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Abstract. In data fusion, score normalization is a step to make scores,
which are obtained from different component systems for all documents,
comparable to each other. It is an indispensable step for effective data
fusion algorithms such as CombSum and CombMNZ to combine them. In
this paper, we evaluate four linear score normalization methods, namely
the fitting method, Zero-one, Sum, and ZMUV, through extensive ex-
periments. The experimental results show that the fitting method and
Zero-one appear to be the two leading methods.

1 Introduction

Data fusion in information retrieval has been investigated by many researchers
and has been a well-established technique. The essential idea is to more accurately
estimate the relevance of all the retrieved documents for a given query via combin-
ing these retrieved documents from multiple information retrieval systems into a
single list. It can be used as an alternative for implementing an effective informa-
tion retrieval system, it can also be useful in the WWW environment as a meta-
search engine to merge resultant documents from different Web search engines.

For data fusion algorithms, several factors need to be considered: (a) perfor-
mance of all component results; (b) correlation among all component results;
(c) available information associated with retrieved documents. A lot of research
work (e.g., in [1,6,7,9,10]) has been done on these topics.

For a component result, it comprises a ranked list of documents. Sometimes
a score is associated with each document to indicate the estimated relevance
of the document to the information need. Various experiments (for example, in
[2,8]) have confirmed that rankings are not as informative as scores, therefore,
we should use score information preferentially if it is possible. In this paper we
assume that all component systems provide scores for retrieved documents.

Different component systems may use very different policies to apply scores
to retrieved documents. This difference can be both on range and distribution.
Therefore, It is necessary to normalize scores for effective data fusion algorithms
such as CombSum and CombMNZ to combine them.
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Fox and Shaw designed a series of data fusion algorithms including CombSum
and CombMNZ [3]. CombSum sets the score of each document in the fused result
to the sum of the scores obtained by the individual result, while in CombMNZ
the score of each document is obtained by multiplying this sum by the number
of results which have non-zero scores. Lee [4] suggested a linear transformation
method for score normalization. All normalized scores are in the range of [0,1],
with the minimal score mapped to 0 and the maximal score to 1. This method is
referred to as Zero-one later in this paper. Actually this can be improved since
the top-ranked documents are not always relevant and bottom-ranked documents
are not always irrelevant. A smaller range [a,b] (0 < a < b < 1) would be a better
solution for score normalization. This method is referred to as the fitting method
in this paper.

Montague and Aslam [5] suggested two other linear transformation methods
Sum and ZMUV (Zero-Mean and Unit-Variance). In Sum, the minimal score is
mapped to 0 and the sum of all scores in the result to 1. In ZMUV, the average
of all scores is mapped to 0 and their variance to 1.

In this paper, our major goal is to evaluate the four linear normalization
methods (Zero-one, the fitting method, Sum and ZMUV). However, some of our
experimental results are useful for us to better understand score normalization
in general.

2 Effect of Different Score Normalization Methods to
Data Fusion

In this section we report an experiment which investigates the effect of different
score normalization methods on data fusion. For a group of results, we combine
them using CombSum and CombMNZ several times, each time with a differ-
ent score normalization method. Then we compare the performance of the fused
results from the same data fusion method but different score normalization meth-
ods. For the fitting method, [0.06, 0.6] is arbitrarily chosen in all cases. Some
other values may provides better performance. ZMUV cannot be properly used
for CombMNZ because about half of the scores in every result are negative. In-
stead, as in Montague and Aslam’s experiment [5], we used ZMUV2, a variation
of ZMUV, which added 2 to every score normalized with ZMUV.

We used 4 groups of results, which were subsets of results submitted to
TREC 7 (ad hoc track), 8 (ad hoc track), 9 (web track) and 2001 (web track)
[7]. All selected results include 1000 documents for every query and have a mean
average precision of 0.15 or over. In each group, we randomly select 3-10 systems
for a data fusion run with CombSum and CombMNZ, and 200 runs were tested
for any given number of results.

Mean average precision was used for the evaluation. Figures 1-2 show the
experimental result.

The experimental results of all four score normalization methods are very
consistent. Also all score normalization methods have a very similar performance
for both data fusion methods CombSum and CombMNZ. We can observe that
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Fig. 1. Mean average precision of CombSum in TREC 7-2001 with different normal-
ization methods

ZMUV2 is always the worst in all cases. The fitting method [0.06-0.6] is better
than the Zero-one method using CombSum, but the Zero-one method is better
than the fitting method [0.06-0.6] using CombMNZ. The fitting method and the
Zero-one method perform better than Sum in most cases. In a few cases, Sum is
a little better. Therefore, it suggests that the Zero-one method and the fitting
method are very likely the best normalization method and ZMUV is the worst.
The claim that both Sum and ZMUV are significantly better than Zero-one [5]
cannot be supported in our experiment. According to our analysis in Section 2,
Sum can lead to good fusing results when the (different) weights assigned to all
input results fit their performances.

Another observation is: using the fitting method, Zero-one and Sum normal-
ization methods, the fused results are better than the best component system on
average, it confirms that data fusion is an effective technique to improve retrieval
performance.

3 Distribution of Relevant Documents in Different Score
Ranges

Actually, all these four score normalization methods (Zero-one, the fitting method,
Sum, and ZMUV) are linear transformation methods. That is to say, it is straight-
forward to define a ”general” schema to include all of them. We need to set up two
pairs of ending points - the maximal score and the minimal score for raw scores
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Fig. 2. Mean average precision of CombMNZ in TREC 7-2001 with different normal-
ization methods

and normalized scores. We use max and min to denote the maximal and minimal
normalized score, and r max and r min to denote the maximal and minimal raw
score respectively. Please note that r max is not necessarily the maximal raw score,
and r min is not necessarily the minimal raw score obtained by documents in the
result. But instead we should guarantee that any raw score is between r max and
r min. Then for any raw score r s, we use the following formula to normalize it:

s = min +
r s − r min

r max − r min
(max − min)

If only considering one result, then there is no difference at all using any of the
four methods. Any normalized score in any method can be linearly transformed
into a corresponding score in another method. For example, suppose szmuv is
a normalized score obtained with ZMUV, we can transform it into a normal-
ized score for Zero-one by szero−one=(szmuv −minzmuv)/(maxzmuv −minzmuv),
where maxzmuv and minzmuv denotes the normalized maximal score and the
normalized minimal score with ZMUV respectively.

In data fusion, we need multiple results at the same time. The difference
among these four normalization methods is that Sum and ZMUV normalize
scores in different results into different ranges. The key issue is: can this bring
any benefit to data fusion?

The goal of score normalization is to make scores in different results com-
parable. Ideally, if there is a linear relation between score and probability of
relevance, it is a perfect condition for data fusion algorithms such as CombSum.
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More specifically, we need to meet the following two conditions for n results
ri (i = 1, 2, ..., n) retrieved from n information retrieval systems for the same
information need:

– r is any one of the results, d1 and d2 are two randomly selected documents in
r. d1 obtains a normalized score of s1, and d2 obtains a normalized score of
s2, then the probability of d1 being relevant to the information need equals
to s1/s2 times of the probability of d2 being relevant;

– for any two results r1 and r2 in n results, d1 is a document in r1 and d2 is
a document in r2. If d1’s normalized score equals to d2’s normalized score,
then these two documents have an equal probability of being relevant.

Next we report an experiment to examine to which extent the two require-
ments presented in the above can be met by those normalized scores. The pro-
cedure is as follows: first, for a result, we normalize the scores of its documents
using a given score normalization method. Next we divide the whole range of
scores into a certain number of intervals. Then for every interval, we count the
number of relevant documents (num) and the total score (t score) obtained by
all the documents in that interval. In this way the ratio of num and t score can
be defined for every interval. We compare these ratios to investigate if the score
normalization method is a good method or not.

We are not aimed at any particular component system here. A more effective
way to understand the scoring mechanism of a particular information retrieval
system is to investigate the scoring algorithm used in that system, not just
analyse some query results produced by it. Rather than that, we try to find out
some collective behaviour of a relatively large number of information retrieval
systems in an open environment such as TREC. In such a situation, to analyse
these query results becomes a sensible solution. There are a few reasons for this:
Firstly, if the number of systems is large, it is a tedious task to understand the
implementation mechanisms of all these systems; secondly, it is not possible if the
technique used in some of the systems are not published; thirdly, the collective
behaviour of these systems may not be clear even we know each of them well.

As in Section 2, we used the same four groups of results. We normalised all
these results using the fitting method [0.06-0.6], Zero-one, Sum and ZMUV1 (a
variation of ZMUV, which added 1 to every score normalized with ZMUV) over
50 queries. Then for all normalized results with a particular method, we divided
them into 20 groups. Each group is corresponding to a interval and the scores
of all documents in that group is located in the same interval.

For the fitting method, we divide [0.06,0.6] into 20 equal intervals [0.06,0.087),
[0.087,0.114),..., [0.573,0.6]. For Zero-one, we divide [0,1] into 20 equal inter-
vals [0,0.05), [0.05,0.1),..., [0.95,1]. For Sum, we divide [0,1] into 20 intervals
[0,0.00005), [0.00005,0.0001), ..., [0.00095,1], since all normalized scores in Sum
are very small and most of them are smaller than 0.001. For ZMUV1, 20 inter-
vals (-∞, 0.1), [0.1,0.2),..., [1.9,+∞) are defined. For each group, we calculate its
ratio of num and t score. All results are shown in Figure 3. The ideal situation
is that the curve is parallel to the horizontal axis, which means a linear relation
between score and document’s relevance and CombSum is a perfect method for
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Fig. 3. Score distribution in TREC 7-2001 with different normalization methods

data fusion. It demonstrates that the fitting method is the best since all the
curves generated are the most flat. For all other score normalization methods,
their corresponding curves are quite flat as well, which suggests that a linear
function is a good option to describe the relation between score and document’s
relevance.

For Zero-one, Sum and ZMUV1, we observe that very often their curves fly
into the sky in Intervals 1 and 2. This is understandable since all the normalized
scores with Zero-one and Sum are approaching 0 in Intervals 1 and 2. It is not
the case for their raw scores and there are a few relevant documents in these
two intervals. Therefore the curves are deformed. The situation is even worse for
ZMUV1 since negative and positive scores coexist in Interval 1.

4 Conclusion

In this paper, we have evaluated four linear score normalization methods, namely
the fitting method, Zero-one, Sum and ZMUV. Comparison analysis and exten-
sive experimentation has been carried out to investigate them. On average, The
fitting method and the Zero-one method appear to be the two leading methods.
More specifically, the fitting method is more favourable to CombSum, while the
Zero-one method is more favourable to CombMNZ. Sum is not as good as the
fitting method and Zero-one but outperforms them occasionally. ZMUV always
performs very badly and it does not seem to be a proper score normalization
method.
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