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Preface

The CMSB (Computational Methods in Systems Biology) conference series was
established in 2003 to help catalyze the convergence of modellers, physicists,
mathematicians, and theoretical computer scientists from fields such as language
design, concurrency theory, program verification, and molecular biologists, physi-
cians, and neuroscientists interested in a systems-level understanding of cellular
physiology and pathology.

The community of scientists becoming interested in this new field is growing
rapidly as witnessed by the increasing number of submissions. This year we
received 68 papers of which we accepted 22 for publication in this volume.

Luca Cardelli and David Harel gave two invited talks at the conference show-
ing the computer science perspective in the emerging field of dynamical mod-
elling and simulation of biological systems. Orkun Soyer gave two invited talks
on the systems biology perspective.

Finally, we organized a poster session to favor discussion and cross-fertilization
of different fields as we feel it essential to making interdisciplinary research grow.

July 2006 Corrado Priami
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1 Introduction

In [4], Cardelli has proposed a schematic model of biological systems as three
different and interacting abstract machines. Following the approach pioneered in
[13], these abstract machines are modelled using methodologies borrowed from
the theory of concurrent systems.

The most abstract of these three machines is the membrane machine, which
focuses on the dynamics of biological membranes. At this level of abstraction,
a biological system is seen as a hierarchy of compartments, which can interact
by changing their position. In order to model this machinery, Cardelli has in-
troduced the Brane Calculus [3], a calculus of mobile nested processes where
the computational activity takes place on membranes, not inside them. A pro-
cess of this represents a system of nested membranes; the evolution of a process
corresponds to membrane interactions (phagocytosis, endo/exocytosis, . . . ).

Having such a formal representation of the membrane machine, a natural
question is how to express formally also the biological properties, that is, the
“statements” about a given system. Some examples are the following:

“If a macrophage is exposed to target cells that have been evenly coated
with antibody, it ingests the coated cells.” [1, Chap.6, p.335]
“The [. . . ] Rous sarcoma virus [. . . ] can transform a cell into a cancer
cell.” [1, Chap.8, p.417]
“The virus escapes from the endosome” [1, Chap.8, p.469]

In our opinion, it is highly desirable to be able to express formally (i.e., in a
well-specified logical formalism) this kind of properties. First, this would avoid
the intrinsic ambiguity of natural language, ruling out any misinterpretation of

C. Priami (Ed.): CMSB 2006, LNBI 4210, pp. 1–1 , 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modal Logics for Brane Calculus
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Abstract. The Brane Calculus is a calculus of mobile processes, in-
tended to model the transport machinery of a cell system. In this paper,
we introduce the Brane Logic, a modal logic for expressing formally prop-
erties about systems in Brane Calculus. Similarly to previous logics for
mobile ambients, Brane Logic has specific spatial and temporal modali-
ties. Moreover, since in Brane Calculus the activity resides on membrane
surfaces and not inside membranes, we need to add a specific logic (akin
Hennessy-Milner’s) for reasoning about membrane activity.

We present also a proof system for deriving valid sequents in Brane
Logic. Finally, we present a model checker for a decidable fragment of
this logic.
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the meaning of a statement. Secondly, such a logical formalism can be used for
defining specifications of systems, i.e. requirements that a system must satisfy.
These specifications can be used in (semi)automatic verification of existing sys-
tems (using model-checking or static analysis techniques), or in (semi)automatic
synthesis of new systems (meeting the given specification). Finally, the logical
formalism yields naturally a formal notion of system equivalence: two systems
are equivalent if they satisfy precisely the same properties. Often this equiva-
lence implies observational equivalence (depending on the expressive power of
the logical formalism), so a subsystem can be replaced with a logically equivalent
one (possibly synthetic) without altering the behaviour of the whole system.

The aim of this work is to take a step in this direction. We introduce the
Brane Logic, a modal logic specifically designed for expressing properties about
systems described using the Brane Calculus. Modal logics are commonly used in
concurrency theory for describing behaviour of concurrent systems. In particu-
lar, we take inspiration from Ambient Logic, the logic for Ambient calculus [5].
Like Ambient Logic, our logic features spatial and temporal modalities, which
are specific logical operators for expressing properties about the topology and
the dynamic behaviour of nested systems. However, differently from Ambient
Logic, we need to define also a specific logic for expressing properties of mem-
branes themselves. Each membrane can be seen as a flat surface where different
agents can interact, but without nestings. Thus membranes are more similar to
CCS than to Ambients; as a consequence, the logic for membranes is similar to
Hennessy-Milner’s logic [8], extended with spatial connectives as in [2].

After having defined Brane Logic and its formal interpretation over the
Brane Calculus (Section 3), in Section 4 we consider sequents, and introduce
a set of valid inference rules (with many derivable corollaries). Several examples
throughout the paper will illustrate the expressive power of the logic. Finally, in
Section 5, we single out a fragment of the calculus and of the logic for which the
satisfiability problem is decidable and for which we give a model checker algo-
rithm. Conclusions, final remarks and directions for future work are in Section 6.

In this paper we focus on the basic version of Brane Calculus without commu-
nication primitives and molecular complexes. For a description of the intuitive
meaning of the language and the reduction rules, we refer the reader to [3].

Syntax of (Basic) Brane Calculus
Systems Π : P,Q ::= k | σhPi | P m Q |!P
Membranes Σ : σ, τ ::= 0 | σ|τ | a.σ |!σ
Actions Ξ : a, b ::= Jn | JI

n(σ) | Kn | KI

n | G(σ)

where n is taken from a countable set Λ of names. We will write a, hPi and
σhi, instead of a.0, 0hPi and σhki, respectively.

The set of free names of a system P , of a membrane σ and of an action a,
denoted by FN(P ), FN(σ), FN(a) respectively, are defined as usual; notice that
in this syntax there are no binders.

2 M. Miculan and G. Bacci
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As in many process calculi, terms of the Brane Calculus can be rearranged
according to a structural congruence relation (≡). For a formal definition see [3].

The dynamic behaviour of Brane Calculus is specified by means of a reduction
relation (“reaction”) between systems P } Q, whose rules are the following:

Operational Semantics
J

I

n(ρ).τ |τ0hQi m Jn.σ|σ0hPi}τ |τ0hρhσ|σ0hPii m Qi (React phago)
K

I

n.τ |τ0hKn.σ|σ0hPi m Qi}σ|σ0|τ |τ0hQi m P (React exo)
G(ρ).σ|σ0hPi}σ|σ0hρhki m Pi (React pino)
P } Q

σhPi} σhQi

P } Q

P m R } Q m R
(React loc, React comp)

P ≡ P ′ P ′
} Q′ Q′ ≡ Q

P } Q
(React equiv)

We denote by }
∗ the usual reflexive and transitive closure of }.

As in [3], the Mate-Bud-Drip calculus is easily encoded, as follows:
Derived membrane constructors and reaction

Mate : maten.σ � Jn.Kn′ .σ mateIn.τ � J
I

n(KI

n′ .Kn′′).KI

n′′ .τ
maten.σ|σ0hPi m mateIn.τ |τ0hQi}

∗ σ|σ0|τ |τ0hP m Qi

Bud : budn.σ � Jn.σ budIn(ρ).τ � G(JI

n(ρ).Kn′).KI

n′ .τ
budIn(ρ).τ |τ0hbudn.σ|σ0hPi m Qi}

∗ ρhσ|σ0hPii m τ |τ0hQi

Drip : dripn.(ρ).σ � G(G(ρ).Kn).KI

n.σ
dripn(ρ).σ|σ0hPi}

∗ ρhi m σ|σ0hPi

3 The Brane Logic

In this section we introduce a logic for expressing properties of systems of the
Brane Calculus, called Brane Logic. Like similar temporal-spatial logics, such
as Ambient Logic [5] and Separation Logic [14], Brane Logic features special
modal connectives for expressing spatial properties (i.e., about relative positions)
and behavioural properties. The main difference between its closest ancestor
(Ambient Logic), is that Brane Logic can express properties about the actions
which can take place on membranes, not only in systems. Thus, there are actually
two spatial logics, interacting each other: one for reasoning about membranes
(called membrane logic) and one for reasoning about systems (the system logic).

Syntax The syntax of the Brane Logic is the following:
Syntax of Brane Logic

System formulas Φ
A,B ::= T | ¬A | A ∨ B (classical propositional fragment)

k (void system)
MhAi | A@M (compartment, compartment adjoint)
A m B | A � B (spatial composition, composition adjoint)
NA | mA (eventually modality, somewhere modality)
∀x.A (quantification over names)

Modal Logics for Brane Calculus 3



Membrane formulas Ω
M,N ::= T | ¬M | M∨N (classical propositional fragment)

0 (void membrane)
M|N | M � N (spatial composition, composition adjoint)
)α*M (action modality)

Action formulas Θ
α, β ::= Jη | JI

η(M) (phago, co-phago)
Kη | KI

η (exo, co-exo)
G(M) (pino)

η ::= n | x (terms)

Given a formula A, its free names FN(A) are easily defined, since there are no
binders for names. Similarly, we can define the set of free variables FV(A), notic-
ing that the only binder for variables is the universal quantifier. As usual, a
formula A is closed if FV(A) = ∅.

For sake of simplicity, we will use the shorthands Mhi and )α* in place of
Mhki and )α*0 respectively.

We give next an intuitive explanation of the most unusual constructors.
- P satisfies MhAi if P ≡ σhQi, where σ and Q satisfy M and A respectively.
- @ e � are very useful for expressing security and safety properties.

A system P satisfies A@M if, when P is enclosed in a membrane satisfying
M, the resulting system satisfies A. Similarly, a system P satisfies A � B if,
when P is put aside a system enjoying B, the whole system satisfies A.

- A membrane σ satisfies )α*M if σ can perform an action satisfying α, yielding
a residual satisfying M.

- M|N and its adjoint M � N are analogous to A ◦ B and A � B respectively.

Satisfaction Formally, the meaning of a formula is defined by means of a family
of satisfaction relations, one for each syntactic sort of logical formulas1

�⊆ Π × Φ �⊆ Σ × Ω �⊆ Ξ × Θ

These relations are defined by induction on the syntax of the formulas. Let us
start with satisfaction of systems. First, we have to introduce the subsystem
relation P ↓ Q (read “Q is an immediate subsystem of P”), defined as

P ↓ Q � ∃P ′ : Π,σ : Σ.P ≡ σhQi|P ′

We denote by ↓∗ the reflexive-transitive closure of ↓.
Then, we can define the satisfaction of system formulas.

Satisfaction of System Formulas
∀P : Π P � T
∀P : Π,A : Φ P � ¬A � P � A
∀P : Π,A,B : Φ P � A ∨ B � P � A ∨ P � B
∀P : Π P � k � P ≡ k

∀P : Π,A : Φ,M : Ω P � MhAi � ∃P ′ : Π,σ : Σ.P ≡ σhP ′
i ∧ P ′ � A ∧ σ � M

1 We will use the same symbol � for the three relations, since they are easily distin-
guishable from the context.

4 M. Miculan and G. Bacci



∀P : Π,A,B : Φ P � A m B � ∃P ′, P ′′ : Π.P ≡ P ′
m P ′′ ∧ P ′ � A ∧ P ′′ � B

∀P : Π,A : Φ, x : ϑ P � ∀x.A � ∀m : Λ.P � A{x ← m}
∀P : Π,A : Φ P � NA � ∃P ′ : Π.P }

∗ P ′ ∧ P ′ � A
∀P : Π,A : Φ P � mA � ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ � A
∀P : Π,A : Φ,M : Ω P � A@M � ∀σ : Σ.σ � M ⇒ σhPi � A
∀P : Π,A,B : Φ P � A � B � ∀P ′ : Π.P ′ � A ⇒ P m P ′ � B
This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ

l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ

α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a � α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ (par)
σ ≡ σ′ σ′ α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas

∀a : Γ, n : Λ a � Jn � a = Jn

∀a : Γ, n : Λ,M : Ω a � J
I

n(M) � ∃σ : Σ.a = J
I

n(σ) ∧ σ � M
∀a : Γ, n : Λ a � Kn � a = Kn

∀a : Γ, n : Λ a � K
I

n � a = K
I

n

∀a : Γ,M : Ω a � G(M) � ∃σ : Σ.a = G(σ) ∧ σ � M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ � T
∀σ : Σ,M : Ω σ � ¬M � σ � M
∀σ : Σ,M,N : Ω σ � M∨N � σ � M∨ σ � M

Modal Logics for Brane Calculus 5



∀σ : Σ σ � 0 � σ ≡ 0
∀σ : Σ,N ,M : Ω σ � M|N � ∃σ′, σ′′ : Σ.σ ≡ σ′|σ′′ ∧ σ′ � M∧ σ′′ � N
∀σ : Σ,α : Θ σ � )α*M � ∃σ′ : Σ.σ

α−→ σ′ ∧ σ′ � M
∀σ : Σ,M,N : Ω σ � M � N � ∀σ′ : Σ.σ′ � M ⇒ σ|σ′ � N

Notice that the truth of )α*M is defined using the LTS we defined before. Thus,
the LTS, the satisfaction of action formulas, and the satisfaction of membrane
formulas are three mutually defined judgments.

Derived connectives In the following table, we introduce several useful derived
connectives which can be defined as shorthands of longer formulas, together with
an intuitive description of their meaning. This description can be easily checked
by unfolding the formal meaning, using the satisfaction relations above.

Some derived connectives

A � B � ¬(¬A m ¬B) system decomposition
A∀ � A � F every subsystem (also non proper) satisfies A
A∃ � A m T some subsystem satisfies A

A ∝ B � ¬(B � ¬A) system fusion
Am⇒ B � ¬(A m ¬B) fusion adjoint

M ‖ N � ¬(¬M|¬N ) membrane decomposition
M∀ � M ‖ F every part of the membrane satisfies M
M∃ � M|T some part of the membrane satisfies M

M � N � ¬(N � ¬M) membrane fusion
M �⇒ N � ¬(M|¬N ) fusion adjoint

Derived connectives for Mate-Bud-Drip

)mateη*M � )Jη*)Kη′*M mate
)mateIη*N � )J

I

η()KI

η′*)Kη′′*)*)KI

η′′*N co-mate

)budη*M � )Jη*M bud
)budIη(K)*N � )G()JI

η(K)*)Kη′*)*)KI

η′*N co-bud

)dripη(N )*M � )G()G(N )*)Kη*)*)KI

η*M drip

Let us describe shortly the meaning of the most important derived connectives;
not surprisingly, these are close to similar ones in the Ambient Logic.

System decomposition is the dual of composition, and it is useful to describe
invariant properties of systems. A system satisfies A�B if, for any decomposition
of the system in two parts, a part satisfies A or the other B. As a consequence,
the formula A∀ means that any decomposition satisfies A, or satisfies F. Since
F is never satisfied, this means that in every possible decomposition, a part
satisfies A; hence, every immediate subsystem satisfies A. Thus, the formula

6 M. Miculan and G. Bacci



(MhTi ⇒ MhNhTii)∀ means “every membrane satisfying M in the system,
must contain just a membrane satisfying N”.

Dually, A∃ means that there exists a decomposition of the system where
a component satisfies A. Thus, the formula MhNhTi

∃
i states that the sys-

tem is composed by a membrane satisfying M, which contains at least another
membrane satisfying N .

Other interesting applications of derived constructors are, e.g., �MhTi (“the
system will be always composed by a single membrane, satisfying M), and
n¬(MhTi

∃) (“nowhere there is a membrane satisfying M”). This last formula
expresses a purity condition (like, e.g., “nowhere there exists a bacterium/virus
identified by M”, i.e., “the system is free from infections of type M”).

The fusion A ∝ B means that there exists a system satisfying B such that,
when put together with the actual system, the whole system satisfies A. Dually,
Am⇒ B means that in any decomposition of the system, whenever a part satisfies
A then the other satisfies B.

We end this section with a basic property of satisfaction relations, that is,
that satisfaction is preserved by structural congruence.

Proposition 1 (Satisfaction is up to ≡)
1. (σ � M∧ σ ≡ τ) ⇒ τ � M 2. (P � A ∧ P ≡ Q) ⇒ Q � A

In this section, we investigate validity of formulas or, more generally of sequents
and inference rules. Validity is defined in terms of satisfaction; more precisely,
a closed system/membrane/action formula is valid if it is satisfied by every
system/membrane/action.

For sequents and rules we will adopt a notation similar to that of Ambient
Logic [5]. A sequent will have exactly one premise and one conclusion, denoted
as A � B; in this way we do not have to decide any (somewhat arbitrary)
intrepretation of commas in sequents.

Formally, validity of formulas, sequents and rules is as follows:

Validity of formulas, sequents and rules

vld(A) � ∀P : Π.P � A A (closed) is valid
A � B � vld(A ⇒ B) Sequent

A �� B � A � B ∧ B � A Double sequent

A1 � B1 · · · An � Bn

A0 � B0
� A1 � B1 ∧ · · · ∧ An � Bn ⇒ A0 � B0 Inference rule

(n ≥ 0)
A1 � B1 · · · An � Bn

A0 �� B0
� A1 � B1 ∧ · · · ∧ An � Bn ⇒ A0 �� B0 Double conclusion

A1 � B1

A2 � B2

� A1 � B1

A2 � B2
∧ A2 � B2

A1 � B1
Double rule

Modal Logics for Brane Calculus 7
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4.2 Logical Rules

In this section we collect several valid sequents and rules for the Brane Logic.
We distinguish between “inference rules”, which can be seen as proper theorems
validated by the interpretation above, and “derived rules”, that is corollaries
derived by solely applying the inference rules. We omit the rules for propositional
calculus which are the same of Ambient Logic [5].

Composition The spatial nature of Brane Logic leads to important rules for
reasoning about composition and decomposition of systems and membranes.

Rules for composition of systems and membranes

(mk) A m k �� A (m¬k) A m ¬k � ¬k
(Am) A m (B m C) �� (A m B) m C (Xm) A m B � B mA
(m∨)

(A ∨ B) m C � A m C ∨ B m C (m �)
A′ � B′ A′′ � B′′

A′
mA′′ � B′

m B′′

(m�) A′
mA′′ � (A′

m B′′) ∨ (B′
mA′′) ∨ (¬B′

m ¬B′′)
(m �) A m C � B

A � C � B
(|0) M|0 �� M (|¬0) M|¬0 � ¬0
(A|) M|(N|K) �� (M|N )|K (X|) M|N � N|M
(|∨)

(M∨N )|K � M|K ∨N|K (| �)
M′ � N ′ M′′ � N ′′

M′|M′′ � N ′|N ′′

(| ‖) M′|M′′ � (M′|N ′′) ∨ (N ′|M′′) ∨ (¬N ′|¬N ′′)
(| �)

M|K � N
M � K � N

Most of these rules have a direct and intuitive meaning. For instance, ◦k and
◦¬k state that k is part of any system, and if a part of a system is not void
then the whole system is not void. Notice that rule (◦ �) states that ◦ is the left
adjoint of �, as expected; similarly for | and �.

Due to lack of space we cannot show many interesting corollaries; see [11].

Compartments The rules for reasoning about compartments are similar to
those about compartments in Ambient Logic; the main difference is that now
boundaries are structured and not only names. Clearly, these rules do not apply
to membrane logic, since membranes are not structured in compartments.

Rules for Compartments

(hAi¬k)
A � ¬k

MhAi � ¬k (Mhi¬k)
M � ¬0

MhAi � ¬k
(0hki)

0hki �� k

(Mhi¬m) MhAi � ¬(¬k m ¬k)
(Mhi �) A � B M � N

MhAi � NhBi (Mhi∧) MhAi ∧MhBi � MhA ∧ Bi
(Mhi@) MhAi � B

A � B@M (Mhi∨) MhA ∨ Bi � MhAi ∨MhBi
(¬@) A@M �� ¬(¬(A)@M)

8 M. Miculan and G. Bacci



The first two rules state that a compartment cannot be considered non-existent if
the membrane is not empty or the contained system is not empty. The third rule
states that an inactive membrane enclosing an empty system is logically equiv-
alent to an empty system. The fourth rule states that a single compartment
cannot be decomposed into two non-trivial systems. The rule (Mhi@) shows
that A@B and MhAi are adjoints, and the rule (¬@) that the compartment
adjoint @ is self-dual.

The fragment about compartment is particularly simple to handle, because
all rules (with assumptions) are bidirectional: (Mhi �) holds in both directions,
and the inverses of (Mhi∧) and (Mhi∨) are derivable.

See [11] for some corollaries about compartments.
Time and space modalities Let us now discuss the logical rules and properties
about spatial and temporal modalities.

Some rules for spatial and temporal modalities in systems
(NMhi) MhNAi � NMhAi

(mMhi) MhmAi � mA
(Nm)

NA mNB � N(A m B)
(mm)

mA m B � m(A m T)
(mN)

mNA � NmA
The rules for these constructors are very similar to those of ambient logic [5].
The modalities N and m obey the rules of S4 modalities, but are not S5 modal-
ities [9]. The last rule shows that the two modalities permute in one direction.
The other direction does not hold; consider, e.g., the formula A = )Kk*hi and
the system P = K

I

mhKmhJnhiii m J
I

n(Kk)hi. Then, P � NmA, but P � mNA
because neither P nor any of its subsystems will ever exhibit the action Kk.

On the other hand, the action modality )α*M of membranes does not satisfy
the laws of S4 modality, because the relation α−→ is neither reflexive nor transitive.
Nevertheless, it satisfies the laws of any Kripke modality [9].

Rules for action modality
()α*)

)α*M � ¬ [α]¬M
([α] K)

[α] (M ⇒ N ) � [α]M ⇒ [α]N ([α] �)
M � N

[α]M � [α]N

Some corollaries about action modality
([α])

[α]M � ¬)α*¬M ()α*K)
)α*M ⇒ )α*N � )α*(M ⇒ N )

()α* �)
M � N

)α*M � )α*N ([α]∧)
[α] (M∧N ) �� [α]M∧ [α]N

([α] )α*)
[α]M � )α*M ()α*∨)

)α*(M∨N ) � )α*M∨ )α*N

A quite expressive set of rules can be obtained by reflecting at the logical
level the operational behaviour of systems and membranes. The next table shows
some of these rules, which can be validated using the reaction of the calculus.
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Logical rules for reactions
()J*)

)Jn*MhAi m )J
I

n(K)*NhBi � NNhKhMhAii m Bi
()K*)

)K
I

n*Nh)Kn*MhAi m Bi � N(M|NhBi mA)
()G*)

)G(N )*MhAi � NMhNhki mAi

Some corollaries about reactions
()mate*)

)maten*MhAi m )mateIn*NhBi � NM|NhA m Bi
()bud*)

)budIn(K)*Nh)budn*MhAi m Bi � N(KhMhAii mNhBi)
()drip*)

)dripn(N )*MhAi � N(Nhki mMhAi)

These rules show the connections between action modalities )a* (in the logic of
membranes) and temporal modalities N (in the logic of systems). These rules
are very useful in verifying dynamic properties of systems and membranes.

Predicates We need to extend the notion of validity to open formulas. Let
FV(A) = {x1 . . . xk} be the set of free variables of a formula A, and φ ∈
FV(A) → Λ a substitution of names for variables; Aφ denotes the formula
A{x1 ← φ(x1), . . . , xn ← φ(xk)} obtained by applying the substitution φ. Then,

vld(A) � ∀φ ∈ FV(A) → Λ.∀P ∈ Π.P � Aφ

Using this notion of validity of formulas, the definitions of sequents and rules do
not need to be changed. Then, the rules for the quantifiers are the usual ones:

Rules for the universal quantifier

(∀L)
A{x ← η} � B

∀x.A � B (∀R)
A � B

A � ∀x.B (x /∈ FV(A))

With respect to Ambient Logic, name quantification has a slightly different
meaning. In the Brane Calculus, different names are intended to denote dif-
ferent proteine complexes on membranes; an action and a coaction can trigger a
reaction only if they are using matching complexes, i.e., names. Given this inter-
pretation, using the quantifiers we can express properties which are schematic
with respect to the names involved, that is, they do not depend on the specific
complexes. For instance, ∀x.()KI

x*h)Kx*hkii ⇒ Nk) means “if, for any given
complexes, the system exhibits a matching exo and co-exo capabilities in the
right places, then it can evolve (into the empty system)”.

Name equality We can encode name equality just using logical constructors,
and in particular the adjoint of compartment:

η = µ � )Kη*hTi@)Kµ*
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Proposition 2. ∀φ ∈ FV(η, µ) → Λ.∀P ∈ Π.P � (η = µ)φ ⇐⇒ φ(η) = φ(µ)

As an example application, the formula

∀x.∀y.)Jx*ThTi m )J
I

y(T)*ThTi m T ⇒ ¬x = y

means “no pair of membranes exhibit matching action and coaction for a phagoc-
itosis”, which can be seen as a safety property (think, e.g., of a virus trying to
enter a cell, and looking for the right complexes on its surface).

Substitution The next result provides a substitution principle for validity of
predicates; this will allow us to replace logically equivalent formulas inside for-
mula contexts. Let B{−} be a formula with a hole, and let B{A} the formula
obtained by filling the hole with A.

Lemma 1 (Substitution). vld(A′ ⇐⇒ A′′) ⇒ vld(B {A′} ⇐⇒ B {A′′})
Corollary 1 (Principle of substitution). A′ �� A′′ ⇒ B{A′} �� B {A′′}

We can take advantage of (name) equality to lift validity of propositions to
validity of quantified formulas. As a consequence, all the rules and corollaries we
have given so far for propositional validity, can be lifted to predicate validity.

To this end, we need to prove the following proposition:

Proposition 3 (Lifting propositional validity). Let A be a closed valid for-
mula. For any injective function ψ ∈ FN(A) → ϑ mapping names to variables,
the formula (dfn(A) ⇒ A)ψ is valid, where dfn(A) �

∧
n,m∈FN(A),n �=m

¬(n = m).

For instance, the valid proposition [Kn]M ⇒ ¬)Km*M is mapped into the valid
predicate ¬x = y ⇒ ([Kx]M ⇒ ¬)Ky*M). Notice that without the inequalities
between variables denoting different names, the result would not hold.

The proof of Proposition 3 relies on some injective renaming lemmata. This
kind of lemmata, stating that the relevant meta-logical properties are preserved
by name permutations, is quite common among calculi with names (they occur,
e.g., in π-calculus, ambient calculus,. . . ); the general technique for their proof is
to proceed by induction on the syntax of formulas.

Lemma 2 (Fresh renaming preserves satisfaction)

1. Let M be a closed membrane formula, σ a membrane and m, m′ names such
that m′ /∈ FN(σ)∪FN(M). Then, σ � M ⇐⇒ σ {m ← m′} � M{m ← m′}.

2. Let A be a closed system formula, P a system and m, m′ names such that
m′ /∈ FN(P ) ∪ FN(A). Then, P � A ⇐⇒ P {m ← m′} � A{m ← m′}.

Lemma 3 (Fresh renaming preserves validity). Let A be a valid closed
formula.

1. If m′ is a name such that m′ /∈ FN(A), then A {m ← m′} is closed and valid.
2. If φ ∈ FN(A) → Λ is an injective renaming, then Aφ is closed and valid.

Modal Logics for Brane Calculus 11
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4.4 Example: Viral Infection

As an example of the expressivity of Brane Logic, we give the formulas describing
a viral infection. We borrow the example of the Semliki Forest virus in [3].

Viral infection system

virus � Jn.Kkhnucapi

cell � membranehcytosoli
membrane � !JI

n(matem)|!KI

w

cytosol � endosome m Z

endosome � !mateIm|!KI

khi

infected cell � membranehnucap m cytosoli

It is simple to show that cell, if placed next to virus, evolves into infected cell

virus m cell }∗ infected cell

The system describe in detail an infection of the Semliki Forest virus; however,
it is almost impossible to abstract from the structure of the system, for instance
if we are interested only in its dynamic behaviour. There are entire subsystems
(e.g. Z) or parts of mebranes (e.g. !Kw) in cell that are not involved in the
infection process. These are only a burden in explaining what happens in the
infection process. The logic can help us to abstract from these irrelevant details:
the formulas describe only what is really needed for the viral attack to take
place. This kind of abstraction is very important in more complex systems or
for focusing only about certain aspects of their evolution.

Virus � )Jn*)Kk*ThNucapi

InfectableCell � ∃x.Membrane(x)hEndosome(x)∃i
Membrane(x) � )J

I

n()matex*T )*T
Endosome(x) � )mateIx*T|)KI

k*ThTi

InfectedCell � ThNucap∃i

A system satisfies Virus if and only if it can be phagocitated by cells revealing
a co-phago action with key n on their surface, and, after that, it can release its
nucleocapsid if enveloped in a membrane revealing a co-exo action with key k.
An infectable cell is a cell containing an endosome, such that their respective
membranes have matching mate and mateI actions and which exhibit the keys
requested by J and K actions of the virus. Notice that the existential quantifier
allow us to abstract from the specific key x in the membrane and the endosome:
it is not important which is the specific key, only that it is the same.

Using the logical rules, we can derive that “an infectable cell can become
infected if it gets close to a virus”:

InfectableCell � Virus � NInfectedCell
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In this section we describe a simple model checker for a decidable fragment of
the Brane Logic. On the basis of undecidability results for model checking of
Ambient Logic [6], we expect that the statement “P � A” is undecidable. There
are several reasons for this. First, replication allows to define infinitary systems
and membranes. Restricting to replication-free processes and membranes does
not suffice either; in fact, following [6], it should be possible to reduce the finite
model problem of first order logic to model checking of replication-free systems
against first order formulas extended with compartements, composition and com-
positionadjoint. However, it is possible to consider fragments of the logic, where
model checking is decidable. In this section, we describe a model checker for
replication-free systems against adjoint-free formulas. Although this logic is not
very expressive, it allows to point out the differences respect to the model checker
presented in [5], especially in the verification of membrane satisfaction.

Let us consider first the problem of deciding “σ � M”, where σ is a !-free
membrane and M is an �-free membrane formula. This problem can be solved
without checking system formulas. As a first step, every !-free membrane can be
put in a normal form, given by a finite multiset of prime membranes.

Normalization of a replication-free membrane
ξ ::= 0 | a.σ (prime membranes)

Norm(0) � [] Norm(a.σ) � [a.σ]
Norm(σ|τ) � [ξ1, . . . , ξk, ξ′1, . . . , ξ

′
l],

where Norm(σ) = [ξ1, . . . , ξk] and Norm(τ) = [ξ′1, . . . , ξ
′
l]

Lemma 4. If Norm(σ) = [ξ1, . . . , ξk] then σ ≡∏i=1...k ξi.

The model checker algorithm for membranes consists of three mutually recursive
functions: the model checker Check : Σ×Ω → Bool, an auxiliary checker Check :
Ξ × Θ → Bool for checking action formulas, and a function Next : Σ × Θ →
Pf (Ξ). Intuitively, Next(σ, α) is the (finite) set of residuals of σ after performing
an action satisfying α.

Checking whether membrane σ satisfies closed formula M
Check(σ,T) �T

Check(σ,¬M) �¬Check(σ,M)

Check(σ,M∨N ) �Check(σ,M) ∨ Check(σ,N )

Check(σ,0) �Norm(σ) = []

Check(σ,M|N ) �let Norm(σ) = [ξ1, . . . , ξk] in
∃I, J.I ∪ J = {1, . . . , k} ∧ I ∩ J = ∅∧
Check(

∏
i∈I ξi,M) ∧ Check(

∏
j∈J ξj ,N )

Check(σ, )α*M) �∃τ ∈ Next(σ, α).Check(τ,M)

Modal Logics for Brane Calculus 13
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Next(0, α) �∅
Next(σ|τ, α) �Next(σ, α) ∪ Next(τ, α)

Next(a.σ, α) �if Check(a, α) then {σ} else ∅
Check(Jn,Jm) �n = m Check(JI

n(σ),JI

m(M)) �n = m ∧ Check(σ,M)

Check(Kn,Km) �n = m Check(Gn(σ),Gm(M)) �n = m ∧ Check(σ,M)

Check(KI

n,KI

m) �n = m Check(wrapn(σ), wrapm(M)) �n = m ∧ Check(σ,M)

Check(a, α) �F otherwise

The algorithm always terminates, because each recursive call is on formulas and
membranes smaller than the original ones.

Proposition 4. For all !-free membranes σ and �-free closed membrane for-
mulas M, σ � M iff Check(σ,M) = T.

The model checker for system formulas relies on the model checker for mem-
branes. First we have to define a normalization function for systems into multi-
sets of prime systems.

Normalization of a replication-free system

π ::= k | σhPi (prime systems)
Norm(k) � [] Norm(σhPi) � [σhPi]

Norm(P m Q) � [π1, . . . , πk, π′
1, . . . , π

′
l],

where Norm(P ) = [π1, . . . , πk] and Norm(Q) = [π′
1, . . . , π

′
l]

Lemma 5. If Norm(P ) = [π1, . . . , πk] then P ≡∏i=1...k πi.

As for many modal logics, we need two auxiliary functions Reach , SubLoc :
Π → Pf (Π) for checking the two modalities. Their specification is the following:

Q ∈ Reach(P ) ⇒ P }
∗ Q ∀P ′.P }

∗ P ′ ⇒ ∃Q ∈ Reach(P ).P ′ ≡ Q

Q ∈ SubLoc(P ) ⇒ P ↓∗ Q ∀P ′.P ↓∗ P ′ ⇒ ∃Q ∈ SubLoc(P ).P ′ ≡ Q

Due to lack of space, we omit their (easy) definitions.

Checking whether system P satisfies closed formula A

Check(P,T) �T

Check(P,¬A) �¬Check(P,A)

Check(P,A ∨ B) �Check(P,A) ∨ Check(P,B)

Check(P,0) �Norm(P ) = []
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Check(P,A|B) �let Norm(P ) = [π1, . . . , πk] in
∃I, J.I ∪ J = {1, . . . , k} ∧ I ∩ J = ∅∧
Check(

∏
i∈I πi,A) ∧ Check(

∏
j∈J πj ,B)

Check(P,MhAi) �∃σ,Q.Norm(P ) = [σhQi] ∧ Check(σ,M) ∧ Check(Q,A)

Check(P,∀x.A) �let m �∈ FN(P ) ∪ FN(A) in
∀n ∈ FN(P ) ∪ FN(A) ∪ {m}.Check(P,A{x ← m})

Check(P,NA) �∃Q ∈ Reach(P ).Check(Q,A)

Check(P,mA) �∃Q ∈ SubLoc(P ).Check(Q,A)

Also this algorithm always terminates, because each recursive call is on formulas
and processes smaller than the original ones. Notice that in the case of compart-
ment, we execute the model checker over membranes defined above.

Proposition 5. For all !-free systems P and (��@)-free closed system formulas
A, P � A iff Check(P,A) = T.

6 Conclusions

In this paper we have introduced a modal logic for describing spatial and tem-
poral properties of biological systems represented as nested membranes, with
particular attention to the computational activity which takes place on mem-
branes. The logic is quite expressive, since it can describe in a easy but formal
way a large range of biological situations at the abstraction level of membrane
machines. For a decidable sublogic, we have given a model-checking algorithm,
which is a useful tool for automatic verification of properties (e.g., vulnerabili-
ties) of biological systems.

The work presented in this paper is intended to be the basis for further de-
velopments, in many directions. First, we can consider logics for more expressive
brane calculi, e.g. with communication cross/on-membranes and protein com-
plexes logic formulas. Suitable corresponding logical constructors can be added
to the logic of actions. Also, the logic can be easily adapted to other variants
of the Brane Calculus, such as the Projective Brane Calculus [7] (e.g., a system
formula like 〈M;N〉hAi would carry a formula for each face of the membrane).

Another interesting aspect to investigate is the notion of logical equivalence
induced by the logic. This should be similar to the equivalences induced by
Hennessy-Milner logic extended with spatial connectives (for membranes) and
of Ambient Logic (for systems). We think that the methodologies and results
developed in [15] can be extended to our logic.

Moreover, it would be interesting to extend the decidability result to a larger
class of formulas. We plan to extend the model checker algorithm to formulas
without quantifiers but with the guarantees operators (i.e., the adjoints of com-
positions), along the lines of [6]. On a different direction, it is interesting to
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consider also epistemic logics [10], where the role of the guarantee operator is
played by an epistemic operator, while maintaining decidability.
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Abstract. Brane calculi are a family of biologically inspired process
calculi proposed in [5] for modeling the interactions of dynamically nested
membranes and small molecules.

Building on the decidability of divergence for the fragment with mate,
bud and drip operations in [1], in this paper we extend the decidability
results to a broader class of properties and to larger set of interaction
primitives. More precisely, we provide the decidability of divergence, con-
trol state maintainabiliy, inevitability and boundedness properties for the
calculus with molecules and without the phago operation.

1 Introduction

Brane calculi [5] are a family of process calculi proposed for modeling the behav-
ior of biological membranes. The formal investigation of biological membranes
has been initiated by G. Păun [13,12], in the field of automata and formal lan-
guage theory, with the definition of P systems. In a process algebraic setting, the
notions of membranes and compartments are explicitly represented in BioAmbi-
ents [14], a variant of Mobile Ambients [7] based on a set of biologically inspired
primitives of interaction. Brane calculi represent an evolution of BioAmbients:
the main difference w.r.t. previous approaches consists in the fact that the ac-
tive entities reside on membranes, and not inside membranes. In [5] two basic
instances of Brane Calculi are defined: the Phago/Exo/Pino (PEP) and the
Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process of
incorporating external material into a cell by engulfing it with the cell membrane)
and exocytosis (the reverse process). A relevant feature of such primitives is
bitonality, a property ensuring that there will never be a mixing of what is inside a
membrane with what is outside, although external entities can be brought inside
if safely wrapped by another membrane. As endocytosis can engulf an arbitrary
number of membranes, it turns out to be a rather uncontrollable process. Hence,
it is replaced by two simpler operations: phagocytosis, that is engulfing of just one
external membrane, and pinocytosis, that is engulfing zero external membranes.
In [1] we show that a fragment of PEP, namely, the calculus comprising only the
phago and exo primitives, is Turing powerful.
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The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito). Because membrane fission is an uncontrollable process that can split
a membrane at an arbitrary place, it is replaced by two simpler operations:
budding, that is splitting off one internal membrane, and dripping, that consists
in splitting off zero internal membranes. In [1] we show that the existence of a
divergent computation is a decidable property. The proof of the decidability of
divergence is based on the theory of well-structured transition systems [8].

The aim of this paper is to extend the decidabillity result of [1] to a larger
class of interaction primitives and to a broader set of properties.

After the introduction of the two basic brane calculi PEP and MBD, containing
only membranes and membrane interaction primitives, in [5] the calculus is ex-
tended with small molecules, freely floating either in the external environment or
inside a membrane, and with a molecule–membrane interaction primitive. Biolog-
ical membranes contain catalysts that can cause molecules, floating respectively
inside and outside the membrane, to interact each other without crossing the mem-
brane. Membranes can bind molecules on either sides of their surface, and can re-
lease molecules on either sides of their surface. Usually, such an operation occurs in
an atomic (all-or-nothing) way. The bind&release operation permits to simultane-
ously bind and release multiple molecules. In this paper we extend the decidability
results to the calculus with molecules, and with all the molecule–membrane and
membrane–membrane interaction primitives, but the phago operation.

Regarding the set of decidability properties, besides providing a construc-
tive method for deciding divergence, the theory of well-structured transition
systems [8] also provides methods for deciding the following properties: control
state maintainabiliy, inevitability and boundedness. We show that these methods
can be fruitfully applied to the full brane calculus (without the phago operation)
to obtain the decidability of behavioural properties.

The paper is organized as follows: in Section 2 we present the syntax and
the semantics of the Full Brane Calculus, and in Section 3 we recall the theory
of well-structured transition systems. The decidability results are contained in
Section 4. Section 5 reports some conclusive remarks.

2 Full Brane Calculus: Syntax and Semantics

In this section we recall the syntax and the semantics of the Full Brane Calculus [5].

2.1 Syntax and Semantics of Systems and Processes

A system consists of nested membranes, and a process is associated to each
membrane. Besides containing other membranes, a membrane can also contain
some (small) molecules. As done in [5], We assume that small molecules do not
change, do not have internal structure, and do not interact among themselves.

Definition 1. Let Mol be an infinite set of names for molecules, ranged over
by m, m’,. . . . The set of systems is defined by the following grammar:

P, Q ::= � | P ◦Q | !P | σ�P � | m
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The set of (finite) multisets of molecules is defined by the following grammar:

p, q ::= � | p ◦ q | m

The set of brane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions.

The term � represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term σ�P � denotes the brane
that performs process σ and contains system P . The term m represents a single
molecule.

Multisets of molecules will be used used below to define the operation of
interaction between membranes and molecules.

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !σ we denote the parallel composition of an unbounded number
of instances of process σ. Term a.σ is a guarded process: after performing the
action a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with �P � we
denote 0�P �, and with σ� � we denote σ� � �.

The structural congruence relation on systems and processes is defined as
follows:1

Definition 2. The structural congruence ≡ is the least congruence relation sat-
isfying the following axioms:

P ◦Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ | 0 ≡ σ

!� ≡ � !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0� � � ≡ �

Note that the set of multisets of a molecules is a subset of the set of systems;
hence, the first three structural congruence axioms for systems (i.e., the axioms
for commutative monoids) also hold for multisets of molecules.

1 With abuse of notation we use ≡ to denote both structural congruence on systems
and structural congruence on processes.
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Definition 3. The basic reaction rules are the following:

(par)
P → Q

P ◦R → Q ◦R
(brane)

P → Q

σ�P � → σ�Q �

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

Rules (par) and (brane) are the contextual rules that respectively permit to
a system to execute also if it is in parallel with another process or if it is in-
side a membrane, respectively. Rule (strucong) ensures that two structurally
congruent systems have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →.
Given a reduction relation →, we say that a system P has a divergent com-
putation (or infinite computation) if there exists an infinite sequence of systems
P0, P1, . . . , Pi, . . . such that P = P0 and ∀i ≥ 0 : Pi → Pi+1. We say that a sys-
tem P universally terminates if it has no divergent computations. We say that
P is deterministic iff for all P ′, P ′′: if P → P ′ and P → P ′′ then P ′ ≡ P ′′. We
say that P has a terminating computation (or a deadlock) if there exists Q such
that P →∗ Q and Q �→. A system P satisfies the universal termination property
if P has no divergent computations. A system P satisfies the existential termi-
nation property if P has a deadlock. Note that the existential termination and
the universal termination properties are equivalent on deterministic systems.

The system P ′ is a derivative of the system P if P →∗ P ′; the set of derivatives
of a system P is denoted by Deriv(P ).

We use
∏

(resp. ©) to denote the parallel composition of a set of processes
(resp. systems), i.e.,

∏
i∈{1,...,n} σi = σ1 | . . . | σn and ©i∈{1,...,n}Pi = P1 ◦

. . . ◦ Pn. Moreover,
∏

i∈∅ σi = 0 and ©i∈∅Pi = �.

2.2 Syntax and Semantics of Actions

The set of actions introduced in [5] comprises both operations representing
membranes interactions and operations for interactions between molecules and
membranes.

In [5] two basic calculi for membrane interactions are investigated. The first
calculus (called PEP in [1]) is inspired by endocytosis/exocytosis. Endocytosis
is the process of incorporating external material into a cell by “engulfing” it
with the cell membrane, while exocytosis is the reverse process. As endocytosis
can engulf an arbitrary amount of material, giving rise to an uncontrollable
process, in [5] two more basic operations are used: phagocytosis, engulfing just
one external membrane, and pinocytosis, engulfing zero external membranes.

The second basic calculus proposed in [5] (called MBD in [1]) is inspired by
membrane fusion and splitting. To make membrane splitting more controllable,
in [5] two more basic operations are used: budding, consisting in splitting off
one internal membrane, and dripping, consisting in splitting off zero internal
membranes. Membrane fusion, or merging, is called mating.
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Regarding the interaction beween molecules and membranes, [5] observes that
membranes contain catalysts that can cause molecules, floating respectively in-
side and outside the membrane, to interact each other without crossing the mem-
brane. Membranes can bind molecules on either sides of their surface, and can
release molecules on either sides of their surface. Usually, coordinated bindings
and releases happen completely or not at all. Hence, the ability of a membrane
to bind and release multiple molecules simultaneously is represented by a single
bind&release operation.

Definition 4. Let Name be a denumerable set of ambient names, ranged over
by n, m, . . .. The set of actions of the Full Brane Calculus is defined by the
following grammar:

a ::= C←
n | C←⊥

n(σ) | C→
n | C→⊥

n | ©◦ (σ)
maten | mate⊥

n | budn | bud⊥
n(σ) | drip(σ)

p(q) ⇒ p′(q′)

Action C←
n denotes phagocytosis; the co-action C←⊥

n is meant to synchronize with
C←
n; names n are used to pair-up related actions and co-actions. The co-phago

action is equipped with a process σ, this process will be associated to the new
membrane that engulfs the external membrane. Action C→

n denotes exocytosis,
and synchronizes with the co-action C→⊥

n . Exocytosis causes an irreversible mixing
of membranes. Action ©◦ denotes pinocytosis. The pino action is equipped with
a process σ: this process will be associated to the new membrane, that is created
inside the brane performing the pino action.

Actions maten and mate⊥
n will synchronize to obtain membrane fusion. Action

budn permits to split one internal membrane, and synchronizes with the co-action
bud⊥

n . Action drip permits to split off zero internal membranes. Actions bud⊥ and
drip are equipped with a process σ, that will be associated to the new membrane
created by the brane performing the action.

The action p(q) ⇒ p′(q′) binds, in general, the multiset p of molecules outside
the membrane and the multiset q of molecules inside the membrane if that is
possible, it instantly releases the multiset p′ of molecules outside the membrane
and the multiset q′ of molecules inside the membrane.

Definition 5. The reaction relation for the Full Brane Calculus is the least
relation containing the axioms in Table 1, and satisfying the rules in Definition 3.

In [5] it is shown that the operations of mating, budding and dripping can be
encoded in PEP.

3 Well-Structured Transition System

The decidability results presented in this paper are based on the theory of well-
structured transition systems [8]. Such a theory permits to show the decidability
of some behavioural properties, such as, e.g., the universal termination, bound-
edness, coverability for finitely branching transition systems, provided that the
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Table 1. The set of axioms of the reduction rule for the Full Brane Calculus

(phago) C←
n.σ|σ0� P � ◦ C←⊥

n (ρ).τ |τ0�Q � → τ |τ0� ρ�σ|σ0�P � � ◦ Q �

(exo) C→⊥
n .τ |τ0� C→

n.σ|σ0� P � ◦ Q � → P ◦ σ|σ0|τ |τ0� Q �

(pino) ©◦ (ρ).σ|σ0� P � → σ|σ0� ρ� � ◦ P �

(mate) maten.σ|σ0� P � ◦ mate⊥
n .τ |τ0� Q � → σ|σ0|τ |τ0� P ◦ Q �

(bud) bud⊥
n (ρ).τ |τ0� budn.σ|σ0� P � ◦ Q � → ρ�σ|σ0� P � � ◦ τ |τ0�Q �

(drip) drip(ρ).σ|σ0�P � → ρ� � ◦ σ|σ0� P �

(B&R) p ◦ p(q) ⇒ p′(q′).σ|σ0� q ◦ P � → p′ ◦ σ|σ0� q′ ◦ P �

set of states can be equipped with a well-quasi-ordering, i.e., a quasi-ordering
relation which is compatible with the transition relation and such that each
infinite sequence of states admits an increasing subsequence.

We start by recalling some basic definitions and results from [8] concern-
ing well-structured transition systems, as well as on well-quasi-orderings on se-
quences of elements belonging to a well-quasi-ordered set, that will be used in
the following sections.

A quasi-ordering (qo) is a reflexive and transitive relation.
A partial-ordering ≤ is a quasi-ordering satisfying the following property: if

x ≤ y and y ≤ x then x = y.

Definition 6. A well-quasi-ordering (wqo) is a quasi-ordering ≤ over a set X
such that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j
such that xi ≤ xj .

Note that, if ≤ is a wqo, then any infinite sequence x0, x1, x2, . . . contains an
infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .).

Definition 7. Let ≤ be a wqo over a set X, and let I ⊆ X.
The set I is upward closed if the following holds: ∀x, y : x ≤ y ∧ x ∈ I imply

y ∈ I.

Transition systems can be formally defined as follows.

Definition 8. A transition system is a structure TS = (S,→), where S is a set
of states and →⊆ S × S is a set of transitions.
We write Succ(s) to denote the set {s′ ∈ S | s→ s′} of immediate successors of
s ∈ S.
TS is finitely branching if ∀s ∈ S : Succ(s) is finite. We restrict to finitely
branching transition systems.

Well-structured transition systems, defined as follows, provide the key tool to
decide properties of computations.
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Definition 9. A well-structured transition system (with strong compatibility)
is a transition system TS = (S,→), equipped with a quasi-ordering ≤ on S, also
written TS = (S,→,≤), such that the two following conditions hold:

1. well-quasi-ordering: ≤ is a well-quasi-ordering, and
2. strong compatibility: ≤ is (upward) compatible with →, i.e., for all s1 ≤

t1 and all transitions s1 → s2, there exists a state t2 such that t1 → t2 and
s2 ≤ t2.

The following theorems (most of them are special cases of results in [8]) will be
used to obtain our decidability results.

Theorem 1. Let TS = (S,→,≤) be a finitely branching, well-structured transi-
tion system with decidable ≤ and computable Succ. The existence of an infinite
computation starting from a state s ∈ S is decidable.

Theorem 2. Let TS = (S,→,≤) be a finitely branching, well-structured tran-
sition system with decidable ≤ and computable Succ. Let I ⊆ S be an upward
closed set of states. It is decidable if there exists a computation, starting from a
state s ∈ S, such that all states reached during the computation belong to I.

The theorem above provides the decidability of the control state maintainability
problem and the inevitability problem.

Given an initial state s and a finite set X = {s1, . . . , sn} of states, the control
state maintainability problem consists in checking if there exists a computation,
starting from s, where all states cover one of the si (i.e., for all states s′ reachable
during the computation, there exists i ∈ {1, . . . , n} such that si ≤ s′).

The inevitability problem is the dual problem of the control state maintain-
ability problem, and consists in checking if all computations starting from an
initial state s eventually visit a state not covering one of the si.

The boundedness problem consists in checking if the set of states reachable
from an initial state s is finite.

Theorem 3. Let TS = (S,→,≤) be a finitely branching, well-structured transi-
tion system with decidable ≤ and computable Succ. If ≤ is also a partial order,
then the boundedness problem is decidable.

To show that the quasi-ordering relation we will define on MBD systems is a
well-quasi-ordering we need the following result, due to Higman [9] and stating
that the set of the finite sequences over a set equipped with a wqo is well-quasi-
ordered.

Given a set S, with S∗ we denote the set of finite sequences of elements in S.

Definition 10. Let S be a set and ≤ a wqo over S. The relation ≤∗ over S∗

is defined as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We
have that t ≤∗ u iff there exists an injection f from {1, 2, . . . , m} to {1, 2, . . . , n}
such that ti ≤ uf(i) and i ≤ f(i) for i = 1, . . . , m.

Note that relation ≤∗ is a quasi-ordering over S∗.
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Lemma 1. [Higman] Let S be a set and ≤ a wqo over S. Then, the relation
≤∗ is a wqo over S∗.

Also the following propositions will be used to prove that the relation on systems
is a well-quasi-ordering:

Proposition 1. Let S be a finite set. Then the equality is a wqo over S.

Proposition 2. Let S, T be sets and ≤S, ≤T be wqo over S and T , respectively.
The relation ≤ over S × T is defined as follows: (s1, t1) ≤ (s2, t2) iff ( s1 ≤S s2

and t1 ≤T t2). The relation ≤ is a wqo over S × T .

4 Decidability of Properties in Brane Calculi

In this section we exploit the theory of well-structured transition systems to
investigate the decidability of properties in Brane Calculi.

A first step in this direction has been carried out in [1], where we showed
that universal termination is decidable for the MBD basic Brane Calculus. In
this work we extend such a technique to deal with a larger fragment of the Full
Brane Calculus, as well as with other properties of systems.

In [1] we proved that the PEP basic brane calculus (more precisely, the PEP
fragment with only phago and exo actions) is Turing powerful. More precisely,
we provide a deterministic encoding of a Random Access Machine (RAM) [16,11]
satisfying the following property: all the computations of the encoding of a RAM
terminate if and only if the RAM terminates. This means that there is no hope
to decide universal termination on a calculus that extends the PEP calculus.

To understand to which fragment of the Full Brane Calculus we can extend
the decidability results, we recall some crucial points on decidability of universal
termination in MBD. The proof that the quasi-ordering defined in [1] for MBD
systems turns out to be a well-quasi-ordering is based on the existence of an
upper bound to the maximum nesting level of the set of derivatives of a system.
A key property of MBD systems, observed in [5], is the following: the reduction
reactions in MBD do not increase the maximum nesting levels of membranes
in a system. Hence, the nesting level of membranes in a system P provides an
upper bound to the nesting level of membranes in the set of the derivatives
of P .

Clearly, the key property of MBD systems no longer holds when moving to
PEP systems, as both the pino and the phago actions can increase the nesting
level of the system. Whereas there is no hope to provide an upper bound to
the maximum nesting level of the derivatives of systems containing the phago
operation (as witnessed by the system !( C←⊥

n(0). C←
n� �) ◦ C←

n� �), we will show
that it is possible to provide an upper limit to the nesting level even in presence
of the pino operation.

To this aim, we define the calculus BC−phago as the fragment of the Full Brane
Calculus obtained by dropping the phago operation from the set of actions. The
results presented in this section hold for the calculus BC−phago.
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We recall that our decidability results are based on the theory of well-structured
transition systems [8]. Such a theory provides decidability techniques for proper-
ties of systems, provided that the transition system is finitely branching and that
the set of states of a system can be equipped with a well-quasi-ordering, i.e., a
quasi-ordering relation which is compatible with the transition relation and such
that each infinite sequence of states admits an increasing subsequence.

Hence, to provide decidability of properties for BC−phago, we start by pro-
viding an alternative semantics that is equivalent w.r.t. termination to the one
presented in Section 2, but which is based on a finitely branching transition
system and permits to define a well-quasi-ordering on the derivatives of a given
system (i.e., the set of systems reachable from a given initial system). Then,
by exploiting the theory developed in [8], we show that divergence, control state
maintainability, inevitability, boundedness are decidable properties for BC−phago

systems.

4.1 A Finitely Branching Semantics for BC−phago Systems

The finitely branching semantics provided in this section is essentially an exten-
sion to BC−phago of the finitely branching semantics of MBD provided in [1].
Here we recall the main issues.

Because of the structural congruence rules, the reaction transition system for
BC−phago is not finitely branching. To obtain a finitely branching transition sys-
tem (with the same behavior w.r.t. termination), we take the transition system
whose states are the equivalence classes of structural congruence.

Technically, it is possible to define a normal form for systems, up to the
commutative and associative laws for the ◦ and | operators.

In a system in normal form, the presence of a replicated version of a sequen-
tial process !a.σ (resp. system !(σ�P �) or molecule !m) forbids the presence of
any occurrence of the nonreplicated version of the same process (resp. system or
molecule), as well as of other occurrences of the replicated version of the process
(resp. system or molecule). Moreover, replication is distributed over the compo-
nents of parallel composition operators, and redundant replications and empty
systems and terms are removed.

Definition 11. Let ca= be the least congruence on systems satisfying the commu-
tative and associative rules for ◦ and |.

A brane process σ is in normal form if σ
ca=
∏

i∈I ai.σi |
∏

j∈J !a′
j.σ

′
j , where

– σi and σ′
j are in normal form for i ∈ I and j ∈ J ;

– if ai = bud⊥
n(ρ) or ai = drip(ρ) or ai =©◦ (ρ) then ρ is in normal form;

if a′
j = bud⊥

n(ρ) or a′
j = drip(ρ) or a′

j =©◦ (ρ) then ρ is in normal form;
– if σi

ca= σ′
j then ai �ca= a′

j;
– if σ′

i
ca= σ′

j and a′
i

ca= a′
j then i = j.

A system P is in normal form if P
ca= ©i∈Iσi�Pi � ◦ ©j∈J !(σ′

j�P ′
j �) ◦

©h∈Hmh ◦ ©k∈K !(m′
k), where
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– σi, Pi, σ′
j and P ′

j are in normal form for i ∈ I and j ∈ J ;
– if Pi

ca= P ′
j then σi �ca= σ′

j;
– if P ′

i
ca= P ′

j and σ′
i

ca= σ′
j then i = j;

– mh �= m′
k for all h ∈ H and k ∈ K.

The function nf produces the normal form of a process or a system:

Definition 12. The normal form of a process is defined inductively as follows:

nf(0) = 0
nf(a.σ) = a.nf(σ) a ∈ {maten,mate⊥

n , budn, C→
n, C→⊥

n}
nf(a(ρ).σ) = a(nf(ρ)).nf(σ) a ∈ {bud⊥

n , drip,©◦ }
nf(p(q) ⇒ p′(q′)) = nf(p)(nf(q)) ⇒ nf(p′)(nf(q′))

Let nf(σ) =
∏

i∈I ai.σi |
∏

j∈J !a′
j .σ

′
j and nf(τ) =

∏
h∈H bh.τh |

∏
k∈K !b′k.τ ′

k.
Then

nf(σ | τ) =
∏{ai.σi | i ∈ I ∧ ∀k ∈ K : ai.σi �ca= b′k.τ ′

k} |∏{bh.τh | h ∈ H ∧ ∀j ∈ J : bh.τh �ca= a′
j .σ

′
j} |∏{!a′

j.σ
′
j | j ∈ J} |∏{!b′k.τ ′
k | k ∈ K ∧ ∀j ∈ J : b′k.τ ′

k �ca= a′
j .σ

′
j}

and
nf(!σ) =

∏{!ai.σi | i ∈ I} | ∏{!a′
j .σ

′
j | j ∈ J}

Definition 13. The normal form of a system is defined inductively as follows:

nf(�) = �
nf(m) = m
nf(σ�P �) = nf(σ)�nf(P )�

Let nf(P ) = ©i∈Iσi�Pi � ◦ ©j∈J !(σ′
j�P ′

j �) ◦ ©u∈Umu ◦ ©v∈V m′
v and

nf(Q) =©h∈Hτh�Qh, � ◦ ©k∈K !(τ ′
k�Q′

k �) ◦ ©w∈W nw ◦ ©z∈Zn′
z. Then

nf(P ◦ Q) =©{σi�Pi � | i ∈ I ∧ ∀k ∈ K : σi�Pi � �ca= τ ′
k�Q′

k �} ◦
©{τh�Qh � | h ∈ H ∧ ∀j ∈ J : τh�Qh � �ca= σ′

j�P ′
j �} ◦

©{!σ′
j�P ′

j � | j ∈ J} ◦
©{!τ ′

k�Q′
k � | k ∈ K ∧ ∀j ∈ J : τ ′

k�Q′
k � �ca= σ′

j�P ′
j �} ◦

©{mu | u ∈ U ∧ ∀z ∈ Z : mu �= n′
z} ◦

©{nw | w ∈W ∧ ∀v ∈ V : nw �= m′
v} ◦

©{!m′
v | v ∈ V } ◦

©{!n′
z | z ∈ Z ∧ ∀v ∈ V : n′

z �= m′
z}

nf(!P ) =©{!σi�Pi � | i ∈ I} ◦
©{!σ′

j�P ′
j � | j ∈ J} ◦

©{!mu | u ∈ U} ◦
©{!m′

v | v ∈ V }
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We need an alternative, finitely branching semantics for systems in normal form,
denoted by 
→, that is equivalent to the semantics of Section 2. We do not report
the rules here for the lack of space; the definition of such a semantics for the
MBD calculus can be found in [1].

The following result, relating the reduction relations → and 
→, holds:

Lemma 2. Let P, Q be BC−phago systems. If P → P ′ then nf(P ) 
→ nf(P ′). If
nf(P ) 
→ Q then P → Q.

4.2 Decidability of Termination for MBD Systems

Let us consider a system P in normal form. In this section we provide a quasi-
order on the derivatives of P (and a quasi-order on brane processes) that turns
out to be a wqo compatible with 
→. Hence, exploiting the results in section 3,
we obtain decidability of termination.

We note that each system (resp. process) in normal form is essentially a finite
sequence of objects of kind σ�Q � or !(σ�Q �) (resp. of objects of kind a.σ or !a.σ).
If we consider the nesting level of membranes, we note that each subsystem Q
contained in a subterm σ�Q � or !(σ�Q �) of a system R is simpler than R. More
precisely, the maximum nesting level of membranes in Q is strictly smaller than
the maximum nesting level of membranes in R. As already observed in [6], the
reactions in MBD preserve the nesting level of membranes. The only operation
that can increase the nesting level of membranes is pino. However, we note that
the number of pino operations nested one inside the other in the processes of a
system is bounded.

Hence, the sum of the nesting level of membranes in a system P with the
nesting depth of the pino operation in the processes of P turns out to be an
upper bound to the nesting level of membranes in the set of the (normal forms
of the) derivatives of P .

Definition 14. The nesting level of a system is defined inductively as follows:

nl(�) = 0
nl(m) = 0
nl(σ�P �) = nl(P ) + 1
nl(P ◦Q) = max{nl(P ), nl(Q)}
nl(!P ) = nl(P )

Definition 15. The nesting depth of the pino operation in a process is defined
inductively as follows:

ndpino(0) = 0
ndpino(a.σ) = ndpino(σ) a ∈ {maten,mate⊥

n , budn, C→
n,

C→⊥
n , p(q) ⇒ p′(q′)}

ndpino(a(ρ).σ) = max{ndpino(ρ), ndpino(σ)} a ∈ {bud⊥
n , drip}

ndpino(©◦ (ρ).σ) = max{1 + ndpino(ρ), ndpino(σ)}
ndpino(σ | τ) = max{ndpino(σ), ndpino(τ)}
ndpino(!σ) = ndpino(σ)
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The nesting depth of the pino operation in a system is defined inductively as
follows:

ndpino(�) = 0
ndpino(P ◦Q) = max{ndpino(P ), ndpino(Q)}
ndpino(!P ) = ndpino(P )
ndpino(σ�P �) = max{ndpino(σ), ndpino(P )}
ndpino(m) = 0

Thanks to normal forms, we have that the set of processes of kind a.σ or !a.σ
that occur as subterms in the derivatives (w.r.t. 
→) of a process in normal form
is finite. This fact will be used to show that the quasi-orders on processes and
on systems are wqo.

Definition 16. Let P be a system in normal form. The set of derivatives of P
w.r.t. 
→ is defined as follows: nfDeriv(P ) = {P ′ | P 
→∗ P ′}.
The following lemma provides an upper bound to the nesting level of the deriva-
tives of a system P :

Lemma 3. Let P be a systems in normal form and let P ′ ∈ nfDeriv(P ). Then
nl(P ′) ≤ nl(P ) + ndpino(P ).

We introduce a quasi-order �proc on processes in normal form such that σ �proc

τ if

– for each occurrence of a replicated guarded process at top-level in σ there is
a corresponding occurrence of the same process at top-level in τ ;

– for each occurrence of a guarded process at top-level in σ there is either
a corresponding occurrence of the same process or an occurrence of the
replicated version of the process at top-level in τ .

Definition 17. Let σ and τ be two processes in normal form.
Let σ =

∏
i∈I ai.σi |

∏
j∈J !a′

j.σ
′
j and τ =

∏
h∈H bh.τh |

∏
k∈K !b′k.τ ′

k, and H ∩
K = ∅. We say that σ �proc τ if there exists a pair of functions (f, g) such that:

– f : I → H ∪K and g : J → K
– ∀i, i′ ∈ I : if f(i) = f(i′) and f(i) ∈ H then i = i′

– ∀i ∈ I : if f(i) ∈ H then bf(i).τf(i)
ca= ai.σi

– ∀i ∈ I : if f(i) ∈ K then b′f(i).τ
′
f(i)

ca= ai.σi

– ∀j ∈ J : b′g(j).τ
′
g(j)

ca= a′
j .σ

′
j

We define a quasi-order on systems such that R �sys S if

– for each replicated molecule !m at top level in R there is a corresponding
replicated molecule !m at top level in S;

– for each replicated membrane !(ρ�R1 �) at top-level in R there is a corre-
sponding replicated membrane !(σ�S1 �) at top-level in S such that ρ is
smaller than σ and R1 is smaller than S1;

– for each occurrence of a molecule m at top-level in R there is
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• either a corresponding occurrence of molecule m at top-level in S
• or an occurrence of a replicated molecule !m at top-level in S;

– for each occurrence of a membrane ρ�R1 � at top-level in R there is
• either a corresponding occurrence of a membrane σ�S1 � at top-level in

S such that ρ is smaller than σ and R1 is smaller than S1

• or an occurrence of a replicated membrane !(ρ�R1 �) at top-level in S.

Definition 18. Let P, Q be systems. Let P =©i∈Iσi�Pi � ◦ ©j∈J !(σ′
j�P ′

j �) ◦
©u∈Umu ◦ ©v∈V m′

v and Q =©h∈Hτh�Qh, � ◦ ©k∈K !(τ ′
k�Q′

k �) ◦ ©w∈W nw ◦
©z∈Zn′

z. Suppose that the sets H, K, W and Z are pairwise disjoint.
We say that P �sys Q if there exists a tuple of functions (f1, g1, f2, g2) such

that:

– f1 : I → H ∪K and g1 : J → K
– ∀i, i′ ∈ I : if f1(i) = f1(i′) and f1(i) ∈ H then i = i′

– ∀i ∈ I : if f1(i) ∈ H then σi �proc τf1(i) and Pi �sys Qf1(i)

– ∀i ∈ I : if f1(i) ∈ K then σi �proc τ ′
f1(i) and Pi �sys Q′

f1(i)

– ∀j ∈ J : σ′
j �proc τ ′

g1(j) and P ′
j �sys Q′

g1(j)

– f2 : U →W ∪ Z and g2 : V → Z
– ∀u, u′ ∈ U : if f2(u) = f2(u′) and f2(u) ∈W then u = u′

– ∀u ∈ U : if f2(u) ∈ W then mu = nf2(u)

– ∀u ∈ U : if f2(u) ∈ Z then mu = n′
f2(u)

– ∀v ∈ V : m′
v = n′

g2(v)

It is easy to see that �proc and �sys are partial orders.
The relation �sys is strongly compatible with 
→:

Theorem 4. Let P, P ′, Q be systems in normal form. If P 
→ P ′ and P �sys Q
then there exists Q′ in normal form such that Q 
→ Q′ and Q �sys Q′.

By Higman lemma and Proposition 1 it easy to prove that

Lemma 4. Let P be a system in normal form. The relation �proc is a wqo over
the set of processes that can appear as subterms in the derivatives of P .

The relation �sys is a wqo over a subset of derivatives whose elements have
a nesting level smaller than a given natural number. The proof proceeds by
induction on the nesting level of membranes, and makes use of Higman’s Lemma,
of Lemma 4 and of Proposition 2.

Theorem 5. Let P be a system in normal form and n ≥ 0. The relation �sys

is a wqo over the set of systems appearing as subsystems in the derivatives of P ,
and whose nesting level is not greater than n.

The following result can be deduced from Lemma 3 and Theorem 5:

Theorem 6. Let P be a system in normal form. The relation �sys is a wqo
over the set nfDeriv(P ).

The following theorem ensures that the hypothesis of Theorem 1 are satisfied.
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Theorem 7. Let P be a system in normal form. Then the transition system
(nfDeriv(P ), 
→,�sys) is a well-structured transition system with decidable �sys

and computable Succ. Moreover, �sys is a partial-ordering relation.

By the above theorem and Theorems 1, 2 and 3 we get the following

Corollary 1. Let P be a BC−phago system. The following properties are decid-
able for P : divergence, control state maintainability, inevitability, boundedness.

Control state maintainability can be used to check safety properties, such as,
e.g., the fact that all the derivatives of a system contain at least one occurrence
of a given molecule (or at least two occurrences of molecules belonging to some
specified set). Inevitability can be used to check, e.g., if in all the computation a
state is eventually reached that does contain no occurrences of a given molecule.
Boundedness can be used to check if the number of membranes or of molecules
can arbitrarily grow during the computation.

5 Conclusion

In this paper we showed the decidability of a set of properties for the Brane
Calculus with molecules but without the phago operation. We conjecture that
the results presented in this paper also hold for systems that can perform a
bounded number of phago operations. A synctactical characterization of a subset
of systems satisfing this requirement consists in forbidding the presence of a
phago operation inside the subsystems (and subprocesses) of kind !P (resp. !σ).

We plan to extend the results presented in this paper to the analysis of other
properties. We claim that the technique adopted to decide the existence of a
divergent computation in well-structured transition systems can be adapted to
check the presence of some cyclic behaviour in the system.

In the present paper we exploit the so-called tree saturation methods for well-
structured transition systems: such a class of methods essentially consists in
representing (an approximation of) all the computations in a finite tree-like
structure. Another class of methods, called set saturation methods, is based on
the following property of well-quasi-orderings: any infinite, increasing sequence
of upward-closed sets I1 ⊆ I2 ⊆ . . . eventually stabilizes (i.e., there exists k
s.t. Ik = Ik+1). We plan to exploit set saturation methods to investigate the
decidability of other properties.

The decidability results for well-structured transition systems are all con-
structive, i.e., they provide a computable procedure for deciding the systems
properties. We plan to develop a tool for the animation and the analysis of
Brane Calculus systems, also based on the results presented in this work.

In [1] we provided a deterministic encoding of Random Access Machines in the
PEP fragment with only phago and exo operations. A byproduct of the results
presented in this paper is the fact that the PEP fragment with only exo and
pino operations is not expressive enough to provide a deterministic encoding of
a RAM.
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In [2] we provide an encoding of a Random Access Machine in the MBD cal-
culus which preserves the existence of a terminating computation. This means
that deadlock is not decidable for MBD. A direct consequence is the undecid-
ability of deadlock also for BC−phago. It could be worthwhile to investigate the
(un)decidability of the reachability and liveness properties – which turn out to be
equivalent to deadlock in, e.g., Place/Transition Petri nets [15] – for (fragments)
of Brane Calculi.

In [4] we modeled the LDL cholesterol degradation pathway [10] in Full Brane
Calculus (with mate, pino, exo, drip and bind&release actions), and we showed
how to apply the techniques illustrated in the present paper for the analysis of
properties of such a biological pathway.
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Abstract. Probabilistic model checking is a formal verification tech-
nique that has been successfully applied to the analysis of systems from
a broad range of domains, including security and communication pro-
tocols, distributed algorithms and power management. In this paper we
illustrate its applicability to a complex biological system: the FGF (Fi-
broblast Growth Factor) signalling pathway. We give a detailed descrip-
tion of how this case study can be modelled in the probabilistic model
checker PRISM, discussing some of the issues that arise in doing so, and
show how we can thus examine a rich selection of quantitative properties
of this model. We present experimental results for the case study under
several different scenarios and provide a detailed analysis, illustrating
how this approach can be used to yield a better understanding of the
dynamics of the pathway.

1 Introduction

There has been considerable success recently in adapting approaches from com-
puter science to the analysis of biological systems and, in particular, biochemical
pathways. The majority of this work has relied on simulation-based techniques
developed for discrete stochastic models [7]. These allow modelling of the evolu-
tion of individual molecules, whose rates of interaction are controlled by exponen-
tial distributions. The principal alternative modelling paradigm, using ordinary
differential equations, differs in that it reasons about how the average concen-
trations of the molecules evolve over time. In this paper, as in [4,3], we adopt
the stochastic modelling approach, but employ methods which allow calculation
of exact quantitative measures of the model under study.

We use probabilistic model checking [19] and the probabilistic model checker
PRISM [9,14] as a framework for the modelling and analysis of biological path-
ways. This approach is motivated by the success of previous work which has
demonstrated the applicability of these techniques to the analysis of a wide va-
riety of complex systems [11]. One benefit of this is the ability to employ the
existing efficient implementations and tool support developed in this area. Ad-
ditionally, we enjoy the advantages of model checking, for example, the use of
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both a formal model and specification of the system under study and the fact
that the approach is exhaustive, that is, all possible behaviours of the system are
analysed. Our intention is that the methods in this paper should be used in con-
junction with the classical simulation and differential equation based approaches
to provide greater insight into the complex interactions of biological pathways.
This paper provides a detailed illustration of the applicability of probabilistic
model checking to this domain through the analysis of a complex biological
pathway called FGF (Fibroblast Growth Factor).

Related Work. The closest approach to that presented here is [4], where the
probabilistic model checker PRISM is used to model the RKIP inhibited ERK
pathway. The main difference is that in [4] the authors consider a “population”
based approach to modelling using approximate techniques where concentrations
are modelled by discrete abstract quantities. In addition, here we demonstrate
how a larger class of temporal properties including reward-based measures are
applicable to the study biological systems. Also related to the RKIP inhibited
ERK pathway is [3], where it is demonstrated how the stochastic process algebra
PEPA [8] can be used to model biological systems. The stochastic π-calculus
[15] has been proposed as a model language for biological systems [18,16]; this
approach has so far been used in conjunction with stochastic simulation, for
example through the tools BioSpi [16] and SPiM [12].

In parallel with the development of the PRISM model of the FGF pathway pre-
sented in this paper, we have constructed a separate π-calculus model [22,13] and
applied stochastic simulation through BioSpi. Although currently these works fo-
cus on different aspects of the pathway, in the future we aim to use this complex
case study as a basis for investigating the advantages of stochastic simulation
and probabilistic model checking.

2 Probabilistic Model Checking and PRISM

Probabilistic model checking is a formal verification technique for the modelling
and analysis of systems which exhibit stochastic behaviour. This technique is
a variant of model checking, a well-established and widely used formal method
for ascertaining the correctness of real-life systems. Model checking requires two
inputs: a description of the system in some high-level modelling formalism (such
as a Petri net or process algebra), and specification of one or more desired
properties of that system in temporal logic (e.g. CTL or LTL). From these,
one can construct a model of the system, typically a labelled state-transition
system in which each state represents a possible configuration and the transitions
represent the evolution of the system from one configuration to another over
time. It is then possible to automatically verify whether or not each property is
satisfied, based on a systematic and exhaustive exploration of the model.

In probabilistic model checking, the models are augmented with quantita-
tive information regarding the likelihood that transitions occur and the times
at which they do so. In practice, these models are typically Markov chains or
Markov decision processes. In this paper, it suffices to consider continuous-time
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Reactions:
1. A+B ←→ A:B (complexation)
2. A −→ (degradation)

Reaction rates:
- complexation : r1
- decomplexation : r2
- degradation : r3

(a) System of reactions

module M
ab : [0..2] init 1;

// 0: a degraded, b free 1: a,b free 2: a,b bound
[] ab=1 → r1 : (ab′=2); // bind
[] ab=2 → r2 : (ab′=1); // unbind
[] ab=1 → r3 : (ab′=0); // degrade

endmodule

(b) PRISM encoding 1

module A
a : [0..1] init 1;

[bind ] a=1 → r1 : (a′=0);
[rel] a=0 → r2 : (a′=1);
[] a=1 → r3 : (a′=0);

endmodule

module B
b : [0..1] init 1;

[bind] b=1 → (b′=0);
[rel] b=0 → (b′=1);

endmodule

module AB
ab : [0..1] init 0;

[bind ] ab=0 → (ab′=1);
[rel] ab=1 → (ab′=0);

endmodule

(c) PRISM encoding 2

rewards a=1 : 1; endrewards

(d) Reward structure 1

rewards [bind ] true : 1; endrewards

(e) Reward structure 2

Fig. 1. Simple example and possible PRISM representations

Markov chains (CTMCs), in which transitions between states are assigned (posi-
tive, real-valued) rates, which are interpreted as the rates of negative exponential
distributions. The model is augmented with rewards associated with states and
transitions. Rewards associated with states (cumulated rewards) are incremented
in proportion to the time spent in the state, while rewards associated with tran-
sitions (impulse rewards) are incremented each time the transition is taken.

Properties of these models, while still expressed in temporal logic, are now
quantitative in nature. For example, rather than verifying that “the protein
always eventually degrades”, we may ask “what is the probability that the pro-
tein eventually degrades?” or “what is the probability that the protein degrades
within T hours?”. Reward-based properties include “what is the expected energy
dissipation within the first T time units?” and “what is the expected number of
complexation reactions before relocation occurs?”.

PRISM [9,14] is a probabilistic checking tool developed at the University
of Birmingham. Models are specified in a simple state-based language based on
Reactive Modules. An extension of the temporal logic CSL [1,2] is used to specify
properties of CTMC models augmented with rewards. The tool employs state-
of-the-art symbolic approaches using data structures based on binary decision
diagrams [10]. Also of interest, the tool includes support for PEPA [8] and has
recently been extended to allow for simulation-based analysis using Monte-Carlo
methods and discrete event simulation. For further details, see [14].

3 Modelling a Simple Biological System in PRISM

We now illustrate PRISM’s modelling and specification languages through an ex-
ample: the simple set of biological reactions given in Figure 1(a). We consider two
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proteins A and B which can undergo complexation with rate r1 and decomplexa-
tion with rate r2. In addition, A can degrade with rate r3.

We give two alternative approaches for modelling these reactions in PRISM,
shown in Figures 1(b) and 1(c), respectively. A model described in the PRISM
language comprises a set of modules, the state of each being represented by a set
of finite-ranging variables. In approach 1 (Figure 1(b)) we use a single module
with one variable, representing the (three) possible states of the whole system
(which are listed in the italicised comments in the figure). The behaviour of this
module, i.e. the changes in states which it can undergo, is specified by a number
of guarded commands of the form [] g → r : u, with the interpretation that if the
predicate (guard) g is true, then the system is updated according to u (where
x′ = ... denotes how the value of variable x is changed). The rate at which
this occurs is r, i.e. this is the value that will be attached to the corresponding
transition in the underlying CTMC.

In approach 2 (Figure 1(c)) we represent the different possible forms that
the proteins can take (A, B and A:B) as separate modules, each with a single
variable taking value 0 or 1, representing its absence or presence, respectively. To
model interactions where the state of several modules changes simultaneously, we
use synchronisation, denoted by attaching action labels to guarded commands
(placed inside the square brackets). For example, when the bind action occurs,
variables a and b in modules A and B change from 1 to 0 and variable ab in
module AB changes from 0 to 1. In this example, the rate of each combined
transition is fully specified in module A and we have omitted the rates from
the other modules. More precisely, PRISM assigns a rate of 1 to any command
for which none is specified and computes the rate of a combined transition as
the product of the rates for each command. Note that independent transitions,
involving only a single module, can also be included, as shown by the modelling
of degradation (which only involves A), by omitting the action label.

In general, a combination of the above two modelling approaches is used. In
simple cases it is possible to use a single variable, but as the system becomes
more complex the use of separate variables and synchronisation becomes more
desirable. We will see this later in the paper.

Properties of CTMCs are specified in PRISM using an extension of the tem-
poral logic CSL. We now give a number of examples for the model in Figure 1(c).

– What is the probability that the protein A is bound to the protein B at time
instant T? (P=?[true U [T,T ] ab=1]);

– What is the probability that the protein A degrades before binding to the
protein B? (P=?[ab=0 U (a=0∧ab=0)]);

– During the first T time units, what is the expected time that the protein A
spends free? (R≤0.5·T [C≤T ], assuming a reward structure which associates
reward 1 with states where the variable a equals 1 - see Figure 1(d));

– What is the expected number of times that the proteins A and B bind before
A degrades? (R=?[F (a=0∧ab=0)], assuming a reward of 1 is associated with
any transition labelled by bind - see Figure 1(e)).
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Fig. 2. Diagram showing the different possible bindings in the pathway

4 Case Study: FGF

Fibroblast Growth Factors (FGF) are a family of proteins which play a key
role in the process of cell signalling in a variety of contexts, for example wound
healing. The mechanisms of the FGF signalling pathway are complex and not
yet fully understood. In this section, we present a model of the pathway which is
based on literature-derived information regarding the early stages of FGF signal
propagation and which incorporates several features that have been reported to
negatively regulate this propagation [6,21,5,20].

Our model incorporates protein-protein interactions (including competition
for partners), phosphorylation and dephosphorylation, protein complex reloca-
tion and protein complex degradation (via ubiquitin-mediated proteolysis). Fig-
ure 2 illustrates the different components in the pathway and their possible
bindings. Below is a list of the reactions included in the model. Further details
are provided in Figure 3.

1. An FGF ligand binds to an FGF receptor (FGFR) creating a complex of
FGF and FGFR.

2. The existence of this FGF:FGFR dimer leads to phosphorylation of FGFR
on two residues Y653 and Y654 in the activation loop of the receptor.

3. The dual Y653/654 form of the receptor leads to phosphorylation of other
FGFR receptor residues: Y663, Y583, Y585, Y766 (in this model we only
consider Y766 further).

4. and 5. The dual Y653/654 form of the receptor also leads to phosphorylation
of the FGFR substrate FRS2, which binds to both the phosphorylated and
dephosphorylated forms of the FGFR.

6. FRS2 can also be dephosphorylated by a phosphotase, denoted Shp2.
7. A number of effector proteins interact with the phosphorylated form of FRS2.

In this model we include Src, Grb2:Sos and Shp2.
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1. FGF binds to FGFR

FGF+FGFR ↔ FGFR:FGF (kon = 5e+8M−1s−1, koff =1e−1s−1)
2. Whilst FGFR:FGF exists

FGFR Y653 → FGFR Y653P (kcat=0.1s−1)

FGFR Y654 → FGFR Y654P (kcat=0.1s−1)
3. When FGFR Y653P and FGFR Y654P

FGFR Y463 → FGFR Y463P (kcat=70s−1)

FGFR Y583 → FGFR Y583P (kcat=70s−1)
FGFR Y585 → FGFR Y585P (kcat=70s−1)

FGFR Y766 → FGFR Y766P (kcat=70s−1)
4. FGFR binds FRS2

FGFR+ FRS2 ↔ FGFR:FRS2 (kon = 1e+6M−1s−1, koff =2e−2s−1)
5. When FGFR Y653P, FGFR Y654P and FGFR:FRS2

FRS2 Y196 → FRS2 Y196P (kcat=0.2s−1)

FRS2 Y290 → FRS2 Y290P (kcat=0.2s−1)
FRS2 Y306 → FRS2 Y306P (kcat=0.2s−1)

FRS2 Y382 → FRS2 Y382P (kcat=0.2s−1)

FRS2 Y392 → FRS2 Y392P (kcat=0.2s−1)
FRS2 Y436 → FRS2 Y436P (kcat=0.2s−1)

FRS2 Y471 → FRS2 Y471P (kcat=0.2s−1)
6. Reverse when Shp2 bound to FRS2:

FRS2 Y196P → FRS2 Y196 (kcat=12s−1)

FRS2 Y290P → FRS2 Y290 (kcat=12s−1)
FRS2 Y306P → FRS2 Y306 (kcat=12s−1)

FRS2 Y382P → FRS2 Y382 (kcat=12s−1)

FRS2 Y436P → FRS2 Y436 (kcat=12s−1)
FRS2 Y471P → FRS2 Y471 (kcat=12s−1)

FRS2 Y392P → FRS2 Y392 (kcat=12s−1)
7. FRS2 effectors bind phosphoFRS2:

Src+FRS2 Y196P ↔ Src:FRS2 Y2196P (kon = 1e+6M−1s−1, koff =2e−2s−1)

Grb2+FRS2 Y306P ↔ Grb2:FRS2 Y306P(kon = 1e+6M−1s−1, koff =2e−2s−1)
Shp2+FRS2 Y471P ↔ Shp2:FRS2 Y471P(kon = 1e+6M−1s−1, koff =2e−2s−1)

8. When Src:FRS2 we relocate/remove
Src:FRS2 → relocate out (t1/2=15min)

9. When Plc:FGFR it degrades FGFR

PLC+FGFRY 766 ↔ PLC:FGFR 766(kon = 1e+6M−1s−1, koff =2e−2s−1)
PLC:FGFR → degFGFR (t1/2=60min)

10. Spry appears in time-dependent manner:
→ Spry (t1/2=15min)

11. Spry binds Src and is phosphorylated:
Spry+Src ↔ Spry Y55:Src (kon = 1e+5M−1s−1, koff =1e−4s−1)

Spry Y55:Src → Spry Y55P:Src (kcat=10s−1)

Spry Y55P+Src ↔ Spry Y55P:Src (kon = 1e+5M−1s−1, koff =1e−4s−1)
Spry Y55P+Cbl ↔ Spry Y55P:Cbl (kon = 1e+5M−1s−1, koff =1e−4s−1)

Spry Y55P+Grb2 ↔ Spry Y55P:Grb2(kon = 1e+5M−1s−1, koff =1e−4s−1)
12. phosphoSpry binds Cbl which degrades/removes FRS2

Spry Y55P:Cbl+FRS2 ↔ FRS-Ubi (kcat=8.5e−4s−1)
FRS2-Ubi → degFrs2 (t1/2=5min)

13. Spry is dephosphorylated by Shp2: (when Shp2 bound to FRS2)

Spry Y55P → Spry Y55 (kcat=12s−1)
14. Grb2 binds Sos

Grb2+Sos ↔ Grb2:Sos (kon = 1e+5M−1s−1, koff =1e−4s−1)

Fig. 3. Reaction rules for the pathway

8. and 9. These are two methods of attenuating signal propagation by re-
moval (i.e. relocation) of components. In step 8. if Src is associated with
the phosphorylated FRS2 Y219, this leads to relocation (i.e. endocytosis
and/or degradation of FGFR:FRS2). In step 9. if Plc is bound to Y766 of
FGFR, this leads to relocation/degradation of FGFR.
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10. The signal attenuator Spry is a known inhibitor of FGFR signalling and is
synthesised in response to FGFR signalling. Here we include a variable to
regulate the concentration of Spry protein in a time dependent manner.

11. We incorporate the association of Spry with Src and concomitant phospho-
rylation of Spry residue Y55.

12. The Y55 phosphorylated form of Spry binds with Cbl, which leads to ubiq-
uitin modification of FRS2 and a degradation of FRS2 through ubiquitin-
mediated proteolysis.

13. The Y55P form of Spry is dephosphorylated by Shp2 bound to FRS2 Y247P.
14. Grb2 binds to the Y55P form of Spry. In our model Spry competes with

FRS2 for Grb2 as has been suggested from some studies in the literature.

Note that this model is not intended to, and cannot be, a fully accurate rep-
resentation of a real-world FGF signalling pathway. Its primary purpose at this
stage of development is as a tool to evaluate biological hypotheses that are not
easily obtained by intuition or manual methods. To this end, the model is an ab-
straction as argued in [17], created to facilitate predictive “in silico” experiments
for a range of scenarios. Results of such “in silico genetics” experiments based
on simulations of a stochastic π-calculus model of the above set of reactions are
described in [22] (see also [13]).

We explicitly draw attention to the following issues. The reactions selected are
based upon their current biological interest rather than complete understanding
of the components of FGF signalling. Indeed, at this stage we have ignored many
reactions that could prove significant in regulation of FGFR signalling in real
cells. However, the design permits the incorporation of further modifications to
the core model as biological understanding advances. The model is idealised in
that it does not take into account variations in composition, affinities or rate
constants that might occur in different cell types or physiological conditions.
However, a useful computational modelling approach should accommodate fu-
ture quantitative or qualitative modifications to the core model.

5 Modelling in PRISM

We now describe the specification in PRISM of the FGF model from the previous
section. We employ a combination of the two approaches discussed in Section 3.
Each of the basic elements of the pathway, including all possible compounds and
receptors residues (FGF, FGFR, FRS2, Plc, Src, Spry, Sos, Grb2, Cbl and Shp2)
is represented by a separate PRISM module. Synchronisation between modules
is used to model reactions involving interactions of multiple elements. However,
the different forms which each can take (for example, which other compounds it
is bound to) are represented by one or more variables within the module.

Our model represents a single instance of the pathway, i.e. there can be at
most one of each compound. This has the advantage that the resulting state
space is relatively small (80,616 states); however, the model is highly complex
due to the large number of different interactions that can occur in the path-
way (there are over 560,000 transitions between states). Furthermore, as will
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formula Frs = relocFrs2=0 ∧ degFrs2=0; // FRS2 not relocated or degraded
module FRS2

FrsUbi : [0..1] init 0; // ubiquitin modification of FRS2
relocFrs2 : [0..1] init 0; // FRS2 relocated
degFrs2 : [0..1] init 0; // FRS2 degraded
Y196P : [0..1] init 0;. . . Y471P : [0..1] init 0; // phosporilation of receptors
// compounds bound to FRS2
FrsFgfr : [0..1] init 0; // 0: FGFR not bound, 1: FGFR bound
FrsGrb : [0..2] init 0; // 0: Grb2 not bound, 1: Grb2 bound, 2: Grb2:Sos bound
FrsShp : [0..1] init 0; // 0: Shp2 not bound, 1: Shp2 bound
FrsSrc : [0..8] init 0;
// 0: Src not bound 1: Src bound, 2: Src:Spry
// 3: Src:SpryP, 4: Src:SpryP:Cbl, 5: Src:SpryP:Grb
// 6: Src:SpryP:Grb:Cbl, 7: Src:SpryP:Grb:Sos, 8: Src:SpryP:Grb:Sos:Cbl

· · ·
// phosporilation of receptors (5)
[] Frs∧Y653P=1∧Y654P=1∧FrsFgfr=1∧Y196P=0 → 0.2 : (Y196P ′=1); // Y196

· · ·
[] Frs∧Y653P=1∧Y654P=1∧FrsFgfr=1∧Y471P=0 → 0.2 : (Y471P ′=1); // Y471
// dephosporilation of Y196 (6) - remove Src if bound
[] Frs∧FrsShp=1∧Y196P=1∧FrsSrc=0 → 12 : (Y196P ′=0);
[src rel] Frs∧FrsShp=1∧Y196P=1∧FrsSrc>0 → 12 : (Y196P ′=0)∧(FrsSrc′=0);

· · ·
// dephosporilation of Y471 (6) - remove Shp2 since bound
[shp rel] Frs∧FrsShp=1∧Y471P=1 → 12 : (Y471P ′=0)∧(FrsShp′=0);

· · ·
// Src:FRS2→degFRS2 [8]
[] Frs∧FrsSrc>0 → 1/(15*60) : (relocFrs2 ′=1);

· · ·
// Spry55p:Cbl+FRS2→Frs-Ubi [12]
[] Frs∧FrsSrc=4,6,8 ∧ FrsUbi=0 → 0.00085 : (FrsUbi′=1);
// FRS2-Ubi→degFRS2 [12]
[] Frs∧FrsUbi=1 → 1/(5*60) : (degFrs2 ′=1);

· · ·
// Grb2+Sos↔Grb2:Sos [14]
[sos bind frs] Frs∧FrsGrb=1 → 1 : (FrsGrb′=2); // Grb:FRS2
[sos bind frs] Frs∧FrsSrc=5,6→ 1 : (FrsSrc′=FrsSrc+2);// Grb:SpryP:Src:FRS2
[sos rel frs ] Frs∧FrsGrb=2 → 0.0001 : (FrsGrb′=1); // Grb:FRS2
[sos rel frs ] Frs∧FrsSrc=7,8→ 0.0001 : (FrsSrc′=FrsSrc−2);// Grb:SpryP:Src:FRS2

· · ·
endmodule

Fig. 4. Fragment of the PRISM module for FRS2 and related compounds

be demonstrated later in the paper, the model is sufficiently rich to explain the
roles of the components in the pathway and how they interact. The study of a
single instance of the pathway is also motivated by the fact that the same signal
dynamics (Figure 7(a)) were obtained in [22,13] for a model where the number
of molecules of each type were initially set to 100. Fragments of the PRISM code
for the modules representing FRS2, Src and Sos are given in Figures 4, 5 and 6,
respectively. The full version is available from the PRISM web page [14].

Figure 4 shows the module for FRS2. It contains variables representing
whether FRS2 is currently: undergoing ubiquitin modification (FrsUbi); relo-
cated (relocFrs2 ); degraded (degFrs2 ); and bound to other compounds (FrsFgfr ,
FrsGrb, FrsShp and FrsSrc). It also has variables representing the phosphoryla-
tion status of each of FRS’s receptors (Y196P , . . . ,Y471P).

The first set of commands given in Figure 4 correspond to the phosphorylation
of receptors in FRS (reaction 5 in Figure 3). Since the only variables that are
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module SRC
Src : [0..8] init 1;
// 0: Src bound to FRS2, 1: Src not bound, 2: Src:Spry
// 3: Src:SpryP, 4: Src:SpryP:Cbl, 5: Src:SpryP:Grb
// 6: Src:SpryP:Grb:Cbl, 7: Src:SpryP:Grb:Sos, 8: Src:SpryP:Grb:Sos:Cbl

// Src+FRS2196P↔Src:FRS2 (7)
[src bind ] Src>0 → (Src′=0);
[src rel] Src=0 → (Src′=FrsSrc);
// Spry+Src→Spry55:Src or Spry55P+Src→Spry55P:Src (11)
[spry bind ] Src=1 → 1 : (Src′=Spry+1);
// Spry+Src←Spry55:Src (11)
[spry rel] Src=2 → 0.01 : (Src′=1);
// Spry55P+Src←Spry55P:Sr (11)c
[spry rel] Src>2 → 0.0001 : (Src′=1);
// Spry55:Src→Spry55P:Src (11)
[] Src=2 → 10 : (Src′=3);
// SpryP+Cbl↔SpryP:Cbl (11)
[cbl bind src] Src=3,5,7→ 1 : (Src′=Src+1);
[cbl rel src] Src=4,6,8→ 0.0001 : (Src′=Src−1);
// SpryP+Grb↔SpryP:Grb (11)
[grb bind src] Src=3,4 → 1 : (Src′=Src+2*Grb);
[grb rel src] Src=5,6 → 0.0001 : (Src′=Src−2); // SOS not bound
[grb rel src] Src=7,8 → 0.0001 : (Src′=Src−4); // SOS bound

· · ·
endmodule

Fig. 5. PRISM module for Src and related compounds

module SOS
Sos : [0..1] init 1;

// Grb2+Sos↔Grb:Sos
[sos bind ] Sos=1 → (Sos′=0); // Grb2 free
[sos bind frs]Sos=1 → (Sos′=0); // Grb2:FRS2 or to Grb2:SpryP:SRC:FRS2
[sos rel] Sos=0 → (Sos′=1); // Grb2 free
[sos rel frs] Sos=0 → (Sos′=1); // Grb2:FRS2 or to Grb2:SpryP:SRC:FRS2

· · ·
endmodule

Fig. 6. PRISM module for Sos

updated are local to this module, the commands have no action label, i.e. we do
not require any other module to synchronise on these commands. The guards
of these commands incorporate dependencies on the current state both of FRS2
itself and of other compounds. More precisely, FGFR must be bound to FRS2
and certain receptors of FGFR must have already been phosphorylated.

Elsewhere, in Figure 4, we see commands that use synchronisation to model
interactions with other compounds, e.g. the release of Src (the commands labelled
src rel) and the binding and release of Sos (the commands labelled sos bind frs
and sos rel frs). Note the corresponding commands in modules SRC (Figure 5)
and SOS (Figure 6). In each of these cases, as discussed in Section 3, the rate of
the combined interaction is specified in the FRS2 module and is hence omitted
from the corresponding commands in SRC and SOS . Also, in the module for
Sos (Figure 6), there are different action labels for the binding and release of
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Sos with Grb2; this is because Grb2 can be either free or bound to a number
of different compounds when it interacts with Sos. For example, Grb2 can be
bound to Frs2 (through reaction 7) or Spry (through reaction 11), and Spry can
in turn be bound to Src, which can also be bound to FRS2.

Notice how, in the commands for binding and unbinding of Src with FRS2 in
Figure 4 (labelled sos bind frs and sos rel frs), we can use the value of FrsSrc
to update the value of Src, rather than separating each case into individual
commands. Also worthy of note are the updates to Src in Figure 5 when either
Grb2 or Grb2:Sos bind to Src. To simplify the code, we have used a single
command for each of these possible reactions, and therefore updates which either
increment or decrement the variable Src by 2 or 4 (the variable Grb takes value
1 if Grb2 is not bound to Sos and value 2 if Sos is bound).

6 Property Specification

Our primary goal in this case study is to analyse the various mechanisms pre-
viously reported to negatively regulate signalling. Since the binding of Grb2 to
FRS2 serves as the primary link between FGFR activation and ERK signalling,
we examine the amount of Grb2 bound to FRS2 as the system evolves. In ad-
dition, we investigate the different causes of degradation which, based on the
system description, can be caused by one of the following reactions occurring:

– when Src:FRS2 is present, FRS2 is relocated (reaction 8);
– when Plc:FGFR is present, it degrades FGFR (reaction 9);
– when phosphoSpry binds to Cbl, it degrades FRS2 (reaction 12).

Below, we present a list of the various properties of the model that we have
analysed, and the form in which they are supplied to the PRISM tool. For the
latter, we define a number of atomic propositions , essentially predicates over the
variables in the PRISM model, which can be used to identify states of the model
that have certain properties of interest. These include agrb2 , which indicates that
Grb2 is bound to FRS2 (i.e. those states where the variable FrsGrb of Figure 4 is
greater than zero), and asrc, aplc and aspry , corresponding to the different causes
of degradation/relocation given above. For properties using expected rewards
(with the R=?[·] operator), we also explain the reward structure used.

A. What is the probability that Grb2 is bound to FRS2 at the time instant T?
(P=?[true U [T,T ] agrb2 ]);

B. What is the expected number of times that Grb2 binds to FRS2 by time T?
(R=?[C≤T ], where a reward of 1 is assigned to all transitions involving Grb2
binding to FRS2);

C. What is the expected time that Grb2 spends bound to FRS2 within the first
T time units? (R=?[C≤T ], where a reward of 1 is assigned to states where
Grb2 is bound to FRS2, i.e. those satisfying atomic proposition agrb2 );

D. What is the long-run probability that Grb2 is bound to FRS2? (S=?[agrb2 ]);
E. What is the expected number of times Grb2 binds to FRS2 before degradation

or relocation occurs? (R=?[F (asrc∨aplc∨aspry)], with rewards as for B);
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F. What is the expected time Grb2 spends bound to FRS2 before degradation or
relocation occurs? (R=?[F (asrc∨aplc∨aspry)], with rewards as for C);

G. What is the probability that each possible cause of degradation/relocation has
occurred by time T? (e.g. P=?[¬(asrc∨aplc∨aspry) U [0,T ] asrc] in the case Src
causes relocation);

H. What is the probability that each possible cause of degradation/relocation
occurs first? (e.g. P=?[¬(asrc∨aplc∨aspry) U aplc] in the case when Plc causes
degradation);

I. What is the expected time until degradation or relocation occurs in the path-
way? (R=?[F (asrc∨aplc∨aspry)] where all states have reward 1).

7 Results and Analysis

We used PRISM to construct the FGF model described in Section 5 and analyse
the set of properties listed in Section 6. This was done for a range of different
scenarios. First, we developed a base model, representing the full system, in
which we suppose that initially FGF, unbound and unphosphorylated FGFR,
unphosphorylated FRS2, unbound Src, Grb2, Cbl, Plc and Sos are all present in
the system (Spry arrives into the system with the half-time of 10 minutes).

Subsequently, we performed a series of “in silico genetics” experiments on the
model designed to investigate the roles of the various components of the activated
receptor complex in controlling signalling dynamics. This involves deriving a
series of modified models of the pathway where certain components are omitted
(Shp2, Src, Spry or Plc), and is easily achieved in a PRISM model by just
changing the initial value of the component under study. For example, to remove
Src from the system we just need to change the initial value of the variable Src
from 1 to 0 (see Figure 5).

For each property we include the statistics for 5 cases: for the full pathway and
for the pathway when either Shp2, Src, Spry or Plc is removed. Figures 7(a)–(c)
show the transient behaviour (i.e. at each time instant T ) of the signal (binding
of Grb2 to FRS2) for the first 60 minutes, namely properties A, B and C from
the previous section. Table 1 gives the the long-run behaviour of the signal, i.e.
properties D, E and F. The latter three results can be regarded as the values
of the first three in “the limit”, i.e. as either T tends to infinity or degradation
occurs. Figures 7(d)–(f) show the transient probability of each of the possible
causes of relocation or degradation occurring (property G). Table 2 shows the
results relating to degradation in the long-run (properties H and I).

We begin with an analysis of the signal (binding of Grb2 to FRS2) in the
full model, i.e. see the first plot (“full model”) in Figure 7 and the first lines of
Tables 1 and 2. The results presented demonstrate that the probability of the
signal being present (Figure 7(a)) shows a rapid increase, reaching its maximum
level at about 1 to 2 minutes. The peak is followed by a gradual decrease in
the signal, which then levels off at a small non-zero value. In this time interval
Grb2 repeatedly binds to FRS2 (Figure 7(b)) and, as time passes, Grb2 spends
a smaller proportion of time bound to FRS2 (Figure 7(c)).
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(a) Probability bound (Grb2:FRS2)
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(b) Expected bindings (Grb2:FRS2)
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(c) Expected time bound (Grb:FRS2)
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(d) Probability relocated (Src:FRS2)
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(e) Probability degraded (Plc:Fgfr)
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(f) Probability degraded (Spry:Cbl)

Fig. 7. Transient numerical results

The rapid increase in the signal is due the relevant reactions (the binding of
Grb2 to FRS2 triggered by phosphorylation of FRS2, which requires activated
FGFR to first bind to FRS2) all occurring at very fast rates. On the other
hand, the decline in the signal is caused either by dephosphorylation of FRS2
(due to Shp2 being bound to FRS2) or by relocation/degradation of FRS2.
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Table 1. Long run and expected reachability properties for the signal

probability expected no. expected time
bound of bindings bound (min)

full model 7.54e-7 43.1027 6.27042
no Shp2 3.29e-9 10.0510 7.78927
no Src 0.659460 283.233 39.6102
no Spry 4.6e-6 78.3314 10.8791
no Plc 0.0 51.5475 7.56241

Table 2. Probability and expected time until degradation/relocation in the long run

probability of degradation/relocation expected
Src:FRS2 Plc:FGFR Spry:Cbl time (min)

full model 0.602356 0.229107 0.168536 14.0258
no Shp2 0.679102 0.176693 0.149742 10.5418
no Src - 1.0 0.0 60.3719
no Spry 0.724590 0.275410 - 16.8096
no Plc 0.756113 - 0.243887 17.5277

Dephosphorylation of FRS2 is both fast and allows Grb2 to rebind (as FRS2 can
become phosphorylated again). The overall decline in signal is due to relocation
of FRS2 caused by bound Src which takes a relatively long time to occur (Table 2
and Figure 7(d)). Degradation caused by Spry has little impact since it is not
present from the start and, by the time it appears, it is more likely that Grb2 is no
longer bound or Src has caused relocation (Table 2, Figure 7(d) and Figure 7(f)).

The fact that the signal levels out at a non-zero value (Table 1) is caused
by Plc degrading the FGF receptor bound to FRS2 and Grb2. More precisely,
after FGFR is degraded by Plc, no phosphorylation of partner FRS2 residues
is possible. The signal stays non-zero since neither Src-mediated relocation and
degradation, nor Shp-mediated dephosphorylation, are possible when respective
FRS2 residues are not active. The non-zero value is very small because it is more
likely that Src has caused relocation (Table 2). The repeated binding of Grb2 to
FRS2 (Figure 7(b)) is caused by the dephosphorylation of FRS2, which is soon
phosphorylated again and allows Grb2 to rebind. The decrease in the proportion
of time that Grb2 is bound to FRS2 is due to the probability of FRS2 becoming
relocated/degraded increasing as time passes (Figure 7(d)–(f)).

Next, we further illustrate the role of the components by analysing models in
which different elements of the pathway are not present.
Shp2. Figure 7(a) shows that the peak in the signal is significantly larger than
that seen under normal conditions. By removing Shp2 we have removed, as
explained above, the fast reaction for the release of Grb2 from FRS2, and this
justifies the larger peak. The faster decline in the signal is due to there being
a greater chance of Src being bound (as Shp2 causes the dephosphorylation of
FRS2, it also causes the release of Src from FRS2), and hence the increased
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chance relocation (Figure 7(d) and Table 2). These observations are also the
cause for the decrease in the time until degradation/relocation when Shp2 is
removed (Table 2) and the fact that the other causes of degradation/relocation
are less likely (Figures 7(e)–(f) and Table 2). Dephosphorylation due to bound
Shp2 was responsible for the large number of times that Grb2 and FRS2 bind
(and unbind) in the original model; we do not see such a large number of bindings
once Shp2 is removed (Figure 7(b) and Table 1).
Src. As Figure 7(a) demonstrates, the suppression of Src is predicted to have
a major impact on signalling dynamics: after a fast increase, the signal fails to
decrease substantially. This is supported by the results presented in both Fig-
ures 7(d)–(f) and Table 2 which show that Src is the main cause of signal degra-
dation, and by removing Src the time until degradation or relocation greatly
increases. The failure of Spry to degrade the signal (Figure 7(f) and Table 2) is
attributed to its activation being downstream of Src. Note that, this also means
that Plc is the only remaining cause of degradation.
Spry. The model fails to reproduce the role of Spry in inhibiting the activation
of the ERK pathway by competition for Grb2:Sos. More precisely, our results
show that the suppression of Spry does not result in signal reduction. This can be
explained by the differences in system designs: under laboratory conditions the
action of Spry is measured after Spry is over-expressed, whereas, under normal
physiological conditions, Spry is known to arrive slowly into the system. Remov-
ing Spry removes one of the causes of degradation, and therefore increases the
other causes of degradation/relocation (Figures 7(d)–(e) and Table 2). Moreover,
the increase in the probability of Plc causing degradation/relocation leads to an
increase in the chance of Grb2 and FRS2 remaining bound (Table 2).
Plc. While having a modest effect on transient signal expression, the main action
of Plc removal is to cause the signal to stabilise at zero (Table 1). This is due to
Plc being the only causes of degradation/relocation not relating to FRS2. The
increase in time until degradation (Table 2) is also attributed to the fact that,
by removing Plc, we have eliminated one of the possible causes of degradation.
This also has the effect that the other causes of relocation/degradation are more
likely (Figure 7(d), Figure 7(f) and Table 2).

8 Conclusions

In this paper we have shown that probabilistic model checking can be a useful
tool in the analysis of biological pathways. The technique’s key strength is that
it allows the calculation of exact quantitative properties for system events occur-
ring over time, and can therefore support a detailed, quantitative analysis of the
interactions between the pathway components. By developing a model of a com-
plex, realistic signalling pathway that is not yet well understood, we were able
to demonstrate, firstly, that the model is robust and that its predictions agree
with biological data [22,13] and, secondly, that probabilistic model checking can
be used to obtain a wide range of quantitative measures of system dynamics,
thus resulting in deeper understanding of the pathway.
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We intend to perform further analysis of the FGF pathway, including an inves-
tigation into the effect that changes to reaction rates and initial concentrations
will have on the pathway’s dynamics. Future work will involve both comparing
this probabilistic model checking approach with simulation and ODEs, and also
investigation of how to scale the methodology yet further.
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Abstract. Type checking and type inference are important concepts
and methods of programming languages and software engineering. Type
checking is a way to ensure some level of consistency, depending on the
type system, in large programs and in complex assemblies of software
components. Type inference provides powerful static analyses of pre-
existing programs without types, and facilitates the use of type systems
by freeing the user from entering type information. In this paper, we
investigate the application of these concepts to systems biology. More
specifically, we consider the Systems Biology Markup Language SBML
and the Biochemical Abstract Machine BIOCHAM with their reposito-
ries of models of biochemical systems. We study three type systems: one
for checking or inferring the functions of proteins in a reaction model,
one for checking or inferring the activation and inhibition effects of pro-
teins in a reaction model, and another one for checking or inferring the
topology of compartments or locations. We show that the framework of
abstract interpretation elegantly applies to the formalization of these ab-
stractions and to the implementation of linear time type checking as well
as type inference algorithms. Through some examples, we show that the
analysis of biochemical models by type inference provides accurate and
useful information. Interestingly, such a mathematical formalization of
the abstractions used in systems biology already provides some guidelines
for the extensions of biochemical reaction rule languages.

1 Introduction

Type checking and type inference are important concepts and methods of pro-
gramming languages and software engineering [1]. Type checking is a way to en-
sure some level of consistency, depending on the type system, in large programs
and in complex assemblies of software components. Type inference provides pow-
erful static analyzes of pre-existing programs without types, and facilitates the
use of type systems by freeing the user from entering type information.

In this paper, we investigate the application of these concepts to systems
biology. More specifically, we consider the Systems Biology Markup Language
SBML [2] and the Biochemical Abstract Machine BIOCHAM [3]. In both of
these languages, the biochemical models are described through a set of reaction
rules. We study three type systems:
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1. one for checking or inferring the protein functions in a reaction model,
2. one for checking or inferring the activation and inhibition effects in a reaction

model,
3. and another one for checking or inferring the topology of compartments or

locations in reaction models with space considerations.

To this end, the formal framework of abstract interpretation will be used to
provide type systems with a precise mathematical definition. Abstract interpre-
tation is a theory of abstraction introduced by Cousot and Cousot in [4] as
a framework for reasoning about programs, their semantics, and for designing
static analysers, among which type inference systems [5]. Although not strictly
necessary to the presentation of the type inference methods considered in this
paper, we believe that that formal framework is very relevant to systems biology,
as a formalism for providing a mathematical sense to modeling issues concerning
multiple abstraction levels and their formal relationship.

We show that the framework of abstract interpretation elegantly applies to
the formalization of the three abstractions considered in this paper and to the
implementation of linear time type checking as well as type inference algorithms.
Through examples of biochemical systems coming from the biomodels.net and
BIOCHAM repositories of models, we show that the static analysis of reaction
models by type inference provides both accurate and useful information. Interest-
ingly, we show that these considerations also provide some guidelines concerning
the extensions of biochemical reaction rule-based languages.

2 Preliminaries on Abstract Interpretation, Type
Checking and Type Inference

2.1 Concrete Domain of Reaction Models

Following SBML and BIOCHAM conventions, a model of a biochemical system
is a set of reaction rules of the form e for S => S′ where S is a set of molecules
given with their stoichiometric coefficient, called a solution, S′ is the transformed
solution, and e is a kinetic expression involving the concentrations of molecules
(which are not strictly required to appear in S). The set of molecules is notedM.
We will use the BIOCHAM operators + and * to denote solutions as 2*A + B, as
well as the syntax of catalyzed reactions e for S =[C]=> S’ as an abbreviation
for e for S+C => S’+C.

A set of reaction rules like {ei for Si => S′
i}i=1,...,n over molecular concentra-

tion variables {x1, ..., xm}, canbe interpreted under different semantics.The tradi-
tional differential semantics interpret the rules by the following system of Ordinary
Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp. left)
member of rule i. Thanks to its wide range of mathematical tools, this semantics
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is the most commonly used, when the data is available and the system of a reason-
able size. The stochastic semantics interpret the kinetic expressions as transition
probabilities (see for instance [6]), while the boolean semantics forget the kinetic
expressions and interpret the rules as a non-deterministic (asynchronous) transi-
tion system over boolean states representing the absence or presence of molecules.
In BIOCHAM these three semantics are implemented [7], while in the SBML ex-
change format, no particular semantics are defined.

For the simple analyzes considered in this paper, the concrete domain of
reaction models will be the syntactic domain of formal reaction rules, with no
other semantics than a data structure. A reaction model is thus a set of reaction
rules, and the domain of reaction models is ordered by set inclusion, i.e. by the
information ordering.

Definition 1. The universe of reactions is the set of possible rules
R = {e for S => S′ | e is a kinetic expression,

and S and S′ are solutions }.
The concrete domain DR of reaction models is the power-set of reaction rules

ordered by inclusion DR = (P(R),⊆).

2.2 Abstract Domains, Abstractions and Galois Connections

In the general setting of abstract interpretation, an abstract domain is a lattice
L(�,⊥,�,�,�) defined by the set L and the partial order �, and where ⊥, �,
�, � denote the least element, the greatest element, the least upper bound and
the greatest lower bound respectively.

As often the case in program analysis, the concrete domain and the abstract
domains considered for analyzing biochemical models, are power-sets, that is
set lattices P(S)(⊆, ∅,S,∪,∩) ordered by inclusion, with the empty set as ⊥
element, and the base set S (such as the universe of reaction rules here) as �
element. An abstraction is formalized by a Galois connection as follows [4]:

Definition 2. A Galois connection C →α A between two lattices C and A is
defined by abstraction and concretization functions α : C → A and γ : A → C
that satisfy ∀c ∈ C, ∀y ∈ A : x �C γ(y)⇔ α(x) �A y.

For any Galois connection, we have the following properties:

1. γ ◦α is extensive (i.e. x �C γ ◦α(x)) and represents the information lost by
the abstractions;

2. α preserves �, and γ preserves �;
3. α is one-to-one iff γ is onto iff γ ◦ α is the identity.

If γ ◦ α is the identity, the abstraction α loses no information, and C and A are
isomorphic from the information standpoint (although γ may not be one-to-one).

We will consider three abstract domains: one for protein functions, where
molecules are abstracted into categories such as kinases and phosphatases, one
for the influence graph, where the biochemical reaction rules are abstracted in
activation and inhibition binary relations between molecules, and one for location
topologies, where the reaction (and transport) rules are abstracted retaining only
the neighborhood information between locations.
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2.3 Type Checking and Type Inference by Abstract Interpretation

In this setting, a type system A for a concrete domain C is simply a Galois
connection C →α A. The type inference problem is, given a concrete element
x ∈ C (e.g. a reaction model) to compute α(x) (e.g. the protein functions that
can be inferred from the reactions). The type checking problem is, given a con-
crete element x ∈ C and a typing y ∈ A (e.g. a set of protein functions), to
determine whether x �C γ(y) (i.e. whether the reactions provide less and com-
patible information on the protein functions) which is equivalent to α(x) �A y
(i.e. whether the typing contains the inferred types).

The simple type systems considered in this paper will be implemented with
type checking and type inference algorithms that basically browse the reactions,
and check or collect the type information for each rule independently and in
linear time.

3 A Type System for Protein Functions

To investigate the use of type inference in the domain of protein functions we
first restrict ourselves to two simple functions: kinase and phosphatase. These
correspond to the action of adding (resp. removing) a phosphate group to (resp.
from) a compound.

For the sake of simplicity, we do not consider other categories such as protease
(in degradation rules), acetylase and deacetylase (in modification rules), etc. This
choice is in accordance with the BIOCHAM syntax which allows to mark the
modified sites of a protein with the operator ~, as in P~{p,q} without distin-
guishing however between a phosphorylation and an acetylation for instance.
We thus consider BIOCHAM models containing compounds with different levels
of phosphorylation or acetylation, without distinguishing the different forms of
modification, and call them phosphorylation, by abuse of terminology.

The analysis of protein functions in a reaction model is interesting for several
reasons. First, the kind of information (kinase activity) collected on proteins
can be checked using online databases like GO, the Gene Ontology [8]. Second,
in the context of the machine learning techniques implemented in BIOCHAM
for completing or revising a model w.r.t. a temporal logic specification [7], the
information that an enzyme acts as a kinase or as a phosphatase drastically
reduce the search space for reaction additions, and help find more biologically
plausible model revisions.

3.1 Abstract Domain of Protein Functions

Definition 3. The abstract domain of protein functions DF is the domain of
functions from moleculesM to pairs of booleans, representing “has kinase func-
tion” (true/false) and “has phosphatase function” (true/false).

Definition 4. α : DR → DF is defined for each molecule as the disjunction of
α on each single rule and each pair of rules:
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α(A =[B]=> C) = where C is more phosphorylated than A (i.e. its set of active
phosphorylation sites strictly includes that of A) is abstracted as B has kinase
function.

α(A =[B]=> C) = where, on the contrary, A is more phosphorylated than C,
we abstract that B has phosphatase function.

α(A + B => A-B, A-B => C + B) = where C is more phosphorylated than A
is abstracted as B has kinase function.

α(A + B => A-B, A-B => C + B) = where, on the contrary, A is more phos-
phorylated than C, we abstract that B has phosphatase function.

3.2 Evaluation Results

MAPK model. On a simple example of the MAPK cascade extracted from
the SBML repository and originally based on [9], the type inference algorithm
determines that RAFK, RAF~{p1} and MEK~{p1,p2} have a kinase function; RAFPH,
MEKPH and MAPKPH have a phosphatase function; and the other compounds have
no function inferred.

If we wanted to type-check such a model, we would correctly check all phos-
phatases but would miss an example of the kinase function of MAPK~{p1,p2},
since its action is not visible in the above model.

Kohn’s Map. Kohn’s map of the mammalian cell cycle control [10] has been
transcribed in BIOCHAM to serve as a large benchmarking example of 500
species and 800 rules [11]. To check if this abstraction scales up we tried it on
this model, and indeed obtain the answer in less than one second CPU time (on
a PC 1,7GHz). Here is an excerpt of the output of the type inference:

cdk7-cycH is a kinase

Wee1 is a kinase

Myt1 is a kinase

cdc25C~{p1} is a phosphatase

cdc25C~{p1,p2} is a phosphatase

Chk1 is a kinase

C-TAK1 is a kinase

Raf1 is a kinase

cdc25A~{p1} is a phosphatase

cycA-cdk1~{p3} is a kinase

cycA-cdk2~{p2} is a kinase

cycE-cdk2~{p2} is a kinase

cdk2~{p2}-cycE~{p1} is a kinase

cycD-cdk46~{p3} is a kinase

cdk46~{p3}-cycD~{p1} is a kinase

cycA-cdk1~{p3} is a kinase

cycB-cdk1~{p3} is a kinase

cycA-cdk2~{p2} is a kinase

cycD-cdk46~{p3} is a kinase

cdk46~{p3}-cycD~{p1} is a kinase

Plk1 is a kinase
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pCAF is a kinase

p300 is a kinase

HDAC1 is a phosphatase

It is worth noticing that in these results no compound is both a kinase and a
phosphatase. The cdc25 A and C are the only phosphatases found in the whole
map with HDAC1). The type inference also tells us that the cyclin-dependant
kinases have a kinase function when in complex with a cyclin. Finally the acety-
lases pCAF, p300 and the deacetylase HDAC1 are detected but identified to kinases
and phosphatases respectively, since the BIOCHAM syntax does not distinguish
between phosphorylation and acetylation.

4 A Type System for Activation and Inhibitory Influences

4.1 Abstract Domain of Influences

Influence networks for activation and inhibition have been introduced for the
analysis of gene expression in the setting of gene regulatory networks [12]. Such
influence networks are in fact an abstraction of complex reaction networks, and
can be applied as such to protein interaction networks. However the distinc-
tion between the influence network and the reaction network is crucial to the
application of Thomas’s conditions of multistationarity and oscillations [12,13]
to protein interaction network, and there has been some confusion between the
two kinds of networks [14]. Here we precisely define influence networks as an
abstraction of (or a type system for) reaction networks.

Definition 5. The abstract domain of influences is the powerset of the binary
relations of activation and inhibition between compounds DI = P({A activates
B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence abstraction α : DR → DI is the function
α(x) = {A inhibits B | ∃(ei for Si ⇒ S′

i) ∈ x,
li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(eiforSi ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}
In particular, we have the following influences for elementary reactions of com-
plexation, modification, synthesis and degradation:

y g
α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}
α({A = [C] => B}) = { C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}

The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. It is worth
noting however that they are often omitted in the influence graphs considered in
the literature, as well as with some other influences, according to functionality,
kinetic and non-linearity considerations.
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Fig. 1. Reaction graph of the MAPK model
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Fig. 2. Inferred influence graph of the MAPK model
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4.2 Evaluation Results

MAPK model. Let us first consider the MAPK signalling model of [9]. Fig. 1
depicts the reaction graph as a bipartite graph with round boxes for molecules
and rectangular boxes for rules. Fig. 2 depicts the inferred influence graph, where
activation (resp. inhibition) is materialized by plain (resp. dashed) arrows. The
graph layouts of the figures have been computed in BIOCHAM by the Graphviz
suite1.

p53-Mdm2 model. In the p53-Mdm2 model of [15], the protein Mdm2 is
localized explicitly in two possible locations: the nucleus and in the cytoplasm,
and transport rules are considered. Fig. 4 depicts the reaction graph of the model.

Fig. 3 depicts the inferred influence graph. Note that Mdm2 in the nucleus
has both an activation and an inhibitory effect on p53 u. This corresponds to
different influences in different regions of the phase space.

Fig. 3. Inferred influence graph of the p53-Mdm2 model

Fig. 5 depicts the core influence graph considered for the logical analysis of this
model [16]. In the core influence graph, some influence are neglected, as expected,
however some inhibitions, such the inhibitory effect of p53 on Mdm2 in the
nucleus, are considered while they do not appear in the inferred influence graph.
The reason for these omissions is the way the reaction model is written. Some
inhibitory effects are indeed expressed in the kinetic expression by subtraction
of, or division by, the molecular concentration of some compounds that do not
appear in the rule itself. Those inhibitions are thus missed by the type inference
algorithm. An example of such a rule is the following one for the inhibition of
Mdm2 by p53:
1 http://www.graphviz.org/
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Fig. 4. Original reaction graph considered in [15] for the p53-Mdm2 model

Fig. 5. Core influence graph

macro(p53tot,[p53]+[p53~{u}]+[p53~{uu}]).
(kph*[Mdm2::c]/(Jph+p53tot),MA(kdeph))for Mdm2::c <=> Mdm2~{p}::c.

Obviously, we cannot expect to infer such inhibitory effects from the kinetic
expressions with all generality, however the model being written that way with-
out fully decomposing all influences by reaction rules, a refinement of the abstrac-
tion function taking into account the kinetic expression is worth investigating. As
an alternative, one could extend the syntax of reaction rules in order to indicate
the inhibitors of the reaction, in a somewhat symmetric fashion to catalysts.

Kohn’s Map. On Kohn’s map, the type inference of activation and inhibi-
tion influences takes less than one second CPU time (on a PC 1,7GHz) for the
complete model, showing again the efficiency of the type inference algorithm.

5 A Type System for Location Topologies

To date, models of biochemical systems generally abstract from space consider-
ations. Models taking into account cell compartments and transport phenomena
are thus much less common. Nevertheless, with the advent of systems biology
computational tools, more and more models are refined with space considera-
tions and transport delays, e.g. [15]. In SBML [2] level 1 version 1, locations
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have been introduced as purely symbolic compartments without topology. We
show in this section how the topology can be inferred from the reaction rules,
and checked in different models.

5.1 Abstract Domain of Location Topologies

Definition 6. Abstract domain of neighborhood relation DN is a relation on
pairs of molecules M×M.

Definition 7. α : DR → DN is defined by the union of its definition on single
rules:

α(E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai and all Bj are pairwise
neighbors, and for all Ck such that [Ck] appears in E, Ck is a neighbor of all Ai

and all Bj.

5.2 Evaluation Results

Models from biomodels.net. We have taken models from the literature
through the biomodels.net database. Of the 50 models in the current version
(dated January 2006) only 13 have more than one compartment, and only 7 of
those use the outside attribute of SBML to provide more topological insight.

The neighboring relation is inferred in these models imported in BIOCHAM,
and then checked consistent with the provided outside relation.

For instance for calcium oscillations, we tried both the Marhl et al. model of
[17] and the Borghans et al. model of [18].

In the first case (model BIOMD0000000039.xml), three locations are defined:
the cytosol, the endoplasmic reticulum and a mitochondria, from the reactions
the inferred topology is that the cytosol is neighbor of the two other locations.
This correspond exactly to the information obtained from the outside annota-
tions (the cytosol being marked as the outside of the two other locations).

In the second case (models BIOMD0000000043.xmlto BIOMD0000000045.xml)
we focused on the last model (two-pool) since it is the only one with 4 different
locations: the extracellular space, the cytosol and two internal vesiculae. The
location inference produces a topology where the cytosol is neighbor of all other
locations. Once again this is correct w.r.t. the outside information provided in
the SBML file: both vesiculae have the cytosol as outside location and the cytosol
itself has the extracellular space as outside location.

These considerations show that there is some mismatch between the SBML re-
action models and the choice of expressing outside vs neighborhood properties of
locations. In the perspective of type checking and type inference, neighborhood
relations should be preferred as they can be checked, or inferred from the reac-
tion model, whereas the outside relation contain more information that, while
helpful for the modeler as meta-data, cannot be handled automatically without
abstracting it first in neighbors properties.
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P53/Mdm2. The first example comes from [15]: a model of the p53/Mdm2
interaction with two locations where the transport between cytoplasm and nu-
cleus is necessary to explain some time delays observed in the mutual repression
of these proteins.

biocham: load_biocham(’EXAMPLES/locations/p53Mdm2.bc’).

...

biocham: show_neighborhood.

c and n are neighbors

In this precise case, the model as published does not systematically use the
volume ratio in the kinetics. The transcription and type-checking of the model
showed that if one wanted to keep the background degradation rate of Mdm2
(without DNA damage) independent of the location, one obtains different ki-
netics than those of the published model. In this case a formal transcription in
BIOCHAM (or SBML) provided a supplementary model-validation step.

Fig. 6. Delta-Notch square cell grid inferred in a 6x6 model, with modifiers, reactants
and products as pairwise neighbors

Delta and Notch Model. The next example is adapted from [19]. The Delta
and Notch proteins are crucial to the cell fate in several different organisms.
A population of neighboring cells (here we chose a square grid) is represented
through locations and the model allows to observe the salt-and-pepper coloring
(corresponding to high Delta-low Notch/low Delta-high Notch) typical of the
Delta-Notch lateral inhibition based differentiation. The signaling pathways are
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Fig. 7. Delta-Notch square cell grid inferred in a 6x6 model, without modifier-modifier
neighborhood

simplified to the extreme to take into account only the direct effect of Delta and
Notch expression on the local and neighboring cells. This example would thus
not provide a good basis for the abstraction of section 4.

Depending on the abstraction chosen we obtain figure 6 and 7. In the first
case the abstraction used is not the one given in section 5.1 but

Definition 8. α : DR → DN is defined by the union of its definition on single
rules:

α(E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai, all Bj, and all Ck such
that [Ck] appears in E, are pairwise neighbors.

This was indeed a reasonable candidate for an abstraction, but proved too coarse
on some examples since co-modifiers are often put in the kinetic expression of a
single rule for simplification purposes.

6 Conclusion

We have shown that the framework of abstract interpretation applies to the
formalization of some abstractions commonly used in systems biology, and to the
implementation of linear-time type checking as well as type inference algorithms.

In the three type systems studied in this paper, for protein functions, acti-
vation and inhibitory influences, and location topologies respectively, the anal-
yses are based on static information gained directly from the syntax of reaction
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rules, without considering their formal semantics, nor their precise dynamics. It
is worth noting that this situation also occurs in program analysis where the
syntax of programs may capture a sufficient part of the semantics for many
analyses. Here, it is remarkable that such simple analyses already provide useful
information on biological models, independently from their dynamics for which
different definitions are considered (discrete, continuous, stochastic, etc.) [7].

The formal definition of the influence graph as an abstraction of the reaction
model eliminates some confusion that exists in the use of Thomas’s conditions
[12,13] for the analysis of reaction models [14]. Such a formalization shows also
that the influence graphs usually considered in the literature are further abstrac-
tions obtained by forgetting some influences, based on non-linearity considera-
tions [20]. Some inhibitions may also be missing in the inferred influences when
they are hidden in the kinetic expressions of the reactions and do not appear ex-
plicitly in the reactants. This suggests either to refine the abstraction function to
take into account the kinetic expression when possible, or to extend the syntax of
reactions in order to make explicit such inhibitory effects, in a symmetric fashion
to catalysts for activations. In SBML there is actually an unique symmetrical
notion of Modifiers which is not sufficient to infer the influence graph.

Similarly, the inference of protein functions and of location neighborhood have
shown that the static analysis of reaction models by type inference provides both
accurate and useful information. They also provide some guidelines for the ex-
tensions of biochemical reaction languages, like for instance in SBML considering
neighborhood rather than outside properties, and introducing a syntax for the
modification of compounds, and in BIOCHAM differentiating phosphorylation
from other forms of modifications like acetylation.
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Abstract. Starting from a biochemical signalling pathway model ex-
pressed in a process algebra enriched with quantitative information we
automatically derive both continuous-space and discrete-state represen-
tations suitable for numerical evaluation. We compare results obtained
using implicit numerical differentiation formulae to those obtained using
approximate stochastic simulation thereby exposing a flaw in the use of
the differentiation procedure producing misleading results.

1 Introduction

The malfunction of cellular signalling processes has significant detrimental ef-
fects, leading to uncontrolled cell proliferation, as in cancer; or leading to other
cells in the body being attacked, as in auto-immune diseases. The dynamics of
cell signalling mechanisms are profoundly complex and at present are not fully
understood. Computational modelling of cell signal transduction is an important
intellectual tool in the scientific study of the biological processes which control
and regulate cellular function.

An example of an influential computational study of intracellular signal net-
works is [1]. The authors develop an ordinary differential equation (ODE) model
of epidermal growth factor (EGF) receptor signal pathways in order to give in-
sight into the activation of the MAP kinase cascade through the kinases Raf,
MEK and ERK-1/2. The ODE model is substantial, consisting of 94 state vari-
ables and 95 parameters. It is analysed using the numerical integration proce-
dures of the Matlab numerical computing platform and tested using sensitivity
analysis. The results increase our understanding of EGF receptor signal trans-
duction and suggest avenues for experimental work to test hypotheses generated
from the computational model. Published in 2002 the article is highly regarded
and has subsequently been cited by as many as 150 other research papers.

We have previously proposed a method of investigating cell signalling path-
ways using a process algebra enhanced with quantitative information, PEPA [2],
applied in [3] and [4]. Process algebras are well-known in theoretical computer
science but are still unfamiliar to most computational biologists so we wished to

C. Priami (Ed.): CMSB 2006, LNBI 4210, pp. 63–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



64 M. Calder et al.

PEPA
��

�
�

�
�

ODE

dy
dt

�
�

�
�

SSA

P(τ, µ)dτ

�
�

�
�

�
�

��

�
�

��

Fig. 1. A high-level model in the PEPA process algebra can be used to generate either
a system of ODEs or a stochastic simulation

help to establish their relevance by reproducing the results of [1], starting from
the published paper together with its supplementary material and the Matlab
ODE model made available by the authors.

We were able to reproduce the results from [1] starting from our model in
the PEPA process algebra but because we were starting from the vantage point
of modelling in process algebra we could apply other analysis procedures, un-
available to the authors of [1] (Figure 1). To our surprise when modelling in
process algebra we discovered that the computational simulation conducted by
ODEs in [1] contains a systematic flaw in the analysis process which affects many
of the results, some significantly. To the best of our knowledge these errors are
presently unknown: at the very least they were unknown to us. Using the insights
obtained from our analysis procedures we were able to return to the differen-
tial equation model, diagnose and correct the flaws in the analysis, and show
agreement between the results obtained using continuous-space analysis and the
results obtained using a discrete-state stochastic analysis.

Computational methods are well-understood to be complex and delicate so the
relevance of this finding is not that there is an error in one particularly rich and
valuable numerical study, or that modelling with ODEs is an unsatisfactory pro-
cedure, but rather that modelling in high-level languages (such as process algebras
or Petri nets) may give a methodological advantage which allows an entire class of
hard-to-detect errors and corner cases to be discovered and diagnosed before the
results are published and promulgated to the wider scientific community.

As original contributions the present paper contains the analysis of the process
used to detect the error in the earlier modelling study [1], a description of the new
software tool used for integrated continuous-space and discrete-state stochastic
analysis of PEPA process algebra models, and an overview of an extensive pro-
cess algebra modelling study comprising 188 process definitions describing the
dynamics of 95 of the reaction channels in the signalling cascade of the EGF
receptor-induced MAP kinase pathway.

Structure of this paper: In Section 2 we present background material on our
previous work. We follow this in Section 3 with a discussion of related work. In
Section 4 we present an introduction to quantitative process algebras, considering
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the expressive capabilities of these languages. In Section 5 we explain how these
languages are used in modelling. Section 6 presents a comparison of our analysis
results and the results of other authors. In Section 7 we discuss the software tool
used to perform the analysis. Finally, we present conclusions in Section 8.

2 Background

In an earlier study we made two distinct computational models of the Ras/Raf-
1/MEK/ERK signalling pathway, both expressed in the PEPA process algebra.
Our models were based on the deterministic model presented directly as a system
of coupled ordinary differential equations in [5].

Our process algebra models adhere to two distinct modelling styles—the
reagent-centric and pathway models from [3]. We interpreted these under the
continuous-time Markov chain semantics for the PEPA language, and thus these
gave rise to stochastic models of the pathway. We used well-known procedures
of numerical linear algebra to conduct a quantitative stochastic evaluation of
the pathway. We used the process algebraic reasoning apparatus of the PEPA
language to establish that these two models were strongly equivalent, meaning
that a timing-aware observer could not distinguish between them. In the exten-
sion of this work in [6] we presented automatic procedures for converting in both
directions between the reagent-centric and pathway views.

We revisited the reagent-centric model in [4], mapping it to a system of ODEs.
The model considered in [4] adds additional species to the model presented
in [5] in order to concentrate on a detail of the pathway not considered in [5].
We applied the mapping procedure from [4] to a reduced version of the model
without these additional species and were able to show that the model gave rise
to exactly the same system of ODEs as studied previously in [5] establishing
a precise formal equivalence between the process algebra model and the ODE
model.

The deterministic and stochastic approaches to computational modelling in
systems biology are often presented as alternatives; one should choose one ap-
proach or the other. Some authors have suggested that stochastic approaches are
technically superior because they can expose small-scale effects which are caused
by some molecular species being present in the reaction volume in very low copy
numbers. We are instead in agreement with the authors of [7], who argue that
the principal challenge is choosing the appropriate framework for the modelling
study at hand. For some problems the influence of effects such as intra-cellular
noise or circumstances such as low copy numbers is sufficiently great that a
thorough stochastic treatment is essential. In other modelling problems no such
influences are manifest and a deterministic treatment based on reaction rate
equations is the correct approach.

The divergence between the stochastic behaviour exposed at low copy num-
bers of reactants and the deterministic approach based on reaction rate equations
is due to the reliance of the ODE-based analysis on the assumption of continuity
and the use of the law of mass action, essentially an empirical law derived from
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in vitro experimentation. Gillespie’s Stochastic Simulation Algorithm (SSA) [8]
makes no use of such an empirical law, and is instead grounded in the theory of
statistical thermodynamics. In consequence it is an exact procedure for numer-
ically simulating the dynamic evolution of a chemically reacting system, even
at low copy numbers. However, the SSA method converges, as the number of
reactants increases, to the solution computed by the ODEs so that the methods
are in agreement in the limit [9].

Gillespie’s exact algorithm models systems in which there are M possible
reactions represented by the indexed family Rµ (1 ≤ µ ≤ M). It builds on a
reaction probability density function P (τ, µ | X) such that P (τ, µ | X)dτ is the
probability that given the state X at time t, the next reaction in the volume will
occur in the infinitesimal time interval (t+ τ, t+ τ +dτ) and be an Rµ reaction.
Starting from an initial state, SSA randomly picks the time and type of the next
reaction to occur, updates the global state to record the fact that this reaction
has happened, and then repeats.

In practice, Gillespie’s SSA is effective only for non-stiff systems on short
time scales. An approximate acceleration procedure called “τ -leaping” was later
developed by Gillespie and Petzold [10]. The “implicit τ -leaping” method [11]
was developed to attack the orthogonal problem of stiffness, common in multi-
scale modelling, where different time-scales are appropriate for reactions. Recent
advances in the field include the development of slow-scale SSA which produces
a dramatic speed-up relative to SSA by prioritising rare events [12].

A recent survey paper on stochastic simulation is [13]. A comparison paper on
stochastic simulation methods and their relation to differential-equation based
analysis of reaction kinetics is [9].

3 Related Work

We are not the first authors to investigate the model from [1] using stochastic
simulation methods. An earlier comparison using the binomial τ -leap method
appeared in [14]. However, the authors of [14] compare the solutions computed
by their binomial τ -leap method with the solutions computed by Gillespie’s
stochastic simulation algorithm and did not compare with the results from [1].
For this reason the authors of [14] did not find the error which we uncovered
by comparing the results computed by stochastic simulation with the results
computed by the authors of [1] using ordinary differential equations.

In [15] the authors use the PRISM probabilistic model checker [16] to check
logical formulae of Continuous Stochastic Logic (CSL) [17] against models of sig-
nalling pathways expressed as state-machines in the PRISM modelling language,
comparing the result against an ODE model coded in the Matlab numerical
platform.

A recent technical note [18] uses modelling in a stochastic process calculus and
stochastic simulation to investigate the MAPK cascade previously studied in [19]
using ordinary differential equations. [18] uses synthetic values for rate constants
(all are set to 1.0) so comparison with the results of [19] is not meaningful.
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4 Process Algebras

Process algebras are concise formally-defined modelling languages for the precise
description of concurrent, communicating systems. Our belief is that they are
well-suited to modelling cell signalling pathways and our interest here is exclu-
sively in process algebras which are decorated with quantitative information [20].
The PEPA process algebra [2] which we use benefits from formal semantic de-
scriptions of different characters which are appropriate for different uses. The
structured operational semantics presented in [2] maps the PEPA language to
a Continuous-Time Markov Chain (CTMC) representation. A continuous-space
semantics maps PEPA models to a system of ordinary differential equations
(ODEs) [21], admitting different solution procedures.

4.1 Expressiveness

Because we are modelling in a high-level language it is possible to apply these
very different numerical evaluation procedures to compute different kinds of
quantitative information from the same model. This is a freedom which we would
not have if we had coded a Markov chain or a differential equation-based rep-
resentation of the model directly in a numerical computing platform such as
Matlab. One freedom which the use of a high-level language gives the modeller
is the possibility to use either discrete-state or continuous-space analysis pro-
cedures. Another is the option of applying both types of analysis to the same
model, and that is the approach which we have used here.

One strength of the PEPA process algebra as an expressive and practical
modelling language is its support for multi-way co-operation; we have made
use of this expressive power in all of our modelling studies in systems biology.
Genuinely tri-molecular collisions occur only exceptionally rarely in dilute fluids
so these do not normally arise in our modelling for this reason. Rather a collision
between, say, an enzyme and a substrate to produce a compound, is expressed
in PEPA as a three-way co-operation between the input enzyme and substrate
(whose molecular concentrations are reduced) and the output compound (whose
molecular concentration is increased). Similarly a reaction channel with two
input species and two output species is represented as a four-way co-operation
in PEPA. Some reaction channels may have more inputs or more outputs and
so having this expressive power available in our chosen process algebra seems
well-suited to the type of modelling which is undertaken in the area.

4.2 Combinators of the Language

We give only a brief introduction to the PEPA language here. The reader is
referred to [2] for the definitive description.

PEPA provides a set of combinators which allow expressions to be built which
define the behaviour of components via the activities that they engage in. These
combinators are presented below.
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Prefix (α, r).P : Prefix is the basic mechanism by which the behaviours of com-
ponents are constructed. This combinator implies that after the component has
carried out activity (α, r), it behaves as component P .

Choice P1+P2: This combinator represents a competition between components.
The system may behave either as component P1 or as P2. All current activities
of the two components are enabled. The first activity to complete distinguishes
one of these components and the other is then discarded.

Cooperation: P1 ��
L

P2: This describes the synchronization of components P1

and P2 over the activities in the cooperation set L. The components may proceed
independently with activities whose types do not belong to this set. A particular
case of the cooperation is when L = ∅. In this case, components proceed with
all activities independently. The notation P1 ‖ P2 is used as a shorthand for
P1 ��

∅ P2. In a cooperation, the rate of a shared activity is defined as the rate of
the slowest component.

Hiding: P/L This component behaves like P except that any activities of
types within the set L are hidden, i.e. such an activity exhibits the unknown
type τ and the activity can be regarded as an internal delay by the component.
Such an activity cannot be carried out in cooperation with any other component:
the original action type of a hidden activity is no longer externally accessible, to
an observer or to another component; the duration is unaffected.

Constant: A
def= P Constants are components whose meaning is given by a

defining equation: A def= P gives the constant A the behaviour of the component P .
This is how we assign names to components (behaviours). An explicit recursion
operator is not provided but components of infinite behaviour may be readily
described using sets of mutually recursive defining equations.

5 Modelling

For this system we developed a reagent-centric model. In this style of modelling
we associate a distinct PEPA component with each reagent in the system. This
is a more abstract mapping than is used in most of the work using stochastic
π-calculus [22], where a distinct component is associated with each molecule in
the system.

In the reagent-centric style, we represent the state of the system as the con-
junction of the states of the components, each local state corresponding to a
concentration level of an individual reagent. Concentration levels are discretized
and the local states of the PEPA component records the impact of each possible
reaction on the concentration level. The impact will depend on the role that the
reagent plays within this particular reaction. This is summarised in Table 1.

Enzymatic reactions are possible when the enzyme is present in high con-
centration, and have no impact on the amount of enzyme although the current
concentration of the enzyme will affect the rate of reaction. Conversely for in-
hibitory reactions: the inhibitor must be in low concentration and will remain
low and its concentration has a regulatory effect on the rate of the reaction.
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Table 1. The impact and role of reagents

Reagent role Impact on reagent Impact on reaction rate
Producer decreases concentration has a positive impact, i.e. proportional

to the current concentration level
Product increases concentration has no impact on the rate, except at

saturation
Enzyme concentration unchanged has a positive impact, i.e. proportional

to current concentration
Inhibitor concentration unchanged has a negative impact, i.e. inversely pro-

portional to current concentration

A PEPA model in this style can be thought to define a schematic for the
possible reactions in the system. In the ODE mapping the local states represent
the concentrations of the reagents. In the mapping to stochastic simulation, the
local states indicate the types of molecules involved in the reactions and this is
automatically mapped to a chemical master equation representation suitable for
simulation using Gillespie’s algorithm.

Figure 2 shows a small network, and the PEPA reagent-centric model that
describes the graphical representation. In this example the PEPA components
are A, B and C, and are tagged with H and L to designate the high and low
concentrations, the coarsest possible discretization. The PEPA equations record
the impact of each reaction on the concentration of that reagent.

BA

C

b_a

ab_c

c_bc_a

AH
def= (ab c, α).AL

AL
def= (b a, β).AH+(c a, γ).AH

BH
def= (ab c, α).BL+(b a, β).BL

BL
def= (c b, δ).BH

CH
def= (c a, γ).CL+(c b, δ).CL

CL
def= (ab c, α).CH

(AH ��
{ab c,b a} BH) ��

{ab c,c a,c b} CL

Fig. 2. PEPA reagent-centric example

ab c, A + B → C , α c b, C → B , δ
b a, B → A , β c a, C → A , γ

Fig. 3. An equivalent model in chemical reaction language

The PEPA definitions in Figure 2 give rise to four reactions shown in Figure 3
in the chemical reaction language format W, X → Y, Z. W is the name for the
reaction, X = {X1 + ... + Xn} lists all the components that are consumed in
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this named reaction. Y is a list in the same format as X representing those
components that are increased by this reaction. The last part of the reaction, Z,
defines a rate constant from which the reaction rate is derived.

The reaction ab c consists of two reactants and one product. From the PEPA
definition in Fig. 2, components A and B transition from a high to low state via
the activity/reaction ab c: they are the two reactants of reaction ab c. Similarly,
component C transitions from a low to high state by reaction ab c: it is the
product of this reaction. This form of reasoning is used to transform all the
PEPA equations into chemical reaction language format.

The rate of each reaction is not simply the defined constant. Where previously
the reaction ab c was defined as A + B → C, α, we take the constant α and
multiply it by the number of molecules in both the A and B components (to
allow for all permutations) to give a reaction rate of αAB, the mass action rate.

As outlined above, both stochastic simulation and ODE analysis are avail-
able. ODEs derived from PEPA in this manner will always respect the rules of
conservation, as PEPA works on a static number of components. The inclusion
of stoichiometric information outside of the PEPA model does however allow
for a more powerful representation. In this case the numbers of each compo-
nents required in each reaction are any valid integer i.e. ab c requires 3 units of
component A instead of 1.

5.1 Schoeberl Model in PEPA

In attempting to reproduce the model created by Schoeberl et al., the main
source of information came from the supplementary material to [1]. The com-
plexity of the model highlights the issues surrounding graphical representations
as can be seen in Fig. 4.

The reaction v7, highlighted in blue is a uni-directional reaction and shows one
instance of internalisation. Other reactions such as v2, v3 are bi-directional yet
with no obvious difference within the graphical scheme. Additional information
in the form of tabled reactions and rates, for example

v7, [(EGF-EGFR∗)2]→ [(EGF-EGFRi∗)2]

can resolve some of the ambiguities, and by making joint use of these two repre-
sentations the PEPA model can be constructed. Each component is taken in turn,
with each reaction it participates in recorded against it. If we use (EGF-EGFR)2
(which can be seen in Fig. 4) as an example; (EGF-EGFR)2 can become phos-
phorylated (v3) and form (EGF-EGFR∗)2, and this autophosphorylation can be
reversed. This information would allow us to construct a definition such as that
presented in equation (1).

EGF-EGFR2H
def= (v3, k3).EGF-EGFR2L

EGF-EGFR2L
def= (v-3, k-3).EGF-EGFR2H (1)
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Fig. 4. An extract of the signalling pathway (reproduced from [1])

Going further, we realise that (EGF-EGFR)2 is formed from the dimeriza-
tion of EGF-EGFR (v2) and that this step can also be reversed. Adding this
information to the previous definitions produces the definitions shown in (2).

EGF-EGFR2H
def= (v3, k3).EGF-EGFR2L + (v-2, k-2).EGF-EGFR2L

EGF-EGFR2L
def= (v-3, k-3).EGF-EGFR2H + (v2, k2).EGF-EGFR2H (2)

In this manner, each component can be built up to form the complete model.
Some of the more complex compounds, such as (EGF-EGFR∗)2-GAP-Shc∗-
Grb2-Sos, participate in nine reactions creating large definitions. The definitions
are structurally similar, consisting of multiple choice operators for the prefixes.

This brief description can account for the majority of the model but not all.
The dimerization process seen in reactions v9 and v11 currently require the
addition of stoichiometric information. Through the interface to our software
tool (described in Section 7) you can stipulate that two EGF-EGFR complexes
form one (EGF-EGFR)2. When converting to Matlab this is translated to

dy(3)
dy

= −2k2y(3)2

and
dy(4)
dy

= k2y(3)2

where y(3) is EGF-EGFR and y(4) is (EGF-EGFR)2. Certain complexes can
degrade such as EGFRi and EGFi, forming components that only increase in
volume.

The final behaviour that requires consideration is that of EGF. EGF binds
to the EGF receptors, circled in red on the left in Fig. 4. The reactions present
within [1] all suggest that EGF is consumed in this binding. This is not the
case and in the Matlab model the rate of change for EGF is set to zero for all
reactions it is involved in. This can be likened to a reservoir: the EGF is present
at a given concentration but there exists so much at this level that the reduction
is negligible. In the PEPA model this must be made explicit from the start. The
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influence of EGF can be defined either as a secondary rate parameter, effectively
increasing the rate at which the reaction will take place, or EGF can be defined
as a catalyst in the relevant reactions. In the PEPA model the catalytic route
was taken and so defined as EGFH

def= (v1, k1).EGFH .

6 Comparison

Figure 5 shows the time series plots for the six components highlighted in the
original Schoeberl et al. paper. Each graph has three time series plots:

1. the solution of the original model1 from [1] which is a Matlab program which
specifies a fixed time step and solution using the ode15s procedure from the
Matlab ODE suite [23];

2. the result of a τ -leap simulation of our PEPA model; and
3. the solution of an amended version of the original model using smaller time

steps with the ode15s procedure.

Each form of analysis was run for the same duration (60 minutes) in order
to replicate the results of the original model as closely as possible. Of the six
components MEK-PP, Raf∗ and Ras-GTP spike in a short space of time, and so
to more readily show the differences the time series were cut short once the rate
of change had dropped off towards zero.

The use of the particular step within the solver is most apparent in Ras-GTP.
The original model’s results indicate a peak at two minutes with a value of 8000
molecules/cell. The true peak occurs earlier, reaching double the original value
at 16,000 molecules/cell. As can be seen, the value at two minutes is correct, but
that the speed at which this component changes means the bulk of the reaction
has already taken place, and the analysis incorrectly steps over the true peak
onto the negative gradient of the curve. Differences can be seen also within the
Raf∗ and to a lesser extent MEK-PP. In all of the graphs, it is nearly impossible
to distinguish the τ -leap and variable-step ode15s solver at this resolution.

This discrepancy only became apparent when comparing the results from the
stochastic simulation and that of the ODE analysis, and we were only in a
position to compare these alternative models because we generated both from
a high-level process algebra description. Prior to running the τ -leap simulation,
the arguments for the ODE analysis of the PEPA model had been extracted
from the original model. Hence the same results were obtained, with the peaks
in identical places.

The time taken to solve the ODE model using the stiff solver with smaller
time steps was almost identical to the time taken to solve model with fixed larger
time steps. The time taken to solve the model using the τ -leap method is longer
than the time taken to solve the model using Matlab’s stiff ODE solver (ode15s)
but shorter than the time required by a standard solver such as ode45.

1 Available on-line at http://web.mit.edu/dllaz/egf pap/
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Fig. 5. Graphs of differential equation and stochastic simulation results compared.
The solid red line is the solution of the original model from [1], which shows marked
differences in some graphs from the solution of the PEPA-derived τ -leap simulation and
(a dashed green line) and the solution of the ODE model using smaller time steps (a
dotted blue line). The solution of the PEPA-derived τ -leap simulation and the solution
of the ODE model using smaller time steps are virtually indistinguishable in the graphs.

7 Implementation

The reason to have a formally-defined high-level language for performance mod-
elling is that it is possible to implement software tools which evaluate models
according to the formal semantics of the language. For the present study we
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produced a tool platform to support the compilation of PEPA models in the
reagent-centric style by extending the Choreographer platform [24] which we
developed for general quantitative analysis of PEPA models.

Choreographer is an integrated development environment for process alge-
braic modelling, comprising a language-sensitive editor for PEPA and a toolbox
of solution procedures for continuous-time Markov chains. We extended Choreog-
rapher to communicate with the publicly-available ISBJava library for stochastic
simulation as used by the Dizzy [25] chemical kinetics stochastic simulation soft-
ware package. We also extended Choreographer to communicate with the Matlab
numerical computing platform, which we use for numerical integration of ODEs.
A screenshot of our extended Choreographer platform appears in Figure 6.

Fig. 6. The Choreographer quantitative development and analysis platform

8 Conclusions

Errors in the use of typical computing applications frequently manifest them-
selves as a null pointer dereference or a segmentation fault: the application tells
the user that an error has occurred. Errors in the use of numerical computing
routines are more insidious than errors in typical computing. No memory faults
are signalled and the application often completes normally within the antici-
pated duration of run, delivering a plausible graph of analysis results. Without
any such alarm bells being sounded the modeller must always be on guard to look
for potential traps such as an over-generous step-size and it is entirely forgivable
if they cannot always do this for every graph in every modelling study.
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Rather than place this intellectual burden on the modeller we would prefer to
use stronger computational modelling procedures which would routinely apply
both continuous-state analysis methods (such as ODE solution) and discrete-
state analysis (such as stochastic simulation). High-level modelling languages
such as the PEPA process algebra are helpful here. Instead of coding the differ-
ential equations and the stochastic simulation directly we generate these from a
single process algebra model, gaining the value of the application of both types
of analysis without the expense of any re-implementation.

Using this approach we uncovered a flaw in the results presented in [1]. We
had no a priori reason to suspect that there was a flaw; comparing the stochastic
simulation results to the ODE solution identified a clear problem, at a modest
computational cost. All computations were done on a single desktop PC. We
believe that the insights obtained from this study stand as a good advertise-
ment for the usefulness of high-level modelling languages for analysing complex
biological processes whether process algebras, Petri nets or SBML [26].

We compared in Figure 5 the analysis results obtained by solution of the
differential equations with the solutions computed by stochastic simulation. As
is typical for stiff systems, some effects are best considered over different time
scales. Some species (such as ERK-PP and SHC) exhibit high concentration for
a period of hours. Others (such as Raf∗ and Ras-GTP) peak within minutes. The
large time step used in the computation in [1] is not a problem for the analysis
of the long-lived species but gives misleading results for those species which are
short-lived.

We discovered very good agreement between the results calculated by the τ -
leap method and the results calculated from the differential equations when a
variable timestep is used. The solution of the variable timestep ODEs agrees al-
most exactly everywhere with the solution obtained from Gillespie’s approximate
τ -leap method: these two lines are overlapping on the plots in Figure 5.

Acknowledgements. Muffy Calder and Adam Duguid are supported by the DTI
Beacon Bioscience Projects programme. Stephen Gilmore and Jane Hillston are
supported by the EU IST-3-016004-IP-09 project SENSORIA. Jane Hillston is
supported by the Engineering and Physical Sciences Research Council Advanced
Research Fellowship EP/C543696/1 “Process Algebra Approaches to Collective
Dynamics”. The authors acknowledge helpful discussions with Richard Orton
of the Bioinformatics Research Centre, University of Glasgow on aspects of the
computational modelling of the MAPK pathway.

References

1. B. Schoeberl, C. Eichler-Jonsson, E.D. Gilles, and G. Muller. Computational mod-
eling of the dynamics of the MAP kinase cascade activated by surface and inter-
nalized EGF receptors. Nature Biotechnology, 20:370–375, 2002.

2. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.



76 M. Calder et al.

3. Muffy Calder, Stephen Gilmore, and Jane Hillston. Modelling the influence of
RKIP on the ERK signalling pathway using the stochastic process algebra PEPA.
In Anna Ingolfsdottir and Hanne Riis Nielson, editors, Proceedings of the Bio-
Concur Workshop on Concurrent Models in Molecular Biology, London, England,
August 2004.

4. Muffy Calder, Stephen Gilmore, and Jane Hillston. Automatically deriving ODEs
from process algebra models of signalling pathways. In Gordon Plotkin, editor,
Proceedings of Computational Methods in Systems Biology (CMSB 2005), pages
204–215, Edinburgh, Scotland, April 2005.

5. K.-H. Cho, S.-Y. Shin, H.-W. Kim, O. Wolkenhauer, B. McFerran, and W. Kolch.
Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In
C. Priami, editor, Computational Methods in Systems Biology (CSMB’03), volume
2602 of LNCS, pages 127–141. Springer-Verlag, 2003.

6. Muffy Calder, Stephen Gilmore, and Jane Hillston. Modelling the influence of
RKIP on the ERK signalling pathway using the stochastic process algebra PEPA.
Transactions on Computational Systems Biology, 2006. Extended version of [3]. To
appear.

7. O. Wolkenhauer, M. Ullah, W. Kolch, and K.-H. Cho. Modelling and simulation
of intracellular dynamics: Choosing an appropriate framework. IEEE Transactions
on Nanobioscience, 3(3):200–207, September 2004.

8. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry, 81(25):2340–2361, 1977.

9. T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in
vivo reactions. Computational Biology and Chemistry, 28:165–178, 2004.

10. D.T. Gillespie and L.R. Petzold. Improved leap-size selection for accelerated
stochastic simulation. J. Comp. Phys., 119:8229–8234, 2003.

11. M. Rathinam, L.R. Petzold, Y. Cao, and D.T. Gillespie. Stiffness in stochastic
chemically reacting systems: The implicit tau-leaping method. Journal of Chemical
Physics, 119(24):12784–12794, December 2003.

12. Y. Cao, D.T. Gillespie, and L. Petzold. Accelerated stochastic simulation of the stiff
enzyme-substrate reaction. Journal of Chemical Physics, 123:144917–1 – 144917–
12, 2005.

13. D. Gillespie and L. Petzold. System Modelling in Cellular Biology, chapter Nu-
merical Simulation for Biochemical Kinetics. MIT Press, 2006. Ed. Z. Szallasi, J.
Stelling and V. Periwal.

14. Abhijit Chatterjee, Kapil Mayawala, Jeremy S. Edwards, and Dionisios G. Vlachos.
Time accelerated Monte Carlo simulations of biological networks using the binomial
τ -leap method. Bioinformatics, 21(9):2136–2137, 2005.

15. M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling path-
ways using the PRISM model checker. In Gordon Plotkin, editor, Proceedings of
Computational Methods in Systems Biology (CMSB 2005), Edinburgh, Scotland,
April 2005.

16. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In A.J. Field and P.G. Harrison, editors, Proceedings of the 12th Interna-
tional Conference on Modelling Tools and Techniques for Computer and Communi-
cation System Performance Evaluation, number 2324 in Lecture Notes in Computer
Science, pages 200–204, London, UK, April 2002. Springer-Verlag.

17. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time
Markov chains. ACM Transactions on Computational Logic, 1:162–170, 2000.



Stronger Computational Modelling of Signalling Pathways 77

18. Luca Cardelli. Mapk cascade. Microsoft Research Cambridge UK technical note.
Available on-line at http://research.microsoft.com/Users/luca/Notes/Mapk Cas-
cade.pdf, July 2005.

19. Chi-Ying F. Huang and James E. Ferrell Jr. Ultrasensitivity in the mitogen-
activated protein kinase cascade. Biochemistry, 93(19):10078–10083, September
1996.

20. J. Hillston. Process algebras for quantitative analysis. In Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’ 05), pages 239–
248, Chicago, June 2005. IEEE Computer Society Press.

21. J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, pages
33–43, Torino, Italy, September 2005. IEEE Computer Society Press.

22. C. Priami, A. Regev, W. Silverman, and E. Shapiro. Application of a stochastic
name passing calculus to representation and simulation of molecular processes.
Information Processing Letters, 80:25–31, 2001.

23. Lawrence F. Shampine and Mark W. Reichelt. The Matlab ODE suite. SIAM J.
Sci. Comput., 18(1):1–22, 1997.

24. Mikael Buchholtz, Stephen Gilmore, Valentin Haenel, and Carlo Montangero. End-
to-end integrated security and performance analysis on the DEGAS Choreographer
platform. In I.J. Hayes J.S. Fitzgerald and A. Tarlecki, editors, Proceedings of the
International Symposium of Formal Methods Europe (FM 2005), number 3582 in
LNCS, pages 286–301. Springer-Verlag, June 2005.

25. S. Ramsey, D. Orrell, and H. Bolouri. Dizzy: stochastic simulation of large-scale
genetic regulatory networks. J. Bioinf. Comp. Biol., 3(2):415–436, 2005.

26. M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, and H. Kitano et al.
The systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics, 19(4), 2003.



A Formal Approach to Molecular Docking

Davide Prandi

Dipartimento di Informatica e Telecomunicazioni, Università di Trento,
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Abstract. Drugs are small molecules designed to regulate the activity of
specific biological receptors. Design new drugs is long and expensive, be-
cause modifying the behavior of a receptor may have unpredicted side ef-
fects. Two paradigms aim to speed up the drug discovery process: molec-
ular docking estimates if two molecules can bind, to predict unwanted
interactions; systems biology studies the effects of pharmacological inter-
vention from a system perspective, to identify pathways related to the
disease. In this paper we start from process calculi theory to integrate
information from molecular docking into systems biology paradigm. In
particular, we introduce Beta-bindersD, a process calculus for represent-
ing molecular complexation driven by the shape of the ligands involved
and the subsequent molecular changes.

Keywords: Formal Methods, Process Calculi, Drug Discovery, Molecu-
lar Docking, Systems Biology.

1 Introduction

A drug is a chemical substance designed to regulate the activity of specific bio-
logical receptors called targets. The process of drug discovery requires extensive
study to determine the biological and biochemical problems that could underlie
the disease. This is because, biological processes in the human body are tightly
interconnected and modifying the behavior of a receptor may have dangerous
side effects. Therefore drug discovery requires years of study and a large amount
of money in order to find a drug for a potential target.

Molecular docking aims to predict whether one molecule will bind to another.
If the geometry of a pair of molecules is complementary and involves favorable
biochemical interactions, the two molecules will potentially bind in vitro or in
vivo. The latest programs and algorithms (e.g. [1,2]) help researchers to find
more efficient drugs, and to predict the behavior of new chemical compounds.
Molecular docking impacts on costs and time consumed predicting non-specific
interactions of drug molecules, and thus potential side effects.

In [3], the authors observe that “knowing a target is not the same as knowing
what the target does”. The actual drug design process is founded on a reduc-
tionist approach: scientists search for a “magic bullet” that targets a specific
molecule (e.g. an enzyme). If the target plays a role in different pathways, possi-
ble on-target side effects may emerge late in the drug discovery process. It is the
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case of Rofecoxib, used in the treatment of osteoarthritis and acute pain condi-
tions. Rofecoxib inhibits COX-2 enzyme, that also plays a role in the produc-
tion of prostaglandin, an anti-clotting agent [4]. Therefore Rofecoxib decreases
prostaglandin production, leading to an inefficiency in declumping and vasore-
laxation. Rofecoxib was withdrawn from the market in 2004 because it is related
with risk of heart attack. Over 80 million people were prescribed rofecoxib be-
fore it was withdrawn. Moreover, the possibility that a designed drug binds
molecules other than the target, off-target side effects, is ignored until in vivo
evidence emerge. For instance, the phosphodiesterase (PDE) inhibitor Viagra is
designed to target PDE-5 and to promote the relaxation of smooth muscle [5].
The drug also binds PDE-6 in the eye, leading to a documented “blue vision”
side effects [6], difficult to discover with tests on animals. These situations need
to be identified early in the drug discovery process. Systems modelling can help
to improve our knowledge of the effects of pharmacological products. In par-
ticular, systems biology [7] integrates into consistent models different levels of
information for understanding and eventually predicting the operation underly-
ing complex biological systems. Therefore it appears as the “right” paradigm to
overcome the limits of the reductionist approach adopted during the development
of new drugs [8,9,10,11]. An effective model needs to be extensible, additional
real properties can be added in the same framework, and compositional, the be-
haviour of a complex system is determined by the behaviour of its elementary
components. Extensibility assures that information can be added to the model
as well as it emerges in the drug discovery process. Compositionality allows to
test the effects of a drug in different contexts, “simply” composing the models
of the drug and of the context.

Among different proposals, formal methods from concurrency theory and pro-
cess calculi are promising [12], because extensibility and compositionality are
deeply studied in that context [13]. Here we propose Beta-bindersD, a special-
ization of Beta-binders [14], for integrating pathway information from systems
biology and binding prediction from molecular docking. Beta-binders introduces
a special class of binders, used to model mobile processes [15,16] encapsulated
into boxes with interaction capabilities. A molecule M is represented as a box
BM , depicted below:

M

x1 : ∆1 . . . xn : ∆n

The pairs xi : ∆i indicate the sites through which BM may interact with other
boxes. The types ∆i denote the interaction capabilities at xi. In [14], types are
set of names, and the authors observe that the typing policy could be changed
to accommodate more refined kinds of interactions. Here, we specialise binder
types to represent information from molecular docking, to drive interactions
between boxes. The dynamic behaviour of BM is specified by the internal pi-
process M . A pi-process is a π-calculus process for representing biomolecular
interactions [17,18], extended for manipulating the interaction sites of a box.
The parallel composition of different boxes abstracts a biological system that
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evolves relying on the semantics of Beta-binders. For instance, consider the
enzyme-catalyzed reaction schema [19]:

E + S ⇀ ES ⇀ EP ⇀ E + P

The substrate S binds the enzyme E to form the complex ES; then the enzyme
catalyses the reaction to EP and finally the product P is released without chang-
ing the structure of E. Beta-binders models such reactions as:

E

xE : ∆E

(BE)

S

xS : ∆S

(BS)

−→ E | S

xE : ∆E xS : ∆S

(BES)

−→ E | P

xE : ∆E xP : ∆P

(BEP )

−→ E

xE : ∆E

(BE)

P

xP : ∆P

(BP )

Boxes BE , for the enzyme, and BS , for the substrate, can complex into box
BES , if the types ∆E and ∆S are compatible up to a certain molecular docking
algorithm. Then, the internal pi-process E | S evolves into S | P and ∆S into
∆P . Finally the complex unbinds releasing the product BP .

The paper is organized as follow. Sect. 2 introduces drug discovery and molec-
ular docking. We also propose DockSpace as a uniform model to handle different
molecular docking algorithms. Sect. 3 shows some enzymatic reaction schemas
as running examples. Then, in Sect. 4, we present Beta-bindersD that integrates
process calculi formalism with information from molecular docking. The sec-
tion concludes showing the models and the dynamic evolution of the enzymatic
reactions presented. Finally, Sect. 5 closes the paper.

2 Drug Discovery

The normal activity of a specific biological receptor may be altered by differ-
ent factors causing minor symptoms (e.g. runny eyes due to allergies) or life-
threatening events. A drug is a small molecule designed to correct the activity
of these receptors.

The Drug discovery pipeline in Fig. 1 is composed by the processes that allow
to discover and design new drugs.1 The development of a new drug starts with
years of study to identify the biochemistry underlying a medical problem. The
outcome is a specific receptor, called target, that needs to be regulated (i.e. alter
its activity) by the drug. High Throughput Screening (HTS) allows to compare
the target with large libraries of known substances, called compounds, to find
anything that binds to the receptor in any fashion. Instead, rational drug design
studies biological and physical properties of the target to predict the structure
of possible ligands. Once a set of hits has been established they are validated
and refined to obtain a lead compound. From this point onward a loop between
validation and optimization starts until a lead compound with sufficient target
1 The pipeline may vary depending on the pharmaceutical company, here we sum-

marise main steps.
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Fig. 1. Drug discovery pipeline

potency and selectivity is reached, obtaining a drug candidate. Then, in the
preclinical trial the drug candidate is tested for safety, toxicity, pharmacokinetics
and metabolism impacts in human. If succeed, the drug candidate is then tested
in human clinical trials. Trials are designed to evaluate the safety and efficacy
of an experimental therapy. Finally the new drug is approved for the market.

Even the process of defining new drugs requires years of studies and million of
dollars [20], many marketed drugs fail because they are not sufficiently effective
or because they cause unwanted side effects. Also when a drug is approved for
marketing, success is not assured. There is an increasing need for a better ap-
proach to drug development, and pharmacological companies are moving to new
technologies to understand cell responses to pharmacological intervention [21].
A system approach allows to find pathways related with the disease and also
predict unwanted on- and off-target side effects, improving the drug discovery
pipeline.

2.1 Molecular Docking

Molecular docking is a technique used in rational drug design for predicting
whether one molecule will bind to another. Molecular recognition is a central
question in biology, because “life is crucially dependent on molecular binding:
to the right target, at the right time, in the right place, with the right affinity,
and (sometimes) at the right speed” [22]. Molecular docking simulates the inter-
action of two ligand surfaces by arranging molecules in favorable configurations
that match complementary features. Current docking methodologies varies con-
sidering, e.g., small molecules binding instead of macromolecular interactions,
or rigid vs. flexible body [2]. However, there are three common ingredients in
docking:

Representation of the molecular structure: The structure of a molecule
is first determined in laboratory relying on biophysical techniques as x-ray
crystallography or nuclear magnetic resonance (NMR) spectroscopy. There-
fore the basic description of a ligand surface is its atomic representation.
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The first pioneering work [23] describes only geometric features: a ligand
surface is represented as a set of spheres that fill the space occupied by the
atoms of the ligand. More advanced systems, e.g. DARWIN [24], represent
also electrostatic and hydrophobic properties.

Conformational space search: The search space is all possible orientations
and conformations of the interacting ligands. A search algorithm explores
the search space to locate the most stable conformation. Each conformation
of the paired molecules is referred to as a pose. Many strategies for sampling
the search space are available in literature [2].

Ranking of possible solution: A scoring function computes the affinity be-
tween the receptor and the ligand. The idea is to estimate chemical properties
with mathematical models. A scoring function must rank poses correctly, i.e.
score best the most closely experimental structures, and must be fast to be
applied concretely.

Molecular docking algorithm screens large databases of molecules (e.g. Pro-
tein DataBank2) orienting and scoring them in the binding site of a target.
Top-ranked molecules are then tested for binding in vitro. Integrating pathways
modelling with molecular docking enables researchers to incorporate experimen-
tal data on pathways with information on the structure of the compounds making
more confident decisions on the future of new drugs. Unfortunately, algorithms
and programs available differ for representation of the molecular structure, ac-
curacy, computational costs, parameters, etc. There is not a standard (or a set
of standards) and the available results are presented without uniformity in the
literature. To abstract the particular algorithm used we introduce a consistent
representation called DockSpace.

2.2 The DockSpace

The above short survey on molecular docking outlines the main characteristics
needed for estimating binding affinity between molecular ligands: a space of the
structure D, where an element D ∈ D is a representation of the structure of a
molecular ligand and an output space S, that abstracts the output of a scoring
function. Then, a molecular docking algorithm is a function m that takes the
representation of two molecular ligands D1 and D2, a set of parameters P ∈ P

(e.g. the Ph of the system), and returns a value in S. We introduce DockSpace
to uniformly represent molecular docking algorithms.

Definition 1 (DockSpace). A DockSpace is a 4-tuple (D, P, S, m) where D

is the space of the structure, P is the space of the parameters and S is the scoring
space. The distance function m : D×D× P→ S, takes two molecular structures
D1 and D2, a set of parameters P , and returns the scoring of the bind between
D1 and D2 with parameters P .

As a simple example we define the DockSpace G = (DG, PG, SG, mG). A molecule
is described as a graph D ∈ DG, where nodes are labelled by atom types and edges
2 http://www.rcsb.org/pdb/Welcome.do
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E + S ↔ ES → EP → E + P

+

I ↔ EI

E+S ↔ ES → EP → E + P(a)

(b) (c)E + S1 ↔ ES1 → E∗P1 → E∗ + P1

+

E + P2 ← EP2 ← E∗S2 ↔ S2

Fig. 2. Enzymatic reactions

by the corresponding inter-atom distance. The distance function mG(D1, D2, n) is
true iff it is possible to find a common subgraph between D1 and D2 with at least
n nodes. A DockSpace where S = {true, false} is a Boolean DockSpace.

3 Example: Enzymatic Reactions

Enzymes are molecules that speed up biochemical reactions without themselves
being changed, that is, they act as catalysts [19]. Enzymes bind to one or more
ligands, called substrates, and convert them into one or more chemically modified
products. The catalysis of organized sets of chemical reactions by enzymes creates
and maintains the cell. Enzymes are genetically designed to be specific for a
particular molecular target and any error could have dangerous consequences.
Many drugs modify or regulate the activity of specific enzymes [25]. In this
section we present three enzymatic reaction schema that we will use later as test
cases for Beta-bindersD.
Simple enzyme-catalyzed reaction Fig. 2(a). In this schema, the enzyme E
and the substrate S bind to form the enzyme-substrate complex ES. The reaction
takes place in ES to form the enzyme-product complex EP. Finally the product
P is released and the enzyme E regenerated.
Multi-substrate systems Fig. 2(b). Multi-substrate systems are enzymatic
reactions in which enzyme catalysis involves two or more substrates. For instance,
in the Ping-Pong mechanism of Fig. 2(b) the substrate S1 binds the enzyme E
resulting in a product P1 and an enzyme E∗, a modified version of E which often
carries a fragment of S1. Then, a second substrate S2 binds E∗ releasing a second
product P2 and the enzyme E. This process is called Ping-Pong mechanism
because of the bouncing between E and E∗.
Enzyme inhibition Fig. 2(c). An inhibitor is a molecule that decreases the
speed of an enzymatic reaction. The study of enzyme inhibition is crucial for
drug discovery because in many cases a drug acts as an inhibitor or has to
suppress an inhibitor. For instance, in Competitive inhibition of Fig. 2(c) the
substrate S and the inhibitor I compete for the same enzyme E. The complex EI
cannot interact with S inhibiting the production of P.

4 Docked Bets-Binders

Beta-binders abstracts biological systems as parallel processes that interact
through interfaces. For instance, proteins have backbones as internal control
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structure and motifs for interacting with other entities. Here we introduce
Beta-bindersD, a refined version of [14], to integrate molecular docking infor-
mation into biomolecular reactions. In particular, we are interested in represent-
ing molecular complexation driven by the shape of the ligands involved and the
subsequent molecular changes.

We assume a Boolean DockSpace G = (DG, PG, SG, mG) and a countably infi-
nite set N of names (ranged over by lower-case letters). Beta-bindersD represents
a molecules M with a box BM depicted as

M

x1 : ∆M1 . . . xn : ∆Mn

and written as β(x1, ∆M1) . . . β(xn, ∆Mn) [ M ].
A box is a π-calculus process for representing biological interactions [17,18]

prefixed by specialised binders, named beta binders, that represent interaction
capabilities. An elementary beta binder (also binder for simplicity) is β(x, Γ )
(active) or βh(x, Γ ) (hidden), where the name x is the subject and Γ ∈ DG is
the type of x. Hidden binders cannot be used in interaction. We let β̂ ∈ {β, βh}. A
beta binder (ranged over by B, B1, B

′, . . . ) is a non-empty string of elementary
beta binders whose subjects are all distinct. The set of the subjects of all the
elementary beta binders in B is sub(B), and B∗ denotes either a beta binder or
the empty string.

The π-calculus syntax is enriched to manipulate beta binders obtaining the
set of pi-processes P defined by the following syntax:

π ::= x〈z〉 | x(y) | τ
πβ ::= hid(x) | unh(x) | exp(x, Γ ) | ch(x, Γ )

P ::= M | P | P ′ | νx̃ P | [x = y]P | A (ỹ)

M ::= nil | π. P | πB. P |M+M ′

The process nil is inactive. The prefix π. P (πβ . P ) assures that action π (πβ)
has to be fired before executing P . The output prefix x〈z〉 sends name z on link
x. The input prefix x(y) receives over x a name y. The name y is a binder for
the prefixed process. We will use z and x where the objects of the output or of
the input are empty. The silent prefix τ abstracts a non visible action. Prefixes
hid(x) and unh(x) make the elementary beta binder with subject x not available
(hidden) and available (unhidden), respectively. The prefix exp(x, Γ ) adds to
the box the binder β(x, Γ ). Finally prefix ch(x, Γ ) changes the current type of
x with Γ . The process P | P ′ represents a system composed by two parallel
sub-processes P and P ′. The process M + M ′ behaves either as M or as M ′.
The names x̃ (x̃ denotes the sequence x1, . . . , xn) in νx̃ P are static binders for
x̃ in P . Matching [x = y] P behaves as P if x = y. Finally, the agent identifier
A (ỹ) has a unique defining equation A (x̃) def=P . Each occurrences of an agent
identifier A (ỹ) will be replaced by the process P , with the formal parameter x̃
substituted by the actual parameters ỹ.
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Table 1. Laws for structural congruence

a. P1≡P2 if P1 and P2 are α-equivalent i. B[ P1 ]≡B[ P2 ] if P1≡P2

b. (P/≡, |, nil) is an abelian monoid j. B1B2[ P ]≡B2B1[ P ]
c. (P/≡, +, nil) is an abelian monoid k. B∗β̂(x : Γ )[ P ]≡B∗β̂(y : Γ )[ P{y/x} ]
d. νz νw P≡νw νz P e. νz nil≡nil if y fresh in P and y /∈ sub(B∗)
f. νy (P1 | P2)≡P1 | νy P2 if y �∈ fn(P1) l. (B/≡, ‖, Nil) is an abelian monoid

g. [x = x] P≡P

h. A (ỹ)≡P{ỹ/̃x} if A (x̃)
def
=P

The usual definitions of free and bound names (denoted by fn(−) and bn(−),
respectively) and of name substitution {x/y} are extended by stipulating that
exp(x, Γ ) . P is a binder for x in P . The set of names of a pi-process results to be
n(P ) = fn(P ) ∪ bn(P ). We also define {|x/y|}, that behaves as {x/y} but it does
not rename πβ prefixes:

(π. P ){|x/y|} = π{x/y}. (P{|x/y|}) (πβ . P ){|x/y|} = πβ . (P{|x/y|})
A biological system is modelled as the parallel composition of boxes, named

bio-processes. The set of bio-processes B (denoted as B, B1, B
′, . . .) is defined as:

B ::= Nil | B[ P ] | B ‖ B

A system is the parallel composition (B ‖ B) of boxes (B[ P ]), with nullary
element Nil. For instance, the bio-process B = BM1 [ M1 ] ‖ BM2 [ M2 ] repre-
sents two molecules M1 and M2 in the same solution. The set of names of a box
B[ P ] is n(B[ P ]) = sub(B) ∪ n(P ).

The reduction semantics for Beta-binders uses the structural congruence over
pi- and bio-processes defined as the smallest relations satisfying the laws of
Tab. 1, where we overload the symbol ≡ when unambiguous. Structural congru-
ence allows to manipulate the structure of pi- and bio-processes. Rule a states
that P1≡P2 if P2 can be obtained by a finite number of changes in the bound
names of P1, and vice versa (i.e. P1 and P2 are α-equivalent). Rules b and c
say that | and + are commutative, associative and have identity element nil.
Rules d, e and f are for restriction, in particular f moves the scope of a restric-
tion to include or exclude a process in which the restricted name is not free.
Rule g allows to proceed the process [x = y] P iff x is equal to y. Rule h instanti-
ates the agent identifier A with parameters ỹ iff A (x̃) is defined as the pi-process
P . Rule i lifts to bio-processes structural congruence between pi-processes; rule j
lets to write beta binders in any order, and rule k enables α-conversion for the
subject of a binder. Finally rule l states that ‖ is commutative, associative with
identity element Nil. In the following we shall consider processes up to ≡.

The reduction transition system is TS = (B, →) where B is the set of states
(equivalence classes of bio-processes w.r.t. ≡) and the reduction relation → is
the smallest relation over bio-processes obtained by applying the axioms and
rules of Tab. 2.
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Table 2. Axioms and rules for the reduction relation

(intra) B[ νũ (x(w). P1+M1 | x〈z〉. P2+M2 | P3) ]−→B[ νũ (P1{z/w} | P2 | P3) ]

(tau) B[ νũ (τ. P1+M1 | P2) ]−→B[ νũ (P1 | P2) ]

(expose) B[ νũ (exp(x,Γ ) . P1+M1 | P2) ]−→B β(x, Γ ) [ νũ (P1 | P2) ]
provided x /∈ ũ, x /∈ sub(B) and x /∈ Γ

(change) B∗ β̂(x, Γ ) [ νũ (ch(x, ∆) . P1+M1 | P2) ]−→B∗ β̂(x, ∆) [ νũ (P1 | P2) ]
provided x /∈ ũ

(hide) B∗ β(x, Γ ) [ νũ (hid(x) . P1+M1 | P2) ]−→B∗ βh(x, Γ ) [ νũ (P1 | P2) ]
provided x /∈ ũ

(unhide) B∗ βh(x, Γ ) [ νũ (unh(x) . P1+M1‘ | P2) ]−→B∗ β(x, Γ ) [ νũ (P1 | P2) ]
provided x /∈ ũ

(bind) β(x1, ∆1) B∗
1[ P1 ] ‖ β(x2, ∆2)B∗

2[ P2 ]−→
βh(x1, ∆1)B∗

1 βh(x2, ∆2) B∗
2[ P1{|l/x1|} | P2{|l/x2|} ]

if mG(∆1, ∆2) and l /∈ n(β(x1, ∆1) B∗
1[ P1 ] ‖ β(x2, ∆2) B∗

2[ P2 ])

(unbind) βh(x1, ∆1) B∗
1 βh(x2, ∆2) B∗

2[ P1{|l/x1|} | P2{|l/x2|} ]−→
β(x1, ∆1) B∗

1[ P1 ] ‖ β(x2, ∆2)B∗
2[ P2 ]

if D(β(x1, ∆1) B∗
1[ P1 ], β(x2, ∆2) B∗

2[ P2 ])

(redex)
B−→B′

B | B′′−→B′ | B′′ (struct)
B1≡B′

1 B′
1−→B2

B1−→B2

The axiom (intra) concerns communications between pi-processes within the
same box. The rule states that given a box B, if its internal pi-process can
perform a communication then B can be reduced leading to a box with the same
interface as B and with the internal process changed by the communication. The
axiom (tau) does the same for prefix τ . The axiom (expose) adds a new binder
to a box. The name x declared in the prefix exp(x, Γ ) is a placeholder which
can be renamed to avoid clashes with the subjects of the other binders of the
containing box. The axiom (change) changes the type of a binder. The axiom
(hide) forces a binder to become hidden (when made invisible, a binder named
x is graphically represented by xh). The (unhide) axiom, dual to (hide), makes
visible a hidden binder.

Wrt [14], the axioms (bind) is an instance of the join axiom schema, as well
as the axiom (unbind) is an instance of the split rule. The axiom (bind) is for
complexation. Consider the following transition:
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(1) x. E

x : ∆E

(BE)

z. ch(z, ∆P ) . P

z : ∆S

(BS)

−→ l. E{|l/x|} | l. ch(z, ∆P ) . P{|l/z|}

xh : ∆E zh : ∆S

(BES)

Boxes BE and BS can complex into BES if mG(∆E , ∆S) is true. The biological
mechanism underlying complexation allows two complexed molecules to inter-
act through their binding sites. This is the key mechanism of many biological
interactions. Beta-bindersD provides an abstraction of such mechanism relying
on names substitution. For instance the internal process of BES can interact
through the new name l. The idea is to introduce a new name for allowing
communications between internal pi-processes after the complexation, without
inhibiting the ability of changing the interface of the box. That is, only input
and output prefixes are renamed, while hide, unhide, change and expose do not
modify their links. To formally handle communication after complexation, we
introduced {|l/x|}. For instance, the prefix ch(z, ∆P ) remains unaltered after the
complexation of BE and BS . Finally, after a bind the two beta binders involved,
e.g. β(x, ∆E) and β(y, ∆S), become hidden and they are not available for further
complexation.

The axiom (unbind) reverses the axiom (bind). Theoretically, a complex can be
broken at any time if enough energy is available. In practice, only some complexes
can be broken depending on their conformation. We abstract energy valuation
as a decomplexation relation D ⊆ B × B. Once B1[ P1 ] and B2[ P2 ] bind,
they can unbind iff (B1[ P1 ], B2[ P2 ]) ∈ D, written D(B1[ P1 ], B2[ P2 ]).
For instance, if D(BE , BS) then we can derive the following transition

l. E{|l/x|} | l. ch(z, ∆P ) . P{|l/z|}

xh : ∆E zh : ∆S

(BES)

−→ x. E

x : ∆E

(BE)

z. ch(z, ∆P ) . P

z : ∆S

(BS)

that reverses the complexation in (1).
The rules redex and struct are standard in reduction semantics. They allow to

interpret the reduction of a subcomponent as a reduction of the global system,
and to infer a reduction after a proper structural shuffling of the bio-process at
hand, respectively.

BE = E

x : ∆E

E = x. E BS = S

y : ∆S

S = y. S∗

S∗ = ch(y, ∆P ) . P

D1 = {(β(x, ∆E) [ E ], β(y, ∆S) [ S ]), (β(x, ∆E) [ E ], β(y, ∆P ) [ P ])}

Fig. 3. Beta-bindersD specification of simple enzyme-catalyzed reaction
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4.1 Example: Beta-Binders for Enzymatic Reactions

Now we are able of modeling the enzymatic reaction schemas presented in
Sec. 3 within Beta-bindersD formalism. We will describe Beta-bindersD spec-
ifications of the molecules involved and we will derive dynamic behaviours
relying on the semantics presented above. We assume a Boolean DockSpace
G = (DG, PG, SG, mG).

Simple enzyme-catalyzed reaction. Enzyme E and substrate S are repre-
sented as boxes BE and BS of Fig. 3, respectively. The decomplexation rela-
tion D1, also in Fig. 3, specifies that the complex between the enzyme and the
substrate can be broken, as well as the complex between the enzyme and the
product. We can derive the path that leads to the production of product P:

E

x : ∆E

S

y : ∆S

−→ l. E{|l/x|} | l. S∗{|l/y|}
xh : ∆E yh : ∆S

−→E{|l/x|} | ch(y, ∆P ) . P{|l/y|}
xh : ∆E yh : ∆S

−→

−→ E{|l/x|} | P{|l/y|}
xh : ∆E yh : ∆P

−→ E

x : ∆E

P

y : ∆P

The boxes BE and BS can complex if mG(∆E , ∆S), mimicking the specificity of
the enzyme-substrate interaction. After the bind, the internal processes E and
S can interact on the new name l, due to the substitutions {|l/x|} and {|l/y|}. The
synchronization on l makes the complex active, enabling the prefix ch(y, ∆P ).
Then an (unbind) occurs, because D1(β(x, ∆E) [ E ], β(y, ∆P ) [ P ]).

We also highlight another computation:

E

x : ∆E

S

y : ∆S

−→ l. E{|l/x|} | l. S∗{|l/y|}
xh : ∆E yh : ∆S

−→ E

x : ∆E

S

y : ∆S

Boxes BE and BS complex again, but they also decomplex immediately, because
D1(β(x, ∆E) [ E ], β(y, ∆S) [ S ]).

Multi-substrate systems. In this reaction schema the enzyme catalysis in-
volves an enzyme E’ and two substrates S1 and S2, specified in Fig 4 by boxes
BE′ and BSi (i ∈ {1, 2}), respectively. The structure of the two substrates are the
same of the substrate BS above. We need to refine the structure of the enzyme
BE , in order to capture the bouncing between the two states of the enzyme. We
also refine the decomplexation relation as D2.

We derive the computation that lead to the production of P1 and P2:

E′

x : ∆E′

S1

y : ∆S1

S2

y : ∆S2

−→ l. ch(x, ∆E∗) . E∗{|l/x|} | l. S∗
1{|l/y|}

xh : ∆E′ yh : ∆S1

S2

y : ∆S2

−→

The enzyme E’ and the substrate S1 binds if mG(∆E′ , ∆S1) is true.

−→ ch(x, ∆E∗) . E∗{|l/x|} | S∗
1{|l/y|}

xh : ∆E′ yh : ∆S1

S2

y : ∆S2

−→E∗{|l/x|} | S∗
1{|l/y|}

xh : ∆E∗ yh : ∆S1

S2

y : ∆S2

−→
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BE′ = E′

x : ∆E′
E′ = x. ch(x, ∆E∗) . E∗

E∗ = x. ch(x, ∆E′) . E′ BSi = Si

y : ∆Si

Si = y. S∗
i

S∗
i = ch(y, ∆Pi) . Pi

D2 = {(β(x, ∆E) [ E ], β(y, ∆S1) [ S1 ]), (β(x, ∆E∗) [ E∗ ], β(y, ∆P1) [ P1 ]),
(β(x, ∆E∗) [ E∗ ], β(y, ∆S2) [ S2 ]), (β(x, ∆E) [ E ], β(y, ∆P2) [ P2 ])}

Fig. 4. Beta-bindersD specification of a multi-substrate system

The complex E′S1 is activated by an interaction on the new channel l. Then the
type ∆E′ becomes ∆E∗ and therefore the enzyme changes its state in E∗.

−→ E∗{|l/x|} | P ∗
1 {|l/y|}

xh : ∆E∗ yh : ∆P1

S2

y : ∆S2

−→ E∗

x : ∆E∗

P1

y : ∆P1

S2

y : ∆S2

−→

The product P1 is ready and then it is released because the decomplexation
relation specify D2(β(x, ∆E∗) [ E∗ ], β(y, ∆P∗

1
) [ P1 ]).

−→ l. ch(x, ∆E′ ) . E′{|l/x|} | l. S∗
2{|l/y|}

xh : ∆E∗ yh : ∆S2

P1

y : ∆P1

−→

The types ∆E∗ and ∆S2 are affine, i.e. mG(∆E∗ , ∆S2) is true, and the second
substrate S2 can bind the modified enzyme E∗.

−→ ch(x, ∆E′) . E′{|l/x|} | S∗
2{|l/y|}

xh : ∆E∗ yh : ∆S2

P1

y : ∆P1

−→ E′{|l/x|} | S∗
2{|l/y|}

xh : ∆E′ yh : ∆S2

P1

y : ∆P1

−→

The complex E∗S1 is activated by an interaction on l and then the enzyme returns
to its initial state E′.

−→ E′{|l/x|} | P2{|l/y|}
xh : ∆E′ yh : ∆P2

P1

y : ∆P1

−→ E′

x : ∆E′

P1

y : ∆P1

P2

y : ∆P2

Finally, the product P2 is ready and released.
This is only one among the different possible evolutions of the system com-

posed by E′, S1 and S2. However, despite of the complexity of the transition
system the model is obtained “simply” extending the specification of the previ-
ous (and simpler) example.

Enzyme inhibition. The example of a multisubstrate system above outline
the extensibility of Beta-bindersD, while the enzyme inhibition of the present
example is significant for compositionality. In fact, to specify the competitive
inhibition presented in Sec. 3 we add the inhibitor I, specified as

BI = I

y : ∆I

I = nil
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to the specification of Fig. 3, without changing the boxes BE and BS . We also
extend the decomplexation relation as

D3 = D1 ∪ {(β(x, ∆E) [ E ], β(y, ∆I) [ I ])}
to allow the inhibitor frees the enzyme. Now the system can again evolve to
produce the product P, but also we can infer the computation

E

x : ∆E

S

y : ∆S

I

y : ∆I

−→ l. E{|l/x|} | nil

xh : ∆I yh : ∆I

S

y : ∆S

where the complex EI cannot be activated because I is inactive. Moreover, the
substrate S cannot interact with E until the inhibitor frees it (i.e. EI decomplex).

5 Conclusion

Many potential drugs fail to reach the market because of unexpected effects on
human metabolism, such as toxicity. There is the need of early elimination of
such compounds in the drug discovery pipeline considering the high costs, in time
and money, of the production of a new drug. The problem is that scientists have
to make decisions on the future of new drugs without a detailed understanding of
the mechanisms underlying the disease. A better system would endow researchers
to make accurate decisions based on the structure of the new compound, and
on the information about the disease. We focused on two areas of knowledge:
(i) computational models of molecular structures used by the pharmaceutical
companies; we outlined molecular docking, a technique for predicting whether
one molecule will bind to another; (ii) systems biology, that studies physiology
and diseases at the level of molecular pathways and regulatory networks.

In this paper we suggested a direction for integrating these two resources, re-
lying on concurrency theory and formal languages. In particular, we introduced
Beta-bindersD, a process calculus that incorporates molecular docking prediction
with dynamic information of the system under investigation. The formal seman-
tics of Beta-bindersD will serve as foundation of tools and methods for qualitative
analysis of non-linear flow of information, studying non-trivial effects of perturb-
ing a system. Moreover, Beta-bindersD aims to enhance compositionality offered
by process calculi to formally organise biological knowledge and eventually pre-
dict the behavior of complex systems. We also outline extensibility as a key
feature that may improve systems biology approach.

We tested Beta-bindersD modelling some enzymatic reaction schemas. En-
zymes are proteins essential to sustain life. For instance, metabolic pathways
comprises several enzymes that work together with a precise order: the product
of an enzyme is the substrate in the next enzymatic reaction. A malfunction of
a critical enzyme can lead to severe diseases, therefore many drugs regulate the
activity of an enzyme acting as, e.g., an inhibitor. Here we presented qualita-
tive models of three reaction schemas and we highlighted some computations.
Quantitative reasoning is also feasible relying on a stochastic extension of Beta-
binders [26]: it allows simulation relying on Gillespie’s algorithm [27].
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Abstract. We analyse an enhanced specification of VICE, a hypothet-
ical prokaryote with a genome as basic as possible. Besides the most
common metabolic pathways of prokaryotes in interphase, VICE also
posseses a regulatory feedback circuit based on the enzyme phospho-
fructokinase. We use as formal description language a fragment of the
stochastic π-calculus. Simulations are run on BEAST, an abstract ma-
chine specially tailored to run in silico experimentations. Two kinds of
virtual experiments have been carried out, depending on the way nutri-
ents are supplied to VICE. The result of our experimentations in silico
confirm that our virtual cell “survives” in an optimal environment, as
it exhibits the homeostatic property similary to real living cells. Addi-
tionally, oscillatory patterns in the concentration of fructose-6-phosphate
and fructose-1,6-bisphosphate show up, similar to the real ones.

1 Introduction

One of the major challenges of contemporary biology is addressing the complex-
ity underlying the dynamics of the various molecules inside the cellular machin-
ery, when they give rise to a living organism [19]. Even though many details of
the single “building blocks” are nowadays known, the way they interact is still
unclear.

Additionally, the so-called high-throughput techniques have provided us a
with large collection of biological data in a relatively short period of time. In
this way, the catalogue of the components of many living organisms is rapidly
growing up. Nevertheless, it is absolutely not trivial to fill in the gap between the
description at the molecular level and the behaviour exhibited by the system as
a whole: complex properties of biological systems only emerge when the various
“building block” interact.

Experimental approaches result are not adequate to cope with these systemic
problems: even the so-called -omic techniques seem able to provide only snap-
shots of the complete movie. A promising approach is to represent all the known
relationship between the elements of a metabolome in silico, so building up a
sort of virtual cell [11,21,5]. This method consists in defining a formal model of

C. Priami (Ed.): CMSB 2006, LNBI 4210, pp. 93–107, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the studied phenomenon and in investigating its properties through computer-
based simulation tools. The various models proposed so far differ mainly for the
formalism they rely upon.

The most widespread one is based on ordinary differential equation (ODE for
short). They describe the known relationship between the elements of the mod-
elled organism via a set of reaction rate equations, possibly constrained, as in
the case of Flux Balance Analysis [27]. Computer based differential models are
characterized by a high descriptive power and have been successfully used to in-
vestigate features of crucial metabolic pathways. Building up ODE-based models,
however, requires to set up a lot of details. For example, representing a metabolic
pathway requires the knowledge of the involved differential kinetic equation for
each reaction of the pathway. Unfortunately, the necessary mechanicistic details
and kinetic parameters are often unavailable. Moreover, ODEs seem not flexible
enough, in that they are hard to compose, update and solve. Moreover it is dif-
ficult to express alternative behaviour resulting, e.g. from dynamic changes in
the topological relations between the objects modelled.

A recent alternative consists in specifying the living matter through so-called
calculi for concurrent systems and run the correspondent simulation “programs”
[26,29]. The paradigm of concurrency results particularly suitable to describe
biological organism, from the molecular to (multi)cellular level. Indeed, biological
components and organisms can be seen as processes and as networks of processes,
respectively, while cell interactions are represented as communications between
processes. A relevant feature is that process calculi are compositional and thus
each biological component is specified independently of (most of) the others.
Specifications are then put aside and run, with no a priori constraint on temporal
or causal relations of the computations.

Our goal is studying a whole cell, in an holistic fashion typical of Systems
Biology. A successfull example of this goal is given by Virtual E. coli [1]. However,
the choice of the organism to model is crucial, because even simple biological
entities, like bacteria, have a complexity extremely high; their simulation thus
requires huge computational resources. We faced the problem of specifying a cell
using process calculi. To decrease complexity of modelled organisms, in [5] some
of us proposed VICE, a hypothetical cell with a genome as basic as possible,
derived from the Minimal Gene Set of [23]. The basic genome of VICE was
obtained by eliminating duplicated genes and other redundancies from MGS,
and further modified to obtain a very basic prokaryote-like genome, which only
contains 187 different genes. We then specified VICE in (enhanced) π-calculus
[22,7] and run several virtual experiments. The results show that VICE exhibits in
silico a behaviour typical of real prokaryotes in the same experimental conditions,
e.g. the time course distribution of metabolites concentration along the glycolitic
pathway significantly resembles the real one. A major point of our approach is
that we were able to study the interplay of all metabolic pathways in VICE,
because we modelled a whole cell.

We report on our recent work on a deeper specification, simulation and anal-
ysis of VICE. Since the timing of physiological events is a chief feature of living
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organisms, we are interested in investigating whether VICE possesses some sort of
capability for autonomously regulating its own internal “clock.” In other words,
we look for those components driving the physiological pace maker of the cell. As
a very first step in this direction we are interested in detecting some rhythmic
behaviours that eventually involve physiological parameters. In the literature
there are proposals of oscillatory patterns exhibited by metabolites along path-
ways, particularly along the glycolysis. This substained oscillations appear to
emerge from the presence of feedback control circuits, involving some enzymes
active in the glycolitic pathway. The main responsible for oscillatory behaviour
has been proposed in [9] to be a specific enzyme, namely phosphofructokinase,
the rate of which increases as the concentration of the metabolite fructose-1,6-
bisphosphate grows. We enhanced the specification of VICE with this positive
feedback regulation (see Section 3 and the Appendix).

To perform our in silico experiments, we designed a specially tailored version
of the stochastic π-calculus, described in Section 2. We implemented its ab-
stract machine, very similar to SPIM [4]. This abstract machine, called BEAST

(Biological Environment Analysis and Simulation Tool), includes the stochastic
simulation algorithm SSA by Gillespie [14]. To our surprise, a small fragment
of the stochastic π-calculus proved sufficient to specify our virtual prokaryote,
which, as any real ones, has no intracellular structure, e.g. it is not compartimen-
talized. We studied VICE in interphase, under two different feeding conditions.
In the first, we supplied a large reservoire of glucose, while in the second this
nutrient was fed at a constant rate — we recall from [5] that VICE only has
carriers for glucose, to compare our results with those in the literature obtained
for prokaryotes cultivated in a glucose-limited medium [2].

The results of our simulations are in Section 4. They confirm those in [5]
in that VICE has homeostatic properties, when glucose is given in a single big
supply. Indeed, our model reaches a steady state that is resistent to non shock-
ing changes in the external environment, in particular when glucose is instead
fed continuously. The simulations of VICE under this second experimental con-
dition show that oscillations emerge, are substained with constant period and
amplitude, and enjoy the typical properties of prokaryotes.

Our model behaves then in surprising agreement with the living prokaryotes,
when exerted under similar experimental conditions. In particular, our results
add a little token to the hypothesis that a phosphofructokinase based feedback
circuit provides a cell with an internal pace maker. These results further asses
the validity of our model and the feasability of our approach, hopefully also for
a future development of predictive tools.

2 The Calculus and the Abstract Machine

We assume the reader is familiar with process calculi, in particular with the
π-calculus and its usage for specifying bio-chemical reactions; more on this topic
can be found in [29].

Here, we use the stochastic version of the π-calculus proposed in [25], that en-
ables its users to specify both qualitative and quantitative aspects of distributed
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systems. The main difference with the standard π-calculus is that prefixes be-
come pairs (µ, r) where µ is an action and r is a random variable with an ex-
ponential distribution, called activity rate. Also, nondeterminism is replaced by
stochastic choice, defined by the random variable: a race condition will actually
choose the fastest among two or more actions enabled at the same time. The se-
mantics of the stochastic π-calculus is a transition system, whose transitions are
labelled with a rate r. As a matter of fact, in building up our model of the basic
cell VICE, we found it sufficient a small subset of the whole calculus, actually
a subset of CCS. In particular neither message passing was needed, as synchro-
nization suffices, nor restriction (ν). Additionally we adopted only stochastic
guarded choices, and we used constant definition in place of replication. More-
over, a channel is only used for communication between two processes, and the
same channel can not be used by a process both for output and for input. These
restrictions sometimes make our specifications less natural, but hel in simplify-
ing the calculus of channel activities. As a new features we imposed an upper
bound to the rate of channels, called top-rate. In this way, we describe satura-
tion, a typical feature of reactions catalysed by enzymes, like those occurring in
metabolic pathways. Actually, the capability of an enzyme to catalyse a reaction
grows up until it reaches its maximum value. To define the rate associated with
actions, we followed the line used in SPIM.

We associate each channel x with a corresponding reaction rate, written
rate(x). These rates model kinetic constants, so the actions involving a spe-
cific channel will always and coherently be associated with its rate. The actual
rate of a communication, i.e. the apparent rate of the corresponding bio-chemical
reaction, is computed using the StochasticSimulation Algorithm (SSA for short)
by Gillespie [14].

More formally, let Chan = {a, b, . . .} be a set of communication channels and
Hid = {τ1, τ2, . . .} be a set of hidden, internal channels, with Chan ∩Hid = ∅.
Let rate, top rate : Chan ∪ Hid → �+ be the functions associating channels
with their basal and top rate respectively, with the condition:

∀x ∈ Chan ∪Hid 0 < rate(x) ≤ top rate(x)
Finally, let A = {A, B, . . .} be the set of constant names. The set of processes,

P = {P, Q, . . .}, is defined by the following BNF-like grammar:

P ::= Nil | π.A | P |Q |
∑
i∈I

πi.A

where (i) π is a prefix of the form a, a for an input or output on a, and τ for a

silent move; and (ii) constrant A has a unique defining equation A
�
= P .

As usual the operational semantic comprises the standard rules for the struc-
tural congruence ≡, i.e. (P/≡, +, Nil) and (P/≡, |, Nil) are abelian monoids and
P + P ≡ P .

The inference rules defining the dynamics of our tiny calculus are layered: the
final step only computes the apparent rate g(P, Q, r) of the transition from P
to Q according to Gillespie’s algorithm. We have designed and implemented a
modular abstract machine, called BEAST, for a significant super-set of the cal-
culus presented in Table 1. For the present investigation, we however switched
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Table 1. Inference rules

(a.A +
∑

i Pi)|(a.B +
∑

j Qj)
rate(a)→ A|B

P
r−→R Q

P |R r−→R Q|R
P

r→ Q

A
r→ Q

A
�
= P

P
r−→R Q

P
g⇒ Q

where q = (P, Q, r)

off most of its features that, surprisingly enough, resulted unecessary in mod-
elling VICE.

In designing BEAST, we have been greatly inspired bu SPIM [4]. In particular
we used a data structure for storing channels and their rates and for linking
channels to the process definitions where they occur. Crucial to our study is the
possibility of inspecting internal states, that store the intermediate concentra-
tions of metabolites during the simulation. This information is collected in an
output text files, used later on to infer causality relationships and to perform
statistical analysis.

At the present time, we naively implemented Gillespie’s algorithm for com-
puting the actual rates of transitions. As a matter of fact BEAST spends most
of its time in running the SSA, despite of the restricted usage of channels that
reduce the model complexity. This is one of the crucial points as far as efficiency
of simulations is concerned. We feel it necessary to find new algorithms for com-
puting the apparent rate of transitions, e.g. [13,3], or at least implement in a
smarter way the Gillespie’s SSA.

Just to give a rough idea of the computational burden of simulating VICE,
consider a system made of about 2,000,000 processes, each with 10 stochastic
choices in average. On an AMD Athlon 1.5 GHz duo with 1 Gb of RAM, the
simulation of about 30,000 transitions took about one night.

3 The Model

In building up our model, we strictly followed in the first phase the line of [5].
We chose the virtual cell VICE, because its genome is extremely reduced, while
related to that of a real prokaryote, in particular because simulations show VICE

“surviving” in silico.
The genome of VICE has been obtained from the hypothetical Minimal-Gene-

Set (MGS) proposed in [20,23], through a functional screening. According to this
analysis, some genes were further eliminated. Also, some critical steps missing
in pathways were found, and so two other genes not originally contained in
MGS were introduced. The working hypothesis were that VICE is placed in
an optimal environment containing enough essential nutrients, and shaped to
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dilute or remove all the potentially toxic catabolites. Also, competition and
other stressing factor are completely banned. As done in [5], to keep small the
specification of VICE in the π-calculus, a few further slight simplification were
made. Typically, we grouped in a single entity all the multi-enzymatic complexes,
when acting like a single cluster.

A further simplification is that our specification only has carriers for glucose,
just as it was for [5]. This is because, the results obtained in silico are to be
compared with those in the literature obtained for prokaryotes cultivated in a
glucose-limited medium [2].

Our virtual cell possesses the following main features:

1. The cell relies on a complete glycolytic pathway for the oxydation of glucose
to pyruvate and reduced-NAD. Pyruvate is then converted to acetate which,
being catabolite, can diffuse out of the cell. A transmembrane reduced-NAD
dehydrogenase complex catalyzes the oxydation of reduced-NAD; this reac-
tion is coupled with the synthesis of ATP through the ATP synthase/ATPase
transmembrane system. This set of reactions enables the cell to manage its
energetic metabolism.

2. The cell has a Pentose Phosphate Pathway, coposed by enzymes leading to
the synthesis of ribose phosphate and 2-deoxyribose phosphate.

3. For lipid metabolism, the cell has enzymes for glycerol-fatty acids condensa-
tion, but no pathways for fatty acids synthesis. So, these metabolites must
be taken from the outside.

4. The cell has no pathways for amino acid synthesis and, therefore, we assume
all amino acids be present in the environment.

5. Thymine is the only nucleotide the cell is able to synthesize de novo; the
other nucleotides are provided by ”salvage pathways”.

6. The cell possesses a proper set of carriers for metabolites uptake:
(a) a Glycerol Uptake Facilitator Protein;
(b) a PtsG System for sugar uptake;
(c) an ACP carrier protein for fatty acids uptake;
(d) a broad specificity amino acids uptake ATPase;
(e) broad specificity permeases for other essential metabolites uptake;

7. The cell possesses the necessary enzymes for protein synthesis, including
DNA-transcription and translation. The cell possesses also the whole ma-
chinery necessary for DNA synthesis.

8. All the nucleotide biosynthetic pathways are present in our model, so the
cell is equipped with the means for the cell reproduction; however, at the
present stage we have not designed these activity.

Some metabolites are considered to be ubiquitary, among which water, inorganic
phosphate, some metals ions, and Nicotinammide. Their concentration in exter-
nal or internal environment is assumed to be constant and not to be significantly
affected by cellular metabolism.

Summing up, the cell can take metabolites from external environment using
the set of permeases and ATPases specified above. Among the pathways of our
virtual cell, there is Glycolysis: glucose and fructose taken from the outside
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are oxidized helding energy in the form of ATP and reduced-NAD. Pyruvate,
the last metabolite of conventional Glycolysis, becomes then acetate which, in
turn, diffuses out of the cell. The cell “imports” fatty acids, glycerole and some
other metabolites, e.g. Choline, and uses them for the synthesis of tryglicerides
and phospholipids; these are essential components of the plasma membrane.
Our virtual cell is also able to synthesize DNA, RNA and proteins; the needed
metabolites are mostly taken form the external environment or synthesized along
its own pathways (e.g. Thymine and Ribose).

Additionally, as summarized in Section 1, we enhanced this model with a
regulatory feedback circuit on the enzyme phosphofructokinase whose scheme is
shown in Figure 1.

Fig. 1. The scheme of a positive feedback control circuit. The involved metabolites
are fructose-6-phosphate (f6p), fructose-1,6-bisphosphate (fdp), phosphofructokinase
(pfk), ATP and ADP.

The considered enzyme catalyses the phosphorilation of fructose-6-phosphate
using ATP as the phosphate donor. In turn ATP becomes ADP. The catalytic
rate of phosphofructokinase depends on the concentration of ADP. This metabo-
lite acts on the enzyme enhancing its catalytical capability and accelerates the
correspondent reaction. This kind of loop is known as positive feedback. We de-
scribed it according to [17], where this control circuit is proposed under the name
of “mechanism for glycolytical oscillation.” Its formal specification is detailed in
the Appendix.

We follow the standard way of using process calculi for modelling biological
organism [29]. However, we slightly deviate in that channels represent enzymes,
to easy tracking the occurrences of certain reactions and the usage of catalysers
along our virtual experiments. Briefly, we have built up our model according to
the following correspondences, as done in [5]:

– A metabolite is rendered as a process
– An enzyme is rendered as a channel (or as a set of channels, one for each

reaction the enzyme catalyzes)
– The occurrence of a bio-chemical reaction, with apparent rate r, is rendered

as a synchronization, labelled by r

As mentioned in Section 2, each channel is associated with a rate r, that takes
values according to an exponential distribution. In our model r is related with
a biological parameter of the described enzyme, i.e. with the Michaelis-Menten
constant of the reaction catalysed by the considered enzyme.
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Furthermore we assume that the occurrence of a transition corresponds to the
production of a fixed quantity of a specific metabolite. For example the following
transition, modelling a step in the glycolysis:

β-D-fructose 1-6bP
r−→ D-Glyceraldehyd 3-phosphate | Dihydroxyacetone phosphate

will not describe the behaviour of a single molecule of β-D-fructose-1-6bP, but
it models the production of a certain quantity of D-Glyceraldehyde-3-phosphate
and Dihydroxyacetone-phosphate from β-D-fructose-1-6bP, with the stoichio-
metric ratio of 1 : 1.

It is worth noting that each molecule is specified independently of the oth-
ers, except for channel sharing. Then, we built up the whole VICE by making
the wanted number of copies, from thousand to millions, of the specified pro-
cesses, and by putting them in parallel. The resulting system is finally run and
interpreted as a virtual experiment.

4 In Silico Experimentation and Results

We briefly discuss now the adequacy and the results of our proposal. First, we
describe the experiments made in silico, and we then interpret their outcome.
The results suggest us that VICE can “live” in an optimal environment and that
it exhibits some biological behaviour in accordance with real prokaryotes.

4.1 In Silico Experimentations

We performed two classes of experiments, depending on the way glucose has been
supplied to VICE. In the first class, we provided VICE with a large reservoire of
glucose, while in the second this nutrient was given at a constant rate. The first
feeding regimen is intended to check whether the new implementation of VICE

still has the homeostatic properties shown by [5]. The second regimen is used to
detect the emergence of oscillatory patterns in presence of the feedback control
circuit discussed above.

All our tests have been carried on assuming that the virtual cell acts in the
ideal environment discussed in Section 3. These experiments in silico have been
performed under the following initial conditions:

– Concentration of essential nutrients in the environment : we assume that
there are 1,000,000 copies of processes for extra-cellular glucose, made avail-
able in the two ways discussed above; instead there are 1,000 copies of the
processes for the other essential nutrients (external amynoacids, nitrous ba-
sis, complex lipids precursors, etc).

– Membrane carriers: we assume that there is one process for each of the three
carriers for glucose, ATP and reduced-NAD.

– Metabolites : we assume that there are 1,000 copies of processes for each
metabolite inside the cell.

We ran about 50 simulations for a time period of about 12 hours on the AMD
Athlon 1.5 GHz duo with 1 Gb of RAM.
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The performed computations resulted to be composed by approximately
30,000 transitions each. Recall that our virtual unit of time is represented by
the occurrence of a transition, that produces a fixed amount of molecules, rather
than a single one. It is therefore meaningful to plot the quantity of each metabo-
lites versus the number of transitions.

The BEAST abstract machine gives an output file (.csv) displaying the
amount of monitored metabolites. Then we sampled this output using a routine
that inspects the .csv file, picks up the relevant data, and produces a smaller
.csv file. This step helps in making more evident the form of the curve.

4.2 Results

We first report on the outcomes of the simulations, when VICE is fed with a large
amount of glucose. In this case, the cell can uptake this nutrient upon need, with
an increasing rate, till the top rate is reached.

We are interested in observing whether the time course distribution of metabo-
lites reaches a plateau, i.e. whether the virtual cell reaches its steady state after
a certain initial period of time/number of transitions. This property mimics the
homeostatic capability, typical of real cells that require it, in order to regulate
their internal medium. Homeostatic biological systems oppose external environ-
ment change to maintain internal equilibrium and succeed in reestablishing their
balance, while non homeostatic ones eventually stop functioning.

It turns out that VICE reaches its steady state, as shown in Figure 2, that de-
picts the time course distribution of the concentrations of three selected metabo-
lites. These metabolites represents critical nodes in the entire metabolic network,
so their behaviour gives a sketch of the overall trend of VICE. The distributions
displayed in Figure 2 are affected by white gaussian noise. This is because BEAST

turns out to be stochastic, due to Gillespie’s SSA it embodies.
We also compared some aspects of the behaviour of the cell with that of real

prokaryotes acting in vivo in similar circumstances [15]. To do that, we examined
the time course distribution of certain metabolites concentration that are rep-
resentative of the modelled pathways. As our unit of measurement is arbitrary,
we took the ratio between metabolite quantities. In particular, we investigated
the glycolytic pathway, on which the literature has a relatively large quantity of
biological data. Within this pathway, we selected three ratios between its most
significant metabolites: ATP vs. ADP and NAD vs. ATP, that roughly mea-
sure the cellular energy content in two different ways; and glucose-6-phosphate
vs. fructose-1,6-bisphosphate, giving the trend of metabolic flux along glycolisis.
The following table shows that the selected ratios significantly match those of
real organisms, we computed from the values of [2], obtained in vivo. Virtual
ratios are computed from metabolite concentrations at the steady state; because
this quantity fluctuates due to white gaussian noise, we sampled 20 steady state
concentration values for each metabolite and we took their average — at this
stage we limited ourselves to this shallow statistics, as standard deviation is
quite small, especially for the virtual values.
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Fig. 2. Time course distribution of pyruvate (pyr), diacilglycerol (dag), phosphoribo-
sylpyrophosphate (prpp). The concentration of metabolites is plotted vs the number
of transitions.

Table 2. Metabolites Ratio Comparison

ATP/ADP glu6p/fru16bp NAD/ATP

Real 0.775 0.067 11.452

Virtual 0.697 0.053 10.348

These first results confirm that VICE exhibits some capability of “living” in
silico, just as it was the case for the simulations reported in [5]. In particular, its
homeostatic property guarantees that we can change the feeding regimen and
still it reestablishes its internal balance. So we modified the rate of the reaction
for uptaking glucose. More precisely, we set equal the basal and the top rate of
the channel representing the enzymatic complex catalysing the uptake. In this
way, the apparent rate is kept constant, and VICE assumes glucose in a constant
manner. This kind of supplying a prokaryote with glucose makes it detectable in
vivo the effect of the regulatory feedback circuit based on phosphofructokinase.
The same happens with VICE. Figure 3 displays the oscillations of fructose-6-
phosphate and of fructose-1,6-bisphosphate. In spite of white gaussian noise, the
two plots have a clear constant period and amplitude, showing that an oscillatory
pattern is emerging. Compare Figure 3 with Figure 4, that shows the oscillations
of the same metabolites in experiments carried on in vivo.

5 Related Work

As previously mentioned in the introduction, most of the recent biological models
describing metabolic networks rely either on ODE formalisms or on process
algebras. The first approach dates back to the ’60s, while the other started with



Feedbacks and Oscillations in the Virtual Cell VICE 103

Fig. 3. In silico oscillations of fructose-6-phosphate (f6p) and fructose-1,6-bisphosphate
(fdp) in the glycolysis

Fig. 4. In vivo oscillations of fructose-6-phosphate (f6p) and fructose-1,6-bisphosphate
(fdp) in the glycolysis. Adapted from [17]

the pioneeristic paper by Regev and Shapiro [28,26]. The literature has a huge
number of papers, but we only consider below a few, admittedly far from giving
a comprehensive survey.

The first kind of models are used in two different kind of approaches, namely
Metabolic Control Analysis (MCA) and Flux Balance Analysis (FBA). In both
of them, metabolic networks are analyzed under the steady-state approximation.
The MCA grounds on a set of theoremes formally presented in [16]. The central
problem to solve is how the steady state variables change when the steady-state
itself changes in response to a perturbation in one or more parameters. In order
to solve this problem it is necessary to differentiate a set of steady-state equations
with respect to the parameters. Metabolic control analysis has been applied to
many types of systems e.g. modular systems [30], signal transduction pathways
[18], time-dependent phenomena [16] and oscillating systems [8]. These papers
contributed to shed some light on the overall organization of the investigated
networks. In particular, the virtual simulations shown that the various enzymes
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composing the network possess different control strength, i.e. they have not the
same weight in regulating metabolic fluxes.

The FBA approach analyses the target network in term of fluxes. The flux
of the metabolite j in the reaction i is the difference between the rate of the
reaction leading to its synthesis and the one leading to its degradation. The
all set of fluxes in a system is described by a set of balance equations. Often
the number of variables exceeds that of the equations, so the system has not
a unique solution; a possible way out is defining a set of constraints, that help
reducing the number of variables. Analyzing the solution space under certain
conditions is possible to understand and eventually predict certain behaviours
of the object of study. This is the way followed by Palsson and co-workers [10,12],
who reconstructed the metabolic map of Escherichia coli MG1655 from its se-
quenced genome. Applying FBA to this metabolic network and a proper set of
constraints, they were able to qualitatively predict the extent of utilization of the
whole metabolic network, and showed their predictions consistent with experi-
mental data collected in vivo. Within this line, an important project is Virtual
E. coli [1]. This virtual prokaryote possesses most of the metabolic pathways of
the real Escherichia coli. It has been successfully used to investigate some basic
properties of the behaviour of this bacterium, in particular of its genetic control
network and of time course of its metabolic fluxes.

Among the modelling approaches grounded on process algebras, we already
cited the pioneeristic paper by Regev and Shapiro and by Priami et al. Along
the same line, but using an enhanced versions of the π-calculus is [6], which
specifies simple pathways, such as some signalling pathways and the glycolysis,
offering stochastic and causality-based representations of them. Particularly re-
lated to our work is Cardelli and Phillips’ [4] in which the abstract machine SPIM

is presented. While, SPIM seems very effective when modelling genetic regula-
tory circuits, it seems less efficient when applied to modelling other metabolic
networks, e.g those related with energetic metabolism.

A main problem affecting both SPIM and our BEAST is the huge computa-
tional cost of Gillespie’s SSA. Some refinements have been recently proposed by
different authors. The Next Reaction Method (NRM) [13] is based on the idea
that the reaction with the shortest firing time must be chosen at each step among
all possible ones. The Logarithmic Direct Method (LDM) [24], dynamically sorts
the channel list reducing the computational cost of channel scanning, and to the
best of our knowledge, offers the fastest way for stochastically computing the
apparent rates of transitions.

6 Conclusion

We considered the virtual prokaryote VICE, proposed by [5]. We gave a more
detailed specification of its metabolic pahtways, and we analysed its behaviour in
silico. In particular, we enhanced VICE with a positive feedback control circuit
involving phosphofructokinase, an enzyme active in the glycolysis.
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The results of our experimentations show that VICE has homeostatic proper-
ties, and that an oscillating behaviour emerges. Indeed, VICE reaches a steady
state, balancing the quantities of its internal metabolites. This first result makes
us confident that VICE can “survive” in an optimal environment. Also, we com-
puted the ratio between the quantities of relevant metabolites of VICE. It turns
out that these values are rather close to those the literature reports about real
prokariotes under similar experimental conditions. The validation of our model
received further support by mimicking real experiments that detect oscillatory
patterns of important metabolites in the glycolytic pathway. The outcomes of
this simulation show that oscillations emerge with constant period and ampli-
tude, with a shape comparable with the real ones.

To carry on our experimentations in silico, we designed and implemented
BEAST, an abstract machine for a variant of the stochastic π-calculus, similar
to SPIM [4]. Our simulation tool is considerably more efficient than the one
used in the previous studies on VICE [5]. The simulation time was significantly
reduced so enabling us to extensively experiment on our virtual cell. This has
also been possible because a small fragment of the π-calculus suffices for specifing
a simple cell with “no compartiments/membranes” like our prokariote.

Currently, we are going to complete the specification of the more complex bac-
teria Escherichia coli. Very preliminary results show it feasible to have a model
closer to this real organism. Also here, our fragment of pure CCS was enough to
specify the metabolome of E. coli. This came a real surprise to us, and we are
still wondering how far we can go without message passing or more sophisticated
linguistic features. However, the time required by the first significant simulations
grows very high. We feel that the real bottleneck is the current implementation
of Gillespie’s SSA. A smarter implementation of this algorithm is thus in order.
Also, we plan to study a parallel version of the abstract machine BEAST in order
to improve its performance in time. The parallelization of SSA seems to be quite
hard, possibly requiring to design a new version of the stochastic simulation
algorithm.
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Appendix

We briefly summarize here the main features of the “mechanism for glycolytical
oscilations” upon which we build up the formal specification of the feedback
control circuit mentioned in Section 3. It essentially consists in the following
chemical reactions:

ATP + F6P + E∗
1 −→ FDP + ADP + E∗

1 (1)

ADP + E1 ←→ E∗
1 (2)

The rate of (1) depends on the concentration of the auxiliary reactant E∗
1 (see

below). Reaction (2) produces E∗
1 starting from ADP and the enzyme phospho-

fructokinase, represented here as E1. The more the ADP the more E∗
1 making

reaction (1) faster
We formalize this system of chemical reactions as follows:

ATP = a.ADP (3)

E∗
1 = a.E∗

1 + b.E∗
1 + τ.(ADP | E1) (4)

F6P = b.FDP (5)

ADP = c.0 (6)

E1 = c.E∗
1 (7)

As done before, we abbreviate fructose-6-phosphate with F6P and fructose-1,6-
bisphosphate with FDP. In the above specification, the process E∗

1 is only used
for conciseness; in fact there is no biological counterpart for this auxiliary pro-
cess. Note also that its quantity is kept constant, and thus it does not affect
the behaviour of the overall system, especially as far as the SSA algorithm is
concerned.

Recall that the oscillatory effects of this regulatory circuit become detectable
only when glucose is continuously fed, i.e. when the basal and the top rate of
glucose carrier, namely PtsG, are set equal.
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Abstract. Membrane systems were introduced as models of computa-
tion inspired by the structure and functioning of biological cells. Recently,
membrane systems have also been shown to be suitable to model cellu-
lar processes. We introduce a new model called Membrane Systems with
Peripheral and Integral Proteins. The model has compartments enclosed
by membranes, floating objects, objects associated to the internal and
external surfaces of the membranes and also objects integral to the mem-
branes. The floating objects can be processed within the compartments
and can interact with the objects associated to the membranes. The
model can be used to represent cellular processes that involve compart-
ments, surface and integral membrane proteins, transport and processing
of chemical substances. As examples we model a circadian clock and the
G-protein cycle in yeast saccharomyces cerevisiae and present a quanti-
tative analysis using an implemented simulator.

1 Introduction

Membrane systems are models of computation inspired by the structure and
the function of biological cells. The model was introduced in 1998 by Gh. Păun
and since then many results have been obtained, mostly concerning computa-
tional power. A short introductory guide to the field can be found in [12], while
an updated bibliography is available via the web-page [18]. Recently (see, e.g.,
[10]), membrane systems have been successfully applied to systems biology and
several models have been proposed for simulating biological processes (e.g., see
the monograph dedicated to membrane computing applications [5]).

By the original definition, membrane systems are composed of an hierarchi-
cal nesting of membranes that enclose regions (the cellular structure), in which
free-floating objects (molecules) exist. Each region can have associated rules,
called evolution rules, for evolving the free-floating objects and modelling the
biochemical reactions present in cell regions. Rules also exist for moving objects
across membranes, called symport and antiport rules, modelling cellular trans-
port. Recently, inspired by brane calculus [3], a model of a membrane system,
having free-floating objects and objects attached to the membranes, was intro-
duced in [2]. The attached objects model the proteins that are embedded in lipid
bilayer cell membranes. In [2], however, objects are associated to an indivisible
membrane which has no concept of inner or outer surface, while in [4] objects
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(peripheral proteins) are attached to either side of a membrane. In reality, many
biological processes are driven and controlled by the presence of specific proteins
on the appropriate side of and integral to the membrane: there is a constant
interaction between floating chemicals and embedded proteins and between pe-
ripheral and integral proteins (see, e.g., [1]). Receptor-mediated processes, such
as endocytosis (illustrated in Figure 1) and signalling, are crucial to cell func-
tion and by definition are critically dependent on the presence of peripheral and
integral membrane proteins.

Fig. 1. Endocytosis of LDL (Essential Cell Biology, 2/e, c©2004 Garland Science)

One model of the cell is that of compartments and sub-compartments in con-
stant communication, with molecules being passed from donor compartments to
target compartments by interaction with membrane proteins. Once transported
to the correct compartment, the substances are then processed by means of local
biochemical reactions.

Motivated by these ideas we extend the model presented in [4], introducing a
model having peripheral as well as integral proteins.

In each region of the system there are floating objects (the floating chemicals)
and, in addition, objects can be associated to each side of a membrane or integral
to the membrane (the peripheral and integral membrane proteins). Moreover,
the system can perform the following operations: (i) the floating objects can be
processed/changed inside the regions of the system (emulating biochemical rules)
and (ii) the floating and attached objects can be processed/changed when they
interact (modelling the interactions of the floating molecules with membrane
proteins).

The proposed model can be used to represent cellular processes that involve
floating molecules, surface and integral membrane proteins, transport of molecules
across membranes and processing of molecules inside the compartments. As exam-
ples, we model a circadian clock and the G-protein cycle in saccharomyces cere-
visiae, where the possibility to use, in an explicit way, compartments, membrane
proteins and transport rules is very useful. A quantitative analysis of the models is
also presented, performed using an extended version of the simulator presented in
[4] (downladable at [19]). The simulator employs a stochastic algorithm and uses
intuitive syntax based on chemical equations (described in appendix B).
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2 Formal Language Preliminaries

Membrane systems are based on formal language theory and multiset rewriting.
We now briefly recall the basic theoretical notions used in this paper. For more
details the reader can consult standard books, such as [8], [15], [6] and handbook
[14].

Given the set A we denote by |A| its cardinality and by ∅ the empty set. We
denote by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set
of all strings over V . By V + we denote the set of all strings over V excluding
the empty string. The empty string is denoted by λ. The length of a string v is
denoted by |v|. The concatenation of two strings u, v ∈ V ∗ is written uv.

The number of occurrences of the symbol a in the string w is denoted by |w|a.
A multiset is a set where each element may have a multiplicity. Formally, a

multiset over a set V is a map M : V → N, where M(a) denotes the multiplicity
of the symbol a ∈ V in the multiset M .

For multisets M and M ′ over V , we say that M is included in M ′ if M(a) ≤
M ′(a) for all a ∈ V . Every multiset includes the empty multiset, defined as M
where M(a) = 0 for all a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M + M ′),
defined by (M + M ′)(a) = M(a) + M ′(a) for all a ∈ V . The difference between
M and M ′ is written as (M−M ′) and defined by (M−M ′)(a) = max{0, M(a)−
M ′(a)} for all a ∈ V . We also say that (M + M ′) is obtained by adding M to
M ′ (or viceversa) while (M − M ′) is obtained by removing M ′ from M . For
example, given the multisets M = {a, b, b, b} and M ′ = {b, b}, we can say that
M ′ is included in M , that (M+M ′) = {a, b, b, b, b, b} and that (M−M ′) = {a, b}.

If the set V is finite, e.g. V = {a1, . . . , an}, then the multiset M can be
explicitly described as {(a1, M(a1)), (a2, M(a2)), . . . , (an, M(an))}. The support
of a multiset M is defined as the set supp(M) = {a ∈ V |M(a) > 0}. A multiset
is empty (hence finite) when its support is empty (also finite).

A compact notation can be used for finite multisets: if M = {(a1, M(a1)),
(a2, M(a2)), . . . , (an, M(an))} is a multiset of finite support, then the string w =
a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all its permutations) precisely identify the symbols

in M and their multiplicities. Hence, given a string w ∈ V ∗, we can say that
it identifies a finite multiset over V , written as M(w), where M(w) = {a ∈
V | (a, |w|a)}. For instance, the string bab represents the multiset M(w) =
{(a, 1), (b, 2)}, that is the multiset {a, b, b}. The empty multiset is represented
by the empty string λ.

3 Operations with Peripheral and Integral Proteins

Let V denote a finite alphabet of objects and Lab a finite set of labels.
As is usual in the membrane systems field, a membrane is represented by a

pair of square brackets, [ ]. A membrane structure is an hierarchical nesting of
membranes enclosed by a main membrane called the root membrane. To each
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membrane is associated a label that is written as a superscript of the membrane,
e.g. [ ]1. If a membrane has the label i we call it membrane i.

A membrane structure is essentially that of a tree, where the nodes are the
membranes and the arcs represent the containment relation. In this paper we
avoid a formal mapping in the interest of the intuitiveness of the description,
however, being a tree, a membrane structure can be represented by a string of
matching square brackets, e.g., [ [ [ ]2 ]1 [ ]3 ]0.

To each membrane there are associated three multisets, u, v and x over V ,
denoted by [ ]u|v|x. We say that the membrane is marked by u, v and x; x is
called the external marking, u the internal marking and v the integral marking
of the membrane. In general, we refer to them as markings of the membrane.

The internal, external and integral markings of a membrane model the pro-
teins attached to the internal surface, attached to the external surface and inte-
gral to the membrane, respectively.

In a membrane structure, the region between membrane i and any enclosed
membranes is called region i. To each region is associated a multiset of objects
w called the free objects of the region. The free objects are written between the
brackets enclosing the regions, e.g., [ aa [ bb ]1 ]0.

The free objects of a membrane model the floating chemicals within the re-
gions of a cell.

We denote by int(i), ext(i) and itgl(i) the internal, external and integral
markings of membrane i, respectively. By free(i) we denote the free objects of
region i. For any membrane i, distinct from a root membrane, we denote by
out(i) the label of the membrane enclosing membrane i.

For example, the string

[ ab [ cc ]2a| | [ abb ]1bba|ab|c ]0

represents a membrane structure, where to each membrane are associated mark-
ings and to each region are associated free objects. Membrane 1 is internally
marked by bba (i.e., int(1) = bba), has integral marking ab (i.e., itgl(1) = ab)
and is externally marked by c (i.e., ext(1) = c). To region 1 are associated the
free objects abb (i.e., free(1) = abb). To region 0 are associated the free objects
ab. Finally, out(1) = out(2) = 0. Membrane 0 is the root membrane. The string
can also be depicted diagrammatically, as in Figure 2.

When a marking is omitted it is intended that the membrane is marked by the
empty string λ, i.e., the empty multiset. For instance, in [ ab ]u|v| the external
marking is missing, while in the case of [ ab ] |v|x the internal marking is missing.

3.1 Operations

We introduce rules that describe bidirectional interactions of floating objects
with the membrane markings which we call membrane rules. These rules are
motivated by the behaviour of cell membrane proteins (e.g., see [1]) and therefore
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Fig. 2. Graphical representation of [ ab [ cc ]2a| | [ abb ]1bba|ab|c ]0

permit a level of abstraction based on the behaviour of real molecules. We denote
the rules as attachin, attachout, de − attachin and de− attachout, defined:

attachin : [ α ]iu|v| → [ ]iu′|v′| , α ∈ V +, u, v, u′, v′ ∈ V ∗, i ∈ Lab

attachout : [ ]i|v|x α → [ ]i|v′|x′ , α ∈ V +, v, x, v′, x′ ∈ V ∗, i ∈ Lab

de − attachin : [ ]iu|v| → [ α ]iu′|v′| , α, u′, v′, u, v ∈ V ∗, |uv| > 0, i ∈ Lab

de − attachout : [ ]i|v|x → [ ]i|v′|x′α, α, v′, x′, v, x ∈ V ∗, |vx| > 0, i ∈ Lab

The semantics of these rules is as follows.
The attachin rule is applicable to membrane i if free(i) includes α, int(i)

includes u and itgl(i) includes v. When the rule is applied to membrane i, α is
removed from free(i), u is removed from int(i), v is removed from itgl(i), u′

is added to int(i) and v′ is added to itgl(i). The objects not involved in the
application of the rule are left unchanged in their original positions.

The attachout rule is applicable to membrane i if free(out(i)) includes α,
itgl(i) includes v, ext(i) includes x. When the rule is applied to membrane i,
α is removed from free(out(i)), v is removed from itgl(i), x is removed from
ext(i), v′ is added to itgl(i) and x′ is added to ext(i). The objects not involved
in the application of the rule are left unchanged in their original positions.

The de − attachin rule is applicable to membrane i if int(i) includes u and
itgl(i) includes v. When the rule is applied to membrane i, u is removed from
int(i), v is removed from itgl(i), u′ is added to int(i), v′ is added to itgl(i) and
α is added to free(i). The objects not involved in the application of the rule are
left unchanged in their original positions.

The de − attachout rule is applicable to membrane i if itgl(i) includes v and
ext(i) includes x. When the rule is applied to membrane i, v is removed from
itgl(i), x is removed from ext(i), v′ is added to itgl(i), x′ is added to ext(i) and
α is added to free(out(i)). The objects not involved in the application of the
rule are left unchanged in their original positions.



Modelling Cellular Processes Using Membrane Systems 113

We denote byRatt
V,Lab the set of all possible attach and de−attach rules over the

alphabet V and set of labels Lab. Instances of attachin, attachout, de− attachin

and de − attachout rules are depicted in Figure 3.

attachin rule [ b ]ib|c| → [ ]idb|c| attachout rule [ ]i|c|a b → [ ]i|c|ad

de − attachin rule [ ]ibb|c| → [ d ]ib|c| de − attachout rule [ ]i|c|a → [ ]i| |a d

Fig. 3. Examples of attachin, attachout, de−attachin and de−attachout rules, showing
how free and attached objects may be rewritten. E.g., in the attachin rule one of the
two free instances of b is rewritten to d and added to the membrane’s internal marking.

We next introduce evolution rules that rewrite the free objects contained in
a region conditional on the markings of the enclosing membrane. These rules
can be considered to model the biochemical reactions that take place within the
cytoplasm of a cell. We define an evolution rule:

evol : [ α → β ]iu|v|

where u, v, β ∈ V ∗, α ∈ V +, and i ∈ Lab.
The semantics of the rule is as follows. The rule is applicable to region i if

free(i) includes α, int(i) includes u and itgl(i) includes v. When the rule is
applied to region i, α is removed from free(i) and β is added to free(i). The
membrane markings and the objects not involved in the application of the rule
are left unchanged in their original positions.

We denote by Rev
V,Lab the set of all evolution rules over the alphabet V and

set of labels Lab. An instance of an evolution rule is represented in Figure 4.
In general, when a rule has label i we say that a rule is associated to membrane

i (in the case of attach and de − attach rules) or is associated to region i (in
the case of evol rules). For instance, in Figure 3 the attachin is associated to
membrane i.

The objects of α, u and v for attachin/evol rules, of α, v and x for attachout

rules, of u and v for de−attachin rules and of v and x for de−attachout rules are
the reactants of the corresponding rules. E.g., in the attach rule [ b ]a|c| → [ ]d|c| ,
the reactants are a, b and c.
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Fig. 4. evol rule [ a → b ]ib|c|. Free objects can be rewritten inside the region and the
rewriting can depend on the integral and internal markings of the enclosing membrane.

We note that a single application of an evol rule may be simulated by an application

of an attachin rule followed by an application of an de − attachin rule. This may be

biologically realistic in some cases, but not in all. Hence the need for evolution rules.

4 Membrane Systems with Peripheral and Integral
Proteins

In this section we define membrane systems having membranes marked with
peripheral proteins, integral proteins, free objects and using the operations in-
troduced in Section 3.

Definition 1. A membrane system with peripheral and integral proteins and n
membranes (in short, a Ppi system), is a construct

P = (VP , µP , (u0 , v0 , x0)P , . . . , (un−1, vn−1, xn−1)P , w0,P , . . . , w
n−1,P , RP ,

tin,P , t
fin,P , rateP )

– VP is a finite, non-empty alphabet of objects.
– µP is a membrane structure with n ≥ 1 membranes injectively labelled by

labels in LabP = {0, 1, · · · , n− 1}, where 0 is the label of the root membrane.
– (u0, v0, x0)P = (λ, λ, λ), (u1 , v1 , x1)P , · · · , (un−1, vn−1, xn−1)P ∈ V ∗ × V ∗ ×

V ∗ are called initial markings of the membranes.
– w0,P , w1,P , · · · , w

n−1,P ∈ V ∗ are called initial free objects of the regions.
– RP ⊆ Ratt

V,LabP−{0} ∪ Rev
V,LabP

is a finite set of evolution rules, attach/de-
attach rules.1

– t
in,P , t

fin,P ∈ R are called the initial time and the final time, respectively.
– rateP : RP �−→ R is the rate mapping. It associates to each rule a rate.

Let Π be an arbitrary Ppi system. An instantaneous description I of Π consists of
the membrane structure µ

Π
with markings associated to the membranes and free

objects associated to the regions. We denote by I(Π) the set of all instantaneous
descriptions of Π . We say in short membrane (region) i of I to denote the
membrane (region, respectively) i present in I.
1 The root membrane may contain objects and evolution rules but not attach or

de − attach rules, since it has no enclosing region. It may therefore be viewed as
an extended version of a membrane systems environment (as defined in [12]), with
objects and evol rules. Alternatively, it can be seen as a membrane systems skin
membrane, where the environment contains nothing and is not accessible.
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Let I be an arbitrary instantaneous description from I(Π) and r an arbitrary
rule from RΠ . Suppose that r is associated to membrane i ∈ LabΠ if r ∈
Ratt

V,LabΠ−{0} (or to region i ∈ LabΠ if r ∈ Rev
V,LabΠ

).
Then, if r is applicable to membrane i (or to region i, accordingly) of I, in short

we say that r is applicable to I. We denote by r(I) ∈ I(Π) the instantaneous
description of Π obtained when the rule r is applied to membrane i (or to region
i, accordingly) of I (in short, we say r is applied to I).

The initial instantaneous description of Π , Iin,Π ∈ I(Π), consists of the
membrane structure µΠ with membrane i marked by (ui, vi, xi)Π for all i ∈
LabΠ − {0} and free objects wi,Π associated to region i for all i ∈ LabΠ .

A configuration of Π is a pair (I, t) where I ∈ I(Π) and t ∈ R; t is called the
time of the configuration. We denote by C(Π) the set of all configurations of Π .
The initial configuration of Π is Cin,Π = (Iin,Π , tin,Π).

Suppose that RΠ = {rule1, rule2, . . . , rulem} and let S be an arbitrary se-
quence of configurations 〈C0, C1, · · · , Cj , Cj+1, · · · , Ch〉, where Cj = (Ij , tj) ∈
C(Π) for 0 ≤ j ≤ h. Let aj =

m∑
i=1

pi
j, 0 ≤ j ≤ h, where pi

j is the product

of rate(rulei) and the mass action combinatorial factor for rulei and Ij (see
Appendix A).

The sequence S is an evolution of Π if
– for j = 0, Cj = Cin,Π

– for 0 ≤ j ≤ h− 1, aj > 0, Cj+1 = (rj(Ij), tj + dtj) with rj , dtj as in [7]:

• rj = rulek, k ∈ {1, · · · , m} and k satisfies
k−1∑
i=1

pi
j < ran

′
j · aj ≤

k∑
i=1

pi
j

• dtj = (−1/aj)ln(ran
′′
j )

where ran
′
j , ran

′′
j are two random variables over the sample space (0, 1],

uniformly distributed.
– for j = h, aj = 0 or tj ≥ t

fin,Π
.

In other words, an evolution of Π is a sequence of configurations, starting from the

initial configuration of Π, where, given the current configuration Cj = (Ij , tj), the next

one, Cj+1 = (Ij+1, tj+1), is obtained by applying the rule rj to the current instanta-

neous description Ij and adding dtj to the current time tj. The rule rj is applied as

described in Section 3. Rule rj and dtj are obtained using the Gillespie algorithm [7]

over the current instantaneous description Ij. The evolution halts when all rules have

zero probability of being applied (aj = 0) or when the current time is greater or equal

to the specified final time.

5 Modelling and Simulation of Cellular Processes

Having established a theoretical basis, we now wish to demonstrate the quan-
titative behaviour of the presented model. To this end we have extended the
simulator presented in [4] to produce evolutions of an arbitrary Ppi system. In
Sections 5.2 and 5.3 we demonstrate the model and the simulator using two
examples from the literature.
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5.1 The Stochastic Algorithm

We use a discrete stochastic algorithm based on Gillespie’s which can more ac-
curately represent the dynamical behaviour of small quantities of reactants, in
comparison, say, to a deterministic approach based on ordinary differential equa-
tions [11]. Moreover, Gillespie has shown that the algorithm is fully equivalent
to the chemical master equation.

The Gillespie algorithm is specifically designed to model the interaction of
chemical species and imposes a restriction of a maximum of three reacting mole-
cules. This is on the basis that the likelihood of more than three molecules
colliding is vanishingly small. Hence the simulator is similarly restricted. Note
that in the evolution of a Ppi system, the stochastic algorithm does not distin-
guish between floating objects and objects attached or integral to the membrane.
That is, the algorithm is applied to the objects irrespective of where they are in
the compartment on the assumption that the interaction between floating and
attached molecules can be considered the same as between floating molecules.
Our application of the Gillespie algorithm to membranes is further described in
Appendix A.

5.2 Modelling a Noise-Resistant Circadian Clock

Many organisms use circadian clocks to synchronise their metabolisms to a daily
rhythm, however the precise mechanisms of implementation vary from species to
species. One common requirement is the need to maintain a measure of stability
of timing in the face of perturbations of the system: the clock must continue
to tick and keep good time. A general model which captures the essence of such
stability, based on common elements of several real biological clocks, is presented
in [16]. We choose this as an interesting, non-trivial example to model and sim-
ulate with a Ppi system using evolution rules alone. Moreover, we choose this
example because it has been modelled in other formalisms, such as in stochastic
Π calculus (see, e.g., [17], [13]).

The model is described diagrammatically in Figure 5. The system consists of
two different genes (gA and gR) which produce two different proteins (pA and pR,
respectively) via two different mRNA species (mA and mR, respectively). Protein
pA up-regulates the transcription of its own gene and also the transcription of
the gene that produces pR. The proteins are removed from the system by simple
degradation to nothing (dashed lines) and by the formation of a complex AR. In
this latter way the production of pR reduces the concentration of pA and has the
consequence of down-regulating pR’s own production. Thus, in turn, pA is able to
increase, increasing the production of pR and causing the cycle to repeat. Key ele-
ments of the stable dynamics are the rapid production of pA, by virtue of positive
feedback, and the relative rate of growth of the complexation reaction.

A description of the Ppi system used to model the circadian clock is given in
Figure 6, together with the corresponding simulator script for comparison. The
alphabet, Vclock, is specified to contain all the reacting species. This corresponds
to the object statement of the simulator script. The sixteen chemical reactions
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of Figure 5 are simply transcribed into corresponding rules mapped to reaction
rates. In the simulator script they are grouped under one identifier, clock. The
membrane structure, µclock, comprises just the root membrane. The root region
initially contains one copy each of the two genes as free objects. These facts are
reflected in the system statement of the simulator script, which also associates
to the contents the set of rules clock.

The results of running the script are shown in Figure 5: the two proteins
exhibit anti-phase periodicity of approximately 24 hours, as expected.

Fig. 5. Reaction scheme and simulation results of noise-resistant circadian clock of [16]

The simulator has the capability to add or subtract reactants from the simu-
lation in runtime. We use this facility to discover the effect of switching off gR
in the circadian clock by making the following addition to the system statement:

-1 gR @50000, -1 g R @50000

These instructions request a subtraction from the system at time step 50000 of
one gR and one g R. Note that to switch off the gene it is necessary to remove
both versions (i.e., with and without pA bound), since it is not possible to know
in what state it will exist at a particular time step. Negative quantities are not
allowed in the simulator, so only the existent specie will be deleted. In general,
the number subtracted is the minimum of the existent quantity and the requested
amount. The same syntax, without the negative sign, is used to add reactants.

The effect of switching off gR, shown in Figure 7, is to reduce the amount
of pR to near zero and to thus allow pA to reach a maximum governed by its
relative rates of production and decay. Note that a small amount of pR continues
to exist long after its gene has been switched off. This is the result of a so-called
hidden pathway from the AR complex, which decays at a much slower rate than
pR (second graph of Figure 7). Although this model is a generalisation of biolog-
ical circadian clocks and may not represent the behaviour of a specific example,
the existence of an unexpected pathway exemplifies an important problem en-
countered when attempting to predict the behaviour of biological systems.
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Ppi system clock Simulator script

Vclock = {gA, g A, gR, g R, mA, mR, pA, pR, RA} object gA,g A,gR,g R,mA,mR,pA,pR,RA

rateclock = rule clock
{ {
[ gA → gA mA ]0| | 
→ 50 gA 50-> gA + mA

[ pA gA → g A ]0| | 
→ 1 pA+gA 1-> g A

[ g A → g A mA ]0| | 
→ 500 g A 500-> g A + mA

[ gR → gR mR ]0| | 
→ 0.01 gR 0.01-> gR + mR

[ g R → g R mR ]0| | 
→ 50 g R 50-> g R + mR

[ mA → pA ]0| | 
→ 50 mA 50-> pA

[ mR → pR ]0| | 
→ 5 mR 5-> pR

[ pA pR → AR ]0| | 
→ 2 pA+pR 2-> AR

[ AR → pR ]0| | 
→ 1 AR 1-> pR

[ pA → λ ]0| | 
→ 1 pA 1-> 0A

[ pR → λ ]0| | 
→ 1 pR 0.2-> 0R

[ mA → λ ]0| | 
→ 10 mA 10-> 0mA

[ mR → λ ]0| | 
→ 0.5 mR 0.5-> 0mR

[ g R → pA gR ]0| | 
→ 100 g R 100-> pA+gR

[ pA gR → g R ]0| | 
→ 1 pA+gR 1-> g R

[ g A → pA gA ]0| | 
→ 50 g A 50-> pA+gA

} }
w0,clock = gA gR system 1 gA, 1 gR, clock

µclock = [ ]0

tin,clock = 0 evolve 0-150000
tfin,clock = 155 hours

plot pA, pR

Fig. 6. Ppi system model of circadian clock of [16] with corresponding simulator script.
Note the similarities between the definitions of Vclock and object and between the
definitions of the elements of rateclock and of rule clock.

5.3 Modelling Saccharomyces Cerevisiae Mating Response

To demonstrate the ability of Ppi systems to represent compartments and mem-
branes we model and simulate the G-protein mating response in yeast saccha-
romyces cerevisiae, based on experimental rates provided by [9]. The G-protein
transduction pathway involves membrane proteins and the transport of sub-
stances between regions and is a mechanism by which organisms detect and
respond to environmental signals. It is extensively studied and many pharma-
ceutical agents are aimed at components of the G-protein cycle in humans. The
diagram in Figure 8 shows the relationships between the various reactants and
regions modelled and simulated.

A description of the biological process is that the yeast cell receives a signal
ligand (pL) which binds to a receptor pR, integral to the cell membrane. The
receptor-ligand dimer then catalyses (dotted line in the diagram of Figure 8)
the reaction that converts the inactive G-protein Gabg to the active GA. A
competing sequence of reactions, which dominate in the absence of RL, converts
GA to Gabg via Gd in combination with Gbg. The bound and unbound receptor
(RL and pR, respectively) are degraded by transport into a vacuole via the
cytoplasm. Figure 9 contains the Ppi system model and corresponding simulator
script. Note that while additional quantities of the receptor pR are created in
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Fig. 7. Simulated effect of switching off gA in circadian clock of [16]

runtime, no species is deleted from the system; the dynamics are created by
transport alone.

Figure 8 shows the results of the stochastic simulation plotted with exper-
imental results from [16] equivalent to simulated GA. There is an apparent
correspondence between the simulated and experimental data, in line with the
deterministic simulation presented in the original paper. The stochastic noise
evident in Figure 8 may explain why some measured points do not lie exactly on
the deterministic curve, however further analysis of the original model is beyond
the scope of this paper.

Fig. 8. Model and simulation results of saccharomyces cerevisiae mating response

6 Perspectives

We have introduced a model of membrane systems (called a Ppi system) with
objects integral to the membrane and objects attached to either side of the
membrane. We have also introduced operations that can rewrite floating objects
conditional on the existence of integral and attached objects and operations that
facilitate the interaction of floating objects with integral and attached objects.
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Ppi system gprot Simulator script

Vgprot = {pL, pr, pR, RL, Gd, Gbg, Gabg, GA} object pL,pr,pR,RL,Gd,Gbg,Gabg,GA

rategprot = rule g cycle
{ {
[ ]1|pr| → [ ]1|pR pr| 
→ 4.0 |pr| 4-> |pR,pr|

[ ]1|pR| pL → [ ]1|RL| 
→ 3.32e−18 |pR| + pL 3.32e-18-> |RL|

[ ]1|RL| → [ ]1|pR| pL 
→ 0.011 |RL| 0.011-> |pR| + pL

[ ]1|RL| → [ RL ]1| | 
→ 4.1e−3 |RL| 4.1e-3-> RL + ||

[ ]1|pR| → [ pR ]1| | 
→ 4.1e−4 |pR| 4.1e-4-> pR + ||

[ Gabg → GA Gbg ]1|RL| 
→ 1.0e−5 Gabg + |RL| 1.0e-5-> GA, Gbg + |RL|

[ Gd Gbg → Gabg ]1| | 
→ 1.0 Gd + Gbg 1-> Gabg

[ GA → Gd ]1| | 
→ 0.11 GA 0.11-> Gd

}
rule vac rule
{

[ ]2| | pR → [ pR ]2| | 
→ 4.1e−4 || + pR 4.1e-4-> pR + ||

[ ]2| | RL → [ RL ]2| | 
→ 4.1e−3 || + RL 4.1e-3-> RL + ||

} }
w2,gprot = λ compartment vacuole [vac rule]
(u2, v2, x2)gprot = (λ, λ, λ)
w1,gprot = Gd3000 Gbg3000 Gabg7000 compartment cell [vacuole,3000 Gd,...
(u1, v1, x1)gprot = (λ, pR10000pr, λ) ... 3000 Gbg,7000 Gabg,g cycle : |10000 pR,pr|]

w0,gprot = pL6.022e17 system cell, 6.022e17 pL

µgprot = [ [ [ ]2 ]1 ]0

tin,gprot = 0 evolve 0-600000
tfin,gprot = 600 seconds

plot cell[Gd,Gbg,Gabg,GA:|pR,RL|]

Fig. 9. Ppi system model of G-protein cycle and corresponding simulator script

With these we are able to model in detail many real biochemical processes oc-
curring in the cytoplasm and in the cell membrane.

Evolutions of a Ppi system are obtained using an algorithm based on Gillespie
[7] and in the second part of the paper we have presented a simulator which can
produce evolutions of an arbitrary Ppi system, using syntax based on chemical
equations. To demonstrate the utility of Ppi systems and of the simulator we
have modelled and simulated a circadian clock and the G-protein cycle mating
response of saccharomyces cerevisiae. The latter makes extensive use of mem-
brane operations.

Several different research directions are now proposed. The primary direction
is the application of Ppi systems and of the simulator to real biological systems,
with the aim of prediction by in-silico experimentation. Such application is likely
to lead to the need for new bio-inspired features and these constitute another
direction of research. The features will be implemented in the model and simu-
lator as necessary, however it is already envisaged that operations of fission and
fusion will be required to permit the modification of a membrane structure in
runtime.

A further direction of research is the investigation of the theoretical properties
of the model. Reachability of configurations and of markings have already been
proved to be decidable for the more restricted model presented in [4] and these
proofs should be extended accordingly for the model presented here. Other work
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in this area might include the modification of the way a Ppi system evolves,
for example, to allow other semantics (such as that of maximal parallel [12])
or to use algorithms that more accurately model the behaviour of biological
membranes. In this way we will be able to explore the limits of the model and
perhaps discover a more useful level of abstraction.
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Appendices

A The Gillespie Algorithm Applied to Membranes

The Gillespie algorithm is an exact stochastic simulation of a ‘spatially homo-
geneous mixture of molecular species which inter-react through a specified set
of coupled chemical reaction channels’ [7]. It is unclear whether a biological cell
contains a spatially homogeneous mixture of molecular species and less clear still
whether integral and peripheral proteins can be described in this way, however
for the purposes of the Ppi system model we choose to regard them as such.
Hence we treat the objects attached to the membrane as homogeneously mixed
with the floating objects, however objects of the same type (i.e. having the same
name) but existing in different regions are considered to be of different types in
the stochastic algorithm.

The mass action combinatorial factors of the Gillespie algorithm, defined by
equations (14a. . . g) in [7], are calculated over the set of chemical reactions given
in equations (2a. . . g) of [7], using standard stoichiometric syntax of the general
form

S1 + S2 + S3 → P1 + P2 + . . . + Pn

S1, S2 and S3 are the reactants and P1, . . . , Pn are the products of the reaction.
Since the order of the reactants and products is unimportant they may be repre-
sented as multisets S1S2S3 and P1P2 · · ·Pn, respectively, over the set of objects
V . Hence a chemical reaction may be expressed using the notation

S1S2S3 → P1P2 · · ·Pn

In the definition of the evolution of a Ppi system, the mass action combi-
natorial factor is calculated using equations (14a. . . g)[7] after transforming the
membrane and evolution rules into chemical reactions and the objects of the
current instantaneous description, using the following procedure.

Let Vi = {ai|a ∈ V }, Vi,int = {ai,int|a ∈ V }, Vi,itgl = {ai,itgl|a ∈ V } and
Vi,out = {ai,out|a ∈ V }. We then define morphisms freei : V → Vi, inti :
V → Vi,int, itgli : V → Vi,itgl and outi : V → Vi,out such that freei(a) = ai,
inti(a) = ai,int, itgli(a) = ai,itgl and outi(a) = ai,out for a ∈ V . Hence we map
an evolution rule of the type

[ α → β ]iu|v|

with u, v, α, β ∈ V ∗ and i ∈ Lab, to the chemical reaction

freei(α) · inti(u) · itgli(v) → freei(β) · inti(u) · itgli(v)

We map membrane rules, generally described by

[ α ]iu|v|x β → [ α′ ]iu′|v′|x′ β′

with u, v, x, α, β, u′, v′, x′, α′, β′ ∈ V ∗ and i ∈ Lab, to the chemical equation
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freei(α) · inti(u) · itgli(v) · outi(x) · freej(β) →
freei(α′) · inti(u′) · itgli(v′) ·outi(x′) ·freej(β′)

where j ∈ Lab is the marking of the membrane surrounding the region enclosing
membrane i.

The objects of the current instantaneous description are similarly transformed,
using the morphisms defined above, in order to correspond with the transformed
membrane and evolution rules.

B The Simulator Syntax

The simulator syntax aims to be an intuitive interpretation of the Ppi system
model. A simulator script conforms to the following grammar:

SimulatorScript = {Object Declaration, NewLine}+
{Rule Definition, NewLine}+
{Compartment Definition, NewLine}
System Statement, NewLine
Evolve Statement, NewLine
P lot Statement, [NewLine]

where NewLine is an appropriate sequence of characters to generate a new line.
An example of a simple simulator script is shown below, together with its Ppi

system counterpart.

Simulator script Ppi system lotka

// Lotka reactions

object X,Y1,Y2,Z Vlotka = {X, Y 1, Y 2, Z}
ratelotka = {

rule r1 X + Y1 0.0002-> 2Y1 + X [ XY 1 → Y 1Y 1X ]0| | 
→ 0.0002

rule r2 Y1 + Y2 0.01-> 2Y2 [ Y 1Y 2 → Y 2Y 2 ]0| | 
→ 0.01

rule r3 Y2 10-> Z [ Y 2 → Z ]0| | 
→ 10 }
system 100000 X,1000 Y1,1000 Y2,r1,r2,r3 w0,lotka = X100000Y 11000Y 21000

µlotka = [ ]0

evolve 0-1000000 tin,lotka = 0

plot Y1,Y2

The syntax of the sections of a simulator script are described below.

B.1 Comments

Comments begin with a double forward slash (//) and include all subsequent
text on a single line. They may appear anywhere in the script.

B.2 Object Declaration

The reacting objects are defined in one or more statements beginning with the
keyword object followed by a comma separated list of unique reactant names.
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E.g.:
object X,Y1,Y2,Z

The names are case-sensitive and must start with a letter but may include digits
and the underscore character ( ). This corresponds to defining the alphabet V
of the Ppi system.

B.3 Rule Definition

The reaction rules are defined using rule definitions comprising the keyword rule

followed by a unique name and the rewriting rule itself. E.g.:

rule r1 X + Y1 0.0002-> 2Y1 + X

These correspond to the attach / de-attach and evolution rules of the Ppi system
model. Note, however, that simulator rules are user-defined types which may be
instantiated in more than one region. The value preceding the implication symbol
(->) is the average reaction rate and corresponds to an element of the range of
the mapping rate given in Definition 1. In the simulator it is also possible to
define a reaction rate as the product of a constant and the rate of a previously
defined rule, using the name of the previous rule in the following way:

rule r2 Y1 + Y2 50 r1-> 2Y2

This has the meaning that rule r2 has a rate 50 times that of r1. In addition,
in the simulator it is possible to define a group of rules using a single identifier
and braces. E.g.,

rule lotka {
X + Y1 0.0002-> 2Y1 + X

Y1 + Y2 0.01-> 2Y2

Y2 10-> Z }
To include membrane operations the simulator rule syntax is extended with the
|| symbol. Objects listed on the left hand side of the || represent the internal
markings, objects listed on the right hand side represent the external markings
and objects listed between the vertical bars are the integral markings of the
membrane. E.g.:

rule r4 X + |Y2| 0.1-> |X,Y2|

means that if one X exists within the compartment and one Y2 exists integral to
the membrane, then the X will be added to the integral marking of the membrane.
The Ppi system equivalent is the following attachin rule:

[ X ] |Y 2| → [ ] |XY 2|
To represent an attachout rule in the simulator the following syntax is used:

rule r4 |Y2| + X 0.1-> |X,Y2|

Here the X appears to the right of the || symbol following a +, meaning that it
must exist in the region surrounding the membrane for the rule to be applied.
Hence the + used in simulator membrane rules is non-commutative.
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B.4 Compartment Definition

Compartments may be defined using the keyword compartment followed by a
unique name and a list of contents and rules, all enclosed by square brackets.
For example,

compartment c1 [100 X, 100 Y1, r1, r2]

instantiates a compartment having the label c1 containing 100 X, 100 Y1 and
rules r1 and r2. In a Ppi system such a compartment would have a Ppi system
(partial) initial instantaneous description

[ X100Y 1100 ]1

Note that a Ppi system requires a numerical membrane label and that any rules
associated to the region or membrane must be defined separately.

Compartments may contain other pre-defined compartments, so the following
simulator statement

compartment c2 [100 Y2, c1]

corresponds to the Ppi system (partial) initial instantaneous description
[ Y 2100[ X100Y 1100 ]1 ]2

Membrane markings in the simulator are added to compartment definitions using
the symbol ||, to the right of and separated from the floating contents by a colon.
E.g.,

compartment c3 [100 X, c2 : 10 Y2||10 Y1]

has the meaning that the compartment c3 contains compartment c2, 100 X, and
the membrane surrounding c3 has 10 Y2 attached to its inner surface and 10 Y1

attached to its outer surface. This corresponds to the Ppi system (partial) initial
instantaneous description

[ X100[ Y 2100[ X100Y 1100 ]1 ]2 ]3Y 210| |Y 110

B.5 System Statement

The system is instantiated using the keyword system followed by a comma-
separated list of constituents. E.g.:

system 100000 X,1000 Y1,1000 Y2,r1,r2,r3

This statement corresponds to the definition of u0 . . . un, v0 . . . vn, w0 . . . wn,
x0 . . . xn and µ of the Ppi system.

The system statement may be extended to multiple lines by enclosing the list
of constituents between braces. E.g.:

system {
100000 X,

1000 Y1,

1000 Y2,

r1,r2,r3 }
It is also possible to add or subtract reactants from the simulation in runtime

using the following syntax in the system statement:
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-10 X @50000, 10 Y1 @50000

These instructions request a subtraction of ten X from the system and an ad-
dition of ten Y1 to the system at time step 50000. Negative quantities are not
allowed in the simulator, so if a subtraction requests a greater amount than
exists, only the existing amount will be deleted.

B.6 Evolve Statement

The simulator requires a directive to specify the total number of evolution steps
to perform and also the number of the evolution step at which to start recording
data. This is achieved using the keyword evolve followed by the minimum and
maximum evolution steps to record. E.g.,

evolve 0-1000000

Note that the minimum evolution step does not correspond to tin of the Ppi

system, since the simulation always starts from the 0th step. By convention,
the simulator sets the initial time of the simulation to 0, hence tin = 0 for all
simulations. Note that although tfin of a Ppi system evolution corresponds to
the maximum evolution step, the units are different and there is no explicit
conversion.

B.7 Plot Statement

To specify which objects are to be observed during the evolution the plot key-
word is used followed by a list of reactants. To plot the contents of a specific
compartment the plot statement uses syntax similar to that used in the com-
partment definition. E.g.,

plot X, c3[X,Y1 : Y1|Y2|]

plots the number of free-floating X in the environment and the specified contents
of compartment c3 and its membrane.



Modelling and Analysing Genetic Networks:

From Boolean Networks to Petri Nets

L.J. Steggles, Richard Banks, and Anil Wipat

School of Computing Science, University of Newcastle, Newcastle upon Tyne, UK
{L.J.Steggles, Richard.Banks, Anil.Wipat}@ncl.ac.uk

Abstract. In order to understand complex genetic regulatory networks
researchers require automated formal modelling techniques that provide
appropriate analysis tools. In this paper we propose a new qualitative
model for genetic regulatory networks based on Petri nets and detail
a process for automatically constructing these models using logic mini-
mization. We take as our starting point the Boolean network approach
in which regulatory entities are viewed abstractly as binary switches.
The idea is to extract terms representing a Boolean network using logic
minimization and to then directly translate these terms into appropri-
ate Petri net control structures. The resulting compact Petri net model
addresses a number of shortcomings associated with Boolean networks
and is particularly suited to analysis using the wide range of Petri net
tools. We demonstrate our approach by presenting a detailed case study
in which the genetic regulatory network underlying the nutritional stress
response in Escherichia coli is modelled and analysed.

1 Introduction

The development and function of cellular systems is regulated by complex net-
works of interacting genes, proteins and metabolites known as genetic regulatory
networks [3]. With the advent of improved post–genomic technology the data is
now available to allow researchers to study genetic regulatory networks at a holis-
tic level [26]. However, interpreting and analysing this data is still problematic
and further work is needed to develop automated formal techniques that provide
appropriate tools for modelling and analysing genetic regulatory networks.

In this paper, we present a new technique for qualitatively modelling and
analysing genetic regulatory networks. We take as our starting point Boolean
networks [1,3], an existing modelling approach for regulatory networks in which
regulatory entities (i.e. genes, proteins, and external signals) are viewed ab-
stractly as binary switches. While Boolean networks have proved successful in
modelling real world regulatory networks [14,27], they suffer from a number
of shortcomings: analysis can be problematic due to the exponential growth in
Boolean states and the lack of tool support; and they do not cope well with
the inconsistent and incomplete data that often occurs in practice. To address
these problems, we propose a new model for genetic regulatory networks based on
Petri nets [21,18], a well developed formal framework for modelling and analysing
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complex concurrent systems [22,28]. A range of initial investigations into using
Petri nets to model biological systems have appeared in the literature to date, in-
cluding: Place/Transition nets [19,5,25,12]; stochastic nets [9,24]; high–level nets
[11,6]; and hybrid nets [17]. The results we present significantly extend the re-
lated ideas presented in [5], both semantically and in the provision of automated
tool support for model construction and analysis.

The Petri net model we propose is based on using an intuitive Petri net struc-
ture to represent the Boolean relationships between regulatory entities. We start
by defining each entities individual behaviour as a truth table [10] from which we
extract Boolean terms by applying logic minimization techniques [10,4]. These
Boolean terms compactly represent the fundamental relationships between regu-
latory entities and we directly translate them into appropriate Petri net control
structures. The result is a compact Petri net model that completely captures
the original Boolean behaviour of a genetic regulatory network. Both the syn-
chronous and asynchronous semantic interpretation of Boolean networks [8] can
be modelled using our approach. We choose to focus on the synchronous seman-
tics here and develop a simple two phase commit protocol to allow synchronized
state updates within the asynchronous Petri net framework. To support the
modelling process a prototype tool has been developed which is able to auto-
matically construct Petri net models of genetic networks from their truth table
definitions. The resulting models can then be analysed using the wide range of
available Petri net techniques and tools [22,7,28].

We illustrate our approach by presenting a detailed case study in which the
genetic regulatory network for the carbon starvation stress response in the bac-
terium E. coli [20] is modelled and analysed. Using the detailed data provided
in [20] we define the Boolean behaviour of the key regulatory entities involved
using truth tables. We then apply our prototype tool to automatically construct
a qualitative Petri net model capturing the behaviour of the given genetic regu-
latory network. This Petri net is then validated and analysed using PEP [29] and
in particular, we illustrate the application of model checking techniques [7,15]
for detailed model analysis.

This paper is organised as follows. In Section 2 we give a brief introduction
to Boolean networks and Petri nets. In Section 3 we describe a new approach
to modelling the Boolean behaviour of genetic regulatory networks using Petri
nets. In Section 4 we consider a case study in which we apply our techniques to
modelling and analysing the genetic regulatory network for the carbon starvation
stress response in E. coli. Finally, in Section 5, we present some concluding
remarks on our work.

2 Background

In this section we give a brief overview of the modelling formalisms discussed
in this paper: Boolean networks [1,3] and Petri nets [21,18]. In the sequel we
assume the reader is familiar with the basic Boolean operators not, or and and
(for example, see [10]).
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2.1 Boolean Networks

In a Boolean network [1,3] the state of each regulatory entity gi is represented
as a Boolean value, either 1 representing the entity is active (e.g. a gene is
expressed or a protein is present) or 0 representing the entity is inactive (e.g.
a gene is not expressed or a protein is absent). The state of a gene regulatory
network containing n entities is then naturally represented as a Boolean vector
[g1, . . . , gn] and this gives us a state space containing 2n states [4]. The behaviour
of each gi is described using a Boolean function fi which, given the current states
of the entities in its neighbourhood (i.e. those entities which directly affect it),
defines the next state for gi. As an example consider the Boolean network in
Figure 1.(a) [1] which contains three entities g1, g2 and g3, where the next state
g′i of each entity is defined by the following Boolean functions:

g′1 = g2, g′2 = g1 g3, g′3 = g1

where the notation x, x+y and x y is used to represent the Boolean operators not,
or and and [10] respectively. The dynamic behaviour of a Boolean network can
be semantically interpreted in two distinct ways [8]: asynchronously where genes
update their state independently; and synchronously where all genes update
their state together. We focus on the synchronous semantics in this paper which
appears to be widely used in the literature [3,8]. The synchronous behaviour for
our example Boolean network is shown as a truth table in Figure 1.(b) and a
state transition graph [4] in Figure 1.(c).

2g’
Current Next

1     1     0        1     0     0

0     1     0        1     0     1
0     1     1        1     0     1
1     0     0        0     0     0
1     0     1        0     1     0

1     1     1        1     1     0

0     0     0        0     0     1
0     0     1        0     0     1

(b) Truth table

1 2 3 1g’ g’3g g g 0 0 0

1 0 1

1 0 0

0 1 1

1 1 0

(c) State transition graph

0 1 0

1 1 1

0 0 1

AND

(a) Boolean network

1
g

3
gg

2

Fig. 1. An example of a Boolean network for three entities g1, g2 and g3

Boolean networks have proved successful in modelling real world regulatory
networks [14,27]. However, their application in practice is hindered by a number
of shortcomings. In particular, analysis can be problematic due to the exponen-
tial growth in Boolean states and the lack of tool support in this area. They
are also unable to cope with the inconsistent and incomplete regulatory network
data that often occurs in practice. For this reason we consider extending the
Boolean network approach by developing a Petri net based Boolean model.
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2.2 Petri Nets

The theory of Petri nets [21,18] provides a graphical notation with a formal math-
ematical semantics for modelling and reasoning about concurrent, distributed
systems. A Petri net is a directed bipartite graph and consists of four basic
components: places which are denoted by circles; transitions denoted by black
rectangles; arcs denoted by arrows; and tokens denoted by black dots. A simple
example of a Petri net is given in Figure 2. The places, transitions and arcs

Place

Transition

Arc

Token

Legend
t1

p1

p3

P5

p5

p2

t2

p4

t3

Fig. 2. A simple example of a Petri net

describe the static structure of the Petri net. Each transition has a number of
input places (places with an arc leading to the transition) and a number of out-
put places (places with an arc leading to them from the transition). We normally
view places as representing resources or conditions and transitions as represent-
ing actions or events [21]. Note arcs that directly connect two transitions or two
places are not allowed.

The state of a Petri net is given by the distribution of tokens on places within
it, referred to as a marking. The state space of a Petri net is therefore the set
of all possible markings. The dynamic properties of the system are modelled
by transitions which can fire to move tokens around the places in a Petri net.
Transitions are said to be enabled if each of their input places contain at least
one token. An enabled transition can fire by consuming one token from each of
its input places and then depositing one token on each of its output places. For
example, in Figure 2 both transitions t1 and t2 are enabled. Firing transition
t1 would result in a token being taken from place p1 and a new token being
deposited on place p3. Often, more than one transition is enabled to fire at any
one time (as in the example above). In such a case, a transition is chosen non–
deterministically to fire. A marking m2 is said to be reachable from a marking
m1 if there is a sequence of transitions that can be fired starting from m1 which
results in the marking m2. A Petri net is said to be k–bounded if in all reachable
markings no place has more than k tokens. A Petri net which is 1–bounded is
said to be safe. Safeness is an important property since any safe Petri net has a
restricted state space which is well–suited to automatic analysis [22].
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An important advantage of Petri nets is that they are supported by a wide
range of techniques and tools for simulation and analysis [22,28]. For example,
Petri nets can be automatically checked for boundedness and the presence of
deadlocks (markings in which no transitions are enabled to fire) [28]. A Petri net
can also be analysed by constructing its reachability graph [18] which captures
the possible firing sequences that can occur from a given initial marking. A range
of techniques based on model checking [7,15] have been developed for analysing
reachability properties of a Petri net and these provide a means of coping with
the potentially large state space of a Petri net model.

3 Modelling Genetic Networks Using Petri Nets

In this section we present a new qualitative model for gene regulatory networks
based on Petri nets [18] and detail a process for automatically constructing these
models using logic minimization [4].

3.1 Deriving Regulatory Relationships Using Logic Minimization

Given a set of truth tables defining the Boolean behaviour of all the entities in a
genetic network we would like to extract a compact representation of the regula-
tory relationships between entities. We address this using well–known techniques
from Boolean logic [4,10] which allow us to derive Boolean terms describing the
functional behaviour of each entity. The idea is to consider the truth table for
each entity and to list all the states which result in a next state in which the
entity is active (i.e. in state 1). For example, consider the truth table given in
Figure 1.(b) for a simple Boolean network (see Section 2.1). Then by consider-
ing the truth table for g1 we can see that states 010, 011, 110, and 111 result
in g1 being 1 in its next state (where xyz denotes the state g1 = x, g2 = y,
and g3 = z). We can represent each state as a product term, called a minterm
[10], using the and Boolean operator, where the variable gi represents that an
entity gi is in state 1, and the negated variable gi represents that an entity gi

is 0. So the state 010 for g1 is represented by the minterm g1 g2 g3. Applying
this approach and then summing the derived minterms using the or Boolean
operator allows us to derive a Boolean term in disjunctive normal form [10] that
defines the functional behaviour of an entity. Continuing with our example, we
derive the following Boolean term for gene g1:

g1 g2 g3 + g1 g2 g3 + g1 g2 g3 + g1 g2 g3

Note that this term completely defines the functional behaviour of g1, i.e. when-
ever the term above evaluates to 1 in a state we know g1 will be active in the
next state, and whenever the term is 0 we know g1 will be inactive. Using this
technique we can construct a Boolean network that completely specifies the func-
tional behaviour of a genetic network. In our example, we derive the following
terms defining the behaviour of g1, g2 and g3:
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g′1 = g1 g2 g3 + g1 g2 g3 + g1 g2 g3 + g1 g2 g3,

g′2 = g1 g2 g3 + g1 g2 g3,

g′3 = g1 g2 g3 + g1 g2 g3 + g1 g2 g3 + g1 g2 g3.

The Boolean terms derived above are often unnecessarily complex and can nor-
mally be simplified using logic minimization [4,10]. From a biological point of
view, this simplification process is important as it helps to identify the under-
lying regulatory relationships that exist between entities in a genetic network.
The idea behind logic minimization is to simplify Boolean terms by merging
minterms that differ by only one variable. As an example, consider the term
g1 g2 g3 + g1 g2 g3 which contains two minterms that differ by only one vari-
able g3. This term can be simplified by merging the two minterms to produce a
simpler term g1 g2 which is logically equivalent [4,10]. For brevity we omit the
full details of Boolean logic minimization here (we refer the interested reader
to [4]) and instead illustrate the idea behind the algorithm using our running
example:

g1 g2 g3 + g1 g2 g3 + g1 g2 g3 + g1 g2 g3 =⇒ g1 g2 + g1 g2 =⇒ g2,

g1 g2 g3 + g1 g2 g3 =⇒ g1 g3,

g1 g2 g3 + g1 g2 g3 + g1 g2 g3 + g1 g2 g3 =⇒ g1 g2 + g1 g2 =⇒ g1.

Note that the final minimized Boolean terms presented above correctly corre-
spond to the Boolean network definitions given in Section 2.1.

3.2 Modelling Boolean Networks Using Petri Nets

While the Boolean terms derived in Section 3.1 compactly capture the behaviour
of a Boolean network they are not amenable to analysis in their current form.
We address this by translating these terms directly into appropriate Petri net
control structures. The resulting Petri net model can then be simulated and
analysed using the wide range of available tool support [28].

The approach we take is to represent the Boolean state of each entity gi in
a Petri net by the well–known approach (see for example [21,5]) of using two
complementary places Pi and Pi, where a token on place Pi indicates the en-
tity is active, gi = 1, and a token on place Pi that it is not, gi = 0. Note the
total number of combined tokens on places Pi and Pi will therefore always be
equal to 1. Since Petri nets fire transitions asynchronously it is straightforward
to model the asynchronous behaviour of a Boolean network in this setting (see
[5] for a related approach). We focus on modelling the synchronous behaviour
of a Boolean network [8] here and make use of a two phase commit protocol to
synchronise updates in our model. In the first phase of the protocol each entity
gi in the model decides whether it should be active or not in the next state.
This decision is recorded using two places, Pi On and Pi Off , where a token
on Pi On indicates gi is active in the next state and a token on Pi Off that
it is not. When all the entities have made a decision about their next state the
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P1_On

P1_Off

P1_Start

P1_Syn P2

P2

P3 P3

P1 P1

Fig. 3. A transition for gene g1 modelling the minterm g1 g2 g3

second phase of the protocol begins and the state of each entity is synchronously
updated according to the recorded decision.

Let us consider how we construct the appropriate Petri net structure to model
the decision process for an entity gi in the first phase of the protocol. We begin
by considering under what conditions the entity will be active (i.e. in state 1)
and use the process detailed in Section 3.1 to derive a minimized Boolean term
which compactly captures these conditions. We model this minimized Boolean
term in our Petri net by adding a separate transition to represent each minterm
it contains. The idea is that each transition will fire, placing a token on Pi On,
precisely when the corresponding minterm is true. As an example, consider the
Boolean term

g1 g2 g3 + g1 g2 g3 + g1 g2 g3 + g1 g2 g3

derived for gene g1 in our running example (see Section 3.1). Then the first
minterm g1 g2 g3 tells us that gene g1 should be expressed, g1 = 1, in the next
state when genes g1 = 0, g2 = 1, and g3 = 0 in the current state. We model this
minterm using the transition depicted in Figure 3. This transition fires when
places P1, P2, and P3 contain a token (i.e. when g1 = 0, g2 = 1, and g3 = 0)
and results in a token being placed on P1 On (indicating g1 is expressed in the
next state). Note the use of read arcs [18] here, i.e. bidirectional arcs which do
not consume tokens but just check they are present. This ensures the tokens on
places P1, P2, and P3 are not removed at this stage (doing so would corrupt
the current state of genes g1, g2 and g3). The start place P1 Start is used as a
control input to the transition to ensure only one decision is made for gene g1

during a single protocol step (update transitions can only fire if a token is present
on P1 Start). The place P1 Syn is used to indicate when an update decision has
been made for gene g1, information needed by the protocol to determine when
the first phase is complete. This process is then repeated to add transitions to
model the remaining three minterms in the Boolean term for g1.

It remains to model the complementary decision procedure for deciding when
an entity is inactive in the next state, that is when Pi Off should be marked.
To do this we simply apply the process detailed in Section 3.1 again amended
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to derive a Boolean term which compactly captures the conditions under which
the entity becomes inactive. We then repeat the procedure detailed above for
modelling a minterm as a transition except this time we mark place Pi Off
to record the decision for the next state instead of Pi On. Note the resulting
Petri net structure will contain at most n2k transitions where n is the number
of entities and k is the maximum neighbourhood size. Since k is usually small in
practice [8] the size of the model is normally linear with respect to n.

Pi

ig(b) Update gene 

Pi−1_Done

Pi Pi_On

Pi_Off

Pi_Done

(a) Initiate update

P1_Syn P2_Syn Pn_Syn

P0_Done

(c) Reset

Pn_Done

P1_Start P2_Start Pn_Start

Fig. 4. Petri net fragments for controlling synchronous updates

After all the entities have made their update decisions all the synchronisa-
tion places will be marked and this allows the control transition depicted in
Figure 4.(a) to fire, initiating the second phase of the protocol. This phase per-
forms a synchronised update step in which the state of each entity gi is updated
in turn by placing a token on Pi if place Pi On is marked or on Pi if place
Pi Off is marked. An example fragment of the Petri net structure used for this
update is given in Figure 4.(b) for an arbitrary gene gi. The fragment contains
four transitions which represent the four possible update situations that can oc-
cur: move token from place Pi to Pi; leave token on Pi; move token from place
Pi to Pi; leave token on Pi. Only one of these transitions will be enabled to fire.
Once the gene gi has updated its state a token is placed on place Pi Done to
indicate that the next entity can be updated. When the last entity gn has been
updated place Pn Done will be marked and the control transition depicted in
Figure 4.(c) initiates a reset step which re-marks the start places, allowing the
whole synchronisation protocol to begin again.

So far we have assumed that we are always able to derive complete and con-
sistent truth tables which correctly capture the behaviour of each entity in a
regulatory network. However, in practice it is rarely the case that a regulatory
network is fully understood and indeed, this is one important reason for mod-
elling such networks. The data provided may be incomplete in the sense that
information is missing about what happens in certain states, or it may be in-
consistent in that we have conflicting information about states. The result is
that the behaviour of some entities under certain conditions may be unknown.
Such incomplete and/or inconsistent information is problematic for the standard
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Boolean network model which is unable to represent the possibility of more than
one next state. However, Petri nets are a non-deterministic modelling language
[21] and so are able to represent unknown behaviour by incorporating all possible
next state transitions. The idea is to simply allow the states with unknown be-
haviour to be used when deriving both the active and inactive Boolean formulas
for an entity. The resulting non-deterministic choices within the Petri net model
can then be meaningfully taken into account when analysing its behaviour.

The Petri net modelling approach presented above, while theoretically well–
founded, is not practical by hand for all but the smallest of models. To support
our modelling approach we have developed a prototype tool to automate the
model construction process detailed in Sections 3.1 and 3.2. The tool takes as
input a series of truth tables describing the behaviour of the entities in a Boolean
network. These input tables are allowed to contain inconsistent and incomplete
data as discussed above. From these tables the tool is able to automatically
construct a Petri net model which is based on either the synchronous or asyn-
chronous Boolean network semantics [8]. This prototype tool is freely available
for academic use and can be obtained from the project’s website1.

4 Case Study: Nutritional Stress Response in E. coli

In this section we present a detailed case study to demonstrate the modelling
techniques we have introduced and the practical application of Petri net analysis
techniques. We consider the bacterium E. coli which under normal environmental
conditions, when nutrients are freely available, is able to grow rapidly entering
an exponential phase of growth [13]. However, as important nutrients become
depleted and scarce the bacteria experiences nutritional stress and responds by
slowing down growth, eventually resulting in a stationary phase of growth. In
this case study we model a simplified version of the genetic regulatory network
responsible for the carbon starvation nutritional stress response in E. coli based
on the comprehensive data collated in [20]. We validate and analyse the resulting
Petri net model using PEP [29], a leading Petri net support tool.

4.1 Constructing the Petri Net Model

The genetic regulatory network underlying the stress response in E. coli to car-
bon starvation is shown abstractly in Figure 5 (adapted from [20]). The network
has a single input signal which indicates the presence or absence of carbon star-
vation and uses the level of stable RNA (ribosomal RNA and transfer RNA) as
indicative of the current phase of E. coli, i.e. during the exponential phase the
level of stable RNA is high to support rapid growth, while under the station-
ary phase the level drops, since only a maintenance metabolism is required [20].
The carbon starvation signal is transduced by the activation of adenylate cy-
clase (Cya), an enzyme which results in the production of the metabolite cAMP.

1 http://bioinf.ncl.ac.uk/gnapn
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This metabolite immediately binds with and activates the global regulator pro-
tein CRP, and the resulting cAMP.CRP complex is responsible for controlling
the expression of key global regulators including Fis and CRP itself. The global
regulatory protein Fis is central to the stress response and is responsible for pro-
moting the expression of stable RNA from the rrn operon [13,20]. Thus, during
the exponential phase high levels of Fis are normally observed and the mutual
repression that occurs between Fis and cAMP.CRP is thought to play a key role
in the regulatory network [20]. The expression of fis is also promoted by high
levels of negative supercoiling being present in the DNA. The level of DNA su-
percoiling is tightly regulated by two topoisomerases [13,20]: GyrAB (composed
of the products of genes gyrA and gyrB) which promotes supercoiling; and TopA
which removes supercoils. An increase in DNA supercoiling results in increased
expression of TopA and thus prevents excessive supercoiling. A decrease in su-
percoiling results in increased expression of gyrA and gyrB, and the resulting
high level of GyrAB acts to increase supercoiling.

CRP

Signal

GyrAB

TopA

Stable RNA

FisSuper
Coiling

cAMP.CRP

E

E

Legend

Entity

Implicit Entity

Activation

Inhibition

Cya

Fig. 5. Genetic network for carbon starvation stress response in E. coli

Using the data provided in [20] we are able to derive truth tables defining the
Boolean behaviour of each regulatory entity in the nutritional stress response
network for carbon starvation. As an example, consider the truth table defining
the behaviour of Cya shown in Figure 6. Note following the approach in [20], the
level of cAMP.CRP and DNA supercoiling are not explicitly modelled as entities
in our model.

The next step is to apply logic minimization to the truth tables we have
derived to extract Boolean expressions which compactly define the qualitative
behaviour of each regulatory entity. This process is automated by our prototype
tool and the result is the following set of Boolean equations:
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CRP Cya Signal Cya

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Fig. 6. Truth table defining the Boolean behaviour of Cya

Cya = Signal + Cya + CRP, Cya = Signal Cya CRP,

CRP = Fis, CRP = Fis,

GyrAB = (GyrAB Fis) + (TopA Fis),
GyrAB = (GyrAB TopA) + Fis,

TopA = GyrAB TopA Fis, TopA = GyrAB + TopA + Fis,

Fis = (Fis Signal GyrAB TopA) + (Fis Cya GyrAB TopA)
+ (Fis CRP GyrAB TopA),

Fis = (CRP Cya Signal) + Fis + GyrAB + TopA,

SRNA = Fis, SRNA = Fis.

The above equations can then be used to construct a Petri net model of the
nutritional stress response regulatory network for carbon starvation by applying
the approach detailed in Section 3.2. The result is a safe Petri net model that
contains 45 places and 49 transitions (based on the synchronous update seman-
tics). The above process can be automated using our prototype tool and the
resulting Petri net can then be exported to a wide range of Petri net tools [28].

4.2 Analysing the Petri Net Model

We now consider analysing the Petri net model which results above using the
PEP tool [29] and in particular, make use of model checking techniques [7,15].
Our aim is to illustrate the range of analysis possible using available tools, from
simple validation tests to more in–depth gene ‘knockout’ analysis.

We begin our analysis by performing a series of simple validation tests to check
the model is able to correctly switch between the exponential and stationary
phases of growth. The idea is to initialise the Petri net to a given state and then
simulate it, observing the states that occur after each application of the two
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phase commit protocol. The results of these simulations can then be compared
with the expected behaviour [13,20,2] to validate the model. As an example, we
consider validating that the model correctly switches from the exponential to the
stationary phase of growth. We initialise the Petri net to a state representing
the exponential phase but activate Signal to represent the presence of carbon
starvation. The resulting simulation run is presented in Figure 7, where the first
row represents the models initial state and each subsequent row the next state
observed. It shows that the model correctly switches to the stationary phase by
entering an attractor cycle of period two (see last three rows in table) in which
stable RNA is not present in significant levels (i.e. SRNA remains inactive).

Signal CRP Cya GyrAB TopA Fis SRNA

1 0 1 1 0 1 1

1 0 1 0 1 0 1

1 1 1 1 0 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

Fig. 7. Simulating the switch from exponential to stationary phase

To investigate the behaviour of the model in more detail we make use of the ex-
tended reachability analysis provided by the model checking tools of PEP [7,15].
For example, it appears from the literature that the entities GyrAB and TopA
should be mutually exclusive, i.e. whenever GyrAB is significantly expressed
then TopA shouldn’t be and vice a versa. We can verify this in our model by
formulating the following constraint on places:

GyrAB + TopA > 1, GyrAB Done = 1

which characterises a state in which the mutual exclusion property does not
hold (where the condition GyrAB Done = 1 is used to ensure we only consider
states reached after a complete pass of the two phase commit protocol). The
model checking tool is able to confirm that no state satisfying this constraint
is reachable from any reasonable initial state and this proves that GyrAB and
TopA must be mutually exclusive. We can attempt to prove a similar mutual
exclusion property for CRP and Fis using the same approach. However, this time
the model checking tool confirms that it is able to reach a state satisfying the
constraint, proving that CRP and Fis are not mutually exclusive in our model.
In fact, the tool returns a witness firing sequence which leads to such a state
to validate the result and we are able to automatically simulate this to gain
important insight into how this behaviour occurs.

We can extend our analysis further by experimenting with the underlying
structure of the Petri net model, adding or removing regulatory relationships to
test possible experimental hypotheses. To illustrate this we can consider inves-
tigating the effect of fixing the level of the global regulator CRP which is the
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target of the carbon starvation signal–transduction pathway [20]. We do this by
simply omitting the truth table for CRP from the construction process, resulting
in CRP being treated as an input entity (i.e. like the entity Signal) whose state
becomes fixed once initialised. We start by ‘knocking out’ crp so that it cannot
be expressed and then simulate the amended model to investigate the impact
of this change. As expected the results show that the transition from exponen-
tial to stationary phase is blocked; the lack of CRP prevents the formation of
cAMP.CRP which is needed to initiate the phase transition. Next we fix crp to
be permanently expressed and again simulate the model. Interestingly the re-
sults show that the behaviour of the network is largely unaffected by this change;
both the transition from exponential to stationary phase and vice a versa are
able to occur as normal.

5 Conclusions

The standard approach of using Boolean networks [1,3] to model genetic regu-
latory networks has a number of shortcomings: Boolean networks lack effective
analysis tools; and have problems coping with incomplete or inconsistent data.
In this paper we addressed the shortcomings of Boolean networks by presenting
a new approach for qualitatively modelling genetic regulatory networks based on
Petri nets [18]. The idea was to use logic minimization [4] to extract Boolean terms
representing the genetic network’s behaviour and to then directly translate these
into Petri net control structures. The result is a compact Petri net model that
correctly captures the dynamic behaviour of the original regulatory network and
which is amenable to detailed analysis via existing Petri net tools [28].

We illustrated our approach by modelling and analysing the genetic regulatory
network underlying the carbon starvation stress response in E. coli [20,2]. This
case study demonstrated how the PEP tool [29] can be used to validate and
analyse our Petri net models. In particular, we considered using simulation tests
to validate the correctness of our model and model checking tools [29,15] to
investigate the detailed behaviour of the genetic regulatory network.

The results we have presented significantly extend existing work on using
Boolean models to analyse genetic regulatory networks (e. g. [5]). In particular,
we see the key contributions of this paper as follows: i) A new compact approach
to qualitatively modelling genetic regulatory networks based on using logic min-
imization and Petri nets; ii) Both synchronous and asynchronous semantics of
Boolean networks [8] are catered for; iii) Provision of tool support to automate
model construction; iv) A detailed case study exploring the application of exist-
ing Petri net tools to analyse a Boolean model of a genetic regulatory network.

One drawback of Boolean models is that the high level of abstraction used
means behaviour crucial to the operation of a regulatory network may be lost.
In future work we intend to address this problem by extending our modelling
approach to multi–valued network models [16]. We intend to incorporate our
qualitative modelling tools into related work on Stochastic Petri net modelling
[23,24] and so provide much needed support in this important area.
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Abstract. This paper presents a method for regulatory network recon-
struction from experimental data. We propose a mathematical model for
regulatory interactions, based on the work of Thomas et al. [25] extended
with a stochastic element and provide an algorithm for reconstruction of
such models from gene expression time series. We examine mathematical
properties of the model and the reconstruction algorithm and test it on
expression profiles obtained from numerical simulation of known regu-
latory networks. We compare the reconstructed networks with the ones
reconstructed from the same data using Dynamic Bayesian Networks and
show that in these cases our method provides the same or better results.
The supplemental materials to this article are available from the website
http://bioputer.mimuw.edu.pl/papers/cmsb06

1 Introduction

Understanding the regulatory mechanisms of gene expression is one of the key
problems in molecular biology. Since such mechanisms are extremely hard to
study in vivo, many mathematical models were proposed to help understanding
the principles of regulatory network operation. The pioneering work in the field
of regulatory network modelling was done in the 1960s by S. Kauffman [9] who
showed that such fundamental phenomena of gene regulation as epigenesis and
stable convergence can be modelled with a very simple mathematical framework
of Boolean networks. This model was extended by Rene Thomas and co-workers
[24,25] leading to formulation of generalized logical description of regulatory
networks. It allowed to verify important properties of homeostatic networks by
examination of negative and positive feedback loops. Also some theorems con-
cerning the correspondence between generalized Boolean models and dynamical
systems were proved [20].

Generalized logical modeling approach was successfully applied to many ex-
perimentally studied biological regulatory circuits (e.g. [18,23,16,12,17,10,22])
showing that this formalism is well suited for representation of real biological
networks. However, it is difficult to reconstruct such networks from experimen-
tal data. The problem with reconstruction of such networks lies in the lack of
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a natural scoring function for different models for a given dataset. Even though
there are computational ways to effectively simulate such models (i.e. GINSim
software package [10]), it doesn’t help us with choosing the right model from
many possibilities.

On the other hand, one can approach the problem of gene network reconstruc-
tion on the basis of statistical data analysis. Particularly, there were many success-
ful applications of Bayesian networks [6] to recover regulatory dependencies from
expression data. For the particular case of reconstruction from expression time
profiles, the formalism of dynamic Bayesian networks is more appropriate, how-
ever currently available results [8,5] indicate that it is difficult to obtain reliable
predictions of network topology from unperturbed expression data.

Another approach to this problem is using a stochastic dynamical system to
model the dependencies of expression levels of genes. Chen et al. [3] managed
to reconstruct parameters for a system of stochastic differential equations from
Yeast cell cycle expression data [21]. This was possible with the assumption that
the expression of genes depends linearly on the expression of its regulators pre-
venting the method to predict correct dependencies in cases where the regulation
is non-linear. Beal et al.[2] proposed a similar approach using Bayesian methods
to recover the State Space Model with hidden factors. Despite the fact that it is
based on the assumed linear regulatory dependence the possibility of modelling
networks with non-observable factors is promising.

Both mentioned approaches have a very interesting feature of their respective
scoring functions: a penalizing factor for inclusion of too many edges. This is
essential for these methods to prevent over-fitting, since it is known that the
more dependencies we include in the model of such kind, the better we can
fit it to the data. However it is well known that parsimony is not the correct
criterion for selection of biological regulatory networks since the evolution selects
the networks that are robust and redundant rather than parsimonious.

In this work we present a novel modelling framework for regulatory networks,
called Stochastic Logical Networks (for brevity referred to as SLNs). It is based
on the formalism of generalized logical description of networks as introduced by
Thomas [24] extended with the stochastic factor leading to a simple and natural
scoring function based on calculating the likelihood of the model given the ob-
served data. We also provide an algorithm to find the most likely model for any
given dataset and evaluate its performance on simple examples of data simulated
from artificial feedback circuits (of size 2,3 and 4) modelling the homeostasis [25].
We compare the networks obtained from these data using our algorithm with
the ones obtained using Dynamic Bayesian Networks. In all three cases, the pre-
sented method is able to reconstruct the topology of the original network, while
using Dynamic Bayesian Networks it is possible only in two simpler cases.

2 Genetic Network Modelling

2.1 Gene Networks as Dynamical Systems

In order to describe the formalism of SLNs, we provide a brief introduction
into the way of modelling introduced by R. Thomas [24]. It is based on the
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assumption that a regulatory system can be accurately described as a dynamical
system of ordinary differential equations. We treat the state of the cell, i.e.
concentrations of all interesting gene products, as a vector of non-negative real
values v = 〈v1, v2, . . . , vn〉 ∈ Rn

+, dependent on time t, so the equations have the
following form:

∂vi

∂t
= −vi · λi + Fi(v), (1)

where Fi(v) denotes the production rate of gene vi depending on the state of all
genes, whereas λi represents the decay constant responsible for degrading the
gene product proportionally to its current concentration. To account for non-
linearity and combinatorial nature of the dependence of the production rate on
the state of regulators, the production rate of gene i is defined by Snoussi [20] as
a linear combination of products of sigmoid functions of expression of regulators:

Fi(v) =
∑

G⊆{1...n}
IG,i ·

∏
j∈G

Si,j(vj , θi,j), (2)

where IG,i ∈ + is the regulatory influence of the set of regulators G on gene i,
θi,j ∈ are the activation thresholds and Si,j is the sigmoid activation function
of gene i by gene j being one of the following:

S+(x, θ) = sigmk(x− θ) (3)
S−(x, θ) = 1− sigmk(x− θ), (4)

where sigmk(x) = (1+e−kx)−1 with a notable case of sigm∞ equal to the Heav-
iside step function. Different forms of Si,j represent different possible regulatory
interactions. If Si,j = S− we say that j is a repressor of i, otherwise j is an
enhancer of i.

2.2 Qualitative Approach

Rene Thomas observed, that qualitative behaviour of such systems can be mod-
elled as a non deterministic discrete process whose states correspond to dis-
cretized states of the original dynamical system. This is due to the fact that the
production rates of genes change substantially only around the threshold values
θi,j . If we consider the case with sigm∞ step function, the hyperplanes vj = θi,j

divide the phase space of the dynamical system into a finite set of disjoint parts
on which the production rates of all genes are constant. In such case, the be-
havior of the system is determined by the choice of production rates of all genes
in all discretized states. A simplistic example of a 2-gene negative feedback loop
with its phase space, dependency graph and discrete state graph is depicted in
Figure 1.

We use the notion of a discretization mapping δ(v) = 〈δ1(v1) . . . δn〉, where
each δi is a mapping of the i−th variable into its discrete values using the
thresholds {θi,j}j=1..n. We also denote the space of all discrete states by Σn =
{0 . . .n}n
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Fig. 1. An example of a dynamical system consisting of two genes: X and Y (a). Its
phase space (b), ODEs (c) and state graph (d).

Evolution of the discretized system can be derived from equations governing
the dynamical system. If we assume that Si,j are indeed Heaviside step functions,
the value of the regulation functions Fi(v) is constant between the thresholds
θi,j . Therefore for each discrete state σ, corresponding to the discretization do-
main δ−1(σ), there exist constant production rates Fi(σ) of all genes, such that:

∀v∈δ−1(σ)Fi(v) = Fi(σ).

However, the Heaviside regulatory functions introduce discontinuity in the right-
hand-side of ordinary differential equations for points in the state-space where
vj = θi,j . We call such points singular, and exclude them from further analysis.
This can be done without loss of generality since the measure of the set of
singular points is 0.

After Thomas[24],we use the notion of an image function R of a discrete state
σ:

R(σ) = 〈δ1(
F1

λ1
), . . . , δn(

Fn

λn
)〉.

If a state is the image of itself, we call it stable. Otherwise, since there may
be different trajectories of the dynamical system traversing this discretization
domain, the state succession is non-deterministic. For each discrete non-stable
state σ we define a set of successor states succσ containing all neighbouring
discrete states σ′ such that there exists a trajectory in the dynamical system
going from δ−1(σ) directly to δ−1(σ′). We use the notation of σ → σ′ to denote
the fact that σ′ ∈ succσ. The generalization of a successor state is its transitive
closure: the reachability relation σ →+ σ′.

2.3 Network Reconstruction

Snoussi [20] showed that the qualitative approach is in strict correspondence
with the dynamical system with respect to non-singular steady states i.e. the
existence of a non-singular steady state in the dynamical system is equivalent
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to the existence of a steady state in the discretized system. We are more in-
terested in the analysis of expression time-series data, so we need to focus on
the more complex relationship between the deterministic dynamical system and
non-deterministic qualitative approach.

Since we are interested in the topology of the dependencies between the vari-
ables, we need to be able to reconstruct the dependency graph given the image
function R. For this reason need a link between the function R and the topology
of the network G = 〈V, E〉, where vertices correspond to variables V = {1..n}
and directed edges 〈u, v〉 ∈ E represent regulatory dependencies as follows:

〈u, v〉 ∈ E If and only if there exist states σ1, σ2

such that σ1(u) �= σ2(u) and for all genes u′ �= u

σ1(u′) = σ2(u′) and R(σ1)(v) �= R(σ2)(v)
(5)

i.e. variable v depends on u (〈u, v〉 ∈ E) if and only if there is a state σ such that
we can change its image at v just by changing the concentration of the gene u.

Our task is to reconstruct network topology, given the expression time-series.
We assume that the data consists of one or more series of slides, each of which
contains the discretized expression levels of all genes in the system at certain
times. This can be directly mapped to our discrete model as a set of pairs of
observed states D = {〈o1, o2〉, . . . , 〈om−1, om〉}. In order to reconstruct the model
from such dataset, we need a measure of compatibility between the model and the
dataset. We can say that model is a realization of a dataset if all the consecutive
observed states are reachable in the model:

∀〈σ,σ′〉∈D σ →+ σ′. (6)

Such condition is unfortunately not sufficient for reconstruction of the correct
network from data. There are just too many models for any dataset that satisfy
the equation (6). What’s even worse, we cannot apply the parsimony criterion
choosing the simplest model for a given dataset because there always exist a
very simple “chaotic” network realizing all possible trajectories.

2.4 Stochastic Logical Networks

We propose a solution to the problem of choosing the right realization for a
given dataset based on the introduction of a stochastic factor to the differential
equations. Doing this at the level of a dynamical system and not at the level of
a discrete model, as in other approaches such as Probabilistic Boolean Networks
[19], seems more natural since the randomness in biological processes comes from
small fluctuations in continuous quantities. To introduce the stochasticity into
our system, we follow the common practice of adding white noise in the form
of an independent Wiener processes Wi(t) scaled for each variable by εi to the
right-hand side of differential equations (1) obtaining the following

dvi = (Fi(v)− vi · λi)dt + εidWi(t). (7)
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If we use the regulation functions Fi as defined in equation (2) and apply
the same discretization mapping δ we obtain a stochastic system consisting of a
finite set of disjoint domains. In each of this domains we observe a multivariate
Brownian motion with linear drift – a very well studied mathematical model.
What we are interested in, is a discrete stochastic process representing the move-
ments of the Brownian motion between domains through time that correspond
to the changes of qualitative behaviour of the whole system. For our consider-
ations it is important to find the relationship between the parameters of the
discrete process and the dynamical system. Since it is not tractable to analyze
the dynamics of such systems in general, we make a simplifying assumption that
our process is Markovian i.e. that the probability of moving from one domain
to another depends solely on the current discrete state. It is important to note
that it is exactly the same assumption that gives raise to the analysis of the
successor states in the qualitative approach by Thomas. Given parameters of
the dynamical model, probability distribution on the neighbouring states for all
states of the discrete Markov process can be calculated. Once we have this dis-
tribution, we can consider the obtained Markov chain as a reference model for
the regulatory network. This allows us to reformulate our problem into finding
the most likely Markov model given the observed trajectories.

2.5 SLN Models and Experimental Data Discretization

As we have noted in our previous work on Dynamic Bayesian Networks recon-
struction [5] the parameters of the discretization procedure have a strong impact
on the results of the network reconstruction. Since we assume in this approach
that we are given already discretized data it follows that we should not rely on
the correctness of the discretization process itself. The choice of the discretiza-
tion thresholds heavily influence the behavior of our model. For this reason, we
treat the discretized data as the observations of the trajectories of a Hidden
Markov Model whose states correspond to qualitative states of the network.

3 Network Topology Reconstruction from Expression
Time-Series

After explaining the rationale behind our methodology we can present the pro-
posed algorithm for network topology reconstruction. We assume that we are
given time-series of discretized expression profiles and we try to find the topol-
ogy of the most likely SLN model. Our method consists of the following three
steps:

1. Estimation of the HMM parameters using modified Baum-Welch [1] algo-
rithm,

2. Reduction of the observation probability matrix to the most likely matching
between states and observations,

3. Finding the topology of the SLN, given the transition probabilities

which are described in detail in the following sections.
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3.1 HMM Reconstruction

The problem of HMM parameter estimation can be stated as follows: Given a
set of states S = {s1, . . . , sl}, a set of possible observations Σ = {σ1, . . . , σm},
and a set of observed trajectories (encoded as pairs of consecutive states) O =
{〈o1, o2〉, . . . 〈ok−1, ok〉}, estimate the most probable HMM consisting of the tran-
sition probability matrix T = 〈tij〉1≤i,j≤l and the observation matrix O =
〈pij〉1≤i≤l,1≤j≤m where tij is the probability of a transition from state si to
sj and pij denotes the probability of observing the symbol σj while in state si.
This problem has been thoroughly studied [15] and there is no known way of
solving it analytically. However a solution can be approximated with the well-
known Baum-Welch algorithm [1] which belongs to the class of Expectation-
Maximization (EM) heuristic algorithms.

Since we are dealing with n genes, both the observations O and states S
correspond to discretized states of the network, so they can be represented as
vectors of length n of discrete variable states. We recall, that in a SLN consisting
of n genes, each variable can have at most n + 1 discrete states (induced by at
most n thresholds), we can use the set {0, 1, . . . , n} for encoding these states.
However our case is different from the classical one in an important aspect. Since
the model explicitly can change the state of only one variable at a time we cannot
assume (as it is often done with Dynamic Bayesian Networks) that we observe
all consecutive states on a trajectory. Instead, we have to take into account the
possibility that some consecutive observations 〈oi, oi+1〉 ∈ O are not adjacent
in the discrete state space. In such cases we decided to remove such pairs from
our dataset and replace them with observations of consecutive states on every
possible shortest path from oi to oi+1. This method is very simple and leads
to a natural distribution of transition probabilities as shown by the example in
Figure 2.

It is clear, that after such pre-processing step, the Baum-Welch algorithm
always converges with probability of “jumping” from observed states directly to
a non-adjacent state close1 to 0, which is consistent with the definition of SLNs.

3.2 Reducing the Observation Matrix

Since the procedure of HMM parameter estimation is an EM algorithm, it con-
verges to a local minimum of the likelihood function. The problem, however,
with the interpretation of the result is the fact that the value of the likelihood
function is insensitive to permuting the labels of the states of the HMM. We
interpret the states of the HMM as the qualitative states of the system and
assume that there is a 1 − 1 correspondence between states and observations
but the HMM estimation gives us only the matrices and not the correspondence
relationship r : Σn → Σn.

Once we have completed the HMM estimation from a given dataset, we need to
reconstruct that mapping from the observationprobability matrix O. The problem
1 It is never exactly 0, since the algorithm itself relies on the ergodicity of the Markov

chain.
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Fig. 2. Example of HMM reconstruction from non-adjacent observations. We consider
a 2−gene SLN and observation set {〈(0, 0), (2, 2)〉}. We can see the observation counts
for all edges given by our procedure (a) and the resulting HMM transition probabilities
(b).

of finding themost probable permutation of states given thematrixO is an instance
of the well known problem of finding the maximum weight bipartite matching. We
can consider the matrix O as a weight matrix in the fully connected bipartite graph
between states and observations. Finding such a matching, which gives us the 1−1
correspondence we need, can be solved in polynomial time O(n2 log n) [11]. Once
we calculate the best matching between the states of the HMM and the observa-
tions, we can label the states with the observations and obtain a regular Markov
Model, which can be interpreted as a SLN.

As an interesting by-product of this procedure we can calculate the matching
quality

q(r, O) =
∏

σ∈Σn

oσ,r(σ).

It can be interpreted as a measure (ranging from 0 to 1) of the quality of the
discretization procedure used to obtain the data. The higher the score, the more
confident we are that the discretization procedure matches the qualitative behav-
iour of the system. It is especially important in the case of real biological data,
where we have no simple measures of the discretization quality. It is also possible,
that differentHMMswith the same likelihoodhave differentmatching quality.This
leads to a modification of the algorithm: since we are interested in finding a HMM
with high quality matching, we employ the multi-start procedure to find multiple
locally optimal HMMs and select the one with the best matching quality.

It is important to properly discern between the matching quality q and the
likelihood of the HMM model. The latter is the likelihood of the HMM model
given the observed discretized data. The matching quality is the trace of the
observation matrix permuted according to the matching r used only to select
the best matching model among the ones with the best HMM likelihood.
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3.3 Identifying Network Topology

Given a SLN model we want to uncover the dependencies between variables
encoded in the discrete Markov process states. We can recall that the topology
of the network was defined by the equivalence (5) using the properties of the
image function. Unfortunately, without the full knowledge of the parameters
of our dynamical system (such as noise ratios), we cannot recover the exact
topology. In case of multidimensional SLN, the probabilities of changing the
state of a gene i in a given direction while being in state σ can be influenced by
different image of σ in other variables. However, when we consider the normalized
probabilities p̂i

+(σ) = p+
i (σ)/p+

i (σ)+p−i (σ) and p̂i
−(σ) = p−i (σ)/p+

i (σ)+p−i (σ),
where p

+/−
i (σ) denotes the probability of increase/decrease in variable i while

in state σ, the problem reduces to an independent one-dimensional case. This
leads to a reformulated definition of the network topology (5):

〈i, j〉 ∈ E if and only if there exist states σ1, σ2

such that σ1(i) �= σ2(i) and for all genes i′ �= i

σ1(i′) = σ2(i′) and p̂j
+(σ1) �= p̂j

+(σ2).

(8)

We can safely compare only the probabilities of increase: p̂i
+, since p̂i

−(σ) =
1 − p̂i

+(σ). Using this definition would not be practical. Since we are dealing
with numerical solutions we needed to weaken the sharp inequality in (8) by
using a suitably chosen threshold d:

〈i, j〉 ∈ E if and only if there exist states σ1, σ2

such that σ1(i) �= σ2(i) and for all genes i′ �= i

σ1(i′) = σ2(i′) and |p̂j
+(σ1)− p̂j

+(σ2)| > d.

(9)

Using the definition (9) we can reconstruct the topology of the whole network
in a single scan of the transition matrix of a given Markov Chain.

4 In Silico Experiments

In order to test the performance of a network reconstruction method, one needs
a proper dataset taken from a network with known topology. For this reasons,
we decided to use artificial networks and simulate the expression profiles. This
kind of evaluation can tell us exactly where are the errors, both in terms of false
positives and false negatives. We have chosen three negative feedback loops (see
Fig. 3 of size 2,3 and 4, presented in the book by Thomas and d’Ari [25] and used
our stochastic dynamical model to simulate the expression time-series for these
systems. Next we have discretized the data and sampled them in order to obtain
a dataset large enough to reconstruct the topology. We tried to reconstruct the
topology of regulatory networks using our method and compared it to the results
obtained by the more established framework of dynamic Bayesian networks.
In the following sections we describe the methodology used for artificial data
generation and discuss the results of the reconstruction.
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4.1 Simulating Expression Data

We have numerically simulated (using methods described by Higham [7] im-
plemented in GNU Octave system) stochastic differential models for the three
models presented in Figure 3. Our experiments with different noise-to-signal
ratios (data not shown), verified that these circuits are very noise-resistant so
we used the noise-to-signal ratio equal to 3/2 in our experiments. In order to
make our simulations closer to reality of DNA-array experiments we follow the
common practice of averaging over a number of independent trajectories of the
system started from the same state. The trajectories were then discretized into
binary discrete values (above and below mean observed value) and sampled (one
slide after each state change) in order to obtain reasonably sized datasets.

(a) (b) (c)

Fig. 3. Topology of the simulated networks. 2-gene (a), 3-gene (b) and 4-gene (c)
negative feedback loops. Using our method, we have reconstructed exactly the same
topology in all three cases.

An example of the simulated averaged trajectories is shown in Figure 4. It is
interesting, that the strong effect of random noise visible in single trajectories
is diminishing as the number of averaged trajectories is increased (with no no-
ticeable change above 100). Also, another phenomenon can be observed: in the
averaged trajectories the amplitude of the changes decreases in time (which is
not observed in single trajectories). This is due to the lack of synchronization in
time among the trajectories which corresponds to the behavior of cell lines used
for production of expression time-series data.

4.2 Reconstructing Feedback Loops

Since we want to test the ability of our algorithm to reconstruct network topology
from simulated time-series data, we need a network displaying oscillatory behav-
ior. Thomas [25] observed, that negative feedback loop is a necessary feature of
networks showing such behavior. We have chosen the three negative feedback
loops analyzed by Thomas [25] depicted in Figure 3 as the simplest test set for
our evaluation.
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(a) (b) (c)

Fig. 4. Simulated trajectories of the 4-gene feedback loop with the noise to regulation
ratio is 3/2 and different number of averaged cells: 1:(a), 10:(b) and 100(c)

We have constructed stochastic differential models (available in the supple-
mental material at http://bioputer.mimuw.edu.pl/papers/cmsb06) for all
those systems and obtained the synthetic time-series from them as described
in Section 4.1. Our algorithm was able to reconstruct the topology of all net-
works and assign labels to the edges correctly for the noise-to-signal ratio up to
3/2.

4.3 Comparison with Dynamic Bayesian Networks

To put the results of our algorithm into perspective we compare it with another
approach. Since we are dealing with feedback loops, we cannot use the most
often used formalism of Bayesian Networks because they cannot represent cyclic
dependencies. For this reason we compare our results with Dynamic Bayesian
Networks, a modification of Bayesian Networks approach designed specifically
for this task by Murphy [13]. The problem of inferring Bayesian Networks from
data is NP-hard [4] however, since the feedback loops considered are very small,
we can employ the exact algorithm proposed by Ott [14]. in Figure 5 we present
the models obtained using this procedure (using BDe [6] scoring function) on
the same data as described in the previous section.

(a) (b) (c)

Fig. 5. Reconstruction of the networks from Figure 3 using dynamic Bayesian networks
with the BDe scoring function
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5 Conclusions

In this work we propose a new approach to the important problem of regula-
tory network reconstruction. It is based on the well established formalism of
qualitative analysis introduced by Thomas extended by introducing a stochastic
component. It provides us with a continuous space of possible models and a nat-
ural likelihood function allowing us to choose the one that best fits the data. The
use of Hidden Markov Models to account for the uncertainty of the discretiza-
tion quality gives us an external measure of the quality of discretization based
on the estimated model. It may help us to identify wrong discretization of the
data as well as choose the best model from many locally optimal solutions. The
experiments show that this indeed leads to a better estimation of small feed-
back loops than it is possible with Dynamic Bayesian Networks (with the most
commonly used scoring functions). It shows that this method has a potential for
eliminating the need for parsimony criterion essential for Bayesian networks and,
due to the close relation with dynamical systems, for analyzing the dynamics of
the reconstructed models.

The main drawback of the method is currently the need to estimate the model
with the number of parameters which is exponential in the number of genes. Our
current work focuses on the possibilities of limiting the number of required para-
meters by excluding from our considerations the ones that cannot be estimated
from the given data.
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Abstract. Recent high throughput techniques in molecular biology have
brought about the possibility of directly identifying the architecture of
regulatory networks on a genome-wide scale. However, the computational
task of estimating fine-grained models on a genome-wide scale is daunt-
ing. Therefore, it is of great importance to be able to reliably identify
submodules of the network that can be effectively modelled as indepen-
dent subunits. In this paper we present a procedure to obtain submodules
of a cellular network by using information from gene-expression measure-
ments. We integrate network architecture data with genome-wide gene
expression measurements in order to determine which regulatory rela-
tions are actually confirmed by the expression data. We then use this
information to obtain non-trivial submodules of the regulatory network
using two distinct algorithms, a naive exhaustive algorithm and a spec-
tral algorithm based on the eigendecomposition of an affinity matrix.
We test our method on two yeast biological data sets, using regulatory
information obtained from chromatin immunoprecipitation.

1 Introduction

The modelling of cellular networks has undergone a revolution in recent years.
The advent of high throughput techniques such as microarrays and chromatin
immunoprecipitation (ChIP [1,2]) has resulted in a rapid increase in the amount
of data available, so that it is possible to measure on a genome-wide scale both
the expression levels of thousands of genes and the architecture (connectivity)
of the regulatory network which links genes to their regulators (transcription
factors). However, this data is often very noisy, and the sheer amount of data
makes the development of quantitative fine grained models impossible.

Gene networks are frequently modelled in very different ways at different
scales [3]. Network modelling at the genome-wide scale is often limited to the
topology of networks. For example, Luscombe et al. used a large database con-
structed by integrating all available data on transcriptional regulation from a
variety of sources (ChIP-on-chip, protein interaction data, etc.) to model the
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changes in the topology of the yeast regulatory network in different experimental
conditions [4]. While this result was per se of great importance in furthering our
understanding of transcriptional regulation, it is not clear how this approach
could be used to model the dynamics of the system. At the other end of the
spectrum [5], small networks consisting of a few transcription factors and their
established target genes are often modelled in a realistic fine grained way, al-
lowing for a quantitative explanation of qualitative behaviours in the cellular
processes such as cycles, spatial gradients, etc.

While these fine grained models are often very successful in describing spe-
cific processes, they rely on rather strong assumptions. First of all, they need
the regulatory links they exploit to be true regulations. While there is a growing
number of experimentally validated regulatory relations in a number of organ-
isms, the main techniques to study regulatory networks on a genome-wide scale
are ChIP-on-chip [1] and motif conservation [6]. However, it is well known that
ChIP-on-chip only measures the binding of a transcription factor to the pro-
moter region of the gene. While binding is obviously a necessary condition for
transcription to be initiated, there is abundant biological evidence [7] that shows
that it is not a sufficient condition. Therefore, we may expect that interpreting
ChIP-on-chip data as evidence for regulation may lead to many false positives,
which would obviously be a big problem for any fine grained model. As for motif
conservation, it is often difficult to assign a motif to a unique transcription fac-
tor and large numbers of false positives can be expected. Secondly, the system
modelled should be reasonably isolated from the rest of the cell. Often collateral
processes are simply modelled as noise in fine grained models, and this approx-
imation would clearly break down in the presence of strong interactions with
variables not included in the model.

We recently presented a probabilistic dynamical model which allowed us to
infer both the active transcription factor protein concentrations and the intensity
of the regulatory links between transcription factors and their target genes [8,9].
The model was computationally efficient so that the network could be modelled
at the genome level, and its probabilistic nature meant that we could estimate
the whole probability distribution of the concentrations and regulatory intensities,
rather than just providing point estimates. This means that the significance level
of the regulatory interactions could be assessed. This information can be used in
many ways: for example, one may use it to obtain a refinement of the ChIP data,
so that regulatory relations below a certain significance threshold are effectively
treated as false positives. However, the information about the absolute value
of the regulatory intensity is also of interest, since low intensity regulations
(however significant) could be ignored when trying to obtain submodules of
manageable size.

The main novelty of this paper is to present two algorithms to obtain sub-
modules of regulatory networks. The first algorithm is a simple exhaustive search
algorithm. While in principle this is applicable to any network with binary con-
nectivity, it obtains biologically relevant submodules when applied to a net-
work comprising significant regulations only. The second algorithm is a spectral
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method based on an eigenvalue decomposition of an affinity matrix and on a
generalisation of the spectral clustering algorithm described in [10]. This takes
into account the absolute value of the regulatory intensity and has the advan-
tage of providing a natural way of ranking the submodules according to their
importance in the global cellular network.

The paper is organised as follows: we first briefly review the probabilistic
model used to infer the regulatory intensities. We then present the two algo-
rithms to identify submodules of the regulatory network. In the results section
we demonstrate our approach on two yeast data sets, the benchmark cell cycle
data set of [11] and the more recent metabolic cycle data set of [12]. Finally, we
discuss the relative merits of the two algorithms we proposed and their validity
as an alternative approach to existing graph clustering algorithms.

2 Quantitative Inference of Regulatory Networks

Here we briefly review the probabilistic dynamical model for inference of regula-
tory networks proposed in [9]. This builds on the model presented in [8], which
in turn extends the linear regression approach, first introduced in [13], to take
into account gene-specific effects. We have (log transformed) expression level
measurements ynt for N genes at T time points. We assume that the binding of
q transcription factors to the N genes is known (for example via ChIP-on-chip
experiments), so that we have a binary matrix X whose nm entry Xnm is one
if gene n is bound by transcription factor m and zero otherwise. We can then
write down our model as

ynt =
q∑

m=1

Xnmbnmcmt + µn + εnt. (1)

Here bnm represents the regulatory intensity with which transcription factor
m enhances gene n (negative intensity models repression), cmt models the (log)
active protein concentration of transcription factor m at time t, µn is the baseline
expression level of gene n and εnt ∼ N

(
0, σ2

)
is an error term.

The model is then specified by a choice of prior distributions on the random
variables bnm, cmt and µn. We assign spherical Gaussian priors to the regulatory
intensities and the baseline expression level

bnm ∼ N
(
0, α2

)
µn ∼ N (τ, β) .

The choice of prior distribution on the concentrations cmt depends on the
specific biological situation we wish to model. For example, for independent
samples we may assume that the prior distribution on cmt factorises along time
t. As we are going to model time series data, an appropriate choice for the prior
distribution on cmt is a time-stationary Markov chain
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cmt = γmcm(t−1) + ηmt

ηmt ∼ N
(
0, 1− γ2

m

)
(2)

cm1 ∼ N (0, 1) .

The variance in (2) is chosen so that the process is stationary, i.e. the expected
changes over a period of time ∆t depend only on the length of the time inter-
val, not on its starting or finishing point. The parameters γm ∈ [0, 1] model
the temporal continuity of the sequence cmt. Values of γm close to 1 lead to
smoothly varying samples, with contiguous time points having very similar val-
ues of concentration. On the other hand, low values of γm lead to samples with
little correlation among time points, so that in the limit of γm = 0 the modelling
situation of independent time points is recovered.

Having selected prior distributions for the latent variables bnm, cmt and µn we
can use equation (1) to compute a joint likelihood for all the latent and observed
variables

p (ynt, bnm, cmt, µn|X) =
= p (ynt|bnm, cmt, µn, X) p (bnm|α) p (cmt|γm) p (µn|τ, β) .

(3)

We can then estimate the hyperparameters α, γm, σ, τ and β by type II max-
imum likelihood. Unfortunately, exact marginalisation of equation (3) is not
possible and we have to resort to approximate numerical methods. This can be
done e.g. using a variational EM algorithm as proposed in [9], where details of
the implementation are given.

Once the hyperparameters have been estimated, we can obtain the posterior
distribution for the latent variables given the data using Bayes’ theorem

p (b, c, µ|y) =
p (y|b, c, µ) p (b, c, µ)∫

p (y, b, c, µ)dbdcdµ
. (4)

3 Identifying Submodules

3.1 Naive Approach

Given the posterior probability on the regulatory intensities bnm, one can asso-
ciate a significance level to each regulatory interaction by considering the ratio
between the posterior means and the associated standard deviations. One can
then obtain a refined network structure comprising only of significant regula-
tory relations by considering only relations above a certain significance thresh-
old (which can be viewed as the only parameter in this algorithm). It is then
straightforward to find submodules in a regulatory network with binary con-
nectivity. One can start with any transcription factor and subsequently include
other transcription factors which have common targets with the first one. This
can be iterated and it will obviously converge to a unique set of submodules.
This procedure is schematically described in Algorithm 1.
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Algorithm 1. Identify submodules of a network with binary connectivity
Input data: set R of regulators, set G of genes, regulatory intensities bnm;
Construct a binary connectivity matrix X by thresholding the intensities
repeat

Choose a regulator r1 ∈ R. Include the set of all its target genes Gr1 ⊂ G;
repeat

Include the set of regulators other than r1 regulating genes in Gr1, RGr1 ⊂ R;
Include all genes regulated by RGr1 not included in Gr1;

until No new genes are found;
Output reduced sets Rm, Gm for the submodule and R̄, Ḡ for the elements not
included in the submodule;

until R̄, Ḡ are the empty set.

3.2 Introducing the Regulatory Intensities

The main drawback of the procedure outlined in Algorithm 1 is that it does not
take into account the information about the regulatory intensities, apart from
using it as a guideline to introduce thresholds of significance. Specifically, it only
exploits the outputs of the probabilistic model in order to obtain a refinement
of the network architecture, which is only a minimal part of the information
contained in the posterior distribution over bnm.

However, when trying to identify submodules considering all the available
information on the regulatory intensities, we may find that there are few truly
independent submodules, and it might be hard to manually determine which
submodules are approximately independent. In practice, we would like to be
able to have an automated way to obtain submodules.

Since our probabilistic model reconstructs transcription factors concentrations
and regulatory intensities from time-course microarray data, we can interpret the
regulatory strengths as a measure of the involvement of a transcription factor in
the cellular processes in which its target genes participate. A standard technique
for retrieving genes associated with (approximately independent) cellular pro-
cesses is PCA (also known as SVD, [14]). However, the eigengenes retrieved by
PCA are not necessarily disjoint in terms of gene participation, in particular the
same genes can be represented in different eigengenes, mirroring the biological
fact that the same genes can participate in more than one cellular process. While
this constitutes an important piece of information in its own right, it could be
a drawback from the point of view of identifying independent submodules. We
therefore propose a modified algorithm which extends the spectral clustering
algorithm developed in [10].

Given the posterior distribution over the regulatory intensities

p (bnm|y) ∼ N (bnm|b̄nm, σ2
bnm

)
we construct an affinity matrix C between transcription factors using the formula

Cij =
∣∣〈bT

i 〉
∣∣ |〈bj〉| . (5)
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Algorithm 2. Identifying transcription factors associated with submodules of
a network using the regulatory intensities.

Input data: affinity matrix A;
repeat

Compute the eigendecomposition of A, giving eigenvalues λi and eigenvectors
E = {ei}, i = 1, . . . , q;
Define B = {e1}, B̄ = E − B
If ei ∈ B̄ is such that |ej|T |ei| = 0 ∀ej ∈ B, include ei in B;

until No such ei can be found

Here, 〈bi〉 denotes the posterior expectation of the vector containing the regula-
tory intensities with which transcription factor i influences all the genes in the
genome (set to zero for genes that are not bound by that transcription factor).
We use the absolute value of the intensity since for the purpose of identifying
submodules we are not interested in the sign of the regulation. According to
this formula, then, two transcription factors will have high similarity if they
coregulate with high intensity a large number of target genes.

If we assume that there are p independent submodules, with strong internal
links, the affinity matrix (5) will be have p blocks on the diagonal (up to a
reordering of the rows and columns) showing a very high internal covariance,
while the remaining off-diagonal entries will be much smaller. By identifying
these blocks, one can then obtain the transcription factors involved in the sub-
modules. The blocks can be obtained by noticing that, for a non-degenerate
spectrum (which holds with probability 1), the eigenvectors of C will present a
block structure too, so that eigenvectors pertaining to different blocks will have
non-zero entries in different positions. By selecting exactly one eigenvector per
each block we obtain a set of clustering eigenvectors1, and we can obtain the
transcription factors belonging to different modules by considering the nonzero
entries of the clustering eigenvectors. Furthermore, the eigenvalues associated
with the clustering eigenvectors are monotonically related to the total regu-
latory intensity associated with the submodule (the sum of all the regulatory
intensities of all the links in the network). Therefore, we can use the eigenval-
ues to rank the various submodules in terms of their importance in the overall
network. A strategy to identify the submodules can therefore be obtained as
outlined in Algorithm 2.

If the modules are not exactly independent, but links between modules are
characterised by low regulatory intensity, we can introduce a sensitivity param-
eter θ and replace step 3 in algorithm 2 by |ej|T |ei| < θ ∀ej ∈ B. As the
eigenvectors of a matrix with non-degenerate spectrum are stable under pertur-
bations, we are guaranteed that, for suitably small choices of θ, approximately
independent submodules will be found.

In practice, it is often the case in biological networks that there are few sub-
modules of the regulatory network active in a given experimental condition, so
1 The name is chosen for their analogy with spectral clustering [10].
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that we may expect the submodules identified by the clustering eigenvectors
with highest associated eigenvalue to be biologically relevant, while submodules
associated with small eigenvalues will be less relevant.

The simplicity of the algorithm leads to several advantages. For example, by
considering the eigenvectors of the dual matrix

Klp =
q∑

i=1

|〈bli〉| |〈bpi〉| , (6)

one can retrieve the genes involved in the submodules.

4 Results

4.1 Data Sets

We tested our method on two yeast data sets, the benchmark cell cycle data
set of [11] and the recent metabolic cycle data set of [12]. These data sets were
analysed in our recent studies [8,9]. The connectivity data we used in both cases
was obtained using ChIP: for the metabolic cycle data, we used the recent ChIP
data of [1], while for the cell cycle data we chose to use the older ChIP data of
[2] since this combination has been extensively studied in the literature [15, and
references therein]. The ChIP data is continuous, but, following the suggestion
of [2], we binarised it by giving a one value when the associated p-value was
smaller than 10−3. This was shown in [8] to be a reasonable choice of cut-off, as
it retained many regulatory relations while keeping the number of false positives
reasonable.

4.2 Cell Cycle Data

Spellman et al. [11] used cDNA microarrays to monitor the gene expression levels
of 6181 genes during the yeast cell cycle, discovering that over 800 genes are cell
cycle-regulated. Cells were synchronised using different experimental techniques.
We selected the cdc15 data set, consisting of 24 experimental points in a time
sequence.

The connectivity data we used for this data set was that obtained by [2]. In
this study, ChIP was performed on 113 transcription factors, monitoring their
binding to 6270 genes.

We removed from the data set genes which were not bound by any transcrip-
tion factor and transcription factors not binding any gene. We also removed the
expression data of genes with five or more missing values in the microarray data,
leaving a network of 1975 genes and 104 transcription factors.

For the purposes of identifying submodules, we are primarily interested in
the regulatory intensities with which transcription factors regulate target genes.
Therefore, we will use the model described in Section 2 to obtain posterior
estimates for the regulatory intensities bnm. Also, we will be interested primarily
in nontrivial submodules, i.e. submodules involving more than one regulator.
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Identifying submodules using the ChIP data. As ChIP monitors only
the binding of transcription factors to promoter regions of genes, and not the
actual regulation, we may expect that many true positives at the binding level
are actually false positives at the regulatory level. For example, the ChIP data
of [2], using a p-value of 10−3, gives 3656 bindings involving 104 transcription
factors and 1975 genes. However, if we consider the posterior statistics for the
regulatory intensities, we see that most of these bindings are not associated
with a regulatory intensity significantly different from zero. Specifically, only
1238 bindings are associated with a regulatory intensity greater than twice its
posterior error (significant with 95% confidence), and only 749 are significant at
99% confidence level.

This large number of false positives is a serious problem when trying to iden-
tify submodules. For example, if we use the naive Algorithm 1 directly on the
ChIP data, we obtain only one nontrivial2 submodule involving 100 transcrip-
tion factors and 1957 genes. Obviously, the usefulness of such information is very
limited.

Identifying submodules using significant regulations. Things change dra-
matically if we construct a binary connectivity matrix by considering only sig-
nificant regulatory relations. In order to avoid obtaining too large components,
we fixed the thresholding parameter to be equal to four. At this stringent sig-
nificance threshold the network size reduces significantly, as there are now 81
transcription factors regulating a total of 438 genes. More importantly, there are
now nine distinct nontrivial submodules of the regulatory network, each involv-
ing between two and thirteen transcription factors.

The submodules identified are highly coherent functionally. To appreciate this,
we follow [2] and group transcription factors into five broad functional categories
according to the function of their target genes. These categories are cell cycle,
developmental processes, DNA/RNA biosynthesis, environmental response and
metabolism [2, see Figure 5 inset]. We then see that the largest submodule,
consisting of 13 transcription factors regulating 117 genes, is largely made up of
transcription factors functionally related to the cell cycle. In fact, all of the active
transcription factors functionally related to the cell cycle (with the exception of
SKN7 and SWI6 which are not involved in any nontrivial module) belong to this
submodule. These are ACE2, FKH1, FKH2, MBP1, MCM1, NDD1, SWI4 and
SWI5. Among the other transcription factors in the module, three (STE12, DIG1
and PHD1) are associated with developmental processes and the remaining two
(RLM1 and RFX1) are associated with environmental response. The presence
of these transcription factors in the same module could indicate a coupling be-
tween different cellular processes (for example, it is reasonable that cell cycle
and cell development could be coupled), but it could also be due to the fact that
certain transcription factors may be involved in more than one cellular process,

2 There are four trivial submodules made up of a single transcription factor regulating
genes with only one regulator.
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Fig. 1. Graphical representation of the nontrivial part of the cell cycle submodule of
the regulatory network obtained by considering only significant regulatory relations.
The boxes represent the transcription factors, the inner vertices represent the 19 genes
regulated by more than one transcription factor.

hence rendering the boundaries between functional categories somewhat fuzzy.
A graphical representation3of this submodule is given in Figure 1.

The smaller submodules exhibit similar functional coherence. For example,
there are four independent submodules involving transcription factors related to
cell metabolism, consisting respectively of: ARG80, ARG81 and GCN4; ARO80
and CBF1; LEU3 and RTG3 and DAL82 and MTH1. Other two submodules
consist mainly of genes related to environmental response, one including CIN5,
MAC1 and YAP6 together with AZF1 (related to metabolism) and the other
one including CAD1 and YAP1. The remaining two submodules consist of two
transcription factors belonging to different functional categories. The nontrivial
part of one of these submodules is shown graphically in Figure 2. As it can
be seen, this is a reasonably sized system which could be amenable to a more
detailed description.

In passing, we not that widely applied heuristic methods such as k -means
clustering perform very badly in identifying submodules of the network. For
example, k -means applied to the columns of the effective connectivity matrix
with a random initialisation returns only one cluster.

Identifying submodules using regulatory intensities. While considering
only significant regulations clearly leads to a significant advantage when trying to
identify submodules, a simple thresholding technique as discussed in the previous
3 The graphs in this paper were obtained using the MATLAB interface for

GraphViz, available at http://www.cs.ubc.ca/ murphyk/Software/GraphViz/

graphviz.html.
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Fig. 2. Graphical representation of one of the submodules of the regulatory network
obtained by considering only significant regulatory relations. This submodules is func-
tionally related to the cell metabolism.

section clearly does not make use of the wealth of information contained in the
regulatory strengths. We therefore studied the cell cycle data using the spectral
algorithm described in section 3.2.

We constructed the affinity matrix as in (5) by using all regulatory intensities
with a signal to noise ratio greater than 2 (95% significance level) and selecting
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Fig. 3. Graphical representation of the principal submodule obtained by considering
the regulatory intensities. All the transcription factors involved in this submodule (in-
dicated in the outer boxes) are key regulators of the cell cycle. The inner vertices
represent the genes with more than one significant regulator involved in the submod-
ule.
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only genes significantly regulated by two or more transcription factors (these are
the only ones that will contribute to the off-diagonal part of the covariance).
We then applied the submodule finding Algorithm 2 with a sensitivity param-
eter 0.01. This gave four clustering eigenvectors, yielding submodules involving
between seven and two transcription factors each. Ranking these using the eigen-
values associated, we find that the submodules exhibit a remarkable functional
coherence. For example, 98.7% of the mass of the first clustering eigenvector
is accounted for by six transcription factors. These are ACE2, FKH2, MBP1,
MCM1, NDD1 and SWI4 and are all functionally associated with the cell cycle.
By considering the genes involved in this submodule, obtained by considering
the eigendecomposition of the dual matrix (6), we also recognise some key genes
involved in the cell cycle, such as AGA1, CLB2, CTS1, YOX1 and the tran-
scription factor genes ACE2 and SWI5. The nontrivial part of this submodule
of the regulatory network is shown in Figure 3. Similarly, the second eigenvector
has 99.9% of its mass concentrated on two transcription factors, DAL82 and
MTH1, which are related to carbohydrate/nitrogen metabolism, 99.3% of the
third eigenvector’s mass is accounted for by AZF1, CUP9 and DAL81, which
are related to cell metabolism (CUP9 is also associated with response to oxida-
tive stress), 99% of the mass of the fourth clustering eigenvector is accounted
for by LEU3 and STP1, both related to cell metabolism.
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Fig. 4. Graphical representation of the affinity matrix obtained using the regulatory
intensities for the cell cycle data set(left) and block structure obtained from the sub-
modules found using the spectral Algorithm 2. One strongly interconnected submodule
is evident in the top left corner of the affinity matrix; the other submodules are asso-
ciated with much weaker interactions and are hard to appreciate at a glance.

A major difference with the naive submodule finding Algorithm 1 is the non-
exhaustive nature of the spectral algorithm. Specifically, while the naive algo-
rithm will assign each transcription factor represented in the network to exactly
one (possibly trivial) submodule, most transcription factors are not included into
any submodule by the spectral algorithm. This can be understood by consider-
ing the structure of the affinity matrix, which is shown graphically in Figure 4,
left. While there is one evident block with very high internal covariance in the
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top left corner (representing the dominant clustering eigenvector associated with
the cell cycle), the other submodules are not easily appreciated, since they are
associated with much weaker regulatory intensities. The block structure given
by the submodules is shown graphically in Figure 4 right. Notice however that
most transcription factors are not associated with any submodule, indicating
that they do not appear to be key in any cellular process going on during the
cell cycle.

4.3 Metabolic Cycle Data

Tu et al. used oligonucleotide microarrays to measure gene expression levels dur-
ing the yeast metabolic cycle, i.e. glycolitic and respiratory oscillations following
a brief period of starvation. The samples were prepared approximately every 25
minutes and covered three full cycles, giving a total of 36 time points [12].

The connectivity we used to analyse this data set was obtained integrating the
two ChIP experiments of Lee et al. [2] and Harbison et al. [1], resulting in a very
large network of 3178 genes and 177 transcription factors. By integrating the
two datasets, we capture the largest number of potential regulatory relations,
which also implies we are introducing a large number of false positives. It is not
surprising then that trying to identify submodules directly from the ChIP data
leads to a single huge module including all transcription factors and all genes.

Perhaps more surprisingly, the situation does not improve much if we con-
sider only regulations with a high significance level (signal to noise ratio greater
than four). Although the number of significant regulations is much smaller than
the number of potential regulations (1826 versus 7082), the resulting network
still appears to be highly interconnected, so that the application of the naive
algorithm again yields one very large submodule (134 transcription factors) and
two small submodules containing two transcription factors each. These ones
are CST6 and SFP1, two transcription factors which may be loosely related to
metabolism (CST6 regulates genes that utilise non optimal carbon sources, while
SFP1 activates ribosome biogenesis genes in response to various nutrients) and
A1(MATA1) and UGA3, which do not appear to have an obvious functional
relationship.

We get a completely different picture if we use the information contained in
the regulatory strengths. If we again construct an affinity matrix by retaining
the regulatory strengths of all regulations which are significant at 95% for genes
regulated by at least two transcription factors, the spectral submodule finding
Algorithm 2 (again with sensitivity parameter set to 0.01) returns seven non-
trivial submodules.

Somewhat surprisingly, the first clustering eigenvector is again related to the
cell cycle: 96.6% of its mass is concentrated on the ten transcription factors
ACE2, FKH2, MBP1, MCM1, NDD1, SKN7, STB1, SWI4, SWI5 and SWI6,
which are all well known key players of the yeast cell cycle. This seems to add
support to the hypothesis, advanced by Tu et al., that the metabolic cycle and
the cell cycle might be coupled [12]. The functional coherence of the other sub-
modules is less clear: while GTS1 and RIM101, which account for 99.8% of
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Fig. 5. Graphical representation of the submodule of the metabolic cycle given by
GTS1 and RIM101, two transcription factors involved in regulating sporulation

the mass of the second clustering eigenvector, are both involved in sporulation,
the functional annotations of the transcription factors involved in other sub-
modules are less coherent. For example, the coupling between MSS11 (which
regulates starch degradation) and WAR1 (which promotes acid and ammonia
transporters) is plausible but may need further experimental validation before
being accepted. A graphical representation of the submodule formed by GTS1
and RIM101 is given in Figure 5.

5 Discussion

In this paper we proposed two algorithms to identify approximately independent
submodules of the cellular regulatory network. Both methods rely on having
genome-wide information on the intensity with which transcription factors regu-
late their target genes, obtained for example by using the recent model proposed
in [9]. While the first algorithm is a simple exhaustive search, the second is more
subtle, being based on the spectral decomposition of an affinity matrix between
transcription factors, and is somewhat related to the algorithm proposed in [10]
for the automatic detection of non-convex clusters.

Experimental results obtained using the algorithms on two yeast data sets
reveals that both methods can find biologically plausible submodules of the reg-
ulatory network, and in many cases these submodules are of small enough size to
be amenable to be modelled in a more detailed fashion. The two algorithms have
complementary strengths: while the naive search algorithm has the advantage
of assigning each transcription factor to a unique submodule, many transcrip-
tion factors are not assigned to any module by the spectral algorithm. On the
other hand, the functional coherence of the submodules identified by the spectral
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algorithm seems to be higher in the examples studied, and sensible submodules
are found even when the network is too interconnected for the naive search to
yield any submodules.

Another popular method to cluster graphs which has been extensively applied
to biological problems is the Markov Cluster Algorithm (MCL), which was used
successfully to find families of proteins from sequence data [16]. However, this al-
gorithm is designed for undirected graphs with an associated similarity matrix,
while the graphs obtained from regulatory networks are naturally directed (with
arrows going from transcription factors to genes). Even if we marginalise the genes
by considering an affinity matrix between transcription factors, this is generally
not a consistent similarity matrix, making the application ofMCL very hard. Bear-
ing in mind the largely exploratory nature of finding submodules of the regulatory
network, we preferred to use simpler and more interpretable methods.
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Abstract. Based on the logical description of gene regulatory networks
developed by R. Thomas, we introduce an enhanced modelling approach
that uses timed automata. It yields a refined qualitative description of
the dynamics of the system incorporating information not only on ratios
of kinetic constants related to synthesis and decay, but also on the time
delays occurring in the operations of the system. We demonstrate the
potential of our approach by analysing an illustrative gene regulatory
network of bacteriophage λ.

1 Introduction

When modelling a gene regulatory network one has basically two options. Tra-
ditionally, such a system is modelled with differential equations. The equations
used, however, are mostly non-linear and thus cannot be solved analytically.
Furthermore, the available experimental data is often of qualitative character
and does not allow a precise determination of quantitative parameters for the
differential model. This eventually led to the development of qualitative mod-
elling approaches. R. Thomas introduced a logical formalism in the 1970s, which,
over the years, has been further developed and successfully applied to different
biological problems (see [7], [8] and references therein). The only information on
a concentration of gene products required in this formalism is whether or not it
is above a threshold relevant for some interaction in the network. Furthermore,
parameters holding information about the ratio of production and spontaneous
decay rates of the gene products are used. The values of these parameters de-
termine the dynamical behaviour of the system, which is represented as a state
transition graph. Moreover, Thomas realized that a realistic model should not
be based on the assumption that the time delay from the start of the synthesis
of a given product until the point where the concentration reaches a threshold is
the same for all the genes in the network. Neither will the time delays associated
with synthesis and those associated with decay be the same. Therefore, he uses
an asynchronous description of the dynamics of the system, i. e., a state in the
state transition graph differs from its predecessor in one component only.

In order to refine the model, we would like to incorporate information about
the values of the time delays. Since precise data about the time delays is not
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available (in biological systems the delays will not even have an exactly de-
termined value), the information is given in the form of inequalities that pose
constraints on the time delays. So we need to keep track of time while the sys-
tem evolves. A theoretical framework providing us with the necessary premises
is the theory of timed automata. Each gene is equipped with a clock which is
used to evaluate the conditions posed on the time delays of that particular gene
during the evolution of the system. The resulting transition system is in general
nondeterministic, but the additional information inserted allows for a refined
view of the dynamics. Conclusions about stability of dynamical behaviour and
restriction to certain behaviour in comparison to the predictions of the Thomas
model become possible. Moreover, the possibility of synchronous update is not
excluded under certain conditions.

In the first part of the paper we give a thorough mathematical description
of the Thomas formalism in Sect. 2 and of the modelling approach using timed
automata in Sect. 3 and 4. In Sect. 5, we show that, by using our approach, it
is possible to obtain the state transition graph of the Thomas model. Also, we
outline further possibilities our model offers. To illustrate the theoretical consid-
erations, we analyse a simple regulatory network of bacteriophageλ in Sect. 6.
In addition to the mere formal analysis, we have implemented the network using
the verification tool UPPAAL. In the last section, we discuss the mathematical
and biological perspectives of our approach.

2 Generalised Logical Formalism of Thomas

In this section we give a formal definition of a gene regulatory network in the
sense of the modelling approach of R. Thomas (see for example [7] and [8]). We
use mainly the formalism introduced in [4].

Definition 1. Let n ∈ IN. An interaction graph (or biological regulatory graph)
I is a labelled directed graph with vertex set V := {α1, . . . , αn} and edge set
E. Each edge αj → αi is labelled with a sign εij ∈ {+,−} and an integer
bij ∈ {1, . . . , dj}, where dj denotes the out-degree of αj . Furthermore, we assume
that {bij ; ∃ αj → αi} = {1, . . . , pj} for all j ∈ {1, . . . , n} and pj ≤ dj. We call
{0, . . . , pj} the range of αj. For each i ∈ {1, . . . , n} we denote by Pred(αi) the
set of vertices αj such that αj → αi is an edge in E.

The vertices of this graph represent the genes of the gene regulatory network,
the range of a vertex the different expression levels of the corresponding gene
affecting the behaviour of the network. An edge αj → αi signifies that the gene
product of αj influences the gene αi in a positive or negative way depending on
εij and provided that the expression level of αj is equal or above bij . Note that
the values bij do not have to be pairwise distinct.

In order to describe the behaviour of a gene regulatory network we need a
formal framework to capture its dynamics.

Definition 2. Let I be an interaction graph. A state of the system described by
I is a tuple s ∈ Sn := {0, . . . , p1}× · · ·× {0, . . . , pn}. The set of resources Ri(s)
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of αi in state s is the set

{αj ∈ Pred(αi) ; (εij = + ∧ sj ≥ bij) ∨ (εij = − ∧ sj < bij)}.
Finally, we define the set of (logical) parameters

K(I) := {Kαi,ω ∈ {0, . . . , pi} ; i ∈ {1, . . . , n}, ω ⊂ Pred(αi)}.
We call the pair (I, K(I)) a gene regulatory network.

The set of resources Ri(s) provides information about the presence of activators
and the absence of inhibitors for some gene αi in state s. The value of the
parameter Kαi,Ri(s) indicates how the expression level of gene αi will evolve.
The product concentration will increase (decrease) if the parameter value is
greater (smaller) than si. The expression level stays the same if both values are
equal.

Thomas and Snoussi used this formalism to discretize a certain class of dif-
ferential equation systems (see [5]). To reflect this, the following constraint has
to be posed on the parameter values:

ω ⊂ ω′ ⇒ Kαi,ω ≤ Kαi,ω′ (1)

for all i ∈ {1, . . . , n}. The condition signifies that an effective activator or a
non-effective inhibitor cannot induce the decrease of the expression level of αi.
In the following we will always assume that this constraint is valid in order to
compare our modelling approach with the one used by Thomas. However, in the
last section of this paper we will discuss possible generalisations of the model
not requiring the constraint (1).

To conclude this section, we describe the dynamics of the gene regulatory
network by means of a state transition graph.

Definition 3. The state transition graph SN = (I, K(I)) corresponding to a
gene regulatory network N is a directed graph with vertex set Sn. There is an
edge s→ s′ if there is i ∈ {1, . . . , n} such that |s′i−Kαi,Ri(s)| = |si−Kαi,Ri(s)|−1
and sj = s′j for all j ∈ {1, . . . , n} \ {i}.
The above definition reflects the use of the asynchronous update rule, since a
state differs from a successor state in one component only. If s is a state such
that an evolution in more than one component is indicated, then there will be
more than one successor of s. Note that s is a steady state if s has no outgoing
edge.

A gene regulatory network comprising two genes connected with a positive
and a negative edge and the resulting state transition graph are given in Fig. 1.
We use this simple example to illustrate the construction of the timed automaton
representing the network in Sect. 4.

3 Timed Automata

In this section we formally introduce timed automata. We mainly use the defi-
nitions and notations given in [1].
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α1 α2

+1

−1

Kα1,∅ = 0 = Kα2,∅
Kα1,{α2} = 1 = Kα2,{α1}

0 0

0 1

1 0

1 1

Fig. 1. Interaction graph, parameters and state transition graph of a simple gene reg-
ulatory system

To introduce the concept of time in our system, we consider a set C :=
{c1, . . . , cn} of real variables which behave according to the differential equations
ċi = 1. These variables are called clocks. They progress synchronously and can be
reset to zero under certain conditions. We define the set Φ(C) of clock constraints
ϕ by the grammar

ϕ ::= c ≤ q | c ≥ q | c < q | c > q |ϕ1 ∧ ϕ2 ,

where c ∈ C and q is a rational constant.
A clock interpretation is a function u : C → IR≥0 from the set of clocks

to the non-negative reals. For δ ∈ IR≥0, we denote by u + δ the clock interpre-
tation that maps each c ∈ C to u(c) + δ. For Y ⊂ C, we indicate by u[Y := 0]
the clock interpretation that maps c ∈ Y to zero and agrees with u over C \ Y .
A clock interpretation u satisfies a clock constraint ϕ if ϕ(u) = true. The set of
all clock interpretations is denoted by IRC

≥0.

Definition 4. A timed automaton is a tuple (L, L0, Σ, C, I, E), where L is a
finite set of locations, L0 ⊂ L is the set of initial locations, Σ is a finite set of
events (or labels), C is a finite set of clocks, I : L → Φ(C) is a mapping that
labels each location with some clock constraint which is called the invariant of
the location, and E ⊂ L×Σ × Φ(C) × 2C × L is a set of switches.

A timed automaton can be represented as a directed graph with vertex set L.
The vertices are labelled with the corresponding invariants and are marked as
initial locations if they belong to L0. The edges of the graph correspond to the
switches and are labelled with an event, a clock constraint called guard specifying
when the switch is enabled, and a subset of C comprising the clocks that are
reset to zero with this switch. While switches are instantaneous, time may elapse
in a location. To describe the dynamics of such an automaton formally, we use
the notion of a transition system.

Definition 5. Let A be a timed automaton. The (labelled) transition system TA

associated with A is a tuple (Q, Q0, Γ,→), where Q is the set of states (l, u) ∈
L×IRC

≥0 such that u satisfies the invariant I(l), Q0 comprises the states (l, u) ∈ Q
where l ∈ L0 and u ascribes the value zero to each clock, and Γ := Σ ∪ IR≥0.
Moreover, →⊂ Q× Γ ×Q is defined as the set comprising

• (l, u) δ−→ (l, u + δ) for δ ∈ IR≥0 such that for all 0 ≤ δ′ ≤ δ the clock
interpretation u + δ′ satisfies the invariant I(l), and
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• (l, u) a−→ (l′, u[R := 0]) for a ∈ Σ such that there is a switch (l, a, ϕ, R, l′)
in E, u satisfies ϕ, and u[R := 0] satisfies I(l′).

The elements of → are called transitions.

The first kind of transition is a state change due to elapse of time, while the sec-
ond one is due to a location-switch and is called discrete. Again we can visualise
the object TA as a directed graph with vertex set Q and edges corresponding to
the transitions given by →. We will use terminology from graph theory with re-
spect to TA. Note, that by definition the set of states may be infinite and that the
transition system is in general nondeterministic, i.e., a state may have more than
one successor. Moreover, it is possible that a state is the source for edges labelled
with a real value as well as for edges labelled with events. However, although
every discrete transition corresponds to a switch in A, there may be switches
in A that do not lead to a transition in TA. That is due to the additional con-
ditions placed on the clock interpretations. Furthermore, we obtain a modified
transition system by considering only the location vectors as states, dropping all
transitions labelled with real values, but keeping every discrete transition of TA.
We call it the discrete (or symbolic) transition system of A.

4 Modelling with Timed Automata

In order to model a gene regulatory network as a timed automaton, we first
introduce components that correspond to the genes of the network. They consti-
tute the building blocks that compose the automaton, representing the network
much in the same way n timed automata are integrated to represent a product
automaton (see [1]).

In the following, let N = (I, K(I)) be a gene regulatory network comprising
the genes α1, . . . , αn.

Constructing the components. Let i ∈ {1, . . . , n}. We define the component
Ai := (Li, L

0
i , Σi, Ci, Ii, Ei) corresponding to αi according to the syntax of timed

automata. In addition we will label the locations with a set of switch conditions.
Locations:We define Li as the set comprising the elements αk

i for k ∈ {0, . . . , pi},
αk+

i for k ∈ {0, . . . , pi − 1}, and αk−
i for k ∈ {1, . . . , pi}. Location αk

i represents a
situation where gene αi maintains expression level k. We call such a location regu-
lar. If the superscript is k+ resp. k−, the expression level is k but the concentration
of the gene product tends to increase resp. decrease. Those locations are called in-
termediate. We define L0

i := {αk
i ; k ∈ {0, . . . , pi}}.

Events: The events in Σi correspond to the intermediate locations. We set
Σi := {ak+

i , am−
i ; k ∈ {0, . . . , pi − 1}, m ∈ {1, . . . , pi}}. These events will be

used later on to identify certain discrete transitions starting in the intermediate
locations.

Clocks: For each gene we use a single clock, so Ci := {ci}.
Invariants: We define the mapping Ii : Li → Φ(Ci) as follows. Every regular

location αk
i is mapped to ci ≥ 0 (evaluating to true). For each intermediate
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location αkε
i , ε ∈ {+,−}, we choose tkε

i ∈ Q≥0 and set Ii(αkε
i ) = (ci ≤ tkε

i ). The
value tkε

i signifies the maximal time delay occurring before the expression level
of αi changes to k + 1, if ε = +, or to k− 1, if ε = −. During that time a change
in the expression level of αi may yet be averted if the expression levels of the
genes influencing αi change.

Switches: To specify the guard conditions on the switches, we choose con-
stants concerning time t

(k,k+1)
i , t

(k+1,k)
i ∈ Q≥0 for all k ∈ {0, . . . , pi − 1}. There

are two kinds of switches in the set Ei. For all k ∈ {0, . . . , pi − 1}, we have
(αk+

i , ak+
i , ϕk+

i , {ci}, αk+1
i ) ∈ Ei, where ϕk+

i = (ci ≥ t
(k,k+1)
i ). Furthermore, for

k ∈ {1, . . . , pi}, the switch (αk−
i , ak−

i , ϕk−
i , {ci}, αk−1

i ) with ϕk−
i = (ci ≥ t

(k,k−1)
i )

is in Ei. The given time constraints determine the minimal time delay before a
change in the expression level can occur. Choosing the time constants associated
with the guards smaller than those associated with the invariants of the corre-
sponding intermediate location leads to indeterministic behaviour of the system
in that location.

Switch conditions: To each location in Li we assign certain conditions which
later will be used to define the switches of the timed automaton of the gene
regulatory network. These conditions concern the locations of all components
Aj , j ∈ {1, . . . , n}. We interpret locations as integer values by using the function
ι :
⋃

j∈{1,...,n} Lj → IN0 that maps the locations αk
j , αk+

j and αk−
j to k.

Let k ∈ {1, . . . , pi − 1}. We define logical conditions Λk
i and Λ

k

i as follows. For
every αj ∈ Pred(αi) and lj a location of Aj let

λ
αj

i (lj) :=
{

ι(lj) ≥ bij , εij = +
ι(lj) < bij , εij = − λ

αj

i (lj) :=
{

ι(lj) < bij , εij = +
ι(lj) ≥ bij , εij = − .

Let ω1, . . . , ωm1
i
, υ1, . . . , υm2

i
be the subsets of Pred(αi) such that the parameter

inequalities Kαi,ωh
> k for all h ∈ {1, . . . , m1

i } as well as Kαi,υh
< k for all h ∈

{1, . . . , m2
i } hold. Let l ∈ L1×· · ·×Ln. Then we define λωh

i (l) :=
∧

αj∈ωh
λ

αj

i (lj)

and λ
υh

i (l) :=
∧

αj∈Pred(αi)\υh
λ

αj

i (lj). Finally, we set

Λk
i (l) :=

∨
h∈{1,...,m1

i}
λωh

i and Λ
k

i (l) :=
∨

h∈{1,...,m2
i}

λ
υh

i .

We define Λ0
i and Λ

pi

i accordingly.
Now, we assign all locations αk

i , k ∈ {1, . . . , pi − 1} the conditions Λk
i and Λ

k

i .
The location α0

i resp. αpi

i is labelled with Λ0
i resp. Λ

pi

i only. Furthermore, we
associate with location αk+

i the condition Ψk+
i := ¬Λk

i for all k ∈ {0, . . . , pi−1},
and allot to location αk−

i the condition Ψk−
i := ¬Λk

i for all k ∈ {1, . . . , pi}.
The conditions defined above correspond to the set of resources used in the

formalism of Thomas and thus play a key role in the dynamics of the system. If
the condition Λk

i is met, the gene αi will start producing its product at a higher
rate. This is represented by a transition to the location αk+

i (see the definition
of the switches of the timed automaton A defined below). However, it is possible
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that some change in the expression levels of genes influencing αi occurs while
αi has not yet reached the location αk+1

i . If those changes are such that the
condition Ψk+

i is satisfied, then the premises for αi to reach the expression level
k + 1 are no longer given, and it will return to the location αk

i (again see the
definition of the switches of A below). The conditions Λ

k

i and Ψk−
i are used

similarly for the decrease of the expression level.
Note that whenever ωh1 ⊂ ωh2 for sets ωh defined as above, condition λ

ωh2
i can

be deleted from the expression Λk
i due to the constraints (1) on the parameter

values. A corresponding statement holds for the sets υh.

Formally, the components defined above are timed automata. However, it does
not make sense to evaluate their behaviour in isolation from each other. This
becomes apparent when looking at the graph representation. Most locations in
the automaton Ai are not connected by edges. Every path in the graph contains
at most one edge. Figure 2 illustrates this observation. It shows the components
A1 and A2 corresponding to the genes α1 and α2 in Fig. 1. Each component
comprises the regular locations α0

i and α1
i and the intermediate locations α0+

i

and α1−
i , represented as circles in the graph. The first line below the location

identifier in a circle is the corresponding invariant, the second line shows the
corresponding switch condition. Since both genes have only two expression levels,
each location is only labelled with one switch condition. For example, we have
2Pred(α1) = {∅, {α2}}, λα2

1 (l2) = (ι(l2) < 1), and λ
α2

1 (l2) = (ι(l2) ≥ 1). Since
Kα1,{α2} = 1, we have λ

{α2}
1 = (ι(l2) < 1) and Λ0

1(l) = (ι(l2) < 1). Furthermore,

Kα1,∅ = 0 and thus λ
∅
1(l) = (ι(l2) ≥ 1) = Λ

1

1. The switches are represented
as directed edges from the first to the last component of the switch. They are
labelled with the guard, the event, and the set of clocks that are to be reset.

Modelling the network. In this paragraph, we construct the timed automaton
AN := (L, L0, Σ, C, I, E) representing the network N by means of components
A1, . . . , An in the following way. We define L := L1×· · ·×Ln, L0 := L0

1×· · ·×L0
n

and Σ := {a} ∪ ⋃i∈{1,...,n} Σi. Here a will signify a general event, which is
used to indicate that the switch is defined by means of the switch conditions
of the components Ai (see below). A location in L is called regular, if all of its
components are regular, and intermediate otherwise. Furthermore, we define the
set of clocks C :=

⋃
i∈{1,...,n} Ci and I : L→ Φ(C), (l1, . . . , ln) 
→ (I1(l1) ∧ · · · ∧

In(ln)). The set of switches E ⊂ L × Σ × Φ(C) × 2C × L is comprised of the
following elements:

– For every i ∈ {1, . . . , n} and every switch (li, ai, ϕi, Ri, l
′
i) ∈ Ei the tuple

(h, ai, ϕi, Ri, h
′), with h, h′ ∈ L, hj = h′

j for all j �= i, hi = li and h′
i = l′i, is

a switch in E.
– Let (l, a, ϕ, R, l′) ∈ L×Σ×Φ(C)×2C×L with ϕ := true. Let J be the largest

subset of {1, . . . , n} such that for each lj , j ∈ J , one of the switch conditions
associated with lj is true. Assume R comprises the clocks cj , j ∈ J . Let
li = l′i for all i /∈ J , and let, for all j ∈ J ,
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Fig. 2. On the left, components A1 and A2 representing the genes α1 and α2 in Figure
1. On the right, a section of the timed automaton A constructed from A1 and A2.

l′j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αk−
j , lj = αk

j for some k and Λ
k

j (l) = true

αk+
j , lj = αk

j for some k and Λk
j (l) = true

αk
j , lj = αk+

j for some k and Ψk+
j (l) = true

αk
j , lj = αk−

j for some k and Ψk−
j (l) = true

(2)

Then (l, a, ϕ, R, l′) is a switch in E.

Although the formal definition of the switches looks quite complicated, the actual
meaning is straightforward. A location change occurs when the current state of
locations allows for a change. The switch conditions Λk

j , Λ
k

j , Ψk+
j and Ψk−

j carry
the information which conditions, depending on the current location of A, the
expression levels of the genes influencing αj have to satisfy in order to induce
a change in the expression level of αj (see remarks on switch conditions of
components Ai). Furthermore, changes in the expression level of a gene happen
gradually. That is, for every two locations l, l′ connected by a switch we have
|ι(li)−ι(l′i)| ≤ 1 for all i ∈ {1, . . . , n}. The event a is used to identify the switches
that include the checking of the switch conditions of some location.

The timed automaton A representing the gene regulatory network in Fig. 1
is partially presented in Fig. 2. The figure includes all regular locations of A as
well as all locations that are the target of an edge (representing a switch) start-
ing in a regular location. Moreover, we chose two locations that render interest-
ing switches. All switches of A starting in a location displayed in Fig. 2 are in-
dicated. We show the construction of the switches exemplarily for the location
(α0+

1 , α1
2). First, we note that (α0+

1 , a0+
1 , (c1 ≥ t

(0,1)
1 ), {c1}, α1

1) is a switch in A1.
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Thus ((α0+
1 , α1

2), a
0+
1 , (c1 ≥ t

(0,1)
1 ), {c1}, (α1

1, α
1
2)) is a switch in A. Now we check

the switch conditions in l = (α0+
1 , α1

2). The condition Ψ0+
1 (l) = (ι(l2) ≥ 1) is true

in l as is the condition Λ
1

2(l) = (ι(l1) < 1). Thus, J = {1, 2}. We obtain the target
location l′ of the switch according to (2). Since Ψ0+

1 (l) is true and l1 = α0+
1 , we get

l′1 = α0
1, and since Λ

1

2(l) is true and l2 = α1
2, we get l′2 = α1−

2 . The guard condition
for the switch is true, it is labelled with a and both clocks c1 and c2 are reset.

The associated transition system. Let TA = (Q, Q0, Γ,→) be the transition
system associated with A. Note that the above definition of the first kind of
switch in E reflects the use of the asynchronous update of the expression levels
in the transition system. More precisely, although more than one component of
the discrete state may change in one step (via switches labelled with a), a change
in expression level will occur in one component at most. We will refine the sys-
tem in one aspect, which leads to a smaller set of possible transitions. Whenever
(l, u) ∈ Q is a state such that there is some transition (l, u) a−→ (l′, v) for some
state (l′, v) ∈ Q, we delete every transition of the form (l, u) δ−→ (l, u + δ) re-
gardless of the value of δ. We call a an urgent event. That is to say, whenever
some transition is labelled with the urgent event a, it is not possible for time to
elapse further in location l. However, there may be further discrete transitions
starting in (l, u), which would allow for synchronous (in the temporal sense)
update (see example in Sect. 6). If we want to avoid this, we delete all other
transitions starting in (l, u), and call a an overriding event. Unless otherwise
stated, we assume in the following that a is urgent.

Furthermore, note that a transition labelled with a never leads to a change
in the expression levels of the genes, and that the set J in the definition of the
second kind of switch is chosen maximal. Thus, if a path in TA starts in a regular
location and its first transition is labelled with a, then the second transition in
the path will not be labelled with a.

Here, some discrete state l ∈ L is called a steady state if TA does not contain
a discrete transition starting in (l, u), for all clock interpretations u.

To analyse the dynamics of the gene regulatory network we consider the paths
in TA that start in some initial state in Q0. Questions of interest are for example
if a steady state is reachable from a given initial location via some path in TA.
We will discuss the analysis of TA in a later section.

5 Comparison of the Models

In this section, we aim to show that on the one hand the information inherent in
the state transition graph as defined in Definition 3 can also be obtained from
the transition system of a suitable timed automaton. On the other hand, the
modelling approach via timed automata offers possibilities to incorporate infor-
mation about gene regulatory networks that cannot be included in the Thomas
model, and thus leads to a refined view on the dynamics of the system.

Let SN be the state transition graph corresponding to N and A the timed
automaton derived from N . We set tkε

i , t
(k,k+1)
i , t

(k+1,k)
i = 0 for all i ∈ {1, . . . , n},
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ε ∈ {+,−}. Thus every guard condition evaluates to true and time does not
elapse in the intermediate locations.

Now, we derive a graph G from TA as follows. First we identify locations
of Ai representing the same expression level, i.e., for k ∈ {1, . . . , pi − 1} we
define vαi

k := {αk
i , αk+

i , αk−
i }, vαi

0 := {α0
i , α

0+
i } and vαi

pi
:= {αpi

i , αpi−
i }. Let

V αi := {vαi

k ; k ∈ {0, . . . , pi}} and V := V α1 × · · · × V αn be the vertex set of
G. Furthermore, there is an edge v → w, if v �= w and if there is a path in TA

from some state (l, u), such that l is regular, to a state (l′, u′) satisfying l′i ∈ wi

for all i, such that every discrete state on the path other than l′ is an element
of v1 × · · · × vn. The condition to start in a regular state l ensures that the first
discrete transition occurring is labelled with a. This excludes the possibility of
a change of expression level that does not correspond to the parameter values.
We can drop the condition, if we declare a an overriding event.

Now, we need to show that SN is contained in G. For the sake of completeness
we prove the following stronger statement.

Theorem 1. The graphs SN and G are isomorphic.

Proof. We define f : Sn → V, (s1, . . . , sn) 
→ (vα1
s1

, . . . , vαn
sn

). Then it is easy to
see that f is a bijection.

Let s → s′ be an edge in SN . We have to show that f(s) → f(s′) is an edge
in G. Set v := f(s) and w := f(s′). According to the definition of edges in SN ,
there is a j ∈ {1, . . . , n} such that |s′j − Kαj ,Rj(s)| = |sj − Kαj ,Rj(s)| − 1 and
si = s′i for all i ∈ {1, . . . , n} \ {j}. Thus, vi = wi for all i �= j, and vj �= wj .

First we consider the case that sj < Kαj ,Rj(s). It follows that sj �= pj, and
thus α

sj

j , α
sj+
j ∈ vj , and s′j = sj + 1. We choose l ∈ L such that li = αsi

i for all
i ∈ {1, . . . , n}, thus l ∈ v1×· · ·×vn is regular. Furthermore, we choose the clock
interpretation u that assigns each clock the value zero.

We have Rj(s) ⊂ Pred(αj) and, by definition, we know that λ
Rj(s)
j (l), and

thus the switch condition Λ
sj

j (l), is true. It follows that there is a switch
(l, a, ϕ, R, l̃) ∈ E with ϕ = true, l̃j = α

sj+
j and l̃i ∈ vi for all i �= j. Thus we find

a transition (l, u) a−→ (l̃, u). Since time is not allowed to elapse in intermediate
locations, and since no transition starting in (l̃, u) is labelled with a according
to the observations made in the preceeding section, every transition starting in
(l̃, u) will lead to a state that differs from (l̃, u) in one component of the location
vector only. Moreover, we have (αsj+

j , a
sj+
j , ϕ

sj+
i , {cj}, αsj+1

j ) ∈ Ej and thus
there is a transition (l̃, u)→ (l′, u) labelled with a

sj+
j , with l′j = α

sj+1
j ∈ wj and

l′i = l̃i ∈ vi = wi for i �= j. It follows that f(s) = v → w = f(s′) is an edge in G.
The case that sj > Kαj ,Rj(s) and thus s′j = sj −1 can be treated analogously.
Now let v → w be an edge in G. We set s := f−1(v) and s′ := f−1(w).

According to the definition there is a path ((l1, u1), . . . , (lm, um)) in TA such
that l1 is regular, lji ∈ vi for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m− 1} and lmi ∈ wi

for all i ∈ {1, . . . , n}. Since l1 �= lm, there is some discrete transition in the path.
Since every component of l1 is regular, and thus the only discrete transition
starting there is labelled by a, and since a is an urgent event, we can deduce
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that (l1, u1)→ (l2, u2) is labelled by a. Then l2 has at least one component which
is an intermediate location. Let J ⊂ {1, . . . , n} be such that l2j is an intermediate
location for all j ∈ J , and l2i is a regular location for all i /∈ J . Then l2i = l1i for
all i /∈ J . Since time is not allowed to elapse in the intermediate locations, the
transition from (l2, u2) to (l3, u3) has to be discrete. Moreover, we know that
the transition is not labelled by a, since the first transition of the path is already
labelled that way. It follows that there is j ∈ J such that l3j is regular, l3j �= l2j ,
and l3i = l2i for all i �= j. Furthermore, the expression levels of gene αj in location
l1j and in location l3j differ. We can deduce that l3j /∈ vj and thus l3j ∈ wj , m = 3

and wi = vi for all i �= j. We have l1j = α
sj

j and l3j = α
s′

j

j and |sj − s′j| = 1.
We first consider the case that s′j = sj + 1, i. e., l1j = α

sj

j , l2j = α
sj+
j and

l3j = α
sj+1
j . Since there is a transition from (l1, u1) to (l2, u2), we can deduce

that the switch condition Λ
sj

j (l1) evaluates to true. Thus, there exists a subset
ω of Pred(αj) such that Kαj ,ω > sj and λω

j (l1) is true. By definition of the
resources, we have Rj(s) ⊃ ω and thus Kαj,Rj(s) ≥ Kαj ,ω > sj It follows that
|sj −Kαj,Rj(s)| − 1 = Kαj,Rj(s) − sj − 1 = Kαj,rj(s) − s′j = |s′j −Kαj,Rj(s)| and
thus that s→ s′ is an edge in the state transition graph SN .

The case that s′j = sj − 1 can be treated analogously. ��
In the above proof we used the most basic version of a timed automaton rep-
resenting the network in question. Furthermore, we simplified the transition
system TA. Obviously, our modelling approach is designed to incorporate addi-
tional information about the biological system, such as information about the
actual values of synthesis and decay rates. Thereby we obtain a more precise
idea of the dynamics of the system. For example, we may be able to discard
certain paths in the state transition graph that violate conditions involving the
time delays (see the example presented in the next section). Furthermore, we
can evaluate stability and feasibility of a certain behaviour, i. e., a path in the
discrete transition system, in terms of clock interpretations that allow for that
behaviour. The stricter the conditions the clock interpretations have to satisfy
to permit a certain behaviour, the less allowance is made for fluctuations in the
actual time delays of the genes involved.

The intermediate locations give supplementary information about the be-
haviour of the genes. For instance, it is possible to distinguish between a gene
keeping the same expression level because there is no change in the expression
levels of the genes influencing it, and the same behaviour due to alternating
opposed influences. In the first case, the gene stays in the regular location repre-
senting the expression level, in the latter case it also traverses the corresponding
intermediate locations.

Moreover, although this model uses asynchronous updates, it also allows for
synchronous updates in the sense that two discrete transitions may occur at the
same point in time. This may lead to paths in the transition system that are not
incorporated in the state transition graph of the Thomas formalism.

To clarify the above considerations we give an illustrative example in the next
section.
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6 Bacteriophage λ

Temperate bacteriophages are viruses that can act in two different ways upon
infection of a bacterium. If they display the lytic response, the virus multiplies,
kills and lyses the cell. However, in some cases the viral DNA integrates into
the bacterial chromosome, rendering the viral genome harmless for the so-called
lysogenic bacterium. In [6], the formalism of Thomas is used to describe and
analyse the genetic network associated with this behaviour. Figure 3 shows the
simplified model they propose. We denote with X the gene cI and with Y the gene
cro of the bacteriophage λ. The choice of the thresholds and parameter values
is based on experimental data. They render the loop starting in X ineffective
with respect to the dynamics. Thus we will omit it in the modelling of the timed
automaton. The resulting state transition graph shows two possible behaviours.
The steady state in (1, 0) can be related to the lysogenic, the cycle comprising
the states (0, 1) and (0, 2) to the lytic behaviour.

X Y
−1

−1

KX,∅ = 0
KX,{X} = 0
KX,{Y } = 1
KX,{X,Y } = 1

−2 0 1

0 0

1 1

1 0

1 20 2

KY,∅ = 0
KY,{X} = 1
KY,{Y } = 0
KY,{X,Y } = 2

+1

Fig. 3. Model of a network of bacteriophage λ in the Thomas formalism

Now let us analyse that network modelled as a timed automaton. The compo-
nent corresponding to X is of the same form as A1 in Fig. 2. Since Y influences
X as well as itself, the corresponding component is slightly more complex. Both
components are shown in Fig. 4. Furthermore, the figure displays graphs, which
are condensed versions of the different transition systems derived from the timed
automaton combining X and Y . With the exception of graph (c), the vertices
of the graphs represent the expression levels of the genes, which correspond to
the integer value of the location superscript. For instance, states (X0, Y 1−) and
(X0+, Y 1) are both represented by (0, 1). We analyse the dynamics of the system
starting only from regular states. Thus, edges as well as paths in the graphs from
some vertex (j1 j2) to a vertex (i1 i2) signify that the system can evolve from
(Xj1 , Y j2) to a state where X and Y have expression level i1 and i2 respectively.
Thereby it traverses states with expression levels corresponding to the vertices
in the path, provided there is an actual point in time in which the genes acquire
those expression levels. Again graph (c) is an exception to this representation
and its analysis will clarify the distinction made.

We specify our model by choosing values for the maximal and minimal time
delays. Set tk+

Z = tk−Z = 10 and t
(j,l)
Z = 5 for all Z ∈ {X, Y } and k, j, l ∈ {0, 1, 2}.

That is to say, the time delays for synthesis and decay are all in the same range
regardless of the gene and the expression level. If we declare a to be an overriding
event, we avoid the possibility that there is a path from (0, 0) to (1, 1) in the
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X0

cX ≥ 0
ι(l2) < 1

X0+

cX ≤ t0+X

ι(l2) ≥ 1

X1
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ι(l2) ≥ 1

X1−
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cX ≥ t
(0,1)
X
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X
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X
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Y 0

cY ≥ 0
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Y{cY }
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Y
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Y

{cY }

Y 1−
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ι(l1) < 1

Y 0+
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X

Y
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Y
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Y
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Y
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Y 2
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c) ‘synchronous’ update
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d) t0+Y = 5 and t
(0,1)
Y = 2

e) t0+Y = 4 and t
(0,1)
Y = 2 f) t0+X = 4 and t

(0,1)
X = 2

Fig. 4. The components X and Y representing the corresponding genes of the network
in Figure 3. On the right, graphs representing the dynamical behaviour of the system
derived from the transition systems resulting from different specifications of the model.
Unless otherwise stated a is an urgent event and we set tk+

Z = tk−
Z = 10 and t

(j,l)
Z = 5

for all Z ∈ {X, Y } and k, j, l ∈ {0, 1, 2}.

graph derived from the corresponding transition system. This is illustrated in
Fig. 4 (a) and matches the state transition graph in Fig. 3. In (b), a is again an
urgent event. We obtain two opposite edges between (0, 0) and (1, 1). However,
there are very strict conditions posed on the time delays in order for the system
to traverse those edges, which we drew dotted for that reason. To clarify the
situation, we follow the path from (0, 0) to (1, 1) via the intermediate states
shown in (c). A switch labelled with a leads to (0+, 0+). Assuming that X
reaches the next expression level faster than Y after a time delay 5 ≤ rX ≤ 10,
we reach (1, 0+). In that situation two switches are enabled. One is labelled by
a and leads to (1, 0). Since time is not allowed to pass, whenever the actual time
rY that Y needs to reach the expression level 1 differs from rX , that switch is
taken. Only in the case that both time delays are exactly equal, the system will
move via the switch labelled by a0+

Y to (1, 1). Analogous considerations apply to
the path via (0+, 1). It follows that although states (0, 0) and (1, 1) form a cycle
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in the graph, it is not plausible that the system will traverse that cycle. Once
in the cycle, even the slightest perturbation of one of the time delays suffices for
the system to leave the cycle. It is unstable.

These considerations apply not only to the edges representing synchronous
update. In Fig. 4 (d) we change the values for t0+Y and t

(0,1)
Y to express that

the synthesis of Y is usually faster than that of X . The system can reach the
state (1, 0) only if Y needs the maximal and X the minimal time to change
their expression level. So, usually we would expect the system to reach the cycle
comprising (0, 1) and (0, 2), corresponding to the lytic behaviour of the bacte-
riophage. If we know that Y is always faster than X in reaching the expression
level 1, we can altogether eliminate both the edge leading from (0, 0) to (1, 0),
and the one leading to (1, 1), as shown in (e). There is no clock interpretation
satisfying the posed conditions. If we reverse the situation of X and Y , we elim-
inate the edges from (0, 0) to (0, 1) and (1, 1) as shown in (f). In this case, the
system starting in (0, 0) will always reach the steady state (1, 0) representing the
lysogenic response of the bacteriophage. The incorporation of data concerning
the time delays can thus lead to a substantial refinement of the analysis of the
dynamical behaviour.

We have implemented the above system in UPPAAL1, a tool for analysing
systems modelled as networks of timed automata (see [3]). Since UPPAAL uses
product automata in the sense of the definition in [1], we had to make some
modifications in the modelling of the components. Primarily, we converted the
switch conditions to actual switches, which synchronise via the input of an ex-
ternal component that ensures the desired update mechanisms of the system.
Using the UPPAAL model checking engine, we verified the above mentioned
dynamical properties of the different specifications of our model.

7 Perspectives

In this paper, we introduced a discrete modelling approach that extends the es-
tablished formalism of Thomas by incorporating constraints on the time delays
occurring in the operations of biological systems. We addressed some of the ad-
vantages this kind of model offers, but naturally there is much room for future
work. One of the most interesting possibilities the model provides is the evalua-
tion of feasibility and stability of certain behaviours of the system by means of
the constraints posed on the time delays. We may find cycles in the transition
system (implying homeostatic behaviour of the real system), the persistence of
which requires that equalities for time delays are satisfied. It is highly unlikely
that a biological system will sustain a behaviour which does not allow for the
slightest perturbance in its temporal processes. A cycle persisting for a range
of values for each time delay will be a lot more stable. The merit of such con-
siderations was already mentioned by Thomas (see [8]). It calls for a thorough
analysis with mathematical methods as well as testing with substantial biological
examples.
1 http://www.uppaal.com
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Furthermore, it seems worthwhile to relax some of the conditions posed by
the Thomas formalism. Dropping constraint (1) would allow for a combination
of genes to have a different influence (inhibition, activation) on the target gene
than each would have on its own. It also could be advantageous to allow a gene
product to influence a target gene depending on its concentration. For instance,
it may be activating in low but inhibiting in high concentrations. That translates
to the formalism by allowing multiple edges in the interaction graph.

We would like to close with some remarks regarding the analysis of the dy-
namics of our model. The theory of timed automata provides powerful results
concerning analysis and verification of the model by means of model checking
techniques. For example, CTL and LTL model checking problems can be decided
for timed automata (see [2]). However, we face the state explosion problem and
moreover the task to phrase biological questions in terms suitable for model
checking. A thorough study of problems and possibilities of applying model
checking techniques to answer biologically relevant questions using the mod-
elling framework given in this paper seems necessary and profitable.

References

1. R. Alur. Timed Automata. In Proceedings of the 11th International Conference on
Computer Aided Verification, volume 1633 of LNCS, pages 8–22. Springer, 1999.

2. R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of hybrid
systems. In Proceedings of the IEEE, 2000.

3. J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and Tools. In
Lecture Notes on Concurrency and Petri Nets, volume 3098 of LNCS, pages 87–124.
Springer, 2004.

4. G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal methods
to biological regulatory networks: extending Thomas’ asynchronous logical approach
with temporal logic. J. Theor. Biol., 229:339–347, 2004.

5. E. H. Snoussi. Logical identification of all steady states: the concept of feedback
loop characteristic states. Bull. Math. Biol., 55:973–991, 1993.

6. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks
- II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 57:277–297, 1995.

7. R. Thomas and R. d’Ari. Biological Feedback. CRC Press, 1990.
8. R. Thomas and M. Kaufman. Multistationarity, the basis of cell differentiation and

memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
Chaos, 11:180–195, 2001.



A Computational Model for Eukaryotic

Directional Sensing

Andrea Gamba1, Antonio de Candia2, Fausto Cavalli3, Stefano Di Talia4

Antonio Coniglio2, Federico Bussolino5, and Guido Serini5

1 Department of Mathematics, Politecnico di Torino, and INFN – Unit of Turin,
10129 Torino, Italia

andrea.gamba@polito.it
2 Department of Physical Sciences, University of Naples “Federico II” and

INFM – Unit of Naples, 80126, Napoli, Italia
3 Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50,
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Abstract. Many eukaryotic cell types share the ability to migrate direc-
tionally in response to external chemoattractant gradients. This ability
is central in the development of complex organisms, and is the result of
billion years of evolution. Cells exposed to shallow gradients in chemoat-
tractant concentration respond with strongly asymmetric accumulation
of several signaling factors, such as phosphoinositides and enzymes. This
early symmetry-breaking stage is believed to trigger effector pathways
leading to cell movement. Although many factors implied in directional
sensing have been recently discovered, the physical mechanism of signal
amplification is not yet well understood. We have proposed that direc-
tional sensing is the consequence of a phase ordering process mediated
by phosphoinositide diffusion and driven by the distribution of chemo-
tactic signal. By studying a realistic computational model that describes
enzymatic activity, recruitment to the plasmamembrane, and diffusion
of phosphoinositide products we have shown that the effective enzyme-
enzyme interaction induced by catalysis and diffusion introduces an in-
stability of the system towards phase separation for realistic values of
physical parameters. In this framework, large reversible amplification of
shallow chemotactic gradients, selective localization of chemical factors,
macroscopic response timescales, and spontaneous polarization arise.

1 Introduction

A wide variety of eukaryotic cells are able to respond and migrate directionally
in response to external chemoattractant gradients. This behavior is essential for
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a variety of processes including angiogenesis, nerve growth, wound healing and
embryogenesis. Perhaps the most distinguished chemotactic response is exem-
plified by neutrophils as they navigate to sites of inflammation. When exposed
to an attractant gradient, these cells quickly orient themselves and move using
anterior pseudopod extension together with posterior contraction and retraction.
This highly regulated amoeboid motion can be achieved in the presence of very
shallow attractant gradients.

The signaling factors responsible for this complex behavior are now begin-
ning to emerge. The general picture obtained from the analysis of chemotaxis
in different eukaryotic cell types indicates that, in the process of directional
sensing, a shallow extracellular gradient of chemoattractant is translated into
an equally shallow gradient of receptor activation [14] that in turn induces the
recruitment of the cytosolic enzyme phosphatidylinositol 3-kinase PI3K to the
plasmamembrane, where it phosphorylates PIP2 into PIP3. However, phospho-
inositide distribution does not simply mirror the receptor activation gradient,
but rather a strong and sharp separation in PIP2 and PIP3-rich phases arises,
realizing a powerful and efficient amplification of the external chemotactic sig-
nal. PIP3 acts as a docking site for effector proteins that induce cell polarization
[3], and eventually cell motion [11]. Cell polarization can be decoupled from di-
rectional sensing by the use of inhibitors of actin polymerization so that cells
are immobilized, but respond with the same signal amplification of untreated
cells [8]. The action of PI3K is counteracted by the phosphatase PTEN that
dephosphorylates PIP3 into PIP2 [14]. PTEN localization at the cell membrane
depends upon the binding to PIP2 of its first 16 N-terminal aminoacids [7].

2 A Phase Separation Process

In physical terms, the process of directional sensing shows the characteristic phe-
nomenology of phase separation [12]. However, it is not clear which mechanism
could be responsible for it. In known physical models, such as binary alloys,
phase separation is the consequence of some kind of interaction among the con-
stituents of a system, which can favor their segregation in separated phases [13].
However, one can show [5] that, even in the absence of direct enzyme-enzyme or
phosphoinositide-phosphoinositide interactions, catalysis and phosphoinositide
diffusion mediate an effective interaction among enzymes, which is sufficient to
drive the system towards phase separation. To this aim, we have simulated the
kinetics of the network of chemical reactions that represents the ubiquitous bio-
chemical backbone of the directional sensing module. Since the chemical system
is characterized by extremely low concentrations of chemical factors and evolu-
tion takes place out of equilibrium, we used a stochastic approach [6,2]. Indeed,
rare, large fluctuations are likely to be relevant for kinetics in the presence of
unstable or metastable states. Simulated reactions and diffusion processes taking
place in the inner face of the cell plasmamembrane are

1. PI3K(cytosol)+Rec(i) ⇀↽ PI3K·Rec(i)
2. PTEN(cytosol)+PIP2(i) ⇀↽ PTEN·PIP2(i)
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3. PI3K·Rec(i)+PIP2(i) → PI3K·Rec(i)+PIP3(i)
4. PTEN·PIP2(i)+PIP3(i) → PTEN·PIP2(i)+PIP2(i)
5. PIP2(i) → PIP2(j)
6. PIP3(i) → PIP3(j)

where index i represents a generic plasmamembrane site and j one of its nearest
neighbours (see also Fig. 1). The probability of performing a simulated reac-
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Fig. 1. Biochemical scheme of the simulated reaction network

tion on a given site is proportional to realistic kinetic reaction rates and local
reactant concentrations (Tables 1, 2). In order to mimick experiments on immo-
bilized cells treated with actin inhibitors the plasmamembrane is represented as
a spherical surface of radius R = 10µm. This allows to study the phenomenon
of directional sensing without the additional complexity introduced by dynam-
ical changes in the cell morphology leading to a polarized, elongated form. The
system is partitioned in Ns = 10242 computational sites, which are sufficiently
large to host hundreds of phospholipid molecules but small enough to allow for
a correct resolution of self-organized phospholipid patches. The cell cytosol is
represented as an unstructured reservoir containing a variable number of PI3K
and PTEN enzymes, which can bind and unbind to the cell membrane according
to the rules described in Table 1. Chemical factors localized in the cytosol are
indicated in Table 1 with the corresponding subscript, while factors attached to
the membrane are indicated with a subscript representing the membrane site
where they are localized. PIP2 and PIP3 molecules are assumed to freely dif-
fuse on the cell membrane with the diffusion coefficient D specified in Table 2.
Surface diffusivity of PI3K and PTEN molecules bound to phosphoinositides is
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Table 1. Probabilities of chemical reactions and diffusion processes. Let X·Y denote
the bound state of species X and Y, [X] the global concentration of species X in
the whole cell, [X]cyto the cytosolic concentration, and [X]i the local concentration on
plasmamembrane site i. The rate for a given reaction on site i is denoted by fi, V is the
cell volume, ′ denotes sum over nearest neighbours, and (x)+ = x for positive x and
0 otherwise. Time is advanced as a Poisson process of intensity equal to the reciprocal
of the sum of the frequencies for all the processes. The simulations were performed
using the values for kinetic rates and Michaelis-Menten constants given in Table 2.

Reaction fi

PI3K(cytosol)+Rec(i) → PI3K·Rec(i) V
Ns

kRec
ass [Rec]i[PI3K]cyto

PI3K(cytosol)+Rec(i) ← PI3K·Rec(i) 1
Ns

kRec
diss[Rec · PI3K]i

PTEN(cytosol)+PIP2(i) → PTEN·PIP2(i)
V
Ns

kPIP2
ass [PIP2]i[PTEN]cyto

PTEN(cytosol)+PIP2(i) ← PTEN·PIP2(i)
1

Ns
kPIP2
diss [PIP2 · PTEN]i

PI3K·Rec(i)+PIP2(i) → PI3K·Rec(i)+PIP3(i) kPI3K
cat

[Rec·PI3K]i[PIP2]i
KPI3K

M +[PIP2]i

PTEN·PIP2(i)+PIP3(i) → PTEN·PIP2(i)+PIP2(i) kPTEN
cat

[Rec·PTEN]i[PIP3]i
KPTEN

M +[PIP3]i

PIP2(i)→PIP2(j )
D√

3Ssite

′ ([PIP2]i − [PIP2]j)+
PIP3(i)→PIP3(j )

D√
3Ssite

′ ([PIP3]i − [PIP3]j)+

Table 2. Physical and kinetic parameters used in the simulations

Parameter Value Parameter Value

R 10.00 µm kPI3K
cat 1.00 s−1

[Rec] 0.00-50.00 nM kPTEN
cat 0.50 s−1

[PI3K] 50.00 nM KPI3K
M 200.00 nM

[PTEN] 50.00 nM KPTEN
M 200.00 nM

[PIP2] 500.00 nM kRec
ass 50.00 (sµM)−1

D 0.10-1.00 µm2/s kPIP2
ass 50.00 (sµM)−1

kRec
diss 0.10 s−1 kPIP2

diss 0.10 s−1

neglected, since it is expected to be much less than the diffusivity of free phos-
phoinositides. Reaction-diffusion kinetics is simulated according to Gillespie’s
method [6], generalized to the case of an anisotropic environment. For each iter-
ation, reaction probabilities are computed for each site according to the formulae
given in Table 1. Catalytic processes are described by Michaelis-Menten kinetics.
The density of activated receptors is proportional to extracellular chemoattrac-
tant concentration. The probability of diffusion from a computational site to a
neighboring one is assumed to be proportional to the difference in local concen-
trations, according to Ficks law. A site and a reaction are chosen at random,
according to the computed probabilistic weights, and the reaction is performed
on the chosen site, meaning that the concentration tables are adjourned accord-
ing to the reaction stoichiometry. Time is then advanced as a Poisson process of
intensity proportional to the reciprocal of the sum of all of the frequencies. This
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procedure, repeated over many different realizations, correctly approximates the
stochastic process described in Table 1.

A convenient order parameter measuring the degree of phase separation of
the phosphoinositide mixture is Binder’s cumulant [1]

g =
1
2

(
3− 〈(ϕ− 〈ϕ〉)

4〉
〈(ϕ − 〈ϕ〉)2〉2

)

where ϕ = ϕi = [PIP3]i − [PIP2]i is a difference of local concentrations on
site i and 〈· · ·〉 denotes average over many different random realizations. The
cumulant is zero when ϕ has a Gaussian distribution representing a uniform
mixture, and becomes of order 1 when the ϕ distribution is given by two sharp
peaks, representing separation in two well-distinct phases.

Spontaneous or signal-driven phase symmetry breaking leads to the formation
of PIP2, PIP3 rich clusters of different sizes. Cluster sizes can be characterized
by harmonic analysis. For each realization, the fluctuations δϕ = ϕ− 〈ϕ〉 of the
ϕ field can be expanded in spherical harmonics. Let us consider the two-point
correlation functions

〈δϕ(u)δϕ(u′)〉 =
+∞∑
l=1

ClPl(u · u′)

where Pl are Legendre polynomials. When most of the weight is concentrated
on the l-th harmonic component, average phosphoinositide clusters extend over
the characteristic length πR/2l. In particular, a large weight concentrated in the
first harmonic component corresponds to the separation of the system in two
complementary clusters, respectively rich in PIP2 and PIP3.

3 Dynamic Phase Diagram

We have run many random realizations of the system for different (ρ, D) pairs,
where ρ is the surface concentration of activated receptors and D is phospho-
inositide diffusivity. For each random realization we started from a station-
ary homogeneous PTEN, PIP2 distribution. At time t = 0 receptor activation
was switched on; either activated receptors were isotropically distributed or the
isotropic distribution was perturbed with a linear term producing a 5% differ-
ence in activated receptor density between the North and the South poles. In
the isotropic case, we found that in a wide region of parameter space the chem-
ical network presents an instability with respect to phase separation, i.e. the
homogeneous phosphoinositide mixture realized soon after receptor activation is
unstable and tends to decay into spatially separated PIP2 and PIP3 rich phases.

Characteristic times for phase separation vary from the order of a minute
to that of an hour, depending on receptor activation. The dynamic behavior
and stationary state of the system strongly depend on the values of two key
parameters: the concentration ρ of activated receptors and the diffusivity D. In
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the case of anisotropic stimulation, orientation of PIP2 and PIP3 patches clearly
correlates with the signal anisotropy (see Fig. 2) In the anisotropic case, phase
separation takes place in a larger region of parameter space and in times that
can be shorter by one order of magnitude.

Average phase separation times as functions of receptor activation ρ = [Rec]
and diffusivity D are plotted for isotropic activation in Fig. 3a and for 5%
anisotropic activation in Fig 3c. Light areas correspond to non phase-separating
systems. In the dark areas phase separation takes place in less than 5 minutes
of simulated time, while close to the boundary of the broken symmetry region
phase separation can take times of the order of an hour.

Average cluster sizes at stationarity are plotted in Figs. 3b,d. In the light
region, cluster sizes are of the order of the size of the system, corresponding to
the formation of pairs of complementary PIP2 and PIP3 patches (Fig. 2).

For diffusivities smaller than 0.1 µm2/s the diffusion-mediated interaction is
unable to establish correlations on lengths of the order of the size of the system
and one observes the formation of clusters of separated phases of size much
smaller than the size of the system.

For diffusivities larger than 2 µm2/s the tendency to phase separation is con-
trasted by the disordering action of phosphoinositide diffusion. Average phase
separation times for the anisotropic case are plotted in Fig. 3c.

By comparing the isotropic and the anisotropic case it appears that there is
a large region of parameter space where phase separation is not observed with
isotropic stimulation, while a 5% anisotropic modulation of activated receptor
density triggers a fast phase separation process. Cluster sizes are in the average
larger in the anisotropic case than in the isotropic case.

The transition from a phase-separating to a phase-mixing regime results from
a competition between the ordering effect of the interactions and the disordering
effect of molecular diffusivity. The frontier between these two regimes varies
continuously as a function of parameters. Importantly, we found that the overall
phase separation picture is robust with respect to parameter perturbations, since
it persists even for concentrations and reaction rates differing from those of Table
3 by one order of magnitude.

It is also worth noticing that both in isotropic and anisotropic conditions,
signal amplification is completely reversible. Switching off receptor activation
abolishes phase separation, delocalizes PI3K from the plasmamembrane to the
cytosol, and brings the system back to the quiescent state.

Physically, the mechanism leading to cluster formation can be understood
as follows. Receptor activation shifts the chemical potential for PI3K, which is
thus recruited to the plasmamembrane. PI3K catalytic activity produces PIP3

molecules from the initial PIP2 sea. Initially, the two phosphoinositide species
are well mixed. Fluctuations in PIP2 and PIP3 concentrations are however
enhanced by preferential binding of PTEN to its own diffusing phosphoinosi-
tide product, PIP2. Binding of a PTEN molecule to a cell membrane site in-
duces a localized transformation of PIP3 into PIP2, resulting in higher prob-
ability of binding other PTEN molecules at neighboring sites. This positive
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Fig. 2. Phase separation in the presence of 5% anisotropic receptor activation switched
on as described in the text. The 5% activation gradient pointed in the upward vertical
direction. First row: cell front view. Second row: concentrations measured along the
cell perimeter and normalized with their maximum value (observe that the anisotropic
component in the distribution of activated receptors is so small that it is masked by
noise). Third row: time evolution of Binder’s parameter g, showing its variation in
time from zero (homogeneous PIP2-PIP3 mixture) to nonzero values (phase separa-
tion between the two species). First column: receptor activation. Second column: PIP2

concentration. Third column: PIP3 concentration. Observe the complementarity in the
PIP2 and PIP3 distribution: regions rich in PIP2 are poor in PIP3 and vice-versa.
This complementarity is biochemically necessary to trigger cell motion, and results
from the fact that PIP2 rich regions are also rich in the PTEN phosphatase, which
dephosphorylates PIP3.

feedback loop not only amplifies the inhibitory PTEN signal, but via phos-
phoinositide diffusion it also establishes spatio-temporal correlations that en-
hance the probability of observing PTEN enzymes at neighboring sites as well.
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Fig. 3. Dynamic phase diagram. Average phase separation times and average cluster
sizes are shown using a grayscale as functions of receptor activation [Rec] and diffusivity
D, for isotropic and 5% anisotropic activation. In the isotropic case, panels show: (a)
Average phase separation time. (b) Average cluster size as a function of [Rec] and D.
In the anisotropic case, panels show: (c) Average phase separation time. (d) Average
cluster size. For anisotropic activation phase separation is faster, takes place in a larger
region of parameter space, and is correlated with the anisotropy direction.

If strong enough, this diffusion-induced interaction drives the system towards
spontaneous phase separation1. The time needed by the system to fall into the
more stable, phase-separated phase can however be a long one if the symmetric,
unbroken phase is metastable. In that case, a small anisotropic perturbation in
the pattern of receptor activation can be enormously amplified by the system
instability.

1 We speak here of “spontaneous” phase separation since in the case of isotropic
stimulation no term describing the stochastic evolution of the system explicitely
breaks its spherical symmetry, however, separation into asymmetric clusters occurs
nevertheless as a result of random fluctuations. This differs from the situation of
anisotropic stimulation, where asymmetry is introduced “by hands” from the very
beginning.
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It is worth observing here that the main inadequacy of previous models of di-
rectional sensing [10,8] was the inability of obtaining the strong, experimentally
observed amplification without the introduction of many “ad hoc”, unproved
hypotheses about the structure of the signalling networks. On the other hand,
in our phase separation model many apparently conflicting aspects of the phe-
nomenology of phase separation, such as insensitivity to uniform stimulation,
large amplification of the extracellular signal, and stochastic polarization, are
reconciled with almost no effort, just using biochemically well-characterized fac-
tors which are already known to play a role in directional sensing and realistic
diffusion and reaction rates.

4 Interactive Simulation Environment

A physical and computational modeling approach can prove useful in testing
and unveiling the identity of minimal biochemical networks whose dynamics can
incorporate the blueprints for complex cellular functions, such as chemotaxis.

To allow easy experimentation of the phase-separation paradigm and its com-
parison with other models of directional sensing we have developed a Java-based,
easy to use simulation environment where physical and chemical parameters can
be set at will and the surface distribution of the relevant chemical factors can
be observed in real time. The underlying kinetic code simulates the stochastic
chemical evolution on a spherical surface representing the cell plasmamembrane
coupled to an enzymatic reservoir representing the cytosol.

The physical and chemical parameters to be used in the simulation can be
assigned using input boxes (Fig. 4). By default, a constant activated receptor
concentration Crec with a superimposed concentration anisotropy of Veps per-
cents developing along the vertical direction, from bottom to top, is simulated.
The user can choose to substitute this linear concentration gradient with an ac-
tivation landscape produced by localized external sources. External sources can
be added specifying their coordinates with respect to the center of the cell and
the rate of chemoattractant release.

By default, during the simulation the local concentration difference between
PIP3 and PIP2 as well as the order parameter g are visualized in real time. The
user can require the visualization of other quantities of interest. The required
graphs can be organized in a table containing the desired number of columns and
rows. Three-dimensional graphs can be easily rotated by dragging any of them
with the mouse. Simulation results are shown in a separate window (Fig. 4).
When the simulation starts, a “Control” window appears showing the number
of seconds of simulated time. After the end of the simulation, the buttons on the
“Control” window can be used to pan the simulation movie forward or backwards
in time. Most physical and kinetic parameters can be modified in real time while
the simulation is running.

The simulation environment will be made publicly available under the GPL
licence.
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Fig. 4. Interactive simulation environment. A parameter window, a control window
and a visualization window are shown. In the parameter window the user can input
the values of diffusion and reaction rates, and the coordinates and intensities of one
or more localized chemoattractant sources. The visualization in real time of different
quantities, such as local or global concentration of chemical factors, can be required.
Simulation sessions can be saved and recalled for future analysis.

5 Conclusions

Our results provide a simple physical cue to the enigmatic behavior observed in
eukaryotic cells. There is a large region of parameter space where the cell can be
insensitive to uniform stimulation over very large times, but responsive to slight
anisotropies in receptor activation in times of the order of minutes. Accordingly,
simulating shallow gradients of chemoattractant we observed PIP3 patches accu-
mulating with high probability on the side of the plasmamembrane with higher
concentration of activated receptors, thus resulting into a large amplification of
the chemotactic signal. Moreover, we identified an intermediate region of parame-
ters, where phase separation under isotropic stimulation is observed on average
in a long but finite time. In this case, one would predict that on long time scales
cells undergo spontaneous polarization in random directions, and that the num-
ber of polarized cells grows with time. Intriguingly, this peculiar motile behavior
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is known as chemokinesis and is observed in cell motility experiments when cells
are exposed to chemoattractants in the absence of a gradient [9].

In summary, the phase separation scenario provides a simple and unified
framework to different aspects of directed cell motility, such as large amplifica-
tion of slight signal anisotropies, insensitivity to uniform stimulation, appearance
of isolated and transient phosphoinositide patches, and stochastic cell polariza-
tion. It unifies apparently conflicting aspects which previous modeling efforts
could not satisfactorily reconcile [4], such as insensitivity to absolute stimula-
tion values, large amplification of shallow chemotactic gradients, reversibility of
phase separation, robustness with respect to parameter perturbations, stochastic
character of cell response, use of realistic biochemical parameters and space-time
scales.

To allow easy experimentation of the phase-separation paradigm and its com-
parison with other models of directional sensing we have developed a Java-based,
easy to use simulation environment where physical and chemical parameters can
be set at will and the surface distribution of the relevant chemical factors can
be observed in real time.
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Abstract. We have modelled the within-patient evolutionary process
during HIV infection. We have studied viral evolution at population
level (competition on the same receptor) and at species level (competi-
tions on different receptors). During the HIV infection, several mutants
of the virus arise, which are able to use different chemokine receptors, in
particular the CCR5 and CXCR4 coreceptors (termed R5 and X4 pheno-
types, respectively). Phylogenetic inference of chemokine receptors sug-
gests that virus mutational pathways may generate R5 variants able to
interact with a wide range of chemokine receptors different from CXCR4.
Using the chemokine tree topology as conceptual framework for HIV vi-
ral speciation, we present a model of viral phenotypic mutations from
R5 to X4 strains which reflect HIV late infection dynamics. Our model
investigates the action of Tumor Necrosis Factor in AIDS progression
and makes suggestions on better design of HAART therapy.

1 Introduction

Evolutionary biology was founded by Charles Darwin on the concept that or-
ganisms share a common origin and have subsequently diverged through time.
Molecular phylogenetics has provided a statistical framework for estimating his-
torical relationships among organisms, and it has supplied the raw data to test
models of evolutionary and population genetic processes. Those have found prac-
tical uses in tracing the origins of pandemias and the routes of infectious disease
transmission. Our ability to obtain molecular data has increased dramatically
over the last two decades and large data sets describing a wide range of evolu-
tionary distances are used in population genetic, phylogeny and epidemiologi-
cal studies. Nevertheless, phylogenetic methods based on sequence information
represent often an oversimplification when we aim at capturing the short time
dynamics, i.e. the early stages of the speciation process. Population genetics fo-
cuses on this topic by investigating the behavior of mutations in populations.
This discipline is related to the other important idea that Darwin expressed in
The Origin of Species [1], that the exquisite match between a species and its envi-
ronment is explained with natural selection, a process in which individuals with
� Also CSDC and INFN, sez. Firenze.
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beneficial mutations leave more offspring. Here we combine predictive quantita-
tive theories of HIV evolution in the context of the selection pressure generated
by the virus competition and the immune response. In particular phylogenies of
the natural target of the HIV viruses, i.e. their cell receptors is combined with
population genetics mathematical models. We show that combining the two leads
to a better understanding of the complex molecular interaction underlying the
macroscopically observable phenomena of HIV infection.

The smallest scale of molecular evolution generates genetic variability at pop-
ulation level. A special case is that of quasispecies which are clouds of very similar
genotypes that appear in a population at mutation-selection balance [2]. Since
the number of targets (the substrate) is limited, fitter clones tend to eliminate
less fit mutants, which are subsequently regenerated by the mutation mecha-
nism [3]. They are the combined result of mutations and recombination. Other
sources of variability result from co-infection (simultaneous viral infection), su-
perinfection (delayed secondary infection). On the contrary, selection and ran-
dom drift decrease variability. The fact that deleterious or less fitted variants are
not instantaneously counter selected allows for the coexistence and co-evolution
of different strains of a virus within the same host. Although the conditions
for the formation and survival of new strains have not always been understood,
small scale evolution such as variability at population level may experience dif-
ferent mutation/selection balance than the genetic variability estimated from
sequence analysis which represent fixed genotypes. Indeed, recent studies show
that the rate of molecular evolution appears to accelerate when measured over
evolutionary short timescales [4], which strongly contrast with substitution rates
inferred in phylogenetic studies. Molecular virology studies appear the natural
benchmark, given that viruses have usually very high mutation rates and large
populations. We aim at modelling viral multi strain short and long term evolu-
tionary dynamics during the immune response. The multi strains can be thought
as viral populations. Since there is a tremendous lack of studies attempting at
integrating population and phylogenetic studies, our work represents the efforts
to link speciation at small and large evolutionary scale. This may result in a
better understanding how to use the topology and branch lengths of existing
species to predict future evolution.

In the next section we describe the relevant feature of the immune response
which represents the selection pressure playing a key role in the speciation pro-
cess. Then we use data from chemokine receptor sequences to estimate the rate
of phenotype change in the virus and use this data to derive a selection-mutation
model based on a set of differential equations. In the results we show that the
models introduced are suited to model both short and long term evolutions. In
particular we first show an example of speciation dynamics of viral population
mediated by the immune sytem response. Then we model the phenotypic switch
in co-receptor usage in HIV-1 infection and we also make some observations on
the better design for HAART therapy. Finally we draw our conclusions.
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1.1 Major Features of Within-Patient HIV Evolution

Although the process of adaptive change is difficult to study directly, natural
selection has been repeatedly detected in the evolution of morphological traits
(such as the beak of Darwin’s finches). During HIV infection, the process of
adaptation requires interaction with CD4 T cell and a chemokine receptor, either
CXCR4 or CCR5. During early stages of HIV-1 infection, viral isolates most
often use CCR5 to enter cells and are known as R5 HIV-1. Later in the course of
HIV-1 infection, viruses that use CXCR4 in addition to CCR5 (R5X4) or CXCR4
alone (X4 variants) emerge in about 50% patients (switch virus patients) [5,
6]. These strains are syncytium-inducing and are capable of infecting not only
memory T lymphocytes but also näıve CD4+ T cells and thymocytes through the
CXCR4 coreceptor. The switch to use of CXCR4 has been linked to an increased
virulence and with progression to AIDS, probably through the formation of cell
syncytia and killing of T cell precursors. X4 HIV strains are rarely, if ever,
transmitted, even when the donor predominantly carries X4 virus. CXCR4 is
expressed on a majority of CD4+ T cells and thymocytes, whereas only about
5 to 25% of mature T cells and 1 to 5% of thymocytes express detectable levels
of CCR5 on the cell surface [7]. It is noteworthy that X4 HIV strains stimulate
the production of cellular factor called Tumor Necrosis Factor (TNF), which
is associated with immune hyperstimulation, a state often implicated in T-cell
depletion [8]. TNF seems able to both inhibit the replication of R5 HIV strains
while having no effect on X4 HIV and to down regulate the number of CCR5
co-receptors that appear on the surface of T-cells [9].

2 Bioinformatics Analysis and Mathematical Models

We assume that the phylogenetic tree describes all sorts of genetic variants, i.e.
quasispecies and species. Quasispecies appear at the leaves and are seen as single
specie by the distant leaves. We make the assumptions that leaves that are very
close experience the same environment, i.e. they compete for the same receptor
targets. Therefore, the fitness landscape within short branch length distance is
shaped by competition which decrease for longer distances.

2.1 Mutational Pathway from R5 to X4

A meaningful way to estimate the mutational pathways and phenotype difference
between R5 and X4 is to use phylogenetic inference on chemokine receptors
families. The statistical relationships among the species can be described using
a tree. Let the phylogeny to be inferred be denoted Π . A node of Π is either
a currently extant leaf node, with no descendants in Π , or an it internal node,
with two or more child nodes in Π . A point of Π is defined to be any point at
a node or on an edge of Π . Let ti denote the time before present that point i
was extant in Π . Let πij denote the path in Π between points i and j, and |πij |
its length. Thus, where j is an ancestor of i, |πij | = tj − ti. More generally, for
any i and j, |πij | = |πik|+ |πkj |, where k is the last common ancestor (LCA) of



Modeling Evolutionary Dynamics of HIV Infection 199

Fig. 1. The maximum likelihood phylogeny under the JTT+F+Γ model of evolution
for the set of human and mouse (mouse sequences are labelled with ”-M”) chemokine
receptors. We have considered only the external loop regions. The scale bar refers to
the branch lengths, measured in expected numbers of amino acid replacements per site.

i and j. The tree parameters are topology and branch lengths. The assessment
of phylogenies using distance and likelihood frameworks depend on the choice
of an evolutionary model. We have computed the maximum likelihood (ML)
analysis of the CRs data set using different models of evolution: Dayhoff [10],
JTT [11], WAG [12], the amino acid frequencies of the data set, (‘+F ’), and the
heterogeneity of the rates of evolution, implemented using a gamma distribution
(‘+Γ ’) [13, 14]. Bootstrap and permutation tests have been used to assess the
robustness of the tree topology [15]. The tree may be used to estimate the
pathways of substitutions which are supposed to have phenotype changes.
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2.2 Mathematical Models of Viral Dynamics Under Immune
Response Pressure

A meaningful model to study the genetics of population is that of quasispecies.
This model, first introduced by Eigen [3] in the context of molecular evolution,
describes the evolution of an infinite population of haploid individuals reproducing
asexually. Each individuals has a given genotype σ = (σ1, . . . , σN ), constituted
by a sequence of N symbols taken from an alphabet of size k, and is subject to
the selection pressure. Mutations arise as copying errors during the reproduction
process. The evolution of the concentration of a sequence, x(σ, t), is given by:

dx(σ, t)
dt

=
∑
σ′

p(σ′ → σ)W (σ′)x(σ′, t)− φ(σ, t)x(σ, t) (1)

where W (σ) represents the strength of the selection, p(σ′→ σ) the mutation mech-
anism, and φ is a flux keeping constant the total concentration,

∑
σ x(σ, t). The

model can be used to model the evolution of a single quasispecies as well as ex-
tended to study the dynamics of interaction among n different populations. In the
latter case we obtain a system of n first order, non-linear, differential equations.

Models using the notion of quasispecies have been adopted to study the bio-
logical evolution of populations and recently also for the modelling of the inter-
action between HIV-1 and the immune system [16]. Moreover, due to its intrinsic
multiscale nature - indeed the population of sequences considered can be either
that of genotypes or, more generally, the one of phenotypes - the model is suited
to analyze both short and long range interactions.

In a phylogenetic framework a given leaf represents the common ancestor of
the individuals coevolving. If we are interested in studying the short range evo-
lution of the viral strains competing for the same co-receptor, we concentrate on
a particular leaf of the phylogenetic tree. As a paradigmatic model, we may con-
sider that introduced by Bagnoli et al. [17]. This model describes the speciation
of a quasispecies population induced by competition.

In the model different individuals compete for the shared resources of a com-
mon environment, and this effect is reflected in the term corresponding to the
selection strength. In particular, the growth rate W is expressed as

W (σ, t) = exp[H0(σ) − q(σ, t)] (2)

where H0 represents the static fitness (e.g. the environment) and the term q(σ, t)
accounts for the competition. We can think q(σ, t) to be a function of the phe-
notypic distance between two different sequences, mimicking the fact that the
competition is stronger for individuals sharing common habits. This competitive
dynamics may lead to the speciation of the population. This event results in the
appearance of new branches in the phylogentic tree and, as the selection pressure
is continuously acting, the branches corresponding to the fittest individuals are
eventually selected (see Fig. 2.2).

Now, considering the dynamics of interaction between viruses and immune
system, the competition among different viral strains is induced by the immune
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CCR5CXCR4

Fig. 2. Qualitative description of the short range evolution occuring on a phylogenetic
tree, according to the competition model introduced by Bagnoli et al. [17]. Only two
leaves (e.g. corresponding to CCR5 and CXCR4 co-receptors) are shown. In the fig-
ure we assume that only a single phenotypic character is continuosly varying and thus
we assume a one-dimensional linear phenotypic space. Given the static fitness corre-
sponding to different binding specificities (dashed line), we represent the effect of the
speciation resulting from the induced competitive dynamics (solid line). The emerging
new variants are then represented as dotted segments.

response. In this case a virus may escape the response by a T cell with high
binding affinity, by differentiating enough. It’s worth noting that this short-
range dynamics alone may justify the stable multi strain infection reported in
several patients (see. Sec. 3.2).

2.3 Long Range Competition and R5 to X4 Switching

Here we introduce a mathematical model to study the long range competition,
mediated by the immune system response, occurring between different HIV-1
phenotypes around different leaves of the phylogenetic tree. Indeed, the viral
quasispecies not only compete for using the same co-receptor (short range com-
petition), but also for establishing a preferential chemokine signalling pathway
(long-range competition). In someone who is newly infected by HIV, several vari-
ants of the virus, called R5, are often the only kind of virus that can be found.
In about half of the people who develop advanced HIV disease, the virus begins
to use another co-receptor called CXCR4 (X4 viral phenotype). This model sup-
ports the hypothesis that it may not be exhaustion of homeostatic responses, but
rather thymic homeostatic inability along with gradual wasting of T cell supplies
through hyper activation of the immune system that lead to CD4 depletion in
HIV-1 infection.

We are interested in the switching in coreceptor usage and thus, by consid-
ering CD8+ cells to be at their equilibrium concentration and disregarding the
effects of B cell, we concentrate on CD4 dynamics. We map the different leaves
of the phylogenetic tree on a linear phenotypic space, composed by the viral
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Fig. 3. Schematic description of the model for the switching from R5 to X4 viral
phenotype. Naive T-cells, U , are generated at constant rate NU and removed at rate
δU . They give birth to differentiated, uninfected T-cells, T . These in turn are removed
at constant rate δT and become infected as they interact with the virus. Infected T-
cells, I , die at rate δI and contribute to the budding of viral particles, V , that are
cleared out at rate c. As soon as the X4 phenotype arise, the production of the TNF
starts, proportional to the X4 concentration and contribute to the clearance of näıve
T-cells, via the δU

F parameter.

phenotypes competing for different co-receptor usage. At the beginning of the
infection the only viral population present is that of R5 strains. Later on, as
the infection evolves, we focus on the appearance of X4 viruses and on their
subsequent interaction with R5 strains.

The model is the following:

dU

dt
= NU − δUU − δU

F UF (3)

dTi

dt
= δUU −

(∑
k

βkVk

)
Ti − δT Ti (4)

dIk

dt
=

(∑
k′

µkk′βk′Vk′

)(∑
i

Ti

)
− δII (5)

dVk

dt
= πIk − cVk (6)

dF

dt
= kF

∑
k∈X4

Vk (7)



Modeling Evolutionary Dynamics of HIV Infection 203

In the equations above, the variables modelled are the pool of immature CD4+
T cells, U , the different strains of uninfected and infected T cells (T and I,
respectively), HIV virus, V , and the concentration of TNF, F . A schematic view
of the model is depicted in Fig.3. The value of the parameters introduced are
summarized in Table 2.3.

In particular, Equation (3) describes the constant production of immature T
cells by the thymus NU and their turning into mature T cells at rate δU . If X4
viruses are present, upon the interaction with TNF, immature T-cells are cleared
at fixed rate δU

F .
Equation (4) describes how uninfected mature T cells of strain i are produced

at fixed rate δU by the pool of immature T cells. Those cells, upon the interac-
tion with any strain of the virus, Vk, become infected at rate βk = β ∀k. The
infectiousness parameter, β, is not constant over time, but depends on the inter-
play between R5 and X4 viruses. In particular, due to the presence of TNF, the
infectivity of R5 strains is reduced (βR5(t) = β − kR5F (t)), while the one of X4
viruses increases, with constant of proportionality kX4 (βX4(t) = β +kX4 F (t)),
mimicking the cell syncytium effect induced by the TNF molecule.

Table 1. Model for the R5 to X4 phenotypic switch: a summary of the additional pa-
rameters introduced. The value of the other parameters are medical literature referred,
see also [18].

Parameter Symbol Value Units of Meas.

Production of immature T cells NU 100 cell/µl t−1

Death rate of immature T cells δU 0.1 t−1

Death rate of immature T cells upon the interaction with TNF δU
F 10−5 µl/cell t−1

Decreasing infectivity of R5 phenotype due to TNF kR5 10−7 (µl/cell)2 t−1

Increasing infectivity of R5 phenotype due to TNF kX4 10−7 (µl/cell)2 t−1

Increasing death rate of immature T cells due to TNF δI
X4 0.0005 µl/cell t−1

Rate of production of TNF kF 0.0001 t−1

Equation (5) describes the infection of mature T-cells. Infected T-cells of
strain k arise upon the interaction of a virus of strain k with any of the mature
T-cell strains. The infected cells, in turn, are cleared out at a rate δI . When TNF
is released, this value increases linearly with constant δI

X4, δI(t) = δI +δI
X4 F (t).

Equation (6) describes the budding capacity i.e. the mean number of virions
produced in the unit of time by each infected T cell. We have used a value close
to that reported in medical literature by [19].

Finally, in Equation (7), we model the dynamics of accumulation of TNF by
assuming the increase in TNF level to be proportional, via the constant kF , to
the total concentration of X4 viruses present.

3 Results

3.1 Phenotype Change Patterns of R5 and X4 Strains

RNA viruses have been reported to have substitution rates of the order of 1·10−3

substitution per site per replication [20]. Since a large fraction of amino acid
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substitutions are neutral or quasi-neutral to structural changes, they do not
change dramatically the fitness of the virus [21]. Nevertheless, sometimes even a
single mutation can change the fitness in a substantial way. In our model we take
into consideration only non-synonymous mutations and, therefore, we explored
values slight higher value than that, (i.e. 10−4 and 10−5). These values can be
compared with the phenotype changes required to bind to CCR5 or CXCR4 re-
ceptors. In other words, research into HIV dynamics has much to gain from in-
vestigating the evolution of chemokine co-receptor usage. Although CCR5 and
CXCR4 are the major coreceptors used by HIV-1 a number of chemokine recep-
tors display coreceptor activities in vitro. Also several other chemokine recep-
tors, possibly not present on the T cell membrane, may act as targets. To date, a
number of human receptors, specific for these chemokine subfamilies, have been
described, though many receptors are still unassigned. Several viruses, for exam-
ple Epstein-Barr, Cytomegalovirus, and Herpes Samiri, contain functional ho-
mologous to human CRs, an indication that such viruses may use these recep-
tors to subvert the effects of host chemokines [22]. Cells different from CD4+ and
CD8+ T cells, such as macrophages, express lower levels of CCR5 and CXCR4
on the cell surface [23–25], and low levels of these receptors expressed on
macaque macrophages can restrict infection of some non-M-tropic R5 HIV-1 and
X4 simian immunodeficiency virus (SIV) strains [26, 27].

Fundamental to the evolutionary approach is the representation of the evolu-
tion of sequences along lineages of evolutionary trees, as these trees describe the
complex patterns of dependence amongst sequences that are caused by their com-
mon ancestry [12, 28, 29]. The ML tree, obtained using the JTT+F+Γ model of
evolution, is shown in Figure 1. The topology clearly shows that the CCR family
is not homogeneous: CCR6, CCR7, CCR9 and CCR10 are separated from the
other CCRs; in particular, CCR10 clusters with CXCRs; CXCR4 and CXCR6
do not cluster with the CXCRs. The tree shows that there are many mutational
steps between CCR5 and CXCR4. The phylogeny suggests that the mutations
that allow the virus env to cover a wide phenotypic distance from R5 to X4, may
also lead to visit other receptors. Since the external loops of CRs contain the
binding specificities and have higher rates of evolution than internal loops and
transmembrane segments [30], the tree Fig. 1 shows a relative longer mutational
pathway between CCR5 and CXCR4 with respect to pathway linking CCR5 to
other receptors.

3.2 Modeling Co-evolutive Dynamics and Speciation

Focusing on short term evolution we investigate how the co-evolutionary and
competitive dynamics of viral strains, mediated by the immune response, may
lead to the formation of new viral strains. In particular, if the recognition ability
of viral antigens by T cells is non-uniform over different viral variants and the
immune system does not discriminate among highly similar phenotypes, a com-
petition is induced. In Fig. 4 we consider a phenotypic space composed by 25 dif-
ferent variants of the virus, and make a first inoculum at phenotype 15 (Fig. 4a),
followed by a second delayed inoculum at phenotype 5 at time t = 1. The
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Fig. 4. Snapshots of competitive dynamics between different viral strains (vertical
stems) and T lymphocites (dashed line) at four different times: t = 0 (a), t = 4.5 (b),
t = 5.25 (c) and t = 5.75 (d). Virus strain 15 is present at time t = 0, while strain 5 is
inoculated at time t = 1. Mutation rate µ = 10−4.

different interaction strength between T cells and viral phenotypes favors those
viral phenotypes targeted by the weakest response. The result of the induced
competition is the separation of the quasispecies centered around phenotype 15
into two clusters (quasi-speciation), Fig. 4c. It’s worth noting that, due to the
adaptive response by the immune system, a complex, time evolving co-evolution
is established between viral populations and immune response (Figs. 4b-d).

3.3 R5 to X4 Switch and HAART Therapy

From the results derived in Sec. 3.1, it is now possible to get a better insight in the
observed phenotypic switch in co-receptor usage by HIV-1 virus, by studying the
coevolutive dynamics leading to X4 strain appearance by successive mutations
of the ancestor R5 strain. In particular we may calculate the modelled time of
switching in co-receptor usage. This time depends both on the mutation rate µ
and on the phenotypic distance between R5 and X4 strains, dP . By comparing
the modelled value with the mean time inferred by the phylogenetic tree, we
may tune the those model parameters to give the correct time of appearance of
the X4 phenotype.

In Fig. 5 we observe the results of the stimulated production of TNF. In-
deed, this regulate the interactions between immune response and the virus and
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Fig. 5. Time evolution of the concentrations of uninfected T-cells (straight line) and
viruses (dashed line), during R5 to X4 switch, occurring at time t ≈ 900. The time
of appearance of the X4 strains depends on the mutation rate and on the phenotypic
distance between R5 and X4 viruses. After the appearance of the X4 phenotype a
continuous slow decline in CD4+ T-cells level leads to AIDS phase (CD4 counts below
200cells/ml).
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Fig. 6. The efficacy of HAART therapy may be disrupted by a sudden interruption in
drugs treatment. If time has passed for mutations to populate the R5 strains closer to
the X4 phenotypes, an earlier appearance of X4 strains may occur. Uninfected T-cells
(straight line) and viruses (dashed line). Parameters as in Fig. 5.

between the different strains of HIV virus. The results of these interactions are
a decline in T-cells level, leading to the AIDS phase of the disease, and the
decline in levels of viruses using the R5 coreceptor. In the figure the temporal
evolution of the infection is shown, with the appearance of the X4 strain, and
the successive decline in T-cells abundances.

By using this model it is also possible to predict some scenarios in HAART
treatment (see Fig. 6). This therapy is usually able to decrease the concentration
of the virus in the blood and delay the X4 appearance. We have found time
dynamics similar to those reported in [31]; see also [32, 33]. Note that our
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Fig. 7. CD4+ T-cells concentration during HIV-1 super-infection by a R5 viral strain.
Evolution without superinfection, straight line; superinfection occurring at time t=100
and 400, dotted and dashed line, respectively. For a superinfection event occurring after
the R5 to X4 switching the dynamics is qualitatively the same as for a single infection,
(straight line). If the second delayed infection occurs before the R5 to X4 switching,
the time of appearance of X4 viruses may be shorter, when the super-infecting strain
is closer to the X4 phenotypes, (dotted and dashed line). Parameters as in Fig. 5.

model considers only the HIV virions which are in the blood. The clearance of
virions hidden in cells or other tissues are known to be very slow [34, 35]. Now
we investigate what may happen in the case of a sudden interruption in the use
of the drugs. In Fig. 6 we observe how the X4 strain may appear sooner, if the
different R5 strains experience the same selection pressure. In fact during the
treatment the concentration of the different strains of R5 viruses is kept to a
very low level while T-cell abundances increase. As the therapy is interrupted,
all the strains give rise to a renewed infection. Now also the strains closer to the
X4 co-receptor using viruses are populated, and a mutation leading to an X4
strain occurs sooner.

We have finally studied the case of a superinfection dynamics. In Fig. 7 we
show T-cells evolution for different times of the superinfection event.

We may observe that if the superinfection occurs after the appearance of
the X4, the new R5 strain does not have any effect on T-cells behavior. On
the other hand is worth noting that if the new R5 inoculum take place before
the X4 appearance, this may speed up the switching to the X4 phenotype if the
new strain is mutationally close to the X4.

4 Discussion

Phylogenetic inference of chemokine receptors shows that there are several mu-
tational patterns linking CCR5 to several receptors that have the same branch
length of that from CCR5 to CXCR4. There is a massive abundance of signalling
disruptions in the immune systems during AIDS progression, particularly after
the transition R5 to X4. These disruptions may be due to variants of the virus
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which bind other chemokine receptors. This hypothesis also suggests that R5-
late strains in not-X4 AIDS, which are known to be different from R5 early
strains, may have accumulated mutations enabling them to interact with other
chemokine receptors. Therefore, our model suggests the sooner the HAART the
better, because the presence of a large number of R5 will increase the muta-
tional spectra in R5 strains (late R5) and the probability of getting closer to
the binding specificities of other chemokine receptors. Contrary to our phyloge-
netic statistical analysis, our mathematical model describes short term evolu-
tionary dynamics through competitions among viruses at each tips of the tree.
Following Kimura, we can subdivide mutations into advantageous, neutral or
deleterious where the deleterious can be further subdivided into the proportions
that are very slightly deleterious, and deleterious. Deleterious mutations are not
expected to become fixed in large populations, but nevertheless can persist in
the population for long periods of time. The average time before loss correlates
with deleteriousness. Thus, as observation times diminish, we should observe a
greater proportion of slightly deleterious mutations that have yet to be lost, with
the most deleterious observed only in the short-term pedigree studies. For some
reasons, the evolutionary continuum between variation at population genetics
level and the long-term evolution has not been adequately studied. Although it
is a continuum, the techniques required may change as the timescale decreases.
For example, some concepts from long-term evolution (binary evolutionary trees
with sequences studied only at the tips) have been extended into populations
where trees are no longer binary, and ancestral sequences (at internal nodes) are
still present in the population. There are hints that a formal multi-scale study
is necessary.

The interest in HIV strain is motivated by concern about developing strain
specific drugs. Quasispecies are likely the key for understanding the emerging in-
fectious diseases and has implications for transmission, public health counselling,
treatment and vaccine development. Moreover, the observed co-evolutionary dy-
namics of virus and immune response opens the way to the challenging possibility
of the introduction or modulation of a viral strain to be used in therapy against
an already present aggressive strain, as described by Schnell and colleagues [36].
The authors showed that the introduction of an engineered virus can achieve
HIV load reduction of 92% and recovery of host cells to 17% of their normal
levels (see also the mathematical model in Ref. [37]).

Different drug treatments can alter the spectrum of strains. Will R5 blocking
drugs cause HIV to start using X4? And will that be worse than letting the R5-
using virus stay around along at its own, slower, but no less dangerous activity?

Recent works show that TNF is a prognostic marker for the progression of
HIV disease [8, 38]. We focused on both the inability of the thymus to efficiently
compensate for even a relatively small loss of T cells precursors and on the role
of TNF in regulating the interactions between the different strains of HIV virus.
The second model we have introduced shows that keeping low the concentration
of TNF, both the depletion of T-cells precursors repertoire and the R5 overcome
by X4 strains slow down.



Modeling Evolutionary Dynamics of HIV Infection 209

The model makes possible to investigate intermittency or switching dominance
of strains and the arising of new dominant strains during different phases of ther-
apy; how superinfection will evolve in case of replacement of drug-resistant virus
with a drug-sensitive virus and acquisition of highly divergent viruses of different
strains; to investigate whether antiviral treatment may increase susceptibility to
superinfection by decreasing antigen load.

Let us extend the viral framework for a general understanding of the molec-
ular evolutionary process along a tree under natural selection. If we focus on a
quasispecies fitness landscape, the fitness’ main component is probably related to
the entrance of the virus in the cell, i.e. the interaction with the receptor. Other
components are the budding characteristics and numerosity and the spectrum
of mutants (hopeful monsters) generated. Therefore the height of the fitness
curve mainly reflects the binding energy, while the windows of strain existence
in the x axis reflects how many changes may still result in a sufficient binding.
Our work may reveal relevant to phylogenetic studies on divergence date estima-
tion which suffer from the difficulties of estimating the correct rate of molecular
evolution for different branches. It is relatively straightforward to test if the
data conform to a molecular clock . If the assumption of rate constancy does
not hold across a tree and therefore the clock is rejected, however, the current
methodology is lacking robustness in assessing the amount of relaxation from
a clock hypothesis. Our approach in modeling the evolution of virus species is
to investigate the different degree of competition among strains. Strains which
are in the same fitness landscape have correlated rates of evolution. This agrees
very well with the current use of local clock models which allow the molecular
rate to vary throughout the tree, but with closely related species sharing similar
rates. This approach is justified with the assumption that molecular rates are
heritable because they are related to physiological, biochemical, and life-history
characteristics of the species in question. That’s precisely the idea of our local
fitness landscape. Although the inference of rates is confounded by uncertain-
ties in calibration points, by tree topology, and by asymmetric tree shapes, our
present studies should be considered a theoretical framework for understanding
how different smooth fitness landscapes which can be imagined at the leaves
and nodes of a phylogenetic tree are linked by the topology and branch lengths
reflecting a multiscale stepwise process of adaptation under natural selection.
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Pop Art project, INRIA Rhône-Alpes, France

Abstract. Genetic regulatory networks have been modeled as discrete
transition systems by many approaches, benefiting from a large num-
ber of formal verification algorithms available for the analysis of discrete
transition systems. However, most of these approaches do not scale up
well. In this article, we explore the use of compositionality for the analy-
sis of genetic regulatory networks. We present a framework for modeling
genetic regulatory networks in a modular yet faithful manner based on
the mathematically well-founded formalism of differential inclusions. We
then propose a compositional algorithm to efficiently analyze reachabil-
ity properties of the model. A case study shows the potential of this
approach.

1 Introduction

A genetic regulatory network usually encompasses a multitude of complex, in-
teracting feedback loops. Being able to model and analyze its behavior is crucial
for understanding the interactions between the proteins, and their functions.
Genetic regulatory networks have been modeled as discrete transition systems
by many approaches, benefiting from a large number of formal verification algo-
rithms available for the analysis of discrete transition systems. However, most
of these approaches face the problem of state space explosion, as even models
of modest size (from a biological point of view) usually lead to large transition
systems, due to a combinatorial blow-up of the number of states. Even if the
modeling formalism allows for a compact representation of the state space, such
as Petri nets, subsequent analysis algorithms have to cope with the full state
space. In practice, non-compositional approaches for the analysis of genetic reg-
ulatory networks do not scale up well.

In order to deal with the problem of state space explosion, different techniques
have been developed in the formal verification community, such as partial order
reduction, abstraction, and compositional approaches. In this article, we explore
the use of compositionality for the analysis of genetic regulatory networks. Com-
positional analysis means that the behavior of a system consisting of different
components is analyzed by separately examining the behavior of the components
and how they interact, rather than by monolithically analyzing the behavior of
the overall system. It therefore can be more efficient than non-compositional
analysis, and scale better.
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A precondition for compositional algorithms to be applicable, is that the
model be structured. Therefore, this paper makes two contributions: first, we
present a modeling framework for genetic regulatory networks in which the dif-
ferent components of the system (in our case, proteins or sets of proteins) and the
way they constrain each other, are modeled separately and modularly. Second,
we propose a compositional algorithm allowing to efficiently analyze reachability
properties of the model.

Cellular functions are often distributed over groups of components that inter-
act within large networks. The components are organized in functional modules,
forming a hierarchical architecture [25,27]. Therefore, the approach of composi-
tional analysis agrees with the modular structure of genetic regulatory networks,
and may take advantage of it by using compositionality on different levels of
modularity, for instance, between individual genes, sub-networks, or individual
cells.

However, compositionality is not everything. The model should also faithfully
represent the actual behavior of the modeled network. The approach we present
is based on the mathematically well-founded formalism of qualitative simulation
[14].

Related work. By now there is a large number of approaches to model and ana-
lyze genetic networks. An overview is given in the survey of [11]. The modeling
approaches adopt different mathematical frameworks, which vary in expressive-
ness and the availability and efficiency of verification algorithms. Most of the
algorithms “flatten” the model and work on the global state space, without com-
putationally taking advantage of the modularity of the problem. The approach
of [6] compositionally models gene networks in a stochastic framework.

There has been a wide variety of modeling approaches based on differential
equations since the work of [19]. However, simulation and verification of the con-
tinuous model can be expensive, and many properties are not even decidable in
this framework. Therefore, several ways have been investigated to discretize the
continuous model defined by differential equations while preserving properties
like soundness [14] and reachability [3]. [18] and [1] use predicate abstraction to
automatically compute backward reachable sets of piecewise affine hybrid au-
tomata, and find a conservative approximation of reachability for linear hybrid
systems, respectively. [26] addresses the bounded reachability problem of hybrid
automata.

In order to deal with complex networks, it may be a good choice to change
precision against efficiency, and directly model genetic networks in a discrete
framework, such as systems of logical equations [29,5], Petri nets [22,9,28,10],
or rule-based formalisms like term rewriting systems [15,16]. Formal verification
can then be carried out enumeratively (for instance, [13,2,23]) or symbolically,
see for example [8].

Organization of the paper. In Section 2, we introduce the modeling framework.
We show how a genetic network can be modeled in a modular way in this frame-
work, and compare the model with the qualitative model of [7]. Section 3 presents
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a reachability algorithm taking advantage of the modularity of the model. Sec-
tion 4 illustrates our results with a case study, and Section 5 concludes.

2 Component-Based Modeling of Genetic Networks

This section briefly introduces the notions of piecewise linear system, and its
qualitative simulation as defined in [7]. We then define a modularized approxi-
mation of qualitative simulation, and compare both models.

2.1 Piecewise Linear Systems

The production of a protein in a cell is regulated by the current protein concen-
trations, which can activate or inhibit the production, for instance by binding to
the gene and disabling transcription. At the same time, proteins are degraded.
This behavior of a genetic network can be modeled by a system of differential
equations of the form

ẋ = f(x,u) − g(x,u)x (1)

where x is a vector of protein concentrations representing the current state, u
is a vector of input concentrations, and the vector-valued function f and matrix-
valued function g model the production rates, and degradation rates, respec-
tively.

The approach of [14,7] considers an abstraction where the state space of each
variable xi is partitioned into a set of intervals Dr

i and a set of threshold values
Ds

i . This induces a partition of the continuous state space into a discrete set of
domains, in each of which Equation (1) is approximated with a system of linear
differential equations.

Definition 1 (Domain). Consider a Cartesian product θ = θ1 × ... × θn with
θi = {θ1

i , ..., θ
pi

i } an ordered set of thresholds, such that 0 < θ1
i < ... < θpi

i <
maxi. Let

Dr
i (θ) = {[0, θ1

i )} ∪ {(θj
i , θ

j+1
i ) | 1 � j < pi} ∪ {(θpi

i , maxi]}

and Ds
i (θ) =

{{θj
i } | 1 � j � pi

}
. We omit the argument θ when it is clear from

the context. Let Di = Dr
i ∪Ds

i , and D = D1×D2× ...×Dn be the set of domains.
The domains in Dr = Dr

1 × Dr
2 × ... × Dr

n are called regulatory domains, the
domains Ds = D � Dr are called switching domains.

The state space [0, max1] × · · · × [0, maxn] is thus partitioned into the set of
domains D.

Definition 2 (Piecewise linear system). A piecewise linear system is a tuple
M = (X, θ, µ, ν) where

– X = {x1, ..., xn} a set of real-valued state variables;
– θ = θ1 × ...× θn, with θi = {θ1

i , ..., θ
pi

i } such that 0 < θ1
i < ... < θpi

i < maxi,
associates with each dimension an ordered set of thresholds;
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– µ : Dr(θ) → IRn
�0 associates with each regulatory domain a vector of pro-

duction rates;
– ν : Dr(θ) → diag(IRn

>0) associates with each regulatory domain a diagonal
matrix of degradation rates.

Within a regulatory domain D ∈ Dr , the protein concentrations x evolve ac-
cording to the ratio of production rate and degradation rate:

ẋ = µ(D) − ν(D)x (2)

and thus converge monotonically towards the target equilibrium φ, solution of
0 = µ(D) − ν(D)x.

Definition 3 (φ). For any D ∈ Dr, let φ(D) denote the target equilibrium of
D such that

φi(D) = µi(D)/νi(D)
for any variable xi ∈ X.

Hypothesis: Throughout this paper we make the assumption that for any regu-
latory domain D, ∃D′ ∈ Dr . φ(D) ∈ D′, that is, all target equilibria lie within
regulatory domains, as in [14].

If φ(D) ∈ D then the systems stays in D, otherwise it eventually leaves D
and enters an adjacent switching domain. In switching domains, where µ and
ν are not defined, the behavior of M is defined using differential inclusions as
proposed by [17,21].

Notations. Let reg be the predicate characterizing the set of regulatory domains.
For any i ∈ {1, ..., n}, let regi and switchi be predicates on D characterizing the
regulatory intervals and thresholds of Di, respectively: regi(D) ⇐⇒ Di ∈ Dr

i ,
and switchi(D) ⇐⇒ Di ∈ Ds

i for any D ∈ D. The order of a domain D is
the number of variables taking a threshold value in D. Let succi and preci be
the successor and predecessor function on the ordered set of intervals Di (in the
sense that for any D1, D2 ∈ Di, D1 < D2 if ∀x1 ∈ D1 ∀x2 ∈ D2 . x1 < x2). We
define succi

(
(θpi

i , maxi]
)

= preci

(
[0, θ1

i )
)

= ⊥.

Definition 4 (R(D)). For any domain D = (D1, ..., Dn) ∈ D, let R(D) be the
set of regulatory domains that have D in their boundary, such that R(D) = {D}
for D ∈ Dr:

R(D) =
{
(D′

1, ..., D
′
n) | regi(Di) ∧ D′

i = Di ∨
switchi(Di) ∧

(
D′

i = prec(Di) ∨ D′
i = succ(Di)

)}
Gouzé and Sari [21] define the possible behaviors by the differential inclusion
ẋ ∈ H(x) with

H(x) = c̄o
({µ(D′) − ν(D′)x | D′ ∈ R(D)})

where c̄o(E) is the smallest closed convex set containing the set E. For any
regulatory domain D ∈ Dr and x ∈ D, H(x) = {µ(D) − ν(D)x}, that is, the
behavior is consistent with Equation (2).

Definition 5 (Trajectory). A trajectory of M is a solution of ẋ ∈ H(x).
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Qualitative model. The continuous behavior according to Definition 5 can be
approximated by a discrete transition graph on the set of domains D [14,7] (where
the qualitative model of [7] is more precise than [14]). This graph simulates the
behavior of the underlying genetic network.

Example 1. Consider the example of two proteins a and b inhibiting each other’s
production [14], as shown in Figure 1. The respective production rates of proteins
a and b are defined by

µa =
{

20 if 0 � xa < θ2
a ∧ 0 � xb < θ1

b

0 otherwise

µb =
{

20 if 0 � xa < θ1
a ∧ 0 � xb < θ2

b

0 otherwise

with θ1
a = θ1

b = 4 and θ2
a = θ2

b = 8. The degradation rate ν of both proteins
is always 2. The example is thus modeled by the piecewise linear system M =({xa, xb}, {θ1

a, θ
2
a} × {θ1

b , θ
2
b}, (µa, µb)t, diag(ν, ν)

)
.

a b

Fig. 1. Two proteins inhibiting each other

2.2 Transition Systems and Constraints

In the following, we present a simplified version of the component model adopted
in [20]. For a set of variables X , let V (X) denote the set of valuations of X , and
let P(X) = 2V (X) be the set of predicates on V (X).

Definition 6 (Transition system). A transition system B is a tuple (X, A, G,
F ) where

– X is a finite set of variables;
– A is a finite set of actions;
– G : A → P(X) associates with every action its guard specifying when the

action can occur;
– F : A → (

V (X) → V (X)
)

associates with every action its transition func-
tion.

For convenience, we write Ga and F a for G(a) and F (a), respectively.

Definition 7 (Semantics of a transition system). A transition system B =
(X, A, G, F ) defines a transition relation →: V (X)×A×V (X) such that: ∀x,x′ ∈
V (X) ∀a ∈ A . x a→ x′ ⇐⇒ Ga(x) ∧ x′ = F a(x).
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We write x → x′ for ∃a ∈ A . x a→ x′, and →∗ for the transitive and reflexive
closure of →. Given states x and x′, x′ is reachable from x if x →∗ x′.

Definition 8 (Predecessors). Given a transition system B = (X, A, G, F )
and a predicate P ∈ P(X), let the predicate prea(P ) characterize the prede-
cessors of P by action a: prea(P )(x) ⇐⇒ Ga(x) ∧ P

(
F a(x)

)
. Let pre(P ) =∨

a∈A prea(P ), pre0(P ) = P , and prei+1(P ) = pre(prei(P )), i � 0.

The predicate prea(P ) (resp. pre(P )) characterizes the states from which exe-
cution of a (resp. execution of some action) leads to a state satisfying P .

We define two operations on transition systems: composition and restriction.
The composition of transition systems is a transition system again, and so is the
restriction of a transition system.

Definition 9 (Composition). Let Bi = (X1, Ai, Gi, Fi), i = 1, 2, with X1 ∩
X2 = ∅ and A1 ∩ A2 = ∅. B1‖B2 is defined as the transition system (X1 ∪
X2, A1 ∪ A2, G1 ∪ G2, F1 ∪ F2).

This is the standard asynchronous product. Restrictions allow to constrain the
behavior of a transition system.

Definition 10 (Action constraint). Given a transition system B = (X, A, G,
F ), an action constraint is a tuple of predicates U = (Ua)a∈A with Ua ∈ P(X).

Definition 11 (Restriction). The restriction of B = (X, A, G, F ) with an
action constraint U = (Ua)a∈A is the transition system B/U = (X, A, G′, F )
where for any a ∈ A, G′(a) = G(a) ∧ Ua is the (restricted) guard of a in B/U .

Example 2. Consider two transition systems Bi = ({xi}, {inci, deci}, Gi, Fi)
where xi are variables on {low, high}, Gi(inci) = (xi = low), Gi(deci) = (xi =
high), Fi(inci) = (xi := high), and Fi(deci) = (xi := low), i = 1, 2. The
composition is B1‖B2 = ({x1, x2}, {inc1, inc2, dec1, dec2}, G1 ∪ G2, F1 ∪ F2).

Further suppose that we want to prevent B1 from entering state x1 = high if
x2 = high, and vice versa. This can be done by restricting B1‖B2 with action
constraint U = (U inc1 , U inc2 , Udec1 , Udec2) where U inc1 = (x2 = low), U inc2 =
(x1 = low), and Udec1 = Udec2 = true. The restricted system is (B1‖B2)/U =
({x1, x2}, {inc1, inc2, dec1, dec2}, G′, F1 ∪ F2) with G′(inc1) = G1(inc1) ∧ (x2 =
low), G′(inc2) = G2(inc2) ∧ (x1 = low), G′(dec1) = G1(dec1), and G′(dec2) =
G1(dec2).

Definition 12 (incr, decr). Given a predicate P on D and i ∈ {1, ..., n}, we
define the predicates incri(P ) and decri(P ) such that for any domain D =
(D1, ..., Di, ..., Dn) ∈ D, incri(P )(D) = P

(
D1, ..., succi(Di), ..., Dn

)
if succi(Di)

�= ⊥, and incri(P )(D) = false otherwise. Similarly, let decri(P )(D) = P
(
D1,

..., preci(Di), ..., Dn

)
if preci(Di) �= ⊥, and decri(P )(D) = false otherwise.

Intuitively, incri(P ) and decri(P ) denote the predicate P “shifted” by one do-
main along the i-th dimension, towards lower and higher values, respectively.
For instance, consider predicate P = (xa = θ2

a) on the state space of Example 1.
Then, incra(P ) = (θ1

a < xa < θ2
a) and decrb(P ) = (xa = θ2

a ∧ θ1
b � xb � maxb).
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2.3 Component Model of Genetic Networks

We now propose the construction of a component-based model from a piecewise
linear system.

Definition 13 (eq). Given θ = θ1 × ... × θn, we define predicates eq#
i on D,

i ∈ {1, ..., n}, # ∈ {<, �, �, >} such that for any domain D = (D1, ..., Dn) ∈ D,

eq#
i (D) ⇐⇒ ∃D′ ∈ R(D) ∀x ∈ D′

i . φi(D′)#xi for # ∈ {<, >}
eq=

i (D) ⇐⇒ ∃D′ ∈ R(D) ∃x ∈ D′
i . φi(D′) = xi

and eq�
i = eq<

i ∨ eq=
i , eq�

i = eq=
i ∨ eq>

i .

The predicates eq#
i reflect the relative position of target equilibria of the adja-

cent regulatory domains. The predicates eq<
i (D) and eq>

i (D) specify when some
adjacent regulatory domain has its target equilibrium “left” of Di and “right”
of Di, respectively.

Definition 14 (Č(M)). Given a piecewise linear system M = (X, θ, µ, ν) with
|X | = n, we define the transition system Č(M) = (B1‖B2‖...‖Bn)/U as follows.

– ∀i = 1, ..., n . Bi = counter(Di), where counter(Di) is a bounded counter
defined on Di(θ) by the transition system counter(Di) =

({leveli}, {inci,
deci}, {Ginci = leveli � θpi

i , Gdeci = leveli � θ1
i },
{
F inci =

(
leveli :=

succi(leveli)
)
, F deci =

(
leveli := preci(leveli)

)})
.

– U is an action constraint such that U(inci) = V >
i and U(deci) = V <

i with

V <
i =reg ∧ eq<

i ∨ decri(reg ∧ eq�
i ) (3)

V >
i =reg ∧ eq>

i ∨ incri(reg ∧ eq�
i ) (4)

Actions inci (deci) correspond to an increase (decrease) by one of the discretized
concentration leveli of protein i. The predicates V <

i and V >
i specify when a

transition decrementing leveli and incrementing leveli, respectively, is enabled.
More precisely, the first term in the disjunctions of lines (3) and (4) specifies that
there is a transition from a regulatory domain to a first-order switching domain
in the direction of the target equilibrium of the source domain. The second term
gives the conditions for transitions decreasing the order: they must be compatible
with the relative position of the target equilibrium of the destination domain.
Definition 14 limits the behavior of the model to transitions between regulatory
and first-order switching domains. The generalization to the set of domains D is
not presented here due to space limitation.

Remark 1. Since ‖ is associative, Definition 14 leaves open how the system is
actually partitioned into components (in the sense of sets of transition systems).
The two extreme cases are that each Bi is considered as one component, or that
B1‖B2‖...‖Bn is considered as one single component. This choice will usually
depend on the degree of interaction between the modeled proteins. Putting all
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proteins in one component amounts to a non-modular model leading to non-
compositional analysis. Representing each protein with a separate component
may lead to a too heavy abstraction of the behavior. A good choice may gather
closely interacting proteins, for instance proteins in the same cell, in one com-
ponent, while modeling neighboring cells as separate components.

Notice that the above modeling framework enforces separation of concerns by
making a clear distinction between the behaviors of the individual components,
and constraints between the components.

Example 3. Figure 2 shows the transition relations of counter(Da), counter(Db),
and Č(M) for the piecewise linear system M of Example 1.

incb

incb

incb

incbdecb

decb

decb

decb

counter(Db)

xb

θ2
b

θ1
b

θ1
a θ2

a xa0

inca inca inca inca

deca decadecadeca

counter(Da)

Fig. 2. The transition relations of counter(Da), counter(Db), and Č(M)

Theorem 1 (Correctness). Consider a piecewise linear system M = (X, θ, µ,
ν). The behavior of Č(M) under-approximates qualitative simulation as defined
in [14,7].

3 Compositional Reachability Analysis

Based on the transition system Č(M), the compositional algorithm shown below
can be used to check for reachability of a goal domain, or set of domains, from
an initial domain. The algorithm exhibits a path, if one is found, that solves the
reachability problem.

In the sequel we consider a system B = (X, A, G, F ) = (B1‖ . . . ‖BN)/U with
Bi = (Ai, Xi, Gi, Fi), i ∈ K = {1, . . . , N}, and U an action constraint. That
is, we suppose the n proteins to be modeled with N (1 � N � n) components,
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according to Remark 1. Given a conjunction c = c1 ∧ ... ∧ cN of predicates
ci ∈ P(Xi), i = 1, ..., N , let c[i] = ci denote the projection of c on Xi.

Let pathk : V (Xk) × P(Xk) → 2Ak be a function on component k telling
which action to take in order to get from some current component state towards
a state satisfying some predicate. This function can be computed locally: for any
predicate P ∈ P(Xk) and domain D, let

pathk(D[k], P ) = {a ∈ Ak | ∃i � 0 . prea

(
prei

k(P )
)
(D[k]) ∧

∀j ∈ {0, ..., i} . ¬prej
k(P )(D[k])}

That is, pathk(D[k], P ) contains an action a if and only if executing a from D[k]
will bring component k closer to P .

For a set of actions A, let enabling(A) be a list of predicates enabling some
action in A: ∀c ∈ enabling(A) . c =⇒ ∨

a∈A G(a). We suppose each of these
predicates to be a conjunction of predicates on the components. Let ⊕ denote
list concatenation. Given a non-empty list l, we write l = e.l′ where e is the
first element, and l′ the rest of the list. Given a list A of actions and a domain
D, let first enabled(A, D) be the first action a of A such that G(a)(D), and
first enabled(A, D) = ⊥ if all actions are disabled.

Algorithm 1. Initial call to construct a path σ from domain Dinit to predicate
P : (D′, σ, success) = move(Dinit, P, 〈〉).
move (D, c.l, good) =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(D, 〈〉, true) if c(D) (1)(
F (a)(D), 〈a〉, true) if ¬c(D) ∧ a �= ⊥ (2)

(D′′, σ ⊕ σ′, true) if ¬c(D) ∧ a = ⊥ ∧ goal �= ∅ ∧ ok ∧ ok′ (3)
move(D, l, good) if ¬c(D) ∧ a = ⊥ ∧ (goal = ∅ ∨ ¬(ok ∧ ok′)) ∧ l �= 〈〉 (4)
(D, 〈〉, false) otherwise (5)

where

a = first enabled(good,D)

goal =
⋃
k

pathk(D[k], c[k]) � good

(D′, σ, ok) = move
(
D, enabling(goal),good ⊕ goal

)
(D′′, σ′, ok′) = move(D′, c, good)

Algorithm 1 is constructive, that is, it establishes reachability from some
initial domain Dinit to a set of domains P by constructing a path from Dinit to
P . Function move works as follows. It takes as arguments the current domain
D, a predicate to be reached in the form of a list d of conjunctions, and a list
good of all actions requested to be executed, and returns a new domain, the part
of the path constructed so far, and a boolean indicating whether a path was
found. The five cases are (1) if the current domain satisfies the predicate to be
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reached, then we are done. (2) Otherwise, execute the first action in good that
is enabled. If there is none, compute the set goal of actions not considered so far
that bring the system closer to the first element c of d. (3) If goal is non-empty,
recursively call move so as to reach some domain D′ enabling some action in
goal, then call move once more to continue moving towards c. (4) If reaching c
fails, try the next conjunction of d. (5) If all above fails, then this call of move
failed. It can be shown that Algorithm 1 is guaranteed to terminate. It is not
guaranteed to find a path even if one exists, though. If a path is found on Č(M),
then Theorem 1 ensures that the same path exists in the qualitative model of
[7].

Algorithm 1 is compositional in the sense that it independently computes local
paths through the state spaces of the components (line goal =

⋃
k pathk(D[k],

c[k]) � good). A global path is then constructed from the local paths and the
constraints between the components: when an action a to be executed is blocked
by a constraint involving other components, the algorithm is called recursively
to move the blocking components into a domain where a is enabled.

Example 4 (Example 3 continued.). The functioning of Algorithm 1 is illustrated
by the path construction from domain Dinit = (θ1

a < xa < θ2
a ∧ θ1

b < xb < θ2
b ) to

domain Dgoal = (xa = θ2
a ∧ 0 � xb < θ1

b ) representing a stable equilibrium. The
subsequent calls of move are

move (Dinit, 〈Dgoal〉, 〈〉)
a = ⊥, goal = {inca, decb}
move (Dinit, 〈θ1

a < xa < θ2
a, . . . 〉, 〈inca, decb〉)

= (D1 = (θ1
a < xa < θ2

a ∧ xb = θ1
b ), 〈decb〉, true) (2)

move (D1, 〈Dgoal〉, 〈〉)
a = ⊥, goal = {inca, decb}
move (D1, 〈θ1

a < xa < θ2
a, . . . 〉, 〈inca, decb〉)

= (D2 = (θ1
a < xa < θ2

a ∧ 0 � xb < θ1
b ), 〈decb〉, true) (2)

move (D2, 〈Dgoal〉, 〈〉)
a = ⊥, goal = {inca}
move (D2, 〈xa < θ2

a ∧ 0 � xb < θ1
b 〉, 〈inca〉)

= (Dgoal, 〈inca〉, true) (2)
move (Dgoal, 〈Dgoal〉, 〈〉) = (Dgoal, 〈〉, true)

= (Dgoal, 〈inca〉, true) (3)
= (Dgoal, 〈decb, inca〉, true) (3)

= (Dgoal, 〈decb, decb, inca〉, true) (3)

Thus, Dgoal is reached from Dinit by decrementing levelb twice and then incre-
menting levela.

4 Case Study: Delta-Notch Cell Differentiation

Cell differentiation by delta-notch lateral inhibition is a well-studied genetic net-
work [24,18]. Cell differentiation is an important step in embryonic development,
as it causes initially uniform cells to assume different functions.
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For each cell we consider the concentrations of two trans-membrane proteins,
Delta and Notch. Following the model provided in [24], high concentrations of
Delta and Notch inhibit each other’s production within the same cell. High Delta
levels activate further Delta production in the same cell and Notch production
in the neighboring cells. Figure 3 illustrates these interactions.

Notch Notch Notch

Delta Delta Delta

Fig. 3. Interactions within and between neighbor cells

For our case study, we consider a network consisting of 19 cells with the layout
shown in Figure 4, a network of 37 cells with a similar layout, and the network
of 49 cells shown in Figure 4.

For each protein we partition the continuous state space into two inter-
vals and one threshold value: D∆ = {[0, θ∆), {θ∆}, (θ∆, max∆]} and DN =
{[0, θN), {θN}, (θN , maxN ]}. Cells with low Delta and high Notch levels (0 �
∆ < θ∆, θN < Notch � maxN ) are undifferentiated, whereas cells with high
Delta and low Notch concentrations (θ∆ < ∆ � max∆, 0 � Notch < θN ) are
differentiated. We are not interested in the actual production and degradation
rates of the proteins but require the target equilibria φ∆i and φNotchi

to satisfy

0 � φ∆i < θ∆ if Notchi > θN

θ∆ < φ∆i � max∆ if Notchi < θN

0 � φNotchi
< θN if max{∆j | j ∈ neighbors(i)} < θ∆

θN < φNotchi � maxN if max{∆j | j ∈ neighbors(i)} > θ∆

Considering only regulatory and first-order switching domains for a system
modeling n cells, the 2n-dimensional global state space encompasses 4n regula-
tory domains and 2n × 22n−1 first-order switching domains, that is, 5.5 × 1012

states for 19 cells, 7.2× 1023 states for 37 cells, and 1.6× 1031 states for 49 cells.
We have implemented Algorithm 1 in the compositional verification tool

Prometheus. To start, we choose to represent each cell by one component,
and check reachability of a given stable equilibrium from the initial state where
all cells are non differentiated. The results reported by Prometheus are con-
sistent with the actual, experimentally observed behavior [24]. For the case of
49 cells and the state shown in Figure 4, Prometheus finds a path of length 32
reaching the state.

Table 1 shows the execution times for the models of cell differentiation with
19, 37, and 49 cells, and for models of the nutritional stress response of E. coli [4]
and sporulation initiation of B. subtilis taken from [12]. The subsequent columns
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(∆1, N1) (∆2, N2)

(∆4, N4)

(∆3, N3)

(∆5, N5) (∆6, N6) (∆7, N7)

(∆8, N8) (∆9, N9)(∆10, N10)(∆11, N11)(∆12, N12)

(∆13, N13)(∆14, N14)(∆15, N15)(∆16, N16)

(∆17, N17)(∆18, N18)(∆19, N19)

Fig. 4. Model of 19 communicating cells (left); a stable equilibrium state involving 49
cells where dark cells are differentiated (right)

show the number of domains of the model, and the times for constructing the
component model and a path to the final state using Algorithm 1. All measure-
ments have been made on the same machine, a Pentium4 at 3 GHz with 512 MB
of memory.

Table 1. Performance on different models

state space model reachability

E. coli 7.8 × 103 < 10 ms 0.02 s
B. subtilis 2.7 × 104 < 10 ms 0.28 s
Delta-Notch 19 5.5 × 1012 0.01 s 1.06 s
Delta-Notch 37 7.2 × 1023 0.05 s 10.8 s
Delta-Notch 49 1.6 × 1031 0.13 s 7.5 s

In order to evaluate the performance increase due to compositionality, we
compare the compositional approach with a non-compositional reachability anal-
ysis, using the same framework. More precisely, we use Algorithm 1 to find a path
fromthe initial, undifferentiated state to the state ofFigure 4, ondifferent instances
of the Delta-Notch model with 49 cells. The only parameter that varies is the size
of the components, where extreme cases are given by the model of 98 components
each modeling one protein, and the model consisting of one single component. The
measured performance is shown in Table 2. For this example, the optimal degree
of modularity lies around one component per cell. It should be noted that the opti-
mal partitioning of proteins into components depend on the system, and cannot be
easily generalized. For a higher degree of modularity (1 component per protein),
the algorithm performs somewhat slower, probably due to an overhead in coordi-
nation between closely interacting components. As the component size increases,
complexity of the (non compositional) path construction within the components
exponentially blows up. Although the algorithm used for path construction within
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Table 2. Benchmarks for different levels of modularity of Delta-Notch 49. (*): compu-
tation interrupted after 12 hours.

cells per component 0.5 1 3/4 7 9/10 49

reachability 10.7 s 7.5 s 8.4 s 35.5 s (*) (*)

a component is not designed to be optimal for large state spaces, it allows to com-
pare the complexity for different degrees of granularity.

5 Discussion

We have presented a novel approach for component-based modeling and reacha-
bility analysis of genetic regulatory networks. The model discretizes the network
dynamics defined by a system of piecewise linear differential equations. On this
model, a compositional algorithm constructively analyzes reachability proper-
ties, allowing to deal with complex, high-dimensional systems. A case study and
several benchmarks show the potential of this approach. In spite of the conser-
vative approximation, our approach has yielded the expected results in the case
studies carried out so far, and confirmed its efficiency.

We intend to apply the technique to genetic networks involving a hierarchy of
communicating functional modules, and to models of not yet fully understood
networks. We are currently investigating compositional analysis of further prop-
erties like equilibria and cyclic behavior, based on the same component model.
In order to further improve precision, we intend to study the integration of
the qualitative model of [3] using piecewise affine differential equations in our
framework.

Acknowledgment. The author thanks Hidde de Jong for many fruitful discus-
sions and comments on earlier versions of this work.
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27. O. Resendis-Antonio, J.A. Freyre-González, R. Menchaca-Méndez, R.M. Gutiérrez-
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Abstract. Having in mind the large-scale analysis of gene regulatory
networks, we review a graph decimation algorithm, called “leaf-removal”,
which can be used to evaluate the feedback in a random graph ensemble.
In doing this, we consider the possibility of analyzing networks where the
diagonal of the adjacency matrix is structured, that is, has a fixed number
of nonzero entries. We test these ideas on a network model with fixed
degree, using both numerical and analytical calculations. Our results
are the following. First, the leaf-removal behavior for large system size
enables to distinguish between different regimes of feedback. We show
their relations and the connection with the onset of complexity in the
graph. Second, the influence of the diagonal structure on this behavior
can be relevant.

1 Introduction

Gene regulatory networks are graphs that represent interactions between genes
or proteins. They are the simplest way to conceptualize the complex physico-
chemical mechanisms that transform genes into proteins and modulate their
activity in space and time. In the network view, all these processes are pro-
jected in a static, purely topological picture, which is sometimes simple enough
to explore quantitatively [1]. Thanks to the systematic collection of many ex-
perimental results in databases, and to new large scale experimental and com-
putational techniques that enable to sample these interactions, these graphs
are now accessible to a significant extent. Some examples are the undirected
graphs of protein-protein interactions, and the directed graphs of transcription
and metabolic networks [1,2,3,4]. The availability of such large-scale interaction
data is extremely important for post-genomic biology, and has provided for the
first time a whole-system overview on the global relationships among players in
a living system.

The hope is to study these graphs together with the available information on
the genes and the physics/chemistry of their interactions to infer information on
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the architecture and evolution of living organisms. In this program, the simplest
possible approach to take is to study the topology of these networks. For instance,
order parameters such as the connectivity and the clustering coefficient have
been considered [5]. Other investigators have focused on the relations of gene-
regulatory graphs with other observables, such as spatial distribution of genes,
genome evolution, and gene expression [6,7,8,9,10]

Typically, in an investigation concerning a topological feature of a biologi-
cal network, one generates so called “randomized counterparts” of the original
data set as a null model. That is, random networks which conserve some topo-
logical observables of the original. The main biological question that underlies
these studies asks to establish when and to what extent the observed biological
topology, and thus loosely the living system, deviate from the “typical case”
statistics. To answer this question, the tools from the statistical mechanics of
complex systems are appropriate. For example, a topological feature that has
lead to relevant findings is the occurrence of small subgraphs - or “motifs” [11].

The study presented here focuses on the topology, and in particular on the
problem of evaluating and characterizing the feedback present in the network.
On a generic biological standpoint, this is an important issue, as it is related
to the states and the dynamics that a network can exhibit. Roughly speaking,
the existence of feedback in the network topology is a necessary condition for
the dynamics of the network to show multistability and cycles [12]. In presence
of feedback, the relations between internal variables play an important role, as
opposed to situations where the network is tree-like, and the external conditions
determine completely the configurations and the dynamics. Recently, we came
to similar conclusions analyzing the structure of the compatible gene expression
patterns (fixed points) in a a Boolean model of a transcription network [13].
This model exhibits a transition between a regime of simple gene control, and
a regime of complex control, where the internal variables become relevant and
dynamically non-trivial solutions are possible. These regimes correspond to the
SAT, and HARD-SAT phases of random-instance satisfiability problems. For
random Boolean functions, the two regimes can be understood completely in
terms of feedback in the network topology. A selection of the Boolean functions
can change this outcome [14].

Rather than dealing with specific experimental networks, this is meant as a
theoretical study on a model graph ensemble 1. Our purpose here is twofold.
First, to introduce some “order parameters”, i.e. functions that describe the rel-
evant feedback properties, connected to algorithms that can be used to evaluate
the feedback without enumerating the cycles. Second, to study an ensemble of
random graphs, or randomization technique, with structured adjacency matrices,
that conserve the number of entries in their diagonal. This choice, which we will
justify, leads to a distinct behavior. The two problems are introduced in section 2.
We show the connections between different points of view on the problem, using
simple algebraic, graph theoretical, and statistical mechanical tools. The first ap-

1 By the word ensemble, we mean here a family of graphs with a, typically uniform,
probability distribution.
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proach is an application of a decimation algorithm called “leaf-removal” [15,16].
This algorithm links the feedback to the existence of a percolating “core” in the
network, containing cycles. The numbers of core variables and edges can then
be used as order parameters for the feedback. Here, we formulate three variants
of the leaf-removal algorithm, and discuss the statistical meaning and the re-
lations between them and different levels of feedback. Namely, for an oriented
graph, one can use these algorithms to define and distinguish “simple” from
“complex” feedback. Furthermore, we discuss how one can connect feedback to
the satisfiability-like optimization problem of counting the solutions of a random
linear system on the Galois field GF2 [17]. This can also be seen as a linear al-
gebra problem concerning the kernel and rank of the connectivity matrix. The
theoretical motivation for the choice of an ensemble with structured diagonal will
follow naturally from this discussion. In section 3 we present our main results,
as a series of “phase diagrams”, which describe the typical feedback of random
realizations of the graphs. In the unstructured case, the phase diagrams obtained
by leaf-removal show the existence of five regimes, or “phases”, characterizing
the feedback in the limit of infinite graph size. Some of these regimes are con-
nected to complexity transitions for the associated random GF2 optimization
problem. Moreover, we show that the choice of a structured diagonal leads to
a quantitatively different behavior, and thus to a significantly different amount
of feedback in the graph. These differences are greatly enhanced if the degree
distribution is scale-free.

2 Formulation of the Problem and Algorithms

The problem we want to address consists in evaluating the feedback in a random
ensemble of graphs. While the range of application is more general, to avoid
excess of ambiguity we choose a specific ensemble of graphs that will be treated
in detail throughout the paper. We consider oriented graphs, where each node has
p incoming links. The graph ensemble can be specified through a M×N Boolean
matrix B (having elements 0 or 1). B represents the input-output relationships
in the network. If xi are network nodes, Bji = 1 if xi → xj , and zero otherwise.
The matrix is rectangular because only M < N nodes have an input. We allow
for self links, or diagonal elements. For a simple directed graph one can say that
feedback exists as soon as closed paths of directed edges emerge. Having in mind
the fact that, while here we consider only topological properties, the incoming
links are “inputs”, that is, they encode for some conditions on the nodes (for
example, on gene expression), we can also use a separate graphical representation
for the nodes, or “variables”, and the “functions” regulating these variables. This
representation is a bipartite graph (Fig. 1). Each graph has N variables and M
functions, and thus on average γ = M/N functions per variable.

An important point concerning randomization, is that the choice of what
feature to conserve and what not to conserve in the randomized counterpart
is quite delicate and depends on specific considerations on the system. In the
words of statistical mechanics, the typical case scenario can vary greatly with the
choice of the ensemble. For instance, the network motifs shown by randomizing a
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X2X1

X0

X2X1

X0

V1

V1

Fig. 1. Different representations of interactions in the graph G. Left: oriented graph
Right: a bipartite oriented graph. V1 is a function and xi are variables, x0 is the output.

network with an Erdos-Renyi random graph differ from the usual ones, for which
the degree sequence is used as a topological invariant [18]. In studies of biological
networks, the diagonal of B is normally disregarded, or assumed to have the
same probability distribution as a row or a column. The use of considering it is a
matter of the nature of the graph and the property under exam. For the case of
transcription networks, an ensemble with structured diagonal might have some
relevance. For example, for motifs discovery, sometimes one puts the diagonal
to zero, and considers degree-conserving randomizations that do not involve the
diagonal [21]. In our earlier work on transcription networks, we have considered
the autoregulators as a structured diagonal [13]. We will show, for our model
graph ensemble, that this leads to considerably different results for the feedback.
There are other biological examples where a structured adjacency matrix emerges
naturally. The simplest example are mixed interaction graphs. For instance, one
can consider a composition of a transcription network with a protein-interaction
network (which is a non directed graph) and pose the question of evaluating the
feedback on a global scale compared to randomized counterparts.

Leaf-removal algorithms. A straightforward way to measure the amount of feed-
back in a graph is to count cycles. However, this is in general computationally
as costly as enumerating all the paths. For this reason, it is desirable to use al-
gorithms and order parameters that allow a quicker evaluation. To this aim, we
describe three variants of a decimation algorithm, termed “leaf-removal”, that
is able to remove the tree-like parts of the graph, leaving the components with
feedback. We define a leaf as a variable having only incoming links, and a “free”
variable, or a root, a variable having only outgoing links (Fig 2). γ is a measure
for the fraction of regulated variables, as opposed to external variables which
only enter functions as inputs. The three variants of the leaf-removal iteratively
remove links and nodes from the graph, using the following prescriptions (Fig 2).

1. LRa. Remove leaves and their incoming links.
2. LRb. As above. Additionally, remove incoming links of nodes whose incoming

links are all connected to roots, which are also removed.
3. LRc. As LRa. Additionally, remove all the incoming links (together with

their associated nodes) of nodes whose incoming links are connected to at
least one root.
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This is an iterative nonlinear procedure, where more variables may disappear in
a single move. LRc works naturally on directed and undirected bipartite graphs.
In fact, viewing the system as a bipartite graph, one can verify that LRc is
equivalent to removing all the functions connected to a single node, ignoring
directionality. Instead, LRa and LRb are thought for a directed graph, such as
the ones we consider here.

There are two possible outcomes for the leaf-removal. Removing the whole
graph, or stopping at a core subgraph that contains cycles. The core is composed
of NC genes and MC functions. We want to use these as order parameters for
the feedback. Equivalently, we can use ∆C = NC−MC

N and γC = MC/NC . The
difference between LRa and LRb is that LRb is able to remove tree-like parts of
the graph that are upstream of a simple cycle. LRc is also able to do this. On
the other hand, LRc might break some of these cycles because it disregards the
orientations of the edges (Fig. 2). LRc cannot break “complex” cycles, defined
as cycles where each node is connected to at least two functions.

SIMPLE 
CYCLE

COMPLEX
CYCLE

ROOTS

CORES

LEAVES

HYPERCYCLE

Fig. 2. Left: example of roots (free variables) and leaves for the leaf-removal algorithm.
This graph contains a simple cycle (in red), which is not removed by LRa and LRb,
but is removed by LRc. Middle: examples of a complex cycle and a hypercycle. A
complex cycle (top) is not removed by LRc, but does not belong to the kernel of of
At. A hypercycle (bottom) is an element of the kernel of At, because each variable
appears in an even number of functions. Right: example of cores for the different leaf-
removal variants, applied on the same initial graph. The image refers to a random
graph with p = 3, γ = 0.5, N = 600. The cores are represented as a directed graph,
and superimposed. The LRa core (whole figure) contains feedback loops and tree-like
regions (black) upstream of the loops. The LRb core (red) does not contain the treelike
parts, but all the feedback is preserved. The LRc core is empty, as this algorithm is
able to break simple cycles connected to single free variables. The cycle of the original
graph is indicated by circled nodes and dashed edges (blue).
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Connections with Random Systems in GF2 and Adjacency Matrix Algebra. To
investigate the feedback properties of the graph, one can also consider the fol-
lowing linear system in the Galois field GF2 (the set {0, 1} with the conventional
operations of product, and sum modulo 2).

Ax = v . (1)

Here, v is a random vector of GF2M , that represents the functions, and A =
B + IMN , where IMN is the truncated M × N identity matrix, and the sums
are in GF2. In other words, we imagine that each output variable is subject
to a random XOR constraint, and the idea is to use this as a probe for the
feedback. Each XOR constraint, or GF2 equation corresponds to a function. In
the language of statistical mechanics, the random linear system (1) maps to a
p-spin model on the graph [16]. The important point is that feedback translates
into algebraic properties of the matrix A in GF2, and in solutions of Eq. (1).
A feedback loop, or a cycle, corresponds to the pair Ao, ho, where Ao is a l × l
submatrix of A, and ho is a l-component vector such as hoAo = 0. Indeed, the
functions and variables selected by the nonzero elements of ho are such that each
variable appears in an even number of constraints.

We can also define a “hypercycle” as an M component vector h of GF2, such
as the right product hA = 0, because the functions and variables selected by the
ones in h are such that each variable appears in an even number of functions.
Graphically, a hypercycle is a connected cluster made of functions that share
an even number of nodes (Fig. 2). From the algebraic point of view, it is an
element of the kernel of At, and is then connected to the solvability of Eq. (1).
This consideration enables to evaluate the average number N of solutions of
Eq. 1. Perhaps surprisingly, one can prove that N = 2N−M under very general
conditions. However, this average ceases to be significant when the hypercycles
become extensive (i.e., the number of nodes they involve has order N), as the
fluctuations become dominant. This is discussed in detail in Appendix A.1. The
exact threshold for γ where hypercycles become extensive is a phase transition in
the thermodynamic limit N → ∞, M → ∞ at constant γ. Precisely, it is called
the SAT-UNSAT transition for Eq. (1) [19]. The UNSAT threshold depends
on the graph ensemble, and has been determined in some cases [20]. In some
instances, there may exist also an intermediate “HARD-SAT” or glassy phase,
where 2N−M solutions exists, but they belong to basins of attractions whose
distance from each other [19] is order N . For a p-spin problem on a graph, this
glassy phase corresponds to the presence of complex cycles [16].

Structured diagonal. As a hypercycle is a particular realization of a complex
cycle, it is easy to understand how the core of a leaf-removal algorithm will
in general (but not always) contain hypercycles: none of the algorithms is able
to break these structures. This is shown in Appendix A.2, which discusses the
relation of the leaf-removal “moves” with operations on the rows and columns
of A, related to the solution of Eq. (1). As explained there, for a directed graph,
the extensive hypercycle, or UNSAT region may exist only at γ = 1. In the
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case where the diagonal is structured, the situation is quite different, and the
hypercycle phase can appear for γ < 1 [13,14]. The above consideration justifies
from an abstract standpoint the intermediate situations, with a fixed fraction
of ones on the diagonal of A. In considering this ensemble of matrices with
structured diagonal, we can introduce an additional parameter χ, that represents
the fraction of ones on the diagonal of A. It is important to note that the
introduction of a structured diagonal in A changes the adjacency matrix, and
thus the graph ensemble. This change can have different interpretations. Rather
than focusing on a particular one, the objective here is to show on an abstract
standpoint how the phase behavior of Eq. (1) is perturbed by χ.

3 Regimes of Feedback

In this section, we discuss numerical and analytical results for the leaf-removal
algorithms that support the general considerations above. We considered mainly
the ensemble of graphs with fixed indegree p and Poisson-distributed outdegree
k, p(k) = (pγ)k

k! e−pγ . The diagonals are thrown with independent probability, to
ensure that the average fraction of ones is χ ∈ [0, 1]. The choice of a structured
diagonal does not perturb the marginal probability distributions of columns or
rows. One can connect χ to the notion of “orientability”. If M > N , it is impossi-
ble to orient a graph assigning one single output per function. On the other hand,
a graph with a structured diagonal can be seen as a partially oriented one, where
some directed constraints coexist with some undirected ones. In this interpreta-
tion χ = 1 is the simple directed graph with no self-links. The case χ = 0 can be
seen as a totally undirected graph, a similar ensemble to that used in [16].

We start with the totally orientable case χ = 1. For each value of γ, at fixed
network size N , one can generate randomized graphs and evaluate their cores
numerically. This procedure is exemplified in Fig. 3 for the case of LRb. The
figure shows a transition to a regime where the core is nonempty and all the
graphs are sharply distributed around the average core size. Equivalently, one
can evaluate the core order parameter ∆C , which vanishes when the core is
empty or MC = NC . The same order parameter is negative when MC > NC .
Each LR has two critical values. The first, γx

d , is associated to the emergence of
a nonempty (extensive) core. The second γx

s , to the condition NC < MC . Based
on our results, γs is always the same for all three leaf-removals, and corresponds
to the onset of the UNSAT phase of extensive hypercycles. From simulations
and analytical work, γs = 1. γx

d , instead, depends on the ability to remove parts
of the graph of the different algorithms.

As we have seen, LRa can remove less than LRb, because the latter is able to
deal with the tree-like parts of the graph that lay upstream of the loops. Also,
LRb can remove less than LRc, because LRc can break feedback loops if they
are connected to a single free variable. Thus, one can expect γa

d < γb
d < γc

d. This
is indeed our observation (Fig. 4).

Based on these results, we can distinguish the following five regimes of feed-
back: (1) all cores are empty, (2) only the LRa core is nonempty, (3) both the LRa
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Fig. 3. Histogram of the core dimensions NC and MC as a function of γ for LRb. The
data refer to 104 random networks with p = 3 and initial size N = 1000. For low γ,
the cores are clustered towards the empty graph. At γ � 0.38 the core distribution
becomes wide. Successively, the mean values grow and the histogram acquires again a
sharp single peak at increasing MC , NC . This is reminiscent of a second order phase
transition. For LRc, this transition is much sharper (first order), and marks the onset
of complexity in the core solutions γc

d.

and the LRb core are nonempty, (4) all the cores are nonempty with NC > MC ,
(5) all the cores have NC < MC . These last two regimes can be seen as ther-
modynamic phases connected with the SAT-UNSAT transition of the associated
linear system.

1. There are no feedback loops in the typical case.
2. Feedback loops emerge, that form a core having an extensive treelike compo-

nent upstream. The cycles are intensive (i.e. the core contains a number of
nodes negligible with respect to N, or o(N)), but the tree upstream becomes
extensive (O(N)). Analytically, one can compute that γa

d corresponds to the
percolation-like threshold 1/p (see Appendix A.3 and Fig. 4). Intuitively, as
soon as the graph percolates, even in the presence of a small region contain-
ing cycles, the tree upstream of the feedback loops can span an extensive
part of the graph.

3. There is an extensive core of simple loops. LRb erases the tree upstream of
the feedback loops, thus it can only have its threshold when the region of
cycles itself becomes extensive. So far, we have not been able to compute
the threshold γb

d analytically. However, our simulations indicate that it lies
higher than γa

d (Fig. 4).
4. HARD-SAT phase. Intensive hypercycles, and extensive complex cycles form

the core, where each variable appears in 2 or more functions. This gives a
clustered structure to the space of solutions in the corresponding random
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Fig. 4. Left: ∆C(γ) for χ = 1, p = 3. The solid line corresponds to the analytical
calculation (Appendix A.3). The symbols are numerical results for 103 realizations of
graphs with N = 1000. γa

d < γb
d < γc

d mark the transition to an extensive core for the
three leaf-removal algorithms. γs = 1 for all three algorithms to the point where ∆C

becomes negative. Middle: A scheme of the resulting phase diagram. Right: Analytical
(N → ∞) values of the order parameter ∆C for the LRa algorithm, χ = 1 and different
values of p. The order parameter deviates from zero at the threshold γa

d = 1/p, and
crosses again at γc = 1. The calculation is described in Appendix A.3.

linear system. ∆C is proportional to the complexity Σ of the space of so-
lutions, defined by the relation logN ∼ N(Σ + S). Here S, the entropy,
measures the width of each cluster, while Σ counts the number of clusters.

5. UNSAT phase. The hypercycles become extensive. The threshold γs = 1 can
be compute analytically (see Appendix A.3, and Fig. 4)

Fig. 5. Left: Phase diagram for p = 3 and structured diagonals (varying χ). There
are quantitative changes with respect to χ = 1. Middle: Phase diagram for scale-free
distribution of the outdegree k. γc

d and γs move with the same trend and undergo a
notable quantitative drift with increasing χ. Right: The exponent for the outdegree
distribution is a fit from data on the transcription network of E. coli [21].

Considering now ensembles with a structured diagonal, one can carry the
same analysis at fixed values of γ and χ. As we discussed above, LRc is not sen-
sitive to graph orientation, and graphs with a structured diagonal can be seen as
partially oriented ones. Thus, the simplest choice is to forget the other variants
of the algorithms and focus on LRc. At fixed χ, there are three phases SAT,
HARD-SAT, and UNSAT. On the other hand, as we argued above, because of
the structure of the core matrices, these regions vary with χ, and a new phase
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diagram can be generated. The interesting result is that this ensemble can show
quantitatively different thresholds, while leaving the marginal distributions for
the row and column connectivity unchanged. We have addressed this question
numerically, computing the thresholds γc

d(χ) and γs(χ). The results for the fixed
p ensemble are shown in Fig. 5. The value for both thresholds increases with
increasing χ. In particular, γs(χ) becomes exactly 1 in the directed case. On the
other hand, the phenomenology of the transition does not vary with χ, with a
discontinuous jump at the onset of a complex cycles phase, as in a first order
phase transition. Thus, in the fixed p ensemble, there is a marked quantitative
change in the thresholds. One may wonder whether the impact is the same for
ensembles of graphs where the connectivity distributions are wider. Throughout
the paper we have considered only the ensemble with fixed p and Poisson distrib-
uted k. Notably, the effect of a structure diagonal becomes larger for scale-free
distributions of k. This is illustrated in Fig. 5, where we show the phase dia-
gram for a power-law distribution for k with exponent 1.22 fitted from data from
E. coli [21], and independently thrown columns for A. In this case, the influence
of the diagonal can bring the hypercycle threshold γc down by a factor of three.

4 Discussion and Conclusions

We presented a theoretical study focused on the evaluation of feedback and the
typical behavior of graphs taken from a random ensemble. The study focuses
specifically on the ensemble of directed graphs with fixed indegree and Poisson
outdegree. On the other hand, it is inspired by examples of biological graphs.
Detecting feedback in large biological graphs and their randomized counterparts
is important to understand their functioning. The use of our technique is that
it allows for a quick evaluation and, more importantly, it provides some quan-
titative large-scale observables that can be used to measure the weight and the
complexity of feedback loops. In order to do this, we introduce different variants
of the leaf-removal algorithm, which naturally carry the definition of simple or-
der parameters, depending on the properties of the core. We showed how the
three algorithms relate to graph properties, algebraic operations on the adja-
cency matrix, and to solutions of the associated linear systems of equations in
GF2. This analysis naturally leads to the abstract introduction of structured ran-
dom graphs that conserve the number of entries in the diagonal of the adjacency
matrix, which might be relevant in some biological situation.

Our two main results are the following. First, a phase diagram of different
regimes of feedback depending on the fraction of free variables for an oriented
graph. It shows a quite rich behavior of phase transitions that are interesting
from the statistical physics viewpoint. These include the thresholds observed in
diluted spin systems and XOR-like satisfiability problems. As already observed
in [16], the onset of the complex phase is deep in the region where cycles exist
and they involve a subgraph of the order of the graph size. On the other hand,
the less intricate feedback regimes of intensive simple cycles connected to exten-
sive trees, and of extensive simple cycles, might be relevant to characterize the
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dynamics in biological instances. The leaf-removal algorithms enable to analyze
these different forms of feedback, that can be “weaker” than the complex cycles
and hypercycles that are relevant for the associated GF2 problem. The second
result is that the introduction of a structured diagonal, which can be interpreted
as a partial orientation in the graph, has some influence on the thresholds. This
is particularly true in presence of scale-free degree distribution, where we showed
a phase diagram inspired by the connectivity in the E. coli transcription net-
work [21]. The algorithms described here can be readily applied to biological
data sets and their randomized counterparts. We are currently addressing this
question in relation with the Darwinian evolution of some transcription and
mixed transcription- and protein-interaction graphs. Finally, while this analysis
is loosely inspired to graphs related to gene regulation, the need to evaluate the
feedback arises in different contexts, where the tools described here could prove
useful.
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A Appendix

A.1 Solutions of the Random System in GF2

Evaluating the average number of solutions of Eq. 1 for large N at constant γ
gives information in the feedback of the associated graph. We denote the kernel
of a matrix by K, its range by R, and their dimensions by κ and ρ respectively.
If the probability measure for v is flat, the average number of solutions for fixed
A is the probability that v ∈ R(A), i.e.

prob(v ∈ R(A)) =
2ρ(A)

2M
= 2−κ(At) ,

times the number of elements in K(A) (i.e. 2K(A). The average number of solu-
tions is thus

N = 〈2−κ(At)2κ(A)〉A = 2N−M , (2)

where we have used the relations ρ(A) + κ(A) = N , ρ(At) + κ(At) = M , and
ρ(A) = ρ(At). Moreover, with the same reasoning, the fluctuations in the number
of solutions are

N 2 = (N )2〈2κ(At)〉A ,

meaning that when the average 〈2κ(At)〉A is O(1), an average number of solutions
N = 2N−M are typically found, while this is not the case if 〈2κ(At)〉A is an
extensive quantity. In fact, when this “selfaveraging” property breaks down,
typically no solutions are found, because N is supported only by the multiplicity
of very rare v ∈ R(A). This connects the solvability of the system to the topology
of the hypercycles.
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There are phase transitions between the two above regimes, tuned by the
order parameter γ. The standard approach is to take the thermodynamic limit
N → ∞, M → ∞ at constant γ. These transitions depend on the ensemble of
graphs considered [20].

A.2 Adjacency Matrix and Leaf-Removal

Let us try to visualize the leaf-removal procedure, for instance LRc, on a generic
adjacency matrix. Consider a general Boolean matrix A M × N , and apply
LRc. Each time we find a leaf, we assign it and its corresponding constraint a
progressive number, and we use that number as a label for the rows. With these
permutations, we construct a hierarchy for the leaves, as the leaves of layer a
cannot appear in the clauses of layer b ≥ a. In the tree-like case, reordering the
lines of A, we obtain ⎛

⎜⎜⎜⎜⎜⎜⎝

layer N ... ... ... ... N − M 1
(1) I ... ... ... ... ... ...
(2) 0 I ... ... ... ... ...
(...) 0 0 ... ... ... ... ...

(m − 1) 0 .. 0 I ... ... ...
(m) 0 0 .. 0 I ... ...

⎞
⎟⎟⎟⎟⎟⎟⎠

where (1) is the set of first layer leaves, (2) the second, etc. The last N−M entries
of each row correspond to free variables. We have thus obtained a triangulation
of A, where the diagonal is made of blocks (the layers) of identity matrices.

In the presence of a core, the triangulation can be carried only until a the
core is reached, and the the matrix can be rearranged to show the core in the
lower right corner. If the core has hypercycles, in the UNSAT phase, the matrix
structure is ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

layer N... ... ... ... Nc ←→ 1
(M) 1! ... .... ... ...
(..) 0 1! ... ... ...
(...) 0 0 1! ... ...
(Mc) 0 .. 0 0! core
(..) 0 .. 0 0 “
(1) 0 .. 0 0 “

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, MC > NC , so typically it will not possible to find solutions to the core
linear system on GF2, or the core does not contain sufficient free variables.
When the ensemble for A is specified, one has to apply this procedure to all
the realizations. Naturally, the outcome depends on the matrix ensemble. It also
depends in general on the variant of leaf-removal that one applies.

Structured diagonal. Focusing on the diagonal of A, we note that in presence of
hypercycles, one has necessarily to have some zeros in the M × M submatrix
of A to realize the condition Nc < Mc. This can be seen in the sketch above,
where the diagonal elements are followed by an exclamation mark. In particular,
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the diagonal contains an extensive number of ones. Thus, following the above
argument, it is easy to realize that Mc ≤ Nc, and the hypercycle phase may
exists only marginally at γ = 1. For our main choice of ensemble, this is the
case, as each variable can have only one input, so each constraint can always be
labeled by the name of its output variable, which will appear as a one in the
diagonal of A. In the case where the diagonal contains an extensive number of
zeros, the situation is quite different, and the hypercycle phase can appear for
γ < 1 [13,14].

A.3 Analytical Results for LRa

We present here the analytical calculation for LRa. If fk is the probability to
have k outputs, LRa defines a dynamics for it, associated by the cancellations
of leaves at each time step. For every time t, one can write

N = N
∑

fk(t) ;

N(t) = N
∑

k≥1 fk(t) = N (1 − f0(t)) ;
M(t) p = N

∑
kfk(t) .

The fraction of nonempty columns is given by the probability 1− f0(t). Writing
the increments as, ∆Nk = N∆fk = N ∂fk

∂t ∆t, one can choose ∆t = 1
M , t ∈ [0 : 1],

and obtain intensive equations of the kind ∂fk

∂t = I(t)k,h,fh(t) , where I is the
matrix that represents the flux generated by a move [22].

We now separate A in the blocks S and T of constrained and free variables
respectively, writing A = [S|T ]. The variables that appear in T have an outgoing
edge but no incoming ones. S has γ N columns, while T has (1− γ) N columns.
All the rows of A have p ones. The distribution for the ones appearing in the
columns, i.e. for the outdegree k, is Poisson for both S and T , fk(0) = λk

k! e
−λ,

with λ(0) = pγ. We impose si,i = 1. The lines of A contain on average pγ
elements in S and (1 − γ)p elements in T , thus after one move there are on
average pγ + 1 elements in S. Defining p′ = p γ + 1. The flux equations can be
written as

dfS
k

dt = p′−1
<k>S(t)−1 [kfS

k+1 − (k − 1)fS
k ]; for k > 1

dfS
1

dt = −1 + p′−1
<k>S(t)−1

[fS
2 ] ,

dfS
0

dt = 1 ,

where < k > (t) =
∑

kfk(t). Summing the above equations, one obtains the
evolution equation for the normalization factor mS :=

∑
pc

k =< k >S −1.

dmS

dt
= − p′ − 1

mS(t) − 1

∑
(k − 1)fS

k = −pγ

With initial condition mS(0) = λ(0) = pγ, the solution is mS(t) = pγ (1 − t).
mS(t) can then be identified with λ(t) appearing in the (Poisson) distribution
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fk(t). −
dλ(t)

dt

λ(t) = p′−1
mS(t)

= pγ
pγ

1
1−t , from which λ(t)

λ(0) = [1 − t]. Thus, for k > 1,

fS
k = eλ(t) λ(t)k−1

(k − 1)!
.

For k = 1, one can then write ∂
∂tf

S
1 = −1 − dλ

dt

λ (λe−λ), so that

fS
1 (t) = −t + eλ(t) = −t + epγ(t−1) .

The stop time t∗ of the algorithm is then a solution of the equation t∗ = epγ(t∗−1).
This last equation implies that if pγ < 1 the lowest solution for the stop-time is
t∗ = 1, or, in other words, all the graph is removed. On the other hand, when
pγ > 1, there is a finite stop time t∗ < 1, and thus a core. This determines the
critical value γa

d = 1/p. The size of the portion of the core matrix contained in
S is given by MS

stop = NS
stop = γN (1 − t∗).

In order to evaluate the full core matrix and the order parameters, the same
analysis has to be carried out for the matrix of the free variables, T . In this case,
one has pT

k = k
fT

k

mT (t) , where mT (t) =
∑

kfT
k . Again,

∆NT = N(1 − γ)
∂

∂t
fT

k ∆t =
1 − γ

γ

∂

∂t
fT

k ,

and the flux equations are

1−γ
γ

∂
∂tf

T
0 = p(1−γ)

mT (t)
fT
1 ,

1−γ
γ

∂
∂tf

T
1 = p(1−γ)

mT (t) [2fT
2 − fT

1 ] ,

1−γ
γ

∂
∂tf

T
k = p(1−γ)

mT (t) [(k + 1)fT
k+1 − kfT

k ].

The last equation can be rewritten as ∂
∂tf

T
k = pγ

mT (t) [(k+1)fT
k+1−kfT

k ]. As above,
summation yields the evolution of the normalization constant ∂

∂tm
T (t) = −pγ.

Thus,
∂
∂t λ(t)T

λT = pγ
mT (0)−pγt , which gives

λ(t)T

λT (0)
=

mT (0) − pγt

mT (0)
,

fT
0 (λ) = e−λ .

In conclusion, the stop time t∗ is a function of (pγ), determined by the relation
t∗ = epγ(t∗−1). The transition value to an extensive core is then given by γa

d =
1/p. The core dimensions can be written as MS

C = N γ(1 − t∗), and NT
C =

(1−γ)(1−fT
0 ) = (1−γ)(1−t∗). This last quantity gives the core order parameter

∆C = (1−γ)(1− t∗). ∆C is zero for γ < γa
d , and becomes nonzero at this critical

value, in a continuous, non-differentiable way (with an infinite jump). The other
threshold is easily calculated, as, for any finite pγ, t∗ > 0, thus γc is given by
the prefactor 1 − γ in ∆C crossing zero and becoming negative: γc = 1.
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Abstract. The buccal ganglia of Aplysia contain a central pattern generator 
(CPG) that mediates rhythmic movements of the foregut during feeding. This 
CPG is a multifunctional circuit and generates at least two types of buccal mo-
tor patterns (BMPs), one that mediates ingestion (iBMP) and another that medi-
ates rejection (rBMP). The present study used a computational approach to ex-
amine the ways in which an ensemble of identified cells and synaptic 
connections function as a CPG. Hodgkin-Huxley-type models were developed 
that mimicked the biophysical properties of these cells and synaptic connec-
tions. The results suggest that the currently identified ensemble of cells is in-
adequate to produce rhythmic neural activity and that several key elements of 
the CPG remain to be identified. 

1   Introduction 

Feeding behavior of Aplysia is a useful model system with which to study the neural 
control of a relatively complex and adaptive behavior (for recent reviews see [1], [2]). 
The behavior has been described as a sequence of appetitive and consummatory ac-
tivities. Appetitive activities (e.g., locomotion and head waving) help bring the animal 
in contact with food, and consummatory activities (e.g., biting, swallowing, rejection) 
mediate the movement of food into and out of the foregut. Consummatory activities 
involve rhythmic movements of structures in the foregut such as the buccal mass, the 
radula (the toothed grasping surfaces of the odontophore) and the jaws. All consum-
matory movements consist of two phases, radula protraction and retraction. Protrac-
tion and retraction movements of the radula are synchronized with movements of the 
lips and jaws, as well as with radula opening and closing movements, to produce a va-
riety of functionally different consummatory movements. For example, during a bite, 
the jaws open as the odontophore rotates forward (i.e., protraction). Initially, the two 
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halves of the radula are separated (i.e., open) during protraction. Before the peak of 
protraction, however, the two halves of the radula begin to close and grasp the food. 
The radula remains closed as the odontophore retracts (i.e., backward rotation), which 
brings the food into the buccal cavity, and the jaws close [3]. Rejection differs from 
ingestion movements in that the two halves of the radula are closed as the odonto-
phore protracts and open as it retracts, which ejects the unwanted material from the 
buccal cavity. 

Elements of a CPG that control the rhythmic feeding movements reside primarily 
in the buccal ganglia, and the rhythmic patterns of neural activity underlying feeding 
movements have been characterized (Fig. 1) (e.g., [4], [5], [6]). For example, during a 
BMP, neural activity corresponding to protraction and retraction, can be monitored as 
bursts of spikes in identified neurons such as B63 and B64, respectively [7], [8]. 
iBMPs can be distinguished from rBMPs, in part, by the timing of activity in radula-
closer motor neurons (e.g., B8) relative to the protraction and retractions phases of the 
BMP (e.g., [9], [10], [11]). 

The synaptic interconnections of many of these cells have been characterized as 
have been their firing properties, activity during BMPs and responses to transmitters. 
The large body of knowledge relating to the neural circuitry that mediates feeding be-
havior of Aplysia indicates that a comprehensive and quantitative model would help 
explain the function of individual components of the circuit and their role in organiz-
ing behavior. Such a model would also help organize this expanding body of knowl-
edge into a modifiable framework that would allow additional analysis and facilitate 
future empirical investigations. 

The present study extends previous models of the feeding CPG [12], [13], [14], 
[15], [16], by developing a neural network that included Hodgkin-Huxley-type mod-
els and by including additional cells and their synaptic connections (Fig. 2). The 
properties of the models were based on both previously published empirical studies 
and on unpublished observations. The models were based on the premise that the 
functional properties of the network as a whole could be investigated if i) the active 
and passive membrane properties of each cell, ii) the magnitude and time course of 
the monosynaptic connections, and iii) the overall pattern of synaptic connectivity 
could be matched to the available physiological data. The model was robust and it 
provided key insights into our current level of understanding of the feeding CPG.  

2   Methods  

The simulations were performed with version 8 of SNNAP (Simulator for Neural 
Networks and Action Potentials; [16], [17], [18]). The software was run under the 
Microsoft Windows XP operating system on a Pentium 4 computer. The forward 
Euler method with a fixed time step of 45 µsec was used for numerical integration. 
The model will be added to ModelDB website (senselabe.med.yale.edu), and to 
SNNAP website (snnap.uth.tmc.edu) where it will be possible to download and run 
the simulations and view parameters and equations. 

The initial network contained Hodgkin-Huxley-type models of nine neurons and 
their synaptic connections (see Fig. 2). Each cell in the network was modeled as a 
single, isopotential compartment. The equivalent electrical circuit for each cell  
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consisted of a membrane capacitance (CM) in parallel with a leakage conductance (gL) 
and its associated equilibrium potential (EL). In each neuronal model, the values for 
Cm, gL, and EL were adjusted to reflect the average empirically observed resting mem-
brane potential, input resistance, membrane time constant and the relative size of each 
cell. In addition to these passive elements, one or more voltage- and time-dependent 
conductances and an associated equilibrium potential were added to the equivalent 
circuit model for each cell.  

The number and type of variable conductances that were incorporated into each cell 
model were adjusted to reflect the unique firing characteristics of the individual cells. 
Several cells included conductances in addition to the fast Na+ and K+ conductances. 
The kinetics and voltage-dependencies of the various conductances were adjusted to 
reflect the empirically observed threshold for initiating an action potential in each cell, 
level of spiking activity generally observed in these cell in response to stimuli, and any 
unusual cellular properties, such as delayed responses to stimuli or plateau potentials. 
Chemical synaptic conductances (gcs) were incorporated into the neuronal models by 
adding time-dependent conductance changes and associated reversal potentials (Er). 
Five general features of synaptic connections were considered in the simulations. First, 
the reversal potential and the magnitude of each synaptic conductance were adjusted to 
reflect whether a given synaptic connection was excitatory or inhibitory and its average 
amplitude, respectively. Second, the time constant for each synaptic conductance was 
adjusted to match the general time course of the empirically observed PSPs. Third, 
some of the synaptic connections are multiaction and included both fast and slow com-
ponents and/or both excitatory and inhibitory components. Thus, the simulated connec-
tions between some cells had multiple components that reflected the empirical observa-
tions. Fourth, empirical data indicate that the slow synaptic connection from B34 to B8 
is mediated by a conductance decrease [7]. Thus, this synaptic connection was mod-
eled as producing a decrease in the membrane conductance of B8. Fifth, some of the 
synaptic connections expressed homosynaptic plasticity (i.e., depression or facilita-
tion). Thus, the simulated connections between some cells manifest homosynaptic 
plasticity. Electrical synaptic conductances (ges) were incorporated into cell models by 
adding a linear conductance between any two cells. The simulated network contained 
four electrical connections and the parameters of these connections were adjusted to 
match the available empirical data. The robustness of the model was tested by running 
a series of simulations in which the values for some parameters were either randomly 
altered at the beginning of a simulation (see Results) or subjected to stochastic fluctua-
tions throughout a simulation.  

3   Results 

3.1   Patterns of Fictive Feeding in Isolated Buccal Ganglia Preparations 

Rhythmic patterns of neural activity that underlie feeding movements have been charac-
terized in freely behaving animals (e.g., [6]), in reduced preparations (e.g. [9]) and in 
isolated ganglia (e.g. [5]). Consistent and similar patterns of neural activity have been 
recorded in these vastly different types of preparations, which suggests that the isolated 
ganglia retain sufficient circuitry to reproduce a substantial proportion of the behavior-
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ally relevant neural activity. Thus, the BMPs that are recorded in isolated ganglia prepa-
rations can be considered fictive representations of feeding movements. Two examples 
of BMPs recorded from the isolated buccal ganglia are illustrated in Fig. 1. The BMPs 
have two phases: a protraction phase followed by a retraction phase. A number of cells 
have been identified whose spiking activity occurs primarily during either the protrac-
tion or retraction phases of the BMP. For example, B31/32 and B63 are active during 
the protraction phase [7], [8], whereas B4/5 and B64 are active during the retraction 
phase [19], [20]. To distinguish fictive ingestion from fictive rejection, it is necessary to 
monitor activity in cells that mediate the closure of the radula (e.g., B8; [9]). Fictive in-
gestion is characterized, in part, by activity in B8 occurring primarily during the retrac-
tion phase (Fig. 1A), whereas fictive rejection is characterized, in part, by activity in B8 
occurring primarily during the protraction phase.  

 

Fig. 1. Examples of BMPs. Simultaneous intracellular recordings monitored activity in several 
cells during spontaneously occurring BMPs. The protraction phase (indicated by the shaded bar 
labeled P) was monitored via activity in B31/32. The retraction phase (indicated by the open 
bar labeled R) was monitored via activity in B64. A: iBMPs were characterized, in part, by ac-
tivity in the radula-closer motor neuron B8 occurring primarily during retraction. B: rBMPs 
were characterized, in part, by activity in B8 occurring primarily during protraction (Baxter and 
Byrne, unpublished observations).  

3.2   Key Element of CPG Has Yet to Be Identified 

A previous model [13], [16], which included B4/5, B31/32, B35, B51 and B52, was 
able to simulate rhythmic activity similar to a BMP by including a hypothetical cell 
(referred to cell I) that received excitation from B35. Cell I, in turn, made a mixture of 
excitatory and inhibitory connections with the other cells in the network. Subse-
quently, a cell, B64, was identified with many of the properties predicted by cell I 
[19]. B64 appears to terminate the protraction phase of a BMP while maintaining the 
retraction phase. The synaptic connections to and from B64, however, do not match 
all of the predictions from the previous model. Thus, the first goal of the present study 
was to incorporate B64 and its synaptic connections and re-examine the ability of the 
network to produce rhythmic activity.   
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Fig. 2. Summary of synaptic connections within the CPG of the buccal ganglia.  Multi-action 
synaptic connections (e.g, connections with both EPSPs and IPSPs) are indicated by plotting 
more than one type of synaptic symbol. Cells are also coded with respect to their firing pattern 
during BMPs. Cells that fire primarily during the protraction phase are filled with black and 
have white lettering. Cells that primarily fire during the retraction phase are filled with white 
and have black lettering. Cells that can fire during either protraction and/or retraction phases 
(e.g., B8, see Fig. 1) are filled with gray and have black lettering. Synaptic symbols with the 
letter S indicate a slow component, and synaptic symbols with the letter X indicate the con-
firmed absence of a synaptic connection.  

In addition to incorporating B64, the network was expanded to include three addi-
tional cells B63, B34 and B8 (Fig. 2). B63 was included because computational and 
empirical studies indicate that a positive feedback loop between B31/32 and B63 is 
critical for initiating a BMP and producing the protraction phase [2], [7]. B34 was in-
cluded because empirical studies suggest that it may be involved in switching be-
tween iBMPs and rBMPs [7]. B8 was included as an indicator of iBMPs versus 
rBMPs.   

An initial attempt to simulate a BMP with this nine-cell network is illustrated in  
Fig. 3A. The protraction phase of the simulated BMP was monitored via activity in 
B31/32 and the retraction phase was monitored via activity in B64. The BMP was initi-
ated by stimulating a brief burst of action potentials in B63 (not shown), which  
produced EPSPs in B31/32. The EPSPs in B31/32, in turn, elicited the sustained depo-
larization of B31/32 (i.e., the protraction phase). The simulated BMP failed to switch 
from the protraction to the retraction phase. Although it is possible to terminate the 
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depolarization of B31/32 by including a K+ conductance in the model of B31/32, a 
mechanism must still be included that initiates activity in B64. This result suggested 
that the circuit of Fig. 2 is insufficient to simulate the switch between protraction and 
retraction phases and that an additional element(s) has yet to be identified.  

 

Fig. 3. Hypothetical cell Z mediates the transition from protraction to retraction phases of a 
BMP. A: initially, the simulated network contained only the identified cells and synaptic con-
nections illustrated in Fig. 2. A brief depolarizing current pulse (1 s, 2 nA) was injected into 
B63 (not shown). The resultant activity in B63 elicited a plateau potential in B31/32 (i.e., a pro-
traction phase, box labeled P), but no retraction phase (i.e., activity in B64). B: the transition 
from protraction to retraction phases (boxes labeled P and R, respectively) was accomplished 
by incorporating a hypothetical cell into the CPG (cell Z). 

The switch between protraction and retraction phases is characterized by a hyper-
polarization in cells that are active during protraction (see Fig. 1), which terminates 
their spike activity, and a depolarization in cells that are active during retraction, 
which initiates their spike activity (e.g., [4]). The hyperpolarization is mediated, in 
large part, by B64, which makes extensive monosynaptic inhibitory connections with 
cells active during the protraction phase (e.g., B31/32, B34, B35, B63; see Fig. 2). 
Thus, the process that mediates the switch between protraction and retraction phases 
is very likely to be the same process that initiates spiking in B64.  

Empirical evidence supports the suggestion that an unidentified element excites 
B64 and thereby initiates the retraction phase. If hyperpolarizing current is injected 
into B64, thereby blocking activity in B64, the protraction phase is prolonged (Fig. 
4A). Moreover, while B64 is hyperpolarized, an EPSP is observed in B64 at the same 
point in time when the switch from protraction to retraction would normally have oc-
curred (Fig. 4A2). One interpretation of this observation is that an unidentified ele-
ment (either a synaptic connection from a previously identified cell or a yet to be 
identified cell) excites B64, causing it to spike and thereby terminating the protraction 
phase and initiating the retraction phase (Fig. 4B1). Thus, these data suggest that re-
current inhibition mediates the switch from protraction to retraction phases of activity 
in a BMP.  

To examine this hypothesis, the model was extended to include a tenth cell.  This 
hypothetical cell, which was referred to as cell Z, was excited by B63 and, in turn, it 
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excited B64. The amplitude and time course of this Z-mediated EPSP in B64 was ad-
justed to match the EPSP that was unmasked in B64 while it was hyperpolarized. As 
illustrated in Fig. 3B, after cell Z was incorporated into the network, stimulation of 
B63 elicited a protraction phase that was followed by a retraction phase. Thus, by in-
corporating recurrent inhibition, the ten-cell network was able to simulate the switch 
between protraction and retraction phases. 

 

Fig. 4. Activity in B64 terminates the protraction phase of a BMP. A1: the durations of the pro-
traction and retraction phases were indicated by the boxes labeled P and R, respectively. Note, 
the burst of spike activity in B64 coincides with the hyperpolarization of B31/32. A2: spike ac-
tivity in B64 was blocked by a negative bias current. Blocking spike activity in B64 dramati-
cally prolonged the duration of the protraction phase. The boxes labeled P and R indicate the 
protraction and retraction phases, respectively, that were recorded in Panel A. Note that a depo-
larization in B64 was observed at the point in time when the transition from protraction to  
retraction phases should have occurred (dashed line) (Baxter and Byrne, unpublished observa-
tions). B1: B64 inhibits cells that are typically active during the protraction phase of a BMP. 
The empirical observations illustrated in Panel A suggested that an unidentified cell (cell la-
beled ?) provides excitation to B64 and is responsible for initiating the retraction phase. B2: the 
network illustrated in Fig. 2 was extended to include a hypothetical cell labeled Z. Cell Z re-
ceived a slow excitatory input from B63 and it excited B64. 

3.3   Simulating Fictive Rejection 

The results described above indicated that the ten-cell network could produce a pat-
tern activity that exhibited the two essential phases of activity during a BMP (i.e., a 
protraction phase followed by a retraction phase). To determine whether this pattern 
of activity had features similar to fictive ingestion or rejection, it was necessary to 
monitor activity in the other cells (Fig. 5).  

Brief stimulation of B63 elicited a plateau potential in B31/32 and bursts of activ-
ity in cells B35 and B34 (i.e., a protraction phase). The protraction phase was fol-
lowed by bursts of activity in cells B64 and B4/5 (i.e., the retraction phase). Cell B52 
produced one burst of activity that coincided with the protraction phase and second 
burst of activity at the end of the retraction phase. Cell B8 produced a burst of activity 
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that coincided with the protraction phase. Thus, the general features of this simulated 
pattern of activity were similar to those of fictive rejection (e.g., Fig. 1B). 

In addition to investigating the ways in which the protraction phase was terminated 
and retraction phase initiated, the model was used to investigate processes that might 
regulate the duration of the retraction phase (Fig. 6). For example, because of its ex-
tensive inhibitory synaptic connections, B52 may be responsible for terminating 
bursting. Alternatively, terminating the plateau potential in B64 through its slowly ac-
tivating K+ current may play a role in terminating the retraction phase. Several simu-
lations were run to assess the ways in which various features of the model contributed 
to terminating the retraction phase. Although many features of the model were inves-
tigated, no single manipulation was found to substantially prolong the retraction 
phase. Rather, a combination of manipulations was necessary. 

 

Fig. 5. Simulating a rBMP. A brief depolarization of B63 (bar) elicited a complex pattern of 
bursting in the CPG. Activity during the protraction phase was initiated and maintained by in-
teractions between B31/32, B34, B35 and B63. Activity in B34 also provided suprathreshold 
excitation to B8 during the protraction phase. Thus, the pattern had the characteristics of a 
rBMP. The Z cell became active late in the protraction phase and excited B64 and thereby initi-
ated the retraction phase. B64, in turn, inhibited cells that were active during protraction and 
thereby terminated the protraction phase. B64 expresses a plateau potential that maintained ac-
tivity during the retraction phase. B52 expressed rebound excitation and the retraction phase 
was terminated when B52 escaped from its inhibitory inputs and began to fire. The protraction 
and retraction phases are indicated by the boxes labeled P and R, respectively. 
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The two processes that in combination terminated the retraction phase were the re-
bound excitation in B52 and the slow K+ conductance in B64 (Fig. 6B). Reducing the 
rebound excitation in in B52 to 60% of its control value blocked activity in B52 at the 
end of the retraction phase. Although B52 inhibits B64, blocking the second burst of 
spikes in B52 alone had no effect on the duration of the retraction phase (not shown). 
Similarly, reducing the slow K+ conductance in B64 to 60 % of its control value pro-
longed the plateau potential in an isolated model of B64 but had only a modest effect 
on the duration of the retraction phase in the network (not shown). If both manipula-
tions were combined, however, the retraction phase failed to terminate (Fig. 6B). 
These results illustrate the ways in which the overall behavior of network emerge 
from the interactions of the elemental processes.  

 

Fig. 6. Mechanisms contributing to the termination of the retraction phase. BMPs were elicited 
by brief stimulation (1 s, 2 nA) of B63 (not shown). A: for the control simulation, all parameter 
values were as in Fig. 5. B: for the modified simulation, the maximum conductances for the 
slow K+ current in B64 and for the H-type current in B52 were reduced by 40%. As a result of 
these two changes, B52 failed to rebound from inhibition during the retraction phase and the re-
traction phase failed to terminate.  

3.4   Parameter Sensitivity Analysis 

Each element of the model was designed to mimic the empirically measured proper-
ties of the cells and synaptic connections within the buccal ganglia. Nevertheless, 
there are no detailed voltage-clamp data with which to constrain the parameters. De-
spite this lack of detailed empirical data, a model emerged that reproduced several 
key features of a rBMP. It was not clear, however, to what extent the pattern generat-
ing capabilities of the neural network might be linked to a specific value or set of val-
ues for a parameter(s). To assess the quality of the model in terms of its consistency 
and robustness, a parameter sensitivity analysis was undertaken.  

This analysis consisted of three groups of simulations. The first two groups of 
simulations assessed the values selected for membrane and synaptic conductances. In 
these two groups of simulations, all 40 synaptic conductances or all 37 membrane 
conductances were randomly assigned new values that were between ±15% of their 
control values. The ±15% value was arbitrary but was similar to values used by others 
to perform sensitivity analyses of computational models (e.g., [21], [22], [23]). After 
these randomly assigned values were incorporated, stimuli (both brief and prolonged) 
were applied to B63 and the ability of the modified network to generate both a single 
pattern of activity and continuous rhythmic activity were determined. This procedure 
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of randomly altering all membrane or synaptic conductances and attempting to gener-
ate patterned activity was repeated ten times for each group. All twenty variants of the 
neural network produced both single patterns of activity and continuous rhythmic ac-
tivity that were similar to that generated by the control circuit (i.e., Fig 5).  

 

Fig. 7. Stable rhythmic activity generated by a model CPG with stochastic fluctuations in val-
ues for all membrane, synaptic and coupling conductances. Stochastic fluctuations were incor-
porated simultaneously into all 37 membrane conductances, all 40 synaptic conductances, and 
all 8 coupling conductances. The simulated neural activity was monitored by displaying the 
membrane potential (Vm) of two representative cells: B31 and B64. The stochastic fluctuations 
in the conductances were monitored by displaying the values for a representative conductance 
in these two cells: i.e., the leakage conductance (gL). Each panel illustrates 30 s of simulated 
time. A: the magnitude of the S.D. was set to 5% of the mean. The stochastic fluctuations in the 
values for leakage conductances can be seen as noise in the traces labeled gL. B: the magnitude 
of the S.D. was increased to 30% of the mean. Despite continual, random and relatively large 
fluctuations in 85 key parameters, the model CPG produced stable rhythmic activity, similar to 
control simulations. 

A third group of simulations examined the impact of stochastic fluctuations  on the 
ability of the model to generate rhythmic activity. Random numbers from a Gaussian 
distribution were simultaneously added to all 37 membrane conductances, all 40 syn-
aptic conductances and all 8 coupling conductances. A new set of 85 random numbers 
was generated every 4.5 ms throughout 60 s of simulated neural activity. The mean 
values for these 85 stochastically fluctuating conductances were their respective con-
trol values. During successive simulations, the magnitude of the standard deviation 
(S.D.) of the Gaussian distribution was progressive increased in increments of 5% of 
the mean until the model failed to generate stable rhythmic activity. Examples of two 
such simulations are illustrated in Fig. 7. During the simulation in Panel A, the magni-
tude of the S.D. was set to 5% of the mean, whereas during the simulation in Panel B, 
the magnitude of the S.D. was set to 30% of the mean. Both variants of the model 
generated stable rhythmic activity. Moreover, the sequence of simulated activity in 
the other eight cells (not shown) was similar to that illustrated in Fig. 5 and resembled 
fictive rejection. In the models that incorporated noise, however, the durations of the 
protraction and retraction phases, and the inter burst intervals fluctuated. Overall, the 
model continued to generate stable rhythmic activity until the magnitude of the S.D. 
was increased to >30% of the mean and all patterns of activity resembled rBMPs. 
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These results indicate that the ability to generate pattern activity was a robust property 
that emerged from the neural network as a whole. 

4   Discussion 

The functional capabilities of neural networks emerge from the interactions among 
the intrinsic biophysical properties of the individual cells, the pattern of synaptic con-
nections among these cells and the physiological properties of the synapses. From 
studies of a number of well characterized neural circuits, several general conclusions 
are emerging (for recent reviews see [24], [25], [26], [27], [28]). First, even relatively 
simple neural circuits are complex. The operation of a circuit depends upon interac-
tions among multiple nonlinear processes at the molecular, cellular, synaptic and net-
work levels. Thus, the dynamic behavior of even a small number of interconnected 
cells is not necessarily intuitive. Second, the structures and components of circuits are 
diverse. Neurons have a multiplicity of ionic conductance mechanisms that allow 
them to generate many disparate and complex patterns of activity. Similarly, synapses 
are not simply excitatory or inhibitory but possess a wide array of diverse properties.  
Thus, circuits with similar architectures can produce dramatically different responses 
and patterns of activity, or conversely, neural circuits that underlie similar functions 
can have very dissimilar components and structures. Third, the functional organiza-
tion of neural circuits is dynamic. Modulation of the cellular and synaptic properties 
can reorganize a circuit and alter its operation. This enables a circuit to adapt and al-
lows a single network to underlie several different functions. Thus, the nonlinearity, 
diversity and dynamic nature of neural circuits provide formidable challenges to arriv-
ing at a synthetic understanding of how circuits operate and adapt. Quantitative,  
biologically-realistic models can provide insights into the dynamics of complex 
nonlinear systems, such as neural circuits, that are impossible to achieve in any other 
way (for recent reviews see [27], [29], [30], [31], [32]). 

The present study developed a computational model of a CPG that underlies as-
pects of feeding Aplysia. The model provided a quantitative summary of a large body 
of knowledge related to the cells, synaptic connections and their physiological proper-
ties. The models were used to explore the completeness of our knowledge of this cir-
cuit, and the functional role of specific circuit elements. 

Initial simulations were unable to produce rhythmic patterns of activity similar to 
empirically observed BMPs. Specifically, the network was unable to switch from the 
protraction to retraction phases of activity. This shortcoming suggested that an ele-
ment of the CPG has yet to be identified. Additional simulations and modifications to 
the network helped to predict some of the features of this missing element (i.e., the 
hypothetical cell Z). The distinguishing feature of this missing element was recurrent 
inhibition. To date, only two cells have been identified that make monosynaptic, exci-
tatory connections with B64: B21 and B65. In isolated ganglia, B21 receives rhythmic 
depolarizations during BMPs, but it does not spike. Thus, B21 is unlikely to be the Z 
cell. Although B65 is active during protraction and forms an excitatory connection 
with B64, the B65-mediated EPSP in B64 is subthreshold anddecrements rapidly dur-
ing repetitive activity. Thus, B65 is unlikely to be the Z cell. At present, none of the 
identified cells or synaptic connections match the predicted characteristics of the 
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missing element, which suggest that additional empirical studies should be directed at 
locating cells that excite B64. 

4.1   Basic Building Blocks of BMPs 

The simulations are providing insights into the physiological properties that contrib-
uted to the genesis of BMPs. Excitatory feedback loops and intrinsic plateau poten-
tials played a key role in initiating BMPs. Intrinsic plateau potentials and electrical 
coupling also played key roles in pattern generation. Plateau potentials represent a 
bistability in the membrane potentials of cells. Switch-like transitions between hyper-
polarized and depolarized states can be induced by transient excitatory and inhibitory 
synaptic inputs. The plateau potentials in B31/32 and B64 provided the excitatory 
drive for the protraction and retraction phases, respectively, of the BMP. This excita-
tory drive was transmitted to other cells primarily via electrical coupling. In addition, 
electrical coupling among cells helped to coordinate burst formation during the pro-
traction and retractions phases of a BMPs. Finally, postinhibitory rebound excitation 
played a role in terminating BMPs. BMPs were terminated, in part, by a burst of ac-
tivity in B52 as it escaped from B64-mediated inhibition: a process that has been 
termed intrinsic escape.   

4.2   Discrepancies Between Empirical and Simulation BMPs 

Although the simulated patterns of activity matched many of the key features of  
empirically observed BMPs, there were some discrepancies between the two. For ex-
ample, the simulated network generated only rBMPs, whereas empirically the CPG 
rapidly switches between generating iBMPs and rBMPs (e.g., [5], [10]). The genesis 
of different patterns of activity reflects, in part, the dynamic recruitment of specific 
subsets of cells into the CPG. For example, activity in B51 contributes to the genesis 
of iBMPs [33], [34], but it is silent during fictive rejection. Conversely, activity in 
B34 contributes to the genesis of fictive rejection. The genesis of different patterns of 
activity is also related to different levels of activity in some cells within the CPG [35], 
[36]. For example, high levels of activity in B4/5 are related to the genesis of fictive 
rejection, whereas low levels of activity are related to the genesis of fictive ingestion. 
Future simulations may be able to simulate the random switching between the genesis 
of fictive ingestion and rejection by incorporating additional cells, synaptic connec-
tions and/or modulatory processes. Addressing this issue will be important for under-
standing the adaptive responses of this circuit, in part, because the mechanisms  
underlying switching appear to be the target for modification by associative learning 
in this system. 

4.3   Comparison to Previous Models of the CPG 

Several previous studies have developed models of the CPG underlying aspects of 
feeding in Aplysia. Kupfermann et al. [14] developed a theoretical neural network that 
incorporated three layers of neurons (an input or sensory layer, a hidden or interneu-
ron layer, and an output or motor layer) and a back-propagation algorithm. The neural 
network was trained to solve several behavioral selection problems that related to 
finding and consuming food. Although a highly abstract model, this initial simulation 
study suggested that the command units in the hidden layer had more complex roles 
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in behavior than was previously appreciated and that the final behavior expressed by 
the system was due to the combined actions of multiple command units. Deodhar et 
al. [12] developed a neural network of just two neurons (and two muscles) and used a 
genetic algorithm to investigate synaptic parameters that allowed the system to gener-
ate efficient protraction/retraction movements of a simulated radula. This simulation 
was similar to a CPG network in that the solution did not depend on inputs from 
higher-order, sensory or modulatory cells. The simulations explored the oscillatory 
properties of the neural circuit and found that reciprocal inhibition between the cells 
appeared to function well for generating rhythmic activity. In contrast, results of the 
present study suggest that rhythm generation emerges from a recurrent inhibition 
rather than reciprocal inhibition.   

4.4   Expanding the Neural Network 

The present study illustrated that a ten-cell network can produce the basic pattern of 
activity observed during a BMP. This ten-cell network does not represent all of the 
identified elements of the CPG, however. For example, B20 and B65 are both be-
lieved to be part of the CPG [20], [37]. The firing properties of these cells have been 
characterized as have many of their postsynaptic targets. It was not possible to incor-
porate these cells into the present model, however, because no monosynaptic inputs 
have been described from other elements of the CPG to either cell. Additional cells 
and synaptic connections within the CPG are continually being identified and charac-
terized. This computational model will provide a quantitative and modifiable frame-
work with which to investigate how these newly identified elements contribute to the 
overall function of the CPG. Future studies will expand the simulated neural network 
to include additional cells and synaptic connections and will investigate functional 
properties of the feeding circuitry. In addition to providing a tool with which to inves-
tigate the CPG, the computational model can be expanded to include higher-order 
cells (e.g., the command neurons) and modulatory processes. Thus, the continual ex-
pansion and development of a computational model of the feeding circuitry should 
provide a useful tool for analyses of the neuronal mechanisms underlying behavior 
and behavioral plasticity. 
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Abstract. We present a game-theoretic foundation for gene regulatory
analysis based on the recent formalism of rewriting game theory. Rewrit-
ing game theory is discrete and comes with a graph-based framework
for understanding compromises and interactions between players and for
computing Nash equilibria. The formalism explicitly represents the dy-
namics of its Nash equilibria and, therefore, is a suitable foundation for
the study of steady states in discrete modelling. We apply the formalism
to the discrete analysis of gene regulatory networks introduced by R.
Thomas and S. Kauffman. Specifically, we show that their models are
specific instances of a C/P game deduced from the K parameter.

1 Introduction

Gene regulation concerns the mutual inhibition and activation among genes and
the wider impact this has on cells and on whole organisms through the resulting
protein production or lack thereof, aka gene expression. In particular, the regu-
lation of genes may involve complex regulatory processes such as auto-regulation
and feedback loops, possibly via complex pathways. Studying regulation benefits
from using formal tools to give well-founded explanations of the complexities.
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Substantial work has focused on stochastic techniques and differential equa-
tions (over time) [4]. In this article, we focus on the two best known state-based
(aka logical and multivalued) models, due to Kauffman [5,6] and Thomas [18,19].
The two models are discrete and aim at providing qualitative information about
the dynamic aspects of gene regulation [4]. They are underpinned by the defin-
ition of a state graph that is intended to represent possible gene-state changes
[1,19]. Informally, analyzing the dynamics of the state graph is based on the
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identification of paths having specific topological properties. Notions in dynami-
cal systems are translated into topological properties on the graph. A trajectory
is a pathway, a steady state is a sink (i.e., a vertex with no output edge), and
periodicity is described by a cycle. Sink cycles (i.e., cycles that has no edges leav-
ing it) and sinks are remarkable topological features because they both embody
attractors. Special attention is paid to attractors because they represent robust
and steady characteristic modes of a dynamic system. Hence they can be con-
sidered as functional features (capabilities) of the system at a more integrated
level because, over time, evolution will make the system reach one of them as
influenced by external conditions.

Sink cycles, sinks and more generally attractors, can be computationally uni-
fied in a homogeneous notion of sink strongly connected components (SSCC),
Basically, it represents a sub graph where any two vertices are connected to-
gether by a circuit that has no edges leaving it in the graph. The topology of
the attractor is often interpreted as a characteristic feature of the regulatory dy-
namics. For instance, cycles and sinks correspond respectively to homeostasis [2]
and multi-stationarity. However to embrace the complexity of these dynamics,
one must understand and be able to work with them as mathematical objects in
a general and ideally algebraic manner to smoothly and coherently address all
the known and desirable features of gene regulation and to accommodate future
discoveries. In other words, a foundation is called for that, on the one hand, is
flexible and general and, on the other hand, employs a conceptual and technical
framework that sheds direct light on the issues at hand, i.e., that can bridge
the gap between topological features in a state graph and regulatory effects of
inter-dependent but autonomous genes.

The cornerstone of our contribution is to show that the steady states of gene
regulatory networks, as they are commonly understood, are a recently estab-
lished kind of Nash-style equilibria, called change-of-mind equilibria [14]. The
game-theoretic perspective we provide is technically and conceptually beneficial
because non-cooperative game theory is the embodiment of the compete-and-
coexist reality of genes and because it allows us to leverage the independently
developed theory of dynamic equilibria in rewriting game theory. In particu-
lar, we show that Kauffman’s and Thomas’ models can be defined as specific
instances of a particular game-skeleton. Technically, this recasts steady states
(attractors) and gene regulation to the fixed-point construction underlying our
discrete Nash equilibria. In particular, we show that steady states are the least
non-empty fixed points (in a lattice of fixed points) of the update functions
already considered by Kauffman and Thomas.

In Section 2, we briefly account for (rewriting) game theory, computation of
discrete Nash equilibria, and the very general game formalism involved, called
conversion/preference (C/P) games. In section 3, we review the discrete models
for gene regulation introduced by Kauffman and Thomas. In section 4, we show
that the two models can be viewed as instances of a C/P game.

In [15], we apply rewriting game theory to protein signalling in mitogen-
activated protein kinase (MAPK) cascades, which govern biological responses
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a1

1, 0 a2

7, 5 0, 10

h1 h2

v1 0, 1 1, 0
v2 1, 0 0, 1

Fig. 1. Example of sequential(extensive form) and strategic game(normal form)

such as cell growth. The aim there is more practical than in this article and
involves establishing an analytic model for protein signalling in the first place
and to develop tool support for it.

2 Rewriting Game Theory

In this section, we first provide a gentle reminder of the relevant ideas in game
theory (Section 2.1) and then introduce the principles of a framework for dis-
crete game theory (Section 2.2), before going into more technical details in the
remainder of the section. The new framework generalises the notions of strategic
games and Nash equilibria without involving probability theory and continuous
notions. Good accounts of traditional game theory are [9,13].

2.1 Non-cooperative Game Theory

Non-cooperative game theory is game theory based around the notion of Nash
equilibria. Nash equilibria are defined over strategies that account for the in-
tended behaviour of all agents/players in a game. We say that an agent is happy
if he cannot change his contribution to a (combined) strategy and generate a
better overall outcome for himself. A (combined) strategy is a Nash equilibrium
if all agents are happy with it. Game theory involves a wide spectrum of games
and theories. However two kinds of games are usually considered for modelling :
sequential games and strategic games. An example using a sequential game in ex-
tensive form is in Figure 1, left. An example of a strategic game in normal-form
is in the figure, right.

A play of the game on the left is a path from the root to a leaf, where the first
(second) number indicates the payoff to agent a1 (a2). A strategy over the game,
by contrast, is a situation where a choice has been made in all internal nodes,
not just in the nodes on a considered path. While it might look like the strategy
of a1 going to the right and a2 going to the left for payoffs 7, 5 is good, it is not
a Nash equilibrium because a2 can go to the right, for a better payoff. At that
point, also a1 can benefit from changing his choice and, in fact, the only Nash
equilibrium in the game is a1 (a2) going to the left (to the right), for payoffs
1, 0. Nash equilibria can be guaranteed to exist for all sequential games, a result
known as Kuhn’s Theorem [7,20].

In strategic games, players act simultaneously. In contrast to sequential games,
Nash equilibria do not always exist in a pure form in strategic games. An example
is above on the right. In the example, there are two players: vertical, who chooses
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a row and gets the first payoff, and horizontal, who chooses a column and gets
the second payoff. As can be seen, in no outcome are both players happy, i.e.,
one player always can and wants to move away. Instead, Nash’s Theorem says
that a probabilistic combination of strategies exists, where the agents are happy
with their expected payoffs [10,12]. In the example, the only probabilistic Nash
equilibrium arises if both agents choose between their two options with equal
probability for expected payoffs of a half to each. Addressing the hows and whys
of this in general quickly turns in to pure probability theory, with justifications
that need not necessarily be meaningful in the application area.

2.2 Conversion/Preference Games

Conversion/preference (C/P) games have been designed as an abstraction over
strategic-form games and as a game formalism that introduces as few concepts as
possible. This aim leads us to distinguish two relations on strategies, Conversion
and Preference. The key concept of C/P games is the synopsis, which abstracts
the notion of (combined) strategies. Roughly speaking, conversion says how an
agent can move from a synopsis to another; in other words, it says which changes
are allowed on synopses for a given agent. An agent makes choices among syn-
opses according to which he prefers over others. It should be noted that conver-
sions and preferences depend on agents. In what follows, conversion is denoted

�� and preference is denoted �. Clearly strategic-form games are instances of
C/P games, conversions are one dimension move (for instance along a line or a
column), while preferences are given by comparisons over payoffs: a synopsis is
preferred by an agent over another if his payoff is larger in the former.

Definition 1 (C/P Games [14]). Gcp are 4-tuples 〈A,S, ( ��
a)a∈A, (�a)a∈A〉:

– A is a non-empty set of agents.
– S is a non-empty set of synopses (read: outcomes of the game).
– For a ∈ A, ��

a is a binary relation over S, associating two synopses if agent a
can convert the first to the second.

– For a ∈ A, �a is a binary relation over S, associating two synopsis if agent a
prefers the second to the first.

The concept of synopsis is abstracted from that of (combined) strategy. One can
move from one synopsis to the other by conversion and compare two synopses
by preference.

The idea of the definition is to make explicit the parts of strategic-form games
that are relevant to the definition of Nash equilibria and to dispense with any
other structural constraints, such as the uniform restriction that ‘vertical’ can
only move up and down. To illustrate, we note that the example we considered
earlier amounts to the C/P game in Figure 2.

2.3 Abstract Nash Equilibrium

The following definition says that a synopsis s, i.e., our abstraction over (com-
bined) strategies, is an abstract Nash equilibrium if and only if all agents are
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Fig. 2. Conversions and Preferences example

s ��
a

s′ s �a s′

s →a s′

Fig. 3. The (free) change-of-mind relation for agent a in Gcp

happy, meaning that whenever an agent can convert s to s′ then it is not the
case that he prefers s′ to s. The notion of abstract Nash equilibrium specialises
to Nash’s concrete form in the presence of the discussed structural constraints
on strategic-form games.

Definition 2 (Abstract Nash Equilibrium [14]). Given Gcp.

EqaN
Gcp(s) � ∀a ∈ A, s′ ∈ S . s ��

a s′ ⇒ ¬(s �a s′)

We no more use the word abstract for the reason discussed above: in strategic-
form games, the notions coincide [14]. Said differently, Definition 2 is merely a
more general (and simpler) way of writing what Nash wrote [10,12]. Technically,
the form of our definition is intended to facilitate the following definition, thus
giving rise to the name rewriting game theory.

Definition 3 ([14]). Given Gcp, the change-of-mind relation, →a, for agent a
is given in Figure 3. Let → �

⋃
a∈A →a.

In other words, a Nash equilibrium is a synopsis for which there is no outgoing
change-of-mind step, i.e., an →-irreducible (aka a →-normal form). The set of
→-irreducibles is IrR→ .

Proposition 4 ([14]). EqaN
Gcp(s) ⇔ s ∈ IrR→ .

The benefits of the changed perspective on game theory are partly conceptual,
in the first instance for people who like rewriting, but they are also technical
in that Proposition 4 highlights the positive notion, i.e., change-of-mind, that
is behind Nash’s original definition and through which we get easy access to a
range of formal(ist) tools, not least of which is definition and proof by induction.

2.4 A Graph-Theoretic Construction

Returning to our rewriting/graph-theoretic view on game theory, we note that
for arbitrary finite graphs only cycles can prevent the existence of sinks. We
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show in this section how that simple observation suffices for underpinning a
discrete version of Nash’s Theorem for arbitrary finite C/P games. The relevant
graph-theoretic notion we need for capturing all cycles is strongly connected
components.

– A graph is a binary relation on a carrier set, called vertices: →⊆ V × V.
– The reflexive, transitive (or pre-order) closure, →∗, of a graph, →, is

v1 → v2

v1 →∗ v2 v →∗ v

v1 →∗ v v →∗ v2

v1 →∗ v2

– The strongly connected component (SCC) of a vertex, v, in a graph is

�v� � {v′ | v →∗ v′ ∧ v′ →∗ v}
– The set of SCCs of a graph is

�V� � {�v� | v ∈ V}
– The shrunken graph of →⊆ V × V is �⊆ �V� × �V�, defined by

Va � Vb � Va �= Vb ∧ (∃va ∈ Va, vb ∈ Vb . va → vb)

The set �V� and the relation � allows us to define a C/P game with the same
set of agents, �V� as set of synopses and � as both conversion and preference.
We call that game the “shrunken game”. The following result says that a Nash
equilibrium exists in “shrunken” games.

Theorem 5 ([14]). For any finite C/P game, 〈A,S, ( ��
a)a∈A, (�a)a∈A〉,

– 〈A, �S�, (�a)a∈A, (�a)a∈A〉 have Nash equilibria, EqaN
�Gcp�,

– all of which can be found in linear time in the size of S and →.

Nash’s Theorem says that probabilistic Nash equilibria exist for all finite
strategic-form games. By comparison, the result above says that “shrunken”
Nash equilibria always exist for finite members of the much larger class of C/P
games. We clarify what the “shrunken” qualifier means next.

2.5 Change-of-Mind Equilibria

The topic of this section is to directly characterise the Nash equilibria prescribed
by Theorem 5. Naively speaking, our notion of change-of-mind equilibrium is
simply the graph underlying the considered compromises between synopses.
However, the technical form we use is different for reasons of game-theoretic
interpretation [14].

Definition 6 (Change-of-Mind Equilibrium [14]). Write S→ for → ∩ (S ×
S), i.e., the graph of a set of synopses. For non-empty S, S→ is a change-of-mind
equilibrium, Eqcom

Gcp ( S→), for Gcp if

∀s ∈ S, s′ ∈ S . s→∗s′ ⇔ s′ ∈ S
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0, 1
��

1, 0��

1, 0 �� 0, 1

��

Fig. 4. Change-of-mind equilibrium for our running strategic-form example

As implied, our two notions of Nash equilibria coincide.

Lemma 7 ([14]). Eqcom
Gcp ( S→) ⇔ EqaN

�Gcp�(S)

The lemma implies that the Nash equilibria prescribed by Theorem 5 have the
property that no agent can escape from them (and that only S of the form �s� can
be change-of-mind equilibria). Agents are allowed to move within the equilibria
but they will have to stay within the set perimeter. We will return to the issue of
size of the perimeter in Section 5. For now, we note that our running example, see
Figure 1, left, and Figure 2, has the change-of-mind equilibrium in Figure 4. We
note that both the probabilistic Nash and the change-of-mind equilibria of the
example involve all four outcomes. The probabilistic version prescribes an exact
expected payoff, while the discrete change-of-mind version makes the dynamics
behind the equilibrium clear. The two notions may differ quite substantially in
general but neither is uniformly smaller, has higher (implied) payoff values, or
is better in any similar sense.

3 Basic State-Based Analysis of Gene Regulation

We now leave game for a while and analyse models of gene regulation.
Kauffman’s and Thomas’ models differ on a number of minor and on one major

issue, relative to our presentation. Among the minor ones, we count Kauffman’s
assumption that i) genes are boolean, i.e., that they can be in exactly two states:
active (expressing protein) or inactive and that ii) when one gene regulates an-
other it is always either repressing or activating it. Assumption ii) is reflected in
the signs (polarities) annotated to the regulatory-network example at the begin-
ning of Section 1. The major difference between the two approaches concerns the
way states are updated. In Thomas’ model only one gene is updated at each step
(asynchronous update) while in Kauffman’s all genes are updated (synchronous
update), albeit possibly reflexively. We return to this issue in Section 3.2.

3.1 Regulatory Networks

On the minor issues, we essentially follow Thomas’ more general perspective of
allowing for a gene to assume a fixed but unbounded number of states (albeit
typically 2 or 3) and of using a more detailed way of specifying regulation.

Definition 8 (Regulatory Networks) are 3-tuples 〈G, �, K〉:
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G = {cI , cro}, with cI 0 < cI1 and cro0 < cro1 < cro2

cI cro

KcI (〈 , cro0〉) = cI 1

KcI (〈 , cro1〉) = cI 0

KcI (〈 , cro2〉) = cI 0

Kcro(〈cI 0, cro0〉) = cro2

Kcro(〈cI 0, cro1〉) = cro2

Kcro(〈cI 0, cro2〉) = cro0

Kcro(〈cI 1, 〉) = cro0

Fig. 5. Two-variable regulatory network for phage λ ( is wildcard)

– G is a non-empty set of genes, ranged over by g, gi and each associated with
a non-empty, linearly ordered set of states, 〈Sg, <

g〉, ranged over by sg, sgi ;
– � ⊆ G×G, a relation, with g1 � g2 saying that g1 may regulate g2 — let

Ig � {gi | gi � g} be the regulatory inputs to g;
– KG �

⊗
g∈G Kg, are comfort functions, Kg :

⊗
gi∈Ig

Sgi → Sg, for each
gene saying when g is being regulated and what state it is pushed towards.

Let us say a few words about the concepts defined above. When one considers
gene regulation networks from Kauffman’s and Thomas’ points of view, one
encounters three entities (hence a 3-uple) namely a set G of genes, a relation
among genes and a family of comfort functions. Each gene g possesses a set Sg

of states, which is hierarchic. This hierarchy is a linear order. The relation � is
the regulation, i.e., the ability for a gene to regulate another gene. The genes gi’s
that regulate the gene g form the set Ig. The comfort functions have a slightly
more complex structure. For each gene g there is a function from tuples (gi) (for
gi ∈ Ig) of states of genes that regulate g. It says what state g is pushed toward
when it is regulated by those gi’s.

We note that G is not restricted to genes, per se, but could also contain,
e.g., proteins, or something completely different. We also note that our comfort
functions are seeming slightly more general than Thomas’ corresponding notion
of logical parameters for the simple reason that, as given, Definition 8 is more in
line with our other definitions; for the examples we consider, we shall not need
the extra expressive power. Finally, we will sometimes use the comfort functions,
Kg, as if they had type

⊗
gi∈G Sgi → Sg, with the obvious implicit coercion.

As an example, Figure 5 displays a regulatory network similar to the
Kauffman-style one at the beginning of Section 1, namely the standard example
of bacteriophage lambda (phage λ), with two genes: cI and cro.

3.2 Gene-State Updates

Both Kauffman’s and Thomas’ analyses proceed by considering the state space
of a given regulatory network,

⊗
g∈G Sg, and both prevent updates across a

state, e.g., cI 0 to cI 2. The rationale for the latter is that moving from a state to
another involves a phase transition, which is costly in terms of energy, and two
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〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

Fig. 6. Kauffman (left) and Thomas (right) analysis of two-variable phage λ

phase transitions should therefore not be considered atomically. They differ in
what state they predict the system will move to from a given state.

In Kauffman’s case, above left, each gene is prompted for its comfort state
relative to the states of all genes in the given point in the state space and a
synchronous move is made towards the combined comfort state, while allowing
for at most one phase transition for each gene. If a gene is not regulated upon,
i.e., if no comfort state is specified, it retains its state. Reflexive state-space
transitions are not considered. The details for the example in Figure 5 are in
Figure 6, left.

In Thomas’ case, Figure 6 right, each gene is prompted as before but moves
are made asynchronously, i.e., each state may have several moves out of it,
one for each gene being considered. In the figure, we indicate cI -updates with
dashed arrows and cro-updates with dotted arrows, although the two are not
distinguished in the actual analysis.

3.3 Steady States

In the two state graphs above, 〈cI 1, cro0〉 clearly plays a special role: it is a static
steady state, i.e., it is the only state that does not have arrows out of it. From
this, we can seemingly conclude that if the two genes end up in that configura-
tion, they stay that way. The relevance of state-based analysis comes from the fact
that the state in question has been observed to be (self-)sustainable: it is phage
λ’s lysogenic state that “involves integration of the phage DNA into the bacterial
chromosome [of its host] where it is passively replicated at each cell division —
just as though it were a legitimate part of the bacterial genome” [21].

Similarly, there is an inescapable cycle, i.e., a dynamic steady state, involving
〈cI 0, cro1〉 and 〈cI 0, cro2〉 in both graphs. The implied regulatory flip-flopping
between 〈cI 0, cro1〉 and 〈cI 0, cro2〉 is, in fact, biologically characteristic of phage
λ’s lytic state in which it actively uses its host’s transcription mechanism to
replicate itself [21].1

In our formalism, and despite their obvious topological differences, both the sta-
tic and the dynamic steady states described are simply change-of-mind-equilibria,

1 The cycle between 〈cI 0, cro0〉 and 〈cI 1, cro1〉 is a known false positive of Kauffman’s
model.
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whichmeans that they canbeuniformly accommodated as far as our general theory
goes. More, the biological justification for why the states are special, i.e., that they
are inescapable, is the exact the justification for why they are both change-of-mind
equilibria.

4 C/P Games-Based Modeling of Gene Regulatory
Networks

Our modeling of Kauffman/Thomas-style gene regulation via C/P games will
have the update graphs exemplified in Figure 6 as change-of-mind relations.
Several ways of specifying the C/P-game 4-tuple, 〈A,S, ( ��

a)a∈A, (�a)a∈A〉, will
lead to the desired result. The approach we take interprets the distinction be-
tween conversion and preference as chemical reality vs observation of the same.
Specifically, we distinguish chemical reactions that genes and proteins are in-
volved in and how closely we choose/are able to observe changes.

Given a regulatory network, 〈G, �, KG〉, with associated gene states, (Sg)g∈G,
we take the gene state space, SG �

⊗
g∈G Sg, as our set of synopses, S. Reflect-

ing the (perceived) universality of the considered chemical situation, we insist
that the conversion relations of all agents, whatever we specify them to be, are
the same. By default, we allow all state changes and leave it to the specific ap-
plications to put in place any necessary ad hoc restrictions.2 Following Thomas,
however, we are particularly interested in the at-most-one-phase-transition-at-
a-time restriction.

Definition 9. For linear order g0 < . . . < gn, let gi 	 gj = i − j, and let

s ��±1
s′ � ∀g ∈ G . | πg(s) 	 πg(s′) | ≤ 1

A C/P game whose conversion fulfills the previous definition is called 1-restrained.
Similarly straightforwardly, our preference relation is dictated by the comfort
functions, Kg, of a regulation network.

Definition 10. We say that s′ is a comfort approximation for g in s if

K-Approxg(s, s
′) � (πg(s) ≤ πg(s′) ≤ Kg(s)) ∨ (πg(s) ≥ πg(s′) ≥ Kg(s))

Definition 11. Given 〈G, �, KG〉 and for any s, s′ ∈ SG and g ∈ G, let

– s �G s′ � ∀g . K-Approxg(s, s
′)

– s �g s′ � K-Approxg(s, s′) ∧ (∀g′ . g′ �= g ⇒ πg′(s) = πg′(s′))

be the synchronous respectively g-asynchronous preference relations.

With this, we see that Kauffman-style regulation analysis is a 1-player regulation
game, while Thomas-style regulation analysis is a multi-player game, played by
the considered genes. In Kauffman-style the 1-player is the whole set of genes
G, whereas in Thomas-style, players are the elements of G.
2 For example, for eliminating “false cycles” arising due to vastly differing kinetics for

two or more reactions, e.g., in the standard 4-variable model of phage λ [17].
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Theorem 12 (Regulation Games). Given 〈G, �, KG〉,
– The Kauffman update function, cf. Figure 6, left, is the change-of-mind rela-

tion, →, of 〈G, SG, ��±1
, �G〉, the 1-restrained synchronous regulation game,

and the steady states are the change-of-mind equilibria, Eqcom.
– The Thomas update function, cf. Figure 6, right, is the change-of-mind rela-

tion, →, of 〈G, SG, ( ��±1
)g∈G, (�g)g∈G〉, the 1-restrained asynchronous regu-

lation game, and the steady states are the change-of-mind equilibria, Eqcom.

Moreover, and in both cases, the static (dynamic) steady states are the change-
of-mind equilibria that are also (not) Nash equilibria, EqaN.

Proof. The statements about the update functions follow by construction. The
statements about static vs dynamic equilibria are questions of terminology, ac-
cording to Proposition 4: “singleton change-of-mind equilibria are Nash equi-
libria”. That steady states and change-of-mind equilibria coincide follow from
Lemma 7 and (the proof of) Theorem 5, further to the characterisation of steady
states as sink strongly connected components in [3].

In Figure 7 we depict the full regulation game of 2-variable λ-phage.

5 A Fixed-Point Construction

The original Thomas characterisation of steady states is in terms of fixed points
of the considered update function [17]. As noted earlier, that function is a specific
instance of the following function.

Definition 13 (Upgrade [14]). U (S) �
⋃

s∈S{s′ ∈ S | s→∗s′}
We first note that U always has fixed points.

Lemma 14 ([14]). The fixed points of U is a non-empty, complete lattice.

Proof. U is monotonic on the complete lattice P(S) because →∗ is reflexive,
and we are done by Tarski’s Fixed-Point Theorem [16].

Example fixed-points are the empty set, ∅, and the whole set, S. The interest-
ing point is that the change-of-mind equilibria are exactly the least non-empty
(pre-)fixed-points of the upgrade function.

Lemma 15 ([14]). Consider some 〈A,S, ( ��
a)a∈A, (�a)a∈A〉.

Eqcom
Gcp ( S→)
�

U (S) = S ∧ (∀S′ . ∅ � S′ � S ⇒ U (S′) �⊆ S′)

The characterisations of steady states in [17] and in [3] therefore coincide, with
the proviso that the fixed points are least non-empty, and both are instances of
our more general theory of dynamic equilibria in rewriting game theory.
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KcI (〈 , cro0〉) = cI 1

KcI (〈 , cro1〉) = cI 0

KcI (〈 , cro2〉) = cI 0

Kcro(〈cI 0, cro0〉) = cro2

Kcro(〈cI 0, cro1〉) = cro2

Kcro(〈cI 0, cro2〉) = cro0

Kcro(〈cI 1, 〉) = cro0

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

Fig. 7. λ-phage C/P game

– The upper left hand-side diagram describes the convertibility relation.
– The upper right hand-side diagram describes the resulting C/P game.
– The lower left hand-side diagram is the preference relation of cI .
– The lower right hand-side diagram is the preference relation of cro.

6 Conclusion

In this article we introduce a game-theory based framework to model gene reg-
ulatory networks. We show that a discrete Nash equilibrium can be viewed as a
generalization of steady states in discrete models (SSCC). More, we show that
Thomas’ and Kaufman’s models are particular instances of a more general game
construction (that conceivably could have other interesting instances). Game
theory aims at describing equilibria coming from interactions between agents.
One way of viewing Nash-style equilibria is that they are logical expressions cap-
turing the functional units at the level of abstraction above the one at which the
considered game exists. In this paper, for example, we have shown that change-
of-mind equilibria can be used to predict what gene expression will take place.
In other words, we have moved from the chemical abstraction level of protein
binding and catalysis captured in expression games, up to the biochemical ab-
straction level of, e.g., phage λ’s lysogenic and lytic states. At the other end
of the spectrum, Maynard Smith has shown that a game-theoretic analysis of
the ecological concept of fitness leads to the formal substantiation of Darwinian
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evolution, i.e., “survival of the fittest”. Our future work concerns similar treat-
ments of the various abstraction levels in between, namely chemical, biochemical,
cellular, multi-cellular and environmental level. Game theory may provide a uni-
fied framework to encompass theory occuring at different levels and to provide
a suitable framework to deal with interactions between levels in order to get an
integrative theory of biology.
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Abstract. Regulatory networks are usually presented as graph struc-
tures showing the (combinatorial) regulatory effect of transcription fac-
tors (TF’s) on modules of similarly expressed or otherwise related genes.
However, from these networks it is not clear when and how TF’s are ac-
tivated. The actual conditions or perturbations that trigger a change in
the activity of TF’s should be a crucial part of the generated regulatory
network.

Here, we demonstrate the power to uncover TF activity by focusing
on a small, homogeneous, yet well defined set of chemostat cultivation
experiments, where the transcriptional response of yeast grown under
four different nutrient limitations, both aerobically as well as anaerobi-
cally was measured. We define a condition transition as an instant change
in yeast’s extracellular environment by comparing two cultivation con-
ditions, where either the limited nutrient or the oxygen availability is
different. Differential gene expression as a consequence of such a condi-
tion transition is represented in a tertiary matrix, where zero indicates
no change in expression; 1 and -1 respectively indicate an increase and
decrease in expression as a consequence of a condition transition. We
uncover TF activity by assessing significant TF binding in the promotor
region of genes that behave accordingly at a condition transition. The
interrelatedness of the conditions in the combinatorial setup is exploited
by performing specific hypergeometric tests that allow for the discovery
of both individual and combined effects of the cultivation parameters on
TF activity. Additionally, we create a weight-matrix indicating the in-
volvement of each TF in each of the condition transitions by posing our
problem as an orthogonal Procrustes problem. We show that the Pro-
crustes analysis strengthens and broadens the uncovered relationships.

The resulting regulatory network reveals nutrient-limitation-specific
effects of oxygen presence on expression behavior and TF activity. Our
analysis identifies many TF’s that seem to play a very specific regulatory
role at the nutrient and oxygen availability transitions.
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1 Introduction

The systems biology view of an organism as an interacting network of genes,
proteins and biochemical reactions seems very promising for revealing the un-
derlying networks of transcriptional regulation in Saccharomyces cerevisiae. For
this yeast enormous amounts of different intracellular data have been measured,
enabling the integration of multiple data sources [1]. In inferring regulatory net-
works common approaches focus on integration of microarray gene expression
data, ChIP-chip TF binding data and sequence data (to detect cis regulatory
elements) [2]. The resulting networks are usually presented as graph structures
showing the (combinatorial) regulatory effect of TF’s on modules of similarly
expressed or otherwise related genes (e.g [3,4,5]). However, from these networks
it not clear when and how TF’s are activated. This is quite strange, since the
actual conditions or perturbations that trigger a change in the activity of TF’s
should be a crucial part of the generated regulatory network. Three main rea-
sons for this exclusion can be identified: Firstly, the present inability to directly
measure protein levels in vivo prevents direct assessment of the presence of a TF
in a particular condition. Secondly, in most cases post-transcriptional and/or
post-translational regulation prevent deriving TF activity from gene expression,
although an attempt was made based on this assumption [6]. Thirdly, the trend
of employing increasingly large compendia of heterogeneous microarray data,
where yeast is grown under a wide variety of very different and unrelated con-
ditions, makes it impossible to incorporate all these conditions in a regulatory
program. Hence, the functionality of modules and TF’s is assigned based on
enrichment in annotation categories (e.g. Gene Ontology [7]). This means that
the functionality purely depends on the result of clustering, i.e. the grouping of
genes, and not specifically on the cultivation conditions under which the expres-
sion behavior is characteristic for a module. This approach can only provide a
global overview of TF activity and obstructs novel knowledge discovery, since an
existing body of knowledge, i.e. the ontologies, is taken as a golden standard.

Here, we demonstrate the power in uncovering TF activity by focusing on a
small, homogeneous, yet well defined set of chemostat cultivation experiments,
where the transcriptional response of yeast grown under four different nutrient
limitations, both aerobically as well as anaerobically was measured (See Table 1
and Figure 1) [8]. In this research we focus on condition transitions by comparing
gene expression profiles of two cultivation conditions and evaluate whether genes
are differentially expressed between these two conditions. TF activity is inferred
by assessing significant TF binding in the promotor region of genes that behave
accordingly at the transitions. For this, we use the largest available TF binding
dataset [9]. The interrelatedness of the cultivation conditions within the system-
atic combinatorial setup is exploited by performing specific hypergeometric tests.
This enabled us to reveal nutrient-limitation-specific effects of oxygen presence
on expression behavior and TF activity. Additionally, we create a weight-matrix
indicating the involvement of TF’s in each of the condition transitions by pos-
ing our problem as an orthogonal Procrustes problem. Analysis of this weight
matrix broadens the significant relations found by the hypergeometric test. The
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uncovered regulatory mechanisms offer valuable clues of how yeast changes its
metabolism and respiration as a result of specific changes in nutrient and oxygen
availability.

2 Methods

2.1 Data and Preprocessing

The employed microarray gene expression data consists of the measured tran-
scriptional response of the yeast Saccharomyces cerevisiae to growth limitation
by four different macronutrients in both aerobic and anaerobic media. See Ta-
ble 1. Three independently cultured replicates were performed per experimental
condition. For more information see [8]. SAM [10] was employed (with median
false discovery rate of 0.01%) to select genes that are differentially expressed
amongst the eight conditions. Next, we remove the observed global effect that
the presence of oxygen has on the expression level of each gene under all nutrient
limitations by a linear regression strategy as described in [11]. Then, for each
gene individually the expression levels are discretized by employing a k-means
clustering algorithm on the eight mean expression levels (corresponding to the
eight conditions) in a one-dimensional space [12]. Here, the Davies-Bouldin in-
dex [13] was employed to select between k = 2 and k = 3. The conditions that
comprise the largest cluster are said to have common expression level, while con-
ditions that form a cluster with a higher or lower expression level when compared
to the largest cluster are called up- or downregulated, respectively. (In the case
that k = 2 one cluster has common expression level and the other is either up-
regulated or downregulated.) Hence, the expression behavior of a gene is defined
in terms of up- and/or down regulation under the eight cultivation conditions.
Discretized expression patterns of all genes are captured in G, a tertiary matrix
of 6383×2×4. In Gg,o,n, g = {1 . . .6383} are the different genes in the genome,
o = {1, 2} represents oxygen supply (aerobic and anaerobic respectively) and
n = {1 . . . 4} are the four nutrient limitations (carbon, nitrogen, phosphorus and
sulfur respectively). Zero indicates common expression level; 1 and -1 indicate
upregulation and downregulation respectively. An example:

G453,:,: =
(

0 0 1 0
0 −1 1 0

)

This gene (MTD1, indexed as no. 453) is thus upregulated under the phosphorus
limitation (both aerobically and anaerobically) and downregulated under the ni-
trogen limitation in anaerobic growth. Note that genes that are not differentially
expressed are assigned zeros in all cultivation conditions.

The TF binding data indicates the number of motifs in the promoter region of
each gene for 102 TF’s [9]. In this study we have employed motifs that are bound
at high confidence (P ≤ 0.001); not taking into account conservation among
other sensu stricto Saccharomyces species. The 6383 × 102 matrix, denoted by
F, is binarized, such that Fg,f indicates whether the promoter region of gene g
can be bound by TF f .



274 T.A. Knijnenburg, L.F.A. Wessels, and M.J.T. Reinders

Table 1. Experimental conditions; the black squares indicate the employed nutrient
limitation and oxygen supply

Experimental Nutrient limitation Oxygen supply
condition Carbon Nitrogen Phosphorus Sulfur Aerobic Anaerobic

1. ClimAer 
 

2. NlimAer 
 

3. PlimAer 
 

4. SlimAer 
 

5. ClimAna 
 

6. NlimAna 
 

7. PlimAna 
 

8. SlimAna 
 


14 →

Nlim

Nlim

← 4

← 10

1 →

7 →

← 5

← 11

Anaerobic

15 →

Plim

Plim

2 
→

8 
→

13 →

Clim

Clim

← 6

← 12

Aerobic

← 3

← 9

16 →

Slim

Slim

Fig. 1. Cube representing the eight cultivation conditions. Edges indicate defined con-
dition transitions.

2.2 Condition Transition Analysis

From expression matrix G we derive the condition transition matrix T. We define
a condition transition as an instant change in yeast’s extracellular environment
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by comparing two cultivation conditions and assess whether genes exhibit change
in expression level when “going” from one cultivation condition to the other.
In total we define sixteen condition transitions. These are only the transitions,
where either the nutrient limitation or the oxygen availability changes; not both.
The transitions are indicated by the edges in the cube of Figure 1. The six
nutrient limitation transitions, both aerobically and anaerobically, (edges in the
upper and lower face of the cube) are computed by:

Tg,I(n1,n2,o) = sign(Gg,o,n1 − Gg,o,n2) ∀{g, o, n1 > n2} (1)

The four oxygen availability transitions (vertical edges) are computed by:

Tg,12+n = sign(Gg,1,n − Gg,2,n) ∀{g, n} (2)

Here, I(n1, n2, o) = [6 ∗ (o − 1) + n1 + 4 · (n2 − 1) − n2·(n2+1)
2 ], such that the indices of

the different transitions in T correspond to the numbers assigned to the edges
in the cube of Figure 1. T (6383 × 16) is again a tertiary matrix, where zero
indicates no change in expression; 1 and -1 respectively indicate an increase
and decrease in expression as a consequence of a condition transition. Now, by
consulting the TF binding matrix F, a hypergeometric test can be employed to
assess if genes that are up- and/or downregulated at a condition transition are
bound (upstream) by a TF much more frequently than would be expected by
chance. In more general terms, by employing the hypergeometric distribution we
compute the probability of the observed (or more extreme) overlap between two
sets of genes under the assumption that these sets of genes were randomly chosen
from all genes [14]. Small probabilities (P-values) indicate that the hypothesis
that these sets are randomly drawn must be dismissed, thereby acknowledging
a significant relation between the two sets. In our setting, one set is constituted
of all genes that can be bound by a particular TF, while the other set consists
of e.g. all genes upregulated at a particular condition transition.

However, the systematic setup of the cultivation conditions in this dataset,
allows for selection of more interesting groups of genes to input into the hyper-
geometric test. For example, genes that are upregulated at an aerobic nutrient
limitation transition, yet not upregulated at the same nutrient limitation transi-
tion without the presence of oxygen. More specifically, for each of the six nutrient
limitation transitions we define nine different groups of genes allowing us to fo-
cus on upregulation (1), downregulation (-1) and differential expression (-1 or
1), both specifically for aerobic or anaerobic growth as well as regardless of the
oxygen supply. See Table 2. The 54 groups, augmented with groups of genes
up-, downregulated or differentially expressed under the four oxygen availability
transitions (Transitions 13-16), are tested for significant association with TF’s by
employing the hypergeometric test. (To adjust for multiple testing, the P-value
cutoff was set, such that we expect one false positive (per-comparison error rate
(PCER) of one [15]), corresponding with P ≤ 1.5 · 10−4.) Figure 2 displays the
significant relations in (for reasons of visibility) a part of the cube. We now have
a regulatory network, which associates a TF with a cluster of genes that shows
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Table 2. Conditions on T which define nine groups for each nutrient limitation tran-
sition (t = {1 . . . 6}). The last two columns indicate the vertical placement (vp) and
color of TF’s that are significantly related to these groups as visualized in Figure 2.

no. Tg,t Tg,t+6 Description vp color

I 1 0,-1 Only up under aerobic growth top orange
II 0,-1 1 Only up under anaerobic growth bottom orange
III 1 1 Up under both aerobic and anaerobic growth center orange
IV -1 0,1 Only down under aerobic growth top green
V 0,1 -1 Only down under anaerobic growth bottom green
VI -1 -1 Down under both aerobic and anaerobic growth center green
VII 1,-1 0 Only diff. expressed under aerobic growth top black
VIII 0 1,-1 Only diff. expressed under anaerobic growth bottom black
IX 1,-1 1,-1 Diff. expressed under both aerobic and anaerobic growth center black

specific gene expression changes when a transition is made from one condition
to the next.

In an attempt to gain more insight into the dynamics and combinatorial effects
within the complete generated regulatory network, in stead of performing strin-
gent tests of individual hypotheses, we add an additional step to our analysis.
Here, we aim at modeling the expression behavior at all condition transitions T
by employing binding matrix F and assess the activity of each TF at a condition
transition. This approach is based on the simple biological model that ascribes
the change of gene expression levels as observed at a condition transition to
changes in TF activity; the means by which the organism adapts to the changed
extracellular environment. In contrast to the landmark article by Bussemaker et
al. [16], where expression was explained using cis-regulatory elements, we thus
explain expression behavior at transitions by using TF binding data. In a more
recent article from Bussemaker’s group [17] also TF binding data was used to
explain expression. However, they used a continuous score (the logarithm of the
binding P-value) to represent the degree of TF binding, while we use the binary
one, which indicates simply whether there is the ability to bind or not. Further-
more, we do not employ continuous expression levels, which are a measure of
absolute mRNA quantities. We use the discrete elements of T that represent
relative up- and downregulation, since we find this more robust and informative
compared to (the difference between) absolute mRNA levels. Another big differ-
ence is that we do not use an iterative procedure to solve the problem, but aim
at explaining all the transitions using all TF’s in one time. Our problem finds
its mathematical formulation in the orthogonal Procrustes problem, where we
explore the possibility that F can be rotated into T by solving:

min ‖T′ − WF′‖Fro subject to WT W = I (3)

In principle, this is a linear transformation of the points in F to best conform
them to the points in T. In our setting, the change in expression of a gene at a
condition transition (as given in T) is approximated by a weighted sum of ones.
These ones correspond to the TF’s that can bind the upstream region of that
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Fig. 2. TF activity for part of the transitions. Green, orange and/or black TF’s are
significantly related to genes that are downregulated, upregulated or differentially ex-
pressed respectively when going from one cultivation condition to the other (in the
direction of the arrows). TF’s on the top and bottom edges are activated only under
aerobic or anaerobic growth respectively; TF’s in the center of a surface indicate ac-
tivation independent of the presence of oxygen. For example, Mcm1, Ste12, Gln3 and
Hap4 are associated with transitions from carbon limitation to nitrogen limitation,
independent of the presence of oxygen.

particular gene (as given in F). Thus, the elements in W represent a measure of
the activity of a TF at a condition transition. Properties of the Procrustes ro-
tation are the closed solution (via a SVD decomposition [18]) in minimizing the
Frobenius norm (sum of squared errors) and the orthonormality of weight ma-
trix W. A prerequisite for this rotation is that the number of columns (TF’s) in
F′ should match the number of columns (condition transitions) in T′. Since our
main focus is on TF’s that regulate differently at nutrient limitation transitions
as a consequence of oxygen supply, we select only the first twelve columns from
T. The twelve selected TF’s are those that (according to the hypergeometric
test) are most significantly related to up- or downregulation, specifically under
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aerobic or anaerobic growth (i.e. related to groups I, II, IV and V in Table 2).
Furthermore, we only employ those genes which exhibit different expression be-
tween aerobic and anaerobic growth for at least one of the six nutrient limitation
transitions. These adjustments on F and T yield F′ and T′ (both 1493 × 12),
which are employed in Eq. (3). Figure 3 visualizes the resulting W.

Permutation tests were performed to assess the statistical significance of these
weights. The rows (genes) of T′ were randomly permuted after which the Pro-
crustes rotation (Eq. (3)) was recomputed. This was done 10,000 times. The
Wilcoxon signed rank test was applied to check if the original weights could
be the medians of the distributions of weights generated by the permutations.
The extremely low P-values for almost all weights indicated that this hypothesis
should be dismissed. (Results not shown.) This attaches, at least, a statistical
meaning to the derived weight matrix. More interestingly, for each of the twelve
TF’s and each of this six nutrient limitation transitions we assessed the signif-
icance of the difference between the assigned weight under aerobic growth and
the weight under anaerobic growth. A P-value was computed by determining
the fraction of permutations in which the difference between the aerobic and
anaerobic weight was larger than for the original (non-permuted) data. Signifi-
cant differences (P ≤ 0.05) point towards oxygen specific regulation of a TF at
a specific nutrient limitation transition.

3 Results

The network of TF activity, as partly presented in Figure 2, provides many very
specific clues towards the transcriptional regulation of yeast’s metabolism and
respiration. Some of these can be linked to existing biological knowledge quite
easily. One obvious example is the TF Hap4, of which the mRNA abundance is
decreased by the presence of glucose [19]. This explains downregulation of the
regulon of Hap4 in the three nutrient transitions moving away from the carbon
limitation. Furthermore, in the carbon to sulfur limitation transition, we find
Met32, a known transcriptional regulator of methionine metabolism [20], as well
as Cbf1, which is part of the transcription activation complex Cbfl-Met4-Met28
[21]. To find TF Gln3 at the transition from carbon limited growth to growth
where nitrogen becomes the limiting nutrient is also not surprising. Ammonium,
the nitrogen source used in these experiments and generally considered to be
the preferred nitrogen source for S. cerevisiae, is in excess under carbon-limited
growth, while absent under nitrogen-limited growth. It is well known that high
concentrations of ammonium lead to nitrogen catabolite repression (NCR), a
transcriptional regulation mechanism that represses pathways for the use of al-
ternative nitrogen sources [22]. Gln3 is one of the four so-called GATA factors
active in NCR to adapt to the change in need of alternative nitrogen sources
at this transition. It is however surprising that Gln3 is significantly related to
genes upregulated, especially under aerobic conditions. Also unexpectedly, Leu3,
a regulator for genes of branched-chain amino acid biosynthesis pathways, is sig-
nificantly related to genes downregulated, especially at the anaerobic transition
from carbon to nitrogen limitation.
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C → N C → P C → S N → P N → S P → S

Aer Ana Aer Ana Aer Ana Aer Ana Aer Ana Aer Ana

1 7 2 8 3 9 4 10 5 11 6 12Transition

Description

Leu3

Hap1

Hap4

Sut1

Yap7

Skn7

Swi6

Ste12

Thi2

Gln3

Hsf1

Msn4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Larger weight under aerobic growth
Larger weight under anaerobic growth

Fig. 3. Visualization of W, representing the TF activity of twelve TF’s under the
six nutrient limitation transitions, both aerobically and anaerobically. Large positive
weights (red) indicate involvement in upregulation, negative weights (blue) refer to
downregulation. Triangles indicate a significance difference in weights (P ≤ 0.05) for a
nutrient limitation transition between the aerobic and anaerobic case.

Here, we come to the crux of our work. Our approach is able to infer TF
activity related to very specific changes in combinatorial cultivation parameters.
The algorithm that is especially designed for the combinatorial setup of nutrient
limitations and oxygen supply in the employed microarray dataset, not only
provides unprecedented detailed insight into the behavior of yeast’s metabolism
and respiration at the transcriptional level, but also in terms of TF activity. Thus,
we do not find many TF’s that are globally related to particular nutrients. (These
have already been identified in previous studies, e.g. [4,12]). More specifically,
we identify lots of TF’s that are not primarily related to the metabolism of a
particular nutrient, yet seem to play a more specific and subtle (and as of yet
unknown) regulatory role at these transitions between nutrient limitations. The
involvement of these TF’s demonstrate the complex and multiple regulatory roles
that they exhibit in transcriptional regulation in different processes.

The involvement of a particular TF in different processes has of course been
established by many independent studies. For example, Mcm1 is a known mul-
tifunctional protein which plays a role both in the initiation of DNA replication
(cell-cycle) and in the transcriptional regulation of diverse genes [23]. A more
recent study also suggests that in response to changes in their nutritional states,
yeast cells modulate the activity of global regulators like Mcm1 via posttran-
scriptional regulation induced by the flux of glycolysis [24]. The identification of
Mcm1 as a regulator in the carbon to nitrogen limitation transition, where the
glycolysis flux changes dramatically, thus strengthens and even broadens this
hypothesis.
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In general, the results provide new regulatory roles for many TF’s in
metabolism and respiration. Additionally, the results underline the complexity
of transcriptional regulation in the cell, especially when taking into account the
fact that changes in nutrient and oxygen availability can not be seen in isolation
from (or even modulate) cell-cycle (e.g. [25]) and energy processes (e.g. [26]) and
is even known to evoke stress responses (e.g [27,28]). To strengthen this notion,
enrichment in MIPS [29] and GO [7] functional categories was computed. Ta-
ble 3 displays the results for the transition from carbon to nitrogen limitation.
These results also indicate that many non-metabolic processes play a role in the
nutrient and oxygen availability transitions.

Table 3. Significantly enriched (P ≤ 5 · 10−5) MIPS and GO functional categories for
the nine groups defined at the carbon to nitrogen limitation transition. Processes other
than metabolism, energy and cellular transport are underlined.

no. MIPS GO

I metabolism

II energy, oxydative stress response response to stress

III metabolism, complex cofactor/cosubstrate binding

IV tetracyclic and pentacyclic triterpenes biosynthesis lipid metabolism, steroid metabolism and biosynthesis

V metabolism of the pyruvate family and D-alanine, mitochondrion cellular biosynthesis, nitrogen compound biosynthesis, a.o.

VI lipid metabolism, steroid metabolism and biosynthesis

VII mitotic cell cycle and cell cycle control, cellular transport, a.o.

VIII energy, respiration, a.o. aerobic respiration, generation of precursor metabolites, a.o.

IX energy, respiration, transported compounds, a.o. oxidative phosphorylation, transport, a.o.

In the remainder of this section we focus on three identified TF’s and hy-
pothesize about their putative role in regulation at specific transitions. Here, we
also demonstrate the power of the Procrustes approach in clarifying more subtle
patterns of regulation.

Leu3
Leu3 is the main transcriptional regulator of branched-chain amino acid
metabolism and has been extensively studied [30,31]. To exactly meet the de-
mands of protein synthesis, the activity of Leu3 is modulated by α-isopropy
lmalate (α-IPM), an intermediate of the branched-chain amino acid pathway.
As a result Leu3 can act as both an activator and a repressor. Our findings in-
dicate an oxygen-specific role of Leu3 in several nutrient limitation transitions.
Figure 4 displays the expression behavior at transitions for the regulon of Leu3.
Many genes are downregulated at the C → N and C → S transitions under
anaerobic conditions in comparison to the same transitions grown under aero-
bic conditions. (This can be seen by the much larger number of green boxes in
transition 7 w.r.t. transition 1 and similarly for transitions 9 and 3). Further-
more, when going from aerobic to anaerobic carbon-limited growth many genes
are upregulated. (All above mentioned relations were found significant in the
hypergeometric tests, as can be seen in Figure 2.) The involvement of Leu3 as
a repressor and activator at these transitions has not been established before.
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C → N C → P C → S Aer → Ana

Aer Ana Aer Ana Aer Ana C

1 7 2 8 3 9 13Transition

Description

Leu3 binding

RGT1

OAC1

ILV3

SET5

BAT1

LEU1

ALD5

SNA2

YDR524w−a

AGE1

LEU2

BAP2

YOR271C

ISU2

YOR227W

LEU9

LEU4

MET4

ILV2

ILV5

YLR356W
Downregulated (−1)

No diff. expr. (0)

Upregulated (1)

Fig. 4. Part of the transition matrix T, indicating the expression behavior of all genes
to which TF Leu3 can bind (upstream) for the transitions that are displayed in Figure
2.

Personal communication with the first author of [31] lead to the observation that
the expression pattern of Leu3’s regulon under anaerobic growth is quite remark-
able. If it were the case that also at the anaerobic C → P transition many genes
were downregulated, one could associate this to mitochondrial capacity [8], since
the synthesis route of α-IPM is mainly located in the mitochondrion. However,
this is not the case. Possibly, regulation of Leu3 under anaerobic growth can be
linked to different concentrations of α-IPM, caused by different concentrations
of Acetyl-CoA and ATP/ADP that change at the transitions. However, this is
not more than speculation at this point.

Yap7
The TF Yap7 was only significantly associated with upregulation of genes when
going from nitrogen to sulfur limited (N → S) aerobic growth. (This result is not
visible in Figure 2.) The Procrustes analysis, however, shows a more interesting
pattern of regulation. In Procrustes, the TF binding data set is employed to
explain the different expression behavior between all the aerobic and anaerobic
nutrient limitation transitions simultaneously. (This in contrast to employing
the hypergeometric distribution, where hypotheses can only be tested individ-
ually.) Furthermore, the orthonormality constraint emphasizes the difference in
activity of a TF at different transitions. When investigating the weights assigned
to Yap7, we see that not only in N → S the weight is significantly larger under
aerobic growth, but also in the case of the other transitions moving towards
sulfur limited growth; C → S and P → S. (See Figure 3.) For the other transi-
tions the weights are near zero. Thus, we can hypothesize that Yap7 (a member
of the yeast bZip family of proteins, of which two other members can only be
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linked indirectly to sulfur metabolism [32]) is involved in regulation under aer-
obic sulfur-limited growth, thereby assigning a very specific putative regulatory
role for this poorly studied TF.

Ste12
Also in the case of Ste12, the Procrustus rotation confirms and broadens the
relationships as established by the hypergeometric tests. From the literature it
follows that Ste12 is a transcription factor that binds to the pheromone response
element (PRE) to regulate genes required for mating and also functions with
Tec1 to regulate genes required for pseudohyphal growth [20]. Additionally to
these functionalities, we find it to upregulate genes when entering a phosphorus-
limited state, especially when no oxygen is present. See the condition transition
weights for Ste12 in Figure 3. (Note that the S → P is not in the table, but it
is justified to expect that these weights will be the complement of the P → S
transition.)

4 Discussion

Today’s main use and strength of bioinformatics tools is generating hypothe-
ses on all types of relationships and functionalities of and between quantifiable
parameters inside and outside the cell. Specific biological experiments are, how-
ever, still required to validate the automatically generated hypotheses before
accepting them as newly discovered knowledge. The common trend of focusing
on large compendia of intracellular measurement datasets is often in contrast
with the biologist’s very specific field of research. These broad approaches are
able to recognize global patterns in the data, but miss specific and subtle effects
that characterize the complex reality of the cell.

In this research we applied a tailor-made informatics approach on a small,
well defined dataset. This enabled us to provide the biologist with very detailed
hypotheses about the specific biological processes of interest. The basis for this
work is the systematic combinatorial setup of the cultivation conditions under
which yeast was grown in highly controllable chemostats. Incorporation of TF
binding data through stringent statistical tests as well as a Procrustes rotation,
led us to infer the activity of TF’s at transitions between the different cultivation
conditions. In contrast to common approaches the generated regulatory network
thus shows the actual changes in conditions that lead to the activation of TF’s.
Incorporation of (changes in) conditions is a crucial part of regulatory networks
and in the quest for simulation of the complete regulatory mechanisms within
the cell, will be part of more elaborate future analysis. Additionally, future work
will aim at interpreting the uncovered results, not only by literature, but also by
performing specific follow-up experiments. Furthermore, the uncovered results
have proved to be very interesting, and therefore encourage application of similar
techniques to other systematically setup datasets.
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Abstract. In vitro model systems are used to study epithelial cell growth, 
morphogenesis, differentiation, and transition to cancer-like forms.  MDCK cell 
lines (from immortalized kidney epithelial cells) are widely used examples.  
Prominent in vitro phenotypic attributes include stable cyst formation in em-
bedded culture, inverted cyst formation in suspension culture, and lumen forma-
tion in overlay culture.  We present a low-resolution system analogue in which 
space, events, and time are discretized; object interaction uses a two-
dimensional grid similar to a cellular automaton.  The framework enables “cell” 
agents to act independent using an embedded logic based on axioms.  In silico 
growth and morphology can mimic in vitro observations in four different simu-
lated environments.  Matched behaviors include stable “cyst” formation.  The in 
silico system is designed to facilitate experimental exploration of outcomes 
from changing components and features, including the embedded logic (the in 
silico analogue of a mutation or epigenetic change).  Some simulated behaviors 
are sensitive to changes in logic.  In two cases, the change caused cancer-like 
growth patterns to emerge. 

Keywords: Agent-based, cystogenesis, epithelial, model, morphogenesis, simu-
lation, synthetic, systems biology, complex systems. 

1   Introduction 

To better understand mammalian physiology we often study simpler systems: in vitro 
model systems, such as 3D cultures of epithelial cells.  To understand how molecular 
level events are causally linked in vitro to emergent, system level, phenotypic attrib-
utes, we need synthetic, in silico analogues of those in vitro systems that are suitable 
for experimentation: they need to exhibit properties and characteristics (PCs) that 
overlap in useful ways with those of the in vitro referent.  We report significant, early 
progress toward that goal for cultured MDCK [1] and related cells.   

The in vitro morphological phenotype of a MDCK cell system depends on the cells’ 
environment.  Examples of common properties and characteristics (PCs) are illustrated 
in Fig. 1.  In 3D embedded cultures, formation of stable, self-enclosed monolayers 
(cysts) is the dominant morphological characteristic.  O’Brien et al. have observed 
that cyst formation, along with structures formed in other in vitro environments, 
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seems to be driven by each cell’s pursuit of three types of membrane surfaces, called 
free, lateral, and basal [1].  They suggest that this drive is intrinsic to epithelial cell 
differentiation and morphogenesis.  Epithelial cells respond to signals resulting from 
interactions with particular components and properties of their environment, with 
other cells via cadherins and other cell-cell adhesion molecules, with matrix via in-
tegrins and other molecules, and with free surface via apically-located integrins, cilia, 
and flow sensing.  Our plan has been to bring these mechanisms into focus iteratively 
by building and validating detailed analogues beginning with the one presented here: 
a four-component, discrete event, discrete time, and discrete space analogue.  It is 
simple yet exhibits a rich in silico “phenotype.”  It is capable of recapitulating in 
silico the key outcomes in the growth of MDCK cells [2-4] shown in Fig. 1.  These 
successful simulations stand as hypotheses of the mechanism(s) that causes those 
PCs.  Models that are more detailed, built by extending the approach used here, are 
expected to follow.   

2   Methods 

To avoid confusion and clearly distin-
guish in vitro components from corre-
sponding simulation components, 
such as “cells,” “matrix,” “cyst,” and 
“lumen,” we use small caps when re-
ferring to simulation components and 
properties.  

We use the synthetic modeling 
method [5,6].  Steels and Brooks con-
trast the synthetic and inductive meth-
ods [7].  In inductive modeling, one 
usually creates a mapping between the 
envisioned system structure and com-
ponents of the analyzed data, and then 
represents those data components with 
mathematical equations.  The syn-
thetic method, in contrast, works for-
ward from domain (components) to 
range (data).  It is more concerned 
with how properties are generated.  It 
is especially suitable for representing 
spatial and discrete event phenomena.  
That makes it ideally suited for as-
sembling analogues from components 
and exploring the resulting behaviors.  
Synthetic modeling of cell systems 
requires knowledge of their function 
and behavior; for the in silico model 

 

Fig. 1.  Targeted in vitro phenotypic attributes: 
A: A single epithelial cell plated on a layer of 
collagen (surface culture) generates a uniform 
monolayer; B: Cyst formation in suspension 
culture; cell polarity is inverted relative to that 
in C; C: Representation of a cross-section of an 
epithelial cyst in vitro formed in embedded 
culture.  Starting with a single cell embedded in 
a collagen gel: cell division, apoptosis, and 
shape change over a period of several days 
leads to a lumen-containing cyst; D: Lumen 
formation in collagen overlay experiments. 
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described herein, considerable cell biology and molecular knowledge is available.  
Ideas about plausible mechanisms and of relevant observables are available.  Strate-
gies are needed for how the analogue and referent observables will be measured and 
compared. 

2.1   Framework, Analogue, and Specifications 

We used MASON (cs.gmu.edu/~eclab/projects/mason/) to construct the simulation 
framework.  MASON is based on the Swarm simulation package.  It is an optimized, 
and extensible Java-based simulation toolkit.  We used the JFreeChart library for plot-
ting purposes and import and export of XML-formatted data.  In order to take full ad-
vantage of the flexibility of object-oriented programming we discretize space and 
time and assume that all events can be represented as being discrete.  The software 
used along with executable applets are available at 

<http://128.218.188.102:8080/growthmodel/index.php>. 

We accumulated relevant wet-lab observations by identifying experiments and 
observations that could be directly compared with simulated output.  We also 
looked for and characterized in silico phenotypic attributes; we then searched the 
literature for wet-lab evidence that supported or invalidated these attributes.  Our 
conceptual model is that epithelial cells in vitro behave as if they are following in-
nate mandates that result indirectly from the biological counterpart of axioms of de-
velopment and differentiation.  Meeting the mandates is necessary for “success” in 
vitro.  In total, they are sufficient.  Each cell responds to stimuli based on its need to 
comply with all of the mandates.  Further, each cell has internal systems contained 
by an operational interface (not identical to the cell membrane) that mediates inter-
action between the external environment and internal systems.  The observed reper-
toire of behaviors is hypothesized to be a consequence of stimulus-response mappings 
between the inputs and outputs of that interface.  Consequently, that interface is the 
logical starting place for building an analogue.  What are appropriate initial spatial 
and temporal resolutions?  

We speculated that by treating each cell and similar sized units of environment as 
single (atomic) objects driven by an axiomatic mechanism, we could capture impor-
tant PCs.  We assumed that the cell’s operational interface accepts stimuli at intervals, 
processes them, and later, when appropriate, the cell responds resulting in a change in 
the cell or its immediate environment.  We assumed that a repertoire of stimulus-
response sequences precedes each evident behavior, and that response times for dif-
ferent behaviors can differ.  Different cells in culture will be undergoing different 
state behaviors in parallel.  For the model discussed herein, we elected to use an aver-
age response time to represent all behaviors.  That interval is represented by one 
simulation cycle.  Because events in two different in vitro systems can proceed at dif-
ferent paces, one simulation cycle can map to different intervals of wet-lab time.   

Events such as a macromolecular binding and signaling are below the analogue’s 
level of temporal resolution, but that can be changed.  Processes such as changes in 
cell shape or in local matrix organization are not ignored; they are below the level of 
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spatial resolution.  Their contribution is conflated into axioms1 (illustrated in Fig. 2) 
and components.  A specific stimulus-response mapping between inputs from the en-
vironment and outputs, such as initiation of apoptosis, are below the levels of tempo-
ral and event resolution.  We assume that they can be represented collectively by the 
axioms and decisional process that governs behaviors.  CELL behaviors are independ-
ently scheduled; they are executed in sequence, not in parallel as is typical for a cellu-
lar automaton [8].  This enables exploration of outcomes from interactions of CELLS 
undergoing different behaviors.  Additionally, the logic governing CELL behavior is 
embedded within that CELL (the CELL is an agent). 

Four simulated environments represent four referent culture conditions.  Each con-
sists of a 2D (or 3D) grid, hexagonal or square, typically 100 x 100.  Just one of three 
different types of components is assigned to each grid point: MATRIX, FREE SPACE, or 
CELL.  MATRIX represents a cell-sized region of culture medium that contains matrix.  
FREE SPACE represents a similar sized region of cell-free or matrix-free medium, such 
as a portion of a luminal space.  A CELL represents an MDCK II epithelial cell.  When 
a higher level of intracellular resolution is needed, it is straightforward to replace a 
CELL with a component that is a composite object representing some combination of 
internal systems.  When doing so, we can elect to keep the resolution of the environ-
ment as it is, or, with equal ease replace selected units with composite objects that 

                                                           
1 Axiom emphasizes that computer programs are mathematical, formal systems and the initial 

mechanistic premises in our simulations are analogous to axioms in formal systems.  Here, an 
axiom is an assumption about what conclusion can be drawn (action taken) from what pre-
condition for the purposes of further analysis or deduction, and for developing the  
analogue system. 

 

Fig. 2.  Illustrations (2D hexagonal grid) of the 
axioms that govern a CELL’S action during any 
simulation cycle.  Dark hexagons: FREE SPACE; cir-
cles with gradient shading: CELLS; and white hexa-
gons: MATRIX.  Axioms are organized by the 
number of object types in the local neighborhood: 
one or more of CELL, MATRIX, and FREE SPACE.  
Axiom 2 (die if all neighbors are FREE SPACE) is 
not shown because it was not used.  Each axiom 
defines a mapping from a precondition to a new 
condition for the center CELL.  The in silico deci-
sional process (sketched in Fig. 3) is based on the 
arrangement of three object types adjacent to the 
CELL.  Multiple locations can meet the axiom’s 
requirement daughter placement.  When that oc-
curs, one is selected at random.  When none of the 
conditions of the first eight axioms is met, Axiom 
9 applies: the CELL does nothing.  The wet-lab ob-
servations and data that motivated the first six 
axioms are as follows (axiom : [reference(s)]):  1 : 
[15,20,21]; 2 : [20,21]; 3 : [2-4]; 4 : [3,15]; 5 : 
[21]; 6 : [2,3,22], 7&8 : [1]. 
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represent more environmental detail.  The temporal resolution too can be increased 
(or decreased) when that is needed.  All of these changes can be carried out within, 
and accommodated by the framework. 

The only components in the simulation that schedule events are CELLS.  Each CELL 
is an agent.  Each CELL schedules a new event for itself at the next simulation cycle, 
and it then executes a program, an in silico decisional process (Fig. 3).  For each 
neighborhood arrangement, there is only one action option.  All behaviors are as-
sumed to be influenced by only the immediate environment.  The ordering of CELL 
event execution during each simulation cycle is randomized.  For the simulations dis-
cussed, one simulation cycle corresponds to one unit of in vitro time.   

The axioms specify how a CELL will behave when in contact with only one type of 
local environment (only MATRIX, CELLS, or FREE SPACE, where the latter can represent 
a luminal environment), two types (MATRIX and CELLS, MATRIX and FREE SPACE, and 
CELLS and FREE SPACE), or all three types.  

2.2   Axiom Development 

Matrix attachment is required for long-term survival of epithelial cells.  Therefore, 
one might consider implementing a function that allows for survival only in the pres-

ence of matrix.  However, it is 
possible for an epithelial cell to 
generate matrix de novo in the 
absence of existing matrix, thus 
“rescuing” itself.  In order to al-
low for unanticipated behaviors 
in all possible environments, we 
assumed that cell action in a par-
ticular environment is independ-
ent of its actions in others and 
from any past action.  For a hex-
agonal grid containing arrange-
ments of three different 
components (CELL, MATRIX, and 
FREE SPACE), there are 729 pos-
sible neighborhood arrange-
ments.  The number is reduced 
when mirror images are as-
sumed equivalent.  The number 
is reduced further by noting that 
several arrangements are identi-

cal after axial rotations.  We classified the remaining arrangements based on their per-
ceived similarities with respect to overall cell behavior.  We arrived at a set of  
arrangements in which cell behavior could be functionally distinct.  Guided by spe-
cific literature observations of in vitro systems, we assigned a prediction as to how an 
epithelial cell would behave in each.  We found no relevant experimental observations 
for several classes.  For those we assumed that epithelial cells desire to maintain exist-
ing surfaces, and generate additional environment types, in a pursuit of three surface 
types [1].  Unrealistic alternative outcomes were not considered.  Merging similar be-

 

Fig. 3.  A diagram of the in silico decisional protocol 
by which each cell matches its precondition 
(neighboring components and their arrangement (see 
Fig. 2) with just one axiom.  FS: FREE SPACE.   
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havior predictions resulted in the simplified collection of axioms listed below (Fig. 2) 
and the decisional protocol that determines which axiom applies (Fig. 3).  

During each simulation cycle (time step), each CELL uses a decision tree to select 
one of five actions: do nothing, die, add MATRIX, and divide (two axioms manage 
daughter placement differently).  First, each CELL determines if it has one, two, or 
three types of neighbors.  If there is only one type, then follow either Axiom 1 or 3.  
Two types: follow either Axioms 4, 5, 6, or 7.  Three: follow Axiom 8.  If 1-8 do not 
apply, apply Axiom 9.  The axioms are as follows.  

Axiom 1: only CELL neighbors: die   
Axiom 2: only FREE SPACE neighbors: die (does not apply for these simulations) 
Axiom 3: only MATRIX neighbors: divide   
Axiom 4: neighbors are FREE SPACE and just one CELL: add MATRIX between self and 

that CELL 
Axiom 5: neighbors are FREE SPACE and  two CELLS: die 
Axiom 6: neighbors are  one CELL and MATRIX: divide and replace a MATRIX with 

daughter to maximize her CELL neighbors 
Axiom 7: neighbors are MATRIX and  two FREE SPACE: divide and place daughter in a 

FREE SPACE to maximize her MATRIX neighbors 
Axiom 8: three types of neighbors with MATRIX neighbored by two adjacent FREE 

SPACES: divide and place daughter in a FREE SPACE to maximize her MATRIX 

neighbors  

2.3   Simulation Experiments 

To insure that the scheduling of CELL events was nondeterministic, random number 
generator seeds were changed for each simulation.  Typically, one-to-two hundred 
simulation cycles were run for each simulation, with up to two hundred simulations 
per experimental condition.  Images of each completed simulation were collected for 
subsequent comparison.  CELL numbers were saved at each step of a simulation, and 
for each simulation run. 

We studied growth rates and structures formed in multiple simulated conditions.  
For simulated surface culture, we ran 50 simulations of 20 simulation cycles each.  
Each used 3D square grids of dimensions 2 x 100 x 100: first, the bottom 1 x 100 x 
100 section was filled with MATRIX.  Next, a CELL was placed at the center of the top 
1 x 100 x 100 grid.  Similar in vitro surface culture data (days 0–5) was available [9].  
For graphical representation of these studies, we assumed each simulation cycle cor-
responds to 20.4 hours in vitro.   

We also studied growth properties of CELLS in simulated embedded culture.  For 
simulated embedded culture we ran 200 simulations of 100 simulation cycles each. 
An in vitro embedded culture is represented by a 2D grid having MATRIX in all loca-
tions.  To initiate a simulation, one or more CELLS replace MATRIX.  Data from in vitro 
embedded culture data was available for comparison with simulation outcomes [3].  
CELL number and position information was saved for each simulation run.   For 
graphical representation of embedded conditions, we assumed a simulation cycle cor-
respondence of 12.0 hours in vitro.  
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In vitro suspension culture was represented by a grid in which FREE SPACE is as-
signed initially to all locations.  A simulation is initiated by having one or more CELLS 
replace FREE SPACE.  Results from simulated suspension culture of normal CELLS are 
identical between simulation runs, therefore only image captures were taken.  CELL 
number data was not saved.   

Last, simulation of an in vitro overlay or sandwich culture starts with a single hori-
zontal monolayer of CELLS bordered above and below by a region of MATRIX, placed 
in a 2D grid.  Image captures from simulation runs were taken, but no corresponding 
CELL number data was available for comparison so this data was not acquired from 
the simulation.   

As a strategy to get a variety of CYST sizes in simulated suspension culture and to 
simulate the effect of altered matrix production, Axioms 4 and 5 were replaced by a 
new one.  It specified the placement of MATRIX at a neighboring FREE SPACE position 
with a maximal number of CELL neighbors, as determined by the scheduled CELL. 
Model outcomes were studied in simulated embedded conditions, except that a CELL 

with the altered axioms was used. 
To examine the importance of the orientation of daughter placement on simulated 

morphology, Axiom 8 was changed to allow for placement of the daughter into any 
neighboring FREE SPACE location.  Image captures from simulations in a range of 
simulated environments (surface, suspension, embedded, and overlay) were taken for 
study.  These simulated environments were constructed as for normal CELLS, except 
CELLS with this altered axiom were used.   

3   Results 

3.1   Targeted Phenotypic Attributes 

MDCK cells grown on collagen I gen-
erate a simple monolayer that covers the 
entire surface [10].  Most cell division 
takes place on the outer edge of an ex-
panding colony [11].  Analogue simula-
tions successfully represent these 
phenotypic attributes.  As one would 
expect, given the simulation axioms 
summarized in Fig. 2, MONOLAYER 
formation always occurred on flat MA-

TRIX surfaces (Fig. 4C).  The pattern of 
growth in simulated surface culture be-
gins with an initial exponential growth phase that lasts for three simulated days.  It 
closely matches published observations of MDCK growth rates in surface cultures [9] 
(Fig. 5A).   

 

Fig. 4.  Example output from the four simu-
lated environments.  Spheres represent CELLS; 
black space represents FREE SPACE or simulated 
internal lumen space; white space represents 
MATRIX.  A: stable CYST formation in simulated 
embedded culture; B: stable CYST formation in 
simulated suspension culture; C: MONOLAYER 
formation in simulated surface culture stable; D: 
LUMEN formation in simulated overlay culture. 
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Overlay of a MDCK cell monolayer with Collagen I induces a morphological re-
sponse [12] that results in lumen spaces completely surrounded by cells [2].  These 
events include migration, division, apoptosis, and shape changing.  Simulation of an 
overlay culture resulted in the formation of structures similar to those just described 

(Fig 4D): regions of FREE SPACE are 
formed surrounded by single layers 
of CELLS, each bordering MATRIX.   

MDCK cells grown in type I col-
lagen (embedded culture) exhibit 
clonal growth in three stages 
[13,14]: 1) repeated rounds of cell 
division during the first two days of 
culture, followed by 2) the forma-
tion of a central lumen accompanied 
by an increase in cell numbers and 
cyst diameter between day two and 
seven.  3) Thereafter, cyst size pla-
teaus with little apparent change 
thereafter.  An example CYST is pro-
vided in Fig. 4A.   

In silico experiments demon-
strated five important similarities 
with in vitro cyst morphogenesis.  1) 
LUMEN formation occurred after 2–
2.5 simulated days.  Lumen forma-
tion was observed to occur in vitro 
by as early as day two [3].  2) CYST 
expansion was arrested (Fig. 5B) [3]. 
3) Stable CYSTS contained a central 
region of FREE SPACE lined by a sin-
gle layer of CELLS.  4) CELL division 
and CELL death continued after the 
initiation of LUMEN formation [15].  
5) There was variation in CELL num-
bers per mature CYST, similar to in 
vitro observations (Fig. 5C).   

The fourth targeted attribute is 
formation of cysts in suspension cul-
tures.  Cystogenesis in vitro begins 
with the formation of aggregates of 
two to ten cells.  Thereafter, over ap-
proximately ten days, an “inverted” 
cyst (Fig. 4B) forms, expands, and 
then stabilizes.  During the process, 
basement membrane components, in-
cluding collagen IV and laminin I, 
accumulate in the lumen and line the 
inner surface of the cyst [3].  Some 
matrix is apparently produced de 

 

Fig. 5.  Comparisons of data from in silico (n = 50) 
and in vitro experiments, assuming a mean CELL 
division time of 20.4 hours: A: CELL numbers per 
COLONY in simulated surface culture; B: CELL num-
bers per CYST in simulated embedded culture, 
where two simulation cycles corresponds to 1 simu-
lated day; C: comparison of in vitro cell numbers 
per cyst cross-section after ten days in embedded 
culture with CELL numbers per CYST cross-section 
after twelve simulation steps (n = 50).  
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novo [16].  We limited MATRIX production in the simulation to one situation: when a 
CELL has only one other CELL neighbor, and no other MATRIX neighbors (Axiom 4).  
This abstract behavioral specification is sufficient to enable formation of small, stable 
CYSTS in simulated suspension culture (Fig. 4B), but fails to represent any of the other-

characteristics.   
There are three noteworthy differences 

between in vitro and in silico behaviors in 
simulated embedded culture.  In vitro, 
there is occasional expansion of cysts [3] 
as consequence of division by cells that 
have already made contact with three envi-
ronments.  There is no corresponding be-
havior during simulations, because the 
operative mechanisms are below the level 
of resolution of this analogue.  The second 
difference is the variability in CYST 
shapes.  Some stable CYSTS are quite 
aspherical (wrinkled and puckered).  Fig-
ure 6A contains a representative set.  Such 
shapes are rarely observed in vitro.  Posi-
tive pressure differentials are thought to 
exist between the inside and the outside of 
cysts in vitro.  Consequently, any homo-
geneous luminal space would tend to be-
come spherical.  We can simulate the 
consequences of such pressure differences.  
A consequence would be that all of the 
simulated CYST cross-sections in Fig. 6A 
would be more circular.  Because appro-
priate in vitro data is lacking, however, we 
elected not to include such effects.  Never-
theless, as the contour plot in Fig. 6B 
shows, on average, the current in silico 
cysts tend to be circular.  A third differ-
ence is that not all cells placed in embed-
ded culture in vitro form lumen-filled 
cysts.  A few masses have no lumens at 
all; plausible explanations have not been 
offered.  

 
 

3.2   Experimentation and Exploration 

Cells in epithelial tumors appear less polarized [17].  We simulated an aspect of loss 
of polarity by disrupting the directional CELL placement in Axiom 8 so that daughter 
CELLS could be placed in any FREE SPACE.  The result was continued CELL prolifera-
tion resulting in the formation of amorphous combinations of CELLS, MATRIX, and 
FREE SPACE (Fig. 8), including de novo MATRIX production (a result of Axiom 4).  
That, combined with significant CELL removal due to Axiom 5, led to a proliferative, 

 

Fig. 6.  CYST properties: A: examples of 
CYSTS formed in simulated embedded cul-
ture.  The selection illustrates the range in 
CYST size and shape.  B: the contour plots 
show the probability of CELL location, 
relative to CYST center (x), for a stable 
CYST formed in simulated embedded cul-
ture.  The location of each CYST’S “cen-
ter” was defined as the average grid 
location for the CELLS forming that CYST.  
Relative to each CYST’S center, the fre-
quency of finding a cell at each grid loca-
tion was determined for two hundred 
embedded culture simulations that each 
ran for 100 steps (all CYSTS stabilized).  
The contour plot shows that averaged over 
many simulations, CYSTS tend to be circu-
lar with one LUMEN. 
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amorphous phenotypic attributes in all four environments reminiscent of cancerous 
growths.  A comparison of growth rates in simulated embedded conditions for normal 
CELLS and the altered CELL behaviors demonstrates the failure of growth arrest in both 
cases (not shown).   

Also of interest are observed behaviors that were not part of the original set of tar-
geted attributes.  Does the placement of an inverted CYST in simulated embedded cul-
ture result in the formation of a normal CYST?  To answer this question a stable 
inverted CYST was placed in simulated embedded culture.  The simulation is run for 
50 simulation cycles and the outcomes observed.  CYST inversion and stabilization 
does occur.  However, proliferation and CELL death is required for this to take place.  
The in vitro evidence indicates that proliferation and CELL death are not typically re-
quired.  The cells of the cyst apparently simply invert their polarity and in the process 
activate enzymes to digest the matrix that was on the “inside” of the original inverted 
suspension cyst [18,19]. 

A limitation of the current model is 
that it does not generate a variety of 
CYST sizes in simulated suspension 
culture.  As a strategy to get a variety, 
we liberalized MATRIX production: we 
replaced Axioms 4 and 5 with a axiom 
that allowed for MATRIX production in 
any environment consisting of FREE 

SPACE and CELL neighbors.  The axiom 
change did not solve the original prob-
lem.  There was no change in results in 
simulated suspension culture.  How-
ever, it did result in the interesting and 
unexpected simulated behavior illus-
trated in Fig. 7: cellularization and 
MATRIX production in the center of 
growing clusters.  Normal CYST forma-
tion and growth arrest failed to occur.  
This growth characteristic is distinct 
form the division-direction altered 
CELLS in Fig. 8.  This axiom change, 
which can represent a mechanistic altera-
tion caused by epigenetic phenomena, pro-

duces a hyper-proliferative, cancer-like response solely due to aberrant MATRIX produc-
tion.  No in vitro experiments have explored such behavior.   

4   Discussion 

We achieved our principal goal: to instantiate, in silico, an analogue of cell morpho-
genesis in vitro based on the sensing and production of three primary environment 
components.  The analogues can generate structures that mimic those formed in in  
vitro conditions: stable cyst formation in embedded culture, inverted cyst formation in 

 

Fig. 7.  Screen shots taken during exploratory 
simulation of the consequences of model 
changes: The consequences of liberalized ma-
trix production: the sequence shows the effect 
of altered matrix production rules on cyst for-
mation in simulated embedded culture.  Cycle 
0 is addition of one normal cell to a matrix-
filled the grid.  Alteration of Axioms 4 and 5 
to allow for de novo matrix production in any 
environment consisting of free space and cell 
neighbors leads to a distinct pattern of unstable 
growth with matrix and free space production 
within clusters of cells.  Cyst formation and 
growth arrest are not observed. 
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suspension culture, and lumen formation in overlay culture.  Experimentation (e.g., 
Figs. 7 and 8) shows that if some axioms are relaxed, the targeted PCs are not 
achieved and instead cancer-like growth is observed.  The results of one of our ex-
periments presents an interesting hypothesis: that relaxation of conditions for de novo 
matrix production could lead to dysregulated growth of epithelial cells.  Together 
these observations help build the case that simulation analogues such as this one can 
be useful in identifying new plausible epigenetic or genetic mechanisms that could 
contribute to cancer-like growth. 

The relationship between an in silico analogue and its in vitro referent can become 
similar to the relationship between an in vitro model and its referent, typically a fea-
ture of a tissue, often within a patient.  The in vitro model is obviously a simplified 
abstraction of the in vivo target.  Similarly, our in silico model is a simplified abstrac-
tion of its in vitro referent.  The 
in vitro and in vivo systems 
have their own unique PCs.  
Their two sets of experimen-
tally measured properties are 
intended to overlap in specific, 
scientifically useful ways.  The 
region of overlap is the valid-
ity of the in vitro analogue.  
The extent to which that over-
lap is complete is the accuracy 
of the analogues.  There are 
also significant, possibly lar-
ger, non-overlapping regions.  
It is much easier to do experi-
ments on the in vitro model 
rather than the in vivo referent.  
A similar relationship is feasi-
ble between in silico analogues 
and their in vitro referents.  
The experimental usefulness of 
such analogues will likely be 
bolstered by practical as well 
as ethical considerations.   

Although not represented ex-
plicitly in the current analogue, 
polarization is implicit in Axi-
oms 6–9.  CELL actions are based not only on whether a particular environment com-
ponent is present, but also on the relative locations of adjacent environment compo-
nents.  Cell polarization in vitro is presumed to be a feature of the larger mechanism 
governing cell action.  Polarization in vitro likely represents a different cell class, 
enabling a different response to a given environmental perturbation.  A new analogue 
that includes a separately validated class representing polarized cells can be validated 
against the current, acceptable analogue, as well as against an expanded set of tar-
geted attributes.   

Fig. 8.  Effects of changes in axioms on CELL growth 
properties.  Shown are early cycle examples of the 
consequence of weakening the direction of CELL divi-
sion in Axiom 8, as described in the text: simulated 
embedded culture (A), suspension culture (B), over-
lay culture (C), and surface culture (D). FREE SPACE is 
shaded dark.  The light shaded hexagons are units of 
MATRIX. 
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The ability to produce and observe many different PCs from a relatively simple 
model make it clear that more needs to be done to systematically expand the variety 
of system level observations made on the experimental in vitro systems.  Currently 
available experimental data provides sparse and spotty coverage of the available in vi-
tro behavior space and thus the in vitro phenotype, in part because attention is often 
focused on specific molecular details.  A way of selecting new wetlab experiments 
may be to give a degree of priority to those that may invalidate, or not, the current 
best in silico analogues.   
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Abstract. Computational models of biochemical systems are usually
very large, and moreover, if reaction frequencies of different reaction
types differ in orders of magnitude, models possess the mathematical
property of stiffness, which renders system analysis difficult and often
even impossible with traditional methods. Recently, an accelerated
stochastic simulation technique based on a system partitioning, the slow-
scale stochastic simulation algorithm, has been applied to the enzyme-
catalyzed substrate conversion to circumvent the inefficiency of standard
stochastic simulation in the presence of stiffness. We propose a numerical
algorithm based on a similar partitioning but without resorting to simu-
lation. The algorithm exploits the connection to continuous-time Markov
chains and decomposes the overall problem to significantly smaller sub-
problems that become tractable. Numerical results show enormous effi-
ciency improvements relative to accelerated stochastic simulation.

Keywords: Biochemical Reactions, Stochastic Model, Markov Chain,
Aggregation.

1 Introduction

The complexity of living systems has led to a rapidly increasing interest in mod-
eling and analysis of biochemically reacting systems. Different types of computa-
tional mathematical models exist, where quantitative and temporal relationships
are often given in terms of rates and the specific meaning of these rates depends
on the chosen model type. Of course, the different model types are intimately
related since they represent the same type of system. A comprehensive treatment
of computational models can be found in [2].

Models, not only in the context of biochemical systems, are distinguished in
terms of their states and state changes (transitions) where a state consists of a
collection of variables that sufficiently well represents the relevant1 parameters
1 Any model is a simplified abstraction of the real system and both suitability of a

model and the relevant parameters depend on the scope of the study.
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of the original system at any time. The set of all states, also referred to as the
state space, may be either discrete, meaning only a countable number of states
that can be mapped to a subset of the natural numbers N, or the state space
may be continuous. In both discrete and continuous state space models the state
transitions may occur deterministically or stochastically.

For a long time the model type of choice for biochemically reacting systems
was a deterministic model with continuous state space, based on the law of mass
action and expressed in terms of the chemical rate equations leading to a system
of nonlinear ordinary differential equations (ODE) that often turns out to be
difficult to solve. The stochastic approach, motivated by the observation that
biochemical reactions occur randomly, leads to a system of partial differential
equations, the chemical master equation (CME).

Since direct solution of the CME is often analytically intractable, stochastic
simulation is in widespread use to analyze biochemically reacting systems. In par-
ticular, Gillespie’s stochastic simulation algorithm [12,13] and its enhancements
[11,8] that are slightly modified implementations are very popular. The algo-
rithm basically consists of generating exponentially distributed times between
successive reactions and drawing uniformly distributed numbers from the unit
interval, the latter to decide which type of reaction occurs next. In that way
the temporal evolution of the system is imitated by simulating an associated
discrete-state Markov process or – in other words – an associated continuous-
time Markov chain [3,10,14]. Stochastic simulation of continuous-time Markov
chains is well known at the latest since the early 1960s as indicated by [10,17]
and the references therein.

Although the CME arises from a stochastic model there is no need to apply
stochastic solution methods. In particular there is a significant difference between
a stochastic model and a stochastic simulation, although in the systems biology
literature ”the stochastic approach” and ”the stochastic simulation algorithm”
are often taken as the same thing. To open access to a wider range of analysis
methodologies, it is important and useful to realize and exploit the link between
biochemical reactions and Markov processes. Computational probability [16] has
spent much effort to solve Markov processes analytically/numerically without re-
sorting to stochastic simulation. In particular in computer systems performance
analysis Markov chains with extremely large state spaces arise very often, and
”numerical solution of Markov chains” is a vital research area [23,24].

A major drawback of stochastic simulation is the random nature of simulation
results. Despite the fact that Gillespie’s algorithm is termed exact, a stochastic
simulation can never be exact. Mathematically, it constitutes a statistical esti-
mation procedure implying that the results are subject to statistical uncertainty
and in order to draw meaningful conclusions it is necessary to make statistically
valid statements on the results. The exactness of Gillespie’s algorithm is only ”in
the sense that it takes full account of the fluctuations and correlations” [13] of
reactions within a single simulation run. It is common sense in stochastic simu-
lation theory and practice [20] that one should never rely on a single simulation
run and Gillespie mentioned that it is ”necessary to make several simulation runs
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from time 0 to the chosen time t, all identical with each other except for the
initialization of the random number generator”. In fact the reliability of simula-
tion results strongly depends on a sufficiently large number of simulation runs,
and a proper determination of that number has to be carefully done in terms of
mathematical statistics (cf. [17,20]).

Furthermore, stochastic simulation is inherently costly. In many cases even
a single simulation run is extremely computer time demanding and thus reduc-
ing the space complexity compared to numerical methods has to be paid by a
significant increase of time complexity. Therefore, often approximations, as for
example the explicit τ -leaping method [15], are required to achieve simulation
speed up. As an immediate consequence even the exactness in the sense stated
above gets lost. Serious difficulties arise, both for deterministic and stochastic
models, in the presence of multiple time scales or stiffness. Several approximate
stochastic simulation algorithms such as the implicit τ -leap method [22], the
slow-scale stochastic simulation algorithm [5] and the multiscale stochastic sim-
ulation algorithm [6] have been proposed to deal with these specific problems. As
a representative stiff reaction set, we consider the enzyme-catalyzed substrate
conversion

S1 + S2

c1−−⇀↽−−
c2

S3
c3−−⇀ S1 + S4 (1)

of a substrate S2 into a product S4 via an enzyme-substrate complex S3, cat-
alyzed (accelerated) by an enzyme S1. Stiffness and different time scales arise,
if the reversible reaction is much faster than the irreversible one. This is ex-
pressed by the condition c2 � c3 on the stochastic reaction rate constants (see
2.1 for details). Approximate stochastic simulation algorithms for (1) have been
recently proposed in [21] and [7]. Both approaches are closely related in that
they are based on the idea of partitioning the system and solving subproblems
by different simulation techniques. A similar idea also appeared in [18]. Tech-
niques based on partitioning the system are often also referred to as aggregation
techniques.

As outlined above a clear disadvantage of stochastic simulation compared
to numerical analysis, provided that such an analysis would be possible, is the
random nature of simulation results. Thus, we argue that if a problem may
be tackled both by stochastic simulation and by numerical analysis, the latter
should be preferred. We propose an aggregation technique based on a partition-
ing similar to that in [21] and [7] but without resorting to simulation. Instead,
in our method all resulting subproblems become tractable and are solved nu-
merically. Since the simulation methods mentioned above are approximations,
they obviously have two sources of inaccuracy, the approximation error due to
the partitioning and the inherent statistical uncertainty of stochastic simulation,
whereas our method only has the approximation error.

The basic ingredients of our method are the continuous-time Markov chain
interpretation as an abstraction from the original system under consideration
and the specific aggregation of states and transitions. We thereby revisit ideas
from the analysis of fault-tolerant computer systems [1] and we appropriately
modify these ideas according to our requirements. The remainder of this paper
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is organized as follows. In section 2 we formally describe our model and discuss
solution approaches. The numerical aggregation algorithm (NAA) is derived in
section 3, and its accuracy and efficiency are demonstrated in section 4. Finally,
section 5 concludes the paper and gives directions of further research.

2 Mathematical Model

The general stochastic framework for biochemical systems leading to the CME
has been well known for a long time (cf. [12,13]). Here, we first establish and
elucidate the intimate connection to continuous-time Markov chains (CTMC)
and we introduce our notations thereby focusing on system (1). Then a brief
exposition of numerical solution methods and the arising problems is given with
a particular emphasis on large and stiff systems.

2.1 Biochemical Reactions and Markov Chains

Let X(t)=
(
X1(t), X2(t), X3(t), X4(t)

)
be a vector such that Xi(t), i ∈ {1, 2, 3, 4}

is a discrete random variable describing the number of molecules of species Si

at time instant t. If X(t) = x := (x1, x2, x3, x4) ∈ N4, the system is in state x at
time t, meaning that for each Si the current number of molecules is xi. Assume,
that initially the number of enzyme molecules is x

(0)
1 and for the substrate it is

x
(0)
2 whereas no molecules of the enzyme-substrate complex or the product are

present. For all possible states of the system: x1 + x3 = x
(0)
1 and x2 + x4 = x

(0)
2 .

Hence, the maximum numbers of molecules of S1 and S3 are x
(0)
1 and for S2 and

S4 they are x
(0)
2 . This implies a state space of size n = (x(0)

1 + 1) · (x(0)
2 + 1).

Note that n is usually very large. For example, if x
(0)
1 = 200 and x

(0)
2 = 3000, it

follows n = 201 · 3001 ≈ 6 · 105. Here, the state space grows exponentially in the
number of involved species. Moreover, the number of molecules of a species can
be very large. Let S := {(x1, . . . , x4) : x1 + x3 = x

(0)
1 ∧ x2 + x4 = x

(0)
2 } be the

state space of X(t).
System (1) consists of the three biochemical reactions

R1 : S1 + S2
c1−−⇀ S3, R2 : S3

c2−−⇀ S1 + S2, R3 : S3
c3−−⇀ S1 + S4,

where the stochastic interpretation is that the reaction rates (also called tran-
sition rates) are proportional to the number of participating molecules and to
the stochastic reaction rate constants cj , j ∈ {1, 2, 3}. For details and a rigorous
formal justification see [12,14]. The propensity function that gives the transition
rates of the reactions Rj is defined by λ1(x) = c1x1x2, λ2(x) = c2x3, λ3(x) =
c3x3. Note that the cj do not depend on the specific time t. The next state of
the system only depends on x and the reaction type. If there exists a transition
from state x to state x′ with transition rate q(x, x′) ∈ {λ1(x), λ2(x), λ3(x)} then
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we write x
q(x,x′)−−−−→ x′. More precisely, for x = (x1, x2, x3, x4)

R1 : x
c1x1x2−−−−→ (x1 − 1, x2 − 1, x3 + 1, x4), if x1, x2 > 0 and x3 < x

(0)
1 ,

R2 : x
c2x3−−−→ (x1 + 1, x2 + 1, x3 − 1, x4), if x1 < x

(0)
1 , x2 < x

(0)
2 and x3 > 0,

R3 : x
c3x3−−−→ (x1 + 1, x2, x3 − 1, x4 + 1), if x1 < x

(0)
1 , x4 < x

(0)
2 and x3 > 0.

The probability of leaving x within a small time interval of length ∆t via a
reaction of type Rj is given by λj(x)∆t. Correspondingly, the probability of
staying in x within this interval is given by 1 − Λ(x)∆t where Λ(x) := λ1(x) +
λ2(x) + λ3(x) equals the sum of all outgoing rates of x and is called the exit
rate. If Λ(x) is small, state x is slow whereas otherwise x is a fast state which
is due to the fact that 1/Λ(x) is the mean sojourn time in x. Let pt(x) be the
probability that X(t) = x. Then

pt+∆t(x) = (1 − Λ(x)∆t) · pt(x) +
∑

x′:x �=x′,x′ q(x′,x)−−−−→x

q(x′, x)∆t · pt(x′).

This leads to the differential equations

ṗt =
d

dt
pt = lim

∆t→0

pt+∆t − pt

∆t
= Qpt

where pt ∈ Rn
≥0 is the vector with entries pt(x) and Q ∈ Rn×n is defined by2

Q(x, x′) :=

⎧⎪⎪⎨
⎪⎪⎩

−Λ(x), if x = x′,

q(x, x′), if x
q(x,x′)−−−−→ x′,

0, otherwise.

Process X(t) is called a (homogeneous) continuous-time Markov chain (or
CTMC for short). A CTMC is uniquely described by the (infinitesimal) gen-
erator matrix Q and an initial distribution (cf. [3,10]). In general the stochastic
interpretation of chemical equations in the style of (1) always yields a CTMC as
indicated in [12,13].

2.2 Numerical Solution of Markov Chains

Stochastic systems in general, and in particular Markov chains, are analyzed
with respect to their temporal evolution where one distinguishes transient and
steady-state analysis. The latter refers to systems in equilibrium whereas the
former refers to the phase where an equilibrium has not yet been reached. A
large amount of work exists on the numerical solution of Markov chains [24],
where numerical solution means to compute probability distributions, either
time-dependent transient distributions or steady-state distributions.
2 We assume that the state space is mapped to N.



A Numerical Aggregation Algorithm 303

As already stated, numerical analysis has lots of advantages over stochastic
simulation. Unfortunately, the complexity of most real-life systems, such as bi-
ological or chemical systems and many more, leads to models with very large
state spaces, a problem known as state space explosion. Direct numerical solution
of such large models requires enormous computational effort and may be even
impossible due to high space complexity.

Combating the problem of state space explosion has received much attention
in computational probability and it turned out that sophisticated abstraction
techniques can achieve dramatic computational speed up with accurate results.
In this context, abstraction means to construct a less detailed model from the
original one. One popular abstraction method is aggregation which is based on a
partitioning of the state space. The result is a smaller aggregated model where
each state corresponds to exactly one aggregate. The aggregated model is then
analyzed yielding an approximation for the original one.

Numerical solution of large Markov chains is often inspired by models (such
as queueing or Petri nets) arising in operations research or performance analysis
of computer systems. Since in these areas, analysis most often aims at steady-
state solutions, there are significantly fewer approaches to transient analysis [23],
which moreover is more complicated. On the contrary, in systems biology tran-
sient solutions are usually more important than steady-state solutions since in
many cases the latter do not give useful results. For example, if one considers
the system given by (1) the expected number of molecules of the product S4 at
time t is of interest. In the steady-state, all molecules of the substrate S2 are
converted. Hence, steady-state analysis does not give new insights. The question
of interest is how fast all molecules of the substrate are converted. But this also
pertains to transient analysis.

Additional difficulties arise in case of stiffness, as already explained in the
introduction. Many systems can be decomposed into several subsystems. For
instance, (1) consists of the reactions R1, R2, R3 and therefore of three sub-
systems. If the time a subsystem needs to reach equilibrium differs in orders of
magnitude from the time until other subsystems reach equilibrium, meaning dif-
ferent time scales, i.e. c2 � c3, the system is called stiff. Both numerical analysis
and stochastic simulation perform poorly in case of stiff systems.

3 Numerical Aggregation Algorithm

In the following we describe an efficient and extensible technique for the transient
analysis of the stiff system given by (1). We obtain an aggregated model where
numerical analysis is far less costly than for the original model. The basic idea
of our numerical aggregation algorithm (NAA) is to consider a relatively small
aggregated model for reaction R3 based on an analysis of the submodels for R1

and R2. The decomposition into two different parts yields a significant speed up
for the numerical computation of transient measures.
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3.1 Aggregation

For aggregation techniques one has to define an appropriate partitioning of the
state space of the CTMC. Here we focus on techniques where the aggregated
model induced by the partitioning is again a CTMC. States of the original model
are called micro states whereas states of the aggregated model are called macro
states or aggregates. The aggregated model has to be considerably smaller than
the original model to achieve computational advantages. On the other hand,
the accuracy of the aggregation method strongly depends on the choice of the
aggregates since each macro state approximates the behavior of its micro states.

Previous approaches of aggregation methods have in common that states be-
longing to one aggregate have ”similar” or even ”equal” performance properties.
Many aggregation methods are based on lumpability [19], a structural property
of Markov chains, where all states belonging to the same aggregate change with
(nearly) the same transition rate to another aggregate. For example, in case of
exact lumpability [4] the aggregated model is again a Markov chain and transi-
tion rates between macro states equal the uniquely determined transition rates
between the micro states of the respective aggregates. The probability of be-
ing in a certain macro state in the aggregated model then equals the sum of
the probabilities to be in any of the micro states that constitute this aggregate.
For biochemical reactions this approach is in most cases not appropriate since
transition rates depend linearly on the numbers of molecules of certain species
but these numbers are state parameters. Therefore, aggregated models resulting
from techniques based on lumpability may not be sufficiently small or may not
yield accurate approximations.

Another approach is to partition the state space with respect to different
speeds of states and to define the transition rates between macro states on the
basis of an analysis of each aggregate considered in isolation. The aggregation
methods in [9,1] decompose the state space into fast and slow subsets. The
steady-state solution is computed for each fast subset and the transition rates
between the macro states are then given by the rates of the original model
weighted with the steady-state probabilities of the corresponding micro states.
The stochastic simulations in [7,18,21] are based on a similar idea. The accuracy
of these approximation techniques relies on the fact that within subsets of fast
states equilibrium is reached much earlier than in subsets of slow states. This
approach is also well suited in the context of (non-simulative) numerical solution
of biochemically reacting systems.

Let us now draw our attention to the system given by (1). The exit rate
Λ(x) = x1 · x2 · c1 + x3 · c2 + x3 · c3 determines the sojourn time in state x
and therefore the speed of x. Assume that c2 � c3 and c1 � c3. Then nearly
all states in S are fast since they have either at least one fast transition via R2

because x3 > 0 or via R1 because x1 ·x2 � 1. Hence there may be slow transitions
between states, e.g. there can be a fast reaction and a corresponding slow reverse
reaction as long as the states’ speeds are of the same order of magnitude. Since
x3 = 0 implies x1 = x

(0)
1 the only slow state in the system is x = (x(0)

1 , 0, 0, x
(0)
2 ),



A Numerical Aggregation Algorithm 305

i.e. the absorbing state (with exit rate zero) where no substrate molecules are
left and no further reactions are possible.

We decompose S such that the slow transitions of type R3 occur only be-
tween different macro states and fast transitions of type R1 and R2 only exist
within a macro state. This yields exactly one aggregate for each value x4 = k,
0 ≤ k ≤ x

(0)
2 , and all micro states within an aggregate are fast except for the

aggregate consisting of only one single element, i.e. the absorbing state. Hence,
if the aggregates are considered as isolated submodels, steady-state is reached
very fast. The main idea of the NAA is to define the slow transition rates of the
aggregated CTMC by multiplying for each submodel c3 with the expected num-
ber of enzyme-substrate complex molecules in equilibrium. This ensures that
the aggregated model is slow compared to the fast submodels. Note that in
general for an aggregated model it holds that transition rates of aggregates con-
sisting of only one single element are always equal to the corresponding rates
of the original model. Hence, the assumption that steady-state is reached fast
within an aggregate has to be checked only for aggregates with more than one
element for which the transition rates in the aggregated CTMC are approxima-
tions.

If we drop the assumption on c1, i.e. if we allow c1 ≈ c3, the states where no
molecules of S3 are in the system, are slow but belong to an aggregate with fast
micro states. Although the NAA and the underlying partitioning are actually
not designed for such systems, numerical results indicate that the algorithm is
accurate even for c1 ≈ c3.

For an extension of the NAA only fast micro states should be aggregated
whereas each slow micro state forms a single macro state. Note that for this
partitioning the aggregated Markov chain might be small but does not necessarily
possess the simple structure as it is the case for the partitioning proposed above
for system (1).

3.2 Analysis of the Fast Subsystems

Assume that the state space is partitioned as explained above for the case c2 � c3

and c1 � c3. Aggregate Ak, 0 ≤ k ≤ x
(0)
2 is defined as Ak = {(x1, x2, x3, x4) ∈

S : x4 = k}. It is easy to see that |Ak| = min{x(0)
1 , x

(0)
2 − k} + 1, because if

initially x
(0)
1 enzyme molecules are present, each reaction of type R1 moves the

system to the next state within the aggregate where the number of molecules of
S3 is increased by one, and back to the previous state via R2. If already most
of the substrate molecules are converted, only x

(0)
2 − x4 substrate molecules are

left for binding. The CTMC induced by Ak is derived by considering Ak as state
space and transitions according to R1 and R2.

Example: Assume that x
(0)
1 = 20 and x

(0)
2 = 300. The Markov chain that

corresponds to Ak (0 ≤ k ≤ 280) is illustrated in Figure 1. The nodes represent
states with entries x1, x2, x3, x4 and the edges are labeled with transition rates.
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20, 300 − k, 0, k 19, 299 − k, 1, k ... 0, 280 − k, 20, k

(300 − k) · 20c1

1 · c2

(299 − k) · 19c1

2 · c2

(281 − k) · c1

20 · c2

Fig. 1. Fast submodel Ak

After the partitioning step we compute the average number of enzyme-
substrate complex molecules under the assumption that Ak has reached equi-
librium3. For any fixed k let pi be the steady-state probability to be in state
(x1, x2, x3, x4) of Ak with x3 = i. The simple structure of Ak leads to the direct
solution

pi =
i∏

j=1

(x(0)
2 + 1 − k − j)(x(0)

1 + 1 − j)c1

jc2
· p0 and

mk∑
i=0

pi = 1 (2)

where 0 ≤ k ≤ x
(0)
2 and 0 < i ≤ min{x(0)

1 , x
(0)
2 − k} =: mk. More precisely, Ak is

a bounded birth-death-process and the derivation of the steady-state probabilities
that leads to (2) can be found in standard literature [3,10]. The expected number
of enzyme-substrate complex molecules in Ak is then given by

x̄
(k)
3 =

mk∑
i=0

i · pi. (3)

For each aggregate Ak, the value x̄
(k)
3 can be calculated directly from (2) and (3)

and determine the transition rates of the aggregated CTMC as described in the
next section.

3.3 Analysis of the Slow Aggregated Model

The aggregated CTMC consists of x
(0)
2 +1 macro states (i.e. the aggregates Ak).

As illustrated in Figure 2, each macro state Ak is connected with its successor
state Ak+1 via a transition of type R3. Hence, the aggregated Markov chain
describes a sequence of exponentially distributed phases. For fixed k the expected
sojourn time in Ak is 1/x̄

(k)
3 c3, the reciprocal of the exit rate. Therefore, the

expected number of S4 molecules at time instant t in the original model can be
approximated by E[X4(t)] ≈ x̄4(t) where x̄4(t) is such that

x̄4(t)−1∑
k=0

1/(x̄(k)
3 c3) < t ≤

x̄4(t)∑
k=0

1/(x̄(k)
3 c3)

3 We use the notation Ak also as shorthand term for the CTMC associated with
aggregate Ak.
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if t > 1/(x̄(0)
3 c3) and x̄4(t) = 0 otherwise. In a similar way, an approximation for

the variance of X4(t) is given by

VAR[X4(t)] ≈
x̄4(t)∑
k=0

1/(x̄(k)
3 c3)2.

The approximations for E[X4(t)] and VAR[X4(t)] are the better the greater t.
For small t, the assumption that the subsystems are already in equilibrium is not
correct as opposed to the case where t is much greater than the average sojourn
times in the micro states. As already explained, nearly all micro states are fast
which means that their average sojourn times are small, maximum of the same
order of magnitude as 1/ min{c1, c2}. Hence, the approximation yields accurate
results for t ≥ 1/ min{c1, c2}.
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Fig. 4. Relative error of the ssSSA algorithm

4 Numerical Results

We extensively applied our numerical aggregation algorithm (NAA) to a variety
of different parameter sets and system sizes. Here, we present some representative
data to demonstrate the accuracy and efficiency of the algorithm.

Accuracy is best demonstrated by comparison to exact results. Since these
can be only obtained for relatively small systems, for this purpose we choose
the initial parameters x

(0)
1 = 30 and x

(0)
2 = 300, which means that we start

with 300 substrate and 30 enzyme molecules, and the reaction is finished when
all substrate molecules are converted. We also compare our algorithm with the
slow-scale stochastic simulation algorithm (ssSSA) that has been recently applied
to system (1) in [7]. Exact results and those yielded by NAA and ssSSA, resp.,
for the mean and the standard deviation of the time until all substrate molecules
are converted are shown in Figure 3. Note that both the NAA and the ssSSA
deal with stiff systems, i.e. c2 � c3, and thus for fixed c1 = 0.0001 we vary c2, c3

in the appropriate range.
The exact results are computed by standard direct solution methods (cf.

[3,10]) that are able to deal with such small systems. The ssSSA results for
each data point are averaged over 500 simulation runs with different seeds for
the random number generator. As illustrated in Figure 3 our NAA yields very
accurate results even in parameter regions where c2 > c3 holds and the stiffness
condition c2 � c3 does not.

That it is really necessary to make several simulation runs of the ssSSA and
average them to an overall result can be seen by Figure 4 where the mean and the
variance obtained by the ssSSA together with the corresponding relative errors
are plotted against the number of simulation runs. It is illustrated that the
relative errors are not strictly monotone decreasing with an increasing number
of simulation runs, which is due to the random nature of stochastic simulation
and the thereby implied statistical uncertainty. In fact it is well known that to
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reduce the relative error of a stochastic simulation by a factor of �, approximately
�2 times as many simulation runs are required. For details see e.g. [20].

The efficiency of the NAA is demonstrated by means of run time compar-
isons. Here, we can include larger systems. Figure 5 shows the computer times
needed by the ssSSA and the NAA for different numbers of substrate and enzyme
molecules and the acceleration factor, i.e. the factor of computer time savings
provided by the NAA compared to the ssSSA. The colored scales in Figure 5
are in terms of powers of 10 meaning that −3, . . . , 1 and 1.5, . . . , 4.5 are the
corresponding logarithms of the computer times and the acceleration factor, re-
spectively. As can be seen, the NAA runs at least more than 10 times faster than
the ssSSA and even up to more than 104 times faster in parameter regions where
only a small number of enzyme molecules is present. Thus, the NAA provides
significant efficiency improvements compared to the ssSSA.

5 Conclusion

We have presented the numerical aggregation algorithm (NAA), a novel approx-
imate analysis method for very large stiff biochemically reacting systems that
are neither efficiently tractable by standard numerical analysis techniques nor
by direct stochastic simulation. The algorithm is based on the Markov chain in-
terpretation and state space partitioning (aggregation) of the system. Compared
to currently available accelerated approximate stochastic simulation algorithms
the results obtained by the NAA are at least as accurate and besides do not
possess any statistical uncertainty. In addition to eliminating statistical uncer-
tainty while preserving accuracy, striking efficiency improvements by computer
time savings up to orders of magnitudes are achieved by the NAA.

Accuracy and efficiency have been illustrated by numerical results for the
stiff enzyme-catalyzed substrate conversion but the NAA is extensible to more
general systems, which is part of ongoing work that will be dealt with in a
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forthcoming paper. Another topic of further research is to elaborate on the in-
herent statistical uncertainty of stochastic simulation that has not received much
attention in the system biology literature so far. In fact, formal determination
of the required number of simulation runs and the reliability of results in terms
of mathematical statistics will give important insights into stochastic simula-
tion and its drawbacks thereby further emphasizing the advantages of numerical
methods that do not resort to stochastic simulation.
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Abstract. The important research objective of identifying genes with similar be-
havior with respect to different conditions has recently been tackled with biclus-
tering techniques. In this paper we introduce a new approach to the biclustering
problem using the Possibilistic Clustering paradigm. The proposed Possibilistic
Biclustering algorithm finds one bicluster at a time, assigning a membership to the
bicluster for each gene and for each condition. The biclustering problem, in which
one would maximize the size of the bicluster and minimizing the residual, is faced
as the optimization of a proper functional. We applied the algorithm to the Yeast
database, obtaining fast convergence and good quality solutions. We discuss the
effects of parameter tuning and the sensitivity of the method to parameter values.
Comparisons with other methods from the literature are also presented.

1 Introduction

1.1 The Biclustering Problem

In the last few years the analysis of genomic data from DNA microarray has attracted
the attention of many researchers since the results can give a valuable information on
the biological relevance of genes and correlations between them [1].

An important research objective consists in identifying genes with similar behavior
with respect to different conditions. Recently this problem has been tackled with a class
of techniques called biclustering [2,3,4,5].

Let xij be the expression level of the i-th gene in the j-th condition. A bicluster is
defined as a subset of the m × n data matrix X . A bicluster [2,3,4,5] is a pair (g, c),
where g ⊂ {1, . . . , m} is a subset of genes and c ⊂ {1, . . . , n} is a subset of conditions.
We are interested in largest biclusters from DNA microarray data that do not exceed an
assigned homogeneity constraint [2] as they can supply relevant biological information.

The size (or volume) n of a bicluster is usually defined as the number of cells in
the gene expression matrix X belonging to it, that is the product of the cardinalities
ng = |g| and nc = |c|:

n = ng · nc (1)

C. Priami (Ed.): CMSB 2006, LNBI 4210, pp. 312–322, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Let

d2
ij =

(xij + xIJ − xiJ − xIj)
2

n
(2)

where the elements xIJ , xiJ and xIj are respectively the bicluster mean, the row mean
and the column mean of X for the selected genes and conditions:

xIJ =
1
n

∑
i∈g

∑
j∈c

xij (3)

xiJ =
1
nc

∑
j∈c

xij (4)

xIj =
1
ng

∑
i∈g

xij (5)

We can define now G as the mean square residual, a quantity that measures the bicluster
homogeneity [2]:

G =
∑
i∈g

∑
j∈c

d2
ij (6)

The residual quantifies the difference between the actual value of an element xij and
its expected value as predicted from the corresponding row mean, column mean, and
bicluster mean.

To the aim of finding large biclusters we must perform an optimization that maxi-
mizes the bicluster cardinality n and at the same time minimizes the residual G, that is
reported to be an NP-complete task [6]. The high complexity of this problem has mo-
tivated researchers to apply various approximation techniques to generate near optimal
solutions. In the present work we take the approach to combine the criteria in a single
objective function.

1.2 Overview of Previous Works

A survey on biclustering is given in [1] where a categorization of the different heuris-
tic approaches is shown, such as iterative row and column clustering, divide and con-
quer strategy, greedy search, exhaustive biclustering enumeration, distribution parame-
ter identification and others.

In the microarray analysis framework, the pioneering work by Cheng and Church [2]
employs a set of greedy algorithms to find one or more biclusters in gene expression
data, based on a mean squared residue as a measure of similarity. One bicluster is iden-
tified at a time iteratively. The masking of null values of the discovered biclusters are
replaced by large random numbers that helps to find new biclusters at each iteration.
Nodes are deleted and added and also the inclusion of inverted data is taken into con-
sideration when finding biclusters. The masking procedure [7] results in a phenomenon
of random interference, affecting the subsequent discovery of large-sized biclusters.
A two-phase probabilistic algorithm termed Flexible Overlapped Clusters (FLOC) has
been proposed by Yang et al. [7] to simultaneously discover a set of possibly overlap-
ping biclusters. Initial biclusters are chosen randomly from the original data matrix.
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Iteratively genes and/or conditions are added and/or deleted in order to achieve the best
potential residue reduction. Bipartite graphs are also employed in [8], with a bicluster
being defined as a subset of genes that jointly respond across a subset of conditions. The
objective is to identify the maximum-weighted subgraph. Here a gene is considered to
be responding under a condition if its expression level changes significantly, under that
condition over the connecting edge, with respect to its normal level. This involves an
exhaustive enumeration, with a restriction on the number of genes that can appear in
the bicluster.

Other methods have been successfully employed in the Deterministic Biclustering
with Frequent pattern mining algorithm (DBF) [9] to generate a set of good quality
biclusters. Here concepts from the Data Mining practice are exploited. The changing
tendency between two conditions is modeled as an item, with the genes corresponding
to transactions. A frequent item-set with the supporting genes forms a bicluster. In the
second phase, these are iteratively refined by adding more genes and/or conditions.

Genetic algorithms (GAs) have been employed by Mitra et al. [10] with local search
strategy for identifying overlapped biclusters in gene expression data. In [11], a sim-
ulated annealing based biclustering algorithm has been proposed to provide improved
performance over that of [2], escaping from local minima by means of a probabilistic
acceptance of temporary worsening in fitness scores.

1.3 Outline of the Paper

In this paper we introduce a new approach to the biclustering problem using the pos-
sibilistic clustering paradigm [12]. The proposed Possibilistic Biclustering algorithm
(PBC) finds one bicluster at a time, assigning a membership to the bicluster for each gene
and for each condition. The membership model is of the fuzzy possibilistic type [12].

The paper is organized as follows: in section 2 the possibilistic paradigm is illus-
trated; section 3 presents the possibilistic approach to biclustering, and section 4 reports
on experimental results. Section 5 is devoted to conclusions.

2 Possibilistic Clustering Paradigm

The central clustering paradigm is implemented in several algorithms including
C-Means [13], Self Organizing Map [14] Fuzzy C-Means [15], Deterministic Anneal-
ing [16], Alternating Cluster Estimation [17], and many others. Often, central clustering
algorithms impose a probabilistic constraint, according to which the sum of the mem-
bership values of a point in all the clusters must be equal to one. This competitive
constraint allows the unsupervised learning algorithms to find the barycenter of fuzzy
clusters, but the obtained evaluations of membership to clusters are not interpretable
as a degree of typicality, and moreover can give sensibility to outliers, as isolated out-
liers can hold high membership values to some clusters, thus distorting the position of
centroids.

The possibilistic approach to clustering proposed by Keller and Krishnapuram [12],
[18] assumes that the membership function of a data point in a fuzzy set (or cluster) is
absolute, i.e. it is an evaluation of a degree of typicality not depending on the member-
ship values of the same point in other clusters.
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Let X = {x1, . . . ,xr} be a set of unlabeled data points, Y = {y1, . . . ,ys} a set of
cluster centers (or prototypes) and U = [upq] the fuzzy membership matrix. In the Pos-
sibilistic C-Means (PCM) Algorithms the constraints on the elements of U are relaxed
to:

upq ∈ [0, 1] ∀p, q; (7)

0 <

r∑
q=1

upq < r ∀p; (8)

∨
p

upq > 0 ∀q. (9)

Roughly speaking, these requirements simply imply that cluster cannot be empty and
each pattern must be assigned to at least one cluster. This turns a standard fuzzy clus-
tering procedure into a mode seeking algorithm [12].

In [18], the objective function contains two terms, the first one is the objective func-
tion of the CM [13], while the second is a penalty (regularization) term considering the
entropy of clusters as well as their overall membership values:

Jm(U, Y ) =
s∑

p=1

r∑
q=1

upqEpq +
s∑

p=1

1
βp

r∑
q=1

(upq log upq − upq), (10)

where Epq = ‖xq − yp‖2 is the squared Euclidean distance, and the parameter βp

(that we can term scale) depends on the average size of the p-th cluster, and must be
assigned before the clustering procedure. Thanks to the regularizing term, points with
a high degree of typicality have high upq values, and points not very representative
have low upq values in all the clusters. Note that if we take βp → ∞ ∀p (i.e., the
second term of Jm(U, Y ) is omitted), we obtain a trivial solution of the minimization
of the remaining cost function (i.e., upq = 0 ∀p, q), as no probabilistic constraint is
assumed.

The pair (U, Y ) minimizes Jm, under the constraints 7-9 only if [18]:

upq = e−Epq/βp ∀p, q, (11)

and

yp =

∑r
q=1 xqupq∑r

q=1 upq
∀p. (12)

Those conditions for minimizing the cost function Jm(U, Y ). Eq.s 11 and 12 can be in-
terpreted as formulas for recalculating the membership functions and the cluster centers
(Picard iteration technique), as shown, e.g., in [19].

A good initialization of centroids must be performed before applying PCM (using,
e.g., Fuzzy C-Means [12], [18], or Capture Effect Neural Network [19]). The PCM
works as a refinement algorithm, allowing us to interpret the membership to clusters as
cluster typicality degree, moreover PCM shows a high outliers rejection capability as it
makes their membership very low.
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Note that the lack of probabilistic constraints makes the PCM approach equivalent
to a set of s independent estimation problems [20]:

(upq,y) = arg
∧

upq,y

[
r∑

q=1

upqEpq +
1
βp

r∑
q=1

(upq log upq − upq)

]
∀p, (13)

that can be solved independently one at a time through a Picard iteration of eq. 11 and
eq. 12.

3 The Possibilistic Approach to Biclustering

In this section we generalize the concept of biclustering in a fuzzy set theoretical ap-
proach. For each bicluster we assign two vectors of membership, one for the rows and
one other for the columns, denoting them respectively a and b. In a crisp set framework
row i and column j can either belong to the bicluster (ai = 1 and bj = 1) or not (ai = 0
or bj = 0). An element xij of X belongs to the bicluster if both ai = 1 and bj = 1, i.e.,
its membership uij to the bicluster is:

uij = and(ai, bj) (14)

The cardinality of the bicluster is then defined as:

n =
∑

i

∑
j

uij (15)

A fuzzy formulation of the problem can help to better model the bicluster and also to
improve the optimization process. In a fuzzy setting we allow membership uij , ai and
bj to belong in the interval [0, 1]. The membership uij of a point to the bicluster can be
obtained by an integration of row and column membership, for example by:

uij = aibj (product) (16)

or

uij =
ai + bj

2
(average) (17)

The fuzzy cardinality of the bicluster is defined as the sum of the memberships uij for
all i and j as in eq. 15. We can generalize eqs. 3 to 6 as follows:

d2
ij =

(xij + xIJ − xiJ − xIj)
2

n
(18)

where:

xIJ =

∑
i

∑
j uijxij∑

i

∑
j uij

(19)

xiJ =

∑
j uijxij∑

j uij
(20)
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xIj =
∑

i uijxij∑
i uij

(21)

G =
∑

i

∑
j

uijd
2
ij (22)

Then we can tackle the problem of maximizing the bicluster cardinality n and mini-
mizing the residual G using the fuzzy possibilistic paradigm. To this aim we make the
following assumptions:

– we treat one bicluster at a time;
– the fuzzy memberships ai and bj are interpreted as typicality degrees of gene i and

condition j with respect to the bicluster;
– we compute the membership uij using eq. 17.

All those requirements are fulfilled by minimizing the following functional JB with
respect to a and b:

JB =
∑

i

∑
j

(
ai + bj

2

)
d2

ij + λ
∑

i

(ai ln(ai) − ai) + µ
∑

j

(bj ln(bj) − bj) (23)

The parameters λ and µ control the size of the bicluster by penalizing to small values
of the memberships. Their value can be estimated by simple statistics over the training
set, and then hand-tuned to incorporate possible a-priori knowledge and to obtain the
desired results.

Setting the derivatives of JB with respect to the memberships ai and bj to zero:

∂J

∂ai
=
∑

j

d2
ij

2
+ λ ln(ai) = 0 (24)

∂J

∂bj
=
∑

i

d2
ij

2
+ µ ln(bj) = 0 (25)

we obtain these solutions:

ai = exp

(
−
∑

j d2
ij

2λ

)
(26)

bj = exp

(
−
∑

i d2
ij

2µ

)
(27)

As in the case of standard PCM those necessary conditions for the minimization of
JB together with the definition of d2

ij (eq. 18) can be used by an algorithm able to find a
numerical solution for the optimization problem (Picard iteration). The algorithm, that
we call Possibilistic Biclustering (PBC), is shown in table 1.

The parameter ε is a threshold controlling the convergence of the algorithm. The
memberships initialization can be made randomly or using some a priori information
about relevant genes and conditions. Moreover, the PBC algorithm can be used as a
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refinement step for other algorithms using as initialization the results already obtained
from them.

After convergence of the algorithm the memberships a and b can be defuzzified by
comparing with a threshold (e.g. 0.5). In this way the results obtained with PBC can be
compared with those of other techniques.

4 Results

4.1 Experimental Validation

We applied our algorithm to the Yeast database which is a genomic database composed
by 2884 genes and 17 conditions1 [21] [22] [23]. We removed from the database all
genes having missing expression levels for all the conditions, obtaining a set of 2879
genes.

We performed many runs varying the parameters λ and µ and considering a thresh-
olding for the memberships a and b of 0.5 for the defuzzification. In figure 1 the effect
of the choice of these two parameters on the size of the bicluster can be observed. In-
creasing them results in a larger bicluster.

In figure 1 each result corresponds to the average on 20 runs of the algorithm. Note
that, even if the memberships are initialized randomly, starting from the same set of
parameters, it is possible to achieve almost the same results. Thus PBC is slightly sen-
sitive to initialization of memberships while strongly sensitive to parameters λ and µ.
The parameter ε can be set considering the desired precision on the final memberships.
Here it has been set to 10−2.

In table 2 a set of obtained biclusters is shown with the achieved values of G. In
particular it is very interesting the ability of PBC to find biclusters of a desired size just
tuning the parameters λ and µ. A plot of a small and a large biclusters can be found in
fig. 2.

The PBC algorithm has been written in C and R language [24], and run on a Pentium
IV 1900 MHz personal computer with 512Mbytes of ram under a Linux operating sys-
tem. The running time for each set of parameters was 7.5s, showing that the complexity
of the algorithm depends only on the size of the data set.

1 http://arep.med.harvard.edu/biclustering/yeast.matrix

Table 1. Possibilistic Biclustering (PBC) algorithm

1. Initialize the memberships a and b
2. Compute d2

ij ∀i, j using eq. 18
3. Update ai ∀i using eq. 26
4. Update bj ∀j using eq. 27
5. if ‖a′ − a‖ < ε and ‖b′ − b‖ < ε then stop
6. else jump to step 2
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Fig. 1. Size of the biclusters vs. parameters λ and µ

Table 2. Comparison of the biclusters obtained by our algorithms on yeast data. The G value, the
number of genes ng , the number of conditions nc, the cardinality of the bicluster n are shown
with respect to the parameters λ and µ.

λ µ ng nc n G

0.25 115 448 10 4480 56.07
0.19 200 457 16 7312 67.80
0.30 100 654 8 5232 82.20
0.32 100 840 9 7560 111.63
0.26 150 806 15 12090 130.79
0.31 120 989 13 12857 146.89
0.34 120 1177 13 15301 181.57
0.37 110 1309 13 17017 207.20
0.39 110 1422 13 18486 230.28
0.42 100 1500 13 19500 245.50
0.45 95 1622 12 19464 260.25
0.45 95 1629 13 21177 272.43
0.46 95 1681 13 21853 285.00
0.47 95 1737 13 22581 297.40
0.48 95 1797 13 23361 310.72

4.2 Comparative Study

Table 3 lists a comparison of results on Yeast data, involving performance of other,
related biclustering algorithms with a δ = 300 (δ is the maximum allowable residual
for G). The deterministic DBF [9] discovers 100 biclusters, with half of these lying in
the size range 2000 to 3000, and a maximum size of 4000. FLOC [7] uses a probabilistic
approach to find biclusters of limited size, that is again dependent on the initial choice of
random seeds. FLOC is able to locate large biclusters. However DBF generates a lower
mean squared residue, which is indicative of increased similarity between genes in the
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Fig. 2. Plot of a small and a large bicluster

biclusters. Both these methods report an improvement over the pioneering algorithm by
Cheng et al. [2], considering mean squared residue as well as bicluster size.

Single-objective GA with local search has also been used [25], to generate consider-
ably overlapped biclusters .

Table 3. Comparative study on Yeast data

Method avg. G avg. n avg. ng avg. nc Largest n

DBF [9] 115 1627 188 11 4000
FLOC [7] 188 1826 195 12.8 2000

Cheng-Church [2] 204 1577 167 12 4485
Single-objective GA [10] 52.9 571 191 5.13 1408
Multi-objective GA [10] 235 10302 1095 9.29 14828
Possibilistic Biclustering 297 22571 1736 13 22607

The average results reported in table 3 concerning the Possibilistic Biclustering al-
gorithm have been obtained involving 20 runs over the same set of parameters λ and
µ. The biclusters obtained where very similar, obtaining G close to δ = 300 for all
of them and the achieved bicluster size is on average very high. From table 3, we see
that the Possibilistic Approach has better performances in finding large biclusters in
comparison with others methods.

5 Conclusions

In this paper we proposed the PBC algorithm, a new approach to biclustering based on
the possibilistic paradigm. The problem of minimizing the residual G and maximize
the size n, has been tackled by optimizing a functional which takes into account these
requirements. The proposed method allows to find one bicluster at a time of the desired
size.
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The results show the ability of the PBC algorithm to find biclusters with low resid-
uals. The quality of the large biclusters obtained is better in comparison with other
biclustering methods.

The method will be the subject of further study. In particular, several criteria for
automatically selecting the parameters λ and µ can be proposed, and different ways to
combine ai and bj into uij can be discussed. Moreover, a biological validation of the
obtained results is under study.
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