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Abstract. Biomedical named entity recognition is a critical task for automati-
cally mining knowledge from biomedical literature. In this paper, we introduce 
Conditional Random Fields model to recognize biomedical named entities from 
biomedical literature. Rich features including literal, context and semantics are 
involved in Conditional Random Fields model. Shallow syntactic features are 
first introduced to Conditional Random Fields model and do boundary detection 
and semantic labeling at the same time, which effectively improve the model’s 
performance. Experiments show that our method can achieve an F-measure of 
71.2% in JNLPBA test data and which is better than most of state-of-the-art 
system.  

1   Introduction 

With the development of computational and biological technology, the amount of 
biomedical literature is increasing unprecedentedly. MEDLINE database has colleted 
11 million biomedical related records since 1965 and is increasing at the rate of 1500 
abstracts a day [1]. The research literature is a major repository of knowledge. From 
them, researchers can find the knowledge, such as connections between diseases and 
genes, the relationship between genes and specific biological functions and the inter-
actions of different proteins and so on. 

The explosion of literature in the biomedical field has provided a unique opportu-
nity for natural language processing techniques to aid researchers and curators of 
databases in the biomedical field by providing text mining services. Yet typical natu-
ral language processing tasks such as named entity recognition, information extrac-
tion, and word sense disambiguation are particularly challenging in the biomedical 
domain with its highly complex and idiosyncratic language.  

Biomedical Named Entities Recognition (NER) is a critical task for automatically 
mining knowledge from biomedical literature. Two special workshops for biomedical 
named entities recognition BioCreAtIvE [2] (Critical Assessment for Information 
Extraction in Biology) and JNLPBA [3] (Joint Workshop on Natural Language  
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Processing in Biomedicine and its Applications) were held in 2004 respectively and 
each of them contained an open evaluation of biomedical named entities recognition 
technology. The data and guidelines afforded by the two workshops greatly promote 
the biomedical NER technology. According to the evolution results of JNLPBA2004, 
the best system can achieve an F-measure of 72.6%. This is somewhat lower than 
figures for similar tasks from the news wire domain. For example, extraction of or-
ganization names has been done at over 0.90 F-measure [2]. Therefore, biomedical 
NER technology need further study in order to make it applied. 

Current research methods for NER can be classified into 3 categories: dictionary-
based methods [4], rule-based methods [5] and machine learning based methods. In 
biomedical domain, dictionary-based methods suffer from low recall due to new enti-
ties appear continually with the biology research advancing. Biomedical NEs do not 
follow any nomenclature, which makes rule-based methods to be helpless. Besides, 
rule-based method itself is hard to port to new applications. More and more machine 
learning methods are introduced to solve the biomedical NER problem, such as Hid-
den Markov Model [6] (HMM), Support Vector Machine [7] (SVM), Maximum En-
tropy Markov Model [8] (MEMM) and Conditional Random Fields [1, 9] (CRFs). 
Biomedical NER problem can be cast as a sequential labeling problem. Conditional 
random fields for sequences labeling offer advantages over both generative models 
like HMM and classifiers applied at each sequence position[10]. 

In this research, we utilize Conditional Random Fields model involving rich fea-
tures to extract biomedical named entities from biomedical literature. The feature set 
includes orthographical features, context features, word shape features, prefix and 
suffix features, Part of Speech (POS) features and shallow syntactic features. Shallow 
syntactic features are first introduced to Conditional Random Fields model and do 
boundary detection and semantic labeling at the same time, which effectively improve 
the model’s performance. Although some features have been used by some research-
ers, we show the effect of each kind of features in detail, which can afford valuable 
reference to other researchers. Our method does not need any dictionary resources and 
post-processing, so it has strong adaptability. Experiments show that our method can 
achieve an F-measure of 71.2% in JNLPBA test data and which is better than most of 
state-of-the-art system. 

The remainder of this paper is structured as follows. In section 2, we define the 
problem of biomedical named entities recognition and its unique characteristics. In 
section 3, a brief introduction of linear-chain conditional random fields model are 
given. In section 4 we explain the features involved in our system. Experiment results 
are shown in section 5. Section 6 is a brief conclusion. 

2   Biomedical Named Entity Recognition 

Biomedical NER can be addressed as a sequential labeling problem. It is defined as 
recognizing objects of a particular class in plain text. Depending on required applica-
tion, NER can extract objects ranging from protein/gene names to disease/virus 
names. In practice, we regard each word in a sentence as a token and each token is 
associated with a label. Each label with a form of B-C, I-C or O indicates not only the 
category of the Named Entity (NE) but also the location of the token within the an 
NE. In this label denotation, C is the category label; B and I are location labels, standing 
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Fig. 1. An example of biomedical NER 

for the beginning of an entity and inside of an entity respectively. O indicates that a 
token is not part of an NE. Fig. 1 is an example of biomedical NER. 

Biomedical NER is a challenging problem. There are many different aspects to deal 
with. In general, biomedical NEs do not follow any nomenclature [11]  and can com-
prise long compound words and short abbreviations. Biomedical NEs are often Eng-
lish common nouns (as opposed to proper nouns, which, are the nouns normally asso-
ciated with names) and are often descriptions [12]. For example, some Drosophila 
(fruit fly) gene names are blistery, inflated, period, punt and midget. Some NEs con-
tain various symbols and other spelling variations. On average, any NE of interest has 
five synonyms. An NE may also belong to multiple categories intrinsically; An NE of 
one category may contain an NE of another category inside it [13]. 

In natural language processing domain, Generative Models and Discriminative 
Models are often used to solve the sequential labeling problem, such as NER. Re-
cently, Discriminative Models are preferred due to their unique characteristic  
and good performance [14]. Generative Models define a joint probability distribu-
tion ( )p X,Y  where X and Y are random variables respectively ranging over obser-

vation sequences and their corresponding label sequences. In order to define a joint 
distribution of this nature, generative models must enumerate all possible observa-
tion sequences – a task which, for most domains, is intractable unless observation 
elements are represented as isolated units, independent from the other elements in 
an observation sequence. Discriminative Models directly solve the conditional 
probability ( | )p Y X .The conditional nature of such models means that no effort is 

wasted on modeling the observations and one is free from having to make unwar-
ranted independence assumptions about these sequences; arbitrary attributes of the 
observation data may be captured by the model, without the modeler having to 
worry about how these attributes are related. 

Table 1. Biomedical Named Entities label list 

  Meaning Label Meaning Label 
Beginning of protein B-protein Inside protein I-protein 
Beginning of DNA B-DNA Inside DNA I-DNA 
Beginning of RNA B-RNA Inside RNA I-RNA 
Beginning of cell_type B-cell_type Inside cell_type I-cell_type 
Beginning of cell_line B-cell_line Inside cell_line I-cell_line 
others O   

Total content of T lymphocytes was decreased 1.5-fold in peripheric blood 

O   O   O     B-cell_type  I-cell_type   O        O        O       O        O               O 
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This paper utilizes a Discriminative Model – Conditional Random Fields to solve 
biomedical NER problem. Using the definition in [3], we recognize 5 categories enti-
ties. There are 11 labels in all using BIO notation mentioned before. All labels are 
show in Table 1. Each token in the biomedical text will be assigned one of the 11 
labels in the recognition results. 

3   Conditional Random Fields Model 

Conditional Random Fields (CRFs) model is a kind of undirected graph model [14]. 
A graphical model is a family of probability distributions that factorize according to 
an underlying graph. The main idea is to represent a distribution over a large number 
of random variables by a product of local functions that each depend on only a small 
number of variables [15]. The power of graph model lies in it can model multi vari-
ables, while an ordinary classifier can only predicate one variable.  

The result of NER is a label sequence, so linear-chain CRFs model is adopted in 
this research.   

Let y , x be random vectors, { } K
k   λΛ = ∈ ℜ be a parameter vector, and 

{ ( )}K
k t k 1f y, y', =x be a set of real-valued feature functions. Then a linear-chain CRFs is 

a distribution ( )p |y x that takes the form 
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1
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where (x)Z is an instance-specific normalization function. 
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For the application of linear-chain CRFs model, the key problem is how to solve 
the parameter vector { }k   θ λ= . This is done during the training process. 

Suppose there are iid training data 1{ } i i N
iD  == ( ) ( )

x ,y , where each 
( ) ( ){ , , , }i (i) i i

1 2 Tx x x=( )
x is a sequence of inputs and each ( ) ( ){ , , , }i (i) i i

1 2 Ty y y=y( ) is a 

sequence of corresponding predictions. Then parameter estimation is performed by 
penalized maximum conditional log likelihood ( )l θ , 

( ) ( )
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( ) log ( | )
N
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=∑ y x .                                                  (3) 

Take formula (1) into formula (3), we get 

( ) ( )
1

1 1 1 1

( ) ( , , ) log ( )
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k k t t t

i t k= i

l f y y Zθ λ −
= = =
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In order to avoiding overfitting, a penalty term is involved, the formula (4) becomes 
into 
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In formula (5), 2σ determines the strength of the penalty. Finding the best 2σ can 
require a computationally-intensive parameter sweep. Fortunately, according to [15], 
the accuracy of the final model does not appear to be sensitive to changes in 2σ . In 
our experiment, the 2σ  is set to 10. Given formula (5), we can use Improved Iterative 
Scaling (IIS) method or Numerical Optimization Techniques to find its maximum 
value and solve { }k   θ λ= . We adopt L-BFGS [16] afforded by MALLET toolbox 

[17] to do that, which is an Numerical Optimization Techniques with high efficiency 
compared to IIS method. If { }k   θ λ= is available, we can use formula (1) to do 

NER. 
For biomedical NER problem, the input sequence x is a sentence, the output se-

quences y is corresponding labels. The function set { ( )}K
k t k 1f y, y', =x contains binary-

value functions, which embody the features of the training data. For example 
( )k tf y, y', x may be defined 

as 11 ,
( )

0
t t+

k t

if WORD =T WORD =cells, y'=O, y=B-cell_type
f y, y', 

others

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

x . 

4   Features 

In order to describe the complexity language phenomena in biomedical literatures, we 
involve orthographical features, context features, word shape features, prefix and 
suffix features, Part of Speech (POS) features and shallow syntactic features. Com-
pare to others exist biomedical NER system using CRFs, we first introduce shallow 
syntactic features in CRFs model. Shallow syntactic features are embodied using 
chunk labels (Therefore, chunk features and shallow syntactic features are same 
meaning in this paper). One of the most remarkable advantages of CRFs model is that 
it is convenient to involve rich features without considering the dependency of fea-
tures. Also, when new features are added, the model doesn’t need modification.  

4.1   Shallow Syntactic Features 

In order to get shallow syntactic features, we use GENIA Tagger [18] to do text 
chunking. Text chunking is the techniques of recognizing relatively simple syntactic 
structures. It consists of dividing a text into phrases in such a way that syntactically 
related words become member of the same phrase. These phrases are non-overlapping 
which means that one word can only be a member of one chunk [19]. After chunking, 
each token will be assigned a chunk label.  

The syntactic information contains in chunk labels can afford much more reliable 
clues for NER than literal information. For example, a noun chunk is more likely to 
form an entity. In our research, shallow syntactic features include chunk labels with a 
window of size 5. If we use “c” denote a chunk label, -n denote n position prior to 
target token, +n denote n position after target token. The chunk features can be  
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denoted as c-2, c-1, c0, c1, c2. Besides, some combined features are used in order to 
make full use of syntactic features. We employ 3 kinds of combined features:  p-1c0, 
c0t0 and p0c0, where p denotes a POS tag and t denotes a token. 

4.2   Other Features 

Orthographical features: Orthographical features describe how a token is structured. 
For example, whether it contains both upper and lower letters, whether it contains 
digits and whether it contains special character. Orthographical features are important 
to biomedical NER for its special structures. We use regular expressions to character-
ize orthographical features which are listed in Table 2. Some of them are also used in 
[1, 9]. 

Table 2. Orthographical features 

Feature name Regular Expression 
ALLCAPS [A-Z]+ 
INITCAP ^[A-Z].* 
CAPSMIX .*[A-Z][a-z].*|.*[a-z][A-Z].* 
SINGLE CHAR [A-Za-z] 
HAS DIGIT .*[0-9].* 
SINGLE DIGIT [0-9] 
DOUBLE DIGIT [0-9][0-9] 
NATURAL NUMBER [0-9]+ 
REAL NUMBER [-0-9]+[.,]+[0-9.,]+ 
HAS DASH .*-.* 
INIT DASH -.* 
END DASH .*- 
ALPHA NUMERIC (.*[A-Za-z].*[0-9].*)|(.*[0-9].*[A-Za-z].*) 
ROMAN [IVXDLCM]+ 
PUNCTUATION [,.;:?!-+] 

 
Word shape features: Tokens with similar word shape may belong to the same 

category [13]. We come up with a simple way to normalize all similar tokens. Ac-
cording to our method, upper-case characters are all substituted by “X”, lower-case 
characters are all substituted by “x”, digits are all substituted by “0” and other charac-
ters are substituted by “_”. For example, “IL-3”, “IL-4” and “IL-5” will be normal-
ized as “XX_d”. Thus, there tokens can share the weight of feature “XX_d”. To fur-
ther normalize these tokens, we substitute all consecutive strings of identical charac-
ters with one character. For example, “XX_d” is normalized to “X_d”.  

Prefix and suffix Features: Some prefixes and suffix can provide good clues for 
NER. For example， tokens ending in “ase” are usually proteins, tokens ending 
in“RNA” are usually RNAs. In our work, the length range of affix is 3-5. If the length 
is too short, the distinguishing ability of affix will decrease. The frequency of the 
affix will be low if the length of affix is too long. 
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Context Feature: Tokens near the target token may be indicators of its category. 
For example, “IL-3” may belong to “DNA” or “protein”. If we know the next token is 
“gene”, we can decide that it belong to “DNA” category. According to [1, 9], we 
choose 5 as the context window size, i.e. the target token, the two tokens right prior to 
target token and the two tokens right after target token.  

POS Features: The granule of POS features is larger than context features, which 
will help to increasing the generalization of the model. GENIA Tagger is used to do 
POS tagging. GENIA Tagger is a trained on biology literatures, whose accuracy is 
98.20% as described in [18]. For POS features, we use the same window size as con-
text features. 

5   Experiment 

5.1   Experiment Dataset 

In the experiment, JNLPBA 2004 dataset is adopted. Its basic statistics is summarized 
in Table 3 and Table 4. Only 106 abstracts’ publish year among 404 in test dataset are 
same as training dataset [3]. The difference in publish year between training data and 
test data demands the model should have a good generalization. 

Table 3. Dataset of JNLPBA 

dataset #abs #sen #tokens 
Training set 2,000 18,546 472,006 

Test set 404 3,856 96,780 

Table 4. Entity distribution in JNLPBA dataset 

dataset protein DNA RNA cell_type cell_line All 
Training set 30,269 9,533 951 6,718 3,830 51,031 

Test set 5,067 1,056 118 1,921 500 8,662 

5.2   Experiment Results 

We use JNLPBA training set to train our model. Evaluation is done at JNLPBA test 
set. Training our model with all feature sets in section 4 took approximately 45 hours 
(3.0G CPU, 1.0G Memory, 400 iterations). Once trained, the model can annotate the 
test data in less than a minute. The experiment results are shown in Table 5. In Table 
5, P, denoting the precision, is the number of NEs a system correctly detected divided 
by the total number of NEs identified by the system. R, denoting the recall, is the 
number of NEs a system correctly detected divided by the total number of NEs con-
tained in the input text. ( )F 2PR/ P R= + stands for the synthetic performance of a 
system.  
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Table 5. Experiment results 

Entity Category P (%) R (%) F (%) 
protein 69.03 78.05 73.27 
DNA 70.98 66.48 68.66 
RNA 68.91 69.49 69.20 

Cell_line 52.21 56.60 54.32 
Cell_type 80.23 64.45 71.48 

overall 70.16 72.27 71.20 

 
Our system achieves F-measure of 71.20%, which is better than most of the state-

of-the-art systems. Especially for protein, the most important entity category, our 
system’s F-measure is 73.27%, which is much closer to the best system with F-
measure 73.77% of protein in JNLPBA2004. 

Table 6 shows our system’s performance with different feature sets. The baseline 
feature set includes orthographical features, context features, word shape features and 
prefix and suffix features. These features are literal features and easy to collection. So 
they are often adopted by most biomedical NER system, such as [1, 9, 13]. POS fea-
tures contain larger granule knowledge than literal feature. They can increase the 
model’s generalization, so the F-measure increases to 70.33% from 69.52% when 
adding them into the model. Chunk features contain syntactic information which is 
more general linguistic knowledge than POS features. Involving shallow syntactic 
features can increase the performance from 70.33% to 71.20%. From Table 6, we can 
conclude that features contain large granule linguistic knowledge can prompt the 
CRFs model’s generalization and get better results. 

Table 6. The effect of different features set 

Feature set P (%) R (%) F (%) 
Baseline 69.01 70.03 69.52 
+POS features 69.17 71.53 70.33 
+chunk features 70.16 72.27 71.20 

In order to compare our work with others, Table 7 lists the performance of other 
systems adopting CRFs model and the state-of-the-art system. All results are tested in 
the same dataset, so they are comparable.  

Table 7. Performance comparison 

Number System name P (%) R (%) F (%) 
1 Our system 70.2 72.3 71.2 
2 Tzong-han Tsai(CRF)[1] 69.1 71.3 70.2 
3 Settles et al., 2004 (CRF)[9] 69.3 70.3 69.8 
4 Zhao, 2004[6] 69.4 76.0 72.6 



 Biomedical Named Entities Recognition Using Conditional Random Fields Model 1287 

System 3 only involves orthographical features, context features, word shape fea-
tures and prefix and suffix features. Its performance is near to our baseline system. 
System 2 adds POS features and lexical features into system 1. Besides, system 2 
adopts two post processing methods including Nested NE Resolution and Reclassifi-
cation based on the rightmost word. But the F-measure of system 2 is still lower than 
our system with 1 percent. This also shows that syntactic features are effective in 
prompting the model’s performance. System 4 is the state-of-the-art system in 
JNLPBA2004. But according to [6]�system 4 also need lexical resource and post 
processing. The F-measure of system 4 will below 70% if post processing is removed.  
Our system need not any lexical resource and post processing. It achieves good per-
formance with good adaptability. 

6   Conclusion 

Conditional random fields for sequences labeling offer advantages over both genera-
tive models like HMM and classifiers applied at each sequence position. In this paper, 
we cast biomedical NER as a sequential labeling problem and utilize Conditional 
Random Fields model involving rich features to solve it.  

The main contributions of this research are:  

 First introduce shallow syntactic features to CRFs model and do boundary de-
tection and semantic labeling at the same time. Experiment shows that shallow 
syntactic features greatly improve the model’s performance.   

 Show the effect of POS features and shallow syntactic features in detail; con-
clude that large granule linguistic knowledge can prompt the CRFs model’s 
generalization, which can afford valuable reference to other researchers.  

 Achieve a biomedical NRE system with an F-measure of 71.2% in JNLPBA 
test data and which is better than most of state-of-the-art system. The system 
has strong adaptability because it does not need any dictionary resources and 
post-processing. 
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