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Abstract. Rough set theory has been proposed by Pawlak as a tool for
dealing with the vagueness and granularity in information systems. The
core concepts of classical rough sets are lower and upper approximations
based on equivalence relations. This paper studies arbitrary binary rela-
tion based generalized rough sets. In this setting, a binary relation can
generate a lower approximation operation and an upper approximation
operation. We prove that such a binary relation is unique, since two dif-
ferent binary relations will generate two different lower approximation
operations and two different upper approximation operations. This paper
also explores the relationships between the lower or upper approximation
operation generated by the intersection of two binary relations and those
generated by these two binary relations, respectively.

Keyword: Rough set, Lower approximation, Upper approximation, Bi-
nary relation, Fuzzy set, Granular computing.

1 Introduction

At the Internet age, more and more data are being collected and stored, thus, how
to extract the useful information from such enormous data becomes an impor-
tant issue in computer science. In order to cope with this issue, researchers have
developed many techniques such as fuzzy set theory [40], rough set theory [18],
computing with words [27,41,42,43,44], computational theory for linguistic dy-
namic systems [28], etc.

Rough set theory has been proposed by Pawlak [18] as a tool to conceptu-
alize, organize and analyse various types of data in data mining. This method
is especially useful for dealing with uncertain and vague knowledge in informa-
tion systems. Many examples of applications of the rough set method to pro-
cess control, economics, medical diagnosis, biochemistry, environmental science,
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biology, chemistry psychology, conflict analysis and other fields can be found
in [1,5,6,7,8,12,13,15,16,17,19,20,21,22,23,26,29,30,31,32,33,34,45,51,52].

The classical rough set theory is based on equivalent relations, but in some
situations, equivalent relations are not suitable for coping with the granularity,
thus classical rough set method is extended to similarity relation based rough
set [10,11,25], covering based rough sets [2,48,49,50], etc [4].

Papers [3,9,35,36,37,38,39] have done extensive research on binary relation
based rough sets. In this paper, we also study general binary relation based
rough sets. Our focus is on relationships between two lower approximation oper-
ations generated by two binary relations, and relationships between two upper
approximation operations generated by two binary relations.

The other parts of this paper are organized as follows: In Section 2, we present
the fundamental concepts and properties of the Pawlak’s rough set theory, and
basic definitions and properties of binary relations. Section 3 discusses binary
relation based rough sets in literature. Section 4 is the major contribution of this
paper. We explore the relationships between rough set generated by two relations
on a universe and claim that two different binary relations will generate two
different lower approximation operations and two different upper approximation
operations. This paper concludes in section 5.

2 Background

2.1 Fundamentals of the Pawlak’s Rough Sets

Let U be a finite set, the domain of discourse, and R an equivalent relation on
U . R is generally called an indiscernability relation in rough set theory [18]. R
will generate a partition U/R = {Y1, Y2, . . . , Ym} on U where Y1, Y2, . . . , Ym are
the equivalent classes generated by the equivalent relation R, and, in the rough
set theory, they are also called elementary sets of R. For any X ⊆ U we can
describe X by the elementary sets of R and the two sets

R∗(X) = ∪{Yi ∈ U/R|Yi ⊆ X}
R∗(X) = ∪{Yi ∈ U/R|Yi ∩ X �= φ}

are called the lower and the upper approximation of X , respectively.
Let φ be the empty set, −X the complement of X in U , from the definition

of approximation sets, we have the following conclusions about them.
The properties of the Pawlak’s rough sets: (1L) R∗(U) = U

(1H) R∗(U) = U
(2L) R∗(φ) = φ
(2H) R∗(φ) = φ
(3L) R∗(X) ⊆ X
(3H) X ⊆ R∗(X)
(4L) R∗(X ∩ Y ) = R∗(X) ∩ R∗(Y )
(4H) R∗(X ∪ Y ) = R∗(X) ∪ R∗(Y )
(5L) R∗(R∗(X)) = R∗(X)
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(5H) R∗(R∗(X)) = R∗(X)
(6L) R∗(−X) = −R∗(X)
(6H) R∗(−X) = −R∗(X)
(7L) X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y )
(7H) X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y )
(8L) R∗(−R∗(X)) = −R∗(X)
(8H) R∗(−R∗(X)) = −R∗(X)
(9L) ∀K ∈ U/R, R∗(K) = K
(9H) ∀K ∈ U/R, R∗(K) = K

The (3L), (4L), and (8L) are characteristic properties for the lower approx-
imation operations [14,46,47], i.e., all other properties of the lower approxima-
tion operation can be deduced from these three properties. Correspondingly,
(3H), (4H), and (8H) are characteristic properties for the upper approximation
operation.

2.2 Relations on a Set

In this subsection, we present some basic concepts and properties of binary
relations to be used in this paper. For detailed description and proof of them,
please refer to [24].

Definition 1. (Relations) Let U be a set, U × U the product set of U and U .
Any subset R of U × U is called a relation on U . For any (x, y) ∈ U × U , if
(x, y) ∈ R, we say x has relation R with y, and denote this relationship as xRy.

For any x ∈ U , we call the set {y ∈ U |xRy} the right neighborhood of x in R
and denote it as RNR(x).

For any x ∈ U , we call the set {y ∈ U |yRx} the left neighborhood of x in R
and denote it as LNR(x).

When there is no confusion, we omit the lowercase R.

Definition 2. (Reflexive relations) Let R be a relation on U . If for any x ∈ U ,
xRx, we say R is reflexive. In another word, If for any x ∈ U , x ∈ RN(x), R is
reflexive.

Definition 3. (Symmetric relations) Let R be a relation on U . If for any x, y ∈
U , xRy ⇒ yRx, we say R is symmetric. In another word, If for any x, y ∈ U ,
y ∈ RN(x) ⇒ x ∈ RN(y), R is symmetric.

Definition 4. (Transitive relations) Let R be a relation on U . If for any x, y, z ∈
U , xRy, and yRz ⇒ xRz, we say R is transitive.

Definition 5. (Equivalent relations) Let R be a relation on U . If R is reflexive,
symmetric, and transitive, we say R is a equivalent relation on U .

3 Binary Relation Based Generalized Rough Sets

An extensive research on algebraic properties of rough sets based on binary
relations can be found in paper [3,9,35,36,37,38,39]. They proved the existence
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of a certain binary relation for an algebraic operator with special properties, but
they did not consider the uniqueness of such a binary relation. Furthermore, we
consider the relationships between rough sets generated by the join of two binary
relations and rough sets generated by these two binary relations, respectively.
We also discuss the above issue for the intersection of two binary relations.

Definition 6. (Rough set based on a relation [38]) Suppose R is a binary rela-
tion on a universe U. A pair of approximation operators, L(R), H(R) : P (U) →
P (U), are defined by:

L(R)(X) = {x|∀y, xRy ⇒ y ∈ X}={x|RN(x) ⊆ X},
H(R)(X) = {x|∃y ∈ X, s.t. xRy}={x|RN(x) ∩ X �= φ}.

They are called the lower approximation operation and the upper approximation
operation, respectively. The system (P (U),∩,∪,−, L(R), H(R)) is called a rough
set algebra, where ∩,∪, and - are set intersection, union, and complement.

Example 1. (A relation and its lower and upper approximation operations) Let
U = {a, b, c} and R = {(a, a), (b, b), (b, c), (c, a), (c, b), (c, c)}, then

RN({a}) = {a}, RN({b}) = {b, c}, RN({c}) = {a, b, c}.
L(R){a} = {a}, L(R){b} = {φ}, L(R){c} = {φ},
L(R){a, b} = {a}, L(R){a, c} = {a}, L(R){b, c} = {b},
L(R){a, b, c} = {a, b, c}.
H(R){a} = {a, c}, H(R){b} = {b, c}, H(R){c} = {b, c},
H(R){a, b} = {a, b, c}, H(R){a, c} = {a, b, c}, H(R){b, c} = {b, c},
H(R){a, b, c} = {a, b, c}.

Proposition 1. (Basic properties of lower and upper approximation
operations [38]) Let R be a relation on U . L(R) and H(R) satisfy the following
properties: ∀X, Y ⊆ U ,

(1) L(R)(U) = U
(2) L(R)(X ∩ Y ) = L(R)(X) ∩ L(R)(Y )
(3) H(R)(φ) = φ
(4) H(R)(X ∪ Y ) = H(R)(X) ∪ H(R)(Y )
(5) L(R)(−X) = −H(R)(X)

Proposition 2. [38] Let R be a relation on U . If operation L : P (U) → P (U)
satisfies the following properties:

(1)L(U) = U (2)L(X ∩ Y ) = L(X) ∩ (Y )
then there exists a relation R on U such that L = L(R).

Proposition 3. [38] Let R be a relation on U . If operations H : P (U) → P (U)
satisfies the following properties:

(1)H(φ) = φ (2)H(X ∪ Y ) = H(X) ∪ H(Y )
then there exists a relation R on U such that H = H(R).

Proposition 4. [38] Let U be a set. If an operator L : P (U) → P (U) satisfies
the following properties:

(1)L(U) = U (2)L(X ∩ Y ) = L(X) ∩ (Y ) (3)L(X) ⊆ X
then there exists one reflexive relation R on U such that L = L(R).
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Proposition 5. [38] Let U be a set. If an operator H : P (U) → P (U) satisfies
the following properties:

(1) H(φ) = φ (2) H(X ∪ Y ) = H(X) ∪ H(Y ) (3) X ⊆ H(X)
then there exists one reflexive relation R on U such that H = H(R).

Proposition 6. [38] Let U be a set. If an operator L : P (U) → P (U) satisfies
the following properties:

(1)L(U) = U (2)L(X ∩ Y ) = L(X) ∩ (Y ) (3)L(X) ⊆ L(−L(−X))
then there exists one symmetric relation R on U such that L = L(R).

Proposition 7. [38] Let U be a set. If an operator H : P (U) → P (U) satisfies
the following properties:

(1) H(φ) = φ (2) H(X∪Y ) = H(X)∪H(Y ) (3) H(−H(X)) ⊆ H(−X)
then there exists one symmetric relation R on U such that H = H(R).

Proposition 8. [38] Let U be a set. If an operator L : P (U) → P (U) satisfies
the following properties:

(1)L(U) = U (2)L(X ∩ Y ) = L(X) ∩ (Y ) (3)L(X) ⊆ L(L(X))
then there exists one transitive relation R on U such that L = L(R).

Proposition 9. [38] Let U be a set. If an operator H : P (U) → P (U) satisfies
the following properties:

(1) H(φ) = φ (2) H(X ∪Y ) = H(X)∪H(Y ) (3) H(H(X)) ⊆ H(X)
then there exists one transitive relation R on U such that H = H(R).

4 Uniqueness of Binary Relations to Generate Rough Sets

For two relations R1 and R2 on a set U , R1 and R2 will generate their respective
lower approximation operations and the upper approximation operations. R1∪R2

is also a relation on U , so it will generate its own lower approximation operation
and the upper approximation operation. Then, what is the relationships among
these lower approximation operation and upper approximation operations? How
about the relation R1 ∩ R2? We start to answer these questions. Firstly, we
consider the situation for R1 ∪ R2.

Theorem 1. Let R1 and R2 be two relations on U and X ⊆ U . L(R1 ∪R2)(X)
= L(R1)(X) ∩ L(R2)(X) and H(R1 ∪ R2)(X) = H(R1)(X) ∪ H(R2)(X).

Proof. ∀X ⊆ U , L(R1 ∪ R2)(X) = {x|∀y ∈ U, x(R1 ∪ R2)y ⇒ y ∈ X}
= {x|∀y ∈ U, xR1y or xR2y ⇒ y ∈ X}
= {x|∀y ∈ U, xR1y ⇒ y ∈ X} ∩ {x|∀y ∈ U, xR2y ⇒ y ∈ X}
= L(R1)(X) ∩ L(R2)(X).
H(R1 ∪ R2)(X) = {x|∃y ∈ X, x(R1 ∪ R2)y}
= {x|∃y ∈ X, xR1y or xR2y}
= {x|∃y ∈ X, xR1y} ∪ {x|∀y ∈ X, xR2y}
= H(R1)(X) ∪ H(R2)(X).
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Proposition 10. Let R1 and R2 are two relations on U . If R1 ⊆ R2, then
L(R2) ⊆ L(R1) and H(R1) ⊆ H(R2).

Then, we consider the situation for R1 ∩ R2.

Theorem 2. Let R1 and R2 be two relations on U and X ⊆ U . L(R1)(X) ∪
L(R2)(X) ⊆ L(R1 ∩ R2)(X) and H(R1 ∩ R2)(X) ⊆ H(R1)(X) ∩ H(R2)(X).

Proof. It is easy to prove this theorem by Proposition 10.

Example 2. (Equalities in Theorem 2 do not hold generally)
Let U = {a, b, c}, R1 = {(a, a), (a, b), (b, b)}, and R2 = {(a, a), (a, c), (c, a),

(c, b), (c, c)}, we have
RNR1({a}) = {a, b}, RNR1({b}) = {b}, RNR1({c}) = φ.
RNR2({a}) = {a, c}, RNR2({b}) = φ, RNR2({c}) = {a, b, c},
R1 ∩ R2 = {(a, a)}, and
RNR1∩R2({a}) = {a}, RNR1∩R2({b}) = φ, RNR1∩R2({c}) = φ.

For X = {a} and Y = {b}, we have
L(R1)(X) = {c}, H(R1)(Y ) = {a, b},
L(R2)(X) = {b}, H(R2)(Y ) = {c},

and
L(R1 ∩ R2)(X) = {a, b, c}, H(R1 ∩ R2)(Y ) = φ.

Thus, L(R1)(X) ∪ L(R2)(X) ⊂ L(R1 ∩ R2)(X) and
H(R1 ∩ R2)(Y ) ⊂ H(R1)(Y ) ∩ H(R2)(Y ).

A relation on U will generate a lower approximation operation and an upper
approximation operation, then is it possible for two different relations on U to
generate the same lower approximation operation and the same upper approxi-
mation operation? We start to study this problem.

Proposition 11. Let R1 and R2 are two relations on U . If H(R1) ⊆ H(R2),
then R1 ⊆ R2.

Proof. ∀x, y ∈ U , if (x, y) ∈ R1, y ∈ RNR1(x), x ∈ H(R1){y} ⊆ H(R2){y}, so
RNR2(x) ∩ {y} �= φ, that means (x, y) ∈ R2, thus R1 ⊆ R2.

Corollary 1. Let R1 and R2 are two relations on U . If H(R1) = H(R2), then
R1 = R2.

Theorem 3. Let R1 and R2 are two relations on U . If H(R1) = H(R2) if and
only if R1 = R2.

Proof. It comes from Proposition 10 and Corollary 1.
By the duality between H(R) and L(R), we have the following result about

L(R).

Proposition 12. Let R1 and R2 are two relations on U . If L(R1) ⊆ L(R2),
then R2 ⊆ R1.
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Corollary 2. Let R1 and R2 are two relations on U . If L(R1) = L(R2), then
R1 = R2.

Theorem 4. Let R1 and R2 are two relations on U . If L(R1) = L(R2) if and
only if R1 = R2.

Theorem 3 and 4 show that two different binary relations will certainly generate
two different lower approximation operations and two different lower approxi-
mation operations. Recall that Proposition 2 and 3 show an operator on U with
two certain properties can be generated by a binary relation, we actually have
proved the uniqueness of such a binary relation.

Theorem 5. Let R be a relation on U . If operation L : P (U) → P (U) satisfies
the following properties:

(1)L(U) = U
(2)L(X ∩ Y ) = L(X) ∩ L(Y )

then there exists one and only one relation R on U such that L = L(R).

Theorem 6. Let R be a relation on U . If operations H : P (U) → P (U) satisfies
the following properties:

(1)H(φ) = φ
(2)H(X ∪ Y ) = H(X) ∪ H(Y )

then there exists one and only one relation R on U such that H = H(R).

Theorem 7. Let U be a set. If an operator L : P (U) → P (U) satisfies the
following properties:

(1)L(U) = U
(2)L(X ∩ Y ) = L(X) ∩ (Y )
(3)L(X) ⊆ L(−L(−X))

then there exists one and only one symmetric relation R on U such that L = L(R).

Proof. It comes from Proposition 2 and Theorem 4.

Theorem 8. Let U be a set. If an operator H : P (U) → P (U) satisfies the
following properties:

(1) H(φ) = φ
(2) H(X ∪ Y ) = H(X) ∪ H(Y )
(3) H(−H(X)) ⊆ H(−X)

then there exists one and only one symmetric relation R on U such that H =
H(R).

Proof. It comes from Proposition 3 and Theorem 3.

Theorem 9. Let U be a set. If an operator L : P (U) → P (U) satisfies the
following properties:

(1)L(U) = U
(2)L(X ∩ Y ) = L(X) ∩ (Y )
(3)L(X) ⊆ L(L(X))

then there exists one and only one transitive relation R on U such that L = L(R).
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Proof. It comes from Proposition 2 and Theorem 4.

Theorem 10. Let U be a set. If an operator H : P (U) → P (U) satisfies the
following properties:

(1) H(φ) = φ
(2) H(X ∪ Y ) = H(X) ∪ H(Y )
(3) H(H(X)) ⊆ H(X)

then there exists one and only one transitive relation R on U such that H =
H(R).

Proof. It comes from Proposition 3 and Theorem 3.

5 Conclusions

In this paper we have studied relationships between generalized rough sets gen-
erated by two binary relations. We proved that two different binary relations will
generate two different lower approximation operations and two different upper
approximation operations. As for the applications of binary relation based rough
sets to knowledge discovery from database, please refer to paper [10,11,25].

We will explore the relationships between binary relation based rough sets
and covering based rough sets [48] in our future works. Another future research
topic is to apply binary relation based rough set theory to the computational
theory for linguistic dynamic systems [28] and security [52].
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