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Abstract. The performance of individual classifiers applied to complex
data sets has for predictive toxicology a significant importance. An in-
vestigation was conducted to improve classification performance of com-
binations of classifiers. For this purpose some representative classifica-
tion methods for individual classifier development have been used to
assure a good range for model diversity. The paper proposes a new ef-
fective multi-classifier system based on Dempster’s rule of combination
of individual classifiers. The performance of the new method has been
evaluated on seven toxicity data sets. The classification accuracy of the
proposed combination models achieved, according to our initial experi-
ments, 2.97% better average than that of the best individual classifier
among five classification methods (Instance-based Learning algorithm,
Decision Tree, Repeated Incremental Pruning to Produce Error Reduc-
tion, Multi-Layer Perceptrons and Support Vector Machine) studied.

1 Introduction

Multiple Classifier System (MCS) has been widely applied to various fields of
pattern recognition, including character recognition [1], speech recognition [2],
text categorization [3],[4] and toxicity prediction [5], [6]. The idea of combination
of classifiers is motivated by the observation of their complementary characteris-
tics. It is desirable to take advantage of the strengths of individual classifiers and
to avoid their weaknesses, resulting in the improvement of classification accuracy
[4]. The work presented here is inspired by an idea from common sense reasoning
and also from artificial intelligence research, i.e. a decision made on the basis
of the multiple pieces of evidence should be more effective than one based on
single piece of evidence. A classification problem is seen as a process of inferences
about class concepts from concrete examples [7]. The inference process can be
modeled as forward reasoning under uncertainty, as in production rule systems,
which allows prior knowledge (prior performance assessments of classifiers) to be
incorporated and multiple pieces of evidence from the classifiers to be combined
to achieve precise classification decisions [4].

In the context of combining multiple classifiers for applications of toxicity pre-
diction of chemical compounds, a number of researchers [5],[6] have shown that
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combining different classifiers can improve classification accuracy. Guo et al. [5]
studied four similarity-based classifier combination methods which include Ma-
jority Voting-based combination (MV), Maximal Similarity-based Combination
(MSC), Average Similarity-based Combination (ASC) and Weighted Similarity-
based Combination (WSC). MV is the simplest approach, where the classification
decision on each class is made on the basis of majority classifiers being in favor
of that class for a given input [9]. MSC is based on the local highest similarity
among a set of individual classifiers for combination. The classifier with highest
local similarity will be dynamically selected for classifying the instances. ASC
is a global combination method, where the similarities to each class are deter-
mined by individual classifiers and averaged together. The averaged similarities
are then used for class label assignment to each test instance [5]. WSC is an
intermediate approach between MSC and ASC, where instead of selecting the
best classifier with the highest local similarity or considering all the classifiers’
similarities to each class into account, WSC uses a control parameter α, where
0 < α < 1, to control the balance between the local optimization and global
optimization [5].

In this paper, we propose to use Dempster’s rule of combination to combine
multiple classifiers for toxicity prediction of chemical compounds. Dempster’s
rule of combination provides a theoretical underpinning for achieving more ac-
curate prediction through aggregating the majority voting principle and the
belief degrees of decisions. The work presented in this paper mainly focuses on
combining the outputs from different classifiers at the measurement level and
incorporating the prior performance (prior knowledge) of each classifier into the
definition of the mass functions, which is different from the work done by Xu
et al. [1] and Bi et al. [4]. Xu et al aimed at combining the outputs from clas-
sifiers at the label level, and Bi et al. incorporate the prior performance of each
classifier into the classification decision process.

2 Background Knowledge

Consider a number of exhaustive and mutually exclusive propositions hi, i =
1, . . . ,m, which form a universal set Θ, called the frame of discernment. For any
subset Hi = {hi1, . . . , hik} ⊆ Θ, hij (0 < j ≤ k) represents a proposition, called
a focal element, and when Hi is one element subset, i.e. Hi = {hi}, it is called
a singleton. All the subsets of Θ constitute a powerset 2Θ, i.e. for any subset
H ⊆ Θ, H ∈ 2Θ. The D-S theory uses a numeric value in a range [0, 1] to
represent the strength of some evidence supporting a proposition H ⊆ Θ based
on a given evidence, denoted by m(H), called the mass function, and uses a sum
of strength for all subsets of H to indicate a belief degree to the proposition H
on the basis of the same evidence, denoted by bel(H), often called belief function.
The formal definitions for these functions are given below [10]:

Definition 1. Let Θ be a frame of discernment, given a subset H ⊆ Θ, a mass
function is defined as a mapping m : 2Θ → [0, 1], and satisfies the following
conditions:
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m(φ) = 0∑
H⊆Θ m(H) = 1

Definition 2. Let Θ be a frame of discernment and m be a mass function on
Θ, the belief of a subset H ⊆ Θ is defined as

bel(H) =
∑

B⊆H

m(B) (1)

and satisfies the following conditions:
bel(φ) = 0
bel(Θ) = 1

When H is a singleton, m(H) = bel(H). It can be seen that a belief function
gathers all of the support that a subset H gets from all of the mass functions of
its subsets.

Definition 3. Let m1 and m2 be two mass functions on the frame of discern-
ment Θ, and for any subset H ⊆ Θ, the orthogonal sum of two mass functions
on H is defined as:

m(H) = m1 ⊕m2(H) =

∑
X,Y ⊆Θ,X∩Y =H m1(X)×m2(Y )

1−∑
X,Y ⊆Θ,X∩Y =φm1(X)×m2(Y )

(2)

This formula is also called Dempster’s rule of combination. It allows two mass
functions to be combined into a third mass function, pooling pieces of evidence
to support propositions of interest.

3 Proposed Combination Technique

3.1 Definition of Mass Function

Let ϕ be a classifier, C = {c1, c2, . . . , c|C|} be a list of class labels, and d be
any test instance, an assignment of class labels to d is denoted by ϕ(d) =
{s1, s2, . . . , s|C|}, where si ≥ 0, i = 1, 2, ..., |C| represents the relevance of the
instance d to the class label ci. The greater the score assigned to a class, the
greater the possibility of the instance being under this class. For convenience of
discussion, we define a function �, �(ci) = si +δ for all ci ∈ C, where 1 > δ > 0
represents the prior knowledge of classifier ϕ. It is clear that �(ci) > 0, i =
1, 2, ..., |C|. Alternatively, ϕ(d) is written as ϕ(d) = {�(c1), �(c2), . . . , �(c|C|)}
which is treated as a general form of the output information at the measurement
level.

A formal definition of mass function in this context is described as follows:

Definition 4. Let C be a frame of discernment, where each class label ci ∈ C
is a proposition that the instance d is of class label ci, and ϕ(d) be a piece of
evidence that indicates a possibility that the instance comes from each class label
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ci ∈ C, then a mass function is defined as a mapping, m: 2C → [0, 1], i.e.
mapping a basic probability assignment (bpa) to ci ∈ C for 1 ≤ i ≤ |C| as
follows:

m({ci}) =
�(ci)

∑|C|
j=0�(cj)

where 1 ≤ i ≤ |C| (3)

This expresses the degrees of belief in propositions of each class label to which
a given instance should belong. The mass function defined in this way satisfies
the conditions given in Definition 1.

With formula (3), the expression of the output information ϕ(d) can be rewrit-
ten as ϕ(d) = {m({c1}),m({c2}), . . . ,m({c|C|})}. Therefore two or more outputs
derived from different classifiers as pieces of evidence can be combined by using
formula (2) to obtain a combined output as a new piece of evidence, forming a
combined classifier for classification tasks.

3.2 Combination Method

Given a group of learning algorithms and a training data set, each of learning
algorithms can build one or more classifiers (models) based on different subsets,
e.g., feature subsets, of training data set. Moreover, different classification algo-
rithms can build different classifiers on the same subsets. The combination task
of multiple classifiers, in this context, is to summarize the classification results
by the classifiers derived from diverse learning algorithms on different feature
subsets.

Let ψ be a group of L learning algorithms, ϕk
1 , ϕ

k
2 , . . . , ϕ

k
n be a group of clas-

sifiers associated with learning algorithm Lk, where 1 ≤ k ≤ L and n is a
parameter that is related to the number of feature subsets, then each of the
classifiers, ϕk

i assigns an input instance d to Y k
i , i.e. ϕk

i (d) = Y k
i and 1 ≤ i ≤ n.

The results output by multiclassifiers are represented as a matrix:
⎡

⎢
⎢
⎣

Y 1
1 Y 1

2 . . . Y 1
n

Y 2
1 Y 2

2 . . . Y 2
n

. . . . . . . . . . . .
Y L

1 Y L
2 . . . Y L

n

⎤

⎥
⎥
⎦ (4)

where Y k
i is a vector denoted as (mk

i (c1),mk
i (c2), ...,mk

i (c|C|). Each row in the
matrix corresponds to one of learning algorithms, and each column corresponds
to one of the feature subsets, i.e. Y k

i is the result yielded by the classifier ϕk
1

- a classifier built by Lk learning algorithm on i feature subset. If the number
of classification algorithms L = 5, and the number of feature subsets is 5, 5
classifiers will be generated by each of the classification algorithms, denoted by
{ϕk

1 , ϕ
k
2 , . . . , ϕ

k
5}5k=1. Thus the combination task based on this matrix is made

both on the columns and rows, i.e. for each column, all the rows will be combined
using formula (5), and the combined results in each column will be combined
again using formula (6), thereby producing a new mass distribution over all the
class labels that represents the consensus of the assignments of the multiple
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classifiers to test class labels. The final classification decision will be made by
using the decision rule of formula (7).

m
′
i(ci) = m1

i ⊕m2
i ⊕ . . .⊕mL

i = [. . . [[m1
i ⊕m2

i ]⊕m3
i ]⊕ . . .⊕ mL

i ](ci) (5)

bel(ci) = m
′
1 ⊕m

′
2 ⊕ . . .⊕m

′
K = [. . . [[m

′
1 ⊕m

′
2]⊕m

′
3]⊕ . . .⊕ m

′
K ](ci) (6)

With all belief values of class labels to which class labels could belong obtained
by using Equation (5) and (6), we can define a decision rule for determining a
final class label in general cases below:

ϕDRC(d) = ci if bel(ci) = argmaxci∈C {bel(ci)|i = 1, 2, . . . , |C|} (7)

In Equation (7) the abbreviation DRC stands for Dempster’s rule of
combination.

4 Experiments and Evaluation

4.1 Data Sets

To evaluate the effectiveness of our proposed classifier combination method,
seven toxicity data sets: Trout, Bee, Daphnia, Dietary Quail, Oral Quail, APC
and Phenols from the real-world applications have been collected for evaluation.
Among these data sets five of them, i.e. Trout, Bee, Daphnia, Dietary Quail
and Oral Quail come from DEMETRA project [11], each of them contains all
the descriptors from both 2D MDL ABLegend and 2D Pallas subsets; APC data
set is proposed by CSL [12]; Phenols data set comes from TETRATOX database
[13]. Some general characteristics of the data sets are given in Table 1.

Table 1. General information about the data sets

Data set NF NFFS NN NO NB NC NI CD

Trout 248 22 0 22 0 3 282 129:89:64
Bee 252 11 0 11 0 5 105 13:23:13:42:14
Daphnia 182 20 0 20 0 4 264 122:65:52:25
Dietary Quail 254 12 0 12 0 5 123 8:37:34:34:10
Oral Quail 253 8 0 8 0 4 116 4:28:24:60
APC 248 6 0 6 0 4 60 17:16:16:11
Phenols 173 11 0 11 0 3 250 61:152:37

Titles of columns in Table 1 have the following meanings: NF - Number of
Features; NFFS - Number of Features after Feature Selection; NN - Number
of Nominal features; NO - Number of Ordinal features; NB - Number of Bi-
nary features; NC - Number of Classes; NI - Number of Instances; CD - Class
Distribution.
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4.2 Classifiers

Five classification methods involved in generating classifiers for combination are
chosen in terms of their representability and diversity which include the Instance-
based Learning algorithm (IBL), Decision Tree learning algorithm (DT), Re-
peated Incremental Pruning to Produce Error Reduction (RIPPER), Multi-
Layer Perceptrons (MLPs) and Support Vector Machine (SVM). The IBL, DT,
RIPPER, MLPs, and SVM used in our experiments are from the Weka software
package [14]. A brief introduction of the five classifiers applied in this study is
given below:

Instance Based Learners: IBLs classify an instance by comparing it to a set
of pre-classified instances and choose a dominant class of similar instances as the
classification result.
Decision Tree: DT is a widely used classification method in machine learning
and data mining. The decision tree is grown by recursively splitting the training
set based on a locally optimal criterion until all or most of the records belonging
to each of the leaf nodes bear the same class label.
Repeated Incremental Pruning to Produce Error Reduction: RIPPER
is a propositional rule learning algorithm that performs efficiently on large noisy
data sets. It induces classification (if-then) rules from a set of pre-labeled in-
stances and looks at the instances to find a set of rules that predict the class of
earlier instances. It also allows users to specify constraints on the learned if-then
rules to add prior knowledge about the concepts, in order to get more accurate
hypothesis.
Multi-Layer Perceptrons: MLPs are feedforward neural networks with one or
two hidden layers, trained with the standard backpropagation algorithm. They
can approximate virtually any input-output map and have been shown to ap-
proximate the performance of optimal statistical classifiers in difficult problems.
Support Vector Machine: SVM is based on the Structural Risk Minimiza-
tion principle from statistical learning theory. Given a training set in a vector
space, SVM finds the best decision hyperplane that separates the instances in
two classes. The quality of a decision hyperplane is determined by the distance
(referred as margin) between two hyperplanes that are parallel to the decision
hyperplane and touch the closest instances from each class.

4.3 Combination Schemes

(1) Majority Voting-based Combination (MVC)
Given x a new instance to be classified with true class label tx and k prede-
fined classifiers A1, A2, · · · , Ak respectively, where classifier Ai approximates a
discrete-valued function fAi : �n −→ C, then the final class label of x is:

f(x)← argmaxc∈C

k∑

i=1

δ(c, fAi(x)) (8)

where δ(a, b) = 1 if a=b, and δ(a, b) = 0 otherwise.
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Based on the hypothesis above, the classification result of x classified by Aj

is a vector of probabilities of x to each class P =< Pj1, Pj2, · · · , Pjm >, where
j = 1, 2, · · · , k and m is the number of predefined classes. The final class label
of x can be obtained either as:

(2)Maximal Probability-based Combination (MPC)

f1(x)← argmaxcv∈C{maxu{Puv|u = 1, 2, · · · , k}|v = 1, 2, · · · ,m} (9)

(3) Average Probability-based Combination (APC)

f2(x)← argmaxcv∈C{
k∑

u=1

(Puv/k)|v = 1, 2, · · · ,m} (10)

4.4 Statistical Tool for Comparison

There are many approximate statistical tests for determining whether one learn-
ing method outperforms another on a particular learning task. Among these
the Signed Test [15] is commonly used. Here we give a brief description of this
method which will be used to measure the statistical difference between the
performances of two classification methods in the next section.

The Signed Test [15] is a general statistical tool for comparing the performance
of different classification methods. Given n data sets, let nA (nB , respectively)
be the number of data sets in which classification method A does better (worse
respectively) than classification method B in terms of the classification accuracy.
Then we have:

z =
nA

nA+nB
− p

√
p×q

nA+nB

≈ N(0, 1) (11)

where p is the probability that classification method A does better than classi-
fication method B ; and q=1-p. Under the null hypothesis, p=0.5, so

z =
nA

nA+nB
− 0.5

√
0.5×0.5
nA+nB

≈ N(0, 1) (12)

which has (approximately) a standard normal distributionN(0, 1). We can reject
the null hypothesis that two classification methods are the same in terms of
performance if |Z| > Z∞,0.975 = 1.96.

4.5 Evaluation

[Experiment 1]. In this experiment, we test both five classification methods,
i.e. IBL, DT, RIPPER, MLPs and SVM, and four combination methods, i.e.
MVC, MPC, APC and DRC (the abbreviation DRC here stands for the proposed
combination method which is based on Dempster’s rule of Combination), over
seven toxicity data sets using a ten-fold cross validation. The class distribution
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Table 2. Performance of individual classifiers evaluated on seven data sets

Data set IBL k DT RIPPER MLPs LR SVM

TROUT 59.93 5 55.32 56.74 58.16 0.9 62.06
ORAL QUAIL 57.76 5 62.93 60.34 51.72 0.3 65.52
DAPHNIA 54.17 5 50.38 50.00 53.41 0.3 54.55
DIETARY QUAIL 48.78 10 45.53 39.84 55.28 0.3 48.78
BEE 58.09 5 45.71 46.67 51.43 0.3 53.33
PHENOLS 74.80 10 74.40 76.40 78.40 0.3 80.00
APC 43.33 5 43.33 40.00 40.00 0.3 43.33

Average 56.69 / 53.94 52.86 55.49 / 58.22

Table 3. Performance of different combination methods evaluated on seven data sets

Data set MVC MPC APC DRC

TROUT 63.12 56.38 59.22 64.93
ORAL QUAIL 62.93 56.03 60.34 63.34
DAPHNIA 54.17 53.78 53.78 54.92
DIETARY QUAIL 53.66 43.90 52.03 53.78
BEE 58.10 42.86 55.24 60.29
PHENOLS 80.40 79.20 82.40 82.40
APC 38.33 40.00 36.67 40.00

Average 58.67 53.16 57.10 59.95

of each data set is presented in Table 1. The experimental results are presented
in Table 2 and 3.

In Table 2, each row recorded the best performances of different classification
methods evaluated on a feature subset of the leftmost data set by CfsSubsetEval
method which is implemented in the Weka software package [14]. Parameter k
stands for the number of nearest neighbors chosen for IBL, which is tuned from
1 to 10 with step 1; LR represents the learning rate set for MLPs, which is tuned
from 0.1 to 0.9 with step 0.1.

Table 3 reported the experimental results of different classifier combination
methods carried out on the seven aforementioned data sets. The performances
of MVC, MPC and APC in Table 3 are based on the results reported in Table 2.
The performance of DRC is calculated on a L× n performance matrix by using
Dempster’s rule of combination where L stands of the number of classifiers and
n stands for the number of feature subsets for each toxicity data set.

Eight feature selection methods are involved in extracting different subsets
for each original toxicity data set, which are: Correlation-based Feature Selec-
tion; Chi-Chi squared ranking filter; Consistency Subset evaluator; Gain Ratio
feature evaluator; Information Gain ranking filter; kNNMFS Feature Selection
[8]; ReliefF ranking filter; SVM feature evaluator. All the feature selection meth-
ods except kNNMFS are implemented in the Weka software package [14], where
kNNMFS is implemented in our own prototype system.
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From Table 2 and 3 it is clear that the average classification accuracy of DRC
based combination method over seven data sets is better than that of any other
classification methods. Moreover, DRC based combination method performs best
compared to other classifier combination methods.

[Experiment 2]. The goal of this experiment is to measure the statistical dif-
ference between the performances of any two methods studied. We compare the
performance of any two classification methods based on the results obtained in
Table 2 and 3. The statistical difference between the performances of any two
methods is calculated using the signed test and is given in Table 4.

Table 4. The signed test of different classifiers

Signed Test IBL DT RIPPER MLPs SVM MVC MPC APC

nA : nB 6:1 6:1 6:0 5:1 5:2 7:0 6:0 6:0
DRC 1.89(+) 1.89(+) 2.45(+) 1.63(+) 1.13(-) 2.65(+) 2.45(+) 2.45(+)

In Table 4, the item 1.63(+) in cell (3, 5), for example, means DRC is better
than MLPs in terms of performance over the seven data sets. That is, the cor-
responding |Z| > Z0.90 = 1.415. The item 1.13(-) in cell (3, 5) means there is no
significant difference in terms of performance between DRC and APC over seven
data sets as the corresponding |Z| < Z0.90 = 1.415. From the statistical point of
view the proposed DRC classifier combination algorithm outperforms individual
classification algorithms and other combination systems with an exception of
SVM. Although there is no significant difference in terms of performance be-
tween DRC and SVM, the average classification accuracy of DRC is still 2.97%
better than that of SVM.

5 Conclusions

In this work, we proposed an approach for combining multiple classifiers using
Dempster’s rule of combination. Various experiments have been carried out on
seven collected toxicity data sets from real-world applications to evaluate the
performance of classification algorithms individually and in combination. Based
on our experimental results, it is fairly to draw a conclusion: the performance of
the combination method based on Dempster’s rule of combination is better than
that of any other combination method studied, i.e. MVC, MPC and APC, and
is 2.97% on average, better than the best individual classification method SVM.
The experimental results have shown the promise of the proposed approach.
However more experiments both on toxicity data sets and also benchmark data
are necessary for a full evaluation of the approach proposed.
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