
Cluster Generation and Cluster Labelling for
Web Snippets

Filippo Geraci1,2, Marco Pellegrini1, Marco Maggini2, and Fabrizio Sebastiani3

1 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche,
Via G Moruzzi 1, 56124 Pisa, Italy

{f.geraci, m.pellegrini}@iit.cnr.it
2 Dipartimento di Ingegneria dell’Informazione, Università di Siena,

Via Roma 56, 53100 Siena, Italy
maggini@ing.unisi.it

3 Istituto di Scienza e Tecnologia dell’Informazione, Consiglio Nazionale delle
Ricerche, Via G Moruzzi 1, 56124 Pisa, Italy

fabrizio.sebastiani@isti.cnr.it

Abstract. This paper describes Armil, a meta-search engine that groups
into disjoint labelled clusters the Web snippets returned by auxiliary
search engines. The cluster labels generated by Armil provide the user
with a compact guide to assessing the relevance of each cluster to her
information need. Striking the right balance between running time and
cluster well-formedness was a key point in the design of our system.
Both the clustering and the labelling tasks are performed on the fly by
processing only the snippets provided by the auxiliary search engines,
and use no external sources of knowledge. Clustering is performed by
means of a fast version of the furthest-point-first algorithm for metric k-
center clustering. Cluster labelling is achieved by combining intra-cluster
and inter-cluster term extraction based on a variant of the information
gain measure. We have tested the clustering effectiveness of Armil against
Vivisimo, the de facto industrial standard in Web snippet clustering, us-
ing as benchmark a comprehensive set of snippets obtained from the
Open Directory Project hierarchy. According to two widely accepted “ex-
ternal” metrics of clustering quality, Armil achieves better performance
levels by 10%. We also report the results of a thorough user evaluation
of both the clustering and the cluster labelling algorithms.

1 Introduction

An effective search interface is a fundamental component in a Web search engine.
In particular, the quality of presentation of the search results often represents
one of the main keys to the success of such systems. Most search engines present
the results of a user query as a ranked list of Web snippets. Meta-search engines
(MSEs) integrate the items obtained from multiple “auxiliary” search engines,
with the purpose of increasing the coverage of the results. However, without
an accurate design, MSEs might in principle even worsen the quality of the
information access experience, since the user is typically confronted with an
even larger set of results. Thus, key issues to be faced by MSEs concern the
exploitation of effective algorithms for merging the ranked lists of results (while
at the same time removing the duplicates), and the design of advanced user
interfaces based on a structured organization of the results. This latter aspect is

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 25–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

26 F. Geraci et al.

usually implemented by grouping the results into homogeneous groups by means
of clustering or categorization algorithms.

This paper describes the Armil system1, a meta-search engine that organizes
the Web snippets retrieved from auxiliary search engines into disjoint clusters and
automatically constructs a title label for each cluster by using only the text ex-
cerpts available in the snippets. Our design efforts were directed towards devising
a fast clustering algorithm able to yield good-quality homogeneous groups, and a
distillation technique for selecting appropriate and useful labels for the clusters.
The speed of the two algorithms was a key issue in our design, since the system
must organize the results on the fly, thus minimizing the latency between the is-
suing of the query and the presentation of the results. Second-level clustering is
also performed at query time (i.e. not on demand) to minimize latency. In Armil,
an equally important role is played by the clustering component and by the la-
belling component. Clustering is accomplished by means of an improved version
of the furthest-point-first (FPF) algorithm for k-center clustering [1]. To the best
of our knowledge this algorithm had never been used in the context of Web snippet
clustering or text clustering. The generation of the cluster labels is instead accom-
plished by means of a combination of intra-cluster and inter-cluster term extrac-
tion, based on a modified version of the information gain measure. This approach
tries to capture the most significant and discriminative words for each cluster.

One key design feature of Armil is that it relies only on the information re-
turned by the auxiliary search engines, i.e. the snippets; this means that no
external source of information, such as ontologies or lexical resources, is used.
We thus demonstrate that such a lightweight approach, together with carefully
crafted algorithms, is sufficient to provide a useful and successful clustering-
plus-labelling service. Obviously, this assumption relies on the hypothesis that
the quality of the results and of the snippets returned by the auxiliary search en-
gines is satisfactory. We have tested the clustering effectiveness of Armil against
Vivisimo, the de facto industrial standard in Web snippet clustering, using as
benchmark a comprehensive set of snippets obtained from the Open Directory
Project hierarchy. According to two metrics of clustering quality that are nor-
malized variants of the Entropy and the Mutual Information [2], Armil achieves
better performance levels by 10%. Note that, since the normalization reduces the
ranges of these measures in the interval [0, 1], an increase of 10% is noteworthy.
We also report the results of a thorough user evaluation of both the clustering
and the cluster labelling algorithms.

Outline of the clustering algorithm. Clustering and labelling are both es-
sential operations for a Web snippet clustering system. However, each previously
proposed such system strikes a different balance between the two aspects. Some
systems (e.g. [3, 4]) view label extraction as the primary goal, and clustering is a
by-product of the label extraction procedure. Other systems (e.g. [5, 6]) view in-
stead the formation of clusters as the most important step, and the labelling phase
is considered as strictly dependent on the clusters found. We have followed this
latter approach. In order to cluster the snippets in the returned lists, we map them
into a vector space endowed with a distance function, which we treat as a met-
ric; then a modified furthest-point-first algorithm (M-FPF) is applied to generate
the clusters. The M-FPF algorithm generates the same clusters of the “standard”
FPF algorithm, but uses filters based on the triangular inequality to speed up the

1 The Armil system can be freely accessed at http://armil.iit.cnr.it/.

Cluster Generation and Cluster Labelling for Web Snippets 27

computation. As such, M-FPF inherits a very important property of the FPF al-
gorithm, i.e. it is within a factor 2 of the optimal solution for the k-center problem
[7]. The second interesting property of M-FPF is that it does not compute cen-
troids of clusters. Centroids tend to be dense vectors and, as such, their computa-
tion and/or update in high-dimensional space is a computational burden. M-FPF
relies instead only on pairwise distance calculations between snippets, and as such
better exploits the sparsity of the snippet vector representations.

Outline of the cluster labelling algorithm. The cluster labelling phase
aims at extracting from the set of snippets assigned to each cluster a sequence
of words highly descriptive of the corresponding group of items. The quality of
the label depends on its well-formedness (i.e. whether the text is syntactically
and semantically plausible), on its descriptive power (i.e. how well it describes
what is contained in the cluster), and on its discriminative power (i.e. how well
it differentiates what is contained in the cluster with respect to what is con-
tained in other clusters). The possibility to extract good labels directly from the
available snippets is strongly dependent on their quality and, obviously, on the
homogeneity of the produced clusters. In order to pursue a good tradeoff be-
tween descriptive and discriminative power, we select candidate words for each
cluster by means of IGm, a modified version of the Information Gain measure
[2]. For each cluster, IGm allows the selection of those words that are most
representative of its contents and are least representative of the contents of the
other clusters. Finally, in order to construct plausible labels, rather than simply
using the list of the top-scoring words (i.e. the ones that maximize IGm), the
system looks within the titles of the returned Web pages for the substring that
best matches the selected top-scoring words.

Once each cluster has been assigned a set of descriptive and discriminative
words (we call such set the cluster signatures), all the clusters that share the
same signature are merged. This reduces the arbitrariness inherent in the choice
of their number k, that is fixed a priori independently of the query.

Outline of the paper. The paper is organized as follows. In Section 2 we review
related work on techniques for the automatic re-organization of search results.
Section 3 introduces the data representation adopted within Armil and sketches
the properties of the M-FPF clustering algorithm and of the cluster labelling
algorithm. The results of the system evaluation are reported in Sections 5 and
4. Finally, in Section 6 conclusions and prospective future research are discussed.
A full version of this paper with more details is in [8].

2 Previous Work

Tools for clustering Web snippets have recently become a focus of attention in
the research community. In the past, this approach has had both critics [9, 10]
and supporters [11], but the proliferation of commercial Web services such as
Copernic, Dogpile, Groxis, iBoogie, Kartoo, Mooter, and Vivisimo seems to confirm
the validity of the approach. Academic research prototypes are also available,
such as Grouper [12, 6], EigenCluster [13], Shoc [14], and SnakeT [3]. Generally,
details of the algorithms underlying the commercial Web services are not in the
public domain.

Maarek et al. [15] give a precise characterization of the challenges inherent
in Web snippet clustering, and propose an algorithm based on complete-link

28 F. Geraci et al.

hierarchical agglomerative clustering that is quadratic in the number n of snip-
pets. They introduce a technique called “lexical affinity” whereby the co-
occurrence of words influences the similarity metric.

Zeng et al. [16] tackle the problem of detecting good cluster names as pre-
liminary to the formation of the clusters, using a supervised learning approach.
Note that the methods considered in our paper are instead all unsupervised,
thus requiring no labelled data.

The EigenCluster [13], Lingo [17], and Shoc [14] systems all tackle Web snippet
clustering by performing a singular value decomposition of the term-document
incidence matrix2; the problem with this approach is that SVD is extremely
time-consuming, hence problematic when applied to a large number of snippets.
Zamir and Etzioni [12, 6] propose a Web snippet clustering mechanism (Suffix
Tree Clustering – STC) based on suffix arrays, and experimentally compare
STC with algorithms such as k-means, single-pass k-means [18], Backshot and
Fractionation [19], and Group Average Hierarchical Agglomerative Clustering.
They test the systems on a benchmark obtained by issuing 10 queries to the
Metacrawler meta-search engine, retaining the top-ranked 200 snippets for each
query, and manually tagging the snippets by relevance to the queries. They then
compute the quality of the clustering obtained by the tested systems by ordering
the generated clusters according to precision, and by equating the effectiveness
of the system with the average precision of the highest-precision clusters that
collectively contain 10% of the input documents. Interestingly, the authors show
that very similar results are attained when full documents are used instead of
their snippets, thus validating the snippet-based clustering approach.

Lawrie and Croft [4] view the clustering/labelling problem as that of generat-
ing multilevel summaries of the set of documents (in this case the Web snippets
returned by a search engine). The technique is based on first building off-line
a statistical model of the background language (e.g. the statistical distribution
of words in a large corpus of the English language), and on subsequently ex-
tracting “topical terms” from the documents, where “topicality” is measured by
the contribution of a term to the Kullback-Leibler divergence score of the doc-
ument collection relative to the background language. Intuitively, this formula
measures how important this term is in measuring the distance of the collection
of documents from the distribution of the background language. The proposed
method is shown to be superior (by using the KL-divergence) to a naive sum-
marizer that just selects the terms with highest tf ∗ idf score in the document
set.

Kammamuru et al. [5] propose a classification of Web snippet clustering al-
gorithms into monothetic (in which the assignment of a snippet to a cluster is
based on a single dominant feature) and polythetic (in which several features
concur in determining the assignment of a snippet to a cluster). The rationale
for proposing a monothetic algorithm is that the single discriminating feature is
a natural label candidate. The authors propose such an algorithm in which the
snippets are seen as sets of words and the next term is chosen so as to maxi-
mize the number of newly covered sets while minimizing the hits with already
covered sets. The paper reports empirical evaluations and user studies over two
classes of queries, “ambiguous” and “popular”. The users were asked to compare
3 clustering algorithms over the set of queries and, for each query, were asked to
answer 6 questions of a rather general nature on the generated hierarchy.

2 The Eigencluster system is available on-line at http://www-math.mit.edu/cluster/

Cluster Generation and Cluster Labelling for Web Snippets 29

Ferragina and Gulli [3] propose a method for hierarchically clustering Web
snippets, and produce a hierarchical labelling based on constructing a sequence
of labelled and weighted bipartite graphs representing the individual snippets
on one side and a set of labels (and corresponding clusters) on the other side.
Data from the Open Directory Project (ODP)3 is used in an off-line and query-
independent way to generate predefined weights that are associated on-line to
the words of the snippets returned by the queries. Data is collected from 16
search engines as a result of 77 queries chosen for their popularity among Lycos
and Google users in 2004. The snippets are then clustered and the labels are
manually tagged as relevant or not relevant to the cluster to which they have
been associated. The clusters are ordered in terms of their weight, and quality
is measured in terms of the number of relevant labels among the first n labels,
for n ∈ {3, 5, 7, 10}. Note that in this work the emphasis is on the quality of the
labels rather than on that of the clusters, and that the ground truth is defined
“a posteriori”, after the queries are processed.

3 The Clustering Algorithm and the Labelling Algorithm

The clustering algorithm. We approach the problem of clustering Web snip-
pets as that of finding a solution to the classic k-center problem: Given a set S
of points in a metric space M endowed with a metric distance function D, and
given a desired number k of resulting clusters, partition S into non-overlapping
clusters C1, . . . , Ck and determine their “centers” μ1, . . . , μk ∈ M so that the
radius maxj maxx∈Cj D(x, μj) of the widest cluster is minimized. The k-center
problem can be solved approximately using the furthest-point-first (FPF) algo-
rithm [7, 20], which we now describe. Given a set S of n points, FPF builds a
sequence T1 ⊂ . . . ⊂ Tk = T of k sets of “centers” (with Ti = {μ1, . . . , μi} ⊂ S)
in the following way.

1. At the end of iteration i−1 FPF holds the mapping μ defined for every point
pj ∈ S \ Ti−1 as: μ(pj) = argminμs D(pj , μs) i.e. the center in Ti−1 closest
to pj ; μ(pj) is called the leader of pj . Note that this mapping is established
in the first iteration in time O(n).

2. At iteration i, among all points pj , FPF picks μi = argmaxpj D(pj , μ(pj))
i.e. the point for which the distance to its leader is maximum, and makes
it a new center, i.e. adds it to Ti−1, thus obtaining Ti. This selection costs
O(n).

3. Compute the distance of μi to any point in S \ Ti and update the mapping
μ if needed. Thus μ is now correct for the beginning of iteration i + 1. This
update phase costs O(n).

The final set of centers T = {μ1, . . . , μk} defines the resulting k-clustering, since
each center μi implicitly identifies a cluster Ci as the set of data points whose
leader is μi. Note that T1 is initialized to contain a single point chosen at ran-
dom from S; this random choice is due to the fact that, in practice, both the
effectiveness and the efficiency of the algorithm can be seen experimentally to
be insensitive to this choice.

Most of the computation is actually devoted to computing distances and up-
dating the auxiliary mapping μ: this takes O(n) time per iteration, so the total
3 http://www.dmoz.org/

30 F. Geraci et al.

computational cost of the algorithm is O(nk). In [1] we have thus defined an im-
proved version of this algorithm that exploits the triangular inequality in order
to filter out useless distance computations. This modified algorithm (M-FPF),
which we now describe, works in any metric space, hence in any vector space4.

Consider, in the FPF algorithm, any center μx ∈ Ti and its associated set
of closest points N(μx) = {pj ∈ S \ Ti | μ(pj) = μx}. We store N(μx) as a
ranked list, in order of decreasing distance from μx. When a new center μy is
added to Ti, in order to identify its associated set of closest points N(μy) we
scan every N(μx) in decreasing order of distance, and stop scanning when, for a
point pj ∈ N(μx), it is the case that D(pj , μx) ≤ 1

2D(μy, μx). By the triangular
inequality, any point pj that satisfies this condition cannot be closer to μy than
to μx. This rule filters out from the scan points whose leader cannot possibly
be μy, thus significantly speeding up the identification of leaders. Note that all
distances between centers in Ti must be available; this implies an added O(k2)
cost for computing and maintaining these distances, which is anyhow dominated
by the term O(nk).

Using medoids. The M-FPF is applied to a random sample of size
√

nk of the in-
put points (this sample size is suggested in [21]). Afterwards the remaining points
are associated to the closest (according to the Generalized Jaccard Distance) cen-
ter. We obtain improvements in quality by making an iterative update of the “cen-
ter” when a new point is associated to a cluster. Within a cluster Ci we find the
point ai furthest from μi and the point bi furthest from ai (intuitively this is a
good approximation to a diametral pair). The medoid mi is the point in Ci that
has the minim value of the function |D(ai, x) − D(bi, x)| + |D(ai, x) + D(bi, x)|,
over all x ∈ Ci.5 When we add a new point to Ci, we check if the new point
should belong to the approximate diametral pair (ai, bi), and if so we update mi

accordingly. The association of the remaining points is done with respect to the
medoids, rather than the centers. The application of M-FPF plus the iterative re-
computation of medoids gave us a clustering of better quality than simply using
M-PFP on the whole input set.

The distance function. Each snippet is turned into a “bag of words” after
removing stop words and performing stemming. In [1] we report experiments
using, as a distance function, (i) the cosine distance measure (i.e. the complement
to 1 of the cosine similarity function) applied to vectors of terms weighted by tf ∗
idf , and (ii) a slight modification of the standard Jaccard Distance, which we call
Weighted Jaccard Distance (WJD); in those experiments, (ii) has performed at
the same level of accuracy as (i), but has proven much faster to compute. In this
paper we improve on the results of [1] by using the Generalized Jaccard Distance
described in [22]. Given two “bag-of-words” snippet vectors s1 = (s1

1, ...s
h
1) and

s2 = (s1
2, ...s

h
2), the Generalized Jaccard Distance is: D(s1, s2) = 1−

�
i min(si

1,si
2)

�
i max(si

1,si
2) .

The term weights si
a consist of “weighted term frequencies”, obtained as weighted

sums of the numbers of occurrences of the term in the snippet, where weight 3 is
assigned to a term occurring in the page title, weight 1 to a term occurring in the
text fragment, and weight 0 is assigned to a term occurring in the URL (since,

4 We recall that any vector space is also a metric space, but not vice-versa.
5 This formula mimics in a discrete setting the task of finding the cluster point closest

to the median point to the segment (ai, bi).

Cluster Generation and Cluster Labelling for Web Snippets 31

in previous experiments we had run, the text of the URL had proven to give no
contribution in terms of cluster quality). Note that, when using unit weights only,
the Generalized Jaccard Distance coincides with the standard Jaccard Distance.

The candidate words selection algorithm. We select candidate terms for
labelling the generated clusters through a modified version of the information
gain function [2]. For term t and category c, information gain is defined as
IG(t, c) =

∑
x∈{t,t̄}

∑
y∈{c,c̄} P (x, y) log P (x,y)

P (x)P (y) Intuitively, IG measures the
amount of information that each argument contains about the other; when t and
c are independent, IG(t, c) = 0. This function is often used for feature selection
in text classification, where, if IG(t, c) is high, the presence or absence of a term
t is deemed to be highly indicative of the membership or non-membership in
a category c of the document containing it. In the text classification context,
the rationale of including in the sum, aside from the factor that represents the
“positive correlation” between the arguments (i.e. the factor P (t, c) log P (t,c)

P (t)P (c) +

P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄)), also the factor that represents their “negative correlation”

(i.e. the factor P (t̄, c) log P (t̄,c)
P (t̄)P (c) + P (t, c̄) log P (t,c̄)

P (t)P (c̄)), is that, if this latter
factor has a high value, this means that the absence (resp. presence) of t is
highly indicative of the membership (resp. non-membership) of the document in
c. That is, the term is useful anyway, although in a “negative” sense.

However, in our context we are interested in terms that positively describe
the contents of a cluster, and are thus only interested in positive correlation.
Therefore, we drop the factor denoting negative correlation from the IG formula,
yielding the modified version IGm(t, c) = P (t, c) log P (t,c)

P (t)P (c) +P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄)

that coincides with the positive correlation factor of IG. We use IGm to select,
for each cluster, words that are representative of the cluster and, at the same
time, allow to discriminate among clusters.

4 Experimental Evaluation of the Clustering Algorithm

The baseline. As baseline against which to compare the clustering capabilities
of Armil, we have chosen Vivisimo6. Vivisimo is considered an industrial stan-
dard in terms of clustering quality and user satisfaction, and in 2001 and 2002
it has won the “best meta-search-award” assigned annually by the on-line mag-
azine SearchEngineWatch.com. Vivisimo thus represents a particularly difficult
baseline, and it is not known if its clustering quality only depends on an ex-
tremely good clustering algorithm, or rather on the use of external knowledge
or custom-developed resources. To the best of our knowledge, this is the first
published experiment comparing the clustering quality of an academic proto-
type and Vivisimo. Vivisimo’s advanced searching feature allows a restriction of
the considered auxiliary search engines to a subset of a range of possible auxil-
iary search engines. For the purpose of our experiment we restrict our source of
snippets to the ODP directory.

Measuring clustering quality. Following a consolidated practice, in this paper
we measure the effectiveness of a clustering system by the degree to which it is
able to “correctly” re-classify a set of pre-classified snippets into exactly the same
6 http://vivisimo.com/

32 F. Geraci et al.

categories without knowing the original category assignment. In other words,
given a set C = {c1, . . . , ck} of categories, and a set Θ of n snippets pre-classified
under C, the “ideal” term clustering algorithm is the one that, when asked to
cluster Θ into k groups, produces a grouping C′ = {c′1, . . . , c

′
k} such that, for

each snippet sj ∈ Θ, sj ∈ ci if and only if sj ∈ c′i. The original labelling is thus
viewed as the latent, hidden structure that the clustering system must discover.

The measure we use is normalized mutual information (see e.g. [23, page

110]), i.e. NMI(C, C′) =
2

log |C||C′|
∑

c∈C

∑

c′∈C′

P (c, c′) · log
P (c, c′)

P (c) · P (c′)
where

P (c) represents the probability that a randomly selected snippet sj belongs to
c, and P (c, c′) represents the probability that a randomly selected snippet sj

belongs to both c and c′. The normalization, achieved by the 2
log |C||C′| factor,

is necessary in order to account for the fact that the cardinalities of C and
C′ are in general different [2]. Higher values of NMI mean better clustering
quality. The clustering produced by Vivisimo has partially overlapping clusters
(in our experiments Vivisimo assigned roughly 27% of the snippets to more than
one cluster), but NMI is designed for non-overlapping clustering. Therefore,
in measuring NMI we eliminate from the ground truth, from the clustering
produced by Vivisimo, and from that produced by Armil, the snippets that are
present in multiple copies.

However, in order to also consider the ability of the two systems to “correctly”
duplicate snippets across overlapping clusters, we have also computed the nor-
malized complementary entropy [23, page 108], in which we have changed the
normalization factor so as to take overlapping clusters into account. The en-
tropy of a cluster c′l ∈ C′ is E(c′l, C) =

∑|C|
k=1 − |c′

l∩ck|
|ck| log |c′

l∩ck|
|ck| . The normalized

complementary entropy of c′l is NCE(c′l, C) = 1 − E(c′
l,C)

log |C| . NCE ranges in the
interval [0, 1], and a greater value implies better quality of c′l. The complemen-
tary normalized entropy of C′ is the weighted average of the contributions of
the single clusters in C′. Let n′ =

∑|C′|
l∈1 |c′l| be the sum of the cardinalities of

the clusters of C′. Note that when clusters may overlap it holds that n′ ≥ n.
Thus NCE(C′, C) =

∑|C′|
l∈1

|c′
l|

n′ NCE(c′l, C). NCE values reported below are
thus obtained on the full set of snippets returned by Vivisimo.

Establishing the ground truth. Following [24], we have made a series of
experiments using as input the snippets resulting from queries issued to the Open
Directory Project (ODP – see Footnote 3). The ODP is a searchable Web-based
directory consisting of a collection of a few million Web pages (as of today, ODP
claims to index 5.1M Web pages) pre-classified into more than 590K categories
by a group of volunteer human experts. The classification induced by the ODP
labelling scheme gives us an objective “ground truth” against which we can
compare the clustering quality of Vivisimo and Armil. In ODP, documents are
organized according to a hierarchical ontology. For any snippet we obtain a
label for its class by considering only the first two levels of the path on the ODP
category tree. This coarsification is needed in order to balance the number of
classes and the number of snippets returned by a query.

Queries are submitted to Vivisimo, asking it to retrieve pages only from ODP.
This is done to ensure that Vivisimo and Armil operate on the same set of snippets,
hence to ensure full comparability of the results. The resulting set of snippets

Cluster Generation and Cluster Labelling for Web Snippets 33

Table 1. Results of the comparative evaluation

Vivisimo Armil(40) Armil(30)
NCE 0.667 0.735 (+10.1%) 0.683 (+2.3%)
NMI 0.400 0.442 (+10.5%) 0.406 (+1.5%)

is parsed and given as input to Armil. Since Vivisimo does not report the ODP
category to which a snippet belongs, for each snippet we perform a query to
ODP in order to establish its ODP-category.

Outcome of the comparative experiment. The queries used in this exper-
iment are the last 30 of those reported in Appendix A (the first 5 have been
excluded since too few related snippets are present in ODP). On average, ODP
returned 41.2 categories for each query. In Table 1 we report the NMI and
NCE values obtained by Vivisimo and Armil on these data. Vivisimo produced
by default about 40 clusters; therefore we have run Armil with a target of 40
clusters (thus with a choice close to that of Vivisimo, and to the actual average
number of ODP categories per query) and with 30 (this number is the default
used in the user evaluation).

The experiments indicate an substantial improvement of about 10% in terms
of cluster quality of Armil(40) with respect to Vivisimo.7 This improvement is an
important result since, as noted in 2005 in [3], “[T]he scientific literature offers
several solutions to the web-snippet clustering problem, but unfortunately the
attainable performance is far from the one achieved by Vivisimo.” It should be
noted moreover that Vivisimo uses a proprietary algorithm, not in the public
domain, which might make extensive use of external knowledge. In contrast our
algorithm is open and disclosed to the research community.

5 User Evaluation of the Cluster Labelling Algorithm

Assessing “objectively” the quality of a cluster labelling method is a difficult
problem, for which no established methodology has gained a wide acceptance.
For this reason a user study is the standard testing methodology. We have set up
a user evaluation of the cluster labelling component of Armil in order to have an
independent and measurable assessment of its performance. We performed the
study on 22 volunteer master students, doctoral students and post-docs in com-
puter science at our departments. The volunteers have all a working knowledge
of the English language.

The user interface of Armil has been modified so as to show clusters one-by-
one and proceed only when the currently shown cluster has been evaluated. The
queries are supplied to the evaluators in a round robin fashion from a list of 35
predefined queries. For each query the user must first say whether the query is
meaningful to her; an evaluator is allowed to evaluate only queries meaningful
to her. For each cluster we propose three questions: (a) Is the label syntactically
well-formed?; (b) Can you guess the content of the cluster from the label?; (c) After
inspecting the cluster, do you retrospectively consider the cluster as well described

7 For the sake of replicating the experiments all the search results have been cached
and are available at http://psp1.iit.cnr.it/~mcsoft/armil .

34 F. Geraci et al.

Table 2. Correlation tables of questions row-(a) and column-(b) (left), row-(b) and
column-(c) (middle), row-(a) and column-(c) (right). Entries in the top part give the
percentage over all answers, and entries in the bottom part give percentage over rows.

Yes Sort-of No Yes Sort-of No Yes Sort-of No
Yes 42.67% 12.81% 5.11% 33.52% 12.81% 3.72% 35.98% 18.93% 5.68%
Sort-of 5.74% 15.27% 4.41% 11.36% 16.85% 3.66% 8.64% 12.81% 3.97%
No 1.64% 3.78% 8.52% 2.14% 8.90% 7.00% 2.39% 6.81% 4.73%
Yes 70.41% 21.14% 8.43% 66.96% 25.59% 7.44% 59.37% 31.25% 9.37%
Sort-of 22.58% 60.04% 17.36% 35.64% 52.87% 11.48% 33.99% 50.37% 15.63%
No 11.76% 27.14% 61.08% 11.88% 49.30% 38.81% 17.19% 48.86% 33.93%

by the label? The evaluator must choose one of three possible answers (Yes; Sort-
of; No), and her answer is automatically recorded in a database. Question (a) is
aimed at assessing the gracefulness of the label produced. Question (b) is aimed
at assessing the quality of the label as an instrument predictive of the cluster
content. Question (c) is aimed at assessing the correspondence of the label with
the content of the cluster. Note that the user cannot inspect the content of the
cluster before answering (a) and (b).

Selection of the queries. Similarly to [3, 5], we have randomly selected 35
of the most popular queries submitted to Google in 2004 and 20058; from the
selection we have removed queries (such as e.g. “Spongebob”, “Hilary Duff”)
that, referring to someone or something of regional interest only, were unlikely
to be meaningful to our evaluators. The queries are listed in Appendix A.

Discussion of the results. Each of the 35 queries has been evaluated by two
different evaluators, for a total of 70 query evaluations and 1584 cluster evalua-
tions. The results are displayed in the following table:

Yes Sort-of No
(a) 60.5% 25.5% 14.0%
(b) 50.0% 32.0% 18.0%
(c) 47.0% 38.5% 14.5%

By checking the percentages of No answers, we can notice that sometimes la-
bels considered non-predictive are nonetheless considered well descriptive of the
cluster; we interpret this fact as due to the discovery of meanings of the query
string previously unknown to the evaluator. The correlation matrices in Table 2
show more precisely the correlation between syntax, predictivity and represen-
tativeness of the labels. The data in Table 2 (left) show that there is a strong
correlation between syntactic form and predictivity of the labels, as shown by
the fact that in a high percentage of cases the same answer was returned to ques-
tions (a) and (b). The middle and right part of Table 2 confirms that while for
the positive or mildly positive answers (Yes, Sort-of) there is a strong correlation
between the answers returned to the different questions, it is often the case that
a label considered not predictive of the content of the cluster can still be found,
after inspection of the cluster, to be representative of the content of the cluster.

Running times. Our system runs on an AMD Athlon (1Ghz Clock) processor
with 750Mb RAM and operating system FreeBSD 4.11 - STABLE. The code
8 http://www.google.com/press/zeitgeist.html

Cluster Generation and Cluster Labelling for Web Snippets 35

was developed in Python V. 2.4.1. Excluding the time needed to download the
snippets from the auxiliary search engines, the 35 queries have been clustered
and labelled in 0.72 seconds on average; the slowest query took 0.92 seconds.

6 Conclusions and Future Work

Why is Armil not “yet another clustering search engine”? The debate on how to
improve the performance of search engines is at the core of the current research
in the area of Web studies, and we believe that so far only the surface of the
vein has been uncovered. The main philosophy of the system/experiments we
have proposed follows these lines: (i) principled algorithmic choices are made
whenever possible; (ii) clustering is clearly decoupled from labelling; (iii) atten-
tion is paid to the trade-off between response time and quality while limiting the
response time within limits acceptable by the user; (iv) a comparative study of
Armil and Vivisimo has been performed in order to assess the quality of Armil’s
clustering phase by means of effectiveness measures commonly used in clustering
studies; (v) a user study has been set up in order to obtain an indication of user
satisfaction with the produced cluster labelling; (vi) no use of external sources
of knowledge is made.

Further research is needed in two main areas. First, we plan to assess to what
extent a modicum of external knowledge can improve the system’s performance
without speed penalties. Second, it is possible to introduce in the current pipeline
(input snippets are clustered, candidates are extracted, labels are generated) of
the architecture a feedback loop by considering the extracted candidates/labels
as predefined categories, thus examining which snippets in different clusters are
closer to the generated labels. Snippets close to the label of cluster Cx but in
a different cluster Cy could be shown on the screen as related also to Cx. This
would give the benefits of soft clustering without much computational overload.

References

1. Geraci, F., Pellegrini, M., Pisati, P., Sebastiani, F.: A scalable algorithm for high-
quality clustering of Web snippets. In: Proceedings of SAC-06, 21st ACM Sympo-
sium on Applied Computing, Dijon, FR (2006) 1058–1062

2. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons,
New York, US (1991)

3. Ferragina, P., Gulli, A.: A personalized search engine based on Web-snippet hierar-
chical clustering. In: Special Interest Tracks and Poster Proceedings of WWW-05,
14th International Conference on the World Wide Web, Chiba, JP (2005) 801–810

4. Lawrie, D.J., Croft, W.B.: Generating hierarchical summaries for Web searches.
In: Proceedings of SIGIR-03, 26th ACM International Conference on Research and
Development in Information Retrieval. (2003) 457–458

5. Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierar-
chical monothetic document clustering algorithm for summarization and browsing
search results. In: Proceedings of WWW-04, 13th International Conference on the
World Wide Web, New York, NY (2004) 658–665

6. Zamir, O., Etzioni, O., Madani, O., Karp, R.M.: Fast and intuitive clustering
of Web documents. In: Proceedings of KDD-97, 3rd International Conference on
Knowledge Discovery and Data Mining, Newport Beach, US (1997) 287–290

7. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science 38(2/3) (1985) 293–306

36 F. Geraci et al.

8. Geraci, F., Pellegrini, M., Sebastiani, F., Maggini, M.: Cluster generation and clus-
ter labelling for web snippets: A fast and accurate hierarchical solution. Technical
Report IIT TR-1/2006, Institute for Informatics and Telematics of CNR (2006)

9. Kural, Y., Robertson, S., Jones, S.: Clustering information retrieval search out-
puts. In: Proceedings of the 21st BCS IRSG Colloquium on Information Retrieval,
Glasgow, UK (1999)

10. Kural, Y., Robertson, S., Jones, S.: Deciphering cluster representations. Informa-
tion Processing and Management 37 (1993) 593–601

11. Tombros, A., Villa, R., van Rijsbergen, C.J.: The effectiveness of query-specific
hierarchic clustering in information retrieval. Information Processing and Manage-
ment 38(4) (2002) 559–582

12. Zamir, O., Etzioni, O.: Web document clustering: A feasibility demonstration. In:
Proceedings of SIGIR-98, 21st ACM International Conference on Research and
Development in Information Retrieval, Melbourne, AU (1998) 46–54

13. Cheng, D., Kannan, R., Vempala, S., Wang, G.: On a recursive spectral algo-
rithm for clustering from pairwise similarities. Technical Report MIT-LCS-TR-906,
Massachusetts Institute of Technology, Cambridge, US (2003)

14. Zhang, D., Dong, Y.: Semantic, hierarchical, online clustering of Web search re-
sults. In: Proceedings of APWEB-04, 6th Asia-Pacific Web Conference, Hangzhou,
CN (2004) 69–78

15. Maarek, Y., Fagin, R., Ben-Shaul, I., Pelleg, D.: Ephemeral document clustering
for Web applications. Technical Report RJ 10186, IBM, San Jose, US (2000)

16. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster Web search
results. In: Proceedings of SIGIR-04, 27th ACM International Conference on Re-
search and Development in Information Retrieval, Sheffield, UK (2004) 210–217

17. Osinski, S., Weiss, D.: Conceptual clustering using Lingo algorithm: Evaluation
on Open Directory Project data. In: Proceedings of IIPWM-04, 5th Conference on
Intelligent Information Processing and Web Mining, Zakopane, PL (2004) 369–377

18. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability. Volume 1. (1967) 281–297

19. Cutting, D.R., Pedersen, J.O., Karger, D., Tukey, J.W.: Scatter/Gather: A cluster-
based approach to browsing large document collections. In: Proceedings of SIGIR-
92, 15th ACM International Conference on Research and Development in Informa-
tion Retrieval, Kobenhavn, DK (1992) 318–329

20. Hochbaum, D.S., Shmoys, D.B.: A best possible approximation algorithm for the
k-center problem. Mathematics of Operations Research 10(2) (1985) 180–184

21. Indyk, P.: Sublinear time algorithms for metric space problems. In: Proceedings
of STOC-99, ACM Symposium on Theory of Computing. (1999) 428–434

22. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of STOC-02, 34th Annual ACM Symposium on the Theory of Com-
puting, Montreal, CA (2002) 380–388

23. Strehl, A.: Relationship-based Clustering and Cluster Ensembles for High-
dimensional Data Mining. PhD thesis, University of Texas, Austin, US (2002)

24. Haveliwala, T.H., Gionis, A., Klein, D., Indyk, P.: Evaluating strategies for similar-
ity search on the Web. In: Proceedings of WWW-02, 11th International Conference
on the World Wide Web, Honolulu, US (2002) 432–442

A Queries Used in the User Evaluation

skype, winmx, nintendo revolution, pamela anderson, twin towers, wallpaper,
firefox, ipod, tsunami, tour de france, weather, matrix, mp3, new orleans, notre
dame, games, britney spears, chat, CNN, iraq, james bond, harry potter, simp-
sons, south park, baseball, ebay, madonna, star wars, tiger, airbus, oscars, lon-
don, pink floyd, armstrong, spiderman.

	Introduction
	Previous Work
	The Clustering Algorithm and the Labelling Algorithm
	Experimental Evaluation of the Clustering Algorithm
	User Evaluation of the Cluster Labelling Algorithm
	Conclusions and Future Work
	Queries Used in the User Evaluation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

