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Abstract. This paper studies a stabilization problem for a multirate
digital control of fuzzy systems based on the approximately discretized
model. In the multirate control scheme, a numerical integration scheme is
used to approximately predict the current state from the state measured
at the sampling points. It is shown that the multirate digital fuzzy con-
troller stabilizing an approximate discrete-time fuzzy model would also
stabilize the sampled-data fuzzy system in the sufficiently small control
update time. Furthermore, some sufficient conditions for the stabiliza-
tion of the approximate discrete-time fuzzy model are provided under
the delta-operator frame work, which are expressed as the linear matrix
inequalities (LMIs) and thereby easily tractable by the convex optimiza-
tion techniques. A numerical example is demonstrated to visualize the
feasibility of the developed methodology.

1 Introduction

Sampled-data systems are widespread more and more because most systems
encountered in engineering applications are continuous while controls are
implemented digitally using computers. Traditional analysis and design tools for
continuous-time or discrete-time systems are unable to be directly used in the
sampled-data systems. On way to address the sampled-data control is to develop
a discrete-time model for the controlled, continuous-time plant and then pursue a
digital controller based on the discretized model. This approach has been basically
applicable for linear time-invariant (LTI) systems [8, 9, 12, 13, 14, 15, 16, 10, 11].

The nonlinear sampled-data control problem is difficult because exact discrete-
time models of continuous-time processes are typically impossible to compute.
From that reasons, there have been some researches focusing on the digital con-
troller [1, 2, 3, 4, 5, 6] for Takagi–Sugeno (T-S) fuzzy systems based on their ap-
proximate discrete-time models. Although a great deal of effort has been made on
digital control such as [1,2,3,4,5,6], there still exists some matters that must be
worked out. The first issue is how to efficiently tackle the stability preservation.
It is a very important factor to preserve the stability in the digital controller,
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but the previous methods [1,2,3] do not only assure the stability of the sampled-
data fuzzy closed-loop systems but also their approximately discretized model.
At this point, the results [4, 5, 6] provided that sufficient conditions to stabilize
the approximate discrete-time model of the sampled-data fuzzy system. How-
ever, they only show that the closed-loop sampled-data system is stable under
the assumption that there exists no discretization error. Next, a considerable
issue is about the multirate digital control. All of the previous results [1,2,3,4,5]
are applicable only to a single-rate digital control in which the sampling and
the control update periods are assumed to be equal. In practical applications,
however, hardware restrictions can make two periods different essentially. There
have been some investigations focusing on the multirate digital control of LTI
systems from several disparate perspectives [12,13,14,15,16]. However, until now,
no tractable method for the multirate digital fuzzy control has been proposed,
with perhaps a few exceptions [6].

In this paper, we studies a multirate digital control of fuzzy systems based
on the approximate discrete-time model. It is proved that the multirate digital
fuzzy controller stabilizing an approximate discrete-time fuzzy model would also
stabilize the sampled-data fuzzy system in the sufficiently small control update
time. Some sufficient conditions for the stabilization of the approximate discrete-
time fuzzy model are provided under the delta-operator framework, which are
expressed as the linear matrix inequalities (LMIs) and thereby easily tractable by
the convex optimization techniques. Furthermore, we show that the discretized
error approach zero as increasing the input multiplicity. From this fact, we can
design the digital controller stabilize the sampled-data fuzzy system in the wide
range of the sampling period by increasing the input multiplicity.

The rest of this paper is organized as follows: Section 2 briefly reviews the
T–S fuzzy system. In Section 3, the stability analysis and control synthesis of the
multirate sampled-data fuzzy system is included. An example of a biodynamical
system of human immunodeficiency virus type 1 (HIV-1) [21, 22] is provided in
Section 4. Finally, Section 5 concludes this paper with some discussions.

2 Preliminaries

Consider the system described by the following T–S fuzzy model [17, 18]:

ẋ(t) =
r∑

i=1

θi(z(t))(Aix(t) + Biu(t)) (1)

where x(t) ∈ R
n and u(t) ∈ R

m, r is the number of model rules, z(t) =
[z1(t) · · · zp(t)]T is the premise variable vector that is a function of states x(t),
and θi(z(t)), i ∈ IR(= {1, 2, · · · , r}) is the normalized weight for each rule, that
is θi(z(t)) ≥ 0 and

∑r
i=1 θi(z(t)) = 1.

We consider a multirate digital fuzzy system where u(t) is held in constant
between the (uniformly spaced) control update points. Let T and τ be the sam-
pling and the control update periods, respectively, and assume τ = T/N . The
multirate digital fuzzy controller takes the following form:
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u(t) =
r∑

i=1

θi(z(kT + κτ))Kix(kT + κτ) (2)

for t ∈ [kT + κτ, kT + κτ + τ), k × κ ∈ Z�0 × Z[0,N−1], where x(kT + κτ),
κ ∈ Z[1,N−1] is predicted from x(kT ), and the subscript ‘d’ denotes the digital
control. By substituting (2) into (1), the closed-loop sampled-data fuzzy system
is obtained by

ẋ(t) =
r∑

i=1

r∑

j=1

θi(z(t))θj(z(kT + κτ))(Aix(t) + BiKjx(kT + κτ)) (3)

for t ∈ [kT + κτ, kT + κτ + τ), k × κ ∈ Z�0 × Z[0,N−1]. A mixture of the
continuous-time and discrete-time signals occurs in the above system (3). It
makes traditional analysis tools for a homogeneous signal system unable to be
directly used. It is found in [1, 2, 3, 4, 5, 6, 7] that the approximate discrete-time
model of (3) takes the following form:

x(kT + κτ + τ) ∼=
r∑

i=1

r∑

j=1

θi(z(kT + κτ))θj(z(kT + κτ))

× (Gi + HiKj)x(kT + κτ) (4)

where Gi = eAiτ and Hi = (Gi − I)A−1
i Bi.

3 Main Results

In this section, we show that the multirate digital fuzzy controller (2) stabilizing
the approximate discrete-time fuzzy model (4) would also stabilize the multirate
sampled-data fuzzy system (3) in the sufficiently small control update time.
Furthermore, some sufficient conditions for the stabilization of the approximate
discrete-time fuzzy model (4) are provided, which are expressed as the linear
matrix inequalities (LMIs).

For the practical engineering approach, we consider the multirate control
scheme that utilizes a numerical integration scheme to approximately predict the
current state x(kT +κτ) from the state x(kT ) measured at the sampling points,
the delayed measurements. For more detail, see [19]. At this point, redefining (4)
as w(kT +κτ +τ) � F(w(kT +κτ)), and rewriting (2) with x(kT +κτ) replaced
by w(kT + κτ) leads

u(t) =
r∑

i=1

θi(z(kT + κτ))Fiw(kT + κτ) (5)

for t ∈ [kT + κτ, kT + κτ + τ), k × κ ∈ Z�0 × Z[0,N−1], where w(kT + κτ) is
the approximate estimate of the state x(kT + κτ) based on the measurements
x(kT ), and w(kT + κτ) = x(kT + κτ) if κ = 0.
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Remark 1. Under the assumption that the premise variables vector z(kT + κτ)
can be computed from x(kT + κτ), we can predict w(kT + κτ) by the following
recursive application of (4) defined as

w(kT + τ) � F1(w(kT ))
w(kT + 2τ) = F(w(kT + τ))

= F(F1(w(kT )))

� F2(w(kT ))

w(kT + κτ) � Fκ(w(kT )).

Redefining (1) as ẋ(t) � f(x(t), u(t)), and substituting (5) into (1) leads

ẋ(t) = f(x(t), w(kT + κτ)) (6)

for t ∈ [kT + κτ, kT + κτ + τ), k × κ ∈ Z�0 × Z[0,N−1].
Now, we show that the sampled-data system (6) is also asymptotically stable

in the sufficiently small τ if the approximate discrete-time model (4) is asymp-
totically stable, which needs the following lemmas.

Lemma 1. Let f(x, u) be locally Lipschitz in their arguments. The exact discrete-
time model of (6) takes the following form:

x(kT + κτ + τ) = F(x(kT + κτ), w(kT + κτ))

+ τ2E(x(kT + κτ), w(kT + κτ)) (7)

Proof. The proof is omitted due to lack of space.

Lemma 2. Let F(x, u) be locally Lipschitz in their arguments. Suppose that
‖E(x(kT + κτ), u(kT + κτ))‖ � δ for some δ. Then,

‖x(kT + κτ) − w(kT + κτ)‖ � Lκ
2 − 1

L2 − 1
τ2δ (8)

for any k × κ ∈ Z�0 × Z[0,N−1].

Proof. The proof is omitted due to lack of space.

Remark 2. Note that the norm of the discretization error, ‖x(kT + κ0τ + τ) −
w(kT + κ0τ + τ)‖ will go to zero as τ approaches zero. Hence, the approximate
discrete-time model can preserve the property and structure of (6) by increas-
ing N .

Theorem 1. The zero equilibrium xeq = [0]n×1 of (6) is asymptotically stable
in the sufficiently small τ if the zero equilibrium weq = [0]n×1 of the approximate
discrete-time model (4) is asymptotically stable.

Proof. The proof is omitted due to lack of space.
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We now are in position to find some sufficient conditions such that the approxi-
mate discrete-time fuzzy model (4) is globally asymptotically stable in the sense
of Lyapunov.

Remark 3. It is easy to see that Gi → I and Hi →
[
0
]
n×m

as τ → 0, which
signifies the eigenvalues of Gi + HiKj gathers around one thereby weakens the
numerical robustness of the related convex optimization problem.

To effectively tackle this problem, stability analysis technique based on the delta-
operator is applied in this paper.

Remark 4. It has been shown that the delta-operator offers advantages over the
shift operator, in terms of numerical robustness, i.e., lower coefficient sensitivity
especially when the eigenvalues of a shift-operator-based discretized model are
clustered around one, which corresponds to a fast sampling of the continuous-
time representation of systems.

Theorem 2. The system (4) is stabilizable by the controller (2) in the suffi-
ciently small τ if there exist a matrix Q = QT � 0 and matrices Xij = XT

ij =
Xji = XT

ji, Mi such that
⎡

⎢⎢⎣

(
QGT

δi+MT
j HT

δi+QGT
δj+MT

i HT
δj+GδiQ+HδiMj+GδjQ+HδjMi

2

)
+ Xij (•)T

(
τ

1
2 GδiQ+τ

1
2 HδiMj+τ

1
2 GδjQ+τ

1
2 HδjMi

2

)
−Q

⎤

⎥⎥⎦ ≺ 0

(9)
[
Xij

]
r×r

� 0, 1 � i � j � r (10)

where (•)T denotes the transposed element in symmetric positions.

Proof. The proof is omitted due to lack of space.

Remark 5. The methodology in Theorems 2 for the state-feedback control can
readily be modified to establish results for more general controls, which involve
output feedback control, set-point regulation, robust control [23], and so on.

Corollary 1. If τ → 0, then the following conditions are equivalent:

(i) There exist Q = QT � 0 and matrices Xij = XT
ij = Xji = XT

ji, Mi such
that LMIs (9) and (10)of Theorem 2.

(ii) There exist Q = QT � 0 and matrices Xij = XT
ij = Xji = XT

ji, Mi such
that

QAT
δi + MT

j BT
δi + QAT

δj + MT
i BT

δj

+ AiQ + BδiMj + AδjQ + BδjMi + 2Xij ≺ 0 (11)
[
Xij

]
r×r

� 0, 1 � i � j � r (12)

Proof. The proof is omitted due to lack of space.
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Remark 6. Note that LMIs (11) and (12) is readily derived from the a continuous-
time Lyapunov stability theorem by choosing V = x(t)T Px(t), and denoting
Q = P−1 and Ki = Mi. Hence, we conclude that the condition (i) of Corollary
1 converges a stabilizability condition [20] for the continuous-time fuzzy system
as τ → 0.

4 Computer Simulations

We present in this section a numerical application in order to show the effective-
ness of our approach. We wish to deign the multirate digital fuzzy controller (2)
with N = 5 for the complex nonlinear systems. The comparisons of the recent
method presented in [4] are provided.
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Fig. 1. Uncontrolled trajectory of the HIV-1 system

A biodynamic model of HIV-1 [21, 22] is given by
⎡

⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤

⎦ =

⎡

⎣
−a1 − a2x3(t) 0 −a2b1

0 −a3 + a4x3(t) a4b2
a5x3(t) −a6x3(t) a5b1 − a6b2

⎤

⎦

⎡

⎣
x1(t)
x2(t)
x3(t)

⎤

⎦ +

⎡

⎣
0
0
1

⎤

⎦ u(t)

(13)

where a1 = 0.25, a2 = 50, a3 = 0.25, a4 = 10.0, a5 = 0.01, a6 = 0.006, b1 = 1000
cells/mm3, and b2 = 550 cells/mm3. As discussed in [21, 22], the HIV-1 system
has two equilibrium points, where the desired equilibrium point is the origin.
Fig. 1 shows the uncontrolled trajectory of this system. The initial conditions are
x1 = x2 = 0 cells/mm3 and x3 = 10−4 (corresponding ponding to k copies/ml).

To facilitate control design, we proceed to construct two-rule fuzzy model of
HIV-1 system (13). To this end, the nonlinear terms x3x1 and x3x2 should be
expressed as
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x3(t)x1(t) = θ1(x3(t)) · x3minx1(t) + θ2(x3(t)) · x3maxx1(t) (14)
x3(t)x2(t) = θ1(x3(t)) · x3minx2(t) + θ2(x3(t)) · x3maxx2(t) (15)

where θ1(x3(t))+ θ2(x3(t)) = 1 and x ∈ [x3min, x3max]. Here, we can reasonably
determine [x3min, x3max] as [−0.006, 0.006]. Solving (14) or (15) for θ1 and θ2,
and then using (14) and (15) to rewrite (13) as two-rule fuzzy model, we end up
with

ẋ(t) =
2∑

i=1

θi(x3(t))(Aix(t) + Biu(t)) (16)

where θ1(x3(t)) = −x3(t)+x3max

x3max−x3min
and θ2(x3(t)) = x3(t)−x3min

x3max−x3min
, and the local

system and input matrices are
[

A1 B1

A2 B2

]

=

⎡

⎢⎢⎢⎢⎢⎢⎣

−a1 − a2x3min 0 −a2b1
0 −a3 + a4x3min a4b2

a5x3min −a6x3min a5b1 − a6b2

0
0
1

−a1 − a2x3max 0 −a2b1
0 −a3 + a4x3max a4b2

a5x3max −a6x3max a5b1 − a6b2

0
0
1

⎤

⎥⎥⎥⎥⎥⎥⎦

This fuzzy model exactly represents the biodynamics of the nonlinear HIV-1
system under x3min ≤ x3 ≤ x3max. Note that the fuzzy model does not has a
common B, i.e., B1 = B2. In general, the fuzzy controller design of the common
cases is simple. To show the effect of our approach, we consider a more difficult
case, i.e., we change B2 as follows:

B2 =

⎡

⎣
0
0
5

⎤

⎦

We first seek to examine the convergence property of Theorem 2 for extremely
small enough T = 10−20 years. Using Theorem 2, we can find the multirate
digital fuzzy gains

[
K1

K2

]
=

[
16 −20 −28878
6 −8 −13004

]
(17)

However, the LMIs given in [4] are infeasible due to the problem in Remark 3.
Next, we choose T = 0.14 years as the relatively large sampling time. Solving

to Theorem 2 leads the following multirate digital gains:
[

K1

K2

]
=

[
0.0052 −0.0070 −25.6664
0.0003 −0.0010 −8.4352

]
(18)
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However, the stability conditions in [4] are not strictly feasible, and then their
digital gains are given by

[
K1

K2

]
=

[
0.0008 -0.0009 -9.9082
-0.0002 0.0001 -1.2297

]
(19)
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Fig. 2. Comparison of state responses of the controlled HIV-1 system (control input is
activated at time t = 0.2 years): proposed (solid), [4] (dashed). The sampling period is
T = 0.14 years.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (years)

x 1(t
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

Time (years)

x 2(t
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4
x 10

−4

x 3(t
)

Time (years)

Fig. 3. State responses of the controlled HIV-1 system (control input is activated at
time t = 0.2 years): proposed (solid) The sampling period is T = 0.2 years

Figs. 2 shows the time responses of two digitally controlled systems. As shown
in the figures, the multirate digital control by the proposed method drives the
trajectories to the equilibrium at the origin, while the other method fails to
stabilize the system.

Another relatively longer sampling period T = 0.2 years is chosen. Applying
Theorem 2 leads the following multirate digital gains are:

[
K1

K2

]
=

[
0.0028 −0.0037 −18.8768
0.0001 −0.0005 −5.6706

]
(20)

However, we cannot compute the feasible solution compute from the conditions
in [4]. As shown in Fig. 3, the proposed controller well guarantee the stability
preservation.

We emphasize that the proposed method guarantees the stability of the mul-
tirate sampled-data system in much wider range of sampling period than the
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previous method in which may fail to stabilize the system especially for rel-
atively longer sampling period. This is because in the proposed method, the
intersample behavior between sampling points can be considered, whereas the
other approach does not.

5 Closing Remarks

In this paper, we have examined that a multirate digital controller that sta-
bilize approximate discrete-time fuzzy model would also stabilize the resulting
sampled-data fuzzy system in the sufficiently small control update time. To the
authors’ best knowledge, the proposed method is noble in several directions by
considering: 1) the multirate digital control; 2) the stability of the multirate
sample-data fuzzy system; 3) the stability analysis based on the delta opera-
tor. The simulation results on the HIV-1 convincingly demonstrated that it is
possible to obtain the excellence performance through the proposed method.
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