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Abstract. This paper establishes a new metric space for the cluster-
ing problems. The neighbors on the object set induced by the topology
molecular lattice on ∗EI algebra are given and a new distance based
on the neighbors is proposed. In the proposed clustering algorithm, the
Euclidean metric is replaced by the new distance based on the order rela-
tionship of the samples on the attributes. As a result, using the method
to Iris data we show it has a better result and clearer classification than
the other clustering algorithm based on the Euclidean metric. This study
shows that the AFS topology fuzzy clustering algorithm can obtain an
high clustering accuracy according to order relationship.

1 Introduction

Fuzzy sets and systems has been developed rapidly and applied in many fields
since it was proposed by Prof. Zadeh [1]. However, a fuzzy set is a rather abstract
notion. Fuzzy sets are useful for many purposes, and membership functions do
not mean the same thing at the operational level in each and every context.
We are often perplexed by the problem how to properly determine the mem-
bership function according to the concrete situation. In order to deal with the
above discussed problems, AFS (Axiomatic Fuzzy Set) theory was firstly pro-
posed by Liu in 1995 [4]. In essence, the AFS framework provides an effective
tool to convert the information in the training examples and databases into the
membership functions and their fuzzy logic operations. AFS fuzzy logic can be
applied to the data sets with various data types such as real numbers, Boolean
value, partial order, even human intuition descriptions, which are very difficult
or unsolved for other clustering algorithm such as the fuzzy c-means algorithm
(FCMA) conceived by Dunn [8] and generalized by Bezdek [9] and the fuzzy k
nearest neighbor algorithm, named as k-NN algorithm [10].

We know that human can classify, cluster and recognize the objects in the
ordinary data set X without any metric in Euclidean space. What is human
recognition based on if X is not a subset of some metric space in Euclidean
space? For example, if you want to classify all your friends into two classes
{close friends} and {common friends}. The criteria/metric you are using in the
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process is very important though it may not be based on the Euclidean metric.
In [6, 11], using topological molecular theory, the topological structures on X
induced by the topological molecular lattices generated by some fuzzy sets in
EM have been obtained. This kind topology on X is determined by the original
data and the chosen fuzzy sets in EM . It is an abstract geometry relations among
the objects in X , the interpretations of the special topological structures on the
AFS structures directly obtained by a given data set through the differential
degrees between objects in X. With the topological space on X induced by the
fuzzy concepts, the pattern recognition problems of ordinary data sets can be
studied.

In this paper, we applied the topological structures induced by some concepts
in EM to establish the metric for clustering problems. We study the topology
molecular lattice on ∗EI algebra over some concepts, which based on AFS struc-
ture and AFS algebra, then give the neighbors on the object set reduced by the
topology molecular lattice. We apply the neighbors of the topology to define a
distance to study the fuzzy clustering analysis and the example shows that the
new clustering algorithm is effective.

2 Preliminaries

In this section, we will recall the notations and definitions of AFS theory. AFS
theory is made of AFS structures which is a special kind of combinatorics ob-
ject [20] and AFS algebra which is a family of completely distributive lattices [7].
About the detail mathematical properties of AFS algebras please see [2-6, 11-19].

Definition 1 ([13]). Let ζ be any concept on the universe of discourse X. Rζ

is called a binary relation (i.e., Rζ ⊂ X × X) of ζ if Rζ satisfies: x, y ∈ X,
(x, y) ∈ Rζ ⇔ x belongs to ζ at some degree and the degree of x belonging to ζ
is larger than or equals to that of y, or x belongs to ζ at some degree and y does
not at all.

Definition 2 ([2,3]). Let X be a set and R be a binary relation on X. R is
called a sub-preference relation on X if for x, y, z ∈ X, x �= y, R satisfies the
following conditions:

D5-1. If (x, y) ∈ R, then (x, x) ∈ R;
D5-2. If (x, x) ∈ R and (y, y) /∈ R, then (x, y) ∈ R;
D5-3. If (x, y), (y, z) ∈ R, then (x, z) ∈ R;
D5-4. If (x, x) ∈ R and (y, y) ∈ R, then either (x, y) ∈ R or (y, x) ∈ R.

In addition, ζ is called a simple concept or simple attribute on X if Rζ is a sub-
preference relation on X. Otherwise ζ is called a complex concept or a complex
attribute on X.

Definition 3 ([2,3]). Let X, M be two sets and 2M be the power set of M,
τ : X×X → 2M . (M, τ, X) is called an AFS structure if τ satisfies the following
conditions:
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Table 1. Date Set

sample age weight height male female salary fortune

x1 21 50 1.69 yes no 0 0.000
x2 30 52 1.62 no yes 120 200.000
x3 27 65 1.80 yes no 100 40.000
x4 60 63 1.50 no yes 80 324.000
x5 45 54 1.71 yes no 140 486.940.000

AX1: ∀(x1, x2) ∈ X × X, τ(x1, x2) ⊆ τ(x1, x1);
AX2: ∀(x1, x2), (x2, x3) ∈ X × X, τ(x1, x2) ∩ τ(x2, x3) ⊆ τ(x1, x3).

In addition, X is called universe of discourse, M is called an attribute set and
τ is called a structure.

In practice, we always suppose that every concept in M is a simple concept
on X . We can verify that (M, τ, X) is an AFS structure if τ is defined by

τ(xi, xj) = {m|m ∈ M, (xi, xj) ∈ Rm}, xi, xj ∈ X.

Example 1. Let X = {x1, x2, . . . , x5} be a set of five persons. M = {m1, m2, . . . ,
m7}, where m1=age, m2=weight, m3=height, m4=male, m5=female, m6=salary,
m7=fortune, suppose there exists Table1:

According to Table1 and the preference relations, τ(x1, x1)={age, height, weight,
salary, male}. This indicates that the person x1 has the properties m1, m2, m3,
m4. Similarly for τ(xi, xi), i = 2, . . . , 10. τ(x4, x5) = {m1, m2, m5}. This implies
that the degree of x4 possessing properties m1, m2, m5 is larger than that of
x5 or equal. Similarly for τ(xi, xj), i, j = 1, 2, . . . , 10. It easily verifies that τ
satisfies AX1, AX2 and (M, τ, X) is an AFS structure.

In order to study fuzzy concepts and their topological structure, we introduce
∗EI algebra(∗EI algebra is the opposite of EI algebra).

Definition 4 ([11]). Let M be sets. In general, M is a set of fuzzy or crisp
concepts,

EM∗ = {
∑

i∈I

Ai|Ai ⊆ M, i ∈ I, I is any no-empty indexing set}.

Each
∑

i∈I Ai is an element of EM∗, where
∑

i∈I is just a symbol meaning
that element

∑
i∈I Ai is composed of Ai ⊆ M , i ∈ I separated by symbol “+”.

When I is a finite indexing set,
∑n

i=1 Ai is also denoted as A1 + A2 + · · ·+ An.∑
i∈I Ai represents the same element of EM∗ when these Ai(i ∈ I) are summed

by different orders, for example,
∑

i∈{1,2} Ai = A1 + A2 = A2 + A1.

Definition 5 ([11]). Let M be a non-vacuous set. We define a binary relation
R on EM∗ as follows: ∀∑

i∈I Ai,
∑

j∈J Bj ∈ EM∗,

(
∑

i∈I

Ai)R(
∑

j∈J

Bj) ⇔ ∀Ai(i ∈ I), ∃Bh(h ∈ J)
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such that Ai ⊇ Bh and ∀ Bj(j ∈ J), ∃Au(u ∈ I) such that Bj ⊇ Au. It
is obvious that R is an equivalence relation. We denote EM∗/R as EM . By∑

i∈I Ai =
∑

j∈J Bj, we mean that
∑

i∈I Ai and
∑

j∈J Bj are equivalent under
the equivalence relation R.

Theorem 1 ([11]). Let X1, ..., Xn, M be n + 1 non-empty sets. Then (EM ,
∨, ∧) forms a completely distributive lattice under the binary operations ∨,∧
defined as follows: ∀∑

i∈I Ai,
∑

j∈J Bj ∈ EM,

∑

i∈I

Ai ∧
∑

j∈J

Bj =
∑

k∈I�J

Ck,

∑

i∈I

Ai ∨
∑

j∈J

Bj =
∑

i∈I,j∈J

(Ai ∪ Bj),

where ∀k ∈ I �J (disjoin union of indexing sets I and J), Ck = Ak if k ∈ I and
Ck = Bk if k ∈ J . (EM,∨,∧) is called the ∗EI (expanding one set M) algebra
over M . ∅ are the maximum and M is minimum element of EM .

Theorem 2 ([15,16]). Let M be a set. ∀∑
i∈I Ai ∈ EM, if the operator “ ′ ”

is defined as follows
(
∑

i∈I

Ai)′ = ∧i∈I(∨a∈Ai{a′}),

then “ ′” is an order-reversing involution on ∗EI algebra EM .

3 Fuzzy Clustering Algorithmic Based on Topological
Structure and ∗EI Algebra

In this section, we will discuss the topological molecular lattice structures on ∗EI
algebras; and give the relations of these topological structures. As applications,
we study the topology produced by a family of fuzzy concepts on ∗EI algebras
and apply these to analyze relations among fuzzy concepts. Using these, we
believe that we can study the law of human thinking. The most important fact
is that all these can be operated by computers.

Definition 6 ([6,11]). Let X and M be sets, and (M, τ, X) be an AFS struc-
ture. η ⊆ EM , the ∗EI algebra over M , η is called a closed topology . if∑

m∈M{m}, M ∈ η, and η is closed under finite unions (∨or ∗) and arbitrary
intersections (∧or+). η is called a topological molecular lattice on ∗EI algebra
over M of AFS structure(M, τ, X), denoted as(EM, η) (

∑
m∈M{m} is the min-

imal element, and M is the maximal element).

Definition 7 ([6,11]). Let X and M be sets, and (M, τ, X) be an AFS struc-
ture. η is a topological molecular lattice on ∗EI algebra over M of AFS structure
(M, τ, X). For any x ∈ X,

∑
i∈I Ai ∈ EM , and

∑
i∈I Ai ∈ η we define
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N∑
i∈I Ai

(x) = {y|τ(x, y) ≥
∑

i∈I

Ai}

this is called the neighborhood of x inducing by
∑

i∈I Ai ∈ η.

Nη(x) = {N∑
i∈I Ai

(x)|
∑

i∈I

Ai ∈ η}

is called the neighborhood of x inducing by η.

Theorem 3 ([6,11]). Let X and M be sets, and (M, τ, X) be an AFS structure.
η is a topological molecular lattice on ∗EI algebra over M of AFS structure
(M, τ, X). if

B = {N∑
i∈I Ai

(x)|x ∈ X,
∑

i∈I

Ai ∈ η}

then B is a base for some topology.

The topological space (X, Tη), in which B is a base for, Tη is called the topology
induced by η.

As in example1, we consider the relations among age, height, and weight. Let
η be the topological molecular lattice generated by {m1}, {m2}, {m3}, which are
elements in ∗EI algebra over M . η(m1, m2, m3) consists of the following:

α1 = {m1} + {m2} + {m3}; α2 = {m1} + {m2}; α3 = {m1} + {m3};
α4 = {m2} + {m3}; α5 = {m1}; α6 = {m2}; α7 = {m3};
α8 = {m1, m2} + {m1, m3} + {m2, m3}; α9 = {m1, m2} + {m1, m3};
α10 = {m1, m2} + {m2, m3}; α11 = {m1, m3} + {m2, m3}; α12 = {m1, m2};
α13 = {m1, m3}; α14 = {m2, m3}; α15 = {m1} + {m2, m3};
α16 = {m2} + {m1, m3}; α17 = {m3} + {m1, m2}; α18 = {m1, m2, m3};
α19 = Ø;
Now we consider the base of the topology for{x1, x2, x3, x4, x5}:
Nα1(x1) = {x1, x2, x4}; Nα2(x1) = {x1, x2, x4}; Nα3(x1) = {x1};
Nα4(x1) = {x1, x2, x4}; Nα5(x1) = {x1}; Nα6(x1) = {x1, x2, x4};
Nα7(x1) = {x1}; Nα8(x1) = {x1}; Nα9(x1) = {x1};
Nα10(x1) = {x1}; Nα11(x1) = {x1}; Nα12(x1) = {x1};
Nα13(x1) = {x1}; Nα14(x1) = {x1}; Nα15(x1) = {x1};
Nα16(x1) = {x1, x2, x4}; Nα17(x1) = {x1}; Nα18(x1) = {x1};
Therefore the neighborhoods of x1 induced by η is

Nη(x1) = {{x1, x2, x4}, {x1}};
Similarly, we get the neighborhoods of xi (i = 2....5) induced by η is
Nη(x2) = {{x1, x2, x3, x4}, {x1, x2, x4}, {x1, x2, x3}, {x1, x2}, {x2, x4}, {x2}};
Nη(x3) = {{x1, x2, x3, x4, x5}, {x1, x3}};
Nη(x4) = {{x1, x2, x3, x4, x5}, {x1, x2, x4, x5}, {x4}};
Nη(x5) = {{x1, x2, x3, x4, x5}, {x1, x2, x3, x5}, {x1, x2, x4, x5}, {x1, x2, x5}};
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Definition 8. Let X and M be sets, and (M, τ, X) be an AFS structure. η is a
topological molecular lattice on ∗EI algebra over M of AFS structure (M, τ, X).
if only choose ∧ operation i.e. η∗ is closed under arbitrary intersections. η∗ is
called a intersectant topological molecular lattice on ∗EI algebra over M of AFS
structure (M, τ, X), denoted as (EM, η∗)

As in the example, let η∗ be the intersectant topological molecular lattice gener-
ated by {m1}, {m2}, {m3}, which are elements in ∗EI algebra over M . η∗(m1,
m2, m3) consists of the following:

α5 = {m1}; α6 = {m2}; α7 = {m3}; α12 = {m1, m2};
α13 = {m1, m3}; α14 = {m2, m3}; α18 = {m1, m2, m3};

Definition 9. Let Nη(x) is the neighborhood of x induced by η .

Nxj
xi

= {δ ∈ Nη|xi ∈ δ, xj /∈ δ}.

then the distance from xi to xj is di−j =
∑

δ∈N
xj
xi

|δ|. ( |δ| is the length of
the neighbor, i.e. the number of the topology base which produced the neighbor).
Similarly dj−i =

∑
δ∈N

xi
xj

|δ|, so define the distance between xi and xj is d(i, j) =
(di−j + dj−i)/2.

In example1 the neighbors including x1 but not including x2 are {x1}, {x1, x3},
since the neighbor {x1} is produced by the following 13 base in η(m1, m2, m3) :

Nα3(x1) = {x1}; Nα5(x1) = {x1}; Nα7(x1) = {x1}; Nα8(x1) = {x1};
Nα9(x1) = {x1}; Nα10(x1) = {x1}; Nα11(x1) = {x1}; Nα12(x1) = {x1};
Nα13(x1) = {x1}; Nα14(x1) = {x1}; Nα15(x1) = {x1};Nα17(x1) = {x1};
Nα18(x1) = {x1};
So |{x1}| = 13, similarly |{x1, x3}| = 5, the distance from x1 to x2 is d1−2 =

18. the neighbors including x2 but not including x1 are {x2, x4}, {x2}, the sum
of the length is 5, so the distance from x2 to x1 is d2−1 = 5, then d(1, 2) =
(d1−2 + d2−1)/2 = 11.5.

In the following, we describe the design method:
Let X be the universe of discourse, M be a set of simple features on X.

Step1: Consider the intersectant topological molecular lattice (EM, η∗) gen-
erated by all the correlative concepts Λ ⊆ EM , where Λ is a set of fuzzy sets
which are selected to cluster the objects in X .

Step2: Establish AFS structure (M, τ, X) based on the original data and
facts (refer to Example 1), and then get the neighborhoods Nη(x) induced by
the correlative intersectant topological molecular lattice (refer Definition 7).

Step3: For each x ∈ X , apply Definition 9 to calculate the distance between
the objects, according to the neighborhoods.

Step4: Apply the distance between each x ∈ X to establish the fuzzy relation
matrix M = (mij) on X = {x1, x2, . . . , xn}. Since for any i, j = 1, 2, ..., n,
mij ≤ mii, hence Mk ≤ Mk+1 for any k = 1, 2, .... Therefore exists an integer r
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such that (M r)2 = M r, i.e., fuzzy relation matrix R = M r can yield a partition
tree with equivalence classes.

Step5: Clustering analysis based on the fuzzy relation matrix R.

The distance between objects is defined acorrding to the neighbors induced
by the concepts in Λ, which reflect the relation between the objects consider the
concepts in Λ. We intend to cluster the objects based on the abstract geomet-
rical relations determined by the selected concepts in Λ. The basic idea of the
appraoch is based on the following observation:

(1) If none or few of the neighbors can separate the two objects x, y, then the
distance of x, y is small;

(2) If any or a large numbers of the neighbors can separate the two objects
x, y, then the distance of x, y is large;

(3) If the big neighbor can separate the two objects x, y, then the distance is
large.

4 Example

In this section, we apply the AFS topology clustering algorithm to Fisher Iris
data, which is well known to the pattern recognition community. The data set
contains 150 patterns for 3 classes, each class has 50 instances, each class refers
to a type of Iris plant. One class is linearly separable from other two but the
latter are not linearly separable from each other. Patten classes are Iris-Setosa,
Iris-Versicolor and Iris-Virginica. The four features of ordinal variables involved
are the sepal length, sepal width, petal length, and petal width, respectively.

Let X = {x1, x2, · · · , x150}. From x1 to x50 are “Iris-Setosa”, from x51 to
x100 are “Iris-Versicolor”, and from x101 to x150 are “Iris-Virginica”. In or-
der to acquire more information from the original data, we expand the orig-
inal four features to eight. Let M be a set of simple attributes on X , M =
{m1, m

′
1, m2, m

′
2, m3, m

′
3, m4, m

′
4}, where m1 =sepal length, m

′
1 =sepal short,

m2 =sepal width, m
′
2 =sepal narrow, m3 =petal length, m

′
3 =petal short,

m4 =petal width, m
′
4 =petal narrow.

Step1:
Let Λ = {m1, m

′
1, m2, · · · , m′

4} ⊆ EM . Then calculate the intersectant topo-
logical molecular lattice (EM, η∗) generated by the concepts in Λ.

Since the intersect between the correlative concepts and their negation is
near empty, hence we can ignore the neighbors induced by the concepts such as
mi ∧m′

i, i = 1, 2, 3, 4. Thus the neighbor system of the topology induced by the
concepts in Λ can be reduced greatly.

Step2:
Establish AFS structure (M, τ, X) based on X = {x1, x2, · · · , x150} and M =

{m1, m
′
1, m2, · · · , m′

4}, and get the neighborhoods of x induced by η∗(m), which
denoted as Nη∗(m)(xi) (refer to Definition 7).

Step3:
Calculate the distance between X = {x1, x2, · · · , x150}, establish distance

matrix:
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D = (dij) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 749 · · · 1727 1577 · · · 1967.5 2023.5 · · · 1849
0 · · · 1843 1707 · · · 2152.5 2161 · · · 1625

. . .
...

...
...

...
...

...
...

0 413 · · · 971.5 1236.5 · · · 992
0 · · · 919.5 1156.5 · · · 851

. . .
...

...
...

...
0 1146 · · · 943.5

0 · · · 517.5
. . .

...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step4:
Standardize these distance:

d∗(i, j) = d(i, j)/max(d(:, j)),

then get the similar relation:

N(xi, xj) = 1 − d∗(xi, xj).

Transforming the similarity matrix into its transitive closure, the fuzzy equiva-
lent matrix as follows, which can yield a partition tree with equivalence classes:

R =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.8758 · · · 0.7242 0.7242 · · · 0.7242 0.7242 · · · 0.7242
1 · · · 0.7242 0.7242 · · · 0.7242 0.7242 · · · 0.7242

. . .
...

...
...

...
...

...
...

1 0.8568 · · · 0.8408 0.8408 · · · 0.8408
1 · · · 0.8408 0.8408 · · · 0.8408

. . .
...

...
...

...
1 0.8454 · · · 0.8425

1 · · · 0.8425
. . .

...
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We have validated that R2 = R.
According to different thresholds, we get dynamic cluster results, and finally

the most accurate result is when threshold λ = 0.8409, the result we got is accord
with the nature the Iris have.

When threshold λ = 0.8409, cluster one is:
x1, . . . , x22, x24, . . . , x41, x43, . . . , x50.
cluster two is:
x51, . . . , x68, x70, x72, x74, . . . , x77, x79, . . . , x83, x85, . . . , x87, x89, . . . , x100.
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cluster three is:
x69, x71, x73, x78, x84, x88, x101, . . . , x106, x108, x111, . . . , x117, x119, . . . , x131,
x133, x134, x136, . . . , x150.

There are two classifying errors in the class “Iris-Setosa”; there are six patterns
in class “Iris-Versicolor” distributed to class “Iris-Virginica”, and there are six
patterns away from class “Iris-Virginica”, i.e. total 14 classification errors. The
clustering accurate rate is 90.67%.

We apply Euclidean metric for traditional algorithm to establish distance
matrix[21] and transform it into its transitive closure, the most accurate result
is when threshold λ = 0.94182, total 29 patterns were error, clustering accurate
rate is 80.67%. Using the function kmeans in MATLAB toolbox for the iris-data,
which is based on the well known k-mean clustering algorithm, the clustering
accuracy rate is 89.33%. And Using the function fcm in MATLAB toolbox for the
iris-data, which is based on the well known fuzzy c-mean clustering algorithm,
the clustering accuracy rate is also 89.33%.

5 Conclusion

In this paper, we established metric space based on the topological structures
induced by the involved fuzzy concepts in the AFS framework, proposed measure
for membership functions and got the fuzzy similarity relations on X , then ap-
plied the measure to study the clustering analytic problems. The AFS topology
clustering algorithm is applied to the well known iris-data, and an high clus-
tering accurate rate is achieved. By the comparison of the accuracy with the
current fuzzy clustering algorithm, such as c-means fuzzy algorithm, k-nearest-
neighbor fuzzy algorithm, and Euclidean metric transitive closure algorithm, one
can observe that:

(1) The performance of our algorithm is quite well;
(2) The clustering algorithms based on the topological distance are more sim-

ple and understandable, they needn’t repeat to convergence;
(3) The attributes of objects in it can be various data types or sub-preference

relations, even human intuition descriptions. But both k-mean, fuzzy c-mean
algorithms and other current fuzzy clustering algorithm can only be applied to
the data sets with numerical attributes;

(4) The cluster number or the class label need not be given beforehand.

From these results, we can conclude that the performance of our proposed
algorithm is comparable with many other pattern clustering algorithms and can
be treated as one of the most suitable clustering algorithm.
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