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Abstract. We describe a simple and efficient scheme which allows words
to be managed in PPM modelling when a natural language text file is
being compressed. The main idea for managing words is to assign them
codes to make them easier to manipulate. A general technique is used
to obtain this objective: a dictionary mapping on PPM modelling. In
order to test our idea, we are implementing three prototypes: one imple-
ments the basic dictionary mapping on PPM, another implements the
dictionary mapping with the separate alphabets model and the last one
implements the dictionary with the spaceless words model. This tech-
nique can be applied directly or it can be combined with some word
compression model. The results for files of 1 Mb. and over are better
than those achieved by the character PPM which was taken as a base.
The comparison between different prototypes shows that the best op-
tion is to use a word based PPM in conjunction with the spaceless word
concept.

Keywords: Text Compression, PPM, Dictionary Algorithms, Natural
Language Processing.

1 Introduction

In modern computational environments, processing times and storage costs have
been reduced. On the other hand, the amount of data stored and transmitted has
increased dramatically. Although most data is multimedia, the amount of tex-
tual data, predominant a few years ago, is not negligible. Information Retrieval
Systems and Digital Libraries are systems where textual information, with and
without format, is still predominant. Besides, these systems are used in several
environments such as networks, optical and magnetical media. In these cases,
the use of compression techniques is the best choice to solve storage problems
and improve access time in storing and processing. Improvements in processing
times are achieved thanks to the reduced disk transfer times necessary to ac-
cess the text in compressed form. Since processor speeds in the last few decades
have increased much faster than disk transfer speeds, trading disk transfer times
for processor decompression times has become a much better choice [21]. On
the other hand, the use of compression techniques reduces transmission times
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and increases the efficiency using communication channels. These compression
propierties allow us to keep costs down.

Classical text compression algorithms perform compression at the character
level. When an algorithm is adaptive then the algorithm slowly learns corre-
lations between sequences of characters. However, the algorithm usually has a
chance to take advantage of longer sequences before either the end of input is
reached or the tables maintained by the algorithm reach their capacity. If text
compression algorithms were to use larger units than single characters as the
basic storage element, they would be able to take advantage of the longer range
sequences and, perhaps, achieve better compression performance. Faster com-
pression may also be possible by working with larger units [13].

In this paper, we explore the use of a word representation as the basic unit in
PPM, one of the most promising lossless discrete-data compression algorithms
at the character level, which uses Markov models of order k.

When the source file is a natural language document, we have no difficulty in
recognizing a word as consisting of a sequence of consecutive letters. Each word
is separated from the next by space and/or punctuation characters. Following
the same approach as Bentley et al. [6], we generalize slightly by considering
a natural language text file to consist of alternating alphanumeric-strings and
punctuation-strings, where a word-string is a maximal sequence of alphanumeric
characters and a punctuation-string is a maximal sequence of non-alphanumeric
characters. We use the generic name word to refer to either an alphanumeric
string or a punctuation string. The generalization allows us to decompose all
kinds of text files into sequences of words. We should be able to take advantage
of the fact the the alphanumeric and non-alphanumeric words strictly alternate.

The following sections of this paper will consider the problem of generalizing
a PPM based compression algorithm to be word-based, then particular PPM
word-based algorithms will be described, and finally some experimental results
will be reported. Finally, our conclusions and future work are presented.

2 Natural Language Text Compression

With regard to compressing natural language texts the most successful tech-
niques are based on models where the text words are taken as the source symbols
[15], as opposed to the traditional models where the characters are the source
symbols.

In an English text, for example, words follow a Zipf law, that is, the relative
frequency of the i-th most frequent word is 1/iθ, for some 1 < θ < 2 [20,3].
On the other hand, the model size (assigning a codeword to each different text
word) is not significant in large text collections. Heaps law establishes that the
number of different words in a text of n words is O(nβ) for some β between 0.4
and 0.6 [12,3]. Thus, the model size grows sublinearly with the collection size.

Natural language is not only made up of words. There are also punctuation,
separator, and other special characters. The sequence of characters between every
pair of consecutive words is called a separator. Separators must also be considered
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to be symbols of the source alphabet. There are even fewer different separators
than different words, and their distribution is even more skewed. Note that, since
words and separators strictly alternate in the text, we can have two separate
source alphabets, usually leading to better compression. As explained in the
Introduction, we will use the generic name words to refer to both text words and
separators in this paper.

Words reflect much better than characters the true entropy of the text [4]. For
example, a semiadaptive Huffman coder over the model that considers characters
as symbols typically obtains a compressed file whose size is around 60% of the
original size, in natural language. A Huffman coder, when words are the symbols,
obtains 25% [21]. Existing compression algorithms that consider the input as a
sequence of words are ad hoc in nature. The scheme described by Bentley et
al. [6] maintains a list of words sorted into least-recently used order. A word is
encoded by its position in this dynamically changing list. Words near the front of
the list tend to have shorter codes than those near the end and, assuming words
in frequent use stay near the front of the list, compression is achieved. Another
example is the WLZW algorithm, which uses Ziv-Lempel on words [10].

Since the text is not only composed of words but also separators, a model
must also be chosen for them. An obvious possibility is to consider the different
inter-word separators as symbols too, and make a unique alphabet for words and
separators. However, this idea is not using a fundamental alternation property:
words and separators always follow one another. In [15,5] two different alphabets
are used: one for words and one for separators. Once it is known that the text
starts with word or separator, there is no confusion on which alphabet to use.
This model is called separate alphabets.

In [17,21] a new idea to use the two alphabets is proposed, called spaceless
words. An important fact that is not used in the method of separate alphabets is
that a word is followed by a single space in most cases. In general, it is possible to
be emphasized that at least 70% of separators in text are single space [15]. Then,
the spaceless words model take a single space as a default. That is, if a word is
followed by a single space, we just encode the word. If not, we encode the word
and then the separator. At decoding time, we decode a word and assume that
a space follows, except if the next symbol corresponds to a separator. Of course
the alternation property does not hold anymore, so we have a single alphabet
for words and separators (single space excluded). This variation achieves slightly
better compression ratios in reported experiments.

3 k-th Order Models

These models assign a probability to each source symbol as a function of the
context of k source symbols that precede it. They are used to build very effective
compressors such as Prediction by Partial Matching (PPM) and those based on
the Burrows-Wheeler Transform (BWT).

PPM [9,18] is a statistical compressor that models the character frequencies
according to the context given by the k characters preceding it in the text (this
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is called a k-th order model), as opposed to Huffman that does not consider the
preceding characters. Moreover, PPM is adaptive, so the statistics are updated
as the compression progresses. The larger k is, the more accurate the statisti-
cal model and the better the compression are, but more memory and time is
necessary to compress and uncompress.

The PPM technique can be viewed as blending together several fixed-order
models to predict the next character in the input sequence. More exactly, PPM
uses k+1 models, of order 0 to k, in parallel. It usually compresses using the k-th
order model, unless the character to compress has never been seen in that model.
In this case, it switches to a lower-order model until the character is found. The
coding of each character is done with an arithmetic compressor, according to the
computed statistics at that point. Well known representatives of this family are
Shkarin/Cheney’s ppmdi and Bloom/Tarhio’s ppmz.

The BWT [7] is a reversible permutation of the text that puts together char-
acters having the same k-th order context (for any k). The BWT is a composite
of three different algorithms: (i) the block sorting main engine, a lossless and
very slightly expansive preprocessor; (ii) the move-to-front coder (MTF), a byte-
for-byte simple, fast, locally adaptive noncompressive coder; and (iii) a simple
statistical compressor, like a first order Huffman or arithmetic coding, doing the
compression. Steps (ii) and (iii) work like a local optimization over the permuted
text obtaining results similar to k-th order compression.

In [16] the block-sorting algorithm of the BWT is extended to word-based
models, including other transformations, like spaceless words mentioned above,
in order to improve the compression. Experimental results shows that the com-
bination of word-based modeling, BWT and MFT-like transformations allows to
obtain good compression effectiveness to be attained within reasonable resource
costs.

4 Dictionary Mapping

In this section we propose a word-based scheme on PPM. Our objective has
been carried out plugging an additional layer to precede PPM that replaces
words by two byte codewords, and then these codewords will be codified with a
conventional PPM.

According to Skibinski et al. [19] replacing words by codewords has advantages
and drawbacks. First, the concept of replacing words with shorter codewords
from a given static dictionary has at least two shortcomings:

1. The dictionary must be quite large (at least tens of thousands of words) and
it is appropriate for natural language only.

2. No “high level” correlations, e.g. related to grammar, are implicitly taken
into account.

In spite of these drawbacks, such an approach to text compression turns out to
be an attractive one, and it has not been given as much attention as it deserves.
On the other hand, the benefits of dictionary-based text compression schemes
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are: the ease of dictionary generation (assuming enough training text in a given
language), clarity of ideas, high processing speed and acceptable compression
ratios. Our proposal tries to solve both shortcomings.

Figure 1 shows a graphical representation of the dictionary mapping scheme.
The proposal is made up of two different blocks: (1) Mapping Layer, which
manages the vocabulary and maps words into codewords. To limit the number
of different codes, a dictionary with a capacity of 216 is used, when this dictionary
is full an LRU policy is applied. (2) PPM Block, with two PPM compressors,
which can be the same or not, one in charge of coding codewords and the other
in charge of coding new words when they appear for the first time in the text.

This compression scheme can be seen as a PPC1 compression scheme. This is
a relatively new concept to compress data streams, based on the idea of pre-
processing the data stream (through permutations and/or partitions) before
compressing it. A successful PPC example is bzip2.

Algorithm 1 (Compression with dictionary mapping on PPM)

map.add(ESCAPE_WORD)
while (there are more words) do

word ← get_word()
if map.find(word) = true

then
CodePPM_ENCODE(map.codeword(word))

else
CodePPM_ENCODE(map.codeword(ESCAPE_WORD))
for 0 ≤ i < word.length() do

WordPPM_ENCODE(word[i])
od
map.add(word)

fi
od

1 Permutation–Partition–Compression
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Algorithm 1 shows a generic scheme for compressing the text using dictionary
mapping on PPM. This scheme uses two independent PPM encoders, one codifies
the codewords and the other codifies the new words character by character. When
a new word is reached, a reserved codeword (the general escape mechanism) is
emitted, the new word is codified using another PPM encoder and it is added
to the dictionary.

We handle a limited length size dictionary in order to always obtain two byte
codewords, therefore the dictionary capacity is at most 216 words. When the
dictionary is full and it is necessary to insert a new word, the least-recently used
(LRU) word is removed from the dictionary and its place is occupied by the new
word. The idea behind this decision is to remove from the dictionary the words
that have been used just once and probably they will never be used again. Since
we are codifing natural language texts which obey the Zipf law [20] it is quite
unlikely that a word will constantly be coming in and out the dictionary. Using
this technique, we can represent any word of the vocabulary with two bytes and,
consequently, an order-k PPM modelling codewords can better predict word
sequences using the same amount of memory as another order-k PPM modelling
the untransformed text.

The decompression algorithm is similar.

5 Evaluation

Tests were carried out on the SuSE Linux 9.3 operating system, running on a
computer with a Pentium IV processor at 1.5 GHz and 384 megabytes of RAM.
We used a g++ compiler with full optimization. For the experiments we selected
all the text files from Canterbury and Large corpora of the Canterbury Corpus2
[2]. We also selected different size collections of WSJ, ZIFF and AP from TREC-
33 [11]. In this case we concatenated files so as to obtain approximately similar
subcollection sizes from the three collections, so the size in MB is approximate.

In order to test the dictionary mapping itself, and in conjunction with the two
word-based techniques described in Section 2, we implemented several prototypes
for basic dictionary mapping on PPM (denoted by mppm), dictionary mapping
with separate alphabets model (denoted by mppmsa) and dictionary mapping
with spaceless words model (denoted by mppmsw). In all the versions we used the
Shkarin/Cheney’s ppmdi [18] to obtain comparable results with the compressors
mentioned below.

First we compressed the text files from Canterbury and Large corpora of the
Canterbury Corpus. Table 1 shows the compression (in bits per character) ob-
tained with our prototypes. The two first columns show, respectively, the file
denomination and its size in bytes, whereas the third column shows the best
results reported on the Canterbury Corpus site4. Column “ppmz” shows the

2 http://corpus.canterbury.ac.nz/
3 http://trec.nist.gov/
4 http://corpus.canterbury.ac.nz/details/



Mapping Words into Codewords on PPM 187

compression obtained by Bloom/Tarhio’s ppmz v.9.1 for Linux5, one of the bet-
ter PPM variations but with high resources demand. Column “ppmdi” shows
the compression obtained by the character based Shkarin/Cheney’s ppmdi6 (ex-
tracted in turn from James Cheney’s xmlppm v.0.98.2). This ppmdi version uses
the same memory requirements as ppmdi used to codify codewords in the mppm
prototypes. In order to codify new words in mppm prototypes, another ppmdi
compressor is needed but, in this case, with minor memory requirements. Word-
based BWT compression was excluded because we could not find the software,
yet results reported in [16] indicate that the compression ratios achieved for
Canterbury Corpus are slightly worse to those of mppmsw . Although, in order
to be able to compare, it is necessary to make more tests, mainly with files of
great size.

Table 1. Compression (bpc) for each method and collection, for Canterbury and Large
corpora of the Canterbury Corpus

File Size(bytes) Best ppmz ppmdi mppm mppmsa mppmsw

LIST 3,721 2.40 2.253 2.281 2.736 2.764 2.668
MAN 4,227 2.98 2.865 2.852 3.418 3.397 3.283
CSRC 11,150 2.08 1.867 1.849 2.293 2.329 2.244
HTML 24,603 2.32 2.192 2.134 2.382 2.473 2.355
PLAY 125,179 2.49 2.335 2.307 2.411 2.488 2.371
TEXT 152,089 2.20 2.081 2.033 2.145 2.189 2.090
TECH 426,754 1.95 1.827 1.794 1.861 1.873 1.834
POEM 481,861 2.36 2.216 2.253 2.267 2.344 2.266
WORLD 2,473,400 1.40 1.295 1.436 1.391 1.426 1.346
BIBLE 4,047,392 1.53 1.473 1.516 1.464 1.547 1.436

We can observe that the ppmdi compressor is better than the mppm prototypes
for small sizes but worse for greater files (over 1 Mb), this is due to the overload
when vocabulary is coded. On the other hand, mppmsw is the best of the mppm
family and it is also the best choice for medium and large files, even improving
on ppmz by 2.5% (as it uses memory without limitation). Comparing mppmsw

with the best results reported in the site, it improves the compression from all
files greater than 100 Kb. Also, all the prototypes of the mppm family fulfill this
affirmation. In this collection, mppmsw improves ppmdi compression by up to
7%, mppm compression by up to 3.5% and mppmsa compression by up to 8%.
mppmsa was expected to be superior to basic mppm for all files since it takes
advantage of the alternation property. But it does not happen in most files in
Table 1. This surprising behavior can be due to the fact that the ppm used in
the basic mppm is able to predict longer sequences (including both words and
separators) and therefore, it uses less bits in their codification than the mppmsa,

5 http://www.cs.hut.fi/∼tarhio/ppmz/
6 http://pizzachili.dcc.uchile.cl/initiative.html
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which is composes of two PPM encoders, one for modelling words and the other
for separators.

Next, we compressed different size collections of WSJ, ZIFF and AP from
TREC-3 in order to verify the behavior of the algorithms when managing
medium and large collections. TREC-3 collections are formed by semistructured
documents, this can harm mppm compressors but allows us to compress doc-
uments with structure-aware compressors that obtain better compression than
classical compressors. Therefore, we compressed the collections with several clas-
sic compressor systems: (1)GNU gzip v.1.3.5 7 , which use LZ77 plus a variant of
the Huffman algorithm (we also tried zip with almost identical results but slower
processing); (2)bzip2 v.1.0.2 8 , which uses the Burrows-Wheeler block sorting
text compression algorithm, plus Huffman coding (where maximum compres-
sion is the default); (3)ppmdi (extracted from xmlppm v.0.98.2 ), the same PPM
compressor used in mppm family and with the same parameters. This time, ppmz
has been excluded due to its high memory and time requirements. However, to
be able to have an idea of the ppmz behavior with TREC-3 collections, we have
compressed the smallest collections obtaining a compression of 1.936 bpc for
AP, 1.917 bpc for WSJ and 1.661 bpc for ZIFF. This compression ratio is just
slightly better than the obtained by mppmsw, but mppmsw demands much less
resources. For longer texts, ppmz is simply not a choice.

On the other hand, we compressed the collections with other compression sys-
tems that exploit text structure: (1)xmill v.0.8 9 [14], an XML-specific compres-
sor designed to exchange and store XML documents. Its compression approach
is not intended to directly support querying or updating of the compressed docu-
ments. xmill is based on the zlib library, which combines Lempel-Ziv compression
with a variant of Huffman. Its main idea is to split the file into three components:
elements and attributes, text, and structure. Each component is compressed sep-
arately. (2)xmlppm v.0.98.2 10 [8], a PPM-like coder, where the context is given
by the path from the root to the tree node that contains the current text. This is
an adaptive compressor that does not permit random access to individual doc-
uments. The idea is an evolution over xmill, as different compressors are used
for each component, and the XML hierarchy information is used to improve
compression. (3)scmppm v.0.93.3 11 [1], that implements SCM, a generic model
used to compress semistructured documents, which takes advantage of the con-
text information usually implicit in the structure of the text. The idea is to use
a separate model to compress the text that lies inside each different structure
type. Like xmlppm, scmppm uses Shkarin/Cheney’s ppmdi [18] compressors.

Table 2 shows the compression obtained with our prototypes for TREC-3 col-
lections. We can observe that mppmsw is the best choice for the mppm family,
improving mppmsa by up to 4% and mppm basic by up to 4.5%. Let us focus on

7 http://www.gnu.org
8 http://www.bzip.org
9 http://sourceforge.net/projects/xmill

10 http://sourceforge.net/projects/xmlppm
11 http://www.infor.uva.es/∼jadiego
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Table 2. Compression (bpc) for each dictionary mapping prototype for each TREC-3
collection

TREC3-AP TREC3-WSJ TREC3-ZIFF
Mb mppm mppmsa mppmsw mppm mppmsa mppmsw mppm mppmsa mppmsw

1 2.035 2.030 1.955 2.002 2.022 1.932 1.692 1.756 1.652
5 1.918 1.888 1.848 1.914 1.910 1.857 1.729 1.772 1.691

10 1.896 1.856 1.823 1.901 1.879 1.832 1.748 1.782 1.708
20 1.878 1.827 1.801 1.888 1.860 1.820 1.752 1.782 1.710
40 1.874 1.818 1.796 1.886 1.854 1.814 1.749 1.776 1.706
60 1.876 1.817 1.795 1.887 1.852 1.814 1.745 1.771 1.701

100 1.879 1.819 1.797 1.879 1.840 1.801 1.750 1.772 1.706

Table 3. Compression (bpc) for classical compressors for each TREC-3 collection

TREC3-AP TREC3-WSJ TREC3-ZIFF
Mb gzip bzip2 ppmdi gzip bzip2 ppmdi gzip bzip2 ppmdi

1 3.010 2.264 2.114 2.965 2.195 2.048 2.488 1.863 1.686
5 3.006 2.193 2.057 2.970 2.148 2.034 2.604 1.965 1.803

10 2.984 2.175 2.047 2.970 2.154 2.033 2.640 2.000 1.837
20 2.970 2.168 2.041 2.973 2.153 2.035 2.647 2.012 1.850
40 2.978 2.172 2.045 2.977 2.158 2.040 2.649 2.013 1.851
60 2.983 2.174 2.046 2.983 2.160 2.043 2.648 2.010 1.849

100 2.987 2.178 2.050 2.979 2.148 2.032 2.654 2.016 1.853

Table 4. Compression (bpc) for structure-aware methods for each TREC-3 collection

TREC3-AP TREC3-WSJ TREC3-ZIFF
Mb xmill xmlppm scmppm xmill xmlppm scmppm xmill xmlppm scmppm

1 2.944 2.110 2.083 2.898 2.044 2.030 2.489 1.682 1.743
5 2.910 2.052 2.000 2.878 2.029 1.984 2.596 1.799 1.782

10 2.893 2.040 1.977 2.881 2.028 1.972 2.634 1.834 1.803
20 2.877 2.036 1.963 2.882 2.030 1.971 2.640 1.846 1.812
40 2.883 2.040 1.964 2.888 2.035 1.974 2.639 1.847 1.808
60 2.888 2.044 1.964 2.891 2.038 1.975 2.635 1.846 1.803

100 2.891 2.048 1.968 2.872 2.027 1.958 2.640 1.849 1.807

the mppmsw prototype in order to compare it with other systems. Compression
for standard systems is shown in Table 3. The gzip obtained the worst compres-
sion ratios, not competitive in this experiment. It is followed by bzip2 with the
best compression as default and a great difference between it and gzip. The best
standard compressor is ppmdi, the base for the mppm family, and with compres-
sion ratios near to bzip2. Our mppmsw prototype compressed significantly better
than standard compressors. It improves gzip by up to 66%, bzip by up to 21%
and ppmdi by up to 14%. Finally, in Table 4, we can see the compression ob-
tained with structure-aware compressors for the same collections. xmill obtains
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an average compression roughly constant in all cases because it uses zlib as its
main compression machinery, like gzip, its compression is not competitive in this
experiment. On the other hand, xmlppm and scmppm obtain a good compres-
sion both surpassing standard compressors. However, in this case, our mppmsw

prototype also still obtains the best compression, reaching an improvement on
xmill of up to 54%, on xmlppm of up to 13.5% and on scmppm of up to 9.5%. In
addition, mppmsw uses less memory than xmlppm and scmppm. In view of these
results, we can conclude that mppmsw is an excellent alternative to compress
natural language documents. A graphical representation of average compression
is shown in Figure 2. In this graph we can observe that all the prototypes based
on dictionary mapping are better (over 1 Mb in size) than all compressor systems
against which they have been compared.
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Fig. 2. Average compression for each TREC-3 collection size

The increase in space of the mppm prototypes with respect to ppmdi varies
from 40% for mppmsw to 114% for mppmsa. This increase is due to the necessity
to store the vocabulary (dictionary) and to have an additional model to codify
the new words. The mppmsw prototype is about 15% faster than mppm basic
and both use approximately the same amount of memory. Besides for files up to
1 Mb, mppmsw is about 5000% faster than ppmz and uses 92% less memory than
ppmz. That is why mppmsw is a very efficient alternative to ppmz for medium and
large text files. On the other hand, mppmsw uses about 40% more memory and
is also 40% slower than ppmdi. This increase in time is due to the time needed to
locate a word in the used data structure (in this case a balanced search tree) this
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being O(log2 n). It is possible to turn it into O(1) if a hash table is used (where
size can be estimated previously by using Heaps law[12]). The ppmdi obtains a
constant average memory usage in all cases because it does not have to store the
vocabulary.

6 Conclusions and Future Work

We have proposed a new, simple and efficient general scheme for compressing
natural language text documents by extending the PPM to allow easy word
handling using an additional layer. When file size grows, our proposal improves
compression up to 14% with respect to the character based PPM. Our proposal
uses just a little bit more memory and is a little slower, but these drawbacks are
clearly compensated for by the gain in compression.

We have shown that the idea significantly improves compression and we have
compared our prototype with standard and specific compressor systems, showing
that our prototypes obtain the best compression for files over 1 Mb, improving
the compression when file size grows. In addition, mppmsw is an interesting
alternative for ppmz for natural language text files.

In this paper we have considered the compression of natural language text
documents, and we will have to investigate the possibility of applying word
mapping to binary files. We will have to generalize the mapping algorithm and
we will have to avoid the generation of dynamic codes, as they prevent PPM
from making good predictions. On the other hand, current mppm prototypes
are a basic implementation and we are working on several improvements, which
will make them even more competitive in terms of time and space.
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