
Hierarchical Clustering with Proximity Metric

Derived from Approximate Reflectional
Symmetry

Yong Zhang� and Yun Wen Chen

Department of Computer Science and Engineering
School of Information Science and Engineering

Fudan University
Shanghai, 200433, P.R. China
zhang yong@fudan.edu.cn

Abstract. In order to address the problems arise from predefined sim-
ilarity measure, learning similarity metric from data automatically has
drawn a lot of interest. This paper tries to derive the proximity met-
ric using reflectional symmetry information of the given data set. We
first detect the hyperplane with highest degree of approximate reflec-
tional symmetry measure among all the candidate hyper-planes defined
by the principal axes and the centroid of the given data set. If the sym-
metry is prominent, then we utilize the symmetry information acquired
to derive a retorted proximity metric which will be used as the input to
the Complete-Link hierarchical clustering algorithm, otherwise we clus-
ter the data set as usual. Through some synthetic data sets, we show
empirically that the proposed algorithm can handle some difficult cases
that cannot be handled satisfactorily by previous methods. The potential
of our method is also illustrated on some real-world data sets.

1 Introduction

Cluster analysis, as one of the basic tools for exploring the underlying structure of
a given data set, has been applied in a wide variety of fields. Actually, clustering
(classification) plays an important and indispensable role in the long history of
human development as one of the most primitive activities[7].

As pointed by most researchers, cluster analysis intends to partition a group
of objects into a number of more or less homogeneous subgroups (clusters) such
that patterns within a cluster are more similar to each other than patterns
belonging to different clusters. Often, a clear distinction is made between super-
vised clustering and unsupervised clustering, the former involving only labeled
data while the latter involving only unlabeled data in the process of learning.

Existing methods for clustering fall into two categories as hierarchical clus-
tering and partitional clustering, based on the properties of clusters generated.
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Hierarchical clustering groups data objects with a sequence of partitions, ei-
ther from singleton clusters to a cluster including all individuals or vice versa,
while partitional clustering directly divides data objects into some pre-specified
number of clusters without the hierarchical structure.

Regardless of hierarchical or partitional clustering, they both rely on the
definition of similarity (or dissimilarity) measure, which establishes a rule for
assigning patterns to a particular cluster. Many algorithms adopt a predefined
similarity measure based on some particular assumptions. These algorithms may
fail to model the similarity correctly when the data distribution does not follow
assumed scheme. Instead of choosing the similarity metric manually, a promising
solution is to learn the metric from data automatically.

Usually, in order to extract appropriate metric from data, some additional
background knowledge or supervisory information should be made available for
unsupervised clustering. Supervisory information is often provided in the form of
partial labeled data or pairwise similarity and/or dissimilarity constraints[4][5].

Despite the progress in semi-supervised clustering for similarity metric learn-
ing, metric learning for strict unsupervised clustering remains a challenge. An
interesting trial is to extract similarity metric based on symmetry. In [6], for in-
stance, a novel nonmetric distance measure based on the idea of point symmetry
is proposed, where the point refers to the centroid of corresponding cluster.

Following a similar consideration, in this paper, we exploit the approximate
reflectional symmetry of the given data set to induce the proximity metric such
that the similarity between pairs of points is not strictly depend on their close-
ness in the feature space, but rather on their symmetrical affinity. Although
this is similar to [6] to some extent, several important differences should be no-
ticed. First, we don’t assume compulsory symmetry exist in data set, we perform
the symmetry detection as a preprocessing. If symmetry exist, we continue the
clustering with the guidance of symmetry information detected, otherwise we
process the data set as usual. Second, we consider reflectional symmetry, which
is more common in abstract or in nature, rather than the point symmetry. Third,
we mainly utilize the symmetry information acquired to deduce an appropriate
proximity metric.

The remainder of this paper is organized as follows: Section 2 introduces the
algorithm for reflectional symmetry measurement and detection. The proposed
clustering algorithm, which can be divided into two stages: proximity metric
construction and complete-link clustering, is described in section 3. Simulation
results on both synthetic and real-world data are presented in section 4, com-
paring with some previous methods. In section 5 we review the related research
briefly, and some concluding remarks are given in section 6.

2 Reflectional Symmetry Measurement and Detection

Symmetry is often described with symmetric transformation T , which is a trans-
formation that when applied to all elements of a system S result in a system S′

that is identical to the original system S.
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Before we incorporate symmetry information into clustering, we must solve
the following problem: How can we detect or measure the symmetry of the given
system efficiently? If we only consider symmetry as a binary feature (i.e., a
system is either symmetric or it is not symmetric), or exact symmetry, then the
problem will be easier. However, even perfectly symmetric objects may lose their
exact symmetry because of digitalization or quantification. Consider symmetry
as an approximate feature[3], we can describe inexact symmetry more exactly.
A system has approximate symmetry with respect to a transformation if it is
”almost” invariant under that transformation. Obviously, the challenge is to
interpret ”almost” in an appropriate manner. Now, the problem can be presented
as follows: How can we measure and/or detect approximate symmetry degree for
a given system?

As in[3], this problem can be translated into two subproblems: First, how to
measure the symmetry degree of a given data set with respect to any speci-
fied hyperplane, and second, how to find a hyperplane with highest degree of
symmetry measure.

The reflectional symmetry about a hyperplane for a set of n-dimensional data
points can be measured by reflecting each point through the hyperplane, and
measuring the distance from the reflected point to the closest point in the orig-
inal data set[3]. More accurately, the mean of these distances is a measure of
reflectional asymmetry. In order to make the measure invariant to scale, we di-
vide the measure by a scaling factor. We select the scaling factor as the maximum
distance of any point from the centroid so that the asymmetry measure will be
within the range zero to one for any hyperplane that contain the centroid. To cre-
ate a symmetry measure from the asymmetry measure, the asymmetry measure
can be subtracted from one. For perfectly symmetric data set, the symmetry
measure will be one. When the degree of symmetry decreases, the symmetry
measure also decreases.

Finding the most reflectional symmetric hyperplane for an n-dimensional
point set requires the symmetry to be measured for every possible hyperplane.
This is not practical because the number of possible hyper-planes is infinite.
Even though we can narrow the search space by discretization, this approach
is also computationally prohibitive especially for high dimension situations. A
more practical approach is to utilize the principal axes of the data set to define n
candidate hyper-planes, and choose the hyperplane associated with the highest
symmetry measure as the approximate hyperplane of reflectional symmetry. The
motivation for this approach is based on two theorems found in [2], which state
that:

• Any plane of symmetry of a body is perpendicular to a principal axis
• Any axis of symmetry of a body is a principal axis

Fig. 1 shows the principal axes that would be found using the centroid and
eigenvectors of the covariance matrix for 2D and 3D objects. A hyperplane can
be uniquely defined using a point and a normal vector, so each principal axis
can be used to define a hyperplane containing the centroid of the given data set.
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(a) (b)

Fig. 1. The centroids and principal axes for a 2D ellipse (a) and 3D box (b)

The detailed algorithm description is as follows:

Input:
the data set S = {−→xi}N

i=1, where −→xi is represented as n-dimensional column
vector
Output:

the hyperplane symhp with highest value of reflectional symmetry measure-
ment, and the corresponding symmetry measure value symv
Steps:

Step 1 determine all the n candidate hyper-planes
1.a compute the centroid −→m of S

−→m = 1
|S|

∑−→x ∈S
−→x

1.b estimate the covariance matrix C for S
C = 1

|S|
∑−→x ∈S(−→x −−→m)(−→x −−→m)T

1.c compute all the n principal axis vectors −→w1, −→w2, · · ·, −→wn based on C
1.d determine n candidate hyper-planes Π1, Π2, · · · , Πn as:

Πi : −→wi · (−→x −−→m) = 0, where −→x ∈ Rn, i = 1, 2, · · · , n
Step 2 measure the symmetry degree w.r.t.every candidate hyperplane

2.a compute dmax = max−→x ∈S ‖ −→x −−→m ‖
2.b for each candidate hyperplane Πi, i = 1, 2, · · · , n

2.b.1 for each −→x ∈ S, compute
d(−→x , Πi) = min−→y ∈S ‖ −→

x∗ −−→y ‖, where
−→
x∗ is the reflection of −→x

through Πi

2.b.2 compute d̄(Πi) = 1
|S|

∑−→x ∈S d(−→x , Πi)

2.b.3 compute symv(Πi) = 1 − d̄(Πi)
dmax

Step 3 find Πk(1 ≤ k ≤ n), that
symv(Πk) = max1≤i≤nsymv(Πi),
and return Πk as well as symv(Πk)

The order of complexity of this algorithm is O(nN2), where N represents
the number of points in the given data set and n is the dimension of data
points. However, if the data are sorted along an axis, then the typical order of
complexity can be reduced to O(nNlogN) by using a binary search to find the
nearest neighbor. If we want to find better symmetric hyperplane, we can also
choose the principal axis as the initial candidate and optimize it further using
some appropriate optimization methods[3].
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3 The Proposed Clustering Algorithm

3.1 Proximity Metric Construction

We have acquired approximate reflectional symmetry information about the
given data set using the algorithm presented in section 2. Then how can we
incorporate this information into cluster analysis so as to improve the clustering
results? The direct method is to induce approximate proximity metric based on
the symmetry information available so that the similarity between pairs of points
is not strictly depend on their closeness in the feature space, but rather on their
symmetrical affinity.

Nevertheless, just as mentioned earlier, we cannot expect reflectional sym-
metry present for every data set. In the proposed algorithm, we introduce a
pre-specified threshold ts. If the symmetry measure with respect to the acquired
hyperplane is bigger than ts, then we modify the original proximity metric based
on the symmetry information before clustering, otherwise we cluster the patterns
directly as usual without any proximity modification.

If the symmetry information is available, we construct Approximate Reflection
Pair Set (ARPS) with respect to the symmetric hyperplane. Concretely, let −→x ,
−→y be two patterns in S, we will add −→x and −→y into ARPS if −→y is the nearest
neighbor of

−→
x∗, where

−→
x∗ is the reflection of −→x through the specified hyperplane.

If no extra constraint considered, all the patterns in S will be added into ARPS
ultimately unless the cardinal of S is odd. This may be unreasonable, because the
nearest neighbor of

−→
x∗ may be very far apart from

−→
x∗ especially when most of the

patterns in S have been added into ARPS. In order to address this problem, we
only consider a pattern within the specified neighborhood of

−→
x∗, i.e., the distance

between
−→
x∗ and its nearest neighbor is smaller than a specified threshold tn, as

the approximate reflection of −→x , otherwise −→x is not considered.
Then we derive a new proximity metric on the basis of the ARPS by lowering

the distances between the approximate reflectional pairs, i.e., pairs in ARPS
which are mutual reflections, to zero. In this way, however, the points only satisfy
the symmetric affinity imposed by ARPS, instead of the reflectional symmetry of
the given data set as a whole and intrinsic feature. Hence, as in [5], we also require
the points to satisfy the implied symmetric relation of ARPS. We interpret the
proximity matrix as weights for a complete graph over the data points. Thus
we obtain a new metric by running an all-pairs-shortest-paths algorithm on the
modified proximity matrix. The concrete algorithm is presented as follows:

Input:
the data set S = {−→xi}N

i=1, where −→xi is represented as n-dimensional column
vector
the symmetric hyperplane symhp and corresponding symmetry measure symv
the threshold ts and tn

Output:
the proximity matrix P

Steps:
Step 1 construct PN×N , where Pij =‖ −→xi −−→xj ‖, 1 ≤ i, j ≤ N
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Step 2 if symv < ts, goto step 5
Step 3 ARPS construction

3.a initialize S
′
= S, ARPS = φ

3.b repeat until S
′
= φ

3.b.1 select −→x from S
′
, and find −→y0 , that

‖ −→x −−→y0 ‖= min−→y ∈S′−{−→x } ‖ −→
x∗ −−→y ‖,

where
−→
x∗ is the reflection of −→x through symhp

3.b.2 if ‖ −→x −−→y0 ‖< tn, add −→x and −→y0 into ARPS, and
let S

′
= S

′ − {−→x ,−→y0}, otherwise discard −→x from S
′
, i.e., let

S
′
= S

′ − {−→x }
Step 4 proximity adaptation

4.a set I = {i|−→xi ∈ ARPS}
4.b for k ∈ I, for i = 1 to N , for j = 1 to N

Pij = min{Pij , Pik + Pkj}
Step 5 return P matrix

3.2 Compete-Link Hierarchical Clustering

In this paper, we use complete-link hierarchical agglomerative clustering as the
clustering approach. As a matter of fact, we can use any clustering algorithm
provided that its input is a proximity matrix.

As a popular hierarchical clustering algorithm, complete-link agglomerative
clustering is very familiar to most researchers. For the convenience, the algorithm
is presented as follows[5]:

Input:
the proximity matrix PN×N

Output:
the linkage link

Steps:
Step 1 initialize Clusters = {ci for each pattern −→x ∈ S}, link = φ, distances

d(ci, cj) = Pij , 1 ≤ i, j ≤ N
Step 2 repeat until |Clusters| = 1

2.a choose closest (c1, c2) = argminci,cj∈Clustersd(ci, cj)
2.b add (c1, c2) to link
2.c merge c1 and c2 into cnew in Clusters
2.d for ci ∈ Clusters

d(ci, cnew) = max{d(ci, c1), d(ci, c2)}

3.3 Algorithm Analysis

The proposed algorithm requires O(nN2) computations and O(N2) space which
may be intractable for some large data sets. Notice that we allow a many-to-
many correspondence for data points when we measure the degree of symmetry
with respect to a specified hyperplane (section 2). However, for the construction
of ARPS, we impose a one-to-one correspondence, i.e., each reflected point is
only to find its nearest neighbor among the points that have not previously
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been matched. The reason is that we want to find more accurate reflectional
symmetric pairs to describe the symmetry information.

4 Simulation Results

4.1 Evaluation Criteria

Rand Index[7] can be used to reflect the agreement of two clustering results.
Let ns, nd be the number of point pairs that are assigned to the same/different
cluster(s) in both partitions respectively. The Rand Index is defined as the ratio
of (ns+nd) to the total number of point pairs, i.e., N(N − 1)/2, where N repre-
sents the number of points in the given data set. The Rand Index lies between
0 and 1, and when the two partitions are consistent completely, the Rand Index
will be 1.

In what follows, we use Rand Index to measure the agreement between the
resultant partition and the ground truth.

4.2 Simulation with Synthetic Data

The synthetic data is designed to highlight the improvements brought by the
proposed algorithm compared with other clustering algorithms like single-link,
complete-link and SBKM[6]. The parameter ts and tn are chosen for 0.8 and 0.5,
respectively, and this is kept the same irrespective of the data sets used. Fig.2
shows the target clustering and the corresponding clustering results generated
by the proposed algorithm and other three algorithms.

Table 1 shows the degree of reflectional symmetry for every synthetic data set
and the corresponding Rand Index values for the proposed algorithm as well as
other three algorithms: single-link, complete-link, and SBKM.

Table 1. The reflectional symmetry degree of the three synthetic data sets and the
Rand Index values for the proposed algorithm as well as other three algorithms: SL
(Single-Link), CL (Complete-Link), SBKM (Symmetry Based K-Means) after applying
to the three sets

Data Sets Data set1 Data set2 Data set3

Symmetry Degree 0.9328 0.9171 0.9458

CL 0.5896 0.4982 0.5482

SL 1.00 0.7207 0.5619

SBKM 0.4962 0.5246 0.5118

The Proposed Algorithm 1.00 1.00 0.9867

Compared with other three algorithms, the proposed algorithm improves the
clustering results substantially. Although single-link clustering can also detect
some of these patterns, we should notice that: with the guidance of symmetry
information, both single-link and complete-link algorithms are effective for these
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Fig. 2. Comparison of the proposed algorithm with Single-link, Complete-link, SBKM
on four synthetic data sets. Subfigures in the first column show the target clusterings.
Subfigures in the second, third, fourth and fifth column are the clustering results after
applying Complete-link, Single-link, SBKM and the proposed algorithm, respectively.

data sets. This means the algorithm choice may be of less importance when
symmetry information is available. Taken in this sense, we can indeed expect to
improve the clustering results using acquired symmetry information even for a
poorly-performing algorithm.

4.3 Simulation With Real-World Data

Simulations were conducted on three data sets from UCI repository: GLASS,
PIMA, and BUPA[1]. Table 2 summarizes the properties of the three data sets:
the number of instances, the number of dimensions (attributes), the number of
classes as well as the symmetry degree acquired with the algorithm presented in
Section 2.

Table 2 also shows the corresponding Rand Index values for the four algo-
rithms considered. During the simulations, for SBKM, the parameter θ was cho-
sen as 0.27, 0.3 and 0.18 for the three data sets respectively. And the results was
averaged over 10 runs. As for the proposed algorithm, we set the parameter ts
to 0.8 for all of the data sets to be studied, while the parameter tn was chosen
as 0.16, 0.6 and 0.43 for the three data sets respectively.

Although the performance improvement compared with other three algo-
rithms are not so substantial, the results are also encouraging since this indicates
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Table 2. The Rand Index values for the proposed algorithm as well as other three al-
gorithms: SL(Single-Link), CL(Complete-Link), SBKM(Symmetry Based K-Means) on
the real-world data sets. The corresponding symmetry degrees(SD) are also presented.
TPA is short for The Proposed Algorithm.

Dataset #Classes #Instances #Attributes #SD CL SL SBKM TPA

GLASS 7 214 9 0.9998 0.5822 0.2970 0.6697 0.6313

PIMA 2 768 8 0.9127 0.5466 0.5458 0.5185 0.5559

BUPA 2 345 6 0.9412 0.5056 0.5104 0.5026 0.5104

that our algorithm is not only confined to low-dimensional and two-category
problems.

From the simulation results over synthetic and real-world data, we can con-
firm the effectiveness of the proposed algorithm. Different from previous algo-
rithms, the proposed algorithm intends to learn the proximity metric using the
symmetry information of the given data set. As we know, if reflectional sym-
metry is present in a candidate data set, then the symmetry should be con-
sidered a more significant feature or constraint. Hence, we can expect better
results for the proposed algorithm when applied to data sets with approximate
symmetry.

5 Related Work

Leaning metric from data has been an active research field. One traditional
important family of algorithms that (implicitly) learn metrics is the unsupervised
ones that take an input data set, find and embedding of it in some space. This
includes algorithms such as Multidimensional Scaling (MDS) and Locally Linear
Embedding (LLE) etc.

In the context of clustering, a promising approach was proposed by Wagstaff
et al[8] for clustering with constraint (similarity) information. Pablo et al[4]
also exploited some pairs of points with known dissimilarity value to teach a
dissimilarity relation to a feed-forward neural network. Eric.P et al[9] learned
a distance metric based on given examples of similar pairs of points in feature
space.

The proposed algorithm is distinct from all the algorithms mentioned above.
It exploits the reflectional symmetry information detected from data to derive
an appropriate proximity metric over the input space. The motivation for the
proposed algorithm is in accordance with the consideration in [6]to some extent.

Symmetry detection and measurement is also a key problem for the pro-
posed algorithm. There are many literatures available about symmetry detec-
tion and/or measurement. In [2][3], the principal axes of the given data set were
used as the initial setting for finding the symmetric plane(hyperplane) further.
In this paper, however, we directly exploit the principal axes to determine the
symmetric hyper-planes.
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6 Conclusion

A method to derive the proximity metric based on the approximate reflectional
symmetry information acquired from data has been proposed for complete-link
hierarchical clustering. The results over several synthetic data sets demonstrate
that the proposed algorithm can improve the clustering accuracy compared with
other similar algorithms: single-link, complete-link and SBKM algorithm.

In this paper, we only consider to exploit the reflectional symmetry. In future,
we intend to guide cluster analysis with more kinds of symmetry such as rota-
tion, skew symmetry etc. Additionally, we are interested in extending the global
symmetry detection to local symmetry detection.
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