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Abstract. This study proposes a novel method for business forecasting
based on fuzzy support vector machines regression (FSVMR). By an
application on sales forecasting, details of proposed method are presented
including data preprocessing, kernel selection, parameters tuning and so
on. The experimental result shows the method’s validity.

1 Introduction

Business forecasting has consistently been a critical organizational capability for
both strategic and tactical business planning [1]. Time series forecasting methods
such as exponential smoothing have been widely used in practice, but it always
doesn’t work when the market fluctuates frequently and at random [2]. Research
on novel business forecasting techniques have evoked researchers from various
disciplines such as computational intelligence.

Recently, support vector machines (SVMs) have been extended to solve non-
linear regression estimation problems and they have been shown to exhibit ex-
cellent performance in time series forecasting [3, 4, 5].

One of the key issues encountered in training support vector is the data pre-
processing. Some raw data points corrupted by noises are less meaningful and
they make different senses to later training process. But standard SVMs algo-
rithm lacks this ability. To solve this problem, Fuzzy support vector machines
regression(FSVMR) apply a fuzzy membership to each input points so that dif-
ferent input points can make different contributions to the learning of decision
surface and can enhances the SVM in reducing the effect of outliers and noises
in data points. Details on the principal and application of FSVMR can be found
in ref. [6, 7, 8]

2 Experimental Setting and Algorithms

2.1 Data Sets

We selected 5 goods with 430 daily sales data from a manufacturing firm’s man-
agement information system. We used the former 400 data points as training
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Table 1. Details of Data Sets

Goods Mean SD Min Max Train Test

A 6.95 3.58 0 14.7 400 30
B 171 81.24 23 285 400 30
C 79.17 28.31 12 167 400 30
D 7.52 5.24 1 13.6 400 30
E 18.19 10.11 12.33 41.56 400 30

data sets and the rest 30 data points as testing data.More details of the data
sets are listed in Table 1.

2.2 Embedding Dimension

Given a time-series {x1, x2, . . . , xn} generated by a dynamical system. We as-
sume that {xt+τ}(τ ≥ 1) is a projection of dynamics operation in a high-
dimensional state space [3]. In order to make prediction, we must reconstructing
the input time series data into state space. That is to say if {xt} is the goal
value of prediction, the previous values {xt−(d−1)τ , xt−(d−2)τ , . . . , xt−τ} should
be the corrected state vector. We call d the embedding dimension or the sliding
window, τ the prediction period. In this experiment, we only analyze forecasting
{xt+1}, thus, τ = 1. After transformation, we get the samples in matrix form:

X =

⎛
⎜⎜⎜⎝

x1 x1+τ . . . x1+(d−1)τ

x2 x2+τ . . . x2+(d−1)τ

...
...

. . .
...

xn−(d−1)τ xn−(d−2)τ . . . xn−τ

⎞
⎟⎟⎟⎠ Y =

⎛
⎜⎜⎜⎝

x1+dτ

x2+dτ

...
xn

⎞
⎟⎟⎟⎠ (1)

The value of embedding dimension of a time series data set affects predic-
tion performance. In following experiments, embedding dimension is fixed at 5
balancing error and training cost.

2.3 Defining Fuzzy Membership

It is easy to choose the appropriate fuzzy membership. First, we choose σ > 0
as the lower bound of fuzzy membership. Second, we make fuzzy membership si

be a function of time ti
si = f(ti) (2)

We suppose the last point xn be the most important and choose xn = f(tn) = 1 ,
and the first point x1 be the most least important and choose s1 = f(t1) = σ. If
we want to let fuzzy membership be a linear function of the time, we can select

si = f(ti) = αti + b =
1 − σ

tn − t1
ti +

tnσ − t1
tn − t1

(3)
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If we want to make fuzzy membership be a quadric function of the time, we can
select

si = f(ti) = α(ti − b)2 + c = (1 − σ)
(

ti − t1
tn − t1

)2

+ σ (4)

2.4 Performance Criteria

The prediction performance is evaluated using the normalized mean squared
error (NMSE). NMSE is the measures of the deviation between the actual and
predicted values. The smaller the values of NMSE, the closer are the predicted
time series values to the actual values. The NMSE of the test set is calculated
as follows:

NMSE = 1
δ2n

n∑
i=1

(yi − ŷi)
2
, (5)

δ2 = 1
n−1

n∑
i=1

(yi − y)2 , (6)

where n represents the total number of data points in the test set. ŷi represents
the predicted value. y denotes the mean of the actual output values.

2.5 Kernel Function Selection and Parameters Tuning

The literatures [9, 10] show that RBF kernel usually get better results than
others and use it as the default kernel in predicting time series data. In our
experiment,We use general RBF as the kernel function. Comparative results of
Goods A between different kernels are shown in Table 2.

There are two parameters while using RBF kernels: C and γ. We use a grid-
search on C and γ using cross-validation. We found that trying exponentially
growing sequences of C and γ is a practical method to identify good parameters.

Table 2. Results of forecasting with different kernels on Goods A. ε = 0.1.

Kernels Parameter NMSE Training NMSE Testing Time

Poly C = 8, d = 1 0.012 0.401 0.211
RBF C = 8, γ = 0.25 0.008 0.317 0.102
Sigmoid C = 8, γ = 0.0625 0.021 0.474 0.176

3 Experimental Results

Table 3 shows the averaged NMSE values of EMA, standard SVM compared
with FSVMR. Figure 1 illustrates the predicted and actual values of Goods A
in testing. By computing of standard deviation, FSVMR’s accuracy is 6.6% and
14.3% higher than standard SVM and EMA respectively.
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Table 3. Averaged Forecasting Results for All 5 Goods

Methods EMA Standard SVMs FSVMR

NMSE 0.3610 0.3313 0.3095
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Fig. 1. Forecasting results comparison for Goods A
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