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Abstract. Volatility clustering degrades the efficiency and effectiveness of time 
series prediction and gives rise to large residual errors. This is because volatility 
clustering suggests a time series where successive disturbances, even if uncorre-
lated, are yet serially dependent. To overcome volatility clustering problems, an 
adaptive neuro-fuzzy inference system (ANFIS) is combined with a nonlinear 
generalized autoregressive conditional heteroscedasticity (NGARCH) model 
that is adapted by quantum minimization (QM) so as to tackle the problem of 
time-varying conditional variance in residual errors. The proposed method sig-
nificantly reduces large residual errors in forecasts because volatility clustering 
effects are regulated to trivial levels. Two experiments using real financial data 
series compare the proposed method and a number of well-known alternative 
methods. Results show that forecasting performance by the proposed method 
produces superior results, with good speed of computation. Goodness of fit of 
the proposed method is tested by Ljung-Box Q-test. It is concluded that the 
ANFIS/NGARCH composite model adapted by QM performs very well for im-
proved predictive accuracy of irregular non-periodic short-term time series 
forecast and will be of interest to the science of statistical prediction of time  
series. 

1   Introduction 

In practice, predictions are obtained by extrapolating a value at the next time instant 
based on a prediction algorithm [1]. The autoregressive moving-average (ARMA) is a 
traditional method very suitable for forecasting regular periodic data like seasonal or 
cyclical time series [2]. On the other hand, ARMA does not work well on irregular or 
non-periodic data sequences such as international stock prices or future volume indi-
ces [3]. This is because ARMA lacks a learning mechanism and cannot tackle large 
fluctuations in a complex time series. In particular, the back-propagation neural  
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network (BPNN) [4] and radial basis function neural network (RBFNN) [5] has been 
successfully applied to time series forecasting but requires a large amount of pat-
tern/target training data to capture the dynamics of the time series. An alternate pre-
dictor, the grey model [6], has been widely applied to non-periodic short-term fore-
casts and however commonly encounters the overshoot phenomenon [1] whereby 
huge residual errors emerge at the inflection points of a data sequence. The adaptive 
neuro-fuzzy inference system (ANFIS) [7] has been widely applied to random data 
sequences with highly irregular dynamics [8] [9], e.g. forecasting non-periodic short-
term stock prices [1]. However, volatility clustering effects [10] in the data sequence 
prevent ANFIS from reaching desired levels of accuracy. Further, a revised version of 
GARCH called a nonlinear generalized autoregressive conditional heteroscedasticity 
(NGARCH) [11] was presented for resolving volatility clustering effects. To do so, an 
adaptation called quantum minimization (QM) [12] is applied to adapt the coefficients 
of a linear combination of ANFIS and NGARCH so that large residual error is com-
pensated by NGARCH and near-optimal solutions can be obtained. 

2   ANFIS/NGARCH Composite Model Resolving Volatility 
Clustering 

2.1   NGARCH Resolving Volatility Clustering 

ARMAX(r,m,Nx) [13] encompasses autoregressive (AR), moving-average (MA) and 
regression (X) models, in any combination, as expressed below 
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where armaxC  = a constant coefficient, armax
iR = autoregressive coefficients, armax

jM = 

moving average coefficients, )(teresid = residuals, )(tyarmax = responses, armax
kβ = 

regression coefficients, X = an explanatory regression matrix in which each column 
is a time series and ),( ktX  denotes a element at the t th row and k th column of input 

matrix. 
NGARCH(p,q) [11] describes nonlinear time-varying conditional variances and 

Gaussian residuals )(teresid . Its mathematical formula is  
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where ngK  = a constant coefficient, ng
iG = linear-term coefficients, ng

jA  = nonlinear-

term coefficients, ng
jC  = nonlinear-term thresholds, )(2 tntvcvσ  = a nonlinear time-

varying conditional variance and )( jteresid −  = j-lag Gaussian distributed residual in 

ARMAX. 
In the presence of conditional heteroscedasticity, this composite model can per-

form ARMAX and NGARCH separately over every period in a time series. For sim-
plicity as employed in [14], it is possible to merge the outputs of ARMAX and 
NGARCH linearly to attain better results as 

              )()())(),(()( 21 tyCftyCftytyfty NGARCHARMAXNGARCHARMAXModelComposite ⋅+⋅==           (3) 

where f  is defined as a linear function of ARMAX and NGARCH outputs, 
)(tyARMAX  and )(tyNGARCH . 1Cf  and 2Cf  in Eq. (3) are the coefficients of a linear com-

bination of ARMAX and NGARCH outputs. The resulting residual )(tyNGARCH  at 

time t  is obtained from a product of )(2 tntvcvσ  in Eq. (2) and a normalized random 

number )1(randn  where 1)1(0 ≤≤ randn . 

2.2   ANFIS Coordinated with NGARCH to Improve Regression 

ARMAX cannot fit data sequences very well for irregular or non-periodic time series 
due to the lack of a dynamic learning mechanism. So, we propose an improved ap-
proach, i.e. to replace ARMAX with ANFIS for the conditional mean component of 
composite model because ANFIS has its own self-adaptive learning ability to fit ir-
regular or non-periodic time series. This proposed composite model is rewritten as 
ANFIS/NGARCH. Formulation of the linear combination [14] is expressed as 

   )()())(),(()( 21 tyCoeftyCoeftytygty NGARCHANFISNGARCHANFISModelCompositeProposed ⋅+⋅==    (4) 

where g  is defined as a linear function of the ANFIS and NGARCH outputs, respec-
tively, )(tyANFIS  and )(ty NGARCH , while 1Coef  and 2Coef  are respectively the coeffi-

cients of the linear combination of the ANFIS and NGARCH outputs. 
A novel adaptation mechanism, called quantum minimization (QM) [12], is pre-

sented in the next section and will be exploited to search for optimal or near-optimal 
coefficients 1Coef  and 2Coef  in Eq. (4). 

3   Quantum Minimization Adapting ANFIS/NGARCH 

3.1   Quantum Exponential Searching Algorithm 

As reported in [15], we assume in this section that the number t of solutions is known 
and that it is not zero. Let { }1)(| == iFiA  and { }0)(| == iFiB . 

Step 1: For any real numbers k  and l  such that 1)( 22 =−+ ltNtk , redefine 
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A straightforward analysis of Grover's algorithm shows that one iteration trans-
forms 〉Ψ ),(| lk  into 
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Step 2: This gives rise to a recurrence similar to the iteration transforms in Grover's 
algorithm [16], whose solution is that the state 〉Ψ ),(| jj lk  after j  iterations is 

given by 
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where the angle θ  is so that Nt=θ2sin  and 20 πθ ≤< . 

3.2   Quantum Minimum Searching Algorithm 

We second give the minimum searching algorithm [12] in which the minimum 
searching problem is to find the index i  such that ][iT  is minimum where ]1,...,0[ −NT  
is to be an unsorted table of N  items, each holding a value from an ordered set.  

Step 1: Choose threshold index 10 −≤≤ Ni  uniformly at random. 
Step 2: Repeat the following stages (2a and 2b) and interrupt it when the total running 

time is more than NN 2lg4.15.22 + . Then go to stage (2c). 

(a) Initialize the memory as ∑ 〉〉
j

ij
N

||
1 . Mark every item j  for which 

][][ iTjT < . 
(b) Apply the quantum exponential searching algorithm [15]. 
(c) Observe the first register: let 'i  be the outcome. If ][][ ' iTiT < , then set 

threshold index i  to 'i . 
Step 3: Return i  
This process is repeated until the probability that the threshold index selects the mini-
mum is sufficiently large. 

3.3.   QM-AFNG Forecasting Based on Signal Deviation 

Single-step-look-ahead prediction, as shown in Fig. 1 and Fig. 2, can be arranged by 
adding the most recent predicted signal deviation )1(ˆ +koδ  of Eq. (5) to the observed 
current output )(ko . 

                        ))(),...,1(),(),(),...,1(),(()1(ˆ skoδkoδkoδskokokohkoδ −−−−=+                   (5) 

                                                 )1(ˆ)()1(ˆ ++=+ koδkoko                                                (6) 

Based on the QM-AFNG structure, one can form the function p  of the ANFIS output, 
)1(ˆ +koanfisδ , and the square-root of NGARCH’s output, )1(ˆ +koδσ , as presented below 

and shown in Fig. 1.  
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Fig. 1. Diagram of QM adapting ANFIS/NGARCH outputs (denoted as QM-AFNG) 

                                           ))1(ˆ),1(ˆ()1(ˆ ++=+− kσkoδpkoδ oanfisafngqm δ                                (7) 

A weighted-average function is assumed to combine both )1(ˆ +koanfisδ  and )1(ˆ +koδσ  to 

attain a near-optimal result )1(ˆ +− ko afngqmδ . 
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Here, the linear combination of two nonlinear functions, )1(ˆ +koanfisδ  and )1(ˆ +koδσ , 

can also optimally approximate an unknown nonlinear target )1(ˆ +− ko afngqmδ . Let 
T

ngarchanfisafng wwW ][=  denote a weight-vector of anfisw  and ngarchw . A digital cost-

function (DCF) [17] is defined as 
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.Const : a constant, 
which can be used for measuring the accuracy when the respected cost is minimized. 
Quantum minimization mentioned above is employed for adapting the appropriate 
weights, anfisw  and ngarchw , for the forecast )1(ˆ +koanfisδ  and )1(ˆ +koδσ  as per Eq. (8), 

respectively. Quantum minimization gives an order of computational cost as )( NO . 
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Fig. 2. Prediction using QM-AFNG system 

4   Experimental Results and Discussions 

In order to justify reasonable accuracy for a time series forecast, four well-known 
criteria [18] are commonly utilized. The terminology of these criteria is indicated as: 
(a) mean absolute deviation (MAD); (b) mean absolute percent error (MAPE); (c) 
mean squared error (MSE); (d) Theil’U inequality coefficient (Theil’U). 
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where l  = the number of periods in forecasting, ct  = the current period, ttc
y +  = a 

desired value at the ttc + th period and ttc
y +ˆ  = a predicted value at the ttc + th period. 

As shown in Figs. 3 to 8, with a sliding widow size of 7 data points, the forecasting 
abilities of our proposed method and several alternative methods are compared in 
experiments The alternative methods used are grey model (GM), auto-regressive 
moving-average (ARMA), back-propagation neural network (BPNN), 
ARMA/NGARCH composite model (ARMAXNG), adaptive neuro-fuzzy inference 
system (ANFIS), and the ANFIS/NGARCH composite model adapted by quantum 
minimization (QM-AFNG). Single-step-look-ahead prediction methodology is em-
ployed in all experiments. In single-step-look-ahead design, a small number of the 
most recent observed data are collected as a sliding window (i.e. data queue) for mod-
eling an intermediate predictor to predict the next period output. Once the next pe-
riod’s sampled datum is obtained, we drop a datum at the bottom of the data queue 
and add the most recent sampled datum into the data queue at the top position, 
thereby forming the new data queue used for the next prediction. This process contin-
ues until the task is terminated. To simplify comparison of the tested methods as plot-
ted curves, only the three most representatives are shown in the figures. Thus GM, 
ARMA and the proposed QM-AFNG are illustrated in Figs. 3 to 8, where “ • ” repre-
sents the sequential output of GM prediction, “ ” represents the sequential output of 
ARMA prediction and “ −∗− ” represents the sequential output of QM-AFNG predic-
tion. All six methods, however, are compared for goodness-of-fit in Tables 1 to 8. 

First, the forecast of international stock price indices of four markets (New York 
Dow-Jones Industrials Index, London FTSE-100 Index, Tokyo Nikkei Index, and 
Taipei Taiex Index) [19] are shown in Figs. 3 to 6. In addition, this study shows per-
formance evaluation based on (a) mean absolute deviation (MAD), (b) mean absolute 
percent error (MAPE) ×100, (c) mean squared error (MSE) (unit=105), and (d) 
Theil’U inequality coefficient (Theil’U) between the actual sampled values and the 
predicted results of international stock price monthly indices over 48 months from 
Jan. 2002 to Dec. 2005. Forecasting performance of all six methods is summarized in 
Tables 1 to 4, showing QM-AFNG obtains the best prediction results. The goodness 
of fit of QM-AFNG prediction modeling for the four markets is tested by Ljung-Box 
Q-test [20] with p-values of 0.5082, 0.3239, 0.4751 and 0.3702, where each p-value is 
greater than the level of significance (0.05).  

Second, Figs 7 and 8 show the comparative forecasts of the equity volume index 
futures and options over 24 months (Jan. 2001 to Dec. 2002) as quoted from the Lon-
don International Financial Futures and Options Exchange (LIFFE) [21]. Performance 
evaluation is again made on the basis of MAD, MAPE, MSE, and Theil’U between 
the actual and predicted values. Tables 5 to 8 summarize prediction performance of  
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our alternative methods and shows that QM-AFNG achieves superior results. The 
goodness of fit of QM-AFNG prediction modeling for futures and options is also 
tested by Ljung-Box Q-test with p-values of 0.2677 and 0.1523, in which each p-
value is greater than level of significance (0.05). 

Table 1. The comparison between different prediction models based on Mean Absolute Devia-
tion (MAD) on international stock price monthly indices 

Mean Absolute Deviation 

Methods New York 
D.J. Industrials 

Index 

London 
FTSE-100 

Index 

Tokyo 
Nikkei 
Index 

Taipei 
TAIEX 
Index 

Average 

GM 340.5970 153.8277 477.2157 355.1361 331.6941 
ARMA 339.7215 153.7628 439.8190 321.1152 313.6046 
BPNN 279.1350 134.5064 453.7069 277.5879 286.2341 

ARMAXNG 320.7695 152.3504 437.0319 317.9291 307.0202 
ANFIS 284.5725 145.3118 441.5919 296.1719 291.9120 

QM-AFNG 274.8238 125.3910 430.0475 269.3103 274.8932 

Table 2. The comparison between different prediction models based on Mean Absolute Percent 
Error (MAPE) on international stock price monthly indices 

Mean Absolute Percent Error (unit=10-2) 

Methods New York 
D.J. Industrials 

Index 

London 
FTSE-100 

Index 

Tokyo 
Nikkei 
Index 

Taipei 
TAIEX 
Index 

Average 

GM 3.65 3.54 4.49 6.49 4.54 
ARMA 3.61 3.53 4.14 5.81 4.27 
BPNN 2.98 3.06 4.19 5.05 3.82 

ARMAXNG 3.52 3.50 4.12 5.77 4.23 
ANFIS 3.06 3.31 4.13 5.40 3.98 

QM-AFNG 2.83 2.97 4.05 4.93 3.70 

Table 3. The comparison between different prediction models based on Mean Squared Error 
(MSE) on international stock price monthly indices 

Mean Squared Error (unit=105) 

Methods New York 
D.J. Industrials 

Index 

London 
FTSE-100 

Index 

Tokyo 
Nikkei 
Index 

Taipei 
TAIEX 
Index 

Average 

GM 1.9582 4.0063 3.2209 1.7472 2.7332 
ARMA 1.8230 3.8832 2.9384 1.4737 2.5296 
BPNN 1.2652 3.0656 3.0189 1.0461 2.0990 

ARMAXNG 1.8170 3.8527 2.9193 1.4772 2.5166 
ANFIS 1.3550 3.8494 2.8912 1.1683 2.3160 

QM-AFNG 1.1784 2.9536 2.7689 1.0113 1.9781 

Table 4. The comparison between different prediction models based on Theil’U Inequality 
Coefficient (Theil’U) on international stock price monthly indices 

Theil’U Inequality Coefficient 

Methods New York 
D.J. Industrials 

Index 

London 
FTSE-100 

Index 

Tokyo 
Nikkei 
Index 

Taipei 
TAIEX 
Index 

Average 

GM 0.0435 0.0414 0.0501 0.0721 0.0518 
ARMA 0.0420 0.0408 0.0479 0.0662 0.0492 
BPNN 0.0349 0.0362 0.0485 0.0558 0.0439 

ARMAXNG 0.0409 0.0406 0.0477 0.0663 0.0489 
ANFIS 0.0362 0.0411 0.0475 0.0590 0.0460 

QM-AFNG 0.0331 0.0351 0.0463 0.0545 0.0423 
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Table 5. The comparison between different prediction models based on Mean Absolute Devia-
tion (MAD) on futures and options volumes monthly indices of equity products 

Mean Absolute Deviation 

Methods Futures Index 
of 

Equity Products 

Options Index 
of 

Equity Products 
Average 

GM 0.2607 0.0957 0.1782 
ARMA 0.1935 0.1198 0.1567 
BPNN 0.1022 0.0746 0.0884 

ARMAXNG 0.1803 0.0722 0.1263 
ANFIS 0.0851 0.0713 0.0782 

QM-AFNG 0.0704 0.0668 0.0686 

Table 6. The comparison between different prediction models based on Mean Absolute Percent 
Error (MAPE) on futures and options volumes monthly indices of equity products 

Mean Absolute Percent Error 

Methods Futures Index 
of 

Equity Products 

Options Index 
of 

Equity Products 
Average 

GM 0.0441 0.0168 0.0305 
ARMA 0.0328 0.0210 0.0269 
BPNN 0.0172 0.0131 0.0152 

ARMAXNG 0.0305 0.0127 0.0216 
ANFIS 0.0144 0.0125 0.0135 

QM-AFNG 0.0132 0.0109 0.0121 

Table 7. The comparison between different prediction models based on Mean Squared Error 
(MSE) on futures and options volumes monthly indices of equity products 

Mean Squared Error 

Methods Futures Index 
of 

Equity Products 

Options Index 
of 

Equity Products 
Average 

GM 0.0945 0.0138 0.0542 
ARMA 0.0547 0.0114 0.0331 
BPNN 0.0196 0.0087 0.0142 

ARMAXNG 0.0507 0.0096 0.0302 
ANFIS 0.0112 0.0092 0.0102 

QM-AFNG 0.0093 0.0071 0.0082 

Table 8. The comparison between different prediction models based on Theil’U Inequality 
Coefficient (Theil’U) on futures and options volumes monthly indices of equity products 

Theil’U Inequality Coefficient 

Methods Futures Index 
of 

Equity Products 

Options Index 
of 

Equity Products 
Average 

GM 0.0483 0.0191 0.0337 
ARMA 0.0303 0.0332 0.0318 
BPNN 0.0220 0.0152 0.0186 

ARMAXNG 0.0368 0.0183 0.0276 
ANFIS 0.0166 0.0155 0.0161 

QM-AFNG 0.0152 0.0137 0.0145 
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Fig. 3. Forecasts of monthly New York D.J. 
industry index 

Fig. 4. Forecasts of monthly London FTSE-
100 index 
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Fig. 5. Forecasts of monthly Tokyo Nikkei 
index 

Fig. 7. Forecasts of monthly equity volume 
index futures 
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Fig. 6. Forecasts of monthly Taipei Taiex 
index 

Fig. 8. Forecasts of monthly equity volume 
index options 
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5   Concluding Remarks 

This study has proposed a method that incorporates a nonlinear generalized autore-
gressive conditional heteroscedasticity (NGARCH) into an ANFIS approach so as to 
correct the crucial problem of time-varying conditional variance in residual errors. In 
this manner, large residual error is significantly reduced because the effect of volatil-
ity clustering is regulated to a trivial level. Experimental comparison of a range of 
systems shows that the ANFIS/NGARCH composite model adapted by QM provides 
superior prediction accuracy and good computation speed for irregular non-periodic 
short-term time series forecast. 
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