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Abstract. The controller fragility can cause the performance debase-
ment of the closed-loop system due to small perturbations in the coeffi-
cients of the controller design, and is one of the most important factors
to be considered during practical controller design. To take the controller
fragility into consideration for a class of nonlinear time-delayed descriptor
systems with norm-bounded time-varying uncertainties in the matrices
of state, delayed state and control gain, we have proposed non-fragile
robust H∞ fuzzy control design via state feedback controllers in this pa-
per. The nonlinear descriptor system is approximated by Takagi-Sugeno
(T-S) fuzzy model. In combination of parallel-distributed compensation
(PDC) scheme, sufficient conditions are derived for the existence of non-
fragile robust H∞ fuzzy controllers in terms of linear matrix inequalities
(LMI). Finally, an example is given to demonstrate the use of the pro-
posed controller design.

1 Introduction

Generally, the perturbations during the controller’s implementation are quite
difficult to avoid due to finite word length in digital systems, the imprecision
inherent in analog systems, the need for additional tuning of parameters in the
final controller implementation and other reasons. some examples in [1] had been
presented to show that small perturbations in the coefficients of the controller
designed by using robust H2, H∞, l1 and μ approaches can destabilize the closed-
loop control system. The authors therein had suggested to take into account
uncertainties both in the controller structure and in the system structure. After
[1], the research of non-fragile controller has been an active area during the past
several years, see [2] and the references therein. However, the efforts therein
were mainly focused on linear systems. The non-fragile controller for nonlinear
system was discussed in [3]. The method therein needs positive-definite solution
to a pair of coupled Hamilton-Jacobi inequalities, which are much complicated
and only have solutions for a special kind of systems. Therefore, it’s still an open
problem to design non-fragile controller for nonlinear system.

Very recently, many effects [6,7] have been devoted to descriptor systems
with time delay, because the descriptor system has a tighter representation for
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a wider class of systems for representing real independent parametric perturba-
tions in comparison to traditional state-space representation [4]. Due to the dif-
ficulties of constructing Lyapunov function and the complexity of the existence
and uniqueness of the solution, there still remain some difficulties in control-
ling the nonlinear descriptor systems with time delays. Recent studies [8,10,9]
have shown Takagi-Sugeno (T-S) fuzzy model is a universal approximator of any
smooth nonlinear systems having a first order that is differentiable. Therefore, it
is meaningful to consider applying the fuzzy model to approximate the nonlinear
descriptor system with time delays. To stabilize the nonlinear descriptor system
with time delays, some researchers considered T-S fuzzy descriptor system with
time delays [11,12].

Motivated by the aforementioned pioneering works, the goal of this paper
is to propose non-fragile robust H∞ fuzzy controller for a class of nonlinear
descriptor systems with time-varying delays and norm-bounded uncertainties.
First, the nonlinear descriptor system with time-varying delays is described by
T-S fuzzy model. Then, the sufficient conditions for non-fragile robust H∞ fuzzy
controller are presented by use of PDC scheme. Finally, numerical example is
given to illustrate the effectiveness of the controller design.

2 Problem Formulation and Some Preliminaries

We utilize T-S fuzzy system approximate the nonlinear time-delayed descriptor
system with parametric uncertainties as follows

Plant Rule k :
IF ϑ1 (t) is Nk1 and, . . . , and ϑg is Nkg,

THEN
Right-Hand-Side Plant Rule i :

IF ϑ1 (t) is Ji1 and, . . . , and ϑg is Jig,

THEN Ekẋ (t) = (Ai + ΔAi)x (t) + (Adi + ΔAdi)x (t − σ(t)) (1)
+ (Bi + ΔBi)u (t) + B2iω(t),

z(t) = Cix(t),
x(t) = φ(t), t ∈ [−σ0, 0],

for k = 1, 2, · · · , r, i = 1, 2, · · · , re.

where ϑ(t) = {ϑ1(t), ϑ2(t), · · · , ϑg(t)} denotes the variables of premise part,
Ai, Adi ∈ IRn×n and Bi ∈ IRm×n are known real constant matrices, and Nkl and
Jil denote fuzzy sets, the real-valued functional σ(t) is the time-varying delay in
the state and satisfies σ(t) ≤ σ0, σ0 is a real positive constant representing the
upper bound of the time-varying delay. It is further assumed that σ̇(t) ≤ β < 1
and β is a known constant. φ(t) are continuous vector-valued initial functions,
and r and re denote the number of IF-THEN rules. We introduce the following
assumption on Ei and Ci.
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Assumption 1. Without loss of generality, it is assumed that E1 = E2 = · · · =
Eg = E and C1 = C2 = · · · = Cg = C in the fuzzy representation of the
nonlinear descriptor system (1). Obviously, we have Nkl = Jil and r = re.

The assumption 1 will simplify our following discussions much but without loss
of generality. In (1), ΔAi, , ΔAdi ∈ IRn×n, ΔBi(t) ∈ IRm×n, are the system’s
uncertainty matrices and satisfy Assumption 2.

Assumption 2. Uncertainty matrices ΔAi, ΔBi and ΔAdi in system (1) take
the following structures

[
ΔAi ΔBi ΔAdi

]
= DiFi(ν)

[
E1i E2i Edi

]
, (2)

where Di, E1i, Edi and E2i are constant real matrices of appropriate dimensions,
and Fi(t) ∈ IRi×j is unknown matrix-valued functions

FT
i (ν)Fi(ν) ≤ I, (3)

where ν ∈ Ω, Ω is a compact set in IR. and I is the identity matrix of appropriate
dimensions.

Based on Assumption 1, the final output of the T-S fuzzy model is inferred as
follows, by using the fuzzy inference method with a singleton fuzzifier, product
inference and center average defuzzifiers

Eẋ(t) =
r∑

i=1

hi(ϑ(t))[(Ai + ΔAi)x(t) + (Adi + ΔAdi)x(t − σ(t))

+ (Bi + ΔBi)u(t) + B2iω(t)],
(4)

where hi(ϑ(t)) = wi(ϑ(t))
/

r∑

i=1

wi(ϑ(t)), wi(ϑ(t)) =
r∏

j=1

Mij(ϑ(t)) and Jij(ϑ(t))

denotes the degree of membership of z(t) on Jij . It is assumed that the degree of

membership satisfies
r∑

i=1

wi(ϑ(t)) > 0, wi(ϑ(t)) ≥ 0, i = 1, 2, · · · , r. Note that

for all t, there exists
r∑

i=1

hi(ϑ(t)) = 1, hi(ϑ(t)) ≥ 0.

For PDC scheme, non-fragile robust H∞ fuzzy controller and the fuzzy model
(1) possess the same premises. The resulting overall controller is nonlinear in
general which is a fuzzy blending of each individual linear controller designed
for each local linear model. Then, supposing that all the states are observable,
the i-th controller rule can be expressed by

Controller Rule i :
IF ϑ1 (t) is Ni1 and . . . , and ϑg is Nig, (5)
THEN u (t) = (Ki + ΔKi)x (t) , i = 1, 2, · · · , r.
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where u(t) is the actually implemented local controller, Ki is the local nominal
gain, ΔKi represents drifting from the nominal solution. It has been proved that
fuzzy logic controller in (5) is an approximator for any nonlinear state feedback
controller [9]. The overall fuzzy controller can be represented as follows

u(t) =
r∑

i=1

hi(ϑ(t))(Ki + ΔKi)x(t). (6)

Applying the controller (6) to the system (4) will result in the following closed-
loop control system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Eẋ(t) =
r∑

i=1

hi(ϑ(t)){[(Ai + ΔAi) + (Bi + ΔBi)(Ki + ΔKi)]x(t)

+(Adi + ΔAdi)x(t − σ(t)) + B2iω(t)},
z(t) = Cx(t),
x(t) = φ(t), t ∈ [−σ0, 0],

(7)

In the following, we introduce some definitions and useful properties for the
system (7).

Definition 1. A pencil sE −Σr
i=1hi(ϑ(t))Ai (or pair(E −Σr

i=1hi (ϑ(t))Ai)) is
regular, if det(sE − Σr

i=1hi(ϑ(t))Ai) is not identically zero;
Fuzzy descriptor system (7) has no impulsive mode (or impulse free) if and

only if rank(E) = degdet(sE − Σr
i=1hi(ϑ(t))Ai).

Remark 1. The notations det(·), rank(·) and deg(·) denote determinant, rank
and degree of a matrix, respectively. The property of regularity guarantees the
existence and uniqueness of solution for any specified initial condition. The con-
dition of impulse free ensures that singular system has no infinite poles.

Definition 2. The closed-loop system 7 is asymptotically stable with disturbance
attenuation γ, if the followings are fulfilled for time-varying delays and norm-
bounded parametric uncertainties

1). The closed-loop system (7) is asymptotically stable;
2). The closed-loop system guarantees, under zero initial conditions, ‖z(t)‖2 ≤

γ ‖ω(t)‖2, for all non-zero ω(t) ∈ L2 [0, ∞).

The objective of this paper is to design non-fragile robust H∞ controller in the
presence of time-varying delays, parameter uncertainties of system and additive
uncertainty of controller. Also the controller guarantees disturbance attenuation
of the closed-loop system from ω(t) to z(t).

3 Non-fragile Robust H∞ Fuzzy Controller Design

Now we are in a position to present the main result in this paper. Firstly, stability
conditions are presented for the systems (7) without external disturbances.
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Theorem 1. Consider the uncertain nonlinear system with time delays (7) and
suppose that the disturbance inputs are zero for all the time. The closed-loop
system (7) is asymptotically stable if there exist positive definite matrix P , and
controller gains Ki satisfying such that

PET = EP ≥ 0,

[
Π1 ∗
AT

diP Λ1

]
< 0,

[
Π2 ∗
AT

diP + AT
djP Λ2

]
< 0, (8)

where

Π1 = PAi + PBiKi + AT
i P + KT

i BT
i P +

R1

1 − β
+ (ε1i + ε3i · ε2i

+ ε4i)PDiD
T
i P + ε2iPBi(I − ε3i(E2iHi)T (E2iHi))−1BT

i P + ε−1
1i (E1i

+ E2iKi)T (E1i + E2iKi) + ε−1
2i ET

KiEKi,

Π2 = PAi + PBiKj + AT
i P + KT

j BT
i P + PAj + PBjKi + AT

j P

+ KT
i BT

j P +
2R1

1 − β
+ (ε1ij + ε2ij · ε3ij + ε2ij)PBi(I − ε−1

3ij(E2iHj)T

× (E2iHj))−1BT
i P + ε5ij · ε6ij + ε4ij + ε4i)PDiD

T
i P + ε4jPDjD

T
j P

+ ε−1
1ij(E1i + E2iKj)T (E1i + E2iKj) + ε−1

2ijE
T
KjEKj

+ ε5ijPBj(I − ε−1
6ij(E2jHi)T (E2jHi))−1BT

j P + ε−1
5ijE

T
KiEKi

+ ε−1
4ij(E1j + E2jKi)T (E1j + E2jKi),

Λ1 = ε−1
4i ET

diEdi − R1

1 − β
, Λ2 = ε−1

4i ET
diEdi + ε−1

4j ET
djEdj − 2R1

1 − β
,

where 1 ≤ i < j ≤ r, εci (1 ≤ c ≤ 4), εdij (1 ≤ d ≤ 6) are arbitrary positive
scalars, * denotes the transposed element in the symmetric position.

Proof. Define the following functional candidate for the system (7) as follows

V (x(t)) = xT (t)ET Px(t) +
1

1 − β

∫ t

t−σ(t)

xT (s)R1x(s)ds, (9)

where P is a time-invariant, symmetric positive definite matrix. Then, the time
derivative of the Lyapunov candidate V (x(t)) is given by

dV (x(t))
dt

= ẋT (t)ET Px(t) + xT (t)ET P ẋ(t) +
1

1 − β
xT (t)R1x(t)

− 1 − σ(t)
1 − β

xT (t − σ(t))R1x(t − σ(t)).
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After some manipulations, the above formulae can be rewritten as follows

dV (x(t))
dt

=
r∑

i=1

h2
i (ϑ(t))xT (t)(P ((Ai + ΔAi) + (Bi + ΔBi)(Ki + ΔKi)

+ ((AT
i + ΔAT

i ) + (KT
i + ΔKT

i )(BT
i + ΔBT

i ))P )x(t) +
r∑

i<j

hi(ϑ(t))hj(ϑ(t))

× (P (Ai + ΔAi) + (Bi + ΔBi)(Kj + ΔKj)) + ((AT
i + ΔAT

i )

+ (KT
j + ΔKT

j )(BT
i + ΔBT

i ))P + P ((Aj + ΔAj) + (Bj + ΔBj)(Ki + ΔKi))

+ ((AT
j + ΔAT

j ) + (KT
i + ΔKT

i )(BT
j + ΔBT

j ))P )x(t)

+ xT (t)P (Adi + ΔAdi)x(t − σ(t)) + xT (t − σ(t))(AT
di + ΔAT

di)Px(t))

+
1

1 − β
xT (t)R1x(t) − 1 − σ(t)

1 − β
xT (t − σ(t))R1x(t − σ(t)).

Applying Lemmas in [5] to the above formulae results in

dV (x(t))
dt

≤ Ξ1 + Ξ2, (10)

where

Ξ1 =
r∑

i=1

h2
i (ϑ(t))xT (t)[PAi + PBiKi + AT

i P + KT
i BT

i P + ε1iPDiD
T
i + ε−1

1i

× (E1i + E2iKi)T (E1i + E2iKi) + ε2iPBi(I − ε−1
3i (E2iHi)T (E2iHi))−1BT

i P

+ ε3i · ε2iPDiD
T
i P + ε−1

2i ET
KiEKi]x(t) + ε−1

4i xT (t − σ(t))ET
diEdix(t − σ(t))

+ ε4ix
T PDiD

T
i Px(t) + xT (t)PAdix(t − σ(t)) + xT (t − σ(t))AT

diPx(t)

+
1

1 − β
xT (t)R1x(t) − 1

1 − β
xT (t − σ(t))R1x(t − σ(t))},

Ξ2 =
r∑

i<j

hi(ϑ(t))hj(ϑ(t)){xT (t)[PAi + PBiKj + AT
i P + KT

j BP + ε−1
1ij(E1i

+ E2iKj)T (E1i + E2iKj) + ε1ijPDiD
T
i P + ε2ijPBi(I − ε−1

3ij(E2iHj)T

× (E2iHj))−1BT
i P + ε3ij · ε2ijPDiD

T
i P + ε−1

2ijE
T
KjEKj + PAj + PBjKi

+ AT
j P + KT

i BT
j P + ε4ijPDiD

T
i P + ε−1

4ij(E1j + E2jKi)T (E1j + E2jKi)

+ ε5ijPBj(I − ε−1
6ij(E2jHi)T (E2jHi))−1BT

j P + ε5ij · ε6ijPDjD
T
j P

+ ε−1
5ijE

T
KiEKi)x(t) + ε4ix

T (t)PDiD
T
i Px(t) + ε4jPDjD

T
j Px(t)

+ ε−1
4i xT (t − σ(t))ET

diEdix(t − σ(t)) + ε−1
4j xT (t − σ(t))ET

djEdjx(t − σ(t))

+ xT (t)PAdix(t − σ(t))ET
djEdjx(t − d(t)) + xT (t − σ(t))AT

diPx(t) + xT (t

− σ(t))AT
djPx(t) +

2
1 − β

xT (t)R1x(t) − 2
1 − β

xT (t − σ(t))R1x(t − σ(t)).
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From the properties of quadratic form, the above formulae will lead to

dV (x(t))
dt

=
r∑

i=1

h2
i (ϑ(t))

[
x(t)
x(t − d(t))

]T [
Π1 PAdi

AT
diP Λ1

] [
x(t)
x(t − d(t))

]

+
r∑

i<j

hi(ϑ(t))hj(ϑ(t))
[

xT (t) xT (t − d(t))
]

×
[

Π2 PAdi + PAdj

AT
diP + AT

djP Λ2

] [
x(t)
x(t − d(t))

]
.

So far, if inequalities (8) hold, there exists dV (x(t))/dt < 0, and the closed-
loop control system (7) will asymptotically stable. This completes the proof.

Next, non-fragile robust H∞ fuzzy controller is presented for the system (7)
with external disturbances based on Theorem 1.

Theorem 2. Consider uncertain nonlinear descriptor system with time-varying
delays (7). (5) is non-fragile robust H∞ fuzzy controller for the system (7), if
there exist matrices Mi, symmetric positive definite matrix N , U such that

NET = EN ≥ 0,

⎡

⎣
Ω11 Ω12 0
∗ Ω22 Ω23

∗ ∗ −ε4iI

⎤

⎦ < 0,

⎡

⎣
Υ11 Υ12 0
∗ Υ22 Υ23

∗ ∗ Υ33

⎤

⎦ < 0, (11)

hold, where

Ω11 = AiN + BiMi + NAT
i + MT

i BT
i +

U

1 − β
+ (ε1i + ε3i · ε2i + ε4i)DiD

T
i ,

Ω12 = [ AdiN B2i NET
1i + MT

i ET
2i NET

Ki NCT ],

Ω22 = −diag{ U
1−β , γ2I, ε1iI, ε2iI, I },

ΩT
23 =

[
EdiN 0 0 0 0

]
;

Υ11 = AiN + BiMj + NAT
i + MT

j BT
i + AjN + BjMi + NAT

j + MT
i BT

j

+
2U

1 − β
+ (ε1ij + ε2ij · ε3ij + ε5ij · ε6ij + ε4ij + ε4i)DiD

T
i + ε4jDjD

T
j ,

Υ12 =
[

(Adi + Adj)N B2i + B2j NET
1i + MjE2i NET

1j + MT
i ET

2j

NET
Kj NET

Ki NE
]
,

Υ22 = −diag
{

2U

1 − β
, 2γ2I, ε1ijI, ε4ijI, ε2ijI, ε5ijI,

1
2
I

}
,

ΥT
23 =

[
EdiN 0 0 0 0 0 0
EdjN 0 0 0 0 0 0

]
, Υ33 = −diag {ε4iI, ε4jI} .
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Proof. First, let

Γ = (Ai + ΔAi)x(t) + (Adi + ΔAdi)x(t− d(t)) + (Bi + ΔBi)(Ki + ΔKi)x(t),

then we have

J =
∫ ∞

0

{zT (t)z(t) − γ2ωT (t)ω(t)}dt

≤
∫ ∞

0

{zT (t)z(t) − γ2ωT (t)ω(t) +
dV (x(t))

dt
}dt

=
∫ ∞

0

{
r∑

i<j

hi(ϑ(t))hj(ϑ(t))ξT (t)Φ2ξ(t) +
r∑

i=1

h2
i (ϑ(t))ξT (t)Φ1ξ(t)}dt,

where ξ(t) =
[

xT (t) xT (t − σ(t)) ωT (t)
]T , Π1 = Π̃1 + CT C and Π2 =

Π̃2 + 2CT C.
If there exist Φ1 < 0 and Φ2 < 0, then J ≤ 0, which implies that ‖z(t)‖2 ≤

γ ‖ω(t)‖2, for any ω(t) ∈ L2 [0, ∞). The closed-loop system (7) is asymptotically
stable with disturbance attenuation γ according to definition 2 in section 2. Then,
to make the make the results solvable by convex optimization method, we mul-
tiply the resulting inequalities Φ1 < 0 and Φ2 < 0 with Θ = diag(P−1, P−1, I)
both left and right side, respectively. Introduce new variables N = P−1, Mi =
KiP

−1 and U = NR1N . Then, we obtain

⎡

⎣
χ̃ii ∗ ∗

NAT
di Λ̂1 ∗

BT
2i 0 −γ2I

⎤

⎦ < 0,

⎡

⎣
χ̃ij ∗ ∗

N(AT
di + AT

dj) Λ̂2 ∗
BT

2i + BT
2j 0 −2γ2I

⎤

⎦ < 0, (12)

where

χ̃ii = AiN + BiMi + NAT
i + MT

i BT
i +

U

1 − β
+ (ε1i + ε3i · ε2i

+ ε4i)DiD
T
i + ε2iBi(I − ε3i(E2iHi)T (E2iHi))−1BT

i + ε−1
1i (E1iN

+ E2iMi)T (E1iN + E2iMi) + ε−1
2i NET

KiEKiN + NCT CN,

χ̃ij = AiN + BiMj + NAT
i + MT

j BT
i + AjN + BjMi + NAT

j

+ MT
i BT

j +
2U

1 + β
+ (ε1ij + ε2ij · ε3ij + ε5ij · ε6ij + ε4ij

+ ε4i)DiD
T
i + ε4jDjD

T
j + ε2ijBi(I − ε−1

3ij(E2iHj)T (E2iHj))−1BT
i

+ ε5ijBj(I − ε−1
6ij(E2jHi)T (E2jHi))−1BT

j + ε−1
1ij(E1iN + E2iMj)T

× (E1iN + E2iMj) + ε−1
4ij(ε1jN + ε2jMi)T (ε1jN + ε2jMi)

+ N(ε−1
2ijE

T
KiEKj + ε−1

5ijE
T
KiEKi + 2CT C)N,

Λ̂1 = ε−1
4i NET

diEdiN − 1
1 − β

NR1N,
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Λ̂2 = ε−1
4i NET

diEdiN + ε−1
4j NET

djEdjN − 2
1 − β

NR1N.

Then, multiply the resulting inequalities (12) with Θ = diag(P−1, P−1, I) both
left and right side, respectively. Introduce new variables N = P−1, Mi = KiP

−1

and U = NR1N . However, the conditions are not jointly convex in Mis and N
in Theorem 1. Therefore, Schur complement is applied to the obtained matrix
inequalities. Then, the LMIs in 11 can be obtained. This completes the proof.

4 Numerical Example

To demonstrate the use of our method, we consider a nonlinear descriptor system
with time-varying delays approximated by using the following IF-THEN fuzzy
rules:

IF x1(t) is P, THEN
Eẋ(t) = (A1 +ΔA1)x(t)+(Ad1 +ΔAd1)x(t−σ(t)) +(B1+ΔB1)u(t)+B11ω(t);

IF x1(t) is N, THEN
Eẋ(t) = (A2 +ΔA2)x(t)+(Ad2 +ΔAd2)x(t−σ(t)) +(B2+ΔB2)u(t)+B11ω(t);

where the membership functions of ‘P’, ‘N’ are given as follows

M1(x1(t)) = 1 − 1
1 + exp(−2x1)

, M1(x1(t)) = 1 − M1(x1(t)) (13)

The uncertainties ΔAi, ΔAdi and ΔBi are assumed to have the form of (2).
Then, the relevant matrices in the T-S fuzzy model are given as follows

E =
[

1 0
0 0

]
, A1 =

[ −1 0.4
0 −0.5

]
, Ad1 =

[
0.3 −0.4
0 0

]
, B1 =

[
0
0.1

]
,

B11 =
[

0
1

]
, A2 =

[ −0.5 0
0.5 −1

]
, Ad2 =

[
0.4 0
0.4 0.3

]
, B2 =

[
0
0.5

]
,

B11 =
[

0
1

]
, D1 =

[
0.1
0.2

]
, D2 =

[
0.1
0.5

]
, E11 = E12 =

[
1 0

]
,

Ed1 = Ed2 =
[

0.1 0
]
, E21 = 0.3, E22 = 0.2, F1(t) = F2(t) = sin(t),

H1 = H2 = 0.5, EK1 = EK2 =
[

0.5 0.5
]
, φ(t) =

[
et+1 0

]T
,

and σ(t) = h sin t. In Theorem 2, we choose the scalar coefficients εci = εdij =
1, 1≤ c ≤4, 1≤ d ≤6. By using Matlab LMI Control Toolbox, positive definite
matrices P , R1 and feedback gain Kis can be obtained as follows

P =
[

5.8860 3.0870
3.0870 3.1162

]
, R1 =

[
1.0412 0.7638
0.7638 1.5298

]
,

K1 = [-0.47855 -0.76740] , K2 = [-0.97124 -1.1999] .
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5 Conclusions

In this paper, non-fragile robust H∞ fuzzy controller design has been addressed
for a class of nonlinear descriptor systems with time-varying delays via fuzzy
interpolation of a series of linear systems. The fuzzy controller is reduced to
the solution of a set of LMIs, which make the design much more convenient.
Furthermore, an example has demonstrated the use of the proposed fuzzy model-
based controller.
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