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Abstract. High-dimensional fuzzy clustering may converge to a local optimum 
that is significantly inferior to the global optimal partition. In this paper, a two-
stage fuzzy clustering method is proposed. In the first stage, clustering is ap-
plied on the compact data that is obtained by dimensionality reduction from the 
full-dimensional data. The optimal partition identified from the compact data is 
then used as the initial partition in the second stage clustering based on full-
dimensional data, thus effectively reduces the possibility of local optimum. It is 
found that the proposed two-stage clustering method can generally avoid local 
optimum without computation overhead.  The proposed method has been  
applied to identify optimal day groups for traffic profiling using operational 
traffic data. The identified day groups are found to be intuitively reasonable and 
meaningful.  

1   Introduction 

Data clustering is a process of finding natural groupings in a dataset so that data 
points belonging to same group are more similar than those belonging to different 
groups [1]. A number of clustering algorithms have been proposed in the past [2]. The 
most widely used clustering methods are c-means (or K-means) and fuzzy c-means 
algorithms ([3]-[5]).   

The c-means (CM) is a hard clustering method where each point of the dataset be-
longs to one of clusters exclusively. The fuzzy c-means (FCM) allows for partial 
membership of belonging to several clusters, i.e. a data point can belong to more than 
one cluster with different degrees of memberships. This allows for ambiguity in the 
data and provides a natural partition method compatible with human inaccurate rea-
soning. The optimal partition is achieved by minimising a specified objective func-
tion, usually the weighted sum of squared Euclidean distances between data points 
and cluster centres [4]-[5].  

Both CM and FCM find the optimal partition using iterative procedures. The data-
set is initially partitioned into c clusters randomly. The algorithm then iteratively 
updates the c centres that implicitly represent the partition. The c-means algorithms 
have been successfully used in many data clustering applications, mainly for its sim-
plicity and efficiency.  

The objective function of CM and FCM is non-convex so that the algorithm may 
converge to a local optimal solution that is significantly inferior to the desirable 
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global optimum [6]-[7]. To overcome this drawback, clustering methods using Ge-
netic Algorithms have been proposed to find global optimums [8]-[9]. However, GA-
based clustering methods are usually computational expensive [10] which may take 
thousands of iterations to find a global optimum. The approach may only be suitable 
for low-dimensional and small data sets.   

Traffic data refer to time-series data collected using traffic monitoring equipments. 
With the rapid development in the Intelligent Transportation Systems, large scale 
traffic monitoring has now become more and more a commonplace. A typical re-
gional traffic surveillance system usually has more than one thousand sensors collect-
ing data at 1-minute interval round the clock. Time-series databases are often ex-
tremely large. As traffic conditions evolve on a daily basis (1440 minutes), 1-min 
traffic data collected in one day is a time series with a length of 1440, which can usu-
ally be considered as a point in 1440-dimensional space. In this sense, traffic data-
bases are characterized by high-dimension and large size. 

There has been much interest in the Knowledge Discovery in Data (KDD) from 
traffic data through data clustering, i.e. identification of natural day groups for traffic 
profiling purpose so that accurate historical traffic profiles can be constructed from 
those days with similar traffic conditions. This can theoretically be realised using 
time-series traffic data from a prolonged time period (e.g. 1 year) based on standard 
data clustering methods. However, the result may suffer from local optimum if CM 
and FCM are used, and may not be computationally feasible for GA-based algorithms 
because of the dimension and size of the data.  

In this paper, a two-stage fuzzy clustering method is proposed. Dimensionality re-
duction is first applied on the original data so that a compact representation of the data 
is derived which contains only the main features of the original data. By clustering the 
low-dimensional compact data, optimal partition of the compact data is found. The 
identified partition is then used as the initial partition for the clustering of the com-
plete data, thus effectively reduces the possibility of local optimum. The proposed 
method has been applied to identify optimal day groups for traffic profiling using 
operational traffic data. It is found that the two-stage algorithm is able to find the 
global optimum without increasing computation demands.    

2   Fuzzy c-Means Clustering  

The methodology for partition a data set into c fuzzy clusters, the fuzzy c-means 
(FCM) clustering algorithm, has been developed by Dunn and generalised by Bezdek 
[4]-[5]. FCM is an iterative clustering method that produces an optimal c partition by 
minimising the weighted sum objective function JFCM 
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where X={x1, x2, …, xn} sR⊂ is the data set in the s-dimension of the input vari-
ables, n is the number of data points, c is the number of clusters with nc <≤2 , 

]1,0[)( ∈ki xA  is the degree of membership of xk in the ith cluster, q is the weighing 



 An Algorithm for High-Dimensional Traffic Data Clustering 61 

 

exponent, vi is the prototype of the centre of cluster i, d2(xj,vi) is the Euclidean dis-
tance between object xk and cluster centre vi.  

The optimal fuzzy set can be determined by an iterative process where J is succes-
sively minimised whilst V=[v1, v2, …, vc] and A=[A1, A2, …, Ac] are updated using (2) 
and (3) at mth iteration: 
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The detailed iterative procedure can be described as follows: 

1. initialise Ai
(m)(xj) for all j, m=0 

2. calculate vi based on A(m) using Eq. (2) 
3. Compute A(m+1)(xj) for all j, using Eq. (3) 
4. If A(m+1) and A(m) are close enough, e.g. ε<−+ )()1( mm AA , stop. Else go 

to step 2.  

The CM algorithm can be regarded as a special case of FCM only that the mem-
bership function A is a two-value function: 

1)( =ki xA ,  for ci ≤≤1 , ilik vxvx −≤− , kl ≠           

0=  , otherwise                         
(4) 

Some widely used implementations of FCM (e.g. Matlab) generate initial partition 
randomly. An outline of the FCM initialisation in Matlab is shown below:  

function InitFCM(c,n) 
generate c(number of cluster) by n(number of data 
points) matrix of random number;                      
calculate column sum;                                
scale random numbers in each column by the column 
sum so that the column sum of the scaled partition 
matrix is always equal to one;             

As FCM is sensitive to the initial partition, it may converge to a partition that is a 
local optimum under some initial partitions. This could be random in nature as the 
initial partition is generated randomly.  
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3   Dimensionality Reduction of High-Dimensional Data 

A time series of length s can be considered as a point in s-dimensional space sR . Di-
mensionality reduction is a technique of decomposition and representation of the data 
in a reduced parameter space SR , where S<s. Major dimensionality reduction meth-
ods include Discrete Fourier Transform (DFT) [11], Singular Value Decomposition 
(SVD) and Discrete Wavelet Transform (DWT). Dimensionality reduction is 
achieved by ignoring some details in the source data. For instance, DFT decomposes a 
signal (time series) of length s into s sine/cosine waves that can be recombined into 
the original signal. Most of the Fourier coefficients have very low amplitude and can 
be discarded without much loss of information. The signal can still be approximately 
reconstructed from those few high amplitude Fourier coefficients. It is therefore pos-
sible to approximately represent the original time series using a few coefficients in 
another parameter space (e.g. frequency domain for DFT). A simple but rather useful 
technique for data dimensionality reduction is aggregate approximation [12], in which 
the consecutive data values within a time interval are collapsed by a single value:  

),|( jjj esxfx =  (5) 

where sj and ej be indices of dimensions in x for interval j such that sj≤ej. f() is a map-
ping (e.g. the average and weighted average).  

Depending on the choice of f() and [sj, ej], s-dimensional data x= {x1 ,x2 ,…, xs }can 

be compacted into S-dimensional data },...,,{ 21 Sxxxx = , where S<s. In the sim-

plest form, an equal-width aggregation scheme by averaging source data in equal 
aggregation intervals can effectively reduce data dimensionality by s/S times: 
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The different between the original data and the compact data at any [sj, ej] will be: 

jii xxx −=Δ  (7) 

Typical traffic flow data and its compact representation under reduced space are 
shown in Figure 1. The original data is in 1-min interval (1440 dimensional). By ag-
gregating the data at one-hour interval, the compact data can be regarded as 24-
dimensional. It can be observed that the compact data basically retain the global shape 
of the original data, while the differences are mainly short-term variations. It can also 
be found that variations within each time interval are significantly different; an indi-
cation that the equi-width aggregate approximation may not be optimal. It is therefore 
possible to aggregate data in varying intervals that can capture the global pattern of 
the data better. This is equivalent to finding optimal S pairs of aggregation intervals 
{(s1, e1 ),(s2, e2 ),…, (sS, eS )}, to minimise the total: 
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where 11 +=+ jj es . This will result in an optimal aggregate approximation scheme in 

terms of approximation errors (by minimising SSE).  
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Fig. 1. Typical high-dimensional traffic data and its compact representation 
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Fig. 2. Compact data based on optimal aggregation approximation 

There exist many efficient algorithms to solve this kind of optimisation problem. In 
this research, the algorithm based on dynamic programming as proposed in [13] has 
been implemented to compute optimal aggregation intervals. The compact data at a 
reduced dimension of 12 is shown in Figure 2. It can be clearly observed that the 
compact data follow the global trends of the original data well. The SSE is even 
smaller than that based on equi-width aggregation approximation at dimension of 24.  

4   Two-Stage Clustering Method 

A two stage clustering method has been proposed in this research for clustering high-
dimensional traffic data. The clustering is initially performed using low-dimensional 
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data obtained through aggregation approximation. The identified optimal partition 
matrix is then used as the initial partition in the second stage clustering using full-
dimensional data. The clustering based on compact data may be less likely to con-
verge to local optimums. The second stage clustering based on full-dimensional data 
then looks for the further optimal partition by considering all details available in the 
data. An outline of the two-stage FCM is described as follows:  

program 2stgFCM(c,n) 
generate compact data by applying dimensionality reduc-
tion techniques;                                                
apply FCM on the compact data (using random initial 
partition matrix) to find the optimal partition matrix;                    
apply FCM on full-dimensional data using the optimal 
partition matrix identified as the initial partition;   

The optimal partition in data clustering is achieved by minimising the weighted 
sum of squared Euclidean distances between data points and cluster centres.  It is not 
difficult to observe that the main components of Euclidean distance between two 
points in original space are preserved in the reduce space:   

Let x and y are two points in s-dimensional space, S is the target dimensionality, 

Let xxx ii −=Δ , yyy ii −=Δ within each [sj, ej] , j=1,2, …, S, the squared 

Euclidian distance between x and y will be: 
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where jijj xsex ⋅+−= )1('  and jijj ysey ⋅+−= )1('  for j=1,2,…,S 

It can be found that the optimal partition found by clustering data at reduced di-
mensionality (based on '' yx − ) is equivalent to clustering the full-dimensional data 

by ignoring local variations of [ ]∑∑
= =

Δ−Δ
S

j

ej

sji
ii yx

1

2)( , thus is a high-level partition that is 

unlikely to converge to local optimum. In addition, clustering based on the compact 
data is usually computational inexpensive as the reduced dimensionality is often much 
lower compared with the original dimensionality. Repeated clustering based on the 
compact data is possible to reduce the chances of converging to a local optimum.   

5   Application 

The proposed two-stage clustering algorithm has been applied to find natural day 
groups for traffic profiling purposes. The traffic profile refers to the historically  
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typical traffic conditions that represent the past experience and also the future expec-
tations. The most common day groups for traffic profile are weekday, e.g. Monday - 
Sunday. This is intuitively reasonable as it can capture weekly patterns of traffic con-
ditions. However, many other partitions are also possible, e.g. a partition between 
public holidays and working days. A promising approach of identifying these natural 
day groups is through learning from the operational data using data clustering tech-
niques. Traffic flow data for each day can be regarded as a data point in s-dimensional 
space. By applying clustering on traffic data of more than one year (365 data points), 
the natural groups (clusters) can be identified from the optimal partition matrix using 
proper defuzzification process, e.g., the maximum membership procedure that assigns 
the data point (a day’s traffic data) k to the cluster (day group) i with the highest 
membership 

)}({max(arg kiik xAC = , i=1, 2, …, c. 

where ]1,0[)( ∈ki xA  is the degree of membership of xk in the ith cluster. 

5.1   The Data 

Operational traffic data collected using loop detectors are used to identify natural day 
groups for traffic profiling. The database consists of 1-min traffic flow data collected 
over a period of 640 days from 1 April 2004 to 31 December 2005. Data collected on 
26 days are incomplete and are not included. In total, traffic data collected on 614 
days (884160 readings) are used in the clustering.  

The compact data are generated using two aggregate approximation schemes: 

• Optimal aggregate approximation to a reduced dimension of 12 
• Equi-width aggregate approximation to a reduced dimension of 24 

Both direct and the proposed two-stage fuzzy clustering methods are used to clus-
ter data into 3-10 clusters. The two-stage clustering method has also been used in a 
repeated initial clustering way where clustering over the compact data is repeated 
more than one time to find the optimal initial partition matrix. This is intended to 
prevent converging to local optimums in the clustering process of the compact data 
and is computational affordable as clustering on low-dimensional data demands little 
CPU time. Thus, four clustering runs are performed for a given pre-defined number of 
clusters: 

• Direct clustering using full-dimensional data 
• Two-stage clustering using compact data generated from optimal aggre-

gate approximation method 
• Two-stage clustering using compact data generated from Equi-width ag-

gregate approximation method 
• Two stage clustering based on the best initial partition obtained by repeat-

edly clustering using compact data generated using both aggregate ap-
proximation methods 
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5.2   Results 

The identified day groups based on a cluster number of 5 are shown in Figure 3.  
Five natural day groups are dominated by Mon-Tue, Wed-Thu, Fri, Sat and Sun  
 

 

Fig. 3. Distribution of identified day groups over weekdays 
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Fig. 4. Objective function values using different clustering procedures  
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respectively. This is intuitively reasonable as traffic patterns on Saturday and Sunday 
are usually different from working days. Traffic patterns on Friday have been 
identified as different from both other working days and non-working days. Traffic 
conditions on Monday and Tuesday are more alike, so do that on Wednesday and 
Thursday. It is worth noticing that 10 public holiday Mondays have all been 
successfully identified as belonging to Sunday group. 

The corresponding objective function values evolving over each clustering  
iteration have been shown in Figure 4. This is based on 12 runs to find the optimal 
partition of 5-day groups. Convergences to an inferior local optimum have only been 
observed two times based on direct clustering using full-dimensional data.  

The average CPU times based on 12 runs are shown in Table 1. It can be found that 
the direct clustering method actually takes slightly longer time. This is because the 
clustering requires more iterations to converge than that of other three methods. The 
proposed two-stage algorithm can achieve better optimum while not increasing com-
putational demands. 

Table 1. CPU times under different clustering schemes (Pentium4 3GHz CPU) 

Schemes 1-hour Equi-width 
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AVG 0.58 11.82 0.36 11.73 12.53 0.89 12.14 

STD 0.06 0.55 0.07 1.34 1.70 0.17 0.72 

6   Conclusions 

A two-stage algorithm for clustering high-dimensional traffic data has been 
described in this paper. It has been compared with direct clustering method. The 
performance of the proposed algorithm has been shown to outperform the standard 
implementation. The algorithm is less likely to converge to local optimums while 
the computational demands have not been increased (or even slightly reduced). The 
application of the algorithm to cluster operational traffic data has produced 
promising results. The identified natural day groups are intuitively reasonable and 
meaningful. However, one thing remains un-guaranteed, that is, the identified 
clusters using the proposed method could still not be the global optimum. The 
absolute optimum may only be guaranteed by exhaustive enumeration, which is not 
yet practically feasible for large database due to extremely high computational 
demands.  
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