of the
concurrent distributed systems. Knowing the current state or a sub-state of a
system, we can characterize it syntactically. And because any other state can be
characterized, we can project any prediction-like problem in syntax and verify
its satisfiability. Hence if the system we considered can reach the state we check,
we will obtain that the formula is satisfiable and this method will provide also
a minimal model.

The axioms and rules considered are very similar to the classical axioms and
rules in epistemic logic, and some derivable theorems state meaningful prop-
erties of epistemic agents. All these relates our logic with the classical epis-
temic/doxastic logics and focus the specifications on external observers as epis-
temic agents. This interpretation is consistent with the spirit of process algebras.

Further researches are to be considered such as adding other operators in
logics to fit with more complex process calculi. Challenging will be also the
perspective of considering recursion in semantics.

Acknowledgements. We thank to Alexandru Baltag for contributing with
valuable comments, since the beginning, on the construction of this logic. Thanks
also to Luca Cardelli for comments and related discussions. The name structural
bisimulation was suggested to us by Gordon Plotkin.

References

1. Bergstra, J.A.: Handbook of Process Algebra. Elsevier Science Inc., New York,
NY, USA (2001)

2. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
JACM vol: 32(1) (1985) 137–161

3. Stirling, C.: Modal and temporal properties of processes. Springer-Verlag New
York, Inc., New York, NY, USA (2001)

4. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoretical
Computer Science vol:114 (1993) 149–171

5. Dam, M.: Proof systems for π-calculus. (In de Queiroz, editor, Logic for Concur-
rency and Synchronisation, Studies in Logic and Computation. Oxford University
Press. To appear)

Decidable Extensions of Hennessy-Milner Logic 211

6. Dam, M.: Model checking mobile processes. Information and Computation
vol:129(1) (1996) 35–51

7. Caires, L., Cardelli, L.: A spatial logic for concurrency (part i). Information and
Computation Vol: 186/2 (November 2003) 194–235

8. Cardelli, L., Gordon, A.D.: Ambient logic. To appear in Mathematical Structures
in Computer Science (2003)

9. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients.
(2000) 365–377

10. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Foundations of Software Sci-
ence and Computation Structures: First International Conference, FOSSACS ’98,
Springer-Verlag, Berlin Germany (1998)

11. Caires, L., Lozes, E.: Elimination of quantifiers and decidability in spatial logics
for concurrency. Volume vol:3170. (2004)

12. Charatonik, W., Talbot, J.M.: The decidability of model checking mobile ambients.
Volume 2142 of Lecture Notes in Computer Science. (2001) 339–354

13. Charatonik, W., Gordon, A.D., Talbot, J.M.: Finite-control mobile ambients. In:
ESOP ’02: Proceedings of the 11th European Symposium on Programming Lan-
guages and Systems, Springer-Verlag (2002) 295–313

14. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York,
Inc. (1982)

15. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press (1995)

16. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
17. Baltag, A., Moss, L.S.: Logics for epistemic programs. In: Synthese: J. Symons,

J. Hintikka. (Eds.), Knowledge, Rationality and Action, Springer 139 (2) (2004)
165–224

18. J. Gerbrandy, W.G.: Reasoning about information change. Journal of Logic,
Language and Information 6 (1997) 146–169

19. van Benthem, J.F.A.K.: Games in dynamic epistemic logic. Bulletin of Economic
Research, Los Altos 53(4) (2001) 219–248

20. Syverson, P., Cervesato, I.: The logic of authentication protocols. In: Riccardo
Focardi, Roberto Gorrieri (Eds.): Foundations of Security Analysis and Design,
Springer LNCS 2117 (2001)

21. Mardare, R., Priami, C.: Dynamic epistemic spatial logics. Technical Report,
03/2006, Microsoft Research Center for Computational and Systems Biology,
Trento, Italy (2006)

22. Mardare, R., Priami, C.: A decidable extension of hennessy-milner logic with
spatial operators. Technical Report DIT-06-009, Informatica e Telecomunicationi,
University of Trento (2006)

23. Mardare, R.: Logical analysis of complex systems: Dynamic epistemic spa-
tial logics. PhD. thesis, DIT, University of Trento, Italy, available from
http://www.dit.unitn.it/∼mardare/publications.htm (March 2006)

24. Calcagno, C., Cardelli, L., Gordon, A.D.: Deciding validity in a spatial logic for
trees. (2003) 62–73

Symbolic Verification of Communicating Systems with
Probabilistic Message Losses: Liveness and Fairness�

C. Baier1, N. Bertrand2, and Ph. Schnoebelen2

1 Universität Bonn, Institut für Informatik I, Germany
2 LSV, ENS de Cachan & CNRS, France

Abstract. NPLCS’s are a new model for nondeterministic channel systems
where unreliable communication is modeled by probabilistic message losses.
We show that, for ω-regular linear-time properties and finite-memory schedulers,
qualitative model-checking is decidable. The techniques extend smoothly to ques-
tions where fairness restrictions are imposed on the schedulers. The symbolic
procedure underlying our decidability proofs has been implemented and used to
study a simple protocol handling two-way transfers in an unreliable setting.

1 Introduction

Channel systems [15] are systems of finite-state components that communicate via
asynchronous unbounded fifo channels. Lossy channel systems [17,6], shortly LCS’s,
are a special class of channel systems where messages can be lost while they are in
transit. They are a natural model for fault-tolerant protocols where communication is
not supposed to be reliable (see example in Fig. 1 below). Additionally, the lossiness
assumption makes termination and safety properties decidable [22,17,6,4,20,8] while
reliable, i.e., non-lossy, systems are Turing-powerful.

LCS’s are a convenient model for verifying safety properties of asynchronous pro-
tocols, and this can be automated [4]. However, they are not adequate for verifying
liveness and progress properties: firstly these properties are undecidable for LCS’s [5],
and secondly the model itself is too pessimistic when liveness is considered. Indeed, to
ensure any kind of progress, one must assume that at least some messages will not be
lost. This is classically obtained via fairness assumptions on message losses [18] but
fairness assumptions in LCS’s make decidability even more elusive [5,21].

Probabilistic LCS’s, shortly PLCS’s, are LCS’s where message losses are seen as
faults having a probabilistic behavior [27,10,31,1,29,2,7]. Thanks to its probabilistic
framework, this model automatically fulfills strong fairness conditions on the message
losses. Additionally it allows one to state so-called qualitative questions, whether a
linear-time property will be satisfied “with probability 1”, that are decidable. However,
PLCS’s are not a realistic model for protocols because they consider that the choices
between different actions are made probabilistically rather than nondeterministically.
When modeling communication protocols, nondeterminism is an essential feature. It

� The first author is supported by the DFG-NWO project VOSS II and the DFG-project PROB-
POR. The last two authors were supported by the ACI Sécurité & Informatique project Persée.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 212–227, 2006.
c© IFIP International Federation for Information Processing 2006

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 213

is used to model the interleaved behavior of distributed components, to model an un-
known environment, to delay implementation choices at early stages of the design, and
to abstract away from complex control structures at later stages.

This prompted us to introduce NPLCS’s, i.e., channel systems where message losses
are probabilistic and actions are nondeterministic [13,14]. These systems give rise to
infinite-state Markov decision processes, and are a more faithful model for analyzing
protocols. The drawback is that they raise very difficult verification problems.

Qualitative Verification for NPLCS’s. Our early results in [14] rely on the assumption
that idling was always a possible choice. This simplifies the analysis considerably, but
is an overkill: a necessary ingredient for most liveness properties of a compound system
is the inherent liveness of the components, which disappears if they can idle.

We developed new techniques and removed the idling limitation in [9] where we
show that decidability can be maintained if we restrict our attention to finite-memory
schedulers (strategies for the nondeterministic choices). This seems like a mild restric-
tion, and we adopt it in this paper since we aim for automatic verification.

Our Contributions. In this paper we extend the preliminary work from [9] in three
directions: (1) We allow linear-time formulas referring to the contents of the channels
rather than just the control locations. We did not consider this extension earlier because
we lacked the techniques for proving the convergence of fixpoint computations. How-
ever, the extension is required in practical applications where fairness properties have
to express that “a rule is firable,” which depends on channel contents for read actions.
(2) We develop symbolic representations and algorithms for sets of NPLCS configu-
rations. These algorithms have been implemented in a prototype tool that we use to
analyze a simple communication protocol. (3) We consider qualitative verification with
quantification over fair schedulers, i.e., schedulers that generate fair runs almost surely.

Outline of the Paper. Section 2 recalls the necessary technical background for non-
deterministic probabilistic channel systems, and section 3 introduces the new symbolic
framework we use for handling sets of configurations. We present our decidability re-
sults in sections 4 (for finite-memory schedulers) and 5 (for fair schedulers). Finally
we apply our algorithms on Pachl’s protocol in section 6. All proofs omitted in this
extended abstract can be found in the complete version available on the web.

2 Nondeterministic Probabilistic Channel Systems

We assume the reader has some familiarity with the verification of Markov decision
processes, or MDPs, (otherwise see [11]) and refer to [9] for complete definitions re-
garding our framework. Here we recall the main definitions and notations without mo-
tivating or illustrating all of them.

Lossy Channel Systems. A lossy channel system (a LCS) is a tuple L = (Q,C,M,Δ)
of a finite set Q = {p,q, . . .} of control locations, a finite set C = {c, . . .} of chan-
nels, a finite message alphabet M = {m, . . .} and a finite set Δ = {δ, . . .} of transi-

tion rules. Each rule has the form q
op−→ p where op is an operation of the form c!m

214 C. Baier, N. Bertrand, and Ph. Schnoebelen

(sending message m along channel c), c?m (receiving message m from channel c), or√
(an internal action with no communication). For example, the protocol displayed in

Fig 1, is naturally modeled as a LCS: building the asynchronous product of the two
processes PL and PR yields a bona fide LCS with two channels and a five-message al-
phabet M = {a0,a1,d0,d1,eod}.

Operational Semantics. A configuration of L as above is a pair s = (q,w) of a location
and a channel valuation w : C→M∗ associating with any channel its current content (a
sequence of messages). M∗C, or M∗ when |C| = 1, denotes the set of all channel val-
uations, and Conf the set of all configurations. ε denotes both the empty word and the
empty channel valuation. The size |s| of a configuration is the total number of mes-
sages in s. The rules of L give rise to transitions between configurations in the obvious
way [9]. We write Δ(s) for the set of rules δ ∈ Δ that are enabled in configuration s.

We write s
δ−→perf s′ when s′ is obtained by firing δ in s. The “perf” subscript stresses

the fact that the step is perfect, i.e., no messages are lost. However, in lossy systems,
arbitrary messages can be lost. This is formalized with the help of the subword ordering:
we write μ + μ′ when μ is a subword of μ′, i.e., μ can be obtained by removing (any
number of) messages from μ′, and we extend this to configurations, writing (q,w) +
(q′,w′) when q = q′ and w(c) + w′(c) for all c ∈ C. As a consequence of Higman’s
Lemma, + is a well-quasi-order (a wqo) between configurations of L . Now, we define

lossy steps by letting s
δ−→ s′′

def⇔ there is a perfect step s
δ−→perf s′ such that s′′ + s′.

This gives rise to a labeled transition system LTSL
def= (Conf,Δ,→). Here the set Δ

of transition rules serves as action alphabet. In the following we assume that for any
location q ∈ Q, Δ contains at least one rule q

op−→ p where op is not a receive operation.
This hypothesis ensures that LTSL has no deadlock configuration and makes the theory
smoother. It is no real loss of generality as demonstrated in [2, § 8.3].

An Example. Pachl’s protocol [22] handles two-way communications over lossy chan-
nels and is our case study for our algorithms. It consists of two identical processes,
PL(eft) and PR(ight), that exchange data over lossy channels using an acknowledgment
mechanism based on the alternating bit protocol. See Fig 1 below. The actual contents
of the data messages is abstracted away, and we just use d0,d1 ∈M to record the alter-
nating control bit. Messages a0,a1 ∈M are the corresponding acknowledgments. The
protocol starts in configuration (L0,R4) where PL is the sender and PR the receiver. At
any time (provided its last data message has been acknowledged) the sender may sig-
nal the end of its data sequence with the eod ∈ M control message and then the two
processes swap their sending and receiving roles. Note that eod does not need to carry
a control bit, and that its correct reception is not acknowledged. In section 6 we explain
how such a two-process protocol is modeled as an LCS, and give some outcomes of our
automated analysis.

From LCS’s to NPLCS’s. A NPLCS N = (L,τ) is a LCS L further equipped with a
fault rate τ ∈ (0,1) that specifies the probability that a given message stored in one of
the message queues is lost during a step [13,14]. The operational semantics of NPLCS’s

has the form of an infinite-state Markov decision process MDPN
def= (Conf,Δ,PN). The

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 215

:PL PR:

L0L1

L2

L3 L4 L5

R0 R1

R2

R3R4R5

start

start

?a1
?eod
!d0

?a0
!d1

?a0
?a1
!eod

?a0

?a0

?a1

?a1

?d0

!a0

?eod

?d0

?d1

!a1

?a1
?eod
!d0

?a0
!d1

?a0
?a1
!eod

?a0

?a0

?a1

?a1

?d0

!a0

?eod

?d0

?d1

!a1

channel c1

channel c2

Fig. 1. Pachl’s communication protocol, from [22]

stepwise probabilistic behavior is formalized by a three-dimensional transition proba-
bility matrix PN : Conf×Δ×Conf → [0,1]. For a given configuration s and an enabled
rule δ ∈ Δ(s), PN (s,δ, ·) is a distribution over Conf, while PN (s,δ, ·) = 0 for any tran-
sition rule δ that is not enabled in s. The intuitive meaning of PN (s,δ, t) = λ> 0 is that
with probability λ, the system moves from configuration s to configuration t when δ is
the chosen transition rule in s.

For lack of space, this extended abstract omits the technically heavy but quite natural
definition of PN , and only lists its two essential properties:

1. the labeled transition system underlying MDP(L,τ) is exactly LTSL .
2. the set Qε = {(q,ε) | q ∈ Q} of configurations where the channels are empty is
an attractor, i.e., from any starting configuration, Qε will eventually be visited with
probability 1 [2,7].

Schedulers and Probability Measure. The nondeterminism in an MDP is resolved by
a scheduler, also often called “adversary”, “policy” or “strategy”. Here a “scheduler”
is a history-dependent deterministic scheduler in the classification of [28]. Formally, a
scheduler for N is a mapping U that assigns to any finite path π in N a transition rule
δ ∈ Δ that is enabled in the last state of π. The given path π specifies the history of the
system, and U(π) is the rule that U chooses to fire next. A scheduler U only gives rise

to certain paths: we say π= s0
δ1−→ s1

δ2−→ ·· · is compatible with U or, shortly, is a U-path,

if PN (si−1,δi,si) > 0 for all i≥ 1, where δi+1 = U(s0
δ1−→ ·· · δi−→ si) is the rule chosen by

U at step i along π. In practice, it is only relevant to define how U evaluates on finite
U-paths.

A finite-memory, or fm-, scheduler U = (U,D,η,u0) is specified via a finite set U of
modes, a starting mode u0 ∈U , a decision rule D : U×Conf→ Δ choosing the next rule
D(u,s)∈ Δ(s) based on the current mode and the current configuration, and a next-mode
function η : U ×Conf →U specifying the mode-changes of U. The modes are used to
store some relevant information about the history. An fm-scheduler U is memoryless if

216 C. Baier, N. Bertrand, and Ph. Schnoebelen

it has a single mode: then U is not history-dependent and can be specified more simply
as a mapping U : Conf → Δ.

Now, given an NPLCS N , a starting configuration s = s0 and a scheduler U, the
behavior of N under U can be formalized by an infinite-state Markov chain MCU . For
arbitrary schedulers, the states of MCU are finite paths in N , while for fm-schedulers
it is possible to consider pairs (u,s) of a mode of U and a configuration of N . One
may now apply the standard machinery for Markov chains and define (for fixed starting
configuration s) a sigma-field on the set of infinite paths starting in s and a probability
measure on it, see, e.g., [28,23,11]. We shall write PrU

(
s |= . . .

)
to denote the standard

probability measure in MCU with starting state s.

LTL/CTL-notation. We use simple LTL and CTL formulas to denote properties of
respectively paths and configurations in MDPL . Here configurations and locations serve
as atomic propositions: for example �♦s (resp. �♦q) means that s ∈Conf (resp. q∈Q)
is visited infinitely many times, and q Until s means that the control location remains
q until configuration s is eventually reached. These notations extend to sets and, for
T ⊆ Conf and P ⊆ Q, �♦T and �♦P have the obvious meaning. For P ⊆ Q, Pε is
the set {(p,ε) | p ∈ P} so that ♦Qε means that eventually a configuration with empty
channels is reached. It is well-known that for any scheduler U, the set of paths starting
in some configuration s and satisfying an LTL formula, or an ω-regular property, ϕ is
measurable [32,16]. We write PrU

(
s |= ϕ

)
for this measure.

Reachability Analysis. For a set A ⊆ Conf and a rule δ ∈ Δ, we let Pre[δ](A) def=

{s | ∃t ∈ A,s
δ−→ t} denote the set of configurations from which A can be reached

in one step with rule δ. Pre(A) def= δ∈ΔPre[δ](A) contains all one-step predecessors,

and Pre∗(A) def= A∪Pre(A)∪Pre(Pre(A))∪·· · all iterated predecessors. The successor
sets Post[δ](A), Post(A), and Post∗(A) are defined analogously. Recall that reachability
between configurations of LCS’s is decidable [6,30], which is also implied by Theo-
rem 3.2 below.

Constrained Reachability. We sometimes need to reach a set A using only rules that
cannot get us out of some set T ⊆ Conf. Formally, for T,A⊆ Conf, we define

P̂reT (A) def= {s ∈ Conf | ∃δ ∈ Δ(s) s.t. Post[δ](s)∩A �= /0 and Post[δ](s) ⊆ T}.

In other words, s is in P̂reT (A) if there is a rule δ that may take s to some state in
A but that cannot take it outside T . The set of iterated T -constrained predecessors is

P̂re
∗
T (A) def= A∪ P̂reT (A)∪ P̂reT (P̂reT (A))∪·· ·

3 Symbolic Representations for Sets of Configurations

Symbolic model-checking relies on symbolic objects representing sets of configura-
tions, and algorithmic methods for handling these objects meaningfully.

In this section, we present a symbolic framework for NPLCS’s based on differences
of prefixed upward-closures. This extends previous techniques from [4,3,20] in that it

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 217

permits dealing with set differences and checking which is the first message in a chan-
nel. For simplicity in the presentation, we assume that the NPLCS under consideration
only has a single channel. We also omit most of the algorithmic details pertaining to
data structures, normal forms, canonization, . . . , that are present in our prototype im-
plementation (see section 6).

Recall that a set T ⊆Conf is upward-closed (resp., downward-closed) if for all s∈ T ,

and for all s′ - s (resp., s′ + s), s′ ∈ T . For T ⊆ Conf, we let ↑ T
def= {s ∈ Conf|∃s′ ∈

T ∧ s′ + s} denote the upward-closure of T , and ↓ T
def= {s ∈ Conf|∃s′ ∈ T ∧ s + s′}

denote the downward-closure of T . For singleton sets we write shortly ↑ t and ↓ t rather
than ↑ {t} and ↓ {t}.

Our symbolic sets are defined with the following abstract grammar:

prefix: α := ε | m m ∈M
prefixed closure: θ := α↑u u ∈M∗

sum of prefixed closures: σ := θ1 + · · ·+θn n≥ 0
simple symbolic set: ρ := 〈q,θ−σ〉 q ∈ Q is a location

symbolic set: γ := ρ1 + · · ·+ρn n≥ 0

Prefixed (upward-)closures and their sums denote subsets of M∗ defined with �α↑u�
def=

{αv | u + v} and �θ1 + · · ·+ θn�
def= �θ1�∪ ·· · ∪ �θn�. Symbolic sets denote subsets of

Conf defined with �〈q,θ− (θ1 + · · ·+ θn)〉� def= {〈q,v〉 ∈ Conf | v ∈ �θ�� (�θ1�∪ ·· · ∪
�θn�)}. A region is any subset of Conf that can be denoted by a symbolic set. It is a
control region if can be written under the form ∑i〈qi,ε↑ε〉, where channel contents are
unrestricted.

We abuse notation and write /0 to denote both empty (i.e., with n = 0) sums of pre-
fixed closures and empty symbolic sets. We also sometimes write ↑v for ε↑v, θ−θ1−
·· ·− θn for θ− (θ1 + · · ·+ θn), and θ for θ− /0. We write γ ≡ γ′ when �γ� = �γ′�, i.e.,
when γ and γ′ denote the same region.

Theorem 3.1 (Effective symbolic computation: basics).

Boolean closure: Regions are closed under union, intersection, and complementation.
Moreover, there exist algorithms that given symbolic sets γ1 and γ2 return terms
denoted γ1! γ2, γ1 γ2 and ¬γ such that �γ1 ! γ2� = �γ1�∪ �γ2�, �γ1 γ2� = �γ1�∩
�γ2� and �¬γ� = Conf � �γ�.

Upward closure: Regions are closed under upward closure. Moreover, there exists an
algorithm that given a symbolic set γ returns a term denoted ↑γ such that �↑γ� =
↑�γ�.

Vacuity: It is decidable whether �γ� = /0 given a region γ.
One-step predecessors: Regions are closed under the Pre(_) and P̂re_(_) operations.

Moreover, there exist algorithms that given symbolic sets γ and γ′ return terms
denoted Pre(γ) and P̂reγ′(γ), and such that �Pre(γ)� = Pre(�γ�) and �P̂reγ′(γ)� =
P̂re�γ′�(�γ�).

Theorem 3.1 provides the basic ingredients necessary for symbolic model-checking
of LCS’s. These ingredients can then be used for computing sets defined as fixpoints.

218 C. Baier, N. Bertrand, and Ph. Schnoebelen

For example, using standard μ-calculus notation, a symbolic set denoting Pre∗(�γ�)
would be defined as μX .γ! Pre(X). In [8] we show how a symbolic representation
for sets defined by such fixpoint expressions can be computed effectively (when some
guardedness condition holds).

Theorem 3.2 (Effective symbolic computation: fixpoints).

Iterated (constrained) predecessors: Regions are closed under the Pre∗(_) and the

P̂re
∗
() operations. Moreover, there exist algorithms that given symbolic sets γ and

γ′ return terms denoted Pre∗(γ) and P̂re
∗
γ′(γ), and such that �Pre∗(γ)� = Pre∗(�γ�)

and �P̂re
∗
γ′(γ)� = P̂re

∗
�γ′�(�γ�).

Safe sets (see section 4): For any region γ, the set νX .
(
γ P̂reX(Conf)

)
is a region,

and a term for it can be computed effectively.

Promising sets (see section 4): For any region γ, the set νX .P̂re
∗
X (γ) is a region, and a

term for it can be computed effectively.
∃CTL: The set of configurations satisfying an ∃CTL formula (i.e., a CTL formula

where only the modalities “∃(_ Until _)” and “∃Next_” are allowed) is a region
when the atomic propositions are themselves regions. Moreover, a symbolic set for
that region can be obtained algorithmically from the ∃CTL formula.

4 Verifying Safety and Liveness Properties for NPLCS’s

This section considers various types of safety and liveness properties where regions
serve as atoms, and presents algorithms for checking the existence of a fm-scheduler U
such that PrU(s |= ϕ) is > 0, = 1, < 1 or = 0.

We start with reachability properties ♦A and invariants �A for some region A.
For eventually properties with the satisfaction criteria “with positive probability”,

decidability relies on the computation of iterative predecessors in (non-probabilistic)
lossy channel systems:

Theorem 4.1. Let s ∈ Conf and A ⊆ Conf. There exists a scheduler U with PrU(s |=
♦A) > 0 iff PrU(s |= ♦A) > 0 for some memoryless scheduler U iff s ∈ Pre∗(A).

For other satisfaction criteria, or for other properties, we have to develop more ad-hoc
characterizations of the sets of configurations where the qualitative properties hold.

For invariants �A, we introduce the concept of safe sets:

Definition 4.2 (Safe sets). Let A,T ⊆ Conf. T is called safe for A if T ⊆ A and for all
s ∈ T , there exists a transition rule δ enabled in s such that Post[δ](s)⊆ T.

Since the union of safe sets is safe, the largest safe set for A, denoted Safe(A), exists.
There exists a simple fixpoint characterization for Safe(A) (here and in the sequel,

we use the standard μ/ν-notations for fixpoints).

Lemma 4.3. For any A⊆ Conf, Safe(A) = νX .A∩ P̂reX (Conf).

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 219

Thus, if A is a region, Safe(A) is a region too, and a symbolic representation can be
computed effectively (Theorem 3.2). This is the key for verifying invariants:

Theorem 4.4 (Safe sets and invariants). Let A⊆ Conf and s ∈ Conf.

(a) s ∈ Safe(A)
iff there exists a scheduler U such that PrU(s |= �A) = 1
iff there exists a memoryless scheduler U such that PrU(s |= �A) = 1.

(b) s |= ∃(A Until Safe(A))
iff there exists a scheduler U such that PrU(s |= �A) > 0
iff there exists a memoryless scheduler U such that PrU(s |= �A) > 0.

The corollary is that, for a region A, we can compute a symbolic representation for the
set of all configurations where PrU(s |= �A) > 0 or = 1 for some scheduler U.

Definition 4.5 (Promising sets). Let A,T ⊆ Conf. T is called promising for A if for all

s ∈ T there exists a path s = s0
δ1−→ s1

δ2−→ ·· · δm−→ sm with m ≥ 0 such that sm ∈ A and for
all 1≤ i≤ m, Post[δi](si−1)⊆ T.

As for safe sets, the largest promising set for A exists: we denote it Prom(A).

Lemma 4.6. For any A⊆ Conf, Prom(A) = νX .P̂re
∗
X (A).

Thus, if A is a region, Prom(A) is a region too, and a symbolic representation can be
computed effectively (Theorem 3.2).

Theorem 4.7 (Promising sets and almost sure reachability). Let s ∈ Conf and A ⊆
Conf. s ∈ Prom(A) iff PrU(s |= ♦A) = 1 for some scheduler U iff PrU(s |= ♦A) = 1 for
some memoryless scheduler U.

The corollary is that, for a region A, we can compute the set of all configurations s such
that PrU(s |= ♦A) > 0 or = 1 for some U.

We now consider repeated reachability and persistence properties. The question
whether a repeated reachability property �♦A holds under some scheduler with pos-
itive probability is undecidable when ranging over the full class of schedulers, but is
decidable for the class of fm-schedulers. This was shown in [14,9] for the case where A
is a set of locations (i.e. a control region). We now show that the decidability even holds
if A is a region. More precisely, we show that if A is a region and ϕ ∈ {�♦A,♦�A},
then the set of configurations s where PrU(s |= ϕ) > 0 or = 1 for some fm-scheduler is
a region.

For A ⊆ Conf let Prom≥1(A) denote the largest set T of configurations such that

for all t ∈ T there exists a finite path s = s0
δ1−→ s1

δ2−→ ·· · δm−→ sm with m ≥ 1, sm ∈ A
and Post[δi](si−1) ⊆ T for all 1 ≤ i ≤ m. Note that the definition of Prom≥1(A) is
different from Prom(A) since the paths must have length at least 1. We then have

Prom≥1(A) = νX .P̂re
+
X (A), and, if A is a region then so is Prom≥1(A). Thus, the fol-

lowing theorem provides the decidability of repeated reachability and persistence
properties:

220 C. Baier, N. Bertrand, and Ph. Schnoebelen

Theorem 4.8 (Repeated reachability and persistence). Let s ∈ Conf and A⊆ Conf.

(a) s ∈ Prom≥1(A) iff PrU(s |= �♦A) = 1 for some scheduler U
iff PrU(s |= �♦A) = 1 for some memoryless scheduler U.

(b) s ∈ Pre∗(Prom≥1(A)) iff PrU(s |= �♦A) > 0 for some fm-scheduler U
iff PrU(s |= �♦A) > 0 for some memoryless scheduler U.

(c) s ∈ Prom(Safe(A)) iff PrU(s |= ♦�A) = 1 for some scheduler U
iff PrU(s |= ♦�A) = 1 for some memoryless scheduler U.

(d) s ∈ Pre∗(Safe(A)) iff PrU(s |= ♦�A) > 0 for some scheduler U
iff PrU(s |= ♦�A) > 0 for some memoryless scheduler U.

We now consider the Streett formula ϕS = 1≤i≤n �♦Ai → �♦Bi where A1, . . . ,An

and B1, . . . ,Bn are regions. Here again we only consider fm-schedulers since the prob-
lem is undecidable for the full class of schedulers [9].

For A,B ⊆ Conf, let Prom≥1
A (B) be the largest subset T of A such that for all t ∈ T

there exists a path t = s0
δ1−→ ·· · δm−→ sm with m > 0, sm ∈ B and Post[δi](si−1) ⊆ T for

all 1 ≤ i ≤ m. We have Prom≥1
A (B) = νX .P̂re

+
X (B)∩A and if A,B are regions then so

is Prom≥1
A (B). In addition, s ∈ Prom≥1

A (B) iff PrU(s |= �♦B∧�A) = 1 for some fm-
scheduler U.

The above is useful to show decidability of the questions whether PrU(s |= ϕS) < 1
or = 0 for some fm-scheduler U. For this, we use the fact that PrU(s |= ϕS) < 1 iff
PrU(s |= �♦Ai →�♦Bi) < 1 for some i iff PrU(s |= �♦Ai∧♦�¬Bi) > 0 for some i.

Theorem 4.9 (Streett property, probability less than 1). There exists a fm-scheduler
U with PrU(s |= �♦A∧♦�¬B) > 0 iff there exists a memoryless scheduler U with
PrU(s |= �♦A∧♦�¬B) > 0 iff s ∈ Pre∗(Prom≥1

¬B(A)). In particular, PrU(s |= ϕS) < 1
for some fm-scheduler U iff s ∈ 1≤i≤n Pre∗(Prom≥1

¬Bi
(Ai)).

Let Ti be the set of all configurations t ∈ Conf such that PrW (s |= �♦Ai∧♦�¬Bi) = 1
for some fm-scheduler W . Note that Ti = Pre∗(Prom≥1

¬Bi
(Ai)) is a region. Thus, TS =

T1∪T2∪·· ·∪Tn is a region too. This and the following theorem yields the decidability
of the question whether PrU(s |= ϕS) = 0 for some scheduler U.

Theorem 4.10 (Streett property, zero probability). There exists a fm-scheduler U
such that PrU

(
s |= ϕS) = 0 if and only if s ∈ Prom(TS).

We next consider the satisfaction criterion “with positive probability”. The treatment
of the special case of a single strong fairness formula �♦A → �♦B ≡ ♦�¬A∨�♦B
is obvious as we have: There exists a finite-memory (resp. memoryless) scheduler
U such that PrU(s |= �♦A → �♦B) > 0 iff at least one of the following conditions
holds: (i) there exists a fm-scheduler V such that PrV (s |= ♦�¬A) > 0 or (ii) there
exists a fm-scheduler W such that PrW (s |= �♦B) > 0. We now extend this obser-
vation to the general case (several Streett properties). For I ⊆ {1, . . . ,n}, let AI de-
note the set of configurations s such that there exists a finite-memory scheduler sat-
isfying PrU(s |= i∈I �♦Bi ∧ i/∈I �¬Ai) = 1 and let A be the union of all AI’s, i.e.,
A = I⊆{1,...,n}AI . Then, the sets AI and A are regions. Thus, the algorithmic treatment
of Streett properties the satisfaction criteria “positive probability” and “almost surely”
relies on the following theorem:

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 221

Theorem 4.11 (Streett properties, positive probability and almost surely).

(a) There exists a fm-scheduler U such that PrU(s |= ϕS) > 0 iff s ∈ Pre∗(A).
(b) There exists a fm-scheduler U such that PrU(s |= ϕS) = 1 iff s ∈ Prom(A).

We conclude with the following main theorem gathering all previous results:

Theorem 4.12 (Qualitative model-checking). For any NPLCS N and Streett property
ϕ= i �♦Ai →�♦Bi where the Ai’s and Bi’s are regions, the set of all configurations
s s.t. for all fm-schedulers U PrU(s |= ϕ) satisfies a qualitative constraint “= 1”, or
“< 1”, or “= 0”, or “> 0”, is a region that can be computed effectively.

With the techniques of [9, § 7], Theorem 4.12 extends to all ω-regulars properties

5 Verification Under Fair Finite-Memory Schedulers

We now address the problem of verifying qualitative linear time properties under fair-
ness assumptions. Following the approaches of [19,32,12], we consider here a notion of
scheduler-fairness which rules out some schedulers that generate unfair paths with pos-
itive probability. This notion of scheduler-fairness has to be contrasted with extreme-
and alpha-fairness introduced in [24,25,26] which require a “fair” resolution of prob-
abilistic choices and serve as verification techniques rather than fairness assumptions
about the nondeterministic choices.

A scheduler U is called fair if it generates almost surely fair paths, according to
some appropriate fairness constraints for paths. We deal here with strong fairness for
selected sets of transition rules. I.e., we assume a set F = { f0, . . . , fk−1} where fi ⊆
Δ and require strong fairness for all fi’s. (The latter means whenever some transition
rule in fi is enabled infinitely often then some transition rule in fi will fire infinitely
often.) For instance, process fairness for k processes P0, . . . ,Pk−1 can be modelled by
F = { f0, . . . , fk−1} where fi is the set of transition rules describing Pi’s actions.

A set f ⊆ Δ is called enabled in configuration s if there is a transition rule δ ∈ f
that is enabled in s, i.e., if Δ(s)∩ f �= /0. If F is a subset of F and s ∈ Conf then F is
called enabled in s if some f ∈ F is enabled in s, i.e., if ∃ f ∈ F. f ∩Δ(s) �= /0. We write
Enabl(F) to denote the set of configurations s ∈ Conf where F is enabled.

Definition 5.1 (Fair paths, fair schedulers). Let F ∈ 22Δ be a (finite) set consisting

of subsets of Δ. An infinite path s0
δ1−→ s1

δ2−→ ·· · is called F -fair iff for all f ∈ F either
δ j ∈ f for infinitely many j or there is some i ≥ 0 such that f is not enabled in the
configurations s j for all j ≥ i. Scheduler U is called F -fair (or briefly fair) if for each
starting state s, almost all U-paths are F -fair.

We first consider reachability properties ♦A and show that fairness assumptions are
irrelevant for the satisfaction criteria “with positive probability”and “almost surely”.
This follows from the fact that from the moment on where a configuration in A has been
entered one can continue in an arbitrary, but F -fair way. Thus:

∃ V F -fair s.t. PrV (s |= ♦A) > 0 iff ∃ U s.t. PrU(s |= ♦A) > 0
∃ V F -fair s.t. PrV (s |= ♦A) = 1 iff ∃ U s.t. PrU(s |= ♦A) = 1

222 C. Baier, N. Bertrand, and Ph. Schnoebelen

By the results of section 4, given an NPLCS N , starting configuration s and region A,
the questions whether there exists a F -fair scheduler U such that PrU(s |= ♦A) > 0 or
= 1 are decidable.

The treatment of invariant properties �A under fairness constraints relies on gener-
alizations of the concept of safe and promising sets. For A,B⊆Conf, PromA(B) denotes

the largest set T ⊆ A∪B such that for all t ∈ T there exists a path t = s0
δ1−→ ·· · δm−→ sm

with m ≥ 0, sm ∈ B and Post[δi](si−1)⊆ T for all 1≤ i≤ m. The fixed-point definition
of PromA(B) would be νX .P̂re

∗
X (B)∩ (A∪B).

For F ⊆ 2Δ and A ⊆ Conf, let SafeF (A) = F⊆F Safe[F](A) where Safe[F](A) is
defined as follows. If F is a nonempty subset of F then Safe[F](A) denotes the largest

set T ⊆ A �Enabl(F � F) such that for all t ∈ T and f ∈ F there is a path s0
δ1−→ ·· · δm−→

sm with t = s0, m ≥ 1, δm ∈ f and Post[δi](si−1) ⊆ T for all 1 ≤ i ≤ m. Moreover,
SafeF [/0](A) = Safe(A �Enabl(F)).

Since Enabl(F � F) can be expressed by Pre[F � F](Conf), we get the following
mu-calculus terms for Safe[/0](A) and Safe[F](A):

– Safe[/0](A) = νX .
(
A � Pre[F](Conf)

)
∩ P̂reX (Conf), and

– Safe[F](A) = νX .
(
A � Pre[F � F](Conf)

)
∩ f∈F P̂re

∗
X(P̂reX [f](Conf)).

Theorem 5.2 (Fair invariants). Let A⊆ Conf and s ∈ Conf.

(a) There is a F -fair fm-scheduler V s.t. PrV (s |= �A)> 0 iff s |= ∃(A Until SafeF (A)).
(b) There is a F -fair fm-scheduler V s.t. PrV (s |= �A) = 1 iff s ∈ PromA(SafeF (A)).

Observe that, for a region γ, SafeF (�γ�) and PromA(SafeF (�γ�)) are regions that can
be built effectively (based on the same reasoning that we use for Theorem 3.2). Thus,
Theorem 5.2 yields the decidability of the questions whether for a given NPLCS, region
A and configuration s, there exists a F -fair fm-scheduler U such that PrU(s |= �A) > 0
or = 1.

In the sequel, for A ⊆ Conf, we denote by T F
�A the set of all configurations s such

that PrU(s |= �A) = 1 for some F -fair fm-scheduler U.
We now come to repeated reachability �♦A and persistence ♦�A properties under

fairness constraints. For A ⊆ Conf, we define T F
�♦A = F⊆F TF where TF is the largest

subset of Conf �Enabl(F � F) such that for all t ∈ TF :

– there is a finite path s0
δ1−→·· · δm−→ sm with m≥ 1, t = s0, sm ∈A and Post[δi](si−1)⊆TF

for all 1≤ i≤ m,

– for each f ∈ F there is a finite path s0
δ1−→ ·· · δm−→ sm with t = s0, m ≥ 1, δm ∈ f and

Post[δi](si−1)⊆ TF for all 1≤ i≤ m.

Theorem 5.3 (Fair repeated reachability and persistence). Let A ⊆ Conf and s ∈
Conf.

(a) There exists a F -fair fm-scheduler U with PrU(s |= �♦A) = 1 iff s ∈ Prom(T F
�♦A).

(b) There exists a F -fair fm-scheduler U with PrU(s |= �♦A) > 0 iff s ∈ Pre∗(T F
�♦A).

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 223

(c) There exists a F -fair fm-scheduler U with PrU(s |= ♦�A) = 1 iff s ∈ Prom(T F
�A).

(d) There exists a F -fair fm-scheduler U with PrU(s |= ♦�A) > 0 iff s ∈ Pre∗(T F
�A).

With similar arguments as for Prom(A), the sets of configuration T F
�♦A and T F

�A =
PromA(SafeF (A)) are regions whenever A is a region. This entails the decidability of
the questions whether given region A, there exists a F -fair fm-scheduler U such that
PrU(s |= ϕ) = 1 or > 0 where ϕ= �♦A or ♦�A.

We next consider linear time properties, formalized by LTL formulas ϕ where re-
gions serve as atomic propositions. The idea is to encode the fairness constraints in the
model (the NPLCS) by a Streett property

fair =
f∈F

(�♦A f →�♦B f)

(with regions A f ,B f ⊆ Conf) that will be considered in conjunction with ϕ. We modify
the given LCS L = (Q,C,M,Δ) and construct a new LCS L ′ = (Q′,C,M,Δ′) as follows.
We introduce new locations qF for all subsets F of F and q ∈ Q, i.e., we deal with
Q′ = {qF : q ∈ Q,F ⊆ F }. Δ′ is the smallest set of transition rules such that pG

op−→
qF ∈ Δ′ if p

op−→ q ∈ Δ, G ⊆ F and F = { f ∈ F : p
op−→ q ∈ f}. For f ∈ F , B f is the

set of configurations 〈qF ,w〉 in L ′ such that f ∈ F , while A f denotes the set of all
configurations 〈qF ,w〉 of L ′ where f is enabled in the configuration 〈q,w〉 of L . We
finally transform the given formulaϕ into ϕ′ by replacing any regionC of L that appears
as an atom in ϕ with the region C′ = {〈qF ,w〉 : 〈q,w〉 ∈ C,F ⊆ F }. For instance, if
ϕ= �♦(q∧ (c �= ε)) then ϕ′ = �♦

(
(q∨

F⊆F
qF)∧ (c �= ε)

)
.

In the sequel, let N = (L,τ) be the NPLCS that we want to verify against ϕ and let
N ′ = (L ′,τ) the associated modified NPLCS. Obviously, for each fm-scheduler U for
N there is a “corresponding” fm-scheduler U′ for N ′, and vice versa. Corresponding
means that U′ behaves as U for the current configuration 〈q,w〉 with q ∈ Q. If the
current configuration of U′ is 〈qF ,w〉 then U′ behaves as U for 〈q,w〉. Then, PrU(s |=
ϕ) = PrU′(s |= ϕ′) for all configurations s in N . Here, each configuration s = 〈q,w〉 of
N is identified with the configuration 〈q /0,w〉 in N ′. Moreover, U is F -fair iff PrU′(s |=
fair) = 1. This yields part (a) of the following lemma. Part (b) follows from the fact that
PrU(s |= ϕ) = 1−PrU(s |= ¬ϕ) for each scheduler U.

Lemma 5.4. Let s be a configuration in N (and N ′) and ϕ an LTL formula. Then:

(a) There exists a F -fair fm-scheduler U for N such that PrU(s |= ϕ) = 1 if and only
if there exists a fm-scheduler U′ for N ′ such that PrU′(s |= fair∧ϕ′) = 1.

(b) There exists a F -fair fm-scheduler U for N such that PrU(s |= ϕ) = 0 if and only
if there exists a fm-scheduler V for N ′ such that PrV (s |= fair∧¬ϕ′) = 1.

(c) There exists a F -fair fm-scheduler U for N such that PrU(s |= ϕ) > 0 if and only
if there exists a fm-scheduler V for N ′ such that PrV (s |= fair∧ϕ′) > 0.

(d) There exists a F -fair fm-scheduler U for N such that PrU(s |= ϕ) < 1 if and only
if there exists a fm-scheduler V for N ′ such that PrV (s |= fair∧¬ϕ′) > 0.

Lemma 5.4 even holds for arbitrary ω-regular properties. It provides a reduction from
the verification problem for qualitative LTL formulas in NPLCS’s and fair fm-schedulers

224 C. Baier, N. Bertrand, and Ph. Schnoebelen

to the same problem for the full class of fm-schedulers. Thus, all decidability results
that have been established for NPLCS’s and qualitative verification problems for the
class of fm-schedulers (see 4) also hold when fairness assumptions are made.

6 Automatic Verification of Pachl’s Protocol

Fig. 1 directly translates into a LCS LPachl when the asynchronous product of PL and PR
is considered. LPachl has 6×6 = 36 control locations and (18+18)×6 = 216 transition
rules. In order to reason about notions like “a rule δ has been fired”, that are ubiquitous
in fairness hypothesis, our tool adds an history variable recording the last fired rule
(actually, only its action label). This would further multiply the number of states and of
transitions by 20, but not all pairs (location,last action) are meaningful so that the final
model can be stripped down to 144 locations and 948 rules. In all our results below
we do not use the names of these 144 locations, but rather project them to the more
readable underlying 36 locations.

6.1 Safety Analysis

Pachl [22] computed manually the set Post∗(Init) of all configurations reachable in
LPachl from the initial empty configuration Init= (L0,R4,ε,ε), and such forward com-
putations can sometimes be done automatically with the techniques described in [4] (al-
though termination of the forward-reachability computations cannot be guaranteed in
general). These computations show that the protocol does indeed preserve the integrity
of communication in the sense that no confusion between data messages is introduced
by losses.

Our calculus for regions is geared towards backward computation, where termina-
tion is guaranteed. Our implementation can compute automatically the set of deadlock
configurations:

Dead
def= Conf � Pre(Conf) = 〈L4,R4,ε,ε〉.

Hopefully, Dead is not reachable from Init. We can compute the set Pre∗(Dead) of
all unsafe configurations, that can end up in a deadlock. Intersecting with ↑Init, we
obtain the set of unsafe starting channel contents:

Pre∗(Dead) ↑Init =
〈L0,R4,↑ε,↑a0d0〉 + 〈L0,R4,↑eoda0,↑a0〉 + 〈L0,R4,↑d0eoda0,↑ε〉.

Thus eventual deadlock is possible from location (L0,R4) if the channels initially con-
tain the appropriately unsafe contents.

6.2 Liveness Analysis

We now come to what is the main motivation of our work: proving progress under fair-
ness hypothesis. In this case study, the problem we address is in general to compute

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 225

the set of all configurations satisfying some PrU(s |= �♦A) = 1 for all schedulers U
satisfying some fairness conditions F . Following equivalences of section 5, this is re-
lated to the computation of T F

�♦A. More precisely: {s|∀UF -fair PrU(s |= �♦A) = 1}=
Conf � Pre∗(T F

�♦A).
When computing T F

�♦A, all subsets of F have to be considered and this induces
a combinatorial explosion for large F . Since we did not yet develop and implement
heuristics to overcome this difficulty, we only checked examples considering “small”
F sets (meaning a number of fairness sets, each of which can be a large set of rules) in
this preliminary study. For example, we considered “strong process fairness” Fprocess =
{Fleft,Fright} (with obvious meaning for the sets of transitions Fleft, Fright), or “strong
fairness for reading” Fread = {Fread}.

Regarding the target set A, we consider questions whether a given transition (in PL
or PR) is fired infinitely often (using the history variable), or whether a process changes
control states infinitely often, etc. Observe that a conjunction of “PrU(s |= �♦Ai) = 1”
gives PrU(s |= i �♦Ai) = 1, so that we can check formulas like i �♦Li∧ i �♦Ri,
expressing progress in communication between the two processes.

In the three following cases :

– F = Fread and A = Afterleft
– F = Fread and A = Afterleft−move
– F = {Fread,Fright−read} and A = Afterleft

our prototype model checker yields that Init∈Conf �Pre∗(T F
�♦A). This means that, in

all three cases, starting from Init, the set of configurations A will be visited infinitely
often almost surely, under all F -fair schedulers.

7 Conclusion

We introduced NPLCS’s, a model for nondeterministic channel systems where mes-
sages are lost probabilistically, and showed the decidability of qualitative verification
question of the form “does ϕ holds with probability 1 for all F -fair finite-memory
schedulers?” where ϕ is an ω-regular linear-time property and F a strong fairness
condition.

When atomic propositions can refer to the contents of channels, which is required
when one wants to express fairness and firability of rules, our decidability results rest
upon a new notion of symbolic regions based on “prefixed upward-closures”. These
symbolic methods can be implemented rather directly and we used them to analyze
simple systems.

These results are the outcome of a research project that started in [13,14] with the
first early definition of NPLCS’s and was continued in [9] where the key notions for
reducing to constrained reachability questions have been first identified in a simplified
framework. Further developments will focus on incorporating algorithmic ideas from
symbolic verification (normal forms, caches, sharing, . . .) in our naive prototype veri-
fier, turning it into a more solid analysis tool.

226 C. Baier, N. Bertrand, and Ph. Schnoebelen

References

1. P. A. Abdulla, C. Baier, S. Purushothaman Iyer, and B. Jonsson. Simulating perfect channels
with probabilistic lossy channels. Information and Computation, 197(1–2):22–40, 2005.

2. P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph Schnoebelen. Verification of probabilistic
systems with faulty communication. Information and Computation, 202(2):141–165, 2005.

3. P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games. In Proc. 17th
Int. Workshop Computer Science Logic (CSL 2003) and 8th Kurt Gödel Coll. (KGL 2003),
Vienna, Austria, Aug. 2003, volume 2803 of Lecture Notes in Computer Science, pages 1–14.
Springer, 2003.

4. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems. Formal Methods in System Design,
25(1):39–65, 2004.

5. P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs with unreli-
able channels. Information and Computation, 130(1):71–90, 1996.

6. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and
Computation, 127(2):91–101, 1996.

7. C. Baier, N. Bertrand, and Ph. Schnoebelen. A note on the attractor-property of infinite-state
Markov chains. Information Processing Letters, 97(2):58–63, 2006.

8. C. Baier, N. Bertrand, and Ph. Schnoebelen. On computing fixpoints in well-structured regu-
lar model checking, with applications to lossy channel systems. RR cs.CS/0606091, Comput-
ing Research Repository, June 2006. Visible at http://arxiv.org/abs/cs.CS/0606091.

9. C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondeterministic probabilistic channel
systems against ω-regular linear-time properties. RR cs.LO/0511023, Computing Research
Repository, April 2006. To be published in ACM Trans. Computational Logic, visible at
http://arxiv.org/abs/cs.LO/0511023.

10. C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy channel
systems: An algorithmic approach. In Proc. 5th Int. AMAST Workshop Formal Methods for
Real-Time and Probabilistic Systems (ARTS ’99), Bamberg, Germany, May 1999, volume
1601 of Lecture Notes in Computer Science, pages 34–52. Springer, 1999.

11. C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors. Validation
of Stochastic Systems – A Guide to Current Research, volume 2925 of Lecture Notes in
Computer Science. Springer, 2004.

12. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness. Distributed Computing, 11(3):125–155, 1998.

13. N. Bertrand and Ph. Schnoebelen. Model checking lossy channels systems is probably de-
cidable. In Proc. 6th Int. Conf. Foundations of Software Science and Computation Structures
(FOSSACS 2003), Warsaw, Poland, Apr. 2003, volume 2620 of Lecture Notes in Computer
Science, pages 120–135. Springer, 2003.

14. N. Bertrand and Ph. Schnoebelen. Verifying nondeterministic channel systems with proba-
bilistic message losses. In Ramesh Bharadwaj, editor, Proc. 3rd Int. Workshop on Automated
Verification of Infinite-State Systems (AVIS 2004), Barcelona, Spain, Apr. 2004, 2004.

15. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2):323–342, 1983.

16. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42(4):857–907, 1995.

17. A. Finkel. Decidability of the termination problem for completely specificied protocols.
Distributed Computing, 7(3):129–135, 1994.

18. B. Hailpern and S. Owicki. Verifying network protocols using temporal logic. In Proc.
NBS/IEEE Symposium on Trends and Applications 1980: Computer Network Protocols,
Gaithersburg, MD, May 1980, pages 18–28. IEEE Comp. Soc. Press, 1980.

Symbolic Verification of Communicating Systems with Probabilistic Message Losses 227

19. S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent programs. ACM
Transactions on Programming Languages and Systems, 5(3):356–380, 1983.

20. A. Kučera and Ph. Schnoebelen. A general approach to comparing infinite-state systems with
their finite-state specifications. Theoretical Computer Science, 2006. To appear.

21. B. Masson and Ph. Schnoebelen. On verifying fair lossy channel systems. In Proc. 27th Int.
Symp. Math. Found. Comp. Sci. (MFCS 2002), Warsaw, Poland, Aug. 2002, volume 2420 of
Lecture Notes in Computer Science, pages 543–555. Springer, 2002.

22. J. K. Pachl. Protocol description and analysis based on a state transition model with channel
expressions. In Proc. 7th IFIP WG6.1 Int. Workshop on Protocol Specification, Testing,
and Verification (PSTV ’87), Zurich, Switzerland, May 1987, pages 207–219. North-Holland,
1987.

23. P. Panangaden. Measure and probability for concurrency theorists. Theoretical Computer
Science, 253(2):287–309, 2001.

24. A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc. 15th ACM
Symp. Theory of Computing (STOC ’83), Boston, MA, Apr. 1983, pages 278–290. ACM
Press, 1983.

25. A. Pnueli and L. D. Zuck. Verification of multiprocess probabilistic protocols. Distributed
Computing, 1(1):53–72, 1986.

26. A. Pnueli and L. D. Zuck. Probabilistic verification. Information and Computation,
103(1):1–29, 1993.

27. S. Purushothaman Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proc.
7th Int. Joint Conf. Theory and Practice of Software Development (TAPSOFT ’97), Lille,
France, Apr. 1997, volume 1214 of Lecture Notes in Computer Science, pages 667–681.
Springer, 1997.

28. M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

29. A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In Proc. 30th
Int. Coll. Automata, Languages, and Programming (ICALP 2003), Eindhoven, NL, July 2003,
volume 2719 of Lecture Notes in Computer Science, pages 1008–1021. Springer, 2003.

30. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Letters, 83(5):251–261, 2002.

31. Ph. Schnoebelen. The verification of probabilistic lossy channel systems. In Baier et al. [11],
pages 445–465.

32. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. 26th IEEE Symp. Foundations of Computer Science (FOCS ’85), Portland, OR, USA,
Oct. 1985, pages 327–338. IEEE Comp. Soc. Press, 1985.

A New Approach for Concurrent Program Slicing

Pierre Rousseau

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

rousseau@cnam.fr
http://quasar.cnam.fr

Abstract. Regarding the progress made in model analysis, more complex mod-
els, and consequently more complex programs can now be analyzed. However,
this remains a difficult task in particular for concurrent programs which induce a
lot of combinatory. Another way to reduce this complexity is to use program de-
composition. Program decomposition technics extract a part of a given program
while preserving the behavior of the original program w.r.t. a specified property.

QUASAR analyzes concurrent Ada programs, using program slicing as decom-
position technic. The program slicer is built using the ASIS tools, that provides
syntactic and semantic informations on an Ada source code. These informations
can be considered as the “semantic and syntactic graph” mapping an Ada pro-
gram. This allows to save building the graphs used by traditional program slicing
technics and thus to design a simpler and more evolutive algorithm.

This paper presents YASNOST, the program slicer used by QUASAR, describes
the method used to slice concurrent Ada programs and illustrates with two signif-
icant examples how concurrent programs analysis can take advantage of program
slicing for reducing the analyzed program complexity.

1 Introduction

This paper presents a program slicer which doesn’t need to build static dependence
graphs before slicing a given concurrent program. It records dynamically these depen-
dences when it traverses the syntactic and semantic graph generated by the program
compiler. This traversal relies on the standard ASIS tool available for Ada programs.
This slicer is part of the QUASAR project developed by our research team.

QUASAR [EKPPR03] is an automatic program analysis tool which aims to formally
validate properties of concurrent Ada programs. It generates a formal model from a
source code and validates a specified property on the generated model.

The main difficulty of this method is the possible combinatory explosion induced by
the process execution interleaving when constructing the reachable state space. To face
this problem, QUASAR uses various technics at each step of its analysis process :

1. program decomposition: at first, QUASAR uses program slicing in order to re-
duce the program size while preserving its behavior w.r.t the studied property. The
reduced program will help to generate a smaller and simpler state space.

2. model generation: this step can be seen as the heart of the QUASAR tool. It
translates an Ada program into a corresponding colored Petri Net. The model

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 228–242, 2006.
c© IFIP International Federation for Information Processing 2006

A New Approach for Concurrent Program Slicing 229

construction aims to stay as close as possible of the source code formalism and
to produce models trying to limit as much as possible the combinatory of the Ada
program [EKPPR03, EKPP+05].

3. model-checking: at this step, QUASAR uses the model-checker HELENA [Eva05]
to verify the property on the colored Petri Net generated at the second step. This
tool combines different structural technics and model-checking optimizations in
order to deal better with huge state space.

The first step is the most important as it addresses the program at its source.This
paper presents YASNOST the Ada program slicer which carries out the program slicing
step of QUASAR analysis process.

The concepts and methodology founding QUASAR have been experimented with the
Ada language for several concomitant advantages. Ada presents today the most com-
plete and powerful concurrency features. Ada concurrency semantic is well and pre-
cisely defined. Ada is currently used for practical and critical applications which need
validation. Concurrency analysis methods performed for Ada programs can be used for
other languages. For instance, using QUASAR and simulating some Java programs in
Ada, we have shown some weakness of Java concurrency semantics [EKPPR06].

2 Program Slicing

Program slicing was first introduced by M. Weiser in [Wei84] and most of the slicing
definitions and technics are reviewed in [Tip95] and [XQZ+05]. This part of the paper
presents the essential definitions used in the whole paper and legitimates the kind of
program slicing carried out by YASNOST.

The principle of program slicing is to observe a particular behavior of a program
from a specified point of view. The point of view is specified as a slicing criterion
commonly defined by a couple 〈n,V〉, with n a statement of the original program and V
a set of variables.

The result of the program slicing operation is called a slice and can be a set of state-
ments (non-executable slicing) or a reduced compilable and executable program (exe-
cutable slicing). This slice must preserve all the behavior of the original program w.r.t.
the slicing criterion (ie, at statement n, the values of the variables of the set V have
to be computed in the same way in the original program and in the slice). Obtaining
a minimal slice is undecidable, however precise slices can be obtained using existing
technics.

The slice is obtained by collecting all the parts of a program that may have an effect
on the values of a set of variables V at a defined statement n (this is backward slicing)
or may be affected by the values of the set (this is forward slicing).

The kind of program slicing introduced by Weiser is called static program slicing.
It means that all possible values of program input are considered, thus that all possible
executions of the original program have to be considered. The other kind of program
slicing is dynamic program slicing which considers a particular set of input program
values and studies a particular set of executions of the program corresponding to the
program execution for these program input values.

230 P. Rousseau

YASNOST carries out a static executable backward program slicing. Static because
QUASAR validates properties holding for all possible executions of a program; exe-
cutable for some technical reasons (QUASAR second step process uses computable Ada
programs); and backward slicing has been chosen because most of the studied proper-
ties validated by QUASAR deal with reachable states of the original program, and thus
the slicing criterion definition is closer to the kind of properties analyzed by QUASAR

than with forward slicing.

1 procedure Robot i s
2
3 N a i l s : N a t u r a l := 0 ;
4 S t a r t : N a t u r a l := 0 ;
5 T o t a l : N a t u r a l := 0 ;
6 Used : N a t u r a l := 0 ;
7
8 begin
9 Get (S t a r t) ;

10 T o t a l := N a i l s + S t a r t ;
11 N a i l s := T o t a l ;
12 whi le N a i l s > 0 l oop
13 N a i l s := N a i l s − 1 ;
14 Used := Used + 1 ;
15 end loop ;
16 i f Used = 0 then
17 Put (” Noth ing done ”) ;
18 end i f ;
19 Pu t (N a i l s) ;
20 end Robot ;

1 procedure Robot i s
2
3 N a i l s : N a t u r a l := 0 ;
4 S t a r t : N a t u r a l := 0 ;
5 T o t a l : N a t u r a l := 0 ;
6
7
8 begin
9 Get (S t a r t) ;

10 T o t a l := T o t a l + S t a r t ;
11 N a i l s := T o t a l ;
12 whi le N a i l s > 0 l oop
13 N a i l s := N a i l s − 1 ;
14
15 end loop ;
16
17
18
19 Pu t (N a i l s) ;
20 end Robot ;

Fig. 1. Slicing of program Robot with 〈19, {Nails}〉 as slicing criterion

Figure 1 shows an example of static executable backward program slicing. The pro-
gram on the left is the original program, and the program on the right is one of its slice
observed through the slicing criterion 〈19,Nails〉. It means that we want to know the
statements which have an effect on the value of the variable Nails at line 19. The
elements related to the variable Used are irrelevant to the value of the variable Nails
at line 19, thus they do not belong to the slice.

In order to achieve program slicing YASNOST has to be able to define which state-
ments can have an effect on the variables values of the slicing criterion. Weiser had
defined two kinds of dependences for sequential program slicing:

– The control dependence represents the link between a statement and another state-
ment of which it can control the execution. The most trivial example is the if-
then-else statement that controls the execution of the statements of its both
branches.

– The data dependence represents the link between a statement referencing (reading
the value of) a variable and the statements defining (modifying) it. For instance,
in Figure 1, the statements of line 11 (referencing the variable Total) is data
dependent on the statement of line 10 (defining Total).

This dependence is transitive. The modifying statements may reference variables
which are also modified in previous statements, and thus these statements have to

A New Approach for Concurrent Program Slicing 231

be included into the slice because the values of the variables that they modify transi-
tively impact the firstly referenced variable. For instance, as already explained, the
statement of line 11 is data dependent on the statement of the line 10. The line 10
references the variable Start, defined at line 9. Thus the statement of line 11 is by
transitivity data dependent on the statement defining the variable Start (line 9).

3 Concurrent Program Slicing

QUASAR analyzes concurrent Ada programs, thus YASNOST has to slice concurrent
programs, and to deal with concurrency specific problems described in [Che93, NR00,
Kri03], such as dependences introduced by the synchronization between tasks or the
non transitivity of the data dependence relation.

To illustrate this last issue considers the following examples (Figure 2).

(a) (b)

Nails := Used_Nails;

Put (Nails);

Get (Used_Nails);

Task A

Used_Nails := 2 * Used_Nails;

Task B

Nails := Used_Nails;

Nails := Max_Nails;

Put (Nails);

Task A Task B

Nails := 2 * Nails;

Transitive data dependence

Non transitive data dependence

Task execution

Fig. 2. Examples of imprecise data dependences sequences

In Figure 2 (a), if the data dependence is considered as transitive, the following
sequence may be built:

{
Get (Used Nails);
Used Nails := 2 * Used Nails;
Nails := Used Nails;
Put (Nails);

}.

Indeed Put (Nails) depends on Nails := Used Nails which depends on
Used Nails := 2 * Used Nails which depends on Get (Used Nails).

However this sequence can’t be executed by the program or else it would mean that
Get (Used Nails) could be executed before Nails := Used Nails what is
impossible.

232 P. Rousseau

In the second example (Figure 2 (b)), a variable is modified twice in a task and
read and modified in a single statement in another task. In all possible executions, the
value of the variable Nails is never dependant of the statement Nails := Used
Nails because the variable Nails is always defined by Nails := Max Nails.
For instance the data dependence relation may take into account this useless sequence:

{
Nails := Used Nails;
Nails := Max Nails;
Nails := 2 * Nails;
Put (Nails);

}
In both cases, considering the dependence relation as transitive leads to take into

account sequences of statements that are impossible (first case) or useless (second case).
So the resulting slice will contain statements that do not affect the slicing criterion and
thus is imprecise.

Previous works [CX01, Kri03] are all based on an augmentation of the dependence
graph approach. These graphs are complex and contain all possible dependences rela-
tion between all the program statements. YASNOST, the QUASAR slicer, relies on an-
other concurrent program slicing approach which is based on ASIS, an Ada tool which
allows to inspect the syntactic tree of an Ada program by using the semantic links ex-
isting between its elements. Instead of building a static dependence graph, YASNOST

records dependences “on the fly” which naturally avoid to build useless dependences.

4 YASNOST

At the moment, YASNOST supports the basic Ada language (assignment, conditioned
statements, ...), subprograms and the part of the language related to concurrency (tasks,
protected object, rendez-vous, ...). Pointers and dynamic structures are not yet supported
except the dynamic task allocation. Unstructured control flow such as exit statements
are supported but exceptions and jumps are not. However, non supported parts of the
language can be wholly included into the slice.

4.1 Tree Manipulator: ASIS

ASIS (Ada Semantic Interfaces Specification [ISO95]) is an interface between an Ada
environment and tools requiring static information about the syntax and the semantic of
an Ada program.

ASIS provides two ways for obtaining information about an Ada source code. First,
there is an iterator allowing traversing the syntactic tree of an Ada program with a
depth-first left-hand method. The second tool is a set of queries that allows the user to
navigate in the syntactic tree following semantical dependences between its nodes. The
tree associated with the ASIS queries can be view as a “syntactic and semantic” graph.

Figure 3 shows an example of ASIS graph used to get information about a source
code. The plain lines represent the syntactic tree of the Ada program of Figure 1 (origi-
nal program on the left). The dashed line represents an ASIS query linking an identifier

A New Approach for Concurrent Program Slicing 233

procedure Robot
Syntactic tree

Queries

unfinished part

Nails Total

Nails := TotalGet (Start) Total := Nails + Start while ... if ... Put (Nails)

0

Sequence of statementsNails : Natural := 0

Nails Natural

Fig. 3. Part of an ASIS graph of program of Figure 1

(Nails) to its declaration (Nails : Natural := 0). Note that the ASIS syntac-
tic tree has been simplified for the sake of simplicity.

The first way to use this interface is to implement already known program slicing
algorithms, as done in [SC03]. A second way is to deduce the dependence graph from
ASIS syntactic tree. YASNOST uses the ASIS tools in a third way : build dependences
“on the fly” with the ASIS queries.

4.2 Algorithm

The algorithm used by YASNOST aims to separate as much as possible the search of the
different kind of dependences. YASNOST uses a stack in which are pushed the elements
(nodes of the syntactic tree) of which YASNOST needs to check the dependences and
thus that have to be kept. The following algorithm is carried out:

1. Push statement of the slicing criterion into the stack. With YASNOST, the user can
use annotations to specify some statements to keep in the slice. These statements
are also pushed into the stack at this step.

2. Push instantied tasks into the stack. At this step, each task declaration and allocation
is kept. This step is done traversing the syntactic tree and collecting every task
declarations and every statements allocating dynamically a task.

3. Looking for dependences. This step is repeated as long as the stack is not empty
(a) Pop the first element of the stack and add it to the list of the kept nodes.
(b) Push control dependent statements into the stack.
(c) Push data dependent statements into the stack
(d) Push all declarations related to the popped element into the stack. This step is

carried out in order to have an executable slice.
4. Create the executable slice with the list of kept nodes.

234 P. Rousseau

The parts related to control dependences and the data dependences, in particular
when data dependences have to be checked through parameters passing, have to be
detailed.

4.3 Control Dependences

In order to collect the control dependences YASNOST uses the weak and strong depen-
dences defined by Cheng [Che93] as follow:

– Strong control dependence is the dependence explained in section 2. ASIS provides
a query giving the father node of any node of the syntactic tree. Every father is
pushed into the stack. By this way all elements enclosing the popped element are
pushed into the stack.

– Weak control dependence corresponds to statements that depend on the termina-
tion of another statement (for instance a statement following a loop). If the popped
element is a body, YASNOST pushes into the stack all statements related to con-
currency and all statements that may not terminate or that may terminate another
statement:
• loops the termination of which cannot be statically evaluated.
• the calls to protected sub-program (in Ada protected objects are Hoare monitor

constructs [Hoa74] with function, procedure and guarded entries).
• rendez-vous statements.
• some unstructured control flow statement are also kept at this step. For instance,
exit statements included in a kept loop. Jump statements such goto are not
yet supported by YASNOST.

4.4 Data Dependences

In order to find data dependences, YASNOST follows the algorithm described Figure 4.
This algorithm uses two lists:

– Read : a list of variables for which YASNOST searches statements modifying them.
– Writers : the list of elements modifying at least a variable from Read. ASIS

provides a set of queries allowing to retrieve all statements that contains an identi-
fier corresponding to a given declaration. Statements which belong to the same task
are sorted by their textual position (line and column numbers).

YASNOST also uses a transitivity graph for all the variables of the slicing criterion.
These graphs are built using sequences of transitive data dependences between the pro-
gram statements. These graphs are built on the fly. If a data dependence between two
statements would lead to only build paths in the transitivity graph such the ones de-
scribed in section 3, the data dependence is not transitive and thus the statement from
the Writers set is not added to the slice.

In order to realize this, YASNOST has to be able to know when a statement can be
executed before another. The precedence between statements which belong to the same
task is checked as follow:

A New Approach for Concurrent Program Slicing 235

– if two statements are in the same body, the precedence is determined by the textual
position (line and column number). If both statements belong to the same loop, they
are considered as mutual predecessors.

– if they don’t belong to the same body, it means that they are in different subpro-
grams, then, the precedence between the calls (and between both statements) are
checked.

If the statement Writer has to be added to the slice, then the modified variable
is removed from the Read set and from the slicing criterion set. Thus for any other
elements of the set Writers, YASNOST has to check again if it modifies an element
which still belongs to the Read set. This is done to avoid to include in the slice old and
useless variable value modification.

Statements which belong to different tasks are considered as mutual predecessors. In
this case, the transitivity only is checked.

Read ← Read By (Current Element) & Variables (Slicing Criterion);
Writers ← Modifying (Read)
for reverse Writer of Writers loop

if Same Task (Writer, Current Element) then – transitivity holds
if Modify (Writer, Read) and

Precedence (Writer, Current Element) – check precedence
then

Push (Writer, Stack);
Remove (Modified Variables (Writer), Read);
Remove (Modified Variables (Writer), Slicing Criterion);
Add (Writer, Current Element, Transitivity List);

end if;
else – precedence holds

if Transitive (Writer, Transitivity List) then – check transitivity
Push (Writer, Stack);
Add (Current Element, Transitivity List);

end if;
end if;

end loop;

Fig. 4. Part of algorithm to find data dependences

4.5 Inter-procedural Slicing Issues

When slicing an inter-procedural program, YASNOST has to deal with parameter pass-
ing, and to retrieve the parameters of which the final values computed by the sub-
programs (the parameters modifications or the return value of the sub-program) depend.

As YASNOST produces executable slices, all calls to a procedure have to be writ-
ten with all effective parameters corresponding to all formal parameters used by the
declaration of the called sub-program.

This could lead to build imprecise slice. For instance, consider the procedure Proc
of Figure 5, which is sliced in order to know the value of the variable Arg4 at line 28.
All the parameters of the procedure Proc have to be added to the slice. But only two
of them are useful at the call at line 21 ; the others are also in the slice because of the
call at line 26. Thus, at the procedure call at line 21, without information linking the
modified parameters to the parameters used to modify them, lines 19 and 20 would be
added to the slice as Arg1 and Arg2 are referenced by this last call. This would be

236 P. Rousseau

imprecise since line 21 is in the slice because this statement is needed to evaluate the
condition of the if statement at line 23 which uses only the values of Arg1 and Arg3.
The value of Arg4 is newly defined at line 22 so the value of Arg4 computed at line
21 (the call) is not relevant to the final value of Arg4. And then Arg1 which is used to
compute the value of Arg4 through the call should not be considered and the statement
defining it at line 19 should not belong to the slice.

1 procedure Example i s
2 procedure Proc
3 (In1 : in I n t e g e r ;
4 In2 : in I n t e g e r ;
5 Out1 : out I n t e g e r ;
6 Out2 : out I n t e g e r)
7 i s
8 begin
9 Out1 := In1 ;

10 Out2 := In2 ;
11 end Proc ;
12
13 Arg1 : I n t e g e r := 0 ;
14 Arg2 : I n t e g e r := 0 ;
15 Arg3 : I n t e g e r := 0 ;
16 Arg4 : I n t e g e r := 0 ;
17
18 begin
19 Arg1 := 1 ;
20 Arg2 := 2 ;
21 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
22 Arg4 := 4 ;
23 i f Arg3 > Arg1 then
24 Arg2 := 6 ;
25 Arg1 := 7 ;
26 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
27 end i f ;
28 Pu t (Arg4) ;
29 end ;

1 procedure Example i s
2 procedure Proc
3 (In1 : in I n t e g e r ;
4 In2 : in I n t e g e r ;
5 Out1 : out I n t e g e r ;
6 Out2 : out I n t e g e r)
7 i s
8 begin
9 Out1 := In1 ;

10 Out2 := In2 ;
11 end Proc ;
12
13 Arg1 : I n t e g e r := 0 ;
14 Arg2 : I n t e g e r := 0 ;
15 Arg3 : I n t e g e r := 0 ;
16 Arg4 : I n t e g e r := 0 ;
17
18 begin
19 Arg1 := 1 ;
20
21 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
22 Arg4 := 4 ;
23 i f Arg3 > Arg1 then
24 Arg2 := 6 ;
25
26 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
27 end i f ;
28 Pu t (Arg4) ;
29 end ;

Fig. 5. Example of inter-procedural slicing

In [HRB90], to slice sequential inter-procedural programs, the authors use summary
arcs in their dependence graph in order to know for every call which parameter have
an effect on the results produced by the sub-program. But, as pointed Krinke, due to
the non-transitivity of the data dependencie, these arcs can’t be used to slice concur-
rent programs using dependence graphs. It is shown Figure 6. If all the dependences
were considered transitive then the statement Used Nails := Used Nails + 1
would have to be included into the slice because Nails := Unused Nails is con-
sidered as transitively dependent of statement Unused Nails := Total Nails
- Used Nails. Then the summary arc would link the variable Nails with the vari-
able Used Nails and thus, the call to Update Nails (Used Nails, Nails)
would be considered as referencing the Used Nails variable. This would build an im-
precise slice, since in concurrent programs, data dependence is not transitive and thus
the value of the parameter Used Nails has no effect on the final value of Nails.

However as YASNOST builds only transitive data dependency sequences, and thus
builds a transitivity graph where there is always at least one path from a statement to

A New Approach for Concurrent Program Slicing 237

Transitive data dependence

Non transitive data dependence

Task execution

Task B

Unused_Nails := 2 * Unused_Nails;

procedure Update_Nails
 (Used_Nails : in Integer;

 Nails : out Integer)

end Update_Nails;

Nails := Unused_Nails;

Unused_Nails := Total_Nails − Used_Nails;

Used_Nails := Used_Nails + 1;

Task A

Put (Nails);

Update_Nails (Used_Nails, Nails);

Fig. 6. Exemple of precise slice for inter-procedural concurrent program

another one which belongs to a transitive data dependence sequence of statements, it
can build these summary arcs also in a concurrent context. As shown Figure 6, only
the plain arrows are considered as transitive data dependences, the dashed ones are not
considered and thus are not added to the slice.

5 Examples

5.1 The Robot Example

The example presented Figure 7 is a simple robot which plants nails. This program uses
three tasks : the main program, the task managing the right arm and the task managing
the left arm. It shows how program slicing reduces a program size and thus helps to
debug it.

The main program starts by asking how many times the nails box should be filled
when empty, then just surveys that the nail box always contains at least one nail. If
not, it calls the right arm to fill the mailbox. When the max number of filling has been
reached, the program stops. The left arm places the nail to plant (if there is at least one
nail in the box) and then asks the right arm to hit the nail with the hammer. The right
arm waits orders and either fills the nail box or hits a nail with a hammer when asked.

Even if this source code is simple, it may be difficult to understand its behavior and
then to find bugs.

238 P. Rousseau

Suppose that one wants to check properties related to the value of Nails at the line
90 (the last statement of the main procedure). So the slice will be obtained by slicing the
original program with the slicing criterion 〈90, {Nails}〉, and will allow to focus on the
statements that may have an effect on the variable Nails. The sliced program is more
clear. Before the model-checking step one bug can already be discovered when looking
at the use of the variable Nails : at line 71, when it fills the box, right arm removes 10
nails from the count instead of adding them to the count. Afterwards model-checking
can be used to find more subtle mistakes, or to formally prove some property about the
program variables taking advantage of the reduced size of the slice.

Table 1. Part of the report generated by YASNOST after slicing the program of the Figure 7

sliced statements :: 16 (55%)
sliced functions :: -
sliced procedures :: 6 (86%)
sliced entries :: 0 (0%)
sliced variables :: 2 (33%)

Table 1 displays some results about the slicing operation of the robot original pro-
gram. Although the result of slicing largely depends on the way the program has been
written, this table shows that more than 50%of the program statements have been sliced.
Assuming that the sliced procedures could be much more complex than a simple output,
the sliced statements ratio could be widely larger without increasing the computation
time which is instantaneous to slice this program.

5.2 The Client-Server Example

The second example (Figure 8) shows a more subtle possible use of slicing operation.
YASNOST slices concurrent programs in order to make easier the model-checking step
of QUASAR. The size of the generated model and, in most cases, the size of the state
space, are intuitively related to the size of the studied program.

But for concurrent programs, the size of the state space is more related to the com-
binatory induced by the indeterminism of concurrency than to the size of the program.
Our second example shows that even when the original program is not significantly re-
duced, the slicing operation may be useful by removing a lot of combinatory from the
original program.

This example (Figure 〈64, ∅〉) is a simple client-server architecture where the server
dynamically allocates a task for every client accessing its services. Here presence of
deadlock is checked ; thus the slicing criterion 〈64, ∅〉 is used (last statement, no
variables).

As recorded Table 2, the reduction obtained by program slicing operation is small,
but, when checking presence of deadlocks, QUASAR use shows that the two lines re-
moved from the original program were generating a lot of combinatory that led to the
state space explosion.

A New Approach for Concurrent Program Slicing 239

Table 2. Part of the report generated by YASNOST after slicing the program of the Figure 8

sliced statements :: 2 (18%)
sliced functions :: -
sliced procedures :: 0 (0%)
sliced entries :: 0 (0%)
sliced variables :: 1 (17%)

Here the slicing operation didn’t remove a lot of statements (although the statements
computed by the procedure Get Value could be much more complicated as it is sup-
posed to compute the requested service offered by the server) but removed a lot of
complexity of the program as shown in Table 3 in a instantaneous time which as to be
compared to the time needed to compute the nodes of the state space (which is naturally
long).

Table 3. State space generated by HELENA for the model of the program of Figure 8

Clients Running tasks Reachable states Reachable states with slicing

1 4 247 221
2 6 9 499 5 939
3 8 735 767 239 723
4 10 - 12 847 017

6 Related Works

A slicer for Ada programs already exists, Adaslicer [SC03], but it operates only on se-
quential programs. Few other tools have been designed for slicing concurrent Java and
C ANSI programs [DCH+99, Kri03, Zha99]. Only [Kri03] builds slices which take into
account the non-transitivity of data dependence in a concurrent context and demon-
strates that the slices are more precise and more quickly computed.

These approaches use augmentation of the dependence graphs and build all the de-
pendences between all the program statements. Thus they will have better execution
times than YASNOST when computing a lot of slices for a given program, but will be
slower for a unique slice since they have to build the complete dependence graphs while
YASNOST records dependences only w.r.t. the statements which already belong to the
slice. As YASNOST is the first step of QUASAR which carries out a formal analysis by
model-checking, building all possible slices of a program is not necessary.

7 Conclusions and Further Works

This paper has shown how static analysis can greatly help formal analysis to deal with
large and complex programs by removing useless statements regarding the property
to check and also by removing a lot of complexity from these programs. Other static

240 P. Rousseau

1 with Ada . Tex t IO ; use Ada . Tex t IO ;
2 with Ada . I n t e g e r T e x t I O ; use Ada . I n t e g e r T e x t I O ;
3
4 procedure Robot i s
5
6 U s e d N a i l s : N a t u r a l := 0 ;
7 N a i l s : N a t u r a l := 0 ;
8
9 t a sk t y pe Lef t Arms ;

10 Left Arm : Lef t Arms ;
11
12 t a sk t y pe R i g h t Arms i s
13 entry H i t N a i l ;
14 entry F i l l N a i l s B o x ;
15 end R i g h t Arms ;
16 Right Arm : R i g h t Arms ;
17
18 ta sk body Lef t Arms i s
19 procedure Tak e Nai l i s
20 beg i n
21 P u t L i n e (” L e f t arm t o o k a n a i l ”) ;
22 end Tak e Nai l ;
23
24 procedure S e t N a i l i s
25 beg i n
26 P u t L i n e (” L e f t arm s e t t h e n a i l ”) ;
27 end S e t N a i l ;
28 beg i n
29 l o o p
30 i f N a i l s > 0 then
31 Tak e Nai l ;
32 N a i l s := N a i l s − 1 ;
33 S e t N a i l ;
34 Right Arm . H i t N a i l ;
35 end i f ;
36 end l o o p ;
37 end Lef t Arms ;
38
39 ta sk body R i g h t Arms i s
40 procedure Take Hammer i s
41 beg i n
42 P u t L i n e (” R i g h t arm t o o k t h e hammer ”) ;
43 end Take Hammer ;
44
45 procedure H i t N a i l 3 T i m e s i s
46 beg i n
47 P u t L i n e (” R i g h t arm h i t t o t h e n a i l ”) ;
48 end H i t N a i l 3 T i m e s ;
49
50 procedure T a k i n g N a i l s F r o m R e s e r v e i s
51 beg i n
52 P u t L i n e (” R i g h t arm t o o k n a i l s from t h e r e s e r v e ”) ;
53 end T a k i n g N a i l s F r o m R e s e r v e ;
54
55 procedure P u t N a i l s I n B o x i s
56 beg i n
57 P u t L i n e (” R i g h t arm f i l l t h e n a i l s box ”) ;
58 end P u t N a i l s I n B o x ;
59 beg i n
60 l o o p
61 s e l e c t
62 a ccept H i t N a i l do
63 Take Hammer ;
64 H i t N a i l 3 T i m e s ;
65 U s e d N a i l s := U s e d N a i l s + 1 ;
66 end H i t N a i l ;
67 or
68 a ccept F i l l N a i l s B o x do
69 T a k i n g N a i l s F r o m R e s e r v e ;
70 P u t N a i l s I n B o x ;
71 N a i l s := N a i l s − 1 0 ;
72 end F i l l N a i l s B o x ;
73 end s e l e c t ;
74 end l o o p ;
75 end R i g h t Arms ;
76
77 F i l l i n g : N a t u r a l := 0 ;
78 U Check : N a t u r a l := 0 ;
79
80 beg i n
81 Get (F i l l i n g) ;
82 whi l e F i l l i n g > 0 l o o p
83 i f N a i l s < 1 then
84 Right Arm . F i l l N a i l s B o x ;
85 F i l l i n g := F i l l i n g − 1 ;
86 e l s e
87 U Check := U Check + 1 ;
88 end i f ;
89 end l o o p ;
90 Pu t (N a i l s) ;
91 end Robot ;

1
2
3
4 procedure Robot i s
5
6
7 N a i l s : N a t u r a l :=0 ;
8
9 t a sk t y pe Lef t Arms ;

10 Left Arm : Lef t Arms ;
11
12 t a sk t y pe R i g h t Arms i s
13 entry H i t N a i l ;
14 entry F i l l N a i l s B o x ;
15 end ;
16 Right Arm : R i g h t Arms ;
17
18 t a sk body Lef t Arms i s
19
20
21
22
23
24
25
26
27
28 beg i n
29 l o o p
30 i f N a i l s > 0 then
31
32 N a i l s := N a i l s − 1 ;
33
34 Right Arm . H i t N a i l ;
35 end i f ;
36 end l o o p ;
37 end ;
38
39 ta sk body R i g h t Arms i s
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 beg i n
60 l o o p
61 s e l e c t
62 a ccept H i t N a i l do
63
64
65 n u l l ;
66 end ;
67 or
68 a ccept F i l l N a i l s B o x do
69
70
71 N a i l s := N a i l s − 1 0 ;
72 end ;
73 end s e l e c t ;
74 end l o o p ;
75 end ;
76
77 F i l l i n g : N a t u r a l :=0 ;
78
79
80 beg i n
81
82 whi l e F i l l i n g > 0 l o o p
83 i f N a i l s < 1 then
84 Right Arm . F i l l N a i l s B o x ;
85 F i l l i n g := F i l l i n g − 1 ;
86
87
88 end i f ;
89 end l o o p ;
90
91 end ;

Fig. 7. Slicing of Robot program with 〈90, {Nails}〉 as slicing criterion

analysis approach could be used such as settling variable limits in order to limit at the
very most the size of types used and thus help to reduce the size of the state space.

The slicing algorithm carried out by YASNOST is more adapted than previous ones
to be a first step of a complete formal analysis process, such the one performed by
QUASAR, saving time and resources for the long and complex model-checking step

A New Approach for Concurrent Program Slicing 241

1 procedure S e r v e r i s
2
3 Max C l i en t : I n t e g e r := 5 ;
4
5 p r o t e c t e d ty pe Dat as i s
6 procedure Get Val u e (Value : out I n t e g e r) ;
7 p r i v a t e
8 Dat a Val u e : I n t e g e r := 0 ;
9 end Dat as ;

10
11 p r o t e c t e d body Dat as i s
12 procedure Get Val u e (Value : out I n t e g e r) i s
13 beg i n
14 Dat a Val u e := Dat a Val u e + 1 ;
15 Value := Dat a Val u e ;
16 end Get Val u e ;
17 end Dat as ;
18
19 Data : Dat as ;
20
21 t a sk t y pe Th read i s
22 entry Get Val u e (Param : out I n t e g e r) ;
23 end Th read ;
24 t y pe Access Th read i s a c c e s s Th read ;
25
26 ta sk body Th read i s
27 beg i n
28 a ccept Get Val u e (Param : out I n t e g e r) do
29 Data . Get Val u e (Param) ;
30 end Get Val u e ;
31 end Th read ;
32
33 t a sk t y pe T a s k S e r v e r i s
34 entry Get Th read (Id : out Access Th read) ;
35 end T a s k S e r v e r ;
36
37 ta sk body T a s k S e r v e r i s
38 beg i n
39 f o r I i n 1 . . Max C l i en t l o o p
40 a ccept Get Th read (Id : out Access Th read) do
41 Id := new Th read ;
42 end Get Th read ;
43 end l o o p ;
44 end T a s k S e r v e r ;
45
46 T h e T a s k S e r v e r : T a s k S e r v e r ;
47
48 t a sk t y pe C l i e n t ;
49 t y pe A c c e s s C l i e n t i s a c c e s s C l i e n t ;
50
51 ta sk body C l i e n t i s
52 Id : Access Th read ;
53 Value : I n t e g e r ;
54 beg i n
55 T h e T a s k S e r v e r . Get Th read (Id) ;
56 Id . Get Val u e (Value) ;
57 end C l i e n t ;
58
59 A C l i e n t : A c c e s s C l i e n t ;
60 beg i n
61 f o r I i n 1 . . Max C l i en t l o o p
62 A C l i e n t := new C l i e n t ;
63 end l o o p ;
64 end S e r v e r ;

1 procedure S e r v e r i s
2
3 Max C l i en t : I n t e g e r :=5 ;
4
5 p r o t e c t e d ty pe Dat as i s
6 procedure Get Val u e ;
7 p r i v a t e
8
9 end ;

10
11 p r o t e c t e d body Dat as i s
12 procedure Get Val u e i s
13 beg i n
14
15 n u l l ;
16 end ;
17 end ;
18
19 Data : Dat as ;
20
21 t a sk t y pe Th read i s
22 entry Get Val u e ;
23 end ;
24 t y pe Access Th read i s a c c e s s Th read ;
25
26 ta sk body Th read i s
27 beg i n
28 a ccept Get Val u e do
29 Data . Get Val u e ;
30 end ;
31 end ;
32
33 t a sk t y pe T a s k S e r v e r i s
34 entry Get Th read (Id : out Access Th read) ;
35 end ;
36
37 ta sk body T a s k S e r v e r i s
38 beg i n
39 f o r I i n 1 . . Max C l i en t l o o p
40 a ccept Get Th read (Id : out Access Th read) do
41 Id := new Th read ;
42 end ;
43 end l o o p ;
44 end ;
45
46 T h e T a s k S e r v e r : T a s k S e r v e r ;
47
48 t a sk t y pe C l i e n t ;
49 t y pe A c c e s s C l i e n t i s a c c e s s C l i e n t ;
50
51 ta sk body C l i e n t i s
52 Id : Access Th read ;
53
54 beg i n
55 T h e T a s k S e r v e r . Get Th read (Id) ;
56 Id . Get Val u e ;
57 end ;
58
59 A C l i e n t : A c c e s s C l i e n t ;
60 beg i n
61 f o r I i n 1 . . Max C l i en t l o o p
62 A C l i e n t := new C l i e n t ;
63 end l o o p ;
64 end ;

Fig. 8. Client-Server example 〈64, ∅〉 as slicing criterion

which follows the slicing step. Programs written in other programming languages could
be sliced using the technics presented in this paper, however the semantic and syntactic
information on the tree representation of the program as provided by ASIS (such as the
query linking the node of an identifier and the node of its declaration) has to be obtained.

References

[Che93] Jingde Cheng. Slicing concurrent programs - a graph-theoretical approach. In
Proceedings of the First International Workshop on Automated and Algorithmic
Debugging, pages 223–240. Springer-Verlag, 1993.

[CX01] Zhenqiang Chen and Baowen Xu. Slicing concurrent java programs. SIGPLAN
Not., 36(4):41–47, 2001.

242 P. Rousseau

[DCH+99] Matthew B. Dwyer, James C. Corbett, John Hatcliff, Stefan Sokolowski, and
Hongjun Zheng. Slicing multi-threaded java programs: A case study. Technical
Report 99-7, KSU, 1999.

[EKPP+05] Sami Evangelista, Claude Kaiser, Jean François Pradat-Peyre, Christophe Pajault,
and Pierre Rousseau. Dynamic tasks verification with QUASAR. In Interna-
tional Conference on Reliable Software Technologies (Ada-Europe), volume 3555,
page 91. Springer-Verlag, June 2005.

[EKPPR03] Sami Evangelista, Claude Kaiser, Jean François Pradat-Peyre, and Pierre Rousseau.
Quasar, a new tool for concurent ada program analysis. In International Conference
on Reliable Software Technologies (Ada-Europe), volume 2655, pages 168–181.
Springer-Verlag, June 2003.

[EKPPR06] Sami Evangelista, Claude Kaiser, Jean François Pradat-Peyre, and Pierre Rousseau.
Comparing Java, C# and Ada monitors queuing policies : a case study and its ada
refinement. In Ada Letters. ACM Press, 2006.

[Eva05] Sami Evangelista. High level petri nets analysis with helena. In 26th International
Conference on Applications and Theory of Petri Nets 2005, ICATPN 2005, volume
3536, page 455. Springer-Verlag, 2005.

[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.
ACM, 17(10):549–557, 1974.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[ISO95] ISO/IEC-15291. Ada semantic interface specification. 1995.
[Kri03] Jens Krinke. Context-sensitive slicing of concurrent programs. In Proceedings

of the 9th European software engineering conference held jointly with 10th ACM
SIGSOFT international symposium on Foundations of software engineering, pages
178–187. ACM Press, 2003.

[NR00] Mangala Gowri Nanda and S. Ramesh. Slicing concurrent programs. In Pro-
ceedings of the International Symposium on Software Testing and Analysis, pages
180–190. ACM Press, 2000.

[SC03] Ricky E. Sward and A.T. Chamillard. Adaslicer: an ada program slicer. In Pro-
ceedings of the 2003 annual international conference on Ada, pages 10–16. ACM
Press, 2003.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3:121–189, 1995.

[Wei84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[Zha99] Jianjun Zhao. Slicing concurrent java programs. In IWPC ’99: Proceedings of the
7th International Workshop on Program Comprehension, page 126. IEEE Com-
puter Society, 1999.

Reducing Software Architecture Models
Complexity: A Slicing and Abstraction Approach

Daniela Colangelo1, Daniele Compare1,
Paola Inverardi2, and Patrizio Pelliccione2

1 Selex Communications, L’Aquila, Italy
{daniela.colangelo, daniele.compare}@selex-comms.com

2 University of L’Aquila, Computer Science Department
Via Vetoio, 67010 L’Aquila, Italy

{inverard, pellicci}@di.univaq.it

Abstract. Software architectures (SA) represents a critical design level
for software systems. Architectural choices need to be analyzed and ver-
ified to achieve a better software quality while reducing the time and
cost of production. Model-checking is one of the most promising verifi-
cation techniques, however its use for very large systems is not always
possible due to the state explosion problem. In this paper we propose
an approach that slices and abstracts the SA of a system in order to
reduce the model complexity without compromising the verification va-
lidity. This approach exploits the characteristics of the SA model and
the structure of the property of interest. It is applied to an industrial
telecommunication system of the Selex Communications company.

1 Introduction

Recently, Software Architectures (SA) [1,2] have been largely accepted as a well
suited tool to achieve better software quality while reducing time and cost of
production. SA provide both a high-level behavioral abstraction of components
and of their interactions (connectors) and, a description of the static structure of
the system. The aim of SA descriptions is twofold: on one side they force the de-
signer to separate architectural concerns from other design ones, thus abstracting
away many details. On the other side, they allow for analysis and verification
of architectural choices, both behavioral and quantitative, in order to obtain
better software quality in an increasingly shorter time-to-market development
scenario [3].

Formal Architectural Description Languages (ADL) have been employed to
specify SA in a formal and rigorous way. They are the basis for many methods
and tools for analysis and verification of software architectures, both behavioral
and quantitative [3]. One of the most promising verification technique is model-
checking since is fully automated and its use requires no supervision or formal
methods expertise. Due to these reasons, in recent years model checking has
gained popularity and it is increasingly used also in industrial contexts [4,5].
However the application of model checking techniques is still prevented by the

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 243–258, 2006.
c© IFIP International Federation for Information Processing 2006

244 D. Colangelo et al.

state explosion problem. As remarked by Gerald Holzmann in [6] no paper has
been published on reachability analysis techniques without a serious discussion
of this problem. State explosion occurs either in systems composed of (not too)
many interacting components, or in systems where data structures assume many
different values. The number of global states easily becomes enormous and in-
tractable. To solve this problem, many methods have been developed by exploit-
ing different approaches [7]. They can be logically classified into two disjoint
sets [8]. The first set, that we call Internal Methods, considers algorithms and
techniques used internally to the model checker in order to efficiently repre-
sent transition relations between concurrent processes, such as Binary Decision
Diagrams [9] (used for synchronous processes) and Partial Order Reduction [10]
techniques (used for asynchronous processes). The second set, that we call Exter-
nal Methods includes techniques that operate on the input of the model checker
(models), and can be used in conjunction with Internal Methods. In this set
there are Abstraction [11], Symmetry [12], Compositional Reasoning [13,14,8],
and Slicing [15,16].

In this paper we propose an architectural slicing and abstraction approach
which exploits the characteristic of the SA model and the structure of the prop-
erty of interest for reducing the model complexity without compromising the
verification validity. Program slicing [17] is a technique which attempts to de-
compose the system by extracting elements that are related to a particular com-
putation. It is defined for conventional programming languages and therefore
it is based on the basic elements of a program, i.e. variables and statements.
Architectural slicing is the result of applying the slicing idea to SA [18,19]. Thus
the basic elements on which is based the Architectural slicing are components,
connectors, ports, roles, and messages exchanged between components. An ar-
chitectural slicing can be considered a subset of the behaviour of a software
architecture with the attempt to isolate its parts that are involved in the slic-
ing criterion. In the approach that we are proposing the slicing criterion is the
property we want to check on the SA. Thanks to the architectural slicing we are
able to extract the parts of the system that play a role on the behavior implied
by the property of interested.

Our approach makes use of TeStor [20], an algorithm that, taking in input
state machines and scenarios expressed in terms of Property Sequence Charts
(PSC) [21,22], generates test sequences in the form of scenarios. TeStor gen-
erates all traces containing the messages expressed in the input PSC and in the
same order defined in the PSC by suitably abstracting with respect to message
repetitions and loops. In this way it generates a final number of traces. Thus,
given in input the state machines defining the behavior of the components com-
posing the system and the property of interest (expressed in PSC notation),
TeStor identifies all dependencies in the state machines and can be used as
basis for the architectural slicing. In this work, we propose to extend TeStor in
order to colorize the states of the components state machines that are involved
on the considered property. When this step is done we can cut off from the SA
the states that are not colored, thus obtaining a reduced and sliced SA.

Reducing SA Models Complexity: A Slicing and Abstraction Approach 245

After the slicing is performed some architectural abstraction criteria can be
furtherly used to abstract parts of the system that are implied by the property,
but that are not directly involved in its formulation. Finally, the reduced system
model can be model checked by using the Charmy [23,24] tool. The efficacy of
this approach strictly depends on the characteristic of the SA. However it can
be completely automatized and for some systems offers a good reduction, as in
the industrial case study presented in Section 5. Through the case study, we
show how the traditional approach fails with the used hardware resources, and,
contrariwise, how the system can be successfully verified following this approach.

After an analysis of related work in Section 2, in Section 3 we introduce the
notions and the instruments required to understand the approach. The approach
is detailed in Section 4, and put in practice in Section 5, by presenting an in-
dustrial case study is presented. Finally, in Section 6 we present conclusion and
future work.

2 Related Work

Program slicing was firstly introduced in [25] and later extended in other works
[26,27]. For the sake of brevity, we report here only relevant works at the software
architecture level.

In [19] the authors propose a dependence analysis technique called chaining to
support software architectures testing maintenance and so on. Links in chaining
reflect the dependence relationships that are in the architecture description. The
relationships are been both structural and behavioral and based on components
ports. A similar approach is proposed in [16] where is proposed a dependence
analysis based on three different kinds of analysis based respectively on: relation-
ships between a component and a connector; relationships between a connector
and a component; and relationships inside a connector or a component. In this
work and in [18] the author suggests to use the system dependence net to slice
architectural descriptions written in the ACME ADL, and in the WRIGHT ADL
respectively. This method produces a reduced textual architectural description
just containing the ADL code lines associated with a particular slicing criterion.
The works [19] and [16] are very similar in the main goal; however [19] does
not focus on the description of the components themselves, but rather on the
more abstract nature of the components and the connections. Our work builds
on these prior works and it is based on a well detailed description of the com-
ponent itself. Contrary to these works that give an abstract description of the
components, by introducing only a dependence relationship between two dif-
ferent ports of a component or between two different roles of a connector, our
work is based on a component description in terms of state machines that give
a detailed description of the component behavior.

The works introduced above present static slice and dependence analysis tech-
niques. In [15] authors propose a dynamic slicing, determined according to the
input at run time. This kind of technique gives a slice that is smaller in size than
the static one, and helps to isolate a specific execution path. Our work, although

246 D. Colangelo et al.

is not performed at run time, is strongly related to this work. In fact we are
interested in identifying the execution paths that are implied by the property
that we want to verify on the system. This property is represented, as already
explained, as a PSC diagram and represents the slicing criterion in our approach.
The slicing criterion of the approach presented in [15] contains the event to be
observed, in addition our slicing criterion contains a set of events to be observed
and temporal relationships between them.

3 Background

3.1 Charmy: A Tool for SA Designing and Model-Checking

Charmy [23,24] is a project whose goal is to easy the application of model-
checking techniques to validate the SA conformance to certain properties. In
Charmy the SA is specified through state diagrams used to describe how ar-
chitectural components behave. Starting from the SA description Charmy syn-
thesizes, through a suitable translation into Promela (the specification language
of the SPIN [5] model checker) an actual SA complete model that can be ex-
ecuted and verified in SPIN. This model can be validated with respect to a
set of properties, e.g., deadlock, correctness of properties, starvation, etc., ex-
pressed in Linear-time Temporal Logic (LTL) [28] or in its Büchi Automata rep-
resentation [29]. Charmy allows users to describe temporal properties by using
an extension of UML 2.0 sequence diagrams, called Property Sequence Charts
(PSC) [21,22], that are successively translated into a temporal property repre-
sentation for SPIN. The model checker SPIN, is a widely distributed software
package that supports the formal verification of concurrent systems permitting
to analyze their logical consistency by on-the-fly checks, i.e., without the need of
constructing a global state graph, thus reducing the complexity of the check. It is
the core engine of Charmy and it is not directly accessible by a Charmy user.

The state machine-based formalism used by Charmy is an extended subset of
UML state diagrams: labels on arcs uniquely identify the architectural communi-
cation channels, and a channel allows the communication only between a pair of
components. The labels are structured as follows: ‘[‘guard‘]‘event‘(‘parameter
list‘)‘ ‘/‘op1‘; ‘op2‘; ‘ · · · ‘; ‘opn where guard is a boolean condition that denotes
the transition activation, an event can be a message sent or received (denoted
by an exclamation mark “!” or a question mark “?”, respectively), or an inter-
nal operation (τ) (i.e., an event that does not require synchronization between
state machines). Both sent and received messages are performed over defined
channels ch, i.e., connectors. An event can have several parameters as defined
in the parameters list. op1, op2, · · · , opn are the operations performed when the
transition fires.

3.2 Property Sequence Charts (PSC)

PSC [21,22] is a diagrammatic formalism for specifying temporal properties in a
user-friendly fashion. It is a scenario-based visual language that is an extended

Reducing SA Models Complexity: A Slicing and Abstraction Approach 247

graphical notation of a subset of UML2.0 Sequence Diagrams. PSC can express a
useful set of both liveness and safety properties in terms of messages exchanged
among the components forming a system. Finally, an algorithm, called Psc2Ba,
translates PSC into Büchi automata.

PSC uses a UML notation, stereotyped so that: (i) each rectangular box
represents an architectural component, (ii) each arrow defines a communication
line (a channel) between two components. Between a pair of messages we can
select if other messages can occur (loose relation) or not (strict relation). Message
constraints are introduced to define a set of messages that must never occur in
between the message containing the constraint and its predecessor or successor.
Messages are typed as regular messages (optional messages), required messages
(mandatory messages) and fail messages (messages representing a fault).

An example of PSC is in Figure 4.

3.3 TEst Sequence generaTOR (TeStor)

TeStor [20] is an algorithm, which, taking in input state machines and scenar-
ios, generates test sequences in the form of scenarios. The algorithm is based on
the idea that scenarios are usually incomplete specifications and represent im-
portant and expected system interactions. Such incomplete specifications may be
“completed” by recovering, from state machines, the missing information. The
output of the algorithm is a set of sequence diagrams (outSD) containing the
sequence of messages expressed by the input sequence diagram (inSD), enhanced
and completed with information gathered by the components’ state machines.

TeStor, focussing on the first (not visited) message m in the selected inSD,
and looking inside each state machine, searches a trace which permits to reach
m, starting from the current state of the state machine. When such trace is
found, TeStor recursively moves to the next (not visited) message m′ in inSD,
and checks a trace which permits to reach m′ starting from the current state.
At the end of this process, TeStor tries to merge together the different trace
portions in a set of traces (the set outSD) which move from the initial state and
covers any message in the inSD.

For more information on the TeStor algorithm, please refer to [20].

4 The Approach

Our proposal makes use of TeStor, the algorithm introduced in Section 3.3,
which aims to extract test sequences from a SA specification (given in terms of
state machines) following the trail suggested by a PSC property. We propose
to use an extension of TeStor, called DepCol, which, instead of returning
a set of sequences, colors the state machines highlighting the parts of the SA
model that are required to correctly verifying the property of interest. After this
step is done the abstraction step can be performed. The idea is to compact, if
and when is possible, some states of a component in only one abstract state.
Since the transition from one state to another is made when a message is ex-
changed between a couple of components, this step is not trivial. When a final

248 D. Colangelo et al.

reduced SA model is obtained, cutting off the parts of the system that can be
removed and suitably abstracting the system, Charmy can be used. Charmy
and TeStor use the same representation for state machines. Since the notation
used in Charmy for expressing the property is PSC, the integration between
this approach and Charmy is straightforward. In the following we detail the
approach step by step. Note that the whole approach can be fully automatized.

Charmy SA
description

Sliced SA

PSC
slicing

Criterion

DepCol
Abstraction

Engine

Sliced &
Abstracted

SA

Charmy verification
Engine

Verified
SA

Slicing
Engine

Colored
SA

(A)

(B) (C)

(D)

(E)

Fig. 1. The Approach

Figure 1 summarizes the approach: (A) we start from a Charmy SA descrip-
tion, i.e. a SA described in terms of components and connectors with commu-
nicating state machines used to represent components and connectors behav-
iors. The PSC property is our slicing criterion. (B) DepCol, the extension of
TeStor that we propose, gets in input the Charmy SA and the slicing criterion
and returns a colored SA. (C) The colored SA contains information about the
parts of the system that are necessary and the parts of the system that can be cut
off. Thus, the slicing engine gets in input the colored SA, cuts off the unnecessary
parts and returns a sliced SA. (D) The sliced SA is the input of the abstraction
engine that returns a sliced and abstracted SA. (E) Finally, Charmy can be
used to check, through model checking techniques, if the reduced SA satisfies
the property we want to verify, expressed as a PSC.

Section 4.1 explains the steps (A), (B), and (C), while Section 4.2 details
the step (D). The step (E) is the standard use of Charmy and it is explained
in Section 3.1.

4.1 Architectural Slicing

The inputs of this step are the state machines representing the components
behavior and the property of interest expressed as a PSC diagram.

Based on TeStor we define the new algorithm that we call DepCol. This
algorithm colors the parts of the state machines that are required for the SA
verification. Let M be the set of messages that are arrowMSGs or intraMSGs
of the considered PSC. Each start or target state of a m ∈ M in at least one

Reducing SA Models Complexity: A Slicing and Abstraction Approach 249

sequence generated by TeStor is colored. This modification of TeStor is very
easy. Unfortunately it is not enough. In fact the DepCol state machines (the
same used by Charmy) make use also of variables to synchronize and store
the state machines computation state. These variables can be local to a state
machine but can be also shared among different state machines. Thus, let vl be
a local variable contained in a transition that has a colored target state. For
each occurrence of vl in the same state machine, if it is contained in a transition
that has a non colored target state s, then each path leading from the initial
state to s is colored. Analogously, for each shared variable vs contained in a
transition that has a target colored state, every occurrence of vs in each state
machine is identified. Also in this case, if vs is contained in a transition that has
a non colored target state s, each path from the initial state of the component
containing vs leading s is colored.

While coloring the paths, new messages can be considered (messages that
have both start state and target state as colored states). Since messages have a
component sender and a component receiver, new parts of the state machines
require to be colored. Doing this step new messages could be considered, and
then the whole coloring process must be iterated. It is important to note that
only one state machine at a time is considered while coloring, thus we do not
have problems of states explosion.

At the end of this step we have the state machine colored. The following
properties hold:

– each state playing a role in the property is colored;
– each state that is non colored does not play a role in the property;
– is not possible to have a non colored state in the middle of a path that starts

with the initial state of a state machine and that ends with a colored state.
This is assured by construction, since we start from a state and we color
each state traversed in reaching the initial state.

Thus, for each state machine, every message that has a start state or a target
state not colored is cut off. For each state machine, every state not colored is
cut off. Note that, it is impossible with the cut to generate two or more not
connected parts of a state machine.

4.2 Architectural Abstraction

The idea of this step is to reduce the complexity of the model by abstracting
parts of the state machines without compromising the validity of the verification.
In the following we refer to the state machine formalism used by Charmy and
shortly described in Section 3.1. We introduce the following two abstraction
rules:

R1: For each state machine that has only one state, each sent message m /∈ M
could be deleted. In order to do it we have to analyze each reception of m
(on other state machines). Let s0 be the start state and s1 be the target
state of the message m (s0−?m → s1). If outdegree(s0) == 11 then for

1 Outdegree(s) is the number of messages that have s as start state.

250 D. Colangelo et al.

each message m′ that has s0 as target state, s1 becomes the new target
state of m′ and the state s0 can be deleted.

If m has a guard, the guard is preserved while m can be deleted. If m
has an operation op, and s0 is the initial state of the state machine, then op
is preserved and m is deleted; otherwise if s0 is not the initial state of the
state machine, then op is added to the operations of each message that has
s0 as target state. A state machine with only one state without messages
can be deleted. The same rule applies for received messages.

R2: Let SM1 be a state machine, for each pair of consecutive exchanged mes-
sages2, s1 −m1 → s2 and s2 −m2 → s3 and with m1, m2 /∈ M , if m1 and
m2 are always exchanged consecutively and in the same order in any other
state machine SM2, s′1 − m1 → s′2, and s′2 − m2 → s′3, then they can be
abstracted and s1 and s3 collapse in the same state inheriting all entering
and exiting messages. The same holds for s′1 and s′3. Note that not necessary
s1 (s′1), s2 (s′2), and s3 (s′3) must be different states.

This rule can be applied iff m1 or m2 are self transitions or the states
s2 and s′2 have degree (i.e. the number of entering and exiting messages)
equals to 2, i.e. s2 (s′2) has only one entering message, m1 (m′

1) and only
one exiting message m2 (m′

2). In fact, we cannot abstract if the states s2
or s′2 are involved in other paths.

These two rules are applied until it is not possible to further abstract the
system.

The algorithm operates separately on each state machine without requiring
they parallel composition.

5 The Integrated Environment for Communication on
Ship (IECS) Case Study

The Integrated Environment for Communication on Ship (IECS), a project de-
veloped by Selex Communications, operates in a naval communication environ-
ment. IECS provides heterogeneous services on board of the ship.

The purpose of the system is to fulfill the following main functionalities: i) pro-
vide voice, data and video communication modes; ii) prepare, elaborate, memo-
rize, recovery and distribution of operative messages; iii) configuration of radio
frequency, variable power control and modulation for transmission and recep-
tion over radio channel; iv) remote control and monitoring of the system for
detection of equipment failures in the transmission/reception radio chain and
for the management of system elements; v) data distribution service; vi) imple-
ment communication security techniques to the required level of evaluation and
certification. The SA is composed of the IECS Management System (IECS-MS),
CTS, and EQUIPMENT components as highlighted in Figure 2.
2 Note that here we do not consider send and receive of messages because the rule

is independent of the operations. Thus, if SM1 sends m1, SM2 has to receive it in
order to apply this rule and viceversa.

Reducing SA Models Complexity: A Slicing and Abstraction Approach 251

IECS-MS

IECS

Manager

DB

WORKSTATION CTSM

PROXY

EQUIPMENT

CTS

Fig. 2. IECS Software Configuration

In the following we focus on the IECS-MS, the more critical component since
it coordinates different heterogeneous subsystems, both software and hardware.
Indeed, it controls the IECS system providing both internal and external com-
munications. The IECS-MS complexity and heterogeneity need the definition of
a precise software architecture to express its coordination structure. The sys-
tem involves several operational consoles that manage the heterogenous system
equipment including the ATM based Communication Transfer System (CTS)
through Proxy computers. For this reason the high level design is based on a
manager-agent architecture that is summarized in Figure 2, where the Worksta-
tion (WS) component represents the management entity while the Proxy and
the Communication Transfer System Manager (CTSM) components represent
the interface to control the managed equipment and the CTS, respectively.

The functionalities of interest of the IECS-MS are: i) service activation; ii)
service deactivation; iii) service reconfiguration; iv) equipment configuration; v)
control equipment status; vi) fault CTS. A service, in this context, denotes a unit
base of planning and the implementation of a logic channel of communication
through the resources of communications on the ship. All the above described
functionalities are “atomics”, since it is not possible to execute two different
functionalities at the same time on the system.

In this paper we focus on the Service Activation functionality for showing how
we reduced the complexity of the SA for the verification of properties.

Service Activation Functionality: The Manager actor requests a service acti-
vation to the Workstation component that updates the information of the service
that the Manager wants to activate on the DB component. If the CTSM is online,
then the Workstation proceeds in parallel to create the chain of communication
and configures the parameters of the equipments involved in the service. The
DB component is finally updated.

5.1 IECS Case Study: System Modeling and Verification

In the previous sections we defined the static SA of the IECS-MS system.
Now we extract from the specification, the state machines that describe the

252 D. Colangelo et al.

Fig. 3. Workstation internal behavior

internal behavior of the system components and the PSC scenarios that define
the properties that the system has to satisfy.

Figure 3 shows the state machine for the WS component. This component has
only one thread of execution. The actual size of the system does not permit to
report in the paper details about the whole system. For this reason in the following
we illustrate our approach only on significant excerpts of the system in order to
give an idea of the modeling technique and of the analysis of the process followed.

The WS component coordinates and manages all the functionalities of the
system. The access to each functionality is obtained through the reception of
a message from the other components (e.g. USER, CTSM and Equipment);
the reception of this message leads to a state that is the entry state of the
functionality, represented in Figure 3 as a bold state. For example, when WS
receives the message Activate Service it goes in the state S2 to entry the path
that manages the service activation functionality.

Reducing SA Models Complexity: A Slicing and Abstraction Approach 253

Fig. 4. Property: Service Activated

Furthermore, in the state machine is represented the “atomicity” of the func-
tionalities of the system that are managed by the WS component. Every time
a new functionality is required, if WS is ready for satisfying the request (i.e. a
request can be satisfied only when previously requested functionalities are ac-
complished), this component goes from state S1 to the path that manages this
functionality. Finally, in the state machines are introduced two variables, one
shared, X, for storing the service activation, and one local, Y, for storing the recon-
figuration of the service in case of a fault of the CTS or Equipment components.

In order to check that the system correctly implements these functionalities,
we define some properties that the SA should satisfy. The properties are modeled
as PSC scenarios. Due to space reasons, in this paper we focus only on one prop-
erty, that we use to show the approach. Figure 4 reports the considered property
that concerns the service activation. The property is composed of two regular
messages (the precondition of the property) that realize the service activation
request. When the precondition is satisfied, if the USER does not deactivate the
service (the constraint of the second message) the service must be activated (the
last two required messages of the scenario).

When state machines and the PSC diagrams are modeled in Charmy, the
runnable Promela prototype of the system and the Büchi Automata of the prop-
erty can be automatically generated. Through the use of the SPIN model checker
we verified that the SA of our system is deadlock free, does not contain invalid
end states, and does not contain unreachable parts (the standard verification of
SPIN). The check is performed by using a PC with 3 Gb of RAM and with 4
processors of 1 Ghz. The size of the model is the following: States = 1.27e + 08
Transitions = 6.15646e + 08 Memory = 2037.528Mb.

Unlikely, when we tried to verify the properties of interest, we run into the
state explosion problem. Thus, the next step is to apply the approach presented
in Section 4 trying to reduce the complexity of the system.

Slice and Abstraction Applied to the Case Study. From the Charmy SA
description and the property Service Activated is now possible to obtain a colored
SA, through the use of the algorithm DepCol. This colored SA, represented in
Figure 5, highlights all paths required by the property.

254 D. Colangelo et al.

Fig. 5. Colored SA on WS state machines

The path that starts with the state S2 identifies the functionality Service
Activation that is useful for the property we want verify. Instead, the message
DeactivateService conducts to the path that manages the functionality Service
Deactivation, while the messages NotifyAlarmCTS or UpdateTLCFaultEQ rep-
resent the entry in the path that manages the Service Reconfiguration when
there is a fault in the components CTS or Equipment, respectively. The last
two path are colored since they contain operations with shared and local vari-
ables. The states not colored in Figure 5 are then deleted to obtain the
sliced SA.

Then, we proceed with the abstraction on the sliced SA, following the rules of
abstraction presented in Section 4.2. Thanks to the first rule, in the case study
we can delete all the state machines with only one state and containing messages
that do not belong to the property. In the case study we deleted one Thread with
only one state of the component DB, and consequently we deleted the relative

Reducing SA Models Complexity: A Slicing and Abstraction Approach 255

Fig. 6. Sliced and abstracted SA on WS state machines

send messages on the other components, e.g. considering the WS components,
all the UpdateServiceInfo and ReadServiceInfo messages are deleted (refer to
Figure 6).

Furthermore, still considering the WS component, the send message Up-
dateServiceInfo contains some operations; so, when the message is deleted the

Table 1. Resources used for verification of the properties

Property System Depth Memory (Mb) States Transitions
Activate full > 8766 > 3034.084 > 1.51433e + 08 > 1.20706e + 09
Service reduced 108.829 239.614 1.6719e + 007 2.8475e + 006

Deactivate full > 8766 > 3034.084 > 1.51433e + 08 > 1.07926e + 09
Service reduced 9253 186.264 2.11009e + 006 1.18284e + 007

Reconfiguration full > 8802 > 3034.084 > 1.51433e + 08 > 1.50446e + 09
Service reduced 2619 153.598 1.65737e + 006 9.73146e + 006
Modify full > 8678 > 3034.084 > 1.51433e + 08 > 9.32346e + 08

Equipment reduced 265 34.302 741 2063
Modify Equipment full > 8678 > 3034.084 > 1.51433e + 08 > 9.32346e + 08

by Service reduced 471 34.302 741 2063

256 D. Colangelo et al.

operations are added to the messages that happen before it. The second rule
allows us to delete the message DeleteCreatePtP and AckDeleteCreate. The ap-
proach is iterated until it is not further possible to abstract the system. The
obtained model for the WS component is presented in Figure 6.

In Table 1 we report the result of the verification for all properties, comparing
the resources used for verifying the reduced and the full model. Since for each
property the result of the verification of the full model was out of memory, the
information reported are the last result before the error. As can be noted, the
verifications of the reduced SA are obtained by using very lower resources.

6 Conclusion and Future Work

In this paper we presented a slicing and abstraction approach for reducing the
complexity of a SA description. The approach is composed of several steps: the
SA description, in terms of Charmy state machines, is colored by an algorithm
called DepCol that highlights the parts of the system that are required for
the property verification. A slicing engine cuts off the unnecessary parts of the
system. An abstraction engine further reduces the complexity of the model ab-
stracting parts of the state machines without compromising the validity of the
verification. Thus, the reduced SA model can be model checked with respect to
the property of interest. The property of interest is expressed in a graphical for-
malism called PSC and it represents the slicing and abstraction criterion. The
approach has been applied on a Selex Communications company case study in
order to validate its efficacy.

On the future work side we plan to fully automatize the approach and to try
to use it in other case studies. It is also planned to investigate other abstraction
and slicing rules that could further reduce the system SA. For instance the
abstraction rule R1, presented in Section 4.2, can be successfully instantiated
for internal messages.

Acknowledgements

This work is partially supported by the PLASTIC project: Providing Lightweight
and Adaptable Service Technology for pervasive Information and Communica-
tion. Sixth Framework Programme. http://www.ist-plastic.org.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Massachusetts (1998)

2. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. In:
SIGSOFT Software Engineering Notes. Volume 17. (1992) 40–52

3. Bernardo, M., Inverardi, P.: Formal Methods for Software Architectures, Tutorial
book on Software Architectures and Formal Methods. SFM-03:SA Lectures, LNCS
2804 (2003)

Reducing SA Models Complexity: A Slicing and Abstraction Approach 257

4. Compare, D., Inverardi, P., Pelliccione, P., Sebastiani, A.: Integrating model-
checking architectural analysis and validation in a real software life-cycle. In:
the 12th International Formal Methods Europe Symposium (FME 2003). number
2805 in LNCS, Springer (2003)

5. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison
Wesley (2003)

6. Holzmann, G.J.: The logic of bugs. In: FSE 2002, Foundations of Software Engi-
neering, Charleston, SC, USA (2002)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2001)
8. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of

middleware-based software architecture descriptions. In: Proceedings of the In-
ternational Conference on Software Engineering (ICSE 2004), Edimburgh (2004.)

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers C-35(8) (1986) 677–691

10. Katz, S., Peled, D.: An efficient verification method for parallel and distributed
programs. In: Workshop on Linear Time, Branching Time and Partial Order Logics
and Models for Concurrency. Volume 354 of LNCS., Springer (1988) 489–507

11. Frantz, F.K.: A taxonomy of model abstraction techniques. In: WSC ’95: Pro-
ceedings of the 27th conference on Winter simulation, New York, NY, USA, ACM
Press (1995) 1413–1420

12. Emerson, F.A., Sistla, A.P.: Symmetry and Model Checking. Formal Methods in
System Design: An International Journal 9(1/2) (1996) 105–131

13. Francez, N.: The Analysis of Cyclic Programs. PhD thesis, The Weizmann Institute
of Science (1976)

14. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. Logics and Models of Concurrent Systems, sub-series F: Computer and
System Science (1985) 123–144 Springer-Verlag.

15. Kim, T., Song, Y.T., Chung, L., Huynh, D.T.: Software architecture analysis: A
dynamic slicing approach. Journal of Computer & Information Science (2) (2000)
91–103

16. Zhao, J.: Using dependence analysis to support software architecture understand-
ing. in M. Li (Ed.), New Technologies on Computer Software, International Aca-
demic Publishers (1997) 135–142

17. Tip, F.: A survey of program slicing techniques. Journal of programming languages
3 (1995) 121–189

18. Zhao, J.: Applying slicing technique to software architectures. In: Proceedings of
4th IEEE International Conference on Engineering of Complex Computer Systems.
(1998) 87–98

19. Stafford, J.A., Wolf, A.L.: Architecture-level dependence analysis for software
systems. International Journal of Software Engineering and Knowledge Engineering
11(4) (2001) 431–451

20. Pelliccione, P., Muccini, H., Bucchiarone, A., Facchini, F.: Deriving Test Sequences
from Model-based Specifications. In: Proc. Eighth International SIGSOFT Sym-
posium on Component-based Software Engineering (CBSE 2005). Lecture Notes
in Computer Science, LNCS 3489, St. Louis, Missouri (USA) (2005) 267–282

21. Autili, M., Inverardi, P., Pelliccione, P.: A scenario based notation for specifying
temporal properties. In: 5th International Workshop on Scenarios and State Ma-
chines: Models, Algorithms and Tools (SCESM’06). (Shanghai, China, May 27,
2006.)

22. PSC home page: http://www.di.univaq.it/psc2ba: (2005)

258 D. Colangelo et al.

23. Charmy Project: Charmy web site. http://www.di.univaq.it/charmy (2004)
24. Inverardi, P., Muccini, H., Pelliccione, P.: Charmy: an extensible tool for archi-

tectural analysis. In: ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineering, New York, NY, USA, ACM Press
(2005) 111–114

25. Weiser, M.: Program slicing. In: ICSE ’81: Proceedings of the 5th international
conference on Software engineering, Piscataway, NJ, USA, IEEE Press (1981) 439–
449

26. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation.
Volume 25., White Plains, NY (1990) 246–256

27. Korel, B., Laski, J.: Dynamic slicing of computer programs. J. Syst. Softw. 13(3)
(1990) 187–195

28. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc. (1992)

29. Buchi, R.: On a decision method in restricted second order arithmetic. In Press,
S.U., ed.: Proc. of the Int. Congress of Logic, Methodology and Philosophy of
Science. (1960) 1–11

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 259 – 274, 2006.
© IFIP International Federation for Information Processing 2006

Branching Time Semantics for UML 2.0 Sequence
Diagrams

Youcef Hammal

LSI, Département d’Informatique, Faculté d’Electronique & Informatique
Université des Sciences et de la Technologie Houari Boumediene

BP 32, El-Alia 16111, Bab-Ezzouar, Algiers, Algeria
yhammal@wissal.dz

Abstract. This paper presents formal definitions for UML Sequences Diagrams
based on branching time semantics and partial orders in a denotational style.
The obtained graphs are close to lattices and specify faithfully the intended be-
haviors rather than trace based semantics. We also define few generalized alge-
braic operations on graphs so that it makes it easy to provide formal definitions
in a compositional manner to interaction operators. Next we extend our formal-
ism with logical clocks and time formulas over values of these clocks to express
timing constraints of complex systems. We present also some algorithms to ex-
tract time annotations that adorn sequence diagrams and transform them into
timing constraints in our timed graphs. Obviously, this approach alleviates more
the hard task of consistency checking between UML diagrams, specifically in-
teraction diagrams with regards to state diagrams. Timeliness and performance
analysis of timed graphs related to sequence diagrams could take advantages of
works on model checking of timed automata.

1 Introduction

Scenarios-based specifications have become increasingly accepted as a means of
requirements elicitation for concurrent systems such as telecommunications software.
Indeed scenarios describe in an intuitive and visual way how system components and
users interact in order to provide system level functionality. They are also used during
the more detailed design phase where the precise inter-process communication must
be specified according to formal protocols [3, 4, 7, 10, 12, 8].

The Unified Modeling language (UML [8]) which is an OMG standard and multi-
paradigm language for description of various aspects of complex systems, adopted
early this kind of visual and flexible notations for expressing the interactions between
system components and their relationships, including the messages that may be
dispatched among them. More precisely, UML contains 3 kinds of these interactions
diagrams: sequence diagrams, communication diagrams and timing diagrams [8].

Recently, many established features of MSC (Message Sequence Charts) [5] have
been integrated into the version 2.0 of UML [8], namely the interaction operators
among fragments and the adoption of partial order among interaction events rather
than the related messages.

Each interaction fragment alone is a partial view of the system behavior but when
combined all together by means of the new interaction operators, interactions provide
relatively a whole system description.

260 Y. Hammal

However in spite of the expressiveness and precise syntactic aspects of UML
notations, their semantics remain described in natural language with sometimes OCL
formulas. Accordingly, to use automated tools for analysis, simulation and verify-
cation of parts of produced UML models, UML diagrams should be given a precise
and formal semantics by means of rigorous mathematical formalisms [12, 4].

In this context, this paper presents a new formal approach to defining branching
time semantics for UML Sequences Diagrams in denotational style. Our approach
deals with the partial order and yields lattice-like graphs that specify faithfully the
intended behaviors by recording both traces of all interaction components together
with branching bifurcations. We provide our mathematical structure with few genera-
lized algebraic operations making it easy to give formal definitions of interaction
operators in a compositional manner. Next we extend our formalism with logical
clocks and time formulas over these clocks to express timing constraints of complex
systems. Some given algorithms show how to extract time annotations of sequence
diagrams and transform them into timing constraints in our timed graphs.

Obviously, this approach alleviates more the hard task of consistency checking
between UML diagrams, specifically interaction diagrams with regards to state
diagrams. Timeliness and performance analysis of timed graphs related to sequence
diagrams could take advantage of works on model checking of timed automata [1].

The paper is structured as follows: The next section shows the basic features of
UML Sequences Diagrams (DS) and in section 3 we present our formal model and its
algebraic operations. Then in section 4, the semantics of DS are given in
compositional style by combining the denotations of interaction fragments using our
algebraic operations and section 5 presents a temporal enhancement of our graphs
with logical clocks and temporal formulas and then we give the method to extract into
our timed graphs the timing constraints from time annotations on sequence diagrams.
Finally last sections compare related work with ours and give concluding remarks.

2 Interactions and Sequences Diagrams

The notation for an interaction in a sequence diagram is a solid-outline rectangle of
which upper left corner contains a pentagon. Inside this pentagon, the keyword sd is
written followed by the interaction name and parameters [8].

In a sequence diagram (Fig.1), participants (components, objects …) that
participate in the interaction are located at the top of the diagram across the horizontal
axis. From each component shown using a rectangle, a lifeline is drawn to the bottom
and the dispatching of every message is depicted by a horizontal arc going from the
sender component to the receiver one. These messages are ordered from top to bottom
so that the control flow over time is shown in a clear manner. Each message is defined
by two events: message emission and message reception and events situated on the
same lifeline are ordered from top to down [8].

Accordingly a message defines a particular communication among communicating
entities. This communication can be “raising a signal”, “invoking an operation”, “cre-
ating” or “destroying an instance”. The message specifies not only the kind of commu-
nication but also the sender and the receiver. The various kinds of communication

 Branching Time Semantics for UML 2.0 Sequence Diagrams 261

involved in distributed systems are considered in UML sequence diagrams. Hence
messages may be either synchronous or asynchronous [8].

Basic interaction fragment only represents finite behaviors without branching
(when executing a sequence diagram, the only branching is due to interleaving of
concurrent events), but these can be composed to obtain more complete descriptions.
Basic interaction fragments can be composed in a composite interaction fragment
called combined interaction or combined fragment using a set of operators called
interaction operators. The unary operators are OPT, LOOP, BREAK and NEG. The
others have more than one operand, such as ALT, PAR, and SEQ. Recurrently the
combined fragments can be combined themselves together until obtaining a more
complete diagram sequence [8] (see fig.1).

Fig. 1. Sequence Diagram.

The notation for a combined fragment in a sequence diagram is a solid-outline

rectangle. The operator is in a pentagon at the upper left corner of the rectangle.
The operands of a combined fragment are shown by tiling the graph region of the

combined fragment using dashed horizontal lines to divide it into regions
corresponding to the operands.

Finally interactions in sequence diagrams are considered as collections of events
instead of ordered collections of messages as in UML 1.x. These stimuli are partially
ordered based on which execution thread they belong to. Within each thread the
stimuli are sent in a sequential order while stimuli of different threads may be sent in
parallel or in an arbitrary order.

Notations. Let be a vocabulary of symbols. * is the set of all finite words over
including the empty word ε. Let w∈ *, |w| denotes the length of w and w(n) denotes
the nth symbol of w. If u, v ∈ *, u.v denotes the concatenation of u and v.

A B

alt

opt

sd P

Lifeline

Enclosing combined
fragment

Nested combined
fragment

Exchanged
Messages

262 Y. Hammal

3 Formal Model for Interaction Behavior

We present below the mathematical model used for the definition of the branching
time semantics of sequence diagrams. This model is a lattice-like graph which records
faithfully from sequences diagrams the intended traces of events together with the
choices possibilities. Moreover it preserves the partial order among events in such a
way that structure may contain diamond-shaped parts.

G = <O, Σ, <Σ, S, s0, T> where :

- O is the set of participants involved in an interaction.
- Σ is the set of events occurrences. Note that Σ contains an unobservable event τ ε

modeling change of control flow. This event τ may be also adorned with a guard.
- <Σ ⊂ Σ x Σ, is a set of pairs of events occurrences where each one represents a

binary relation between two occurrences to describe that one event must occur
before the other in a valid trace. This mechanism provides a partial order on events
occurrences so that the set of possible sequences is more restricted.

- S = {sk : O Σ*, k∈ℵ }
 = {sk : oi w∈Σ* / ∀n≤|w|, ∀m≤n : (w(n) , w(m)) ∉ <Σ }
Every mapping sk from S assigns to each participant some word (trace of events

occurrences) at some point k of its evolution such that the binary relation <Σ among
events remains preserved. Hence, these mappings constitute the nodes of the graph.
- s0 ∈ S represents the initial node where no event is recorded. ∀oi∈O, s0(oi) = ε.
- T : S x Σ S

(si, e) sj
Each transition records any occurring event different from τ onto the trace of the

relating object. For more convenience, we write si |----e-----sj.
If e = τ then ∀o∈O: sj(o) = si(o)
If e τ then there exits exactly one object o where:
 e∈lifeline(o) ∧ sj(o)=si(o).e ∧∀o’∈O, ∀e’∈si(o’) : (e,e’)∉< .
(e should never occur if it precedes any other recorded event via the partial order)
∀o’ o: sj(o’) = si(o’) (sj does not record e onto o’ trace if o’ lifeline (e)).

We prefer call final nodes leaf nodes rather than acceptance nodes because
sequence diagrams are only some pieces of the expected behavior. So any recorded
trace is only a prefix of some whole traces we can only compute from State Diagrams.

Below we define two binary and one unary algebraic operations on these kinds of
graphs. These operations are generalized making it possible to define the formal
semantics of interaction operators on interaction fragments in a compositional style.

3.1 Choice Operation

This operation achieves an adjunct of graphs. Choice is made between them via
internal τ-actions. Let G1, G2 be two graphs where:

G1 = <O1,Σ1, <Σ
1, S1, s0

1, T1>, G2 = <O2,Σ2, <Σ
2, S2, s0

2, T2> Such that O1 =O2
G1 ⊕ G2 = <O, Σ, <Σ, S, s0, T> where :
- O = O1 = O2. - Σ = Σ1 ∪ Σ2. - <Σ = <Σ

1
 ∪ <Σ

2

 Branching Time Semantics for UML 2.0 Sequence Diagrams 263

- S = S1 ∪ S2 ∪ {s0} where s0∈S is new initial node.
- T = T1 ∪ T2 ∪ T’ where T’ = {s0 |---τ--- s0

1, s0 |---τ--- s0
2}

3.2 Parameterized Cartesian Product

This product achieves merging of all pairs of traces from the two graphs but in such a
way the partial order among events remain preserved. Whenever we try concatenate
two traces, we should check that none of events occurrences of the second trace is
ordered before an event from the previous trace.

Let G1, G2 be two graphs where:

G1 = <O1,Σ1, <Σ
1, S1, s0

1, T1> , G2 = <O2,Σ2, <Σ
2, S2, s0

2, T2>

G1 ⊗Prior G2 = <O, Σ, <Σ, S, s0, T> where :

- O = O1 ∪ O2. - Σ = Σ1 ∪ Σ2 - <Σ = <Σ
1

 ∪ <Σ
2 ∪ Prior

 Prior ⊆ (Σ1x Σ2)∪(Σ2xΣ1) is a subset of new particular order relations among events.

- S = PRUNE ((S1 ⊗ S2) ∪ (S2 ⊗ S1)).
 sk ∈ S : o sk(o) = si

1(o)⊗ sj
2(o) where si

1∈S1 and sj
2∈S2

si
2(o)⊗ sj

1(o) where si
2∈S2 and sj

1∈S1
 si

1(o)⊗sj
2(o) = si

1(o).sj
2(o) such that o∈O1∩O2 ∧∀e∈si

1(o), ∀e’∈sj
2(o): (e’,e)∉<

si
1(o) if o∉ O2
ε otherwise.

si
2(o)⊗sj

1(o) = si
2(o).sj

1(o) such that o∈O1∩O2 ∧∀e∈si
2(o), ∀e’∈sj

1(o): (e’,e)∉<
si

2(o) if o∉ O1
ε otherwise.

The function PRUNE removes all unreachable nodes from the initial node through T.

- s0 = s0
1 ⊗ s0

2 = s0
2 ⊗ s0

1 (hence ∀o∈O: s0(o) = ε).

- T : S x Σ S
T={(sk,e,sk’)/sk=si

1⊗sj
2, sk’=sm

1⊗sn
2, ∃o∈O: (si

1(o),e,sm
1(o))∈T1 ∨ (sj

2(o),e,sn
2(o))∈T2}

∪{(sk,e,sk’)/sk=si
2⊗sj

1, sk’=sm
2⊗sn

1, ∃o∈O: (si
2(o),e,sm

2(o))∈T2 ∨ (sj
1(o),e,sn

1(o))∈T1}

3.3 Star Operation

This operation adds to the graph new τ-transitions outgoing from leaf nodes to the
initial node. Furthermore it adds a new empty node sε connected to the initial node by
a τ-transition (see figure 2). Let G1 be the starting graph G1 = <O1,Σ1, <Σ

1, S1, s0
1, T1>

STAR (G) = <O, Σ, <Σ, S, s0, T> where :

- O = O1, Σ = Σ1, <Σ = <Σ
1, S=S’∪S”

- S’ = {sk : O Σ*, k∈ℵ } where for all k we have :
sk : o sk(o) = (sk

1(o))+ if sk ∈ LEAF(S1)
 sk

1(o) otherwise.
- S”={sε: O {ε}}

The sole node sε records empty traces for all objects. Fig. 2. Star operation

τ

τ
sε

s0

264 Y. Hammal

- s0 = s0
1.

- T = T1 ∪ T’∪ T” / T’ = {∀sF∈ LEAF(S1): sF |---τ--- s0
1} where

 LEAF(S) = {s ∈S / NOT (∃s’∈S, e∈ : s |---e--- s’)}
T” = { s0

1 |---τ--- sε}

Property. The two operations ⊗ and ⊕ on graphs are associative.

Lemma 1. let G be the graph <O, Σ, <Σ, S, s0, T>
∀sk∈S, ∀o∈O: u=sk(o) (∀i, j∈ℵ : i , j ≤ |u| ∧ (u(i),u(j)) ∈ <) i<j.

Proof. Definitions of S and T compel event occurrences concerned by <Σ to occur in a
way so that the partial order remains preserved. The other events may appear in any
order in the sequence.

Definition 1. Let u and w be two sequences from sk(o) (o∈O, sk∈S)
 u and w are equivalent (we write u ≈ w) if and only if ∀a∈ : a∈u ⇔ a∈w.
The precedence relation is preserved for ordered events in both u and w.

Definition 2. Let si and sj be two nodes from S
si and sj are equivalent (we write si ≈ sj) if and only if ∀o∈O: si(o)≈ sj(o).

Definition 3. Let G be a graph = <O, Σ, <Σ, S, s0, T>. A reduced graph (automaton)
may be obtained from the graph G by reducing the equivalent nodes into equivalence
class of nodes as follows: G = <O, Σ, <Σ, S’, s0, T’>

S’ = {[sk] / sk ∈ S} where [sk] = {si∈S / si≈sk}.
T’ = { [sk] |----e------[sk’] / ∃si∈[sk], ∃sj∈[sk’], ∃ (si |----e-----sj)∈ T}

Remark1. On the other hand side, we can unfold our graph (namely cycles and
diamond shapes) in order to obtain the equivalent transition system.

3.4 Handling of Synchronous Messages

Although the subset “Prior” is used particularly to handle specific features of
interaction operators used among combined fragments (as explained later), we can
also use it to handle synchronous messages when assembling jointly many lifelines in
one interaction fragment or when combining many sequence diagrams by means of
interaction operators. We have only to add into the partial order subset “Prior” other
general orderings with regards to send and receive events of those specific messages.

Let M be the set of synchronous messages between two combined fragments SDi
and SDj (which could be only lifelines of participants).

“Prior” is then increased with the set ∪m∈M(Priorm) where :

Priorm = {(m!,e) / m!∈ j ∧ ∃e∈ i : (m?,e) ∈ < i}
∪{(m?,e’) / m?∈ i ∧ ∃e’∈ j: (m!,e’) ∈ < j}

This means that once the send event (m!) occurs the executing thread will stop

until the receive event (m?) occurs on the other lifeline thanks to its precedence level
against the successive events of the send event. Similarly, if we observe first a receive

 Branching Time Semantics for UML 2.0 Sequence Diagrams 265

event on the second participant lifeline, the related thread should stop until the send
event occurs on the first participant. Note that only related threads to these events
should synchronize and other concurrent threads could continue performing parallel
activities and generating others events.

4 Formal Semantics of Interaction Fragments and Operators

4.1 Lifeline of a Participant

We associate to each interaction fragment X a related graph denoted |[X]|.
Let P be a participant in some interaction. Its graph is |[P]|=<O,Σ, <Σ, S, s0, T> where:

- O = {P} is a singleton set consisting in the only one participant P.
- Σ = { e /∃m: e = Receive(m)∧Receiver(m)=P ∨ e = Send(m)∧Sender(m)=P}
- <Σ = {(e,e’)∈ΣxΣ / the event occurrence e occurs before e’ on the lifeline(P)}

Frequently the order on a same lifeline is total i.e. if we take two event occurrences
e, e’ on the same lifeline then e<e’ or e’<e. But if the lifeline of P contains a coregion
area then the order of event occurrences on this part is insignificant.

- S = {sk : O Σ*, k∈ℵ }
= {sk : P w / ∀n≤|w|, ∀m≤n : (w(n) , w(m)) ∉ <Σ }

- s0(P) = ε.
- T = {(si,e,sj) / sj(P) = si(P).e ∧ e∈ }

Thus each transition yields a new trace onto the target node by adding its labeling
event occurrence to the previous trace recorded in the source node of the transition.

In the following example (fig.3), we use notational shorthand called “coregion
area” for combined fragments where the order of events occurrences on the lifeline is
insignificant.

Fig. 3. The graph related to a life-line of one participant (s6≈s7. s8≈s9).e1 = m1?, e2 = m2!,
e3=m3?, e4 = m4?, e5=m5!

S0 =
<ε>

S2 =
<e1>

S3 =
<e1e2>

S4 =
<e1e2e3>

S5 =
<e1e2e4>

S6 =
 <e1e2e3e4>

S7 =
 <e1e2e4e3>

S8 =
 <e1e2e3e4e5>

S9 =
 <e1e2e4e3e5>

e1

e2 e3

e4

e4

e3

e5

e5

A

e1

e2

e3

e4
Coregion

 e5

m1

m2

m3

m4

m5

266 Y. Hammal

4.2 Basic Interaction Fragment

Recall that a basic interaction fragment is a piece of an interaction which involves
many participants without using any interaction operator.

Let DS be a basic interaction between two participants P1 and P2. Herein
O1∩O2=∅. The graph related to DS is obtained by a parallel merge of the graphs
relating to the participants lifelines with respect to the partial order between send and
receive events.

|[DS]| = |[P1]| ⊗Prior |[P2]| where :

Prior = {(e,e’)∈(Σ1xΣ2)∪(Σ2xΣ1) / ∃ message m : e=send(m) ∧ e’=receive(m) }

A

a1

a2

a3

a4

 a5

B

b1

b2

b3

S0 =
< , >

S1 =
<a1, >

S2 =
 <a1a2, >

a1

a2

S4 =
 <a1a2, b1>

S3 =
 <a1a2a3, >

S5 =
 <a1a2a3, b1>

a3b1

b1

a3
S7 =

 <a1a2a3, b1b2>
b2

S9 =
 <a1a2a3, b1b2b3>

b3

a5

S6 =
 <a1a2a3a5, b1>

b2

S8 =
 <a1a2a3a5, b1b2>

a5

S10 =
 <a1a2a3a5, b1b2b3>

b3

a5

S12 =
 <a1a2a3a5a4, b1b2b3>

a4

a5

a4

S13 =
 <a1a2a3a4a5, b1b2b3>

S11 =
 <a1a2a3a4, b1b2b3>

Fig. 4. the graph related to an interaction fragment with two participants

4.3 Choice Operator ALT

Let DS be an interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the choice operator ALT. This operator indicates that the resulting
fragment represent a choice of behavior. At most one the operands will be chosen.

Formally, |[DS1 ALT DS2]|= |[DS1]| ⊕ |[DS2]| (see fig.5)

 Branching Time Semantics for UML 2.0 Sequence Diagrams 267

4.4 Operator BREAK

Even though BREAK is a unary operator which operand is a nested fragment in an
enclosing interaction fragment, this operator can reduce to an interaction operation
ALT between the nested fragment and the remainder of the enclosing interaction
fragment.

4.5 Operator OPT

Let DS’ be a new interaction fragment obtained by applying the operator OPT on
another interaction fragment DS. The operator OPT designates that the resulting
fragment represents a choice of behavior where either the sole operand happens or
nothing happens. Formally, this means:

|[DS’]|=|[OPT(DS)]| = |[DS ALT DS∅]| = |[DS]| ⊕ |[DS∅]|

The empty interaction fragment DS∅ is mapped into an empty graph as follows:

|[DS∅]| = <O,∅,∅,{s0}, s0, ∅> where O is the same collection of participants in DS
and s0: O {ε} associates to each participant in O an empty sequence of events.

4.6 Operator PAR

Let DS be interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the parallel operator PAR. We realize here an interleaving between
all sequences occurring in diagrams (fig.6) without adding further orderings.

|[DS1 PAR DS2]|= |[DS1]| ⊗Prior |[DS2]| where Prior = ∅.

4.7 Operator of Strict Sequencing

Let DS be an interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the strict sequencing operator SEQs.

G1 G2

S0

S0
2 S0

1

τ[Cond] τ[else]

Fig. 5. The graph related to an interaction fragment with ALT operator

A B

alt

Cond

else

C

268 Y. Hammal

A

a1

a2

a3

B

b1

b2

b3

par

a1

b1 a1

a2

b3

a3

a2
b2

b1 b2a2

b3

a3

b2

b3

a3

b2

b1

b3

a3

b2

a1

b1

b1

b3

a3b1

b2

b1

b3

a3

b1

b3

a3

a3

b3

a3

a3

b1

b1

Fig. 6. The graph related to an interaction fragment with PAR operator

Similarly to sequential composition in process algebra, the semantics of strict
sequencing defines a strict ordering of the operands on the first level. So the former
operand should first be carried out entirely. After that only the second one is
executed. Therefore all events occurrences of the first interaction fragment are granted
more priority over those of the second one.

|[DS1 SEQs DS2]|= |[DS1]| ⊗Prior |[DS2]| where Prior = Σ1 x Σ2.

Herein we carry out concatenations between paths belonging respectively to the
two diagrams DS1 and DS2 such that events occurrences from the first diagram always
occur before those of the second diagram.

4.8 Operator of Weak Sequencing

Let DS be an interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the weak sequencing operator SEQw.
The weak sequencing expresses three properties [8]:

- The ordering of events occurrences within each of the operands are maintained in
the result.

- Occurrence specifications on different lifelines from different operands may come in
any order.

- Occurrence specifications on the same lifeline from different operands are ordered
such that an event occurrence of the 1st operand comes before that of the 2nd one.

Hence the weak sequencing reduces to a parallel merge between events
occurrences on different lifelines but restricted by strict sequencings among events

 Branching Time Semantics for UML 2.0 Sequence Diagrams 269

occurrences belonging to same lifelines (thanks to Prior set of added precedence
relations). Formally, |[DS1 SEQw DS2]|= |[DS1]| ⊗Prior |[DS2]|

where Prior={(e,e’)∈Σ1xΣ2 / e,e’ belong both to the same lifeline(o)}.

4.9 Operator LOOP

Let DS be a combined fragment from an interaction fragment DS1 by means of the
loop operator LOOP parameterized by a guard G given as un integer ∈{min ..max}.

The loop operator would be repeated a given number of times as long as the guard
is fulfilled. |[LOOP(G, DS)]| = (|[(DS SEQs LOOP(G-1, DS)]|

However this solution does not pay attention when iterating to the evaluation event
of the loop guard. So we have to add τ-transitions to record this internal choice.

|[LOOP(G, DS)]| = (|[(DS SEQs DSτ) SEQs LOOP(G-1, DS)]|

The graph of τ-interaction fragment DSτ is: |[DSτ]|=<O,{τ},∅,{s0,s1}, s0, {s0|--τ---s1}>
When the number of iterations is undefined (max = ∞), the correct solution consists

in using the star operation on traces with adorning loop transitions with τ which
models guard evaluation (see fig. 2). So the related graph should be.

|[LOOP(G,DS)]| = STAR (|[DS]|)

Remark2. we prefer use strict sequencing rather than weak one to avoid a pathological
case of divergence in loop combination when using asynchronous communication

Remark3. All above rules can be used to handle the operator NEG in order to build
the graph containing invalid traces of events with recording all branching choices.

5 Extraction of Timing Information

The sequence diagram in figure 7 shows how time and timing notations may be
applied to describe time observation and timing constraints [8]. The “User” sends a
message “Code” and its duration is measured. The “ACSystem” will send two
messages back to the “User”. “CardOut” is constrained to last between 0 and 13 time
units. Furthermore the interval between sending of Code and the reception of “OK” is
constrained to last between d and 3*d where d is the measured duration of the “Code”
signal. We also notice the observation of the time point t at the sending of “OK” and
how this is used to constrain the time point of the reception of “CardOut”.

Our approach consists in extracting time formulas over logical clocks from the
time annotations in sequence diagrams. Then we adorn related nodes and transitions
in our graph by these timing conditions in a similar way to timed automata [1].

Definition 4 (timing constraint). Let H be a finite set of clocks ranging over ℜ>0
(set of non negative real numbers). The set Ψ(H) of timing constraints on H is defined
by the following syntax: ψ ::= true | x c | x - y c | not ψ | ψ∧ψ

where x, y ∈ H, c ∈ ℜ (Integers) and ∈{<, ≤}.
Other assertions such as, x>3, 2≤x<y+5, ψ∨ψ’ can be defined as abbreviations.

270 Y. Hammal

5.1 Enhancing Graphs with Timing Constrains

We add two mappings δ1, δ2 as follows:

δ1 : S → Ψ(H)
δ2 : T 2H,

The first mapping δ1 assigns to each node a condition called activity condition

which may be true. The second mapping δ2 associates with each transition a set of
clocks initializations which may be empty.

The behavior of the new timed graph becomes as follows:

The control could stay in a node si (Fig.8) while the constraint δ1(s) is fulfilled but
once δ1(s) becomes false we should leave si by execution of an instantaneous event
occurrence e (an event occurs with no duration [8]). It’s obvious that the control could
stay indefinitely in sj (Fig.8) if its activity condition is true.

When a transition t occurs, all clocks (hi ∈ δ2(t)) are reset to zero. So these clocks
start measuring time progress since this point but may be used later at different
instants.

5.2 Extracting Time Constrains from Sequence Diagrams

Time observations, timing constraints are related to points on the lifelines of the
sequence diagram. These points are the instances at which send or receive events
occur. Likewise, duration observations or constraints are related to messages, each
one of them is related to two events on the same lifeline or on two different lifelines.

The main idea of our approach to handling time constraint is to generate a logical
clock “h” at any related time observation point “t”. Any outgoing arc from this point
will be adorned with initialization of the clock h making it possible to count time
progress from this starting point.

Si Sj

h1<h2+5
e, h3 :=0

true

Fig. 8. Timed graphs

Fig. 7. Sequence Diagram with timing concepts

:User :ACSystem

t = now
OK

{d..3*d}

CardOut {0..13}

code d=duration

{t..t+3}

Sd UserAccepted

Time observation

Duration observation

Time constraint

Duration
constraint

Duration
constraint

a1

a2

a3

b1

b2

b3

 Branching Time Semantics for UML 2.0 Sequence Diagrams 271

For a time constraint of the form “t+a...t+b”, we search out in our graph the set of
nodes of which outgoing transitions are labeled with the event related to this
constraint. Every such a node should receive a timing constraint of the form a≤h≤b.

Algorithm Extract_time & Duration_constraints

Input SD : Sequence Diagram; G : Graph
Output G’ : a timed graph.

H := ∅;
For each s∈S do δ1(s) = true;

For each time observation “t” at an event occurrence e
Do {

Generate a new clock h; H := H ∪ {h};
// h measures time progress since the observation point
Find out the set A of transitions labeled with e;
For each t∈A do δ2(t) = δ2(t) ∪(h,0);

For each time constraint c of the form {a...b} on event
occurrence e’;
Do {

Find out the set N of nodes which outgoing transi-
tions are labeled with e’;
For each s∈N do δ1(s) = δ1(s) ∧ h≥a ∧ h ≤b;

}
}

Likewise, for handling duration constraint, we generate two logical clocks; “h1” at

start point and “h2” at final point related to duration observation “d”. Any outgoing
arc from these points will be tagged with initializations of related clocks so that the
difference between their values (h1-h2) gives later the duration between the two
events.

For any duration constraint of the form “a(d)..b(d)” between two events e and e’,
we add in a similar way a clock h3 related to the first event e for counting the time
progress since this first point. Next we search out in our graph the set of nodes of
which outgoing transitions are labeled with the second event e’. Every such a node
should then receive a timing constraint of the form a(h1-h2) ≤ h3 ≤ b(h1-h2).

For each duration observation d on a message m
Do {

Let e be the event occurrence related to sending (m);
Let e’ be the event occurrence related to receiving (m);
Generate two new clocks h1 and h2; H := H ∪ {h1, h2};
// h1 starts at the sending moment of m.
Search out the set A of transitions labeled with e;
For each t∈A do δ2(t) = δ2(t) ∪(h1,0) ;
// h2 starts at the receiving moment of m.
Find out the set B of transitions labeled with e’;
For each t∈A do δ2(t) = δ2(t) ∪(h2,0);

For each duration constraint c of the form {a(d)...b(d)}
between two events (e”,e”’) or on a message m’
Do {

272 Y. Hammal

Let e” be the first event occurrence or the sending
event of m’;
Let e”’ be the second event occurrence or the re-
ceiving event of m’;
Generate a new clock h3; H := H ∪ {h3};
// h3 measures time since the occurrence of e”
Find out the set A of transitions labeled with e”;
For each t∈A do δ2(t) = δ2(t) ∪(h3,0) ;
Find out the set N of nodes which outgoing transi-
tions are labeled with e”’
For each s∈N do δ1(s)=δ1(s)∧ h3≥a(h1-h2)∧ h3≤b(h1-
h2);

}
}

For each duration constraint c of the form {a...b} between
two events occurrences (e,e’) or on a message m
Do {

Let e be the first event occurrence or the sending event
of m;
Let e’ be the second event occurrence or the receiving
event of m;
Generate a new clock h; H := H ∪ {h};
Find out the set A of transitions labeled with e;
For each t∈A do δ2(t) = δ2(t) ∪(h,0) ;
Find out the set N of nodes which outgoing transitions
are labeled with e’
For each s∈N do δ1(s) = δ1(s) ∧ h≥a ∧ h ≤b;

}

At last we notice that the above approach can be also extended in straight way to
handle other possible cases of time constraints.

The timed graph related to the diagram of fig.7 is the following:

(ε,ε)
(a1,ε) (a1,b1) (a1,b1b2)

(a1a2, b1b2)

(a1,b1b2b3)

(a1a2,b1b2b3)

a1 b1 b2

a2

b3

a2

b3

(a1a2a3,b1b2b3)
a3

h1=0, h2=0
h3=0 h4=0

h2-h3≤ h1≤3*(h2-h3)

h5=0

h2-h3≤ h1≤3*(h2-h3)

0≤ h4≤3 ∧ 0≤ h5≤13

h5=0

Fig. 9. The timed graph related to the sequence diagram depicted by figure 7

 Branching Time Semantics for UML 2.0 Sequence Diagrams 273

6 Related Work

Because of the widespread use of interaction diagrams in complex systems, many
efforts have been made to give them formal meanings in order to allow systematic
tool support during design, implementation and validation phases.

Besides the textual semantics given in UML specification document [8], many
approaches [4], [10] present formal semantics of sequence diagrams (SD) where the
runs are widely defined in terms of pairs of valid and invalid traces and do not record
information about choice opportunities and coordination actions. Hence contrary to
our approach, these linear time semantics are not enough faithful to allow complete
consistencies checking over UML dynamic diagrams particularly in concurrent
systems. Moreover, timing constraints are not handled within these models.

On the other hand side, some papers attempt to synthesize high level diagrams
(StateCharts [12] [3], Petri nets [2]) from SD or MSC. However in our opinion as are
assembly languages for high level programming ones, the sequence diagrams are less
structured description languages in spite of the recent improvements. Furthermore the
built high level models seem too unfolded or flattened and their high level syntactic
constructs are not suitably used and may generate some inconsistencies with regards
to the original sequence diagrams [12]. In this later work, the authors try to retrieve
state diagrams of objects involved in interactions described by means of relatively
simple sequence diagrams. The approach consists in deriving flat automata of some
object from its lifelines in all interaction fragments and then combines them by means
of simple interaction operators (choice, strict sequencing and loop). The other
operators are discarded as the parallel operator so that the resulting automaton is flat
and unfolded (without orthogonality) and may generate some irregular behaviors
because of the removal of coordination information when extracting partial views.

An interesting work [3] considers good and bad interactions of reactive systems as
safety and liveness properties that are described in terms of Büchi automata allowing
refinement. SD traces become only prefixes of accepted infinite sequences and the
various combinations between automata are not specified with regard to SD operators.

Another paper [7] uses process algebra terms to characterize the traces of scenario
based specification that are defined by a causal ordering. It proves a canonical
solution for correcting race conditions within the system behavior by weakening the
causal relationship.

Note that many papers were proposed to overcome shortcomings of UML 1.x
specification that relies on the ordering of messages instead of related actions. Hence
authors of [2] and [9] proposed a formal semantics to the interaction diagrams of
UML 1.x by the generation of an order relation that schedules the message emissions
and receptions and can be automatically translated into a flattened Petri net or
automata. Similarly, [6] presented a methodology to convert UML 1.x SD to a
context-free grammar and applied parsing theory to locate non-determinism behavior.
Additional information is discussed to attain deterministic behaviors for embedded
systems modeling. Also, the approach of [11] proposes a formal semantics of UML
1.x sequence diagrams in terms of ordered hierarchical tree structure that represents
the hierarchical relations among the messages (method invocations).

However, the new specification of UML 2.0 [8] adopts an ordering over events
occurrences corresponding to sending and receiving of messages. Also high level

274 Y. Hammal

features of MSC [5] have been included in UML interactions allowing description of
more complex behaviors. Moreover all the above works do not pay attention to time
annotations on sequence diagrams.

7 Conclusion

In this paper, we have given a formal semantics for UML 2 sequence diagrams by
using a faithfully branching time structure rather than traces. This model (a lattice-like
graph) records both traces of all interaction components together with branching
bifurcations and can be directly unfolded into a transition system capturing the
intended behavior. The graphs related to interaction fragments are equipped with few
generalized algebraic operations which help us define the formal semantics of all
interaction operations in compositional manner. Moreover, we have proposed a
method to extract time properties of UML interactions into time constraints we add to
our graph in order to achieve timeliness and performance analysis.

Hence resulting graphs modeling valid and invalid behaviors would be compared
to the state diagram to achieve semantically and temporal consistencies checking.

References

1. R. Alur, D. Dill. A theory of timed automata. Theorical Computer Science. 126 (1994)
183-235.

2. J. Cardoso, C. Sibertin-Blanc. An operational semantics for UML interaction: sequencing
of actions and local control. European Journal of Automatised Systems. APII-JESA 36
P.1015-1028 (ISBN 2-7462-0573-4), Hermés-Lavoisier 2002.

3. R. Grosu and S.A. Smolka. Safety-Liveness Semantics for UML 2.0 sequence diagrams.
In Proc. of ACSD’05, the 5th International Conference on Application of Concurrency to
System Design, Saint-Malo, France. June 2005.

4. ∅. Haugen, K.E. Husa, R.K. Runde, K. St∅len. STAIRES towards formal design with
sequence diagrams. Software & System Modeling, online first: 1-13, 2005.

5. ITU-T. Z.120. Message sequence charts (MSC), November 1999.
6. E. Latronico and P. Koopman, Representing Embeded System Sequence Diagrams as a

Formal Language. In Proc. of UML’2001 Conference, Toronto Ontario, 3-5 Oct.2001.
7. B. Mitchell. Inherent Causal Orderings of Partial Order Scenarios. In proc. of

International Colloquium on Theorical Aspects of Computing, Guiyang, China, (LNCS
3407) PP 114-129. September 2004.

8. OMG. Unified Modeling Language: Superstructure version 2.0, Final Adopted
Specification. Object Management Group, 2004 Available from http:// www.omg.org.

9. C. Sibertin-Blanc, O. Tahir and J. Cardoso. Interpretation of UML sequence diagrams as
causality flows. In Proc. of ISSADS’2005, (LNCS 3563), pp. 126-140. 2005.

10. H. Störrle. Trace semantics of interactions in UML 2 .0. Technical Report TR 0403,
University of Munich, Germany. 09/2004.

11. Xiaosham Li , Zhiming-Liu and He Jifeng. A formal semantics of UML sequence
Diagram. In Proc. of Australian Software Engineering Conference 2004, Australia. April
2004.

12. T. Ziadi, L. Hélouët, J-M. Jézéquel. Revisiting statechart synthesis with an Algebraic
Approach. In proc. of International conference on Software Engineering (ICSE’04). 2004.

Formalizing Collaboration Goal Sequences for
Service Choreography

Humberto Nicolás Castejón and Rolv Bræk

NTNU, Department of Telematics, N-7491 Trondheim, Norway
{humberto.castejon, rolv.braek}@item.ntnu.no

Abstract. Methods for service specification should be simple and intu-
itive. At the same time they should be precise and allow early validation
and detection of inconsistencies. UML 2.0 collaborations enable a system-
atic and structured way to provide overview of distributed services, and
decompose cross-cutting service behaviour into features and interfaces by
means of collaboration-uses. To fully take advantage of the possibilities
thus opened, a way to compose (i.e. choreograph) the joint collaboration
behaviour is needed. So-called collaboration goal sequences have been in-
troduced for this purpose. They describe the behavioural composition of
collaboration-uses (modeling interface behaviour and features) within a
composite collaboration. In this paper we propose a formal semantics for
collaboration goal sequences by means of hierarchical coloured Petri-nets
(HCPNs). We then show how tools available for HCPNs can be used to
automatically analyse goal sequences in order to detect implied scenarios.

1 Introduction

Many authors have identified the cross-cutting nature of distributed services
(e.g. [8,5]) i.e. that services in the general case, involve several collaborating
components playing different roles, that each may participate in several services.
For service engineering, this implies a need to specify services in terms of their
roles and cross-cutting service behaviour, then to specify the detailed behaviour
of each service role and, finally, to compose the behaviour of service roles into
complete, coordinated and correct component behaviours. UML 2.0 collabora-
tions [7] provide language concepts and mechanisms that partially support this
and are therefore very promising from a service engineering point of view. Be-
ing both structural and behavioural classifiers in UML 2.0, collaborations can
be used to define a service as a structure of roles with associated cross-cutting
behaviour defined using e.g. sequence diagrams. Detailed role behaviour can be
defined using e.g. state machines. UML collaborations can be bound to specific
contexts (e.g. larger collaborations) by means of collaboration-uses. This feature
enables a compositional and incremental specification of services.

As an example consider a simple transport service (inspired by a case study
from [12]) in which one vehicle transports one passenger at a time between
two terminals. Figure 1a depicts this service as a UML 2.0 collaboration. This
collaboration identifies three roles, namely P (Passenger), T (Terminal) and V

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 275–291, 2006.
c© IFIP International Federation for Information Processing 2006

276 H.N. Castejón and R. Bræk

Fig. 1. (a) Transport service as a UML 2.0 collaboration; (b) Sequence diagrams for
BuyTicket and VehArrival sub-collaborations; (c) Service-goal tree for BuyTicket

(Vehicle); as well as seven sub-collaborations representing interfaces and features
of the service. These sub-collaborations are specified as UML collaboration-uses,
whose roles are bound to the TransportService’s roles (e.g. BuyTicket ’s role Tbt is
bound to TransportService’s role T). Bound roles are classified as either initiat-
ing (i.e. takes the initiative to start the collaboration) or offered (i.e. accepts the
initiative), indicated by an arrow head with offered roles. For the sake of clarity,
in the following we will refer to P, T and V as service-roles, and to Tbt, Td and the
like as sub-roles (of T, P or V). The TransportService’s sub-collaborations have
been identified from the following service requirements. In order to travel, a pas-
senger must buy a ticket at one of the terminals (collaboration-use BuyTicket).
When this happens, if the vehicle is waiting at the terminal, the departure gate
is indicated, and the passenger can enter the vehicle (EnterVehicle). The termi-
nal then dispatches the vehicle (VehDeparture) and, after arriving at the second
terminal (VehArrival), the passenger disembarks (ExitVehicle). If the vehicle is
not at the terminal where the passenger buys the ticket, that terminal requests
the vehicle from the other terminal (ReqVehicle), which dispatches the vehicle
towards the requesting terminal. When the vehicle arrives, the departure gate
is displayed and the service continues as explained before. In order to support
validation and composition, service-goals [9] are associated with each of the iden-
tified sub-collaborations. These goals are expressed in terms of predicates over
properties of the collaborations. Two types of service-goals can be described:
event-goals, denoting desired events; and state-goals, which are properties of
global collaboration states that we wish to reach, and which entail combinations
of role goals. The ordered sequence of goals for an individual collaboration can
be described with a service-goal tree, which is a directed graph with an initial
node, zero or more intermediary nodes representing event-goals, and one or more

Formalizing Collaboration Goal Sequences for Service Choreography 277

leaf nodes representing state-goals. Figure 1c shows the service-goal tree for Buy-
Ticket, with an event-goal (i.e. ticketReqed) and a state-goal (i.e. ticketBought).
Goal trees describe the behaviour of elementary collaborations at a high-level
of abstraction, since the interactions are not detailed. These interactions can
be specified in sequence diagrams annotated with goal information (by means
of continuations), such as the ones presented for BuyTicket and VehArrival in
Fig. 1b.

What remains in Fig. 1 is to specify the overall cross-cutting behaviour of
the TransportService collaboration, that is, how its sub-collaborations interact.
This kind of behaviour will be distributed among the collaboration roles and is
traditionally referred to as a choreography in SOA. Collaboration goal sequences
have been proposed by Sanders [9,11], and extended in [2], to describe the chore-
ography of collaborations. They capture the liveness aspects of composite service
collaborations by describing the execution order of their sub-collaborations, and
by showing the interactions between these sub-collaborations in terms of goal
achievement (hence the name collaboration goal sequences). While service-goal
trees describe the sequence of goals for individual collaborations, collaboration
goal sequences specify the sequence of goals for their composition. The infor-
mation provided by the goal trees and the goal sequence should therefore be
consistent. In the following we will assume this is the case.

In this paper, we present the formal syntax of goal sequences and provide
semantics to them by means of hierarchical coloured Petri-nets (HCPNs) [4] (see
Sect. 2). We also show how a general purpose tool for HCPNs (i.e. CPN Tools [3])
can be used to analyse goal sequences for the detection of implied scenarios (see
Sect. 3). These scenarios are a direct consequence of concurrency and correspond
to service behaviour that has not been explicitly described in the specification of
the service, but that will be present in any implementation of it [1]. The proposed
detection approach avoids a global analysis of the service specification, limiting
thus the effect of the state-explosion problem. We end with related work and
some discussion in Sects. 4 and 5.

2 Collaboration Goal Sequences

Collaboration goal sequences complement UML collaborations for the specifica-
tion of services by describing the execution dependencies that exist between the
sub-collaborations (i.e. features) of the service. As an example, Fig. 2 depicts
the goal sequence for the TransportService collaboration. The actual meaning of
this diagram will become clear in the following, when we explain the syntax and
semantics of goal sequences.

2.1 Syntax for Goal Sequences

The goal sequences presented here are inspired by UML activity diagrams. Con-
ceptually, they show an ordering of service phases for a service collaboration C.
Each of these phases corresponds to an activity (i.e. round-cornered rectangle)

278 H.N. Castejón and R. Bræk

T2:TT1:T
Treqer Treqed

r:ReqVehicle

P:P
Pbt

Tbt

b:BuyTicket T1:T

T2:TV:V
Vd Td

T1:TV:V
Va Ta

P:P V:V
Pev

Vev
ev:EnterVehicle

T2:TV:V
Va Ta

V:VP:P
Pexv Vexv

exv:ExitVehicle

r.vehicleReqed

vd1.vehicleLeft

va1:VehArrival

va1.vehicleArrived

b.ticketReqed

b.ticketBought

ev.passengerEntered va2.vehicleArrived

exv.passengerLeft

va2:VehArrival

T1:T V:V
Vd

Td

vd2.vehicleLeft

vd2:VehDeparture

vd1:VehDeparture

P:P
Pbt

Tbt

b:BuyTicket T1:T

T1.vehAtTerminal

NOT T1.vehAtTerminal
b.ticketReqed

Fig. 2. Goal sequence for the TransportService collaboration

in the goal sequence. In each phase or activity, a specific sub-collaboration of C
is active (so-called activity’s active collaboration). This is represented by adorn-
ing the activity with a collaboration-use, whose roles are bound to instances
of C ’s roles. For example, in Fig. 2, the BuyTicket collaboration is active in
the first activity. This is expressed by adorning that activity with a b:BuyTicket
collaboration-use, whose roles (i.e. Pbt and Tbt) are bound to instances of Trans-
portService’s roles (i.e. P:P and T1:T). The arrow in the binding identifies the
offered role. In a goal sequence, the same sub-collaboration may be active in
several activities. In some cases these activities represent different phases of that
sub-collaboration, while in other cases they represent different occurrences of
the sub-collaboration. In the former cases activities are annotated with the same
collaboration-use, such as the two first activities to the left in Fig. 2. They rep-
resent different phases of BuyTicket (i.e. before and after requesting the ticket)
and are therefore annotated with the same collaboration-use (i.e. b:BuyTicket).
In the latter cases, activities are annotated with distinct collaboration-uses, as
for instance va1:VehArrival and va2:VehArrival in Fig. 2.

Each activity has one or more exit-points, and may or may not have one
entry-point. Both entry- and exit-points represent execution points at which an
activity’s active collaboration interact with other collaborations. They are la-
beled with predicates describing goals of the active collaboration. Exit-points
can be of two different types. An empty-circle (©) is used for suspension exit-
points. They are annotated with event-goals, and correspond to execution points
of an active collaboration where the latter can be (or must be) suspended for an-
other collaboration to be started (or resumed). In Fig. 2 a suspension exit-point
is used in the first activity. The activity’s active collaboration (i.e. b:BuyTicket)

Formalizing Collaboration Goal Sequences for Service Choreography 279

will therefore be suspended when the ticketRequed event-goal of BuyTicket holds.
A crossed-circle (⊗) is used for end-of-execution exit-points. They are annotated
with state-goals, and represent the end of execution of an active collaboration.
Entry-points are drawn as empty circles and annotated with event-goals. They
represent the execution point at which a previously suspended active collabora-
tion is to be resumed. When an activity does not have an entry-point, its active
collaboration starts execution from its initial state.

Edges (i.e. directed connections between activities) and control-flow nodes (i.e.
decision, merge, fork, join, initial and final nodes) are respectively used to allow
and coordinate the flow of control among activities. An activity can only have
one incoming edge, so multiple incoming edges must be AND- or OR-joined.

According to the concrete syntax just described, the formal syntax of goal
sequences can be defined as:

Definition 1 (collaboration goal sequence). A collaboration goal sequence,
for a collaboration C, is a tuple GS = (N, E, gd, mexp−a, RGS, AC, ma−ac,
menp−a, lep−pred, exptype) where

(i) N is a set of nodes. It is partitioned into an initial node (n0) and sub-sets
of activities (NA), entry-points (NEnP), exit-points (NExP), control flow
nodes (NFLOW) and final nodes (NFI). In turn, NFLOW is partitioned into
decision (ND), merge (NM), fork (NF) and join (NJ) nodes.

(ii) E ⊆ (NExP ∪NFLOW ∪ {n0}) × (NA ∪ NEnP ∪NFI ∪ NFLOW) is a set of
directed edges between nodes.

(iii) gd is a guard function for decision nodes’ outgoing edges. It is defined from
{(s, t) ∈ E | sεND} into boolean expressions.

(iv) RGS = {(id, type) : type ∈ RC} is a set of role instances, with RC being
the set of roles of collaboration C.

(v) AC ={(id, type, B)} is a set of active collaborations, that is, a collaboration-
use representing a specific occurrence of one of C’s sub-collaborations. For
each ac ∈ AC, id is the name of the collaboration-use; type is the name of
the collaboration that actually describes the collaboration-use (i.e. one of C’s
sub-collaborations); and B ⊆ Rtype × RGS is a set of role bindings, where
Rtype is the set of roles of the sub-collaboration named type.

(vi) ma−ac : NA → AC × CL is a non-injective function that maps active
collaborations to activities and classifies the active collaboration’s roles as
initiating or offered roles within the context of the mapping (i.e. for the
given activity). More formally, CL is a set of binary relations, such that
if ma−ac(na) = (ac, cl), then cl = {(r, typ) : r is a role of the collaboration
with name ac.type and typ ∈ {INIT,OFF}}.

(vii) menp−a : NEnP → NA and mexp−a : NExP → NA are functions mapping
entry- and exit-points to activities.

(viii) lep−pred : (NEnP ∪NExP) → P is an injective function labeling each entry
and exit-point of an activity with a state predicate of the activity’s active
collaboration.

(ix) exptype : NExP → {END,SUSPENSION} is a function that classifies exit-
points either as end-of-execution or as suspension ones.

280 H.N. Castejón and R. Bræk

2.2 Semantics for Goal Sequences

Goal sequences are given a token-game semantics. Intuitively, when an activity
receives an input token, its active collaboration is enabled. If the token is directly
received from an edge (i.e. not via an entry-point), the active collaboration can
begin execution from its initial state. Otherwise, if the token is received through
an entry-point, the active collaboration can resume execution from the state
represented by the event-goal labeling the entry-point. The active collaboration
in reality begins or resumes its execution when one of its roles takes the ap-
propriate initiative. Thereafter, it evolves until an interaction point with other
collaborations is eventually reached. That is, the active collaboration runs until
the predicate of one of its activity’s exit-points holds. When this happens, the
control token is passed on to the next activity or control node. According to
this semantics, the intended behaviour of the TransportService collaboration, as
specified by its goal sequence (Fig. 2), closely reflects the requirements. Initially
the BuyTicket collaboration is started and thereafter suspended after the ticket
is requested. At that point, a check is performed to determine if the vehicle is
at the terminal (i.e. at T1). If the result is positive, BuyTicket is finished and
EnterVehicle is enabled, followed by VehDeparture, VehArrival and ExitVehicle.
If the vehicle was not at T1, this role initiates ReqVehicle to request the vehicle
from T2. VehDeparture is then executed, followed by VehArrival, which allows
BuyTicket to be resumed. Thereafter the service progresses as explained before.

Formal semantics for goal sequences is provided by mapping them into hier-
archical coloured Petri-nets (HCPNs). The selection of HCPNs as the semantic
domain has been mainly motivated by two facts. First, Petri-nets in general, and
HCPNs in particular, have been extensively studied, and quite a number of qual-
ity tools exist that support and automate their analysis. Second, the mapping of
goal sequences into HCPNs is rather intuitive, as will become clear later on. Due
to space limitations we will assume that the reader is familiar with traditional
Petri-nets and will only give a short introduction to (H)CPNs.

Coloured Petri-nets (CPNs) [4] extend traditional Petri-nets by associating
a colour or data type with each token. In this way, tokens are distinguishable
from each other, unlike in traditional Petri-nets. Places has also an associated
data type (or colour domain) determining the kind of tokens they can contain.
Transitions can modify the type and value of their output tokens. In addition,
they can have an associated guard stating conditions over its input tokens, that
must be satisfied for the transition to become enabled.

Definition 2 (CPN). A non-hierarchical CPN is a tuple CPN = (Σ, P, T , A,
N, C, G, E, I) [4] where Σ is a finite set of non-empty types, P is a finite set
of places, T is a finite set of transitions, A is a finite set of arcs, N : A →
(P × T) ∪ (T × P) is a node function, C : P → Σ is a colour function, G is
a guard function mapping boolean guards to transitions, E is an arc expression
function labeling arcs, and I is an initialisation function for places.

In a hierarchical CPN it is possible to define substitution transitions, which
can be decomposed into so-called subpages (i.e. subnets). Each subpage has a

Formalizing Collaboration Goal Sequences for Service Choreography 281

number of places called port places, through which the subpage communicates
with its surroundings. The relationship between a substitution transition and
its subpage is specified by describing a port assignment, which couples the port
places of the subpage with the surrounding places, or so-called socket places, of
the substitution transition. Port and socket places can be classified as input (i.e.
accept tokens), output (i.e. deliver tokens) or I/O (i.e. both accept and deliver
tokens) places.

Definition 3 (HCPN). A hierarchical CPN is a tuple HCPN = (S, SN, SA,
PN, PT , PA, FS, FT , PP) where S is a finite set of pages (i.e. subnets), SN is
a set of substitution transitions, SA : SN → S is a page assignment function,
PN is a set of port nodes, PT : PN → {in,out,i/o, general} is a port type
function, PA is a port assignment function mapping, for a given substitution
transition, its sockets with its subnet’s ports, FS is a finite set of fusion sets,
FT is a fusion type function, and PP is a multi-set of prime pages [4].

Informal Mapping. The main idea behind the mapping of goal sequences
to HCPNs is to map the collaboration-uses of a goal sequence to substitution
transitions, and decompose them into subnets describing the behaviour of those
collaboration-uses.

Given a goal sequence describing the behaviour of a collaboration C (com-
posed of a set of sub-collaborations), we map each collaboration-use of the goal
sequence into a substitution transition. This means that several activities may
be mapped into the same substitution transition, if they are annotated with the
same collaboration-use (e.g. the two activities annotated with b:BuyTicket in
Fig. 2 are mapped to the same substitution transition). The mapping of activi-
ties and their collaboration-uses is illustrated in Fig. 3b. Note that entry-points,
as well as suspension exit-points of an activity are mapped into I/O socket places
of the corresponding substitution transition, while end-of-execution exit-points
are mapped into output socket places. Therefore, socket places represent event-
and state-goals (i.e. the goals labeling the entry- and exit-points). In addition, an
input socket is added, representing the starting point of the collaboration, as well
as an id I/O socket, which is used to uniquely identify the specific collaboration-
use the substitution transition represents. The colours used for socket places are
CTRL_ST and CTRL_STxDEP, which are two custom defined data-types. CTRL_ST
represents C ’s global state, and is composed of the individual states of C ’s sub-
collaborations. CTRL_STxDEP is a Cartesian product of CTRL_ST and DEP. The
latter is an enumeration with two values: depUnres (for dependency unresolved)
and depResolved (for dependency resolved). The CTRL_STxDEP type is used
to cope with suspend-resume dependencies, which require sub-collaborations to
give away the control token while in the middle of execution (i.e. at suspension
exit-points in the goal sequence). To enforce this behaviour, all tokens leaving
I/O socket places (except the id one) must be marked with depUnres, while all
arriving tokens must be marked with depResolved.

The initial node, as well as the final and merge nodes of the goal sequence
are mapped into places, while join and fork nodes are mapped into normal

282 H.N. Castejón and R. Bræk

:C1 :C2
RbRa

c1:Collab1

D
[gn][g1]

fork

join

S

E

(ctrl, depResolved)

ctrl

ti+1

ti

CTRL_ST

(newCtrl_EGi,
depUnres)

newCtrl_SG1

Start

EGi

I/O

InIn

(ctrl,depResolved)

EGj

I/O

newCtrl_SGk

CTRL_STxDEP

SG1

tj+1_1

SGk

OutOut

tj+1_k

CTRL_STOutOut CTRL_ST

newCtrl_EG1 stands for setCTYPEST(ctrl,id,"EGi")
newCtrl_SG1 stands for setCTYPEST(ctrl,id,"SG1")
newCtrl_SGk stands for setCTYPEST(ctrl,id,"SGk")

CTYPE is the name of the collaboration type

CTRL_STxDEP

M Merge

FROM Initial/ExP/Merge
TO Final/Activity/EnP/Merge/Decision

FROM Decision/Fork/Join
TO Fork/Join

aux

aux

Rest of combinations:

GOAL SEQUENCES HCPNs

GOAL SEQUENCES HCPNs

(a) CONTROL-FLOW NODES MAPPING

(c) EDGE MAPPING

(b) ACTIVITY MAPPING

GOAL SEQUENCES

HCPNs

(d) SUB-COLLABORATION MAPPING

c1_Collab1

Start

SG1 SGk

Collab1

EGi

EGj

CTRL_ST

CTRL_STCTRL_ST

CTRL_STxDEP

CTRL_STxDEPId_c1

STRING

[cond_1]

(ctrl,depResolved)

[cond_k]

c1.SGkc1.SG1

c1.EGj

Decision
[g1]

aux1

[gn]
auxn

SERVICE-GOAL TREE CPN

EGi

EGj

SG1 SGk

Fig. 3. Mapping of goal sequence elements to HCPN elements

transitions. The mapping of a decision node yields a place interconnected to
as many transitions as the node has outgoing edges. The guards of these edges
are then assigned to the transitions. Edges become net arcs, possibly with aux-
iliary transitions or places so as to respect the bipartite nature of Petri nets. All
these mappings are summarized in Figs. 3a and 3c.

The translation of activities, edges and control-flow nodes, we have just ex-
plained, yields the main net of the final HCPN. For the mapping to be complete,
we need to describe the decomposition of substitution transitions into subnets.
These subnets will describe the behaviour of the goal sequence’s collaboration-
uses that the substitution transitions represent. As the collaboration-uses of
the goal sequence (e.g. va1:VehArrival in Fig. 2) are occurrences of the sub-
collaborations of C (e.g. VehArrival in Fig. 1a), the subnets will describe the
behaviour of those sub-collaborations. Several substitution transitions may be
assigned the same subnet, if they represent collaboration-uses of the same type
(i.e. occurrences of the same sub-collaboration of C).

We are not interested on subnets describing detailed behaviour, but rather aim
at high-level, abstract behaviour descriptions. Service goal trees (SGTs) provide
such descriptions, so we use them as input for the mapping of sub-collaborations
into subnets (see Fig. 3d). The SGT nodes are translated into net places, and
the SGT arcs into net arcs plus an auxiliary transition. Places are character-
ized as port places: the Start place becomes an input port, places representing
event-goals (EG) become I/O (i.e. bidirectional) ports, and those representing
state-goals (SG) become output ports. Then, when coupling the subnet’s ports
with the sockets of a substitution transition, those ports and sockets representing
the same goal are interconnected. The Start place, as well as those places repre-
senting state-goals are typed with the CTRL_ST colour, while the CTRL_STxDEP

Formalizing Collaboration Goal Sequences for Service Choreography 283

colour is used for places representing event-goals. Custom defined functions are
used to modify the state of the collaboration (represented by CTRL_ST) as the
control token travels form the Start input port to the output port(s). At each
point in time the value of the token reflects the place the token has reached, thus
reflecting the event-/state-goal that has been achieved. In addition, all tokens
arriving at an I/O port are marked with depUnres, while all tokens leaving an
I/O port are marked with depResolved. This ensures that the control token
leaves the net at I/O ports, in order to satisfy suspend-resume dependencies.

All transitions of the subnet will be unguarded, except possibly those leading
to output ports (i.e. places representing state-goals). If several transitions lead
to different output ports from the same place, as illustrated in Fig. 3d, guards
may be imposed on those transitions if a deterministic choice is wanted. These
guards would determine the conditions to achieve each of the goals. They can be
constructed from the information provided by the goal sequence, since the latter
describes the relationships between sub-collaboration goals (i.e. it tells us the goal
that a sub-collaboration must achieve in order for another sub-collaboration to
achieve its own goal). The process to determine these guards is explained in the
next section.

Figure 4a partially shows the HCPN resulting from the mapping of the Trans-
portService’s goal sequence. Each one of the collaboration-uses in Fig. 2 has
been mapped to a substitution transition. Note that the two activities refer-
ring to b:BuyTicket correspond now to a single substitution transition (i.e.
b BuyTicket). This substitution transition has one I/O socket (i.e. b ticketReqed)
representing both the suspension exit-point of the first activity and the entry-
point of the second activity to the left in Fig. 2. Figure 4b depicts the sub-
net describing the behaviour of BuyTicket. This is the subnet assigned to the
b BuyTicket substitution transition, and closely resembles the service-goal tree
in Fig. 1c.

Formal Semantics. For the mapping of goal sequences, we define two se-
mantic functions: [[]]CPN, which maps elementary sub-collaborations into non-
hierarchical CPNs; and [[]]HCPN, which maps collaboration goal sequences into
HCPNs. [[]]CPN takes a service-goal tree and a collaboration goal sequence, and
returns a CPN representing the collaboration whose goals are described by the
service-goal tree. A service-goal tree is defined as:

Definition 4 (Service-goal tree). A service-goal tree is a directed graph
SGT = (cId, GN, GA) where: cId is the name of the collaboration whose goals
SGT describes; GN = {start}∪EG∪SG is a set of nodes, with start being the
initial node, EG being a set of intermediary nodes representing event-goals, and
SG being a set of final nodes representing sate-goals; and GA ⊆ N ×N is a set
of directed arcs between nodes, such that ∀(s, t) ∈ GA : [s �∈ SG ∧ t �= start].

According to the mapping explained in the previous section, and given SGT =
(cId, GN, GA) and GS = (N, E, gd, mexp−a, RGS, AC, ma−ac, menp−a, lep−pred,
exptype), we define [[SGT , GS]]CPN = (Σ, P, T , A, N, C, G, E, I), where:

284 H.N. Castejón and R. Bræk

Σ = {CTRL ST, CTRL ST×DEP, STRING}
P = GN ∪ {Id} T = {tga : ga ∈ GA}
A = {sourceTOtga, tgaTOtarget : ga = (source, target) ∈ GA}

∪ {IdTOtga, tgaTOId : Id ∈ P, ga ∈ GA}
N(a) = (source, target), if a is in the form sourceTOtarget

C(p) =

⎧⎨⎩CTRL ST, if p ∈ SG ∪ {start}
CTRL ST×DEP, if p ∈ EG
STRING, if p = Id

E(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ctrl, if (a = s tga) ∧ (s = start)
(setCTYPEnST(ctrl,id,”tgn”),depUnres), if (a = tga t) ∧ (t ∈ EG)
(ctrl,depResolved), if (a = s tga) ∧ (s ∈ EG)
setCTYPEnST(ctrl,id,”t”), if (a = tga t) ∧ (t ∈ SG)
iId, if [(a = s tga) ∧ (s = Id)] ∨ [(a = tga t) ∧ (t = Id)]

(b) BUYTICKET SUBNET

ctrl

ctrlctrl

(ctrl, depUnres)

ctrl

(ctrl, depResolved)

ctrl

ctrl

v

ctrl

vd2_VehDeparture

Decision

ctrl

b_tickeBought

ev_passengerEntered

vd2_vehicleLeft

va2_vehicleArrived

r_vehicleReqed

vd1_vehicleLeft

va1_vehicleArrived

aux1

start

VehDeparture

ev_EnterVehicle

b_BuyTicket

va2_VehArrival
va1_VehArrival

VehArrival
VehArrival

EnterVehicle

BuyTicket

r_ReqVehicle
ReqVehicle

vd1_VehDeparture
VehDeparture

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRLxDEP
constraints

t1

t6

b_ticketReqed

Merge

CTRL_ST

td1

td2
[#T1_vehAtTerminal v]

[not (#T1_vehAtTerminal v)]

CTRL_ST

v

VARIABLES

t5

(c) SUB-ROLE SEQ. HCPN FOR TERMINAL

id

id

(ctrl, depResolved)

(setBuyTicketST(ctrl,
id,"ticketReqed"),
depUnres)

ctrl

t2

t1

id
STRING

ticketReqed
I/O

start

ticketBought
CTRL_ST

CTRL_ST

CTRLxDEP

(setBuyTicketST(ctrl,
id,"ticketBought")

Out

I/OI/O

In

(a) GOAL SEQUENCE HCPN

(d) SUBNET FOR Td SUB-ROLE

[not (eval_Td_Constr(constr))]

ctrl

setTdST(ctrl,id,"vehicleLeft")

ctrl

constr

upd_constr

[eval_Td_Constr(constr)]

input (constr);
output (upd_constr);
action({vehAtTerminal=false});

Start

constr

ctrl

Pconflict
CTRL_ST

CTRL_ST

CTRL_ST

vehicleLeft

constraints
CONSTRAINTS

{vehAtTerminal=true}

t1

Tconflict

Out

In

Fusion 1

(ctrl,
depUnres)

(ctrl,
depResolved)

b_tickeBought

vd2_vehicleLeft

start

vd2_Td

b_Tbt

Td

Tbt

CTRL_ST

CTRL_ST

t1

b_ticketReqed

CTRL_STIn

Out

CTRLxDEP

Fig. 4. Nets for the TransportService case study

Formalizing Collaboration Goal Sequences for Service Choreography 285

No initial marking (I) is defined for the resulting CPN. The guard function
G assigns true to all transitions of the CPN, except possibly to those leading to
places p ∈ SG. To describe how the guards are assigned to those transitions, let
us consider the example net in Fig. 3d. To determine the set of conditions cond i ,
we just need to search for entry-points in the goal sequence that are labeled with
EGj . For each entry-point, if its associated activity A has several exit-points,
then the conditions are set to true (i.e. representing a non-deterministic choice).
Otherwise, if the state-goal labeling A’s exit-point is SGn, then cond n is set to
the value of the goal labeling the exit-point of the activity immediately preceding
A. Note that cond n may actually be a boolean expression of goals, if several
activities lead to A through a control flow node.

As a convention, in the following we will use the notation T.E, meaning el-
ement E of tuple T , in order to access the elements of a tuple. We can now
define [[]]HCPN, which takes a goal sequence GS = (N, exptype, menp−a, mexp−a,
RGS, AC, ma−ac, lep−pred, E, gd) and a set of service-goal trees {SGTac = (cId,
GN, GA), SGTac.cId = ac.type, ac∈GS.AC} (i.e. one for each sub-collaboration
referred to by GS), and returns a HCPN = (S, SN, SA, PN, PT , PA, FS,
FT , PP). We start by introducing the set of subnets (SAC), the set of tran-
sitions due to the mapping of decision nodes and edges (TD and Tedges), the set
of places due to the mapping of arcs (Pedges), the set of arcs connecting id places
to substitution transitions (AId), and the set of arcs connecting the constraint
place to transitions generated by decision nodes (Aconstr) as:

SAC = {[[(SGTac, GS)]]CPN : SGTac.cId = ac.type, ac ∈ AC}
TD = {td : d ∈ ND, (d,) ∈ E}

Tedges = {t(es,et) : (es, et) ∈ E, es ∈ {n0} ∪NM ∪NExP,

et ∈ NFI ∪NA ∪NEnP ∪NM ∪ND}
Pedges = {p(es,et) : es ∈ TD ∪NF ∪NJ , et ∈ NF ∪NJ , (es, et) ∈ E}

AId = {ac.id IdTOac.id ac.type, ac.id ac.typeTOac.id Id : ac ∈ AC}
Aconstr = {constrTOtd, tdTOconstr : constr ∈ P, td ∈ TD}

Now we define the main net (smain) describing the interconnection of substi-
tution transitions (representing collaboration uses of the goal sequence). This
net is a CPN = (Σ, P, T , A, N, C, G, E, I) described as:

Σ = {CTRL ST , CTRL ST ×DEP, STRING, V ARIABLES}
P = {n0} ∪NF I ∪ND ∪NM ∪ {constr} ∪ {ac.id Id : ac ∈ AC}

∪ {ac.id psac : psac ∈ Psac , sac ∈ SAC} ∪ Pedges

T = {ac.id ac.type : ac ∈ AC} ∪ TD ∪ Tedges

A = AId ∪Aconstr ∪ {esTOt(es,et), t(es,et)TOet : t(es,et) ∈ Tedges}
∪ {esTOp(es,et), p(es,et)TOet : p(es,et) ∈ Pedges}
∪ {esTOet : (es, et) ∈ E, t(es,et) �∈ Tedges, p(es,et) �∈ Pedges}

286 H.N. Castejón and R. Bræk

N(a) = (source, target), if a is in the form sourceTOtarget

C(p) =

⎧⎪⎪⎨⎪⎪⎩
CTRL ST , if p ∈ {n0} ∪NF I ∪ND ∪NM ∪ Parcs

STRING, if p is in the form ac.id Id
V ARIABLES, if p = constr
C(p′), if p is a socket connected to port p’

E(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ctrl,depUnres), if a=sourceTOtarget
and source is a socket connected to an i/o port

(ctrl,depResolved), if a=sourceTOtarget
and target is a socket connected to an i/o port

varbl, if a ∈ Aconstr

id, if a ∈ AId

ctrl, otherwise

G(t) =
{

gD(e), if t = td ∈ TD, e = (d,) ∈ E, d ∈ ND

true, otherwise

The initialisation function (I) of smain assigns to the starting place (i.e.
p = n0) a token of type CTRL_ST. This token describes the initial state of the
composite collaboration described by GS, where all state predicates representing
the goals of the collaboration are set to false.

Finally, we define [[GS, {SGTac}]]HCPN = (S, SN, SA, PN, PT , PA, FS, FT ,
PP), where:

S = {smain} ∪ SAC SN = {ac.id ac.type : ac ∈ AC}
PN =

sac∈SAC

Psac FS = ∅ PP = {smain}

SA(t) = sac, if t = ac.id ac.type, ac ∈ AC, sac ∈ SAC

PT (p) =
in, if p = start
out, if p ∈ GTac.SG
i/o, if p ∈ GTac.EG ∪ {Id}

, ∀p ∈ Psac , ∀sac = [[(SGTac, GS)]]CPN ∈ SAC

PA(t) = (ac.id p, p), ∀p ∈ PN, ∀ac.id p ∈ Psmain

3 Detection of Implied Scenarios

A goal sequence describes the intended behaviour of a service from a global
perspective, and can be used to synthesize state-machines for the service-roles.
The actual service behaviour is performed by the components playing those roles.
Since components only have a local view of the service, unexpected interactions
may arise. These are the so-called implied scenarios [1], which correspond to
service behaviour that has not been explicitly specified, but follows implicitly,
and will be present in any implementation of the service. An implied scenario may
capture some overlooked positive behaviour, but it may also represent undesired
behaviour. Detecting implied scenarios is therefore important.

In the context of the collaboration-based service specification approach treated
here, an implied scenario may arise due to the existence of multiple initiatives,

Formalizing Collaboration Goal Sequences for Service Choreography 287

from the service-roles, to engage in sub-collaborations. In the collaboration goal
sequence these initiatives are ordered in some desired sequence. However, this
ordering may not be guaranteed at runtime due to the independence between the
initiatives of different service-roles. Therefore, all possible orderings should be
analyzed in order to determine if undesired behaviours may arise. Fortunately,
this can be done without performing a global analysis of the service collaboration.
It suffices to analyse, separately, the sub-role sequences that each service-role
may execute. These sub-role sequences can be obtained from the collaboration
goal sequence. For example, the following sub-role sequence: Vev → Vd → Va →
Vexv; can be extracted from the goal sequence in Fig. 2 for the V service-role.

Separate sub-role sequences are extracted for each (instance of a) service-role
(e.g. T1:T, T2:T, . . .). This can be done by invoking the VISIT algorithm (see
Algorithm 1), with i = 0 and n = n0, for each service-role (rType), and for each
instance of that role (rIns). This algorithm traverses the goal sequence’s graph
(GSG) with a depth-first search method, looking for occurrences of rIns. While
traversing the GSG forwards, the algorithm creates a role-sequence graph (RSG)
that includes only those activities (and their associated entry-/exit-points) re-
lated to rIns. RSGs have the same syntax and semantics as GSGs. If a fork node
is found, the algorithm adds it to the RSG and continues the search through one
of the fork’s outgoing edges. When a decision node is found, one of its outgoing
edges is also chosen to continue the search, but the decision node is not added to
the RSG (since at runtime only one of the branches can be executed). Instead,
different RSGs will be generated for each of the decision’s branches (e.g. in our
case study two RSGs are generated for T1:T, one for vehAtTerminal and other
for NOT vehAtTerminal). In order to know the decision node’s branch a RSG
corresponds to, the branch’s guard is saved in a dedicated table (decisions). Once
a final node is found, a sub-role sequence has been obtained. From there, a copy
of the RSG is done and the algorithm begins the backtracking phase. During this
phase the previously added nodes are removed from the RSG until a decision
or fork node with unvisited edges is found. If this happens, one of the unvisited
edges is selected and the GSG is again traversed forwards (so new nodes are
added to the RSG). Otherwise, if the initial node is reached during backtrack-
ing, the extraction process ends. Note that if fork (resp. join) nodes where found
while traversing the GSG, the generated RGSs describe a path through only
one of the outgoing (resp. incoming) edges of these nodes. The individual RGSs
sharing fork (resp. join) nodes must therefore be merged at the end. To help
in this process, each time a fork (resp. join) node is found, information about
the traversed edge is saved in a dedicated table (forks ; resp. joins). Note also
that loops are traversed only once (i.e. only one iteration is performed). This
is achieved by annotating in a table (visited) the number of times each node is
visited. With this restriction we avoid infinite role sequences, while we ensure
that all possible non-repetitive sequences of sub-roles are considered.

Once the sub-role sequences have been obtained, their analysis can start. For
each service-role, its sub-role sequences are first analysed individually, and there-
after their interactions are studied. In the individual analysis, we look for any

288 H.N. Castejón and R. Bræk

Algorithm 1. VISIT(GSG,n,rIns,RSG[rIns,i])
// All variables except adjNodes and nextN are global
// All elements of the visited array are initialized to 0 before first call to VISIT
visited[n]++; adjNodes[n] = GETADJACENTNODES(n, GSG)
while adjNodes[n] �= ∅ do

nextN = adjNodes[n].pop()
if visited[nextN] < 2 then

if ((n ∈ NEnP) ∨ (n ∈ NExP) ∨ (n ∈ NA)) ∧ RELATED(n, rIns) then
ADDTOGRAPH (n, RSG[rIns, i])

else if (n ∈ NF) ∨ (n ∈ NJ) then
ADDTOGRAPH (n, RSG[rIns, i]) and update forks [rIns, i]/joins [rIns, i]

else if n ∈ ND then update decisions [rIns, i]
else if n = n0 then ADDTOGRAPH (n, RSG[rIns, i])
end if
VISIT (GSG, nextN, rIns,RSG [rIns, i])

end while //There are no (more) adjacent nodes
visited[n] = visited[n] − 1
if n ∈ NF I then //Final node

ADDTOGRAPH (n, RSG[rIns, i]); RSG [rIns, i + 1] = RSG[rIns, i]; i++
end if
REMOVEFROMGRAPH (n, RSG[rIns, i]) //Backtracking

set of two or more consecutive offered sub-roles (i.e. offered sub-roles connected
by edges and/or join/fork nodes) that the sequence may contain. Consecutive
offered sub-roles may represent a conflict, if they are played in collaborations
with different parties, and these collaborations maintain some kind of depen-
dency (e.g. one of them should not finish before the other does). In that case,
the dependency might be violated, since the initiatives to start the collaborations
are taken by different parties. In the TransportService example this happens for
the V service-role. According to their sub-role sequences, Vev is to be played in
EnterVehicle before Vd in VehDeparture (see Fig. 2). However there is no way
for T, which takes the initiative in VehDeparture, to know if Passenger (P) has
taken the initiative to start EnterVehicle, and when this has finished (i.e. the
condition ev .passEntered is not visible for Terminal). Thus T may request V to
play Vd before P has requested it to play Vev.

After the individual analysis, we study how the sub-role sequences of a single
service-role interact with each other, if executed concurrently. Intuitively, we first
constrain the execution of sub-roles by imposing pre- and post-conditions, and
then build the cross-product of the sub-role sequences to detect constraint con-
flicts. For that purpose, sub-role sequences are semantically mapped into HCPNs.
This mapping follows the same guidelines as the goal sequence mapping detailed
in Sect. 2.2, the only difference being substitution transitions labeled with sub-
role names, rather than with active collaboration names. As an example, consider
Fig. 4c, which depicts the HCPN for the sub-role sequence obtained when the
TransportService’s goal sequence is projected onto T1:T and T1.vehAtTerminal
is true. Figure 4d presents the subnet representing role Td (part in boldface).

Formalizing Collaboration Goal Sequences for Service Choreography 289

The execution constraints (i.e pre- and post-conditions) to be imposed on sub-
roles follow from the requirements and the service domain. For example, in our
case study we can further restrict the execution of role Td (from VehDeparture)
by setting VehAtTerminal and NOT VehAtTerminal as part of Td’s pre- and
post-condition, respectively. In our HCPN model constraints are represented as
boolean tokens that reside in a place shared by all the sub-role sequence nets.
Since HCPNs do not allow guards to be imposed on substitution transitions
(which, remember, represent sub-roles), the pre-condition for the execution of
a sub-role is instead specified as a guard on the first transition of the subnet
describing the sub-role behaviour. If the guard is satisfied, the transition fires
and it updates the value of the constraints according to the post-condition. This
is illustrated in Fig. 4d for the Td sub-role, where the result of calling function
eval Td Constr(constr) has been imposed as guard of transition t1. This function
processes the value of the constr token, which represents the constraints, and
returns true if VehAtTerminal is true. The value of VehAtTerminal is updated
when t1 fires, by its code segment. Note that in addition to the constraints place,
a Tconflict transition and a Pconflict place have been added to the subnet
of Td. Note also that Tconflict can only be fired when t1 can not, that is,
when VehAtTerminal is false. In such a case, Tconflict “steals” the tokens from
the Start and constraints places forcing a dead-marking to be reached. This
behaviour reflects our desire of a (potential) conflict to be reported if a sub-role
cannot be immediately executed when it receives the control token, because its
pre-condition is not satisfied.

At the end, the sub-role sequences are composed in parallel and the reacha-
bility graph of the resulting net is constructed and analysed in search of dead-
markings, which would represent potential conflicts. In order to test our analysis
method, we used CPN Tools [3] to analyse an extended version of the Transport-
Service (with a control center for mediation between the terminals). A reach-
ability graph with 37 nodes and 58 arcs was generated for the analysis of the
sub-role sequences of the Terminal (T) service-role. This analysis revealed two
implied scenarios: a passenger may miss the vehicle after buying the ticket, if
the vehicle is dispatched following a request from the control center; or the ve-
hicle may depart with the passenger before a control center’s request has been
completely processed. A reachability graph of similar size was generated for the
Vehicle (V) service-role. As a comparison, the detection method by Uchitel et al.
[12], which is of exponential complexity with the number of service-roles, needs
to build a safety property for the same case study of 4414 states, if heuristics are
used. Although no formal conclusions can be obtained from this comparison, we
believe the results show the potential of our approach.

4 Related Work

Service-oriented specification has been addressed in several works. Rößler et
al. [8] suggested collaboration based design with a tighter integration between
interaction and state diagram models, and created a specific language, CoSDL, to

290 H.N. Castejón and R. Bræk

define collaborations. CoSDL is inspired by SDL, so it fails at providing the cross-
cutting service composition offered by UML collaborations and goal sequences.
Krüger et al. [5] propose an approach to service engineering that has many
commonalities with our own. They consider, as we do, services as collaborations
between roles played by components, and use a combination of Use Cases and
an extended MSC language to describe them. Liveness is expressed by means
of the operators provided by their MSC language, while service structure and
role binding are described with, so-called, role and deployment domain models.
In our approach UML collaboration diagrams are used to provide a unified way
of describing service structure and role bindings, and to provide a framework
for expressing liveness with goal sequences. Goal sequences provide interesting
opportunities for analysis, as we have discussed.

The concept of implied scenarios was first introduced by Alur et al. in [1],
where they presented an algorithm to detect this kind of scenarios from MSC
specifications. This work was later extended by Uchitel et al. [12], who proposed
an approach for the incremental specification (using both MSCs and HMSCs)
of systems, driven by the detection of implied scenarios. The main drawback of
Uchitel et al.’s work is, however, the state explosion problem (although they limit
it by applying heuristics). Munccini has proposed an approach for the detection
of implied scenarios based on the analysis of HMSCs [6]. His work builds over
a previous work of Uchitel et al., and avoids the state explosion problem. Our
method also limits the state explosion problem and it is applicable to UML
collaboration-based specifications, while Munccini’s approach applies to HMSC-
based specifications.

5 Discussion and Conclusions

UML 2.0 collaborations provide very useful structuring mechanisms for specify-
ing cross-cutting service behaviours. They enable: (a) an attractive structured
overview; (b) structural decomposition into features, by means of collaboration-
uses; (c) re-usability; and (d) definition of semantic interfaces for dynamic dis-
covery, binding and compatibility checks [10]. Still, a proper way to describe the
choreography or joint behaviour of the sub-collaborations of a composite col-
laboration is needed. Collaboration goal sequences can be used to fill this gap.
They help to understand and document the relationships and execution depen-
dencies between sub-collaborations, in terms of their goals. Moreover, they can
be analysed in order to detect inconsistencies and implied scenarios at an early
stage of service specification.

Formal semantics for goal sequences based on hierarchical coloured Petri-nets
has been presented here that allows their automated analysis using general pur-
pose tools available for HCPNs. The detection of implied scenarios is done in
two phases. First, sub-role sequences are extracted from the goal sequence and
individually analysed. Then the cross-product of the sub-role sequences of each
service-role is built to examine how they interact. The proposed analysis suf-
fers little from the state explosion problem since the sub-role sequences of each

Formalizing Collaboration Goal Sequences for Service Choreography 291

service-role are analysed separately, so the complexity is linear with the number
of service-roles. In addition, the analysis is done at a high-level of abstraction
(i.e. with role sequences and not message sequences). The proposed implied sce-
nario detection approach demonstrates, in addition, that we have much to gain
from the explicit description of features dependencies, and from the analysis and
understanding of concurrency on interfaces.

Although we can use HCPN-tools for the analysis of goal sequences, their
mapping into HCPNs is still performed manually. Thus, a short-term objective
is to provide tool support for the mapping, so the whole process can be au-
tomatized. Another interesting issue we plan to work on is how to address the
elimination of the implied scenarios. One possibility might be to specify negative
goal sequences (as the the negative scenarios in [12]).

Acknowledgements

We would like to thank Gregor von Bochmann, Cyril Carrez and the anonymous
reviewers for their valuable comments on this work.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
22nd Intl. Conf. on Software Engineering (ICSE’00). (2000) 304–313

2. Castejón, H.N., Bræk, R.: A collaboration-based approach to service specification
and detection of implied scenarios. In: ICSE’s 5th Intl. Workshop on Scenarios and
State Machines: models, algorithms and tools (SCESM’06), ACM Press (2006)

3. CPN Group: CPN Tools Manual. Technical report, Univ. of Aarhus, Denmark
(2005) available at http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

4. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. Springer-Verlag (1997)

5. Krüger, I.H., Gupta, D., Mathew, R., Moorthy, P., Phillips, W., Rittmann, S.,
Ahluwalia, J.: Towards a process and tool-chain for service-oriented automotive
software engineering. In: ICSE’04 Workshop on Software Engineering for Automo-
tive Systems (SEAS). (2004)

6. Muccini, H.: Detecting implied scenarios analyzing non-local branching choices.
In: 6th Intl. Conf. of Fundamental Approaches to Software Engineering (FASE’03).
LNCS 2621. (2003) 372–386

7. Object Management Group: UML 2.0 Superstructure Specification. (2005)
8. Rößler, F., Geppert, B., Gotzhein, R.: Collaboration-based design of SDL systems.

In: 10th SDL Forum. LNCS 2078 (2001) 72–89
9. Sanders, R.T., Bræk, R.: Modeling peer-to-peer service goals in UML. In: 2nd

IEEE Intl. Conf. on Software Engineering and Formal Methods (SEFM’04). (2004)
10. Sanders, R.T., Bræk, R., von Bochmann, G., Amyot, D.: Service discovery and

component reuse with semantic interfaces. In: 12th SDL Forum. LNCS 3530 (2005)
11. Sanders, R.T., Castejón, H.N., Kraemer, F.A., Bræk, R.: Using UML 2.0 collabo-

rations for compositional service specification. In: ACM/IEEE 8th Intl. Conf. on
Model Driven Engineering Languages and Systems (MoDELS). LNCS 3713 (2005)

12. Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-based spec-
ifications and behavior models using implied scenarios. ACM TOSEM 13 (2004)

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 292 – 306, 2006.
© IFIP International Federation for Information Processing 2006

Composition of Use Cases Using Synchronization
and Model Checking

R. Mizouni1, A. Salah2, S. Kolahi3, and R. Dssouli1

1 Electrical and Computer Engineering Department, Concordia University
{mizouni, dssouli}@encs.concordia.ca
2 Computer Science Department, UQAM University

aziz.salah@uqam.ca
3 Computer Science Department, Concordia University

s_kolahi@cs.concordia.ca

Abstract. Capturing the behavior of a system by use cases have been
intensively investigated in the last decade. The challenge is to find both the
adequate model that fits the needs of the analyst and a formal composition
mechanism which helps the generation of the expected behavior. In this paper,
we propose a formal approach for specifying and composing use cases based on
assignments. Those assignments are used to express new use cases. An
assignment provides the join points and the composition operators that will be
taken into account during the composition. These join points are, in fact,
determined through a model checking step. They represent states where a
property defined by the analyst holds. In order to evaluate these assignments,
we define a composition mechanism based on the well known concept of
synchronized product.

Keywords: Use cases, model checking, composition operators, synchronized
product.

1 Introduction

Capturing the system behaviors within use cases has gained a lot of interest during the
last decade. Use cases represent a partial behavior of the system, which helps the
requirement elicitation process. However, composing use cases in order to generate
the system specification is a challenging task. Its complexity lies within the formality
of the model representing use cases, the detection of states on which the composition
is performed, and the level of automation of the composition.

Defining interactions among use cases is another challenge for the analyst which
may be specified explicitly using composition operators, namely sequential
concatenation, iteration, alternative and etc. After the composition according to
specified operator semantics, the obtained behavior may not meet the analyst’s
intended point of view because of possible unexpected interactions. Retrieving
unexpected interactions is a hard task which makes the incremental construction of
the specification a helpful means for getting the right system behavior.

 Composition of Use Cases Using Synchronization and Model Checking 293

Use Case and Assignment

Assignement
Base Use Case
Referred Use Case

CTL Property

Base Use Case

Use Case Composition
Step

Join Points

StepModel CheckingSpecficiation Step

Fig. 1. Approach Overview

Furthermore, in order to explicitly specify the interactions, the analyst has to
choose the states where to compose use cases, called join points. This choice again is
a hard task that requires deep understanding of the characteristics of each state within
the use case. The usage of temporal property for determining these composition join
points helps the process of generating the system specification, especially when the
size of use cases increases.

This paper addresses a formal, automated and incremental approach for use case
composition using assignments. The approach consists of three steps, as shown in
Fig. 1: use cases and assignments specification step, a model checking step, and a
composition step. First, the analyst provides a set of use cases and a set of
assignments. For each assignment, a new use case that represents the evaluation of
this assignment is generated. Each assignment uses two use cases: the base use case
and the referred use case. The base use case is the one where the new behavior will be
added while the referred use case represents the additional behavior to be weaved
within the base use case. Moreover, the assignment includes a composition operator
and a CTL [1] property which is used to identify the join points. The states of the base
use case where the property holds are determined by a model checker, and then,
selected as joint points. The composition will be performed on these states respecting
the semantics of the composition operator of the assignment. These semantics are
achieved by means of the composition based on the synchronization product of two
use cases on common labels, as we will show later. The use case that results from the
composition represents the evaluation of the assignment.

The paper is structured as follows. In Section 2, we give an overview of the
notation we are using in the paper, and in Section 3, we present the definition of
assignments. In Section 4, we describe our approach for composing use cases and
synthesizing the system automaton. By an example of an invoicing system, Section 5
shows the applicability of our approach to distributed use cases. Discussion of related
works is given in Section 6. Finally, we draw our conclusions and discussions on
future works in Section 7.

2 Preliminaries

A use case is used to describe a functional behavior of the system regarding a certain
concern. The behavior represented as a use case is composed of sequences of actions.

294 R. Mizouni et al.

A finite state automaton model is used to express the behavior of a use case because
of its expressiveness power and its formality level. A finite state automaton (FSA) is
defined as a 5-tuple (S, s0,Sf , L, E), where S is the set of states, s0

 ∈ S is the initial
state, Sf

 ⊆ S is the set of final states, L is the set of labels, and E ⊆ S ×L × S is the set

of transitions. For a transition (s,l,s')∈E, we write 'ss l⎯→⎯ ∈E. A clone of a use
case is an automaton generated from the use case, with having the same structure and
same set of behaviors, but different edge labeling. Next, we present the formal
definition of a clone of a use case FSA.

Definition 1 (Clone of a use case)
A clone of use case FSA A=(S, s0, Sf,, L, E) respecting a renaming function Rename:
L→L' is a use case FSA A'=(S, s0,Sf , L’, E’) such that:

)),(,(''',),,(2121 slRenamesethatsuchEeEslse =∈∃∈=∀

The clone of a use case is obtained by renaming its different labels using a renaming
function.

We will use synchronization for composing FSAs. We present our definition of
synchronized product which is based on synchronization at common labels.

Definition 2 (Synchronized product on common labels)
Let Ai = (Si, s0

i, Sf
i, Li, Ei) for n FSAs. We define the synchronized product of Ai

i=1..n in their common labels as the connected component containing the state (s0
1,

…,s0
n) of the FSA (S, s0, Sf, L, E) where S ⊆ S1×…×Sn, s

0
=(s0

1,…, s0
n), S

f⊆ (Sf
1×…×Sn)

∪ (S1×Sf
2×…× Sn) ∪…∪ (S1×S2×…× Sf

n), L ⊆ (L1∪ L2∪…∪ Ln), and E is the set of
transition defined by the inference rules :

)2(
))(()),((),),...,(),...,((

)}(/{)),'((

)1(
),..,',..,,(),..,,..,,(

)1,(),'(

"'"""
11

1

2121

JiifssJiifssEssss

LljJwhereJkEss

Essssssss

nijLlEss

iiiin
l

n

j
nij

ki
l

i

ni
l

ni

jii
l

i

∉=∈=∈⎯→⎯

∩∈=∈∈⎯→⎯

∈⎯→⎯

≤≠≤∉∈⎯→⎯

≤≠≤

Rule (1) states that when a label belongs to a unique FSA, then only this FSA fires
the transition. Rule (2) shows that when a label belong to more than one FSA, then all
these FSAs synchronize in order to fire the transition at the same moment.

After specifying the use cases to compose, the analyst has to describe properties.
We use the Computation Tree Logic (CTL) formalism for its expressiveness to
describe both safety and liveness properties of the system in the states. Given a CTL
formula ϕ and a state s, s ϕ whenever ϕ is true in s.

Definition 3 (Join Point Set)
Let A = (S, s0, Sf, L, E) a use case FSA. Join point Set J of a CTL formula ϕ in A is a
set of states S such that J={s∈S / s ϕ }.

This set defines the states where the composition will be performed.

 Composition of Use Cases Using Synchronization and Model Checking 295

3 Assignment Specification

3.1 Use Case Composition Operators

The analyst can specify different operators to model interactions between use cases.
The Include composition operator specifies that the base use case has to include
the behavior of the referred use case during the execution flow in the join point. After
the execution of the referred use case, the base use case would resume from the join
point. The Extend_with composition operator specifies that the behavior of the
base use case may include the behavior of the referred use case. Again After the
execution of the referred use case, the base use case would be resumed from the join
point. Finally, the Interrupt_with composition operator specifies that
the flow of execution of the base use case may be interrupted by the referred use case.
In this case, unlike the previous operators, base use case would not be resumed after
the execution of the referred one. We are presenting our approach in the case of these
three which are the most known operators. However, our approach is not limited to
them and the same process can be applied in order to consider other operators such as
sequential concatenation.

3.2 Assignment Description

Assignments are used to specify the composition information between two use cases.
These assignments are equations used to create new use case FSAs from the existing
ones with respect to the semantics of the composition operators. They follow the
syntax:

Z: = Composition_Operator (X, Y) Where ϕ

Where Z represents the FSA that will be generated from the evaluation of the
assignment, X is the base use case and Y is the referred one.
Composition_Operator represents one of the three specified composition
operators, Include, Extend_with, and Interrupt_with. Finally, Where ϕ
defines the set of join points where the composition will be performed. As said
previously, it is defined by the set of states where the property ϕ holds.

It is important to note that the composition is performed on states rather than
transitions. Contrarily to a transition based composition, a state based composition
results in all edges related to that state being affected by the assignment.
Furthermore, unlike other approaches such as aspect-oriented approaches, there is no
need for the qualifiers Before and After defined with the join point where the
composition is done. In our case, the two expressions “Before s” and “After s” lead
to bisimilar FSAs .

4 Use Case Composition Approach

4.1 Join Point Generation

After the definition of the assignment by the analyst, the property as well as the base use
case is sent for model checking. As stated before, this property is used to find the set of

296 R. Mizouni et al.

states on which the composition should be performed. Since model checkers return only
true or false with a counterexample, for each state of the base use case starting from the
initial one, we run the model checker as if it was the initial state of the base use case. If
it returns true then the property holds in that state, if it returns a counter example, then
the property does not hold in that state and is not a member of our joint point set. The
resulting set would act as the place where the composition should be done.

As a result of the model checking step, the join point set could be empty or not. In
case of empty set, the base use case will never verify such property and no new use case
can be generated from the evaluation of the assignment. Therefore a revision of either
the property or the use cases is needed. On the other hand, when the resulting join point
set contains more than one state, the composition of the two use cases should be done in
all these states. For that purpose, two approaches can be considered. The first one is to
do the composition in an incremental manner. This means that we compose first the two
use cases in one state. Then, the resulting use case from the first iteration is used for
composition in another state and so on until all the join points are considered. This
approach brings the problem of state traceability since the resulting states from the first
iteration are no more the states present in the base use case and hence they can not be
traced. Moreover the convergence of the approach has to be proved since the
synchronized product may duplicate states in the resulting use case. The second solution
consists of generating FSAs that takes into account the semantics of the assignment on
the different states where the property holds and then applying synchronization on all of
them in order to derive the new use case. We present this solution in the next section.

4.2 Composition Approach

After retaining the join point set, base and referred use cases have to be composed.
From behavioral point of view, the traces of the referred use cases are inserted within
the trace of the base use case in all the states of the join point set with respect to the
semantics of the operator. In order to achieve this composition, we propose to
synthesize a set of FSAs from the use case FSA, which we call builders. Each builder
reflects the semantics of the composition operator in a join point. Builders would
synchronize in order to generate the intended new use case. They are generated
automatically from use cases with respect to specific synthesis rules as we will show
next. Fig. 2 shows the composition approach. After determining the set of join points,
a set of referred use case clones has to be generated by labeling renaming. Next,
builders are generated and then composed, resulting in a synchronized product from
which we extract an intermediate use case FSA. Finally, we generate the new use case
by recovering the original labeling of the referred use case. This new use case is
added to the originally specified set of use cases and may be used for describing new
assignments. In the next section, we present the formal details of each of these steps.

4.2.1 Clone Synthesis
As mentioned in Definition 1, clones of a use case are generated using a renaming
function for relabeling the alphabet of the original use case. In fact, for each join point
s ∈ J, a clone of the referred use case has to be generated. This is for two reasons: (1)
to differentiate it during the synchronization and hence avoid deadlock caused by
common labels (2) to synchronize with the base use case builder generated for
composition in state s.

 Composition of Use Cases Using Synchronization and Model Checking 297

Synchronized Product

Generating
Intermediate New Us case

Assignment

YX

Referred Use Case Instances

Generating

Joint Point Set

Z

Generating
New Use Casenew use case

Automated Composition

Generating
 Builders

Generating

Fig. 2. Composition Approach

In order to automate the synthesis of the clone FSA, we define a renaming function
that modifies the labeling of the FSA. It uses the joint point state where the clone will
be considered for composition. Let A1= (S1, s

0
1, S

f
1, L1, E1) and A2= (S2, s

0
2, S

f
2, L2, E2)

two use case FSAs such that A1 is the base use case and A2 is the referred one. Let ϕ
be the property specified in the assignment and J the set of join points retained from
the model checking phase. The renaming function for state s ∈ J is:

ss

ss

ss

ss
s

s

endendf

beginbeginf

llfLl

thatsuchendbeginLendbeginLf

=
=

=∈∀
∪→∪

)(

)(

)(,

:},{},{:

2

22

The labels begin and end are put during the generation of builders. They are used
for synchronization in order to indicate where the referred use case has to be inserted
in the base use case. The generated clone of FSA A2 with the renaming function fs is

the FSA),,,,(222
0
222

ssfs ELSsSA
clone

= .

k

s10 sk

Referred builder
Generation

Base Builder

1Generation in s
Referred builder

Generation
Referred builder

GenerationGeneration in s
Base Builder

Generation in s

SYNCHRONIZATION

Renaming Function

...

Renaming Function Renaming Function

JOIN POINT SET

used for

used for used for

used for

used for

used for

s1

fs1
fs10

fsk

Referred Use case Referred Use case Referred Use case
Clone Generation Clone Generation Clone Generation

Base Builder

10

Fig. 3. Synthesis of base and referred builders

298 R. Mizouni et al.

4.2.2 Base Use Case Builders Synthesis
When there is more than one state in the join point set, we end up with a set of base
builders, each of them constructed in order to show the insertion of a corresponding
referred builder in the join point state, as illustrated in Fig. 3. It is the renaming

Table 1. Synthesis Rules of Base builders

Include (X,Y) Where ϕ (ϕ holds in the state s)

}q'{q,SQ ∪=
S (3)

ff SQ =

fS
 (4)

Txx

sxExx
a

a

∈⎯→⎯

≠∈⎯→⎯

'

))'((),('
 (5)

TxqTqqTTqx

sxExx
endfbeginfa

a

ss ∈⎯⎯⎯ →⎯∈⎯⎯⎯ →⎯∈∈⎯→⎯
=∈⎯→⎯

)'(,)'(,)(

)'(),'(

1
)()(

 (6)

Extend_with(X,Y) Where ϕ (ϕ holds in the state s)

}q'{q,SQ ∪=
S

(7)

ff SQ =

fS

(8)

Txx

sxExx
a

a

∈⎯→⎯
≠∈⎯→⎯

'

')(),(

(9)

TqqTqx

sx
endfbeginf ss ∈⎯⎯ →⎯∈⎯⎯⎯ →⎯

=
)'(,)(

)(
)()(

(10)

)'(),(

)(),(
''

'

TxqTxs

sxExx
aa

a

∈⎯→⎯∈⎯→⎯
=∈⎯→⎯

(11)

Interrupt_with(X,Y)Where ϕ(ϕ holds in state s)

}q'{q,SQ ∪=
S

(12)

}{q'SQ ff ∪=

fS

(13)

Txx

Exx
a

a

∈⎯→⎯
∈⎯→⎯

'

')(

(14)

TqqTqx

sx
endfbeginf ss ∈⎯⎯ →⎯∈⎯⎯⎯ →⎯

=
)'(,)(

)(
)()(

(15)

 Composition of Use Cases Using Synchronization and Model Checking 299

function fs which is building this link. In fact, for each state in the set of join points, a
clone of the referred use case is created using fs and a base builder is synthesized to
show the insertion of referred use case in the state s.

For each s ∈ J, we construct a base builder from the use case A1 with respect to the
renaming function fs. The synthesized base builder is an FSA

))},(),({,,,(0
1 TendfbeginfLQqQA ss

fs ∪= that reflects the semantics of the

composition operator as well as the join point s. The labels of the base use case are
not renamed in the base builder, only two labels fs (begin) and fs(end)) are added
which serve as the common label indicating the start and the end of the insertion of
the referred use case within the base one. The two builders will synchronize on these
labels. We present the set of synthesis rules of the FSA A1

s in Table 1 for each of the
composition operators we defined. These rules are defined for a unique join point s.

Let’s consider the case of an Extend_with composition in the state s. The
synthesis of the base builder follows the rules (7-11). Rule (7) defines the set of the
states of the builder FSA while Rule (8) defines the set of its final states. Rule (9)
shows that the labeling of all the transitions that are not outgoing from s are labeled
with the same label a. Rule (10) demonstrates that from the state s new added
transitions labeled with fs(begin) and fs(end) synchronize with the builder of referred
use case clone. Finally, Rule (12) shows that all the outgoing transitions of s are
duplicated in order to handle resuming of the base use case after the insertion of the
referred use case clone. Fig. 4 (d) gives an example of such a base builder.

Final State

x2x3

(c)

x6 x5

x1

x4

b1

b2

x1

 a

begin x1

end

gcb

e

d

f

Basebuilder of the assignment
W:=Interrupt_with (X,Y) Where P

x2x3 b2

(d)

x1

x4 x5x6

b1

Basebuilder of the assignment

a

e

f

e a

begin

end x1

g
cb

d

x1

Y:=Extend_with . (X,Y) Where P

x2x3

(a)

ae

c
d

x4 x6 x5

b

g

Use Case X

x1f

x2x3

(b)

 Z:=Include (X,Y)Where P

x1

x4

b2

b1

begin

end

a

x5x6

f
x1

x1

cgbd

Basebuilder of the assignment

e

s State Where P holds

Legend

s

s Initial State

Fig. 4. Examples of Base Builder of an assignment : (a) base use case (b) synthesized base
builder with include operator in state x1 (c) synthesized base builder with Interrupt_with
operator in state x1 (d) synthesized base builder with Extend_with operator in state x1

300 R. Mizouni et al.

4.2.3 Synthesis of Referred Builders
The synthesis of the referred builder is independent of the operator and the states in
the join points set. Each referred builder is synthesized from clones of the referred use

case using the following rules. Let),,,,(222
0
222

ssfs ELSsSA
clone

= the FSA of the

referred use case clone synthesized from A2 with the renaming function fs.

The referred builder of sA2 with the same renaming fs is a use case FSA

))},(),({,,,(2
0

2 TendfbeginfLQqQA ss
sfs ∪= such that:

{q})S(Q ∪=
S (16)

{q})(Qf =
S

 (17)

Tsq

s
beginfs ∈⎯⎯⎯ →⎯ 0)(

0
 (18)

Tss

Ess
a

a

∈⎯→⎯

∈⎯→⎯
'

'

 (19)

Tqs

Ss
endf

f

s ∈⎯⎯⎯ →⎯
∈

)(

(20)

Rule (16) defines the set of states of the referred builder as the set of states of the
referred use case with an additional state q. Rule (17) defines the set of final states of
the referred builder. According to Rule (18), a transition is fired from the initial state
of the builder to the corresponding state of the initial state of the referred use case.
This transition is labeled with fs(begin). Rule (19) implies that the builder evolves as
the referred use case. Finally, Rule (20) reflects that all the final states are transited to

the unique final state of sA2 with the label fs(end), which is the initial state of the

builder. Fig. 5 illustrates an example of a synthesized referred builder using these
rules.

f

x2x3 x1

x6 x5s

s

b1

(b)

s

x2x3

 end

 f

se

begin

a

c
b d

s

s

s

s

 end s

(a)

a

x5

x1

d b c

s

sss

se

x6

s

Fig. 5. Example of referred builder (a) referred use case clone with a renaming function fs(b) its
referred builder synthesized using rules (16-20)

 Composition of Use Cases Using Synchronization and Model Checking 301

4.2.4 Intermediate Use Case Generation
When builders are generated, their composition is achieved within their synchronized
product on common labels (using Definition 2). During this synchronization, the
referred builders will never synchronize since they have different edges labeling. In
addition, referred and base builders synchronize only on fs(begin) and fs(end), s∈J.

Hence, we verify that ∅=∩
∈

)(21
s

Js
LL . This verification does not constraint the

approach. In fact, if the intersection is not the empty set, a simple renaming for the
common labels can be made and then recovered after the synchronization.

The resulting automaton still does not represent the intermediate use case since some
of its transitions are labeled by fs(begin) and fs(end), s∈J. These transitions are treated
as -transition and removed using the -transition removal algorithm in [2]. They were
needed only for the generation of the synchronized product of the builders reflecting the
semantics of the composition operator in the join points. After this step, the synthesized
FSA represents the intermediate use case. It is illustrated in step (4) in Fig. 6.

4.2.5 Labeling and Final States Recovery
Let A1 = (S1, s

0
1, S

f
1, L1, E1) be the base use case and },{As

2clone
Js∈ the set of the

referred use case clones where J is the set of join points. Let

T)),L(L ,Q,q (Q,C s
2

Js
1

f0

∈
∪= the generated intermediate use case. We call it

intermediate since it still holds the renaming of labels used to generate the different
clones of the referred use case. Therefore, we have to restore the original labeling to
gain the final use case. For this purpose, we define a renaming function g such that:

=∈∈∀
=∈∀

∪→∪
∈

llfgJsLl

llgLl

whereLLL

ss

s

Js

))((,,

)(,

:L)(:g

1

2121

The label restoration of the intermediate use case results in the new use case as
shown in step(5) of Fig. 6. By determining the set of final states, the final use case
would be achieved. The set of final states Sf of the newly generated use case D=(S, s0,
Sf, L1∪ L2, E) is defined with respect to the composition operator specified between
A1 and A2. In the case of Include and Extend_with composition operators, the
set of final states of the new use case represents all the states labeled by one of the
final state of the base use case.

f
n

f
in

Ssss

SsSsss

∈

∈∈

),...,,(

)(),),...,,((

21

121 (21)

However, in the case of Interrupt_with composition operator, the set of final
states of the new use case represents the union of all the states that are labeled by one
of the final states of the base use case or the referred use case. This stems from the
fact that the Interrupt_with operator does not let resumption of the base use
case after the execution. Therefore the set of the final states in this case follow the
rule (22) as well as the rule (21):

302 R. Mizouni et al.

f
n

f
in

Ssss

SsSsss

∈
∈∈

),...,,(

)(),),...,,((

21

221 (22)

It is important to mention that unlike the approach in [3] , our approach does not
introduce any non-determinism. In fact, if the use cases specified are deterministic,
the generated use cases from assignments would be also deterministic. An example of
the overall process of the composition is shown in Fig. 6.

1

 Generation

Clone

Use Case X

bc

4

a
g

1

2

3 4 y4y3

 Use Case Y

e

d

h

y2

y1

f

Z:= Include (X,Y) Where P

(a)

y2 y2

(b)

y1

d1f1

h1

y4

y1

h2

d2f2

y4

e2e1

y3y3

Clone2Clone1

<1,rb,1,rb>

<bb,y1,1,rb>

<bb,y2,1,rb>

<bb,y4,1,rb>

<be,rb,1,rb>

begin1

h1

g

e1

end1end1

a

f1 d1

<bb,y3,1,rb>

<4,rb,4,rb>

b

<2,rb,be,rb>

end2 end2

<2,rb,bb,y3>

c

<2,rb,bb,y4>

<2,rb,2,rb> <3,rb,3,rb>

e2h2

<2,rb,bb,y2>

d2f2

<2,rb,bb,y1>

begin2

(d)

y2

y1

rb

y3 y4

begin2

d2

h2

f2

e2

end2 end2

Referred Builder of Clone 2

y2

y1

rb

y4y3

begin1

d1

h1e1

f1

end1 end1

Referred Builder of Clone 1

1

2

4

be

3 4

bb

g

a

begin2

end2

bc

Base Builder in state 2

1

bb

be

4

2

43

begin1

end1

a

b
c

g

Base Builder in state 1

z3

z9

z6

z7

d1

b

c

z8

z11

z12

z10

z2

z4 z5

f1

d1

d2f2

c

a
a

e2 h2

e1 h1

b

d2 g
g

z1

z3

z9

z6

z1

z7

z8

z11

z12

z10

z2

z4 z5

a
a

g
g

d

f d

he

d

e h

d

f

c

c

bb

(f)

5

Labeling

Recovery

2

Generation

Builder

3

Synchronization

on common labels

(c)

(e)

z12

4 RemovalTransition

Fig. 6. Example of Use Case Composition using Assignment Expression: (a) original
specification: use case X and Y and the assignment Z (b) clones of the referred use case (c)
builders of the use case X in state 1 and state 2 as well as the referred builders of the clones of
Y (d) Synchronized product of base and referred builders (e) the intermediate use case (f) the
generated use case Z

 Composition of Use Cases Using Synchronization and Model Checking 303

5 Application on Distributed Use Cases

Distributed use cases are those where the communication between the different
entities is described. In order to show the applicability of our approach on the
distributed systems, we choose the specification of a distributed Invoice Ordering
System.

Canceling Order

9

10

C.S.invoiceID

S.M.invoicedID

6

Init

1

2

 3

5

4

S.C.newOrderInfo

S.M.creditCheck

S.C.existingOrderInfo

C.S.enterID

S.M.getInfoID

M.S.returnInfoID

7

M.S.isValid

M.S.isUnValid

S.C.newCredit

Invoicing Order

C.S.cancelOrder

S.C.confirmCancel

S.M.cancelID

S.C.canceled

M.S.canceled

C.S.confirmed

Init

3

6

 2

1

4

5

C.S.notConfirmed

Fig. 7. Invoice and Cancel order use cases

In order to let our use case model handle the description of distributed use cases,
we represent the labeling of the FSA in the form of (O1.O2.m) where O1 and O2 are
the communicating objects, and m is the message sent from the object O1 to the object

O2 [4]. We present in Fig. 7 two use cases of the invoice ordering system
specification. Three objects are communicating in the system: the customer (C), the
system (S), and the resource manager (M). Let's build a new use case, Ordering,
where it shows that the costumer is authorized to cancel its ordering if the order is not
yet invoiced. The assignment is:

Ordering: = Interrupt_with (Invoicing, Canceling) Where
(AG(orderID)∧ AG((!invoiced)U (invoiced))

The CTL property states that the customer may cancel his order from the time of
receiving the confirmation of his order ID (new or existing) and before invoicing his
order. According to this assignment, the set of states that verify the property is
{3,4,5,6,7}. The use case Canceling order will be composed with the

304 R. Mizouni et al.

Interrupt_With semantics in those states. We note that after the composition of
use cases, it is possible to decompose the obtained FSA to communicating FSAs per
object. This could be done with the projection of the behavior on the objects, as
presented in our previous work [4].

6 Related Work and Discussions

Many approaches have been developed to synthesize state-based models from a set of
use cases [5-11]. State-based models are basically needed to verify and validate the
user requirements in order to detect design problems as soon as possible. In this paper
we tackled the issue of automatic generation of system automaton based on use case
composition through assignment evaluation.

The emerged notations to specify use cases have different degrees of
expressiveness and formality. Glinz [12] uses statecharts to model scenarios. The
integration of scenarios is performed in a way to retrieve the relationship between
scenarios by keeping their internal structure unchanged, and to detect inconsistencies.
The approach proposed carries only the composition of disjoint scenarios with
elementary constructors (sequential, alternative, iteration and concurrency
constructor). As an extension of this work, Ryser [13] introduces a new kind of chart
and notation to model dependencies among scenarios. The advantage of this approach
is the fact of capturing clearly these inter-scenarios dependencies. Yet, this work is
presenting a notation rather than a methodology that can clarify the dependencies
between different scenarios. Bordeleau et al. [14] have proposed integration patterns
for scenario dependencies. UCMs are used to detect dependencies between scenarios.
A state-based specification per use case is generated for each component and
integrated to reflect the scenarios dependencies. The whole process is done manually
and relies on the creativity of the analyst to connect together the different statecharts
in the right way. Araujo et al. [15] focuses on representing aspects during the use case
modeling. They propose to differentiate between aspectual and non-aspectual
scenarios. Similar to our approach, the integration is done on the state machine level.
The relationships between use cases are defined through an interaction pattern and
defined in term of roles. In our case, we propose composition operators to generate
new use cases that integrate the behaviors of the original ones.

During the composition of use cases into transition-based system, the challenge is
to identify states at the scenario level that serve as join points between use cases.
There are two kinds of state characterization: trace-based [5-7, 16], and variable (or
label) state-based characterization [8, 9, 17]. In this paper, we propose to detect these
states using a model checking approach. The state where the composition has to be
made verifies a certain property of the use case. This helps considerably the analyst
since he has no more the arduous task to detect the right state.

Our approach differs substantially from the earlier presented work in some points.
During the process of generating the specification, the analyst has the opportunity to
define assignments in an incremental manner. Hence the order in which these
assignments are specified has a direct impact on the resulting use cases. In fact, the
states that will be generated from the model checking system will differ with different
orders in presenting the assignments. Consequently, having different combinations of
defining assignments and then choosing the proper order may ease the process of

 Composition of Use Cases Using Synchronization and Model Checking 305

obtaining the expected behavior. In addition, we kept the model as rich as possible by
having use cases described as FSAs without complicating the composition procedure.
Having well-established synthesis rules for each composition operator and a
composition based on the well known concept of synchronized product makes the
composition automated, formal and straightforward.

7 Conclusion

In this paper, we presented an approach for composing use cases based on the notion
of assignments. Each assignment includes a base use case, a referred use case, a
composition operator, and a CTL property which is used to identify the states on
which the composition will be done, called joint points. The CTL property and the
base use case are sent to a model checking tool in order to determine the joint points,
where to perform the composition. The composition approach consists of three steps.
First, clones of the referred use case are generated using a renaming function. Then,
proper builders that reflect the semantics of the composition operator and the join
pints are synthesized and their synchronized product on common labels is generated.
Finally the obtained automaton is processed through a relabeling function in order to
recover the original labeling. The obtained FSA represents the behavior of the base
and the referred use cases, merged on the states which hold the specified property
with respect to the semantics of the composition operator.

Our approach is fully automated because of the synthesis rules for constructing
builders and the synchronization mechanism used for composition. It also has the
advantage of providing a helpful support for the analyst, especially when join points
are not clearly evident, which may be the case proceeding with the composition. In
fact, the size of the use case automaton grows significantly after the composition,
adding to the complexity of specifying join points manually. Furthermore, an optional
validation by the analyst after the selection of the join points may be envisaged. The
expansion and enrichment of the model as well as the composition approach is seen as
a part of future work. A tool supporting and visualizing the composition approach is
under construction.

References

[1] E. M. Clarke, J. O. Grumberg, and D. A. Peled, Model Checking: MIT Press, 1999.
[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation second edition ed: Addison Wesley 2000.
[3] R. Mizouni, A. Salah, R. Dssouli, and S. Kolahi, "Role of Variables and Interactions in

Use Case Composition," presented at New Technologies for Distributed Systems
(NOTERE'06), Toulouse, France, 2006.

[4] A. Salah, R. Mizouni, R. Dssouli, and B. Parreaux, "Formal Composition of Distributed
Scenario," presented at FORTE : International Conference on Formal Techniques for
Networked and Distributed Systems, Spain, 2004.

[5] D. Harel and H. Kugler, "Synthesizing State-Based Object Systems from LSC
Specifications," Int. J. of Foundations of Computer Science, vol. 13, pp. 5-51, 2002.

[6] K. Koskimies and E. Mäkinen, "Automatic Synthesis of State Machines from Trace
Diagrams," Software-Practice and Experience, vol. 24, pp. 643-658, 1994.

306 R. Mizouni et al.

[7] E. Mäkinen and T. Systä, "MAS – An Interactive Synthesizer to Support Behavioral
Modeling in UML," presented at ICSE 2001, Toronto, Canada, 2001.

[8] R. Dssouli, S. Some, J. Vaucher, and A. Salah, "Service creation environment based on
scenarios," Information and Software Technology, vol. 41, pp. 697-713, 1999.

[9] S. Uchitel, J. Kramer, and J. Magee, "Synthesis of behavioral models from scenarios,"
IEEE Transactions on Software Engineering, vol. 29, pp. 99-115, 2003.

[10] J. S. Jon Whittle, "Generating statechart designs from scenarios.," presented at the 22nd
International Conference on Software Engineering, 2000.

[11] D. Amyot, W. D. Cho, X. He, and Y. He, "Generating Scenarios from Use Case Map
Specifications," presented at Third International Conference on Quality Software
(QSIC'03), Dallas, November 2003.

[12] M. Glinz, "An integrated formal model of scenarios based on statecharts," presented at
Proceedings of the~Fifth~European Software Engineering Conference, 1995.

[13] J. Ryser and M. Glinz, "Dependency Charts as a Means to Model Inter-Scenario
[14] Dependencies," presented at In G. Engels, A. Oberweis and A. Zündorf (eds.):

Modellierung 2001. GI-Workshop, volume P-1, Bad Lippspringe, Germany, 2001.
[15] F. Bordeleau and J. P. Corriveau, "On the Importance of Inter-Scenario Relationships in

Hierarchical State Machine Design," presented at In Proceedings of Fundamental
Approaches to Software Engineering (FASE'2001), held as part of the Joint European
Conferences on Theory and Practice of Software ETAPS'2001., Genova, Italy, 2001.

[16] J. W. J Araújo, D-K Kim, "Modeling and Composing Scenario-Based Requirements with
Aspects " presented at the 12th IEEE International Requirements Engineering Conference
(RE'04), Kyoto, Japan, 2004.

[17] I. Krüger, R. Grosu, P. Scholz, and M. Broy, "From MSCs to Statecharts," presented at
Distributed and Parallel Embedded Systems, 1998.

[18] A. Salah, R. Dssouli, and G. Lapalme, "Compiling real-time scenarios into a Timed
Automaton," presented at FORTE : International Conference on Formal Techniques for
Networked and Distributed Systems, 2001.

PN Standardisation: A Survey

L. Hillah1, F. Kordon1, L. Petrucci2, and N. Trèves3

1 Université P. & M. Curie - Paris 6, CNRS UMR 7606 - LIP6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

Fabrice.Kordon@lip6.fr, Lom-Messan.Hillah@lip6.fr
2 LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

Laure.Petrucci@lipn.univ-paris13.fr
3 Cedric, CNAM

292, rue St Martin
F-75141 Paris Cedex 03, France

treves@cnam.fr

Abstract. Petri Nets formalism requires standardisation to facilitate
the work of researchers in this field and to enable the data exchange
between different Petri Nets tools through a common format. Following
this, a three-part International Standard (ISO/IEC 15909) has been de-
veloped. Part 1 is devoted to terms and definitions for Place/Transition
Nets and High-Level Petri Nets. It is now completed (published as a stan-
dard) but will include an addendum on Symmetric Nets. Part 2 aims at
providing a transfer format for High-level Petri Nets, called PNML, based
on XML. Work on part 3 which deals with extensions has not started yet.
In this paper the first two parts of the standard are presented. Then, to
support part 2, an implementation of PNML, through an API framework
to be integrated into Petri Net tools, is proposed. It allows for the trans-
lation of any Petri Net, designed by a given tool in a dedicated format,
into PNML.

1 The Challenge of PN Standardisation

Petri Nets [4,8,26,28] are a mathematically defined formalism and may thus
be used to provide unambiguous specifications and descriptions of applications.
They are especially dedicated to specify and design discrete event systems and
this technique is particularly suited to parallel and distributed systems devel-
opment as it supports concurrency. The technique allows for specification of
systems at a level which is independent of the implementation choices (i.e., by
software, hardware — electronic and/or mechanical — or humans, or a combina-
tion of these) and has been widely used to describe telecommunication systems,
protocols, microprocessor architectures,... since their invention in 1962. They
also constitute an executable technique, allowing specification prototypes to be
developed to test ideas at the earliest and cheapest opportunity. Specifications
written in the technique may be subject to analysis methods to prove proper-
ties about the specifications, before implementation commences, thus saving on

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 307–322, 2006.
c© IFIP International Federation for Information Processing 2006

308 L. Hillah et al.

testing and maintenance time and providing a high confidence in the quality
of the product to be developed. However these analysis methods are efficient
only if they are supported by tools: for example, CPN-AMI [25], GreatSPN [9],
PEP [13], CPNtool [22], automate the analysis process.

A problem with Petri nets is the explosion of the huge number of elements
when described in their graphical form, for specification of complex systems.
High-level Petri Nets [17] were developed to overcome this problem by intro-
ducing higher-level concepts, such as the use of complex structured data carried
by tokens, and using algebraic expressions to annotate net elements. The use of
high-level concepts within this Petri net framework is analogous to the use of
those in high-level programming languages (as opposed to assembly languages).
In the Petri nets community the term High-level net is generally used to refer
to nets using such concepts.

Two of the early forms of high-level nets are Predicate-Transition Nets [12]
and Coloured Petri Nets [16], first introduced in 1979 and further developed
during the 1980s. Most of nowadays high-level nets build on these. They also
use some of the notions developed for Algebraic Petri Nets [29], first introduced
in the mid-1980s.

Furthermore, there are many different variants of Petri nets. Extensions of
the technique, including time, stochastic features, capacities, and hierarchies as
well as special Petri net types exist in the literature (see [2,8]...).

Standardisation of the technique has been seen as an opportunity to obtain
a better organisation of the work in the Petri Net community. It has several
issues:

– to enable the stakeholder — researchers, as well as engineers using Petri nets
— to use the same terminology;

– to develop future extensions on a stable common basis, e.g., P/T nets or
High-level nets;

– to provide a reference implementation that will facilitate the data exchange
between different Petri nets tools through a common format.

The purpose of this paper is to present the PN standard, referenced under
ISO/IEC 15909, as well as related work. First, the standard, which is organised
in three different parts, is described. Then the current status of the work is given,
followed by an implementation which is expected to prove very useful for the
PN community.

2 The Structure of the Standard

The PN standard has been designed into three independent parts in order to
enable flexibility of the standardisation process.

Part 1 [15] provides the mathematical definitions of High-level Petri Nets,
called the semantic model, the graphical form of the technique, known as High-
level Petri Net Graphs (HLPNGs), and its mapping to the semantic model. Part
1 also introduces some common notational conventions for HLPNGs.

PN Standardisation: A Survey 309

Part 2 [18] [19] of this international standard defines a transfer format in
order to support the exchange of High-level Petri Nets among different tools.
This format is called the Petri Net Markup Language (PNML). Since there are
many different versions of Petri nets in addition to High-level Petri Nets, this
standard defines the core concepts of all Petri Net types along with an XML
syntax, which can be used for exchanging any kind of Petri Net. Based on this
PNML core model, part 2 also aims at defining the transfer syntax for the two
versions of Petri Nets that are already defined in part 1 of this International
Standard, Place/Transition Nets and High-level Petri Nets.

An addendum to Part 1 [20] of this standard introduces Symmetric Nets,
formerly known as Well-Formed nets [6], as a subclass of High-level Petri Nets,
which uses a restricted set of algebraic operators and allows for good analysis
possibilities.

Part 3 is devoted to the standardisation of Petri nets extensions, including
hierarchies, time and stochastic features. These extensions will be built upon
extensions of the core model. They require a stable version of the core model to
be available. This is not the current situation at this stage. Hence, only parts 1
and 2 are presented below.

The standardisation process is quite long and relatively complex. A standard
must be built in order to be stable enough to be used by the people involved. It
is developed within a schedule which should not exceed three years and is subject
to revision every five years. More information on the rules can be found at [10].

Part 1 obtained the status of International Standard in december 2004. The
addendum has been proposed by France and has currently the level of Working
Draft (stage 20.60 in the ISO nomenclature).

At this level, the possibility is offered to the community to contribute. When
the standard has reached the step forward, the Committee Draft level, it gains
restricted aceess, with rights reserved to ISO experts only.

Part 2 has today the same status as the addendum.
Work on part 3 has not started yet, as it requires a stable version of the PNML

core model to be available. As a consequence, the work on this part will start as
soon as PNML is standardised.

2.1 Part 1

The first part of ISO/IEC 15909 was published as an International Standard
(IS) in december 2004. It provides a comprehensive documentation of the ter-
minology, the semantical model and the graphical notations for High-level Petri
nets. It also describes different conformance levels. Finally, a tutorial example
given in annex illustrates the different concepts in the standard.

A glossary introduces the different terms to be used in the Petri net context.
They thus have a precise meaning, which is explained in natural language in the
glossary and further detailled later using mathematical notations. The document
is thus self-contained and avoids any ambiguity.

The semantic model for High-level Petri nets is defined, using precise mathe-
matical notations. All basic elements required to work with High-level Petri nets

310 L. Hillah et al.

are thus introduced: high-level Petri net, marking, enabling of transition modes,
and transition rule.

These mathematically defined concepts are then reintroduced using natural
language and explanations, and related to the graphical notations which are
more commonly used in practice. Hence, the graphics representing the nets are
defined.

This graphical presentation is further formalised as a High-level Petri Net
Graph. It also has a semantics. It can be viewed as a graph oriented perspective
for the high-level Petri net semantic model.

An important issue in standards design is the conformance level. Indeed, other
work or tools can be compliant with the standard as a whole, or just part of
it. This latter case may be sufficient for some particular purposes. Different
conformance levels are thus defined, both for Petri nets and High-level Petri
nets, depending on whether the graphical notation is taken into account.

Extensive mathematical notations are defined as normative in an annex.
Another normative annex defines net classes. Up to now it only comprises
Place/Transitions nets (i.e. Petri nets). Another class definition for Symmet-
ric nets (formerly known as Well-Formed nets) is currently in the process of
being an addendum to part 1 of the standard.

2.2 Part 2

The objective of part 2 is to define an interchange format for Petri nets called
PNML (Petri Net Markup Language) [3]. This interchange format relies on XML
technology.

However, designing an interchange format in the context of this standard is a
difficult task since part 3 will introduce more Petri net types. It is obvious that
an exchange format only suitable for the Petri net types defined in part 1 is not
appropriate. This problem was already outlined in a preliminary study in 2000
that was classifying tools according to the type of supported Petri nets [1].

Moreover, tools usually introduce small variations in Petri nets and create
their own ”dialect”. These variations are mainly due to syntactical aspects, to
some graphical facilities or the way ”actions” are added to the specifications.
Actions are a way to provide help to the system designer, for example by making
available instructions to ease animation of the specification, or add breakpoints.

So, to cope with all these goals, PNML must be able to:

1. allow to introduce smoothly new information associated with new Petri nets
types or, by restriction, allow to hide some information from an inherited
Petri net class.

2. support data aside of the standard, to let tools supporting non-standard
extensions of another tool be able to handle it.

We provide hereafter some details about these two points. The next section
will provide information about the way we handle them appropriately in the
standard by using model engineering techniques implemented using EMF [11]
technology from Eclipse.

PN Standardisation: A Survey 311

Handling a hierarchy of Petri net types. Our first problem is related to the
adjunction of new Petri net types in part 3 of the standard. Let us consider
the small hierarchy expressed in figure 1. P/T nets are the root class since they
only define the basics of Petri nets. Then, they can be extended to Symmetric
nets proposed to be an addendum to part 1 [20]. Since Symmetric nets are a
restriction on the color functions and types allowed in a High-level net, there is
another trivial relation to them.

High-Level nets

Symmetric nets timed nets

P/T nets

Symmetric-timed nets

Fig. 1. Example of Petri net types hierarchy

Let us now consider another set of features in Petri nets: time management.
So, timed nets can be derived from P/T nets by adding the time information
to transitions as in [2]. We can also consider that Symmetric-timed nets inherit
from both timed nets and symmetric nets.

The interchange standard must be flexible enough so as to allow any conver-
sion from one of these representations to any other one without loosing infor-
mation when the tools do handle them. It is crucial that the standard is able to
handle a hierarchy of Petri net types.

High-Level nets

Symmetric nets

timed netsP/T nets

Symmetric-timed nets
inhibitor arcs

test arcs

capacity

Fig. 2. Connections of the Petri net hierarchy to ”local variations”

Handling small variations in Petri net types. Our second problem is to deal with
local variations within a Petri net type such as inhibitor arcs, capacity in places
or any other tool specific information (such as graphical specificities). This is
illustrated in figure 2. We consider there variations such as inhibitor and test
arcs, as well as capacity places. Such variations can be operated for several types
of Petri nets. In our figure, we consider they are all relevant for Symmetric nets
and for P/T nets. Only inhibitor and test arcs are also considered for timed
nets.

312 L. Hillah et al.

Once again, the standard must be able to cope with such variations at various
levels in the Petri net types hierarchy. It is important to normalize as many
variations as possible to have them compatible all over the Petri net hierarchy.

3 Current Implementation of Part 2

The second part of the standard defines a universal transfer format (PNML) for
exchanging Petri net models among Petri net tools. Hence, its primary purpose
is to enable interoperability.

In this section, we first of all highlight how PNML design is being carried
out through the specification work on the standard. Then, we introduce the
incentives for the first implementation of a translation software framework to
back the standard, using model engineering techniques.

3.1 PNML Design

The adopted methodology to design PNML is structured in two main steps:

1. the abstract syntax definition through Petri net types definition with meta-
models;

2. the concrete syntax definition by mapping the abstract syntax onto PNML
schema.

During the first step, main Petri net types are defined using metamodeling tech-
niques. It means that we describe the concepts and rules structuring these types
and their meaning, at a high level of abstraction, independently from any techno-
logical choice for their future implementation. Metamodeling is always purpose-
or business-oriented. It is an activity during which experts of a particular do-
main define the precise semantics of the specific concerns they are interested in.
For example, business process modelers might design a workflow metamodel for
a supply chain, the purpose of which is to discover where synergies could be
gained.

Following our motivations stated in section 2.2, it is important, using such
techniques, to reach a sufficient level of abstraction in PNML design. Indeed, we
should be able, when further developing the standard (Part 3 and maintenance
updates of all parts), to easily refine and extend the primary specifications to
define new types or variants of Petri nets. Therefore, it would be useless to fall
at first in a too low level of specifications, from which no valuable abstraction
could be made to improve the standard.

Three main Petri net types are defined. They are described using the Unified
Modeling Language (UML) class diagrams. They are:

1. The Core model. It is the most fundamental one, depicted by fig. 3. Core
concepts of Petri nets can be found in this basic type: nodes, connectors,
basic labels (e.g., names) and graphical information associated with these
objects. It provides the foundation for further definition of new Petri net
types.

PN Standardisation: A Survey 313

Fig. 3. PNML Core model

2. P/T Systems metamodel. It essentially defines new labels for this type of
Petri nets and relies on the Core model for the central concepts. It is thus
built upon extensions of the Core model.

3. High-level Petri Nets metamodel. Its design is in progress. New labels and
high-level functions are being defined, while relying on the concepts provided
by the Core model and P/T Systems type. As a consequence, it is also built
on extensions of P/T Systems.

An important aspect of this first stage is to state semantic constraints on
the metamodels. This may be achieved using the Object Constraint Language
(OCL) [24]. For instance, in P/T Systems, two connected nodes must not be of
the same kind (i.e., no place-place or transition-transition arc is permitted).

During the second step, PNML schema is defined to match the specifications
carried out by the metamodels. Technical details set apart, each relevant element
of the metamodels is mapped onto a PNML tag.

PNML schema technology is currently RELAX NG-based, which is ”being
developed as an International Standard ISO/IEC 19757-2” [7]. RELAX-NG is
XML schema-like, more flexible and maintenance-friendly for the standard de-
signers than XML schema. However, coming to High-level Petri Nets type, using
this technology to directly define a notation to express high-level labels and
functions does not seem appropriate. Consequently, MathML [31] is being in-
vestigated since it seems to offer the complete set of annotations that could be
used to define high-level labels and functions. We are taking a particular care in

314 L. Hillah et al.

extracting the most accurate subset of MathML features since it allows for great
flexibility and powerful expressivity.

3.2 The First Impact: PNML Framework

From the motivations reported in section 2.2 and emphasized through the design
methodology of PNML described in section 3.1, it is clear that the extensibility
issue for the standard definition is of central importance.

Motivations. In addition, there are three other important issues we should
cope with that drive the implementation of a translation software framework to
support the standard.

Semantic constraints. The Petri Net Markup Language should carry the syntax
of Petri net types specified by the standard. However, capturing the semantics is
also an important issue. Moreover, how to ensure that it is enforced? Semantic
constraints are expressed in the metamodels by means of OCL [24] statements.
But it is important to note that OCL is a specification language, not a program-
ming one. Therefore, it is not meant to be directly executable. It takes its full
meaning when associated with UML annotations.

Compatibility. A second important issue pointed out by PNML specifications
is the compatibility among Petri net types and their variants (cf. discussion in
section 2.2 related to Petri net types hierarchy). Since all variants of the main
types may not be specified by the standard, how to continuously ensure the
interoperability and thus the exchange of Petri net models ?

Another related issue is the compatibility between PNML successive versions.
For example, at least a top-level Page is mandatory in the current version under
development, unlike the previous one.

Automation and integration in Petri nets tools. Since PNML is XML-based, it
is error-prone to manual editing. Therefore, it obviously needs an application to
perform this task.

To ensure that 1) all issues we pointed out are equally dealt with, and 2)
to favor an up-to-date compatibility with the standard along with 3) an easy
integration of its implementation into Petri net tools, we have developed a model-
based translation framework to back the standard.

In the following, we describe this framework, called PNML Framework, and
its use.

4 PNML Framework

To make the standard applicable and provide a reference implementation to Petri
net tools developers, we have developed PNML Framework. Its first release was
published in March 2006 [21].

In this section, we first present this tool and the benefits it offers to tools de-
velopers. Then we describe its features and give an overview of its use. Eventually
we conclude by sketching further work. Open issues are discussed in section 5.

PN Standardisation: A Survey 315

4.1 Goals of PNML Framework

The primary aim is to provide efficient and standard compliant import and ex-
port features of PNML models for Petri net tools. Figure 4 illustrates how PNML
Framework could make the standard interoperability goal achievable. It shows
two tools, A and B, exchanging a Petri net model via the standard transfer
format, using the framework. More details about the operations involved are
given in sections 4.2 and 4.3. PNML Framework is designed using model engi-
neering techniques and, more precisely, EMF (Eclipse Modeling Framework) [5]
technology.

PNML
Model

Tool A Tool B

PNML Framework

FetchFetch

Create Create

LoadSave

Fig. 4. Interoperability using PNML Framework

PNML Framework is a generated set of comprehensive and easy to use tailored
API to import and export Petri net models designed according to the standard
specifications. It is intended to be used as a library, therefore it can be easily
integrated into Petri net tools. Tools developers are considered as the primary
users of PNML Framework.

Thanks to this framework, tools developers would rather focus on their ap-
plications core development instead of coping with how to stay up-to-date and
compliant with the standard. Furthermore, they would not have to deal with
ensuring continuous compatibility with other tools and many Petri net types
and variants.

Moreover, PNML Framework’s flexibility enables them to export and import
appropriate elements of Petri net models, according to their needs. For example,
after having loaded (this term is explained in the following sections) a high-level
net into the framework, one can only fetch the P/T net associated structure.

How is it generated? The API is generated from the standard metamodels using
EMF’s tools.

First, metamodels from the standard are implemented in EMF’s ecore mod-
eling language [5]. In its modeling approach, EMF can be seen as an optimized

316 L. Hillah et al.

implementation of OMG’s Essential Meta Object Facility (EMOF) [23] specifi-
cation but with some differences, due to the experience gained from at least five
years of development and wide use.

After having designed the metamodels using ecore, code is then generated
so as to enable manipulation of model instances of these metamodels. To meet
PNML specific requirements we have extended the Java Emitter Templates [27]
code generation tool integrated in EMF. Consequently, the generated code is
completely tailored to PNML. PNML Framework is thus extensible to include
any Petri net type since its implementation is model-driven and follows the
requirements expressed in the previous sections.

4.2 Features of PNML Framework

The design of PNML Framework is model-driven. It is supported by EMF, which
is a mature model-driven application development framework. It implements
Petri net types metamodels defined in the standard. It handles PNML models
which are instances of these metamodels. From the framework’s point of view
the representation of a PNML model is twofold:

– it is a Petri net model which is an instance of a Petri net type metamodel;
in that case it is handled in memory;

– it is a Petri net model written in PNML (XML-based) syntax in a PNML
document. In that case it is an instance of PNML schema. A PNML docu-
ment can contain one or more PNML models. PNML schema is the RELAX
NG-based XML schema which is mapped onto Petri net types metamodels.
It describes the concrete syntax of PNML models.

As a benefit of using model engineering techniques, PNML Framework offers
two well-defined principal features in the context of PNML models:

– export: PNML models are created as instances of Petri net types metamod-
els and saved in PNML syntax;

– import: PNML models are loaded from PNML documents and created as
instances of Petri net types metamodels in the framework. Their elements
are fetched by the framework’s user (tool developer).

These features are offered through the API which is structured in four sections:

1. Create. This section entitles tools developers to translate user-defined Petri
net models represented in their proprietary format into PNML models as
instances of Petri net types metamodels.

2. Save. It is used to save created PNML models into PNML syntax in PNML
documents. Tools developers are offered a single method in this section to
trigger that operation.

3. Load. PNML models are read by parsing PNML documents and loaded into
the framework by using the Create section. Here again, a single method is
provided in this section to perform the transfer.

4. Fetch. It is used to retrieve elements of PNML models that have been loaded.

PN Standardisation: A Survey 317

In addition to these features, we have implemented rules to enforce semantic
constraints on PNML metamodels that are expressed by means of OCL [24]
statements in the standard. Therefore, users should not have to cope with how
to integrate these constraints since the framework natively implements them.

4.3 Using PNML Framework

Figure 5 describes typical interactions between a tool developer’s application
core program and PNML Framework. In this figure, the four sections of the
API label the interactions. My model represents a Petri net model in a pro-
prietary format. My Program is the tool developer’s core program which drives
the model translation from the proprietary format into PNML syntax. It uses
PNML Framework as a library to perform this task.

My model
 (proprietary

format)

 My model
in

PNML

My Program

PNML Framework

fetchcreate

load

save

parse

build

Fig. 5. Overview of tools developers’ use of PNML Framework

To export a Petri net model represented in a proprietary format or handled
in any application into PNML, a tool developer may first be entitled to parse it.
Then, using the predefined create API, the corresponding PNML model can be
created in the framework. Eventually the model will be saved in PNML syntax.

To import a Petri net model represented in PNML syntax (My model in PNML
in fig. 5), the framework first loads that model. Then, using the predefined fetch
API, tools developers can retrieve its elements and build the corresponding model
represented in their proprietary formats or perform another task.

Let us show an example of a P/T model exchanged between a proprietary
format and PNML, using PNML Framework. In this example, we focus on the
export feature from the proprietary format into PNML. That format, called
CAMI, is used in our CASE environment, CPN-AMI [25]. We have developed
an application, named PNML Converter, which uses PNML Framework create
and save API to perform the export.

318 L. Hillah et al.

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter
1

4

4

DB()
CN(3:net,1)
CT(7:version,1,3:0.0)
PO(1,20,20)
CN(5:place,2)
CT(4:name,2,5:Ready)
CT(7:marking,2,1:4)
PO(2,226,106)
PT(2,4:name,185,107)
PT(2,7:marking,232,109)
CN(5:place,3)
......................
CA(3:arc,15,14,5)
CT(9:valuation,15,1:1)
PI(-1,15,127,130,-1)
PI(-1,15,227,130,-1)
CA(3:arc,16,5,14)
CT(9:valuation,16,1:1)
FB()

A B

Net
id=1

Page
id=pageId

Place
id=2

Name
value=Ready

........

........

C D

<pnml xmlns="...">
 <net id="1">

 <page id="pageId">

 <place id="2">
 <name>
 <text>Ready</text>

 </name>

 <initialMarking>
 <text>4</text>
 </initialMarking

</pnml>

Fig. 6. An example of model transformation from CAMI to PNML

In fig. 6, P/T model A is the graphical representation of a Petri net model
created in CPN-AMI environment. The graphical representation is transformed
into model B, the syntax of which is CAMI. Then using PNML Framework’s
create API, it is transformed into a model instance (called C in the figure) of the
standard-defined P/T Systems metamodel [18]. Finally, using the save API, it is
transformed into PNML syntax, as model D. Subsequently, there were actually
three model transformations. The first two ones are under the responsibility of
the tool designer, the role of whom we took in this example. PNML Framework
is in charge of the last one.

PNML Framework is packaged as a Java library. It provides command-line
invocation features to ease its integration in tools. For instance, once My Pro-
gram packaged with the framework as a complete translation application, that
application becomes a service for the considered tool. It will then be invoked
by providing a simple API to develop driver encapsulating users’ invocations
caught through tools interfaces. We have implemented such an approach for
CPN-AMI [25] and it was successful.

4.4 Current Work

Presently, P/T Systems are supported by the framework. The core model is of
course implemented. But since we do not consider it is a concrete Petri net type
suitable for exchange among Petri nets experts, we do not offer the possibility to
export and import it explicitly by the framework. Indeed, as explained before,
the core model is intended to set a strong basis for the definitions of concrete
Petri net types.

In further developments of this framework, we are implementing Symmet-
ric Nets. Symmetric Nets are annotated with higher-level labels and functions.
Those labels are being defined using MathML, as stated in section 3.1. In the
next section we discuss related issues to this work.

We are also planning to develop an advanced version of PNML Framework,
which will generate specific APIs for local variations on Petri net types, not

PN Standardisation: A Survey 319

specified by the standard. This will help tools developers with very specific needs
to exchange their models, provided that they share the newly generated APIs.
The normal version of the framework which is fully standard compliant will
simply discard these particular local variations. The use of this advanced version
requires deep knowledge of metamodeling and code generation techniques using
EMF’s powerful features.

5 Open Issues for Future Work

As mentionned in the previous section, high-level labels and functions are de-
fined using MathML. However, since MathML is very expressive, there are of-
ten different equivalent ways to define the same function. Consequently, it is
prone to break the interoperability and compatibility objectives through the non-
unification of the semantics, if MathML is used ”as is”. Moreover, in exchanging
automatically processed PNML higher-level models, we cannot expect a mean-
ingful interoperability to take place. Let us recall that metamodels should always
carry as much as possible a precise semantics for a specific purpose. To make
high-level labels and functions use both unambiguous and fully understandable,
we should define the metamodel that carries their semantics for higher-levels of
Petri nets (Symmetric Nets, High-level Petri Nets). This is of utmost importance
since part 3 of the standard will introduce new types of Petri nets.

Our approach to tackle this issue relies on an unambiguous schema of a sub-
set of predefined labels and functions expressed in MathML to be defined in
the standard. This schema would be mapped as a concrete syntax to the cor-
responding high-level annotations metamodel for higher-level Petri nets. This
schema corresponds to a normalised way to define abstract syntax trees for com-
plex labels (independent from any technology implementing the syntax). This
approach is consistent with the methodology adopted for the definition of the
second part of the standard, described in section 3.1. To ensure interoperability
and compliance with the standard, tools developers must enforce the use of this
predefined subset. Therefore we propose to ease the application of this require-
ment by integrating its implementation in a future version of PNML Framework.

It is of interest to experiment first this strategy to Symmetric Nets: this type
of Petri nets only allows for a restricted set of algebraic operators and no user-
defined function.

High-level Petri nets allow for a larger set of algebraic operators than Symmetric
Nets, but the user can also define his/her own functions. This last point may lead
to ambiguous representation of these functions if no normalised action (such as
strict structuration of MathML expressions) is considered. This is also a challenge,
when we consider that part 3 of the standard will introduce new types of Petri nets.

6 Conclusion

A survey of the standardisation work on Petri nets, known as ISO/IEC-15909,
is presented in this paper. The standard is structured into three parts.

320 L. Hillah et al.

Part 1 is now an International Standard. Part 2 is currently under develop-
ment. It provides the abstract definitions of significant Petri net types and their
concrete syntax. This syntax is intended to be a universal transfer format to
enable interoperability among Petri net tools. A wide adoption of the standard
among Petri net experts can thus be reached. It is called Petri Net Markup
Language (PNML). Part 3 will rely on definitions carried out by part 2. It will
define new types and variants of Petri nets. When a stable version of part 2 is
reached, the work on part 3 will start.

We are also experimenting an implementation of part 2 in PNML Framework.
PNML Framework primary purpose is to make the standard applicable. There-
fore it puts the interoperability goal into action. It offers Petri nets tools a flexible
way to remain up-to-date and comply with the standard while dealing with ex-
tensibility, compatibility and semantic issues. To cope with such issues, we are
using model engineering techniques to sustain PNML Framework development.
In [14], we set the rationale for this approach.

The first release of PNML Framework was published in March 2006 [21]. It is
implemented in Java, to achieve the cross-platform objective expressed in PNML
earliestrequirements.Weprovided inthis releaseatooldeveloper’sguideandatuto-
rial.Wealso provided an application example of conversionusingGraphViz [30]dot
format, to ease the full understanding of PNML Framework’s capabilities:

– efficient model-driven import and export tool for PNML models,
– standalone execution (outside Eclipse);
– easy integration in Petri net tools.

We are currently enhancing PNML Framework with a new type defined in the
standard: Symmetric Nets. This will assess the consistency of our approach in
PNML Framework design. Symmetric Nets are a first step towards the support
of High-level Petri Nets in the standard. We also take into account the Petri net
community feedback.

It is of interest to set up a prototype implementation project from part 2
of the standard in PNML Framework. It contributes to establish a meaningful
assessment of the standard implementation and use in the context of tools design.

Acknowledgements

We would like to thank ISO/IEC15909 editors, especially Jonathan Billington and
Ekkart Kindler, for the insightful discussions that helped us enhancing this paper.

References

1. R. Bastide, D. Buchs, M. Buffo, and F. Kordon adn O. Sy. characteristics of
currently used petri nets. Technical report, Univ. P. & M. Curie, available at
http://www-src.lip6.fr/homepages/Fabrice.Kordon/PN STD WWW/Qresult.html,
2000.

2. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent
systems using time petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

PN Standardisation: A Survey 321

3. J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci,
R. Post, C. Stehno, and M. Weber. The Petri Net Markup Language: Concepts,
technology and tools. In Proc. 24th Int. Conf. Application and Theory of Petri
Nets (ICATPN’2003), Eindhoven, The Netherlands, June 2003, volume 2679 of
Lecture Notes in Computer Science, pages 483–505. Springer, 2003.

4. Brauer, W., Reisig, W., and Rozenberg, G., editors. Petri Nets: Central Models
and Their Properties., volume 254. Springer-Verlag Lecture Notes in Computer
Science: Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course,
Bad Honnef, September 1986, 1987.

5. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse Modeling
Framework. The Eclipse Series. Addison-Wesley Professional, August 2003.

6. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed
Coloured Nets and their symbolic reachability graph. In G. Rozenberg and
K. Jensen, editors, LNCS : High Level Petri Nets. Theory and Application. Springer
Verlag, June 1991.

7. J. Clark. RELAX NG Home Page. OASIS, http://www.relaxng.org/, 2003.
8. M. Diaz. Vérification et mise en oeuvre des réseaux de Petri. Hermes Sciences -

Lavoisier, 2003.
9. GreatSPN: GRaphical Editor, Analyzer for Timed, and Stochastic Petri Nets. url:

http://www.di.unito.it/~greatspn/.
10. International Organization for Standardization. International harmonized stage

codes. ISO, http://www.iso.org/iso/en/widepages/stagetable.html#95.
11. Eclipse Foundation. Eclipse Modeling Framework. http://www.eclipse.org/emf/.
12. H. J. Genrich. Predicate/transition nets. In Brauer, W., Reisig, W., and Rozenberg,

G., editors, Lecture Notes in Computer Science: Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an Advanced
Course, Bad Honnef, September 1986, volume 254, pages 207–247. Springer-Verlag,
1987. NewsletterInfo: 27.

13. Parallel Systems Group. Programming Environment based on Petri Nets. Univer-
sity of Oldenburg, http://theoretica.informatik.uni-oldenburg.de/~pep/.

14. L. Hillah, F.Kordon, L. Petrucci, and N. Trèves. Model engineering on petri nets
for iso/iec 15909-2: Api framework for petri net types metamodels. Petri Net
Newsletter, (69):22–40, October 2005.

15. ISO/IEC. Software and Systems Engineering - High-level Petri Nets, Part 1: Con-
cepts, Definitions and Graphical Notation, International Standard ISO/IEC 15909,
December 2004.

16. K. Jensen. Coloured petri nets - basic concepts, analysis methods and practical
use, vol. 3: Practical use. EATCS Monographs on Theoretical Computer Science,
1997.

17. Jensen, K. and Rozenberg, G., editors. High-Level Petri Nets. Berlin, Germany:
Springer-Verlag, 1991. NewsletterInfo: 39.

18. E. Kindler. Software and Systems Engineering - High-level Petri Nets. Part2:
Transfert Format. Working Draft for the International Standard ISO/IEC 15909
Part 2 - Version 0.9.0, June 2005.

19. E. Kindler. The petri net markup language and iso/iec 15909-2: Concepts, status,
and future directions. In Entwurf komplexer Automatisierungssysteme, To appear.

20. F. Kordon and L. Petrucci. Proposal for an addendum to ISO/IEC 15909-1, doc-
ument reference MAL-12. NWI For the Malaga Meeting, November 2004.

21. Modeling and Verification Department. PNML Framework. LIP6,
http://www.lip6.fr/pnml.

322 L. Hillah et al.

22. University of Aarhus. Computer Tool for Coloured Petri Nets - CPNTool.
http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

23. OMG. MetaObjectFacility 2.0 Core Specification, document no:omg/2003-10-04.
OMG, October 2003.

24. OMG. OCL 2.0 Specification - Version 2.0 ptc/2005-06-06. OMG, June 2005.
25. The CPN-AMI Home page. url : http://www.lip6.fr/cpn-ami.
26. J. Peterson. Petri Net Theory and the Modeling of Systems. Englewood Cliffs,

New Jersey: Prentice Hall, Inc., 1981.
27. Remko Popma. Introduction to JET. Azzurri Ltd., http://eclipse.org/emf/

docs.php?doc=tutorials/jet1/jet tutorial1.html, 2005.
28. W. Reisig. Petri Nets., volume 4. Springer-Verlag EATCS Monographs on Theo-

retical Computer Science, original edition, 1985. NewsletterInfo: 19 translation of
the German: “W. Reisig, Petrinetze. (1982)”.

29. W. Reisig. Petri nets and algebraic specifications. Theoretical Computer Science,
80:1–34, 1991. NewsletterInfo: 38,39.

30. AT&T Research. GraphViz. http://www.graphviz.org/.
31. W3C. MathML 2.0, W3C Math Home. W3C, http://www.w3.org/Math/.

Resource Allocation Systems: Some Complexity
Results on the S4PR Class

Juan-Pablo López-Grao1 and José-Manuel Colom2

1 Dpt. of Computer Science and Systems Engineering (DIIS)
2 Aragonese Engineering Research Institute (I3A)

University of Zaragoza, Spain
{jpablo, jm}@unizar.es

Abstract. In recent times, Petri nets have consolidated as a powerful
formalism for the analysis and treatment of deadlocks in Resource Alloca-
tion Systems (RAS). In particular, the methodological framework yielded
by the S4PR class has raised considerable interest on the grounds of a
well-balanced compromise between modelling flexibility and the provi-
sion of sound and effective correction techniques. These are strengthened
by the advantages of the abstraction process, which allows the effective
application of these techniques to diverse application domains. Most of
the works on this class focus on providing tools and algorithms for deal-
ing with the so-called resource allocation problem. This paper takes a
different approach to provide an insight into the inherent computational
complexity of the problem, from the perspective of optimality in either
prevention, avoidance or detection of deadlocks. In particular, we will
prove that most of the problems involved fall within the category of NP
or co-NP-complete problems.

1 Introduction

A Resource Allocation System (RAS) is, in rough words, a discrete event system
in which a finite set of concurrent processes share a finite set of resources. This is
strongly connected to the resource allocation problem, which consists in meeting
the demand of resources by the set of processes, eventually accomplishing certain
goals. From the qualitative standpoint, the objective is often dealing with the
set of potential system deadlocks: the focus of this paper.

A RAS is in a deadlock state if a set of processes are indefinitely waiting for
a set of resources that are already held by the same set of processes. Coffman
defined in [1] four necessary conditions for the existence of a deadlock, but a
general characterization remains elusive, leaving place for a wide family of works
which study different subclasses of RAS, often providing solutions over abstract
models that allow their application on different domains.

The strategies for handling deadlocks are categorized in three groups. Dead-
lock prevention techniques consist in constructing a system such that, by defi-
nition, no deadlock is reachable. Deadlock avoidance techniques ensure that a
deadlock is not reachable by deciding on-line if a resource allocation request is
granted or not, based on the current system state information (e.g., the banker’s

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 323–338, 2006.
c© IFIP International Federation for Information Processing 2006

324 J.-P. López-Grao and J.-M. Colom

algorithm [2]). Finally, deadlock detection techniques act ‘a posteriori’, allowing
the deadlock situation to occur and subsequently resolve it.

Among formal models, Petri nets [3] has proven to be a fruitful tool for the
modelling, analysis and synthesis of RAS ([4,5,6,7]). In particular, the S4PR
class [8] (S3PGR2 in [7]) has attracted significant attention since it deals with a
very general class of Sequential RAS (S-RAS, i.e., RAS in which the processes
are sequential), while exist efficient characterizations for deadlock states, i.e.
states from which a given transition cannot be fired anymore. Despite that most
of those works stress the application on Flexible Manufacturing Systems, the
fact that we employ a purely systemic approach enables applying this Petri net
models, as well as their well-known analysis and synthesis techniques, to very
different application domains, such as distributed systems or communication
protocols.

The S4PR class is capable to model systems in which the processes are al-
lowed to decide between alternative execution paths all along their execution,
provided there are no internal iterations. Besides, several resources of several
types can be reserved at the same time, and they can be acquired and released
at any execution state. Note that we assume that the resources are used in a
conservative way by every process (i.e. the resources are serially reusable).

This work investigates the computational complexity on providing optimal
solutions for the problems of deadlock prevention, avoidance and detection for
S-RAS supported by the S4PR class. Some previous works have successfully
studied computational issues on S-RAS, although they differ from this both in
the type of systems and the problems subject to analysis. In [2] the problem of
deciding whether a resource allocation is safe is studied, and proved NP-complete
for S-RAS with multi-resource requests and processes without routing decisions.
In this model, resources that are freed in intermediary states are immediately
required back. Additionally, some restrictions on this problem are presented,
which are proved polynomial. In [9], it is proved that optimal deadlock avoidance
is NP-complete for a subclass of S-RAS in which no alternative paths per process
are allowed. Finally, in [10] the same problem is proven NP-complete for a class
of S-RAS in which alternative paths are allowed, but only one resource type is
used in each stage, which is again a subclass of our model.

In section 2, we provide a motivating example that hopefully will enlighten
the scope of the S4PR class. The class is also formally introduced, along with
some basic results that are used in section 3. Section 3 is divided in four parts.
First, we introduce the computational complexity of characterizing non-liveness
for a marked S4PR with an acceptable initial marking. Second, the results are ex-
tended to the case in which any arbitrary reachable marking is considered. This
is strongly related to optimal deadlock prevention. Third, we state the compu-
tational complexity in determining the markings that are doomed to deadlock,
which is the key to optimal deadlock avoidance and detection in this context.
And four, the computational complexity in determining spurious markings is re-
vealed, which severely affects the efficiency of structural techniques for this type
of models. Finally, section 4 summarizes the conclusions of the paper.

Resource Allocation Systems: Some Complexity Results on the S4PR Class 325

2 The S4PR Class

2.1 A Motivating Example

Suppose we are considering the installment of an on-line, on-demand video
streaming service business on the Internet. In order to provide a reasonably good
service, certain Quality of Service (QoS) requirements must be formally estab-
lished and satisfied, for every requested transmission. These QoS specs obviously
depend on a wide range of parameters such as the client type, her/his maximum
supported bandwidth, the format and resolution of the requested video, etc.

To provide the service, we own a pool of video servers. These video servers
are connected to a mesh network of router nodes. Some of these nodes act as
gateways to the Internet. We will assume that multicast video streams will dis-
seminate from the gateways onwards, so as to not increase our internal traffic.
Figure 1 depicts the system structure (on the left, the video servers; on the right,
the gateways; in the middle, the intermediate routers).

Fig. 1. Our video streaming system, simultaneously transmitting two video streams

A video stream is composed of a set of fixed-size packets that must be trans-
mitted from the sender (video server) to the receiver (client). When a receiver
requests a video stream to one of the servers, a virtual circuit is constructed. All
the packets of the video stream will travel through the same virtual circuit. Be-
sides, each node of the circuit assumes its own minimum resource requirements
(CPU, storage, bandwidth) for processing and transmitting each packet of the
stream. These requirements will be based on the QoS specs for the transmission.

Both (circuit and resource requirements) can be determined and established
through a signaling protocol in a similar vein to RSVP [11,12]. In order to
maximize our system productivity and reduce costs, however, we want to ‘relax’
the resource reservation strategy. Hence once a packet is effectively transmitted
from a node to the next one, the required resources are freed, and must be
reacquired for the next packet. Doing so, nodes can accept and manage a higher
amount of concurrent streams minimizing resource idling. As a drawback, when
the traffic is high and resources are overused, some jittering could appear since

326 J.-P. López-Grao and J.-M. Colom

some packets could be idle in intermediate nodes, waiting for the release of some
required resources. In the worst case, a circular wait for resources could appear,
and the system would reach a deadlock.

Such a kind of systems can be effectively modellized and studied via the S4PR
class. Figure 2 models the system of figure 1. The different constructive elements
in the model will be presented in the next subsection. In the example, the sys-
tem has reached a deadlock. The existing analysis and synthesis techniques will
allow us to handle deadlocks. In particular, we will be able to apply prevention
(e.g. disallow a pre-established circuit if there might be a potential deadlock
situation), avoidance (e.g. retain temporarily packets if they lead to deadlock
situations) or detection and correction techniques (e.g. abort a video stream
to free resources and unlock the system). In the following, we will study the
computational complexity of the optimal approach for these three strategies.

2.2 Formal Definition of the Class

From now on, we assume the reader has some basic knowledge on Petri nets.
Some useful definitions are provided in the appendix A.

As it was already pointed out, the S4PR is a P/T net class aimed to the mod-
elling, analysis and synthesis of S-RAS. In an S4PR, each process is a strongly
connected state machine in which no internal cycles are allowed throughout its
execution. Besides, each process has an initial local state in which no resource is
used, represented by the idle place. Resources are modelled as tokens within the
resource places, and their usage by every process is conservative, which imposes
restrictions on the form of the set of p-semiflows. In formal terms:

Definition 1. [13] Let IN be a finite set of indices. An S4PR is a connected
generalized pure P/T net N = 〈P, T , C〉 where:

1. P = P0 ∪ PS ∪ PR is a partition such that:
(a) [idle places] P0 =

⋃
i∈IN {p0i}.

(b) [process places] PS =
⋃

i∈IN PSi , where
∀ i ∈ IN , PSi �= ∅, and ∀ i, j ∈ IN , i �= j, PSi ∩ PSj = ∅.

(c) [resource places] PR = {r1, r2, r3, ..., rn}, n > 0.
2. T =

⋃
i∈IN Ti, where ∀i ∈ IN , Ti �= ∅, and ∀i, j ∈ IN , i �= j, Ti ∩ Tj = ∅.

3. For each i ∈ IN the subnet generated by {p0i}∪PSi , Ti is a strongly connected
state machine such that every cycle contains p0i .

4. For each r ∈ PR there exists a unique minimal p-semiflow Yr ∈ IN|P | such
that {r} = ‖Yr‖ ∩ PR, P0 ∩ ‖Yr‖ = ∅, PS ∩ ‖Yr‖ �= ∅, and Yr[r] = 1.

5. PS =
⋃

r∈PR
(‖Yr‖ \ {r}).

Meanwhile, we call process net [13] to the subnet generated by {p0i}∪PSi ∪PRi

and Ti, where i ∈ IN and PRi = {r ∈ PR | (‖Yr‖ ∩ PSi �= ∅)}.
In the case of figures 1 and 2, each video stream is modelled as a concurrent

sequential process. Resources associated to each node Ni are modellized using the
places labelled R-Ni. Note that there could be several resource places per router

Resource Allocation Systems: Some Complexity Results on the S4PR Class 327

2

R−N3R−N1 R−N5 R−N7R−N2 R−N4 R−N6 R−N8

BW−N3−N4 BW−N4−N6 BW−N6−N5 BW−N5−N8

BW−N1−N2 BW−N2−N5 BW−N5−N7 BW−N7−N6 BW−N6−N9

R−N9

t1

t2 t3

2

2

2

Fig. 2. A marked S4PR which models the system in figure 1. The system is deadlocked.

(one per each resource type, be it physical, e.g. available storage space or CPU
slots, or logical, e.g. maximum number of simultaneous packets). Equivalently,
there is a resource place per each node interconnection, modelling the available
bandwidth and labelled BW-Ni-Nj.

All these resources can be shared among both concurrent processes. In this
case, the local resources of the nodes N5 and N6 (held by resource places R-N5
and R-N6) are shared among both video streams. The resources are requested,
used and freed when a packet (a token in the process net) is visiting the corre-
sponding node. Finally, the idle places limit the number of potentially concurrent
packets per video stream (it is assumed that this number is finite). Speaking in
general terms, it is worth noting here that idle places can also be seen as spe-
cial resource places, and then interpreted as the maximum number of process
instances in concurrent execution for each process type.

Definition 2. [13] Let N = 〈P0∪PS∪PR, T , C〉 be an S4PR. An initial marking
m0 is acceptable for N iff ||m0|| = P0 ∪PR and ∀p ∈ PS , r ∈ PR . m0[r] ≥ Yr[p].

Figure 4 depicts a marked S4PR with an acceptable initial marking. The marking
shown in figure 2 is not an acceptable initial marking but, however, it is reachable
from an acceptable initial marking, as the reader can check. This acceptable
initial marking would correspond to the system state in which no video stream
has begun to transmit yet (and hence every resource is available).

2.3 Non-liveness Characterization in the S4PR Class

During the paper, we will use the following definitions extensively. They will be
used in several demonstrations and are basic for the non-liveness characterization
that is stated in theorem 1. This well-known characterization will be the base
for our first complexity result in section 3.

Definition 3. [13] Let 〈N , m0〉 be a marked S4PR with an acceptable initial
marking, N = 〈P0 ∪ PS ∪ PR, T , C〉. Also, let m ∈ RS(N , m0).

Then t ∈ T is m-process-enabled iff •t∩PS �= ∅ and m[•t∩PS] > 0. Otherwise,
t is m-process-disabled. Besides, t is m-resource-enabled iff ∀r ∈ •t∩PR, m[r] ≥
Pre[r, t]. Otherwise, t is m-resource-disabled.

328 J.-P. López-Grao and J.-M. Colom

Theorem 1. [13] Let 〈N , m0〉, N = 〈P, T , C〉 be an S4PR with an acceptable
initial marking. The system 〈N , m0〉 is non-live iff exists a reachable marking
m ∈ RS(N , m0) such that the set Sm ⊆ T of m-process-enabled transitions is
non-empty and every transition in Sm is m-resource-disabled.

The system in figure 2 is non-live; indeed, it is a total deadlock. The reader can
easily check that the set of m-process-enabled transitions is {t1, t2, t3} and each
one of those is m-resource-disabled: the resource places R-N5, R-N6 and R-N7
disallow their firing.

3 Complexity Results

In this paper, we will assume the reader is instructed on the basics of complexity
theory [14] and particularly NP-completeness. Onwards, several problems will
be proved either NP or co-NP-complete. All the problem reductions will be
based on the well-known (general) satisfiability problem of boolean formulas in
conjunctive normal form, commonly named SATISFIABILITY (SAT), which is
NP-complete. A brief reminder is included in appendix B.

3.1 Non-liveness

The problem of optimal deadlock prevention requires determining whether a
given system is non-live, in order to apply correction techniques to make the
system live, such as those presented in [13]. Here we will devoted to the study
of the complexity of the problem of non-liveness for a given acceptable initial
marking. In particular, we will demonstrate that this problem is NP-complete.
A couple of basic demonstrations are previously required, and hence will be
introduced in the following. The studied problem is formally defined in this way:

Problem 1. S4PR-Non-Liveness (S4PR-NL)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking.
To decide: Is 〈N , m0〉 non-live?

Proposition 1. Let 〈N , m0〉, N = 〈P, T , C〉, be a marked S4PR with an accept-
able initial marking. Let m be a reachable marking m ∈ RS(N , m0). Then exists
a firing sequence σ, m0[σ〉m, such that there is no t-semiflow X with σ−X ≥ 0.

Proof. Without loss of generality, let X be a minimal t-semiflow such that σ −
X ≥ 0. Then we will prove that there exists a firing sequence σ′, m0[σ′〉m, where
σ′ −X � 0, and σ′ = σ − k ·X , with k ∈ IN \ {0}.

m is potentially reachable from m0 with σ′ because of the net state equation:
m = m0 + C · σ = m0 + C · (σ′ + k ·X) = m0 + C · σ′.

The sequence σ′ is also firable because a t-semiflow X is a circuit of a state
machine and the completion of X corresponds to the movement of a token in this
state machine from the idle place throughout the circuit returning to the idle
place. Taking into account that this token in the idle place does not use resources,
while in the rest of the places of the circuit uses some resource, freezing this token

Resource Allocation Systems: Some Complexity Results on the S4PR Class 329

in the idle place leaves a greater number of resources to fire the rest of transitions
of σ. Therefore σ′ is also firable, reaching m. �

Lemma 1. Let 〈N , m0〉, N = 〈P, T , C〉, be a marked S4PR with an accept-
able initial marking, and let m be a reachable marking from 〈N , m0〉, m ∈
RS(N , m0). Then exists a firing sequence σ from m0 to m, m0[σ〉m, such that
|σ| ≤ K · |T |, where K =

∑
p∈P0

m0[p]

Proof. By proposition 1, a firing sequence σ1 exists, m0[σ1〉m, such that there
is no t-semiflow X with σ1 − X ≥ 0. Let us suppose that |σ1| > K · |T |. It
is straightforward that there exists a transition t ∈ T such that t is fired at
least K + 1 times in σ1. Since the process subnets are conservative, and the
process places are empty in m0, for every reachable marking m′ ∈ RS(N , m0),∑

p∈P0∪PS
m′[p] = K.

This means that if we labelled each token in the process places with a unique
identifier i ∈ [1, K], at least one of them should visit twice the process place p,
where {p} = •t ∩ (P0 ∪ PS), i.e., the active process (the token) should travel
through a circuit of the state machine. Since every circuit in a S4PR induces a
minimal t-semiflow ([8]) then exists a t-semiflow X , σ1 −X ≥ 0, contradicting
the hypothesis. �

The size of the firing sequence σ in lemma 1 is polynomial in the size and
population of the net. This will let us prove that S4PR-NL is in NP.

Theorem 2. S4PR-NL is NP-easy.

Proof. We will use the following problem for our demonstration:

Problem 2. S4PR-Bad-Marking (S4PR-BM)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and a firing sequence σ such that (|σ| ≤ K · |T |), (m0[σ〉m) and (m �= m0),
where K =

∑
p∈P0

m0[p].
To decide: Does 〈N , m〉 hold that every m-process-enabled transition is m-
resource-disabled?

1. S4PR-BM is in P. Given σ, m can be easily computed using the net state
equation. For every transition, m-process-enabledness and m-resource-
disabledness can be checked in deterministic linear time in the size of N .

2. Let (N , m0, σ) be a valid input for S4PR-BM, being (N , m0) an input for
S4PR-NL. Since the length of σ is polynomial in the size of the input,
it is trivial to find two encodings e1(N , m0, σ) and e2(N , m0) such that
|e1(N , m0, σ)| ≤ c′ · |e2(N , m0)|c, given c, c′.1

3. S4PR-NL can be verified in deterministic polynomial time. By theorem 1,
S4PR-NL returns YES with input (N , m0) iff exists a firing sequence σ,
m0[σ〉m and m �= m0, such that every m-process-enabled transition is m-
resource-disabled. In that case, by lemma 1, a firing sequence σ can be found
such that with |σ| ≤ K · |T |. Thus S4PR-NL(N , m0) returns YES iff exists
σ such that S4PR-BM(N , m0, σ) returns YES. �

330 J.-P. López-Grao and J.-M. Colom

u j

Nxixi Nxixi s j
j+1 sj

j−1

j,iv j,iy

Nxi

Nxi

j,iw
j,i j,ij,ij,ia b d et j,i j,i o

Fig. 3. SAT → S4PR-NL. Net N j
i for each literal xi in Cj .

Now we will devote to prove NP-hardness, reducing SAT to S4PR-NL. Let
F = C1 · C2 · ... · CNc be a formula in conjunctive normal form, and let X =
{x1, ...xk} be the set of its variables. For every xi ∈ X let Nxi (Nxi) be the
number of clauses of F in which the literal xi (xi) appears.

Also please note that, for every j ∈ [1, Nc], we define the index j⊕ 1 as either
j + 1 (iff j < Nc) or 1 (iff j = Nc). Similarly, we define the index j 1 1 as either
j − 1 (iff j > 1) or Nc (iff j = 1).

We will construct the net NF in the following compositional manner:

1. For every xi ∈ X , i ∈ [1, k], we add the place xi (in case Nxi > 0) and the
place xi (in case Nxi > 0).

2. For every clause Cj, j ∈ [1, Nc], we add two places to NF , called oj and sj⊕1
j .

3. For every literal xi in Cj, i ∈ [1, k], j ∈ [1, Nc], we add four places (aj,i, bj,i,
dj,i, ej,i) and five transitions (tj,i, uj,i, vj,i, wj,i, yj,i), and we connect them
to the rest of the net as depicted in figure 3.

4. For every literal xi in Cj , i ∈ [1, k], j ∈ [1, Nc], we add the same places
and transitions as in the last point, but we do not exactly connect them as
depicted in figure 3. Instead, we must follow the same pattern of the figure
but interchanging xi per xi, and Nxi per Nxi.

In order to avoid unnecessary confusions, we want to remark the fact that the
place sj

j�1 in figure 3 is the same place as sj′⊕1
j′ , for j′ = j 1 1 (j = j′ ⊕ 1).

The initial marking m0 of every place will be as shown in figure 3. The reader
can check that the resulting net system 〈NF , m0〉 is a marked S4PR with an ac-
ceptable initial marking, where INF = [1, Nc], every clause Cj results in a process
net where oj is the idle place, and the resource places are every xi, xi, and sj⊕1

j .
In figure 4 it is depicted the resulting net NF for the formula F = x1(x1 +

x2)(x2 + x3). In this example, SAT(F) returns YES since the formula is satisfi-
able, e.g. assigning x1=”true”, x2=”false” and x3=”false”.

Theorem 3. SAT → S4PR-NL

Proof. We will prove that SAT(F) returns YES iff S4PR-NL(NF , m0) returns
YES. By theorem 1, 〈NF , m0〉 is non-live iff exists a reachable m, m �= m0,
such that every m-process-enabled transition is m-resource-disabled. The four
necessary conditions defined by Coffman [1] establish that in this state a circular
1 By |e| we denote the length of the encoding e.

Resource Allocation Systems: Some Complexity Results on the S4PR Class 331

1

d1,1

x1

x2

x2

x3

1s2

2

3

d

s3

s1

d

o o

o

2,2

3,3
3

2

Fig. 4. SAT → S4PR-NL. Example: F = x1(x1 + x2)(x2 + x3)

wait exists. This is only possible with a circular wait on the resource places
sj⊕1

j , since (by construction) the only transitions that can be m-process-enabled
and m-resource-disabled are vj,i or wj,i. Since it is also necessary that every
locked process is in a “hold and wait” state on the blocking set of resources (as
expressed by Coffman [1]), we can easily infer: 〈NF , m0〉 is non-live iff exists
m ∈ RS(NF , m0) such that ∀j ∈ [1, Nc] . ∃|i ∈ [1, k] such that m[dj,i] = 1 (thus,
m[sj⊕1

j] = m[aj,i] = m[bj,i] = m[ej,i] = m[oj] = 0).
Now, ∀j ∈ [1, Nc], i ∈ [1, k] such that m[dj,i] = 1, there are two mutually

exclusive alternatives: either (1) Yxi [dj,i] = 1, Yxi [dj,i] = 0, or (2) Yxi [dj,i] = 1,
Yxi [dj,i] = 0. Note that Yxi and Yxi are the minimal p-semiflows induced by the
resource places xi, and xi, respectively.

By construction, (1) is applied to NF when literal xi appears in the clause Cj

of the formula F . Equivalently, (2) is applied to NF when literal xi appears in
the clause Cj of the formula F .

If (1) holds, then �j′ ∈ [1, Nc], j �= j′, such that Yxi [dj′,i] = 1 and m[dj′,i] = 1.
Otherwise, tj,i and tj′,i should have been fired to reach m. But the firing of tj,i
requires that no token from xi is taken, and the firing of tj′,i requires that no
token from xi is taken, so tj,i cannot be fired after tj′,i and viceversa, leading
to a contradiction. By an analogous reasoning, if (2) holds, then �j′ ∈ [1, Nc],
j �= j′, such that Yxi [dj′,i] = 1 and m[dj′,i] = 1.

Let f be a truth assignment for the set of boolean variables X , f : X → {true,
false, don’t care}. For every xi ∈ X we define f(xi) as:

– f(xi)=“true” iff ∃j ∈ [1, Nc] such that (m[dj,i] = 1) ∧ (Yxi [dj,i] = 1). This
corresponds to case (1).

– f(xi)=“false” iff ∃j ∈ [1, Nc] such that (m[dj,i] = 1) ∧ (Yxi
[dj,i] = 1). This

corresponds to case (2).
– f(xi)=“don’t care”, iff �j ∈ [1, Nc] such that m[dj,i] = 1.

332 J.-P. López-Grao and J.-M. Colom

As we have seen, this assignments are mutually exclusive. Without loss of
generality, we can finally redefine the non-liveness condition in the following way,
which proves the hypothesis: 〈NF , m0〉 is non-live iff exists a truth assignment f
such that ∀j ∈ [1, Nc] . ∃i ∈ [1, k] such that either f(xi) = “true” and xi appears
in Cj, or f(xi) = “false” and xi appears in Cj. �
Note that, as expected, the net system in figure 4 is non-live: the total dead-
lock 〈NF , m〉 is reachable from 〈NF , m0〉, where m[d1,1] = m[d2,2] = m[d3,3] =
m[x1] = m[x2] = 1, being the rest of the places empty. Finally, we can conclude:

Theorem 4. S4PR-NL is NP-complete.

Proof. S4PR-NL is NP-hard since, by theorem 3, SAT is reducible to S4PR-NL,
and it is also NP-easy by theorem 2. �

3.2 Non-liveness Beyond the Initial Marking

The reader may have been left wondering why we chose to define the S4PR prob-
lem beginning from an acceptable initial marking. Instead, we could have studied
the more general problem of determining if, given 〈N , m〉, m ∈ RS(N , m0), the
system is non-live. Indeed, the same complexity result applies: we can easily re-
duce this problem to S4PR-NL. This is rather obvious from the fact that we can
fire an arbitrary sequence from m trying to lead every active process to the idle
places. If we are able to reach m0, then the reduction applies. If we are not able
to reach m0, we will have found a marking such that every m-process-enabled
transition is m-resource-disabled, and the system is thus non-live.

Note that this is not true in general for every solution of the net state equation,
m = m0 + C · X , X≥\ 0. The problem resides in the fact that S4PR nets may
have killing spurious solutions, i.e., solutions of the net state equation that are
not reachable and which are non-live while the system 〈N , m0〉 is live. Note that
the problem of determining if a given marking is a spurious solution is studied
in subsection 3.4, and it is proven to be co-NP-complete.

3.3 Deadlock Avoidance and Detection

In previous works ([2,9,10]), the complexity of the deadlock avoidance problem
has been determined for different classes of RAS, in some sense more restric-
tive than the S4PR category, as explained in section 1. These seminal results are
based on the study of safeness (as defined in the deadlock prediction problem [2],
“the existence of a feasible sequence in which to allocate the remaining resource
requirements of the processes”). However, the process structure in these earlier
models was finite and acyclic: once a process had satisfied all the resource re-
quirements, it was terminated and hence removed from the system. On the other
hand, a marked S4PR does not have a target state; instead, the processes are
structurally repetitive. Hence, it is desirable to ensure that the feasible sequence
is arbitrarily long. This leads us to the following definition:

Definition 4. Let 〈N , m0〉, N = 〈P, T , C〉 be an S4PR with an acceptable ini-
tial marking, and let m be a reachable marking, m ∈ RS(N , m0). Then 〈N , m〉

Resource Allocation Systems: Some Complexity Results on the S4PR Class 333

(or simply, m) is doomed to deadlock iff ∃ k ∈ IN such that for every firable
sequence σ, m[σ〉, exists t ∈ T such that t is fired at most k times, σ[t] ≤ k.

The negation of this property (i.e. m is not doomed to deadlock) is somehow
an extension of that concept of safeness and leads us to the optimal deadlock
avoidance strategy: in our relaxed terminology, a resource allocation will be
“safe” iff m is not doomed to deadlock. Soon we will see that markings which
are doomed to deadlock are well characterized in the S4PR class.

In contrast, an optimal deadlock detection strategy should detect iff a marking
m is doomed to deadlock, and apply recovery techniques in that case. It must be
remarked that here we understand optimality in the strictest sense: the ability
to detect the problem as soon as possible, i.e., as soon as a transition in the net
is bound to die. Please note that other works define optimal detection as simply
deciding iff there exists a transition which is effectively dead, i.e. no longer firable,
in the current marking. The latter is less general and also computationally easier.
The earlier will be proved co-NP-complete:

Problem 3. S4PR-Deadlock-Detection (S4PR-DD)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and a reachable marking m, m ∈ RS(N , m0).
To decide: Is 〈N , m〉 doomed to deadlock?

Lemma 2. Let 〈N , m0〉, N = 〈P, T , C〉 be an S4PR with an acceptable initial
marking, and let m be a reachable marking, m ∈ RS(N , m0). Then 〈N , m〉 (or
simply, m) is doomed to deadlock iff m0 /∈ RS(N , m).

Proof. The necessary part (“only if”) is rather obvious: every minimal t-semiflow
is firable in isolation from m0. This means that we can build a repetitive sequence
in which we successively fire every minimal t-semiflow, hence firing every transi-
tion an arbitrarily large number of times. Regarding the sufficient part (“if”), let
us proceed by reduction to absurd. Suppose that m0 /∈ RS(N , m), and that ex-
ists an infinite finite sequence σ, m[σ〉 such that every transition is fired infinite
times. In that case, every time a transition t ∈ •P0 is fired in σ (so the marking
of an idle place is increased), we can freeze the token in the correspondent idle
place (i.e. leave the token there). Since the idle places are the unique places in
which no resource is used, this augments the number of resources available in
the system, so the rest of active processes (i.e. tokens in the process places) can
be moved in the same way as in the original sequence σ. Proceeding this way,
we could construct a sequence σ′ that moves all the tokens to the idle places,
reaching m0, unless there exists a place p ∈ PS with frozen tokens in it (m[σ′〉m′,
m′[p] > 0). But this is impossible, since that would imply that p• is m′-resource-
disabled. Since the number of available resources has not been decreased, that
would imply that p• was not infinitely firable in σ, reaching a contradiction. �

Thus the problem of deadlock avoidance can be reduced to the problem of deter-
mining the reachability of the initial marking: a problem that is NP-complete,
as we will see.

334 J.-P. López-Grao and J.-M. Colom

Problem 4. S4PR-Reachable-Initial-Marking (S4PR-RIM)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and a reachable marking m, m ∈ RS(N , m0).
To decide: Is m0 reachable from 〈N , m〉?

Theorem 5. S4PR-RIM is NP-complete.

Proof. In order to prove NP-easiness, let us introduce the following problem:

Problem 5. S4PR-Path-to-Initial-Marking (S4PR-PIM)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

a reachable marking m ∈ RS(N , m0), and a firing sequence σ,
|σ| ≤ K · |T |, where K =

∑
p∈P0

m0[p].
To decide: Is m0 reached firing m[σ〉?

1. S4PR-PIM is in P (this is rather trivial: checking the firability of every
transition in the sequence can be done in deterministic linear time).

2. Let (N , m0, m, σ) be a valid input for S4PR-PIM, being (N , m0, m) an input
for S4PR-NL. As the size of σ is polynomial in the number of transitions and
population of the net, it is trivial to find two encodings e1(N , m0, m, σ) and
e2(N , m0, m) such that |e1(N , m0, m, σ)| ≤ c′ · |e2(N , m0, m)|c, given c, c′.

3. S4PR-RIM can be verified in deterministic polynomial time. By lemma 1,
but reasoning over the reverse net, if m0 is reachable there is a firing sequence
σ, m[σ〉m0, with (|σ| ≤ K · |T |). Hence, S4PR−NL returns YES with input
(N , m0) iff exists a firing sequence σ such that S4PR-PIM returns YES.

Now that NP-easiness is proven, it is required to prove NP-hardness. But this
part is rather straightforward, due to the fact that (as commented before) the
problem of safeness in previous works ([2,9,10]) can be easily proven a subcase of
S4PR-RIM. Since the problem was already NP-hard for this models, we conclude
that the problem is NP-hard through restriction [14]. �
Summing up, S4PR-DD is co-NP-complete (i.e., optimal deadlock detection in
the S4PR is co-NP-complete)2. The problem of optimal deadlock avoidance re-
mains NP-complete for the S4PR class.

3.4 Spurious Markings

A spurious marking is a solution of the net state equation, m = m0 + C · X ,
X 	 0, that is not reachable from m0. A killing spurious solution is a spurious
marking such that 〈N , m〉 is non-live. There exist Petri net subclasses, such
as equal conflict (EQ) systems [15], for which killing spurious solutions are not
possible. In those cases, the linear description provided by the net state equation
can be used to determine the liveness of the system.

Unfortunately, the S4PR class is not one of those classes, and this limits the
potential of the net state equation for this purpose. Unless that, noticeably,
2 However, we remind the reader that there exists a reachable marking m′ such that

it can be structurally characterized as a bad marking by theorem 1, but this does
not affect the inherent computational complexity of the problem.

Resource Allocation Systems: Some Complexity Results on the S4PR Class 335

spurious solutions were efficiently detectable for a given S4PR system. As we
will see, however, this is a co-NP-complete problem:

Problem 6. S4PR-Spurious-Detection (S4PR-SD)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and m ∈ IN|P |, m = m0 + C ·X , X ≥ 0.
To decide: Is m an spurious marking?

Intuitively, m is an spurious marking iff m0 is not reachable from m in its reverse
(note that there may be isolated spurious solutions, i.e. not connected to the reach-
ability space). Meanwhile, the reverse net of a S4PR is another S4PR. This is quite
trivial, since the polarity inversion of the incidence matrix does not affect its (left
or right) annullers, so the p and t-semiflows are preserved with respect to N .

It is easy to see now that S4PR-SD is co-NP-complete. This is bad news since,
unless NP=P, this implies that we cannot verify that a marking is spurious in
deterministic polynomial time using solely the structure of the net.

4 Conclusions

RAS is an abstraction of real systems allowing to concentrate on the study
of problems such as deadlocks due to the sharing of resources used in mutual
exclusion. Modelling RAS with Petri nets is particularly easy through the iden-
tification of processes with state machines and resources with monitor places
representing the allocation of copies of resources. As a consequence, the S4PR
subclass has already been proven specially useful and suitable for the RAS ab-
straction of Flexible Manufacturing Systems (FMS) [13]. For this reason, we
have devoted an insight on the complexity of some problems related to handling
with deadlocks using this kind of models.

As expected, many of the important problems are proven computationally
intractable, and for this reason, the heuristics presented in [8,13] have special
interest. Regarding optimal deadlock prevention, we have established that the
problem of determining if a marked S4PR is non-live is NP-complete. Besides, we
have provided evidence for NP-completeness of optimal deadlock avoidance for
this class, generalizing earlier results for other types of RAS which were already
proven NP-hard. This was accomplished thanks to proving the equivalence of this
problem with that of deciding the reachability of the initial marking. The inverse
problem (optimal deadlock detection, in the strictest sense) is co-NP-complete.

Moreover, because the mathematical methods presented in [13] are based on
the net state equation, an insight on the complexity of the detection of spurious
markings is also relevant. The intractability of the problem, along with the ex-
istence of killing spurious solutions, constrains the practicality of the net state
equation for determining non-liveness.

Finally, a motivating example was also introduced, in order to depict the
utility of our conceptual framework in the study and correction of deadlock
problems in distributed systems and protocols, beyond the FMS context.

Obviously, the modelling power of the S4PR class is limited if we consider,
e.g., certain applications coming from the world of distributed computing. The

336 J.-P. López-Grao and J.-M. Colom

generalization of the S4PR subclass for modelling RAS hence emerges as an
appealing future research direction. [16] is a first effort in this vein. For the
generalized net classes, the problems here studied will fall, at best, within the
same complexity classes. Nevertheless, their study will give us insight on more
complex behaviours that can observed in these systems [16].

References

1. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing
Surveys 3(2) (1971) 67–78

2. Gold, E.M.: Deadlock prediction: Easy and difficult cases. SIAM Journal on
Computing 7(3) (1978) 320–336

3. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

4. Lautenbach, K., Thiagarajan, P.S.: Analysis of a resource allocation problem us-
ing Petri nets. In Syre, J.C., ed.: Proc. of 1st European Conf. on Parallel and
Distributed Processing, Toulouse, Cepadues Editions (1979) 260–266

5. Ezpeleta, J., Colom, J., Mart́ınez, J.: A Petri net based deadlock prevention policy
for flexible manufacturing systems. IEEE Trans. on Robotics and Automation
11(2) (1995) 173–184

6. Xie, X., Jeng, M.D.: ERCN-merged nets and their analysis using siphons. IEEE
Trans. on Robotics and Automation 29(4) (1999) 692–703

7. Park, J., Reveliotis, S.A.: Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings. IEEE Trans. on
Automatic Control 46(10) (2001) 1572–1583

8. Tricas, F.: Deadlock analysis, prevention and avoidance in sequential resource
allocation systems. PhD thesis, University of Zaragoza, Zaragoza (2003)

9. Lawley, M., Reveliotis, S.: Deadlock avoidance for sequential Resource Allocation
Systems: Hard and easy cases. Int. Journal of Flexible Manufacturing Systems 13
(2001) 385–404

10. Sulistyono, W., Lawley, M.: Deadlock avoidance for manufacturing systems with
partially ordered process plans. IEEE Trans. on Robotics and Automation 17(6)
(2001) 819–832

11. Brade, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: RFC 2205: Resource
ReSerVation Protocol – Version 1 Functional Specification (1997)

12. Villapol, M., Billington, J.: Analysing properties of the resource reservation proto-
col. In Van der Aalst, W. and Best, E., eds.: Proc. of 24th Int. Conf. on Applications
and Theory of Petri Nets. Vol. 2679 of LNCS. Springer–Verlag (2003) 377–396

13. Tricas, F., Garćıa-Vallés, F., Colom, J., Ezpeleta, J.: A Petri net structure-based
deadlock prevention solution for sequential resource allocation systems. In: Proc.
of IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain (2005) 272–278

14. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

15. Teruel, E., Silva, M.: Liveness and home states in equal conflict systems. In
Ajmone Marsan, M., ed.: Proc. of 14th Int. Conf. on Applications and Theory of
Petri Nets. Vol. 691 of LNCS. Springer–Verlag (1993) 415–432

16. López-Grao, J.P., Colom, J.M.: Lender processes competing for shared resources:
Beyond the S4PR paradigm. In: Proc. of IEEE Int. Conf. on Systems, Man and
Cybernetics, Taipei, Taiwan (2006) To appear.

Resource Allocation Systems: Some Complexity Results on the S4PR Class 337

A Petri Nets: Basic Definitions

A place/transition net (P/T net) is a 3-tuple N = 〈P, T , W 〉, where W is a
total function W : (P × T) ∪ (T × P) → IN, being P , T non empty, finite and
disjoint sets. Elements belonging to the sets P and T are called respectively
places and transitions, or generally nodes. P/T nets can be represented as a
directed bipartite graph, where places (transitions) are graphically denoted by
circles (rectangles): let p ∈ P , t ∈ T , u = W (p, t), v = W (t, p), there is a directed
arc, labelled u (v), beginning in p (t) and ending in t (p) iff u �= 0 (v �= 0).

The preset (poset) or set of input (output) nodes of a node x ∈ P∪T is denoted
by •x (x•), where •x = {y ∈ P ∪T | W (y, x) �= 0} (x• = {y ∈ P ∪T | W (x, y) �=
0}). The preset (poset) of a set of nodes X ∈ bag(P)∪ bag(T) is denoted by •X
(X•), where •X = {y | y ∈ •x, x ∈ X} (X• = {y | y ∈ x•, x ∈ X}

A generalized P/T net is a net with positive arc weights. If the arc weights are
unitary (i.e., W can be defined as a total function (P × T) ∪ (T × P) → {0, 1})
the net is called ordinary. A state machine is an ordinary net such that for every
transition t ∈ T , |•t| = |t•| = 1.

Let N = 〈P, T , W 〉 be a P/T net. Its reverse net N r = 〈P, T , W r〉 is the same
net with its arcs inverted, i.e. W r(p, t) = W (t, p) and W r(t, p) = W (p, t).

A self-loop place p ∈ P is a place such that p ∈ p••. A pure P/T net (also
self-loop free P/T net) is a net with no self-loop places. In pure P/T nets, the
net can be also defined by the 3-tuple N = 〈P, T , C〉, where C is called the
incidence matrix, C[p, t] = W (p, t)−W (t, p).

A marking m of a P/T net N is a vector IN|P |, assigning a finite number
of marks m[p] (called tokens) to every place p ∈ P . Tokens are represented by
black dots within the places. The support of a marking, ‖m‖, is the set of places
which are marked in m, i.e. ‖m‖ = {p ∈ P | m[p] �= 0}.

We define a marked P/T net (also P/T net system) as the duple 〈N , m0〉,
where N is a P/T net, and m0 is a marking for N , also called initial marking. N
is said to be the structure of the system, while m0 represents the system state.

Let 〈N , m0〉 be a marked P/T net. A transition t ∈ T is enabled (also firable)
iff ∀p ∈ •t . m0[p] ≥ W (p, t), which is denoted by m0[t〉. The firing of an
enabled transition t ∈ T changes the system state to 〈N , m1〉, where ∀p ∈
P . m1[p] = m0[p] + C[p, t], and is denoted by m0[t〉m1. A firing sequence σ
from 〈N , m0〉 is a non-empty sequence of transitions σ = t1 t2 ... tk such that
m0[t1〉m1[t2〉 ... mk−1[tk〉. The firing of σ is denoted by m0[σ〉tk. We call the
firing count vector σ of σ to the Parikh mapping σ → IN|T | (i.e. σ[t] is equal to
the number of times t appears in σ). The support of σ is denoted by ‖σ‖.

A marking m is reachable from 〈N , m0〉 iff there exists a firing sequence σ such
that m0[σ〉m. The reachability set RS(N , m0) is the set of reachable markings,
i.e. RS(N , m0) = {m | ∃ σ . m0[σ〉m}.

The net state equation of a marked P/T net 〈N , m0〉 is an algebraic equation
defined as m = m0 + C · σ, where σ≥\ 0. Every reachable marking holds the
net state equation, but there may exist solutions to the equation which are not
reachable markings. Thus we will call m a potentially reachable marking. The

338 J.-P. López-Grao and J.-M. Colom

potential reachability set PRS(N , m0) is defined as PRS(N , m0) = {m | ∃ σ ∈
IN|T |. m = m0 + C · σ, σ≥\ 0}.

A transition t ∈ T is live iff for every reachable marking m ∈ RS(N , m0),
∃m′ ∈ RS(N , m) such that m′[t〉. The system 〈N , m0〉 is live iff every transition
is live. Otherwise, 〈N , m0〉 is non-live. A transition t ∈ T is dead iff there is
no reachable marking m ∈ RS(N , m0) such that m[t〉. The system 〈N , m0〉 is
a total deadlock iff every transition is dead, i.e. no transition is firable. A home
state mk is a marking such that it is reachable from every reachable marking,
i.e. ∀m ∈ RS(N , m0) . mk ∈ RS(N , m). The net system 〈N , m0〉 is reversible
iff m0 is a home state.

A p-semiflow (t-semiflow) is a vector Y ∈ IN|P |, Y �= 0 (X ∈ IN|T |, X �= 0),
which is a left (right) annuler of the incidence matrix, Y · C = 0 (C ·X = 0).
The support of a p-semiflow (t-semiflow) is denoted ‖Y ‖ (‖X‖), and its places
(transitions) are said to be covered by Y (X). The P/T net N is conservative
(consistent) iff every place (transition) is covered by a p-semiflow (t-semiflow).
A minimal p-semiflow (minimal t-semiflow) is a p-semiflow (t-semiflow) such
that the g.c.d of its non-null components is one and its support ‖Y ‖ (‖X‖) is
not an strict superset of the support of another p-semiflow (t-semiflow).

A path π of a P/T net N is a sequence of nodes π = x1 x2 ... xn such that the
odd components are places and the even components transitions, or viceversa,
and for every pair (xi, xi+1), W (xi, xi+1) �= 0. An elementary path is a path such
that ∀i, j ∈ [1, n] . xi �= xj , except for x1 = xn (which is allowed). A general
circuit is a path such that x1 = xn. An elementary circuit (or simply circuit) is
both an elementary path and a general circuit.

B The Problem of Satisfiability(SAT)

Let X = {x1, ..., xn} be a set of boolean variables. By the process of truth
assignment, every variable in X is assigned one value: either true or false. Let
xi ∈ X , we call a literal to either xi or its negation, xi. Intuitively, if the variable
xi is assigned the value true, the literals xi and xi are true and false, respectively
(and viceversa if false is assigned). We define a clause Cj as a non-empty set of
literals. The value of a clause is the disjunction of its literals, i.e., it is true iff at
least one literal is true; and false otherwise. Finally, a formula F is a non-empty
set of clauses, and its value is the conjunction of them, i.e., it is true iff all its
clauses are true; false otherwise.

Without loss of generality, we will assume that, given a formula F = C1 · ... ·Ck

and the set of its variables X , every variable xi ∈ X appears in at least one clause,
and also that xi appears at most once in each clause, be it negated or not.

Problem 7. SATISFIABILITY (SAT)
Given: A formula F and the set of its variables X .
To decide: Is there a truth assignment for X such that F is true?

Optimized Colored Nets Unfolding

Fabrice Kordon, Alban Linard, and Emmanuel Paviot-Adet

Université P. & M. Curie - Paris 6, CNRS UMR 7606 - LIP6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

Fabrice.Kordon@lip6.fr, Alban.Linard@lip6.fr, Emmanuel.Paviot-Adet@lip6.fr

Abstract. As some structural properties, like generative families of pos-
itive P-invariants, can only be computed in P/T nets, unfolding of Col-
ored Petri Nets is of interest. However, it may generate huge nets that
cannot be stored concretely in memory. In some cases, removing the dead
parts of the unfolded net can dramatically reduce its size, but this op-
eration requires the unfolded net to be represented anyway. This paper
presents a symbolic representation of unfolded nets using Data Decision
Diagrams. This technique allows to store very large models and manip-
ulate them for optimization purpose.

1 Introduction

Colored Petri nets, introduced by K. Jensen in 1981 [8] are very convenient for
modeling complex systems. However, basic structural properties of P/T nets [11]
remain difficult to extend to Colored Petri Nets: a generative family of positive
invariants can only be computed under restrictive conditions [5] and structural
bounds are generally not available.

Class
 C1 is 1..3;
 C2 is 1..2;
Domain
 D is <C1, C2>;
Var
 x in C1;
 y in C2;

P1
D <1,1>,<3,2>

P3
C2

T

P2
C1

<x> <y>

<x,y>

P1_C1_1_C2_1

1

P1_C1_1_C2_2

P1_C1_2_C2_1

P1_C1_2_C2_2
P1_C1_3_C2_1

P1_C1_3_C2_2

1

P3_C2_1

P3_C2_2
P2_C1_1

P2_C1_2
P2_C1_3

T_0 T_1 T_2 T_3 T_4 T_5 T_5T_0

P2_C1_3P2_C1_1 P3_C2_2P3_C2_1

P1_C1_3_C2_2

1

P1_C1_1_C2_1

1

(b)(a) (c)

Fig. 1. Example of Net unfolding

To overcome this problem, modelers may transform the colored Petri net into
an equivalent P/T net. This operation, called unfolding, generates for each orig-
inal place, numerous P/T places instances according to its color domain. More-
over, one P/T transition is generated for any possible binding of each colored
transition. This leads to huge unfolded net. As an example, the colored model
(a in Figure 1) is unfolded into a P/T net (b in the figure). Hopefully, in many
cases, simplifications can lead to a smaller unfolded net according to:

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 339–355, 2006.
c© IFIP International Federation for Information Processing 2006

340 F. Kordon, A. Linard, and E. Paviot-Adet

1. the initial marking of places (here, place P1 in the colored model lacks some
marking and thus, some of the corresponding P/T places are zero-marked),

2. false guards on transitions.

Model c in Figure 1 shows the unfolded Petri net after optimization.
Unfolding Colored Petri nets raises several problems when they become large

because the result cannot be stored in memory. This is typically the case for
Petri nets derived from higher level specification (such as UML as suggested in
[1]). Optimization of the unfolded net, when possible, requires the unfolded net
to be represented anyway before optimization.

In this paper, after a brief remainder of Well-Formed Petri Nets [3] in Sec-
tion 2 and a presentation of Data Decision Diagrams (DDDs) [4] a shared struc-
ture we use to store huge P/T nets in Section 3, we present in Section 4 how
P/T places and transitions are symbolically stored. P/T arcs, however, are not
represented, they are computed on the fly from the colored description when
needed. Section 5 describes the main contribution of this work: implementation
of the optimization algorithms in this symbolic context. We end with experimen-
tation on various types of specifications to assess when our technique is efficient
in Section 6.

2 Well-Formed Colored Petri Nets

In this section we describe Well-Formed Petri Nets (WN) [3], the input formal-
ism for our work. Originally designed to ease structural verification algorithms
expression, this formalism is a subset of Colored Petri nets with a simple and
rigorous syntax and is also used to exploit model symmetries. Definitions in this
section are adapted from [12].

Classes and domains define the color structures used in WN models, allowing
tokens to be identified from one another.

Definition 1 (Classes, domains and variables). A class is a cyclicly ordered
finite set of elements with successor (resp. predecessor) function defined. A class
is an interval over the positive naturals k1..k2, where k1 < k2, the successor of
k2 is k1 (resp. the predecessor of k1 is k2).

A domain is a Cartesian product of classes.
Variables are defined over classes, but not over domains.

The next definition introduces basic expressions over variables. Those basic ex-
pressions are used in predicates and domain functions.

Definition 2 (Basic color functions). A basic color function E(x) is the
identity function (noted x) or x++n or x--n the nth successor and predecessor
of variable x respectively or the constant function (denoted by the correponding
class member).

Definition 3 (Standard Predicates). A standard predicate is a Boolean ex-
pression of basic predicates. The allowed basic predicates are: E(x) = E(y),

Optimized Colored Nets Unfolding 341

E(x) �= E(y), E(x) < E(y) where x and y are variables of same class and E(x)
and E(y) are basic color functions.

Definition 4 (Domain functions). Let D = 〈C1, . . . Cn〉 be a domain where
Ci are classes. Let xi be a variable defined over the class Ci.

A basic domain function BF of D is : BF : 〈C1, . . . Cn〉 → Bag(〈C1, . . . Cn〉)
where BF is a function of the form BF = k.〈E(x1), . . . , E(xn)〉.

A Domain function F of D is: F : 〈C1, . . . Cn〉 → Bag(〈C1, . . . Cn〉) where F
is a function of the form F = BF1 + · · · + BFn where BFi is a basic domain
function.

Definition 5 (Well-Formed Colored Petri Nets). A Well-Formed Net is a
twelve-tuple N = 〈P, T , Pre, Post, C, D, V, V Dom, TV ar, Dom, gd, M0〉 where:

– P and T are disjoint finite non empty sets (respectively the places and tran-
sitions of N),

– V is a set of variables,
– C and D are respectively sets of classes and domains,
– V Dom is a function that maps variables to classes,
– TV ar is a function that maps transitions to subsets of V ,
– Dom is a function defining the color domain of each place and transition,

the domain of transition t is a Cartesian product of the classes V Dom(v)
for each v in TV ar(t),

– gd is a function defining for each transition t its predicate (called guard),
variables used in basic predicates belong to Tvar(t),

– Pre[p, t] (resp. Post[p, t]) is the pre-incidence (resp. post-incidence) func-
tion: a domain function over Dom(p), variables used in each basic color
functions belong to the corresponding class in the domain,

– M0 : M0(p) ∈ Bag(Dom(p)) is the initial marking of place p.

An equivalent P/T net can be assiociated to each WN. To a colored place P are
associated |Dom(P)| ordinay places. Equivalently,to a colored transition t are
associated |V Dom(x1)|∗· · ·∗|V Dom(xn)| ordinary transitions, where xi belongs
to TV ar(t). Ordinary arcs link places to transitions according to Pre and Post.

3 Data Decision Diagrams

Data Decision Diagrams represent assignment sequence sets of the form e1 =
x1; e2 = x2; · · · en = xn where ei are variables and xi are values. Like in Binary
Decision Diagrams, common parts are shared at the beginning and the end of the
sequences. No fixed order is needed over the assignments sequences and multiple
reassignments are allowed. Moreover, no assumptions are done on the variables
domains.

DDDs use three terminal nodes: 0, 1 and %. As usual, a sequence ending with
1 is part of the set described by the DDD, a sequence ending with 0 is not part
of this set and a sequence ending with % means that an error occurred in a
previous operation. In the following, E denotes a set of variables, and for any
e ∈ E, Dom(e) represents the domain of e. For more detailed information see [4].

342 F. Kordon, A. Linard, and E. Paviot-Adet

Definition 6 (Data Decision Diagram). The set ID of DDDs is defined by
d ∈ ID if:

– d ∈ {0, 1,%} or
– d = (e, α) with:

• e ∈ E
• α : Dom(e) → ID, such that {x ∈ Dom(e) |α(x) �= 0} is finite.

We denote e
a−→ d, the DDD (e, α) with α(a) = d and for all x �= a, α(x) = 0.

We denote e
a..b−−→ d, the DDD (e, α) with α(a) = . . . = α(b) = d and for all

x /∈ {a, . . . b}, α(x) = 0.

This definition allows multiple DDD representations of the empty set, therefore,
each DDD can have multiple representations. An equivalence relation over the
DDDs is thus needed. 0 denotes the empty set and each node equivalent to the
empty set is replaced by 0. This induces a canonical representation.

Since DDDs represent sets, sets operators are defined over DDDs: union +,
intersection ∗ and difference \. DDDs also represent sets of sequences, the con-
catenation operator . is also defined: if d1 and d2 are two DDDs, then d1.d2 is
composed of all possible sequences beginning with a sequence of d1 while the
remainder is a sequence of d2.

The main feature of the DDDs that is attractive for our work is the notion
of homomorphisms: an homomorphism Φ is a mapping on DDDs that maps
the empty set to itself (Φ(0) = 0) and that is linear with respect to the union
(Φ(d1 +d2) = Φ(d1)+Φ(d2)). The identity mapping Id (Id(d) = d) is the easiest
homomorphism one can define. Basic homomorphisms can be composed to create
new homomorphisms: if Φ1 and Φ2 are homomorphisms, then Φ1 ◦ Φ2 is a new
homomorphism.

Another simple homomorphism is the one that takes a couple (variable, value)
as parameters Construct(e, x) and returns the DDD composed of a node labeled
e and an arc leading to terminal node 1, labeled x. Using predefined operators,
DDDs can be created: Construct(A, 1).(Construct(B, 2) +Construct(B, 4)) re-

turns the DDD A
1−→ B

{2,4}−−−→ 1. This DDD is depicted in Figure 2
Many operations on DDDs, like variable re-

A B 1
1

2

4

Fig. 2. Basic DDD creation

ordering or value modification, cannot be ob-
tained via predefined operators only. A spe-
cial set of homomorphisms is introduced: the
inductive homomorphisms. Those homomor-
phisms associate a DDD to terminal node 1
and apply defined homomorphisms for each
sub-DDD to each couple (variable, value).

Definition 7 (Inductive homomorphism). Let I be an index set. Let (di)i∈I

be a family of DDDs. Let (Φi(e, x))i∈I be a family of homomorphisms.
Then the recursive definition of mappings (Φi)i∈I in Figure 3 defines a family

of homomorphisms called inductive homomorphisms.

Optimized Colored Nets Unfolding 343

∀d ∈ ID, Φi(d) =

0 if d = 0

di if d = 1

	 if d = 	
x∈Dom(e) Φi(e, x)(α(x)) if d = (e, α)

Fig. 3. Definition of inductive homomorphisms

4 Shared Structure

In this work, optimization algorithms are designed on P/T nets stored via deci-
sion diagrams. Since we chose to cut the unfolded net representation into several
short decision diagrams, the symbolic structure must allow variable reordering
locally to each set in order to compute P/T arcs. OBDDs [2] cannot, therefore,
be used to store the unfolded net.

For this reason, we have chosen Data Decision Diagrams (DDDs) [4]: a struc-
ture that is not bound to any order, allows variable repetition and offers a large
toolset to handle the structure. After a quick overview of the problem, a detailed
description of the symbolic representation is given.

4.1 Partial Unfolding

Unfolding P ′
n, if n is a place (or T ′

n if n is a transition), of a node n with
Dom(n) = C0 × . . . × Cm is a set of |C0| ∗ . . . ∗ |Cm| nodes N ′

n composed of
unfolded nodes for all possible bindings for each component of Dom(n). It results
in a P/T net where all color classes have disappeared. Partial unfolding of the
same node for color class Cu is a set of

∏
c∈Dom(n)|c=Cu

|c| nodes, composed of
all possible bindings for each component of Dom(n) of color class Cu.

Full unfolding is a special case of partial unfolding, obtained by the successive
partial unfoldings, in any given order, over all color classes. A colored net N is
fully unfolded to a net N ′ = unfold(N) = ◦c∈Cunfoldc(N). Differences between
full and partial unfolding are presented in algorithms of this paper.

4.2 Optimized Unfolding

The number of unfolded nodes in a net can be huge, especially when color classes
contain a lot of elements, or when domains contain a lot of color classes. Unfolding
of the Train [6] model generates more than 109 transitions. Such a net cannot have
a concrete representation in memory and is almost useless if its size is not reduced.

Optimizations can be applied to unfolded nets to reduce their size, but our
previous unfolder needed a concrete representation of the unfolded net to perform
these optimizations. When no concrete representation of the unfolded net was
possible because of its size, the optimizations needed to reduce its size could not
be applied.

The new unfolder described here offers a solution to this problem by the sub-
stitution of the concrete representation of the unfolded nets with a symbolic one

344 F. Kordon, A. Linard, and E. Paviot-Adet

for their places and transitions, and an implicit one for arcs. Optimizations can
then be applied to huge unfolded nets and, in some cases, their size after opti-
mization can be small enough for a concrete representation generation, usable
by other tools.

4.3 Symbolic Unfolded Net

Symbolic representation of the unfolded net must be compact and allow fast
operations. These two goals being more likely to be achieved using short decision
diagrams, the representation chosen uses several decision diagrams, one for each
colored place and one for each colored transition.

Symbolic representation of sets for unfolded places and transitions is done
using DDD. This structure is well adapted to the representation of sets of integer
vectors, and thus sets of vectors of color class values. Each sequence, in the
representation of unfolded nodes from a node, is interpreted as one unfolded
node. Integer vectors represent then, for an unfolded place or transition, the
values in color classes associated to this particular object.

A symbolic unfolded net is defined above a Well-Formed Net by adding:

– SV P : P × (C×N) → SV and SV T : T ×V → SV : functions returning for
each couple (place× domain component) (the domain component being the
color class and its occurrence number in the domain), resp. (transition ×
valuation variable), the DDD variable in the symbolic representation,

– SP : P → ID and ST : T → ID : for each p ∈ P (resp. t ∈ T), its unfolded
places (resp. transitions) represented using a DDD,

– M ′
0 : P → ID : for each p ∈ P , the DDD of initially marked unfolded places.

Let us note that arcs are not explicitly represented in a symbolic unfolded net.
Therefore, there is no direct encoding of Pre and Post functions as usually: arcs
are computed on the fly. To do so, four functions are defined to get pre-conditions
or post-conditions of a node :

PreT (t) = {p ∈ P |Pre[p, t] �= ∅} PostT (t) = {p ∈ P |Post[p, t] �= ∅}
PreP (p) = {t ∈ T |Post[p, t] �= ∅} PostP (p) = {t ∈ T |Pre[p, t] �= ∅}

Partial unfolding is supported by this definition as the symbolic representation
only gives an information about the presence of a node, still colored or not, in the
unfolded net. Algorithms are presented for a full unfolding, because notations
for partial unfolding can be less readable, but they also work for partial or are
easily extended to achieve this goal.

We now introduce the notation DDDp = SP (p) (resp. DDDt = ST (t)) for the
symbolic representation of P ′

p (resp. T ′
t) the unfolded places (resp. transitions)

from p (resp. t). A shorter notation is used for SV P (p, c): it is the DDD variable
for the component c, color class and occurrence number of it in Dom(p), of
place p.

The chosen representation only describes the presence of unfolded places or
transitions and the structure of their DDD representation, and thus avoids a

Optimized Colored Nets Unfolding 345

representation of unfolded arcs, because the operations on the net, Pre and
Post matrices or guards, are represented using homomorphisms. As these ho-
momorphisms are operations suited to only particular purposes, for example
interpreting some guards or getting places pre-condition of several transitions,
they are not part of the definition of the symbolic unfolded net.

The unfolder is basically divided in three parts : the translation from a Well-
Formed Net to a symbolic unfolded net and the definition of operations on
this symbolic unfolded net, the application of the operations on the symbolic
representation, and the translation from a symbolic unfolded net to a Well-
Formed or P/T Net.

4.4 Construction of Symbolic Representation

The symbolic representation DDDp of unfolded places P ′
p from a place p is built

recursively as shown in Algorithm 1. Unfolded places are initially represented
with the DDD 1, meaning that an already non-colored place unfolded for some
color class or a colored place unfolded for no color class is unfolded as itself. Then,
for each component ci of Dom(p) to unfold, its corresponding DDD variable
SV P (p, ci) is added on top of place DDD, linked with one arc for each value in the
color class of ci to previously built place DDD. The same applies to construction
of unfolded transitions from a transition t, but each transition variable v ∈
TV ar(t) gives a corresponding DDD variable with SV T (t, v).

This algorithm defines an order in the DDD, but this order has no influence on
algorithms presented in this paper as only DDD variables are used in operations.
However, the implementation deals with this problem by enabling other orders.

Algorithm 1. Symbolic unfolded net construction

Require: P ⊂ N
Ensure: ∀p ∈ P, DDDp

for all p ∈ P do
DDDp := 1
for all c ∈ Dom(p) do

if is unfolded(c) then
DDDp :=

x∈c SV P (p, c) x−→ DDDp

end if
end for

end for

Require: T ⊂ N
Ensure: ∀t ∈ T, DDDt

for all t ∈ T do
DDDt := 1
for all v ∈ TV ar(t) do

if is unfolded(V Dom(v)) then
DDDt :=

x∈V Dom(v) SV T (t, v) x−→ DDDt

end if
end for

end for

4.5 Reconstruction of Explicit Representation

Construction of an explicit unfolded net from a symbolic representation is done,
as shown in Algorithm 2, by creating a place for each path in the decision
diagrams of unfolded places, and creating a transition for each path in the DDD

346 F. Kordon, A. Linard, and E. Paviot-Adet

of unfolded transitions. The 0 DDD means no unfolded place or transition exists,
1 means the colored (or not) place or transition is kept identical in unfolded net,
and other symbolic representations, except % which should never happen, mean
unfolded places or transitions have to be created. The algorithm presented is
valid only for full unfolding, but can be easily extended for partial unfolding.
The algorithm is the same for transitions as for places, and the same for post
arcs than for pre ones.

Algorithm 2. Concrete unfolded net construction
Require: N, the symbolic unfolded Net
Ensure: N ′ = 〈P ′, T ′, P re′, P ost′, M0′〉, the concrete unfolded net
Unfolded places

for all p ∈ P do
for all path ∈ DDDp do

P ′
p := P ′ ∪ {path}

end for
P ′ := P ′ ∪ P ′

p

end for
Unfolded initial marking

for all p ∈ P do
for all p′ ∈ P ′

p do
if M0(p)(p′) �= 0 then

M ′
0 := M0′ ∪ {(p′, M0(p)(p′))}

end if
end for

end for

Unfolded Pre arcs
for all arc = ∈ Pre do

for all p′ ∈ P ′
p do

for all t′ ∈ T ′
t do

n := valuation(p′, t′)
if n �= 0 then

Pre′ := Pre′ ∪ { }
end if

end for
end for

end for

For each colored arc ∈ Pre, an unfolded arc is created
if the evaluation of valuation for unfolded values of p′ and t′ is non-zero. The
same applies for colored arcs ∈ Post.

For each place p ∈ P , its initial marking has a symbolic representation
DDDmarked

p in the same way as DDDp. For each unfolded place p′ ∈ P ′
p, its

initial marking is created if a path in DDDmarked
p corresponding to p′ is found.

5 Optimizations on the Unfolded P/T Net

Optimizations applied to the symbolic unfolded net are described in the next
subsections. First of them is a simple one, the removal of false guarded tran-
sitions. Then, a more powerful but complicated one is presented, the removal
of maximal unmarked syphon. A last optimization, the removal of marked or-
phaned places, is not presented in this paper as it uses the same operations as
the maximal unmarked syphon.

Homomorphisms are not described in this paper because of lack of space, but
are available to the reader on request to the authors.

Optimized Colored Nets Unfolding 347

5.1 Optimization Order

Definition 8 (Partial order over optimizations). ≺ is a partial order op-
erator over optimizations defined by oi ≺ oj iff oj applied on an unfolded net
previously optimized by oi has a different result from oj applied on an unopti-
mized unfolded net.

Guard ≺ Syphon, as maximal unmarked syphon reduces the unfolded net be-
cause some transitions can never be fired, either because one of their input places
cannot be marked or because the bindings of the transition variables lead to a
false guard.

Guard ≺ Orphan and Syphon ≺ Orphan, as removal of orphaned marked
places has no effect until some transitions have been removed.

For each optimization Opt, the best result is obtained when the length of the
path Opt0 ≺ . . . ≺ Opt is maximal. Using this constraint and this partial order,
the order for optimization application is : removal of false guarded transitions,
removal of maximal unmarked syphon and removal of orphaned marked places.

5.2 Removal of false Guarded Transitions

A first optimization is to remove, from the unfolded net, the transitions that
are false guarded. Guards are used in Well-Formed Nets to enable or disable
unfolded transitions using unfold bindings of transition variables. Each unfolded
transition has a unique set of bindings that can be used for guard evaluation to
remove bindings leading to a false guard.

A guard is an expression tree, where nodes have different arities. Nodes and
leaves do not cover all the range of syntactic tokens expressing guards, for exam-
ple x > y or x ≤ y, as a reduced set of operators described in Figure 4 is sufficient.

Name Type Arity Meaning
OR node 2 ltree ∨ rtree where ltree, rtree are subtrees
AND node 2 ltree ∧ rtree where ltree, rtree are subtrees
NOT node 1 ¬tree where tree is a subtree
EQ leaf - lvar = rvar where lvar, rvar are variables
LT leaf - lvar < rvar where lvar, rvar are variables
IN leaf - var ∈ vals where var is a variable and vals a set of values
TRUE leaf - true
FALSE leaf - false

Fig. 4. Nodes and leaves in a guard tree

Application of a guard is an evaluation of the guard expression tree using
bindings for all transition variables. The symbolic operation follows the same
algorithm with one more indirection level, by creating for each guard an ho-
momorphism to select sequences of bindings that evaluate to true. The same
homomorphism is easily extended to select only non-false guards in partial
unfolding, where some variables are not bound.

348 F. Kordon, A. Linard, and E. Paviot-Adet

Creation of the homomorphism follows the guard expression tree, each node
or leaf being translated to an homomorphism as described in the following para-
graphs. One node, NOT raises a problem in its definition because its meaning is to
keep all paths except selected ones. It thus translates to the difference between
two symbolic representations, the full representation of all possible bindings and
the representation of selected ones. We chose to avoid the difference operation
by pushing negation down the tree using De Morgan’s laws.

AND nodes are translated to the ◦ homomorphism operator. As the meaning
of ◦ used here is ∧, evaluation of subtrees can be done in any order. OR nodes
are as easy to translate, by the + homomorphism operator. Whereas two leaves,
TRUE and FALSE have a direct translation by Id and Constant(0), which always
returns the DDD 0, other leaves of the form vl++sl = vr++sr, vl++sl < vr++sr

and v++s ∈ C have no predefined homomorphisms or operations corresponding
and are thus translated to inductive homomorphisms.

In partial unfolding, a guard tree leaf applied on at least one unbound variable
is considered always non-false, as later binding of the variable can still lead to
true of false. The Id homomorphism is used in this case instead of real leaf
operation to keep the paths concerned with these special leaves.

5.3 Removal of Maximal Unmarked Syphon

The maximal unmarked syphon is a subset of the places of the unfolded net
that cannot structurally be marked, and thus can be safely removed. Transitions
post-condition of these places may be removed simultaneously because they can
never be fired. Depending on the colored net, this syphon can be negligible, or
almost cover the whole unfolded net.

Algorithm for P/T Nets. The algorithm for removal of the maximal un-
marked syphon is based on an iterative construction, by removing places that
can be marked from a superset S of the syphon, until stability. It is composed
of three steps, described below.

1. Initially, the considered set is composed of all the unfolded places except the
initially marked ones.
S = ∪p∈P (p′ ∈ P ′

p|M ′
0(p′) = ∅).

2. Until stability, reduction is applied on S. For each unfolded transition t′ ∈
T ′

t∈T , if all its input places are outside the syphon, PreT (t′) ∩ S = ∅, then
the transition can structurally be fired and all its output places are removed
from the syphon, S ← S \PostT (t′). If no place is removed from the syphon
in one iteration, then stability has been reached and the algorithm comes to
its ending step.
∀t ∈ T , ∀t′ ∈ T ′

t , (PreT (t′) ∩ S = ∅) =⇒ S ← S \ PostT (t′)
3. The algorithm is ended by removing the syphon from the unfolded net. All

transitions post-condition of places in syphon are removed.
∀p ∈ P, P ′

p ← P ′
t \ S

∀t ∈ T , T ′
t ← T ′

t \ {t′ ∈ T ′
t |PreT (t′) ∩ S �= ∅ ∨ PostT (t′) ∩ S �= ∅}

Optimized Colored Nets Unfolding 349

Algorithm for Data Decision Diagrams. The algorithm of the removal of
maximal unmarked syphon can be easily extended to the manipulation of sets
of nodes, and sets represented by DDDs. In the following paragraphs, we use the
notation DDDi

n for the symbolic representation at step i of unfolded node n,
meaning that SP (n) = DDDi

n (for a place) in the symbolic unfolded net at this
step. The three steps of the algorithm become :

1. ∀p ∈ P, DDD0
p ← DDDp \M ′

0(p)
2. until stability :
∀p∈ P, DDDi

p ←DDDi−1
p \∪t∈T HPostT (DDDt\∪p′∈P HPostP (DDDi−1

p′))
3. ∀p ∈ P, DDDn

p ← DDDp \DDDn−1
p

∀t ∈ T , DDDn
t ← DDDt \ ∪p∈P (HPreP (DDDn−1

p) ∪HPostp(DDDn−1
p))

HPreP , HPreT , HPostP and HPostT are homomorphisms defined to apply
respectively PreP , PreT , PostP and PostT on sets of places or transitions. These
homomorphisms can be divided in two groups : HPreP , HPostP and HPreT ,
HPostT , based on their input and output types, these group are described in
the following paragraphs.

To ease reading of this paragraph, we take the example of HPreP , but the
same applies for the four homomorphisms. HPreP applies on all unfolded places
P ′ of the net. It is defined using sub-homomorphisms for each unfolded place
set P ′

p|p ∈ P by the homomorphism HPreP
p , which returns the set of unfolded

transitions pre-condition of places unfolded from p. If not applied on places in
P ′

p, it returns 0. HPreP
p is itself divided into sub-homomorphisms for each arc

a from a transition t to p, using a HPreP
a homomorphism. As the valuation of

an arc is a sum of terms, valuation =
∑

i vi, the latter homomorphism can be
cut into smaller ones noted HPreP

v , considering each valuation term as an arc.
Operation for combination of sub-homomorphism is either ◦ or ∪, depending on
the searched result.

HPreP = ∪p∈P ∪t∈T |Post[t,p] �=∅ ∪v∈Post[t,p]HPreP
v is the homomorphism re-

turning the set of unfolded transitions pre-condition of a set of unfolded places.
If Post[t, p] = ∅, the unfolded arc does not exist and no set is returned, using
the DDD 0, implicitly represented in the ∪ operators.

Removal of Initially Marked Places. For each colored place p, a DDD
representing only its marked unfolded places DDDmarked

p can be built, using
the same symbolic representation as DDDp. The operation to remove marked
unfolded places is DDD0

p = DDDp \DDDmarked
p .

A colored mark is a tuple, mark(p) = 〈c1, . . . , cn〉, with one ci value for each
component of Dom(p). In partial unfolding, if ci is of a non unfolded color class
Cj , it is not used in the symbolic representation of unfolded places and thus not
used in the marking representation.

For a place where no color class has to be unfolded, the unfolded marking is
0 for no marking, 1 for a marking.

350 F. Kordon, A. Linard, and E. Paviot-Adet

HPreP
v and HPostP

v Homomorphisms. A colored arc is translated to an
homomorphism HPostPv if applied from DDDi

p to a subset of DDDt, to get the
transitions post-condition of places in DDDi

p. Almost the same homomorphism
HPreP

v is created for the reverse arc, to get transitions pre-condition of places,
and only the small difference with HPostPv is given.

These two operations are a composition of six homomorphisms, each one being
a step in the transformation. Some steps can be grouped to improve efficiency
by reducing the number of operations, but these optimizations are not presented
here. The steps can be divided into two main groups : the selection of places
that are valid inputs of the valuation (1, 2) and the conversion of these places
to the symbolic representation of output transitions (3, 4, 5, 6).

Each step is itself composed of several homomorphisms, each one defined to
be applied for only one color class, not the whole domain. The composition for
several color classes is : HPreP

v = ◦term∈vHPreP
term. We consider a colored arc

from transition t to place p (PreP
v), or from place p to transition t (PostPv),

valued with term term.

Select valid places for valuation constants. If Dom(p) = c0 × ... × cn, for each
vi of term = 〈v0, . . . , vn〉, if ci is an unfolded color class and vi is a constant,
then the value of vi is compared to the unfold values of P ′

p for component ci,
assignment values of SV P (p, ci) DDD variable, to keep only the unfolded places
matching the constant.

DDD variables involved in this step are useless in symbolic representation
after the selection, because their values have no relation with values of valuation
variables of t, and are thus removed.

Select places consistent with valuation variables appearing several times. A single
variable can be referenced several times in one term. For each couple ci, cj ∈
Dom(p) where vi = var++si and vj = var++sj refer the same unfolded valuation
variable var, only the unfolded places where SV P (p, ci) has the same value as
SV P (p, cj) shifted with si − sj are kept in symbolic representation.

As values of SV P (p, ci) and SV P (p, cj) are linked, only one occurrence is
necessary for the next steps, the other is removed.

Remove successor ranks. Successor ranks have been used in previous step to
check consistency, but valuation variables do not use them. As each variable left
in symbolic representation corresponds to a component vi = var++si of the term,
an homomorphism transforms each value of SV P (p, ci) to its si predecessor for
the HPostPterm version, and to its si successor for the HPreP

term one, to keep
only the value without its successor rank.

Transform place DDD to transition DDD. In the previous steps, we considered
the symbolic representation of DDDp. From now one, we consider the one of
DDDt. The transformation begins in this step, by renaming for each remaining
vi = var the variable SV P (p, ci) to SV T (t, var).

Optimized Colored Nets Unfolding 351

Reorder DDD variables to fit transition DDD order. All transition variables in
the valuation are in the symbolic representation, but their order differs of the or-
der of transition variables in symbolic representation of the unfolded transitions.
A reordering is thus done in this step to fit the order of the transition.

Complete transition DDD. For each variable v ∈ TV ar(t)|V Dom(v) is unfolded,

missing in symbolic representation, SV T (t, v)
x∈V Dom(v)−−−−−−−−→ 1 is added in its right

place in the symbolic representation.

HPreT
v and HPostT

v Homomorphisms. A colored arc is translated to an
homomorphism HPostTv if applied from DDDt to a subset of DDDi

p, to get
the places post-condition of transitions in DDDt. Almost the same homomor-
phism HPreT

v is created for the reverse arc, to get places pre-condition of tran-
sitions.

As for HPreP
v and HPostPv , HPostTv is a composition of four steps and

divided in subhomomophisms for each term of v. We consider a colored arc from
transition t to place p (PostTv), or from place p to transition t (PreT

v), valued
with term term.

Copy transition DDD variables to their bound place DDD variable. For each un-
folded transition variable var ∈ TV ar(t)|V Dom(var) is unfolded, if Dom(p) =
c0×. . .×cn, and term = 〈v0, . . . , vn〉, for each vi ∈ term, if V Dom(var) is ci then
the DDD values for SV T (t, var) are copied to the DDD variable SV P (p, ci).

Remove unused DDD variables. All valuation variables represented in DDD
have been copied, if used in the term, to place DDD variables, and are thus
useless. This step removes them from symbolic representation. For each var ∈
TV ar(t)|V Dom(var) is unfolded, SV T (t, var) is removed from DDD.

Add successor ranks. Successor ranks have not been used in previous steps.
As each variable in symbolic representation corresponds to a component vi =
var++si of the term, an homomorphism transforms each value of SV P (p, ci)
to its si predecessor for the HPreT

term version, and to its si successor for the
HPostTterm one.

Insert constants of valuation. As valuation can contain constants, new DDD
variables are created to insert the constants in the symbolic representation. For
each constant vi in the term, SV P (p, ci)

vi−→ is inserted in its right place.

6 Experimentation and Results

Implementation. Optimized unfolder has been implemented as a library and
an executable built on top of this library. Unfolded net follows a pipe of opti-
mizations, like those seen in sections 5.2 and 5.3. The symbolic to explicit net
transformation presented in section 4.5 is also a component of this pipe.

352 F. Kordon, A. Linard, and E. Paviot-Adet

Experimentation. We selected several models to validate our strategy:

– PolyORB : it comes from a cooperation with Telecom Paris to build Poly-
ORB, a formally verified Middleware [7]. In our test, the model is parame-
terized according to the number of threads that are allocated in the system.

– Peterson : it models the Peterson’s mutual exclusion algorithm for N pro-
cesses [10]. This model does not include any redundant information to test
processes level. This fact explains the high number of transitions. In our test,
the model is parameterized according to the number of processes.

– Train : It comes from a joint studies on the San Francisco area BART case
study, that was presented in [6]. This model is not parametrized.

Model Initial Guards Syphon Orphans Optimized
Places Transitions % P % T % P % T % P % T Time Memory Places Transitions

PolyORB t20 4,964 3,392,800 0 100 0 0 0 0 < 1 11 4,964 3,392,040
PolyORB t40 9,344 6,786,800 0 100 0 0 0 0 < 1 20 9,344 6,784,860
PolyORB t60 13,724 10,182,400 0 100 0 0 0 0 1 29 13,724 10,178,480
PolyORB t80 18,104 13,579,600 0 100 0 0 0 0 1 41 18,104 13,572,900
Peterson 05 1,150 58,850 0 55 100 45 ε 0 < 1 10 470 7,810
Peterson 10 9,100 1,835,400 0 59 100 41 ε 0 3 73 3,890 313,220
Peterson 15 30,600 13,838,400 0 61 100 39 ε 0 10 194 13,260 2,576,730
Train 10,620 1.4072e+09 0 61 99 39 1 0 5 111 343 202

Fig. 5. Execution results from our benchmark

Figure 5 summarizes the results we got on a 3.6 GHz Pentium-4 CPU with
2 GBytes of RAM. We provide the maximum number of places and transitions
(columns Initial Places and Initial Transitions), the final number of places and
transitions after optimizations (columns Optimized Places and Optimized Tran-
sitions). The explicit unfolded net is not generated, as for all examples but Train
execution time would be hours or days. We also measure the execution time (in
seconds) and the maximum amount of memory required to process the unfold-
ing (in Mbytes). We also provide the ratio of deleted places and transitions for
every listed optimizations (for example, 100% of deleted transition in one column
means that all suppressed transitions are detected by this optimization).

Our first test (PolyORB) shows the capacity of our approach to take care of
numerous objects in a very short time. This Petri net is very symmetric (all
threads in the system can exchange their role) and that explains the very poor
performances of the implemented optimizations (only the guard optimization is
activated for a very small number of transitions). These symmetries also explain
the very low amount of memory required to store that many Petri net objects
(this is a typical advantage of decision diagram based representations).

Our second model (Peterson) only has two colored places (one for processes,
another one for the level variables that store the last process to enter in each
level). States of the processes are modelled as a class. Therefore, all classes of the
domain place depicting the processes are not always useful (e.g. used to scan all
processes), leading to never marked places in the unfolded net. For that types of
specifications, optimization factor is excellent since up to 80% of dead transitions
are eliminated.

Optimized Colored Nets Unfolding 353

Our last model (Train) provides spectacular performances on the optimiza-
tion rate (99,99999985% of transitions as well as 99,995% of places are deleted).
This is due to the presence of < and > in transition guards as well as the use of
a modeling technique to express discretized non linear function (e.g. the braking
distance according to a vehicle speed). A function y = f(x1, ..., xN) is modeled
with a place having a N +1 product color class. This very large product, as well
as that color domains usually are large, generates numerous P/T corresponding
places for which only a few are marked (the initial marking only has a few of
the possible values). As shown here, the corresponding P/T net model, before
optimization, contains billions of places and transitions that do not remain after
optimization.

The removal of orphaned marked places has poor results. It only removes
a few places in the Peterson and Train models, and none in PolyORB. This
optimization is only intended to clean the unfolded net after removal of the
maximal unmarked syphon, and to inform the modeller about unused marked
places, as these places might be a modelling error.

Comparison with Maria. We now compare our work to the unfolder included
in Maria [9]. It is based on different principles : unfolding is viewed as related to
the colored transition enabling test. Compact structures as BDDs or DDDs are
not used : a unique explicit colored marking is built using the following rules:

– a place color is or is not in the marking, no cardinality is taken into account,
– all places colors in the initial marking are in the unique marking,
– if a transition is enabled with colors in the unique marking (here again,

cardinalities are not taken into account), then all post-condition places colors
are added to the unique marking.

Place colors in the unique marking are translated into ordinary places and
corresponding transitions and arcs are computed. It can easily be shown that
place colors not translated into ordinary places corresponds to our maximal
unmarked syphon.

Performance differences between our symbolic unfolder and Maria have sev-
eral explanations. Firstly, colored transition enabling test is more efficient than
our symbolic manipulations : the latter one uses heavy DDD variable reorder-
ing. Secondly, our unfolder can use a lot of memory for some models, whereas
Maria always keeps a very low memory usage, but maria is not able to ex-
tract information from huge optimized unfolded nets, like PolyORB, because
Maria’s strategy, in that case, leads to and explicit representation of the un-
folded net.

The main difference between our unfolder and Maria is a consequence of the
different chosen approaches : symbolic for our tool and explicit for maria. As
expected, explicit approach has better results on small unfolded nets. For the
Train model, Maria ends its execution after 20 seconds using less than 1 MBytes.
This is equivalent in time (since Maria generates the output, which takes time)
and much lower from the memory use than our symbolic approach. However,
for the other examples, whereas no other operation can be done until the full

354 F. Kordon, A. Linard, and E. Paviot-Adet

unfolded net is generated for Maria, which can take hours, our symbolic unfolded
net enables some operations without generation of its explicit representation.
These new operations are to be defined in the future.

7 Conclusion

To complete some structural analysis of colored Petri nets, it is important to
back-track to equivalent P/T nets and use structural techniques that are not yet
available for colored Petri nets. This is important, especially when dealing with
very large models deduced from higher specification languages. Our experiments
show that it really supports very large unfolded models.

The technique presented in this paper relies on data decision diagram for a
very compact internal representation. This is an original use of such techniques
in a new application domain. It provides good perspectives in the handling of
large system specifications.

Another advantage of our symbolic unfolding technique is that it is suitable
for partial unfolding of a subset of the color domains. This is of interest to discard
some useless color domains or increase the specification symmetry for analysis
purpose. So far, no unfolder from High Level Petri Nets to P/T nets offers this
possibility.

The presented technique is implemented and already available in CPN-AMI
3.0 as a beta version tool.

References

1. S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and
statecharts to analysable Petri net models. In WOSP ’02: Proceedings of the 3rd
int. workshop on Software and performance, pages 35–45. ACM Press, 2002.

2. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, August 1986.

3. G. Chiola, C. Dutheillet, G. Franceschini, and S. Haddad. On Well-Formed
Coloured Nets and their Symbolic Reachability Graph. High-Level Petri Nets.
Theory and Application, LNCS, 1991.

4. J-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P-A. Wacrenier.
Data decision diagrams for petri net analysis. In J. Esparza and C. Lakos, editors,
Applications and Theory of Petri Nets 2002, number 2360 in LNCS, pages 101–120.
Springer Verlag, June 2002.

5. J-M. Couvreur, S Haddad, and J. F. Peyre. Generative families of positive invari-
ants in coloured nets sub-classes. In G. Rozenberg, editor, Applications and Theory
of Petri Nets, LNCS, pages 51–70, 1991.

6. A. de Groot, J. Hooman, F. Kordon, E. Paviot-Adet, I. Vernier-Mounier,
M. Lemoine, G. Gaudiere, V. Winter, and D. Kapur. A survey: Applying for-
mal methods to a software intensive system. In 6th International Symposium on
High-Assurance Systems Engineering, pages 55–64. IEEE Computer Society, 2001.

7. J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir, and T. Vergnaud.
On the Formal Verification of Middleware Behavioral Properties. In Proceedings of
the 9th International Workshop on Formal Methods for Industrial Critical Systems
(FMICS’04), volume ENTCS 133, pages 139 – 157. Elsevier, Sept. 2004.

Optimized Colored Nets Unfolding 355

8. K. Jensen. Coloured Petri nets and the invariant-method. Theor. Comput. Sci.,
14:317–336, 1981.

9. M. Mäkelä. Optimising enabling tests and unfoldings of algebraic system nets. In
Proceedings of the 22nd International Conference on Application and Theory of
Petri Nets, number 2075 in LNCS, pages 283 – 302. Springer-Verlag, 2001.

10. Gary L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115–116, June 1981.

11. R. Valk. Basic definitions, chapter 4, pages 41–51. Springer Verlag, Petri nets and
system engineering (Claude Girault and Rudiger Valk Eds), first edition, 2003.

12. C. Dutheillet Y. Thierry-Mieg and I. Mounier. Automatic Symmetry Detection
in Well-Formed Nets. In W. van der Aalst and E. Best, editors, Applications
and Theory of Petri Nets 2003: 24th International Conference, ICATPN 2003,
Proceedings, number 2679 in LNCS, pages 82–101. Springer Verlag, June 2003.

Liveness by Invisible Invariants�

Yi Fang1, Kenneth L. McMillan2, Amir Pnueli3, and Lenore D. Zuck4

1 Microsoft, Redmond, Washington
yfang@microsoft.com

2 Cadence Design Systems, Berkeley, California
mcmillan@cadence.com

3 New York University, New York, New York
amir@cs.nyu.edu

4 University of Illinois at Chicago
lenore@cs.uic.edu

Abstract. The method of Invisible Invariants was developed in order to verify
safety properties of parametrized systems in a fully automatic manner. In this pa-
per, we apply the method of invisible invariant to “bounded response” properties,
i.e., liveness properties of the type p =⇒ q that are bounded – once a p-state
is reached, it takes a bounded number of rounds (where a round is a sequence of
steps in which each process has been given a chance to proceed) to reach a q-state
– thus, they are essentially safety properties.

With a “liveness monitor” that observes certain behavior of a system, estab-
lishing “bounded response” properties over the system is reduced to the verifica-
tion of invariant properties.

It is often the case that the inductive invariants for systems with “liveness
monitors” contain assertions of a certain form that the original method of invisible
invariant is not able to generate, nor to check inductiveness. To accommodate
invariants of such forms, we extend the techniques used for invariant generation,
as well as the small model theorem for validity check.

1 Introduction

Uniform verification of parameterized systems is one of the most challenging problems
in verification. Given a parameterized system S(N) : P [1] ‖ · · · ‖ P [N] and a property
p, uniform verification attempts to verify that S(N) satisfies p for every N > 1. One of
the most powerful approaches to verification that is not restricted to finite-state systems
is deductive verification. This approach is based on a set of proof rules in which the user
has to establish the validity of a list of premises in order to validate a given temporal
property of the system. The two tasks that the user has to perform are:

1. Provide some auxiliary constructs that appear in the premises of the rule;
2. Use the auxiliary constructs to establish the logical validity of the premises.

When performing manual deductive verification, the first task is usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the

� This research was supported in part by NSF grant CCR-0205571 and ONR grant N00014-99-
1-0131.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 356–371, 2006.
c© IFIP International Federation for Information Processing 2006

Liveness by Invisible Invariants 357

program and the techniques for formalizing these insights. The second task is often per-
formed using theorem provers such as PVS [OSR93] or STeP [BBC+95], which require
user guidance and interaction, and place additional burden on the user. The difficulties
in the execution of these two tasks are the main reason why deductive verification is not
used more widely.

A representative case is the verification of invariance properties using the proof rule
INV of [MP95]: in order to prove that assertion r is an invariant of program P , the rule
requires coming up with an auxiliary assertion ϕ that is inductive (i.e. is implied by
the initial condition and is preserved under every computation step) and that strength-
ens (implies) r. The rule is described in Fig. 1, where Θ is the initial condition of
program P .

I1. Θ → ϕ
I2. ϕ ∧ ρ → ϕ′

I3. ϕ → r

r

Fig. 1. The proof rule INV

In [PRZ01, APR+01], we introduced the method of invisible invariants, that offers a
method for automatic generation of the auxiliary assertion ϕ for parameterized systems,
as well as an efficient algorithm for checking the validity of the premises of INV. The
generation of invisible auxiliary constructs is based on the following idea: it is often
the case that an auxiliary assertion ϕ for a parameterized system S(N) has the form
∀i : [1..N].q(i) or, more generally, ∀i �= j.q(i, j). We construct an instance of the pa-
rameterized system taking a fixed value N0 for the parameter N . For the finite-state
instantiation S(N0), we compute, using BDDs, some assertion ψ that we wish to gener-
alize to an assertion in the required form. Let r1 be the projection of ψ on process P [1],
obtained by discarding references to variables that are local to all processes other than
P [1]. We take q(i) to be the generalization of r1 obtained by replacing each reference
to a local variable P [1].x by a reference to P [i].x. The obtained q(i) is our candidate
for the body of the inductive assertion ϕ : ∀i.q(i). We refer to this generalization proce-
dure as project & generalize. For example, when computing invisible invariants, ψ is the
set of reachable states of S(N0). The procedure can be easily generalized to generate
assertions of the type ∀i1, . . . , ik.p(�i).

Having obtained a candidate for the assertion ϕ, we still have to check the validity
of the premises of the proof rule we wish to employ. Under the assumption that our
assertional language is restricted to the predicates of equality and inequality between
bounded-range integer variables (which is adequate for many of the parameterized sys-
tems we considered), we proved a small-model theorem, according to which, for a cer-
tain type of assertions, there exists a (small) bound N0 such that such an assertion is
valid for every N iff it is valid for all N ≤ N0. This enables using BDD-techniques
to check the validity of such an assertion. The cases covered by the theorem are those
whose premises can be written in the form ∀�i∃�j.ψ(�i,�j), where ψ(�i,�j) is a quantifier-
free assertion that may refer only to the global variables and the local variables of P [i]
and P [j] (∀∃-assertions for short).

358 Y. Fang et al.

Being able to validate the premises on S[N0] has the additional important advantage
that the user never sees the automatically generated auxiliary assertion ϕ. This assertion
is produced as part of the procedure and is immediately consumed in order to validate
the premises of the rule. Being generated by symbolic BDD-techniques, the representa-
tion of the auxiliary assertions is often extremely unreadable and non-intuitive, and it
usually does not contribute to a better understanding of the program or its proof. Be-
cause the user never gets to see it, we refer to this method as the “method of invisible
invariants.” As shown in [PRZ01, APR+01], embedding a ∀�i.q(�i) candidate inductive
invariant in INV results in premises that fall under the small-model theorem.

In this paper we apply the method of invisible invariants to the second-most important
properties of concurrent systems, namely, “response” properties. Response properties
are properties of the type q =2 r (i.e., (q → r)), and they are the most common
liveness properties. The most frequent form of response properties of parameterized sys-
tems is ∀�i.(q(�i)=2 r(�i)), where q(�i) and r(�i) are quantifier-free. Since the systems
we are dealing with are finite-state, that is, for every value N , S[N] is finite-state, every
valid response property is bounded by some of the parameters of the system.

The ability to prove only bounded progress may seem like a limitation. However,
note that we are dealing here only with finite-state systems. That is, for every N , S[N]
is finite-state. If a finite-state system satisfies a progress property, then it satisfies a cor-
responding bounded progress property, for a suitable bound. In the case of a simple
transition system without fairness assumptions, the bound can be given in terms of the
maximum number of transitions required to satisfy the progress condition. In the case
of “justice” assumptions (of the form p(i)), the bound can be given in terms of
the number of “rounds” in which every justice condition p(i) is satisfied. Of course, the
bound may be a rapidly increasing function of N . The main limitation of the present
method is that it handles only the case when the bound increases linearly with N . We
will show, however, that this condition is satisfied for several typical examples of para-
meterized protocols.

Roughly speaking, the bound determines “how fast” progress is achieved. In the case
that the bound depends on the transition relation, the proof of progress can be replaced
by a proof of a simpler safety property, bounded progress, that establishes that once q(�i)
holds and enough transitions (where “enough” is determined by the bound) occur, r(�i)
obtains. Since we are dealing with parameterized systems, the bound depends on the
parameter N . For simplicity of notation, assume that �(i) is of size 1, i.e., the progress
property at hand is ∀i.q(i)=2 r(i). Let z be some process. It suffices to show that
q(z)=2 r(z). Let K range over rounds, in each of which each process is to take at
least one step. Since we want to rule out stuttering rounds, we allow a process to take
a stuttering step only if it has no non-stuttering step available to it. We show how to
obtain K and how to automatically construct a non-interfering “liveness monitor” such
that, once (synchronously) composed with the original system, the method of invisible
invariants can be used to show a (K-dependent) bounded progress (safety) property that
establishes the liveness property of the parameterized system.

Often it is the case that the safety property obtained is too large for the model checker.
Our experience has shown that splitting such individual proofs into two parts, livelock
freedom and bounded overtaking, often helps to avoid those two obstacles. “Livelock

Liveness by Invisible Invariants 359

freedom” establishes ∃i.q(i)=2∃i. r(i), and “bounded overtaking” establishes that
once ∃i.q(i), there is a bound b such that for every j �= i, the (regular) sequence
q(j)Σ∗r(j)Σ∗¬r(j) can occur at most b times before r(i) becomes true. Bounded
overtaking is a safety property, and, as we show, can be proved using the method of
invisible invariants. Put together, livelock freedom and bounded overtaking establish
individual liveness.

It is often the case that the invisible invariants we obtain contain ∃∀-formulae, which
are not covered under the small model theorem previously proven. We extend the small
model theorem to deal with invariants that have ∃∀-subformulae.

The paper is organized as follows: In Section 2, we give an informal overview of
our method. In Section 3, we present the general computational model of FTS and the
restrictions that enable the application of the invisible auxiliary constructs methods.
We also review the small model theorem, which enables automatic validation of the
premises of the various proof rules. In Section 4, we describe how to construct liveness
monitors. In some cases, the inductive invariant requires ∃∀-components, to which the
invisible invariant method no longer applies. Section 5 shows an extended small model
theorem that allows handling such invariants, as well as an enhanced project & gener-
alize method that generates invariants with ∃∀-components. In Section 6, we illustrate
the method on an example of a BAKERY protocol.

Related Work. Proving “bounded liveness” properties by safety techniques was proposed
in [BAS02]. There, the justice requirements are incorporated into the safety model. It is
not clear whether the method can be extended to parameterized systems. Incorporating
the justice of such systems into the safety model seems to be prohibitively costly.

A survey on the method of invisible invariants is in [ZP04]. A tool that allows auto-
matic generation of invariants using the method is described in [BFPZ05].

The problem of uniform verification of parameterized systems is undecidable[AK86].
One approach to remedy this situation, pursued, e.g., in [EK00], is to look for restricted
families of parameterized systems for which the problem becomes decidable. Unfortu-
nately, the proposed restrictions are very severe and exclude many useful systems such
as asynchronous systems where processes communicate by shared variables.

Another approach is to look for sound but incomplete methods. Representative works
of this approach include methods based on: explicit induction [EN95], network invari-
ants that can be viewed as implicit induction [LHR97], abstraction and approximation
of network invariants [CGJ95], and other methods based on abstraction [GZ98]. Other
methods include those relying on “regular model-checking” (e.g., [JN00]) that over-
come some of the complexity issues by employing acceleration procedures, methods
based on symmetry reduction (e.g.,[GS97]), or compositional methods (e.g.,([McM99]),
combining automatic abstraction with finite-instantiation due to symmetry. Some of
these approaches (such as the “regular model checking” approach) are restricted to par-
ticular architectures and may, occasionally, fail to terminate. Others, require the user to
provide auxiliary constructs and thus do not provide for fully automatic verification of
parameterized systems.

Most of the mentioned methods only deal with safety properties. Among the meth-
ods dealing with liveness properties, we mention [CS02], which handles termination of
sequential programs, network invariants [LHR97], and counter abstraction [PXZ02].

360 Y. Fang et al.

Most relevant to the work here are [FPPZ04b, FPPZ04a] that extend the method of
invisible invariants to invisible ranking, by applying the method for automatic genera-
tion of auxiliary assertions to general assertions (not necessarily invariant), and propos-
ing a rule for proving progress properties that embed the generated assertions in the
rule’s premises, and efficiently checks for their validity. As is well known to users of
such rules, such a proof requires the generation of two kinds of auxiliary constructs:
helpful assertions and ranking functions. To automatically generate ranking functions,
we associate, with each potentially helpful transition an individual ranking function
mapping states to integers in a small range. If the auxiliary constructs have no quan-
tifiers, all the resulting premises are ∀∃-premises and the small-model theorem can be
used.

For protocols that cannot be proven with such restricted assertions, [FPPZ04a] ex-
tends the method of invisible ranking by allowing helpful assertions (and ranking func-
tions) belonging to transitions to be of the form ∀j.H(i, j), where H(i, j) is a quantifier-
free assertion. (Substituted in the standard proof rules for progress properties, these as-
sertions lead to premises that do not conform to the required ∀∃ form, and therefore
cannot be validated using the small model theorem.) To handle such premises the proof
rule is extended by implementing a new mechanism for selecting a helpful transition
based on the establishment of a pre-order among transitions in each state.

Similarly to the method of invisible ranking, the method proposed here is applica-
ble to the same type of “bounded progress” properties. However, the invisible ranking
method requires numerous auxiliary construct, some (especially the pre-order) are at
times hard to compute. The method proposed here is much simpler. The bound is de-
rived from a small instantiation of the system, and, once the bound is computed, the
only auxiliary construct needed is the strengthening invariant, which is well studied.

2 From Bounded Progress into Safety

This section contains a somewhat intuitive overview of the method that will be formal-
ized and detailed in the following sections.

Consider a parameterized system S and a progress property φ : q =2 r. The prop-
erty φ is bounded, if there is a bound K , independent of N , such that once a q-state is
reached, after at most K rounds in which each process takes at least one step, a goal
r-state is reached.

Consider a “liveness monitor” Mφ that observes S. Once a q-state is reached, Mφ

resets a counter of rounds. Once each process takes (at least) one step, Mφ increases the
round counter. When there are no pending states – states on a r-free path that originates
at a q-state – the monitor keeps the round count at zero and does not keep track of the
processes. If φ is bounded by K , then in the monitored systems the round counter never
exceeds K . Thus, proving φ is equivalent to proving that the S‖|Mφ |= (rnd < K)
where rnd is the round counter.

Of course, one has to choose K . One can either try to compute it (e.g., by instantiat-
ing S(N) for a small number of processes, say N0, and considering the pending paths
on the instantiation) or one may choose some small instantiation, try increasing values
of K until one succeeds, and then try the resulting K on larger (yet small) instantiations.

Liveness by Invisible Invariants 361

Once K is chosen, the method of invisible invariants can be used to show that for
every N , S‖|Mφ |= (rnd < K). In fact, since the monitor needs to be finite-state, we
construct it with the knowledge of (the assumed) K and bound the round counter by K .

The method may fail for the following reasons:

1. For some N , S(N) �|= φ or φ is not bounded;
2. The bound K is too small;
3. The heuristics used for the generation of invisible invariants are not sufficient for

the given system;

We cannot deal with the first case. As to the second case, a larger instantiation usually
solves the problem. Hence, it makes sense to try K on several instantiations before
attempting to prove the property.

To deal with the third case, we present a new heuristic to generate candidate invari-
ants with ∃∀-assertions, and extend the small model theorem to accommodate invariants
in such forms.

3 Preliminaries

As a computational model for parameterized bounded-data systems we use bounded
just transition systems, that are a compassion-less variant of the model of bounded fair
transition system of [FPPZ04a].

3.1 Just Transition Systems

We present a variant of the just transition system of [MP95]. A JTS is described by
S = 〈V, Θ, T 〉, with:

• V = {u1, . . . , un}— A finite set of typed system variables. A state s of the system
provides a type-consistent interpretation of the system variables V , assigning to
each variable v ∈ V a value s[v] in its domain. Let Σ denote the set of all states
over V . An assertion over V is a first order formula over V . A state s satisfies an
assertion ϕ, denoted s |= ϕ, if ϕ evaluates to T by assigning s[v] to every variable
v appearing in ϕ. We say that s is a ϕ-state if s |= ϕ.

• Θ — The initial condition: An assertion characterizing the initial states. A state is
called initial if it is a Θ-state.

• T — A finite set of transitions. Every transition τ ∈ T is an assertion τ(V, V ′)
relating the values V of the variables in state s ∈ Σ to the values V ′ in an S-
successor state s′ ∈ Σ. Given a state s ∈ Σ, we say that s′ ∈ Σ is a τ -successor
of s if 〈s, s′〉 |= τ(V, V ′) where, for each v ∈ V , we interpret v as s[v] and v′ as
s′[v]. We say that transition τ is enabled in state s if it has some τ -successor, oth-
erwise, we say that τ is disabled in s. In the system we consider, every transition is
disabled immediately after it is taken. Let En(τ) denote the assertion ∃V ′.τ(V, V ′)
characterizing the set of states in which τ is enabled.

Let σ : s0, s1, s2, . . ., be an infinite sequence of states. We say that transition τ ∈ T a is
enabled at position k of σ if τ is enabled on sk. We say that τ is taken at position k if

362 Y. Fang et al.

sk+1 is a τ -successor of sk. Note that several transitions can be considered as taken at
the same position.

We say that σ is a computation of S if it satisfies the following requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, ..., state s�+1 is a τ -successor of s� for some

τ ∈ T .
• Justice — for every τ ∈ T , there are infinitely many positions k ≥ 0, such that

τ is disabled or taken at position k. Since we assume that transition are disbled
immediately after they are taken, this is equivalent to requiring that τ is disbaled
infinitely many times.

Composition of Just transition Systems. Assume two JTS’s S1 : 〈V1, Θ1, T1〉 and
S2 : 〈V2, Θ2, T2〉. The synchronous parallel composition of S1 and S2, denoted by
S1‖|S2, is the JTS (

V1 ∪ V2, Θ1 ∧Θ2,
∨

τ1∈T1,τ2∈T2

τ1 ∧ τ2
)

The asynchronous parallel composition of S1 and S2, denoted by S1‖S2, is the JTS(
V1 ∪ V2, Θ1 ∧Θ2, T +

1 ∪ T +
2

)
where for every i = 1, 2, T +

i includes, for every transition τ ∈ Ti, the transition τ
with a conjunct requiring that all non-Vi variable are presevered. Formally, for a set of
variables U , let pres(U) denote the assertion

⋃
u∈U (u′ = u) stating that no U -variables

is modified. Then T +
i = {τ ∧ pres(V1 ∪ V2 \ Vi) : τ ∈ Ti}.

3.2 Bounded Just Transition Systems

To allow the application of the invisible invariants method, we further restrict the sys-
tems we study, leading to the model of bounded just transition systems (BJTS). For
brevity, we describe here a simplified two-type model; the extension for the general
multi-type case is straightforward.

Let N ∈ N+ be the system’s parameter. We allow the following data types:

1. bool: the set of boolean and finite-range scalars;
2. index: a scalar data type that includes integers in the range [1..N];
3. data: a scalar data type that includes integers in the range [0..N]; and
4. Any number of arrays of the type index 3→ bool. We refer to these arrays as boolean

arrays.
5. At most one array of the type b : index 3→ data. We refer to this array as the data

array.

Atomic formulas may compare two variables of the same type. E.g., if y and y′ are
index variables, and z is an index 3→ data array, then y = y′ and z[y] < z[y′] are
both atomic formulas. For z : index 3→ data and y : index, we also allow the special
atomic formula z[y] > 0. We refer to quantifier-free formulas obtained by boolean
combinations of such atomic formulas as restricted assertions. As the initial condition

Liveness by Invisible Invariants 363

Θ, we allow assertions of the form ∀�i.u(�i), where u(�i) is a restricted assertion. As the
transitions τ ∈ T , we allow assertions of the form τ(i) : ∀j.ψ(i, j) for a restricted
assertion ψ(i, j).

Example 1 (A Simple Mutual Exclusion Algorithm).
Consider program SIMPLE in Fig. 2, which is a simple mutual exclusion algorithm that
guarantees deadlock-freedom access to critical section for any N processes.

in N : natural where N > 1
local t : bool where t = 1

N

i=1

P [i] ::

loop forever do
0 : NonCritical
1 : when t = 1 do t := 0
2 : Critical
3 : t := 1

Fig. 2. Program SIMPLE

In this version of the algorithm, location 0 constitutes the non-critical section which
a process may non-deterministically exit to the trying section at location 1. Location 1
is the waiting location where a process waits until the token (t) is available and then
takes it. Location 2 is the critical section, and location 3 is the exit section where the
process returns the token. As we show, the program guarantees that if some processes
are waiting to enter the critical section, eventually some process will succeed. Fig. 3
describes the BJTS corresponding to program SIMPLE.

V :
π : array[1..N] of [0..3]
t : bool;

Θ : ∀i : π[i] = 0 ∧ t = 1

T :

τ0(i) : ∀j �= i : π[i] = 0 ∧ π′[i] ∈ {0, 1} ∧ pres({π[j], t})
τ1(i) : ∀j �= i : π[i] = 1 ∧ t = 1 ∧ π′[i] = 2 ∧ t′ = 0 ∧ pres({π[j]})
τ2(i) : ∀j �= i : π[i] = 2 ∧ π′[i] = 3 ∧ pres({π[j], t})
τ3(i) : ∀j �= i : π[i] = 3 ∧ π′[i] = 0 ∧ t′ = 1 ∧ pres({π[j]})

Fig. 3. BJTS for Program SIMPLE

As seen in the example of Fig. 3, the transition relation of process P [i] is a disjunction
of individual transitions of the form τ0[i]∨τ1[i]∨· · · τk[i]. We denote this disjunction by
ρ[i] and refer to it as the process transition relation. We denote by dis [i] = ¬En(ρ[i])
the assertion stating that the process transition is disabled, and by dis or taken[i] the
disjunction dis [i] ∨ ρ[i] claiming that process P [i] is currently disabled.

3.3 The Small Model Theorem

Let ϕ : ∀�i∃�j.R(�i,�j) be an AE-formula, where R(�i,�j) is a restricted assertion that refers
to the state variables of a parameterized system S(N) and to the quantified (index)

364 Y. Fang et al.

variables�i and �j. Let N0 be the number of universally quantified, free index variables
and index constants appearing in R. The claim below (stated in [PRZ01] and extended
in [APR+01]) provides the basis for automatic validation of the premises in the proof
rules:

Theorem 1 (Small model property).
An AE-formula ϕ is valid iff it is valid over all instances S(N) for N ≤ N0.

The small model theorem allows to check validity of AE-assertions on small models
and to derive from that their validity on arbitrary large instantiations. This can be ac-
complished using BDD techniques. The method of invisible invariants applies project
& generalize to produce candidate inductive assertions for the set of reachable states
that are A-formulae. Checking their inductiveness requires checking validity of AE-
formulae. The method of invisible ranking applies project & generalize to produce can-
didate assertions for various assertions (pending, helpful, ranking), all A- or E-formulae
and, the premises obtained using these assertions are again all AE-formulae. Thus, the
theorem implies they can be verified on small instantiations.

4 Monitoring Liveness with Safety

Assume a progress property φ : q =2 r. It is often the case that such a progress prop-
erty φ is “bounded”, that is, there exists some bound K , such that after K rounds where
each process is given at least one chance to progress, a goal state is guaranteed to be
reached. If φ is a bounded progress property with bound K , then, instead of showing
that S |= φ, we can construct a non-interfering monitor Mφ(K) which we synchro-
nously compose with S, and show that the simple invariance property (rnd < K)
holds over the new system S‖|Mφ(K).

Thus, for the case of bounded progress, liveness can be reduced to safety. The process
can be done automatically, since one can derive K from the reachability graph of S.

Assume a BJTS S : 〈V, Θ, τ〉 and a progress property φ : q =2 r. The monitor
Mφ(K) is a BJTS Mφ : 〈VM , ΘM , {τM}〉, where:

VM – consists of V and three new variables: a boolean pend , a variable rnd in the
range [0..K], and moved is an array [1..N] of booleans. The variable pend is set
when the system is in a state that follows a q-state on a r-less path. The variable
rnd counts the number of rounds. The variable moved [i] is set when process i is
disabled.

ΘM – pend = (q ∧ ¬r) ∧ rnd = 0 ∧
∧N

i=1 ¬moved [i], i.e., initially the round is 0
and every moved is F.

τM – τM consists of three conjuncts, one for each of the variables (the moved -part
is further composed of N conjuncts). The transition τM consists of the following
parts:

1. pend ′ = ¬r′ ∧ (pend ∨ q′). This conjunct states that pend becomes true when
it was false and q ∧¬r is true, and that pend becomes false when r is realized.
In all other cases pend retains its previous value;

Liveness by Invisible Invariants 365

2.
N∧

i=1

moved ′[i] =
⎧⎪⎪⎩ if ¬pend ′ ∨

∧N
j=1 moved [j] then F

else dis or taken[i] ∨moved [i]

⎫⎪⎪⎭
This conjunct states that for every i, moved [i] is true in pending states that
are reached from moved [i]-states or when process i is disabled, but only if the
round is not over (since then all the moved [i]’s need be reset).

3. rnd ′ =

⎧⎪⎪⎪⎪⎪⎪⎩
if ¬pend ′ then 0
else if rnd < K ∧

∧N
j=1 moved [j] then rnd + 1

else rnd

⎫⎪⎪⎪⎪⎪⎪⎭
This conjunct states that a new round starts from pending states once all processes
are were found disabled and a r-state was not reached. Similarly, rnd becomes
0 when an r-state is reached. In all other cases it remains intact.

Note that none of the conjuncts update the variables in V , justifying our description
of Mφ as “non constraining.”

Thus, as long as S is not in a pending state, pend , rnd , and all the moved [i]’s are F.
Once S is in a pending state, pend is set. From thereon, whenever every process is
found disabled, rnd is incremented (as long as it is less than K). Obviously, if rnd
ever reaches K , than it means that the goal q was not reached after K rounds, thus
refuting the assumption that φ is a bounded progress property with bound K . However,
if (rnd < K), we can be assured that φ holds over S. This is captured by following
claim:

Lemma 1 (Soundness).

(S‖|Mφ(K)) |= (rnd < K) =⇒ S |= φ

Proof. Assume that S �|= φ. Thus, there exists an S-computation σ of the form Σkq
(Σ − {r})ω . Consider the behavior of Mφ(K)‖|S when run on σ. Obviously, σ |=

pend . Since every process is guaranteed to be disabled infinitely many times,
we have that σ |= (¬moved [i] → moved [i]). We can therefore conclude that
σ |= (rnd = K), thus (S‖|Mφ(K)) �|= (rnd < K). !

.

Example 2 (Liveness Monitor for Program SIMPLE).
Consider the program of Example 1, and suppose we want to establish the progress
property φ : (∃i.π[i] = 1)=2 (∃i.π[i] = 2). We guess K = 2, and run the program
for instantiations of N = 3, 4, 5 to confirm that this is a reasonable bound. We then
construct the progress monitor Mφ(2) as above, where q : ∃i.π[i] = 1 and r : ∃i.π[i] =
2. We instantiated Program SIMPLE to 4 processes and run it composed with Mφ. We
obtained the invariant

∀i �= j. rnd < 2 ∧ (¬pend ∨ t = 1 ∨ rnd = 0) ∧
(¬pend → rnd = 0 ∧ ¬moved [i]) ∧ (pend → π[i] �= 2) ∧
(rnd = 1 → π[i] = 1 ∧ ¬moved [i]) ∧
(π[i] = 0 ∧ t = 0 ∨ π[i] = 3 → ¬moved [i]) ∧
(π[i] ≥ 2→ t = 0 ∧ π[j] < 2) ∧ (π[i] = 1 ∧ (t = 1 ∨ π[j] = 3) → pend)∧
(π[i] = 0 ∧ t = 1 ∧moved [i] = 1 → π[j] = 1 ∨ ¬moved [j]) ∧

∃i. (rnd = 0 ∧ t = 0) → (π[i] = 0 ∧moved [i] ∨ π[i] ≥ 2)

366 Y. Fang et al.

which is inductive and implies rnd < 2 over (simple(4)‖|Mφ(2)). It follows The-
orem 1 that (rnd < 2) is valid over the composed program with every N , and,
according to Lemma 1, this implies that φ is valid over every instantiation of Program
SIMPLE.

5 Cases Requiring an EA-Invariant

The method of invisible invariants obtains auxiliary assertions that are boolean combi-
nation of ∀-formulae. Used in the proof rule INV, the premises to be proved are then
(at most) ∀∃- formulae, whose validity, as the small model theorem establishes, can be
shown on small instantiations.

In some cases, however, the auxiliary assertions obtained can have ∃∀-components
(thus the proof rule has to establish validity of such formulae), to which the theorem no
longer applies. For example, when attempting to establish the livelock freedom property
of Program BAKERY in Section 6, we need an invariant that contains a clause:

∃i : (at l2[i] ∧ moved [i] = 0 ∧ ∀j �= i : (y[j] = 0 ∨ y[i] < y[j]))

claiming that (at the last round) some process has the lowest ticket and has not yet taken
a step. This is an ∃∀-assertion, the likes of which are quite common when establishing
progress properties.

In this section we present a new small model theorem that applies to some cases
where ∃∀-premises need to be validated. To automatically obtain an ∃∀-assertion as
a component in invariant assertions, we divide the reachable states into N symmetric
subsets D[1], . . . , D[N], where each D[i] can be over-approximated by an assertion
of the type Dα(i) : ∀j.q(i, j), so that the disjunction of Dα(i)’s is our desired ∃∀-
assertion. The body of the ∃∀-assertion q(i, j) is computed by the procedure project &
generalize.

5.1 An Extended Small Model Theorem

Consider a parameterized BJTS S(N) and a formula of the type ∀∃ ∨ ∃∀ that we want
to show valid over all instantiations of S. The Small Model Theorem establishes that,
when only the first disjunct exists, it suffices to show validity of the formula only on
small instantiations whose size is bounded by the number of free and universally quan-
tified variables. We extend it here for the case that the second disjunct exists, however,
its scope is limited.

Theorem 2 (Extended Small Model Theorem). Consider the formula

φ : ∀�i∃�j.R(�i,�j) ∨ ∃i∀j.Q(i, j)

where R and Q are restricted assertions, and, in addition, we have:

∀i, j, k.(¬Q(i, j) ∧ ¬Q(j, k) → (¬Q(i, k) ∨ ¬Q(j, j))

Let N0 be the number of universally quantified, free index variables and index con-
stants appearing in R. Then φ is valid over S(N) for every N ≥ 2 iff φ is valid over
S(N) for every N ≤ 2N0.

Liveness by Invisible Invariants 367

Proof Outline: We show that if ¬φ is satisfiable over a model of size N1 > 2N0, then
it is satisfiable over a model of size N2 ≤ 2N0. The formula ¬φ is equivalent to:

ψ : ∃�i∀�j.¬R(�i,�j) ∧ ∀i.∃j.¬Q(i, j)

and assume s |= ψ for some state s of S(N1) where N1 > 2N0. Following the proof
of the original theorem ([APR+01]), we take the (no more than N0) values assigned
to the constants, free, and existentially quantified index variables in the first conjuncts
that s assigns, say to u1, . . . , uL (where L ≤ N0). Obviously, if we project s onto U =
{u1, . . . , uL} (i.e., remove references to any index variables outside U), the resulting
state satisfies the first conjunct, while adding back all the variables that refer to some
particular index variable that is not in this set, will not change that.

We next add to U at most L other index variable that will guarantee the satisfiability
of the second conjunct. Starting with V0 = ∅, we iterate L steps. At the �th step, we
start with a set V�−1 and a state s�−1, such that s�−1 is the projection of s onto V�−1,
and s�−1 |= ∀i ∈ V�−1.∃j ∈ V�−1.¬Q(i, j). We then add to V�−1 the element u�, and,
possibly, another element, to obtain V�.

Assume 1 ≤ � < L and consider u�. If s |= ¬Q(u�, v) for some v ∈ V� ∪ {u�},
then V� = V�−1 ∪ {u�}. Assume therefore that for all v ∈ V�−1, s �|= ¬Q(u�, v)
and that s �|= ¬Q(u�, u�). Since s |= ψ, it follows that for some j1 ∈ [1..N1], s |=
¬Q(u�, j1). We continue along a ¬Q-chain in [1..N1] of the form u� = j0, j1, . . . , jm

that the ji’s are mutually distinct, for every i = 0, . . . , m, s |= Q(ji, ji), and for
every i = 1, . . . , m, s |= ¬Q(ji−1, ji). (The finiteness of [1..N1] guaratees that the
chain is finite.) It thus follows that s |= ¬Q(jm, jm) ∧ ¬Q(u�, jm). We then let U� =
U�−1 ∪ {u�, jm}.

Note that the process adds at most L new elements to U , thus the state attained is
of size at most 2N0. Suppose UL = {v1, . . . , v2L} where v1 < . . . v2L. We can now
contract the state to 1..2L and obtain a state s′ of S(2L) such that s′ |= ψ. !

6 Example: BAKERY

Consider program BAKERY in Fig. 4, which is a variant of Lamport’s original Bakery
Algorithm that offers a solution to the mutual exclusion problem for any N processes.
In this version of the algorithm, location 0 constitutes the non-critical section which
a process may non-deterministically exit to the trying section at location 1. Location
1 is the ticket assignment location – to guarantee the finiteness of the state-space, the
ticket values are [1..N]; when a process i takes a ticket, the tickets help by the other
processes may be changed preserving their relative order, and process i gets a ticket
whose value is higher than the others. Location 2 is the waiting phase, where a process
waits until it holds the minimal ticket. Location 3 is the critical section, and location
4 is the exit section. Note that y, the ticket array, is of type index 3→ data, and the
program location array (which we denote by π) is of type index 3→ bool. In fact, π is of
type index 3→ [0..4], but it can be encoded by three boolean arrays. Note also that the
ticket assignment statement at 1 is non-deterministic and may modify the values of all
tickets.

368 Y. Fang et al.

in N : natural where N > 1
local y : array [1..N] of [0..N]

where y = 0

N

i=1

P [i] ::

loop forever do
0 : NonCritical
1 : y := maximal value to y[i] while

preserving order of elements

2 : await ∀j �= i :
y[j] = 0 ∨
y[j] > y[i]

3 : Critical
4 : y[i] := 0

Fig. 4. Program BAKERY

The livelock freedom property of the program is:

φ : (∃z : at l1[z])=2 (∃z : at l3[z])

The bound obtained for the property is K = 2.
Following are the results of our verification experiments applied to the BAKERY

protocol.

1. We chose (arbitrarily) to instantiate the system to N = 4. We applied the enhanced
project & generalize method [FPPZ04a] to BAKERY(4), generating candidate in-
variants in the forms of a boolean combinations of universal assertions. The best
candidate obtained was ϕ1 of the form

φ1 : ∀i, j.α1(i, j) ∧ ∃i, j.α2(i, j) ∨ ∀i, j.α3(i, j)1

The assertion φ1 failed to be inductive.
2. We used our invisible invariant generator to generate an ∃∀-assertion φ2:∃i∀jβ(i, j)

over BAKERY(4). We then define φ : φ1 ∧ φ2, which is both inductive and implies
the safety property (rnd < 2) over BAKERY(4).

3. We next checked whether¬β is reflexive or transitive. Since the test requires check-
ing a universal assertion, we can apply Theorem 1 and derive that it suffices to check
the reflexivity/transitivity of ¬β over BAKERY(N0) for N0 ≤ 4 to derive that it is
reflexive/transitive over BAKERY(N) for every N .

4. By applying Theorem 2, we derived N = 8 as the size of the small model to
establish the validity of the premises in INV using φ as the auxiliary invariant. The
candidate invariant ϕ1 ∧ ϕ2 was reconstructed over BAKERY(8), and proved to be
inductive and to imply the safety property (rnd < 2). We can therefore conclude
that the protocol satisfy the livelock freedom property for any instantiation.

The code for the programs can be found in http://eeyore.cs.nyu.edu/acsys/forte06/ .

1 We can “guide” our automated invisible invariant generator as to the form of the assertion to be
produced; however, being invisible and produced by BDD techniques, the generated assertions
cannot be neatly displayed.

Liveness by Invisible Invariants 369

We would like to point out that the proof obtained by the method proposed here is
considerably simpler than the proof presented in [FPPZ04a] which calls for auxiliary
constructs other than invariants, thus requires considerably more interaction with the
user.

7 Discussion and Future Work

The paper presents a method for automatic verification of progress properties of para-
meterized systems based on the method of invisible invariants. The method is based on
the observation that such progress properties are usually “bounded,” and can thus be
converted into safety properties. The heuristic proposed attempts to find a bound for
the progress property, and use the method of invisible invariants to prove the resulting
safety property.

There are several cases where the proposed method is bound to fail:

Super-linear bounds: As it is now, the method can only be successful when the bound
is linear in the number of processes. Some protocols (e.g., Peterson’s N -process
mutual exclusion protocol) have bounds that are non-linear in the number of processes.
We are currently working on extending the method to apply to cases where the
bound is quadratic in the number of processes.

Fairness-dependent bounds: The method cannot be applied to cases where the bound
depends on non-justice assumptions. Such non-justice fairness assumptions occur,
for example, when using semaphores, the bound depends on the number of com-
passion (strong fairness) assumptions. However, compassion can be translated into
justice, at the cost of adding some new variables to the system, hence our method
can indirectly deal with such cases.

Probability-dependent progress: When protocols involveprobabilistic choicesamong
transitions,progressoften dependsonprobabilistic arguments.Asshownin [APZ03],
one can often transform such protocols to non-probabilistic protocols by a “planner”
that occasionally determines the results of some probabilistic choices, leaving the
others non-deterministic. In fact, the projection used in the method of invisible
invariants can be applied to obtain the planner automatically, and then the progress
property can be bounded. Consequently, the method proposed here, in conjunction
with the automatically obtained planner. can be applied to probabilistic protocols
as well.

Failure of invisible invariants: The method of invisible invariant is heuristic in na-
ture, and may sometimes fail. As we showed here, sometimes a ∀∃ invariant is
called for, which we can obtain only in certain cases. In some cases, there is no
strengthening invariant of the type we can generate. For these cases, the method
presented here is bound to fail.

As in the case of all BDD-based techniques, it is always possible that the invariant
generated is too large for the model checker to handle. In fact, this may happen much
faster than when checking “regular” safety properties, since those required here include
the round counter.

370 Y. Fang et al.

References

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state
concurrent systems. Info. Proc. Lett., 22(6), 1986.

[APR+01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In G. Berry, H. Comon, and A. Finkel,
editors, Proc. 13th Intl. Conference on Computer Aided Verification (CAV’01),
volume 2102 of Lect. Notes in Comp. Sci., Springer-Verlag, pages 221–234, 2001.

[APZ03] T. Arons, A. Pnueli, and L. Zuck. Parameterized verification by probabilistic ab-
straction. In 6th International Conference on Foundations of Software Science and
Computational Structures, volume 2620 of Lect. Notes in Comp. Sci., pages 87–
102, Warsaw, Poland, April 2003. Springer-Verlag.

[BAS02] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In
Rance Cleaveland and Hubert Garavel, editors, Electronic Notes in Theoretical
Computer Science, volume 66. Elsevier, 2002.

[BBC+95] N. Bjørner, I.A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H.B. Sipma,
and T.E. Uribe. STeP: The Stanford Temporal Prover, User’s Manual. Technical
Report STAN-CS-TR-95-1562, Computer Science Department, Stanford Univer-
sity, November 1995.

[BFPZ05] I. Balaban, Y. Fang, A. Pnueli, and L.D. Zuck. An invisible invariant verifier. In
Proc. 17th Intl. Conference on Computer Aided Verification (CAV’05), Springer-
Verlage LNCS 3576, pp. 291–295, 2005.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using
abstraction and regular languages. In 6th International Conference on Concurrency
Theory (CONCUR92), volume 962 of Lect. Notes in Comp. Sci., pages 395–407,
Philadelphia, PA, August 1995. Springer-Verlag.

[CLP84] S. Cohen, D. Lehmann, and A. Pnueli. Symmetric and economical solutions to the
mutual exclusion problem in a distributed system. Theor. Comp. Sci., 34:215–225,
1984.

[CS02] M. Colon and H. Sipma. Practical methods for proving program termination. In E.
Brinksma and K. G.Larsen, editors, Proc. 14th Intl. Conference on Computer Aided
Verification (CAV’02), volume 2404 of Lect. Notes in Comp. Sci., Springer-Verlag,
pages 442–454, 2002.

[EK00] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In 17th International Conference on Automated Deduction (CADE-17), pages 236–
255, 2000.

[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc. 22nd ACM
Conf. on Principles of Programming Languages, POPL’95, San Francisco, 1995.

[FPPZ04a] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with incomprehensible
ranking. In Proc. 10th Intl. Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’04), volume 2988 of Lect. Notes in Comp.
Sci., Springer-Verlag, pages 482–496, April 2004.

[FPPZ04b] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In
Proc. of the 5th conference on Verification, Model Checking, and Abstract Inter-
pretation, volume 2937 of Lect. Notes in Comp. Sci., pages 223–238, Venice, Italy,
January 2004. Springer-Verlag.

[GS97] V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits
symmetry. In O. Grumberg, editor, Proc. Proc. 9th Intl. Conference on Computer
Aided Verification, (CAV’97), volume 1254 of Lect. Notes in Comp. Sci., Springer-
Verlag, 1997.

Liveness by Invisible Invariants 371

[GZ98] E.P. Gribomont and G. Zenner. Automated verification of szymanski’s algorithm.
In B. Steffen, editor, Proc. 4th Intl. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98), volume 1384 of Lect. Notes in
Comp. Sci., Springer-Verlag, pages 424–438, 1998.

[JN00] B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. In S. Graf and M. Schwartzbach, editors, Proc. 6th Intl.
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), volume 1785 of Lect. Notes in Comp. Sci., Springer-Verlag, 2000.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parame-
terized linear networks of processes. In 24th ACM Symposium on Principles of
Programming Languages, POPL’97, Paris, 1997.

[McM99] K.L. McMillan. Verification of Infinite State Systems by Compositional Model
Checking. In Proc. Charme 1999, volume 1703 of Lect. Notes in Comp. Sci.,
Springer-Verlag, pages 219–234, 1999.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[OSR93] S. Owre, N. Shankar, and J.M. Rushby. User guide for the PVS specification and
verification system (draft). Technical report, Comp. Sci.,Laboratory, SRI Interna-
tional, Menlo Park, CA, 1993.

[PRZ01] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Proc. 7th Intl. Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’01), volume 2031 of Lect. Notes in Comp.
Sci., Springer-Verlag, pages 82–97, 2001.

[PXZ02] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1, ∞)-counter abstraction, 2002.
[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 332–344, 1986.
[ZP04] L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized

systems. Computer Languages, Systems, and Structures, Volume 30(3–4), pp. 139–
169 2004.

Extending EFSMs to Specify and Test Timed
Systems with Action Durations and Timeouts�

Mercedes G. Merayo, Manuel Núñez, and Ismael Rodŕıguez

Dept. Sistemas Informáticos y Programación
Universidad Complutense de Madrid, 28040 Madrid, Spain

mgmerayo@fdi.ucm.es, {mn, isrodrig}@sip.ucm.es

Abstract. In this paper we introduce a timed extension of the extended
finite state machines model. On the one hand, we consider that output
actions take time to be performed. This time may depend on several
factors such as the value of variables. On the other hand, our formalism
allows to specify timeouts. In addition to present our formalism, we de-
velop a testing theory. First, we define ten timed conformance relations
and relate them. Second, we introduce a notion of timed test and define
how to apply tests to IUTs.

1 Introduction

Formal testing techniques [2,9,14,3,5] allow to test the correctness of a system
with respect to a specification. Formal testing originally targeted the functional
behavior of systems, such as determining whether the tested system can, on the
one hand, perform certain actions and, on the other hand, does not perform some
non-expected ones. In the last years formal testing techniques also deal with non-
functional properties such as the time that it takes to perform a certain action. In
order to test timed systems, more precisely, the timed behavior of a system, we
need a suitable language to formally specify these systems. The time consumed
during the execution of a system falls into one of the following categories:

(a) The system consumes time while it performs its operations. This time may
depend on the values of certain parameters of the system, such as the avail-
able resources.

(b) The time passes while the system waits for a reaction from the environment.
In particular, the system can change its internal state if an interaction is not
received before a certain amount of time.

A language focussing on temporal issues should allow the specifier to define how
the system behavior is affected by both kinds of temporal aspects (e.g., a task
is performed if executing the previous task took too much time, if the environ-
ment does not react for a long time, if the addition of both times exceeds a
� Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,

the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 372–387, 2006.
c© IFIP International Federation for Information Processing 2006

Extending EFSMs to Specify and Test Timed Systems 373

given threshold, etc). In this paper we present a formalism, based on extended
finite state machines, allowing to take into account the subtle temporal aspects
considered before. Even though there exists a myriad of timed extensions of
classical frameworks, most of them specialize only in one of the previous vari-
ants: Time is either associated with actions or associated with delays/timeouts.
Our formalism allows to specify in a natural way both time aspects. While the
definition of the new language is not difficult, mixing these temporal require-
ments strongly complicates the posterior theoretical analysis. In particular, the
definition of timed conformance testing relations is more difficult than usually.
The theoretical framework is also complicated by two additional features. First,
we consider that variables may influence the timing aspects of the specification.
Thus, the execution of an action may take different time values if the value of the
variables change. Second, we do not impose any restriction on the deterministic
behavior of our machines. This implies again that the same sequence of actions
may take different time values to be executed.

We also propose a formal testing methodology allowing to systematically test
a system with respect to a specification. Regarding functional conformance we
have to consider not only that the sequences of inputs/outpus produced by the
implementation must be considered in the specification. We have to take into
account the possible timeouts. For example, a sequence of inputs/outputs could
be accepted only after different timeouts have been triggered. Let us consider the
machines depicted in Figure 1. In these diagrams we use the following notation:
A transition labelled by ‘i/o, t’ denotes that the execution of the output action
o takes time t to be performed after the input i is received; a transition with a
label t indicates that a timeout will be applied at time t. That is, if after t time
units no input is received then the timeout is executed. If we consider M1 and
M2 we can observe that M1 is not functionally conforming to M2. The sequence
i1/o2 that can be performed by M1 is forbidden by M2. On the other hand, if
we consider the conformance of M2 with respect to M1 and we only check the
possible sequences of inputs/outputs, M2 would conform to M1 due to the fact
that the unique sequence that can be performed by M2 is i1/o1. However, this
sequence is allowed by M1 only in the case that the input has been received after
three time units. So, under our conformance framework, M2 does not conform
to M1. We can say the same regarding the conformance of M3 with respect to
M1. On the contrary, this is not the case when considering the conformance of
M1 with respect to M3. The sequences performed by M1 are accepted by M3 at
any time. So, M1 functionally conforms to M3.

Let us note that testing the temporal behavior of a system affected by non-
determinism requires to face some issues that are not considered by other testing
approaches. In particular, contrary to usual approaches, providing an incorrect-
ness diagnosis may require to consider the result of all tests in a test suite,
because a single test result could be insufficient to claim the incorrectness of
the IUT.1 For instance, we may require that, among all the times the IUT may

1 If we consider this statement the other way around then the resulting scenario is the
usual one: Passing a test does not allow to claim that the IUT is correct.

374 M.G. Merayo, M. Núñez, and I. Rodŕıguez

M1

i1/o2, 2

3
i1/o1, 2

M2

i1/o1, 2

M3

i1/o1,4

i1/o2,1

Fig. 1. Examples of functional conformance

consume to perform a task, one of them is smaller than the corresponding spec-
ification time for this task. Hence, if during the application of a test we observe
that the IUT takes a long time, then it does not necessarily mean that the IUT
cannot do it faster. Regarding temporal performance requirements, our testing
methodology will take into account that the system is only responsible for the
(a) type consumed time, not for that of (b) type. That is, we have to distinguish
between time associated with the performance of tasks and passing of time due
to the possible inactivity of the operator of the system.

Our timed conformance relations follow the standard pattern: An implemen-
tation is correct with respect to a specification if it does not show any behav-
ior that is forbidden by the specification, where both the functional behavior
and the temporal behavior are considered (and, implicitly, how they affect each
other). In this paper we present ten different conformance relations. The dif-
ferences among them come from the effect non-determinism causes in specifica-
tions/implementations. We will relate all these notions and propose alternative
characterizations for some of them.

In terms of related work, our way to deal with time is completely different to
that in timed automata [1]. As we said before, we can associate time with the
performance of actions while timeouts can be easily represented. These features
do not only improve the modularity of models, but they are also suitable for
clearly identifying IUT requirements and responsibilities in a testing methodol-
ogy. This paper continues the work in [12]. The main advantage with respect
to this previous work is that we can now express timeouts, we remove all the
restrictions regarding non-determinism of the machines, and we consider more
conformance relations. Regarding testing of temporal requirements, there exist
several proposals (e.g., [4,8,15,6]) but most of them are based on timed automata.
Moreover, in these approaches tests are independent and the diagnosis of a test
does not depend on other tests. By considering that tests are interrelated, we
can relate non-determinism and temporal requirements, as well as define and
apply several conformance relations where non-determinism is explicitly consid-
ered. There are also some time extensions of FSMs(e.g., [13,7]) but they do not
deal with conformance.

The rest of the paper is structured as follows. In Section 2 we introduce our
model. In Section 3 we give our timed conformance relations and provide several
examples to show the differences among them. In Section 4 we show how tests
are defined and applied to IUTs.

Extending EFSMs to Specify and Test Timed Systems 375

2 A Timed Extension of the EFSM Model

In this section we introduce our notion of timed extended finite state machine. As
we have indicated in the introduction of the paper, we will add new features so
that the timed behavior of a system can be properly specified. On the one hand,
we consider that output actions take time to be executed. These time values
will not only depend on the corresponding action to be performed and the state
where the machine is placed. Actually, we will also consider that this time value
takes into account the current value of the variables. In fact, with this approach
we can simulate that the speed with which a task is performed depends on the
available resources. On the other hand, we will also consider that the machine
can evolve by raising timeouts. Intuitively, if after a given time, depending on the
current state, we do not receive any input action then the machine will change
its current state.

During the rest of the paper we will use the following notation. A tuple
of elements (e1, e2 . . . , en) will be denoted by ē. â denotes an interval of ele-
ments [a1, a2). A tuple of intervals is denoted by t̆. Let q̆ = (q̂1, . . . , q̂n) and
t̄ = (t1, . . . , tn). We write t̄ ∈ q̆ if for all 1 ≤ j ≤ n we have tj ∈ q̂j . We will
use the projection function πi such that given a tuple t̄ = (t1, . . . , tn), for all
1 ≤ i ≤ n we have πi(t̄) = ti. Let t̄ = (t1, . . . , tn) and t̄′ = (t′1, . . . , t

′
n). We write

t̄ = t̄′ if for all 1 ≤ j ≤ n we have tj = t′j . We write t̄ ≤ t̄′ if for all 1 ≤ j ≤ n we
have tj ≤ t′j . Finally, we will denote by

∑
t̄ the sum of all elements of the tuple

t̄, that is,
∑n

j=1 tj.

Definition 1. Let Time be the domain to define time values, D1, . . . , Dm be sets
of values, and let us consider D = D1×D2×· · ·×Dm. A Timed Extended Finite
State Machine, in the following TEFSM, is a tuple M = (S, I, O, TO, Tr, sin, ȳ)
where S is a finite set of states, I is the set of input actions, O is the set of
output actions, TO : S −→ S × (Time ∪ ∞) is the timeout function, Tr is the
set of action transitions, sin is the initial state, and ȳ ∈ D is the tuple of initial
values of the variables.

An action transition is a tuple (s, s′, i, o, Q, Z, C) where s, s′ ∈ S are the
initial and final state of the transition, i ∈ I and o ∈ O are the input and output
action associated with the transition, Q : D −→ Bool is a predicate on the set
of variables, Z : D −→ D is a transformation over the current variables, and
C : D −→ Time is the time that the transition needs to be completed.

A configuration in M is a pair (s, x̄) where s ∈ S is the current state and
x̄ ∈ D is the tuple containing the current value of the variables.

We say that M is input-enabled if for all state s ∈ S and input i ∈ I there
exist s′, o, Q, Z, C such that (s, s′, i, o, Q, Z, C) ∈ Tr. !

Given a configuration (s, x̄), an action transition (s, s′, i, o, Q, Z, C) denotes that
if the input i is received and Q(x̄) holds then the output o will be produced after
C(x̄) units of time, and the configuration will be (s′, Z(x̄)). In this paper we
consider that time can be discretized, that is, the time domain is isomorphic to
IN. We will take advantage of this characteristic to simplify some definitions. In

376 M.G. Merayo, M. Núñez, and I. Rodŕıguez

particular, we will sometimes enumerate the elements of Time simply as 0, 1, 2
and so on.

For each state s ∈ S, the application of the timeout function TO(s) returns
a pair (s′, t) indicating the time that the machine can remain at the state s
waiting for an input action, and the state to which the machine evolves if no
input is received on time. We assume that TO(s) = (s′, t) implies s �= s′, that
is, timeouts always produce a change of the state. We indicate the absence of a
timeout in a given state by setting the corresponding time value to ∞.

Definition 2. Let M = (S, I, O, TO, Tr, sin, ȳ) be a TEFSM and c0 = (s0, x̄0) be
a configuration of M . A tuple (s0, s, i/o, t̂, to, v̄) is a step of M for the configu-
ration c0 if there exist k ≥ 0 states s1, . . . , sk ∈ S such that for all 1 ≤ j ≤ k we
have TO(sj−1) = (sj , tj) and there exists a transition (sk, s, i, o, Q, Z, C) ∈ Tr

such that Z(x̄0) = v̄, t̂ =
[∑k

j=1 tj ,
∑k

j=1 tj + π2(TO(sk)
)
, to = C(x̄0) and

Q(x̄0) holds. We denote by Steps(M, s, x̄) the set of steps of M for the config-
uration (s, x̄).

We say that (t̂1/i1/to1/o1, . . . , t̂r/ir/tor/or) is a timed evolution of M if there
exist r steps of M (sin, s1, i1/o1, t̂1, to1, ȳ1), . . . , (sr−1, sr, ir/or, t̂r, tor, ȳr) for the
configurations (sin, ȳ), . . . , (sr−1, ȳr−1), respectively. We denote by TEvol(M)
the set of timed evolutions of M . In addition, we say that (t̂1/i1/o1, . . . , t̂r/ir/or)
is a functional evolution of M and we denote by FEvol(M) the set of functional
evolutions of M . !

Intuitively, a step is an action transition preceded by zero or more timeouts. The
interval t̂ indicates the time values where the input action could be received. An
evolution is a sequence of inputs/outputs corresponding to the action transitions
of a chain of steps where the first one begins with the initial configuration of
the machine. In addition, timed evolutions include time values which inform us
about possible timeouts (indicated by the intervals t̂j) and the time consumed
to execute each output after receiving each input in each step of the evolution.

Example 1. Consider the TEFSM depicted in Figure 2. We suppose that the vari-
ables of the TEFSM are given by a tuple x̄ ∈ IR4

+ and we denote by xi the i-th
component of x̄. Let us assume that the value of the variables is x̄ = (1, 2, 2, 1).
Next, we give some of the steps that the machine can generate. For example,
(s1, s2, i1/o1, [0, 3), 3, (2, 2, 2, 0)), represents the transition t12 when no timeouts
precede it. The input i1 can be accepted before 3 units of time pass (this is indi-
cated by the interval [0, 3)). In addition, o1 takes C1((1, 2, 2, 1)) = 3 time units to
be performed and the new tuple of variables is Z1((1, 2, 2, 1)) = (2, 2, 2, 0). The
second one, (s1, s4, i1/o2, [3, 7), 4, (1, 3, 1, 1)) is built from the timeout transition
associated to the state s1 and the action transition t34. The step represents that
if after 3 units of time no input is received, the timeout transition associated
with that state will be triggered and the state will change to s3. After this, the
machine can accept the input i1 before 4 units of time pass, that is, the timeout
assigned to the state s3. So during the time interval [3, 7) if the machine receives
an input i1 it will emit an output o2 and the state will change to s4. Similarly,

Extending EFSMs to Specify and Test Timed Systems 377

s1 s2

s3 s4 s5

s6

i1/o1

3 1

i1/o2 i2/o1

4

i1/o3

i2/o3

i1/o2

t12 = (s1, s2, i1, o1, Q1, Z1, C1)
t34 = (s3, s4, i2, o2, Q2, Z2, C2)
t25 = (s2, s5, i2, o3, Q3, Z3, C3)
t45 = (s4, s5, i2, o1, Q4, Z4, C4)
t56 = (s5, s6, i1, o3, Q5, Z5, C5)
t61 = (s6, s1, i1, o2, Q6, Z6, C6)

T O(s1) = (s3, 3), T O(s3) = (s6, 4), T O(s2) = (s4, 1)

Zi(x̄) = x̄ +
(1, 0, 0, −1) if i ∈ {1, 3, 5}
(0, 1, −1, 0) if i ∈ {2, 4, 6}

Qi(x̄) ≡ Zi(x̄) ≥ 0̄ ∧
xi > 0 if i ∈ {1, 2, 3, 4}
x1 > 0 if i ∈ {5, 6}

Ci(x̄) =

xi + 2 if i ∈ {1, 2, 3, 4} ∧ xi �= 0

x1 if i ∈ {5, 6} ∧ x1 �= 0

3 otherwise

Fig. 2. Example of TEFSMs

we can obtain the step (s1, s1, i1/o2, [7,∞), 1, (1, 3, 1, 1)), using the timeout tran-
sitions corresponding to s1 and s3 and the action transition t61. All the steps
presented, correspond to the configuration (s1, (1, 2, 2, 1)).

Now, we present an example of a temporal evolution built from two steps,
and assuming that s1 is the initial state: ([7,∞)/i1/1/o2, [3, 7)/i1/3/o2). The
configuration that has been considered for the first step is again (s1, (1, 2, 2, 1)).
The configuration that corresponds to the second step is the one obtained after
the first step has been performed, that is, (s1, (1, 3, 1, 1)). !

Let us note that different instances of the same evolution may appear in a
specification as result of the different configurations obtained after traversing
the corresponding TEFSM.

In the following definition we introduce the concept of instanced evolution.
Intuitively, instanced evolutions are constructed from evolutions by instanciating
to a concrete value each timeout, given by an interval, of the evolution.

Definition 3. Let M = (S, I, O, TO, Tr, sin, ȳ) be a TEFSM and let us consider
a timed evolution e = (t̂1/i1/to1/o1, . . . , t̂r/ir/tor/or). We say that the tuple
(t1/i1/to1/o1, . . . , tr/ir/tor/or) is an instanced timed evolution of e if for all 1 ≤
j ≤ r we have tj ∈ t̂j . In addition, we say that the tuple (t1/i1/o1, . . . , tr/ir/or)
is an instanced functional evolution of e.

We denote by InsTEvol(M) the set of instanced timed evolutions of M and
by InsFEvol(M) the set of instanced functional evolutions. !

By abusing the notation, we will sometimes refer to instanced time evolutions
such as (t1/i1/to1/o1, . . . , tr/ir/tor/or) as (t̄, σ, t̄o), where t = (t1, . . . , tr), σ =
(i1/o1, . . . , ir/or), and to = (to1, . . . , tor). Similarly, we will also refer to instanced
functional evolutions as (t̄, σ).

Example 2. As example, if we consider the temporal evolution showed previ-
ously, ([7,∞)/i1/1/o2, [3, 7)/i1/3/o2), we have that (8, /i1/1/o2, 5/i1/3/o2) and
(12, /i1/1/o2, 3/i1/3/o2) are instanced temporal evolutions. !

378 M.G. Merayo, M. Núñez, and I. Rodŕıguez

3 (Timed) Implementation Relations

In this section we introduce our implementation relations. All of them follow
the same pattern: An implementation I conforms to a specification S if for all
possible evolution of S the outputs that the implementation I may perform after
a given input are a subset of those for the specification. This pattern is borrowed
from confnt [10] and it is inspired in ioco [16]. In addition to the non-timed
conformance of the implementation, we require some time conditions to hold.
For example, we may ask an implementation to be always faster than the time
constraints imposed by the specification. Additionaly, we require that the imple-
mentation always complies with the timeouts established by the specification.

Next, we formally define the sets of specifications and implementations. A
specification is a timed extended finite state machine. Regarding implementa-
tions, we consider that they are also given by means of TEFSMs. In this case, we
assume, as usual, that all the input actions are always enabled in any state of
the implementation. Thus, we can assume that for any input i and any state
of the implementation s there always exists a transition (s, s, i, null, Q, Z, C)
where null is a special (empty) output symbol, the predicate Q(x̄) is defined as
¬
∨
{Q′(x̄) | ∃ a transition (s, s′, i, o, Q′, Z ′, C′)}, Z(x̄)= x̄, and C(x̄) = 0. Let us

note that such a transition will be performed when (and only if) no other transi-
tion is available for input i (that is, either there are no transitions outgoing from
s labelled by i or none of the corresponding predicates hold). Let us note that
we do not restrict the machines to be deterministic. Thus, both implementations
and specifications may present non-deterministic behavior. This is an important
advantage with respect to previous work [12].

First, we introduce the implementation relation conff , where only functional
aspects of the system (i.e., which outputs are allowed/forbidden) are considered
while the performance of the system (i.e., how fast are actions executed) is
ignored. Let us note that the time spent by a system waiting for the environment
to react has the capability of affecting the set of available outputs of the system.
This is because this time may trigger a change of the state. So, a relation focusing
on functional aspects must explicitly take into account the maximal time the
system may stay in each state. This time is given by the timeout of the state.

Definition 4. Let S, I be TEFSMs. We say that I functionally conforms to
S, denoted by I conff S, if for each functional evolution e ∈ FEvol(S), with
e = (t̂1/i1/o1, . . . , t̂r/ir/or) and r ≥ 1, we have that for all t1 ∈ t̂1, . . . , tr ∈ t̂r
and o′r, e′ = (t1/i1/o1, . . . , tr/ir/o′r) ∈ InsFEvol(I) implies e′ ∈ InsFEvol(S).

 !

The idea underlying the definition of conff is that the implementation does not
invent anything for those sequences of inputs that are specified in the specifica-
tion. Let us note that if the specification has also the property of input-enabled
then we may remove the condition “for each functional evolution e ∈ FEvol(S),
with e = (t̂t1/i1/o1, . . . , t̂tr/ir/or) and r ≥ 1”. Next, we introduce our timed im-
plementation relations. We will distinguish two classes of conformance relations:
Weak and strong. The family of weak conformance relations demands conditions

Extending EFSMs to Specify and Test Timed Systems 379

only over the total time associated to timed evolutions of the implementation
with respect to the corresponding timed evolutions of the specification. In con-
trast, strong conformance relations establish requests over the time values cor-
responding to the performance of each transition separately. For each of these
approaches we define five relations. In the confs

a and confw
a relations (conforms

always) we consider, for any timed evolution σ of the implementation, that if its
associated functional evolution σ′ is a functional evolution of the specification
then σ is also a timed evolution of the specification. In the confs

w and confw
w

relations (conformance in the worst case) the implementation is forced, for each
timed evolution fulfilling the previous conditions, to be faster than the slowest in-
stance of the same evolution in the specification. The confs

b and confw
b relations

(conforms in the best case) are similar but considering only the fastest instance
of the specification. Finally, the relations confs

sw and confw
sw (sometimes worst),

and confs
sb and confw

sb (sometimes best), are similar to the previous relations,
but in each case only one instance of each temporal trace of the implementation
is required to be as fast as the worst/best instance in the specification.

Definition 5. Let t̄o = (to1 . . . tor) ∈ Timer. For all instanced functional evo-
lution insfevol = (t1/i1/o1, . . . , tr/ir/or) ∈ (Time × I × O)r , we denote by
insfevol∇t̄o the instanced timed evolution (t1/i1/to1/o1, . . . , tr/ir/tor/or). Let
S and I be TEFSMs. The timed conformance relations are defined as follows:

– (strong always) I confs
a S iff I conff S and for all instanced functional evo-

lution insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that ∀ t̄i

insfevol∇t̄i ∈ InsTEvol(I) =⇒ insfevol∇t̄i ∈ InsTEvol(S)

– (strong best) I confs
b S iff I conff S and for all instanced functional evolution

insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that ∀ t̄i

insfevol∇t̄i ∈ InsTEvol(I) =⇒ ∀ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
⇓

t̄i ≤ t̄s

⎞⎠
– (strong worst) Iconfs

wS iff IconffS and for all instanced functional evolution
insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that ∀ t̄i

insfevol∇t̄i ∈ InsTEvol(I) =⇒ ∃ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
∧

t̄i ≤ t̄s

⎞⎠
– (strong sometimes best) Iconfs

sbS iff IconffS and for all instanced functional
evolution insfevol ∈ InsFEvol(I)∩InsFEvol(S) we have that ∃ t̄i such that

insfevol∇t̄i ∈ InsTEvol(I) ∧ ∀ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
⇓

t̄i ≤ t̄s

⎞⎠

380 M.G. Merayo, M. Núñez, and I. Rodŕıguez

– (strong sometimes worst) I confs
sw S iff I conff S and for all instanced

functional evolution insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that
∃ t̄i, t̄s such that ⎛⎜⎜⎜⎜⎝

insfevol∇t̄i ∈ InsTEvol(I)
∧

insfevol∇t̄s ∈ InsTEvol(S)
∧

t̄i ≤ t̄s

⎞⎟⎟⎟⎟⎠
– (weak always) Iconfw

a S iff IconffS and for all instanced functional evolution
insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that ∀ t̄i

insfevol∇t̄i ∈ InsTEvol(I) =⇒ ∃ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
∧∑

t̄i =
∑

t̄s

⎞⎠
– (weak best) I confw

b S iff I conff S and for all instanced functional evolution
insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that ∀ t̄i

insfevol∇t̄i ∈ InsTEvol(I) =⇒ ∀ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
⇓∑

t̄i≤
∑

t̄s

⎞⎠
– (weak worst) Iconfw

wS iff Iconff S and for all instanced functional evolution
insfevol ∈ InsFEvol(I) ∩ InsFEvol(S) we have that ∀ t̄i

insfevol∇t̄i ∈ InsTEvol(I) =⇒ ∃ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
∧∑

t̄i≤
∑

t̄s

⎞⎠
– (weak sometimes best) Iconfw

sbS iff Iconff S and for all instanced functional
evolution insfevol ∈ InsFEvol(I)∩InsFEvol(S) we have that ∃ t̄i such that

insfevol∇t̄i ∈ InsTEvol(I) ∧ ∀ t̄s :

⎛⎝ insfevol∇t̄s ∈ InsTEvol(S)
⇓∑

t̄i≤
∑

t̄s

⎞⎠
– (weak sometimes worst) I confw

sw S iff I conff S and for all instanced func-
tional evolution insfevol ∈ InsFEvol(I)∩ InsFEvol(S) we have that ∃ t̄i, t̄s
such that ⎛⎜⎜⎜⎜⎝

insfevol∇t̄i ∈ InsTEvol(I)
∧

insfevol∇t̄s ∈ InsTEvol(S)
∧∑

t̄i≤
∑

t̄s

⎞⎟⎟⎟⎟⎠
 !

Extending EFSMs to Specify and Test Timed Systems 381

M1

i1/o1, 2

3
i1/o1, 2

M2

i1/o1, 2

M3

i1/o1, 2

3
i1/o1,3

M4

i1/o1, 2

4
i1/o1,3

M5

i1/o1, 2

3
i1/o1, 2

i2/o1, 4

i2/o2, 4

M6

i1/o1, 2

3
i1/o1, 2

i2/o1,6

i2/o2, 4

M7

i1/o1,4

i1/o1,1

M8

i1/o1,3

i1/o1,2

M9

i1/o1, 2

11

i1/o1, 2

M10

i1/o1, 2

11

i1/o2, 2

M11

i1/o1,2

i2/o1,4

M12

i1/o1, 4

i2/o1, 3

Fig. 3. Example of TEFSMs

3.1 Illustrating Examples

In this section we show how our implementation relations capture the functional
and temporal behavior of systems. In particular, we give some examples where
several TEFSMs are related. For the sake of simplicity, we will use some additional
conformance binary operators. We will assume that I conf∗ S denotes that all
implementation relations given in Definition 5 hold between I and S. If none
of these relations holds then we denote it by I �conf∗ S. Besides, I conf� S
denotes that all relations but confs

a and confw
a hold. We will consider the TEFSMs

depicted in Figure 3. Finally, let us note that if a TEFSM is very similar to the
ones presented before, then we stress the differences by using a boldface font.

Equivalent machines. We have M1conf∗M2. Actually, we also have M2conf∗M1.
Let us note that the behavior of both machines is exactly the same regardless
of whether 3 units of time pass: All transitions available for M1 after taking a
timeout are also available in M2 from its first state. For similar reasons, we have
M1 conf∗ M9, M9 conf∗ M1, M2 conf∗ M9, and M9 conf∗ M2.

Non-Conformance due to different time values to perform output actions. How-
ever, we have M3 �conf∗ M2. Let us note that M3 may take 3 time units to
perform the output o1 if it receives the input i1 after 3 time units, (3/i1/3/o1),
while M2 only needs 2 time units, (3/i1/2/o1). Moreover, in these machines the
only way to perform i1/o1 after a timeout 3 consists in taking these traces, re-
spectively (the same applies for traces with a timeout higher than 3). Since M3
is, in any case, slower than M2 for these sequences of inputs/outputs, no confor-
mance relation where M3 is the IUT and M2 is the specification holds. However,
we have M2 conf� M3: Despite M2 does not take the same time values as M3
for each sequence, its time is always smaller than (timeouts ≥ 3) or equal to
(timeouts < 3) the times of M3.

Non-conformance due to different timeouts. As we have seen, reducing the time
consumed by actions can benefit a TEFSM with respect to another. In spite of the

382 M.G. Merayo, M. Núñez, and I. Rodŕıguez

fact that requirements on timeouts are strict, sometimes having different time-
outs can benefit a TEFSM as well. Most traces in M3 and M4 take the same times.
There is an exception: The trace with timeout 3. In M3 we have (3/i1/3/o1),
but in M4 we have (3/i1/2/o1) because after 3 time units pass the state does
not change yet in M4. Hence, we have M4 conf� M3 but M3 �conf∗ M4.

Non-conformance due to conff . Let us consider how the availability of outputs
affects the relations. We have M5 �conf∗ M11. Let us note that if i2 is offered
in M11 after executing i1/o1 then only o1 can be produced. However, M5 can
produce this output as well as o2, which is forbidden by M11. So, we do not have
M5conff M11, and no temporal relation holds without fulfilling this condition. If
M5 is substituted by M6 then the same considerations apply: We have M6 �conf∗
M11. However, we have M11 conf� M6 because all sequences concerned by M11
that appear in M6 (in fact only the sequence i1/o1, i2/o1) are performed faster
than or equal to the corresponding trace in M6 (but we do not have that all are
equal). Let us note that M9 �conf∗ M10 and M10 �conf∗ M9. The reason is that
conff does not hold, though, in this case, it does not hold in either direction.
Let us note that, after 1 time units passes and the timeout is raised, if i1 is
offered then M9 must answer o1, and o2 is forbidden. However, it is the other
way around for M10. Hence, their answers are mutually incompatible.

Non-conformance due to different time requirements. Let us consider a case
where the IUTs and specifications can spent different time values in execut-
ing pairs of input/outputs included in traces. We consider M7 and M8. Since
they only perform traces of length 1, any strong relation coincides with its re-
spective weak version. Next we will refer to strong relations. Both M7 and M8
can execute i1/o1 in a time that cannot be taken in the other, so we do not have
M7 conf

s
a M8. The worst time values to execute i1/o1 in M7 and M8 are 4 and 3,

respectively, while the best time values are 1 and 2, respectively. The worst time
of M7 is not better than the worst or the best time in M8, so we have neither
M7 conf

s
w M8 nor M7 conf

s
b M8. However, the best time in M7 is better to both

the worst and the best time of M8. So, both M7 confs
sw M8 and M7 confs

sb M8
hold. On the other hand, the worst time in M8 is better than the worst of M7
but not than the best of M7. Hence, M8 confs

w M7 holds but M8 confs
b M7 does

not. Finally, the best time in M8 is better than the worst of M7, but not better
than its best one. Thus, M8 confs

sw M7 holds, but M8 confs
sb M7 does not.

Differences between weak and strong. Next we show how temporal requirements
are dealt by strong and weak relations. Let us consider M11 and M12. No strong
relation holds between these TEFSMs in any direction. The reason is that M11
performs, i1/o1, faster than M12, but M12 performs the next transition i2/o1
faster than M11. The result is that none of these machines is always at least as
fast as the other (concerning transitions). However, if we consider traces (i.e.,
weak relations) then some relations arise. Let us note that M11 performs both
available sequences of inputs/outputs (i1/o1 and i1/o1, i2/o1) faster than M12:
In M11 they spend 2 and 6 time units, respectively, while these time values are
4 and 7, respectively, in M12. So, all weak relations (but confw

a) hold: We have

Extending EFSMs to Specify and Test Timed Systems 383

M11 confw
w M12, M11 confw

b M12, M11 confw
sw M12, and M11 confw

sb M12. None
of them holds if we exchange the roles of both machines.

3.2 Relating Conformance Relations

Theorem 1. The relations given in Definition 5 are related as follows:

I confw
sw S ⇐ I confw

sb S
⇑ ⇑

I confw
a S ⇒ I confw

w S ⇐ I confw
b S

⇑ ⇑ ⇑
I confs

a S ⇒ I confs
w S ⇐ I confs

b S
⇓ ⇓

I confs
sw S ⇐ I confs

sb S

Besides, we have I confs
sw S ⇒ I confw

sw S and I confs
sb S ⇒ I confw

sb S. !
Let us remark that the implications inferred in the previous result are, obvi-

ously, transitive. For instance, we also have I confw
a S ⇒ I confw

sw S.
It is interesting to note that if specifications are restricted to take always the

same time for each given evolution (independently from the possible derivation
taken for such evolution) then, on the one hand, the relations confw

b and confw
w

would coincide while, on the other hand, confs
b and confs

w also coincide. However
these relations would be still different from the confw

a and confs
a relations. Sim-

ilarly, if this property holds in implementations then all relations concerning the
best temporal traces of the implementation (sometimes relations) coincide with
the corresponding relation where all the temporal traces of the implementation
are regarded.

Lemma 1. Let us consider two TEFSMs I = (SI , II , OI , TOI , TrI , sinI , ȳI) and
S = (SS , IS , OS , TOS , TrS, sinS , ȳS). If there do not exist different transitions
(s, s′, i, o, Q, Z, C), (s, s′′, i, o, Q′, Z ′, C′) ∈ TrI then

I confs
b S ⇔ I confs

sb S I confs
w S ⇔ I confs

sw S
I confw

b S ⇔ I confw
sb S I confw

w S ⇔ I confw
sw S

If there do not exist different transitions (s, s′, i, o, Q, Z, C), (s, s′′, i, o, Q′, Z ′, C′)
∈ TrS then

I confs
b S ⇔ I confs

w S I confs
sw S ⇔ I confs

sb S
I confw

b S ⇔ I confw
w S I confw

sw S ⇔ I confw
sb S

 !
The hierarchy of relations induced in Theorem 1 allows to compare implementa-
tions in the following way: I1 is preferable to I2 to implement S if it meets with
S a relation that is stricter according to this hierarchy.

Definition 6. Let I1, I2 and S be TEFSMs and confx and confy be timed
conformance relations such that I1 confx S, I2 confy S, confx ⇒ confy, and
confy �⇒ confx. We say that I1 is preferred to I2 to implement S and we denote
it by I1 >S I2. !

384 M.G. Merayo, M. Núñez, and I. Rodŕıguez

T1

a1

fail

b3 b4

a2

fail

b4 b3

a1

pass

b4

fail

b3

fail

null

fail

null

fail

null

T2

a1

fail

b3 b4

a2

fail

b4

pass

b3

fail

null

fail

null

T3

a1

fail

b3

pass

b4

fail

null

T4

a1

fail

b3 b4

a2

fail

b4 b3

a2

pass

b4

fail

b3

fail

null

fail

null

fail

null

Fig. 4. Examples of Tests

4 Definition and Application of Tests

We consider that tests represent sequences of inputs applied to an IUT. Once
an output is received, the tester checks whether it belongs to the set of expected
ones or not. In the latter case, a fail signal is produced. In the former case,
either a pass signal is emitted (indicating successful termination) or the testing
process continues by applying another input. If we are testing an implementation
with input and output sets I and O, respectively, tests are deterministic acyclic
I/O labelled transition systems (i.e. trees) with a strict alternation between an
input action and the set of output actions. After an output action we may find
either a leaf or another input action. Leaves can be labelled either by pass or
by fail. In addition to check the functional behavior of the IUT, test have also
to detect whether wrong timed behaviors appear. Thus, tests have to include
capabilities to deal with the two ways of specifying time. On the one hand,
we will include time stamps to record the time that each sequence of output
actions takes to be executed. The time values recorded from the IUT while
applying the test will be compared with the ones expected by the specification.
Each time stamp will contain a set of time sequences corresponding to the time
values that the specification establishes for each transition of a trace. Since we
do not restrict non-deterministic behavior, we will have as many time sequences
as possible timed evolutions can exist for a trace. Moreover, depending on the
number of inputs applied so far, we will have different lengths for the associated
time sequences in the time stamps of the test. On the other hand, tests will
include delays before offering input actions. The idea is that delays in tests will
induce timeouts in IUTs. Thus, we may indirectly check whether the timeouts
imposed by the specification are reflected in the IUT by offering input actions
after a specific delay. Let us note that a tester can not observe when the IUT
takes a timeout. However, she can check the IUT behavior after different delays.

Definition 7. A test is a tuple T = (S, I, O, Tr, s0, SI , SO, SF , SP , C, W) where
S is the set of states, I and O are disjoint sets of input and output actions,

Extending EFSMs to Specify and Test Timed Systems 385

respectively, Tr ⊆ S × (I ∪ O) × S is the transition relation, s0 ∈ S is the
initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ Tr. For this transition
we have that a ∈ I and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that for
all o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ Tr. In this case,
s′ /∈ SO. Moreover, there do not exist i ∈ I, s′ ∈ S such that (s, i, s′) ∈ Tr.

– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. Thus, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ I ∪O and s′ ∈ S such that (s, a, s′) ∈ Tr.

Finally, we have two timed functions. C : SP −→
⋃∞

j=1 P(Timej) is a function
associating time stamps with passing states. W : SI −→ Time is a function
associating delays with input states.

We say that a test T is valid if the graph induced by T is a tree with root at
the initial state s0.

We say that a test T is an instance of the test T ′ if they only differ in the
associated timed functions C and W .

Let σ = i1/o1, . . . , ir/or. We write T
σ=⇒ s if s ∈ SF ∪ SP and there exist

states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s)} ⊆ Tr, for
all 2 ≤ j ≤ r we have (sj1, ij, sj2) ∈ Tr, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ Tr.

Let T be a test, σ = i1/o1, . . . , ir/or, sT be a state of T , and t, t̄o ∈ Timer.
We write T

σ=⇒t sT if T
σ=⇒ sT , t1 = D(s0) and for all 1 < j ≤ r we have

tj = D(sj1). !

Let us remark that T
σ=⇒ sT , and its variant T

σ=⇒t sT , imply that s is a ter-
minal state. Next we define the application of a test suite to an implementation.
We say that the test suite T is passed if for all test the terminal states reached
by the composition of implementation and test are pass states. Besides, we give
different timing conditions in a similar way to what we did for implementation
relations.

Definition 8. Let I be a TEFSM, T be a valid test, σ = i1/o1, . . . , ir/or, sT be
a state of T , t = (t1, . . . , tr), and t̄o = (to1, . . . , tor). We write I ‖ T

σ=⇒t sT if
T

σ=⇒t sT and (t̄, σ) ∈ InsFEvol(I). We write I ‖ T
σ=⇒t,t̄o

sT if I ‖ T
σ=⇒t sT

and (t̄, σ, t̄o) ∈ InsTEvol(I). Let e = (t̄, σ, t̄o) ∈ InsTEvol(I). We define the set
Test(e, T) = {T | T ∈ T ∧ I ‖ T

σ=⇒t,t̄o
sT }.

We say that I passes the set of valid tests T , denoted by pass(I, T), if for all
test T ∈ T there do not exist σ, sT , t such that I ‖ T

σ=⇒t sT and sT ∈ SF .
We say that I strongly passes the set of valid tests T for any time if pass(I, T)

and for all e = (t̄, σ, t̄o) ∈ InsTEvol(I) we have that for all T ∈ Test(e, T) such
that I ‖ T

σ=⇒t,t̄o
sT it holds t̄o ∈ C(sT).

386 M.G. Merayo, M. Núñez, and I. Rodŕıguez

We say that I strongly passes the set of valid tests T in the best time if
pass(I, T) and for all e = (t̄, σ, t̄o) ∈ InsTEvol(I) we have that for all T ∈
Test(e, T) such that I ‖ T

σ=⇒t,t̄o
sT , for all t̄c ∈ C(sT) it holds t̄o ≤ t̄c.

We say that I strongly passes the set of valid tests T in the worst time if
pass(I, T) and for all e = (t̄, σ, t̄o) ∈ InsTEvol(I) we have that for all T ∈
Test(e, T) such that I ‖ T

σ=⇒t,t̄o
sT there exists t̄c ∈ C(sT) such that t̄o ≤ t̄c.

We say that I strongly passes the set of valid tests T sometimes in best time
if pass(I, T) and there exists e = (t̄, σ, t̄o) ∈ InsTEvol(I) such that for all
T ∈ Test(e, T) with I ‖ T

σ=⇒t,t̄o
sT we have that for all t̄c ∈ C(sT) it holds

t̄o ≤ t̄c.
We say that I strongly passes the set of valid tests T sometimes in worst

time if pass(I, T) and there exists e = (t̄, σ, t̄o) ∈ InsTEvol(I) such that for all
T ∈ Test(e, T) with I ‖ T

σ=⇒t,t̄o
sT we have that there exists t̄c ∈ C(sT) such

that t̄o ≤ t̄c.
We say that I weakly passes the set of valid tests T for any time if pass(I, T)

and for all e = (t̄, σ, t̄o) ∈ InsTEvol(I) we have that for all T ∈ Test(e, T) such
that I ‖ T

σ=⇒t,t̄o
sT it holds

∑
t̄o =

∑
t̄c for some t̄c ∈ C(sT).

We say that I weakly passes the set of valid tests T in the best time if
pass(I, T) and for all e = (t̄, σ, t̄o) ∈ InsTEvol(I) we have that for all T ∈
Test(e, T) such that I ‖ T

σ=⇒t,t̄o
sT , for all t̄c ∈ C(sT) it holds

∑
t̄o ≤

∑
t̄c.

We say that I weakly passes the set of valid tests T in the worst time if
pass(I, T) and for all e = (t̄, σ, t̄o) ∈ InsTEvol(I) we have that for all T ∈
Test(e, T) such that I ‖ T

σ=⇒t,t̄o
sT there exists t̄c ∈ C(sT) such that

∑
t̄o ≤∑

t̄c.
We say that I weakly passes the set of valid tests T sometimes in best time

if pass(I, T) and there exists e = (t̄, σ, t̄o) ∈ InsTEvol(I) such that for all
T ∈ Test(e, T) with I ‖ T

σ=⇒t,t̄o
sT we have that for all t̄c ∈ C(sT) it holds∑

t̄o ≤
∑

t̄c.
We say that I weakly passes the set of valid tests T sometimes in worst time

if pass(I, T) and there exists e = (t̄, σ, t̄o) ∈ InsTEvol(I) such that and for all
T ∈ Test(e, T) with I ‖ T

σ=⇒t,t̄o
sT we have that there exists t̄c ∈ C(sT) such

that
∑

t̄o ≤
∑

t̄c. !

5 Conclusions and Future Work

In this paper we have introduced a new model to specify timed systems. In con-
trast with most approaches, our formalism allows to define time in two different
ways: Duration of actions and timeouts of the system. Thus, by separating these
two notions, it is easier to specify temporal properties of systems than if we
use a formalism where only one of the possibilities is available. We have also
developed a testing theory. On the one hand, we have defined ten conformance
relations that take into account the influence of non-determinism in the behavior
of systems. On the other hand, we have introduced a notion of test. In order to
capture the timed behavior of the IUT, test can both delay the execution of the
IUT and record the time that it took to perform a given action.

Extending EFSMs to Specify and Test Timed Systems 387

In terms of future work, we would like to take this paper as a first step,
together with [11], to define a testing theory for systems presenting stochastic
time together with timeouts.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. B.S. Bosik and M.U. Uyar. Finite state machine based formal methods in protocol
conformance testing. Computer Networks & ISDN Systems, 22:7–33, 1991.

3. E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliogra-
phy. In 4th Summer School, MOVEP 2000, LNCS 2067, pages 187–195. Springer,
2001.

4. D. Clarke and I. Lee. Automatic generation of tests for timing constraints from
requirements. In 3rd Workshop on Object-Oriented Real-Time Dependable Systems,
1997.

5. K. El-Fakih, N. Yevtushenko, and G. von Bochmann. FSM-based incremental con-
formance testing methods. IEEE Transactions on Software Engineering, 30(7):425–
436, 2004.

6. A. En-Nouaary and R. Dssouli. A guided method for testing timed input output
automata. In TestCom 2003, LNCS 2644, pages 211–225. Springer, 2003.

7. M.A. Fecko, M.Ü. Uyar, A.Y. Duale, and P.D. Amer. A technique to generate fea-
sible tests for communications systems with multiple timers. IEEE/ACM Trans-
actions on Networking, 11(5):796–809, 2003.

8. T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating test cases for
a timed I/O automaton model. In 12th Workshop on Testing of Communicating
Systems, pages 197–214. Kluwer Academic Publishers, 1999.

9. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

10. M. Núñez and I. Rodŕıguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1–16. Springer, 2002.

11. M. Núñez and I. Rodŕıguez. Towards testing stochastic timed systems. In FORTE
2003, LNCS 2767, pages 335–350. Springer, 2003.

12. M. Núñez and I. Rodŕıguez. Conformance testing relations for timed systems.
In 5th Int. Workshop on Formal Approaches to Software Testing (FATES 2005),
LNCS 3997, pages 103–117. Springer, 2006.

13. J.C. Park and R.E. Miller. Synthesizing protocol specifications from service spec-
ifications in timed extended finite state machines. In 17th IEEE Int. Conf. on
Distributed Computing Systems, ICDCS’97, pages 253–260. IEEE Computer Soci-
ety, 1997.

14. A. Petrenko. Fault model-driven test derivation from finite state models: Annotated
bibliography. In 4th Summer School, MOVEP 2000, LNCS 2067, pages 196–205.
Springer, 2001.

15. J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed automata.
Theoretical Computer Science, 254(1-2):225–257, 2001.

16. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware – Concepts and Tools, 17(3):103–120, 1996.

Scenario-Based Timing Consistency Checking
for Time Petri Nets�

Li Xuandong, Bu Lei, Hu Jun, Zhao Jianhua, Zhang Tao, and Zheng Guoliang

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing, Jiangsu, P.R. China 210093
lxd@nju.edu.cn

Abstract. In this paper, we solve the consistency checking problems of
concurrent and real-time system designs modelled by time Petri nets for
the scenario-based specifications expressed by message sequence charts
(MSCs). The algorithm we present can be used to check if a time Petri
net satisfies a specification expressed by a given MSC which requires that
if a scenario described by the MSC occurs during the run of the time Petri
net, the timing constraints enforced to the MSC must be satisfied.

1 Introduction

Scenarios are widely used as a requirements technique since they describe con-
crete interactions and are therefore easy for customers and domain experts to
use. Scenario-based specifications such as message sequence charts offer an intu-
itive and visual way of describing design requirements. Message sequence charts
(MSCs) [1] is a graphical and textual language for the description and specifi-
cation of the interactions between system components. The main area of appli-
cation for MSCs is as overview specification of the communication behavior of
real-time systems, in particular telecommunication switching systems.

Time Petri nets [3] have been proposed as one powerful formalism for mod-
elling concurrent and real-time systems because they can model both concur-
rency and real-time constraints in natural way. There are plenty of applications
of time Petri Nets in modelling system specifications and designs.

Since Unified Modelling Language (UML) [2] became a standard in OMG
in 1997, MSC-like diagrams (UML sequence diagrams) and time Petri nets-
like models (UML activity diagrams) have become a main class of artifacts in
software development processes. It follows that we often need to use MSCs and
time Petri nets together in specification and design of software projects [4-6].
Usually, MSCs and time Petri nets are used in the different software development
steps. Even used in the same step, e.g. requirements analysis, MSCs are used

� Supported by the National Natural Science Foundation of China (No.60425204,
No.60233020), the National Grand Fundamental Research 973 Program of
China (No.2002CB312001), and by the Jiangsu Province Research Foundation
(No.BK2004080).

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 388–403, 2006.
c© IFIP International Federation for Information Processing 2006

Scenario-Based Timing Consistency Checking for Time Petri Nets 389

usually to describe the scenario-based requirements provided directly by the
customers, while time Petri nets are used to model the workflow synthesized by
the domain and technical experts. So it is necessary and important to keep the
consistency between these two kinds of models for software quality assurance.

In this paper, we introduce a more expressive mechanism in MSCs to describe
timing constraints, and give the solution to the problem of checking concurrent
and real-time system designs modelled by time Petri nets for the scenario-based
specifications expressed by MSCs, which require that if a scenario described by
a given MSC occurs during the run of a time Petri net, the timing constraints
enforced to the MSC must be satisfied.

The paper is organized as follows. In next section, we introduce MSCs and
the related timing constraints, and use them to represent the scenario-based
specifications. In Section 3, we review the definition and some basic properties
of time Petri nets. Section 4 gives the solution to checking time Petri nets for the
scenario-based specifications expressed by MSCs. The related works and some
conclusions are given in the last section.

Monitor Controller Barrier

�Train arriving
e1 e2

�Lower barrier
e3 e4

� Barrier down
e6 e5

�Train passed
e7 e8

�Raise barrier
e9 e10

� Barrier up
e12 e11

�Train arriving
e13 e14

e1 − e13 ≤ −100, e6 − e7 < 0, e12 − e13 < 0

(e13 − e1) − 2(e13 − e12) ≤ 0

Fig. 1. A bMSC describing the railroad crossing system

2 Message Sequence Charts with Timing Constraints

MSCs represent typical execution scenarios, providing examples of either normal
or exceptional executions of the proposed system. The MSC standard as defined
by ITU-T in Recommendation Z.120 [1] introduces two basic concepts: basic
MSCs (bMSCs) and High-Level MSCs (hMSCs). A bMSC consists of a set of
processes that run in parallel and exchange messages in a one-to-one, asynchro-
nous fashion. A hMSC graphically combines references to bMSCs to describe

390 L. Xuandong et al.

parallel, sequence, iterating, and non-deterministic execution of the bMSCs. In
this paper, we just use bMSCs to represent the scenario-based specifications,
which are incomplete and usually specify the requirements provided directly by
the customers. For example, a MSC is depicted in Figure 1, which describes a
scenario about the well-known example of the railroad crossing system in [4,10].
This system operates a barrier at a railroad crossing, in which there are a rail-
road crossing monitor and a barrier controller for controlling the barrier. When
the monitor detects that a train is arriving, it sends a message to the controller
to lower the barrier. After the train leaves the crossing, the monitor sends a
message to controller to raise the barrier.

The semantics of a MSC essentially consists of the sequences (of traces) of
messages that are sent and received among the concurrent processes in the MSC.
The order of communication events (i.e. message sending or receiving) in a trace
is deduced from the visual partial order determined by the flow of control within
each process in the MSC along with a causal dependency between the events of
sending and receiving a message [1,6,7,9]. In accordance with [9], without losing
generality, we assume that each MSC corresponds to a visual order for a pair of
events e1 and e2 such that e1 precedes e2 in the following cases:

– Causality: A sending event e1 and its corresponding receiving event e2.
– Controllability: The event e1 appears above the event e2 on the same

process line, and e2 is a sending event. This order reflects the fact that a
sending event can wait for other events to occur. On the other hand, we
sometimes have less control on the order in which receiving events occur.

– Fifo order: The receiving event e1 appears above the receiving event e2
on the same process line, and the corresponding sending events e′1 and e′2
appear on a mutual process line where e′1 is above e′2.

For facilitating the specifications of real-time systems, the timers [1], interval
delays [7,8], and timing marks [2] have been introduced to describe timing con-
straints in MSCs. All of these mechanisms are suitable to describe simple timing
constraints which are only about the separation in time between two events.
In this paper, we introduce more general and expressive timing constraints in
MSCs. In a MSC, we use event names to represent the occurrence time of events.
So, timing constraints can be described by boolean expressions on event names.
Here we let any timing constraint be of the form

c0(e0 − e′0) + c1(e1 − e′1) + . . . + cn(en − e′n) ∼ c ,

where e0, e
′
0, e1, e

′
1 . . . , en, e′n are event names, c, c0, c1, . . . , cn are real numbers,

and ∼∈ {≤, <}. For example, in the MSC depicted in Figure 1, the boolean
expression e1−e13 ≤ −100 represents the separation in time between the sending
events e1 and e13 is not smaller than 100 time units. Furthermore, if we require
that the separation in time between the sending event e13 and the sending event
e1 is not greater than two times the one between the sending event e13 and the
receiving event e12, we can describe the requirement by the timing constraint
(e13 − e1)− 2(e13 − e12) ≤ 0.

Scenario-Based Timing Consistency Checking for Time Petri Nets 391

Compared to the timers, interval delays, and timing marks, the timing con-
straints we consider here can be used to describe more complex timing require-
ments in practical use. For the scenario of the railroad system depicted in Figure
1, we suppose that when a train has passed, a new train could come after at least
100 time units. Figure 1 depicts a specification for this system represented by a
MSC in which we require that from the time one train is arriving to the time the
next train is arriving, the barrier stay up for at least half of this period, which
is represented by (e13 − e1)− 2(e13 − e12) ≤ 0. Clearly, this timing constraint is
about the relation between two separations in time between events (one is the
separation in time between e13 and e12, and the other is the separation in time
between e13 and e1), and the timers, interval delays, and timing marks can not
be used to describe such a timing requirement since they are suitable to describe
the simple timing constraints only about the separation in time between two
events.

For checking the scenario-based specification expressed by MSCs, we formalize
MSCs as follows.

Definition 1. A MSC is a tuple D = (P, E, M, L, V, C) where

– P is a finite set of processes. E is a finite set of events corresponding to
sending a message and receiving a message.

– M is a finite set of messages. Each message in M is of the form (e, g, e′) where
e, e′ ∈ E corresponds to sending and receiving the message respectively,
and g is the message name which is a character string. For any message
(e, g, e′) ∈ M , we use g! and g? to represent the sending and the receiving
for the message respectively if we just concern the message name, and let
φ(e) = g! and φ(e′) = g?.

– L : E → P is a labelling function which maps each event e ∈ E to a process
L(e) ∈ P which is the sender (receiver) while e corresponds to sending
(receiving) a message.

– V is a finite set whose elements are a pair (e, e′) where e, e′ ∈ E and e
precedes e′, which is corresponding to a visual order.

– C is a set of timing constraints on event names enforced on D. !

We use event sequences to represent the traces of MSCs which are corresponding
to the untimed behavior of MSCs. Any event sequence is of the form e0̂ e1̂ . . .ˆem,
which represents that ei+1 takes place after ei for any i (0 ≤ i ≤ m− 1).

Definition 2. Let D = (P, E, M, L, V, C) be a MSC. An event sequence of the
form e0ˆe1ˆ . . . ˆem is a trace of D if and only if the following conditions hold:

– all events in E occur in the sequence, and each event occurs only once, i.e.
{e0, e1, . . . , em} = E and ei �= ej for any i, j (0 ≤ i < j ≤ m); and

– e1, e2, . . . , em satisfy the visual order defined by V , i.e. for any ei and ej, if
(ei, ej) ∈ V , then 0 ≤ i < j ≤ m. !

Corresponding to the sending or receiving for messages, we can transform the
traces of a MSC into the message trails of the MSC.

392 L. Xuandong et al.

Definition 3. Let D = (P, E, M, L, V, C) be a MSC. For any trace of D of the
form e0ˆe1ˆ . . . ˆem, replacing each ei with φ(ei) (0 ≤ i ≤ m), we get a sequence
φ(e0)ˆφ(e1)ˆ . . . ˆφ(em) of the sending or receiving for messages in M , which is
a message trail of D. !

Notice that for a MSC D, all events in a trace of D are distinct, but there may be
the same events in a message trail of D which are corresponding to the message
sending or receiving. For example, the events e1 and e13 are distinct in the MSC
depicted in Figure 1, but φ(e1) = φ(e13) =Train arriving!.

We use timed event sequences to represent the behavior of MSCs. Any timed
event sequence is of the form (e0, δ0)ˆ(e1, δ1)ˆ . . . ˆ(em, δm) where ei is an event
and δi is a nonnegative real numbers for any i (0 ≤ i ≤ m), which describes that
e0 takes place δ0 time units after the system starts, then e1 takes place δ1 time
units after e0 takes place, so on and so forth, at last em takes place δm time
units after em−1 takes place.

Definition 4. A timed event sequence ω = (e0, δ0)ˆ(e1, δ1)ˆ . . . ˆ(em, δm) is a
behavior of a MSC D = (P, E, M, L, V, C) if and only if e0ˆe1ˆ . . . ˆem is a trace
of D and δ0, δ1, . . . , δm satisfy the timing constraints described by C, i.e. for any
boolean expression

∑n
i=0 ci(fi−f ′

i) ∼ c in C, c0λ0 + c1λ1 + . . .+ cnλn ∼ c where
for each i (0 ≤ i ≤ n), if fi = ej and f ′

i = ek, then

λi =
{

δk+1 + δk+2 + . . . + δj if j > k
−(δj+1 + δj+2 + . . . + δk) if j < k

. !

3 Time Petri Nets

Time Petri nets [3] are classical Petri Nets where to each transition t a time
interval [a, b] is associated. The times a and b are relative to the moment at
which t was last enabled. Assuming that t was enabled at time c, then t may fire
only during the interval [c+a, c+ b] and must fire at the time c+ b at the latest,
unless it is disabled before by the firing of another transition. Firing a transition
takes no time. The time Petri nets considered in this paper are 1-safe.

Definition 5. Let N be the set of natural numbers. A time Petri net is a six-
tuple, N = (P, T , F, Ef t, Lf t, μ0), where

– P = {p1, p2, . . . , pm} is a finite set of places; T = {t1, t2, . . . , tn} is a finite
set of transitions (P ∩ T = ∅); F ⊂ (P × T) ∪ (T × P) is the flow relation;
μ ⊂ P is the initial marking of the net.

– Ef t, Lf t : T → N are functions for the earliest and latest firing times of
transitions, satisfying that for any t ∈ T , Ef t(t) ≤ Lf t(t) < ∞.

A marking μ of N is any subset of P . For any transition t, •t = {p ∈ P |(p, t) ∈ F}
and t• = {p ∈ P |(t, p) ∈ F} denote the preset and postset of t, respectively. A
transition t is enabled in a marking μ if •t ⊆ μ; otherwise, it is disabled. Let
enabled(μ) be the set of transitions enabled in μ. !

Scenario-Based Timing Consistency Checking for Time Petri Nets 393

Definition 6. Let T be the set of nonnegative real numbers. A state of a time
Petri net N = (P, T , F, Ef t, Lf t, μ0) is a pair s = (μ, c), where μ is a marking
of N , and c : enabled(μ) → T is called the clock function. The initial state of N
is s0 = (μ0, c0) where c0(t) = 0 for any t ∈ enabled(μ0). !

For the firing of a transition to be possible at a certain time, four conditions
must be satisfied.

Definition 7. A transition t may fire from state s = (μ, c) after delay δ ∈ T if
and only if (1) t ∈ enabled(μ), (2) (μ− •t) ∩ t• = ∅, (3) Ef t(t) ≤ c(t) + δ, and
(4) ∀t′ ∈ enabled(μ) : c(t′) + δ ≤ Lf t(t′). !

The first condition is the normal firing condition for Petri nets. The second con-
dition requires contact-freeness. The third condition specifies that the transition
may only fire if its clock has reached the Ef t value of the transition. The last
condition quantifies over all other enabled transitions, and makes sure that the
delay δ doesn’t cause any of the Lf t bounds to be invalidated. The new state is
then calculated as follows.

Definition 8. When transition t fires after delay δ from state s = (μ, c), the
new state s′ = (μ′, c′) is given as follows: μ′ = (μ − •t) ∪ t•, and for any t′ ∈
enabled(μ′), if t′ �= t and t′ ∈ enabled(μ), then c′(t′) = c(t′) + δ else c′(t′) = 0.
This is denoted by s′ = fire(s, (t, δ)). !

The new marking is calculated normally. For clocks we have two cases: if a
transition remains enabled in the new marking its clock value is incremented
with δ, while for newly enabled transition the clock value is 0. The behavior of
a time Petri net is described in term of runs.

Definition 9. For any time Petri net, a run

ρ = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ . . .

is a finite or infinite sequence of states, transitions, and delays such that s0 is the
initial state, and for every i ≥ 1, si is obtained from si−1 by firing a transition
ti−1 after delay δi−1 which satisfies that si = fire(si−1, (ti−1, δi−1)). !

As a tool used for modelling systems, time Petri nets are such that their tran-
sitions represent the potential events in the systems. Since in this paper we
consider the problem of checking time Petri nets for the scenario-based speci-
fications expressed by MSCs, for any time Petri net we consider in this paper,
each transition t is labelled with an event denoted by ϕ(t), which may be cor-
responding to a message sending or receiving in a MSC. That is, for a MSC
D = (P, E, M, L, V, C), for a transition t of a time Petri net, there may be a
message (e, g, e′) ∈ M such that ϕ(t) = g! = φ(e) or ϕ(t) = g? = φ(e′).

For example, for the railroad crossing system described in the above section,
its design can be described by a time Petri net depicted in Figure 2. In the
system, when the monitor detects that a train is arriving, it sends the message
Train arriving at once to the controller. The controller sends a message back for

394 L. Xuandong et al.

��
��

�
��
��

�
��
��

�

�
� �

�
�

�
�

�

�

�
�

�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�
�

�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���

��
��
��
��

��
��

��
��

��
��

��
���

��
��

��
��

��
��

��
��

��
��

�

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

p1

t1 [0, 0]

p2

[0, 0]t2

[0, 1]

p3

t3

p4

t4 [0, 0]

t5 [15, 20]

p5

p6 p23

t17 [55, 60]

t16 [0, 1]

p22

t15 [0, 0]

p21

t14 [0, 1]

p20

t13 [0, 0]

p7

p8

p9

p10

p11 p19

t12 [0, 0]

p18

t11 [0, 1]

p17

t10 [0, 0]

p16

t9 [0, 1]

p15

t8 [0, 0]

p14

t7 [0, 1]

p13

t6 [0, 0]

p12

p24

p25

p26

p27

p28

p29

p36

t23[0, 0]

p35

t22[8, 10]

p34

t21[0, 0]

p33

t20[0, 0]

p32

t19[8, 10]

p31

t18[0, 0]

p30

ϕ(t1) =Train arriving! ϕ(t2) =Acknowledgement? ϕ(t3) =Approaching! ϕ(t4) =Crossing secured?
ϕ(t5) =Train passed! ϕ(t6) =Train arriving? ϕ(t7) =Acknowledgement! ϕ(t8) =Approaching?
ϕ(t9) =Low barrier! ϕ(t10) =Barrier down? ϕ(t11) =Power off! ϕ(t12) =Crossing secured!
ϕ(t13) =Train passed? ϕ(t14) =Raise barrier! ϕ(t15) =Barrier up? ϕ(t16) =Power off!
ϕ(t18) =Low barrier? ϕ(t19) =Barrier down! ϕ(t20) =Power off! ϕ(t21) =Raise barrier?
ϕ(t22) =Barrier up! ϕ(t23) =Power off!

Fig. 2. Time Petri net model for the railway crossing system

Scenario-Based Timing Consistency Checking for Time Petri Nets 395

acknowledgement in one time units, and the monitor gives a reply in one time
units. Once the controller receives the confirmed message Approaching, it sends
the message Low barrier to the barrier in one time unit. The barrier is put down
in [8, 10] time units after receiving the message Low barrier, and the message
Barrier down is sent to the controller. Then in one time unit the controller sends
the message Power off to the Barrier, and the message Barrier secured to the
monitor. It takes [15, 20] time units for the train to pass the crossing after the
monitor receives the message Barrier secured. Once the train passes the crossing,
the monitor sends a message to the controller, and after receiving the message
the controller takes one time unit to send the message Raise barrier to the barrier.
The barrier becomes up in [8, 10] time units after receiving the message from the
controller, and the message Barrier up is sent to the controller. Once receiving
the massage Barrier up, the controller takes one time unit to send a message to
the barrier for turning off the power. The barrier holds up in the coming [55, 60]
time units, and then another train is arriving.

4 Checking Time Petri Nets for the Scenario-Based
Specifications Expressed by MSCs

In this section, we give the solution to checking of time Petri nets for the scenario-
based specifications represented by MSCs.

4.1 Definition of the Satisfaction Problem

Given a MSC D = (P, E, M, L, V, C), we can get a scenario-based specification
for timing consistency, denoted by ST (D). For a time Petri net N , ST (D) requires
that whenever a scenario described by D occurs in a run of N , the corresponding
run segment must satisfy all the timing constraints in C. For example, Figure
1 depicts a timing consistency specification for the time Petri net in Figure 2,
which requires that after a train has passed, a new train can come after at least
100 time units, and that from the time one train is arriving to the time the next
train is arriving, the barrier stay up for at least half of this period.

The satisfaction problem of a time Petri net N for a scenario-based specifica-
tion ST (D) is defined formally as follows. Let D = (P, E, M, L, V, C) and

ρ = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1

be a run of N . For any subsequence ρ1 of ρ which is of the form

ρ1 = si
(ti,δi)−→ si+1

(ti+1,δi+1)−→ . . .
(tj−1,δj−1)−→ sj

(tj ,δj)−→ sj+1 (0 ≤ i < j < n + 1) ,

since each transition tk is labelled with an event ϕ(tk) (i ≤ k ≤ j), we get
a sequence τ of events: τ = ϕ(ti)ˆϕ(ti+1)ˆ . . . ˆϕ(tj). By removing any ϕ(tk)
(i ≤ k ≤ j) from τ which is not corresponding to the sending or receiving for a
message in M , we get an event sequence τ1 = e0ˆe2ˆ . . . ˆem (m ≤ j − i). If τ1
is a message trail of D, ϕ(ti) = e0, and ϕ(tj) = em, then we say that ρ1 is an

396 L. Xuandong et al.

image of D in ρ. If ρ1 is an image of D, then there is a trace f0ˆf1ˆ . . . ˆfm of
D which is corresponding to τ1, and we can give a function

θ : {f0, f1, . . . , fm} → {ti, ti+1, . . . , tj}

which map each fk (0 ≤ k ≤ m) in an incremental order to tl (i ≤ l ≤ j)
such that φ(fk) = ϕ(tl), that is, θ(f0) = ti, θ(fm) = tj , and if θ(fa) = tp
and θ(fb) = tq (a < b), then p < q. We define that the image ρ1 of D satisfies
ST (D) if δi, δi+1, . . . , δj satisfy all the timing constraints in C, i.e. for any timing
constraint

∑n
k=0 ck(gk − g′k) ∼ c in C, c0λ0 + c1λ1 + . . . + cnλn ∼ c where for

each k (0 ≤ k ≤ n), if θ(gk) = ta and θ(g′k) = tb (i ≤ a, b ≤ j), then

λk =
{

δb+1 + δb+2 + . . . + δa if a > b
−(δa+1 + δa+2 + . . . + δb) if a < b

.

We define that the run ρ of N satisfies ST (D) if any image of D in ρ satisfies
ST (D), and that N satisfies ST (D) if any run of N satisfies ST (D).

4.2 Integer Time Verification Approach

According to the above definition, for solving the satisfaction problem of a time
Petri net N for a scenario-based specification ST (D), we need to check all the
runs of N . We know that for a time Petri net, its runs could be infinite and
the number of its runs could be infinite. So we attempt to solve the problem
based on a finite set of finite runs. In the following we present an integer time
verification approach to solving the problem. A similar approach has been used
by us to check time Petri nets for linear duration properties [17].

For a time Petri net N , a run ρ of N of the form

ρ = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

is an integral run if all δis occurred in its combined steps are integers. It follows
that any state s = (μ, c) occurring in an integral run satisfies c(t) is an integer
for any t ∈ enabled(μ), which is called integral state.

Theorem 1. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any integral run of N satisfies ST (D). !

The proof of this theorem is presented in the appendix. According to the above
theorem, when we check a time Petri net N for a scenario-based specification
ST (D), we only need to consider the integral runs of N .

Since according to Definition 5 the upper bounds of the time intervals asso-
ciated to transitions are finite, the number of the integral states in a time Petri
net is finite. Therefore, for a time Petri net N = (P, T , F, Ef t, Lf t, μ0), we can
construct a reachability graph G = (V, E) as follows, where V is a set of nodes
and E is a set of edges:

Scenario-Based Timing Consistency Checking for Time Petri Nets 397

1. The initial state (μ0, c0) of N is in the set V , which is called initial node;
2. Let s = (μ, c) be in the set V , and κ is the minimal value of the set
{Lf t(t) | t ∈ enabled(μ)}. Then for any transition t ∈ enabled(μ), for any
integer δ ≥ 0 such that Ef t(t) ≤ c(t) + δ ≤ κ, s′ = fire(s, (t, δ)) is in V ,

and s
(t,δ)−→ s′ is in the set E.

For a time Petri net N , a path in its reachability graph G = (V, E) is a sequence

of states, transitions, and delays s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn such that s0

is the initial node, si ∈ V for every i (0 ≤ i ≤ n), and si
(ti,δi)−→ si+1 ∈ E for

every i (0 ≤ i < n). It follows that any integral run of N is a path in G, and
any path in G is an integral run of N . So we can solve the problem of checking
a time Petri net N for a scenario-based specification ST (D) by checking if every
path in the reachability graph G of N satisfies ST (D).

4.3 Algorithm for Timing Consistency Checking

Since for a time Petri net whose reachability graph is G, a path in G could be
infinite and the number of paths in G could be infinite, we need to solve the
problem based on a finite set of finite paths in G as follows.

First, for a time Petri net N , we define loops in its reachability graph G. Let �

be a path in G of the form � = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1 . If
all si (0 ≤ i ≤ n) are distinct and there are sk (0 ≤ k < n) such that sk = sn+1,
then we say that the subsequence

�1 = sk
(tk,δk)−→ sk+1

(tk+1,δk+1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sk

is a loop in G, and δk + δk+1 + . . . + δn is the elapsed time on �1, denoted by
ζ(�1). For a given MSC D = (P, E, M, L, V, C), if there is ti (k ≤ i ≤ n) such
that ϕ(ti) = φ(e) (e ∈ E), then we say that the loop �1 is related to D.

Then, for a node s in the reachability graph G of a time Petri net, for a MSC
D, we define recursively the set Θ(s, D) of the loops which are not related to D
as follows:

– any loop � in G from s to itself which is not related to D is in Θ(s, D);

– for any loop in Θ(s, D) of the form s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn, any

loop � in G from si (0 ≤ i < n) to itself which is not related to D is in
Θ(s, D).

Let N be a time Petri net with its reachability graph G. Now for a given
scenario-based specification ST (D) where D = (P, E, M, L, V, C), we introduce
the violable points in an image of D in a path in G. Let � be a path in G, and
�1 is an image of D in � of the form

�1 = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tm−1,δm−1)−→ sm

(tm,δm)−→ sm+1 .

We have defined that �1 satisfies ST (D) if δ0, δ1, . . . , δm satisfy all the timing
constraints in C, i.e. for any timing constraint

∑n
k=0 ck(gk − g′k) ∼ c in C,

398 L. Xuandong et al.

c0λ0 + c1λ1 + . . . + cnλn ∼ c where for each k (0 ≤ k ≤ n), if θ(gk) = ta and
θ(g′k) = tb (0 ≤ a, b ≤ m), then

λk =
{

δb+1 + δb+2 + . . . + δa if a > b
−(δa+1 + δa+2 + . . . + δb) if a < b

.

We say that si (0 ≤ i ≤ m) is a violable point in �1 if the following condition
holds:

– ϕ(ti) �= φ(e) (e ∈ E),
– there is a loop �′ ∈ Θ(si, D) whose elapsed time is greater than zero (ζ(�′) >

0), and
– δi occurs in λk (0 ≤ k ≤ n) and ckλk > 0 (in this case, ckλk becomes larger

while δi becomes larger).

Last, for a time Petri net N with its reachability graph G, we define the finite
set Δ(N,ST) of the finite paths in G which we need to check for a given scenario-
based specification ST (D) where D = (P, E, M, L, V, C). Δ(N,ST) is the set of
the paths in G which are of the form

s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tk−1,δk−1)−→ sk

(tk,δk)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1

where all si (0 ≤ i ≤ k) are distinct, sk
(tk,δk)−→ . . .

(tn−1,δn−1)−→ sn
(tn,δn)−→ sn+1

is an image of D, and for any si and sj (k < i < j < n), if there is not any
tl (i ≤ l ≤ j) such that ϕ(tl) = φ(e) (e ∈ E) then si �= sj .

Theorem 2. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any path � in Δ(N,ST (D)) satisfies ST (D) and no violable point
occurs in the image of D in �. !

The proof of this theorem is presented in the appendix. For a timing Petri net
N , for a scenario-based specification ST (D), a path � in the reachability graph
of N is a prefix for Δ(N,ST (D)) if it may be extended into a path which is in
Δ(N,ST (D)), i.e. there could be a sequence �1 of states, transitions, and delays

such that �
(t,δ)−→ �1 is in Δ(N,ST (D)). Based on Theorem 2, we can develop an

algorithm to check if a time Petri net N satisfies a scenario-based specification
ST (D) (cf. Figure 3). The algorithm traverses the reachability graph G of N in
a depth first manner starting from the initial node. The path in G that we have
so far traversed is stored in the list variable currentpath. The boolean variable
is no scenario indicates if there is a scenario described by D occurring in N
(Δ(N,ST (D)) �= ∅). The set variable loopset is used to store all loops in G. The
algorithm consists of two steps which are implemented by depth first search. In
the first search, we traverse G for getting all the loops in G, which are used for
checking if no violable point occurs in the image of D in any path in Δ(N,ST (D).
Then we start a new depth first search to find out all the paths in Δ(N,ST (D))
and to check them for ST (D). For each new node we discover, we first check
if it is such that the path corresponding to currentpath is in Δ(N,ST (D)).

Scenario-Based Timing Consistency Checking for Time Petri Nets 399

is no scenario :=true;

currentpath := 〈(μ0, c0)〉; loopset := ∅;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else
begin
node := a new successive node of node;
if node has occurred in currentpath (we find out a loop �)
then put � into loopset
else append node to currentpath;

end
until currentpath = 〈〉;
currentpath := 〈(μ0, c0)〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else
begin
node := a new successive node of node;
if node is such that the path � corresponding to currentpath

is in Δ(N, ST (D))
then
begin
check if � satisfies ST (D);
if no, return false;
is no scenario :=false;
check if no violable point occurs in the image of D in �;
if no, return false;

end
if node is such that currentpath is corresponding to

a prefix for Δ(N, ST (D))
then append node to currentpath;

end
until currentpath = 〈〉;

if is no scenario then return ”No scenario of D occurs”
else return true.

Fig. 3. Algorithm for timing consistency checking

If yes, then we first check the path for ST (D) and assign is no scenario with
false. Then we check if no violable point occurs in the image of D in the path.
If the new node is such that currentpath is not corresponding to a prefix for
Δ(N,ST (D)), then the algorithm backtracks, otherwise the algorithm adds the
new node to currentpath. The algorithm terminates because there is only a finite
number of the paths in Δ(N,ST (D)). Since the algorithm is based on depth first
search method, its complexity is proportional to the number of the prefixes for
Δ(N,ST (D)) and to the size of the longest prefix for Δ(N,ST (D)).

The algorithm presented above has been implemented in a tool prototype. On
a PentiumM/1.50GHz/512MB PC, the tool runs comfortably for several case
studies including the railroad crossing system. The solution we give is based on
investigating only the integer time state spaces of time Petri nets. But even for

400 L. Xuandong et al.

the integer time state spaces of time Petri nets, their sizes are often much large
in the problems of practical interest so that more optimization and abstraction
techniques are needed.

5 Related Work and Conclusion

To our knowledge, there has been few literature on consistency checking of time
Petri nets for scenario-based specifications expressed by MSCs. A work closed
to our own is described in [14] to verify whether the timed state machines in a
UML model interact according to time-annotated UML collaboration diagrams,
in which timed state machines are compiled into timed automata [16] and a col-
laboration diagram with time intervals is translated into an observer automaton,
and the model checker UPPAAL [15] for timed automata is called for the veri-
fication, which is based on checking the automata inclusion. Compared to that
work, the timing constraints considered in our work are more general and ex-
pressive than the timer, time intervals, and timing marks adopted in the existing
works, which can be used to describe the relation among multiple separations in
time between events. We know that for a clock constraint in a timed automaton,
its corresponding timing constraint is about just the separation in time between
two events. For describing timing constraints about the relation among multiple
separations in time between events, we need to compare multiple clocks in a
timed automaton, which will result in that the corresponding model checking
problems are undecidable [16]. Thus, the scenario-based specifications expressed
by MSCs considered in this paper cannot be verified by transferring to timed
automata.

There have been a number of work on checking time Petri nets for the tem-
poral logic based properties [11-13]. Compared to those works, on one hand, the
problems considered in those works are to check if the behavior of time Petri
nets satisfy the given temporal order of events specified by the temporal logics,
while the problem we concern is to check if the behavior of time Petri nets sat-
isfy not only the the given temporal order of events, but also the given timing
constraints. On the other hand, the scenario-based specifications considered in
this paper are a class of the original artifacts in software development processes,
and often come directly from the requirements provided by the customers and
domain experts. We know that it is not easy to use formal verification techniques
directly in industry because the modelling languages in the verification tools are
too formal and theoretical to master easily. For industry, it is much more accept-
able to adopt MSCs as a specification language instead of the temporal logics in
formal verification tools.

In this paper, since the specifications we concern usually come from the
scenario-based requirements provided directly by the customers, which is in-
complete, we just use bMSCs to describe the scenario-based specifications. For
describing the more complete scenario-based specifications, we need to consider
hMSC, which is one of our next works.

Scenario-Based Timing Consistency Checking for Time Petri Nets 401

References

1. ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization Sector,
Geneva, Switzerland, May 1996.

2. J. Rumbaugh and I. Jacobson and G. Booch. The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.

3. B. Berthomieu and M. Diaz. Modelling and verification of time dependent systems
using time Petri nets. In IEEE Transactions on Software Engineering, 17(3):259–
273, March 1991.

4. Olaf Kluge. Modelling a Railway Crossing with Message Sequence Chatrs and Petri
Nets. In H.Ehrig et al.(Eds.): Petri Technology for Communication-Based Systems
- Advance in Petri Nets, LNCS 2472, Springer, 2003, pp.197-218.

5. van der Aalst, W.M.P. Interorganizational Workflows: An Approach based on Mes-
sage Sequence Charts and Petri Nets. In Systems Analysis - Modelling - Simulation,
Vol.34, No.3, pages 335-367. 1999.

6. Uwe Rueppel, Udo F. Meissner, and Steffen Greb. A Petri Net based Method for
Distributed Process Modelling in Structural Engineering. In Proc. International
Conference on Computing in Civil and Building Engineering, 2004.

7. R. Alur, G.J. Holzmann, D. Peled. An Analyzer for Message Sequence Charts. In
Software-Concepts and Tools (1996) 17: 70-77.

8. Hanene Ben-Abdallah and Stefan Leue. Timing Constraints in Message Sequence
Chart Specifications. In Proceedings of FORTE/PSTV’97, Chapman & Hall, 1997.

9. Doron A. Peled. Software Reliability Methods. Springer, 2001.
10. Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Comparing Dif-

ferent Approaches for Specifying and Verifying Real-Time Systems. In Proc. 10th

IEEE Workshop on Real-Time Operating Syatems abd Software. New York, 1993.
pp.122-129.

11. Andrea Bobbio, Andras Horvath. Model Checking Time Petri Nets using NuSMV.
In Proccedings of the Fifth International Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS2001), 2001.

12. Furfaro A. and Nigro L. Model Checking Time Petri Nets: A Translation Approach
based on Uppaal and a Case Study. In Proceedings of IASTED International Con-
ference on Software Engineering(SE 2005), Innsbruck, Austria, Acta Press, 2005.

13. Tomohiro Yoneda, Hikaru Ryuba. CTL Model Checking of Time Petri Nets using
Geometric Regions. In IEICE Trans. INF. & SYST., Vol.E99-D, No.3, 1998, pp.1-11.

14. Alexander Knapp, Stephan Merz, and Christopher Rauh. Modelchecking Timed
UML State Machines and Collaborations. In W. Damm and E.-R. Olderog (Eds.):
FTRTFT2002, LNCS 2469, Springer, 2002, pp.395-414.

15. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. In
International Journal of Software Tools for Technology Transfer, 1(1-2): 134-152,
1997.

16. R. Alur and D. David. A theory of timed automata. In Theoretical Computer
Science 126 (1994). pp.183-235.

17. Xuandong Li and Johan Lilius. Checking Time Petri Nets for Linear Duration
Properties. In Peter Bucbolz, manuel Silva (Eds.), Petri Nets and Performance
Models, IEEE Computer Society Press, 1999. pp.218-226.

402 L. Xuandong et al.

A Proofs of Theorems

Theorem 1. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any integral run of N satisfies ST (D).

Proof. Let D = (P, E, M, L, V, C) , and ρ be a run of N of the form

s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tk−1,δk−1)−→ sk

(tk,δk)−→ . . .
(tm−1,δm−1)−→ sm

(tm,δm)−→ sm+1

where sk
(tk,δk)−→ . . .

(tm−1,δm−1)−→ sm
(tm,δm)−→ sm+1 is an image of D. For a timing

constraint ξ ∈ C of the from
∑n

i=0 ci(gi − g′i) ∼ c, let

β(ρ, ξ) = c0λ0 + c1λ1 + . . . + cnλn

where for each i (0 ≤ i ≤ n), if θ(gi) = ta and θ(g′i) = tb (k ≤ a, b ≤ m), then

λi =
{

δb+1 + δb+2 + . . . + δa if a > b
−(δa+1 + δa+2 + . . . + δb) if a < b

.

The theorem follows immediately from the following claim: there is a run ρ′ of
N of the form

s′0
(t0,δ′

0)−→ s′1
(t1,δ′

1)−→ . . .
(tk−1,δ′

k−1)
−→ s′k

(tk,δ′
k)−→ . . .

(tm−1,δ′
m−1)

−→ s′m
(tm,δ′

m)−→ s′m+1

such that it is an integral run of N and that β(ρ, ξ) ≤ β(ρ′, ξ). This claim can
be proved as follows.

Let αi = δ0 + δ1 + . . . + δi (0 ≤ i ≤ m). It is clear that if each αi (0 ≤ i ≤ m)
is an integer, then ρ is an integral run. Let frac(ρ) be the set containing all
fractions of αi (0 ≤ i ≤ m), 0, and 1, i.e.

frac(ρ) =
{

γi

∣∣∣∣ 0 ≤ γi ≤ 1, 0 ≤ i ≤ m,
and αi − γi is an integer

}
∪ {0, 1} .

Let rank(ρ) be the number of the elements in frac(ρ). Notice that if rank(ρ) = 2,
then ρ is an integral run. In the following, we show that if rank(ρ) > 2, we can
construct a run ρ1 of the form

s′′0
(t0,δ′′

0)−→ s′′1
(t1,δ′′

1)−→ . . .
(tk−1,δ′′

k−1)−→ s′′k
(tk,δ′′

k)−→ . . .
(tm−1,δ′′

m−1)−→ s′′m
(tm,δ′′

m)−→ s′′m+1

such that rank(ρ1) = rank(ρ)− 1 and β(ρ1, ξ) ≥ β(ρ, ξ). By applying this step
repeatedly, we can get a run ρ′ which is an integral run of satisfying rank(ρ′) = 2
and β(ρ′, ξ) ≥ β(ρ, ξ) so that the claim is proved. Let

frac(ρ) = {γ0, γ1, . . . , γl} (γ0 = 0, γl = 1, γi < γi+1 (0 ≤ i ≤ l − 1)) ,

and index(γ1) = {i | 0 ≤ i ≤ m and δi − γ1 is an integer}. Let α′
i and α′′

i defined
as

α′
i =

{
αi − γ1 if i ∈ index(γ1)
αi if i �∈ index(γ1)

, α′′
i =

{
αi − γ1 + γ2 if i ∈ index(γ1)
αi if i �∈ index(γ1)

.

Scenario-Based Timing Consistency Checking for Time Petri Nets 403

Let δI
0 = α′

0 and δΠ
0 = α′′

0 . For each i (1 ≤ i ≤ m), let δI
i = α′

i − α′
i−1 and

δΠ
i = α′′

i − α′′
i−1. Let

ρ′1 = sI
0

(t0,δI
0)−→ sI

1
(t1,δI

1)−→ . . .
(tk−1,δI

k−1)−→ sI
k

(tk,δI
k)−→ . . .

(tm−1,δI
m−1)−→ sI

m

(tm,δI
m)−→ sI

m+1

ρ′′1 = sΠ
0

(t0,δΠ
0)−→ sΠ

1
(t1,δΠ

1)−→ . . .
(tk−1,δΠ

k−1)−→ sΠ
k

(tk,δΠ
k)−→ . . .

(tm−1,δΠ
m−1)−→ sΠ

m

(tm,δΠ
m)−→ sΠ

m+1

It follows that rank(ρ′1) = rank(ρ)− 1 and rank(ρ′′1) = rank(ρ)− 1, and either
β(ρ′1, ξ) ≥ β(ρ, ξ) or β(ρ′′1 , ξ) ≥ β(ρ, ξ). Suppose N = (P, T , F, Ef t, Lf t, μ0).
Since Ef t(t) and Lf t(t) are a natural number for any t ∈ T , ρ′1 and ρ′′1 are a run
of N . Let ρ1 = ρ′1 when β(ρ′1, ξ) ≥ β(ρ, ξ), and ρ1 = ρ′′1 when β(ρ′′1 , ξ) ≥ β(ρ, ξ).
By applying the above step repeatedly, the claim can be proved. !

Theorem 2. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any path � in Δ(N,ST (D)) satisfies ST (D) and no violable point
occurs in the image of D in �.

Proof. It is clear that the half of the claim holds: if N satisfies ST (D), then any
path � in Δ(N,ST (D)) satisfies ST (D) and no violable point occurs in the image
of D in �. The reason is that for a path � in Δ(N,ST (D)), if there is a violable
point s in the image of D in ρ, then we can construct a path �′ from ρ whose
image of D does not satisfy ST (D) by repeating a loop �1 ∈ Θ(s, D) (ζ(�1) > 0)
many times such that ζ(�1) becomes large enough to violate the related timing
constraint enforced to D. The other half of claim can be proved as follows. Let
D = (P, E, M, L, V, C). Suppose that there is a path � of the form

s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tk−1,δk−1)−→ sk

(tk,δk)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1

where sk
(tk,δk)−→ . . .

(tn−1,δn−1)−→ sn
(tn,δn)−→ sn+1 is an image of D which does not

satisfy ST (D). Since

– for any si and sj (0 ≤ i < j < k) such that si = sj , by removing the

subsequence si
ti,δi−→ si+1

ti+1,δi+1−→ . . .
tj−2,δj−2−→ sj−1

tj−1,δj−1−→ from � we can get
a run of N , and

– for any si and sj (k < i < j < n) such that si = sj and that there is not any
tl(i ≤ l ≤ j) such that ψ(tl) = φ(e) (e ∈ E), by removing the subsequence

si
ti,δi−→ si+1

ti+1,δi+1−→ . . .
tj−2−→ sj−1

tj−1,δj−1−→ from � we can get a run of N ,

we can construct a run �′ from � which is in Δ(N,ST (D)). Since there is no
violable point in the image of D in �′, the sequences removing from � in the
process of constructing �′ do not related to any timing constraint in C. It follows
that the image of D in �′ does not satisfy ST (D), which results in a contradiction.
Thus, the claim holds. !

Effective Representation of RT-LOTOS Terms
by Finite Time Petri Nets

Tarek Sadani1,2, Marc Boyer3,
Pierre de Saqui-Sannes1,2, and Jean-Pierre Courtiat1

1 LAAS-CNRS, 7 av. du colonel Roche, 31077 Toulouse Cedex 04, France
2 ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France
3 IRIT-CNRS/ENSEEIHT, 2 rue Camichel, 31000 Toulouse, France

tsadani@ensica.fr, mboyer@enseeiht.fr, desaqui@ensica.fr, courtiat@laas.fr

Abstract. The paper describes a transformational approach for the
specification and formal verification of concurrent and real-time systems.
At upper level, one system is specified using the timed process algebra
RT-LOTOS. The output of the proposed transformation is a Time Petri
net (TPN). The paper particularly shows how a TPN can be automati-
cally constructed from an RT-LOTOS specification using a composition-
ally defined mapping. The proof of the translation consistency is sketched
in the paper and developed in [1].

The RT-LOTOS to TPN translation patterns formalized in the paper
are being implemented. in a prototype tool. This enables reusing TPNs
verification techniques and tools for the profit of RT-LOTOS.

1 Introduction

The design of time-critical systems is a complex task. Given the risk to not
detect transient errors by using conventional techniques such as simulation or
testing, it is strongly recommended to use formal verification techniques such
as model checking, that have been proven to facilitate early detection of design
errors, and to contribute to produce systems at a correctness level that cannot
be reached by using simulation and testing techniques.

The use of formal verification techniques is usually linked to the use of formal
specifications. Among the wealth of formal specification techniques proposed in
the literature, process algebras play a special role. Their compositional opera-
tors allow one to describe a system made up of components that communicate
and operate concurrently. Besides its notion of compositionality, the capacity
to model real-time mechanisms is an essential feature of RT-LOTOS [2,3], the
timed process algebra addressed in this paper.

Several verification tools have been developed for timed process algebras. Few
of them are really efficient. They usually implement translations into timed au-
tomata, which permits to reuse model checkers such as [4,5]. Petri nets verifica-
tion tools may be considered as well. The possibility to reuse a Time Petri Nets
analyzer for verifying RT-LOTOS specifications is one of the main motivation
behind the work presented in this paper.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 404–419, 2006.
c© IFIP International Federation for Information Processing 2006

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 405

The RT-LOTOS to TPN translation approach discussed in this paper relies
on the TPN component model first introduced in [6]. The model published in [6]
is extended and improved. Discussion is not restricted to RT-LOTOS. The paper
highlight difficulties and most important issues one might face while translating
timed process algebras into Time Petri nets.

The paper is organized as follows. Section 2 introduces the RT-LOTOS lan-
guage. Section 3 introduces the Time Petri net (TPN) model. Section 4 details
RT-LOTOS to TPN translation patterns and explains the intuition behind the
proof. In particular, it is shown how TPNs are embedded in components and
composed. Section 5 surveys related work. We particularly compare our approach
with the Petri Box Calculus [7]. Section 6 concludes the paper.

2 RT-LOTOS

The Language of Temporal Ordering Specifications (LOTOS[8]) is a formal de-
scription technique based on CCS [9] and extended by a multi-way synchroniza-
tion mechanism inherited from CSP [10]. RT-LOTOS [2] extends LOTOS with
three temporal operators: a deterministic delay, a latency operator which en-
ables description of temporal indeterminism and a time limited offer. The main
difference between RT-LOTOS and other timed extensions of LOTOS lies in the
way a non-deterministic delay may be expressed. RT-LOTOS supports the so-
called latency operator. Its usefulness and efficiency have been proved in control
command applications and hypermedia authoring [11].

The following processes P and PL illustrate the use of the three temporal op-
erators of RT-LOTOS.

Process P[a]: exit:=
delay(2)a{5}; exit

endproc

Process PL[a]: exit:=
delay(2)latency(6)a{5}; exit

endproc

Process P starts with a 2 time units delay. Once the delay expires, action a is
offered to the environment during 5 time units. If the process’s environment
does not synchronize on a before this deadline, a time violation occurs and the
process transforms into stop. Process PL differs from P, for it contains a latency
operator. Action a is delayed by a minimum dealy of 2 units of time and a
maximum delay of 8 units of time(in case the latency goes to its maximum
value). From the environment’s point of view, if the latency lasts l time units,
the process behaves like delay(2+l)a{5-l} (cf. the left part of Fig. 1). Of course,
if the duration of the latency goes beyond 5 units of time, a temporal violation
occurs and process PL transforms into stop(cf. the right part of Fig. 1).

The originality and interest of the latency operator is more obvious when one
combines that operator with the hiding operator. In LOTOS, hiding allows one
to transform an external observable action into an internal one. In RT-LOTOS,
hiding has the form of a renaming operator which renames action a into i(a).
In most timed extensions of LOTOS, hiding implies urgency. It thus removes
any time indeterminism inherent to the limited time offering. In RT-LOTOS,

406 T. Sadani et al.

a hidden action is urgent as soon as it is no longer delayed by some latency
operator. Let us, e.g., consider the RT-LOTOS behavior hide a in PL where
action a is hidden in process PL. If l is the duration of the latency, i(a) will
necessarily occur at date 2 + l, if l < 5. (cf. Fig. 2). But, if (l > 5), a temporal
violation occurs (similarly to the situation where action a was an observable
action).

Fig. 1. Combining delay, latency and limited offering Fig. 2. Adding hiding

Let us now point out some differences between RT-LOTOS and E-LOTOS
[12]. In E-LOTOS, urgency may apply to observable actions as soon as the lat-
ter are defined as exceptions. Conversely, the RT-LOTOS semantics states that
one cannot enforce urgency on visible events. The only way to introduce urgency
in RT-LOTOS is to use the hide operator (cf Fig. 2). E-LOTOS further allows
one to introduce temporal non-determinism by combining the operator used for
non deterministic variable assignment with the deterministic delay operator (ap-
plied on the same variable). It is clear that E-LOTOS implements a data-oriented
approach for specifying temporal non determinism (for example: var t: time
in ?t := any time [1<t<4]; wait (t) endvar; P). Conversely RT-LOTOS
implements a control oriented approach. In RT-LOTOS, the temporal non de-
terministic variable is a particular variable introduced by a specific operator.
E-LOTOS and RT-LOTOS also use different ways to combine a non determin-
istic delay with a time limited offer. As depicted in Fig 1, the RT-LOTOS se-
mantics states that the latency and the time limited offer start simultaneously.
This makes it possible to express temporal violations when t < l. Conversely, for
the E-LOTOS counterpart, the constraint on offering one action inside a time
interval will not be active before the non deterministic delay elapses.

3 Time Petri Nets

To our knowledge, Petri nets were the first theoretical model augmented with
time constraints [13,14], and the support of the first reachability algorithms for
timed system [15,16].

The basic idea of time Petri nets (TPN [13,14]) is to associate an interval
Is(t) = [a, b] (static interval) with each transition t. A transition can be fired if
it has continuously been enabled during at least a time units, and it must fire if
continuous enabling time reaches b time units. That is to say, once a transition
is enabled (M [t〉), a firing interval If (t) is created with initial value Is(t). Time
passing decreases the bounds of the interval. The transition may be fired once
the lower bound reaches 0 and has to be fired when the upper bound reaches

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 407

0 (unless it conflicts with another transition). Figure 3 is a first example. In
the initial marking, only t0 and t1 are enabled. After one time unit delay, t1 is
firable. Because t1 reaches its upper interval always before t0 becomes enabled
(3 > 2), then t0 can never be fired. t2 is fired five time units after the firing of t1.
Figure 4 illustrates the synchronization rule: t0 (resp. t1) is fired at an absolute
date θ0 ≤ 2 (resp. θ1 ≤ 2), and t2 is fired at max(θ0, θ1) + 1.

[1,2][3,4] [5,5]

t0 t1 t2

Fig. 3. Priority from urgency

[0,2] [0,2][1,1]

t0 t1
t2

Fig. 4. Synchronization

4 Translation from RT-LOTOS into TPN

The quality of a translation depends on its capability to guarantee a close relation
between the properties that hold in the source and those that still hold in the
target [17]. This is why we defined a one-to-one mapping of actions between RT-
LOTOS and TPNs. Since we do not use auxiliary transitions, we ensure that the
proposed translation patterns do not add any behavior. Moreover, RT-LOTOS is
compositional by nature. It is then inevitable, during the translation procedure,
to consider TPNs as composable entities. Unfortunately, TPNs in their original
form miss a convenient way of composing or decomposing larger nets from or to
smaller ones by means of a set of high level operators. We solve this problem
by introducing the concept of TPN component as basic building block. We also
define a set of operations on components (Section 4.2). These operations match
the composition and temporal operators supported by RT-LOTOS.

4.1 Time Petri Net Component

A Component encapsulates a labeled TPN which describes its behavior. A com-
ponent is endowed with interfaces and interactions points. It performs an action
by firing the appropriate transition. A component has two sets of labels: Act the
alphabet of the component and T ime = {tv, delay, latency}. These three labels
are introduced to represent the temporal behavior of components. The tv (for
“temporal violation”) label represents a time-limited offer expiration. A delay or
latency label represents the expiration of some deterministic or non deterministic
delay, respectively.

A component is graphically represented by a box containing one TPN. The
black-filled boxes at the component boundary represent interaction points. For
instance, the component CP in Figure 5 is built from some RT-LOTOS term
P. During its execution, it may perform observable action a. The ini (initially
marked places) represent the component input interface, and the out place de-
notes its output interface. A token in the out place of a component means that

408 T. Sadani et al.

Fig. 5. Component example Fig. 6. The exit pattern

the component has successfully completed its execution. A component is acti-
vated by filling its input places. A component is active if at least one of its
transitions is enabled. Otherwise, the component is inactive.

Definition 1 (Component).
Let Act = Ao ∪ Ah ∪ {exit} be an alphabet of actions, where Ao is a set of

observable actions (with i �∈ Ao, exit �∈ Ao), Ah = {i} × Ao is the set of hidden
actions (If a is an observable action, ia denotes a hidden action).

A component is a tuple C = 〈Σ, Lab, I, O〉 where

– Σ = 〈P, T , Pre, Post, M0, IS〉 is a TPN.
– Lab : T → (Act ∪ T ime) is a labeling function which labels each tran-

sition in Σ with either an action name (Act) or a time-event (T ime =
{tv, delay, latency}). Let T Act (resp. T Time) be the set of transitions with
labels in Act (resp. T ime).

– I ⊂ P is a non empty set of places defining the input interface.
– O ⊂ P is the output interface of the component. A component has an output

interface if it has at least one transition labeled by exit. If so, O is the
outgoing place of those transitions. Otherwise, O = ∅.

Moreover, a set of invariants is associated with the components:

H1 There is no source transition in a component.
H2 The encapsulated TPN is 1-bounded (cf. safe nets in [7]). H2 is called the

”safe marking” property. It is essential for the decidability of reachability
analysis procedure applied to TPNs.

H3 If all the input places are marked, all other places are empty (I ⊂ M ⇒
M = I).

H4 If the out place is marked, all other places are empty (O �= ∅ ∧ O ⊂ M ⇒
M = O).

H5 For each transition t such that Lab(t) ∈ Act, if the label is an observable
action (Lab(t) ∈ A0), its time interval is [0,∞), otherwise1, it is [0, 0].

Hypotheses H3–H4 are called clean markings in [7].

1 Lab(t) ∈ Ah ∪ {exit} .

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 409

4.2 Translation Patterns

When translating RT-LOTOS specifications into TPNs, we associate a specific
operation (involving some component(s)) with each RT-LOTOS operator. These
operations are graphically depicted through a set of patterns presented in next
sections. To these graphical translation patterns, we add a complementary formal
definition. For space reasons, the formalization of some patterns is not presented
in this paper. A complete formal definition can be found in the extended version
of this paper [1].

Notation: f ′ = f ∪ (a, b) denotes the function f ′ : A ∪ {a} 3→ B ∪ {b} such that
f ′(x) = f(x) if x ∈ A and f ′(a) = b otherwise.

Low level Petri net operations. The formal definition of the translation patterns
uses the following low level Petri nets operators: ∪, \,9.
Let N = 〈P, T , Pre, Post, M0, IS〉 be a TPN.

Adding a place: Let p be a new place (p �∈ P), Prep and Postp two sets of
transitions of T . N ′ = N ∪ 〈Prep, p, Postp〉 is the TPN augmented with place p
such that •p = Prep and p• = Postp.

N ′ = 〈P ∪ {p} , T , Pre ∪
⋃

t∈Prep

(p, t), Post ∪
⋃

t∈Postp

(t, p), M0, IS〉

Adding a transition: Let t be a new transition (t �∈ T), and I its time interval,
Pret and Postt two sets of places of P . N ′ = N ∪〈Pret, (t, I), Postt〉 is the TPN
augmented with transition t such that •t = Pret and t• = Postt.

N ′ = 〈P, T ∪ {t} , Pre ∪
⋃

p∈Pret

(p, t), Post ∪
⋃

p∈Postt

(t, p), M0, IS ∪ (t, I)〉

Basic Components. The Cstop component is simply the empty net (no place,
no transition). The Cexit is a component which performs a successful termina-
tion. It has one input place, one output place, and a single transition labelled
with exit and a static interval [0, 0] (Fig.6).

Patterns Applying to One Component. Let us consider the component CP

of Fig. 5. Fig. 7 depicts different patterns applied to CP.

– Ca;P (Fig. 7(a)) is the component resulting from prefixing CP with action a.
Ca;P executes a then activates CP.
Ca;P = 〈Σa;P, Laba;P, {in}, OP〉 where the TPN Σa;P is obtained by adding a
place in and a transition t0 to ΣP, Laba;P associates a to transition t0.

Σa;P = (ΣP ∪ 〈∅, (t0, [0,∞)), IP〉) ∪ 〈∅, in, t0〉
Laba;P = LabP ∪ (t0, a)

410 T. Sadani et al.

(a) a;P (b) a{d}P (c) delay(d)P (d) latency(d)P

Fig. 7. Patterns applying to one component

– Ca{d};P (Fig. 7(b)) is the component resulting from prefixing CP with a lim-
ited offer of d units of time on action a. If for any reason, a cannot occur
during this time interval, the tv transition will be fired (temporal violation
situation) and Ca{d};P will transform into an inactive component.
The pattern is very similar to the one of Ca;P. Therefore, its definition reuses
that of Ca;P.

Ca{d};P = 〈Σa{d};P, Laba;P ∪ {(t1, tv)} , {in} , OP〉
Σa{d};P = Σa;P ∪ 〈{in} , (t1, [d, d]), ∅〉

– Cdelay(d)P (Fig 7(c)) is the component resulting from delaying the first action
of P with a deterministic delay of d units of time. This is exactly the same
pattern as Ca;P except that the added transition has a delay label and a
static interval equal to [d, d].

Cdelay(d)P = 〈Σdelay(d)P, LabP ∪ {(t0, delay)} , {in} , OP〉
Σdelay(d)P = (ΣP ∪ 〈∅, (t0, [d, d])), IP〉) ∪ 〈∅, in, t0〉

– Clatency(d)P (Fig 7(d)) is the component resulting from delaying the first
actions of CP with a non deterministic delay of d units of time.
Like the delay operator, the latency operator is defined by connecting a new
transition to the input interface of CP. This time, we add a static interval
equal to [0, d]. The definition of the latency translation pattern must cope
with the “subtle” situation where one (or several) action(s) among CP’s first
actions is (are) constrained with a limited offer (this set is denoted by FAlo).
For instance, in Fig 7(d), action a is offered to the environment during dx

units of time. The RT-LOTOS semantics states that the latency and the
offering of a start simultaneously, which means that if the latency duration
goes beyond dx units of time, the offer on a will expire. To obtain the same
behavior, we add the input place in0 of a to the input interface of the result-
ing component Clatency(d)P. In the definition of the pattern, we denote Ilo the
set of these input places (Ilo ⊂ IP). Thus t1 and t are enabled as soon as the
component is activated (all its input places being marked). Clatency(d)P is able
to execute a (fire t0) if t0 is enabled (i.e if in0 and p are marked) before t1 is

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 411

fired (at dx). Therefore, action a is possibly offered to the environment for no
more than dx units of time, hence conforming to the RT-LOTOS semantics.

Let FA (CP) be the set of transitions associated to the first actions of P2,
and FAlo (CP) be the set of first actions constrained by a time limited offer:

FAlo (CP) =
{
ta ∈ FA (CP) tv ∈ (•ta)•

}
Ilo = •FAlo (CP)

Clatency(d)P = 〈Σlatency(d)P, LabP ∪ {(t, latency)} , Ilo ∪ {in} , OP〉

Σlatency(d)P = ΣP ∪
⋃

ta∈FAlo(CP)

〈t, pta , ta〉 ∪ 〈∅, in, ∅〉

∪
〈
{in} , (t, [0, d]), (IP\Ilo) ∪

⋃
ta∈FAlo(CP)

{pta}
〉

– CμX.(P;X) is the component which executes CP’s actions ad infinitum. The
recursion operator translation is mainly an untimed problem. It is not pre-
sented in this paper, since the focus is laid on timed aspects.

– Chide a in P is the component resulting from hiding action a in CP. Hiding
allows one to transform observable (external) actions into unobservable (in-
ternal) actions, then making the latter unavailable for synchronization with
other components. In RT-LOTOS, hiding one or several actions induces a
notion of urgency on action occurrence. Consequently, a TPN transition cor-
responding to one hidden action will be constrained by a time interval equal
to [0, 0]. This implies that as soon as a transition is enabled, it is candidate
for being fired.

Patterns Applying to a Set of Components. Each of the following patterns
transforms a set of components into one component.

– CP|[a]|Q (Fig.8)
The concept of handshake communication is an important feature of process
algebras. It consists of a symmetric synchronization by which an action that
is shared between n processes can be executed only if all of them are ready
to do so. In Petri nets, such a scenario is represented by a transition with
n input places. This transition can fire only if all its input places contain a
token (cf. Fig. 4). At the PN level, the synchronization operation is achieved
through transition merging. While transitions merging is straightforward in
Petri nets, it turns to be a rather tricky issue in Time Petri nets. Indeed, it
requires explicit handling of the time intervals assigned to transitions to be
merged. These time intervals may be incompatible, which leads to express
global timing constraints as a conjunction of intervals whose consistency is
not guaranteed. This problem is not solved in [18](where each transition is
assigned a time interval), as presented in Sect. 5.2.

To solve this problem and make transition merging always a possible op-
eration, we avoid assigning time intervals to action transitions. Instead, the

2 Its formal definition is given in Def. 2, Sect. A.

412 T. Sadani et al.

Fig. 8. Parallel synchronization pattern Fig. 9. Sequential composition pattern

timing constraints are assigned to dedicated transitions (cf. time limited offer
pattern).

The synchronization on a of CP and CQ is achieved by merging each a
transition in CP with each a transition in CQ, thus creating n ∗m a transi-
tions in CP|[a]|Q (n and m being the number of a transitions in CP and CQ,
respectively).

– CP>>Q (Fig. 9) depicts a sequential composition of CP and CQ which means
that if CP successfully completes its execution then it activates CQ. This kind
of composition is possible only if CP has an output interface. The resulting
component CP>>Q is obtained by merging the output interface of CP and the
input interface of CQ, and by hiding the exit interaction point of CP.

CP>>Q = 〈ΣP>>Q, Labhide exit in P ∪ LabQ, IP, 0Q〉
ΣP>>Q = 〈PP\OP ∪ PQ, Thide exit in P ∪ TQ, PreP ∪ PreQ, PostP>>Q, ISP ∪ ISQ〉
PostP>>Q = (PostP\ {(t, OP) t ∈ •OP}) ∪ {(t, inQ) inQ ∈ IQ ∧ t ∈ •OP} ∪ PostQ

– CP[]Q (Fig. 10) is the component which behaves either as CP or CQ.
We do not specify whether the choice between the alternatives is made by
the component CP[]Q itself, or by the environment, but it should be made at
the level of the first actions in the component. In other words, the occurrence
of one of the first actions in either component determines which component
will continue its execution and which one must be deactivated. The problem
can be viewed as a competition between CP and CQ. These two components
compete to execute their first action. As long as the latter has not yet oc-
curred, CP and CQ age similarly, which means that T ime transitions (labeled
by tv, delay or latency) may occur in both components without any conse-
quence on the choice of the wining component. Once one first action occurs,
the control is irreversibly transferred to the winning component. The other
one is deactivated, in the sense that it no longer contains enabled transi-
tions. The choice operator is known to cause trouble in presence of initial

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 413

parallelism. [19] defines a choice operator where each alternative has just one
initial place. Therefore, none of the alternative allows any initial parallelism.
We think that it is a strong restriction. We do not impose any constraint on
the choice alternatives.

The solution we propose to define a choice between two components is
as follows: to obtain the intended behavior, we introduce a set of special
places, called lock places. Those places belong to the input interface of com-
ponent CP[]Q. Their function is to undertake control transfer between the
two components. For each first action of CP we introduce one lock place per
concurrent first action in CQ (for instance a has one concurrent action in
CQ: c, while c has two concurrent actions in CP: a and b) and vice versa. A
lock place interacts only with those transitions representing the set of initial
actions and the time labeled transitions they are related with (delay for a
and tv for b). T ime transitions restore the token in the lock place, since
they do not represent an action occurrence, but a time progression which
has not to interfere with the execution of the other component (as long as
the first action has not occurred, the two components age similarly). The
occurrence of an initial action of CP (respectively CQ) locks the execution of
CQ (respectively CP) by stealing the token from the lock places related to all
CQ’s (respectively CP’s) first actions.

A unique out place is created by merging the out places of CP and CQ.

Fig. 10. Choice between CP and CQ Fig. 11. The disrupt pattern

– CP[>Q (Fig. 11) is the component representing the behavior where component
CP can be interrupted by CQ at any time during its execution. It means that
at any point during the execution of CP, there is a choice between executing
one of the next actions from CP or one of the first actions from CQ. For this
purpose, CQ steals the token from the shared place named disrupt (which
belongs to the input interface of CP[>Q). Thus the control is irreversibly trans-
ferred from CP to CQ (disrupt is an input place for CQ first action and exit

414 T. Sadani et al.

transition of CP; it is also an input/output place for all the others transitions
of CP). Once an action from CQ is chosen, CQ continues executing, and CP’s
transitions are no longer enabled.

4.3 Sketch of the Proof

We prove that the translation preserves the RT-LOTOS semantics and that the
defined compositional framework preserves the good properties (H1–H5) of the
components.

Intuitively an RT-LOTOS term and a component are timed bisimilar [20] iff
they perform the same action at the same time and reach bisimilar states. For
each operator, we prove that, from each reachable state, if the occurrence of
a time progression (respectively an action) is possible in an RT-LOTOS term,
it is also possible in its associated component, and conversely. Therefore, we
ensure that the translation preserves the sequences of possible actions but also
the occurrence dates of these actions. The entire proof may be found in [1].

5 Related Work

Much work has been done on translating process algebras into Petri Nets, by
giving a Petri net semantics to process terms [21,19,22]. [22] suggests that a
good net semantics should satisfy the retrievability principle, meaning that no
new ”auxiliary” transitions should be introduced in the reachability graph of
the Petri net. [21,19] do not satisfy this criterion. In this paper, we define a
one-to-one mapping which is compliant with this strong recommendation.

5.1 Untimed Models

A survey of the literature indicates that proposals for LOTOS to Petri net trans-
lations essentially address the untimed version of LOTOS [23,24,25,26,27,28].
The opposite translation has been discussed by [27] where only a subset of
LOTOS is considered, and by [29] where the authors addressed the transla-
tion of Petri nets with inhibitor arcs into basic LOTOS by mapping places and
transitions into LOTOS expressions. [26] demonstrated the possibility to verify
LOTOS specifications using verification techniques developed for Petri nets by
implementing a Karp and Miller procedure in the LOTOS world.

[23,28] operate a complete translation of LOTOS, handling both the control
and data parts. Moreover, they just consider regular LOTOS terms. So do we.
The LOTOS to PN translation algorithms of [23,28] were implemented in the
CAESAR tool. Besides the temporal aspects addressed in this paper, a technical
difference with [23,28] lies in the way we structure TPNs. Our solution is based
on TPNs components. In our approach, a component may contain several tokens.
Conversely, [23,28] structure Petri nets into units, each of them containing one
token at most. This invariant limits the size of markings, and permits optimiza-
tions on memory consumption. The counterpart is that [23,28] use ε-transitions.

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 415

The latter introduce non determinism. They are eliminated when the underlying
automaton is generated (by transitive closure). The use of ε-transitions may be
inefficient in some particular cases (see the example provided in [6]).

The major theoretical study on taking advantage of both Petri nets and
process algebras is presented in [7]. The proposed solution is Petri Box Calculus
(PBC), a generic model that embodies both process algebra and Petri nets. The
authors start from Petri nets to come up with a CCS-like process algebra whose
operators may straightforwardly be expressed by means of Petri nets.

5.2 Timed Models

[30] pioneered work on timed enhancements of the control part of LOTOS
inspired by timed Petri nets models. [31] defined a mapping from TPNs to
TE-LOTOS which makes it possible to incorporate basic blocks specified as 1-
bounded TPNs into TE-LOTOS specifications. However, because of the strong
time semantics of TPNs (a transition is fired as soon as the upper bound of its
time interval is reached unless it conflicts with another one) a direct mapping
was not always possible.

Timed extensions of PBC have been proposed in [18,32]. Although the com-
ponent model proposed in this paper is not a specification model but an in-
termediate model used as gateway between RT-LOTOS and TPNs, we find it
important to compare our work with [18].

Of prime interest to us is the way [18] introduces temporal constraints in
his framework by providing each action with two time bounds representing the
earliest firing time and latest firing time. This approach is directly inspired
by TPNs, where the firing of actions is driven by necessity. However, a well
known issue with this strategy is that it is inappropriate for a compositional and
incremental building of specifications. The main difficulty is to compose time
intervals when dealing with actions synchronization. The operational semantics
of [18] relies on intervals intersection to calculate a unique time interval for a
synchronized transition. However, this approach is not always satisfactory, as
shown in the following example.

Let us consider the following timed PBC term:
E1 = ((a[10, 10]; b[2, 2]) || b̂[12, 12]) sy{b}. It expresses the parallel synchroniza-
tion on b (The synchronization of two conjugate actions b and b̂ gives rise to the
silent action i) of the following terms:

– a[10, 10]; b[2, 2] executes a after 10 time moves (time has a discrete seman-
tics), then it executes b, 2 time moves after the occurrence of a,

– b̂[12, 12] executes b̂ after 12 time moves.

That is to say, b̂ and b occur at the same date (12 times units after the ini-
tial instant). Thus the synchronization on b should be possible. Nevertheless
E1 cannot execute the synchronization action i since [2, 2] ∩ [12, 12] = ∅. The
synchronization rule of [18] states that the synchronization is possible only if it

416 T. Sadani et al.

leads to a well-defined action, i.e. with consistent timing information. Therefore,
the corresponding TPN (called ctbox in [18]) cannot be constructed.

To avoid this difficult interval composition, we do not assign any time interval
to action transitions. In our framework, timed constraints are assigned to ded-
icated transitions (cf Fig. 7(b), 7(c) and 7(d)). Thus action transitions are free
from any timing constraint. This way, the synchronization can be obtained by
merging the action transitions without changing the timing constraints. Hence,
we are able to straightforwardly construct the TPN of Fig. 12 (obtained by the
application of the pattern of Fig 7(c), 7(a) and 8) corresponding to the following
RT-LOTOS expression which is behaviorally equivalent to the above timed PBC
expression:

P1= Hide a ,b in ((delay(12)b; stop)
|[b]| (delay(10)a; delay(2)b; stop))

Synchronization on b occurs indeed 12 time units after initial instant.

Fig. 12. CP1 Fig. 13. ctbox1 Fig. 14. ctbox2 Fig. 15. CP2

Moreover, even if the synchronization leads to a well-defined action. It was
necessary to the author of [18] to enrich the semantics of the timed PBC with
rules for allowing the firing of illegal actions. An action is said illegal if it has
inconsistent timing information. For example, an action which has been enabled
for an amount of time which exceeds its latest bound firing time.

As an illustration, let us now consider the following timed PBC expression
taken from [18]: E2 = (a[0, 0]||(b[1, 1]; â[0, 1]))sy{a}. E2 cannot execute the syn-
chronization action i which is consistent with the TPN semantics (cf Fig 13).
However, the situation changes for E2rs{a}. The synchronization is enforced by
the restriction operator. The corresponding net is obtained by removing a and â
transitions (cf Fig 14). Now it is possible to execute b at [1, 1] followed immedi-
ately by i. However, rules based only on legal actions could not produce a similar
result in the operational semantics since no legal action occurrence is possible
for a[0, 0] after the elapsing of 1 time unit. Therefore, a rule permitting the firing
of a after one unit of time was introduced. The rules on allowing illegal actions

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 417

were certainly unavoidable to ensure behavioural consistency between Timed
PBC terms and their translation into Time Petri nets, but they badly impact
on the simplicity of the operational semantics of [18].

The following RT-LOTOS expression which is behaviourally equivalent to
E2rs{a} : P2= Hide a,b in (a;stop)|[a]|(delay(1)b;a{1};stop) has to our
opinion a more intuitive behavior. The consistency between the RT-LOTOS term
and its corresponding TPN of Fig 15 is ensured without departing from the orig-
inal RT-LOTOS semantics.

Finally, [32] extends PBC with actions durations. This model captures timing
information in a different manner. In our framework, actions are taken to be
indivisible. As a consequence it is difficult to compare [32] with the approach
proposed in this paper.

6 Conclusions

The paper discusses an efficient transformational approach for the verification
of RT-LOTOS specifications. Our intent is to use the reachability graph of a
TPN to represent and analyze the behavior of real time systems described in
RT-LOTOS. After taking a closer look at the semantics of the two timed mod-
els, we formally define the concept of TPN component, together with a set of a
translation patterns which match the set of RT-LOTOS operators. These pat-
terns are implemented in RTL2TPN, a prototype tool which takes as input an
RT-LOTOS specification and generates a TPN in a suitable format. Thus, it
becomes possible to integrate TINA[33], a powerful TPN analyzer tool, to our
verification platform. First experimental results are promising and confirm the
advantage of using TPNs as an intermediate model [6]. It worth to be noticed
that the transformation gives RT-LOTOS a formal semantics in terms of TPNs.
Thus, we start with a top level RT-LOTOS view, which describes the architec-
ture of the system together with its desired communication behavior. We end
up with a more detailed view at the TPNs level, which describes the opera-
tional machine behavior of the system and clarifies the use of some RT-LOTOS
operators, such as the latency operator.

This work is not limited to the verification of real-time systems specified in
RT-LOTOS. The ultimate goal is to provide a more powerful verification envi-
ronment for real-time systems modeled in TURTLE [34], a real-time UML profile
whose formal semantics is expressed in RT-LOTOS.The translation patterns may
be reused for other timed extensions of LOTOS, in particular ET-LOTOS.

References

1. Sadani, T., Boyer, M., de Saqui-Sannes, P., Courtiat, J.P.: Effective representation
of regular RT-LOTOS terms by finite time petri nets. Technical Report 05605,
LAAS/CNRS (2006)

2. Courtiat, J.P., Santos, C., Lohr, C., Outtaj, B.: Experience with RT-LOTOS, a
temporal extension of the LOTOS formal description technique. Computer Com-
munications 23(12) (2000)

418 T. Sadani et al.

3. RT-LOTOS: Real-time LOTOS home page. (http://www.laas.fr/RT-LOTOS/)
4. Yovine, S.: Kronos: A verification tool for real-time systems. Software Tools for

Technology Transfer 1(123–133) (1997)
5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool

suite for automatic verification of real-time systems. In: Proc of the 4th DIMACS
Workshop on Verification and Control of Hybrid Systems. Number 1066 in LNCS
(1995) 232–243

6. Sadani, T., Courtiat, J., de Saqui-Sannes, P.: From RT-LOTOS to time Petri nets.
new foundations for a verification platform. In: Proc. of 3rd IEEE Int Conf on
Software Engineering and Formal Methods (SEFM). (2005)

7. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science: An EATCS Series. Springer-Verlag (2001) ISBN: 3-540-67398-9.

8. ISO - Information processing systems - Open Systems Interconnection: LOTOS
- a formal description technique based on the temporal ordering of observational
behaviour. ISO International Standard 8807:1989, ISO (1989)

9. Milner, R.: Communications and Concurrency. Prentice Hall (1989)
10. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
11. Courtiat, J.P.: Formal design of interactive multimedia documents. In H.Konig,

M.Heiner, A., ed.: Proc. of 23rd IFIP WG 6.1 Int Conf on Formal Techniques for
Networked and distributed systems (FORTE’2003). Volume 2767 of LNCS. (2003)

12. ISO/IEC: Information technology - enhancements to LOTOS (E-LOTOS). Tech-
nical Report 15437:2001, ISO/IEC (2001)

13. Merlin, P.: A study of the recoverability of computer system. PhD thesis, Dep.
Comput. Sci., Univ. California, Irvine (1974)

14. Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans-
actions on Communications COM-24(9) (1976)

15. Berthomieu, B., Menasche, M.: Une approche par énumération pour l’analyse des
réseaux de Petri temporels. In: Actes de la conférence IFIP’83. (1983) 71–77

16. Berthomieu, B., Diaz, M.: Modeling and verification of time dependant systems
using Time Petri Nets. IEEE Transactions on Software Engineering 17(3) (1991)

17. Katz, S., Grumberg, O.: A framework for translating models and specifications. In:
Proc. of the 3d Int. Conf. on Integrated Formal Methods. (Volume 2335 of LNCS.)

18. Koutny, M.: A compositional model of time Petri nets. In: Proc. of the 21st Int.
Conf. on Application and Theory of Petri Nets (ICATPN 2000). Number 1825 in
LNCS, Aarhus, Denmark, Springer-Verlag (2000) 303–322

19. Taubner, D.: Finite Representations of CCS and TCSP Programs by Automata
and Petri Nets. Number 369 in LNCS. Springer-Verlag (1989)

20. Yi, W.: Real-time behaviour of asynchronous agents. In: Proc. of Int. Conf on
Theories of Concurrency: Unification and Extension (CONCUR). Volume 458 of
LNCS. (1990)

21. Goltz, U.: On representing CCS programs by finite Petri nets. In: Proc. of Int.
Conf. on Math. Foundations of Computer Science. Volume 324 of LNCS. (1988)

22. Olderog, E.R.: Nets, Terms, and formulas. Cambridge University Press (1991)
23. Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications.

In Logrippo, L., et al., eds.: Protocol Specification, Testing and Verification, X.
Proceedings of the IFIP WG 6.1 Tenth International Symposium, 1990, Ottawa,
Ont., Canada, Amsterdam, Netherlands, North-Holland (1990) 379–394

24. Barbeau, M., von Bochmann, G.: Verification of LOTOS specifications: A Petri
net based approach. In: Proc. of Canadian Conf. on Electrical and Computer
Engineering. (1990)

Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets 419

25. Larrabeiti, D., Quelmada, J., Pavón, S.: From LOTOS to Petri nets through expan-
sion. In Gotzhein, R., Bredereke, J., eds.: Proc. of Int. Conf. on Formal Description
Techniques and Theory, application and tools (FORTE/PSV’96). (1996)

26. Barbeau, M., von Bochmann, G.: Extension of the Karp and Miller procedure to
LOTOS specifications. Discrete Mathematics and Theoretical Computer Science
3 (1991) 103–119

27. Barbeau, M., von Bochmann, G.: A subset of LOTOS with the computational
power of place/transition-nets. In: Proc. of the 14th Int. Conf. on Application and
Theory of Petri Nets (ICATPN). Volume 691 of LNCS. (1993)

28. Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001. European Asso-
ciation for software science and technology (EASST) Newsletter 4 (2002)

29. Sisto, R., Valenzano, A.: Mapping Petri nets with inhibitor arcs onto basic LOTOS
behavior expressions. IEEE Transactions on computers 44(12) (1995) 1361–1370

30. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS.
In: Protocol Specification, Testing and Verification X (PSTV), Proceedings of the
IFIP WG6.1 Tenth International Symposium on Protocol. (1990) 395–408

31. Durante, L., Sisto, R., Valenzano, A.: Integration of time Petri net and TE-LOTOS
in the design and evaluation of factory communication systems. In: Proc. of the
2nd IEEE Workshop on Factory Communications Systems (WFCS’97). (1997)

32. Marroquin Alonso, O., de Frutos Escrig, D.: Extending the Petri box calculus with
time,. In: Proc. of the 22nd International Conference on Application and Theory
of Petri Nets (ICATPN). Volume 2075 of LNCS. (2001)

33. Berthomieu, B., Ribet, P., Vernadat, F.: The TINA tool: Construction of abstract
state space for Petri nets and time Petri nets. Int. Journal of Production Research
42(14) (2004)

34. Apvrille, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: TURTLE : A real-
time UML profile supported by a formal validation toolkit. IEEE Transactions on
Software Engineering 30(4) (2004)

A First Actions

Definition 2 (First actions set). Let C be a component. The set of first
actions FA (CP) can be recursively built using the following rules3:

FA (Cstop) = ∅ FA (Cexit) = {texit} FA (Ca;P) = FA Ca{d}P = {ta}
FA (CμX.(P;X))=FA (Cdelay(d)P)=FA (Clatency(d)P)=FA (CP;Q)=FA (CP>>Q)=FA (CP)

FA (CP|[A]|Q) = FA (CP[]Q) = FA (CP[>Q) = FA (CP) ∪ FA (CQ)

FA (Chide a in P) = ha (FA (CP))

3 Where ta is transition labelled by a. ha(α) = α if α �= a and ha(a) = ia.

Grey-Box Checking

Edith Elkind1, Blaise Genest1,2, Doron Peled1, and Hongyang Qu1,3

1 Department of Computer Science, Warwick, Coventry, CV4 7AL, UK
2 CNRS & IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3 LIF, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France

Abstract. There are many cases where we want to verify a system that
does not have a usable formal model: the model may be missing, out of
date, or simply too big to be used. A possible method is to analyze the
system while learning the model (black box checking). However, learning
may be an expensive task, thus it needs to be guided, e.g., using the
checked property or an inaccurate model (adaptive model checking). In
this paper, we consider the case where some of the system components
are completely specified (white boxes), while others are unknown (black
boxes), giving rise to a grey box system. We provide algorithms and lower
bounds, as well as experimental results for this model.

1 Introduction

Tools for analyzing a system (e.g., model-checkers) usually require an accurate
model of the system. However, such a model may be difficult to find: while some
tools can perform the analysis based on a model constructed directly from the
source code, there are few tools that can deal with a binary file or with a chip.
A recent paper [12] proposed a method of checking black box systems, that is,
systems for which we do not have a model. Later, it was extended to testing based
on an approximately accurate model that can be automatically changed when
discrepancies are found [9]. This approach is based on interactive learning of
finite state systems [2] combined with conformance testing [14,6], and has many
applications. For instance, [15] considers deriving a specification from observing
a system, and [7,1] apply these techniques in order to guess an efficient property
to be used as an interface in assume-guarantee reasoning.

In this paper, we extend the black box checking procedure of [12] to the case
where some parts of the system in question are known. Specifically, we focus on
the situation where we know the high level description of the system as well as
some of its components, while the internal structure of the remaining components
is unknown. We call such a system a grey box, and use the terms ‘white box’
and ‘black box’ to denote the known and the unknown parts, respectively. For
instance, a component in a distributed system or a module in a hierarchical
system can play the role of the (known) white box or the (unknown) black
box. We propose the framework of grey box checking in a concurrent system,
where several asynchronous components communicate with each other. We can
easily extend our approach and get good complexity bounds for (sequential)
hierarchical systems as well [8].

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 420–435, 2006.
c© IFIP International Federation for Information Processing 2006

Grey-Box Checking 421

In some settings, each component can be analyzed separately; in others, we can
only test the system as a whole. In both cases, the information available about
the white box can speed up the testing considerably. In the first case, the problem
essentially reduces to learning the unknown components and thus its complexity
does not depend on the size of the white box. For the more challenging case
where all components have to be run together, we show that the complexity
of checking the synchronous product B × W is substantially higher than the
complexity of black box checking B (the increase in complexity is exponential
in the size of the alphabet), but substantially lower than checking B ×W as a
black box (the savings are exponential in |W|).

Our algorithms are based on the black box checking procedure of [12]. To
decrease complexity, we use conformance testers that are better suited to our
setup than the standard Vasilevskii-Chow algorithm [14,6]. Our first oracle relies
on enumerating all finite automata up to a certain size and has an almost opti-
mal worst case complexity. The second oracle combines the algorithm of [14,6]
with ideas from partial order reduction and performs better in some of our ex-
periments (see Section 6). Also, both algorithms use the information about the
white box to speed up the learning algorithm of [2]. The experimental data pro-
vided by a new tool we are developing shows that the best compromise is to run
both algorithms together, so that they help each other find discrepancies. This
appears to speed up the process by several orders of magnitude.

While our goal is similar to that of adaptive model checking [9], we see our
work as complementing the adaptive approach rather than replacing it. Indeed,
adaptive model checking uses an inaccurate model to help the learner; here,
we use partial but accurate information about the system being tested. The
usefulness of the adaptive model checking has been argued by [9], which demon-
strates that the learning algorithm is robust enough to deal with a partially
wrong specification. However, there are small modifications to the system (e.g.,
adding a new state that separates two components of the system) that cannot
be handled efficiently by this method. Our approach is likely to be successful
if the changes can be limited to a small part of the system, which will then be
treated as a black box. In particular, this applies to the case described above.
Moreover, sometimes the two techniques can be combined. For instance, we may
have an accurate model of a component, some old model of another component
that was changed since the model was made, and another component that is to-
tally unknown. Then we can use our approach for the product, and the adaptive
approach when analyzing the second component.

2 Preliminaries

A finite automaton is a tuple A = (S, s0, Σ,→) where

– S is the finite set of states,
– s0 is the initial state of A.
– Σ is the finite set of letters (alphabet) of actions.
– →⊆ S×Σ×S is the deterministic transition function, that is, for all a ∈ Σ

and s, t, t′ ∈ S, if s
a−→ t and s

a−→ t′ then t′ = t.

422 E. Elkind et al.

We do not designate a set of accepting states; every state of A is consid-
ered to be accepting. A run ρ of A is a finite or infinite sequence of transitions
(vi, ai, vi+1) ∈→ with v0 = s0. An experiment is any sequence of labels in Σ∗.
Since every automaton that we consider is deterministic, any experiment is as-
sociated with at most one run. Abusing notation, we will identify a run with
the corresponding sequence of labels. The language L(A) of A is the set of all
maximal runs1. One can easily test whether an experiment u is a prefix of a run:
it suffices to feed the sequence u to the system after a reset, letter by letter, and
check that each time the next letter is enabled through executing a transition of
the system.

ok error

pause

data

send

pauseerror
data

send

ack

error

ack

resume

Fig. 1. The automaton Interface

2.1 The Black-Box Checking Procedure

Black-box checking was proposed in [12] for verification of (partially) unknown
systems. It is based on interleaving learning and model checking. In what follows,
we describe this approach in more detail.

The Learning Algorithm. In [2], Angluin describes an algorithm L∗ for learn-
ing the minimal deterministic automaton that corresponds to a given black
box A.

Angluin’s learning algorithm builds a candidate automaton A∗ by making
experiments on the system A, i.e., invoking a procedure test(v) that returns 1
if v is executable in the black box after a reset, and 0 otherwise. Once it has
obtained a candidate solution A∗ that is consistent with all experiments run
so far, it calls an oracle that checks whether L(A∗) = L(A). If not, the oracle
gives a minimal-size experiment σ (discrepancy) distinguishing A∗ from A, i.e.,
a sequence σ that is either in L(A) \ L(A∗) or in L(A∗) \ L(A). The learning
algorithm then uses σ to refine the current solution. Later, we show how to build
this oracle using Vasilevskii-Chow [14,6] algorithm.

To construct a candidate automaton, the algorithm keeps two sets of se-
quences: a prefix-closed set of access sequences V ⊆ Σ∗ and a suffix-closed set of
1 A run is maximal if it is not a prefix of another run.

Grey-Box Checking 423

distinguishing sequences W ⊆ Σ∗. Each sequence v in V corresponds to reaching
a state of A∗ by executing v from s0. Different sequences may lead to the same
state. Also, the algorithm keeps a table T : (V ∪ V.Σ) ×W → {0, 1} such that
for any v ∈ V ∪ V.Σ we have T (v, w) = 1 if and only if vw ∈ L(A).

We define the equivalence ∼⊆ V ×V as v ∼ v′ if T (v, w) = T (v′, w) for every
w ∈ W . For (V, W) to represent an automaton, it is necessary that T is closed,
i.e., for every v ∈ V and a ∈ Σ s.t. T (v, a) = 1, there exists v′ ∈ V with v′ ∼ va.
If T is not closed because a is executable after v, but va �∼ v′ for all v′ ∈ V , we
add va to V . Also, we verify that the table T is consistent, i.e., for all v ∼ v′, if
T (v, a) = 1, then T (va, w) = T (v′a, w) for all w ∈ W . If this is not the case, the
sequence aw is added to W .

When the table T is closed and consistent, we set A∗ = ([V/ ∼], ε, Σ, δ), where
the transition relation δ is defined as follows. Let [v] be a ∼ equivalence class
of v. Set δ([v], a) = [v′] when v′ ∼ va. This relation is well defined when the
table T is closed and consistent. We then invoke the oracle on A∗. If the oracle
returns a discrepancy σ, for each prefix v of σ that is not in V , we add v to V
and update T accordingly.

Here is the formal description of one phase of the algorithm L∗ after the oracle
returned a discrepancy σ.

subroutine L∗(V, W, T , σ) returns (V, W, T) =
if T is empty then

let V := {ε}, W := Σ;
for each a ∈ Σ, set T (ε, a) according to test(a)

else
for each prefix v of σ do

add rows(v);
while T is inconsistent or not closed do

if T is inconsistent then
find v1, v2 ∈ V , a ∈ Σ, w ∈ W,

such that v1 ∼ v2 and T (v1a, w) �= T (v2a, w)
add column(aw)

else
find v ∈ V , a ∈ Σ,

such that va �∈ [u] for any u ∈ V
add rows(va)

end while
end L∗

Here, the procedure add rows(v) checks if v ∈ V , and if not, adds v to V and
fills the new rows in T , i.e., makes the experiments reset vaw for all w ∈ W and
all a ∈ Σ ∪ {ε}. Similarly, add column(w) adds a new distinguishing sequence
w to W and updates T (v, w) for each v ∈ V ∪ V.Σ by making the experiment
reset vw.

In our experiments, we use a modified version of L∗ algorithm proposed by
Rivest and Schapire [13]. The algorithm of [13] adds an appropriately chosen

424 E. Elkind et al.

suffix of the discrepancy to W (instead of adding prefixes concatenated by a
letter from Σ to V , as in Angluin’s algorithm). Also, Rivest and Schapire noticed
that consistency check is also performed by the conformance algorithm. In fact,
this is exactly what is done by Vasilevskii-Chow algorithm when l = 1 (see next
subsection). Therefore, in their version of the learning algorithm they omit the
consistency check.

Let n be an upper bound on the number of states of the minimal deterministic
automaton modeling the black box. Suppose that any counterexample returned
by the oracle is of size O(n) (this is indeed the case for all oracles considered in
this paper). Then for the Rivest–Schapire version of the L∗ algorithm we have
the following result.

Proposition 1. [13] The L∗ algorithm makes O(n2|Σ|) membership queries and
at most n calls to the oracle. Its running time is O(n3|Σ|)+Toracle, where Toracle

is the total time spent by the oracle.

Vasilevskii-Chow Algorithm. The oracle is built using the Vasilevskii-Chow
algorithm. This algorithm uses the sets V, W and a known upper bound n on the
size of the minimal deterministic automaton modeling the black box. In order to
check whether A = A∗, VC algorithm runs both automata on some sequences
y ∈ Σ∗. We write check(y) = 1 if y is either in L(A) \L(A∗) or in L(A∗) \L(A).
The sequences that are tested are those of the form y = vxw with v a selected
representative per each equivalence class of [V/ ∼], w ∈ W and |x| ≤ n−|[V \ ∼]|.
Intuitively, if two equivalent access sequences are not consistent, then one is not
consistent with the actual black box and a new distinguishing sequence can be
found.

VC(V,W,n):
k = sizeof([V/ ∼]);
for l = 1, . . . , n− k

for each word x of size l, c ∈ [V/ ∼], w ∈ W
let v be an arbitrary representative of c;
if check(vxw) then return vxw;

return void;

Proposition 2. [14,6] It is sufficient to test sequences of the form y = vxw
with v selected as representative for each equivalence class of [V/ ∼], w ∈ W
and |x| ≤ n − k in order to find a difference between A∗ and A, where k is the
number of equivalent classes of [V/ ∼] and n is a bound on the number of states
of A. The algorithm makes k2|Σ|n−k+1 membership queries. Its time complexity
is O(nk2|Σ|n−k+1).

Observe that the L∗ algorithm invokes Vasilevskii-Chow algorithm at most n
times, and after each call the value of k increases by at least 1. Therefore, the
total number of queries made by Vasilevskii-Chow algorithm during these calls
is at most |Σ|n + 4|Σ|n−1 + · · ·+ n2|Σ| = O(n2|Σ|n), and the total time spent
by Vasilevskii-Chow algorithm is O(n3|Σ|n).

Grey-Box Checking 425

Black Box Checking. Finally, we describe the black box checking procedure
[12], which is a way to test whether a given black box A satisfies a property ϕ.
The property ϕ describes a set of allowed (or good) runs. We assume that it is
written in some formal notation such as LTL or Büchi automata, Let L(ϕ) be
the set of runs (the language of) the specification ϕ. We denote by A |= ϕ (A
satisfies ϕ) the fact that L(A) ⊆ L(ϕ).

Suppose that we are given a (partially) unknown system A. Our goal is to
check whether there exists a run of A that does not satisfy ϕ. Such a run is called
a counterexample. To do so, we infer an automatonA∗ by running experiments on
A. We begin by using the learning algorithm initialized with V = ε and W = Σ.
Then we feed the model checker with the candidate automaton A∗. The model
checker tests whether A∗ satisfies ϕ. If not, it outputs a counterexample σ such
that σ ∈ L(A∗) \ L(ϕ). We then test σ on A. If σ ∈ L(A), we have found a
genuine counterexample. Otherwise, σ is a discrepancy between A and A∗ and
can be used to change A∗ so that it models A more accurately. If A |= ϕ, we
will have to repeat this procedure until L(A∗) = L(A). However, if A �|= ϕ, we
may find a counterexample before we learn A.

3 Our Model

We associate a set of components (Si, si
0, Σ

i,→i) with the automaton G =
(
∏

Si,
∏

si
0,
⋃

Σi,→), where
∏

i=1,...,n(si)
a−→
∏

i=1,...,n(ti) iff for all i, either
a /∈ Σi and si = ti, or a ∈ Σi and si

a−→ ti. We want to verify a property of the
whole system G, and we know the alphabet Σi used by every component (if not
we take Σi = Σ).

As a running example, we consider a data acquisition system (DAS) similar
to the one used in [16]. It consists of three components Interface, Command,
Sensor, which communicate as follows. The Command can request the Sensor
to send a data to the Interface. The Sensor can inform the Interface that an
error occurred. Finally, the Interface can stop and resume the Command, and
send the data it received to the environment, receiving acknowledgement from
it. Assume that the Interface is given by the automaton in Figure 1; the other
two components are unknown. In the beginning, we assume that both Sensor
and Command can always perform each of their internal actions. Alternatively, if
we only have an old specification of these components, we can use it to initialize
these components, as is done in adaptive model checking [9]. We want to verify
that between one pause and one send, the system G always performs a resume.
Of course, a bad sequence of actions seems possible with this Interface, with the
trace error pause data send, but this error may not be possible in the system
with the actual Command and Sensor.

The algorithm that we use depends on whether the components can be an-
alyzed separately, or only as a whole. The latter case may occur if, for in-
stance, the communication is coded in a special way, or if the system is on a
chip.

426 E. Elkind et al.

4 Independent Components

In this section, we assume that we can perform a test w on any black box
B. Our algorithm is a slight modification of the black box checking algorithm.
Let W be the product of all white boxes. Our goal is to model check the system
G = W×

∏
i≤l(Bi). Suppose |W| = m, |Bi| ≤ n for all i = 1, . . . , l, i.e., |G| ≤ mnl.

We repeat the following steps until we find a counterexample or construct a
product automaton G∗ with L(G∗) = L(G).

– Execute the learning algorithm for each Bi separately to construct candidate
automata B∗

i .
– Model check the product G∗ = W ×

∏
i≤l(B∗

i).
– If no counterexample is found, call the conformance tester on every black

box separately and feed the discrepancies to the learning algorithm.
– If a counterexample σ is found, then for all i, set σi = πΣi(σ), where πΣi(σ)

is the projection of σ on the alphabet Σi, and test σi on the black box Bi.
If each of these tests passes, then the algorithm terminates and returns σ
as a real counterexample. Otherwise, we have discrepancies (one per each
component), which we then pass to the learner for each black box.

Proposition 3. The maximal number of tests performed during the black box
checking of a system W ×

∏
i≤l Bi is O(l n2 |Σ|n). The time complexity of this

procedure is O(l n3 |Σ|n).

Observe that the time complexity of running the black box testing procedure
on G is O(m3n3l |Σ|mnl

). Thus, it is highly profitable to learn the components
separately. For both algorithms, we can apply the method in an incremental way
(increasing the size of the tested automata used by the Vasilevskii-Chow algo-
rithm, up to n). In case that the checked system does not satisfy the specification,
we typically find it much quicker than the worst case complexity (see [12]).

We now show how this algorithm behaves on the data acquisition example.
We begin by model-checking the candidate system against our property (between
one pause and one send, the system G always performs a resume), and find a
first possible counterexample: error pause data send. We find out that Sensor
never emits an error as its first execution (rather, it does nothing without
receiving an action request). Thus, we learn that the current model for Sensor
is wrong and we ask the learner to give a better approximation. The learner
comes up with the following table (the rows contain the access sequences V ,
the columns contain the distinguishing sequences of W initialized with Σ). A√

in the table means that w ∈ W is executable after v ∈ V . This table can be
interpreted as the following automaton for Sensor:

Then, the model-checker verifies the new system with the new Sensor, and
finds no errors since the action error is not allowed in the current model of
Sensor. Hence, the conformance tester checks both the Sensor and the Command.
For Sensor, the conformance tester comes up with the distinguishing sequence
request error which is fed to the learner.

Grey-Box Checking 427

ε req

request

data

request
T (v, w) req data error

ε
√ x x

req √ √ x
req,req √ √ x
req,data √ x x

Fig. 2. First inferred black box Sensor: experiment Table and corresponding automaton

5 Testing a Grey Product

A more restrictive scenario is when we can only test whether σ ∈ B × W. In
what follows, we describe several new algorithms for this setting. Despite their
simplicity, it turns out that our algorithms are almost optimal. We prove this by
showing an (almost) matching lower bound. We focus on the case when there is
one white box W of size m and one black box B of size n. If there are several
black boxes that cannot be tested separately, we consider B to be their product.
In some cases, B cannot be learned exactly. For instance, if b is in the intersection
of both alphabets andW has no transition labeled by the letter b, then we cannot
decide whether any state of B has a transition labeled by b. Therefore, our goal
is to learn a black box B∗ that satisfies L(B × W) = L(B∗ × W). As W can
be a machine that accepts every word of Σ∗, our problem is a generalization
of black-box learning. This implies that one needs at least n2 × |Σ|n tests. We
can also ignore what we know about W and treat B ×W as a black box of size
mn. This shows that it suffices to perform O((mn)2 × |Σ|nm) tests of size nm.
Clearly, if m is much bigger than n, this approach does not seem attractive.

5.1 Lower Bounds

We start by proving two new lower bounds. They imply that testing a black box
combined with a known white box is much more difficult than testing the black
box alone. In particular, unlike in black box checking, the number of tests may
have to be exponential in the size of the alphabet.

Proposition 4. For any n ∈ N, |Σ| even, and x, y �∈ Σ, there exists a family of
black boxes F = (Br)r∈R and a white box W with |Br| ≤ n+1, |W| ≤ n|Σ|2 such
that 2Ω(n|Σ|) tests of size Ω(n|Σ|) are needed to distinguish between Br×W and
Br′ ×W.

Proof. The automata in F are constructed as follows. Any automaton in this
family has n + 1 states s0, . . . , sn and uses the alphabet Σ∪{x, y}. For each
1 ≤ i ≤ n, let Σi be a subalphabet of Σ of size |Σ|/2. There is a transition
si

a−→ si for every a ∈ Σi and a transition si
a−→ s0 for every a ∈ Σ \Σi. Also,

for i = 1, . . . , n− 1 there is a transition si
x−→ si+1. The only transition labeled

by y is sn
y−→ s0. Finally, s0

a−→ s0 for every a �= y. Every choice of subalphabets

428 E. Elkind et al.

s1 s2 s3 sn

s0

x x

Σ \ Σ1

Σ \ Σ2 Σ \ Σ3
y

Σ1 Σ2 Σ3 Σn

Σ ∪ {x}

x

Fig. 3. A black box in BB

(Σ1, · · · , Σn) defines a black box in F , which means that |F| = (|Σ|
|Σ|/2)

n. Using
Stirling’s formula, we obtain |F| = 2Ω(n|Σ|).

To describe the white box W , we fix a strict order ≺⊆ Σ × Σ on letters.
Intuitively, we want W to accept words that consist of n blocks of |Σ|/2 letters
from Σ separated by x’s, followed by a y; within each block, the letters should be
ordered according to ≺. More formally, W is the minimal deterministic automa-
ton that accepts prefixes of the words w1 · · ·wt, t = n(|Σ|/2 + 1), that satisfy
the following: wt = y, wi(|Σ|/2+1) = x for all i = 1, . . . , n− 1, and finally, for any
i such that i mod |Σ/2| + 1 �= 0, 1, we have wi−1 ≺ wi. It is not hard to see
that W can be implemented using n|Σ|2 states.

Clearly, any word of the form w1 · · ·wt accepted by W is a word of the black
box associated with (Σ1, . . . , Σn), where Σi consists of the letters in the ith
block of w. On the other hand, all other black boxes do not accept this word.
This implies that we need at least 2Ω(n|Σ|) tests of size Ω(n|Σ|) each. �

Our second bound shows that the size of the counterexample cannot be bounded
by a number lower than nm. Hence, the Vasilevskii-Chow approach of testing
every sequence of a bounded size will require at least |Σ|nm tests.

Proposition 5. Let n �= m be two prime numbers. There exists a white box W
with m + 1 states and two black boxes B,B′ of size at most n + 1 such that a
word of size nm is needed to distinguish between B ×W and B′ ×W.

Proof. For all r > 0, consider an automaton Ar with r + 1 states s1, · · · , sr+1

and transitions si
a−→ si+1 for all i < r, sr

a−→ s1, and sr
b−→ sr+1. The regular

language accepted by Ar is a∗ + (ar−1)(ar)∗b.
If W = Am and B = An, it is easy to see that the smallest word of G that

contains b is amn−1b because m and n are distinct primes. This is the smallest
word that distinguishes W × B from W × B′, where B′ is the automaton with
one state s and s

a−→ s. �

Grey-Box Checking 429

5.2 An Almost Optimal Algorithm

It is not hard to identify the automaton that corresponds to the black box by
considering all automata of size at most n.

Proposition 6. Let B be a black box of size at most n and W a known automa-
ton of size m. One can learn B × W with at most 2n×|Σ|×logn tests of size at
most 2nm− 1.

Proof. Let (Br)r∈{0,··· ,l} be the family of all deterministic finite automata of size
at most n. For all r < l, if Br × W and Br+1 × W agree on all words of size
at most 2nm − 1, they are equivalent. Otherwise, they have a distinguishing
sequence, i.e., a word w of size at most 2nm − 1 such that w ∈ Br × W and
w /∈ Br+1 × W or vice versa. It suffices to test this word to make sure that
B �= Br+1 or B �= Br. Observe that w can be chosen as the smallest sequence in
(L(B∗

r) ∩ L(B∗
r+1) ∩ L(W)) ∪ (L(B∗

r+1) ∩ L(B∗
r) ∩ L(W)). Moreover, since B∗

r is
deterministic, computing its complement B∗

r is easy. Hence, we have to perform
at most l tests of size at most 2nm−1 to find a Br such that Br×W = B×W. To
finish the proof, note that the number of automata of size at most n is bounded
by 2n×|Σ|×log n. �

The worst-case running time of the algorithm described above is very close to the
lower bound of Proposition 4. In other words, our algorithm is almost optimal.
However, it is impractical since it has to test every possible automaton with-
out learning anything before the very last test is performed. Thus, its average
complexity is equal to its worst case complexity. On the other hand, if we apply
the black box learning algorithm described in Section 2.1 to our grey box, the
worst case complexity will be exponential in m, but the average complexity will
be much lower. In what follows, we show how to combine the two approaches to
construct an algorithm that needs at most 2n×|Σ|×log n +mn tests of size at most
2mn− 1 in the worst case, but can be expected to do much better on average.
The experiments in Section 6 show that this is indeed the case.

Our algorithm uses the learning algorithm L∗ on the grey box G = B × W.
Whenever L∗ produces a candidate solution G∗, we check that G∗ does not accept
sequences in W ; any such sequence is a discrepancy and can be used to refine
G∗. Then, instead of using Vasilevskii-Chow algorithm for conformance testing,
we use an oracle that only tests the candidate solution G∗ proposed by L∗ on the
distinguishing sequences considered in Proposition 6. More precisely, we generate
automata of size up to n one by one. Let B′ = Bi be the most recently generated
such automaton. We compute a distinguishing sequence for B′ ×W and G∗ and
test it on the grey box. Clearly, either B′×W or G∗ will behave differently from
G. If B′ ×W �= G, we conclude that B′ �= B, so we set B′ = Bi+1. If G∗ �= G,
we have a discrepancy on G∗ allowing refinement with L∗. Clearly, the first case
can occur at most 2n×|Σ|×log n times, and the second case can occur at most
mn times (each time, the size of G∗ increases). Therefore, the total number of
tests is at most 2n×|Σ|×logn + mn. Moreover, as |G∗| ≤ mn, the length of each
experiment is at most 2mn− 1.

430 E. Elkind et al.

For this algorithm to be efficient, we need to eliminate early many automata.
To do so, we use the information about B provided by tests made by L∗. Namely,
if wa is executable in B × W, then it is executable in B. If wa is executable
in W , but not in B × W, then we know that it is not executable in B. To
generate the automaton, for each state and label we choose the destination of
the transition from this state with this label. The number of automata generated
depends heavily on the order in which we generate the transitions. Worse yet, the
best ordering may change a lot with the choice of transition. Hence, we decide
not to impose this order statically but to determine it dynamically: the next
transition chosen is the one that makes the largest number of tests progress,
so that hopefully a contradiction is reached and every extension of the current
automaton is eliminated.

Another technique to speed up the algorithm is to use information about the
white box in order to lower the number of distinguishing sequences per state
of the candidate solution. We denote by white(v) the state of W reached after
reading the sequence v ∈ V , where V is an access sequence for the grey box. We
also denote by Ws the distinguishing sequences needed to distinguish the states
in {v ∈ V | white(v) = s}, for each state s of W . Recall that in Section 2.1 we
defined an equivalence relation ∼ on V × V . We can refine ∼ as follows: v ∼ v′

iff white(v) = white(v′) = s and for all w ∈ Ws, T (v, w) = T (v, w′). Our closure
and consistency checks are based on this new equivalence. The modified L∗

algorithm only fills those lines T (v, w) with w ∈ Wwhite(v). Notice that |Ws| ≤ n.
It may be the case that white(v) = white(v′) with v and v′ accepting the same
language, and hence we may have to apply a minimization procedure to get a
minimal automaton.

5.3 An Algorithm Based on Partial Order Reduction

Another way to reduce the number of experiments in the conformance step is
to use the information about the alphabet. This approach is inspired by partial
order reduction [4]. Suppose that we know an independence relation I given by
I = Σ2 \ D, with (a, b) ∈ D iff a, b ∈ Σi for some i. For instance, in the data
acquisition example, (request, send) ∈ I.

Definition 1. Let σ, ρ ∈ Σ∗. Define σ
1≡ρ iff σ = uabv and ρ = ubav, where

u, v ∈ Σ∗, and a I b.

That is, ρ is obtained from σ (or vice versa) by commuting an adjacent pair of
letters.

Definition 2. Let σ ≡ ρ be the transitive closure of the relation
1≡. This relation

is often called trace equivalence [10].

For example, for Σ = {a, b} and I = {(a, b), (b, a)} we have abbab
1≡ababb and

abbab ≡ bbbaa.
Let & be a total order on the alphabet Σ. We call it the alphabetic order. We

extend& in the standard alphabetical way to words, i.e., v & vu and vau & vbw
for v, u , w ∈ Σ∗, a, b ∈ Σ and a & b.

Grey-Box Checking 431

Definition 3. Let σ ∈ Σ∗. Denote by σ̃ the least string under the relation &
that is trace equivalent to σ. If σ = σ̃, then we say that σ is in lexicographic
normal form (LNF) [11].

Our approach is based on using L∗ algorithm together with Vasilevskii–Chow
conformance oracle. However, instead of checking all sequences of the form vxw,
we only check the ones where x is in LNF. Clearly, this preserves the correct-
ness of our algorithm. In what follows, we show that by using appropriate data
structures, we can ensure that the overhead due to generating sequences in LNF
is not too big. This is also confirmed by our experimental results (see Section 6).

Denote by α(σ) the set of letters occurring in σ. Let ≺σ be a total order on
the letters from α(σ) called the summary of σ. It is defined as follows:

Definition 4. Define a ≺σ b if the last occurrence of a in σ precedes the last
occurrence of b in σ. That is, a ≺σ b if and only if σ = vaubw, where v ∈ Σ∗,
u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

Lemma 1. Let σ ∈ Σ∗ be in LNF, and a ∈ Σ. Then σa is not in LNF exactly
when we can decompose σ = vu, such that (a) vau ≡ vua and (b) vau & vu.

Intuitively, this means that we can commute the last a in vua backwards over u to
obtain a string that is smaller in the alphabetic order than vu. Note that it is not
sufficient to check locally that a does not commute with the previous letter, i.e.,
the case with |u| = 1. Consider Σ = {a, b, c} and I = {(a, b), (b, a), (b, c), (c, b)}.
Then ca is in LNF, while cab ≡ bca, where bca & ca.

Proof. If the two conditions (a) and (b) hold, then obviously vua cannot be
in LNF since it is not minimal under the alphabetic order among sequences
equivalent to it.

Conversely, let ρ be the minimal string such that ρ ≡ σa. Denote by first(v)
the first letter of a nonempty string v. Let v be the maximal common prefix of
ρ and σ (and thus also of σa). Write σ = vu (as in (i)), and ρ = vw. Consider
the following cases:

1. w starts with an a.
(a) u1 does not contain an a. Then au ≡ ua, satisfying (ii).
(b) u contains a. Write u = u1au2, where u contains no a. Then u = u1au2 ≡

au1u2. Since ρ = vw & vua, we have that a = first(w) & first(u1) =
first(u). Thus, vau1u2 & vu1au2 = vu, a contradiction to the fact that
σ is in LNF.

2. Write w = w1aw2, where w2 does not contain an a. Then, w = w1aw2 ≡
w1w2a ≡ ua and thus w1w2 ≡ u. Since vw & vu, we have that first(w1) =
first(w) & first(u). Thus, vw1w2 & vu = σ and vw1w2 ≡ vu. This contra-
dicts the fact that σ is in LNF. �

The following Lemma shows how we can use a summary to decide whether σa is
in LNF. Since |σ| is usually quite larger than the size of the summary (essentially
|Σ|), this makes the generation of normal forms much more efficient.

432 E. Elkind et al.

Lemma 2. Let σ ∈ Σ∗ be in LNF with a summary ≺σ and a ∈ Σ. Then σa is
not in LNF exactly when there is b ∈ α(σ) such that a & b and for each c such
that b �σ c, aIc.

In words, this means that it is sufficient to check the commutativity of a with a
suffix of the summary that commutes with a, and look among these letters for
one that comes after a in the alphabetic order. This replaces a similar check for
an actual suffix of σ.

Proof. Suppose that σ is in LNF and σa is not. Let u be the shortest suffix of σ
according to the conditions of the previous lemma, i.e., σ = vu and vau ≡ vua.
Let b be the head of u. Then a & b. Let C = α(u). We have aIc for each c ∈ C,
hence at least for each b �σ c.

Conversely, let b ∈ α(σ) a letter satisfying the conditions of the Lemma. Let
u be the shortest suffix of σ that begins with b. Since ≺σ is the summary of σ,
it follows that all the letters c ∈ α(u) satisfy b �α(σ) c, hence aIc. This means
that (a) and (b) from the previous lemma hold. �

For instance, assume we have request
 data
 error
 resume
 pause

send
 ack. Then if the action error is seen, the new order
 will be request

 data
 resume
 pause
 send
 ack
 error.

Like in other partial order approaches, this algorithm can provide us with a
reduction that is at most exponential in the number of concurrent (e.g., indepen-
dent black box) components. Conversely, in other extreme cases, there can be
no reduction at all. It is worth noting that the same idea can be used to improve
the learning algorithm. Namely, two equivalent (with respect to commutation)
states will never be distinguished, hence the tests for one are copied from the
other one.

6 Experimental Results

Our implementation prototype for grey box checking is written in SML and in-
cludes roughly 6000 lines of code. We use three kinds of examples: an artificially
pathological example simple n with n components, DAS (data acquisition sys-
tem) with 4 components from [16] with every event observable, and finally, a
system in which the memory is incremented and decremented by two processes
through a COMA coherency protocol with unobservable actions (COMA was
already used in [9], though modeled differently). The two different versions of
COMA correspond to different initializations of the memory. Notice that we only
include the learner/conformance part, since the model checking part is the same
for all algorithms considered. The algorithms are based on Rivest–Schapire’s
version of the learning algorithm L∗, but call different conformance testers: VC
for the usual Vasilevskii-Chow algorithm, LNF for VC generating only sequences
in LNF, GBC for Grey Box Checking, i.e., generating distinguishing sequences
from the possible automata, and LNFGBC, which uses mainly LNF with calls
to GBC when no short sequences were found by LNF.

Grey-Box Checking 433

For each example, we indicated the number of states of the product G to
learn, the number of letters of the alphabet, and the size ‘leng.’ of the largest
experiment needed to distinguish two different states. Then for each algorithm,
we give the number of experiments needed to learn the whole system (M indicates
millions). We also give an indicative value of the time needed in parentheses, in
minutes (or seconds if ‘s’ is specified). All tests were realized on a P-M@1.2Ghz
with 256MB of dedicated memory. In Grey Box Checking, we consider only one
component as known, the other components being black boxes that cannot be
tested separately. In COMA, the black box B and the white box W are close in
size. In simple 2, W is much bigger than B. For DAS and simple 4, B is much
bigger than W .

example states letters leng. VC LNF GBC LNFGBC
simple 2 19 2 18 .5M (9) .5M (9) 388 (1s) 444 (1s)
simple 4 82 6 9 7.2M (22) 2.3M (3) too long 2.3M (4)

DAS 73 12 4 .25M (13s) .13M (8s) too long .13M (10s)
COMA(1) 48 8 6 9.8M (33) 5.7M (16) 1821 (120) .4M (2)
COMA(2) 48 8 7 46M (190) 25M (75) 1731 (170) .4M (2)

Partial Order

– The overhead in time due to the computation of the lexicographic normal
form (LNF) is negligible in all the tests we did.

– Apart from simple 2, which has no commutation, partial order results in a
speedup by a factor of 2 to 7. While the speedup in DAS is due to the equiv-
alence relation that we consider on states (the length of the distinguishing
sequences is too small), the longer the distinguishing sequences are, the more
commutations can be found and the better the speedup is.

Grey Box Checking

– GBC tests very few distinguishing sequences compared with LNF. However,
the time taken is not linear in the number of tests performed.

– simple 2 is the pathological case for VC, which explains why Grey Box
Checking succeeds. One is, however, unlikely to find such cases in real life.

– In many cases, a pure Grey Box Checking approach is unpractical. However,
a distinction should be made between two cases: In Simple 4, no informa-
tion guides the generation of automata. Even generating all automata with
3 states takes hours, and is useless. On the other hand, in the more realis-
tic DAS example, the initialization gives a lot of information. Although the
number of letters is high, every automaton of size 8 respecting the informa-
tion can be generated within 90 seconds. There are roughly 430,000 such
(partial) automata, compared to about 896 if no information was known.

– When VC is efficient (‘leng.’ is small), Grey Box Checking is useless (DAS).
– Using LNFGBC, i.e., combining Grey Box Checking and LNF can be much

more efficient than any of them separately in non-artificial cases (COMA).

434 E. Elkind et al.

Moreover, the overhead of GBC as a helper of LNF is small even in the
case where GBC is useless, and can lead to impressive speedup (100 times
in COMA(2)).

– Many improvements are possible, e.g., using some of the tests realized by
LNF as information to guide the generation of automata.

7 Conclusion

Black box checking [12] was suggested as a way to directly verify a system when
its model is not given but a way of conducting experiments is provided. In this
paper we studied an extension of this problem, where our system is decomposed
into a known part (white box) and unknown part (black box, or a collection of
concurrently operating black boxes).

In particular, one of the most interesting cases that we address here is that
of an unknown system (i.e., a black box) that is connected to a device whose
specification is given (a white box), where both components are coupled, i.e., we
can perform the experiments only on the combined system. We prove that the
complexity of verifying such a system is strictly in between that of verifying the
properties of the black box alone and that of considering the complete structure
as a big black box for which no specification is given. We provide algorithms and
heuristic methods for verifying such systems.

We implemented the proposed algorithms and showed that this approach can
be practical. We performed several experiments verifying that the overhead of
these techniques is small, while in some real life cases, the speedup over the black
box checking algorithm can be up to two orders of magnitude.

References

1. R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by
Learning Assumptions. In CAV’05, LNCS, 2005.

2. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75, 87-106 (1987).

3. R. Alur, R. Grosu and M. McDougall. Efficient Reachability Analysis of Hierar-
chical Reactive Machines In CAV’00, LNCS 1855, p.280-295, 2000.

4. E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
5. E. Clarke, D. Long, K. McMillan. Compositional Model Checking. In LICS’89,

IEEE , p.353-362, 1989.
6. T.S. Chow. Testing software design modeled by finite-states machines. In IEEE

transactions on software engineering, SE-4, 1978, 178-187.
7. J. Cobleigh, D. Giannakopoulou, C. Pasareanu. Learning Assumptions for Com-

positional Verification. In TACAS’03, LNCS 2619, p.331-346, 2003.
8. E. Elkind, B. Genest, D. Peled and H. Qu. Grey-Box Checking. Internal Report,

available at http://www.crans.org/~genest/EGPQ.ps.
9. A. Groce, D. Peled and M. Yannakakis. Adaptive Model Checking. In TACAS’02,

LNCS 2280 , p.357-370, 2002.
10. A. Mazurkiewicz, Trace Semantics, Proceedings of Advances in Petri Nets, 1986,

Bad Honnef, Lecture Notes in Computer Science, Springer Verlag, 279–324, 1987.

Grey-Box Checking 435

11. E. Ochmanski, Languages and Automata, in The Book of Traces, V. Diekert, G.
Rozenberg (eds.), World Scientific, 167–204.

12. D. Peled, M. Vardi and M. Yannakakis. Black Box Checking. In FORTE/PSTV’99,
1999.

13. R. Rivest and R. Schapire. Inference of Finite Automata Using Homing Sequences.
Information and Computation, 103(2), p.299-347, 1993.

14. M.P. Vasilevskii. Failure diagnosis of automata. Kibertetika, no 4, p.98-108, 1973.
15. W. Weimer and G. Necula Mining Temporal Specifications for Error Detection.

In TACAS’05, LNCS 3440, p.461-476, 2005.
16. G. Xie and Z. Dang. Testing Systems of Concurrent Black-boxes - an Automata-

Theoretic and Decompositional Approach. In FATES’05, LNCS, 2005.

Integration Testing of Distributed Components
Based on Learning Parameterized I/O Models

Keqin Li1, Roland Groz1, and Muzammil Shahbaz2

1 LSR - IMAG
BP 72, F-38402 St Martin D’Hères Cedex, France

{Keqin.Li, Roland.Groz}@imag.fr
2 France Telecom R&D

BP 98, 38243 Meylan Cedex, France
muhammad.muzammilshahbaz@orange-ft.com

Abstract. The design of complex systems, e.g., telecom services, is usu-
ally based on the integration of components (COTS). When components
come from third party sources, their internal structure is usually un-
known and the documentation is scant or inadequate.

Our work addresses the issue of providing a sound support to com-
ponent integration in the absence of formal models. We consider compo-
nents as black boxes and use an incremental learning approach to infer
partial models. At the same time, we are focusing on the richer models
that are more expressive in the designing of complex systems. There-
fore, we propose an I/O parameterized model and an algorithm to infer
it from a black box component. This is combined with interoperability
testing covering models of the components.

1 Introduction

The design of new software systems, such as telecom services, is more and more
based on the integration of components from third party sources (COTS), loosely
coupled in a distributed architecture (e.g., web services). Testing the behavior
of the assembly is important to build confidence in the system. In order to base
testing on a sound and systematic basis, it has become common to use models.
In reality, COTS are rarely provided with formal descriptions.

A general approach [4,2,3] is to generate formal models of COTS through
their incremental learning. In [6], we proposed an approach to learn I/O models
of COTS (using a slight modification of Angluin’s Algorithm [1]), and define an
Integration Testing Procedure based upon these models. Our current work ad-
dresses the issue of learning richer models that are more expressive in the design
of complex systems. The goal is to help the integrator in deriving systematic
tests to check component interactions. It is well known that typical interoper-
ability problems are often related to incompatibility of data values that did not
appear when components are tested in isolation, but are revealed by feeding the
outputs of one component as inputs to another component. This is why we con-
centrate on a model where parameter values are taken into account. From those

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 436–450, 2006.
c© IFIP International Federation for Information Processing 2006

Integration Testing of Distributed Components 437

models, we compute systematic cross component interactions with classical test
generation techniques for collections of automata.

1.1 Assumptions

Our basic assumptions are as follows.

– The components we deal with are viewed as black boxes. Only their interfaces
are known, which means that we know at least their input types, although
the actual parameter values may depend on the behaviors exercised.

– Although no global specification of the system is available, the integrator
has a number of test scenarios for the global interaction of the system with
its environment. Additionally, sample parameter values are provided for all
interfaces of components.

– All internal and external interfaces can be observed in integration testing,
but only external (non-integrated) interfaces are controllable, i.e. we can
send input sequences through these interfaces to test the components. We
assume our test harness makes it possible to observe connected interfaces.

– Inputs from the environment will only be provided on stable states of the
system, viz. when all components are waiting for external stimuli and will
not make any internal move. This corresponds to the notion of slow environ-
ment in system verification or quiescence in testing theory. We also assume
that each input to a component triggers at most one output. Interaction be-
tween components is asynchronous, and at any time at most one “message
in transit” holds in the system.

– We shall not attempt to derive a complete model of the components. COTS
offer many functions. We shall just derive sub-models that correspond to the
behaviors exercised in the integrated system. Even for that restricted part
of the components, the models derived will be approximations in line with
the testing goals (i.e., the level of confidence required).

1.2 Our Approach

In the absence of formal models for components, model inference from observa-
tions is a key point. Angluin [1] has proposed an algorithm that infers a Deter-
ministic Finite Automaton (DFA) from observations of component’s behavior.
In [6], we proposed an extension of Angluin’s algorithm that works with I/O au-
tomata. In this paper, we are dealing with a richer model that contains inputs and
outputs along with the parameter values. These models are more applicable when
the input set is typically very large. Then we can distinguish input types and
their possible parameter values and model into a compact finite state machine,
which we call PFSM (Parameterized Finite State Machines). Since existing algo-
rithm for DFA inference uses number of queries, which grow polynomially with
the size of alphabet, they are not well-suited for this situation. If some parame-
ters are irrelevant or never used, the algorithm should not be disturbed by their
presence. Certain adaptations of this algorithm have been tested for parameter-
ized FSM e.g. in [2] but it does not cater for output parameters in the model.

438 K. Li, R. Groz, and M. Shahbaz

Our approach is to further modify the above algorithms to conjecture a PFSM
model of a component and also find a practical source for getting counterexam-
ples when the conjecture is wrong or not suitable for integration. In requirements
engineering approaches [7,8], the equivalence query used to get counterexamples
is provided by an expert. Here we follow the approach used in [4,3] where the
query is implemented by testing the integrated system which acts as an oracle.
The outline of the integration methodology is as follows.

1. In the first step, an input alphabet is defined for each component C. This
corresponds to the invocations on external interfaces with all the parameter
values that are considered relevant (starting with those from scenarios or use
cases defined for the system or provided for internal interfaces).

2. Each component is (unit) tested separately using the learning algorithm
until balanced, closed and consistent observation tables for it are found. The
output alphabet is determined along with output parameters. This provides
the first model C(1) for C.

3. The components are integrated. This means that some of the outputs of
one component will appear as inputs on the connected interface of another
component. The assembly is tested in two stages.

4. In a first stage, we systematically test the provided system-wide scenarios
expected from the assembly. In that stage, scenarios act as oracles. Faults
can be detected, or a discrepancy with the inferred model may be identified,
leading to incremental refinement of the model.

5. In a second stage, we generate (interoperability) tests from the models of the
components. The actual outputs observed (both internal and to the environ-
ment) are recorded and compared to those provided by the models. Tests are
performed until a discrepancy between predictions from the model is found
or some coverage criteria on the model is achieved. Classifying discrepancies
as faults may require expert input.

6. In both stages, discrepancies can lead to model refinement. The counterex-
amples found are injected in the learning algorithm to extend the models
and the stage is iterated with the new C(i+1) components.

The rest of the paper is organized as follows. Section 2 presents unit testing
of components and Section 3 presents their integration testing. An example is
given in the Section 4. Finally, Section 5 concludes the paper.

2 Unit Testing

The first stage in our approach is unit testing, in which the components are
tested individually. For each component C, its inputs are modelled as a set of
input symbols I

(1)
C . This may be provided by the designer of the component,

or abstracted from the informal descriptions or some preliminary testing of the
component by the tester. With I

(1)
C , the tester performs unit testing using our

learning algorithm and builds an initial model C(1). The model is an extension

Integration Testing of Distributed Components 439

of FSM which incorporates inputs and outputs along with the parameter values.
We call this model as Parameterized Finite State Machine (PFSM). At the same
time, this extension can be considered as a restricted form of Extended Finite
State Machine (EFSM), in the sense that all the context information are stored
in states without the help of variables, and the knowledge of state and input can
determine the transition. The next section describes PFSM formally and then
its inferring algorithm is presented.

2.1 PFSM Model

A Parameterized Finite State Machine (PFSM) M ={Q, I, O, Dx, Dy, δ, λ, σ, q0},
where

– Q is finite non-empty set of states,
– I is finite set of input symbols,
– O is finite set of output symbols,
– q0 ∈ Q is the initial state,
– Dx is a set of possible values of input parameters,
– Dy is a set of possible values of output parameters,
– δ : Q× I −→ Q is a next state function,
– λ : Q× I −→ O is an output function,
– σ : Q× I −→ Dy

Dx is an output parameter function. Dy
Dx is the set of all

functions from Dx to Dy.

When a PFSM model M is in the state q ∈ Q and receives an input i ∈ I
along with the parameter value x ∈ Dx, M moves to the next state given by
q′ = δ(q, i) ∈ Q, and produces an output given by o = λ(q, i) ∈ O, along with
the output parameter value given by f(x) = σ(q, i)(x).

In order to elaborate a complete parameterized output function for a state
q ∈ Q, i ∈ I and x ∈ Dx, we write λ(q, i(x)) = o(f(x)), where o ∈ O is
determined by λ(q, i) and f(x) is determined by σ(q, i)(x).

Then, we extend the functions from input symbols to sequences as usual: for
a state q1, an input sequence α = i1(x1), ..., ik(xk) takes M successively to the
states qj+1 = δ(qj , ij), j = 1, ..., k, with the final state δ(q1, α) = qk+1, and
produces an output sequence λ(q1, α) = o1(f1(x1)), ..., ok(fk(xk)), where each
oj(fj(xj)) = λ(qj , ij(xj)), j = 1, ..., k.

In the definition of PFSM M , in case Dx and Dy are obvious from context or
trial, they can be omitted.

For input string αi = i1, ..., ik(ij ∈ I, 1 ≤ j ≤ k), and input parameter string
αp = x1, ..., xk(xj ∈ Dx, 1 ≤ j ≤ k), we define their association as αi ⊗ αp =
i1(x1), ..., ik(xk). The association of output string and output parameter string
can be defined similarly.

We only consider input enabled PFSM, that is when dom(δ) = dom(λ) = Q×I.
A machine can be made input enabled by adding loop back transitions on a state
for all those inputs which are not acceptable for that state. Such transitions con-
tain a special symbol Ω in place of an output from O. There may be some

440 K. Li, R. Groz, and M. Shahbaz

transitions in a PFSM model which contain no parameters, i.e., no input para-
meter value or output parameter value is associated with the respective inputs or
outputs on the transitions. An example of PFSM model is given in the Figure 1.

I = {a}, O = {b}, Dx = N, Dy = N

x ∈ Dx. f(x), g(x) ∈ Dy
f(x) = x + 1
g(x) = x + 2

a(x)/b(f(x))
q q′

a(x)/b(g(x))

Fig. 1. An example of PFSM model

2.2 Observation Tables

We assume that the reader is familiar with the original Angluin algorithm [1].
Here we explain our modifications with respect to PFSM inference.

In this work, an unknown PFSM M = (Q, I, O, Dx, Dy, δ, λ, σ, q0) with known
input symbols I is used to model a component C. Since we can submit any input
sequence with parameters to the component and observe the corresponding out-
put sequence with parameters, for any input sequence α = i1(x1), ..., ik(xk)(ij ∈
I, 1 ≤ j ≤ k), λ(q0, α) is known. We also assume that each component can be
reset to its initial state before each test.

Basic Structure of Observation Tables. In the testing procedure, the ob-
served behavior of the component C is recorded into two Observation Tables Pri-
mary Table (PT) and Auxiliary Table (AT), denoted by (S, E, T) and (S, E, T ′)
respectively. The original Angluin’s observation table is reflected in the Primary
Table after being adapted in the way proposed in [6], the Auxiliary Table will
record information on parameters. S is a nonempty finite prefix-closed set of in-
put strings (representing potential states of the PFSM). E is a nonempty finite
suffix-closed set of input strings (separating potential states of the PFSM), but
the suffix ε does not belong to E. T is a finite function mapping ((S∪S ·I)×E) to
O∗. T ′ is a finite function mapping ((S ∪S · I)×E) to 2{(αp,βp)|αp∈Dx

+,βp∈Dy
+}.

In PT , for each s ∈ (S ∪ S · I) and e ∈ E, T (s, e) = t, t ∈ O∗, such that
|t| = |e|, and λ(q0, s · e) = λ(q0, s) · t.

In AT , for each s ∈ (S∪S ·I) and e ∈ E, if (αp, βp) ∈ T ′(s, e), αp ∈ Dx
+, βp ∈

Dy
+, then |αp| = |βp| = |e|, and ∀γp ∈ Dx

|s|, λ(q0, (s · e)⊗ (γp ·αp)) = λ(q0, s⊗
γp) · (T (s, e)⊗ βp).

Initially S = {ε} and E = I. These sets are updated during the testing
procedure.

Each table can be visualized as a two-dimensional array with rows labelled
by the elements of S ∪ S · I and columns labelled by the elements of E, with
the entry for row s and column e equal to T (s, e) and T ′(s, e) respectively. For
s ∈ S∪S ·I, rowPT (s) denotes the finite function f in PT from E to O+ defined
by f(e) = T (s · e), rowAT (s) denotes the finite function f ′ in AT from E to
2{(αp,βp)|αp∈Dx+,βp∈Dy+} defined by f ′(e) = T ′(s · e).

Integration Testing of Distributed Components 441

Properties of Observation Tables. In the original Angluin’s algorithm, the
strings in S represent candidate states of the automaton being learned. The rows
in observation table are compared to differentiate the states in the conjecture.
In this work, we follow the principle of Angluin’s algorithm and adapt it.

In order to differentiate states in the conjecture, in addition to comparing rows
in PT , we need to compare rows in AT . Since T ′(s, e) is a set of parameter string
pairs, compatibility, rather than equality, is used in comparing rows in AT . Let
s1, s2 ∈ S∪S ·I and e ∈ E, we say two sets T ′(s1 ·e) and T ′(s2 ·e) are compatible,
denoted as T ′(s1 · e) ≡ T ′(s2 · e) iff ∀ (αp, βp) ∈ T ′(s1 · e), ∀ (α′

p, β
′
p) ∈ T ′(s2 · e),

if αp = α′
p then βp = β′

p. Two rows in AT are compatible, i.e., rowAT (s1) ≡
rowAT (s2) iff T ′(s1 · e) ≡ T ′(s2 · e), ∀e ∈ E. We write T ′(s1 · e) �≡ T ′(s2 · e)
and rowAT (s1) �≡ rowAT (s2) as sets and rows are incompatible. For example,
{(1, 2), (2, 3)} ≡ {(5, 6), (2, 3)}, but {(1, 2), (2, 3)} �≡ {(2, 4), (3, 5)}.

we define s1 ∼= s2, iff rowPT (s1) = rowPT (s2) ∧ rowAT (s1) ≡ rowAT (s2).
Let us consider the following example: s1, s2, s3 ∈ S ∪ S · I, E = {e}, and

T (s1, e)=T (s2, e)=T (s3, e). T ′(s1, e)={(1, 2), (2, 3)}, T ′(s2, e)={(2, 4), (3, 5)},
and T ′(s3, e) = {(5, 6)}. So, we have s1 ∼= s3, s2 ∼= s3, but s1 �∼= s2. In this
case, when deriving states from strings in S, we know s1 and s2 correspond to
different states, e.g., q1 and q2, but we do not know which state s3 corresponds
to. This is because in T ′(s3, e) there is not any element in the form of (2, y).

Based on this observation, we introduce the concept of balanced observation
tables. The observations tables are called balanced provided that ∀s1, s2, s3 ∈
S ∪ S · I and e ∈ E, such that T (s1, e) = T (s2, e) = T (s3, e), if ∃αp ∈ Dx

+,
βp1, βp2 ∈ Dy

+, s.t., (αp, βp1) ∈ T ′(s1, e), (αp, βp2) ∈ T ′(s2, e), and βp1 �=
βp2, then ∃βp3 ∈ Dy

+, s.t., (αp, βp3) ∈ T ′(s3, e). In this previous example, if
T ′(s3, e) = {(5, 6), (2, 3)}, the observation tables are balanced, and s1 ∼= s3,
s2 �∼= s3, and s1 �∼= s2.

Now, we have the following lemma:

Lemma 1. In balanced observation tables, ∼= is an equivalence relationship.

The proof of the lemma can be found in [5].
For s1, s2 ∈ S ∪S · I, if s1 ∼= s2 then s1 is in the equivalence class of s2. So we

can define [s], s ∈ S an equivalence class of rows where each row is equivalent to s.
Like in original Angluin’s algorithm, the observation tables PT and AT are

called closed if for each t in S · I there exists an s in S such that t ∼= s. The
observation tables PT and AT are called consistent if for every s1, s2 ∈ S, such
that s1 ∼= s2, it holds that s1 · i ∼= s2 · i, for all i ∈ I.

Making Conjecture from Observation Tables. When the observation ta-
bles (S, E, T) and (S, E, T ′) are balanced, closed and consistent, a conjectured
PFSM M(S, E, T, T ′) = (Q, I, O, δ, λ, σ, q0) can be made from the tables as
follows:

– Q = {[s]|s ∈ S},
– q0 = [ε],
– δ([s], i) = [s · i],

442 K. Li, R. Groz, and M. Shahbaz

– λ([s], i) = T (s · i),
– σ([s], i) =

⋃
t∈[s]

T ′(t · i).

The property of the conjecture is stated in a theorem below. A full proof of
the theorem can be seen in the technical report [5].

Theorem 1. If (S, E, T) and (S, E, T ′) are balanced, closed and consistent ob-
servation tables, then the PFSM M(S, E, T, T ′) is consistent with the primary
table (S, E, T) and auxiliary table (S, E, T ′). Any other PFSM consistent with
(S, E, T) and (S, E, T ′) but inequivalent to M(S, E, T, T ′) must have more states.

2.3 Unit Testing (Learning) Procedure

The unit testing (learning) procedure is described as follows:

1. Start with S = {ε} and E = I. All elements in PT are unknown, and all
elements in AT are empty sets.

2. Construct test cases for unknown elements in PT , and record the outputs
in PT and AT . For s = i1, ..., im ∈ S ∪ S · I and e = im+1...im+n ∈ E,
choose input parameter values from Dx to construct input parameter string
αp = x1, ..., xm+n(xj ∈ Dx, 1 ≤ j ≤ m+n), provide (s ·e)⊗αp to the compo-
nent as test case, and obtain the output o1(y1), ..., om(ym), ..., om+n(ym+n).
Set T (s, e) = om+1, ..., om+n, and include (xm+1, ..., xm+n, ym+1, ..., ym+n)
in T ′(s, e).

3. Make PT and AT balanced. Whenever they are not balanced, find s1, s2, s3 ∈
S∪S ·I, e ∈ E, T (s1 ·e) = T (s2 ·e) = T (s3 ·e), αp ∈ D+

x , βp1, βp2 ∈ D+
y , such

that (αp, βp1) ∈ T ′(s1 · e), (αp, βp2) ∈ T ′(s2 · e), βp1 �= βp2, but �(αp, βp3) ∈
T ′(s3 · e). Construct (s3 · e)⊗ (γp · αp) as test case in which γp is any input
parameter string of length |s3|. Provide the test case to the component and
record the output in PT and AT .

4. Check whether PT and AT are closed. If not, find s1 in S and i in I such
that s1 · i �∼= s for all s ∈ S. Add the string s1 · i to S in both tables and go
back to step 2 to fill missing elements.

5. Check whether PT and AT are consistent. If not, find s1 and s2 in S, e in
E, and i in I such that s1 ∼= s2, but T (s1 · i · e) �= T (s2 · i · e) or T ′(s1 · i · e) �≡
T ′(s2 · i · e). Add the string i · e to E in both tables and go back to step 2 to
fill missing elements.

6. Now, PT and AT are balanced, closed and consistent. Make conjecture
PFSM M = (S, E, T, T ′).

Balanced, closed and consistent observation tables of the example in the Fig-
ure 1 are shown in the Figure 2. In the example, rowPT (ε) = rowPT (a) =
rowPT (aa) because of same output symbol in all rows. On the other hand,
rowAT (ε) �≡ rowAT (a) because of αp = 2 that makes T ′(ε, a) �≡ T ′(a, a). We
also have rowAT (aa) ≡ rowAT (ε) and rowAT (aa) �≡ rowAT (a).

Integration Testing of Distributed Components 443

PT

a

ε b
a b

aa b

AT

a

ε (1,2)(2,3)
a (2,4)(3,5)

aa (5,6)(2,3)

f ′(x) =
2, x = 1
3, x = 2
6, x = 5

, g′(x) =
4, x = 2
5, x = 3

Fig. 2. Balanced, closed and consistent observation tables of PFSM example in the
Figure 1 are shown (left). The learned output parameter functions f ′ and g′ are also
shown (right).

So, ε ∼= aa �∼= a, i.e., [ε] and [a] are two different states. The conjecture from
the table corresponds to the PFSM model in the Figure 1. The learned output
parameter functions f ′ and g′ are in Figure 2, too.

In integration testing, counterexamples and new input symbols can be iden-
tified. The process of dealing with them is similar as described in [6].

3 Integration Testing

At the end of unit testing, a conjecture PFSM is obtained for each component.
Then the integration testing procedure begins. In this procedure, the components
are integrated, and their joint behaviors are tested. Normally, several compo-
nents can be integrated. The integration testing procedure of two components is
illustrated in the following.

Suppose there are two components M and N . Their internal structures are
not known, so they are considered as two black boxes. Initially, their sets of input
symbols are known as IM and IN , respectively. In the unit testing (learning) of
them, the initial models M (1) = (QM , IM , OM , δM , λM , σM , qM0) and N (1) =
(QN , IN , ON , δN , λN , σN , qN0) are constructed.

3.1 Integration Testing Procedure

In [6], the integration testing architecture and procedure are described in which
the model is Finite State Machine (FSM). In this paper, we follow the principle
of [6] and adapt to the PFSM model.

For PFSM M = (QM , IM , OM , δM , λM , σM , qM0), we define the projection
operator ↓, which projects M to an FSM M ↓ = (QM , IM , OM , δM , λM , qM0).
It can be proved that if M is input deterministic and input enabled, M ↓ is
input deterministic and input enabled, too.

In integration testing, a test case is a sequence of tuples in which external
input symbol and parameter value, and the expected external output symbol
and parameter value are specified. According to the architecture described in [6],
when we execute a test case, the external interfaces can be controlled, and all the
interfaces can be observed. Thus in addition to comparing the external output
symbols and parameter values with expected ones, we also obtain the input and
output sequences with parameter values of the two components respectively.

444 K. Li, R. Groz, and M. Shahbaz

The integration testing procedure can be divided into two stages.
The first stage is similar to Scenario Testing in [6], in which test cases are

constructed according to test scenarios. In this work, since a range of input
parameters and constraints on output parameter values are specified in test
scenarios, the input parameter values are selected according to the ranges during
constructing test cases.

In executing the test case, in addition to checking whether the test scenario
has been respected, we check whether the observed behaviors conform to the
models of components. If there is a discrepancy between the observed behavior
of one component and its model, we go back to the unit testing procedure to
refine the model with the input sequence as counterexample.

In order to achieve a certain coverage of the ranges specified in test scenarios,
each test scenario can yield several test cases. When all the test cases have
successfully been executed, we begin the second stage.

In the second stage, test cases are constructed one by one according to a cer-
tain test generation strategy. First, following the Integration Testing procedure
for FSMs specified in [6], test cases are generated based on M (1) ↓ and N (1) ↓.
Then, input parameters are selected according to a certain policy to form a
complete test case.

Whenever one test case has been generated, we execute it. We check whether
the observed behaviors conform to the models of components, and go back to
unit testing procedure if counterexample has been found.

This stage and thus the integration testing procedure terminate when the
coverage criterion chosen by the test generation strategy is satisfied.

In both stages of the integration testing procedure, after executing a test case
and obtaining the real parameterized output string, there are several possibilities:

– The real parameterized output string is exactly the expected one. In this
case, we continue to construct and execute the next test case.

– The real parameterized output string is the expected one except for some
transitions the executed input parameter values have not been specified in
the models. In this case, we record these input/output parameter value pairs
in the corresponding cells in AT , and update the corresponding output pa-
rameter functions in the models. Then, we continue to construct and execute
the next test case.

– The real output symbols are the expected ones, but there are some output
parameters which are different from expected ones. In this case, we have
found a parameter counterexample. We record these input/output parameter
value pairs in the corresponding cells in AT , go back to unit testing to make
the observation tables balanced, closed and consistent, and make another
conjecture.

– The real output symbols are different from expected ones. In this case, we
have found an I/O counterexample. Or For a certain component, some new
input symbols have been produced by other components. For the two cases,
we go back to unit testing and follow the process specified in [6].

Integration Testing of Distributed Components 445

3.2 The Relationship Between Unit Testing and Integration Testing

In unit testing, some input sequences have been executed on a component. Based
on the output sequences observed, the closed and consistent observation table
has been constructed, and a conjecture of the PFSM has been made.

In integration testing, from the point of view of the component, e.g. M , more
input sequences are checked. There are several possibilities to introduce “new”
information into these sequence:

– Symbols produced by the other component. When being integrated, some
outputs of component N are given to component M as inputs. And these
symbols may have not been included in IM . So, new input symbols are
identified. In our approach, this “mismatch” is identified during integration
testing, rather than comparing ON and IM directly. Thus, only those symbols
which appear in the interaction are considered.

– Parameter values produced by the other component. These values are gen-
erated in the integration, and may have not been tried in unit testing.

– Test scenario. In a test scenario, along with the pairs of input and output
symbols, the parameter values being interested are provided. And some of
the values may have not been used in unit testing.

– The second stage of integration testing. In this stage, more new parameter
values are used to uncover the behaviors of the integrated system.

With all these “new” information, more behaviors of the components and the
integrated system can be observed in the integration testing procedure.

3.3 Result of Integration Testing

At the end of integration testing, for each component, we have a model, which
is consistent with all the tests that have been passed. And as stated by Theorem
1, If the component and the model have the same numbers of states, they are
equivalent to each other. At the same time, the joint behavior of these com-
ponents have been systematically tested. Using the approach described in [6],
a transition coverage is achieved. Faults could be discovered during integration
test execution.

4 Example

We illustrate our component integration strategy using a simple example. Sup-
pose an integrator is developing a travel agency web application, in which two
components have been identified, i.e., Room Reservation and Travel Agent.

4.1 Room Reservation Component

The simplified behavior of the component Room Reservation is as follows. The
component starts working when a name of the place is given from the exter-
nal enviornment. It provides a list of residences depending upon the place it is

446 K. Li, R. Groz, and M. Shahbaz

given. The residence can be either a Hotel or a Guest House. Then it takes one
residence as input and outputs a list of room types particular for that residence.
When one of the room types is given, the component responds with the list of
luxury types offered with the room. When one of the luxury type is provided,
the components gives out its corresponding price. Finally, it confirms reservation
upon an OK signal.

The component can be described as a PFSM model. The inputs, outputs and
associated parameter functions are shown in Figure 3. For simplicity, not all
the transitions are shown. For each state, if there is no transition for certain
input, the machine outputs Ω and stays in the state. Also, Dx and Dy may
be infinite but the figure shows some of the possible input parameter values
and their corresponding output parameter values. The abbreviations used in the
example are also given in the figure.

j(x5): List of Luxury Types for Hotel Room Type x5 as {Std,Dlx,Exe,...}

g(x2): List of Room Types for Hotel x2 as {Sgl,Dbl,...}

h(x3): List of Room Types for Guest House x3 as {Sgl,Dbl,Dor,...}

i(x4): List of Luxury Types for Guest House Room Type x4 as {Std,Dlx,Stu,...}

k(x6): Cost for Guest House Luxury Type x7 as 50$,60$,...

l(x7): Cost for Hotel Luxury Type x7 as 50$,60$,...

f(x1): List of Residencies for place x1 as {Htn,Sh,YR,Vil,...}

x3: Guest House Names as YR, Vil ...

x4: Guest House Room Type as Sgl, Dor, ...

x5: Hotel Room Type as Sgl, Dbl, ...

x6: Guest House Luxury Type as Std, Dlx, Stu, ...

x7: Hotel Luxury Type as Std, Dlx, Exe, ...

x2: Hotel Name as Htn, Sh, ...

x1: Place Name as PAR, LDN, ...

P: Place, H: Hotel, G: Guest House, RT: Room Type, LT: Luxury Type, OK: OK, RL:
Residence List, RT’: Room Types, LT’: Luxury Types, PH: Price for Hotel, PG: Price for
Guest House, CR: Confirm Reservation, PAR: Paris, LDN: London, Htn: Hilton Hotel, Sh:
Sherton Hotel, YR: Youth Residence (Guest House), Vil: Villa (Guest House), Sgl: Single,
Dbl: Double, Std: Standard, Dlx: Delux, Exe: Executive, Stu: Studio, Dor: Dormitory.

P (x1)/RL(f(x1))

H(x2)/RT ′(g(x2))

OK/CR

OK/CR

G(x3)/RT
′ (h(x3))

RT (x5)/LT ′(j(x5)) LT (x7)/PH(l(x7))

RT (x4)/LT ′(i(x4)) LT (x6)/PG(k(x6))

Fig. 3. PFSM model of Room Reservation Component

4.2 Unit Testing of Room Reservation Component

In the unit testing procedure, the component Room Reservation is considered as
a black box and I

(1)
M is known as {P, H, G, RT, LT, OK}. The Learner constructs

tables PT and AT for the component. Initially S = {ε}, E = I
(1)
M . The tester

execute several test cases with different input parameter values from Dx to fill the
tables. Finally when the observation tables are balanced, closed and consistent,
a conjecture is made. The Figure 4 shows PT for Room Reservation component.
The corresponding AT is shown in the Figure 5. For sake of simplicity, the rows
which contain Ω in all columns of the table are omitted. The figure 6 (right)
shows the conjecture accompanied by the input and output parameter values
used during the unit testing.

Integration Testing of Distributed Components 447

P H G RT LT OK

ε RL Ω Ω Ω Ω Ω
P Ω RT’ RT’ Ω Ω Ω

P-H Ω Ω LT’ Ω Ω
P-H-RT Ω Ω Ω Ω PH Ω

P-H-RT-LT Ω Ω Ω Ω Ω CR
P-G Ω Ω LT’ Ω Ω Ω

P-H-RT-LT-OK RL Ω Ω Ω Ω Ω

Fig. 4. Primary Table (PT) for Room Reservation Component

P H G RT LT OK

ε
(PAR,{Htn,YR}) Ω Ω Ω Ω Ω
(LDN,{Sh,Vil})

P Ω
(Htn,{Sgl}) (YR,

Ω Ω(Sh,{Sgl,Dbl}) {Sgl,Dor})
P-H Ω Ω Ω

(Sgl,{Std,Dlx})
Ω Ω(Dbl,{Std,Exe})

P-G Ω Ω Ω (Sgl,{Std,Dlx}) Ω Ω

P-H-RT Ω Ω Ω Ω
(Std,50$)

Ω
(Dlx,70$)

P-H-RT-LT Ω Ω Ω Ω Ω Ω

P-H-RT-LT-OK (PAR,{Htn,YR}) Ω Ω Ω Ω Ω

Fig. 5. Auxiliary Table (AT) corresponding to Primary Table in figure 4

4.3 Travel Agent Component

The component N of the web application is a Travel Agent. On one side, it
accepts inputs from the user and on the other side, it communicates with some
back end system. The simplified behavior of the Travel Agent component is as
follows. It takes a place name from user and transmits it to the back end. Later,
it takes the list of residences from the back end and displays it to the user.
The user inputs one of the residences, i.e., Hotel or Guest House, which is then
transmitted to the back end. The back end responds with the list of room types
for the provided residence. The component selects and resends one of the room
types to the back end which then provides the list of luxury types associated with
that room type. Once the luxury type is selected, the Travel Agent asks the back
end for its price. It shows the corresponding price to the user after increasing it by
10% for its commission. When the user selects OK, the component asks the back
end for confirmation, and finally the confirmation message is sent to the user.

The unit testing of Travel Agent component is performed with I
(1)
N =

{UI P, RL, UI H, UI G, RT ′, LT ′, PH, PG, UI OK, CR}. The symbols start-
ing with “UI ” are inputs from user, and symbols starting with “UO ” are out-
puts to user. A conjecture in the Figure 6 (left) is made when observation tables

448 K. Li, R. Groz, and M. Shahbaz

of the component are found balanced, closed and consistent. The input parame-
ters used in the unit testing and their corresponding output parameters are also
given in the figure.

4.4 Integration Testing

In the integration testing, the two components are connected to each other. In
this case, all the inputs of component Room Reservation come from component
Travel Agent. The component Room Reservation is considered as a back end for
Travel Agent which also accepts the inputs from the user. The integration of the
learned models of the two components is shown in the Figure 6.

In the procedure, the test input P (LDN) is given to the component Travel
Agent, which transmits it to the component Room Reservation. The component
produces a list of residences as RL({Htn, Y R}) and sends back to Travel Agent
component, which shows the list to user. The user selects a guest house Y R from
the list and provides a second input to the integrated system. The component
Travel Agent then sends input G(Y R) to the component Room Reservation,
and it continues working according to the models in the Figure 6. According to
the real component of Room Reservation in the Figure 3, the output sequence
produced from an input sequence P (PAR) − G(Y R) − RT (Sgl) − LT (Std)
is RL({Htn, Y R}) − RT ′({Sgl, Dor}) − LT ′({Std, Dlx}) − PG(50$), but the
learned model does not show the output symbol PG. Hence, a divergence is
found between the real component and its conjecture. In this case, the above
input sequence is treated as a counterexample for Room Reservation component
which will be learned again with the help of unit testing. When the observa-
tion tables are found balanced, closed and consistent, a new conjecture is made
which is equivalent to that in the Figure 3. The conjecture is then integrated
with Travel Agent component to complete integration testing.

Apart from the counterexample explained above, the example has other coun-
terexamples with respect to the parameter values. For instance, the component
Travel Agent contains some parameter values which can be input from the com-
ponent Room Reservation, but the learned parameter functions of component
Room Reservation are unable to produce those values. As an example, the com-
ponent Travel Agent expects a guest house named V il from user, when the list of
residences from component Room Reservation is provided. The testing proceeds
with the list of room types provided from component Room Reservation, from
which RT (Dbl) is selected by the component Travel Agent. The response from
the actual component of Room Reservation can be RT ′({Std, Stu}), which is
seen in the output parameter function q of the learned model of Travel Agent
component, but function v of the learned model of Room Reservation compo-
nent is unable to produce. This is because, the component Room Reservation
is never tested with residence V il in its unit testing. Thus, the input sequence
P (LDN)−G(V il)−RT (Dbl) can be treated as a counterexample for this com-
ponent. In the following unit testing, observation tables will be updated and a
new conjecture will be made.

Integration Testing of Distributed Components 449

LT ′({Std, Dlx})

G(Y R)

P (PAR)

HL({Htn, Y R})

UI P (x1)/P (x1)

U
I

O
K

/
O

K
C

R
/
C

R
′

PG(x7)/UO PG(r(x7))

PH(x7)/UO PH(r(x7))

LT ′(x6)/LT (q(x6))

RL(x2)/UO RL(x2)

R
T

′ (
x
5)

/
R

T
(p

(x
5)

)

R
T

(x
4)

/
L

T
′ (

v
(x

4)
)

P (x1)/RL(s(x1))

LT (x5)/PH(w(x5))

G
(x

2)
/
R

T
′ (

t(
x
2)

)

H
(x

3)
/
R

T
′ (

u
(x

3)
)

O
K

/
C

R
Input Parameter Values tested on the
Component
x1 : {PAR, LDN}
x2 : {Y R}
x3 : {Htn, Sh}
x4 : {Sgl, Dbl}
x5 : {Std, Dlx, Exe}

Output Parameter Values corresponding
to the input parameter values

s(x1) =
{Htn, Y R}, x1=PAR
{Sh, V il}, x2=LDN

t(x2) = {{Sgl, Dor}, x2=YR

u(x3) =
{Sgl}, x3={Htn}
{Sgl, Dbl}, x3={Htn,Sh}

v(x4) =
{Std, Dlx}, x4=Sgl
{Std, Exe}, x4=Dbl

w(x5) =
50$, x5=Std
70$, x5=Dlx

U
I

G
(x

3)
/
G

(x
3)

U
I

H
(x

4)
/
H

(x
4)

Input Parameter Values tested on the
Component
x1 : {PAR, LDN}
x2 : {{Htn, Y R}, {Sh, V il}}
x3 : {Y R, V il}
x4 : {Htn, Sh}
x5 : {{Sgl, Dbl}, {Sgl, Dor}}
x6 : {{Std, Dlx}, {Std, Exe}}
x7 : {50$, 70$}

Output Parameter Values corresponding
to the input parameter values

p(x5) =
Sgl, x5={Sgl},{Sgl,Dor}
Dbl, x5={Sgl,Dbl}

q(x6) =
Std, x6={Std,Dlx}
Stu, x6={Std,Stu}

r(x7) =
55$, x7 = 50$
77$, x7 = 70$

LT (Std)

PG(50$)

UI P (PAR) UI OKUI G(Y R)

RT ′({Sgl, Dor})

RT (Sgl)

Fig. 6. Integration of PFSM Models of Travel Agent (left) and Room Reservation
(right) Components - The dotted line between the components shows missing output
from Room Reservation Component

5 Conclusion

In this paper, we propose to use automata learning algorithms as a means to alle-
viate the absence of models for components, in a model-based testing approach.
As in previous related work [3,4], we adapt Angluin’s algorithm [1] to a testing
context, in an incremental approach. Our contribution extends this approach
in two directions. First, we use the models to drive integration testing. Since
the models are derived from testing observations, they cannot by themselves

450 K. Li, R. Groz, and M. Shahbaz

constitute oracles or a sound basis for the generation of tests for the compo-
nents learnt. But they are used to drive the tests of component interactions:
partial models learnt for isolated components provide a convenient abstraction
that can be used as a basis for covering the sequences of component interactions.
Secondly, we extend the learning algorithm to a model where we deal with para-
meterized inputs and outputs. This is motivated by the fact that actual values
exchanged during interactions are a major source of interoperability problems
between components.

[2] proposes an extension to Angluin’s algorithm where actions can also have
parameters, represented by a combination of boolean values. Our algorithm does
not include any bound on the domain of parameters, and we introduce the notion
of auxiliary table in the algorithm to deal with it without having to explore
all combinations. However, in contrast, our model does not include guards on
parameters. We are currently working on an extension to include predicates
on parameters to trigger different transitions. We are also working towards an
implementation of these algorithms to adapt to the practical problems of testing
telecommunication services which provided our framework.

Acknowledgement

We would like to thank Alexandre Petrenko (CRIM) for our fruitful discussions
on this topic.

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 2:87–106, 1987.

2. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state ma-
chines with parameters. Lecture Notes in Computer Science, 3922:107–121, March
2006.

3. Edith Elkind, Blaise Genest, Doron Peled, and Hongyang Qu. Grey box checking.
In 26th IFIP WG 6.1 International Conference on Formal Models for Networked
and Distributed Systems (FORTE 2006), 2006.

4. Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific optimization in
automata learning. In CAV, pages 315–327, 2003.

5. Keqin Li, Roland Groz, and Muzammil Shahbaz. Inference of parameterized finite
state machine - technical report. Technical report, Laboratoire Logiciels Systèmes
Réseaux, http://www-lsr.imag.fr/Les.Groupes/VASCO/publi-2006.htm, 2006.

6. Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of components
guided by incremental state machine learning. In Testing: Academic & Industrial
Conference - Practice And Research Techniques (TAIC PART), 2006.

7. Erkki Mäkinen and Tarja Systä. Mas - an interactive synthesizer to support be-
havioral modelling in uml. In ICSE ’01: Proceedings of the 23rd International Con-
ference on Software Engineering, pages 15–24, Washington, DC, USA, 2001. IEEE
Computer Society.

8. Stephane S. Somé. Beyond scenarios: generating state models from use cases. In
Proceedings of SCESM’02, 2002.

Minimizing Coordination Channels in
Distributed Testing

Guy-Vincent Jourdan1, Hasan Ural1, and Hüsnü Yenigün2

1 School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada, K1N 6N5

{gvj, ural}@site.uottawa.ca
2 Faculty of Engineering and Natural Sciences

Sabancı University
Tuzla, Istanbul, Turkey 34956
yenigun@sabanciuniv.edu

Abstract. Testing may be used to show that a system under test con-
forms to its specification. In the case of a distributed system, one may
have to use a distributed test architecture, involving p testers in order
to test the system under test. These p testers may under some circum-
stances have to coordinate their actions with each other using external
coordination channels. This may require the use of up to p2 − p unidi-
rectional coordination channels in the test architecture, which can be an
extensive and expensive setup. In this paper, we propose a method to
generate checking sequences while minimizing the number of required co-
ordination channels, by adapting existing methods that generate check-
ing sequences to be applied in a centralized test architecture. We consider
the case of unidirectional and bidirectional coordination channels, and
the case of transitive coordination.

1 Introduction

One way to check the conformance of an implementation to a specification is
to employ a checking sequence [1, 2]. Several methods have been proposed over
the last two decades to reduce the length of these checking sequences, e.g. [3,
4, 5, 6], but all of these methods focus on centralized systems. When testing
distributed systems, a tester is placed at each port (interface) of the system
to form a distributed test architecture. During the application of a checking
sequence within a distributed test architecture, the existence of multiple remote
testers brings out the possibility of two types of coordination problems among
testers: controllability and observability problems. These problems occur if a
tester cannot determine either when to apply a particular input to a system
under test (SUT), or whether a particular output from a SUT is generated in
response to a specific input, respectively.

Controllability refers to the ease of affecting the specified outputs. A control-
lability (synchronization) problem exists when a tester is required to send an

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 451–466, 2006.
c© IFIP International Federation for Information Processing 2006

452 G.-V. Jourdan, H. Ural, and H. Yenigün

input in the current transition, and because it is not involved in the previous
transition, i.e., it did not send the input or receive the output in the previous
transition, it does not know when to send the input to the SUT.

Observability refers to the ease of determining if specified inputs affect the
outputs. An observability problem exists when a tester is expecting to receive
an output from the SUT in response to either the previous input or the current
input and because it did not send the current input, it does not know when to
start or stop waiting for the output.

Several possible venues have been explored to deal with these problems. Some
authors have provided necessary and sufficient conditions to avoid controllability
and/or observability problems [7, 8]. When these problems cannot be avoided,
coordination among the remote testers is required through external coordina-
tion message exchanges [9,10,11,12,13,14,15,16,17,18,19]. Other authors have
proposed techniques to minimize these coordination messages necessary to fa-
cilitate the application of a checking sequence in a distributed test architec-
ture [14, 20, 21].

In this paper, we look at the use of external coordination messages from a
different point of view: we adapt the algorithm of [4] to distributed testing and
attempt to minimize the number of coordination channels required to perform
the test. If p testers are involved in a distributed test architecture, potentially
every pair of testers will need to exchange a coordination message at one point
or another, thus leading to a need of p2− p unidirectional coordination channels
to be added to the test environment. This can potentially require an extensive
and expensive setup just to run the test. Our goal is thus to require as few
coordination channels as possible, in contrast to exchanging as few external
coordination messages as possible. Once a channel has been set up, one would
use it for exchanging as many external coordination messages as necessary rather
than incurring the cost of setting up additional channels.

The rest of the paper is organized as follows: Section 2 gives the preliminaries.
Section 3 reviews the checking sequence generation algorithm that will be mod-
ified to generate a checking sequence while minimizing the number coordination
channels required. Section 4 presents the proposed approach. Section 5 gives the
concluding remarks.

2 Preliminaries

A multiport deterministic FSM M is defined by a tuple

(S, s1, p, X1, X2, . . . , Xp, δ, Y1, Y2, . . . , Yp, λ1, λ2, . . . , λp)

in which S is a finite set of states, s1 ∈ S is the initial state. The number of states
of M is denoted n and the states of M are enumerated, giving S = {s1, . . . , sn}.
p ≥ 1 is an integer which gives the number of ports of M , and the set of ports
of M is denoted [p] to denote the set {1, 2, . . . , p}.

Xi is the set of input symbols on port i such that for j ∈ [p] and j �= i,
Xi ∩ Xj = ∅. In other words, the input sets of the ports are disjoint. We use
X = ∪i∈[p]Xi to denote the set of all input symbols.

Minimizing Coordination Channels in Distributed Testing 453

δ : S ×X → S is the next state function. If s′ = δ(s, x) for states s, s′ ∈ S
and x ∈ Xi for some i ∈ [p], this means that, when the machine M is in state s,
and input x is applied at port i, then the machine will transfer to state s′.

Yi is the set of output symbols on port i such that for i, j ∈ [p] if i �= j then
Yi ∩ Yj = {−}, where − is null output.

λi : S×X → Yi is the output function on port i. Intuitively, if M is at a state s,
and an input x ∈ X is applied to M , then the output λi(s, x) is observed at port
i, unless λi(s, x) = −. Let Y denote the set Y1 × Y2 × · · · × Yp \ (−,−, . . . ,−).
We will also use the output function λ : S × X → Y , which is defined as
λ(s, x) = (λ1(s, x), λ2(s, x), . . . , λp(s, x)). We use y|i to denote the output at
port i ∈ [p] in y ∈ Y . The functions δ and λ can be extended to input sequences
in a straightforward manner.

An FSM, that will be denoted M0 throughout this paper, is shown in Figure 1.
Here, S = {s1, s2, s3, s4, s5}, X1 = {a}, X2 = {b}, X3 = {c} and Y1 = {1},
Y2 = {2}, Y3 = {3}.

s1s2

s3 s4 s5

b/(1, 2, −)

b/(−, 2, −)

b/(−, 2, −)

b/(1, −, −)

a/(1, −, −)

a/(1, 2, −)

c/(−, −, 3)

a/(1, 2, −)

a/(−, 2, −) a/(−, 2, −)

Fig. 1. The FSM M0

Throughout the paper, we use barred symbols (e.g. x̄, P̄ , . . .) to denote se-
quences, and juxtaposition to denote concatenation. In an FSM M , si ∈ S and
sj ∈ S, si �= sj , are equivalent if, ∀x̄ ∈ X∗, λ(si, x̄) = λ(sj , x̄). If ∃x̄ ∈ X∗ such
that λ(si, x̄) �= λ(sj , x̄) then x̄ is said to distinguish si from sj . An FSM M is
said to be minimal if none of its states are equivalent. A distinguishing sequence
for an FSM M is an input sequence D̄ for which each state of M produces a dis-
tinct output. More formally, for all si, sj ∈ S if si �= sj then λ(si, D̄) �= λ(sj , D̄).
Thus, for example, M0 has distinguishing sequence ab.

An FSM M can be represented by a directed graph (digraph) G = (V, E)
where a set of vertices V represents the set S of states of M , and a set of
directed edges E represents all transitions of M . Each edge e = (vj , vk, x/y) ∈ E
represents a transition t = (sj , sk, x/y) of M from state sj to state sk with input
x and output y where sj, sk ∈ S, x ∈ X , and y ∈ Y such that δ(sj , x) = sk,
λ(sj , x) = y. For a vertex v ∈ V and E′ ⊆ E, indegreeE′(v) denotes the number
of edges from E′ that enter v and outdegreeE′(v) denotes the number of edges
from E′ that leave v.

454 G.-V. Jourdan, H. Ural, and H. Yenigün

A sequence P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1) of
pairwise adjacent edges from G forms a path in which each node ni represents a
vertex from V and thus, ultimately, a state from S. Here initial(P̄) denotes n1,
which is the initial node of P̄ , and final(P̄) denotes nk, which is the final node
of P̄ . The sequence Q̄ = (x1/y1)(x2/y2) . . . (xk−1/yk−1) is the label of P̄ and is
denoted label(P̄). Q̄ is said to be a transfer sequence from n1 to nk. The path P̄
can be represented by the tuple (n1, nk, Q̄) or by the tuple (n1, nk, x̄/ȳ) in which
x̄ = x1x2 . . . xk−1 is the input portion of Q̄ and ȳ = y1y2 . . . yk−1 is the output
portion of Q̄. The cost of a path is given as the number of pairs of input/output
symbols in its label. Two paths P̄1 and P̄2 can be concatenated as P̄1P̄2 only if
final(P̄1) = initial(P̄2).

A tour is a path whose initial and final nodes are the same. Given a tour
Γ̄ = e1e2 . . . ek, P̄ = ejej+1 . . . eke1e2 . . . ej−1 is a path formed by starting Γ̄
with edge ej , and hence by ending Γ̄ with edge ej−1. An Euler Tour of G is
a tour that contains each edge of G exactly once. A set E′ of edges from G is
acyclic if no tour can be formed using the edges in E′. A digraph G = (V, E) is
symmetric if for each vertex v ∈ V , indegreeE(v)=outdegreeE(v). A minimum–
cost symmetric augmentation G′ = (V, E′) of a graph G = (V, E) is a symmetric
digraph where E′ = E∪Δ, where Δ contains a minimum number of replications
of some edges in E.

A digraph is strongly connected if for any ordered pair of vertices (vi, vj)
there is a path from vi to vj . An FSM is strongly connected if the digraph that
represents it is strongly connected. It will be assumed that any FSM considered
in this paper is deterministic, minimal, and strongly connected.

3 Overview of the Original Algorithm

In this section, we will present an existing approach for generating reduced length
checking sequences [4]. The method, in its original form, does not take into ac-
count the fact that the resulting checking sequence will be applied in a distrib-
uted test architecture. To apply it on a distributed test architecture, external
coordination messages must be inserted into the checking sequence. Hence, it
may be used to generate a checking sequence applicable within a distributed
test architecture which uses more coordination channels than it may actually be
needed. We will show in the next section how to modify the method to generate
checking sequences minimizing the number of coordination channels required.

Let M be an FSM and let N be an implementation of M . A checking sequence
is a sequence of inputs to be applied to N that will help determine whether N is a
correct implementation of M or not, i.e. whether N is isomorphic to M or not [1].
If M has a distinguishing sequence D̄, then D̄ can be used in the checking se-
quence to help to identify the states. Let us call T̄i = D̄/λ(si, D̄)B̄i a T–sequence,
where B̄i = Īi/λ(δ(si, D̄), Īi) for a possibly empty input sequence Īi (i.e. the in-
put portion of a transfer sequence). We call initial(T) (resp. final(T) the first
(resp. last) state of the sequence T . An α′–sequence is a sequence T̄k1 T̄k2 . . . T̄krk

,
for some 1 ≤ k1, k2, . . . , krk

≤ n, such that ∀i ∈ {1, 2, . . . , rk−1}, initial(T̄ki+1) =

Minimizing Coordination Channels in Distributed Testing 455

final(T̄ki). A T–set is a set of T–sequences, and an α′–set is a set of α′–sequences
{ᾱ′

1, ᾱ
′
2, . . . , ᾱ

′
q} satisfying the following condition [4]: for all i ∈ {1, 2, . . . , n},

there exists j ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , q}, such that T̄iT̄j is a subse-
quence of ᾱ′

k.
In [4], the following method is explained to produce a checking sequence.

Given a digraph G = (V, E) corresponding to an FSM M , a T –set T = {T̄1, T̄2,
. . . , T̄n}, and an α′–set A = {ᾱ′

1, ᾱ
′
2, . . . , ᾱ

′
q}, first another digraph G′ = (V ′, E′)

is produced by augmenting the digraph G as follows (Figure 2 is the digraph G′

corresponding to the digraph G of FSM M0 given in Figure 1, where the input
portion of T̄1, T̄2, T̄3, T̄4 and T̄5 is ab):

a) V ′ = V ∪ U ′ where U ′ = {v′ : v ∈ V }, i.e. for each vertex v in G, there are
two copies of v in G′. In Figure 2, the nodes at the bottom are the nodes in
V , and the nodes at the top are the nodes in U ′.

b) E′ = EC ∪ET ∪ Eα′ ∪ E′′ where
i) EC = {(v′i, vj , x/y) : (vi, vj , x/y) ∈ E}. The solid edges leaving the nodes

at the top in Figure 2 are the edges in EC .
ii) ET = {(vi, v

′
j , T̄i) : T̄i ∈ T , si = initial(T̄i), sj = final(T̄i)}. In Figure 2,

these edges are shown with dashed lines.
iii) Eα′ = {(vi, v

′
j , ᾱ

′
k) : ᾱ′

k ∈ A, ᾱ′
k = T̄i . . . T̄j , initial(T̄i) = si, f inal(T̄j) =

sj}. For example, in Figure 2 we consider an α′–set A = {ᾱ′
1 = T̄4T̄1T̄2T̄1,

ᾱ′
2 = T̄5T̄3T̄3}. The bold solid edges in Figure 2 are the edges of Eα′ .

iv) E′′ ⊆ {(v′i, v′j , x/y) : (vi, vj , x/y) ∈ E}. E′′ is a subset of the copies of
the edges in E placed between the corresponding nodes in U ′. E′′ is
selected in such a way that, G′′ = (U ′, E′′) does not have a tour and G′

is strongly connected. These edges are shown in Figure 2 with dotted
lines.

v′
1 v′

2 v′
3 v′

4 v′
5

v1 v2 v3 v4 v5

ᾱ′
1

ᾱ′
2

T̄1
T̄2

T̄3

T̄4 T̄5

a

c

a

b

b a
b

a
a b

b
a

c

a

a

Fig. 2. G′ for M0, with outputs omitted. The edges in Eα′ , EC , ET , and E′′ are shown
as bold solid lines, solid lines, dashed lines, and dotted lines, respectively.

In [4], it is shown that the input portion of the label of a path P̄ in G′ that
starts from v1 and ends at v1, that includes all the edges in Eα′ , and all the

456 G.-V. Jourdan, H. Ural, and H. Yenigün

edges in EC (that is, the solid lines in Figure 2) and that is followed by D̄ is a
checking sequence of M .

In order to reduce the length of the resulting checking sequence, an optimiza-
tion algorithm may be used. The method given in [4] forms a minimum-cost
symmetric augmentation G∗ of the digraph induced by Eα′ ∪ EC by adding
replications of edges from E′ . If G∗, with its isolated vertices removed, is con-
nected, then G∗ has an Euler tour. Otherwise, a heuristic such as the one given
in [3] is applied to make G∗ connected and an Euler tour of this new digraph
is formed to find a path from v1 to v1. A checking sequence is then constructed
based on the Euler tour as the input portion of the label of the path from v1 to
v1 followed by D̄.

(s1, s3, a/(1, 2, −)) (s3, s2, b/(−, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −))
(s3, s2, b/(−, 2, −)) � (s2, s2, a/(1, 2, −)) (s2, s2, a/(1, 2, −)) (s2, s1, b/(1, 2, −)) �
(s1, s4, c/(−, −, 3)) � (s4, s5, a/(−, 2, −)) (s5, s1, b/(1, −, −)) (s1, s3, a/(1, 2, −))
(s3, s2, b/(−, 2, −)) � (s2, s2, a/(1, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −))
(s3, s2, b/(−, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −)) (s3, s2, b/(−, 2, −)) �
(s2, s2, a/(1, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −)) (s3, s4, a/(−, 2, −))
(s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s5, a/(−, 2, −)) (s5, s1, b/(−, 2, −)) �
(s1, s4, c/(−, −, 3)) � (s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s3, b/(−, 2, −)) �
(s3, s4, a/(−, 2, −)) (s4, s5, a/(−, 2, −)) (s5, s4, a/(1, −, −)) � (s4, s3, b/(−, 2, −)) �
(s3, s4, a/(−, 2, −)) (s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s3, b/(−, 2, −)) �
(s3, s4, a/(−, 2, −)) (s4, s5, a/(−, 2, −)) (s5, s4, a/(1, −, −)) (s4, s5, a/(−, 2, −))
(s5, s1, b/(1, −, −)) � (s1, s4, c/(−, −, 3)) � (s4, s5, a/(−, 2, −)) (s5, s1, b/(1, −,−))
(s1, s3, a/(1, 2, −)) (s3, s2, b/(−, 2, −))

Fig. 3. The transition sequence on FSM M0 (given in Figure 1) corresponding to the
checking sequence produced from G′ (given in Figure 2). Two consecutive transitions
with a � between them have a synchronization problem.

4 The Proposed Approach

A checking sequence constructed by the method reviewed in the previous section
requires insertion of the external coordination message exchanges to be applica-
ble by remote testers in a distributed test architecture without encountering
controllability and observability problems.

Formally, a (controllability) synchronization problem occurs when, in the la-
bels xi/yi and xj/yj of any two adjacent transitions, there exists a tester l that
sends xj that is neither the one sending xi nor one of those receiving an output
belonging to yi. Let tester k be the tester that sends xi . In general, the solution
to the synchronization problem is to insert an external coordination message
exchange relating to controllability between xi/yi and xj/yj from tester k to
tester l to notify tester l to send its input to the SUT [15].

Any two consecutive transitions tij and tjk whose labels are xi/yi and xj/yj

in a sequence of transitions form a synchronizable pair of transitions if tjk

can follow tij without generating a synchronization problem. Any sequence of

Minimizing Coordination Channels in Distributed Testing 457

transitions in which every pair of consecutive transitions is synchronizable is
called a synchronizable transition sequence. An input/output sequence is said to
be synchronizable if it is the label of a synchronizable transition sequence.

The observability problem manifests itself as an undetectable output shift
fault. Formally, given a synchronizable transition sequence t1 . . . tk of M with
label x1/y1 x2/y2 . . . xk/yk, an output shift fault in an implementation N of M
exists if one of the following holds for some 1 ≤ i < j ≤ k:

1. There exists m ∈ [p] and yi|m = o ∈ Ym \ {−} in M , for all i < l ≤ j we
have that yl|m = − in M , for all i ≤ l < j we have that N produces output
− at m in response to xl after x1 . . . xl−1, and N produces output o at m in
response to xj after x1 . . . xj−1. Here the output o shifts from being produced
in response to xi to being produced in response to xj and the (forward) shift
is from ti to tj.

2. There exists m ∈ [p] and o ∈ Ym \ {−} such that yj |m = o in M , for all
i ≤ l < j we have that yl|m = − in M , for all i < l ≤ j we have that N
produces output − at m in response to xl after x1 . . . xl−1, and N produces
output o at m in response to xi after x1 . . . xi−1. Here the output o shifts
from being produced in response to xj to being produced in response to xi

and the (backward) shift is from tj to ti.

An instance of the observability problem manifests itself as a potentially un-
detectable output shift fault if there is an output shift fault related to o ∈ Ym

in two transitions with labels xi/yi and xj/yj, such that xi+1 . . . xj �∈ Xm. The
tester at m will not be able to detect the faults since it will observe the expected
sequence of interactions in response to xi . . . xj . Let tester h be the tester that
sends xj . In general, the solution to the observability problem is to insert an
external coordination message exchange relating to observability between xi/yi

and xj/yj from tester h to tester m:

– Case 1: (yi|m = o in M) By this exchange, tester h informs tester m that it
must have received an output from the SUT by now.

– Case 2: (yj |m = o in M) By this exchange, tester h informs tester m to
expect receiving an output from the SUT [15].

In most cases, insertion of an external coordination message exchange relating
to observability can be avoided by appending additional input/output subse-
quences to the label of the path whose input portion will be used as a checking
sequence [8]. Therefore, we will focus only on the controllability problem in the
rest of the paper.

The algorithm in [4] is intended for a centralized test architecture, and hence
in a distributed test architecture, some portions of the sequence generated by
the algorithm may lead to synchronization problems. We thus need to adapt the
algorithm to the distributed test architecture by modifying it in two ways: on
one hand, we try to select checking sequences that do not cause synchronization
problems (recognizing the fact that they might then be longer than the ones
requiring synchronization); on the other end we need to add some coordination
channels, when a synchronization problem cannot be avoided directly.

458 G.-V. Jourdan, H. Ural, and H. Yenigün

Note that there can be different types of coordination channels (unidirectional
or bidirectional) and the relaying of coordination messages through other testers
using available coordination channels (transitive coordinations between testers)
may or may not be allowed. We will first examine the case of unidirectional
coordination channels without transitive communications. The other cases will
be explored in Section 4.3.

4.1 Modifying the Digraph G′

Briefly, our approach consists of modifying the digraph G′ being built so that
only possible (synchronizable) transition sequences are available, and use that
modified digraph to build a checking sequence in which no controllability problem
exists. If it is not possible to generate a checking sequence with the current
form of the digraph, then additional coordination channels are added (which in
turn modifies the digraph and allows more consecutive pairs of transitions to
be executed without synchronization problems), until a digraph is formed that
allows building a checking sequence without any synchronization problem.

We first modify the digraph G′ by replacing each edge
(vi, v

′
j , x1x2 . . . xk/y1y2 . . . yk) ∈ ET∪Eα′ with a sequence of edges (vi, u

i
1, x1/y1),

(ui
1, u

i
2, x2/y2), (ui

2, u
i
3, x3/y3), . . . , (ui

k−2, u
i
k−1, xk−1/yk−1), (ui

k−1, v
′
j , xk/yk)

where ui
1, u

i
2, . . . , u

i
k−1 are new nodes introduced into the digraph. Let us call

this new digraph as G′′. Note that any path in G′ will have a corresponding
path in G′′ and vice versa. In fact the only difference between G′ and G′′ is
that, we have inserted explicit nodes along the edges in G′ whose labels are not
single input/output symbols. Therefore, in G′′ all the edges will have a single
input/output symbol pair as their labels.

Note the algorithm in Section 3 finds a tour over the edges Eα′ ∪EC . Let us
call these edges the essential edges in G′. We also call an edge in G′′ an essential
edge in G′′, if it is an edge in EC , or it is an edge that we insert into G′′ as we
create the edges corresponding to the individual steps along an edge in Eα′ .

Let e1 = (u1, u, x1/y1) and e2 = (u, u2, x2/y2) be two edges in G′′. Note that
the algorithm given in Section 3 may produce a checking sequence in which e1 is
immediately followed by e2 since e1 ends at and e2 starts at vertex u. However,
we would like to allow the possibility of having e1 being followed by e2 only if it
is possible to do so without creating a synchronization problem.

In order to set up the digraph in such a way that, e1 can be followed by e2 only
without creating a synchronization problem, we derive another digraph G′′′ =
(V ′′′, E′′′) which is the interchange graph (or line graph) of G′′. In other words,
each edge (u1, u2, x/y) in G′′, becomes a vertex (u1, u2, x/y) ∈ V ′′′. For two
nodes (u1, u2, x/y) and (u′

1, u
′
2, x

′/y′) in V ′′′, ((u1, u2, x/y), (u′
1, u

′
2, x

′/y′), ε) ∈
E′′′ if and only if u′

1 = u2. We also have the mapping R : E′′′ → 2[p]×[p]

that maps an edge in E′′′ to a set of coordination channels. Intuitively, for an
edge ((u1, u, x/y), (u, u′

2, x
′/y′), ε) ∈ E′′′, R((u1, u, x/y), (u, u′

2, x
′/y′), ε) is the

set of coordination channels such that if any one of these coordination chan-
nels exist, then (u, u′

2, x
′/y′) can follow (u1, u, x/y) without a synchronization

problem.

Minimizing Coordination Channels in Distributed Testing 459

A vertex (u1, u2, x/y) ∈ V ′′′ is called an essential vertex in G′′′ if the edge
(u1, u2, x/y) in G′′ is an essential edge in G′′.

A subset C ⊆ [p] × [p] of coordination channels induces a digraph G′′′
C =

(V ′′′, E′′′
C) where E′′′

C ⊆ E′′′, such that for an edge ((u1, u, x/y), (u, u′
2, x

′/y′), ε) ∈
E′′′, ((u1, u, x/y), (u, u′

2, x
′/y′), ε) ∈ E′′′

C iff R((u1, u, x/y), (u, u′
2, x

′/y′), ε) = ∅
(no coordination channel is required) or R((u1, u, x/y), (u, u′

2, x
′/y′)∩C �= ∅ (at

least one of the required coordination channels is available).
Then, our problem can be formulated as to find a set C ⊆ [p]× [p] of coordina-

tion channels with minimal cardinality such that G′′′
C has a strongly connected

component which includes all the essential vertices in G′′′. When G′′′
C has a

strongly connected component which includes all the essential vertices in G′′′,
we can find a tour in this strongly connected component that visits all these
essentials vertices. Thanks to the way we constructed G′′′, this tour indeed cor-
responds to a tour in G′′ that includes all the essential edges of G′′, and therefore
corresponds to a tour in G′ which includes all the edges in EC and Eα′ that can
thus be used to generate a checking sequence.

Thus we need to build a set C ⊆ [p]×[p] of coordination channels. If (i, j) ∈ C,
for i, j ∈ [p], this means that a coordination channel exists from the tester at
port i to the tester at port j. Two successive transitions with labels x1/y1 and
x2/y2, where x1 ∈ Xi and x2 ∈ Xj for some i, j ∈ [p], are synchronizable if and
only if:

1. i = j; or
2. y1|j �= −; or
3. (i, j) ∈ C; or
4. ∃k ∈ [p] such that y1|k �= − and (k, j) ∈ C

In the first two cases, the synchronization is achieved without using any exter-
nal coordination message exchanges. In the last two cases, the synchronization
is done externally, either by having the tester at port i (the sender of the input
of the first transition) send an external coordination message to the tester at
port j, or by having the tester at some port k, which receives a non–null output
due to the first transition, send an external coordination message to the tester
at port j.

4.2 A Heuristic to Find the Coordination Channels

As explained in Section 4.1, the original problem has been reformulated as finding
a set C ⊆ [p] × [p] of coordination channels with minimal cardinality such that
G′′′

C has a strongly connected component which includes all the essential vertices
in G′′′.

Initially, C = ∅. If G′′′
∅ has a strongly connected component which includes all

the essential vertices in G′′′, then we are done and by using G′′′
∅ we can construct

a checking sequence that does not require any coordination channels at all. If
that is not the case, then coordination channels must be added in order to add
more edges in G′′′

C , until such a strongly connected component can be found

460 G.-V. Jourdan, H. Ural, and H. Yenigün

(note that if C1 ⊆ C2 then the edges of G′′′
C1

are included in the edges of G′′′
C2

,
that is, by adding new coordination channels we add edges to G′′′). In the worst
case scenario, we will add coordination channels between every pair of testers,
which will in effect put us back in the case studied in [4].

In order to decide which coordination channels to add, we propose the follow-
ing heuristic, that converges to a solution while trying to add as few channels
as possible. We start from the digraph G′′′

C , with C = ∅. We first create the con-
densation of G′′′

C : the condensation of G′′′
C is a graph Ĝ′′′

C containing one vertex
for each strongly connected component of G′′′

C . Two vertices representing com-
ponents are joined by an edge in Ĝ′′′

C if there is an edge in G′′′
C from a vertex

in one component to a vertex in the other. Such an acyclic condensation can be
built in O(V ′′′ +E′′′) [22]. In [23], it is shown that finding a graph augmentation
(that is, adding new edges) that strongly connects Ĝ′′′

C is equivalent to finding an
augmentation that strongly connects G′′′

C , by using a mapping between a vertex
of Ĝ′′′

C and any vertex of the corresponding strongly connected component in
G′′′

C . It is also pointed out in [23] that in order to strongly connect a condensed
graph we necessarily need to add outgoing edges to each of its sink and isolated
vertices, and incoming edges to each of its source and isolated vertices.

We proceed as follows, starting with C = ∅:

– Condense the current graph G′′′
C into Ĝ′′′

C .
– Identify the set Φ of sources, sinks and isolated vertices in Ĝ′′′

C that are issued
from the condensation of strongly connected components of G′′′

C containing
essential vertices. If Φ is not empty, then let Φ1 be the set of such sources, Φ2
be the set of such sinks and Φ3 be the set of such isolated vertices. Otherwise
(Φ is empty), let Φ1 be the set of sources, Φ2 be the set of sinks and Φ3 be
the set of isolated vertices in Ĝ′′′

C .
– For each possible new coordination channel: count the number of elements

from Φ1 and Φ3 that will have at least one outgoing edge added to them by
the inclusion of the channel to C, and the number of elements of Φ2 and Φ3
that will have at least one incoming edge added to them by the inclusion
of the channel to C; identify the coordination channel c that will maximize
this number (that is, identify the coordination channel c that would remove
the most sources, sinks and isolated vertices from Ĝ′′′

C∪{c}).
– Add this coordination channel c to C.
– Re-calculate the digraph G′′′

C based on the new set C. If G′′′
C still has not

a strongly connected component which includes all the essential vertices in
G′′′, then re-iterate the process. Else, stop.

It is clear that the above process converges toward a solution, since in the
worst case we end up adding every pair to C. The solution found will be correct
according to [4], will not contain any synchronization issues by construction and
may require the addition of fewer coordination channels than simply synchroniz-
ing the original solution found in [4] (the solution may however be longer than
the one found originally).

Minimizing Coordination Channels in Distributed Testing 461

We illustrate our approach with the example given in Figure 4. This figure
shows a digraph which stands for an example of G′′ (although we do not show the
labels of the transitions for simplicity). Assume that in this example, the transi-
tion d has a synchronization problem with the transition e, and that transition
f has a synchronization problem with the transition g; every other transition
pair is synchronizable. Without adding any coordination channel, the graph G′′′

∅
shown in Figure 6 is obtained; note that d is not connected to e, and f is not
connected to g. The digraph is then condensed into Ĝ′′′

∅ shown in Figure 7. It
has four vertices, showing that G′′′

∅ is not strongly connected.

a

b

c

d e

f

g

Fig. 4. A sample graph G′′, with i/o la-
bels not shown. Assume that transition
pairs (d, e) and (f, g) have synchronization
problems.

a

b

c

d e

f

g

Fig. 5. The graph G′′′ corresponding to
G′′ of Figure 4

a

b

c

d e

f

g

Fig. 6. The graph G′′′
∅ corresponding to

G′′ of Figure 4

{g}{a, b, c, e}

{d} {f}

Fig. 7. The graph G′′′
∅ corresponding to

G′′′
∅ of Figure 6

Assume now that the addition of the coordination channel c1 allows the syn-
chronization of (d, e) (Figure 8). Adding such a coordination channel would not
add any outgoing edges from sinks nor incoming edges to sources of Ĝ′′′

∅ . The
digraph Ĝ′′′

{c1} is shown in Figure 9.
Assume that the addition of the coordination channel (c2) allows the syn-

chronization of (f, g) (Figure 10). This time, adding such a coordination channel
would add an outgoing edge from sink {f} and an incoming edge to source {g}
in Ĝ′′′

∅ . Thus c2 will be chosen over c1, and the resulting digraph Ĝ′′′
{c2} is shown

in Figure 11: everything collapses in a single vertex, showing that G′′′
{c2} is now

strongly connected, and an Euler path can be found.

462 G.-V. Jourdan, H. Ural, and H. Yenigün

a

b

c

d e

f

g

Fig. 8. The graph G′′′
{c1}: the coordina-

tion channel c1 resolves the synchroniza-
tion problem in transition pair (d, e)

{g}{a, b, c, d, e}

{f}

Fig. 9. The graph G′′′
{c1} corresponding to

G′′′
{c1} of Figure 8. Sources and sinks are

not impacted by the addition

a

b

c

d e

f

g

Fig. 10. The graph G′′′
{c2}: the coordina-

tion channel c2 resolves the synchroniza-
tion problem in transition pair (f, g)

{a, b, c, d, e, f, g}

Fig. 11. The graph G′′′
{c2} corresponding

to G′′′
{c2} of Figure 10: the graph is now

strongly connected

Going back to the example related to FSM M0 (given in Figure 1), the fol-
lowing set of coordination channels is required to make the checking sequence
given in Figure 3 synchronized:

C = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 1)}

However, for the same FSM, applying the proposed approach to the digraph
G′ given in Figure 2 will yield the following set of coordination channels to make
the checking sequence given in Figure 12 synchronized:

C = {(1, 2), (2, 1), (3, 1), (3, 1)}

Note that, the length of the checking sequence given in Figure 3 is 50. The
checking sequence given in Figure 12 requires one less coordination channel,
but one more input symbol, making its length 51. Also note that, the number
of coordination messages exchanged is reduced by 1. However this reduction is
only coincidental, as the method proposed does not aim at reducing the number
of coordination messages.

4.3 Different Types of Synchronization Strategies

In the discussion presented so far, it is assumed that coordination channels are
unidirectional, and thus coordination occurs only in one direction over a single

Minimizing Coordination Channels in Distributed Testing 463

(s1, s3, a/(1, 2, −)) (s3, s2, b/(−, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −))
(s3, s2, b/(−, 2, −)) � (s2, s2, a/(1, 2, −)) (s2, s2, a/(1, 2, −)) (s2, s1, b/(1, 2, −)) �
(s1, s4, c/(−, −, 3)) � (s4, s5, a/(−, 2, −)) (s5, s1, b/(1, −, −)) (s1, s3, a/(1, 2, −))
(s3, s2, b/(−, 2, −)) � (s2, s2, a/(1, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −))
(s3, s2, b/(−, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −)) (s3, s2, b/(−, 2, −)) �
(s2, s2, a/(1, 2, −)) (s2, s1, b/(1, 2, −)) (s1, s3, a/(1, 2, −)) (s3, s4, a/(−, 2, −))
(s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s5, a/(−, 2, −)) (s5, s1, b/(−, 2, −)) �
(s1, s3, a/(1, 2, −)) (s3, s4, a/(−, 2, −)) (s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −))
(s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s5, a/(−, 2, −)) (s5, s4, a/(1, −, −)) �
(s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −))
(s4, s3, b/(−, 2, −)) � (s3, s4, a/(−, 2, −)) (s4, s5, a/(−, 2, −)) (s5, s4, a/(1, −, −))
(s4, s5, a/(−, 2, −)) (s5, s1, b/(1, −, −)) � (s1, s4, c/(−, −, 3)) � (s4, s5, a/(−, 2, −))
(s5, s1, b/(1, −, −)) (s1, s3, a/(1, 2, −)) (s3, s2, b/(−, 2, −))

Fig. 12. The transition sequence on FSM M0 (given in Figure 1) of the checking
sequence produced from G′′′. Two consecutive transitions with a � between them have
a synchronization problem.

channel. In other words, C contains ordered pairs of testers (i, j), allowing an
external coordination message to be sent from i to j but not from j to i. Also
having (i, j) and (j, k) in C does not insure that a pair of transitions involving
testers i and k can necessarily be synchronized.

It is however possible to modify our approach to accommodate for both cases.

Bidirectional Synchronization Channels. If coordination channels are bidi-
rectional, then once a pair of testers (i, j) is added to C, any pair of transitions
involving testers i and j can be synchronized, be it from i to j or from j to i (in
both directions). Thus, in that scenario, two successive transitions with labels
x1/y1 and x2/y2, where x1 ∈ Xi and x2 ∈ Xj, i, j ∈ [p], are synchronizable if
and only if (let Cs denote the symmetric closure of C below):

1. i = j; or
2. y1|j �= −; or
3. (i, j) ∈ Cs; or
4. ∃k ∈ [p] such that y1|k �= − and (k, j) ∈ Cs

Adapting the algorithm to this new definition is straightforward. We only
need to consider G′′′

Cs instead of G′′′
C while checking if all the essential nodes are

in a single strongly connected component.

Transitive Synchronizations. It is possible for the testers to organize a syn-
chronization strategy allowing the coordination of two testers in the absence
of direct coordination channels between them, by using a chain of external co-
ordination messages involving other testers. Such a transitive synchronization
strategy can be considered both with unidirectional and bidirectional coordina-
tion channels.

When we consider unidirectional channels with transitive strategy, two suc-
cessive transitions with labels x1/y1 and x2/y2, where x1 ∈ Xi and x2 ∈ Xj ,

464 G.-V. Jourdan, H. Ural, and H. Yenigün

i, j ∈ [p], are synchronizable if and only if (let Ct denote the transitive closure
of C below) :

1. i = j; or
2. y1|j �= −; or
3. (i, j) ∈ Ct; or
4. ∃k ∈ [p] such that y1|k �= − and (k, j) ∈ Ct

When we consider bidirectional channels with transitive strategy, two suc-
cessive transitions with labels x1/y1 and x2/y2, where x1 ∈ Xi and x2 ∈ Xj ,
i, j ∈ [p], are synchronizable if and only if (let Cst denote the symmetric and
transitive closure of C below) :

1. i = j; or
2. y1|j �= −; or
3. (i, j) ∈ Cst; or
4. ∃k ∈ [p] such that y1|k �= − and (k, j) ∈ Cst

Adapting the algorithm to this new definition is also straightforward. We only
need to consider G′′′

Ct or G′′′
Cst instead of G′′′

C while checking if all the essential
nodes are in a single strongly connected component.

Note that if establishing new coordination channel is considered costly, then
following such a transitive synchronization strategy is certainly worthwhile, since
it can significantly lower the number of coordination channels required.

5 Conclusions

We have presented an approach to minimize the number of coordination channels
in a distributed test architecture for the application of a checking sequence. The
proposed approach is presented as a modification of an existing method for
constructing a checking sequence, but can be adapted to work with any other
method that constructs a checking sequence by finding a tour on an auxiliary
graph derived from a finite state machine specification of the application.

The heuristic algorithm explained above finds a set of coordination channels
C such that G′′′

C has the required property (i.e. having all the essential vertices in
a single strongly connected component). However, since it is a greedy heuristic
algorithm, it may accumulate a set of coordination channels which may have a
subset C′ that will yield G′′′

C′ with the required property. To find such a subset
of C, will require a post–processing phase. The nature of this processing phase
is explained as follows:

Note that inclusion of a coordination channel (i, j) ∈ [p]× [p] in C inserts a set
of edges in G′′′

C . Namely, an edge e ∈ E′′′ is inserted in G′′′
C due to the inclusion

of (i, j) in C, if (i, j) ∈ R(e). The same edge e can be inserted by the inclusion
of some other coordination channels in R(e) into C as well.

Let R−1(i, j) = {e ∈ E′′′ | (i, j) ∈ R(e)}, i.e. R−1(i, j) is the set of edges
inserted by the coordination channel (i, j). Given a set of coordination channels

Minimizing Coordination Channels in Distributed Testing 465

C, let R−1(C) = ∪(i,j)∈CR−1(i, j). For two sets of coordination channels C′ and
C such that C′ ⊆ C but R−1(C′) = R−1(C), it is obvious that G′′′

C′ has all the
essential vertices in a single strongly connected component iff G′′′

C does, because
both C′ and C insert the same set of edges. This is an instance of the set cover
problem, which is known to be NP–complete. An existing heuristic algorithm for
the set cover problem can be used to find a minimal subset C′ of C such that
R−1(C′) = R−1(C).

Acknowledgments

This work is supported in part by the Natural Science and Engineering Research
Council of Canada under grants RGPIN 976 and RGPIN 312018, CITO/OCE
of the Government of Ontario, and a grant by Sabancı University.

References

1. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. In: Proceedings of the IEEE. Volume 84. (1996) 1090–1126

2. Gill, A.: Introduction to The Theory of Finite State Machines. McGraw Hill, New
York (1962)

3. Ural, H., Wu, X., Zhang, F.: On minimizing the length of checking sequences.
IEEE Transactions on Computers 46 (1997) 93–99

4. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51 (2002) 1111–1117

5. Tekle, K.T., Ural, H., Yalcin, M.C., Yenigun, H.: Generalizing redundancy elimi-
nation in checking sequences. In: ISCIS 2005, LNCS 3733. (2005) 915–926

6. Yao, M., Petrenko, A., v. Bochmann, G.: Conformance testing of protocol machines
without reset. In: Protocol Specification, Testing and Verification. Volume XIII.
(1993) 241–256

7. Chen, J., Hierons, R., Ural, H.: Conditions for resolving observability problems in
distributed testing. In: FORTE 2004, LNCS 3235. (2004) 229–242

8. Chen, X.J., Hierons, R.M., Ural, H.: Resolving observability problems in distrib-
uted test architecture. In: IFIP FORTE 2005, LNCS 3731. (2005) 219–232

9. Sarikaya, B., v. Bochmann, G.: Synchronization and specification issues in protocol
testing. IEEE Transactions on Communications 32 (1984) 389–395

10. Luo, G., Dssouli, R., Bochmann, G.V., Venkataram, P., Ghedamsi, A.: Test gener-
ation with respect to distributed interfaces. Comput. Stand. Interfaces 16 (1994)
119–132

11. Tai, K., Young, Y.: Synchronizable test sequences of finite state machines. Com-
puter Networks and ISDN Systems 30 (1998) 1111–1134

12. Hierons, R.M.: Testing a distributed system: Generating minimal synchronised test
sequences that detect output-shifting faults. Information and Software Technology
43 (2001) 551–560

13. Khoumsi, A.: A temporal approach for testing distributed systems. Software
Engineering, IEEE Transactions on 28 (2002) 1085–1103

14. Wu, W.J., Chen, W.H., Tang, C.Y.: Synchronizable for multi-party protocol con-
formance testing. Computer Communications 21 (1998) 1177–1183

466 G.-V. Jourdan, H. Ural, and H. Yenigün

15. Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing.
Inform. Software Technol. 41 (1999) 767–780

16. Boyd, S., Ural, H.: The synchronization problem in protocol testing and its com-
plexity. Information Processing Letters 40 (1991) 131–136

17. Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: Pro-
tocol Specification, Testing and Verification. Volume V., Elsevier Science (North
Holland) (1985) 483–494

18. Dssouli, R., von Bochmann, G.: Conformance testing with multiple observers.
In: Protocol Specification, Testing and Verification. Volume VI., Elsevier Science
(North Holland) (1986) 217–229

19. Rafiq, O., Cacciari, L.: Coordination algorithm for distributed testing. The Journal
of Supercomputing 24 (2003) 203–211

20. Hierons, R.M., Ural, H.: Uio sequence based checking sequence for distributed test
architectures. Information and Software Technology 45 (2003) 798–803

21. Chen, J., abd H. Ural, R.M.H.: Overcoming observability problems in distributed
test architectures. (Information Processing Letters) to appear.

22. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1
(1972) 146–160

23. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5 (1976)
653–665

Derivation of a Suitable Finite Test Suite for
Customized Probabilistic Systems�

Luis F. Llana-Díaz, Manuel Núñez, and Ismael Rodríguez

Dept. Sistemas Informáticos y Programación
Universidad Complutense de Madrid, 28040 Madrid, Spain

{llana, mn, isrodrig}@sip.ucm.es

Abstract. In order to check the conformance of an IUT (implemen-
tation under test) with respect to a specification, it is not feasible, in
general, to test the whole set of IUT available behaviors. In some situ-
ations, testing the behavior of the IUT assuming that it is stimulated
by a given usage model is more appropriate. Specifically, if we consider
that specifications and usage models are defined in probabilistic terms,
then by applying a finite set of tests to the IUT we can compute a rel-
evant metric: An upper bound of the probability that a user following
the usage model finds an error in the IUT. We also present a method to
find an optimal (with respect to the number of inputs) set of tests that
minimizes that upper bound.

1 Introduction

In order to test the behavior of an IUT (implementation under test) sometimes
it is preferable to check only some functionalities that are specially relevant or
critical. In this line, we can consider that the IUT is analyzed in the context
of a specific usage model or, more generally, in terms of its interaction with a
(probably abstract) user that represents some manners to interact with the IUT.
Let us note that if only the functional behavior of systems is considered (that is,
we just check what must or must not be done), then this kind of user-customized
approach consists in testing a subset of the behaviors defined by the specification.
However, if other kinds of features are taken into account then this approach
might provide some interesting possibilities. In particular, if specifications and
user models are defined in probabilistic terms then we can calculate a measure
that cannot be computed otherwise: After a finite set of tests is applied to
the IUT, we can calculate a measure of the probability that a user behaving
according to the user model finds a wrong behavior in the IUT. That is, after
a finite subset of the infinite set of relevant behaviors is analyzed, we will be
provided with a global measure of correctness of the IUT.

We can do it as follows. First, we choose some tests that exercise some behav-
iors concerned by the user model. Then, we apply the tests to the IUT to check
� Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,

the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 467–483, 2006.
c© IFIP International Federation for Information Processing 2006

468 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

whether the behaviors exercised by these tests are correct with respect to the
specification. Basically, tests induce some stimuli (sequences of inputs) and we
observe the response (sequences of outputs) produced by the IUT. We cannot
observe if the IUT produces a with probability 0.5; what we can observe is the
fact that a is produced or not, but not the value 0.5. In fact, our process to as-
sess the IUT will be probabilistic. For each specific behavior case (i.e., sequence
of inputs) analyzed by tests, we apply a hypothesis contrast to check whether
we can claim, for a given level of confidence α, that the answers (i.e., sequences
of outputs) produced by the IUT behave as required by the specification. For
instance, if the specification says that a and b are produced with 0.5 probability
each, then the confidence will be high if they are observed 507 and 493 times, re-
spectively. However, if they are produced 614 and 386 times then the confidence
will be lower.

Let us suppose that, after a suitable hypothesis contrast is applied, a given
IUT behavior case is validated with confidence α. Then we can assume, with that
confidence, that the probability of each IUT response (in that behavior case) is
actually defined as in the specification. Under this confidence, we can calculate
the probability that a sequence of inputs/outputs whose behavior was validated
is produced during the interaction of the IUT and the user model. By using
this information we will calculate our correctness metric: An upper bound of the
probability that a wrong probabilistic behavior is observed when the user model
and the IUT interact. In the worst case all behaviors that have not been either
validated or observed are wrong. Hence, after a finite test suite is applied, we can
compute the probability of taking a non-validated behavior, which is incorrect
in the worst case (with confidence α).

Let us note that this measure cannot be computed in other testing frameworks.
In particular, if the probabilistic behavior of systems is not considered (or it is,
but user models are not regarded), then after a finite test suite is applied the
coverage of all relevant cases is null in general: Among an infinite set of behavior
cases to be analyzed, an infinitesimal part of them are tested. Thus, without
any additional assumptions, nothing about the correctness of this IUT can be
claimed. Though the capability of a finite test suite to detect errors in an IUT
can be assessed, it is done either in heuristic terms [8,10,2] or by adding some
hypotheses about the IUT behavior that allow to reduce the number of cases to
be tested [1,11,21,17,18]. On the contrary, our metric provides a (probabilistic)
non-heuristic correctness measure without reducing the testing space.

In this paper we continue a previous work [12]. In that approach, the behavior
of the composition of the IUT and the user model is probabilistically compared
to the behavior of the composition of the specification and the user model. A
single hypothesis contrast is used to compare the former (denoted by means of
a single random variable) and the latter (represented by a sample denoting all
observations). Though this approach is simple and elegant, it has a drawback:
Even if we assume that user models are correct by definition, their probabilistic
behavior may be a source of sampling noise. For instance, let us suppose that
the user model chooses between a and b with equal probability. Then, in both

Derivation of a Suitable Finite Test 469

cases, the specification answers c and d, again with equal probabilities. Though
it is not very probable, the interaction of the user model and a correct IUT
could produce a/c 100 times and b/c 100 times. In this case, we would (wrongly)
deduce that the IUT is incorrect, because the specified probability of both a/c
and b/c is 0.5 · 0.5 = 0.25 �� 100

200 . Similarly, a/c and a/d could be produced 100
times each, which again is not accepted. However, the latter sample is rejected
due to a (rare) behavior of the user model. On the contrary, in this paper we
will apply a hypothesis contrast for each behavior case (i.e., sequence of inputs).
Each hypothesis contrast application checks whether responses (i.e., sequences of
outputs) are properly given for the considered sequence of inputs. In the previous
example, the correctness of the IUT when a or b are produced is independently
checked. Hence, the sample cannot be ruined by a rare behavior of the user
model (of course, it can still be ruined by a rare behavior of a correct IUT).
Besides, in this paper we will use the metric of error probability of the IUT to
find optimal sets of tests. Let us note that our metric does not only provide a
correctness measure, but it also can be used to guide the testing process: If we
compute that passing a given test suite Ω1 would provide an error measure 0.3,
while passing another suite Ω2 would provide an error measure 0.2, then the
suite Ω2 is preferable.

In terms of other related work, there is significant work on testing preorders
and equivalences for probabilistic processes [4,16,19,5,3,20,14,13]. Most of these
proposals follow the de Nicola and Hennessy’s style [6,9], that is, two processes
are equivalent if the application of any test belonging to a given set returns the
same result. Instead, we are interested in checking whether an implementation
conforms to a specification. In particular, our relations are similar to the ones
introduced in [21,15].

The rest of the paper is structured as follows. In the next section we present
some basic notions; in Section 3 we introduce tests and we define the interaction
between machines and users; in Section 4 we present the relations that allow
to relate specifications and implementations; next, in Section 5 we describe our
method to calculate an upper bound of the error probability of an IUT after it
is tested, and we use this notion to find optimal test suites; finally, in Section 6
we present our conclusions and some lines of future work.

2 Basic Notions

First, we introduce some statistics notions. An event is any reaction we can detect
from a system or environment; a random variable is a function associating each
event with its probability.

Definition 1. Let A be a set of events and ξ : A → [0, 1] be a function such
that

∑
α∈A ξ(α) = 1. We say that ξ is a random variable for the set of events A.

If we observe that the event α ∈ A is produced by a random source whose
probabilistic behavior is given by ξ then we say that α has been generated by ξ.
We extend this notion to sequences of events as expected: If we observe that
the sequence of events H = 〈α1, . . . , αn〉 is consecutively produced by a random

470 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

source whose probabilistic behavior is given by ξ then we say that H has been
generated by ξ or that H is a sample of ξ.

Given the random variable ξ and a sequence of events H , we denote the
confidence that H is generated by ξ by γ(ξ, H). !

This definition introduces a simple version of discrete random variable where all
the events are independent. The actual definition of a random variable is more
complex but it is pointless to use its generality in our setting. In the previous
definition, the application of a suitable hypothesis contrast is abstracted by the
function γ. We have that γ(ξ, H) takes a value in [0, 1]. Intuitively, a sample
will be rejected if the probability of observing that sample from a given random
variable is low. Due to lack of space we do not present here an actual definition
of the function γ. An interested reader can find it in [12]. It is worth to point
out that the results of this paper do not depend on the formulation of γ, being
possible to abstract the actual definition.

Next we present the formalism we will use to define specifications and imple-
mentations. A probabilistic finite state machine is a finite state machine where

each transition is equipped with a probability. Thus, a transition s
i/o−−−−→ p s′

denotes that, if the machine is in state s and the input i is received then, with
probability p, it moves to the state s′ and produces the output o. We will as-
sume that the environment stimulates the machine with a single input at any
time. Thus, given s and i, the addition of all values p such that there exist o,

s′ with s
i/o−−−−→ p s′ must be equal to 1. In contrast, there is no requirement

binding the probabilities departing from the same state and receiving different
inputs because each one describes (part of) a different probabilistic choice of the
machine. In other words, we consider a reactive interpretation of probabilities
(see [7,16]).

Definition 2. A Probabilistic Finite State Machine, in short PFSM, is a tuple
M = (S, I, O, δ, s0) where

– S is the finite set of states and s0 ∈ S is the initial state.
– I and O, with I ∩ O = ∅, denote the sets of input and output actions,

respectively.

– δ ⊆ S× I ×O× (0, 1]× S is the set of transitions. We will write s
i/o−−−−→p s′

to denote (s, i, o, p, s′) ∈ δ.

Transitions and states fulfill the following additional conditions:

– For all s ∈ S and i ∈ I, the probabilities associated with outgoing transitions

add up to 1, that is,
∑
{p | ∃ o ∈ O, s′ ∈ S : s

i/o−−−−→p s′} = 1.
– PFSMs are free of non-observable non-determinism, that is, if we have two

transitions s
i/o−−−−→p1 s1 and s

i/o−−−−→p2 s2 then p1 = p2 and s1 = s2.
– In addition, we will assume that implementations are input-enabled, that is,

for all state s and input i there exist o, p, s′ such that s
i/o−−−−→p s′. !

Derivation of a Suitable Finite Test 471

Although PFSMs will be used to define specifications and implementations, a
different formalism will be used to define user models. Specifically, we will use
probabilistic labeled transition systems. A user model represents the external en-
vironment of a system. User models actively produce inputs that stimulate the
system, while passively receive outputs produced by the system as a response.
The states of a user model are split into two categories: Input states and output
states. In input states, all outgoing transitions denote a different input action.
Since inputs are probabilistically chosen by user models, any input transition is
endowed with a probability. In particular, s i−−→ p s′ denotes that, with prob-
ability p, in the input state s, the input i is produced and the state is moved
to s′. Given an input state s, the addition of all probabilities p such that there
exists i, s′ with s i−−→p s′ must be lower than or equal to 1. If it is lower then we
will consider that the remainder up to 1 implicitly denotes the probability that
the interaction with the system finishes at the current state. Regarding output
states, all transitions departing from an output state are labeled by a different
output action. However, output transitions do not have any probability value
(let us remind that outputs are chosen by the system). Input and output states
will strictly alternate, that is, for any input state s, with s i−−→ p s′, s′ is an
output state, and for any output state s, with s o−−→ s′, s′ is an input state.

Definition 3. A probabilistic labeled transition system, in short PLTS, is a tuple
U = (SI , SO, I, O, δ, s0) where

– SI and SO, with SI ∩ SO = ∅, are the finite sets of input and output states,
respectively. s0 ∈ SI is the initial state.

– I and O, with I∩O = ∅, are the sets of input and output actions, respectively.
– δ ⊆ (SI × I × (0, 1]× SO)∪ (SO ×O× SI) is the transition relation. We will

write s i−−→ p s′ to denote (s, i, p, s′) ∈ SI × I × (0, 1]× SO and s o−−→ s′ to
denote (s, o, s′) ∈ SO ×O × SI .

Transitions and states fulfill the following additional conditions:

– For all input states s ∈ SI and input actions i ∈ I there exists at most one
outgoing transition from s: |{s i−−→p s′ | ∃ p ∈ (0, 1], s′ ∈ SO}| ≤ 1.

– For all output states s ∈ SO and output actions o ∈ O there exists exactly
one outgoing transition labeled with o: |{s o−−→ s′ | ∃ s′ ∈ SI}| = 1.

– For all input state s ∈ SI the addition of the probabilities associated with
the outgoing transitions is lower than or equal to 1, that is, cont(s) =∑
{p| ∃ s′ ∈ SO : s i−−→ p s′} ≤ 1. So, the probability of stopping at that

state s is stop(s) = 1− cont(s). !

By iteratively executing transitions, both PFSMs and PLTSs can produce se-
quences of inputs and outputs. The probabilities of these sequences are given by
the probabilities of the transitions. Next we introduce some trace notions.

Definition 4. A probability trace π is a finite sequence of probabilities, that
is, a possibly empty sequence 〈p1, p2, . . . , pn〉 ∈ (0, 1]∗. The symbol ε denotes

472 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

the empty probability trace. Let π = 〈p1, p2, . . . , pn〉 be a probability trace. We
define its sef-product, denoted by

∏
π, as

∏
1≤i≤n pi. Since

∏
a∈∅

= 1, we have∏
ε = 1. Let π = 〈p1, p2, . . . , pn〉 and π′ = 〈p′1, p′2, . . . , p′m〉 be probability traces.

Then, π · π′ denotes their concatenation that is, 〈p1, p2, . . . , pn, p′1, p
′
2, . . . , p

′
m〉,

while π∗π′ and π/π′ denote their pairwise product and division respectively, that
is, 〈p1∗p′1, p2∗p′2, . . . , pr∗p′r〉 and 〈p1/p′1, p2/p′2, . . . , pr/p′r〉, where r = min(n, m).

A trace ρ is a finite sequence of input/output actions (i1/o1, i2/o2, . . . , in/on).
The symbol ε denotes the empty trace. Let ρ and ρ′ be traces. Then, ρ · ρ′

denotes their concatenation. A probabilistic trace is a pair (ρ, π) where ρ is a
trace (i1/o1, i2/o2, . . . , in/on) and π = 〈p1, p2, . . . , pn〉 is a probability trace. If ρ
and π are both empty then we have the empty probabilistic trace, written as (ε, ε).
Let (ρ, π) and (ρ′, π′) be probabilistic traces. Then, (ρ, π) · (ρ′, π′) denotes their
concatenation, that is, (ρ · ρ′, π · π′).

An input trace � is a finite sequence of input actions (i1, i2, . . . , in). We extend
the previous notions of empty trace and concatenations to input traces in the
expected way. If ρ = (i1/o1, i2/o2, . . . , in/on) then we denote by i(ρ) the input
trace (i1, i2, . . . , in). A probabilistic input trace is a pair (�, π) where � is an input
trace (i1, i2, . . . , in) and π = 〈p1, p2, . . . , pn〉. We also consider the concepts of
concatenation and empty probabilistic input traces. !

Next we define how to extract traces from PFSMs and PLTSs. First, we consider
the reflexive and transitive closure of the transition relation, and we call it gen-
eralized transition. Then, probabilistic traces are constructed from generalized
transitions by considering their sequences of actions and probabilities.

Definition 5. Let M = (S, I, O, δ, s0) be a PFSM. We inductively define the
generalized transitions of M as follows:

– We have that s
ε==⇒ ε s is a generalized transition of M for all s ∈ S.

– If s
ρ

==⇒π s′ and s′
i/o−−−−→p s1 then s

ρ·i/o
===⇒π·〈p〉 s1 is a generalized transition

of M .

We say that (ρ, π) is a probabilistic trace of M if there exists s ∈ S such that
s0

ρ
==⇒π s. In addition, we say that ρ is a trace of M and that i(ρ) is an input

trace of M . The sets pTr(M), tr(M), iTr(M) denote the sets of probabilistic
traces, traces, and input traces of M , respectively. !

The previous notions can also be defined for PLTSs. In order to obtain sequences
of paired inputs and outputs, traces begin and end at input states.

Definition 6. Let U = (SI , SO, I, O, δ, s0) be a PLTS. We inductively define the
generalized transitions of U as follows:

– We have that s
ε==⇒ ε s is a generalized transition of U for all s ∈ SI .

– If s ∈ SI , s
ρ

==⇒ π s′, and s′ i−−→ p s′′ o−−→ s1 then s
ρ·i/o

===⇒ π·〈p〉 s1 is a
generalized transition of U .

Derivation of a Suitable Finite Test 473

We say that (ρ, π) is a probabilistic trace of U if there exists s ∈ SI such that
s0

ρ
==⇒ π s. In that case we will also say that (i(ρ), π) is a probabilistic input

trace of U . In addition, we say that ρ is a trace of U and that i(ρ) is an input
trace of U . We define the probability of U to stop after ρ, denoted by stopU (ρ),
as stop(s). The sets pTr(U), piTr(U), tr(U) and iTr(U) denote the set of
probabilistic traces, traces, and input traces of U respectively. !

Next we identify PLTS that terminate, that is, such that all infinite traces have
probability 0.

Definition 7. Let U be a PLTS. We say that U is a terminating PLTS if for all s

such that there exists ρ and π with s0
ρ

==⇒π s we have that there exists s′, ρ′, π′

such that s
ρ′

==⇒π′ s′ and stopU (ρ · ρ′) > 0. !

Proposition 1. A PLTS U is terminating iff
∑

(ρ,π)∈pTr(U) (
∏

π)∗stopU (ρ) = 1
 !

As we will see, PLTS will be used to denote user models. In particular, any user
model will be supposed to be a terminating PLTS.

3 Tests and Composition of Machines

In this section we define our tests as well as the interaction between the notions
introduced in the previous section (PFSMs and PLTSs). As we said before, we
will use PLTSs to define the behavior of the external environment of a system,
that is, a user model. Moreover, PLTSs are also appropriate to define the tests
we will apply to an IUT. Tests are PLTSs fulfilling some additional conditions.
Basically, a test defines a finite sequence of inputs; we will use them to check a
given secuence of inputs. Since tests consider a single sequence of inputs, each
intermediate input state of the sequence contains a single outgoing transition
labeled by the next input and probability 1. Output states offer transitions with
different outputs.

Definition 8. A test T = (SI , SO, I, O, δ, s0) is a PLTS such that for all s ∈ SI

there is at most one transition s i−−→p s′ (and if it exists then p = 1), and for all
s ∈ SO there is at most one next input state s o−−→ s′ with a continuation, that
is, |{s′′ | ∃ i ∈ I, o ∈ O, s′′′ ∈ SO, p ∈ (0, 1] : s o−−→ s′′ i−−→p s′′′}| ≤ 1. !

Let us note that, contrarily to other frameworks, tests are not provided with di-
agnostic capabilities on their own. In other words, tests do not have fail/success
states. Since our framework is probabilistic, the requirements defined by spec-
ifications are given in probabilistic terms. As we will see in the next section,
deciding whether the IUT conforms to the specification will also be done in
probabilistic terms. In particular, we will consider whether it is feasible that the
IUT behaves as if it were defined as the specification indicates. We will check
this fact by means of a suitable hypothesis contrast.

474 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

Our testing methodology consists in testing the behavior of a system under
the assumption that it is stimulated by a given user model. Thus, tests will
be extracted from the behavior of the user model. Next we show how a test is
constructed from a probabilistic trace of a user model. The input and output
states of the test are identified with natural numbers. All the input states (but
the first one) are also endowed with an output action. In order to distinguish
between input and output states we decorate them with • and �, respectively.
Tests extracted from user model sequences fulfill an additional condition: All
input states reached from a given output state (via different outputs) are con-
nected with the same output state through the same input, up to the end of the
sequence. A single test can process any answer to a given sequence of inputs,
that is, it detects any sequence of outputs produced by the IUT as response.

Definition 9. Let � = (i1, i2, . . . , ir) be an input trace, I be a set of input
actions such that {i1, . . . ir} ⊆ I, and O be a set of output actions. We define
the test associated to �, assoc(�), as the test (SIT , SOT , I, O, δT , 0•), where

– SIT = {0•, r•} ∪ {(j, o)•|o ∈ O, 1 ≤ j ≤ r} and SOT = {j�|1 ≤ j ≤ r}.
– For all 1 ≤ j < r, o ∈ O: (j, o)•

ij+1−−−−→ 1 (j + 1)� , j� o−−→ (j, o)• ∈ δT . We
also have 0• i1−−→1 0�. !

Next we define the composition of a PFSM (denoting either a specification or
an IUT) with a PLTS (denoting either a user model or a test) in terms of its
behavior, that is, in terms of traces and probabilistic traces. The set of traces is
easily computed as the intersection of the traces produced by both components.
In order to define the set of probabilistic traces, the ones provided by both
components are considered. For a given input/output pair i/o, the probability
of producing i will be taken from the corresponding transition of the PLTS, while
the probability of producing o as a response to i will be given by a transition
of the PFSM. Let us note that the states of a specification do not necessarily
define outgoing transitions for all available inputs, that is, specifications are
not necessarily input-enabled. So, a PFSM representing a specification could not
provide a response for an input produced by a PLTS. Since the specification does
not define any behavior in this case, we will assume that the PFSM is allowed
to produce any behavior from this point on. The composition of a PLTS and a
PFSM will be constructed to check whether the traces defined by the specification
are correctly produced by the implementation. Hence, undefined behaviors will
not be considered relevant and will not provide any trace to the composition of
the PLTS and the PFSM. In order to appropriately represent the probabilities of
the relevant traces, their probabilities will be normalized if undefined behaviors
appear. We illustrate this process in the following example.

Example 1. Let us suppose that a user model can produce the inputs i1, i2, and i3
with probabilities 1

2 , 1
4 and 1

4 , respectively. At the same time, the corresponding
specification provides outgoing transitions with inputs i1 and i2, but not with
i3. Since the specification does not define any reaction to i3, the probabilities

Derivation of a Suitable Finite Test 475

of taking inputs i1 or i2 in the composition of the specification and the user
model are normalized to denote that i3 is not considered. So, the probability of
i1 becomes 1/2

3/4 = 2
3 while the probability of i2 is 1/4

3/4 = 1
3 . !

The next definition finds an appropriate normalization factor when these situa-
tions appear (in the previous example, this factor is 3

4). Besides, we show how
to recompute the probabilities of all traces in a PLTS when only sequences of
inputs that are accepted by a a given PLTS are considered. Finally, we consider
the behavior of the composition of a PFSM and a PLTS. The set of traces of this
composition is provided by the intersection of the set of traces of each machine.
In order find the probabilistic traces we consider, on the one hand, the proba-
bilistic traces of the PFSM and, on the other hand, the probabilistic traces of the
PLTS normalized to this PFSM.

Definition 10. Let M = (SM , I, O, δM , s0M) be a PFSM and let us consider a
PLTS U = (SIU , SOU , I, O, δU , s0U) such that s0M

ρ
==⇒π1 s1 and s0U

ρ
==⇒π2 s2.

We define:

– The sum of the probabilities of continuing together after ρ as

contM‖U (ρ) =
∑{

p

∣∣∣∣∣∃i ∈ I, o ∈ O, s′2 ∈ SOU , s′1 ∈ SM , r ∈ (0, 1] :

s2
i−−→p s′2 ∧ s1

i/o−−−−→r s′1

}
– The normalization factor of M ‖ U after ρ as the sum of the previous prob-

ability plus the probability of U to stop after ρ, that is normM‖U (ρ) =
contM‖U (ρ) + stopU (ρ).

We inductively define the probabilistic traces of U normalized to M as follows:

– (ε, ε) is a normalized probabilistic trace.
– Let (ρ, π) be a normalized probabilistic trace. Let us suppose that we have

s0M
ρ

==⇒ π1 s′1
i/o−−−−→ p1 s1 and s0U

ρ
==⇒ π2 s′2 s′2

i−−→ p2 s′′ o−−→ s2. Then,
(ρ · i/o, π · 〈p〉) is a normalized probabilistic trace, where p is the product
of p1 and p2 normalized with respect to the normalization factor of M ‖ U
after ρ, that is, p = p1·p2

normM‖U (ρ) .

Let (ρ, π) be a normalized probabilistic trace where we have s0U
ρ

==⇒ π′ s for
some π′, s. We say that (i(ρ), π) is a normalized probabilistic input trace. In
addition, we say that ρ is a normalized trace and that i(ρ) is a normalized input
trace. We define the probability of U to stop after ρ normalized to M , denoted by
nstopU,M (ρ), as stop(s)

normM‖U (ρ) . The sets npTrM (U), npiTr(U, M), ntr(U, M) and
niTr(U, M) denote the set of normalized probabilistic traces, normalized traces,
and normalized input traces of U to M respectively.

The set of traces generated by the composition of M and U , denoted by
tr(M ‖ U), is defined as tr(M)∩tr(U). The set of probabilistic traces generated
by the composition of M and U , denoted by pTr(M ‖ U), is defined as

{(ρ, π1 ∗ π2)|(ρ, π1) ∈ pTr(M) ∧ (ρ, π2) ∈ npTrM (U)}

476 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

The set of input traces generated by the composition of M and U , denoted
by iTr(M ‖ U), is defined as the set {i(ρ) | ρ ∈ tr(M ‖ U)}. !

Proposition 2. Let M be a PFSM and let U be a PLTS, then

tr(M ‖ U) = {ρ | ∃p ∈ (0, 1] : (ρ, p) ∈ pTr(M ‖ U)} !

Let us remark that the probabilistic behavior of the traces belonging to the
composition of PFSMs and PLTSs is completely specified: The probabilities of
inputs are provided by the PLTS while the probabilities of outputs are given by
the PFSM. Since our method consists in testing the behavior of the IUT for some
sequences of inputs, we will be interested in taking those traces that share a
given sequence of inputs. Next we develop these ideas for sequences and sets of
sequences.

Definition 11. Let Tr be a set of traces and � an input trace. We define the set
of traces of Tr modulo �, denoted by tr�(Tr), as the set {ρ | i(ρ) = �, ρ ∈ Tr}.
If M is a PFSM and U is a PLTS, for the sake of clarity, we write tr�(M), tr�(U),
and tr�(M ‖ U) instead of tr�(tr(M)), tr�(tr(U)), and tr�(tr(M ‖ U)), re-
spectively. Let Tr be a set of traces and iTr a set of input traces. We de-
fine the set of traces of Tr modulo iTr , denoted by probpTr (iTr), as the set
{tr�(Tr)|� ∈ iTr}. !

We will construct a random variable denoting the probability of each trace in the
composition of a specification and a user. Unfortunately, taking the probability
associated to each trace in the composition is not appropriate. In fact, the sum of
the probabilities of all traces may be higher than 1. This is because traces denote
events such that some of them include others. For instance, if the event (a/b, c/d)
is produced then we know that (a/b) is also produced. We solve this problem
by taking into account a factor that is not explicitly considered in the traces:
The choice of a user to stop in a state. In particular, the event representing that
(a/b, c/d) is produced and, afterwards immediately, the user finishes does not
imply that (a/b) is produced and then the user stops.

Proposition 3. Let M be a PFSM and let U be a terminating PLTS. We have∑
(ρ,π)∈pTr(M‖U)

(∏
π
)
∗ nstopU,M (ρ) = 1

 !

By the previous result, we can use traces up to termination to construct a random
variable denoting the probability of observe any trace in the composition of a
specification and a user.

Definition 12. Let M be a PFSM and let U be PLTS. We define the traces random
variable of the composition of M and U as the function ξM‖U : pTr(M ‖ U) −→
(0, 1] such that for all (ρ, π) ∈ pTr(M ‖ U) we have

ξM‖U (ρ) =
(∏

π
)
∗ nstopU,M (ρ) !

Derivation of a Suitable Finite Test 477

4 Probabilistic Relations

In this section we introduce our probabilistic conformance relations. Following
our user customized approach, they relate an IUT and a user model with a
specification and the same user model. These three elements will be related
if the probabilistic behavior shown by the IUT when stimulated by the user
model appropriately follows the corresponding behavior of the specification. In
particular, we will compare the probabilistic traces of the composition of the IUT
and the user with those corresponding to the composition of the specification
and the user. Let us remind that IUTs are input-enabled but specifications might
not be so. So, the IUT could define probabilistic traces including sequences of
inputs that are not defined in the specification. Since there are no specification
requirements for them, these behaviors will be ignored by the relation. In order
to do it, an appropriate subset of the traces of the composition of the IUT and
the user must be taken. The probability of each trace belonging to this set will
be recomputed by considering a suitable normalization. Later we will see another
relation where, due to practical reasons, this requirement will be relaxed.

Definition 13. Let S, I be PFSMs and U be a PLTS. We define the set of prob-
abilistic traces generated by the implementation I and the user model U modulo
the specification S, denoted by pTr(I ‖ U)S as the set

{(ρ, πi ∗ πo) | i(ρ) ∈ iTr(S) ∧ (ρ, πi) ∈ npTrS(U) ∧ (ρ, πo) ∈ pTr(I)}

Let S, I be PFSMs and U be a PLTS. We say that I conforms to S with respect
to U , denoted by I confU S, if pTr(I ‖ U)S = pTr(S ‖ U). !

The previous result provides a diagnostic by comparing the complete set of
traces of the composition of the specification and the user with the full set of
traces of the implementation and the user (up to the specification). We can also
perform local comparisons: A local diagnostic is obtained by comparing only
those traces that have a given sequence of inputs. Though we can compare these
traces by comparing their corresponding probabilities, we will manipulate these
probabilities before. In particular, we will divide the probability of each of them
by the probability its sequence of inputs. These values will denote the probability
of performing the sequence of outputs of the trace provided that the sequence
of inputs is the considered one. Though this transformation is not needed to
perform the current comparison, using these probabilities will be useful in further
analyses.

Definition 14. Let A be a set of probabilistic traces and (�, π) be a probabilistic
input trace. We define the restriction A to (�, π), denoted by A\(�, π), as the set
{(ρ, π′/π) | (ρ, π′) ∈ A ∧ i(ρ) = �}. !

Definition 15. Let S, I be PFSMs, U be a PLTS, and (�, π) ∈ npiTr(U, S) such
that � ∈ iTr(S). We say that I conforms to S with respect to U in the input
trace �, denoted by I confU,� S, if pTr(I ‖ U)S\(�, π) = pTr(S ‖ U)\(�, π). !

478 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

Next we relate our notions of conformance and conformance for a given sequence
of inputs. If we have local conformance for all sequences of inputs, then the global
conformance is met.

Proposition 4. Let S, I be PFSMs, and U and be a PLTS, then I confU S iff
for any probabilistic input trace (�, π) ∈ piTr(U) such that � ∈ iTr(S) we have
I confU,� S. !

Our tests are designed to check any input trace. The parallel composition of
the test with the specification S ‖ T performs traces that are not present in
the parallel composition of the user and the specification S ‖ U . However, if we
remove the probabilities associated to the input trace in the user model then
the probability of the traces that are in both compositions is the same. Thus,
if the implementation conforms the specification with respect to the test T (i.e.
I confT S), then it also conforms the specification with respect to the user in
the trace (i.e. I confU,� S).

Proposition 5. Let S be a PFSM, U and be a PLTS, (�, π) ∈ npiTr(U, S) such
that � ∈ iTr(S), and T = assoc(�). Then

– For all ρ ∈ tr(S ‖ U) ∩ tr(S ‖ T) we have ξS‖T (ρ) ∗
∏

π = ξS‖U (ρ)
– if I confT S then I confU,� S. !

Although the previous relation properly defines our probabilistic requirements, it
cannot be used in practice because we cannot read the probability attached to a
transition in a black-box IUT. Let us note that even though a single observation
does not provide valuable information about the probability of an IUT trace, an
approximation to this value can be calculated by interacting a high number of
times with the IUT and analyzing its reactions. In particular, we can compare the
empirical behavior of the IUT with the ideal behavior defined by the specification
and check whether it is feasible that the IUT would have behaved like this if,
internally, it were defined conforming to the specification. Depending on the
empirical observations, this feasibility may be different. The feasibility degree
of a set of samples with respect to its ideal probabilistic behavior (defined by
a random variable) will be provided by a suitable contrast hypothesis. We will
rewrite the previous relation I confT S in these terms.

Definition 16. Let M be a PFSM and U be a PLTS. We say that a sequence
〈ρ1, ρ2, . . . , ρn〉 is a trace sample of M ‖ U if it is generated by ξM‖U . !

Definition 17. Let S be a PFSM and H = 〈ρ1, ρ2, . . . , ρn〉 be a sequence of
traces. HS denotes the sub-sequence 〈ρr1, ρr2, . . . , ρrn〉 of H that contains all
the probabilistic traces whose input sequences can be produced by S, that is,
i(ρri) ∈ iTr(S).

Let S and I be PFSMs, and U be a PLTS. Let � ∈ iTr(S), T = assoc(�),
and H = 〈ρ1, ρ2, . . . , ρn〉 be a trace sample of I ‖ T , and 0 ≤ α ≤ 1. We write
S confα

H I if γ(ξS‖T , HS) ≥ α. !

Derivation of a Suitable Finite Test 479

5 Optimal Test Suites

In this section we will focus on two aspects: How to find a suitable test suite
and how to provide a metric that allows us to measure the quality of test suites.
Test suites will we be chosen when they have a good value in that metric.

5.1 Testing Quality Measurement

Let us suppose that we have a test suite. We apply each test to validate a single
trace. By iterating the process for each test, we can get a set of validated input
traces. Since not all the traces are checked, we have to know how accurate is
our judgment about the correctness of the specification. We will measure this
accuracy in probabilistic terms. We assume that only the tested and validated
input traces are correct and that all the others are incorrect. So, the probability of
executing one of those untested traces gives us an upper bound of the probability
that the user finds an error in the implementation. In order to compute this
upper bound, we have to calculate the probability with which the user executes
one of the validated traces. The complementary of that probability will be the
upper bound we are looking for. In order to compute those probabilities we use
the random variable ξS‖U . For any tested input trace �, its probability is equal
to the probability of the set of traces of S ‖ U whose input traces are those of �.

Definition 18. Let S be a PFSM and U be a PLTS. Then,

1. If � ∈ iTr(S ‖ U) then we denote by probS‖U (�) the probability of the set
of events tr�(tr(S ‖ U)) assigned by the random variable ξS‖U .

2. For any set iTr ⊆ iTr(S ‖ U), we denote by probS‖U (iTr) the probability
of the set of events triTr (pTr(S ‖ U)) assigned by ξS‖U . !

In the random variable ξS‖U we consider only full execution of traces, i.e. until
the user decides to stop. For that reason we have that all events are independent.

Proposition 6. Let S be a PFSM and U be a PLTS. If � ∈ iTr(S ‖ U) then

probS‖U (�) =
∑{(∏

π
)
∗ nstopU,S(ρ) | i(ρ) = � ∧ (ρ, π) ∈ pTr(S ‖ U)

}
For any set iTr ⊆ iTr(S ‖ U), probS‖U (iTr) =

∑{
probS‖U (�) | � ∈ iTr

}
. !

Next we show how to compute the aforementioned upper bound. The scenario is
the following. We have applied tests corresponding to some input traces and we
have obtained some samples. Then, we consider only those traces such that the
corresponding sample passes the hypothesis contrast. The upper bound that the
user finds a error is calculated by considering that the rest of input traces be-
haves incorrectly. So, we calculate the probability to execute one of the validated
traces, that is probS‖U (iTr), being the complementary probability the bound we
are looking for. Let us remark that the IUT does not appear in the expression
probS‖U (iTr). The reason is that we have already tested the implementation in

480 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

the input traces of the set iTr . Thus, we can assume that the implementation
behaves for those traces as indicated by the specification. Besides, we cannot
compute that probability from the implementation since it is a black box : We
can only test it and take samples from it.

Definition 19. Let S, I be PFSMs and U be a PLTS.

– Let � be an input trace, H be a sample of I ‖ assoc(�), and α be a feasibility
degree. We say that � is (H, α)-tested if I confα

H S.
– Let iTr be a set of input traces and H be the set of samples {H� | � ∈

iTr , H� is a sample of I ‖ assoc(�)}. We say that iTr is (H, α)-tested if
I confα

H�
S for all � ∈ iTr .

Let iTr ⊆ iTr(S ‖ U) be a (H, α)-tested set of input traces for a set of samples
H and a feasibility degree α. Then, the upper bound of error probability of the user
U to find and error in I with respect to the input trace set iTr , ubErrH,α

iTr (I, U),
is the probabity of executing a trace ρ such that i(ρ) �∈ iTr :

ubErrH,α
iTr (I, U) = 1− probS‖U (iTr) !

5.2 Obtaining a Good Test Suite

Now we give a criteria to choose the best test suite. This criteria will be equivalent
to the 0/1 knapsack problem. Due to its intrinsic complexity, good enough test
suites will be obtained by applying one of the known suboptimal algorithms.

Since each test checks a single input trace, our test suite will try to minimize
the upper bound introduced in Definition 19. So, to find a good test suite is
equivalent to find an input trace set iTr that maximizes probS‖U (iTr). This will
be our first criterium to choose our test suite. Obviously, the set that maximizes
that probability is the whole set of input traces, that is usually infinite. We need
another criteria to limit the number of tests to be applied. It will consist in
minimizing the size of tests. Since each tests consists in a sequence of n pairs
input/output, it sends and receives exactly n input/output actions. Then, we
consider n as the size of the test.

Definition 20. Let � = (i1, i2, . . . in) be an input trace. We say that the length
of the test T = assoc(�) is n and we write length(T) = n. Let iTr be a set of
input traces. We define the length of the set T = {assoc(�) | � ∈ iTr}, denoted
by length(T), as

∑
{length(T) | T ∈ T }

Let S be a PFSM and U be a PLTS. Let n ∈ IN and iTr ⊆ iTr(S ‖ U). We
say that the set of tests T = {assoc(�) | � ∈ iTr}, with length(T) ≤ n,
is n-optimum if there does not exist another set of traces iTr ′ ⊆ iTr(S ‖ U)
and a set of tests T ′ = {assoc(�) | � ∈ iTr ′} with length(T ′) ≤ n such that
probS‖U (iTr ′) > probS‖U (iTr). !

Let us note that, since each trace is independent from the others, the problem
to find an n-optimum test suite is equivalent to the 0/1 knapsack problem: The

Derivation of a Suitable Finite Test 481

total size of the knapsack is n; the elements are the input traces � = (i1, . . . , ir) ∈
iTr(S ‖ U) such that r ≤ n; the cost of the trace � = (i1, . . . , ir) is r; the value
of a trace � is probS‖U (�). Due to the intrinsic complexity of that problem, it is
not feasible to find an n-optimum test suite. However, we can consider one of the
suboptimal well-known algorithms to solve the problem (see for example [22]).

5.3 Testing Methodology

Finally, let us briefly sketch our testing methodology:

1. We fix n, the combined size of tests belonging to the suite, and α, the feasi-
bility degree to pass the hypotheses contrast.

2. We find a suboptimal test suite T , corresponding to a set of input traces,
for the size n.

3. We generate the trace sample HT for all test T ∈ T .
4. We consider the set of input traces whose samples pass the hypotheses con-

trast with the required feasibility degree H = {HT | ∃T ∈ T : I confα
HT

S},
iTr = {� | ∃T ∈ T : HT ∈ H ∧ T = assoc(�)}.

5. We calculate the probability of error ubErrH,α
iTr (I, U).

6 Conclusions and Future Work

In this paper we have presented a formal methodology to test probabilistic sys-
tems that are stimulated according to a given user model. In particular, we
compare the behavior of a specification when it is stimulated by a user model
with the behavior of an IUT when it is stimulated by the same model. By taking
into account the probabilities of systems we have that, after a finite test suite
is applied to the IUT, we can measure, for a given confidence degree, an upper
bound of the probability that a user behaving as the user model finds an error
in the IUT. Though a previous work [12] introduces a first approach to compute
this metric, this method lies in the idea of comparing a single random variable
denoting all the behaviors in the composition of the specification and the user
with a sample denoting the behavior of the IUT when the user stimulates it. On
the contrary, in this paper we separately study the behavior of the IUT for each
sequence of inputs. Hence, the frequency of sequences of inputs is not part of the
sampled information. This approach requires to use a specific random variable
for each sequence of inputs (instead of a single random variable for all traces),
as well as separately validating each sample with respect to its corresponding
random variable. We use the method to find, for a given number of input actions,
a optimal finite test suite, that is, a suite such that if it is passed then the upper
bound of error probability is lower that the value obtained with any other test
suite of the same size.

As future work, we plan to compact the information collected by samples.
Let us suppose that a sample (a/x, b/y, c/z) is obtained. This implies that if
the sequence of inputs (a, b) would have been offered instead of (a, b, c), then
the sequence of outputs (x, y) would have obtained. That is, if the sample

482 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

(a/x, b/y, c/z) is obtained then the sample (a/x, b/y) is also obtained, as well
as (a/x). Hence, by considering all prefixes of a sample, the number of obser-
vations for some sequences of inputs increases. Since the precision of hypothesis
contrasts is higher when the size of samples is higher, this approach would allow
us to improve the precision of our probabilistic method.

References

1. B.S. Bosik and M.U. Uyar. Finite state machine based formal methods in protocol
conformance testing. Computer Networks & ISDN Systems, 22:7–33, 1991.

2. L. Bottaci and E.S. Mresa. Efficiency of mutation operators and selective mutation
strategies: An empirical study. Software Testing, Verification and Reliability, 9:205–
232, 1999.

3. D. Cazorla, F. Cuartero, V. Valero, F.L. Pelayo, and J.J. Pardo. Algebraic theory
of probabilistic and non-deterministic processes. Journal of Logic and Algebraic
Programming, 55(1–2):57–103, 2003.

4. I. Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In CONCUR’90, LNCS 458, pages 126–140. Springer, 1990.

5. R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for proba-
bilistic processes. Information and Computation, 154(2):93–148, 1999.

6. R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

7. R. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Information and Computation, 121(1):59–80,
1995.

8. R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering, 3:279–290, 1977.

9. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
10. W.E. Howden. Weak mutation testing and completeness of test sets. IEEE Trans-

actions on Software Engineering, 8:371–379, 1982.
11. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:

A survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.
12. L.F. Llana-Díaz, M. Núñez, and I. Rodríguez. Customized testing for probabilistic

systems. In 18th Int. Conf. on Testing Communicating Systems, TestCom 2006,
LNCS 3964, pages 87–102. Springer, 2006.

13. N. López, M. Núñez, and I. Rodríguez. Specification, testing and implementation
relations for symbolic-probabilistic systems. Theoretical Computer Science, 353(1–
3):228–248, 2006.

14. M. Núñez. Algebraic theory of probabilistic processes. Journal of Logic and Alge-
braic Programming, 56(1–2):117–177, 2003.

15. M. Núñez and I. Rodríguez. Encoding PAMR into (timed) EFSMs. In 22nd IFIP
Conf. on Formal Techniques for Networked and Distributed Systems, FORTE 2002,
LNCS 2529, pages 1–16. Springer, 2002.

16. M. Núñez and D. de Frutos. Testing semantics for probabilistic LOTOS. In Formal
Description Techniques VIII, pages 365–380. Chapman & Hall, 1995.

17. A. Petrenko. Fault model-driven test derivation from finite state models: Annotated
bibliography. In 4th Summer School, MOVEP 2000, LNCS 2067, pages 196–205.
Springer, 2001.

Derivation of a Suitable Finite Test 483

18. I. Rodríguez, M.G. Merayo, and M. Núñez. A logic for assessing sets of heteroge-
neous testing hypotheses. In 18th Int. Conf. on Testing Communicating Systems,
TestCom 2006, LNCS 3964, pages 39–54. Springer, 2006.

19. R. Segala. Testing probabilistic automata. In CONCUR’96, LNCS 1119, pages
299–314. Springer, 1996.

20. M. Stoelinga and F. Vaandrager. A testing scenario for probabilistic automata. In
ICALP 2003, LNCS 2719, pages 464–477. Springer, 2003.

21. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware – Concepts and Tools, 17(3):103–120, 1996.

22. V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

Author Index

Abadi, Mart́ın 99

Baier, C. 212
Baresi, Luciano 131
Bernet, Julien 175
Bertrand, Nathalie 212
Bochmann, Gregor v. 191
Boyer, Marc 404
Bræk, Rolv 275
Brill, Matthias 143

Castejón, Humberto Nicolás 275
Chaudhuri, Avik 99
Chentouf, Zohair 93
Chothia, Tom 115
Clark, Allan 24
Colangelo, Daniela 243
Colom, José-Manuel 323
Compare, Daniele 243
Courtiat, Jean-Pierre 404
Cunha, Paulo Roberto Freire 136

Daou, Bassel 191
de Saqui-Sannes, Pierre 404
Dssouli, R. 292

Elkind, Edith 420

Fang, Yi 356
Ferrari, Gianluigi 46
Finkbeiner, Bernd 143

Genest, Blaise 420
Ghezzi, Carlo 131
Gilmore, Stephen 24
Groz, Roland 436
Guanciale, Roberto 46
Guoliang, Zheng 388

Hammal, Youcef 259
Hillah, Lom-Messan 307
Hölzl, Matthias 24

Inverardi, Paola 243

Janin, David 175
Jianhua, Zhao 388
Jourdan, Guy-Vincent 451
Jun, Hu 388

Kazhamiakin, Raman 61
Khoumsi, Ahmed 93
Knapp, Alexander 24
Koch, Nora 24
Kolahi, S. 292
Kordon, Fabrice 307, 339
Krob, Daniel 1

Lamport, Leslie 23
Lang, Frédéric 159
Lei, Bu 388
Li, Keqin 436
Linard, Alban 339
Llana-Dı́az, Luis F. 467
López-Grao, Juan-Pablo 323

Mardare, Radu 196
McMillan, Kenneth L. 356
Merayo, Mercedes G. 372
Mizouni, R. 292
Mottola, Luca 131

Núñez, Manuel 372, 467

Paviot-Adet, Emmanuel 339
Peled, Doron 420
Pelliccione, Patrizio 243
Petrucci, Laure 307
Pistore, Marco 61
Pnueli, Amir 356
Prasetya, I.S.W.B. 77
Priami, Corrado 196

Qu, Hongyang 420

Rodŕıguez, Ismael 372, 467
Rosa, Nelson Souto 136
Rousseau, Pierre 228

Sadani, Tarek 404
Salah, A. 292
Schewe, Sven 143

486 Author Index

Schnoebelen, Philippe 212
Schroeder, Andreas 24
Shahbaz, Muzammil 436
Strollo, Daniele 46
Swierstra, S.D. 77

Tao, Zhang 388
Trèves, Nicolas 307

Ural, Hasan 451

Vos, T.E.J. 77

Wirsing, Martin 24

Xuandong, Li 388

Yenigün, Hüsnü 451

Zuck, Lenore D. 356

	Frontmatter
	Invited Talks
	Modelling of Complex Software Systems: A Reasoned Overview
	The <Superscript> + </Superscript>{\sc CAL} Algorithm Language
	Semantic-Based Development of Service-Oriented Systems

	Services
	JSCL: A Middleware for Service Coordination
	Analysis of Realizability Conditions for Web Service Choreographies
	Web Cube
	Presence Interaction Management in SIP SOHO Architecture

	Middleware
	Formal Analysis of Dynamic, Distributed File-System Access Controls
	Analysing the MUTE Anonymous File-Sharing System Using the Pi-Calculus
	Towards Fine-Grained Automated Verification of Publish-Subscribe Architectures
	A LOTOS Framework for Middleware Specification

	Composition and Synthesis
	Automatic Synthesis of Assumptions for Compositional Model Checking
	Refined Interfaces for Compositional Verification
	On Distributed Program Specification and Synthesis in Architectures with Cycles
	Generalizing the Submodule Construction Techniques for Extended State Machine Models

	Logics
	Decidable Extensions of Hennessy-Milner Logic

	Symbolic Verification -- Slicing
	Symbolic Verification of Communicating Systems with Probabilistic Message Losses: Liveness and Fairness
	A New Approach for Concurrent Program Slicing
	Reducing Software Architecture Models Complexity: A Slicing and Abstraction Approach

	Unified Modeling Languages
	Branching Time Semantics for UML 2.0 Sequence Diagrams
	Formalizing Collaboration Goal Sequences for Service Choreography
	Composition of Use Cases Using Synchronization and Model Checking

	Petri Nets
	PN Standardisation: A Survey
	Resource Allocation Systems: Some Complexity Results on the S<Superscript>4</Superscript>PR Class
	Optimized Colored Nets Unfolding

	Parameterized Verification
	Liveness by Invisible Invariants

	Real Time
	Extending EFSMs to Specify and Test Timed Systems with Action Durations and Timeouts
	Scenario-Based Timing Consistency Checking for Time Petri Nets
	Effective Representation of RT-LOTOS Terms by Finite Time Petri Nets

	Testing
	Grey-Box Checking
	Integration Testing of Distributed Components Based on Learning Parameterized I/O Models
	Minimizing Coordination Channels in Distributed Testing
	Derivation of a Suitable Finite Test Suite for Customized Probabilistic Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

