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Abstract. Existing desktop search applications, trying to keep up with the rapidly
increasing storage capacities of our hard disks, are an important step towards more
efficient personal information management, yet they offer an incomplete solution.
While their indexing functionalities in terms of different file types they are able to
cope with are impressive, their ranking capabilities are basic, and rely only on tex-
tual retrieval measures, comparable to the first generation of web search engines.
In this paper we propose to connect semantically related desktop items by exploit-
ing usage analysis information about sequences of accesses to local resources, as
well as about each user’s local resource organization structures. We investigate
and evaluate in detail the possibilities to translate this information into a desktop
linkage structure, and we propose several algorithms that exploit these newly cre-
ated links in order to efficiently rank desktop items. Finally, we empirically show
that the access based links lead to ranking results comparable with TFxIDF rank-
ing, and significantly surpass TFxIDF when used in combination with it, making
them a very valuable source of input to desktop search ranking algorithms.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past decade,
and so has the number of files we usually store on our computer. Using this space, it
is quite common to have over 100,000 indexable items on the desktop. It is no wonder
that sometimes we cannot find a document anymore, even when we know we saved it
somewhere. Ironically, in some of these cases nowadays, the document we are looking
for can be found faster on the World Wide Web than on our personal computer. In
view of these trends, resource organization in personal repositories has received more
and more attention during the past years. Thus, several projects have started to explore
search and personal information management on the desktop, including Stuff I’ve Seen
[6], Haystack [13], or our Beagle++ [4].

Web search has become more efficient than PC search due to the powerful link based
ranking solutions like PageRank [12]. The recent arrival of desktop search applications,
which index all data on a PC, promises to increase search efficiency on the desktop.
However, even with these tools, searching through our (relatively small set of) personal
documents is currently inferior to searching the (rather vast set of) documents on the
web. Indeed, desktop search engines are now comparable to first generation web search
engines, which provided full-text indexing, but only relied on textual information re-
trieval algorithms to rank their results.
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Desktop ranking is hindered by the lack of links between documents, an important
source of evidence for current web ranking algorithms. In this paper we propose to al-
leviate this deficiency by analyzing user’s activity patterns, as well as her local resource
organization structures. We investigate and evaluate in detail the possibilities to trans-
late this information into a desktop linkage structure, and we propose several algorithms
that exploit these newly created links in order to efficiently rank desktop items. Finally,
we empirically show that the access based links lead to ranking results comparable with
TFxIDF ranking, and significantly surpass TFxIDF when used in combination with it,
making them a very valuable source of input to desktop search ranking algorithms.

The paper is organized as follows: We start with a discussion of the relevant back-
ground in Section 2. Then, in Section 3 we present the desktop ranking algorithms we
propose and in Section 4 we show our experimental results. Finally, we conclude and
discuss further work in Section 5.

2 Relevant Background

Though ranking plays an important role on the Web, there is almost no approach specif-
ically aiming at ranking desktop search results. More, even though there exist quite a
few systems organizing personal information sources and improving information access
in these environments, few of the papers describing them concentrate on search algo-
rithms. This section will describe several such systems and discuss their approaches to
desktop search.

Several systems have been constructed in order to facilitate re-finding of various
stored resources on the desktop. Stuff I’ve Seen [6] for example provides a unified
index of the data that a person has seen on her computer, regardless of its type. Con-
textual cues such as time, author, thumbnails and previews can be used to search for
and present information, but no desktop specific ranking scheme is investigated. Simi-
larly, MyLifeBits [7] targets storing locally all digital media of each person, including
documents, images, sounds and videos. They organize these data into collections and,
like us, connect related resources with links. However, they do not investigate build-
ing desktop ranking algorithms that exploit these links, but rather use them to provide
contextual information.

Haystack [1, 9] emphasizes the relationship between a particular individual and her
corpus. It is quite similar to our approach in the sense that it automatically creates
connections between documents with similar content and it exploits usage analysis to
extend the desktop search results set. However, just like the previous articles, it does
not investigate the possibilities to rank these results, once they have been obtained.

Connections [14] is a very recent system also targeted at enhancing desktop search
quality. Similar to us and to Haystack, they also attempt to connect related desktop
items, yet they exploit these links using rather complex measures combining BFS and
link analysis techniques, which results in rather large search response delays. Neverthe-
less, while our algorithms are clearly faster, we intend to compare the two approaches
in terms of output quality in future work.

Finally, Chirita et al. [3, 4] proposed various activity specific heuristics to generate
links between resources. There, our approach was limited to specific desktop contexts
(e.g., publications, or web pages), whereas in this paper we explore much more general
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sources of linkage information such as file access patterns, which are applicable to any
desktop resource.

3 Ranking Desktop Resources

Introduction. As the number of indexable items on our desktops (i.e., files that con-
tain any kind of textual information, emails, etc.) can easily exceed 100,000, we can
no longer manage them manually just by defining “good” file and directory names and
structures. More, the currently employed textual information retrieval measures are no
longer sufficient to order the usually several hundreds of results returned for our desktop
search queries. We therefore need to investigate more advanced desktop organization
paradigms and ranking algorithms. In this section we address the latter issue and pro-
pose several algorithms that exploit file access information in order to efficiently rank
desktop search results.

Exploiting Usage Analysis to Generate Ranks. Current personal information systems
create links between desktop resources only when a very specific desktop usage activity
is encountered (e.g., the attachment of an email is saved as a file, or a web page is stored
locally, etc.). We argue that in fact in almost all cases when two items are touched in a
sequence several times, there will also be a relation between them, irrespective of the
underlying user activity. Thus, we propose to add a link between such two items a and b
whenever item b is touched after a for the T th time, with T being a threshold set by the
user. Higher values for T mean an increased accuracy of the ranking algorithm, at the
cost of having a score associated to less resources. Theoretically, there is only a very low
probability to have any two items a and b touched in a sequence even once. However,
since context switching occurs quite often nowadays, we also investigated higher values
for T , but experimental results showed them to perform worse than T = 1. This is
in fact correct, since two files are accessed consequently more often because they are
indeed related, than due to a switch of context.

After a short period of time a reputation metric can be computed over the graph
resulted from this usage analysis process. There exist several applicable metrics. The
most common one is PageRank [12]. On the one hand, it has the advantage of prop-
agating the inferred semantic similarities (connections), i.e., if there is a link between
resources a and b, as well as an additional link between resources b and c, then with a
relatively high probability we should also have a connection between a and c. On the
other hand, PageRank also implies a small additional computational overhead, which is
not necessary for a simpler, yet more naı̈ve metric, in-link count. According to this latter
approach, the files accessed more often get a higher ranking. However, our experiments
from Section 4 will show that although it does indeed yield a clear improvement over
simple TFxIDF, file access counting is also significantly less effective than PageRank.

Another aspect that needs to be analyzed is the type of links residing on the PC
desktop. We use directed links for each sequence a → b, as when file b is relevant for
file a, it does not necessarily mean that the reversed is true as well. Imagine for example
that b is a report we are regularly appending, whereas a is the article we are writing.
Clearly b is more relevant for a, than a is for b. This yields the following algorithm:
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Algorithm 3.1. Ranking Desktop Items.

Pre-processing:
1: Let A be an empty link structure
2: Repeat for ever
3: If (File a is accessed at time ta, File b is accessed at time tb) AND (ta − tb < ε),
4: Then Add the link a → b to A

Ranking:
1: Let A′ be an additional, empty link structure
2: For each resource i
3: For each resource j linked to i
4: If (#Links(i → j) > T ) in A
5: Then Add one link i → j to A′

6: Run PageRank using A′ as underlying link structure

As it was not clear how many times two resources should be accessed in a sequence
in order to infer a “semantic” connection between them, we studied several values for
the T threshold, namely one, two and three. Additionally, we also explored the possi-
bilities to directly use the original matrix A with PageRank, thus implicitly giving more
weight to links that occurred more frequently (recall that in A each link is repeated as
many times as it occurred during regular desktop activity). Finally, in order to address
a broad scope of possible ranking algorithms, we also experimented with more trivial
reputation measures, namely (1) frequency of accesses and (2) total access time.

Other Heuristics to Generate Desktop Links. There exists a plethora of other cues
for inferring desktop links, most of them being currently unexplored by previous work.
For example the files stored within the same directory have to some extent something in
common, especially for filers, i.e., users that organize their personal data into carefully
selected hierarchies. Similarly, files having the same file name (ignoring the path) are
in many times semantically related. In this case however, each name should not consist
exclusively of stopwords. More, for this second additional heuristic we had to utilize
an extended stopword list, which also includes several very common file name words,
such as “index”, or “readme”. In total, we appended 48 such words to the original list.
Finally, we note that both these above mentioned approaches favor lower sets: If all files
within such a set (e.g., all files residing in the same directory) are linked to each other,
then the stationary probability of the Markov chain associated to this desktop linkage
graph is higher for the files residing in a smaller set. This is in fact correct, since for
example a directory storing 10 items has most probably been created manually, thus
containing files that are to some extent related, whereas a directory storing 1,000 items
has in most of the situations been generated automatically. Also, since these sub-graphs
of the main desktop graph are cliques, several computational optimizations are possible;
however, in order to keep our algorithms clear we will not discuss them here.

A third source of linkage information is file type. There is clearly a connection
between the resources sharing the same type, even though it is a very small one.
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Unfortunately, each such category will nowadays be filled with up to several thousands
of items (e.g., JPG images), thus making this heuristic difficult to integrate into the
ranking scheme. A more reliable approach is to use text similarity to generate links be-
tween very similar desktop resources. Likewise, if the same entity appears in several
desktop resources (e.g., Hannover appears both as the name of a folder with pictures
and as the subject of an email), then we argue that some kind of a semantic connec-
tion exists between the two resources. Finally, we note that users should be allowed to
manually create links as well, possibly having a much higher weight associated to these
special links.

Practical Issues. Several special cases might arise when applying usage analysis for
desktop search. First, the textual log file capturing usage history should persist over
system updates in order to preserve the rich linkage information. In our experiments, we
collected only about 80 KB of log data over two months. Second and more important,
what if the user looks for a file she stored five years ago, when she had no desktop
search application installed? We propose several solutions to this:

1. The naı̈ve approach is to simply enable ranking based exclusively on TFxIDF. How-
ever, much better results can be obtained by incorporating contextual information
within the ranking scheme.

2. We therefore propose a more complex query term weighting scheme, such as BM25
[8]. Teevan et al. [15] have recently proposed an application of this metric to per-
sonalize web search based on desktop content. In our approach, their method must
be adapted to personalize desktop search based on a specific activity context, rep-
resented for example by the files with a specific path or date range.

3. If the user remembers the approximate moment in time when she accessed the
sought item, then this date represents a useful additional context based vertical
ranking measure. For example, if the user remembers having used the target file
around year 1998, the additional importance measure is represented by the normal-
ized positive time difference between mid-1998 and the date of each output result.

4. If no contextual information is available, we propose to infer it through a relevance
feedback process, in which the user first searches the desktop using TFxIDF exclu-
sively, and then selects one or several (relatively) relevant results, which are then
used to extract a context (e.g., date) or to propose expansions to the user query.

Comparison to the Web Model. Clearly, unlike in the web, most of the desktop search
queries are navigational: users just want to locate something they know their stored
before. So, are some desktop files more important than others, or are they all approxi-
mately equally important? We argue that, as in the web, some desktop resources are
much more important than others, and thus users will most of the time be seeking
only for these highly important items. For example, one year after some project was
closed, a log file inspected by the researcher 400 times during an experiment will defi-
nitely be less important than the project report which was probably accessed only 100
times. Therefore, contextual information, though very important, is not sufficient in ef-
fectively locating desktop items, and more complex importance measures are needed in
order to exploit user’s activity patterns, her local desktop organization, etc. We thus pro-
pose to link together the resources matching these heuristics (i.e., having similar access
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patterns, etc.), and then to utilize the resulting linkage structure to infer a global ranking
over the PC Desktop.

4 Experimental Results

Experimental Setup. We evaluated the utility of our algorithms within three different
environments: our laboratory (with researchers in different computer science areas and
education), a partner laboratory with slightly different computer science interests, and
the architecture department of our university. The last location was especially chosen
to give us an insight from persons with very different activities and requirements. In
total, 11 persons installed our logging tool and worked normally on their desktops for 2
months1. Then, during the subsequent 3 weeks, they performed several desktop searches
related to their regular activities2, and graded each top 10 result of each algorithm with
a score ranging from 1 to 5, 1 defining a very poor result with respect to their desktop
data and expectations, and 5 a very good one. This is in fact a Weighted P@10 [2]. For
every query, we shuffled the top ten URIs output by each of our algorithms, such that the
users were neither aware of their actual place in the rank list, nor of the algorithm(s) that
produced them. On average, for every issued query the subjects had to evaluate about 30
desktop documents (i.e., the reunion of the outputs of all approaches we investigated).
In total, 84 queries had been issued and about 2,500 documents were evaluated.

For the link based ranking algorithms (recall that for the sake of completeness we
have also evaluated some access time ranking heuristics) we set the parameter ε to four
times the average break time of the user. We have also attempted to set it to one hour,
and eight times the average break time of the user, but manual inspection showed these
values to yield less accurate usage sessions. Although much more complex techniques
for computing usage session times do exist (e.g., exploiting mouse clicks or movements,
scrollbar activities, keyboard activities, document printing, etc. [5, 11]), we think this
heuristic suffices for proving our hypothesis, i.e., usage analysis based ranking improves
over simple textual retrieval approaches.

In the following, we will first present an analysis of this experiment focused on the
ranking algorithms, and then another one, focused on the quality of the search output
they produced.

Ranking analysis. We first analyzed how our algorithms perform, in order to tune the
parameters discussed before and to investigate whether the non-usage analysis heuris-
tics do indeed make a difference in the overall rankings. We thus defined and analyzed
the following 17 algorithms:

• T1: Algorithm 3.1 with T = 1.
• T1Dir: “T1” enriched with additional links created as complete subgraphs with the

files residing in every desktop directory (i.e., all the files in a directory point to each
other).

1 The logger was implemented using a hook that catched all manual file open / create / save
system calls.

2 The only requirement we made here was to perform at least 5 queries, but almost every subject
provided more. In all cases, we collected the average rating per algorithm for each person.
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• T1DirFnames: “T1Dir” with further additional links created as complete sub-
graphs with the resources having the same file name (i.e., all items with the same
file name point to each other, provided that the file name does not consist exclu-
sively of stopwords).

• T1Fnames: “T1” enriched with the links between resources with identical file
names as in the previous algorithm3. This was necessary to inspect the specific con-
tribution of directories and file names respectively to the overall ranking scheme.

• T1x3Dir: Same as “T1Dir”, but with the links inferred from usage analysis being
three times more important than those inferred from the directory structure.

• T1x3DirFnames: Same as above, but also including the links provided by identical
file names.

• T1x3Fnames: Same as “T1x3Dir”, but using the file name heuristic instead of the
directory one.

• T2: Algorithm 3.1 with T = 2.
• T3: Algorithm 3.1 with T = 3.
• VisitFreq: Ranking by access frequency.
• 1HourGap: Ranking by total amount of time spent on accessing each resource,

with sessions delimited by one hour of inactivity.
• 4xAvgGap: Ranking by total access time, with sessions delimited by a period of

inactivity longer than four times the average break time of the user.
• 8xAvgGap: Same as above, but with sessions bounded by a period of inactivity

longer than eight times the average average break time of the user.
• Weighted: Algorithm 3.1 directly using the matrix A, instead of A′, i.e., with links

weighted by the number of times they occurred.
• WeightedDir: Algorithm “Weighted” enriched with links between the files stored

within the same directory.
• WeightedDirFnames: The previous algorithm with a link structure extended with

connections between files with identical names.
• WeightedFnames: Same as above, but without the links generated by exploiting

the desktop directory structure.

Since in-link count is almost identical to file access count (frequency), we only ex-
perimented with the latter measure. The only difference between these two measures is
that in-link count will result in lower page scores when a threshold higher than one is
used to filter-out the links (see also Algorithm 3.1).

We analyzed two aspects at this stage: First, it was important to inspect the final
distribution of rankings, as this indicates how desktop search output looks like when
using these algorithms. In all cases the resource rankings exhibits a distribution very
well shaped by a power law: The left side of Figure 1 plots the output rankings for
algorithm “T1”, and its right side depicts the output when both directory and file name
heuristics were added (in this latter case we notice a strong exponential cut-off towards
the end, for the files that benefited less from the link enhancement techniques).

3 For emails, this corresponded to having the same subject, eventually with “Re:” or “Fwd:”
inserted in the beginning.
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Fig. 1. Distribution of scores for the “T1” (left) and “T1DirFnames” (right) algorithms

The second aspect to analyze was whether there is a difference between these heuris-
tics. For this purpose we used a variant of Kendall’s τ measure of similarity between
two ranking vectors [10], which resulted in a similarity score falling within [-1,1].

Three of our testers (one from each location) were specifically asked to extensively
use our tool. When they reached 40 queries each, we applied the Kendall measure on
their complete output, as returned by each algorithm. The results are illustrated in Table
1. After analyzing them, we drew the following conclusions:

• The heuristics to link the resources residing within the same directory, or the re-
sources with identical file names did result in a rather different query output.

• The approaches “T1x3Dir”, “T1x3DirFnames” and “T1x3Fnames” did not yield a
significant difference in the results.

• The output of “T2” and “T3” was very similar, indicating that a threshold higher
than 2 is not necessary for Algorithm 3.1.

• “4xAvgGap” and “8xAvgGap” performed very similar to each other.
• “Weighted” output was very close to “T1”.
• Finally, when “Weighted” was combined with directory or file name information,

we obtained almost identical outcomes as when we used “T1” with these heuristics.

As a rule of thumb, we considered similar all algorithm pairs with a Kendall τ score
above 0.5, and therefore removed one of them from the search quality evaluation. Ex-
ceptions were “Weighted” and “VisitFreq” (both very similar to “T1”) in order to have
at least one representative of their underlying heuristics as well.

Finally, inspecting the rank distributions generated by these heuristics also helped
us obtain an additional interesting result, namely that only about 2% of the desktop
indexable items are actually manually accessed by the user. This further supports the
idea of exploiting usage information in ranking desktop search results, as current textual
measures many times output high scores for documents that have never been touched
by the user (e.g., HTML program documentation files).

Search quality analysis. After the previous analysis, we kept 8 algorithms for precision
evaluation: “T1”, “T1Dir”, “T1DirFnames”, “T1Fnames”, “T2”, “VisitFreq”, “4xAvg-
Gap” and “Weighted”. Even though they do not incorporate any textual information,
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Table 1. Kendall similarity for the desktop ranking algorithms (average over 120 queries from 3
users)
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Threshold 1 1

T1Dir 0.22 1

T1DirFnames 0.22 0.47 1

T1Fnames 0.23 0.22 0.35 1

T1x3Dir 0.28 0.86 0.46 0.23 1

T1x3Dir-
Fnames

0.24 0.48 0.75 0.40 0.48 1

T1x3Fnames 0.22 0.24 0.36 0.88 0.24 0.41 1

Threshold 2 0.20 0 -0.2 0 0.02 -0.2 0 1

Threshold 3 0.01 -0.1 -0.3 -0.1 -0.1 -0.3 -0.1 0.60 1

VisitFreq 0.66 0.24 0.15 0.27 0.26 0.20 0.28 0.26 0.05 1

1HourGap 0.48 0.15 0.14 0.20 0.12 0.11 0.20 0.17 0.02 0.41 1

4xAvgGap 0.43 0.25 0.18 0.23 0.26 0.19 0.24 0.20 0.04 0.43 0.34 1

8xAvgGap 0.48 0.26 0.16 0.21 0.27 0.18 0.22 0.16 0.04 0.50 0.47 0.70 1

Weighted 0.75 0.20 0.21 0.20 0.25 0.24 0.20 0.24 0.01 0.64 0.52 0.47 0.47 1

WeightedDir 0.22 0.89 0.47 0.22 0.85 0.48 0.24 0 -0.1 0.21 0.11 0.26 0.27 0.22 1

Weighted-
DirFnames

0.21 0.47 0.89 0.34 0.46 0.75 0.36 -0.2 -0.3 0.15 0.14 0.18 0.16 0.21 0.47 1

Weighted-
Fnames

0.26 0.24 0.37 0.83 0.25 0.43 0.81 0 -0.1 0.31 0.28 0.28 0.26 0.25 0.24 0.36 1

we still started with ranking desktop search results only according to these measures,
in order to see the impact of usage analysis on desktop ranking. The average results are
summarized in the second column of Table 2. As we can see, all measures performed
worse than TFxIDF (we used Lucene4 together with an implementation of Porter’s
stemmer to select the query hits, as well as to compute the TFxIDF values), but only
at a small difference. This indicates that users do issue a good amount of their desktop
queries on aspects related to their relatively recent, or even current work. Also, as the
“T2” algorithm does not improve over “T1”, it is therefore sufficient to use Algorithm
3.1 with a threshold T = 1 in order to effectively catch the important desktop docu-
ments. This is explainable, since a threshold T = 2 would only downgrade files that
were accessed only once, which have a relatively low score anyway compared to the
other more frequently touched resources.

4 http://lucene.apache.org



Analyzing User Behavior to Rank Desktop Items 95

Table 2. Average grading for the usage analysis algorithms with and without a combination with
TFxIDF, together with tests on the statistical significance of the improvement the latter ones bring
over regular TFxIDF

Algorithm Weighted P@10 Weighted P@10 Signif. for Combined
(Usg. An.) (Combined) versus TFxIDF

T1 * TFxIDF 3.04 3.34 p = 0.003
T1Dir * TFxIDF 3.02 3.36 p < 0.001
T1DirFnames * TFxIDF 2.99 3.42 p � 0.001
T1Fnames * TFxIDF 2.97 3.26 p = 0.064
T2 * TFxIDF 2.85 3.13 p = 0.311
VisitFreq * TFxIDF 2.98 3.23 p = 0.141
4xAvgGap * TFxIDF 2.94 3.09 p = 0.494
Weighted * TFxIDF 3.07 3.30 p = 0.012
TFxIDF 3.09 3.09

Finally we investigated how our algorithms perform within a realistic desktop search
scenario, i.e., combined with term frequency information. We used the following for-
mula:

Score(file) = NormalizedScore(file) ∗ NormalizedV SMScore(file, query)

The VSM score is computed using the Vector Space Model and both scores are normal-
ized to fall within [0,1] for a given query5. The resulted average gradings are presented
in the third column of Table 2. We notice that in this approach, all measures outperform
TFxIDF in terms of weighted precision at the top 10 results, and most of them do that
at a statistically significant difference (see column 4 of Table 2 for the p values with
respect to each metric).

The usage analysis based PageRank (“T1”) is clearly improving over regular TFxIDF
ranking. As for the additional heuristics evaluated, connecting items with similar file
name or residing in the same directory, they yielded a significant improvement only
when both of them have been used. This is because when used by themselves, these
heuristics tend to bias the results away from the usage analysis information, which
is the most important by far. When used together, they add links in a more uniform
manner, thus including the information delivered by each additional heuristic, while
also keeping the main bias on usage analysis. Finally, the simpler usage analysis metrics
we investigated (e.g., ranking by frequency or by total access time) did indeed improve
over TFxIDF as well, but with a lower impact than the Algorithm 3.1 enriched with
directory and file name information. We conclude that with TFxIDF in place, usage
analysis significantly improves desktop search output rankings and it can be further
enhanced by linking resources from the same directory and with identical file names.

The final results are also illustrated in Figure 2, in order to make the improvement
provided by our algorithms also visible at a graphical level. The horizontal line residing
at level 3.09 represents the performance of TFxIDF; the red bars (right hand side) depict
the average grading of the algorithms combining TFxIDF with our approaches, and the
blue ones (left hand side) depict the average grading obtained when using only our
usage analysis algorithms to order desktop search output.

5 In order to avoid obtaining many null scores when using access frequency or total access time
(recall that many items have never been touched by the user), in these scenarios we also added
a 1/N score to all items before normalizing, with N being the total amount of desktop items.
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Fig. 2. Average grading for the usage analysis algorithms

5 Conclusions and Future Work

Currently there are quite several personal information systems managing PC desktop
resources. However, all of them have focused on seeking solutions to find previously
stored items in a faster way. In this paper we argued that in many cases these existing
approaches already yield several hundreds of query results, which cannot be success-
fully ordered by using textual retrieval measures exclusively. To solve this problem,
we proposed to introduce ranking for desktop items and we investigated in detail sev-
eral approaches to achieve this goal, ranging from usage analysis to exploiting con-
textual information. Our extensive experiments showed that such techniques do indeed
significantly increase desktop search quality with up to 10.67% in terms of Average
(Weighted) Precision.

In future work we intend to explore content based heuristics to provide us with addi-
tional links between similar desktop documents, as well as to combine our techniques
with “recency” information about file accesses, which was previously proved to be quite
important in locating desktop resources [6]. Also, we would like to analyze the neces-
sity and benefits of enabling desktop search restrictions to only some specific sub-tree
of the local hierarchy, as well as of clustering near-duplicate desktop resources (which
is a phenomenon more common than in the web).
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