
Theory Research on a New Type Fuzzy

Automaton

QingE Wu1, Tuo Wang1, YongXuan Huang1, and JiSheng Li1

School of Electronic and Information Engineering Xi’an Jiao Tong University,
Xi’an, Shaanxi, 710049, P.R. China

wqe969699@163.com

Abstract. For better solving some complicated problems in fuzzy au-
tomata hierarchy, simultaneously, in order to accomplish better task for
fuzzy signal processing, this paper presents a kind of new automaton–
fuzzy infinite-state automaton. The basic extracted frame of fuzzy
infinite-state automaton is introduced by using neural networks. To the
extracted fuzzy infinite-state automaton, this paper describes that it is
equivalent to fuzzy finite-state automaton, and its convergence and sta-
bility on its hierarchy system will be discussed. Finally, the simulation
is carried on and the simulation results show that the states of fuzzy
infinite-state automaton converge to some stable states with extraction
frame and training for weights what this paper provides at last. Finally,
some problems of fuzzy infinite-state automaton and neural networks to
be solved and development trends are discussed. These researches will
not only extend further automata hierarchy, but also increase a new tool
for application of fuzzy signal processing. It is an important base in the
application of fuzzy automata theory.

1 Introduction

In previous work, we classify the fuzzy automata according to recognizing the
type of the language. Accordingly, fuzzy automata have as well partition ac-
cording to recognizing the feature of the language, and then the automaton
is classified into deterministic automaton and non-deterministic automaton or
fuzzy automaton (FA). The FA is classified into fuzzy finite-state automaton
(FFA) and fuzzy infinite-state automaton (FIA). Non-deterministic automata
and fuzzy automata can be transformed into deterministic automata.

Previously, fuzzy knowledge equivalence representations between neural net-
works, fuzzy systems and models of automata are discussed [1]. From a control
point of view, fuzzy finite-state automata with recurrent neural networks [2-4]
for often imitating fuzzy dynamical systems are very useful. Previously, works
have been shown how FFA can be mapped into recurrent neural networks with
second-order weights using a crisp representation of FFA states [5].

Until present, the automata of fuzzy or defuzzization what we study are all
finite-state automata [6]. However, FIA is not introduced. In this paper, we will
discuss extraction of the FIA by using recurrent neural networks. The equivalence
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of FIA and FFA is described. Since the FFA is equally powerful as the determin-
istic finite-state automaton (DFA), as well as FIA is equivalent to FFA, the FIA
is equivalent to the DFA at last. The convergence and stability of FIA is also
discussed. Some new definitions and theorems are given. Finally, the simulation
results show that the states of FIA converge surely some stable points. Through
these studies in this paper, it not only strengthens the relationship between the
fuzzy systems and hierarchy of fuzzy automata, but also these problems to be
solved will be directly impulse the development of theories and applications of
fuzzy automata, and it will show the further and more spacious prospect in wide
applications. Thus, there will be a theoretic base for extraction and application
of any automata.

2 Preliminary FIA

According to [5], the definition of FFA is introduced as follows:

Definition 2.1. A fuzzy automaton (FA) is named for a fuzzy finite-state au-
tomaton (FFA) M if it consists of a six-tuple M = (Q, Σ, F, Q0, G, V ). Each
factor of the six-tuple denotes respectively as follows:

Where Q is a finite set of states; Σ is a finite set of input alphabet; Q0 ⊆ Q
is a fuzzy set of initial states; G ⊆ Q is a fuzzy set of final states; V ⊆ [0, 1] is a
membership degree set of transition relation; and F ∈ V : Q × Σ × Q → V is a
fuzzy relation between Q, Σ and Q, i.e., F (qi, σ, qj) ∈ V , where qi, qj ∈ Q, σ ∈ Σ.
Then, the fuzzy automaton (FA) is called FFA.

Now, introduce how a FFA accepts the fuzzy language.
For σ∈Σ, denote Fσ ∈V by Fσ(qi, qj)=F (qi, σ, qj). The degree

(
L(FFA)

)
(ω)

that a FFA M accepts a word σ1 · · ·σn ∈ Σ∗ is defined by:
(
L(FFA)

)
(σ1 · · ·σn) = P (q0) ◦ Fσ1 ◦ · · · ◦ Fσn ◦ G(qn)

Where P (q0) and G(qn) are the membership degree in the initial state q0 and
the final state q respectively, and ◦ denotes the max-min composition of fuzzy
relation, i.e., (

L(FFA)
)
(σ1 · · ·σn) =

∨

q0,q1,··· ,qn∈Q

P (q0)
∧

Fσ1(q0, q1)
∧

· · ·
∧

Fσn(qn−1, qn)
∧

G(qn)

L(FFA) in Σ∗ is called the fuzzy language accepted by FFA. L(FFA) denotes
the fuzzy language as follows:

L(FFA) =
{
(ω, μ)|ω ∈ Σ, μ =

∨

i

μi, Fω(q0, qi) = μi ∈ V, ∃qi ∈ G
}

. (1)

Where μ =
∨

i

μi signifies μ is obtained by ’or’ operator of μi.

Definition 2.2. A fuzzy automaton is called a fuzzy infinite-state automaton
(FIA) M if it also consists of a six-tuple M = (Q, Σ, δ, Q0, G, V ). Each factor of
the six-tuple also denotes respectively as follows:
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Where Q is an infinite set of states, Σ is a set of input symbols, Q0 ⊆ Q is a fuzzy
set of initial states, G ⊆ Q is a fuzzy set of final states, V ⊆ [0, 1] is a membership
degree set of transition function, and V is an infinite set, simultaneously, for any
μ ∈ V , δ : Q × Σ

µ→ Q is a transition function, i.e., δ(qi, a, μ) = {qj}, where
qi, qj ∈ Q, a ∈ Σ∗, μ ∈ V . Finally, the Gμ(q) denotes the fuzzy membership
degree μ ∈ V at final state q ∈ G. Then, the FA is called the FIA.

Similarly, introduce how a FIA accepts the fuzzy language.
The degree

(
L(FIA)

)
(σ1 · · ·σn) that a FIA M accepts a word σ1 · · ·σn ∈ Σ∗

is defined by
(
L(FIA)

)
(σ1 · · ·σn) = Gμ

(
δ(q0, σ1 · · ·σn, μ)

)
, where q0 ∈ Q0, μ ∈

V , and where δ(q0, σ1 · · ·σn, μ) = δ
(
δ(q0, σ1, μ1), σ2 · · ·σn, μ2 · · ·μn

)
= · · · =

δ(qn−1, σn, μn) = {qn}, and qi ∈ Q, μi ∈ V , i = 1, · · · , n.
L(FIA) is called a fuzzy language accepted by FIA. The L(FIA) is repre-

sented by the following set and where μ =
∨

ij

μij signifies μ is obtained by ’or’

operator of μij .

L(FIA) =
{

(ω, μ)|ω ∈ Σ∗, μ =
∨

ij

μij , δ(qi, ω, μij) = {qj},

∃qj ∈ G, ∀μij ∈ V, ∀qi ∈ Q0

} (2)

A fuzzy language L is acceptable by a FIA iff, L = L(FIA), for some FIA.

3 Recurrent Neural Network Architecture for FIA

Based on a previous result that we encode FFA into recurrent neural networks
[6], here we use the discrete recurrent neural network structure for mapping FIA
into recurrent networks. The network architecture for extracting FIA is shown
in Fig. 1.

3.1 Basic Structure of Recurrent Networks for FIA

The networks for FIA consist of two parts that are the trained networks and
the extraction networks of FIA respectively. In training layer of networks, the
recurrent neural networks are formed of N recurrent hidden neurons, and N
output neurons, labeled Yj(t), j = 0, 1, · · · , N − 1; M input neurons, labeled
xl(t), l = 0, 1, · · · , M − 1 with some weights ωjl, associated to the links of these
neurons. On extraction layer of networks for FIA, let neurons of extraction layer
be a number of neurons and label L that are infinite, the L competitive neurons
connect with the N output neurons by N∗L weights labeled wij , i = 0, 1, · · · , L−
1, j = 0, 1, · · · , N − 1.

The hidden unit activation function is the sigmoid function f(x) = 1
1+e−x .

The output in training layer is discrete value that is determined by discretization
function D(x), and D(x) is given by the following (3) or (4).

(I) When the membership degree is any variable value in interval [0,1], i.e.,
there is the infinite number of membership degrees: Then, we divide interval
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Fig. 1. Recurrent network architecture for FIA

[0,1]. Since the number of recurrent neuron is N , let us split the N intervals
[0,1] into n(n > 1) coordinate subinterval, and the interval end-point value θs is
obtained, where s = 0, 1, · · · , n. Then, set

D(x) =
θi + θi+1

2
if θi < x � θi+1, i = 0, 1, · · · , n − 1. (3)

Where θ0 = 0, θn = 1, θi = i
n .

(II) Based on statistic knowledge, when membership degree values are close
to the corresponding finite real value {θ0, θ1, · · · , θm−1}, we set

D(x) = θi, if |x − θi| < ε, i = 0, 1, · · · , m − 1; x ∈ V. (4)

Where ε is decided according to our demand, i.e., the final value x of neuron is
close to θi after the whole string has been processed by the network.

For any values θi+θi+1
2 	= 0 and θi+θi+1

2 	= 1 are chosen instead of 0 and 1 here
in order to give some power of influence to each of the current hidden unit values
at the next time step, since a unit with value 0 would eliminate any influence of
that unit.

We use ht
i to denote the analog value of hidden unit i at the time step t, and

St
i to denote the discretized value of hidden unit i at the time step t. ωt

ij is the
weight from unit j of layer 1 to unit i of layer 2 in training layer [6].

The dynamic process of network in training layer is described as follows:

ht
i = f

(∑

j

ωt−1
ij St−1

j

)
, ∀i, t, f(x) =

1
1 + e−x

, St
i = D(ht

i),

where D(x) is obtained by the above equality (3) and (4).
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3.2 Fuzzy States Representation for FIA

The current fuzzy state of FIA is a union of states {qi} with different fuzzy
membership degrees. Consider the state qj of FIA and the fuzzy state transi-

tion δ
(
qj , ak, {θijk}

)
= {qi1, · · · , qir, · · · }, where ak ∈ Σ is an input symbol and

θijk ∈ V is a fuzzy membership degree. We assign the corresponding recurrent
state neuron Sj for state set qj = {qj1, · · · , qjn|n = 1, 2, · · · } of FIA, and the cor-
responding neurons Si1, · · · , Sir for states set qi1, · · · , qir of FIA. The activation
of recurrent state neuron Si represents certainty θijk with some state transition
δ(qj , ak, θijk) = qi, i.e., St+1

i ≈ θijk. If no state can reach qi at time t + 1, then
let St+1

i ≈ 0.

4 Extraction of FIA

To training of networks and extraction algorithm for FFA, see [6,7] for them in
detail. It is similar to Kohonen’s self-organizing feature map (SOFM)[7]. The
extraction for FIA is similar to FFA, but there are some differences between the
two. Here, a part of algorithm way that is different from the one of [6,7] is only
given as follows:

(1) Input a sample signal to networks and train the networks, we obtain an
output vector Y (t), where Y (t) = (St

0, S
t
1, · · · , St

N−1)
T , St

j is an input signal in
extraction layer for ∀t and j ∈ {0, 1, · · · , N − 1}. Let wij(t) be the weights of
connection from training layer, unit j to extracting layer, unit i in the case of
binary inputs, and Let W (t) = (wij) be weights matrix. Regard the output vector
Y (t) as input vector X(t) on extraction layer of FIA; the input X(t) is obtained
from Y (t) with X(t) = (X i

ki
(t))L×1, where several pieces St

j in Y (t) unite and
achieve the vectors X i

ki
(t) = (St

0, S
t
1, · · · , St

ki
)T , 0 � i � L − 1, L = {1, 2, · · · },

0 � j, ki � N − 1.
(2) At first, in the region D of the large range, regulate the weights matrix

W (t). Parameter D will be obtained by trial and error, If the FIA has been
extracted, next task is to check whether it recognizes all the training examples
or not. If the answer is affirmative, we have found an optimal D∗ that we are
looking for. In the case of negative answer, the value of D is decreased for one
unit. Otherwise, the procedure ends. Once the networks of extracting layer are
trained, a unit will represent a state of the FIA. Regulate the weights of the
connecting neurons from training layer to extraction layer with wij(t + 1) =
wij(t) + α(t)

(
St

j − wij(t)
)
, where j ∈ {0, 1, · · · , ki}, 0 � i � L − 1, 0 � ki �

N − 1; 0 � α(t) � 1 is a kind of variable velocity of study, i.e., the more the
difference of the fuzzy membership degree St

j and weight wij(t) is at the moment
t, the bigger the value α(t) is. Assume B = max

i,j
{|St

j − wij(t)|}, and here set,

α(t) =

{ |St
j−wij(t)|

B B 	= 0
0 B = 0

.

(3) There is an index I set that is the number of neuron to participate in
competition at a time in extraction layer, i.e., I ⊂ {0, 1, · · · , L − 1}. If ∀s ∈ I,
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∃i ∈ I, there is ||W i
ki

(t) − X i
ki

(t)||2 = min
s∈I

{||W s
ks

(t) − Xs
ks

(t)||2}, where || • ||2 is

an Euclidean 2-norm, 0 � ki, ks � N−1, W i
ki

(t) = (wi0, wi1, · · · , wiki)T , 0 � i �
L − 1. We obtain the winner unit Ci, then the state of FIA that is extracted is
qi/xi at the moment, where xi is a fuzzy membership degree corresponding to the
state qi and is obtained by labeled xi = St

p, with |wip(t)−St
p| = min

j
{|wij(t)−St

j |}
for any j ∈ {0, 1, · · · , ki}, ∃p ∈ {0, 1, · · · , ki}, 0 � ki � N − 1.

(4) Regulate again the weights to connect the winner node Ci and the weights
to connect the interior node in geometry neighborhood of Ci with wij(t + 1) =
wij(t) + α(t)

(
St

j − wij(t)
)
. The wij(t + 1) has a larger or a smaller regulating

until the wij(t + 1) approaches to the St+1
j in range of error. Therefore there

is ||W i
ki

(t + 1) − X i
ki

(t + 1)||2 � ||W i
ki

(t) − X i
ki

(t)||2. Assume Bi = max
j

{|St
j −

wij(t)|
}
, and set,

α(t) =

{ |St
j−wij(t)|

Bi
Bi 	= 0

0 Bi = 0
.

The procedures of extracting FIA are shown as follows:
1© At time t = 0, initialize S0

0 to be 0.8 and all other S0
j to be 0.2, j 	= 0 in

order to give some power of influence for each of the current hidden unit values
at the next time step. The network weights ω0

jl are initialized randomly with a
uniform distribution from -1 to 1 and ωt

jl are given by trial and error later at time
t 	= 0. Initialize wij(0) randomly and let its value be in [0,1]. According to [6,7],
by competition, the input X(0) activates a unit (j0, h0) at extraction layer, which
is taken as the initial state of the FIA, labeled q(j0,h0)/x0 that is determined by
the vector X i

ki
(0) = (S0

0 , S0
1 , · · · , S0

ki
)T , 0 � i � L − 1, 0 � ki � N − 1, where

x0 = S0
p is a fuzzy membership degree.

2© Starting out from the current activity unit (j, h) associated to state q(j,h)

of FIA at time t. Introduce a previously unprocessed symbol ξl ∈ Σ into the
networks of training layer, and then an input vector X(t) is obtained from pro-
ducing an output vector Y (t) and it activates a winner unit (m, n) that is taken
as the corresponding state of the FIA. Now, a new state q(m,n) in FIA is or isn’t
created, but the associated transition, δ(q(j,h), ξl, μjm,hn) = q(m,n) is created.
Calculate the membership degrees μjm,hn of state transitions by the above (3).

3© The following ξl+1 is introduced into the networks at time t+1. Accordingly,
it also obtains an active unit (m′, n′). Thus, the transition has been created in
the FIA from the activated unit (m, n) to the activated unit (m′, n′).

4© Repeat 2© 3© until all the symbols are processed.

5 Equivalence of FIA

The equivalence of FIA and FFA is discussed as follows:

Theorem 5.1. The FIA is equivalent to FFA.

Proof. Assume FIA MI = (Q, Σ, δ, Q0, G, V ) accepts language L(MI), accord-
ingly, a FFA MF = (QF , Σ, δF , Q0F , GF , VF ) is made.
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Since the V is a membership degree set of any transition and states of FIA,
and the membership degree is from 0 to 1, choose V = [0, 1] for general instance.

When the membership degree is any variable value in interval [0,1], i.e., there
is the infinite number of membership degrees; let us divide the interval [0,1] into
coordinate n(n > 1) subinterval, and the interval end-point value θs is obtained,
where s = 0, 1, · · · , n. Then: μi = θi+θi+1

2 if θi < x � θi+1, i = 0, 1, · · · , n − 1.
Where θ0 = 0, θn = 1, θi = i

n , x ∈ V . We set VF = {μi|i = 0, 1, · · · , n − 1}.

qi =
{
qx

∣∣
∣∃q ∈ Q, ∃i, δ(qx, σ, x) = q, σ ∈ Σ∗, ∀qx ∈ Q,

∀x ∈ V, θi < x � θi+1

}
, i = 0, 1, · · · , n − 1.

(5)

At the same time, we set QF =
n−1⋃

i=0

{
qi

}
if there is a transition δ(qj , σ, xj) = {qi},

where ∀σ ∈ Σ∗, ∀xj ∈ V .
It is obvious that the bigger n is, the more accurate FIA is equal to FFA.
Based on statistic knowledge, when membership degree values are close to the

corresponding finite real value {θ0, θ1, · · · , θm−1}, i.e., |x − θi| < ε, x ∈ V , let
μi = θi, i = 0, 1, · · · , m − 1. At time, we set: VF = {μi|i = 0, 1, · · · , m − 1}.

qi =
{
qx

∣
∣∣∃q ∈ Q, ∃i, δ(qx, σ, x) = q, σ ∈ Σ∗, ∀qx ∈ Q,

∀x ∈ V, |x − θi| < ε
}
, i = 0, 1, · · · , m − 1.

(6)

At the same time, we set QF =
m−1⋃

i=0

{
qi

}
if there is a transition δ(qj , σ, xj) =

{qi}, where ∀σ ∈ Σ∗, ∀xj ∈ V .
Assume l = m or l = n, then the element of the QF is the [q0, q1, · · · , ql−1];

Q0F = [Q0];
l−1⋃

i=0

qi = Q; GF ⊆ QF and each state of the GF is one state subset

of the final states of the MI , i.e., the state of GF is the following set:
qG =

{
qx

∣
∣
∣∃q ∈ Q, ∃i, δ(q, σ, x) = qx, σ ∈ Σ∗, ∀qx ∈ G, ∀x ∈ V,

θi < x � θi+1or|x − θi| < ε
}
. i = 0, 1, · · · , l − 1.

The δF is defined by δF

(
[q0, q1, · · · , ql−1], a, μi

)
= [p0, p1, · · · , pk] iff

δ
(
{q0, q1, · · · , ql−1}, a, x

)
= {p0, p1, · · · , pk} is satisfied, where μi ∈ VF , x ∈ V .

It manifests that δF is obtained by solving δ, i.e.,
l−1⋃

i=0

δ(qi, a, x) = {p0, p1, · · · , pk},
pi⊆ Q (i, k ∈ {0, 1, · · · , l−1}), the subset {p0, p1, · · · , pk} implies [p0, p1, · · · , pk],
i.e., δF

(
[q0, q1, · · · , ql−1], a, μi

)
= [p0, p1, · · · , pk]. It is obvious the [q0, · · · , ql−1]

is the state of the FFA MF .
Now, we prove the equality L(FIA) = L(FFA).
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With regard to the length of the string ω is proved as follows:

δF (q0F , ω, μi) = [q0, q1, · · · , ql−1] ⇐⇒ δ(q0, ω, x) = {q0, q1, · · · , ql−1} (∗)
where μi ∈ VF , x ∈ V .

If |ω| = 0, i.e., ω = ε, there is δF (q0F , ε, 1) = q0F , δ(q0, ε, 1) = {q0}, ∀q0 ∈ Q0,
q0F ∈ Q0F . Since Q0F = [Q0], the conclusion is affirmed.

If |ω| � k, assume the above (∗) is true.
Then, if |ω| = k + 1, i.e., ω = ω1a, ω1 ∈ Σ∗, a ∈ Σ, immediately, there is

δF (q0F , ω1a, μi) = δF

(
δF (q0F , ω1, μi1), a, μi2

)
and δF (q0F , ω1, μi1) = [p0, p1, · · · ,

pi] ⇔ δ(q0, ω1, x1) = {p0, p1, · · · , pi} is obtained by induction assumption.
Again, by the definition of the δF , δF

(
[p0, p1, · · · , pi], a, μi2

)
= [r0, r1, · · · , rj ]

is obtained and δ
({p0, p1, · · · , pi}, a, x2

)
= {r0, r1, · · · , rj} is also satisfied. So,

there is δF (q0F , ω1a, μi) = [r0, r1, · · · , rj ] ⇐⇒ δ(q0, ω1a, x) = {r0, r1, · · · , rj}
where μi1, μi2, μi ∈ VF ; x1, x2, x ∈ V , 0 � i, j � l − 1.

Finally, there must be δF (q0F , ω, μi) ∈ GF only if there is δ(q0, ω, x) ∈ G.
Thus, it proves that the equality L(FIA) = L(FFA) holds.

Theorem 5.2. [8] The FFA is equally powerful as some L-nested system of
DFA.

6 Stability and Convergence of FIA

Now, we discuss the stability of FIA. Let us divide the stability of FIA into two
parts, which are the stability of the trained networks layer and the stability of
the extraction layer of FIA respectively. For the stability of the trained networks,
see [9][10]. Therefore, we now discuss only the stability of the extraction layer
for FIA.

Definition 6.1. For the extraction FIA that has been obtained, assume the
input vector to be X(t) and the corresponding weights vector to be w(t) in
extraction layer. We call the fuzzy automaton to be stable, if there are always
||w(t) − X(t)|| < ε while t > t0, for any ε > 0, ∃t0 > 0.

Theorem 6.1. The extracted FIA is stable by the above extraction algorithm.

Proof. According to the above algorithm (4) for extraction of FIA and the defi-
nition 6.1, the conclusion is true.

Definition 6.2. Let V be a membership degree set of FIA. For μi ∈ V , the
neighborhood NVi of μi is defined by: NVi =

{
μj |μj ∈ V, |μi − μj | < ε

}
. There

exists some μij neighborhood NVij , for any μlj ∈ NVij , if δ(qi, ω, μij) = qj and
δ(ql, ω, μlj) = qj , then let ql be the same as qi, and μlj be the same as μij , where
ε is an error bound by requiring, qi, ql, qj ∈ Q, ω ∈ Σ∗.

Theorem 6.2. The states of FIA converge to some stable states.

Proof. According to the characteristics of the membership degree set V and the
dividing algorithm of V in the above section 3.1, we can always obtain the finite
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membership degree values μi, i = 0, 1, · · · , l − 1 for FIA. Thus, by the definition
6.2, the states of FIA can converge to some stable states.

(I) When the membership degree is any variable value in V ⊆ [0, 1], let us
divide the interval [0,1] into coordinate n(n > 1) subinterval, and the interval
end-point value θs is obtained, where s = 0, 1, · · · , n.

Set μi = θi+θi+1
2 if θi < x � θi+1, i = 0, 1, · · · , n − 1. 1©

Where θ0 = 0, θn = 1, θi = i
n , x ∈ V . Let ε1 = 1

2n .
(II) When the membership degree values in V are close to the corresponding

finite real value {θ0, θ1, · · · , θm−1} ⊆ [0, 1], i.e., |x − θi| < ε2 for any x ∈ V ,
i = 0, 1, · · · , m − 1.

We set μi = θi, i = 0, 1, · · · , m − 1. 2©
Assume l = m or l = n, and let ε = ε1 or ε = ε2.
Thus, there are the corresponding l states qi, i = 0, 1, · · · , l − 1.
By the definition 6.2, then, for ∀μi, there exists its neighborhood NVi, i =

0, 1, · · · , l − 1. Again, by θi < x � θi+1 in the above 1© or |x − θi| < ε2, for
any x ∈ V , there is always x ∈ NVi, i = 0, 1, · · · , l − 1. Regulate the weights of
the connecting neurons to make the state qx of FIA satisfy δ(qi, ω, μij) = qj and
δ(qx, ω, μxj) = qj , then qx converge to qi, i = 0, 1, · · · , l − 1.

So, the states of FIA converge to some stable states qi, i = 0, 1, · · · , l − 1.

7 Simulation Results

In order to simplify in simulation, here we discuss the input X(t) is a two-
dimensional vector. The weight vector w(t) is an eight-dimensional regulated
vector in the networks of extraction layer. The activating function f is a gauss
function. The simulation time T is 100 seconds.

When we calculate in the experiment, in order to make networks more quickly
reflect the state distribution law of FIA on the whole, in general, the study speed
α and the region D are chosen to be relatively bigger value at the beginning of
training networks. Generally, the training time in the back period is 10-100 times
that of training time of the fore period. The simulation results are shown in Fig.2
and Fig.3. From the Fig.2 known, the simulation results indicate that extraction

Fig. 2. Stability of FIA Fig. 3. Error curve of tracking
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of FIA that has obtained is surely stable and convergent. By the Fig.3, the error
curve for the difference of weights and inputs value in extraction layer reduces
gradually and trends towards stability and convergence.

8 Conclusions

In this paper, these problems with respect to the definition, extraction, equiva-
lence, convergence and stability of FIA are solved. The simulation results show
that such extraction algorithm for FIA is surely stable and convergent. In conclu-
sion, we have presented the basic ideas and algorithms for implementing stable
recurrent networks and learning FIA in this paper. The network has similar ca-
pabilities for learning FIA as the analog FFA. These equivalent theorems imply
that any two of FFA, FIA and L-nested systems of DFA are equally powerful.
Then, the FIA is equivalent to the DFA at last.

Now, some questions require to be solved in the future: In order to learn better
FIA, it is difficult how the states of FIA are minimized appropriate degree, i.e.,
how a new appropriate FFA will be obtained, and let it be equal to the FIA. It
is difficult how the number of neuron and the layer of network are selected and
designed for extracting the more stable FIA. These problems to be solved are
worth being studied.
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