

Lecture Notes in Computer Science 4209
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Fabio Crestani Paolo Ferragina
Mark Sanderson (Eds.)

String Processing
and Information
Retrieval

13th International Conference, SPIRE 2006
Glasgow, UK, October 11-13, 2006
Proceedings

13

Volume Editors

Fabio Crestani
University of Strathclyde
Department of Computer and Information Sciences
16 Richmond Street, Glasgow G12 0NX, UK
E-mail: f.crestani@cis.strath.ac.uk

Paolo Ferragina
University of Pisa
Department of Computer Science
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
E-mail: ferragina@di.unipi.it

Mark Sanderson
University of Sheffield
Department of Information Studies
Regent Court, 211 Portobello St, Sheffield, S1 4DP, UK
E-mail: m.sanderson@shef.ac.uk

Library of Congress Control Number: 2006932965

CR Subject Classification (1998): H.3, H.2.8, I.2, E.1, E.5, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-45774-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-45774-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11880561 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 13th International Symposium
on String Processing and Information Retrieval (SPIRE), held October 11-13,
2006, in Glasgow, Scotland.

The SPIRE annual symposium provides an opportunity for both new and
established researchers to present original contributions to areas such as string
processing (dictionary algorithms, text searching, pattern matching, text com-
pression, text mining, natural language processing, and automata-based string
processing); information retrieval languages, applications, and evaluation (IR
modelling, indexing, ranking and filtering, interface design, visualization, cross-
lingual IR systems, multimedia IR, digital libraries, collaborative retrieval, Web-
related applications, XML, information retrieval from semi-structured data, text
mining, and generation of structured data from text); and interaction of biology
and computation (sequencing and applications in molecular biology, evolution
and phylogenetics, recognition of genes and regulatory elements, and sequence-
driven protein structure prediction).

The papers in this volume were selected from 102 papers submitted from over
20 different countries in response to the Call for Papers. A total of 26 submissions
were accepted as full papers, yielding an acceptance rate of about 25%. In view of
the large number of good-quality submissions the Program Committee decided
to accept 5 short papers, that have also been included in the proceedings. SPIRE
2006 also featured two talks by invited speakers: Jamie Callan (Carnegie Mellon
University, USA) and Martin Farach-Colton (Rutgers University, USA).

The Organizing Committee would like to thank all the authors who submitted
their work for consideration and the participants of SPIRE 2006 for making the
event a great success.

Special thanks are due to the members of the Program Committee who worked
very hard to ensure the timely review of all the submitted manuscripts, and to the
invited speakers, Jamie Callan and Martin Farach-Colton, for their inspiring pre-
sentations. We also would like to thank the sponsoring institutions, EPSRC (En-
gineering and Physical Sciences Research Council) , Yahoo! Research, the Kelvin
Institute, the BCS-IRSG (British Computer Society - Information Retrieval Spe-
cialist Group), and the University of Strathclyde, for their generous financial and
institutional support, and Glasgow City Council for civic hospitality.

Thanks are due to the editorial staff at Springer for their agreement to publish
the colloquium proceedings as part of the Lecture Notes in Computer Science
series.

Thanks are also due to the local team of student volunteers (in particular Mark
Baillie, Murat Yakici and Emma Nicol), the secretaries (Carol-Ann Seath and
Linda Hunter), and the information officer (Paul Smith), whose efforts ensured
the smooth organization and running of the event.

VI Preface

Finally, we would like to thank Ricardo Baeza-Yates, who, on behalf of the
Steering Committee, invited us to organize SPIRE 2006 and supported us at
every step of the way.

October 2006 Fabio Crestani
Paolo Ferragina
Mark Sanderson

SPIRE 2006 Organization

Organizing Institution

SPIRE 2006 was organized by the Department of Computer and Information
Sciences of the University of Strathclyde and held at the Teacher Building in
Glasgow, Scotland, UK.

Sponsoring Institutions

Engineering and Physical Sciences Research Council, UK.
Yahoo! Research, Barcellona, Spain.
Kelvin Institute, Glasgow, Scotland, UK.
British Computer Society - Information Retrieval Specialist Group, UK.
Glasgow City Council, Glasgow, Scotland, UK.

Organizing Committee

General Chair: Fabio Crestani (University of Strathclyde, UK)

Program Committee Chairs: Paolo Ferragina (University of Pisa, Italy) and
Mark Sanderson (University of Sheffield, UK)

Program Committee

Gianni Amati (Fondazione Ugo Bordoni, Italy)
Amihood Amir (University Bar-Ilan, Israel and Georgia Tech, USA)
Alberto Apostolico (Georgia Tech, USA and University of Padua, Italy)
Ricardo Baeza-Yates (Yahoo! Research, Spain and Chile)
Michael Bender (Stony Brook University, USA)
Mohand Boughanem (University of Tolouse, France)
Giorgio Brajnik (University of Udine, Italy)
Gerth S. Brodal (University of Aarhus, Denmark)
Paul Browne (Imperial College, UK)
Chris Buckley (Sabir Research, USA)
Mariano Consens (University of Toronto, Canada)
Nick Craswell (Microsoft Research, UK)
Maxime Crochemore (University of Marne-la-Vallée, France)
Bruce Croft (University of Massachusetts at Amherst, USA)
Erik Demaine (MIT, USA)
Martin Farach-Colton (Rutgers University, USA)
Edward Fox (Virginia Tech, USA)

VIII Organization

Norbert Fuhr (University of Duisburg-Essen, Germany)
Eric Gaussier (Xerox-RCE, France)
Raffaele Giancarlo (University of Palermo, Italy)
Mark Girolami (University of Glasgow, UK)
Nazli Goharian (IIT, USA)
Enrique Herrera-Viedma (University of Granada, Spain)
Costas Iliopoulos (King’s College London, UK)
Joemon Jose (University of Glasgow, UK)
Juha Kärkkäinen (University of Helsinki, Finland)
Jussi Karlgren (SICS, Sweden)
Mounia Lalmas (Queen Mary, University of London, UK)
Gadi Landau (University of Haifa, Israel and Polytechnic University, NY, USA)
Hans-Peter Lenhof (University of Saarbrücken, Germany)
Moshe Lewenstein (University Bar-Ilan, Israel)
Stefano Lonardi (University of California Riverside, USA)
David Losada (University of Santiago de Compostela, Spain)
Andrew MacFarlane (City University, London, UK)
Veli Mäkinen (University of Helsinki, Finland)
Giovanni Manzini (University of Piemonte Orientale, Italy)
Paul McNamee (JHU, USA)
Massimo Melucci (University of Padova, Italy)
Alistair Moffat (University of Melbourne, Australia)
Gonzalo Navarro (University of Chile, Chile)
Paul Ogilvie (CMU, USA)
Arlindo Oliveira (INESC-ID/Technical University of Lisbon, Portugal)
Pietro Pala (University of Firenze, Italy)
Gabriella Pasi (Università degli Studi di Milano Bicocca, Italy)
Mathieu Raffinot (CNRS, France)
Rajeev Raman (Leicester University, UK)
Andreas Rauber (Technical University of Vienna, Austria)
Crawford Revie (University of Strathclyde, UK)
Keith van Rijsbergen (University of Glasgow, UK)
Ian Ruthven (University of Strathclyde, UK)
Kunihiko Sadakane (Kyushu University, Japan)
Marie-France Sagot (INRIA Rhone-Alpes, France)
Falk Scholer (RMIT, Australia)
Steven Skiena (Stony Brook University, USA)
Ian Soboroff (NIST, USA)
Jens Stoye (University of Bielefeld, Germany)
Tassos Tombros (Queen Mary, University of London, UK)
Andrew Trotman (Otago, New Zealand)
Andrew Turpin (RMIT, Australia)
Sebastiano Vigna (Università degli Studi di Milano, Italy)
Arjen P. de Vries (CWI, The Netherlands)
Peter Widmayer (ETH Zurich, Switzerland)

Organization IX

Yi Zhang (University of California Santa Cruz, USA)
Nivio Ziviani (Federal University of Minas Gerais, Brazil)
Roelof van Zwol (Utrecht University, Netherlands)

Additional Reviewers

José Augusto Amgarten Quitzao, Vo Ngoc Anh, Diego Arroyuelo, Elham Ashoori,
Claudine Badue, Bodo Billerbeck, Guillaume Blin, Ciccio Bozza, Pavel Cal-
ado, Ana Cardoso-Cachopo, Carlos Castillo , Jean-Marc Champarnaud, Massi
Ciaramita, Raphael Clifford, Lúıs Coelho, Roberto Cornacchia, Thierson Couto
Rosa, Marco Antonio Cristo, J. Shane Culpepper, Fabiano Cupertino Botelho,
Shiri Dori, Gudrun Fischer, Matthias Fitzi, Ingo Frommholz, Lilia Greenenko,
Sàndor Héman, MohammadTaghi Hajiaghayi, Danny Hermelin, Andreas Hilde-
brandt, Jan Holub, Sarvnaz Karimi, Shahar Keret, Tsvi Kopelowits, Adrian
Kosowski, Thierry Lecroq, Liat Leventhal, Kan Liu, Sabrina Mantaci, Rudolf
Mayer, Laurent Mouchard, Joong Chae Na, Nitsan Oz, Andreas Pesenhofer,
Georg Poelzlbauer, Simon Puglisi, James F. Reid, Eric Rivals, Lúıs Russo,
Klaus-Bernd Schürmann, Marinella Sciortino, Edleno Silva de Moura, Lynda
Tamine, Theodora Tsikrika, Alexandra Uitdenbogerd, Marion Videau, Newton
Jose Vieira, Jun Wang, Oren Weimann, YongHui Wu.

Previous Venues of SPIRE

The first four editions focused primarily on string processing and were held in
South America. At the time SPIRE was called WSP (South American Workshop
on String Processing). Starting in 1998, the focus of the workshop was broad-
ened to include the area of information retrieval due to its increasing relevance
and its inter-relationship with the area of string processing, changing to its cur-
rent name. In addition, since 2000, the symposium started to alternate between
Europe and Latin America, being held in Spain, Chile, Portugal, Brazil, and
Italy in the last years. This is the first time that SPIRE was held in the United
Kingdom.

2005: Buenos Aires, Argentina
2004: Padova, Italy
2003: Manaus, Brazil
2002: Lisboa, Portugal
2001: Laguna San Rafael, Chile
2000: A Coruna, Spain
1999: Cancun, Mexico
1998: Santa Cruz, Bolivia
1997: Valparaso, Chile
1996: Recife, Brazil
1995: Valparaso, Chile
1993: Belo Horizonte, Brazil

Table of Contents

Web Clustering and Text Categorization

MP-Boost: A Multiple-Pivot Boosting Algorithm and Its Application
to Text Categorization . 1

Andrea Esuli, Tiziano Fagni, Fabrizio Sebastiani

TreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical
Text Categorization . 13

Andrea Esuli, Tiziano Fagni, Fabrizio Sebastiani

Cluster Generation and Cluster Labelling for Web Snippets 25
Filippo Geraci, Marco Pellegrini, Marco Maggini,
Fabrizio Sebastiani

Principal Components for Automatic Term Hierarchy Building 37
Georges Dupret, Benjamin Piwowarski

Strings

Computing the Minimum Approximate λ-Cover of a String 49
Qing Guo, Hui Zhang, Costas S. Iliopoulos

Sparse Directed Acyclic Word Graphs . 61
Shunsuke Inenaga, Masayuki Takeda

On-Line Repetition Detection . 74
Jin-Ju Hong, Gen-Huey Chen

User Behavior

Analyzing User Behavior to Rank Desktop Items . 86
Paul-Alexandru Chirita, Wolfgang Nejdl

The Intention Behind Web Queries . 98
Ricardo Baeza-Yates, Liliana Calderón-Benavides,
Cristina González-Caro

XII Table of Contents

Web Search Algorithms

Compact Features for Detection of Near-Duplicates in Distributed
Retrieval . 110

Yaniv Bernstein, Milad Shokouhi, Justin Zobel

Inverted Files Versus Suffix Arrays for Locating Patterns in Primary
Memory . 122

Simon J. Puglisi, W.F. Smyth, Andrew Turpin

Efficient Lazy Algorithms for Minimal-Interval Semantics 134
Paolo Boldi, Sebastiano Vigna

Output-Sensitive Autocompletion Search . 150
Holger Bast, Christian W. Mortensen, Ingmar Weber

Compression

A Compressed Self-index Using a Ziv-Lempel Dictionary 163
Lúıs M.S. Russo, Arlindo L. Oliveira

Mapping Words into Codewords on PPM . 181
Joaqúın Adiego, Pablo de la Fuente

Correction

Improving Usability Through Password-Corrective Hashing 193
Andrew Mehler, Steven Skiena

Word-Based Correction for Retrieval of Arabic OCR Degraded
Documents . 205

Walid Magdy, Kareem Darwish

Information Retrieval Applications

A Statistical Model of Query Log Generation . 217
Georges Dupret, Benjamin Piwowarski, Carlos Hurtado,
Marcelo Mendoza

Using String Comparison in Context for Improved Relevance
Feedback in Different Text Media . 229

Adenike M. Lam-Adesina, Gareth J.F. Jones

Table of Contents XIII

A Multiple Criteria Approach for Information Retrieval 242
Mohamed Farah, Daniel Vanderpooten

English to Persian Transliteration . 255
Sarvnaz Karimi, Andrew Turpin, Falk Scholer

Bio Informatics

Efficient Algorithms for Pattern Matching with General Gaps
and Character Classes . 267

Kimmo Fredriksson, Szymon Grabowski

Matrix Tightness: A Linear-Algebraic Framework for Sorting
by Transpositions . 279

Tzvika Hartman, Elad Verbin

How to Compare Arc-Annotated Sequences: The Alignment
Hierarchy . 291

Guillaume Blin, Hélène Touzet

Web Search Engines

Structured Index Organizations for High-Throughput Text Querying 304
Vo Ngoc Anh, Alistair Moffat

Adaptive Query-Based Sampling of Distributed Collections 316
Mark Baillie, Leif Azzopardi, Fabio Crestani

Short Papers

Dotted Suffix Trees A Structure for Approximate Text
Indexing . 329

Lúıs Pedro Coelho, Arlindo L. Oliveira

Phrase-Based Pattern Matching in Compressed Text 337
J. Shane Culpepper, Alistair Moffat

Discovering Context-Topic Rules in Search Engine Logs 346
Carlos A. Hurtado, Mark Levene

Incremental Aggregation of Latent Semantics Using
a Graph-Based Energy Model . 354

Aditya Ramana Rachakonda, Srinath Srinivasa

XIV Table of Contents

A New Algorithm for Fast All-Against-All Substring Matching 360
Marina Barsky, Ulrike Stege, Alex Thomo, Chris Upton

Author Index . 367

MP-Boost: A Multiple-Pivot Boosting
Algorithm and Its Application to Text

Categorization

Andrea Esuli, Tiziano Fagni, and Fabrizio Sebastiani

Istituto di Scienza e Tecnologia dell’Informazione
Consiglio Nazionale delle Ricerche

Via Giuseppe Moruzzi 1 – 56124 Pisa, Italy
{andrea.esuli, tiziano.fagni, fabrizio.sebastiani}@isti.cnr.it

Abstract. AdaBoost.MH is a popular supervised learning algorithm
for building multi-label (aka n-of-m) text classifiers. AdaBoost.MH be-
longs to the family of “boosting” algorithms, and works by iteratively
building a committee of “decision stump” classifiers, where each such
classifier is trained to especially concentrate on the document-class pairs
that previously generated classifiers have found harder to correctly clas-
sify. Each decision stump hinges on a specific “pivot term”, checking its
presence or absence in the test document in order to take its classifi-
cation decision. In this paper we propose an improved version of Ad-
aBoost.MH, called MP-Boost, obtained by selecting, at each iteration
of the boosting process, not one but several pivot terms, one for each
category. The rationale behind this choice is that this provides highly
individualized treatment for each category, since each iteration thus gen-
erates, for each category, the best possible decision stump. We present the
results of experiments showing that MP-Boost is much more effective
than AdaBoost.MH. In particular, the improvement in effectiveness is
spectacular when few boosting iterations are performed, and (only) high
for many such iterations. The improvement is especially significant in
the case of macroaveraged effectiveness, which shows that MP-Boost is
especially good at working with hard, infrequent categories.

1 Introduction

Given a set of textual documents D and a predefined set of categories (aka
labels) C = {c1, . . . , cm}, multi-label (aka n-of-m) text classification is the task
of approximating, or estimating, an unknown target function Φ : D × C →
{−1, +1}, that describes how documents ought to be classified, by means of a
function Φ̂ : D×C → {−1, +1}, called the classifier, such that Φ and Φ̂ “coincide
as much as possible”. Here, “multi-label” indicates that the same document can
belong to zero, one, or several categories at the same time.

AdaBoost.MH [1] is a popular supervised learning algorithm for building
multi-label text classifiers. AdaBoost.MH belongs to the family of “boost-
ing” algorithms (see [2] for a review), which have enjoyed a wide popularity in
the text categorization and filtering community because of their state-of-the-art

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A. Esuli, T. Fagni, and F. Sebastiani

effectiveness and of the strong justifications they have received from compu-
tational learning theory. AdaBoost.MH works by iteratively building a com-
mittee of “decision stump” classifiers1, where each such classifier is trained to
especially concentrate on the document-category pairs that previously generated
classifiers have found harder to correctly classify. Each decision stump hinges on
a specific “pivot term”, and takes its classification decision based on the presence
or absence of the pivot term in the test document.

We here propose an improved version of AdaBoost.MH, called MP-Boost,
obtained by selecting, at each iteration of the boosting process, not one but
several pivot terms, one for each category. The rationale behind this choice is
that this provides highly individualized treatment for each category, since each
iteration generates, for each category, the best possible decision stump. The
result of the learning process is thus not a single classifier committee, but a set
of such committees, one for each category.

The paper is structured as follows. In Section 2 we concisely describe boosting
and the AdaBoost.MH algorithm. Section 3 describes in detail our MP-Boost
algorithm and the rationale behind it. In Section 4 we present experimental
results comparing AdaBoost.MH and MP-Boost. Section 5 concludes.

2 An Introduction to Boosting and AdaBoost.MH

AdaBoost.MH [1] (see Figure 1) is a boosting algorithm, i.e. an algorithm that
generates a highly accurate classifier (also called final hypothesis) by combining
a set of moderately accurate classifiers (also called weak hypotheses). The input
to the algorithm is a training set Tr = {〈d1, C1〉, . . . , 〈dg, Cg〉}, where Ci ⊆ C
is the set of categories to each of which di belongs.

AdaBoost.MH works by iteratively calling a weak learner to generate a
sequence Φ̂1, . . . , Φ̂S of weak hypotheses; at the end of the iteration the final
hypothesis Φ̂ is obtained as a sum Φ̂ =

∑S
s=1 Φ̂s of these weak hypotheses. A

weak hypothesis is a function Φ̂s : D×C → R. We interpret the sign of Φ̂s(di, cj)
as the prediction of Φ̂s on whether di belongs to cj, i.e. Φ̂s(di, cj) > 0 means
that di is believed to belong to cj while Φ̂s(di, cj) < 0 means it is believed not
to belong to cj . We instead interpret the absolute value of Φ̂s(di, cj) (indicated
by |Φ̂s(di, cj)|) as the strength of this belief.

At each iteration s AdaBoost.MH tests the effectiveness of the newly gen-
erated weak hypothesis Φ̂s on the training set and uses the results to update a
distribution Ds of weights on the training pairs 〈di, cj〉. The weight Ds+1(di, cj)
is meant to capture how effective Φ̂1, . . . , Φ̂s have been in correctly predicting
whether the training document di belongs to category cj or not. By passing
(together with the training set Tr) this distribution to the weak learner, Ad-
aBoost.MH forces this latter to generate a new weak hypothesis Φ̂s+1 that
concentrates on the pairs with the highest weight, i.e. those that had proven
harder to classify for the previous weak hypotheses.
1 A decision stump is a decision tree of depth one, i.e. consisting of a root node and

two or more leaf nodes.

MP-Boost: A Multiple-Pivot Boosting Algorithm 3

Input: A training set Tr = {〈d1, C1〉, . . . , 〈dg, Cg〉}
where Ci ⊆ C = {c1, . . . , cm} for all i = 1, . . . , g.

Body: Let D1(di, cj) =
1

gm
for all i = 1, . . . , g and for all j = 1, . . . , m

For s = 1, . . . , S do:
• pass distribution Ds(di, cj) to the weak learner;
• get the weak hypothesis Φ̂s from the weak learner;

• set Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs

where Zs =
g�

i=1

m�

j=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

is a normalization factor chosen so that
g�

i=1

m�

j=1

Ds+1(di, cj) = 1

Output: A final hypothesis Φ̂(d, c) =
S�

s=1

Φ̂s(d, c)

Fig. 1. The AdaBoost.MH algorithm

The initial distribution D1 is uniform. At each iteration s all the weights
Ds(di, cj) are updated to Ds+1(di, cj) according to the rule

Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs
(1)

where

Zs =
g∑

i=1

m∑
j=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj)) (2)

is a normalization factor chosen so that Ds+1 is in fact a distribution, i.e. so
that

∑g
i=1

∑m
j=1 Ds+1(di, cj) = 1. Equation 1 is such that the weight assigned

to a pair 〈di, cj〉 misclassified by Φ̂s is increased, as for such a pair Φ(di, cj) and
Φ̂s(di, cj) have different signs and the factor Φ(di, cj) · Φ̂s(di, cj) is thus negative;
likewise, the weight assigned to a pair correctly classified by Φ̂s is decreased.

2.1 Choosing the Weak Hypotheses

In AdaBoost.MH each document di is represented as a vector 〈w1i, . . . , wri〉
of r binary weights, where wki = 1 (resp. wki = 0) means that term tk occurs
(resp. does not occur) in di; T = {t1, . . . , tr} is the set of terms that occur in at
least one document in Tr.

In AdaBoost.MH the weak hypotheses generated by the weak learner at
iteration s are decision stumps of the form

4 A. Esuli, T. Fagni, and F. Sebastiani

Φ̂s(di, cj) =
{

a0j if wki = 0
a1j if wki = 1 (3)

where tk (called the pivot term of Φ̂s) belongs to {t1, . . . , tr}, and a0j and a1j

are real-valued constants. The choices for tk, a0j and a1j are in general different
for each iteration s, and are made according to an error-minimization policy
described in the rest of this section.

Schapire and Singer [3] have proven that the a reasonable (although subopti-
mal) way to maximize the effectiveness of the final hypothesis Φ̂ is to “greedily”
choose each weak hypothesis Φ̂s (and thus its parameters tk, a0j and a1j) in such
a way as to minimize the normalization factor Zs.

Schapire and Singer [1] define three different variants of AdaBoost.MH,
corresponding to three different methods for making these choices. In this pa-
per we concentrate on one of them, AdaBoost.MH with real-valued predictions
(hereafter simply called AdaBoost.MH), since it is the one that, in [1], has
been experimented most thoroughly and has given the best results; the modi-
fications that we discuss in Section 3 straightforwardly apply also to the other
two variants. AdaBoost.MH chooses weak hypotheses of the form described in
Equation 3 by the following algorithm.

Algorithm 1 (The AdaBoost.MH weak learner)

1. For each term tk ∈ {t1, . . . , tr}, select, among all the weak hypotheses
Φ̂ that have tk as the “pivot term”, the one (indicated by Φ̂best(k)) for
which Zs is minimum.

2. Among all the hypotheses Φ̂best(1), . . . , Φ̂best(r) selected for the r differ-
ent terms in Step 1, select the one (indicated by Φ̂s) for which Zs is
minimum.

Step 1 is clearly the key step, since there are a non-enumerable set of weak
hypotheses with tk as the pivot term. Schapire and Singer [3] have proven that,
given term tk and category cj ,

Φ̂best(k)(di, cj) =

⎧⎪⎨
⎪⎩

1
2 ln

W 0jk
+1

W 0jk
−1

if wki = 0

1
2 ln

W 1jk
+1

W 1jk
−1

if wki = 1
(4)

where

W xjk
b =

g∑
i=1

Ds(di, cj) · [[wki = x]] · [[Φ(di, cj) = b]] (5)

for b ∈ {−1, +1}, x ∈ {0, 1}, j ∈ {1, . . . , m} and k ∈ {1, . . . , r}, and where [[π]]
indicates the characteristic function of predicate π (i.e. the function that returns
1 if π is true and 0 otherwise.

The output of the final hypothesis is the value Φ̂(di, cj) =
∑S

s=1 Φ̂s(di, cj)
obtained by summing the outputs of the weak hypotheses.

MP-Boost: A Multiple-Pivot Boosting Algorithm 5

2.2 Implementing AdaBoost.MH

Following [4], in our implementation of AdaBoost.MH we have further op-
timized the final hypothesis Φ̂(di, cj) =

∑S
s=1 Φ̂s(di, cj) by “compressing” the

weak hypotheses Φ̂1, . . . , Φ̂S according to their pivot term tk. In fact, note that
if {Φ̂1, . . . , Φ̂S} contains a subset {Φ̂(k)

1 , . . . , Φ̂
(k)
q(k)} of weak hypotheses that all

hinge on the same pivot term tk and are of the form

Φ̂(k)
r (di, cj) =

{
ar
0j if wki = 0

ar
1j if wki = 1 (6)

for r = 1, . . . , q(k), the collective contribution of Φ̂
(k)
1 , . . . , Φ̂

(k)
q(k) to the final

hypothesis is the same as that of a “combined hypothesis”

Φ̂(k)(di, cj) =

{∑q(k)
r=1 ar

0j if wki = 0∑q(k)
r=1 ar

1j if wki = 1
(7)

In the implementation we have thus replaced
∑S

s=1 Φ̂s(di, cj) with
∑∆

k=1 Φ̂(k)

(di, cj), where ∆ is the number of different terms that act as pivot for the weak
hypotheses in {Φ̂1, . . . , Φ̂S}.

This modification brings about a considerable efficiency gain in the application
of the final hypothesis to a test example. For instance, the final hypothesis we
obtained on Reuters-21578 with AdaBoost.MH when S = 1000 consists of
1000 weak hypotheses, but the number of different pivot terms is only 766 (see
Section 4.2). The reduction in the size of the final hypothesis which derives from
this modification is usually larger when high reduction factors have been applied
in a feature selection phase, since in this case the number of different terms that
can be chosen as the pivot is smaller.

3 MP-Boost, an Improved Boosting Algorithm with
Multiple Pivot Terms

We here propose an improved version of AdaBoost.MH, dubbed AdaBoost.
MH with multiple pivot terms (here nicknamed MP-Boost), that basically con-
sists in modifying the form of weak hypotheses and how they are generated.
Looking at Equation 3 we may note that, at each iteration s, choosing a weak
hypothesis means choosing (i) a pivot term tk, the same for all categories, and (ii)
for each category cj , a pair of constants 〈a0j , a1j〉. We contend that the fact that,
at iteration s, the same term tk is chosen as the pivot term on which the binary
classifiers for all categories hinge, is clearly suboptimal. At this iteration term tk
may be a very good discriminator for category c′, but a very poor discriminator
for category c′′, which means that the weak hypothesis generated at this iteration
would contribute very little to the correct classification of documents under c′′.
We claim that choosing, at every iteration s, a different pivot term t〈s,j〉 for each
category cj allows the weak hypothesis to provide customized treatment to each

6 A. Esuli, T. Fagni, and F. Sebastiani

individual category. In MP-Boost the weak hypotheses generated by the weak
learner at iteration s are thus of the form

Φ̂s(di, cj) =
{

a0j if w〈s,j〉i = 0
a1j if w〈s,j〉i = 1 (8)

where term t〈s,j〉 is the pivot term chosen for category cj at iteration s. To see
how MP-Boost chooses weak hypotheses of the form described in Equation 8,
let us first define a weak cj-hypothesis as a function

Φ̂j(di) =
{

a0j if wki = 0
a1j if wki = 1 (9)

that is only concerned with classifying documents under cj ; a weak hypothesis
is the union of weak cj-hypotheses, one for each cj ∈ C. At each iteration s,
MP-Boost chooses a weak hypothesis Φ̂s by means of the following algorithm.

Algorithm 2 (The MP-Boost weak learner)

1. For each category cj and for each term tk ∈ {t1, . . . , tr}, select, among all
weak cj-hypothesis Φ̂j that have tk as the pivot term, the one (indicated
by Φ̂j

best(k)) which minimizes

Zj
s =

g∑
i=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂j(di)) (10)

2. For each category cj, among all the hypotheses Φ̂j
best(1), . . . , Φ̂j

best(r) se-

lected in Step 1 for the r different terms, select the one (indicated by Φ̂j
s)

for which Zj
s is minimum;

3. Choose, as the weak hypothesis Φ̂s, the “union”, across all cj ∈ C, of
the weak cj-hypotheses selected in Step 2, i.e. the function such that
Φ̂s(di, cj) = Φ̂j

s(di).

Note the difference between Algorithm 1, as described in Section 2.1, and Al-
gorithm 2; in particular, Step 2 of Algorithm 2 is such that weak cj-hypotheses
based on different pivot terms may be chosen for different categories cj .

For reasons analogous to the ones discussed in Section 2.1, Step 1 is the key
step; it is important to observe that Φ̂j

best(k) is still guaranteed to have the form
described in Equation 4, since the weak hypothesis generated by Equation 8
is the same that Equation 3 generates when m = 1, i.e. when C contains one
category only.

Note also that the “outer” algorithm of Figure 1 is untouched by our modifi-
cations, except for the fact that a normalization factor Zj

s local to each category
cj is used (in place of the “global” normalization factor Zs) in order to obtain

the revised distribution Ds+1; i.e. Ds+1(di, cj) = Ds(di,cj) exp(−Φ(di,cj)·Φ̂j(di))
Zj

s
.

The main difference in the algorithm is thus in the “inner” part, i.e. in the weak

MP-Boost: A Multiple-Pivot Boosting Algorithm 7

hypotheses that are received from the weak learner, which now have the form of
Equation 8, and in the way they are generated.

Concerning the optimizations discussed in Section 2.2, obtained by merging
into a single weak hypothesis all weak hypotheses that share the same pivot
term, note that in MP-Boost these must be done on a category-by-category
basis, i.e. by merging into a single weak cj-hypothesis all weak cj-hypotheses
that share the same pivot term. The effect of this is that the different categories
c1, . . . , cm may be associated to final hypotheses consisting of different numbers
∆1, . . . , ∆m of weak hypotheses.

Last, let us note that one consequence of switching from AdaBoost.MH to
MP-Boost is that local feature selection (i.e. choosing different reduced feature
sets for different categories) can also be used in place of global feature selection
(i.e. choosing the same reduced feature set for all categories). In fact, since in
MP-Boost the choice of pivot terms is category-specific, the vectorial represen-
tations of documents can also be category-specific. This allows the designer to
select, ahead of the learning phase and by means of standard feature selection
techniques, the terms that are the most discriminative for a given category cj ,
and are thus highly likely to be chosen as pivot terms for the cj-hypotheses. This
can be done separately for each individual category, and thus allows the use of
even higher reduction factors; from the standpoint of efficiency this is advanta-
geous, given that the computational cost of MP-Boost has a linear dependence
on the number of features used (see Section 3).

In an extended version of this paper [5] we discuss the computational cost of
MP-Boost, proving that:

– At training time both AdaBoost.MH and MP-Boost are O(grm).
– At testing time, at a first approximation, AdaBoost.MH can be shown to

be O(S), while MP-Boost is instead O(mS). In practice, since weak hy-
potheses are “compressed”, as described in Section 2.2, for both learners the
cost linearly depends on ∆, the number of distinct pivot terms selected dur-
ing the training process (for MP-Boost, we take ∆ to be an average of the
category-specific ∆i values). For a given value of S the value of ∆ tends to
be much smaller for MP-Boost than for AdaBoost.MH, since the “good”
pivot terms for a specific category tend to be few. As a result, for the testing
phase the differential in cost between the two algorithms is, in practice, much
smaller than the upper bounds discussed above seem to suggest.

4 Experiments

4.1 Experimental Setting

In our experiments we have used the Reuters-21578 and RCV1-v2 corpora.
“Reuters-21578, Distribution 1.0” is currently the most widely used bench-

mark in multi-label text categorization research2. It consists of a set of 12,902

2 http://www.daviddlewis.com/resources/testcollections/~reuters21578/

8 A. Esuli, T. Fagni, and F. Sebastiani

news stories, partitioned (according to the “ModApté” split we have adopted)
into a training set of 9,603 documents and a test set of 3,299 documents. The
documents are labelled by 118 categories; in our experiments we have restricted
our attention to the 115 categories with at least one positive training example.

Reuters Corpus Volume 1 version 2 (RCV1-v2)3 is a more recent text
categorization benchmark made available by Reuters and consisting of 804,414
news stories produced by Reuters from 20 Aug 1996 to 19 Aug 1997. In our
experiments we have used the “LYRL2004” split, defined in [6], in which the
(chronologically) first 23,149 documents are used for training and the other
781,265 are used for test. Of the 103 “Topic” categories, in our experiments
we have restricted our attention to the 101 categories with at least one positive
training example.

In all the experiments discussed in this paper, stop words have been removed,
punctuation has been removed, all letters have been converted to lowercase,
numbers have been removed, and stemming has been performed by means of
Porter’s stemmer. Feature selection has been performed by scoring features by
means of information gain, defined as IG(tk, ci) =

∑
c∈{ci,ci}

∑
t∈{tk,tk} P (t, c) ·

log P (t,c)
P (t)·P (c) . The final set of features has been chosen according to Forman’s

round robin technique, which consists in picking, for each category ci, the v
features with the highest IG(tk, ci) value, and pooling all of them together into
a category-independent set [7]. This set thus contains at most vm features, where
m is the number of categories; it usually contains strictly fewer than vm features,
since some features are among the best v features for more than one category.
We have set v to 48 (for Reuters-21578) and 177 (for RCV1-v2); these are
the values that bring about feature set sizes of 2,012 (Reuters-21578) and
5,509 (RCV1-v2), thus achieving 90% reduction with respect to the original
sets which consisted of 20,123 (Reuters-21578) and 55,051 (RCV1-v2) terms.

As a measure of effectiveness that combines the contributions of precision
(π) and recall (ρ) we have used the well-known F1 function, defined as F1 =
2πρ
π+ρ = 2TP

2TP+FP+FN , where TP , FP , and FN stand for the numbers of true
positives, false positives, and false negatives, respectively. We compute both
microaveraged F1 (denoted by Fµ

1) and macroaveraged F1 (FM
1). Fµ

1 is obtained
by (i) computing the category-specific values TPi, (ii) obtaining TP as the sum
of the TPi’s (same for FP and FN), and then (iii) applying the F1 = 2πρ

π+ρ

formula. FM
1 is obtained by first computing the category-specific F1 values and

then averaging them across the ci’s.

4.2 Results

The results of our experiments are reported in Table 1 for some key values of
the number of iterations S; Figure 2 reports the same results in graphical form
for any value of S comprised in the [1..1000] interval. It is immediate to observe
that, for any value of S, MP-Boost always improves on AdaBoost.MH, in
terms of both Fµ

1 and FM
1 .

3 http://trec.nist.gov/data/reuters/reuters.html

MP-Boost: A Multiple-Pivot Boosting Algorithm 9

Let us discuss the results obtained on Reuters-21578 (the ones obtained
on RCV1-v2 are qualitatively similar)4. For small values of S the improvement
in effectiveness of MP-Boost wrt AdaBoost is spectacular: Fµ

1 goes up by
+69.47% for S = 5, by +57.07% for S = 10, and by +30.07% for S = 20. As
the value of S grows, the margin between the two learners narrows: we obtain
+4.34% for S = 1, 000 and +4.20% for S = 10, 000. This fact may be explained
by noting that in AdaBoost.MH, if the final hypothesis consists of a few weak
hypotheses only, it is likely that only few categories have been properly addressed
(i.e. that the pivot terms used in the committee have a high discrimination power
for few categories only). When the number of weak hypotheses gets larger, it is
more likely that many (or most of the) categories have been properly catered for.
Conversely, MP-Boost has already used the best pivot terms for each category
right from the very first iterations; this explains the fact that MP-Boost is
highly effective even for small values of S.

Note that the improvement brought about by the individualized treatment
of categories implemented by MP-Boost is not recovered by AdaBoost.MH
even by pushing S to the limit. For instance, note that not even in 10,000 itera-
tions AdaBoost.MH manages to obtain the Fµ

1 values obtained by MP-Boost
in just 50 iterations: MP-Boost with S = 50 obtains a slightly superior effec-
tiveness (+1.4%) than AdaBoost.MH with S = 10, 000, in less than 1% the
training time and in about 10% the testing time of this latter.

These effectiveness improvements are even more significant when consider-
ing macroaveraged effectiveness. In this case, we obtain a relative improvement
in FM

1 that ranges from a minimum of +21.13% (obtained for S = 10, 000)
to a maximum of +124,70% (obtained for S = 5). Again, not even in 10,000
iterations AdaBoost.MH obtains the FM

1 values obtained by MP-Boost in
just 5 iterations. This may be explained by recalling the well-known fact that
macroaveraged effectiveness especially rewards those classifiers that perform well
also on infrequent categories (i.e. categories with few positive training examples);
indeed, unlike AdaBoost.MH, MP-Boost places equal emphasis on all cate-
gories, regardless of their frequency, thus picking the very best pivot terms for
the infrequent categories too right from the first iterations.

Let us now discuss the relative efficiency of the two learners. As expected, for
both learners the time required to generate the final committees grows linearly
with the number of boosting iterations S. We also observed an almost constant
ratio between the running times of the two learners, with MP-Boost being
about 9% slower than AdaBoost.MH. A profiling session on the applications
has pointed out that this difference is due to the larger (by a constant factor)
4 The reader might notice that the best performance we have obtained from Ad-

aBoost.MH on Reuters-21578 (F µ
1 = .808) is inferior to the one reported in [1]

for the same algorithm (F µ
1 = .851). There are several reasons for this: (a) [1] actu-

ally uses a different, much older version of this collection, called Reuters-21450 [8];
(b) [1] only uses the 93 categories which have at least 2 positive training examples
and 1 positive test example, while we also use the categories that have just 1 positive
training example and those that have no positive test example. This makes the two
sets of AdaBoost.MH results difficult to compare.

10 A. Esuli, T. Fagni, and F. Sebastiani

Table 1. Comparative performance of AdaBoost.MH and MP-Boost on the
Reuters-21578 and RCV1-v2 benchmarks, with (i) a full feature set and with (ii) a
reduced feature set obtained with a round-robin technique and 90% reduction factor.
S indicates the number of boosting iterations; F µ

1 and F M
1 indicate micro- and macro-

averaged F1, respectively; τ (Tr) and τ (Te) indicate the time (in seconds) required for
training and testing, respectively.

AdaBoost.MH MP-Boost MP-Boost wrt AdaBoost.MH

S F µ
1 F M

1 τ(Tr) τ(Te) F µ
1 F M

1 τ(Tr) τ(Te) F µ
1 F M

1 τ(Tr) τ(Te)

R
eu

te
rs

-2
15

78
fu

ll
fe

at
u
re

se
t

5 0.416 0.235 12.1 0.1 0.704 0.529 13.2 0.2 +69.47% +124.70% +9.09% +100.0%
10 0.483 0.271 24.2 0.1 0.759 0.556 26.4 0.3 +57.07% +105.52% +9.09% +183.3%
20 0.611 0.325 48.4 0.1 0.795 0.586 52.8 0.5 +30.07% +80.44% +9.09% +266.6%
50 0.723 0.392 96.8 0.2 0.822 0.589 105.7 1.1 +13.79% +50.44% +9.19% +324.0%

100 0.776 0.454 193.6 0.4 0.837 0.608 211.3 1.7 +7.91% +34.06% +9.14% +326.8%
200 0.798 0.461 387.1 0.8 0.843 0.600 422.7 3.1 +5.68% +30.16% +9.20% +297.4%
500 0.811 0.485 774.2 2.0 0.848 0.604 845.3 6.3 +4.51% +24.62% +9.18% +216.1%

1000 0.811 0.482 1548.4 3.7 0.846 0.603 1690.6 9.2 +4.34% +25.06% +9.18% +150.1%
10000 0.810 0.497 15483.9 10.0 0.844 0.602 16906.2 20.6 +4.20% +21.13% +9.18% +106.0%

R
C

V
1-

v
2

fu
ll

fe
at

u
re

se
t

5 0.361 0.037 34.5 21.8 0.519 0.306 37.3 54.0 +43.89% +720.57% +8.12% +147.9%
10 0.406 0.070 69.1 25.5 0.588 0.367 74.7 91.8 +44.80% +421.88% +8.10% +260.7%
20 0.479 0.131 138.1 32.7 0.646 0.418 149.4 148.5 +34.96% +218.09% +8.18% +354.7%
50 0.587 0.239 276.2 54.6 0.700 0.455 298.7 286.2 +19.24% +90.63% +8.15% +423.8%

100 0.650 0.333 552.4 87.5 0.726 0.474 597.5 472.5 +11.75% +42.33% +8.16% +439.8%
200 0.701 0.396 1104.8 161.5 0.745 0.487 1194.9 837.0 +6.20% +23.00% +8.16% +418.3%
500 0.735 0.435 2209.7 516.1 0.761 0.495 2389.9 1698.3 +3.58% +13.74% +8.15% +229.1%

1000 0.745 0.442 4419.3 1014.4 0.768 0.496 4779.7 2478.6 +2.99% +12.21% +8.16% +144.4%
10000 0.754 0.459 44192.3 2831.4 0.765 0.485 47796.2 5772.4 +1.46% +5.66% +8.16% +103.9%

R
eu

te
rs

-2
15

78
re

d
.
fe

at
u
re

se
t 5 0.416 0.235 9.3 0.1 0.704 0.515 10.2 0.2 +69.23% +119.15% +9.68% +133.3%

10 0.483 0.271 18.5 0.1 0.760 0.560 20.4 0.3 +57.35% +106.64% +10.27% +200.0%
20 0.611 0.325 37.1 0.1 0.794 0.567 40.7 0.5 +29.95% +74.46% +9.70% +307.7%
50 0.723 0.392 74.1 0.2 0.826 0.596 81.4 1.0 +14.25% +52.04% +9.85% +325.0%

100 0.773 0.457 148.3 0.4 0.839 0.614 162.9 1.7 +8.54% +34.35% +9.84% +315.0%
200 0.790 0.474 296.5 0.7 0.845 0.623 325.8 2.9 +6.96% +31.43% +9.88% +288.0%
500 0.811 0.485 593.0 1.9 0.846 0.617 651.5 5.8 +4.32% +27.22% +9.87% +202.1%

1000 0.806 0.484 1186.0 3.2 0.839 0.619 1303.0 8.2 +4.09% +27.89% +9.87% +153.2%

R
C

V
1-

v
2

re
d
.
fe

at
u
re

se
t 5 0.361 0.037 28.2 21.1 0.519 0.307 30.5 49.6 +43.77% +729.73% +8.16% +135.6%

10 0.406 0.070 56.4 24.4 0.587 0.365 61.0 78.0 +44.58% +421.43% +8.16% +219.3%
20 0.479 0.131 112.7 31.2 0.646 0.416 122.1 125.6 +34.86% +217.56% +8.34% +302.1%
50 0.587 0.239 225.4 54.6 0.701 0.458 244.2 247.4 +19.42% +91.63% +8.34% +352.8%

100 0.650 0.333 450.9 84.6 0.727 0.478 488.4 442.3 +11.85% +43.54% +8.32% +422.7%
200 0.701 0.396 901.8 154.4 0.744 0.493 976.8 896.9 +6.13% +24.49% +8.32% +481.0%
500 0.734 0.431 1803.5 495.9 0.760 0.503 1953.5 2133.1 +3.54% +16.71% +8.32% +330.2%

1000 0.747 0.445 3607.0 974.7 0.764 0.505 3907.0 3500.6 +2.28% +13.48% +8.32% +259.2%

size of weak hypotheses in MP-Boost (see Section 3), which generates a small
overhead in memory management. In terms of testing time, instead, it turns out
that MP-Boost is, for equal numbers S of boosting iterations, from one to four
times slower than AdaBoost.MH (see Table 1). This is due to the fact that
AdaBoost.MH selects, for the same value S, a number ∆ of distinct pivot terms
smaller than the number

∑m
i=1 ∆i that MP-Boost selects (see Section 2.2), and

to the fact that the classifier tests all the values of these terms in the document.
However, note that for MP-Boost this loss in testing efficiency is more than
compensated by the large gain in effectiveness. Also, with MP-Boost trained
on the full feature set with S = 1000 (a value at which effectiveness peaks) the
time required for classifying all the 781,265 RCV1-v2 test documents is about
79 minutes, which is more than acceptable.

MP-Boost: A Multiple-Pivot Boosting Algorithm 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

F 1

number of iterations S

MP-Boost Fµ
1

AdaBoost Fµ
1

MP-Boost FM
1

AdaBoost FM
1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

F 1

number of iterations S

MP-Boost Fµ
1

AdaBoost Fµ
1

MP-Boost FM
1

AdaBoost FM
1

Fig. 2. Effectiveness of AdaBoost.MH and MP-Boost on Reuters-21578 (left) and
RCV1-v2 (right) as a function of the number S of iterations. The X axis is displayed
on a logarithmic scale.

Last, let us note that the experiments run with the reduced feature set (see
Table 1) have produced practically unchanged effectiveness results wrt those
obtained with the full feature set, but (as expected – see Section 3) at the ad-
vantage of dramatically smaller training times and substantially smaller testing
times. That feature selection does not reduce effectiveness might seem surpris-
ing in the context of a boosting algorithm, since feature selection brings about
smaller degrees of freedom in the choice of the best pivot term; quite evidently,
IG is very effective at discarding the terms that the boosting algorithm would
not choose anyway as pivots.

5 Conclusion

We have presented MP-Boost, a novel algorithm for multi-label text categoriza-
tion that improves upon the well-known AdaBoost.MH algorithm by selecting
multiple pivot terms at each boosting iteration, we have provided (training time
and testing time) complexity results for it, and we have thoroughly tested it
on two well-known benchmarks, one of which consisting of more than 800,000
documents. The results allow us to conclude that MP-Boost is a largely su-
perior alternative to AdaBoost.MH since, at the price of a tolerable decrease
in classification efficiency, it yields speedier convergence, superior microaveraged
effectiveness, and dramatically superior macroaveraged effectiveness. This latter
fact makes it especially suitable to categorization problems in which the distri-
bution of training examples across the categories is highly skewed.

12 A. Esuli, T. Fagni, and F. Sebastiani

References

1. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text catego-
rization. Machine Learning 39(2/3) (2000) 135–168

2. Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In Mendelson,
S., Smola, A.J., eds.: Advanced lectures on machine learning. Springer Verlag,
Heidelberg, DE (2003) 118–183

3. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3) (1999) 297–336

4. Sebastiani, F., Sperduti, A., Valdambrini, N.: An improved boosting algorithm and
its application to automated text categorization. In: Proceedings of the 9th ACM
International Conference on Information and Knowledge Management (CIKM’00),
McLean, US (2000) 78–85

5. Esuli, A., Fagni, T., Sebastiani, F.: MP-Boost: A multiple-pivot boosting algorithm
and its application to text categorization. Technical Report 2006-TR-56, Istituto di
Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, IT
(2006) Submitted for publication.

6. Lewis, D.D., Li, F., Rose, T., Yang, Y.: RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research 5 (2004) 361–397

7. Forman, G.: A pitfall and solution in multi-class feature selection for text classifi-
cation. In: Proceedings of the 21st International Conference on Machine Learning
(ICML’04), Banff, CA (2004)

8. Apté, C., Damerau, F.J., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems 12(3) (1994) 233–251

TreeBoost.MH: A Boosting Algorithm
for Multi-label Hierarchical Text Categorization

Andrea Esuli, Tiziano Fagni, and Fabrizio Sebastiani

Istituto di Scienza e Tecnologia dell’Informazione
Consiglio Nazionale delle Ricerche

Via Giuseppe Moruzzi 1 – 56124 Pisa, Italy
{andrea.esuli, tiziano.fagni, fabrizio.sebastiani}@isti.cnr.it

Abstract. In this paper we propose TreeBoost.MH, an algorithm for
multi-label Hierarchical Text Categorization (HTC) consisting of a hier-
archical variant of AdaBoost.MH. TreeBoost.MH embodies several
intuitions that had arisen before within HTC: e.g. the intuitions that
both feature selection and the selection of negative training examples
should be performed “locally”, i.e. by paying attention to the topology
of the classification scheme. It also embodies the novel intuition that the
weight distribution that boosting algorithms update at every boosting
round should likewise be updated “locally”. We present the results of
experimenting TreeBoost.MH on two HTC benchmarks, and discuss
analytically its computational cost.

1 Introduction

Hierarchical text categorization (HTC) is the task of generating text classifiers
that operate on classification schemes endowed with a hierarchical structure.
Notwithstanding the fact that most large-sized classification schemes for text
(e.g. the ACM Classification Scheme1) indeed have a hierarchical structure, so
far the attention of text classification (TC) researchers has mostly focused on al-
gorithms for “flat” classification, i.e. algorithms that operate on non-hierarchical
classification schemes. These algorithms, once applied to a hierarchical classifi-
cation problem, are not capable of taking advantage of the information inherent
in the class hierarchy. On the contrary, many researchers have argued that by
leveraging on the hierarchical structure of the classification scheme, heuristics
of various kinds can be brought to bear that make the classifier more efficient
and/or more effective. Many of these heuristics have been used in close associa-
tion with a specific learning algorithm; the most popular choices in this respect
have been näıve Bayesian methods [1, 2, 3, 4, 5, 6], neural networks [7, 8, 9], sup-
port vector machines [10, 11], and example-based classifiers [11].

Within this literature, the absence of “boosting” methods is conspicuous: to
the best of our knowledge, we do not know of any HTC method belonging to
the boosting family. This is somehow surprising, (i) because of the high applica-
tive interest of HTC, (ii) because boosting algorithms are well-known for their

1 http://info.acm.org/class/1998/ccs98.html

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 13–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 A. Esuli, T. Fagni, and F. Sebastiani

interesting theoretical properties and for their high accuracy, and (iii) because,
given their relatively high computational cost, they would definitely benefit by
the added efficiency that consideration of the hierarchical structure can bring
about.

In this paper we try to fill this gap by proposing TreeBoost.MH, a multi-
label HTC algorithm that consists of a hierarchical variant of AdaBoost.MH,
a very well-known member of the family of boosting algorithms; here, multi-label
(ML) means that a document can belong to zero, one, or several categories at
the same time. TreeBoost.MH embodies several intuitions that had arisen
before within HTC: e.g. the intuitions that both feature selection and the selec-
tion of negative training examples should be performed “locally”, i.e. by paying
attention to the topology of the classification scheme. TreeBoost.MH also
incorporates the novel intuition that the weight distribution that boosting al-
gorithms update at every boosting round should likewise be updated “locally”.
All these intuitions are embodied within TreeBoost.MH in an elegant and
simple way, i.e. by defining TreeBoost.MH as a recursive algorithm that uses
AdaBoost.MH as its base step, and that recurs over the tree structure.

The paper is structured as follows. In Section 2 we give a concise descrip-
tion of boosting and the AdaBoost.MH algorithm. Section 3 describes Tree-
Boost.MH. In Section 4 we present experiments comparing AdaBoost.MH
and TreeBoost.MH on two well-known HTC benchmarks. Section 5 discusses
related work. Section 6 concludes.

2 An Introduction to Boosting and AdaBoost.MH

AdaBoost.MH [12] is a boosting algorithm, i.e. an algorithm that generates
a highly accurate classifier Φ̂ (also called final hypothesis) by combining a set
of moderately accurate classifiers Φ̂1, . . . , Φ̂S (also called weak hypotheses). The
input to the algorithm is a set of pairs C = {〈c1, T r+(c1)〉, . . . , 〈cm, T r+(cm)〉}
each consisting of a category and its set of positive training examples. For each
cj ∈ C, we define the set Tr−(cj) of its negative training examples simply as
the union of the sets of the positive training examples of the other categories,
minus Tr+(cj).

AdaBoost.MH works by iteratively calling a weak learner to generate a
sequence Φ̂1, . . . , Φ̂S of weak hypotheses; at the end of the iteration the final
hypothesis Φ̂ is obtained as a sum Φ̂ =

∑S
s=1 Φ̂s of these weak hypotheses. A

weak hypothesis is a function Φ̂s : D×C → R. We interpret the sign of Φ̂s(di, cj)
as the prediction of Φ̂s on whether di belongs to cj, i.e. Φ̂s(di, cj) > 0 means
that di is believed to belong to cj while Φ̂s(di, cj) < 0 means it is believed not
to belong to cj . We instead interpret the absolute value of Φ̂s(di, cj) (indicated
by |Φ̂s(di, cj)|) as the strength of this belief.

At each iteration s AdaBoost.MH tests the effectiveness of the newly gen-
erated weak hypothesis Φ̂s on the training set and uses the results to update a
distribution Ds of weights on the training pairs 〈di, cj〉. The weight Ds+1(di, cj)
is meant to capture how effective Φ̂1, . . . , Φ̂s have been in correctly predicting

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 15

whether the training document di belongs to category cj or not. By passing
(together with the training set Tr) this distribution to the weak learner, Ad-
aBoost.MH forces this latter to generate a new weak hypothesis Φ̂s+1 that
concentrates on the pairs with the highest weight, i.e. those that had proven
harder to classify for the previous weak hypotheses.

The initial distribution D1 is uniform. At each iteration s all the weights
Ds(di, cj) are updated to Ds+1(di, cj) according to the rule

Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs
(1)

where the target function Φ(di, cj) is defined to be 1 if cj ∈ Ci and -1 otherwise,
and Zs =

∑g
i=1

∑m
j=1 Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj)) is a normalization

factor chosen so that
∑g

i=1
∑m

j=1 Ds+1(di, cj) = 1, i.e. so that Ds+1 is in fact
a distribution. Equation 1 is such that the weight assigned to a pair 〈di, cj〉
misclassified by Φ̂s is increased, as for such a pair Φ(di, cj) and Φ̂s(di, cj) have
different signs and the factor Φ(di, cj) · Φ̂s(di, cj) is thus negative; likewise, the
weight assigned to a pair correctly classified by Φ̂s is decreased.

2.1 Choosing the Weak Hypotheses

In AdaBoost.MH each document di is represented as a vector 〈w1i, . . . , wri〉
of r binary weights, where wki = 1 (resp. wki = 0) means that term tk occurs
(resp. does not occur) in di; T = {t1, . . . , tr} is the set of terms that occur in at
least one document in Tr.

In AdaBoost.MH the weak hypotheses generated by the weak learner at
iteration s are decision stumps of the form

Φ̂s(di, cj) =
{

a0j if wki = 0
a1j if wki = 1 (2)

where tk (called the pivot term of Φ̂s) belongs to T , and a0j and a1j are real-
valued constants. The choices for tk, a0j and a1j are in general different for each
iteration s, and are made according to an error-minimization policy described
in the rest of this section.

Schapire and Singer [13] have proven that a reasonable (although suboptimal)
way to maximize the effectiveness of the final hypothesis Φ̂ is to “greedily” choose
each weak hypothesis Φ̂s (and thus its parameters tk, a0j and a1j) in such a way
as to minimize Zs.

Schapire and Singer [12] define three different variants of AdaBoost.MH,
corresponding to three different methods for making these choices. In this paper
we concentrate on one of them, AdaBoost.MH with real-valued predictions
(hereafter simply called AdaBoost.MH), since it is the one that, in [12], has
been experimented most thoroughly and has given the best results:

16 A. Esuli, T. Fagni, and F. Sebastiani

Algorithm 1 (The AdaBoost.MH weak learner)

1. For each term tk ∈ {t1, . . . , tr} select, among all weak hypotheses Φ̂ that
have tk as the “pivot term”, the one (indicated by Φ̂best(k)) for which Zs

is minimum.
2. Among all the hypotheses Φ̂best(1), . . . , Φ̂best(r) selected for the r different

terms in Step 1, select the one (indicated by Φ̂s) for which Zs is minimum.

Step 1 is clearly the key step, since there are a non-enumerable set of weak
hypotheses with tk as the pivot. Schapire and Singer [13] have proven that,
given term tk and category cj ,

Φ̂best(k)(di, cj) =

⎧⎪⎨
⎪⎩

1
2 ln

W 0jk
+1

W 0jk
−1

if wki = 0

1
2 ln

W 1jk
+1

W 1jk
−1

if wki = 1
(3)

where W xjk
b =

∑g
i=1 Ds(di, cj) · [[wki = x]] · [[Φ(di, cj) = b]] for b ∈ {1,−1},

x ∈ {0, 1}, j ∈ {1, . . . , m} and k ∈ {1, . . . , r}, and where [[π]] indicates the
function that returns 1 if π is true and 0 otherwise.

3 A Hierarchical Boosting Algorithm Multi-label TC

In this section we describe a version of AdaBoost.MH, called TreeBoost.MH,
that is explicitly designed to work on tree-structured sets of categories, and is capa-
ble of leveraging on the information inherent in this structure. TreeBoost.MH
is fully illustrated in Figure 1.

Let us first fix some notation and definitions. Let H be a tree-structured
set of categories, let r be its root category, and let L = 〈〈l1, T r+(l1)〉, . . . ,
〈lm, T r+(lm)〉〉〉 be the set of leaf categories of H together with their sets of
positive training examples. For each category cj ∈ H , we will use the following
abbreviations:

Symbol Meaning
↑(cj) the parent category of cj

↓(cj) the set of children categories of cj

⇑(cj) the set of ancestor categories of cj

⇓(cj) the set of descendant categories of cj

↔(cj) the set of sibling categories of cj

We assume that documents can belong to zero, one, or several leaf categories
in L, and that leaf categories are the only categories to which documents can
belong (so that categories corresponding to internal nodes are just aggregations
of “real” categories). The notion of set of positive/negative training examples is
naturally extended to nonleaf categories via the following definition.

Definition 1. Given a nonleaf category cj, its set of positive training examples
Tr+(cj) is defined as Tr+(cj) =

⋃
c∈⇓(cj) Tr+(c), i.e. as the union of the sets of

positive training examples of all its descendant (leaf) categories.

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 17

1 Input: A triplet 〈H, r, L〉 where
2 H is a tree-structured set of categories,
3 r is the root category of H,
4 L = 〈〈l1, T r+(l1)〉, . . . , 〈lm, T r+(lm)〉〉〉 is the (possibly empty) set of leaf categories of H
5 together with their sets of positive training examples;
6 Body: if r is a leaf category then do nothing
7 else begin
8 let ↓(r) = {〈↓1(r), T r+(↓1(r))〉 . . . , 〈↓k(r)(r), T r+(↓k(r)(r))〉} be the k(r) children categories of r
9 together with their sets of positive training examples;

10 run a ML feature selection algorithm on ↓(r);
11 run AdaBoost.MH on ↓(r);
12 for q = 1, . . . , k(r) do
13 begin
14 let Tq be the subtree of H rooted at ↓q(r);
15 let Lq = {〈lq(1), T r+(lq(1))〉, . . . , 〈lq(z), T r+(lq(z))〉} be the (possibly empty)
16 set of leaf categories of Tq together with their sets of positive training examples;
17 run TreeBoost.MH on 〈Tq, ↓q(r), Lq〉;
18 end
19 end
20 Output: For each nonleaf category ct ∈ H, a final hypothesis Φ̂(t)(d, c) =

PS
s=1 Φ̂

(t)
s (d, c) for c ∈↓(ct)

Fig. 1. The TreeBoost.MH algorithm

Definition 2. Given a nonleaf category cj, its set of negative training exam-

ples Tr−(cj) is defined as Tr−(cj) =
(⋃

c∈↔(cj) Tr+(c)
)
− Tr+(cj), i.e. as the

union of the sets of positive training examples of all its sibling (leaf or nonleaf)
categories, minus its own positive training examples.

3.1 The Rationale

TreeBoost.MH embodies several intuitions that had arisen before within HTC.
The first, fairly obvious intuition (which lies at the basis of practically all

HTC algorithms proposed in the literature) is that, in a hierarchical context,
the classification of a document di is to be seen as a descent through the hi-
erarchy, from the root to the leaf categories where di is deemed to belong. In
ML classification, this means that each nonroot category cj has an associated
binary classifier Φ̂j which acts as a “filter” that prevents unsuitable documents
to percolate to lower levels. All test documents that a classifier Φ̂j deems to
belong to cj are passed as input to all the binary classifiers corresponding to the
categories in ↓(cj), while the documents that Φ̂j deems not to belong to cj are
“blocked” and analysed no further. Each document may thus reach zero, one, or
several leaf categories, and is thus classified under them.

The second intuition is that the training of Φ̂j should be performed “locally”,
i.e. by paying attention to the topology of the classification scheme. To see
this, note that, during classification, if the classifier for ↑ (cj) has performed
correctly, Φ̂j will only (or mostly) be presented with documents that belong
to the subtree rooted in ↑ (cj), i.e. with documents that belong to cj and/or
to some of the categories in ↔(cj). As a result, the training of Φ̂j should be
performed by using, as negative training examples, the union of the positive
training examples of the categories in ↔(cj) (with the obvious exception of the

18 A. Esuli, T. Fagni, and F. Sebastiani

documents that are also positive training examples of cj); in particular, training
documents that only belong to leaf categories other than those in ⇓(cj) need not
be used. The rationale of this choice is that the chosen documents are “quasi-
positive” examples of cj [14], i.e. are the negative examples that are closest to
the boundary between the positive and the negative region of cj (a notion akin to
that of “support vectors” in SVMs), and are thus the most informative negative
examples that can be used in training. This is beneficial also from the standpoint
of (both training and classification time) efficiency, since fewer training examples
and fewer features are involved. This intuition lies at the basis of Definition 2
above; in a similar form, it had first been presented in [15].

The third intuition is similar, i.e. that feature selection should also be per-
formed “locally”, by paying attention to the topology of the classification scheme.
As above, if the classifier for ↑ (cj) has performed correctly, Φ̂j will only (or
mostly) be presented with documents that belong to the subtree rooted in ↑(cj).
As a consequence, for the classifiers corresponding to cj and its siblings, it is
cost-effective to employ features that are useful in discriminating among them,
and only among them; features that discriminate among categories lying outside
the subtree rooted in ↑(cj) are too general, and features that discriminate among
the subcategories of cj , or among the subcategories of one of its siblings, are too
specific. This intuition, albeit in a different form, was first presented in [2].

TreeBoost.MH also embodies the novel intuition that the weight distrib-
ution that boosting algorithms update at every boosting round should likewise
be updated “locally”. In fact, the two previously discussed intuitions indicate
that hierarchical ML classification is best understood as consisting of several
independent (flat) ML classification problems, one for each internal node of the
hierarchy: for each such node cj we must generate a number of binary classifiers,
one for each cq ∈↓(cj). In a boosting context, this means that several independent
distributions, each one “local” to an internal node and its children, should be
generated and updated by the process. In this way, the “difficulty” of a category
cq will only matter relative to the difficulty of its sibling categories.

3.2 The Algorithm

TreeBoost.MH incorporates these four intuitions by factoring the hierarchical
ML classification problem into several “flat” ML classification problems, one for
every internal node in the tree. TreeBoost.MH learns in a recursive fashion, by
identifying internal nodes cj and calling AdaBoost.MH to generate a ML (flat)
classifier for the set of categories ↓(cj). Alternatively (and more conveniently),
this process may be viewed as generating, for each nonroot category cj ∈ H ,
a binary classifier Φ̂ for cj , by means of which hierarchical classification can be
performed as described in Section 3.1.

Learning in TreeBoost.MH proceeds by first identifying whether a leaf
category has been reached (line 6 of Figure 1), in which case nothing is done,
since the classifiers are generated only at internal nodes.

If an internal node cj has been reached, a ML feature selection process may
(optionally) be run (line 10) to generate a reduced feature set on which the ML
classifier for ↓(cj) will operate. This may be dubbed a “glocal” feature selection

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 19

policy, since it takes an intermediate stand between the well-known “global”
policy (in which the same set of features is selected for all the categories in H)
and “local” policy (in which a different set of features is chosen for each different
category). The glocal policy selects a different set of features for each maximal
set of sibling categories in H , thus implementing a view of feature selection as
described in Section 3.12. Any of the standard feature scoring functions (e.g.
information gain, chi-square) can be used, as well as any of the standard feature
score globalization methods (e.g. max, weighted average, Forman’s [16] round
robin). Note that all these functions require a precise notion of what the positive
and negative training examples of a category are; this notion is well-defined for
leaf categories (see beginning of Section 2), and is catered for by Definitions 1
and 2 for internal node categories.

After the reduced feature set has been identified, TreeBoost.MH calls upon
AdaBoost.MH (line 11) to solve a ML (flat) classification problem for the
categories in ↓(cj); here too, what counts as a positive and as a negative training
example of a category comes from Definitions 1 and 2, which implements the
“quasi-positive” policy for the choice of negative training examples discussed
in Section 3.1. Note that restricting the AdaBoost.MH call to the categories
in ↓(cj) implements the view, discussed in Section 3.1, of several independent,
“local” distributions being generated and updated during the boosting process.

Finally, after the ML classifier for ↓(cj) has been generated, for each cate-
gory cq ∈↓(cj) a recursive call to TreeBoost.MH is issued (lines 12–18) that
processes the subtree rooted in cq in the same way. The final result is a hierarchi-
cal ML classifier in the form of a tree of binary classifiers, one for each nonroot
node, each consisting of a committee of S decision stumps.

In an extended version of this paper [17] we discuss the computational cost of
TreeBoost.MH, proving that (at least in the idealized case of a “fully grown”,
perfectly balanced tree of constant ariety a):

– at training time TreeBoost.MH is O(grah), while AdaBoost.MH is
O(grm);

– at testing time TreeBoost.MH is O(Sah), while AdaBoost.MH is O(Sm).

Since m = ah, this means that TreeBoost.MH is cheaper than AdaBoost.MH
by an exponential factor, both at training time and at testing time.

4 Experiments

4.1 Experimental Setting

The first benchmark we have used in our experiments is the “Reuters-21578,
Distribution 1.0” corpus3. In origin, the Reuters-21578 category set is not
2 Note that a local policy would also implement this view, but is not made possible by

AdaBoost.MH, since this latter uses the same set of features for all the categories
involved in the ML classification problem. This means that we need to use the same
set of features for all categories in ↓(cj).

3 http://www.daviddlewis.com/resources/testcollections/~reuters21578/

20 A. Esuli, T. Fagni, and F. Sebastiani

hierarchically structured, and is thus not suitable “as is” for HTC experiments;
we have thus used a hierarchical version of it generated in [5] by the application of
hierarchical agglomerative clustering on the 90 Reuters-21578 categories that
have at least one positive training example and one positive test example. The
original Reuters-21578 categories are thus “leaf” categories in the resulting
hierarchy, and are clustered into four “macro-categories” whose parent category
is the root of the tree. Conforming to the experiments of [5], we have used
(according to the ModApte split) the 7,770 training examples and 3,299 test
examples that are labelled by at least one of the selected categories.

The second benchmark we have used is Reuters Corpus Volume 1 ver-
sion 2 (RCV1-v2)4, consisting of 804,414 news stories. In our experiments we
have used the “LYRL2004” split defined in [18], in which the (chronologically)
first 23,149 documents are used for training and the other 781,265 are used for
testing. Out of the 103 “Topic” categories, in our experiments we have restricted
our attention to the 101 categories with at least one positive training example.
The RCV1-v2 hierarchy is four levels deep (including the root, to which we
conventionally assign level 0); there are four internal nodes at level 1, and the
leaves are all at the levels 2 and 3.

In all the experiments discussed in this section, punctuation has been re-
moved, all letters have been converted to lowercase, numbers have been removed,
stop words have been removed, and stemming has been performed by means of
Porter’s stemmer. As a measure of effectiveness that combines the contributions
of precision (π) and recall (ρ) we have used the well-known F1 function, defined
as F1 = 2πρ

π+ρ = 2TP
2TP+FP+FN , where TP , FP , and FN stand for the numbers

of true positives, false positives, and false negatives, respectively. We compute
both microaveraged F1 (denoted by Fµ

1) and macroaveraged F1 (FM
1). Fµ

1 is
obtained by (i) computing the category-specific values TPi, (ii) obtaining TP
as the sum of the TPi’s (same for FP and FN), and then (iii) applying the
F1 = 2πρ

π+ρ formula. FM
1 is obtained by first computing the category-specific F1

values and then averaging them across the ci’s.

4.2 Results

The results of our experiments are reported in Table 1.
In a first experiment we have comparedAdaBoost.MH and TreeBoost.MH

using a full feature set. We have then switched to reduced feature sets, obtained
according to a “global” feature selection policy in which (i) feature-category pairs
have been scored by means of information gain, defined as IG(tk, ci) =

∑
c∈{ci,ci}∑

t∈{tk,tk} P (t, c) · log P (t,c)
P (t)·P (c) and (ii) the final set of features has been chosen

according to Forman’s round robin technique, which consists in picking, for each
category ci, the v features with the highest IG(tk, ci) value, and pooling all of
them together into a category-independent set [16]. This set thus contains a num-
ber of features q ≤ vm, where m is the number of categories; it usually contains
strictly fewer than them, since some features are among the best v features for
more than one category. We have set v to 60 for Reuters-21578 and to 43 for
4 http://trec.nist.gov/data/reuters/reuters.html

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 21

Table 1. AdaBoost.MH and TreeBoost.MH on Reuters-21578 (top 5 rows) and
RCV1-v2 (bottom 5 rows). In each square, the first figure from top is F µ

1 , the second
is F M

1 , the third is training time (inclusive of the time required to perform feature
selection, if any), and the fourth is testing time.

5 10 20 50 100 200 500 1000
iterations iterations iterations iterations iterations iterations iterations iterations

.533 .597 .664 .724 .783 .798 .804 .808
AdaBoost.MH .033 .075 .160 .255 .332 .361 .377 .379

(Full) 34.0 68.1 136.3 340.7 681.5 1362.9 3407.3 6814.6
11.1 14.3 18.2 35.1 66.2 129.9 274.0 464.3

.596 (+11.9%) .699 (+17.2%) .745 (+12.2%) .795 (+9.9%) .810 (+3.5%) .827 (+3.7%) .830 (+3.1%) .826 (+2.3%)
TreeBoost.MH .100 (+197.4%) .187 (+148.4%) .286 (+78.9%) .416 (+62.6%) .425 (+28.2%) .454 (+25.6%) .460 (+22.0%) .479 (+26.4%)

(Full) 16.9 (-50.4%) 33.8 (-50.4%) 67.6 (-50.4%) 169.0 (-50.4%) 337.9 (-50.4%) 675.8 (-50.4%) 1689.4 (-50.4%) 3378.9 (-50.4%)
13.0 (+16.8%) 12.6 (-11.8%) 17.2 (-5.5%) 20.6 (-41.4%) 29.9 (-54.9%) 48.5 (-62.7%) 96.6 (-64.7%) 151.3 (-67.4%)

.533 .597 .664 .724 .783 .799 .811 .801
AdaBoost.MH .034 .075 .160 .256 .332 .354 .373 .362

(Global) 24.6 49.2 98.4 246.1 492.1 984.3 2460.8 4921.5
8.8 12.4 17.0 32.8 59.6 112.2 255.2 386.0

.596 (+11.9%) .699 (+17.2%) .744 (+11.9%) .800 (+10.5%) .809 (+3.4%) .815 (+2.0%) .828 (+2.1%) .821 (+2.5%)
TreeBoost.MH .100 (+197.4%) .187 (+148.4%) .285 (+78%) .437 (+70.8%) .427 (+28.7%) .457 (+28.8%) .457 (+22.4%) .473 (+30.6%)

(Global) 11.5 (-53.4%) 23.0 (-53.4%) 45.9 (-53.4%) 114.7 (-53.4%) 229.5 (-53.4%) 459.0 (-53.4%) 1147.4 (-53.4%) 2294.7 (-53.4%)
9.1 (+3.2%) 9.6 (-22.1%) 11.3 (-33.5%) 17.2 (-47.7%) 26.3 (-55.9%) 42.4 (-62.2%) 82.3 (-67.7%) 131.3 (-66.0%)

.596 (+11.9%) .699 (+17.2%) .744 (+11.9%) .794 (+9.7%) .812 (+3.8%) .817 (+2.2%) .824 (+1.6%) .825 (+3.0%)
TreeBoost.MH .100 (+197.4%) .187 (+148.4%) .285 (+77.9%) .401 (+56.9%) .430 (+29.8%) .460 (+29.8%) .465 (+24.7%) .465 (+28.3%)

(Glocal) 12.1 (-50.7%) 24.2 (-50.7%) 48.5 (-50.7%) 121.2 (-50.7%) 242.5 (-50.7%) 485.0 (-50.7%) 1212.4 (-50.7%) 2424.8 (-50.7%)
10.7 (+21.6%) 14.9 (+20.9%) 14.1 (-16.7%) 23.0 (-29.8%) 28.3 (-52.4%) 46.2 (-58.9%) 94.6 (-62.9%) 142.9 (-63.0%)

.361 .406 .479 .587 .650 .701 .735 .745
AdaBoost.MH .037 .070 .131 .239 .333 .396 .435 .442

(Full) 181.3 362.7 725.3 1813.3 3626.5 7253.1 18132.7 36265.5
3346.2 3576.4 5168.2 9524.7 16827.2 33608.9 83951.2 170720.3

.391 (+8.4%) .460 (+13.3%) .543 (+13.5%) .658 (+12.1%) .705 (+8.4%) .734 (+4.6%) .752 (+2.3%) .761 (+2.1%)
TreeBoost.MH .097 (+159.0%) .128 (+81.5%) .211 (+60.8%) .341 (+42.8%) .409 (+22.7%) .447 (+12.9%) .476 (+9.4%) .486 (+9.8%)

(Full) 78.3 (-56.8%) 156.5 (-56.8%) 313.1 (-56.8%) 782.7 (-56.8%) 1565.3 (-56.8%) 3130.6 (-56.8%) 7826.6 (-56.8%) 15653.1 (-56.8%)
2774.5 (-17.1%) 2813.5 (-21.3%) 3081.1 (-40.4%) 3963.2 (-58.4%) 6044.2 (-64.1%) 9328.3 (-72.2%) 21847.4 (-74.0%) 38342.9 (-77.5%)

.361 .406 .479 .587 .650 .700 .736 .749
AdaBoost.MH .037 .070 .131 .239 .332 .398 .443 .457

(Global) 107.8 215.5 431.1 1077.7 2155.5 4310.9 10777.3 21554.7
1598.4 2223.7 3741.0 8012.8 16206.9 31907.7 74292.3 147354.1

.391 (+8.4%) .460 (+13.3%) .545 (+13.8%) .657 (+12.0%) .702 (+8.0%) .732 (+4.6%) .753 (+2.3%) .760 (+1.4%)
TreeBoost.MH .097 (+159.0%) .128 (+81.6%) .213 (+62.6%) .340 (+42.4%) .409 (+23.4%) .448 (+12.5%) .484 (+9.4%) .495 (+8.3%)

(Global) 33.8 (-68.7%) 67.5 (-68.7%) 135.1 (-68.7%) 337.6 (-68.7%) 675.3 (-68.7%) 1350.5 (-68.7%) 3376.4 (-68.7%) 6752.8 (-68.7%)
1830.2 (+14.5%) 1422.0 (-36.1%) 1901.0 (-49.2%) 2772.1 (-65.4%) 4836.0 (-70.2%) 8156.6 (-74.4%) 18384.5 (-75.3%) 33648.3 (-77.2%)

.391 (+8.4%) .460 (+13.3%) .543 (+13.5%) .658 (+12.1%) .703 (+8.1%) .735 (+5.1%) .753 (+2.3%) .762 (+1.7%)
TreeBoost.MH .097 (+159.0%) .128 (+81.5%) .211 (+61.1%) .340 (+42.6%) .408 (+23.0%) .450 (+12.9%) .476 (+7.6%) .490 (+7.2%)

(Glocal) 41.3 (-61.7%) 82.6 (-61.7%) 165.3 (-61.7%) 413.1 (-61.7%) 826.3 (-61.7%) 1652.6 (-61.7%) 4131.4 (-61.7%) 8268.9 (-61.7%)
2374.9 (+48.6%) 2432.7 (+9.4%) 2499.9 (-33.2%) 3645.9 (-54.5%) 5020.3 (-69.0%) 8372.9 (-73.8%) 18173.9 (-75.5%) 33149.0 (-77.5%)

RCV1-v2, which are the values that, for each corpora, best approximate a total
number of features of 2,000; in fact, the reduced feature sets consist of 2,012 fea-
tures for Reuters-21578 (11% of the 18,177 original ones) and 2,029 for RCV1-
v2 (3.7% of the 55,051 original ones).

We have also run an experiment in which we have used the “glocal” feature
selection policy described in Section 3.2, consisting in selecting a different feature
subset (of the same cardinalities as in the global policy) for the set of children
of each different internal node. Note that the results obtained by means of this
policy are reported only for TreeBoost.MH, since this policy obviously is not
applicable to AdaBoost.MH.

We will now comment on the Reuters-21578 results5; the RCV1-v2 are
qualitatively similar. The first observation we can make is that, in switching from
AdaBoost.MH to TreeBoost.MH, effectiveness improves substantially. Fµ

1
improves from +2.3% to +17.2%, depending on the number S of boosting iter-
ations. FM

1 improves even more substantially, from +22.0% to +197.4%; this

5 The reader might notice that the best performance we have obtained from Ad-
aBoost.MH on Reuters-21578 (F µ

1 = .808) is inferior to the one reported in [12]
for the same algorithm (F µ

1 = .851). There are several reasons for this: (a) [12] actu-
ally uses a different, much older version of this collection, called Reuters-21450 [19];
(b) [12] only uses the 93 categories which have at least 2 positive training examples
and 1 positive test example, while we also use the categories that have just 1 positive
training example and those that have no positive test example. This makes the two
sets of AdaBoost.MH results difficult to compare.

22 A. Esuli, T. Fagni, and F. Sebastiani

means that TreeBoost.MH is especially suited to categorization problems
in which the distribution of training examples across the categories is highly
skewed. For both Fµ

1 and FM
1 , the improvements tend to be more substan-

tial for low values of S, showing that TreeBoost.MH converges to optimum
performance more rapidly than AdaBoost.MH. Altogether, these effectiveness
improvements are somehow surprising, since it is well-known that hierarchical
TC can introduce a deterioration of effectiveness due to classification errors
made high up in the hierarchy, which cannot be recovered anymore [2, 4]. The
improvements thus show that the “filters” placed at the internal nodes work
well, likely due to the fact that they their training benefits from using only the
“quasi-positive” examples of local interest as negative training examples.

In terms of efficiency, we can observe that training time is +50.4% smaller,
irrespectively of the number of iterations, a reduction that confirms the the-
oretical findings discussed in Section 3.2 (and that might likely be even more
substantial in classification problems characterized by a deeper, more articulated
hierarchy). Classification time is also generally reduced; aside from an isolated
case in which it increases by 16.8%, it is reduced from +5.5% to +67.4%, with
higher reductions being obtained for high values of S; this is likely due to the fact
that, since high values of S bring about more effective classifiers, the classifiers
placed at internal nodes are more effective at “blocking” unsuitable documents
from percolating down to leaves which would reject them anyway.

The experiments run after global feature selection qualitatively confirm the
results above. Note that the effectiveness values are practically unchanged wrt
the full feature set experiment; this is especially noteworthy for the RCV1-
v2 experiments, in which more than 96% of the original features have been
discarded with no loss in effectiveness. Effectiveness does not change also when
using “glocal” feature selection. This is somehow surprising, since an effectiveness
improvement might have been expected here, due to the generation of feature
sets customized to each internal node. It is thus likely that the values of v chosen
when applying the global policy were large enough to allow the inclusion, for each
internal node, of enough features customized to it.

5 Related Work

HTC was first tackled in [9], in the context of a TC system based on neural
networks. The intuition that it could be useful to perform feature selection locally
by exploiting the topology of the tree is originally due to [2]. However, this work
dealt with 1-of-n text categorization, which means that feature selection was
performed relative to the set of children of each internal node; given that we are
in a m-of-n classification context, we instead do it relative to each individual
child of any internal node. The intuition that the negative training examples for
training the classifier for category cj could be limited to the positive training
examples of categories close to cj in the tree is due to [15]. The notion that, in a
m-of-n classification context, classifiers at internal nodes act as “filters” informs
much of the HTC literature, and is explicitly discussed at least in [7], which
proposes a HTC system based on neural networks.

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 23

Other works in HTC focus on other specific aspects of the learning task. For
instance, the “shrinkage” method presented in [4] attempts to improve parameter
estimation for data-sparse leaf categories in a 1-of-n HTC system based on a
näıve Bayesian method. Incidentally, the näıve Bayesian approach seems to have
been the most popular among HTC researchers, since several other HTC models
are hierarchical variations of näıve Bayesian learning algorithms [1, 3, 5, 6].

6 Conclusion

We have presented TreeBoost.MH, a recursive algorithm for hierarchical text
categorization that uses AdaBoost.MH as its base step and that recurs over
the category tree structure. We have given complexity results in which we show
that TreeBoost.MH, by leveraging on the hierarchical structure of the cate-
gory tree, is exponentially cheaper to train and to test than AdaBoost.MH.
These theoretical intuitions have been confirmed by thorough empirical testing
on two standard benchmarks, on which TreeBoost.MH has brought about sub-
stantial savings at both learning time and classification time. TreeBoost.MH
has also shown to bring about substantial improvements in effectiveness wrt
AdaBoost.MH, especially in terms of macroaveraged effectiveness; this fea-
ture makes it extremely suitable to categorization problems characterized by a
skewed distribution of the positive training examples across the categories.

References

1. Chakrabarti, S., Dom, B.E., Agrawal, R., Raghavan, P.: Scalable feature selec-
tion, classification and signature generation for organizing large text databases
into hierarchical topic taxonomies. Journal of Very Large Data Bases 7(3) (1998)
163–178

2. Koller, D., Sahami, M.: Hierarchically classifying documents using very few
words. In: Proceedings of the 14th International Conference on Machine Learning
(ICML’97), Nashville, US (1997) 170–178

3. Gaussier, É., Goutte, C., Popat, K., Chen, F.: A hierarchical model for clustering
and categorising documents. In: Proceedings of the 24th European Colloquium on
Information Retrieval Research (ECIR’02), Glasgow, UK (2002) 229–247

4. McCallum, A.K., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classifica-
tion by shrinkage in a hierarchy of classes. In: Proceedings of the 15th International
Conference on Machine Learning (ICML’98), Madison, US (1998) 359–367

5. Toutanova, K., Chen, F., Popat, K., Hofmann, T.: Text classification in a hier-
archical mixture model for small training sets. In: Proceedings of the 10th ACM
International Conference on Information and Knowledge Management (CIKM’01),
Atlanta, US (2001) 105–113

6. Vinokourov, A., Girolami, M.: A probabilistic framework for the hierarchic organi-
sation and classification of document collections. Journal of Intelligent Information
Systems 18(2/3) (2002) 153–172

7. Ruiz, M., Srinivasan, P.: Hierarchical text classification using neural networks.
Information Retrieval 5(1) (2002) 87–118

8. Weigend, A.S., Wiener, E.D., Pedersen, J.O.: Exploiting hierarchy in text catego-
rization. Information Retrieval 1(3) (1999) 193–216

24 A. Esuli, T. Fagni, and F. Sebastiani

9. Wiener, E.D., Pedersen, J.O., Weigend, A.S.: A neural network approach to topic
spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis
and Information Retrieval (SDAIR’95), Las Vegas, US (1995) 317–332

10. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: Proceed-
ings of the 23rd ACM International Conference on Research and Development in
Information Retrieval (SIGIR’00), Athens, GR (2000) 256–263

11. Yang, Y., Zhang, J., Kisiel, B.: A scalability analysis of classifiers in text catego-
rization. In: Proceedings of the 26th ACM International Conference on Research
and Development in Information Retrieval (SIGIR’03), Toronto, CA (2003) 96–103

12. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text cate-
gorization. Machine Learning 39(2/3) (2000) 135–168

13. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3) (1999) 297–336

14. Schapire, R.E., Singer, Y., Singhal, A.: Boosting and Rocchio applied to text
filtering. In: Proceedings of the 21st ACM International Conference on Research
and Development in Information Retrieval (SIGIR’98), Melbourne, AU (1998) 215–
223

15. Ng, H.T., Goh, W.B., Low, K.L.: Feature selection, perceptron learning, and a
usability case study for text categorization. In: Proceedings of the 20th ACM
International Conference on Research and Development in Information Retrieval
(SIGIR’97), Philadelphia, US (1997) 67–73

16. Forman, G.: A pitfall and solution in multi-class feature selection for text classifi-
cation. In: Proceedings of the 21st International Conference on Machine Learning
(ICML’04), Banff, CA (2004)

17. Esuli, A., Fagni, T., Sebastiani, F.: TreeBoost.MH: A boosting algorithm for multi-
label hierarchical text categorization. Technical Report 2006-TR-56, Istituto di
Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa,
IT (2006) Submitted for publication.

18. Lewis, D.D., Li, F., Rose, T., Yang, Y.: RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research 5 (2004) 361–397

19. Apté, C., Damerau, F.J., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems 12(3) (1994) 233–251

Cluster Generation and Cluster Labelling for
Web Snippets

Filippo Geraci1,2, Marco Pellegrini1, Marco Maggini2, and Fabrizio Sebastiani3

1 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche,
Via G Moruzzi 1, 56124 Pisa, Italy

{f.geraci, m.pellegrini}@iit.cnr.it
2 Dipartimento di Ingegneria dell’Informazione, Università di Siena,

Via Roma 56, 53100 Siena, Italy
maggini@ing.unisi.it

3 Istituto di Scienza e Tecnologia dell’Informazione, Consiglio Nazionale delle
Ricerche, Via G Moruzzi 1, 56124 Pisa, Italy

fabrizio.sebastiani@isti.cnr.it

Abstract. This paper describes Armil, a meta-search engine that groups
into disjoint labelled clusters the Web snippets returned by auxiliary
search engines. The cluster labels generated by Armil provide the user
with a compact guide to assessing the relevance of each cluster to her
information need. Striking the right balance between running time and
cluster well-formedness was a key point in the design of our system.
Both the clustering and the labelling tasks are performed on the fly by
processing only the snippets provided by the auxiliary search engines,
and use no external sources of knowledge. Clustering is performed by
means of a fast version of the furthest-point-first algorithm for metric k-
center clustering. Cluster labelling is achieved by combining intra-cluster
and inter-cluster term extraction based on a variant of the information
gain measure. We have tested the clustering effectiveness of Armil against
Vivisimo, the de facto industrial standard in Web snippet clustering, us-
ing as benchmark a comprehensive set of snippets obtained from the
Open Directory Project hierarchy. According to two widely accepted “ex-
ternal” metrics of clustering quality, Armil achieves better performance
levels by 10%. We also report the results of a thorough user evaluation
of both the clustering and the cluster labelling algorithms.

1 Introduction

An effective search interface is a fundamental component in a Web search engine.
In particular, the quality of presentation of the search results often represents
one of the main keys to the success of such systems. Most search engines present
the results of a user query as a ranked list of Web snippets. Meta-search engines
(MSEs) integrate the items obtained from multiple “auxiliary” search engines,
with the purpose of increasing the coverage of the results. However, without
an accurate design, MSEs might in principle even worsen the quality of the
information access experience, since the user is typically confronted with an
even larger set of results. Thus, key issues to be faced by MSEs concern the
exploitation of effective algorithms for merging the ranked lists of results (while
at the same time removing the duplicates), and the design of advanced user
interfaces based on a structured organization of the results. This latter aspect is

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 25–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

26 F. Geraci et al.

usually implemented by grouping the results into homogeneous groups by means
of clustering or categorization algorithms.

This paper describes the Armil system1, a meta-search engine that organizes
the Web snippets retrieved from auxiliary search engines into disjoint clusters and
automatically constructs a title label for each cluster by using only the text ex-
cerpts available in the snippets. Our design efforts were directed towards devising
a fast clustering algorithm able to yield good-quality homogeneous groups, and a
distillation technique for selecting appropriate and useful labels for the clusters.
The speed of the two algorithms was a key issue in our design, since the system
must organize the results on the fly, thus minimizing the latency between the is-
suing of the query and the presentation of the results. Second-level clustering is
also performed at query time (i.e. not on demand) to minimize latency. In Armil,
an equally important role is played by the clustering component and by the la-
belling component. Clustering is accomplished by means of an improved version
of the furthest-point-first (FPF) algorithm for k-center clustering [1]. To the best
of our knowledge this algorithm had never been used in the context of Web snippet
clustering or text clustering. The generation of the cluster labels is instead accom-
plished by means of a combination of intra-cluster and inter-cluster term extrac-
tion, based on a modified version of the information gain measure. This approach
tries to capture the most significant and discriminative words for each cluster.

One key design feature of Armil is that it relies only on the information re-
turned by the auxiliary search engines, i.e. the snippets; this means that no
external source of information, such as ontologies or lexical resources, is used.
We thus demonstrate that such a lightweight approach, together with carefully
crafted algorithms, is sufficient to provide a useful and successful clustering-
plus-labelling service. Obviously, this assumption relies on the hypothesis that
the quality of the results and of the snippets returned by the auxiliary search en-
gines is satisfactory. We have tested the clustering effectiveness of Armil against
Vivisimo, the de facto industrial standard in Web snippet clustering, using as
benchmark a comprehensive set of snippets obtained from the Open Directory
Project hierarchy. According to two metrics of clustering quality that are nor-
malized variants of the Entropy and the Mutual Information [2], Armil achieves
better performance levels by 10%. Note that, since the normalization reduces the
ranges of these measures in the interval [0, 1], an increase of 10% is noteworthy.
We also report the results of a thorough user evaluation of both the clustering
and the cluster labelling algorithms.

Outline of the clustering algorithm. Clustering and labelling are both es-
sential operations for a Web snippet clustering system. However, each previously
proposed such system strikes a different balance between the two aspects. Some
systems (e.g. [3, 4]) view label extraction as the primary goal, and clustering is a
by-product of the label extraction procedure. Other systems (e.g. [5, 6]) view in-
stead the formation of clusters as the most important step, and the labelling phase
is considered as strictly dependent on the clusters found. We have followed this
latter approach. In order to cluster the snippets in the returned lists, we map them
into a vector space endowed with a distance function, which we treat as a met-
ric; then a modified furthest-point-first algorithm (M-FPF) is applied to generate
the clusters. The M-FPF algorithm generates the same clusters of the “standard”
FPF algorithm, but uses filters based on the triangular inequality to speed up the

1 The Armil system can be freely accessed at http://armil.iit.cnr.it/.

Cluster Generation and Cluster Labelling for Web Snippets 27

computation. As such, M-FPF inherits a very important property of the FPF al-
gorithm, i.e. it is within a factor 2 of the optimal solution for the k-center problem
[7]. The second interesting property of M-FPF is that it does not compute cen-
troids of clusters. Centroids tend to be dense vectors and, as such, their computa-
tion and/or update in high-dimensional space is a computational burden. M-FPF
relies instead only on pairwise distance calculations between snippets, and as such
better exploits the sparsity of the snippet vector representations.

Outline of the cluster labelling algorithm. The cluster labelling phase
aims at extracting from the set of snippets assigned to each cluster a sequence
of words highly descriptive of the corresponding group of items. The quality of
the label depends on its well-formedness (i.e. whether the text is syntactically
and semantically plausible), on its descriptive power (i.e. how well it describes
what is contained in the cluster), and on its discriminative power (i.e. how well
it differentiates what is contained in the cluster with respect to what is con-
tained in other clusters). The possibility to extract good labels directly from the
available snippets is strongly dependent on their quality and, obviously, on the
homogeneity of the produced clusters. In order to pursue a good tradeoff be-
tween descriptive and discriminative power, we select candidate words for each
cluster by means of IGm, a modified version of the Information Gain measure
[2]. For each cluster, IGm allows the selection of those words that are most
representative of its contents and are least representative of the contents of the
other clusters. Finally, in order to construct plausible labels, rather than simply
using the list of the top-scoring words (i.e. the ones that maximize IGm), the
system looks within the titles of the returned Web pages for the substring that
best matches the selected top-scoring words.

Once each cluster has been assigned a set of descriptive and discriminative
words (we call such set the cluster signatures), all the clusters that share the
same signature are merged. This reduces the arbitrariness inherent in the choice
of their number k, that is fixed a priori independently of the query.

Outline of the paper. The paper is organized as follows. In Section 2 we review
related work on techniques for the automatic re-organization of search results.
Section 3 introduces the data representation adopted within Armil and sketches
the properties of the M-FPF clustering algorithm and of the cluster labelling
algorithm. The results of the system evaluation are reported in Sections 5 and
4. Finally, in Section 6 conclusions and prospective future research are discussed.
A full version of this paper with more details is in [8].

2 Previous Work

Tools for clustering Web snippets have recently become a focus of attention in
the research community. In the past, this approach has had both critics [9, 10]
and supporters [11], but the proliferation of commercial Web services such as
Copernic, Dogpile, Groxis, iBoogie, Kartoo, Mooter, and Vivisimo seems to confirm
the validity of the approach. Academic research prototypes are also available,
such as Grouper [12, 6], EigenCluster [13], Shoc [14], and SnakeT [3]. Generally,
details of the algorithms underlying the commercial Web services are not in the
public domain.

Maarek et al. [15] give a precise characterization of the challenges inherent
in Web snippet clustering, and propose an algorithm based on complete-link

28 F. Geraci et al.

hierarchical agglomerative clustering that is quadratic in the number n of snip-
pets. They introduce a technique called “lexical affinity” whereby the co-
occurrence of words influences the similarity metric.

Zeng et al. [16] tackle the problem of detecting good cluster names as pre-
liminary to the formation of the clusters, using a supervised learning approach.
Note that the methods considered in our paper are instead all unsupervised,
thus requiring no labelled data.

The EigenCluster [13], Lingo [17], and Shoc [14] systems all tackle Web snippet
clustering by performing a singular value decomposition of the term-document
incidence matrix2; the problem with this approach is that SVD is extremely
time-consuming, hence problematic when applied to a large number of snippets.
Zamir and Etzioni [12, 6] propose a Web snippet clustering mechanism (Suffix
Tree Clustering – STC) based on suffix arrays, and experimentally compare
STC with algorithms such as k-means, single-pass k-means [18], Backshot and
Fractionation [19], and Group Average Hierarchical Agglomerative Clustering.
They test the systems on a benchmark obtained by issuing 10 queries to the
Metacrawler meta-search engine, retaining the top-ranked 200 snippets for each
query, and manually tagging the snippets by relevance to the queries. They then
compute the quality of the clustering obtained by the tested systems by ordering
the generated clusters according to precision, and by equating the effectiveness
of the system with the average precision of the highest-precision clusters that
collectively contain 10% of the input documents. Interestingly, the authors show
that very similar results are attained when full documents are used instead of
their snippets, thus validating the snippet-based clustering approach.

Lawrie and Croft [4] view the clustering/labelling problem as that of generat-
ing multilevel summaries of the set of documents (in this case the Web snippets
returned by a search engine). The technique is based on first building off-line
a statistical model of the background language (e.g. the statistical distribution
of words in a large corpus of the English language), and on subsequently ex-
tracting “topical terms” from the documents, where “topicality” is measured by
the contribution of a term to the Kullback-Leibler divergence score of the doc-
ument collection relative to the background language. Intuitively, this formula
measures how important this term is in measuring the distance of the collection
of documents from the distribution of the background language. The proposed
method is shown to be superior (by using the KL-divergence) to a naive sum-
marizer that just selects the terms with highest tf ∗ idf score in the document
set.

Kammamuru et al. [5] propose a classification of Web snippet clustering al-
gorithms into monothetic (in which the assignment of a snippet to a cluster is
based on a single dominant feature) and polythetic (in which several features
concur in determining the assignment of a snippet to a cluster). The rationale
for proposing a monothetic algorithm is that the single discriminating feature is
a natural label candidate. The authors propose such an algorithm in which the
snippets are seen as sets of words and the next term is chosen so as to maxi-
mize the number of newly covered sets while minimizing the hits with already
covered sets. The paper reports empirical evaluations and user studies over two
classes of queries, “ambiguous” and “popular”. The users were asked to compare
3 clustering algorithms over the set of queries and, for each query, were asked to
answer 6 questions of a rather general nature on the generated hierarchy.

2 The Eigencluster system is available on-line at http://www-math.mit.edu/cluster/

Cluster Generation and Cluster Labelling for Web Snippets 29

Ferragina and Gulli [3] propose a method for hierarchically clustering Web
snippets, and produce a hierarchical labelling based on constructing a sequence
of labelled and weighted bipartite graphs representing the individual snippets
on one side and a set of labels (and corresponding clusters) on the other side.
Data from the Open Directory Project (ODP)3 is used in an off-line and query-
independent way to generate predefined weights that are associated on-line to
the words of the snippets returned by the queries. Data is collected from 16
search engines as a result of 77 queries chosen for their popularity among Lycos
and Google users in 2004. The snippets are then clustered and the labels are
manually tagged as relevant or not relevant to the cluster to which they have
been associated. The clusters are ordered in terms of their weight, and quality
is measured in terms of the number of relevant labels among the first n labels,
for n ∈ {3, 5, 7, 10}. Note that in this work the emphasis is on the quality of the
labels rather than on that of the clusters, and that the ground truth is defined
“a posteriori”, after the queries are processed.

3 The Clustering Algorithm and the Labelling Algorithm

The clustering algorithm. We approach the problem of clustering Web snip-
pets as that of finding a solution to the classic k-center problem: Given a set S
of points in a metric space M endowed with a metric distance function D, and
given a desired number k of resulting clusters, partition S into non-overlapping
clusters C1, . . . , Ck and determine their “centers” µ1, . . . , µk ∈ M so that the
radius maxj maxx∈Cj D(x, µj) of the widest cluster is minimized. The k-center
problem can be solved approximately using the furthest-point-first (FPF) algo-
rithm [7, 20], which we now describe. Given a set S of n points, FPF builds a
sequence T1 ⊂ . . . ⊂ Tk = T of k sets of “centers” (with Ti = {µ1, . . . , µi} ⊂ S)
in the following way.

1. At the end of iteration i−1 FPF holds the mapping µ defined for every point
pj ∈ S \ Ti−1 as: µ(pj) = argminµs D(pj , µs) i.e. the center in Ti−1 closest
to pj ; µ(pj) is called the leader of pj . Note that this mapping is established
in the first iteration in time O(n).

2. At iteration i, among all points pj , FPF picks µi = argmaxpj D(pj , µ(pj))
i.e. the point for which the distance to its leader is maximum, and makes
it a new center, i.e. adds it to Ti−1, thus obtaining Ti. This selection costs
O(n).

3. Compute the distance of µi to any point in S \ Ti and update the mapping
µ if needed. Thus µ is now correct for the beginning of iteration i + 1. This
update phase costs O(n).

The final set of centers T = {µ1, . . . , µk} defines the resulting k-clustering, since
each center µi implicitly identifies a cluster Ci as the set of data points whose
leader is µi. Note that T1 is initialized to contain a single point chosen at ran-
dom from S; this random choice is due to the fact that, in practice, both the
effectiveness and the efficiency of the algorithm can be seen experimentally to
be insensitive to this choice.

Most of the computation is actually devoted to computing distances and up-
dating the auxiliary mapping µ: this takes O(n) time per iteration, so the total
3 http://www.dmoz.org/

30 F. Geraci et al.

computational cost of the algorithm is O(nk). In [1] we have thus defined an im-
proved version of this algorithm that exploits the triangular inequality in order
to filter out useless distance computations. This modified algorithm (M-FPF),
which we now describe, works in any metric space, hence in any vector space4.

Consider, in the FPF algorithm, any center µx ∈ Ti and its associated set
of closest points N(µx) = {pj ∈ S \ Ti | µ(pj) = µx}. We store N(µx) as a
ranked list, in order of decreasing distance from µx. When a new center µy is
added to Ti, in order to identify its associated set of closest points N(µy) we
scan every N(µx) in decreasing order of distance, and stop scanning when, for a
point pj ∈ N(µx), it is the case that D(pj , µx) ≤ 1

2D(µy, µx). By the triangular
inequality, any point pj that satisfies this condition cannot be closer to µy than
to µx. This rule filters out from the scan points whose leader cannot possibly
be µy, thus significantly speeding up the identification of leaders. Note that all
distances between centers in Ti must be available; this implies an added O(k2)
cost for computing and maintaining these distances, which is anyhow dominated
by the term O(nk).

Using medoids. The M-FPF is applied to a random sample of size
√

nk of the in-
put points (this sample size is suggested in [21]). Afterwards the remaining points
are associated to the closest (according to the Generalized Jaccard Distance) cen-
ter. We obtain improvements in quality by making an iterative update of the “cen-
ter” when a new point is associated to a cluster. Within a cluster Ci we find the
point ai furthest from µi and the point bi furthest from ai (intuitively this is a
good approximation to a diametral pair). The medoid mi is the point in Ci that
has the minim value of the function |D(ai, x)−D(bi, x)| + |D(ai, x) + D(bi, x)|,
over all x ∈ Ci.5 When we add a new point to Ci, we check if the new point
should belong to the approximate diametral pair (ai, bi), and if so we update mi

accordingly. The association of the remaining points is done with respect to the
medoids, rather than the centers. The application of M-FPF plus the iterative re-
computation of medoids gave us a clustering of better quality than simply using
M-PFP on the whole input set.

The distance function. Each snippet is turned into a “bag of words” after
removing stop words and performing stemming. In [1] we report experiments
using, as a distance function, (i) the cosine distance measure (i.e. the complement
to 1 of the cosine similarity function) applied to vectors of terms weighted by tf ∗
idf , and (ii) a slight modification of the standard Jaccard Distance, which we call
Weighted Jaccard Distance (WJD); in those experiments, (ii) has performed at
the same level of accuracy as (i), but has proven much faster to compute. In this
paper we improve on the results of [1] by using the Generalized Jaccard Distance
described in [22]. Given two “bag-of-words” snippet vectors s1 = (s1

1, ...s
h
1) and

s2 = (s1
2, ...s

h
2), the Generalized Jaccard Distance is: D(s1, s2) = 1−

�
i min(si

1,si
2)

�
i max(si

1,si
2) .

The term weights si
a consist of “weighted term frequencies”, obtained as weighted

sums of the numbers of occurrences of the term in the snippet, where weight 3 is
assigned to a term occurring in the page title, weight 1 to a term occurring in the
text fragment, and weight 0 is assigned to a term occurring in the URL (since,

4 We recall that any vector space is also a metric space, but not vice-versa.
5 This formula mimics in a discrete setting the task of finding the cluster point closest

to the median point to the segment (ai, bi).

Cluster Generation and Cluster Labelling for Web Snippets 31

in previous experiments we had run, the text of the URL had proven to give no
contribution in terms of cluster quality). Note that, when using unit weights only,
the Generalized Jaccard Distance coincides with the standard Jaccard Distance.

The candidate words selection algorithm. We select candidate terms for
labelling the generated clusters through a modified version of the information
gain function [2]. For term t and category c, information gain is defined as
IG(t, c) =

∑
x∈{t,t̄}

∑
y∈{c,c̄} P (x, y) log P (x,y)

P (x)P (y) Intuitively, IG measures the
amount of information that each argument contains about the other; when t and
c are independent, IG(t, c) = 0. This function is often used for feature selection
in text classification, where, if IG(t, c) is high, the presence or absence of a term
t is deemed to be highly indicative of the membership or non-membership in
a category c of the document containing it. In the text classification context,
the rationale of including in the sum, aside from the factor that represents the
“positive correlation” between the arguments (i.e. the factor P (t, c) log P (t,c)

P (t)P (c) +

P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄)), also the factor that represents their “negative correlation”

(i.e. the factor P (t̄, c) log P (t̄,c)
P (t̄)P (c) + P (t, c̄) log P (t,c̄)

P (t)P (c̄)), is that, if this latter
factor has a high value, this means that the absence (resp. presence) of t is
highly indicative of the membership (resp. non-membership) of the document in
c. That is, the term is useful anyway, although in a “negative” sense.

However, in our context we are interested in terms that positively describe
the contents of a cluster, and are thus only interested in positive correlation.
Therefore, we drop the factor denoting negative correlation from the IG formula,
yielding the modified version IGm(t, c) = P (t, c) log P (t,c)

P (t)P (c) +P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄)

that coincides with the positive correlation factor of IG. We use IGm to select,
for each cluster, words that are representative of the cluster and, at the same
time, allow to discriminate among clusters.

4 Experimental Evaluation of the Clustering Algorithm

The baseline. As baseline against which to compare the clustering capabilities
of Armil, we have chosen Vivisimo6. Vivisimo is considered an industrial stan-
dard in terms of clustering quality and user satisfaction, and in 2001 and 2002
it has won the “best meta-search-award” assigned annually by the on-line mag-
azine SearchEngineWatch.com. Vivisimo thus represents a particularly difficult
baseline, and it is not known if its clustering quality only depends on an ex-
tremely good clustering algorithm, or rather on the use of external knowledge
or custom-developed resources. To the best of our knowledge, this is the first
published experiment comparing the clustering quality of an academic proto-
type and Vivisimo. Vivisimo’s advanced searching feature allows a restriction of
the considered auxiliary search engines to a subset of a range of possible auxil-
iary search engines. For the purpose of our experiment we restrict our source of
snippets to the ODP directory.

Measuring clustering quality. Following a consolidated practice, in this paper
we measure the effectiveness of a clustering system by the degree to which it is
able to “correctly” re-classify a set of pre-classified snippets into exactly the same
6 http://vivisimo.com/

32 F. Geraci et al.

categories without knowing the original category assignment. In other words,
given a set C = {c1, . . . , ck} of categories, and a set Θ of n snippets pre-classified
under C, the “ideal” term clustering algorithm is the one that, when asked to
cluster Θ into k groups, produces a grouping C′ = {c′1, . . . , c′k} such that, for
each snippet sj ∈ Θ, sj ∈ ci if and only if sj ∈ c′i. The original labelling is thus
viewed as the latent, hidden structure that the clustering system must discover.

The measure we use is normalized mutual information (see e.g. [23, page

110]), i.e. NMI(C, C′) =
2

log |C||C′|
∑
c∈C

∑
c′∈C′

P (c, c′) · log
P (c, c′)

P (c) · P (c′)
where

P (c) represents the probability that a randomly selected snippet sj belongs to
c, and P (c, c′) represents the probability that a randomly selected snippet sj

belongs to both c and c′. The normalization, achieved by the 2
log |C||C′| factor,

is necessary in order to account for the fact that the cardinalities of C and
C′ are in general different [2]. Higher values of NMI mean better clustering
quality. The clustering produced by Vivisimo has partially overlapping clusters
(in our experiments Vivisimo assigned roughly 27% of the snippets to more than
one cluster), but NMI is designed for non-overlapping clustering. Therefore,
in measuring NMI we eliminate from the ground truth, from the clustering
produced by Vivisimo, and from that produced by Armil, the snippets that are
present in multiple copies.

However, in order to also consider the ability of the two systems to “correctly”
duplicate snippets across overlapping clusters, we have also computed the nor-
malized complementary entropy [23, page 108], in which we have changed the
normalization factor so as to take overlapping clusters into account. The en-
tropy of a cluster c′l ∈ C′ is E(c′l, C) =

∑|C|
k=1−

|c′
l∩ck|
|ck| log |c′

l∩ck|
|ck| . The normalized

complementary entropy of c′l is NCE(c′l, C) = 1 − E(c′
l,C)

log |C| . NCE ranges in the
interval [0, 1], and a greater value implies better quality of c′l. The complemen-
tary normalized entropy of C′ is the weighted average of the contributions of
the single clusters in C′. Let n′ =

∑|C′|
l∈1 |c′l| be the sum of the cardinalities of

the clusters of C′. Note that when clusters may overlap it holds that n′ ≥ n.
Thus NCE(C′, C) =

∑|C′|
l∈1

|c′
l|

n′ NCE(c′l, C). NCE values reported below are
thus obtained on the full set of snippets returned by Vivisimo.

Establishing the ground truth. Following [24], we have made a series of
experiments using as input the snippets resulting from queries issued to the Open
Directory Project (ODP – see Footnote 3). The ODP is a searchable Web-based
directory consisting of a collection of a few million Web pages (as of today, ODP
claims to index 5.1M Web pages) pre-classified into more than 590K categories
by a group of volunteer human experts. The classification induced by the ODP
labelling scheme gives us an objective “ground truth” against which we can
compare the clustering quality of Vivisimo and Armil. In ODP, documents are
organized according to a hierarchical ontology. For any snippet we obtain a
label for its class by considering only the first two levels of the path on the ODP
category tree. This coarsification is needed in order to balance the number of
classes and the number of snippets returned by a query.

Queries are submitted to Vivisimo, asking it to retrieve pages only from ODP.
This is done to ensure that Vivisimo and Armil operate on the same set of snippets,
hence to ensure full comparability of the results. The resulting set of snippets

Cluster Generation and Cluster Labelling for Web Snippets 33

Table 1. Results of the comparative evaluation

Vivisimo Armil(40) Armil(30)
NCE 0.667 0.735 (+10.1%) 0.683 (+2.3%)
NMI 0.400 0.442 (+10.5%) 0.406 (+1.5%)

is parsed and given as input to Armil. Since Vivisimo does not report the ODP
category to which a snippet belongs, for each snippet we perform a query to
ODP in order to establish its ODP-category.

Outcome of the comparative experiment. The queries used in this exper-
iment are the last 30 of those reported in Appendix A (the first 5 have been
excluded since too few related snippets are present in ODP). On average, ODP
returned 41.2 categories for each query. In Table 1 we report the NMI and
NCE values obtained by Vivisimo and Armil on these data. Vivisimo produced
by default about 40 clusters; therefore we have run Armil with a target of 40
clusters (thus with a choice close to that of Vivisimo, and to the actual average
number of ODP categories per query) and with 30 (this number is the default
used in the user evaluation).

The experiments indicate an substantial improvement of about 10% in terms
of cluster quality of Armil(40) with respect to Vivisimo.7 This improvement is an
important result since, as noted in 2005 in [3], “[T]he scientific literature offers
several solutions to the web-snippet clustering problem, but unfortunately the
attainable performance is far from the one achieved by Vivisimo.” It should be
noted moreover that Vivisimo uses a proprietary algorithm, not in the public
domain, which might make extensive use of external knowledge. In contrast our
algorithm is open and disclosed to the research community.

5 User Evaluation of the Cluster Labelling Algorithm

Assessing “objectively” the quality of a cluster labelling method is a difficult
problem, for which no established methodology has gained a wide acceptance.
For this reason a user study is the standard testing methodology. We have set up
a user evaluation of the cluster labelling component of Armil in order to have an
independent and measurable assessment of its performance. We performed the
study on 22 volunteer master students, doctoral students and post-docs in com-
puter science at our departments. The volunteers have all a working knowledge
of the English language.

The user interface of Armil has been modified so as to show clusters one-by-
one and proceed only when the currently shown cluster has been evaluated. The
queries are supplied to the evaluators in a round robin fashion from a list of 35
predefined queries. For each query the user must first say whether the query is
meaningful to her; an evaluator is allowed to evaluate only queries meaningful
to her. For each cluster we propose three questions: (a) Is the label syntactically
well-formed?; (b) Can you guess the content of the cluster from the label?; (c) After
inspecting the cluster, do you retrospectively consider the cluster as well described

7 For the sake of replicating the experiments all the search results have been cached
and are available at http://psp1.iit.cnr.it/~mcsoft/armil .

34 F. Geraci et al.

Table 2. Correlation tables of questions row-(a) and column-(b) (left), row-(b) and
column-(c) (middle), row-(a) and column-(c) (right). Entries in the top part give the
percentage over all answers, and entries in the bottom part give percentage over rows.

Yes Sort-of No Yes Sort-of No Yes Sort-of No
Yes 42.67% 12.81% 5.11% 33.52% 12.81% 3.72% 35.98% 18.93% 5.68%
Sort-of 5.74% 15.27% 4.41% 11.36% 16.85% 3.66% 8.64% 12.81% 3.97%
No 1.64% 3.78% 8.52% 2.14% 8.90% 7.00% 2.39% 6.81% 4.73%
Yes 70.41% 21.14% 8.43% 66.96% 25.59% 7.44% 59.37% 31.25% 9.37%
Sort-of 22.58% 60.04% 17.36% 35.64% 52.87% 11.48% 33.99% 50.37% 15.63%
No 11.76% 27.14% 61.08% 11.88% 49.30% 38.81% 17.19% 48.86% 33.93%

by the label? The evaluator must choose one of three possible answers (Yes; Sort-
of; No), and her answer is automatically recorded in a database. Question (a) is
aimed at assessing the gracefulness of the label produced. Question (b) is aimed
at assessing the quality of the label as an instrument predictive of the cluster
content. Question (c) is aimed at assessing the correspondence of the label with
the content of the cluster. Note that the user cannot inspect the content of the
cluster before answering (a) and (b).

Selection of the queries. Similarly to [3, 5], we have randomly selected 35
of the most popular queries submitted to Google in 2004 and 20058; from the
selection we have removed queries (such as e.g. “Spongebob”, “Hilary Duff”)
that, referring to someone or something of regional interest only, were unlikely
to be meaningful to our evaluators. The queries are listed in Appendix A.

Discussion of the results. Each of the 35 queries has been evaluated by two
different evaluators, for a total of 70 query evaluations and 1584 cluster evalua-
tions. The results are displayed in the following table:

Yes Sort-of No
(a) 60.5% 25.5% 14.0%
(b) 50.0% 32.0% 18.0%
(c) 47.0% 38.5% 14.5%

By checking the percentages of No answers, we can notice that sometimes la-
bels considered non-predictive are nonetheless considered well descriptive of the
cluster; we interpret this fact as due to the discovery of meanings of the query
string previously unknown to the evaluator. The correlation matrices in Table 2
show more precisely the correlation between syntax, predictivity and represen-
tativeness of the labels. The data in Table 2 (left) show that there is a strong
correlation between syntactic form and predictivity of the labels, as shown by
the fact that in a high percentage of cases the same answer was returned to ques-
tions (a) and (b). The middle and right part of Table 2 confirms that while for
the positive or mildly positive answers (Yes, Sort-of) there is a strong correlation
between the answers returned to the different questions, it is often the case that
a label considered not predictive of the content of the cluster can still be found,
after inspection of the cluster, to be representative of the content of the cluster.

Running times. Our system runs on an AMD Athlon (1Ghz Clock) processor
with 750Mb RAM and operating system FreeBSD 4.11 - STABLE. The code
8 http://www.google.com/press/zeitgeist.html

Cluster Generation and Cluster Labelling for Web Snippets 35

was developed in Python V. 2.4.1. Excluding the time needed to download the
snippets from the auxiliary search engines, the 35 queries have been clustered
and labelled in 0.72 seconds on average; the slowest query took 0.92 seconds.

6 Conclusions and Future Work

Why is Armil not “yet another clustering search engine”? The debate on how to
improve the performance of search engines is at the core of the current research
in the area of Web studies, and we believe that so far only the surface of the
vein has been uncovered. The main philosophy of the system/experiments we
have proposed follows these lines: (i) principled algorithmic choices are made
whenever possible; (ii) clustering is clearly decoupled from labelling; (iii) atten-
tion is paid to the trade-off between response time and quality while limiting the
response time within limits acceptable by the user; (iv) a comparative study of
Armil and Vivisimo has been performed in order to assess the quality of Armil’s
clustering phase by means of effectiveness measures commonly used in clustering
studies; (v) a user study has been set up in order to obtain an indication of user
satisfaction with the produced cluster labelling; (vi) no use of external sources
of knowledge is made.

Further research is needed in two main areas. First, we plan to assess to what
extent a modicum of external knowledge can improve the system’s performance
without speed penalties. Second, it is possible to introduce in the current pipeline
(input snippets are clustered, candidates are extracted, labels are generated) of
the architecture a feedback loop by considering the extracted candidates/labels
as predefined categories, thus examining which snippets in different clusters are
closer to the generated labels. Snippets close to the label of cluster Cx but in
a different cluster Cy could be shown on the screen as related also to Cx. This
would give the benefits of soft clustering without much computational overload.

References

1. Geraci, F., Pellegrini, M., Pisati, P., Sebastiani, F.: A scalable algorithm for high-
quality clustering of Web snippets. In: Proceedings of SAC-06, 21st ACM Sympo-
sium on Applied Computing, Dijon, FR (2006) 1058–1062

2. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons,
New York, US (1991)

3. Ferragina, P., Gulli, A.: A personalized search engine based on Web-snippet hierar-
chical clustering. In: Special Interest Tracks and Poster Proceedings of WWW-05,
14th International Conference on the World Wide Web, Chiba, JP (2005) 801–810

4. Lawrie, D.J., Croft, W.B.: Generating hierarchical summaries for Web searches.
In: Proceedings of SIGIR-03, 26th ACM International Conference on Research and
Development in Information Retrieval. (2003) 457–458

5. Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierar-
chical monothetic document clustering algorithm for summarization and browsing
search results. In: Proceedings of WWW-04, 13th International Conference on the
World Wide Web, New York, NY (2004) 658–665

6. Zamir, O., Etzioni, O., Madani, O., Karp, R.M.: Fast and intuitive clustering
of Web documents. In: Proceedings of KDD-97, 3rd International Conference on
Knowledge Discovery and Data Mining, Newport Beach, US (1997) 287–290

7. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science 38(2/3) (1985) 293–306

36 F. Geraci et al.

8. Geraci, F., Pellegrini, M., Sebastiani, F., Maggini, M.: Cluster generation and clus-
ter labelling for web snippets: A fast and accurate hierarchical solution. Technical
Report IIT TR-1/2006, Institute for Informatics and Telematics of CNR (2006)

9. Kural, Y., Robertson, S., Jones, S.: Clustering information retrieval search out-
puts. In: Proceedings of the 21st BCS IRSG Colloquium on Information Retrieval,
Glasgow, UK (1999)

10. Kural, Y., Robertson, S., Jones, S.: Deciphering cluster representations. Informa-
tion Processing and Management 37 (1993) 593–601

11. Tombros, A., Villa, R., van Rijsbergen, C.J.: The effectiveness of query-specific
hierarchic clustering in information retrieval. Information Processing and Manage-
ment 38(4) (2002) 559–582

12. Zamir, O., Etzioni, O.: Web document clustering: A feasibility demonstration. In:
Proceedings of SIGIR-98, 21st ACM International Conference on Research and
Development in Information Retrieval, Melbourne, AU (1998) 46–54

13. Cheng, D., Kannan, R., Vempala, S., Wang, G.: On a recursive spectral algo-
rithm for clustering from pairwise similarities. Technical Report MIT-LCS-TR-906,
Massachusetts Institute of Technology, Cambridge, US (2003)

14. Zhang, D., Dong, Y.: Semantic, hierarchical, online clustering of Web search re-
sults. In: Proceedings of APWEB-04, 6th Asia-Pacific Web Conference, Hangzhou,
CN (2004) 69–78

15. Maarek, Y., Fagin, R., Ben-Shaul, I., Pelleg, D.: Ephemeral document clustering
for Web applications. Technical Report RJ 10186, IBM, San Jose, US (2000)

16. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster Web search
results. In: Proceedings of SIGIR-04, 27th ACM International Conference on Re-
search and Development in Information Retrieval, Sheffield, UK (2004) 210–217

17. Osinski, S., Weiss, D.: Conceptual clustering using Lingo algorithm: Evaluation
on Open Directory Project data. In: Proceedings of IIPWM-04, 5th Conference on
Intelligent Information Processing and Web Mining, Zakopane, PL (2004) 369–377

18. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability. Volume 1. (1967) 281–297

19. Cutting, D.R., Pedersen, J.O., Karger, D., Tukey, J.W.: Scatter/Gather: A cluster-
based approach to browsing large document collections. In: Proceedings of SIGIR-
92, 15th ACM International Conference on Research and Development in Informa-
tion Retrieval, Kobenhavn, DK (1992) 318–329

20. Hochbaum, D.S., Shmoys, D.B.: A best possible approximation algorithm for the
k-center problem. Mathematics of Operations Research 10(2) (1985) 180–184

21. Indyk, P.: Sublinear time algorithms for metric space problems. In: Proceedings
of STOC-99, ACM Symposium on Theory of Computing. (1999) 428–434

22. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of STOC-02, 34th Annual ACM Symposium on the Theory of Com-
puting, Montreal, CA (2002) 380–388

23. Strehl, A.: Relationship-based Clustering and Cluster Ensembles for High-
dimensional Data Mining. PhD thesis, University of Texas, Austin, US (2002)

24. Haveliwala, T.H., Gionis, A., Klein, D., Indyk, P.: Evaluating strategies for similar-
ity search on the Web. In: Proceedings of WWW-02, 11th International Conference
on the World Wide Web, Honolulu, US (2002) 432–442

A Queries Used in the User Evaluation

skype, winmx, nintendo revolution, pamela anderson, twin towers, wallpaper,
firefox, ipod, tsunami, tour de france, weather, matrix, mp3, new orleans, notre
dame, games, britney spears, chat, CNN, iraq, james bond, harry potter, simp-
sons, south park, baseball, ebay, madonna, star wars, tiger, airbus, oscars, lon-
don, pink floyd, armstrong, spiderman.

Principal Components for Automatic Term
Hierarchy Building

Georges Dupret and Benjamin Piwowarski

Yahoo! Research Latin America
gdupret@yahoo-inc.com
bpiwowar@yahoo-inc.com

Abstract. We show that the singular value decomposition of a term
similarity matrix induces a term hierarchy. This decomposition, used in
Latent Semantic Analysis and Principal Component Analysis for text,
aims at identifying “concepts” that can be used in place of the terms
appearing in the documents. Unlike terms, concepts are by construction
uncorrelated and hence are less sensitive to the particular vocabulary
used in documents. In this work, we explore the relation between terms
and concepts and show that for each term there exists a latent subspace
dimension for which the term coincides with a concept. By varying the
number of dimensions, terms similar but more specific than the concept
can be identified, leading to a term hierarchy.

Keywords: Term hierarchy, principal component analysis, latent seman-
tic analysis, information retrieval.

1 Introduction

Automated management of digitalized text requires a computer representation
of the information. A common method consists in representing documents by a
bag-of-words or set of features, generally a subset of the terms present in the
documents. This gives rise to the vector space model where documents are points
in an hyperspace with features as dimensions: The more important a feature in a
document, the larger the coordinate value in the corresponding dimension [12].

Clearly, much information is lost when discarding the term order but the
more significant limitation is that only the presence and the co-occurrence of
terms are taken into account, not their meaning. Consequently, synonyms appear
erroneously as distinct features and polysemic terms as unique features. This
serious limitation is an avatar of the feature independence assumption implicit
in the vector representation.

In the more general statistical models [20] (OKAPI) representations of queries
and documents are clearly separated. Relevance of a document to a query is
estimated as the product of individual term contributions. The corresponding
assumption is not much weaker than strict independence.

Term dependence is taken into account in Language Models like n-grams and
their applications to Information Retrieval [18], but generally within windows of

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 37–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 G. Dupret and B. Piwowarski

two or three terms. The Bayesian network formalism [19] also allows for term
dependence, but its application to a large number of features is unpractical.

Principal Component Analysis (PCA) [5] for text (and the related Latent Se-
mantic Analysis method) offers a different approach: Uncorrelated linear combi-
nations of features –the latent “concepts”– are identified. The lack of correlation
is taken to be equivalent to independence as a first approximation, and the latent
“concepts” are used to describe the documents. This work shows that more than
a list of latent concepts, Principal Component Analysis uncovers a hierarchy of
terms that share a “related and more specific than” relation.

Together with [7], this work extends the results of [6] beyond the context of
Latent Semantic Analysis and PCA to all type of symmetric similarity measures
between terms and hence documents and proposes a theoretical justification
of the results. The main contribution, a method to derive a term hierarchy, is
presented in Sect. 3. Numerical experiments in Sect. 4 validate the method while
a review of automatic hierarchy generation methods is proposed in Sect. 5.

2 Term Similarity Measure

The estimation of the similarity between terms in Information Retrieval is gen-
erally based on term co-occurrences. Essentially, if we make the assumption that
each document of a collection covers a single topic, two terms that co-occur fre-
quently in the documents necessarily refer to a common topic and are therefore
somehow similar. If the documents are not believed to refer to a single topic,
it is always possible to divide them into shorter units so that the hypothesis is
reasonably verified.

The Pearson correlation matrix S associated to the term by document matrix
A is a common measure of term similarity. Nanas et al. [15] count the number
of term co-occurrence in sliding windows of fixed length, giving more weight to
pairs of terms appearing close from each other. Park et al. [17] use a Bayesian
network. The method we present here does not rely on a particular measure
of similarity or distance. The only requirement is an estimate of the similarity
between any two index terms, represented by a symmetric matrix S.

In the vector space representation of documents, index terms correspond to
the base vectors of an hyperspace where documents are represented by points.
If to each term j corresponds a base vector ej , an arbitrary document d is rep-
resented by d =

∑N
j=1 ωjej where ωj is the weight of term j in the document

d. Weights are usually computed using the well known tf.idf formula and then
normalized. The inconvenient of this representation stems from the implicit as-
sumption of independence between terms: Consider two documents da and db

each composed of a different single term. Independently of whether the single
terms are synonyms, unrelated or antonyms, the documents similarity in the
hyperspace representation is null because their representations coincide with
two different base vectors. A more desirable result would be a non null similarity
between terms u and v. This can be achieved by redefining the similarity measure

Principal Components for Automatic Term Hierarchy Building 39

between documents: We will use the dot product in base S between the normal-
ized document vectors1.

dT
a

|da|
S

db

|db|
= Su,v

Alternatively, we can define an extended representation of a document d as
(1/|d|)dT

√
S and use the traditional cosine similarity measure2.

The idea of introducing the similarity between terms to compute document
similarity is closely related to Latent Semantic Analysis and Principal Compo-
nent Analysis for text [6]. In the latter, the similarity between a set of documents
and a query is computed as r(k) = ATS(k)q where A is the matrix formed by
the space vector representation of the documents and q is a query. The ith com-
ponent of r(k), noted ri(k), is the similarity of document i with the query. The
analogy with the extended document representation is clear, but instead of us-
ing the original similarity matrix S, we use the rank k approximation of its
eigenvalue decomposition. The matrix S can be decomposed into a product in-
cluding the orthonormal matrix V and the diagonal matrix Σ of its eigenvalues
σ� in decreasing value order: S = VΣVT . The best approximation following
the Frobenius norm of the matrix S in a subspace of dimensionality k < N is
obtained by setting to zero the eigenvalues σ� for 	 > k. Noting V(k) the matrix
composed of the k first columns of V and Σ(k) the diagonal matrix of the first
k eigenvalues, we have S(k) = V(k)Σ(k)V(k)T .

We can now represent in extended form a document tu formed of a unique
index term u in the rank k approximation of the similarity matrix:

tT
u = eT

u

√
S = eT

uV(k)Σ(k)1/2 = Vu,.(k)Σ(k)1/2 (1)

where Σ(k)1/2 is the diagonal matrix of the square root of the eigenvalues in
decreasing order and Vu,.(k) is the uth row of V(k). By analogy with the termino-
logy introduced by Latent Semantic Analysis, the columns of V(k) represent
latent concepts. The documents in general as well as the single term documents
are represented with minimal distortion3 as points in the k dimensional space
defined by the k first columns – i.e. the eigenvectors – of V instead of the N
dimensional space of index terms. This is possible only if the selected eigenvectors
summarize the important features of the term space, hence the idea that they
represent latent concepts.

In the next sections, we analyze the properties of the rank k approximation of
the similarity matrix for different ranks and show how a hierarchy can be deduced.

3 The Concepts of a Term

We explore in this section the relation between terms and concepts. Send-
ing a similarity matrix onto a subspace of fewer dimensions implies a loss of
1 S being symmetric, but not necessarily full rank, this dot product introduces a

quasi-norm [10].
2

√
S always exists because the singular values of S are all positive or null.

3 according to the Frobenius norm.

40 G. Dupret and B. Piwowarski

information. We will see that it can be interpreted as the merging of terms
meanings into a more general concept that encompasses them. We first examine
the conditions under which a term coincides with a concept. Then we use the
results to deduce a hierarchy.

A similarity matrix row Sj,. and its successive approximations S(k)j,. repre-
sent a single term document tj in terms of its similarity with all index terms. We
seek a representation that is sufficiently detailed or encompass enough informa-
tion for the term to be correctly represented. A possible way is to require that a
single term document is more similar to itself than to any other term document:

Definition 1 (Validity). A term is correctly represented in the k-order approx-
imation of the similarity matrix only if it is more similar to itself than to any
other term. The term is then said to be valid at rank k.

If we remember that the normalized single term documents correspond to the
base vectors, eu, the definition of validity requires: eT

uS(k)eu > eT
uS(k)ev ∀u �= v

or equivalently tT
u tu > tT

u tv ∀u �= v. This is verified if the diagonal term of S
corresponding to u is larger than any other element of the same column, i.e. if
S(k)u,u > S(k)u,v ∀v �= u. In other words, even though the diagonal element
corresponding to term i is not equal to unity –which denotes perfect similarity
by convention, it should be greater than the non-diagonal elements of the same
row4 to be correctly represented.

It is useful to define the rank below which a term ceases to be valid:

Definition 2 (Validity Rank). A term t is optimally represented in the k-
order approximation of the similarity matrix if it is valid at rank k and if k − 1
is the largest value for which it is not valid. Rank k is the validity rank of term
t and is denoted rank(t).

In practice it might happen for some terms that validity is achieved and lost
successively for a short range of ranks. It is not clear whether this is due to a
lack of precision in the numerically sensitive eigenvalue decomposition process
or to more fundamental reasons. The definition of validity was experimentally
illustrated in [6] and a theoretical justification can be found in [2].

At a given rank k, if a term a is more similar to a valid term c than to itself,
the representation of term c represents a meaning more general than a: We say
that a is generalised by the concept c.

Definition 3 (Concept of a Term). A term c is a concept of term a if
rank(c) < rank(a) and if for some rank k such that rank(c) ≤ k < rank(a),
a is more similar to c than to itself.

The requirement that rank(c) < rank(a) ensures that a is never a concept of c
if c is a concept of a.

It is possible to determine at each rank k the concepts of a term. To derive a
hierarchy, we incrementally reconstruct the similarity matrix based on its decom-
position S =

∑N
k=1 σkVk,.VT

k,.. We collect for each k the links between concepts
– i.e. terms whose representation is valid at rank k – and invalid terms.
4 S(k) is symmetric and the condition can be applied indifferently on rows or columns.

Principal Components for Automatic Term Hierarchy Building 41

Table 1. The first 30 direct links in Shopping and Science databases, ordered by
decreasing coverage and limited to the stable links. Links in bold are in the ODP
database.

Shopping Science
alberta → canada humidor → cigar
monorail → lighting cuban → cigar
criminology → sociology alberta → canada
prehistory → archaeology cuckoo → clock
romanian → slovenian grandfather → clock
gravitation → relativity fudge → chocolate
forensics → forensic soy → candle
aztec → maya putter → golf
karelian → finnish quebec → canada
oceania → asia racquetball → racket
transpersonal → psychology tasmania → australia
etruscan → greek airbed → mattress
barley → wheat glycerin → soap
papuan → eastern snooker → billiard
quebec → canada housebreaking→ dog
cryobiology → cryonics waterbed → mattress
soho → solar oceania → asia
catalysis → chemistry tincture → herbal
geotechnical → engineering gunsmithing → gun
iguana → lizard chrysler → chevrolet
sociologist → sociology equestrian → horse
olmec → maya flamenco → guitar
oceanographer→ oceanography pistachio → nut
canine → dog condiment → sauce
neptunium → plutonium appraiser → estate
lapidary → mineral salsa → sauce
raptor → bird ontario → canada
ogham → irish volkswagen → volvo
governmental → organization arthropod → insect
forestry → forest bulldog → terrier

There is a typically a range of ranks between rank(c) and rank(a) where a
term a points to its concept c. This motivates the following definition:

Definition 4 (Coverage of a Link). Define kmin and kmax as the minimum
and maximum k that verify rank(c) ≤ k < rank(a) and for which c is a concept
of term a. The coverage of the link between the two concepts is the ratio

coverage =
kmax − kmin + 1

rank(a)− rank(c)

The coverage has values in]0, 1].

The coverage reflects “how long” with respect to the possible range defined by
rank(c) and rank(a), the valid term was a concept for the other term. We will
see when we illustrate the hierarchy building procedure in Section 4 that the
coverage is a good predictor of interesting links.

4 Numerical Experiments

There are no standard procedures to evaluate hierarchies although some at-
tempts have been made [13]. Beyond the fact that evaluation is difficult even

42 G. Dupret and B. Piwowarski

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io

Minimum coverage

Recall, science (s)
Recall, science (u)

Precision, science (s)
Precision, science (u)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io

Minimum coverage

Recall, shopping (s)
Recall, shopping (u)

Precision, shopping (s)
Precision, shopping (u)

Fig. 1. Comparison of the PCA stable (s) and unstable (u) links with the ODP hierar-
chy on the Science and Shopping topics. Recall is the proportion of links in the original
ODP hierarchy rediscovered by PCA. Precision is the proportion of ODP links among
those retrieved by PCA. The x-axis is the coverage ratio: For a given value c, the PCA
links we consider are those whose coverage is superior to c.

when a group of volunteers is willing to participate, it also depends on the task
the hierarchy is designed for. For example, the measure used in [13] could not be
applied here as the scoring is based on an estimate of the time it takes to find
all relevant documents by calculating the total number of menus –this would be
term nodes in this work– that must be traversed and the number of documents
that must be read, which bears no analogy to this work.

We expect PCA to uncover two main types of relation between terms: The
first one is semantic and can be found in dictionaries like WordNet5. These are
relations that derives from the definition of the terms like “cat” and “animal” for
example. The other kind of relation we expect to uncover is more circumstantial
but equally interesting like, for example, “Rio de Janeiro” and “Carnival”. These
two words share no semantic relation, but associating them make sense. To
evaluate the PCA hierarchy, we chose to compare the links it extracts from the
document collection associated with the Open Directory Project6 to the original,
edited hierarchy. To identify the ability of PCA to extract “semantic” relations,
we performed some experiments with WordNet which are not presented in this
article due to a lack of space.

The Open Directory Project (ODP) is the most comprehensive human edited
directory of the Web. We extracted two topics from this hierarchy, namely Shop-
ping and Science. Out of the 104,276 and 118,584 documents referred by these
categories, we managed to download 185,083 documents to form the database
we use.

Documents were processed with a language independent part-of-speech tag-
ger7 and terms replaced by their lemmata. We extracted only adjectives and
substantives to form the bag-of-word representations. Low and high frequency

5 http://wordnet.princeton.edu/
6 www.dmoz.org
7 the TreeTagger home page can be found at http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/

Principal Components for Automatic Term Hierarchy Building 43

terms as well as stopwords were discarded unless they appeared in the ODP
hierarchy. Original documents were divided in parts of 25 consecutive terms to
form new, shorter documents. The objective is to reduce the confusion of topics
inside a same document (Section 2).

A path in the ODP hierarchy is composed as a series of topics, from the most
generic to the most specific. An example of such a path is “Health/Beauty/-
Bath and Body/Soap”. We discard concepts described as a sequence of terms.
For example, the previous sequence is transformed into “Health/Beauty/Soap”.
The hierarchy is then decomposed into direct links – i.e. relations that exist
between adjacent terms – and indirect links where relations between terms belong
to the same path. The direct links in our example are Health ← Beauty and
Beauty ← Soap and the set of transitive links is composed of the former links
more Health ← Beauty.

In order to test the stability of the discovered links, we bootstrapped [8] the
document database. The method consists in picking randomly with replacement
185,083 documents from the original database to form a new correlation matrix
before deducing a new set of links. This process is repeated ten times. The number
of replications where a particular link appears reflects its stability with respect to
variations in the database. We say that a link is stable when the relationship be-
tween the two terms held the ten times, and in the opposite case it is said to be
unstable. For the science and shopping topics, half of the links are stable.

From this set of links between two terms we can construct a hierarchy of
terms. Although cycles can appear among unstable links, they are absent by
construction from the stable links. It would also be interesting to consider links
that always appear in each bootstrap replication but with a different direction:
This could be a good indicator of a symmetric relationship between two concepts.

With respect to the complexity of the algorithm, the term by term matrix
is not sparse and the computation of the singular value decomposition is of
order O(n3). This becomes rapidly intractable on regular desktop PC unless the
number of terms is restricted to a range of between 5.000 and 10.000 terms and
less frequent terms are discarded. This need not be a problem, given that the
similarity of infrequent terms will be poorly estimated anyway.

In the remaining of this section, we compute the proportion of direct and
indirect links present in ODP that we retrieve automatically with our Princi-
pal Component Analysis method. We also study the impact of link stability
and coverage (Definition 4). Note that a large intersection between human and
automatically generated links increases the confidence on the validity of the
automatic method, but it does not invalidate the automatic links absent from
edited hierarchy because documents and topics can be organized in a variety of
equally good ways. This is corroborated in Table 1 where links absent from ODP
are in normal font.

4.1 Coverage and Stability of Direct Links

Coverage is perceived as a relevant indicator of link quality because it reflects the
strength that unite the two terms linked by a hierarchical relation. In Table 2,

44 G. Dupret and B. Piwowarski

Table 2. Number of links discovered by PCA in Science documents as a function of
the coverage and, in parenthesis, the size of the intersection with the 2,151 Science
ODP links

coverage stable unstable
0% 14,266 (436) 28,859 (551)
20% 3,832 (308) 5,850 (368)
40% 1,867 (251) 2,831 (261)
60% 1,095 (166) 1,676 (198)
80% 644 (115) 998 (138)
99% 218 (59) 294 (65)

the number of links discovered from the Science documents are reported as a
function of the minimum coverage in both the stable and unstable cases. We see
that 70% and 80% of the links have a coverage lower than 20%. Discarding all
the links below this level of coverage results in the lost of only 30% and 33% of
ODP links.

The stability is also an important selection criteria. We observe that if we
consider all the PCA links, stable or not, we retrieve 551 of the original 2,151
ODP links present in Science. If we select only the stable links, we retrieve 436
ODP links, but the total number of PCA links is divided by two from 28,859 to
14,266. Some of the links present in the ODP hierarchy are lost, but more than
half of the PCA links are discarded. A similar conclusion holds when varying the
coverage minimum threshold. This justifies stability as an important criteria for
selecting a link.

By analogy with the Information Retrieval measures, we define recall as the
proportion of links in the original hierarchy that the PCA method manages to
retrieve automatically. The precision is defined as the proportion of ODP links
present in the set of PCA links. If we denote by H the set of links in the ODP
human edited hierarchy and by A the set in the PCA automatic hierarchy, these
measures become recall = |H∩A|/|H | and precision = |H∩A|/A. Recall answers
the question ”How many ODP link do I retrieve automatically?”, while precision
answers ”What is the concentration of ODP links among all the PCA links?”

Fig. 1 offers a global view of the impacts of stability and coverage on recall and
precision for topics Science on the left and Shopping on the right. The portion of
common links is significantly larger when the coverage is closer to its maximum.
On both graphs, if we select only links with a coverage superior to 0.8, one tenth
of the links in A are present in ODP. These results are good since the number of
links in ODP is quite high in comparison with the number of relevant documents
in the ad-hoc task of Information Retrieval, thus penalizing the recall. Moreover,
ODP is not a gold standard and links not present in this hierarchy might still
be useful.

When varying the coverage threshold from 0 to 1, precision increases and
recall decreases almost always. This means that coverage is a good predictor of
the link ”relevance”. This was verified empirically as well by inspecting some
part of the discovered links ordered by coverage.

Principal Components for Automatic Term Hierarchy Building 45

Summarizing, stability and coverage are both important predictors of link
quality and PCA is able to identify a significant number of ODP links.

4.2 Transitive Links

Some links present in ODP might appear as combination of links in PCA and
vice-versa. We already explained how ODP was processed to obtain these links.
For PCA, we create a link between two terms if there is a path from one term
to another. A link is said to be direct if it appears in the original hierarchy,
and indirect if it was discovered by transitivity. A set of links is transitive if it
includes both direct and indirect links.

The coverage being a good indicator of the link quality, we tried to extend this
notion to transitive links. We found experimentally that the minimum coverage
of all the traversed links led to the best results: An indirect link is penalized if
all the paths between the two terms traverse a link with a low coverage.

A study of the effect of coverage and stability on precision and recall is re-
ported in Fig. 2 where we aggregated the results over the science and shopping
topics, and compared the direct and transitive ODP and PCA links. The results
being similar for both topics, there is no need to treat them separately. Precision
and recall when both links set are either transitive or direct (PCA, ODP and
PCA+, ODP+ curves on Fig. 2) are very similar: This shows that precision is
not much affected by the new PCA indirect links (around 38% more links, from
31,611 to 43,632) while recall is not much affected by the new ODP links (around
126% more links, from 4,153 to 9391). It is interesting also to observe that among
the 2,297 links common to the transitive PCA and ODP sets, 1,998 are present
in the direct PCA set. This is reflected on Fig. 2 (ODP+, PCA plot) where the
corresponding precision curve is significantly superior while recall is less affected.
This suggests that the indirect links of PCA did not contribute much.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io

Minimum coverage

Recall (ODP+,PCA)
Recall (ODP+,PCA+)

Recall (ODP,PCA)
Precision (ODP+,PCA)

Precision (ODP+,PCA+)
Precision (ODP,PCA)

Fig. 2. Comparison of the PCA direct links (PCA) and transitive links (PCA+) with
the ODP direct links (ODP) and transitive links (ODP+)

46 G. Dupret and B. Piwowarski

In conclusion, the new definition of coverage as the minimum on the path of
traversed links proves a good selection indicator, as the precision increases with
the coverage threshold. The manually derived and the PCA hierarchies share a
significant amount of links and it seems that PCA is successful in discovering
relations between terms. This is a specially good results given that the ODP
directory is only one among numerous possible ways of organizing the documents
in the database.

5 Related Work

Different fully automatic hierarchy discovery methods have already been pro-
posed. The most popular one, from Sanderson and Croft [21], uses the co-
occurrence information to identify a term that subsumes other terms. We tried
various values of the unique parameter without succeeding in getting acceptable
results. We suspect that a part of the problem stems from the heterogeneity of
the corpus we used.

Njike-Fotzo and Gallinari [16] cluster documents prior to applying the Sander-
son and Croft algorithm. This probably helps and will be used in future works.
Nanas et al. [15] also proposed a method similar to Sanderson and Croft, but
a subsumption relation is accepted if the terms involved are also correlated.
The correlation is measured for terms appearing in windows of fixed length, and
depends on the distance between them.

Hyponymy relations are derived from lexico-syntactic rules rather than plain
co-occurrence in [11]. Another approach is to rely on frequently occurring words
within phrases or lexical compounds. The creation of such lexical hierarchies has
been explored and compared with subsumption hierarchies in [13]. In addition
to the above two approaches, the same authors have investigated the generation
of a concept hierarchy using a combination of a graph theoretic algorithm and
a language model.

Glover et al. [9] base their hierarchy discovering algorithm on three categories:
If a term is very common in a cluster of documents, but relatively rare in the
collection, then it may be a good “self” term. A feature that is common in the
cluster, but also somewhat common in the entire collection, is a description of
the cluster, but is more general and hence may be a good “parent” feature.
Features that are common in the cluster, but very rare in the general collection,
may be good “child” features because they only describe a subset of the positive
documents.

Application of traditional data mining and machine learning methods have
also been tested. In [14], the learning mechanism is based on the Srikant and
Agrawal [22] algorithm for discovering generalized association rules. A Bayesian
network approach is proposed in [17]. Hierarchical clustering algorithm [1, 3] can
be used to derive relations between terms, but cluster labelling is a challenging
task. In [4] clustering is explicitly used to derive synonyms, hyperonyms and
hyponyms relations.

Principal Components for Automatic Term Hierarchy Building 47

6 Conclusion

We showed that the term similarity matrix induces a hierarchical relation among
the terms. We computed this hierarchy based on the set of documents associated
with two topics of the Open Directory Project hierarchy and observed significant
similarities with the human edited original hierarchy.

We investigated different selection criteria and identified stability and coverage
as good predictors of link quality. The coverage is especially interesting since it
allows to order the links prior to selection. We also studied transitive links and
showed that it is possible to extend to them the notion of coverage.

In conclusion, we observe that the hierarchy discovered by PCA is surprisingly
good, especially if one considers only the stable links with a high coverage. The
vast majority of links make sense and relations are uncovered than one would
not expect to deduce from a simple co-occurence representation of documents.

References

1. L. D. Baker and A. K. McCallum. Distributional clustering of words for text
classification. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and
J. Zobel, editors, SIGIR-98, 21st ACM, pages 96–103, Melbourne, AU, 1998. ACM
Press, New York, US.

2. H. Bast and D. Majumdar. Understanding spectral retrieval via the synonymy
graph. In SIGIR-05, 28th ACM, 2005.

3. C. Y. Chung and B. Chen. Cvs: a correlation-verification based smoothing tech-
nique on information retrieval and term clustering. In KDD ’02: Eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
469–474, New York, NY, USA, 2002. ACM Press.

4. C. Y. Chung, R. Lieu, J. Liu, A. Luk, J. Mao, and P. Raghavan. Thematic mapping
- from unstructured documents to taxonomies. In CIKM ’02, pages 608–610, New
York, NY, USA, 2002. ACM Press.

5. S. Deerwester, S. Dumais, G. Furnas, and T. Landauer. Indexing by latent semantic
analysis. Journal of the American Society of Information Science, 41:391–407,
1990.

6. G. Dupret. Latent concepts and the number orthogonal factors in latent semantic
analysis. In SIGIR-03, 26th ACM, pages 221–226. ACM Press, 2003.

7. G. Dupret and B. Piwowarski. Deducing a term taxonomy from term similarities.
In Second International Workshop on Knowledge Discovery and Ontologies, Porto,
Portugal, 2005.

8. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall/CRC, May, 15 1993.

9. E. Glover, D. M. Pennock, S. Lawrence, and R. Krovetz. Inferring hierarchical
descriptions. In CIKM ’02, pages 507–514, New York, NY, USA, 2002. ACM
Press.

10. D. Harville. Matrix Algebra from a Statistician’s Perspective. Springer-Verlag, New
York, 1997. 14.

11. M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In 14th
conference on Computational linguistics, pages 539–545, Morristown, NJ, USA,
1992. Association for Computational Linguistics.

48 G. Dupret and B. Piwowarski

12. W. P. Jones and G. W. Furnas. Pictures of relevance: a geometric analysis of
similarity measures. volume 38, pages 420–442, New York, NY, USA, 1987. John
Wiley & Sons, Inc.

13. D. Lawrie and W. Croft. Discovering and comparing topic hierarchies. In Proceed-
ings of RIAO 2000, 2000.

14. A. Maedche and S. Staab. Discovering conceptual relations from text. pages 321–
325, 2000.

15. N. Nanas, V. Uren, and A. D. Roeck. Building and applying a concept hierarchy
representation of a user profile. In SIGIR-03, 26th ACM, pages 198–204, New York,
NY, USA, 2003. ACM Press.

16. H. Njike-Fotzo and P. Gallinari. Learning generalization/specialization relations
between concepts - application for automatically building thematic document hi-
erarchies. In RIAO 2004, Apr. 2004.

17. Y. C. Park, Y. S. Han, and K.-S. Choi. Automatic thesaurus construction using
bayesian networks. In CIKM ’95, pages 212–217, New York, NY, USA, 1995. ACM
Press.

18. J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. In SIGIR-98, 21st ACM, pages 275–281, New York, NY, USA, 1998.
ACM Press.

19. B. A. N. Ribeiro and R. Muntz. A belief network model for ir. In SIGIR-96: 19th
ACM, pages 253–260, New York, NY, USA, 1996. ACM Press.

20. S. Robertson and K. S. Jones. Simple proven approaches to text retrieval. Technical
report tr356, Cambridge University Computer Laboratory, 1997.

21. M. Sanderson and B. Croft. Deriving concept hierarchies from text. In SIGIR-99,
22th ACM, pages 206–213, New York, NY, USA, 1999. ACM Press.

22. R. Srikant and R. Agrawal. Mining generalized association rules. Future Generation
Computer Systems, 13(2–3):161–180, 1997.

Computing the Minimum Approximate λ-Cover
of a String

Qing Guo1, Hui Zhang2, and Costas S. Iliopoulos2

1 Department of Computer Science and Engineering, Zhejiang University, Hangzhou,
Zhejiang 310027, China
guoqing@tiansign.com

2 Department of Computer Science, King’s College London Strand,
London WC2R 2LS, England
{hui, csi}@dcs.kcl.ac.uk

Abstract. This paper studies the minimum approximate λ-cover prob-
lem of a string. Given a string x of length n and an integer λ, the min-
imum approximate λ-cover problem is to find a set of λ substrings of
equal length that covers x with the minimum error, under a variety of
distance models including the Hamming distance, the edit distance and
the weighted edit distance. We present an algorithm that can solve this
problem in polynomial time.

1 Introduction

String regularities mainly concern the repetitive structures of strings. Typically,
a substring w is a period of a given string x if x is a prefix of a string constructed
by concatenations of w. By allowing superpositions as well as concatenations,
the notion of periods is generalized, called covers .

In the literature, a tremendous amount of research has been done on comput-
ing the covers of a given string x of length n. Apostilico, Farach and Iliopoulos
[1] first introduced the notion of covers and presented a linear-time algorithm
to test superprimitivity. Breslauer [2] described a linear time on-line algorithm
to compute the shortest cover of every prefix of x. Moore and Smyth [8], and
recently Li and Smyth [7] both gave a solution to find all the covers of x. In par-
allel computation, Iliopoulos and Park [5] gave a work-time optimal O(log log n)
algorithm for the shortest cover problem of x.

Extending the definition of covers in the sense that a set of substrings instead
of a single substring of x are examined, Zhang et al.[11] introduced the notion of
λ-covers. Given an integer λ, the λ-cover problem attempts to find all the sets
of λ substrings each of equal length that cover x. A general algorithm that can
solve this problem in O(n2) time was also presented.

Advances in multimedia technology and computational biology has shown that
it could be of significant benefit to relax the basis for regularities. For instance,
one seldom expects to find exact repetitions in molecular sequence analysis,
but approximate regularities that allow errors to some extent. In this case, we
consider a string ”matching” a given pattern if the distance between them is

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 49–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 Q. Guo, H. Zhang, and C.S. Iliopoulos

within allowed bounds under a predefined metric. The most classic metrics are
Hamming distance, edit distance and weighted edit distance.

Sim, Iliopoulos, Park and Smyth [9] introduced the notion of approximate
period and provided polynomial time algorithms for finding approximate periods.
Then, Sim, Park, Kim and Lee [10] solved the approximate covers problem in
polynomial time as well.

Inspired by the idea of λ-covers, we introduce in this paper the notion of ap-
proximate λ-covers , approximate version of λ-covers. The motivation comes from
the need for biological sequence analysis and its interaction with the alignment
problem as solved by BLAST. It could be considered as a preliminary operation
before the alignment of two sequences because it discovers motifs having ade-
quate properties for that. We focus on solving the minimum approximate λ-cover
problem of a string. To avoid triviality, we simply consider the case λ > 1.

2 Preliminaries

A string is a sequence of zero or more symbols over an alphabet Σ. A string
x of length n is represented by an array x[1..n] = x[1]x[2] · · ·x[n], where x[i] is
the i-th symbol of x(x[i] ∈ Σ for 1 ≤ i ≤ n). The empty string is the empty
sequence (of zero length) denoted by ε. The set of all strings over the alphabet
Σ(including the empty string) is denoted by Σ∗.

A string w is a substring of x if x = uwv for u, v ∈ Σ∗; x is equivalently a
superstring of w. A substring of length p is called a p-substring for short. For a
nonempty substring w = x[i..j], we say that w occurs at position i and i is an
occurrence of w in x. A string w is a prefix of x if x = wu for u ∈ Σ∗. Similarly,
w is a suffix of x if w = uw for u ∈ Σ∗.

The string xy is a concatenation of two strings x and y. The concatenation
of k copies of x is denoted by xk. For two strings x = x[1..n] and y = y[1..m]
such that x[n− i + 1..n] = y[1..i] for some i ≥ 1, the string x[1..n]y[i + 1..m] is a
superposition of x and y with i overlaps, we say that x and y are overlapping. A
substring u is said to be a cover of x if x can be constructed by concatenations
and superpositions of u. For example, the string x = abababa has a cover aba.

The distance δ(x, y) between two strings x and y indicates the minimum cost
to transform x into y. The cost arises from a sequence of operations, which is
the sum of the cost of the individual operations. The most frequent operations
that are used for string transformation mainly consist of:

– Insertion: inserting an extraneous character a, denoted by ε→ a.
– Deletion: deleting a character a, denoted by a→ ε.
– Substitution: Replacing a character a by another character b (b �= a), denoted

by a→ b.

The following commonly used distance functions rest on above operations:

– Hamming distance: allows only substitutions, costing 1 for each operation.
Note that, this model is restricted to two strings of the same length.

Computing the Minimum Approximate λ-Cover of a String 51

– Levenshtein or edit distance: allows insertions, deletions and substitutions.
In this model, we count the number of edit operations, the cost of each equal
to 1.

– weighted edit distance: is a generalized model of edit distance, where each
edit operation has a different cost, stored in a penalty matrix.

Taking the lengths of strings x and y into account, a distance function δ(x, y)
is called a relative distance function, otherwise an absolute distance function. The
following two methods are used to define a relative distance function between
x and y: The error ratio with respect to x is defined to be d/|x|; the symmetric
error ratio is defined to be d/l, where d is an absolute distance between x and y,
and l = (|x|+ |y|)/2. Obviously, the Hamming distance and the edit distance are
both examples of absolute distance. The weighted edit distance can be viewed
as a relative distance function since the penalty matrix contains arbitrary costs.

3 Problem Definitions

As we mentioned above, the notion of approximate λ-covers of strings is extended
from the notion of approximate covers, which can be formulated as below:

Definition 1. Let x and w be strings over Σ∗, δ be a distance function and t
be an integer, we say that w is a t-approximate cover of x if and only if there
exist strings w1, w2, . . . , wξ (wi �= ε) such that:

(1) δ(w, wi) ≤ t for 1 ≤ i ≤ ξ, and
(2) x can be constructed by concatenations or superpositions of the strings w1,

w2, . . . , wξ.

Considering a set of substrings instead of a single string to cover x, we give the
following definitions:

Definition 2. Let u1, u2, . . . , uk be substrings of x, we say that the set U =
{u1, u2, . . . , uk} is a combination of k substrings drawn from x, called for short
a k-combination of x, and a (k, p)-combination of x if each ui (1 ≤ i ≤ k) is of
length p.

Definition 3. Given a string x of length n, integers λ and p, we say that a
(λ, p)-combination U = {u1, u2, . . . , uλ} is a (λ, p)-cover of x if and only if every
position of x lies within an occurrence of some ui (1 ≤ i ≤ λ).

Definition 4. Let U = {u1, u2, . . . , uλ} be a (λ, p)-combination of string x, δ
be a distance function and t be an integer, we say that U is a t-approximate
(λ, p)-cover of x if and only if there exist strings w1, w2, . . . , wξ (wi �= ε) such
that:

(i.) for every wi (1 ≤ i ≤ ξ), there exists at least a uj (1 ≤ j ≤ λ) that suffices
to: δ(uj , wi) ≤ t, and

(ii.) x can be constructed by concatenating or overlapping copies of the strings
w1, w2, . . . , wξ.

52 Q. Guo, H. Zhang, and C.S. Iliopoulos

In this paper we mainly study the minimum approximate λ-cover problem, which
can be formally stated as below:

Problem 1. Let x be a string of length n, λ be an integer and δ be a dis-
tance function, the minimum approximate λ-cover problem is to find a set
U = {u1, u2, . . . , uλ} of substrings of x such that:

(i.) |u1| = |u2| · · · = |uλ|;
(ii.) U is an approximate λ-cover of x with the minimum error.

4 Method and Solution

The solution to the minimum approximate λ-cover problem is based on the
solution to the following fundamental problem:

Problem 2. Given a string x of length n, a (λ, p)-combination U ={u1, u2, . . . , uλ}
and a distance function δ, find the minimum integer t such that U is a t-
approximate (λ, p)-cover of x.

In this problem, the set U is given a priori. As p, the size of each ui is given as
an input, it makes no difference whether δ is an absolute distance function or a
relative one. The method for solving this problem is similar to the method for
solving the Smallest Distance Approximate Cover problem defined as below:

Problem 3. Given a string x of length n, a string w of length m and a distance
function δ, find the minimum integer t such that w is a t-approximate cover of
x.

Sim, Park, Kim and Lee [10] as well as Christodoulakis, Iliopoulos, Park and
Sim [3] presented polynomial time algorithms for Problem 3. We first give a
brief description for the algorithm.

4.1 Main Idea of the Algorithm for Problem 3

The algorithm consists of two steps:

1) Compute the distance between w and every substring of x.

We denote the distance between w and x[i..j] for 1 ≤ i ≤ j < n by:

di,j = δ(x[i..j], w) (1)

The computation of di,j depends on the distance function we are using. If the
Hamming distance is used, we simply consider those substrings of x of length
m, executing character-by-character comparison between them and w.

If the edit distance (weighted or not) is used, we use a dynamic programming
table, called for short the D-table to compute di,j . For two strings x and y, a
D-table is a matrix of size (|x| + 1) × (|y| + 1). Each entry D(i, j), 0 ≤ i ≤ |x|

Computing the Minimum Approximate λ-Cover of a String 53

and 0 ≤ j ≤ |y|, stores the minimum cost of converting x[1..i] to y[1..j]. Initially,
D(0, 0) = 0, D(i, 0) = D(i − 1, 0) + δ(x[i], ε), D(0, j) = D(0, j − 1) + δ(ε, y[j]).
Then we can compute all the entries of the D-table in O(|x||y|) time by the
following recurrence:

D[i, j] = min

⎧⎨
⎩

D[i− 1, j] + δ(x[i], ε)
D[i, j − 1] + δ(ε, y[j])
D[i− 1, j − 1] + δ(x[i], y[j])

where δ(a, b) is the cost of substituting character a with character b, δ(a, ε) is
the cost of deleting a and δ(ε, a) is the cost of inserting a.

2) Compute the minimum t such that w is a t-approximate cover of x.

Let ti be the minimum value such that w is a ti-approximate cover of x[1..i].
Initially, t0 = 0. Then for i = 1 to n, using dynamic programming, we iteratively
compute:

ti = min
hmin≤h≤hmax

{max{ min
h≤j<i

{tj}, dh+1,i}} (2)

The value tn is the minimum t we are looking for. We now explain how to
compute ti using this equation, assuming that we have already obtained the
previous values: t1, t2,. . . , ti−1. For every position h, we cover a suffix x[h+1..i]
of x[1..i] with one copy of w with error dh+1,i. What is left to be covered is
x[1..h], which involves the following ways: cover either x[1..h] with error th, or
x[1..h+1] with error th+1, . . . , or x[1..i−1] with error ti−1. We choose the x[1..j]
that contributes the smallest error. Fig. 1 shows the way that w covers x[1..i],
where the shaded box is the best x[1..j] with the minimum error.

Fig. 1. Computing the minimum error

The number of positions to be checked, hmin and hmax, depends on the dis-
tance function we are using. When the Hamming distance is used, the fact that
two strings of equal length are defined for this model allows us to examine only
one position h = i−m. When the edit distance is used, only those 2m suffixes
of x[1..i] of length not greater than 2m are considered. However, all the suffixes
of x[1..i] have to be considered when δ is weighted edit distance.

Theorem 1. The Smallest Distance Approximate Cover problem can be solved
in O(mn) time when the Hamming or edit distance is used for δ, and in O(mn2)
time when δ adopts a weighted edit distance.

The proof of this theorem can be referred to the original paper[10].

54 Q. Guo, H. Zhang, and C.S. Iliopoulos

4.2 Our Algorithm for Problem 2

Compared with Problem 3, Problem 2 concentrates on a set of substrings of x
of equal length that “cooperatively” cover x. Our algorithm for solving Problem
2 is similar to that for Problem 3, with the major distinction that every element
of the set should be comprehensively considered rather than only one pattern
as we described above. Therefore, we simply explain the differences between our
algorithm and the original one.

Recall that in Problem 2, a (λ, p)-combination U = {u1, u2, . . . , uλ} of x is
given, where λ is a constant and p = |uk| (1 ≤ k ≤ λ) is fixed. There are still
two steps involved in our algorithm:

1) For every uk (1 ≤ k ≤ λ), compute the distance between uk and every
substring of x.

To denote the distance between uk and x[i..j] for 1 ≤ i ≤ j < n, we modify
Equation (1) to:

di,j(k) = δ(x[i..j], uk) (3)

The computation of di,j(k) depends on the distance function we are using:

– Hamming distance: We simply consider those p-substrings of x, that is, those
x[i..j]’s satisfying j− i+1 = p. For each of exactly n−p+1 such substrings,
we compute di,j(k) through character-by-character comparison with uk in p
units of time. Hence, it takes (n − p + 1)p = O(pn) time for each uk and
O(λpn) = O(pn) time for all λ patterns.

– Edit distance: We consider those x[i..j]’s for which j − i + 1 ≤ 2p. Utilizing
the incremental algorithm [6], we initially create the D-table for the distance
between x[1..2p] and uk, then iteratively update the D-tables. It costs O(pn)
time to get all the D-tables relating to uk, and O(λpn) = O(pn) time to
compute di,j ’s for λ patterns.

– Weighted edit distance: The distance between two characters in this model
is given by arbitrary values, instead of 1 or 0 in the edit distance model.
Therefore, in a more generally way, we build a D-table of size (p+1)×(n−i)
for the distance between x[i..n− i] and uk for each position i of x. The last
row of this table gives the values of di,i, di,i+1, . . . , di,n. Thus, the overall
time complexity for n positions is pn(n− 1)/2 = O(pn2) for each uk and the
same for all uk’s.

2) Compute the minimum t such that U is a t-approximate (λ, p)-cover of x.

Let ti be the minimum value such that U is a ti-approximate (λ, p)-cover of
x[1..i]. Equation (2) is changed to:

ti = min
hmin≤h≤hmax

{max{ min
h≤j<i

{tj}, min
1≤k≤λ

{dh+1,i(k)}}} (4)

The value tn is the minimum t we are seeking for, which can be computed
in the same manner with the algorithm described in Section 4.1. The difference

Computing the Minimum Approximate λ-Cover of a String 55

is that, we compute the distance dh+1,i(k) between x[h + 1..i] with every uk

(k ∈ [1, λ]) for every position h, then keep the minimum one. In other words,
we find the best way to cover x[h + 1..i], with the minimum error. Then we
cover x[1..h] with the smallest error. The values of hmin and hmax depend on
the distance function we are using.

– Hamming distance: hmin = hmax = i− p. The inner min loop runs in O(p)
time, since min{tj} and min{dh+1,i(k)} requires p units of time and λp units
of time respectively. Thus the total time complexity for step 2 is O(pn).

– Edit distance: hmax = i − 1, hmin = i − 2p. Occupying O(n) additional
memory, we can compute minh≤j<i{tj} in constant time as follows: At stage
i, we store m[h] = minh≤j<i{tj} for h ∈ [0, i − 1]; then at stage i + 1, we
obtain minh≤j<i+1{tj} = min{m[h], ti+1}. Note that, this small trick works
for the weighted edit distance as well. Thus, the computation runs in 2pλn
units of time, i.e. O(pn) in total.

– Weighted edit distance: hmax = i− 1, hmin = 0. computing the minimum t
requires O(n2) time.

Corollary 1. Problem 2 can be solved in O(pn) time when the Hamming dis-
tance or the edit distance is used for δ, and in O(pn2) time when δ uses a
weighted edit distance.

This directly follows from Theorem 1 and our analysis above.

4.3 Computing the Minimum Approximate λ-Cover

Now we turn to investigate the minimum approximate λ-cover problem. In this
problem, the (λ, p)-combination U is not given, thus any (λ, p)-combination of x
for 1 ≤ p < n/λ can be viewed as a candidate approximate λ-cover. The reason
for this assumption is because if p ≥ n/λ, we can trivially obtain exact (λ, p)-
covers of x that are composed of x[1..p], x[n− p + 1..n] and other λ− 1 or λ− 2
p-substrings, which easily lead to approximate (λ, p)-covers with small errors.

For a certain p, as a (λ, p)-combination U = {u1, u2, . . . , uλ} is a set of different
p-substrings of x, we need to record all the distinct substrings of x and efficiently
list all the (λ, p)-combinations. We use Crochemore’s partitioning [4] to compute
all the substrings in a string. The main idea of this algorithm rests on the
following definition of the equivalence relation over the positions of the string:

Definition 5. Given a string x[1..n] ∈ Σ∗, two positions i, j ∈ {1, . . . , n−p+1}
of x, then (i, j) ∈ Ep iff x[i...i + p− 1] = x[j...j + p− 1], noted iEpj.

That is, two positions i and j in x belong to the same one Ep-class when two p-
substrings starting at i and j in x are identical. Clearly every Ep-class represents
a distinct p-substring of x. Since Ep+1 is a refinement of Ep, the algorithm first
computes E1, then iteratively builds E2, E3, . . . until all classes are singletons.
Utilizing the “smaller-half trick” [4], the partitioning takes O(n log n) time in
total. For more details readers can refer to [4].

56 Q. Guo, H. Zhang, and C.S. Iliopoulos

Our algorithm for computing all the λ-combinations works as follows: Initially,
the algorithm tests valid (λ, p)-combinations of x for induction in base case,
which corresponds to the first p such that the number of distinct substrings is
greater than λ. Then it works iteratively to deduce all the (λ, p)-combinations
of x according to the (λ, p− 1)-combinations.

The iterative process relies on the construction of Equivalence Class Tree
(ECT), which expresses the relationship between each Ep−1-class and its cor-
responding Ep-classes. As we mentioned above, each Ep−1-class can be parti-
tioned into several Ep-classes by extending one more character to the right. Let
{C1, . . . , Ck} be the Ep−1-classes, we can create ECT as follows: The root of
ECT has label 0. There are k nodes of depth p− 1, each of which is denoted by
the index of Ci(1 ≤ i ≤ k). The sons of the node corresponding to Ci are the
indices of Ep-classes partitioned by Ci. For the convenience of explanation, we
label every node by the substring itself instead of the index of its equivalence
class. Fig. 2 constructs ECT of a string x = abbabbaababbab.

Fig. 2. ECT of string x = abbabbaababbab

Note that ECT is built along with the partitioning of equivalence classes.
When all the equivalence classes for p-substrings are computed, the correspond-
ing nodes of depth p are added into ECT. Thus the construction of ECT costs
the same time with the partitioning, that is, O(n logn) time.

Suppose that we have created ECT for x. Let m be the number of Ep-classes,
that is, the number of distinct substrings of length p in x. Our algorithm can be
formally stated as follows:

(1) Base case:
Initially consider p = 1, the number of E1-classes is at most m = min(|Σ|, n).
If m > λ, the combinations of m items taken λ are at most Cλ

m. If m ≤ λ, we

Computing the Minimum Approximate λ-Cover of a String 57

have to turn to p = 2, 3, · · ·, then base case is the first p such that m > λ, which
allows us to find qualified (λ, p)-combinations for deduction.

(2) Inductive step:

Assume that at stage p − 1, we have stored all the (λ, p − 1)-combinations of
x. Our target is to iteratively deduce all the (λ, p)-combinations of x according
to the (λ, p − 1)-combinations. Consider a certain (λ, p − 1)-combination U =
{u1, u2, . . . , uλ}, it might produce a series of (λ, p)-combinations as a result of
the partitioning of each of λ Ep−1-classes according to ECT. Let the number
of sons of ui in ECT be ri. From i = 1 to i = λ, we successively substitute
li among these ri p-substrings respectively for ui. Every current combination
obtained after ui being processed is saved to be further updated, denoted by Si.

First consider u1. As the number of sons of u1 in ECT is r1, the relevant
p-substrings can be denoted by s1

1, s2
1,. . . , sr1

1 , clearly r1 ≤ |Σ|. We update U by
replacing u1 with l1 among r1 p-substrings related to u1. When l1 > 0, we need
to remove l1 − 1 from the other λ − 1 ui’s (i > 1) to compose λ-combinations,
which leads to

∑
Cl1

r1
Cλ−l1

λ−1 S1’s; when l1 = 0, we keep the (λ− 1)-combination
{u2, u3, . . . , uλ} as an eligible S1 to be further processed in the following stages.
Some examples of S1 are listed below:

{s1
1, s

2
1, . . . , s

l1
1 , u2, u3, . . . , uλ−l1+1}

{s1
1, s

2
1, . . . , s

l1
1 , ul1+1, . . . , uλ−1, uλ}

{sr−l1+1
1 , . . . , sr−1

1 , sr
1, u2, u3, . . . , uλ−l1+1}

(i) r1 < λ: As 1 ≤ l1 ≤ r1 and r1 ≤ min(|Σ|, λ−1), the cardinality of {S1} is at
most

∑min(|Σ|,λ−1)
l1=1 Cl1

min(|Σ|,λ−1)C
λ−l1
λ−1 + 1, a constant dependent only on λ

and |Σ|.
(ii) r1 ≥ λ: In this case, 1 ≤ l1 ≤ λ, r1 ≤ |Σ|. There are at most

∑λ
l1=1 Cl1

|Σ|
Cλ−l1

λ−1 + 1 S1’s, which is also a constant independent of p.

Next, assume that we have obtained {Sj}(1 ≤ j ≤ λ− 1), a set of Sj+1’s can
be obtained by updating every Sj as follows:

(i) If Sj contains uj+1 as a member: Keeping all those members of Sj located
before uj+1, namely, l1 + l2 + . . . + lj p-substrings produced respectively by
u1, u2, . . . , uj unchanged, we process uj+1 in the same manner as we did on
u1. The following cases need to be discussed.
(a) uj+1 is not the last element of Sj : Replace uj+1 by lj+1 among rj+1 p-

substrings partitioned by uj+1 according to ECT, then remove lj+1 − 1
from the remaining ui’s (i > j +1) in the case of lj+1 ≥ 1; or delete uj+1
and reserve all the remaining ui’s (i > j + 1) in the case of lj+1 = 0. Let
λ′ = λ− (l1 + l2 + . . . + lj), then the upper limit of lj+1 is:

max{lj+1} =
{

λ′, rj+1 ≥ λ′;
min(|Σ|, λ′ − 1), otherwise.

58 Q. Guo, H. Zhang, and C.S. Iliopoulos

(b) uj+1 is the last element of Sj: Replace uj+1 with exactly λ′ among rj+1
p-substrings partitioned by uj+1 in the case of rj+1 ≥ λ′; or delete this
Sj otherwise.

(ii) If Sj does not contain uj+1: Sj+1 ← Sj .

Evidently, the values of li and ri (1 ≤ i ≤ j + 1) in ECT directly account for
the number of Si+1’s, each of which rests on |Σ| and λ as we analyzed above.
That is, the cardinality of {Si+1} is a constant independent of p.

Finally, after uλ is processed, we obtain {Sλ} consisting of all the (λ, p)-
combinations associated with the given (λ, p − 1)-combination U , which has
constant size. Consequently, the total number of (λ, p)-combinations is linear to
the number of (λ, p−1)-combinations, which amounts to O(n) since in base case
there are at most O(n) λ-combinations to be processed. The inductive step stops
until p reaches n/λ, thus there sums to O(n2) such combinations to be used as
candidate approximate λ-covers.

Applying each of O(n2) candidates into our algorithm for problem 2, we can
find the minimum approximate λ-cover of x. Since the length p is not fixed, we
use a relative distance function rather than an absolute one. For instance, we
adopt as δ the error ratio with respect to x in the case of the Hamming and edit
distance, or a weighted edit distance.

Theorem 2. The minimum approximate λ-cover problem can be solved in O(n4)
time when a relative Hamming or edit distance is used for δ, in O(n5) time when
a weighted edit distance is used for δ.

5 Experimental Results

To verify the running times of our algorithms, we implemented our algorithm,
programmed in C++, for computing the approximate λ-covers when δ uses a
Hamming distance. The experiment environment is a Pentium-4M CPU 1.8GHz
system, with 256MB of RAM, under the Microsoft Windows XP operating sys-
tem (SP2).

In our experiments, the text string x are pseudo random strings on the al-
phabet {a, b}. We first test the time complexity of our solution to Problem 2.
In this case, a (λ, p)-combination U is randomly selected from λ-combinations
of p-strings over {a, b}, where λ is set to be 3. For each test, we execute our
program for 5 times and count the average value.

Observe Fig. 3, which shows the time consumption of the algorithm for Prob-
lem 2 when the Hamming distance is used. Fig. 3(a) gives the time consumption
with respect to the text size n when p is fixed to be 100. It is easily noticed
that time increases linearly when n increases. Similarly, the running time is pro-
portional to the pattern size p, as presented in Fig. 3(b) where n is fixed to be
50000. Thus it is obvious that, Problem 2 can be computed in O(pn) time.

In the case of the minimum approximate λ-cover problem, we choose the
candidates for U to be random 3-combinations of substrings of x of length 5.
Fig. 4 shows the the time consumption of the algorithm for this problem. The
time complexity is O(n4) when the Hamming distance is used.

Computing the Minimum Approximate λ-Cover of a String 59

(a) time spent with respect to n

(b) time spent with respect to p

Fig. 3. Problem 2 when the Hamming distance is used

Fig. 4. The minimum approximate λ-cover problem when the Hamming distance is
used

6 Conclusions

In this paper we presented a polynomial time algorithm for solving the mini-
mum approximate λ-cover problem of a string. Compared with the corresponding

60 Q. Guo, H. Zhang, and C.S. Iliopoulos

approximate covers problem relating to a single substring of x, our algorithm
does not increase the time complexity, despite the fact that it considers a set of
substrings of x. Moreover, our algorithm can also be used to solve the minimum
approximate λ-seed problem. Our future direction is focused on generalizing the
approximate λ-cover problem in the sense that a set of substrings of different
lengths are to be considered.

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings, Information Processing Letters, 39, (1991) 17-20.

2. Breslauer, D.: An on-line string superprimitivity test, Information Processing Let-
ters, 44, (1992) 345-347.

3. Christodoulakis, M., Iliopoulos, C.S., Park, K., Sim, J.S.: Approximate seeds of
strings, Proc. of the 2003 Prague Stringology Conference (PSC’03), (2003) 25-36.

4. Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in a Word,
Information Processing Letters, 12 (5), (1981) 244-250.

5. Iliopoulos, C.S., Park, K.: An optimal O(log log n) time algorithm for parellel su-
perprimitivity testing, J. of the Korean Information Science Society, 21(8), (1994)
1400-1404.

6. Kim, S., Park, K.: A dynamic edit distance table, Proc. 11th Symp. Combinatorial
Pattern Matching, Springer, Berlin, volume 1848, (2000) 60-68.

7. Yin Li, Smyth, W.F.: Computing the cover array in linear time, Algorithmica,
32(1), (2002) 95-106.

8. Moore, D.W.G., Smyth, W.F.: A correction to “Computing the covers of a string
in linear time”, Information Processing Letters, 54, (1995) 101-103.

9. Sim, J.S., Iliopoulos, C.S., Park, K., Smyth, W.F.: Approximate periods of strings,
Theoretical Computer Science, 262, (2001) 557-568.

10. Sim, J.S., Park, K., Kim, S., Lee, J.: Finding approximate covers of strings, Journal
of Korea Information Science Society, 29(1), (2002) 16-21.

11. Zhang, H., Guo, Q., Iliopoulos, C.S.: Computing the λ-covers of a string. Accepted
by AWOCA2006

Sparse Directed Acyclic Word Graphs

Shunsuke Inenaga1,2 and Masayuki Takeda2,3

1 Japan Society for the Promotion of Science
2 Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan

{shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
3 SORST, Japan Science and Technology Agency (JST)

Abstract. The suffix tree of string w is a text indexing structure that
represents all suffixes of w. A sparse suffix tree of w represents only a subset
of suffixes of w. An application to sparse suffix trees is composite pattern
discovery from biological sequences. In this paper, we introduce a new data
structure named sparse directed acyclic word graphs (SDAWGs), which are
a sparse text indexing version of directed acyclic word graphs (DAWGs) of
Blumer et al. We show that the size of SDAWGs is linear in the length of w,
and present an on-line linear-time construction algorithm for SDAWGs.

1 Introduction

Text indexing is a classical technique for pattern matching. Probably, the most
widely known structure for text indexing is suffix trees [1, 2]. Indeed, quite a lot
of applications for suffix trees have been introduced so far, and many problems
are efficiently solved by using suffix trees [3]. Some of those problems require
‘variants’ of suffix trees that are modified for the specific purposes. This pa-
per focuses on one of such problems, named the sparse text indexing problem,
described as follows:

Input: Pattern string p, text string t of length n, and subset S ⊆ {1, . . . , n} of
all positions in t.

Output: Whether or not there is any occurrence of p in t which begins at a
position in S.

Kärkkäinen and Ukkonen [4] introduced the sparse suffix tree which stores
only the suffixes of t beginning at the positions in S. Sparse suffix trees enable
us to solve the above problem in time proportional to the pattern length (for fixed
alphabets). An example of applications to sparse suffix trees is composite pattern
discovery from biological sequences [5, 6, 7]. It is not difficult to see that sparse
suffix trees can be constructed in O(n) time and space, in such a way that we
firstly construct a normal suffix tree of t in O(n) time, and then prune the leaves
for the suffixes which do not begin with positions in S. Now, a natural interest
is whether or not the sparse suffix tree for t w.r.t. S is directly constructible in
O(n) time using O(k) space, where k = |S|. (Note that O(n) time consumption
is unavoidable due to the necessity of reading entire t at least once.) To the best
of our knowledge, this is still an open problem.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 61–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 S. Inenaga and M. Takeda

However, another representation of S and some simple alteration to t make it
possible to construct its sparse suffix tree efficiently. Let # be a unique symbol
not appearing anywhere in t, and let us insert # into t at the positions listed
in S. Now we get a string of length n + k, and let us denote this string by w.
Remark that since k ≤ n, w is at most twice long as t. Now, if we are able
to construct a sparse suffix tree representing only the suffixes of w which begin
immediately after #, then this tree is an alternative to the sparse suffix tree for
t. At a matching phase of pattern p we simply ignore any #’s in the edge labels
of the tree.

This tree is also known as the word suffix tree whose concept was first intro-
duced in [8]. Let Σ be an alphabet, and let D = Σ∗# be a dictionary of words
over Σ, each followed by #. Now assume that w is a string in D+, namely, w is
a sequence w1 · · ·wk of k words in D. Then, the word suffix tree of w w.r.t. D
is a tree structure which represents only the k suffixes in the form of wi · · ·wk.
We can associate the special symbol # with, e.g., a ‘word separator’ such as
the blank symbol in the European languages, and then the word suffix tree of
w represents only the suffixes of w starting at the beginning of words. In this
way, we can avoid unwanted matches such as ‘other’ in ‘mother’. Andersson et
al. [9] introduced an algorithm to build the word suffix tree for w w.r.t. D with
O(k) space, but in O(n) expected time. Very lately, we invented an algorithm
that constructs word suffix trees with O(k) space and in O(n) time in the worst
cases [10].

In this paper, we introduce a new data structure named sparse directed acyclic
word graphs (SDAWGs) as an alternative to the word suffix trees and to the
sparse suffix trees thereby. SDAWGs are a sparse text indexing version of directed
acyclic word graphs (DAWGs) of Blumer et al. [11]. We give a formal definition
of SDAWGs based on an equivalence relation on string w and dictionary D, and
show the size of SDAWGs to be linear in n. One might concern that O(n) space
consumption is a disadvantage of SDAWGs against sparse suffix trees requiring
only O(k) space, but we recall that the edge labels of sparse suffix trees are
implemented as pairs of pointers to the positions of w, and therefore the input
string w has to be kept stored. Consequently, the total space requirement is
also O(n) for using the sparse suffix tree. On the other hand, any edge label of
SDAWGs is a single symbol, and thus the input string w can be discarded after
the SDAWG is constructed.

Finally, we present an on-line linear-time algorithm for constructing SDAWGs.
Our algorithm is based on, and generalizes, the on-line construction algorithm
for DAWGs invented by Blumer et al. [11]. Our algorithm directly constructs
SDAWGs without building normal DAWGs as intermediate structures, by using
the minimum DFA accepting dictionary D as suggested in [10]. We emphasize
that SDAWGs can be obtained by first constructing the corresponding normal
DAWGs, removing the unnecessary suffixes from the DAWGs, and then mini-
mizing the resulting graphs. However, since these are non-tree DAGs, removing
only one suffix may take linear time. Therefore, the algorithm presented in this
paper is the only known one capable of building SDAWGs in O(n) time.

Sparse Directed Acyclic Word Graphs 63

2 Preliminaries

2.1 Notations

Let Σ be a finite set of symbols, called an alphabet. Throughout this paper we
assume that Σ is fixed. A finite sequence of symbols is called a string. We denote
the length of string w by |w|. The empty string is denoted by ε, that is, |ε| = 0.
Let Σ∗ be the set of strings over Σ. For any symbol a ∈ Σ, we define a−1 such
that a−1a = ε.

Strings x, y, and z are said to be a prefix, substring, and suffix of string
w = xyz, respectively. A prefix, substring, and suffix of string w are said to be
proper if they are not w. Let Prefix (w) be the set of the prefixes of string w, and
let Prefix(S) =

⋃
w∈S Prefix(w) for set S of strings.

Definition 1 (Prefix property). A set L of strings is said to satisfy the prefix
property if no string in L is a proper prefix of another string in L.

The i-th symbol of string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring
of string w that begins at position i and ends at position j is denoted by w[i..j]
for 1 ≤ i ≤ j ≤ |w|. For any strings x, w ∈ Σ∗, let

Endposw(x) = {j | x = w[j − |x|+ 1..j]}.

Let D be a set of strings called a dictionary. A factorization of string w w.r.t.
D is a list w1, . . . , wk of strings in D such that w = w1 · · ·wk and wi ∈ D for
each 1 ≤ i ≤ k. In the rest of the paper, we assume that D = Σ∗# where # is a
special symbol not belonging to Σ, and that w ∈ D+. Then, a factorization of w
w.r.t. D is always unique, since D clearly satisfies the prefix property because of
not being in Σ. Let MD denote the minimum DFA which accepts D = Σ∗#.
It is easy to see that MD requires only constant space (refer to the left of Fig. 2).

Let
SuffixD(w) = {wi · · ·wk | 1 ≤ i ≤ k + 1}.

Then, SuffixD(w) consists only of the original string w, the suffixes which im-
mediately follow # in w, and the empty string ε intended by wk+1wk. We define
set WordposD(w) of the word-starting positions in w as follows:

WordposD(w) = {|w| − |s|+ 1 | s ∈ SuffixD(w)}.

2.2 Equivalence Class on Strings over D

For set S of integers and integer i, we denote S ⊕ i = {j + i | j ∈ S} and
S � i = {j − i | j ∈ S}. Now we define the end-equivalence relation ≡w on
w ∈ D+ by:

x ≡w y ⇔ Endposw(x) ∩ (WordposD(w) ⊕ |x| � 1)
= Endposw(y) ∩ (WordposD(w) ⊕ |y| � 1).

64 S. Inenaga and M. Takeda

We note that the above end-equivalence relation is a ‘word-position-sensitive’
version of the equivalence relation introduced by Blumer et al. [11], where the
intersection with WordposD(w) makes it word-position-sensitive. We denote by
[x]w the equivalence class of x w.r.t. ≡w.

Proposition 1. All strings that are not in Prefix (SuffixD(w)) form one equiv-
alence class under ≡w, called the degenerate class.

Proof. Since for any string x �∈ Prefix(SuffixD(w)) we have WordposD(w) = ∅,
we consequently obtain Endposw(x) ∩ (WordposD(w) ⊕ |x| � 1) = ∅. Moreover,
for any string y ∈ Prefix(SuffixD(w)), it is easy to observe that Endposw(y) ∩
(WordposD(w) ⊕ |x| � 1) �= ∅. ��

It follows from the definition of ≡w that if two strings x, y are in a same non-
degenerate equivalence class under ≡w, then either x is a suffix of y, or vice versa.
Thus, each non-degenerate equivalence class under ≡w has a unique longest
member, which is called the representative of it. The representative of [x]w is

denoted by
w←−x .

3 Sparse Directed Acyclic Word Graphs

3.1 Definitions

Here we define the sparse directed acyclic word graphs (SDAWGs in short) as
edge-labeled DAGs (V, E) with E ⊆ V ×Σ+ × V where the second component
of each edge represents its label.

Definition 2 (Sparse directed acyclic word graph). The sparse directed
acyclic word graph of string w ∈ D+, denoted by SDAWGD(w), is a DAG (V, E)
such that

V = {[x]w | x ∈ Prefix(SuffixD(w))},
E = {([x]w, a, [xa]w) | x, xa ∈ Prefix (SuffixD(w)) and a ∈ Σ ∪ {#}}.

SDAWGD(w) has single source node [ε]w of in-degree zero, and single sink node
[w]w of out-degree zero.

We associate each node [x]w of SDAWGD(w) with length([x]w) = |
w←−x |. For

any edge ([x]w , a, [xa]w), if length([xa]w) = length([x]w) + 1, this edge is called
primary; otherwise, it is called secondary.

Fig. 1 shows SDAWGD(w) with w = a#b#a#bab# and D = {a, b}∗#, to-
gether with the normal DAWG(w) representing all the suffixes of w. Observe that
SDAWGD(w) only represents the suffixes a#b#a#bab#, b#a#bab#, a#bab#,
bab#, and ε, all from SuffixD(w).

Also, observe that substrings a#b and b are in distinct nodes of DAWG(w),
while they are in the same node of SDAWGD(w). It is because Endposw(a#b) =
{3, 7} �= Endposw(b) = {3, 7, 9}, but Endposw(a#b) ∩ (WordposD(w) ⊕ 2) =

Sparse Directed Acyclic Word Graphs 65

ba a ## # b a b #

b a

ba a # b# # a b #

b

b

#

b

a a

a

a

Fig. 1. SDAWGD(w) with w = a#b#a#bab# and D = {a, b}∗# is shown on the
upper, and normal DAWG(w) is shown on the lower for comparison. Observe that
SDAWGD(w) contains only suffixes of SuffixD(w), while DAWG(w) has all the suffixes
of Suffix(w). For instance, ab# is a suffix of w and is in normal DAWG(w), but is not
in SDAWGD(w).

Endposw(b) ∩ (WordposD(w)⊕ 0) = {3, 7}, as WordposD(w) = {1, 3, 5, 7}. Sim-
ilar discussion holds for the pair of strings a#b# and b#.

Now we define the suffix links of SDAWGD(w), which are extensively used
for on-line linear-time construction algorithm to be given later on. Also, they
play an important role to bound the size of SDAWGD(w) within O(n) space.
For any string x ∈ Prefix(SuffixD(w)), we consider a partition x = x1x2 such
that x1 ∈ D∗ and x2 is a proper prefix of some string in D. Then, it is easy to
see that the partition x1x2 is unique for any x ∈ Prefix (SuffixD(w)).

The following proposition is clear from the definition of the end-equivalence.

Proposition 2. For any x, y ∈ Prefix (SuffixD(w)) such that x ≡w y and |x| >
|y|, we have x1 = vy1 with v ∈ D+ and x2 = y2.

Definition 3 (Suffix links of SDAWGs). For any node [x]w of SDAWGD(w),
let x′ = x′

1x
′
2 be the shortest member of [x]w.

1. If x′
1 ∈ D+, the suffix link from node [x]w goes to node [u]w such that

w←−u =
u = u1u2, u1 ∈ D∗, u2 = x′

2, and x′
1 = hu1 for some h ∈ D;

2. Otherwise (If x′
1 = ε), the suffix link from [x]w goes to the initial state of

MD.

Fig. 2 displays SDAWGD(w) and its suffix links, with w = a#b#a#bab#. For
instance, see Node 8 that is [x]w = {a#b#a#b, b#a#b}, where x′ = b#a#b,
x′

1 = b#a#, and x′
2 = b. The suffix link of Node 8 goes to Node 4 that is

[u]w = {a#b, b}, where
w←−u = a#b, u1 = a#, and u2 = b. Observe that h = b#,

x′
1 = hu1 = b#a# and x′

2 = u2 = b.

66 S. Inenaga and M. Takeda

Σ

ba a ## # b a b

b a

#

Σ

1 2 3 4 5 6 7 8 9 10 11

Fig. 2. To the left is the minimum DFA MD accepting D = Σ∗#, and to the right is
SDAWGD(w) for w = a#b#a#bab#, with MD and its suffix links (broken arrows)
attached. Nodes 3, 5, 6, 7, 8, and 11 are in Group 1 of Definition 3, and nodes 1, 2, 4,
9, and 10 are in Group 2.

3.2 Size Bound

Here we analyze the size of SDAWGD(w). Firstly, we show that any distinct
prefixes of w are associated with distinct nodes of SDAWGD(w).

Lemma 1. For any strings x, xa ∈ Prefix(w) with a ∈ Σ ∪ {#}, x �≡w xa.

Proof. By the length argument, |x| ∈ Endposw(x) but |x| /∈ Endposw(xa). Since
1 ∈WordposD(w) for any w ∈ D+, |x| ∈ Endposw(x)∩ (WordposD(w)⊕|x|�1)
but |x| /∈ Endposw(xa)∩ (WordposD(w)⊕ |xa| � 1). Thus we have x �≡w xa. ��

According to the above lemma, SDAWGD(w) has at least n + 1 nodes, each
corresponding to a certain prefix of w. In addition, for any proper prefix x of w,
there exists primary edge ([x]w , a, [xa]w) in SDAWGD(w) with xa ∈ Prefix (w).

To show the upper bound for the size of SDAWGD(w), we consider the suffix
link tree TD(w) = (V ∪ {qs}, E�) where qs is the initial state of MD and is the
root of TD(w), and E� is the set of the ‘reversed’ suffix links of SDAWGD(w).

The following lemma is critical to bound the size of SDAWGD(w) within
linear space w.r.t. n.

Lemma 2. If
w←−x /∈ Prefix(w), node [x]w of TD(w) is branching (has at least two

children).

Proof. Since
w←−x /∈ Prefix(w), there exist some distinct strings u, v ∈ D such that

– both u
w←−x and v

w←−x are substrings of w,

– Endposw(u
w←−x) ∩ (WordposD(w) ⊕ |u

w←−x | � 1) �= ∅,
– Endposw(v

w←−x) ∩ (WordposD(w) ⊕ |v
w←−x | � 1) �= ∅, and

– Endposw(u
w←−x) ∩ (WordposD(w) ⊕ |u

w←−x | � 1) �=
Endposw(v

w←−x) ∩ (WordposD(w) ⊕ |v
w←−x | � 1).

Sparse Directed Acyclic Word Graphs 67

Then, no two strings of u
w←−x , v

w←−x , or
w←−x belong to the same end-equivalence class.

By Proposition 2 and Definition 3, the suffix links of [u
w←−x]w and [v

w←−x]w both go

to [
w←−x]w = [x]w. ��

Now we show the upper bound of the size of SDAWGs, based on a similar idea
to the case of DAWGs by Blumer et al. [11].

Theorem 1. For any string w ∈ D+ of length n, SDAWGD(w) has O(n) nodes
and edges.

Proof. By Lemmas 1 and 2, TD(w) can have at most n + 1 leaves which cor-
respond to the nodes having the prefixes of w. Since TD(w) is a tree, it can
have at most n branching nodes, and therefore the total number of nodes in
SDAWGD(w) is bounded by O(n).

Now we bound the number of edges in SDAWGD(w). It is not difficult to see
that for any w ∈ D+, SDAWGD(w) has a spanning tree rooted at the source node
[ε]w, and let us fucus on one such spanning tree. With each edge of SDAWGD(w)
not in the spanning tree, we associate one of the k−1 non-empty proper suffixes
of SuffixD(w). This suffix can be obtained by spelling out a path from the source
through the spanning tree until one of its leaves, across the omitted edge, and
finally to the sink node [w]w in any convenient way. Then, distinct omitted
edges are associated with distinct non-empty suffixes of SuffixD(w), since they
are associated with distinct source-to-sink paths (the paths differ in the first
edge traversed outside the spanning tree). Thus, the number of edges not in the
spanning tree is bounded by k−1, and the total number of edges in SDAWGD(w)
by O(n). ��

One might concern that Theorem 1 suggests a disadvantage of the SDAWGs
against the sparse (word) suffix trees which have only O(k) nodes and edges,
but we recall that the edge labels of those suffix trees are implemented as pairs
of pointers to the positions of w. To do so, the input string w has to be kept
stored and therefore the total space requirement for using those suffix trees is
also O(n). On the other hand, any edge label of SDAWGs is a single symbol from
Σ ∪ {#}, and therefore the input string w can be discarded after SDAWGD(w)
is constructed.

3.3 On-Line Linear-Time Construction Algorithm

In this section we present our on-line linear-time construction algorithm for
SDAWGs. Since our algorithm is on-line, it sequentially processes the input
string w ∈ D+ from left to right. To discuss this on-line construction, we extend
the definition of SuffixD(u) to any prefix u of w ∈ D+, as follows. For any prefix
u of w = w1 . . . wk ∈ D+ such that u = w1 · · ·w�v, 1 ≤ 	 < k, and v is a proper
prefix of w�+1, let ui = wi · · ·w�v. For convenience, let u�+1 = v and u�+2 = ε.
Now, let

SuffixD(u) = {ui | 1 ≤ i ≤ 	 + 2}.

68 S. Inenaga and M. Takeda

ba a ## # b a b #

b
a

#

a

b

Fig. 3. The SDAWG for string a#b#a#bab#b w.r.t. D = Σ∗#. Compare this with
the SDAWG for string a#b#a#bab# w.r.t. D in Fig. 1 (upper).

Then, the definitions of WordposD(u), the end-equivalence relation ≡u, and
SDAWGD(u) are naturally extended to any prefix u of w.

The following proposition and lemma state how to update the nodes of
SDAWGD(u) when we read a new symbol a and construct SDAWGD(ua).

Proposition 3. Let w ∈ D+ and u, ua ∈ Prefix(w) with a ∈ Σ ∪ {#}. Then,

WordposD(ua) =
{

WordposD(u) ∪ {|ua|}, if u[|u|] = #;
WordposD(u), otherwise.

Also, for any string x ∈ (Σ ∪ {#})∗,

Endposua(x) =
{

Endposu(x) ∪ {|ua|}, if x ∈ Suffix(ua);
Endposu(x), otherwise.

Lemma 3. Let w ∈ D+, and let u, ua ∈ Prefix(w) with a ∈ Σ ∪ {#}. Let z
be the longest string in SuffixD(ua) ∩ Prefix (SuffixD(u)). Then, for any x ∈
Prefix(SuffixD(u)), we have

[x]u =

{
[

u←−x]ua ∪ [z]ua, if z ∈ [x]u and z �=
u←−x ;

[x]ua, otherwise.

Proof (Sketch). By Proposition 3, it is not difficult to see that only if z ∈ [x]u and

z �=
u←−x , it happens that [x]u �= [x]ua. In any other cases, we have [x]u = [x]ua. By

Proposition 3, for any string s ∈ [x]u with |s| > |z|, Endposua(s) = Endposu(s),
and for any string t ∈ [x]u with |t| ≤ |z|, Endposua(t) = Endposu(t) ∪ {|ua|}.
No matter if WordposD(ua) = WordposD(u) ∪ {|ua|} or WordposD(ua) =

WordposD(u), we have [x]u = [
u←−x]ua ∪ [z]ua. ��

To see a concrete example of the above lemma, compare SDAWGD(u) of Fig. 1
(upper) and SDAWGD(ub) of Fig. 3, where u = a#b#a#bab#. Observe
that z = b. Now, node [a#b]u of SDAWGD(u) is split when it is updated to
SDAWGD(ub), as follows:

[a#b]u = {a#b, b} = {a#b} ∪ {b} = [a#b]ub ∪ [b]ub.

For any other nodes [x]u, we have [x]u = [x]ub.

Sparse Directed Acyclic Word Graphs 69

Input: w = w[1..n] ∈ D+ and MD with initial state qs and final state qf .
Output: SDAWGD(w).
{

length(qf) = 0; length(qs) = −1;
source = qf ; link(source) = qs;
sink = source;
for (i = 1; i ≤ n; i++) sink = Update(sink, i);

}

node Update(sink, i) {
c = w[i];
create new node newsink; length(newsink) = i;
create new edge (sink, c, newsink);
for (s = link(sink); no c-edge from s; s = link(s))

create new edge (s, c, newsink);
s′ = SplitNode(s, c);
link(newsink) = s′;
return newsink;

}

node SplitNode(s, c) {
let s′ be the head of the c-edge from s;
if (length(s′) == length(s) + 1) return s′;
create node r′ as a duplication of s′ with the out-going edges;
link(r′) = link(s′); link(s′) = r′;
length(r′) = length(s) + 1;
do {

replace edge (s, c, s′) by edge (s, c, r′);
s = link(s);

} while the head of the c-edge from s is s′;
return r′;

}

Fig. 4. SDAWG construction algorithm. For any node v, link(v) indicates the node to
which the suffix link of v goes. Only the initialization steps using MD is different from
the normal DAWG construction algorithm by Blumer et al. [11].

Fig. 4 shows a pseudo code of our on-line algorithm to build SDAWGs, with
the help of the DFA MD and the suffix links of Definition 3. The only difference
between our algorithm and the algorithm of Blumer et al. [11] for constructing
normal DAWGs is the initialization steps of the main routine where we set
the source of the SDAWG to the final state qf of MD and the suffix link of the
source to the initial state qs of MD. These simple modifications make a difference
in the resulting data structures. In Fig. 5 we illustrate on-line construction of
SDAWGD(w) with w = ab#b#ba# and D = {a, b}#.

We remark that our algorithm generalizes the normal DAWG construction
algorithm of Blumer et al. [11]. Assume just for now D = Σ, and consider a
DFA which accepts Σ with only two states that are a single initial state and a

70 S. Inenaga and M. Takeda

Σ

1
#

Σ

1
#

2
a

Σ

1
#

2
a

3
b

Σ

1
#

2
a

3
b

4
#

Σ

1
#

2
a

3
b

4
#

5
b

Σ

1
#

2
a

3
b

4
#

5
b

b
Σ

1
#

2
a

3
b

4
#

5
b

b

6
#

Σ

1
#

2
a

3
b

4
#

5
b

b

6
#

7
b

Σ

1
#

2
a

3
b

4
#

5
b

b

6
#

7
b

8

#

Σ

1
#

2
a

3
b

4
#

5
b

b

6
#

7
b

8

#

9
a

a

Σ

1
#

2
a

3
b

4
#

5
b

b

6
#

7
b

8

#

9
a

a

0
#
1

Fig. 5. A snapshot of on-line construction of SDAWGD(w) with w = ab#b#ba#
and D = {a, b}#. The broken arrows represent suffix links. The update from
SDAWGD(ab#) to SDAWGD(ab#b) is shown in two rounds, as two new edges are cre-
ated here. Also, the update from SDAWGD(ab#b#) to SDAWGD(ab#b#b) is shown
in two rounds, as a node is here split into two nodes.

single final state. Then this DFA plays the same role as the auxiliary ‘⊥’ node
used in Ukkonen’s on-line suffix tree construction algorithm [12], and this alters
our algorithm so that it builds normal DAWGs.

Theorem 2. The algorithm of Fig. 4 correctly constructs SDAWGD(w) for any
string w ∈ D+.

To establish the above correctness theorem, we show the following claim:

Claim. Let w ∈ D+ and w1, . . . , wk be a unique factorization of w w.r.t. D. Let
u = w1 · · ·w�v be the prefix of w of length j, where v is a proper prefix of w�+1.
After the j-th call of the Update function, we have SDAWGD(u) representing
SuffixD(u) together with the suffix links of Definition 3.

Proof. By induction on j = |u|. When |u| = 0, the lemma trivially holds. We
now consider |u| > 0. Let ui = wi · · ·w�v for 1 ≤ i ≤ 	, and for convenience, let

Sparse Directed Acyclic Word Graphs 71

u�+1 = v, u�+2 = ε and u�+3 = c−1. For the induction hypothesis, assume that,
after the j-th call of the Update function, we have SDAWGD(u) representing

SuffixD(u) = {ui | 1 ≤ i ≤ 	 + 2}.

At the (j + 1)-th call of Update , due to Lemmas 1 and 3, sink = [u]u = [u]uc

and thus newsink is created as node [uc]uc, together with edge (sink, c, newsink)
= ([u]uc, c, [uc]uc). Now let h (1 < h ≤ 	 + 3) be the smallest integer satisfying
wh · · ·w�vc = uhc ∈ Prefix(SuffixD(u)). Note that such h always exists, since
u�+3c = c−1c = ε is always in Prefix(SuffixD(u)). Then, uhc is the longest
element of SuffixD(uc) represented by SDAWGD(u). In the iteration of the for
loop, we traverse the suffix links starting from sink, each time creating edge
([ui]uc, c, [uc]uc) for i = 2, . . . , h − 1. (Note that for some consecutive i’s, the
strings ui may belong to the same end-equivalence class under u, and in this
case only one edge is created for all such consecutive i’s.) This is justified by
the definition of the end-equivalence relation, as we do have uic ≡uc uc for all
i = 1, . . . , h− 1. Hence, the current DAG represents SuffixD(uc).

For the suffix link of newsink, there are two possible cases to happen:

– When uhc =
u←−uhc. In this case, ([uh]u, c, [uhc]u) is a primary edge. Due to

Lemma 3, we have [uhc]u = [uhc]uc and the suffix link from newsink = [uc]uc

is set to node [uhc]uc. This operation is justified by Definition 3.

– When uhc �=
u←−uhc. In this case, ([uh]u, c, [uhc]u) is a secondary edge. Due

to Lemma 3, we have [uhc]u = [yuhc]uc ∪ [uhc]uhc where
u←−uhc = yuhc and

y ∈ D+. This is done by the function SplitNode, and the suffix link of [uhc]uc

is set to link([uhc]u), and that of [yuhc]uc is set to [uhc]uc. Then, the suffix
link of newsink = [uc]uc is also set to node [uhc]uc. These operations are
justified by Definition 3.

Judging whether uhc =
u←−uhc or not, namely, whether edge ([uh]u, c, [uhc]u) is

primary or secondary, is done by the if condition in SplitNode checking the
lengths of the nodes [uh]u and [uhc]u. The resulting structure is SDAWGD(uc)
with its suffix links. ��

Now the only remaining matter is the time complexity of the algorithm.
Let u, ua ∈ Prefix (w) with w ∈ D+ and a ∈ Σ ∪ {#}. For any x ∈ Prefix

(SuffixD(u)) with
u←−x = x, let SCu(x) be the list of nodes contained in the suffix-

link path from node [x]u to the root of TD(u). We can establish the following
lemma, similarly to [11].

Lemma 4. Let u ∈ Prefix(w) with w ∈ D+. Assume that there is a primary edge

([x]u, a, [xa]u) in SDAWGD(u), with
u←−x = x and

u←−xa = xa. Then |SCu(xa)| =
|SCu(x)|−m+1 where m is the number of secondary edges from nodes in SCu(x)
to nodes in SCu(xa).

We are ready to prove the following theorem, based on a similar idea to [11].

72 S. Inenaga and M. Takeda

Theorem 3. The execution time of the algorithm of Fig. 4 is linear in the input
string length.

Proof. Let w ∈ D+ be the input string and let u, ua ∈ Prefix (w) with a ∈
Σ ∪ {#}. Consider a single call to Update creating new node newsink, where
sink = [u]u and newsink = [ua]ua. Let l be the total number of iterations by the
for and do while loops, except for the first execution of the do while loop that
generates the primary edge from node s to r′. In any other iteration of either of
these loops, a secondary edge is created from a node in SC ua(u) to either [ua]ua

or [z]ua, where z is the longest string in SuffixD(ua)∩Prefix (SuffixD(u)). Since
z ∈ SuffixD(ua), we have [z]ua ∈ SCua(ua). Therefore, by Lemma 4, we have
|SCua(ua)| ≤ |SCua(u)| − l + 1.

Moreover, consider the special case where z ∈ [u]u and z �=
u←−u . Recall that the

occurrence of z as a suffix of ua immediately follows # in ua, namely, ua[|ua| −
|z|] = #. Since now z ∈ SuffixD(u), by the periodicity of z, this special case can
happen only when z = #|z|. By Lemma 3, node [u]u is split into two nodes [u]ua

and [z]ua, increasing |SCua(u)| by one from |SCu(u)|. Consequently, we obtain
|SCua(ua)| ≤ |SCua(u)| − l + 2.

The above formula implies that at each call to Update, the suffix chain of
newsink of SDAWGD(ua) can grow by at most two from the suffix chain of
sink of SDAWGD(u). On the other hand, at each call to Update , the length of
this suffix chain decreases by l, which is the number of iterations of the for and
do while loops minus one. Note that the length of this suffix chain never gets
zero, since at the beginning of the construction, SCD(ε) already has the initial
state qs of MD. Hence, the total number of iterations of these loops when we
have processed the entire string w is linear in |w|. ��

4 Conclusions and Further Work

In this paper we introduced a new data structure SDAWGD(w) which supports
a sparse text indexing of string w w.r.t. dictionary D = Σ∗#. Namely, for any
string w = w1 · · ·wk with wi ∈ D for each 1 ≤ i ≤ k, SDAWGD(w) represents
the suffixes of w of the form wi · · ·wk. A typical application to SDAWGs is word-
and phrase-level search on texts written in natural languages such as the Euro-
pean languages, where the blank character can be regarded as #. Also, by using
SDAWGs, the sparse text indexing problem stated in Section 1 is solvable in
time proportional to the pattern length. Further, we showed that SDAWGD(w)
has O(n) nodes and edges, where n = |w|, and finally we presented an on-line
algorithm that constructs SDAWGD(w) in O(n) time and space.

Our future work includes the followings: The first one is to show the exact,
tight bound on the size of SDAWGs. Blumer et al. [11] showed that for any
string w ∈ Σ∗, DAWG(w) has at most 2n − 1 nodes and 3n − 4 edges, where
n = |w|. Since SDAWGs are a sparse version of DAWGs, SDAWGs should have
strictly less nodes and edges, but this has to be explored in more details.

The second one is to extend this work to compact directed acyclic word graphs
(CDAWGs) [13]. The idea of using the minimum DFA MD is applicable to the

Sparse Directed Acyclic Word Graphs 73

on-line construction algorithm for CDAWGs [14], yielding a sparse text indexing
version of CDAWGs. We will then need to define this new data structure, show
its size bound, and prove that the modified algorithm correctly constructs the
desired structure in linear time.

References

1. Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann.
Symp. on Switching and Automata Theory. (1973) 1–11

2. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University

Press (1997)
4. Kärkkänen, J., Ukkonen, E.: Sparse suffix trees. In: Proc. 2nd International Com-

puting and Combinatorics Conference (COCOON’96). Volume 1090 of Lecture
Notes in Computer Science., Springer-Verlag (1996) 219–230

5. Inenaga, S., Kivioja, T., Mäkinen, V.: Finding missing patterns. In: Proc. 4th
Workshop on Algorithms in Bioinformatics (WABI’04). Volume 3240 of Lecture
Notes in Bioinformatics., Springer-Verlag (2004) 463–474

6. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An O(N2)
algorithm for discovering optimal boolean pattern pairs. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 1 (2004) 159–170

7. Inenaga, S., Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano,
S.: Finding optimal pairs of cooperative and competing patterns with bounded
distance. In: Proc. 7th International Conference on Discovery Science (DS’04).
Volume 3245 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2004)
32–46

8. Baeza-Yates, R., Gonnet, G.H.: Efficient text searching of regular expressions. In:
Proc. 16th International Colloquium on Automata, Languages and Programming
(ICALP’89). Volume 372 of Lecture Notes in Computer Science., Springer-Verlag
(1989) 46–62

9. Andersson, A., Larsson, N.J., Swanson, K.: Suffix trees on words. Algorithmica
23 (1999) 246–260

10. Inenaga, S., Takeda, M.: On-line linear-time construction of word suffix trees. In:
Proc. 17th Ann. Symp. on Combinatorial Pattern Matching (CPM’06). Lecture
Notes in Computer Science, Springer-Verlag (2006) To appear.

11. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40 (1985) 31–55

12. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249–260
13. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete

inverted files for efficient text retrieval and analysis. Journal of the ACM 34 (1987)
578–595

14. Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi,
G.: On-line construction of compact directed acyclic word graphs. Discrete Applied
Mathematics 146 (2005) 156–179

On-Line Repetition Detection

Jin-Ju Hong and Gen-Huey Chen�

Department of Computer Science and Information Engineering
National Taiwan University
ghchen@csie.ntu.edu.tw

Abstract. A q-repetition is the concatenation of q copies of a primitive
string, where q ≥ 2. Given a string S character by character, the on-line
repetition detection problem is to determine whether S contains a q-
repetition in an on-line manner. For q = 2, the problem can be solved in
O(m log β) time, where m is the ending position of the first 2-repetition
and β is the number of distinct characters in the m-th prefix of S. In this
paper, we present an on-line algorithm that can detect a q-repetition for
q ≥ 3 with the same time complexity.

1 Introduction

A repetition is the concatenation of two or more copies of a string. Detecting rep-
etitions in a string is a fundamental problem in many areas such as combina-
torics [16, 14], automata and formal language theory [10, 18], data compression [7],
bioinformatics [9], etc. Several algorithms that can detect repetitions in a string
of length n in O(n log n) time can be found in the literature [1, 3, 4, 5, 15, 19].

A string is primitive if it is not a repetition. A q-repetition is the concatenation
of q copies of a primitive string, where q ≥ 2. The on-line repetition detection
problem, which is the on-line version of the repetition detection problem, reads
the input string S character by character and detects a q-repetition as soon as
it is completely read.

Let S[i] denote the i-th character of a string S and S[i..j] denote the substring
of S from the i-th character to the j-th character, where i ≤ j. If i > j, S[i..j]
is considered empty. Let |S| denote the length of S. Suppose that S[i..m] is
the first q-repetition in S (m = |S|, if there is no q-repetition contained in S).
Leung, Peng and Ting [13] first solved the on-line repetition detection problem
for q = 2 with O(m log2 m) time. Later, Chen, Hong and Lu [2] improved the
time complexity to O(m log β), where β is the number of distinct characters in
S[1..m]. In this paper, we further solve the problem for q ≥ 3 with the same
time complexity.

2 Preliminaries

In this section, some definitions, notations and lemmas are introduced, which
will be used in the proposed algorithm.
� Corresponding author.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 74–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On-Line Repetition Detection 75

2.1 Periods

A string S has a period of length p if S[i] = S[j] for every pair of i and j
satisfying i ≡ j (mod p), where 1 ≤ p ≤ |S| and S[1..p] is a period of S. Notice
that S might have several periods, and S itself is a period of S. Let π(S) denote
the length of the smallest. For example, if S = abcabcab, then p can be 3 or 6
or 8 and so π(S) = 3. The following lemma is immediate.

Lemma 1. p is a period length of S if and only if S[1..(n− p)] = S[(1 + p)..n],
where 1 ≤ p ≤ n = |S|.
The following lemma was proved in [8].

Lemma 2. [8] Suppose that p1 and p2 are two period lengths of S. If |S| ≥
p1 + p2 − gcd(p1, p2), then gcd(p1, p2) is also a period length of S.

Lemma 3. Let S′ be a substring of S. If |S′| ≥ 2× π(S), then π(S′) = π(S).

Proof. Let p = π(S) and p′ = π(S′). Since S′ is a substring of S, we have p′ ≤ p.
If p′ < p, then |S′| ≥ 2p > p + p′ − gcd(p, p′). By Lemma 2, gcd(p, p′) is also a
period length of S′. It follows that p′ | p (i.e., p′ divides p) and p′ = gcd(p, p′).
Without loss of generality, assume S′ = S[x..y]. For any 1 ≤ i ≤ j ≤ |S|
with i ≡ j (mod p′), there are x ≤ i′ ≤ j′ ≤ y such that i′ ≡ i (mod p)
and j′ ≡ j (mod p). Now that p′ | p, we have i′ ≡ j′ (mod p′), which implies
S[i] = S[i′] = S[j′] = S[j]. Hence, p′ is also a period length of S, which is a
contradiction. ��
According to the definition of q-repetition and Lemma 2, it is not difficult to see
that S is a q-repetition if and only if |S| = q × π(S). The following lemma was
proved in [6].

Lemma 4. [6] If π(S[1..2p1]) = p1, π(S[1..2p2]) = p2 and π(S[1..2p3]) = p3,
where p1 < p2 < p3, then p1 + p2 ≤ p3.

Lemma 5. Suppose that π(S[1..2pi]) = pi for 1 ≤ i ≤ t, where p1 < p2 < · · · <
pt. Then, p1 + p2 + · · ·+ pt < 3

2 × |S|.
Proof. Clearly, this lemma holds for t ≤ 2. When t ≥ 3,

2×
∑

1≤i≤t

pi = p1 +

⎛
⎝ ∑

1≤i≤t−2

(pi + pi+1)

⎞
⎠+ pt−1 + 2pt

≤ p1 +

⎛
⎝ ∑

1≤i≤t−2

pi+2

⎞
⎠+ pt−1 + 2pt (by Lemma 4)

=

⎛
⎝ ∑

1≤i≤t

pi

⎞
⎠− p2 + pt−1 + 2pt.

Therefore,
∑

1≤i≤t

pi ≤ 2pt + pt−1 − p2 < 3pt ≤ 3
2 × |S|. ��

The following lemma can be proved similarly.

76 J.-J. Hong and G.-H. Chen

Lemma 6. Suppose that π(S[(n − 2pi + 1)..n]) = pi for 1 ≤ i ≤ t, where
p1 < p2 < · · · < pt and n ≥ 2pt. Then, p1 + p2 + · · ·+ pt < 3

2 × n.

2.2 Longest Common Prefix and Longest Common Suffix

Let 	∗pre(S : i1, i2, i3) denote the length of the longest common prefix of S[i1..i3]
and S[i2..i3], where 1 ≤ i1 ≤ i2 ≤ i3 ≤ |S|. For example, if S = ababbabab,
then 	∗pre(S : 3, 6, 8) = 2. 	∗pre(S : i1, i2, |S|) was also called longest common
extension in [11, 12]. Main and Lorentz [15] used the longest common prefix as
a tool to find repetitions In the following, we show a linear-time processing that
reads and processes S[1], S[2], . . . , S[i], . . . in this sequence so that after S[i] is
processed, each 	∗pre(S : 1, i2, i3) can be determined in constant time, where
1 ≤ i2 ≤ i3 ≤ i ≤ |S|.

The processing for S[i] computes π(S[1..i]) and 	∗pre(S : 1, j, i) for all π(S[1..(i−
1)]) + 1 ≤ j ≤ π(S[1..i]), and stores the computed values of π(S[1..i]) and
	∗pre(S : 1, j, i) in A[i] and B[j], respectively, where A and B are two arrays.
Clearly, π(S[1..1]) = 1 and π(S[1..(i− 1)]) ≤ π(S[1..i]), for all 1 < i ≤ |S|.

Lemma 7. After S[i] is processed, each 	∗pre(S : 1, i2, i3) can be determined in
constant time, where 1 ≤ i2 ≤ i3 ≤ i ≤ |S|.

Proof. Clearly, 	∗pre(S : 1, i2, i3) = min{	∗pre(S : 1, i2, i), |S[i2..i3]|}. We show
how to compute 	∗pre(S : 1, i2, i) in constant time as follows.

If i2 = 1, then 	∗pre(S : 1, i2, i) = i. If 1 < i2 ≤ π(S[1..i])(= A[i]), then 	∗pre(S :
1, i2, i) = B[i2] as explained below. Note that B[i2] contains the value of 	∗pre(S :
1, i2, i

′) computed when S[i′] is processed, where i′ ≤ i and π (S[1..(i′ − 1)])+1 ≤
i2 ≤ π(S[1..i′]). Since i2 ≤ π(S[1..i′]), we have 	∗pre(S : 1, i2, i

′) < |S[i2..i′]|.
Hence, 	∗pre(S : 1, i2, i) = 	∗pre(S : 1, i2, i

′) = B[i2].
Then, consider the case π(S[1..i]) < i2 ≤ |S|. Let i′2 ≡ i2 (mod π(S[1..i])),

where 1 ≤ i′2 ≤ π(S[1..i]). 	∗pre(S : 1, i′2, i) can be determined in constant time
according to the discussion above. Moreover, S[i2..i] is a prefix of S[i′2..i]. Hence,
	∗pre(S : 1, i2, i) = min{	∗pre(S : 1, i′2, i), |S[i2..i]|}. ��

The processing for S[1] needs only to set A[1] = 1. For i > 1, we determine
whether p = π(S[1..i]) for p = A[i − 1], A[i − 1] + 1, . . . till p = π(S[1..i]). For
each p < i, we compute 	∗pre(S : 1, p + 1, i) by Lemma 7. If 	∗pre(S : 1, p + 1, i) =
|S[(p + 1)..i]|, then we have π(S[1..i]) = p and the processing for S[i] stops.
Otherwise, set B[p + 1] = 	∗pre(S : 1, p + 1, i). If p = i, then π(S[1..i]) = i.

It is not difficult to see that the processing for S[i] takes O
(
π(S[1..i]) −

π(S[1..(i − 1)])
)

time. Hence, the processing for S[1], S[2], . . . , S[i] takes a to-
tal of O(i) time. The following lemma results.

Lemma 8. Suppose that S[i1], S[i1 + 1], . . . , S[j], . . . are read in this sequence.
With an O(j − i1)-time processing, each π(S[i1..i3]) and each 	∗pre(S : i1, i2, i3),
where i1 ≤ i2 ≤ i3 ≤ j, can be determined in constant time, after reading
S[i1], S [i1 + 1] , . . . , S[j].

On-Line Repetition Detection 77

We use 	∗suf (S : i1, i2, i3) to denote the length of the longest common suffix of
S[i1..i2] and S[i1..i3], where 1 ≤ i1 ≤ i2 ≤ i3 ≤ |S|. The following lemma can be
proved similar to Lemma 8.

Lemma 9. Suppose that S[i3], S[i3 − 1], . . . , S[j], . . . are read in this sequence.
With an O(i3 − j)-time processing, each π(S[i1..i3]) and each 	∗suf (S : i1, i2, i3),
where j ≤ i1 ≤ i2 ≤ i3, can be determined in constant time, after reading S[i3],
S[i3 − 1], . . . , S[j].

2.3 f-Factorization

Let XY denote the concatenation of two strings X and Y . Suppose that {F1,
F2, . . . , Ft} is a partition of S (i.e., S = F1F2 · · ·Ft), where each Fi (1 ≤ i ≤ t)
is a nonempty substring of S. Let S[bi] be the leading character of Fi. Then,
{F1, F2, . . . , Ft} is the f -factorization [5] (or s-factorization [4]) of S if and only
if F1 = S[1] and for k ≥ 2, Fk is the longest prefix of S[bk..|S|] that is also a
prefix of some S[i..|S|], where 1 ≤ i ≤ bk − 1. We let Fk = S[bk] if no such
prefix of S[bk..|S|] is found. For example, if S = aaabbabbab, then F1 = a,
F2 = aa, F3 = b, F4 = b and F5 = abbab.

By the aid of Ukkonen’s on-line suffix tree construction algorithm [20], it is
easy to obtain all f -factorizations of S[1..1], S[1..2], . . . , S[1..i] on-line in total
O(i log α) time, where 1 ≤ i ≤ |S| and α is the number of distinct characters in
S[1..i].

3 The Algorithm

The algorithm reads S[1], S[2], . . . , S[i], . . . in this sequence, where 1 ≤ i ≤ |S|.
When S[i] is read, we determine whether S[1..i] contains a q-repetition or not. If
it exists, then the algorithm reports it. The algorithm halts when a q-repetition
is detected or the entire S has been read. In the rest of this section, the execution
of the i-th iteration (i.e., the execution for S[i]) of the algorithm is elaborated.

The execution for S[1] is to set F1 = S[1] (i.e., b1 = 1). When i ≥ 2, the f -
factorization of S[1..i] is constructed first (by executing Ukkonen’s algorithm).
Suppose that {F1, F2, . . . , Fk} is the f -factorization of S[1..i], where k ≥ 2.
Since S[1..(i − 1)] contains no q-repetition and Fk(= S[bk..i]) is either a single
character or a substring of S[1..(i− 1)], there is no q-repetition in Fk. Hence, we
only need to determine whether or not there is a q-repetition in S[1..i] whose
leading character precedes S[bk] and whose ending character is S[i].

Suppose that S[r..i] is such a q-repetition in S[1..i], where 1 ≤ r ≤ bk − 1. It
is classified into one of the following four types.

• Type-A, if bk−1 ≤ r ≤ bk − 1 and |Fk| ≤ π(S[r..i]);
• Type-B, if bk−1 ≤ r ≤ bk − 1 and π(S[r..i]) < |Fk| < 2× π(S[r..i]);
• Type-C, if bk−1 ≤ r ≤ bk − 1 and |Fk| ≥ 2× π(S[r..i]);
• Type-D, if r < bk−1.

In the following, an O(|Fk−1 |)-time preprocessing is first described. Then, the
detection of a q-repetition is detailed, according to the four types.

78 J.-J. Hong and G.-H. Chen

3.1 Preprocessing

The preprocessing is performed when the leading character of Fk is read (i.e.,
when i = bk). The purpose of the preprocessing is to compute sets PA

j and PB
j

for all bk ≤ j < bk + 2× |Fk−1|. An integer p ∈ PA
j (PB

j) if and only if there is a
string W of length j such that W [1..(bk−1)] = F1F2 · · ·Fk−1, W [(j−p×q+1)..j]
is a type-A (type-B) q-repetition, but W [(j−p×q)..(j−1)] is not a type-A (type-
B) q-repetition. Intuitively, p ∈ PA

j (PB
j) means that there is a possible type-A

(type-B) q-repetition of length p× q that ends at the j-th position, considering
S[1], S[2], . . . , S[bk − 1]. The preprocessing consists of the following three steps.

Step P1: Compute π(S[i2..(bk − 1)]) and 	∗suf (S : bk−1, i2, bk − 1) for all bk−1 ≤
i2 ≤ bk − 1; store the value of 	∗suf (S : bk−1, i2, bk − 1) in C[i2], where
C is an array.

Step P2: Set PA
j and PB

j to be empty, where bk ≤ j < bk + 2× |Fk−1|.
Step P3: For each integer 1 ≤ p < |Fk−1| satisfying that S[(bk − p)..(bk − 1)] is

primitive, if p×(q−1) ≤ λ ≤ p×q−1, then insert p into PA
bk−1+p×q−λ;

if p× (q− 2) < λ < p× (q− 1), then insert p into PB
bk−1+p×q−λ, where

λ = 	∗suf (S : bk−1, bk − 1− p, bk − 1) + p.

In order to verify the correctness of Step P3, it suffices to show that
S [(bk − p)..(bk − 1)] is primitive and p×(q−1) ≤ λ ≤ p×q−1

(
p×(q−2) < λ <

p×(q−1)
)

if and only if there is a string W of length j such that W [1..(bk−1)] =
F1F2 · · ·Fk−1, W [(j − p × q + 1)..j] is a type-A (type-B) q-repetition, but
W [(j − p × q)..(j − 1)] is not a type-A (type-B) q-repetition, where bk ≤ j <
bk + 2× |Fk−1|.

First, the case of PA
bk−1+p×q−λ is considered. Suppose that S[(bk−p)..(bk−1)]

is primitive and p×(q−1) ≤ λ ≤ p×q−1. Let j = bk−1+p×q−λ. The string W
is determined to be the concatenation of F1F2 · · ·Fk−1 and S[(bk − p)..(j − p)],
where |W | = j. Refer to Figure 1, where a type-A 4-repetition is shown and
p ∈ PA

j . By Lemma 1, p is a period length of W [(bk − λ)..(bk − 1)], where
bk−λ = j−p× q+1. Since W [bk..j] = S[(bk−p)..(j−p)] = W [(bk−p)..(j−p)],
p is also a period length of W [(j − p× q + 1)..j].

Assume for a contradiction that π(W [(j − p × q + 1)..j]) < p. By Lemma 2,
we have π(W [(j − p × q + 1)..j]) = gcd(π(W [(j − p × q + 1)..j]), p) (i.e.,
π(W [(j − p× q + 1)..j]) | p). Further, by Lemma 3, π(W [(bk − p)..(bk − 1)]) =
π(W [(j−p×q+1)..j]), which contradicts to that S[(bk−p)..(bk−1)] is primitive.
Hence, π(W [(j − p× q + 1)..j]) = p and W [(j − p× q + 1)..j] is a q-repetition.

Since bk−1 ≤ j−p× q+1 ≤ bk−1 and |W [bk..j]| = j− bk +1 = p× q−λ ≤ p,
W [(j − p× q + 1)..j] is a type-A q-repetition. Also, since either W [j − p× q] �=
W [j − p × q + p] or j − p × q < bk−1, W [(j − p × q)..(j − 1)] is not a type-A
q-repetition.

Conversely, suppose that there is a string W of length j, where bk ≤ j <
bk +2× |Fk−1|, such that W [1..(bk− 1)] = F1F2 · · ·Fk−1, W [(j− p× q +1)..j] is
a type-A q-repetition, but W [(j−p×q)..(j−1)] is not a type-A q-repetition. Then,
bk−1 ≤ j−p×q+1 ≤ bk−1, π(W [(j−p×q+1)..j]) = p, and |W [bk..j]| ≤ p. It is not

On-Line Repetition Detection 79

��������������
��������������

W :

bkbk − pbk − λ(= j − p × q + 1)bk−1 j = bk − 1 + p × q − λ

�∗
suf (S : bk−1, bk − 1 − p, bk − 1) p

λ

Fig. 1. A type-A 4-repetition and p ∈ P A
j

difficult to see that p×(q−1) ≤ 	∗suf (S : bk−1, bk−1−p, bk−1)+p(= λ) ≤ p×q−1
(refer to Figure 1). Since π(W [(j−p× q +1)..j]) = p and W [(bk−p)..(bk−1)] is
a substring of W [(j− p× q +1)..j] of length p, W [(bk− p)..(bk− 1)] is primitive.

Then, the case of PB
bk−1+p×q−λ is considered, in which p × (q − 2) < λ <

p×(q−1). The string W is determined to be the concatenation of F1F2 · · ·Fk−1,
S[(bk − p)..(bk − 1)] and S[(bk − p)..(j − 2p)]. Refer to Figure 2 for an example
of a type-B 4-repetition. The proof is very similar to the proof for PA

bk−1+p×q−λ,
and so omitted.

The time requirement of the preprocessing is analyzed below. Since Fk−1 =
S[bk−1..(bk − 1)] is available, Step P1 takes O(bk − bk−1) = O(|Fk−1 |) time,
by the aid of Lemma 9. By the way, each λ and each π(S[(bk − p)..(bk − 1)]),
where 1 ≤ p < |Fk−1|, can be computed in constant time. Step P2 also takes
O(|Fk−1|) time. Also note that S[(bk − p)..(bk − 1)] is primitive if and only if
π(S[(bk − p)..(bk − 1)]) = |S[(bk − p)..(bk − 1)]| or π(S[(bk − p)..(bk − 1)]) cannot
divide |S[(bk − p)..(bk − 1)]|. Therefore, Step P3 can be completed in O(|Fk−1|)
time. The following lemma results.

Lemma 10. The preprocessing, which constructs PA
j and PB

j for all bk ≤ j <
bk + 2× |Fk−1|, takes O(|Fk−1 |) time.

3.2 Detection of a Type-A q-repetition

It is not difficult to see the following lemma from the discussion above.

Lemma 11. S[(i− p× q + 1)..i] is a type-A q-repetition if and only if p ∈ PA
i

and p is a period length of S[(bk − p)..i].

According to Lemma 1 and Lemma 11, there is a type-A q-repetition ending at
S[i] if and only if S[(bk − p)..(i− p)] = S[bk..i] for some p ∈ PA

i . Consequently,
detecting a type-A q-repetition can be accomplished as follows.

Step A1: Determine if S[(bk − p)..(i− p)] = S[bk..i] for some p ∈ PA
i .

80 J.-J. Hong and G.-H. Chen

��������
��������

W :

bkbk − p
bk − λ(= j − p × q + 1)

bk−1 j = bk − 1 + p × q − λ

�∗
suf (S : bk−1, bk − 1 − p, bk − 1) p

λ

Fig. 2. A type-B 4-repetition and p ∈ P B
j

If S[(bk − p)..(i − p)] = S[bk..i] for some p ∈ PA
i , then S[(i − p × q + 1)..i]

is a type-A q-repetition. The time requirement is analyzed as follows. For each
p ∈ PA

i , Step A1 performs at most |S[bk..i]| (≤ p) character comparisons. Since
	∗suf (S : bk−1, bk − 1 − p, bk − 1) = λ − p ≥ p × (q − 1) − p ≥ p, we have
S[(bk−2p)..(bk−1−p)] = S[(bk−p)..(bk−1)]. Further, since S[(bk−p)..(bk−1)]
is primitive, S[(bk−2p)..(bk−1)] is a 2-repetition and π(S[(bk−2p)..(bk−1)]) = p.

Since |S[bk−1..(bk−1)]| ≥ λ ≥ p×(q−1) ≥ 2p, S[(bk−2p)..(bk−1)] is a suffix of
Fk−1(= S[bk−1..(bk−1)]). According to Lemma 6, we have

∑
p∈P A

j

bk≤j≤i

p < 3
2×|Fk−1|.

That is, detecting a type-A q-repetition whose ending character belongs to Fk(=
S[bk..i]) requires at most 3

2 × |Fk−1| comparisons.

Lemma 12. Detecting a type-A q-repetition whose ending character belongs to
Fk takes O(|Fk−1|) time.

3.3 Detection of a Type-B q-repetition

The following lemma can be proved similar to Lemma 11.

Lemma 13. S[(i− p× q + 1)..i] is a type-B q-repetition if and only if p ∈ PB
i

and p is a period length of S[(bk − p)..i].

According to the preprocessing (Step P3), if p ∈ PB
i , then p < |S[bk..i]| < 2p.

Similarly, by Lemma 1 and Lemma 13, there is a type-B q-repetition ending at
S[i] if and only if S[(bk−p)..(i−p)] = S[bk..i] for some p ∈ PB

i . It is not difficult
to see that the latter holds if and only if the following two conditions hold for
some p ∈ PB

i :
(1) S[(bk − p)..(bk − 1)] = S[bk..(bk + p− 1)];
(2) 	∗pre(S : bk, bk + p, i) = |S[bk..i]| − p.
Condition (1) requires that S[bk..(bk + p − 1)], which is a prefix of Fk, is a

suffix of Fk−1. Let fj be the ending position of the leftmost occurrence of S[bk..j]

On-Line Repetition Detection 81

in Fk−1, where bk ≤ j ≤ i, i.e., fj = min{x : S[(x + bk − j)..x] = S[bk..j] and
bk−1 + i − bk ≤ x ≤ bk − 1}. If S[bk..j] does not occur in Fk−1, set fj = bk.
S[bk..(bk + p − 1)] is a suffix of Fk−1 if and only if fbk+p−1 < bk and 	∗suf (S :
bk−1, fbk+p−1, bk − 1)(= C[fbk+p−1]) ≥ |S[bk..(bk + p− 1)]| = p.

Consequently, there is a type-B q-repetition ending at S[i] if and only if
fbk+p−1 < bk, C[fbk+p−1] ≥ p and condition (2) hold for some p ∈ PB

i . De-
tecting a type-B q-repetition can be accomplished as follows.

Step B1: Compute fi and store the value of fi in D[i], where D is an array.
Step B2: Determine if fbk+p−1 < bk, C[fbk+p−1] ≥ p and 	∗pre(S : bk, bk + p, i) =

|S[bk..i]| − p for some p ∈ PB
i .

It takes total O(|Fk−1|+|Fk|) time for Step B1 to compute fj for all bk ≤ j ≤ i,
as elaborated below. If i = bk, then computing fi needs at most fi − bk−1 + 1
character comparisons. If i > bk and fi−1 = bk (i.e., S[bk..(i − 1)] does not
occur in Fk−1), then set fi = bk immediately. If i > bk and fi−1 < bk (i.e.,
S[(fi−1 − i + bk + 1)..fi−1] is the leftmost occurrence of S[bk..(i− 1)] in Fk−1),
then computing fi is equivalent to finding the leftmost occurrence of S[bk..i] in
S[(fi−1−i+bk+1)..(bk−1)]. The latter needs at most 2×(fi−fi−1)−1 character
comparisons, by the aid of the Morris-Pratt algorithm [17], as explained below.

For simplicity, let X = S[bk..i] and Y = S[(fi−1 − i + bk + 1)..(bk − 1)].
The Morris-Pratt algorithm consists of two phases: a preprocessing phase and a
searching phase. The preprocessing phase constructs a table M of |X | entries,
where M [j] (2 ≤ j ≤ |X |) indicates the length of the longest proper suffix of
X [1..(j − 1)] that is also a prefix of X [1..(j − 1)]. Then, the searching phase
determines the leftmost occurrence of X in Y with at most 2d − |X | character
comparisons, where d = |S[(fi−1 − i + bk + 1)..fi]| if X occurs in Y and d =
|S[(fi−1 − i + bk + 1)..fi]| − 1 if X does not occur in Y .

In fact, it is not necessary for us to perform the preprocessing phase, because
by Lemma 1, each entry of M can be determined in constant time provided
π(S[bk..bk]), π(S[bk..(bk +1)]), . . . , π(S[bk..i]) are known. According to Lemma 8,
each of them can be determined in constant time, if an O(|S[bk..i]|)-time process-
ing was made for S[bk], S[bk + 1], . . . , S[i]. Moreover, since X [1..(|X | − 1)] =
S[bk..(i − 1)] = S[(fi−1 − i + bk + 1)..fi−1], |X | − 1 character comparisons can
be saved in the searching phase. The number of character comparisons needed
for computing fi is at most 2d− 2× |X |+ 1 ≤ 2× |S[(fi−1 − i + bk + 1)..fi]| −
2× |S[bk..i]|+ 1 = 2× (fi − fi−1)− 1.

The time complexity for Step B1 to compute fj for all bk ≤ j ≤ i is bounded
by

O(|S[bk..i]|) + O(fbk
− bk−1 + 1) + O

(∑
bk<j≤i

(2fj − 2fj−1 − 1)
)

≤ O(|Fk|) + O(fi − bk−1)
≤ O(|Fk|) + O(|Fk−1 |).

On the other hand, it takes total O(|Fk−1 |) time for Step B2 to process sets
PB

j for all bk ≤ j ≤ i, as explained below. The value of fbk+p−1 was computed

82 J.-J. Hong and G.-H. Chen

����������
������������

bk−1 ibk + pbk

�∗
suf (S : bk−1, bk − 1, bk − 1 + p) p p

Fig. 3. A type-C 4-repetition

and stored in D[bk + p− 1] when S[bk + p− 1] was read. According to Lemma 8,
	∗pre(S : bk, bk + p, i) can be determined in constant time, if an O(|S[bk..i]|)-
time processing was made for S[bk], S[bk + 1], . . . , S[i]. Therefore, Step B2 takes
constant time for each p ∈ PB

i . According to the preprocessing (Step P3), there
are at most |Fk−1| − 1 integers p contained in all sets PB

j . Hence, Step B2 takes
total O(|Fk−1|) time for all sets PB

j .

Lemma 14. Detecting a type-B q-repetition whose ending character belongs to
Fk takes O(|Fk−1|+ |Fk|) time.

3.4 Detection of a type-C q-repetition

Refer to Figure 3, where a type-C 4-repetition is shown, and it is not difficult to
see the following lemma.

Lemma 15. S[(i − p × q + 1)..i] is a type-C q-repetition if and only if
p = π(Fk) ≤ 1

2 × |Fk| and 	∗suf (S : bk−1, bk − 1, bk − 1 + p) = p× q − |Fk|.

According to Lemma 15, detecting a type-C q-repetition can be accomplished
as follows.

Step C1: If |S[bk..i]| = 2p, then compute 	∗suf (S : bk−1, bk − 1, bk − 1 + p) and
store the value of 	∗suf (S : bk−1, bk − 1, bk − 1 + p) in E[i], where
p = π(S[bk..i]) (= π(Fk)) and E is an array.

Step C2: Determine if |S[bk..i]| ≥ 2p and 	∗suf (S : bk−1, bk − 1, bk − 1 + p) =
p× q − |S[bk..i]|.

Step C1 is executed only when |S[bk..i]| = 2p. According to Lemma 8, the
value of p can be determined in constant time, if an O(|S[bk..i]|)-time process-
ing was made for S[bk], S[bk + 1], . . . , S[i]. Then we show that it takes total
O(|S[bk..i]|) time for Step C1 to compute 	∗suf

(
S : bk−1, bk−1, bk−1+π(S[bk..j])

)
(when S[j] is read and |S[bk..j]| = 2× π(S[bk..j])) for all bk ≤ j ≤ i.

Let µ = 	∗suf (S : bk − p, bk − 1, bk − 1 + p) ≤ p, which can be determined
with at most p character comparisons. There is a method to calculate 	∗suf (S :
bk−1, bk − 1, bk − 1 + p) in constant time, as described below.

On-Line Repetition Detection 83

If µ ≥ |Fk−1|, then
	∗suf (S : bk−1, bk − 1, bk − 1 + p) = |Fk−1|

else if µ < p, then
	∗suf (S : bk−1, bk − 1, bk − 1 + p) = µ

else
	∗suf (S : bk−1, bk − 1, bk − 1 + p) = C[bk − 1− p] + µ.

Notice that 	∗suf (S : bk−1, bk − 1, bk − 1 + p) ≤ |Fk−1|. So, if µ ≥ |Fk−1|,
then bk − p ≤ bk−1 and 	∗suf (S : bk−1, bk − 1, bk − 1 + p) = |Fk−1|. Otherwise,
µ < |Fk−1| and bk−1 < bk − µ. If µ < p, then S[bk − 1 − µ] �= S[bk − 1 + p− µ],
which implies 	∗suf (S : bk−1, bk − 1, bk − 1 + p) = µ. If µ = p(< |Fk−1|), then
	∗suf (S : bk−1, bk − 1, bk − 1 + p) = 	∗suf (S : bk−1, bk − 1 − p, bk − 1) + µ, where
the value of 	∗suf (S : bk−1, bk − 1− p, bk − 1) can be found in C[bk − 1− p].

At most π(S[bk..j]) character comparisons are needed for Step C1 to compute
each 	∗suf

(
bk−1, bk − 1, bk − 1 + π(S[bk..j])

)
, where bk ≤ j ≤ i. By Lemma 5,

the total number of character comparisons needed for Step C1 to calculate
	∗suf

(
bk−1, bk−1, bk−1+π(S[bk..j])

)
for all bk ≤ j ≤ i is bounded by 3

2×|S[bk..i]|.
For the execution of Step C2, we only need to explain how 	∗suf (S : bk−1,

bk − 1, bk − 1 + p) can be determined in constant time, where p = π(S[bk..i]).
Let i′ = bk + 2p − 1 and p′ = π(S[bk..i′]). By Lemma 3, p′ = p, and hence,
	∗suf (S : bk−1, bk−1, bk−1+p) = 	∗suf (S : bk−1, bk−1, bk−1+p′). The latter was
calculated when S[i′] was read, and its value can be found in E[i′]. The execution
of Step C2 for S[bk], S[bk + 1], . . . , S[i] (i.e., |S[bk..j]| and p = π(S[bk..j]) for all
bk ≤ j ≤ i) takes total O(S[bk..i]) time.

Lemma 16. Detecting a type-C q-repetition whose ending character belongs to
Fk takes O(|Fk|) time.

3.5 Detection of a Type-D q-repetition

Since no type-D q-repetition ends in F1 and F2, we assume k ≥ 3. Throughout
this section, we consider 	∗suf (S : i1, i2, i3) = 	∗suf (S : 1, i2, i3) if i1 < 1.

Lemma 17. S[(i − p × q + 1)..i] is a type-D q-repetition if and only if
p = π(S[bk−1..i]) , p × (q − 1) < |S[bk−1..i]| < p × q, and 	∗suf (S : bk−1 − p,
bk−1 − 1 , bk−1 − 1 + p) = p× q − |S[bk−1..i]|.

The proof of Lemma 17 is omitted for brevity. Let gj =	∗suf

(
bk−1−π(S[bk−1..j]),

bk−1−1, bk−1−1+π(S[bk−1..j])
)
, where j ≥ bk−1. According to Lemma 17, there

is a type-D q-repetition ending at S[i] if and only if p×(q−1) < |S[bk−1..i]| < p×q
and gi = p× q − |S[bk−1..i]|, where p = π(S[bk−1..i]). Consequently, detecting a
type-D q-repetition can be accomplished as follows.

Step D1: If i = bk, then compute gj for all bk−1 ≤ j < bk with |S[bk−1..j]| =
2×π(S[bk−1..j]), and store the value of gj in G[j], where G is an array.

84 J.-J. Hong and G.-H. Chen

Step D2: If |S[bk−1..i]| = 2 × p, then compute gi and store the value of gi in
G[i].

Step D3: Determine if p×(q−1) < |S[bk−1..i]| < p×q and gi = p×q−|S[bk−1..i]|.

According to Lemma 8, each π(S[bk−1..j]), where bk−1 ≤ j ≤ i, can be de-
termined in constant time, if an O(|S[bk−1..i]|)-time processing was made for
S[bk−1], S[bk−1 + 1], . . . , S[i]. Step D1 is executed only when i = bk. To com-
pute each gj , Step D1 performs at most π(S[bk−1..j]) character comparisons.
Similarly, Step D2 performs at most π(S[bk−1..i]) character comparisons. By
Lemma 5, the total number of character comparisons needed for Step D1 and
Step D2 to compute gj for all bk−1 ≤ j ≤ i with |S[bk−1..j]| = 2× π(S[bk−1..j])
is bounded by 3

2 × |S[bk−1..i]|.
In Step D3, the condition p× (q− 1) < |S[bk−1..i]| < p× q can be determined

in constant time. When the condition holds, |S[bk−1..i]| > 2p. By Lemma 3,
we have π(S[bk−1..(bk−1 + 2p − 1)]) = π(S[bk−1..i]) = p. It follows that gi =
gbk−1+2p−1. The value of gbk−1+2p−1, which was calculated when S[bk−1 +2p−1]
was read, can be found in G[bk−1 + 2p− 1]. Therefore, the execution of Step D3
for S[bk], S[bk + 1], . . . , S[i] takes total O(|S[bk..i]|) time.

Lemma 18. Detecting a type-D q-repetition whose ending character belongs to
Fk takes O(|Fk−1|+ |Fk|) time.

3.6 Time Complexity

Suppose that there is a q-repetition whose ending character is S[m]. If no q-
repetition occurs, then let m = |S|. We further assume that S[m] belongs
to Fk, where k ≥ 2. According to Lemma 10, the preprocessing takes total∑
2≤j≤k

O(|Fj−1|) = O(m) time. According to Lemmas 12, 14, 16 and 18, detect-

ing a q-repetition in S takes total
∑

2≤j≤k

O(|Fj−1 | + |Fj |) = O(m) time. Recall

that computing the f -factorization of S[1..m] on-line takes total O(m log β) time,
where β is the number of distinct characters in S[1..m]. Therefore, the time com-
plexity of the proposed algorithm is O(m log β).

4 Concluding Remarks

There were several off-line algorithms that could detect repetitions in S in
O(|S| log α) time, where α is the number of distinct characters in S. In this
paper, we investigated some properties of repetitions and then presented an
on-line O(m log β)-time algorithm for detecting a q-repetition, where q ≥ 3. The
detection of a 2-repetition, which also takes O(m log β) time, can be found in [2].

One natural problem is how to further reduce the time complexity of detecting
a q-repetition. Another interesting problem is to find all repetitions in an on-line
manner.

On-Line Repetition Detection 85

References

1. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoretical Computer Science, 22:297–315, 1983.

2. G.-H. Chen, J.-J. Hong, and H.-I. Lu. An optimal algorithm for online square
detection. In Proceedings of the 16th Annual Symposium on Combinatorial Pattern
Matching (CPM), pages 280–287, 2005.

3. M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters, 12(5):244–250, 1981.

4. M. Crochemore. Recherche linéaire d’un carré dans un mot. Comptes Rendus des
Séances de l’Académie des Sciences. Série I. Mathématique, 296(18):781–784, 1983.

5. M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45(1):63–86, 1986.

6. M. Crochemore and W. Rytter. Squares, cubes, and time—space efficient string
searching. Algorithmica, 13(5):405–425, 1995.

7. M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998.

8. N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965.

9. D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997.

10. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
11. R. M. Kolpakov and G. Kucherov. Finding repeats with fixed gap. In Proceedings

of the 7th International Symposium on String Processing Information Retrieval
(SPIRE), pages 162–168, 2000.

12. R. M. Kolpakov and G. Kucherov. Finding approximate repetitions under Ham-
ming distance. Theoretical Computer Science, 303(1):135–156, 2003.

13. H.-F. Leung, Z. Peng, and H.-F. Ting. An efficient online algorithm for square
detection. In Proceeings of the 10th Annual International Conference on Computing
and Combinatorics (COCOON), pages 432–439, 2004.

14. M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005.
15. M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions

in a string. Journal of Algorithms, 5(3):422–432, 1984.
16. M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In

A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume
F12 of NATO ASI Series, pages 271–278. Springer-Verlag, 1985.

17. J. H. Morris, Jr. and V. R. Pratt. A linear pattern-matching algorithm. Technical
Report 40, University of California, Berkeley, 1970.

18. R. J. Ross and K. Winklmann. Repetitive strings are not context-free. Informatique
Théorique et Applications, 16(3):191–199, 1982.

19. J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats using
a suffix tree. Theoretical Computer Science, 270(1-2):843–856, 2002.

20. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

Analyzing User Behavior to Rank Desktop Items

Paul-Alexandru Chirita and Wolfgang Nejdl

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{chirita, nejdl}@l3s.de

Abstract. Existing desktop search applications, trying to keep up with the rapidly
increasing storage capacities of our hard disks, are an important step towards more
efficient personal information management, yet they offer an incomplete solution.
While their indexing functionalities in terms of different file types they are able to
cope with are impressive, their ranking capabilities are basic, and rely only on tex-
tual retrieval measures, comparable to the first generation of web search engines.
In this paper we propose to connect semantically related desktop items by exploit-
ing usage analysis information about sequences of accesses to local resources, as
well as about each user’s local resource organization structures. We investigate
and evaluate in detail the possibilities to translate this information into a desktop
linkage structure, and we propose several algorithms that exploit these newly cre-
ated links in order to efficiently rank desktop items. Finally, we empirically show
that the access based links lead to ranking results comparable with TFxIDF rank-
ing, and significantly surpass TFxIDF when used in combination with it, making
them a very valuable source of input to desktop search ranking algorithms.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past decade,
and so has the number of files we usually store on our computer. Using this space, it
is quite common to have over 100,000 indexable items on the desktop. It is no wonder
that sometimes we cannot find a document anymore, even when we know we saved it
somewhere. Ironically, in some of these cases nowadays, the document we are looking
for can be found faster on the World Wide Web than on our personal computer. In
view of these trends, resource organization in personal repositories has received more
and more attention during the past years. Thus, several projects have started to explore
search and personal information management on the desktop, including Stuff I’ve Seen
[6], Haystack [13], or our Beagle++ [4].

Web search has become more efficient than PC search due to the powerful link based
ranking solutions like PageRank [12]. The recent arrival of desktop search applications,
which index all data on a PC, promises to increase search efficiency on the desktop.
However, even with these tools, searching through our (relatively small set of) personal
documents is currently inferior to searching the (rather vast set of) documents on the
web. Indeed, desktop search engines are now comparable to first generation web search
engines, which provided full-text indexing, but only relied on textual information re-
trieval algorithms to rank their results.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 86–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analyzing User Behavior to Rank Desktop Items 87

Desktop ranking is hindered by the lack of links between documents, an important
source of evidence for current web ranking algorithms. In this paper we propose to al-
leviate this deficiency by analyzing user’s activity patterns, as well as her local resource
organization structures. We investigate and evaluate in detail the possibilities to trans-
late this information into a desktop linkage structure, and we propose several algorithms
that exploit these newly created links in order to efficiently rank desktop items. Finally,
we empirically show that the access based links lead to ranking results comparable with
TFxIDF ranking, and significantly surpass TFxIDF when used in combination with it,
making them a very valuable source of input to desktop search ranking algorithms.

The paper is organized as follows: We start with a discussion of the relevant back-
ground in Section 2. Then, in Section 3 we present the desktop ranking algorithms we
propose and in Section 4 we show our experimental results. Finally, we conclude and
discuss further work in Section 5.

2 Relevant Background

Though ranking plays an important role on the Web, there is almost no approach specif-
ically aiming at ranking desktop search results. More, even though there exist quite a
few systems organizing personal information sources and improving information access
in these environments, few of the papers describing them concentrate on search algo-
rithms. This section will describe several such systems and discuss their approaches to
desktop search.

Several systems have been constructed in order to facilitate re-finding of various
stored resources on the desktop. Stuff I’ve Seen [6] for example provides a unified
index of the data that a person has seen on her computer, regardless of its type. Con-
textual cues such as time, author, thumbnails and previews can be used to search for
and present information, but no desktop specific ranking scheme is investigated. Simi-
larly, MyLifeBits [7] targets storing locally all digital media of each person, including
documents, images, sounds and videos. They organize these data into collections and,
like us, connect related resources with links. However, they do not investigate build-
ing desktop ranking algorithms that exploit these links, but rather use them to provide
contextual information.

Haystack [1, 9] emphasizes the relationship between a particular individual and her
corpus. It is quite similar to our approach in the sense that it automatically creates
connections between documents with similar content and it exploits usage analysis to
extend the desktop search results set. However, just like the previous articles, it does
not investigate the possibilities to rank these results, once they have been obtained.

Connections [14] is a very recent system also targeted at enhancing desktop search
quality. Similar to us and to Haystack, they also attempt to connect related desktop
items, yet they exploit these links using rather complex measures combining BFS and
link analysis techniques, which results in rather large search response delays. Neverthe-
less, while our algorithms are clearly faster, we intend to compare the two approaches
in terms of output quality in future work.

Finally, Chirita et al. [3, 4] proposed various activity specific heuristics to generate
links between resources. There, our approach was limited to specific desktop contexts
(e.g., publications, or web pages), whereas in this paper we explore much more general

88 P.-A. Chirita and W. Nejdl

sources of linkage information such as file access patterns, which are applicable to any
desktop resource.

3 Ranking Desktop Resources

Introduction. As the number of indexable items on our desktops (i.e., files that con-
tain any kind of textual information, emails, etc.) can easily exceed 100,000, we can
no longer manage them manually just by defining “good” file and directory names and
structures. More, the currently employed textual information retrieval measures are no
longer sufficient to order the usually several hundreds of results returned for our desktop
search queries. We therefore need to investigate more advanced desktop organization
paradigms and ranking algorithms. In this section we address the latter issue and pro-
pose several algorithms that exploit file access information in order to efficiently rank
desktop search results.

Exploiting Usage Analysis to Generate Ranks. Current personal information systems
create links between desktop resources only when a very specific desktop usage activity
is encountered (e.g., the attachment of an email is saved as a file, or a web page is stored
locally, etc.). We argue that in fact in almost all cases when two items are touched in a
sequence several times, there will also be a relation between them, irrespective of the
underlying user activity. Thus, we propose to add a link between such two items a and b
whenever item b is touched after a for the T th time, with T being a threshold set by the
user. Higher values for T mean an increased accuracy of the ranking algorithm, at the
cost of having a score associated to less resources. Theoretically, there is only a very low
probability to have any two items a and b touched in a sequence even once. However,
since context switching occurs quite often nowadays, we also investigated higher values
for T , but experimental results showed them to perform worse than T = 1. This is
in fact correct, since two files are accessed consequently more often because they are
indeed related, than due to a switch of context.

After a short period of time a reputation metric can be computed over the graph
resulted from this usage analysis process. There exist several applicable metrics. The
most common one is PageRank [12]. On the one hand, it has the advantage of prop-
agating the inferred semantic similarities (connections), i.e., if there is a link between
resources a and b, as well as an additional link between resources b and c, then with a
relatively high probability we should also have a connection between a and c. On the
other hand, PageRank also implies a small additional computational overhead, which is
not necessary for a simpler, yet more naı̈ve metric, in-link count. According to this latter
approach, the files accessed more often get a higher ranking. However, our experiments
from Section 4 will show that although it does indeed yield a clear improvement over
simple TFxIDF, file access counting is also significantly less effective than PageRank.

Another aspect that needs to be analyzed is the type of links residing on the PC
desktop. We use directed links for each sequence a → b, as when file b is relevant for
file a, it does not necessarily mean that the reversed is true as well. Imagine for example
that b is a report we are regularly appending, whereas a is the article we are writing.
Clearly b is more relevant for a, than a is for b. This yields the following algorithm:

Analyzing User Behavior to Rank Desktop Items 89

Algorithm 3.1. Ranking Desktop Items.

Pre-processing:
1: Let A be an empty link structure
2: Repeat for ever
3: If (File a is accessed at time ta, File b is accessed at time tb) AND (ta − tb < ε),
4: Then Add the link a→ b to A

Ranking:
1: Let A′ be an additional, empty link structure
2: For each resource i
3: For each resource j linked to i
4: If (#Links(i→ j) > T) in A
5: Then Add one link i→ j to A′

6: Run PageRank using A′ as underlying link structure

As it was not clear how many times two resources should be accessed in a sequence
in order to infer a “semantic” connection between them, we studied several values for
the T threshold, namely one, two and three. Additionally, we also explored the possi-
bilities to directly use the original matrix A with PageRank, thus implicitly giving more
weight to links that occurred more frequently (recall that in A each link is repeated as
many times as it occurred during regular desktop activity). Finally, in order to address
a broad scope of possible ranking algorithms, we also experimented with more trivial
reputation measures, namely (1) frequency of accesses and (2) total access time.

Other Heuristics to Generate Desktop Links. There exists a plethora of other cues
for inferring desktop links, most of them being currently unexplored by previous work.
For example the files stored within the same directory have to some extent something in
common, especially for filers, i.e., users that organize their personal data into carefully
selected hierarchies. Similarly, files having the same file name (ignoring the path) are
in many times semantically related. In this case however, each name should not consist
exclusively of stopwords. More, for this second additional heuristic we had to utilize
an extended stopword list, which also includes several very common file name words,
such as “index”, or “readme”. In total, we appended 48 such words to the original list.
Finally, we note that both these above mentioned approaches favor lower sets: If all files
within such a set (e.g., all files residing in the same directory) are linked to each other,
then the stationary probability of the Markov chain associated to this desktop linkage
graph is higher for the files residing in a smaller set. This is in fact correct, since for
example a directory storing 10 items has most probably been created manually, thus
containing files that are to some extent related, whereas a directory storing 1,000 items
has in most of the situations been generated automatically. Also, since these sub-graphs
of the main desktop graph are cliques, several computational optimizations are possible;
however, in order to keep our algorithms clear we will not discuss them here.

A third source of linkage information is file type. There is clearly a connection
between the resources sharing the same type, even though it is a very small one.

90 P.-A. Chirita and W. Nejdl

Unfortunately, each such category will nowadays be filled with up to several thousands
of items (e.g., JPG images), thus making this heuristic difficult to integrate into the
ranking scheme. A more reliable approach is to use text similarity to generate links be-
tween very similar desktop resources. Likewise, if the same entity appears in several
desktop resources (e.g., Hannover appears both as the name of a folder with pictures
and as the subject of an email), then we argue that some kind of a semantic connec-
tion exists between the two resources. Finally, we note that users should be allowed to
manually create links as well, possibly having a much higher weight associated to these
special links.

Practical Issues. Several special cases might arise when applying usage analysis for
desktop search. First, the textual log file capturing usage history should persist over
system updates in order to preserve the rich linkage information. In our experiments, we
collected only about 80 KB of log data over two months. Second and more important,
what if the user looks for a file she stored five years ago, when she had no desktop
search application installed? We propose several solutions to this:

1. The naı̈ve approach is to simply enable ranking based exclusively on TFxIDF. How-
ever, much better results can be obtained by incorporating contextual information
within the ranking scheme.

2. We therefore propose a more complex query term weighting scheme, such as BM25
[8]. Teevan et al. [15] have recently proposed an application of this metric to per-
sonalize web search based on desktop content. In our approach, their method must
be adapted to personalize desktop search based on a specific activity context, rep-
resented for example by the files with a specific path or date range.

3. If the user remembers the approximate moment in time when she accessed the
sought item, then this date represents a useful additional context based vertical
ranking measure. For example, if the user remembers having used the target file
around year 1998, the additional importance measure is represented by the normal-
ized positive time difference between mid-1998 and the date of each output result.

4. If no contextual information is available, we propose to infer it through a relevance
feedback process, in which the user first searches the desktop using TFxIDF exclu-
sively, and then selects one or several (relatively) relevant results, which are then
used to extract a context (e.g., date) or to propose expansions to the user query.

Comparison to the Web Model. Clearly, unlike in the web, most of the desktop search
queries are navigational: users just want to locate something they know their stored
before. So, are some desktop files more important than others, or are they all approxi-
mately equally important? We argue that, as in the web, some desktop resources are
much more important than others, and thus users will most of the time be seeking
only for these highly important items. For example, one year after some project was
closed, a log file inspected by the researcher 400 times during an experiment will defi-
nitely be less important than the project report which was probably accessed only 100
times. Therefore, contextual information, though very important, is not sufficient in ef-
fectively locating desktop items, and more complex importance measures are needed in
order to exploit user’s activity patterns, her local desktop organization, etc. We thus pro-
pose to link together the resources matching these heuristics (i.e., having similar access

Analyzing User Behavior to Rank Desktop Items 91

patterns, etc.), and then to utilize the resulting linkage structure to infer a global ranking
over the PC Desktop.

4 Experimental Results

Experimental Setup. We evaluated the utility of our algorithms within three different
environments: our laboratory (with researchers in different computer science areas and
education), a partner laboratory with slightly different computer science interests, and
the architecture department of our university. The last location was especially chosen
to give us an insight from persons with very different activities and requirements. In
total, 11 persons installed our logging tool and worked normally on their desktops for 2
months1. Then, during the subsequent 3 weeks, they performed several desktop searches
related to their regular activities2, and graded each top 10 result of each algorithm with
a score ranging from 1 to 5, 1 defining a very poor result with respect to their desktop
data and expectations, and 5 a very good one. This is in fact a Weighted P@10 [2]. For
every query, we shuffled the top ten URIs output by each of our algorithms, such that the
users were neither aware of their actual place in the rank list, nor of the algorithm(s) that
produced them. On average, for every issued query the subjects had to evaluate about 30
desktop documents (i.e., the reunion of the outputs of all approaches we investigated).
In total, 84 queries had been issued and about 2,500 documents were evaluated.

For the link based ranking algorithms (recall that for the sake of completeness we
have also evaluated some access time ranking heuristics) we set the parameter ε to four
times the average break time of the user. We have also attempted to set it to one hour,
and eight times the average break time of the user, but manual inspection showed these
values to yield less accurate usage sessions. Although much more complex techniques
for computing usage session times do exist (e.g., exploiting mouse clicks or movements,
scrollbar activities, keyboard activities, document printing, etc. [5, 11]), we think this
heuristic suffices for proving our hypothesis, i.e., usage analysis based ranking improves
over simple textual retrieval approaches.

In the following, we will first present an analysis of this experiment focused on the
ranking algorithms, and then another one, focused on the quality of the search output
they produced.

Ranking analysis. We first analyzed how our algorithms perform, in order to tune the
parameters discussed before and to investigate whether the non-usage analysis heuris-
tics do indeed make a difference in the overall rankings. We thus defined and analyzed
the following 17 algorithms:

• T1: Algorithm 3.1 with T = 1.
• T1Dir: “T1” enriched with additional links created as complete subgraphs with the

files residing in every desktop directory (i.e., all the files in a directory point to each
other).

1 The logger was implemented using a hook that catched all manual file open / create / save
system calls.

2 The only requirement we made here was to perform at least 5 queries, but almost every subject
provided more. In all cases, we collected the average rating per algorithm for each person.

92 P.-A. Chirita and W. Nejdl

• T1DirFnames: “T1Dir” with further additional links created as complete sub-
graphs with the resources having the same file name (i.e., all items with the same
file name point to each other, provided that the file name does not consist exclu-
sively of stopwords).
• T1Fnames: “T1” enriched with the links between resources with identical file

names as in the previous algorithm3. This was necessary to inspect the specific con-
tribution of directories and file names respectively to the overall ranking scheme.
• T1x3Dir: Same as “T1Dir”, but with the links inferred from usage analysis being

three times more important than those inferred from the directory structure.
• T1x3DirFnames: Same as above, but also including the links provided by identical

file names.
• T1x3Fnames: Same as “T1x3Dir”, but using the file name heuristic instead of the

directory one.
• T2: Algorithm 3.1 with T = 2.
• T3: Algorithm 3.1 with T = 3.
• VisitFreq: Ranking by access frequency.
• 1HourGap: Ranking by total amount of time spent on accessing each resource,

with sessions delimited by one hour of inactivity.
• 4xAvgGap: Ranking by total access time, with sessions delimited by a period of

inactivity longer than four times the average break time of the user.
• 8xAvgGap: Same as above, but with sessions bounded by a period of inactivity

longer than eight times the average average break time of the user.
• Weighted: Algorithm 3.1 directly using the matrix A, instead of A′, i.e., with links

weighted by the number of times they occurred.
• WeightedDir: Algorithm “Weighted” enriched with links between the files stored

within the same directory.
• WeightedDirFnames: The previous algorithm with a link structure extended with

connections between files with identical names.
• WeightedFnames: Same as above, but without the links generated by exploiting

the desktop directory structure.

Since in-link count is almost identical to file access count (frequency), we only ex-
perimented with the latter measure. The only difference between these two measures is
that in-link count will result in lower page scores when a threshold higher than one is
used to filter-out the links (see also Algorithm 3.1).

We analyzed two aspects at this stage: First, it was important to inspect the final
distribution of rankings, as this indicates how desktop search output looks like when
using these algorithms. In all cases the resource rankings exhibits a distribution very
well shaped by a power law: The left side of Figure 1 plots the output rankings for
algorithm “T1”, and its right side depicts the output when both directory and file name
heuristics were added (in this latter case we notice a strong exponential cut-off towards
the end, for the files that benefited less from the link enhancement techniques).

3 For emails, this corresponded to having the same subject, eventually with “Re:” or “Fwd:”
inserted in the beginning.

Analyzing User Behavior to Rank Desktop Items 93

 1e-005

 0.0001

 1 10 100 1000

T
hr

es
ho

ld
 1

 S
co

re

Page #

"c:\\desktoprank\\final_plots\\ranks.txt"

 1e-006

 1e-005

 0.0001

 0.001

 1 10 100 1000 10000 100000

T
1D

irF
na

m
es

 S
co

re

Page #

"c:/desktoprank/final_plots/ranksDirFnames.txt"

Fig. 1. Distribution of scores for the “T1” (left) and “T1DirFnames” (right) algorithms

The second aspect to analyze was whether there is a difference between these heuris-
tics. For this purpose we used a variant of Kendall’s τ measure of similarity between
two ranking vectors [10], which resulted in a similarity score falling within [-1,1].

Three of our testers (one from each location) were specifically asked to extensively
use our tool. When they reached 40 queries each, we applied the Kendall measure on
their complete output, as returned by each algorithm. The results are illustrated in Table
1. After analyzing them, we drew the following conclusions:

• The heuristics to link the resources residing within the same directory, or the re-
sources with identical file names did result in a rather different query output.
• The approaches “T1x3Dir”, “T1x3DirFnames” and “T1x3Fnames” did not yield a

significant difference in the results.
• The output of “T2” and “T3” was very similar, indicating that a threshold higher

than 2 is not necessary for Algorithm 3.1.
• “4xAvgGap” and “8xAvgGap” performed very similar to each other.
• “Weighted” output was very close to “T1”.
• Finally, when “Weighted” was combined with directory or file name information,

we obtained almost identical outcomes as when we used “T1” with these heuristics.

As a rule of thumb, we considered similar all algorithm pairs with a Kendall τ score
above 0.5, and therefore removed one of them from the search quality evaluation. Ex-
ceptions were “Weighted” and “VisitFreq” (both very similar to “T1”) in order to have
at least one representative of their underlying heuristics as well.

Finally, inspecting the rank distributions generated by these heuristics also helped
us obtain an additional interesting result, namely that only about 2% of the desktop
indexable items are actually manually accessed by the user. This further supports the
idea of exploiting usage information in ranking desktop search results, as current textual
measures many times output high scores for documents that have never been touched
by the user (e.g., HTML program documentation files).

Search quality analysis. After the previous analysis, we kept 8 algorithms for precision
evaluation: “T1”, “T1Dir”, “T1DirFnames”, “T1Fnames”, “T2”, “VisitFreq”, “4xAvg-
Gap” and “Weighted”. Even though they do not incorporate any textual information,

94 P.-A. Chirita and W. Nejdl

Table 1. Kendall similarity for the desktop ranking algorithms (average over 120 queries from 3
users)

Algorithm T
1

T
1D

ir

T
1D

ir
F

na
m

es

T
1F

na
m

es

T
1x

3D
ir

T
1x

3D
ir

F
na

m
es

T
1x

3F
na

m
es

T
2

T
3

V
is

it
F

re
q

1H
ou

rG
ap

4x
A

vg
G

ap

8x
A

vg
G

ap

W
ei

gh
te

d

W
ei

gh
te

dD
ir

W
ei

gh
te

dD
ir

F
na

m
es

W
ei

gh
te

dF
na

m
es

Threshold 1 1

T1Dir 0.22 1

T1DirFnames 0.22 0.47 1

T1Fnames 0.23 0.22 0.35 1

T1x3Dir 0.28 0.86 0.46 0.23 1

T1x3Dir-
Fnames

0.24 0.48 0.75 0.40 0.48 1

T1x3Fnames 0.22 0.24 0.36 0.88 0.24 0.41 1

Threshold 2 0.20 0 -0.2 0 0.02 -0.2 0 1

Threshold 3 0.01 -0.1 -0.3 -0.1 -0.1 -0.3 -0.1 0.60 1

VisitFreq 0.66 0.24 0.15 0.27 0.26 0.20 0.28 0.26 0.05 1

1HourGap 0.48 0.15 0.14 0.20 0.12 0.11 0.20 0.17 0.02 0.41 1

4xAvgGap 0.43 0.25 0.18 0.23 0.26 0.19 0.24 0.20 0.04 0.43 0.34 1

8xAvgGap 0.48 0.26 0.16 0.21 0.27 0.18 0.22 0.16 0.04 0.50 0.47 0.70 1

Weighted 0.75 0.20 0.21 0.20 0.25 0.24 0.20 0.24 0.01 0.64 0.52 0.47 0.47 1

WeightedDir 0.22 0.89 0.47 0.22 0.85 0.48 0.24 0 -0.1 0.21 0.11 0.26 0.27 0.22 1

Weighted-
DirFnames

0.21 0.47 0.89 0.34 0.46 0.75 0.36 -0.2 -0.3 0.15 0.14 0.18 0.16 0.21 0.47 1

Weighted-
Fnames

0.26 0.24 0.37 0.83 0.25 0.43 0.81 0 -0.1 0.31 0.28 0.28 0.26 0.25 0.24 0.36 1

we still started with ranking desktop search results only according to these measures,
in order to see the impact of usage analysis on desktop ranking. The average results are
summarized in the second column of Table 2. As we can see, all measures performed
worse than TFxIDF (we used Lucene4 together with an implementation of Porter’s
stemmer to select the query hits, as well as to compute the TFxIDF values), but only
at a small difference. This indicates that users do issue a good amount of their desktop
queries on aspects related to their relatively recent, or even current work. Also, as the
“T2” algorithm does not improve over “T1”, it is therefore sufficient to use Algorithm
3.1 with a threshold T = 1 in order to effectively catch the important desktop docu-
ments. This is explainable, since a threshold T = 2 would only downgrade files that
were accessed only once, which have a relatively low score anyway compared to the
other more frequently touched resources.

4 http://lucene.apache.org

Analyzing User Behavior to Rank Desktop Items 95

Table 2. Average grading for the usage analysis algorithms with and without a combination with
TFxIDF, together with tests on the statistical significance of the improvement the latter ones bring
over regular TFxIDF

Algorithm Weighted P@10 Weighted P@10 Signif. for Combined
(Usg. An.) (Combined) versus TFxIDF

T1 * TFxIDF 3.04 3.34 p = 0.003
T1Dir * TFxIDF 3.02 3.36 p < 0.001
T1DirFnames * TFxIDF 2.99 3.42 p � 0.001
T1Fnames * TFxIDF 2.97 3.26 p = 0.064
T2 * TFxIDF 2.85 3.13 p = 0.311
VisitFreq * TFxIDF 2.98 3.23 p = 0.141
4xAvgGap * TFxIDF 2.94 3.09 p = 0.494
Weighted * TFxIDF 3.07 3.30 p = 0.012
TFxIDF 3.09 3.09

Finally we investigated how our algorithms perform within a realistic desktop search
scenario, i.e., combined with term frequency information. We used the following for-
mula:

Score(file) = NormalizedScore(file) ∗ NormalizedV SMScore(file, query)

The VSM score is computed using the Vector Space Model and both scores are normal-
ized to fall within [0,1] for a given query5. The resulted average gradings are presented
in the third column of Table 2. We notice that in this approach, all measures outperform
TFxIDF in terms of weighted precision at the top 10 results, and most of them do that
at a statistically significant difference (see column 4 of Table 2 for the p values with
respect to each metric).

The usage analysis based PageRank (“T1”) is clearly improving over regular TFxIDF
ranking. As for the additional heuristics evaluated, connecting items with similar file
name or residing in the same directory, they yielded a significant improvement only
when both of them have been used. This is because when used by themselves, these
heuristics tend to bias the results away from the usage analysis information, which
is the most important by far. When used together, they add links in a more uniform
manner, thus including the information delivered by each additional heuristic, while
also keeping the main bias on usage analysis. Finally, the simpler usage analysis metrics
we investigated (e.g., ranking by frequency or by total access time) did indeed improve
over TFxIDF as well, but with a lower impact than the Algorithm 3.1 enriched with
directory and file name information. We conclude that with TFxIDF in place, usage
analysis significantly improves desktop search output rankings and it can be further
enhanced by linking resources from the same directory and with identical file names.

The final results are also illustrated in Figure 2, in order to make the improvement
provided by our algorithms also visible at a graphical level. The horizontal line residing
at level 3.09 represents the performance of TFxIDF; the red bars (right hand side) depict
the average grading of the algorithms combining TFxIDF with our approaches, and the
blue ones (left hand side) depict the average grading obtained when using only our
usage analysis algorithms to order desktop search output.

5 In order to avoid obtaining many null scores when using access frequency or total access time
(recall that many items have never been touched by the user), in these scenarios we also added
a 1/N score to all items before normalizing, with N being the total amount of desktop items.

96 P.-A. Chirita and W. Nejdl

Fig. 2. Average grading for the usage analysis algorithms

5 Conclusions and Future Work

Currently there are quite several personal information systems managing PC desktop
resources. However, all of them have focused on seeking solutions to find previously
stored items in a faster way. In this paper we argued that in many cases these existing
approaches already yield several hundreds of query results, which cannot be success-
fully ordered by using textual retrieval measures exclusively. To solve this problem,
we proposed to introduce ranking for desktop items and we investigated in detail sev-
eral approaches to achieve this goal, ranging from usage analysis to exploiting con-
textual information. Our extensive experiments showed that such techniques do indeed
significantly increase desktop search quality with up to 10.67% in terms of Average
(Weighted) Precision.

In future work we intend to explore content based heuristics to provide us with addi-
tional links between similar desktop documents, as well as to combine our techniques
with “recency” information about file accesses, which was previously proved to be quite
important in locating desktop resources [6]. Also, we would like to analyze the neces-
sity and benefits of enabling desktop search restrictions to only some specific sub-tree
of the local hierarchy, as well as of clustering near-duplicate desktop resources (which
is a phenomenon more common than in the web).

Acknowledgements

First and foremost we thank Leo Sauermann from DFKI for his valuable suggestions
and for implementing the module that logs user desktop activity. We also thank our
colleagues Jörg Diederich and Uwe Thaden for pre-reviewing our paper, as well as to

Analyzing User Behavior to Rank Desktop Items 97

all those who kindly agreed to participate in our experiments. Finally, we thank all col-
leagues involved in the Beagle++ project for the interesting discussions we had within
this context.

References

1. E. Adar, D. Kargar, and L. A. Stein. Haystack: per-user information environments. In Proc.
of the 8th Intl. CIKM Conf. on Information and Knowledge Management, 1999.

2. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
1999.

3. P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based metadata for
semantic desktop search. In Proc. of the 2nd European Semantic Web Conference, 2005.

4. P. A. Chirita, S. Ghita, W. Nejdl, and R. Paiu. Beagle++: Semantically enhanced searching
and ranking on the desktop. In Proc. of the 3rd European Semantic Web Conference, 2006.

5. M. Claypool, D. Brown, P. Le, and M. Waseda. Inferring user interest. IEEE Internet Com-
puting, 5(6), 2001.

6. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins. Stuff i’ve seen: a system
for personal information retrieval and re-use. In Proc. of the 26th Intl. ACM SIGIR Conf. on
Research and Development in Informaion Retrieval, pages 72–79, 2003.

7. J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. Mylifebits: fulfilling the memex
vision. In Proc. of the ACM Conference on Multimedia, 2002.

8. K. S. Jones, S. Walker, and S. Robertson. Probabilistic model of information retrieval: De-
velopment and status. Technical report, Cambridge University, 1998.

9. D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack: A customizable
general-purpose information management tool for end users of semistructured data. In Proc.
of the 1st Intl. Conf. on Innovative Data Syst., 2003.

10. M. Kendall. Rank Correlation Methods. Hafner Publishing, 1955.
11. D. Oard and J. Kim. Modeling information content using observable behavior. In Pro-

ceedings of the 64th Annual Meeting of the American Society for Information Science and
Technology, 2001.

12. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford University, 1998.

13. D. Quan and D. Karger. How to make a semantic web browser. In Proc. of the 13th Intl.
WWW Conf., 2004.

14. C. Soules and G. Ganger. Connections: using context to enhance file search. In SOSP, 2005.
15. J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated analysis of inter-

ests and activities. In Proc. of the 28th Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, 2005.

The Intention Behind Web Queries

Ricardo Baeza-Yates1, Liliana Calderón-Benavides2,
and Cristina González-Caro2

1 Yahoo! Research Barcelona
Ocata 1, 08003 Barcelona, Spain

ricado@baeza.cl
2 Web Research Group

Universitat Pompeu Fabra, Passeig de Circumval-lació 8
08003 Barcelona, Spain

{liliana.calderon, cristina.gonzalez}@upf.edu

Abstract. The identification of the user’s intention or interest through
queries that they submit to a search engine can be very useful to offer
them more adequate results. In this work we present a framework for the
identification of user’s interest in an automatic way, based on the analy-
sis of query logs. This identification is made from two perspectives, the
objectives or goals of a user and the categories in which these aims are
situated. A manual classification of the queries was made in order to have
a reference point and then we applied supervised and unsupervised learn-
ing techniques. The results obtained show that for a considerable amount
of cases supervised learning is a good option, however through unsuper-
vised learning we found relationships between users and behaviors that
are not easy to detect just taking the query words. Also, through unsu-
pervised learning we established that there are categories that we are not
able to determine in contrast with other classes that were not considered
but naturally appear after the clustering process. This allowed us to es-
tablish that the combination of supervised and unsupervised learning is
a good alternative to find user’s goals. From supervised learning we can
identify the user interest given certain established goals and categories;
on the other hand, with unsupervised learning we can validate the goals
and categories used, refine them and select the most appropriate to the
user’s needs.

1 Introduction

Current Web search engines have been designed to offer resources to their users,
but with the limitation that the goals or characteristics behind the queries made
by them are not generally considered. Given that a query is the representation of
a need, a set of factors, in most cases, are implicit within this representation. If we
can discover these factors, they can be crucial in the information recommendation
process. Techniques such as Web Usage Mining [1] cover the problem to improve
the quality of information to users by analyzing Web log data. Particularly, Web
Query Mining [2, 3], deals with the study of query logs from data registered in

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 98–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Intention Behind Web Queries 99

a search engine, with the purpose of discovering hidden information about the
behavior of users of these kind of systems. Some work has been done to catego-
rize the needs of users; for example, the categorization proposed by Broder [4] in
which, according with the goal of the user, three classes are considered: Naviga-
tional, Informational and Transactional. Broder made a classification of queries
through an user survey and manual classification of a query log. This work was
later taken up by Rose and Levinson [5], who developed a framework for manual
classification of search goals by extending the classes proposed by Broder. In their
studies Broder, and Rose and Levinson showed that goals of queries can be identi-
fied manually. In Lee et al. [6] the work was focused on automatic identification of
goals (navigational and informational) through the application of heuristics over
clicks made by the users on the results offered by the search engine; in order to
do it, they proposed two related features, the past user-click behavior and the
anchor-link distribution. In the same context, works like Spereta et al. [7] tries to
establish user profiles by using their search histories; Baeza-Yates et al. [2] dis-
covered groups of related queries, through text clustering of documents clicked
for the queries, allowing an improvement of the search process.

In general, the approaches try to make an approximation to the user from
different perspectives. However, a model in which the user can be identified
by using his/her goals hasn’t been completely developed. We could then use
this kind of information to understand and improve his/her information needs.
Taking this into consideration, the main goal of this work is to develop a model
for identification of the user’s interests for a Web search engine, using the user
interactions stored in the query log files of the system. The identification process
is made from two perspectives, the first one is from the objectives or goals of
each one of the users and the second is from the categories in which each of
the objectives can be situated. To be able to measure precision and recall we
manually classified more than 6,000 real queries, a reference set two orders of
magnitude larger compared to the 50 CS related queries used by Lee et al. [6].

This paper is organized as follows. In Section 2 we describe user’s goals and
categories to which the user’s queries can belong. A brief description of the
used techniques to find user interest are presented in Section 3. In Section 4 we
present the experimental design of this work. Finally, we present an analysis of
the obtained results in Section 5 and conclude the paper in Section 6.

2 User’s Goals and Categories

As a way to determine the motivations during an information search, we propose
firstly, to find the user goals and secondly mapping these queries into categories.
This information allow us to determine the path that a user follows when is
searching for information on a web search engine.

2.1 User Goals

From the content of the queries we established three categories for the reasons or
goals which motivate the user to make a search: Informational, Not informational

100 R. Baeza-Yates, L. Calderón-Benavides, and C. González-Caro

and Ambiguous. An informational query is one in which the user exhibits an in-
terest to obtain information available in the Web, independently of the knowledge
area of the resource retrieved. As not informational we categorize queries that find
other resources or target an specific transaction (e.g. buy, download, reserve, etc.).
Finally, ambiguous queries are those that their goal cannot be inferred directly
from the query (in some cases because the user has an ambiguous interest). For
Informational queries we could use a ranking biased towards text content while
for Not Informational queries a better answer could be a few Web sites, good hub
pages (many good links) or a price comparison portal.

2.2 Query Categories

A key point in the process of user interests identification is establishing the topic
to which each submitted query belongs. The discovery of the kind of information
requested allows us to identify it in a particular area of interest and relate it to
specific characteristics of the area in which it is related (or in which he/she wants
to be related).

Topics used to classify the queries are based on the general categories of the
Open Directory Project, ODP1 (Arts, Games, Kids and Teens, Reference, Shop-
ping, World, Business, Health, News, Society, Computers, Home, Recreation,
Science, Sports). Apart of these general categories we considered three more
which are: Various for those queries that from their content seems as belong to
more than one category, Other for queries which can’t be classified into one of
the selected categories and Sex taking in account that a considerable amount of
queries are related with this topic.

3 Selected Techniques

As a way to reach our purpose we selected two quite different models which,
from the literature are available to categorize data and find hidden relationships
among data. The selected models were Support Vector Machines (SVM) [8] and
Probabilistic Latent Semantic Analysis (PLSA) [9].

3.1 Support Vector Machines Model

In this work, Support Vector Machines [8] have been used to build classification
models for queries. We chose this classifier, given their proven effectiveness in
different scenarios with a high feature dimensionality, including text classification
[10]; considering that the queries were represented by the words of the pages
selected by the users, this characteristic is quite useful. To solving the multiclass
problem, we combine SVM with Error-Correcting Output Coding (ECOC) [11],
which reduces the multiclass problem to a group of binary classification tasks and
combine the binary classification results to predict multiclass labels. The RBF
(Radial Basis Function) kernel was used to the SVM’s setup, and we choose the
kernel’s parameters through a standard cross-validation process.
1 Open Directory Project. http://dmoz.org

The Intention Behind Web Queries 101

3.2 Probabilistic Latent Semantic Analysis

As we have commented, one of the main ideas that justifies the development of
this work is to find the reasons which motivate the user to make a search in the
Web. Considering this, and in accordance with different works such as Jin [12]
and Lin [13], Probabilistic Latent Semantic Analysis (PLSA) [9] appear to be
an efficient method of analyzing user interests.

Given that the starting point for PLSA is a statistical model which has been
called Aspect Model [9], the implementation of this model used in this work was
taken from PennAspect [14], a well tested software for information filtering and
retrieval.

4 Experimental Design

Data Set. For this work we processed a log sample from the Chilean Web
search engine TodoCL2. Thesample contains 6,042 queries having clicks in their
answers. There are 22,190 clicks registered in the log, and these clicks are over
18,527 different URLs. Thus, in average users clicked 3.67 URLs per query.

Data Preprocessing. One of the most important ideas to exploit here is find-
ing existing relationships in the data. In order to achieve this, each query was
represented as a vector of terms that appeared in the documents giving an an-
swer to the query (stop words were removed), Qi = w(t1), w(t2) . . . w(tn), where
w(tj) is the associated weight of term j inside query Qi. The classical TF-IDF
weighting scheme was used to assign the weight to each query term and clicked
page, replacing IDF by the number of clicks on each page (see [2]).

After that, a clustering process was applied over the data. We obtained query
groups with similar characteristics, i.e. they belong to the same subject, are
related with specific topics or describe the same situation using different terms.
To do this, we used the simple K-means clustering method.

Manually Classified Data. To be able to evaluate the results of our automatic
classification, we built a test set based on a team of people who performed a
manual classification of the queries.

An important characteristic about the structure of these queries, as we men-
tioned before, is that they can be organized in clusters. This structure facilitated
the manual classification process, by providing our team with information about
the context of the query and at the same time, giving a global idea about the
class to which each one of them belongs. This information is used to facilitate
the human classifiers in the case that a query did not suggest a complete idea
by itself. In any case, the task of a human classifier is to select the type of
goal for a user and the category in which this goal can be situated. Considering
the amount of queries and the different categories in which they can belong,
the manual classification process is hard to do and subject to some subjectivity

2 TodoCL. http://www.todocl.com

102 R. Baeza-Yates, L. Calderón-Benavides, and C. González-Caro

(and hence, errors). As a way to facilitate this process we created a software tool
which offers to users the possibility to select the goals and the categories and
save them in an organized and fast way.

Table 1. Manual classification of queries into goals and categories

Category Inf N-Inf Amb Total Category Inf N-Inf Amb Total
Arts 102 23 29 154 Society 501 12 60 573

Games 11 26 8 45 Home 50 35 41 126
Education 232 29 23 284 Recreation 789 489 142 1,420
Reference 107 85 26 218 Science 129 7 9 145
Shopping 55 29 39 123 Sports 31 11 5 47

World 46 6 15 67 Computers 174 208 86 468
News 78 5 1 84 Sex 37 178 33 248

Business 960 107 93 1,160 Others 16 9 33 58
Health 171 21 40 232 Various 224 27 339 590

As we previously described, we established three categories to which the
goals can belong: Informational (Inf), Not Informational (N-Inf) and Ambigu-
ous (Amb). On the other hand, we established eighteen topics to classify the
same queries. After the manual classification process of queries into goals and
categories, the obtained amount are presented in the table 1.

Fig. 1. Distribution of Queries into Goals

Manual classification of queries into goals. The figure 1 presents the amount of
queries which were labeled by our team as Informational, Not Informational and
Ambiguous. The goal with the higher number of queries was Informational, this
happens because we considered as the kind of queries which not talking directly
about an object (such as mp3 file, photo, among others), the name of an artist
or the purchase or sale of a product or service. However the goals categories
considered to label a query are different between this work and the work realized
by Rose and Levinson [5], we agreed on the proportion of Informational queries,
being this higher than the others.

The Intention Behind Web Queries 103

Manual classification of queries into categories. A graphical representation of
the manual classification of queries into categories is presented in the figure 2.
The categories with higher amount of queries are Entertainment and Business,
which confirm the search behavior of people that have been well described by
Spink and Jansen in their works [15, 16].

Fig. 2. Distribution of Queries into Categories

The figure 3 present the distribution of the percentage of categories into the
different goals. The queries grouped as Informational goal belong to categories
such as Business, Education, Science or News in which people are searching for
resources answering in many of the cases to a specific information need. On
the other hand, queries grouped as Not Informational belong to categories such
as Recreation, Sex or Games in which the intention is, in most of the cases to
visit a place to find one of this kind of sources. Finally, the queries grouped as
Ambiguous are more present in the Various and Other categories due that it is
not clear what the user wants and hence are quite difficult to classify in one of
the other.

Fig. 3. Percentage distribution of queries into Goals and Categories

104 R. Baeza-Yates, L. Calderón-Benavides, and C. González-Caro

Performance. For the training phase, PLSA took, on average, four hours to
build a model and calculate the different probabilities of each query and the
words belonging to each latent class. As we mentioned before, we determined
three goals and selected eighteen categories to which the user interest can be sit-
uated and their queries can be classified. These quantities were used to generate
the query groups (in section 5.2 we will comment about this fact).

To build the models and make the predictions for categories, SVM spent about
two hours. For the case of goals, considering the low amount of labels involved,
this model took about fifty minutes.

The different algorithms were run on a Pentium III computer with 1.28 GBs
of RAM, under a Linux OS.

5 Analysis of Results

5.1 Supervised Learning

After the manual classification of the queries was made, part of these labeled
data was used like input to train an automatic classifier.

The obtained results in the classification process with supervised learning were
good. From the labeled examples by our team of editors, quite suitable models
for each goal and category were constructed. Although, not in all the cases the
predictions agree with the human judgments, the prediction in most cases is
related with the subject of the query, showing therefore the ambiguous nature of
some queries that can be located in different goals or categories (our Ambiguous
class). Nevertheless, in the case of the categories, the idea was, as far as possible,
to assign a determined category to each query, the category “Various” was used
as minimum as possible in the manual classification.

Fig. 4. Recall-Precision Graph of Goal’s Automatic Classification

With respect to the user’s information goals the results are good, the precision
is over 50% for two of the goals. The best results are obtained with the Informa-
tional goal, its precision is high and its recall is almost perfect, see figure 4. This
is due that the pages selected for the queries that belong to this goal are more

The Intention Behind Web Queries 105

homogeneous, unlike those that belong to ”Not Informational” or ”Ambiguous”,
where the nature of the pages selected by the users is heterogeneous, since the
users do not have a very precise idea of what they wish to find.

For the categories, the results are good in general; nevertheless, for some
categories the results are better than for others. In the figure 5 we can see a
sample of the most representative categories:

The categories that show better precision are those that have greater pop-
ularity, that is to say, those related to subjects that the people consult most
frequently, like for example: Recreation. Since most of pages of this type of sub-
jects handle a moderately similar vocabulary, the queries are more identifiable.
Categories as “Technology and Computers” have, relatively, a specialized vo-
cabulary, which allows to identify more accurately the related queries. Another
particular case is the category “Sex”, where the users do not change the words
used to make their queries, most of these are built using the same words, with-
out counting that, even though the users use different words to describe their
queries, the pages which they choose as answer does not change, so the queries
are repeated from the same words again.

Fig. 5. Recall-Precision Graph of Categories’s Automatic Classification

When we analyzed the relationship between goals and categories, we can ob-
serve the coherence that exists between the informational objectives of the users
and the categories in which their queries are located. For the Informational goal,
the greater distribution of queries are in the categories: Business, Recreation,
Society, Education and News. Whereas the categories with smaller concentra-
tion of queries in this goal are: Games, Shopping, Home, Sex and Others, these
last categories, suggest different motivations for the user that are not related to
obtain information, for example Games, where the users are more interested in
downloading software and resources. A particular case is the category “News”,
that it concentrates all its queries in this goal, these queries don’t belong to other
goals. Similarly, the goal “No Informational” shows enough coherence with the
categories of the queries that belong to her. In this case, the categories with
greater concentration of queries are Sex, Recreation and Technology and Com-
puters, and those of smaller concentration of queries are Society, Health, Science

106 R. Baeza-Yates, L. Calderón-Benavides, and C. González-Caro

and News (as they do not have queries in this goal). Finally, ”Ambiguous”, that
it’s a goal that as its name indicates it, is not related to some category in indi-
vidual, the greater concentration of queries is in the category ”Various”, which
is logical, given the nature of the category and the goal.

5.2 Unsupervised Learning

Categories. To determine the relationships, at the categories level, between
different queries used in this work, we considered topics (described in section
2.2), to which the queries can belong, as the variables that make that a user
submit a specific query.

Before analyzing the obtained results with PLSA, and having in mind that
this work is focussed on user interest, is important to highlight that in a com-
mon process of information search we are exposed, first, to the lack of precision
between the transformation of a mental information need to a set of key terms
that correctly describes this need, and second, to the lack of accuracy of search
engines to provide an answer including aspects such as subjectivity or the con-
text of the searching task. However, taking advantage of the results offered by
PLSA model, and it’s capability to provide a probabilistic information about the
degree of membership of each query to each generated cluster, we can make an
analysis of the composition of each cluster content. This information offer us the
possibility to discover direct and not direct relationships between queries and
topics (i. e. to which categories a query can belong), and from this information
we can determine what is the user interest.

One of the most important aspects to highlight here is that although the
amount of clusters, used to make the clustering process for categories identifi-
cation of user interests, was taken from the ODP categorization, the obtained
results from PLSA shows a hard grouping of queries around some of the cate-
gories such as Sex, Entertainment, Business, References or Health. However, the
model could not create significant groups for categories like Arts, Sports, Science
or Games. This happens not only because the amount of queries is very low, but
also because they are mixed with other unrelated queries. This information was
used from two point of views:

– Ratify that most of the selected categories used in the manual classification
are clearly defined. However, there are other categories that have overlapped
content and are difficult to determine. In contrast to these facts, other pos-
sible categories that we did not consider appeared, such as cars and law.

– From this information we can identify existent relationships between queries.
The table 2 shows an example of these relationships. In this table we have
a sample of queries grouped in cluster 6, which was labeled as Recreation or
Entertainment. By observing the probabilities values (Prob1, Prob2, Prob3)
of each one of these queries belonging to each cluster, the highest values are
for clusters labeled as Business (cluster 7) and Sex (cluster 11).

In general terms, we can say that queries that were grouped in the Sex cat-
egory, have a high probability to belong to entertainment, which is absolutely

The Intention Behind Web Queries 107

Table 2. Queries with three highest probabilities in the Recreation cluster

QId Query Prob1 CId Prob2 CId Prob3 CId
4197 los jaivas main works 1.76E-03 6 1.99E-09 0 4.30E-12 7
243 ricardo arjona spanish songs 1.51E-03 6 2.01E-08 7 2.12E-42 11
5759 madonna erotic 1.50E-03 6 1.83E-08 7 2.20E-42 11
1917 porto seguro cd 1.50E-03 6 2.68E-08 7 1.29E-43 11
5378 rata blanca songs 1.50E-03 6 2.69E-08 7 8.84E-43 11

coherent; on the other hand, these same queries can be considered as belonging
to business category due to that the content of pages answering sex or entertain-
ment queries have terms related with payments or selling this kind of services.

A particular case was presented by the cluster which grouped queries related
to health. About 70% of queries belonging to this cluster made reference to drugs,
diseases or treatment of diseases. The reason for this case is that the medical
vocabulary and the terms used to make this kind of queries are too specific, and
is quite rare to find problems of synonimy or polysemy. The table 3 shows the
five queries with highest probability in this cluster.

Table 3. Queries with highest probabilities in the Health cluster

IdQuery Query Probability
1831 electroconvulsive therapy 1.75E-03
2215 nasal polyps 1.53E-03
3507 dental hygienist 1.51E-03
3156 hepatitis 1.41E-03
5023 viagra 1.03E-03

Goals. Through PLSA we found that approximately 73% of the 2,168 queries
grouped as ambiguous, belong to categories such as Sex or Entertainment. It is
important to note that none of the queries, labeled in the manual classification
as Health, is part of an ambiguous goal, as a person usually has in mind the
name of an specific illness or drug.

From the 2,719 queries grouped as Informational, about 76% are related with
References, Education, Health, Computers, Society and Home. Finally, from the
1,155 queries grouped as not informational, near to 70% were labeled (in the
manual classification) as Computers, Entertainment, Society and Sex. The main
difference between queries that belong to the ambiguous cluster and the not
informational queries is that the second makes direct reference to a photos of
famous artists or models, parts of computers and software downloads, and songs,
among others.

6 Conclusions

In this work we have presented a first step to identify user’s interests in a Web
search engine based in a query log. An analysis was made from two perspectives:

108 R. Baeza-Yates, L. Calderón-Benavides, and C. González-Caro

the user’s informational objectives and the categories in which the queries within
these objectives can be located. In order to identify these interests, different tech-
niques were used, initially a manual classification, whose objective was to make
a recognition from the human judgments of the distribution of goals and cate-
gories that could have the queries to classify. Later, we carried out an automatic
identification of these interests using supervised and unsupervised learning.

The supervised analysis allows us to establish that the user interests are iden-
tifiable using a particular representation of queries, together with the automatic
classifier. This was a good combination, since representing the queries by the
terms of the documents that gave good answers to them, reduces the problem
of the low number of words that the users use to make their queries (and hence
the sparsity of the query space), and additionally because the pages that belong
to a same category share a similar vocabulary that allowed us to make a better
classification.

From the unsupervised perspective, user needs related with entertainment,
sex or business were very well detected and important relationships between
these categories were reflected. Most of the queries that were grouped in one of
these three categories can belong to another categories. On the other hand, not
for all the proposed categories exist a strong way to determine users’ needs. This
happen because the terms used to summit a query and the content of the pages
in an answer to this query can be used to describe different topics. From the
eighteen proposed categories, just eleven of them were completely recognized.
In the opposite, two new and well defined categories appeared in the clustering
process, they were cars and law. This suggests to make a revision of the selected
ODP categories, avoiding overlapping of information.

The bottom line is that for the Informational class and some categories we got
over 70% precision and very good recall. This can be easily improved by trying
other query representations, other classification techniques, etc.

Acknowledgements

The authors wish to thank Mari-Carmen Marcos for helpful comments and sug-
gestions in the classification of queries. The authors are grateful to the Infor-
mation Technologies Research Group from the University Autónoma of Bucara-
manga for help in the manual classification process of queries. This work was
partially supported by the Alpha Project AML/B7-311/97/0666/II-0291-FA.

References

1. Mobasher, B. In: Practical Handbook of Internet Computing. CRC Press (2005)
2. Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query recommendation using query

logs in search engines. In: Current Trends in Database Technology - EDBT,
Springer-Verlag GmbH (2004) 588–596

3. Baeza-Yates, R.: Applications of web query mining. In: ECIR 2005. Volume 3408.,
Lecture Notes in Computer Science (2005)

The Intention Behind Web Queries 109

4. Broder, A.: A taxonomy of web search. SIGIR Forum 36 (2002) 3–10
5. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: International

conference on WWW, ACM Press (2004) 13–19
6. Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in web search. In:

International conference on WWW, ACM Press (2005) 391–400
7. Speretta, M., Gauch, S.: Personalizing search based on user search history (2004)
8. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.

Data Min. Knowl. Discov. 2 (1998) 121–167
9. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of Uncertainty in

Artificial Intelligence, Stockholm (1999)
10. Basu, A., Watters, C., Shepherd, M.: Support vector machines for text catego-

rization. In: International Conference on System Sciences, Washington, DC, USA,
IEEE Computer Society (2003) 103.3

11. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. Journal of AI Research 2 (1995) 263–286

12. Jin, X., Zhou, Y., Mobasher, B.: Web usage mining based on probabilistic latent
semantic analysis. In: Knowledge discovery and data mining, New York, USA,
ACM Press (2004) 197–205

13. Lin, C., Xue, G.R., Zeng, H.J., Yu, Y.: Using probabilistic latent semantic analysis
for personalized web search. In: Web Technologies Research and Development,
Berlin Heidelberg, Springer-Verlag GmbH (2005) 707–717

14. Schein, A., Popescul, A., Ungar, L.: Pennaspect: A two-way aspect model imple-
mentation. Technical report, (Department of Computer and Information Science,
The University of Pennsylvania)

15. Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: the
public and their queries. Journal of the American Society for Information Science
and Technology 52 (2001) 226–234

16. Jansen, B.J., Spink, A.: An analysis of web searching by european alltheweb.com
users. Information Processing and Management: an International Journal 41 (2005)
361–381

Compact Features for Detection of
Near-Duplicates in Distributed Retrieval

Yaniv Bernstein, Milad Shokouhi, and Justin Zobel

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia

Abstract. In distributed information retrieval, answers from separate
collections are combined into a single result set. However, the collec-
tions may overlap. The fact that the collections are distributed means
that it is not in general feasible to prune duplicate and near-duplicate
documents at index time. In this paper we introduce and analyze the
grainy hash vector, a compact document representation that can be used
to efficiently prune duplicate and near-duplicate documents from result
lists. We demonstrate that, for a modest bandwidth and computational
cost, many near-duplicates can be accurately removed from result lists
produced by a cooperative distributed information retrieval system.

1 Introduction

In standard information retrieval (IR) systems, all documents are centrally man-
aged and indexed on a single server. An alternative that has advantages when
the data is physically dispersed is to use distributed information retrieval (DIR).
In DIR, multiple separate servers, potentially at separate geographic locations,
each provide a search service to a subset of the overall collection; the user inter-
acts with a single interface known as the broker, which sends the query to the
servers and aggregates the results.

Distributed information retrieval systems are generally classified as coopera-
tive or uncooperative. In cooperative environments, distributed servers provide
the broker with information about their contents that the broker can then use
to select servers and interpret results [Gravano et al., 1997, Powell and French,
2003]. In uncooperative systems, the broker must obtain information from the
servers by searching for and downloading answers [Callan and Connell, 2001]. In
this paper, we are concerned with cooperative environments where the broker is
able to request pertinent information from the distributed servers.

In most previous research in DIR, it is generally assumed that the over-
all collection is partitioned into disjoint subcollections; that is, it is assumed
there is no overlap between the individually indexed sites [Callan and Connell,
2001, Nottelmann and Fuhr, 2003, Si and Callan, 2003, 2004]. This is not, in
general, a valid assumption; duplication and near-duplication of documents be-
tween servers is a significant problem and is one of the current challenges in DIR
[Allan et al, 2003]. Some research in web-based meta-search engines is concerned
with elimination of exact duplicates from the list of final results [Gauch et al.,

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 110–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Compact Features for Detection of Near-Duplicates in Distributed Retrieval 111

1996, Meng et al., 2002, Selberg and Etzioni, 1997, Zamir and Etzioni, 1999].
However, these techniques are restricted to detecting matches based on URL;
this limits the applicability of the techniques to domains in which there is a
unique identifier for each document. Furthermore, the issue of near-duplicates is
not addressed by such techniques. To the best of our knowledge, more sophis-
ticated measures for filtering duplicate and near-duplicate documents in a DIR
context have not previously been explored.

In this paper we address the problem of robust duplicate and near-duplicate
detection in DIR. We introduce a new type of feature vector, the grainy hash vec-
tor (GHV), which acts a compact surrogate of the document for near-duplicate
detection. We analyze the properties of GHVs, and show empirically that they
can be used for efficient and accurate merge-time detection of duplicate and
near-duplicate documents.

2 Duplicates in Distributed Information Retrieval

The broker in a DIR system must perform two major tasks. The first is server
selection: since it is costly to search all servers for every query, brokers need
to select a limited number of servers to search. A server selection algorithm is
used to identify the servers that are most likely to contain relevant documents.
Many different server selection methods have been proposed; see for example
Nottelmann and Fuhr [2003] and Si and Callan [2004]. Once the broker has sub-
mitted the query to each of the selected subset of servers and collected the
returned results, it must perform result merging: based on returned information
about the servers and each returned document, the broker must combine the
results into a single list for presentation to the user.

Management of duplication across collections can be managed at either or
both of the server-selection and result-merger stages. At the server selection
stage, the broker can avoid selecting servers that have a high degree of collection
overlap with a server that has already been selected. For such an approach to
be effective, the rate of overlap between the underlying pairs of servers must be
accurately estimated in advance; small estimation errors may lead to the loss of
many relevant documents located in the ignored servers.

Hernandez and Kambhampati [2005] introduced cosco for management of
duplicates at selection time. The system estimates the overlap between different
bibliographic servers and avoids selecting pairs of servers that appear to have
high overlap for a query. They use cori [Callan et al., 1995] as a benchmark and
show that cosco finds more relevant documents for a given number of servers
than does cori. However, cosco only considers exact duplicates.

For the management of duplication at the result-merger stage, pairs of such
documents are identified within the merged result list, and are purged before the
results are returned to the user. It is worthwhile to perform duplicate manage-
ment at the result-merger stage even if steps to manage it are taken at selection
time, because this allows duplicate and near-duplicate documents to be identified
even if their corresponding servers do not have a significant rate of overlap.

112 Y. Bernstein, M. Shokouhi, and J. Zobel

Although distributed search over servers with overlapping collections has been
acknowledged as a problem [Allan et al, 2003, Meng et al., 2002], no serious at-
tempt has been made to resolve the issue. ProFusion [Gauch et al., 1996],
MetaCrawler [Selberg and Etzioni, 1997], and Grouper [Zamir and Etzioni, 1999]
attempt to eliminate duplicate documents from the final results, by aggregating re-
sults that point to the same location according to their url. This method has sev-
eral deficiencies: it is ineffective for identical documents with different urls (such
as mirrored documents), for near-identical documents, and for domains in which
a unique document identifier such as a url is not available. Clearly, more sophis-
ticated techniques for duplicate management are desirable.

3 Merge-Time Duplicate Management for DIR

Management of within-collection redundancy has been a subject of active re-
search, with a range of techniques having been proposed [Manber, 1994, Brin
et al., 1995, Broder et al., 1997, Fetterly et al., 2003, Bernstein and Zobel,
2004] However, management of redundancy between collections as in the case of
DIR is subject to additional constraints. In particular, since collections are not
centrally managed, it may not be practical to use a preprocessing approach to
redundancy management; rather, it must occur at query time based on addi-
tional document information transmitted to the broker. Thus, management of
near-duplicate documents is highly sensitive to both time (because it must be
done on the fly) and bandwidth (because transmission of additional information
in a distributed environment may be neither cheap nor fast).

We now describe an existing technique for near-duplicate detection that could
be reasonably applied to the problem scenario we have described, though to
our knowledge this has not previously been attempted. Deterministic term ex-
traction techniques [Chowdhury et al., 2002, Ilyinski et al., 2002, Cooper et al.,
2002, Conrad et al., 2003, Kolcz et al., 2004] extract a subset of terms from a
document, from which a hash is produced. It is claimed that, if the terms are
carefully chosen, near-duplicate documents are likely to have the same hash,
whereas it is extremely unlikely that two dissimilar documents will hash to the
same value. Thus, two documents with the same hash will be considered as
near-identical, whereas documents with different hashes will be considered to be
different. A critical consideration for the success of deterministic term extraction
systems is the way in which the terms to be extracted from a document are se-
lected. For example, in the I-Match system [Chowdhury et al., 2002], only those
terms with the highest inverse document frequency are selected for the hash.
Other approaches vary in detail, but have the same basic principle of selecting
words of high significance.

Deterministic term extraction systems have several properties that make them
appealing from the perspective of near-duplicate management in DIR. The fact
that each document only has a single representative hash means that the addi-
tional bandwidth requirement in using deterministic term extraction is minimal;
it also means that comparisons between documents at run-time are fast, as all

Compact Features for Detection of Near-Duplicates in Distributed Retrieval 113

that is required is an equality test between the two representative hashes. The
hashes themselves are relatively cheap to compute at index time. It is plausible
that such features could be deployed for near-duplicate detection in a distributed
context, and that they would be reasonably effective.

While empirical tests seem to show that deterministic term extraction tech-
niques are effective in practice, some doubts remain. There has been no the-
oretical analysis that would verify claims of robustness; it always remains the
case that a single difference between a pair of documents, in a critical term, can
cause the system to fail to identify them as near-duplicates. Pugh and Henzinger
[2003] and Kolcz et al. [2004] fortify their technique by extracting several hashes
based on different term subsets. This has the effect of making the technique less
appealing for DIR, as it increases the bandwidth cost and the comparison cost
at run-time.

There is a further problem that arises in the domain of DIR. As noted above,
most of the deterministic term extraction systems described in the literature
rely on inverse document frequency or some similar collection statistic. In a
distributed environment, however, gathering global collection statistics presents
a significant challenge. Without such statistics, identical documents on different
servers may produce different hashes. Thus, it is probably necessary to use a
term extraction heuristic that does not use collection statistics. It is not apparent
whether the technique can remain effective with such a heuristic.

An alternative approach is to use chunks . Chunk-based document finger-
printing is a technique for detecting near-duplicate documents that has been
successfully used for applications such as filesystem-level duplicate detection
[Manber, 1994], plagiarism detection [Lyon et al., 2001], copyright enforcement
[Brin et al., 1995], enterprise version management [Conrad et al., 2003], and op-
timisation of indexing [Broder et al., 1997] and search [Bernstein and Zobel,
2005] on the web. For a detailed description of chunk-based fingerprinting, see
Hoad and Zobel [2003] or Bernstein and Zobel [2004]. In brief, it operates by
parsing documents into strings of contiguous text, known as chunks, and com-
paring the number of identical chunks shared by a pair of documents.

When a sliding window is passed over a document to extract a set of fixed-
length overlapping chunks, these chunks are known as shingles. Broder et al.
[1997] define a measurement known as resemblance for quantifying the level of
identity between a pair of documents based on their shingle-sets. Resemblance is
a symmetric measure that is maximized only when two documents are identical,
defined as follows:

R(S, T) =
|Ŝ ∩ T̂ |
|Ŝ ∪ T̂ |

where Ŝ is the set of shingles extracted from a document S. Resemblance is a
useful and robust measure, and has been used in a number of applications. Be-
cause resemblance ranges smoothly between 0 and 1, it is sometimes interpreted
as ‘percentage similarity’. However, a single edit to a document will disrupt mul-
tiple shingles, potentially causing the reported resemblance values for a pair of

114 Y. Bernstein, M. Shokouhi, and J. Zobel

documents to be significantly lower than a human would intuitively expect of a
percentage similarity. Caveat emptor.

Fetterly et al. [2003] describe an unbiased technique for estimating resemblance
between a pair of documents using a feature of constant size; we refer to this tech-
nique as minimal-chunk sampling. Minimal-chunk sampling relies on the availabil-
ity of a class of hash functions that are min-wise independent [Broder et al., 1998].
Min-wise independence states that the class of permutations is unbiased with re-
spect to the identity of the first element in the permutation. In the context of
hashing, it means that any value in an arbitrary set has an equal probability of
hashing to a value that is the lowest in the set.

The minimal-chunk sampling heuristic with resolution ρ (a positive integer)
must have access to ρ hash functions from a min-wise independent family. In
practice, a family of hash functions is most commonly defined by a single al-
gorithm parameterised by some value (frequently a seed). A particular function
in the family is thus defined by the parameter passed to the general algorithm.
Thus, the set of ρ min-wise independent hash functions is represented by a single
hash function and an array of ρ independently chosen random seeds.

The set of shingles in a document is passed through each of the ρ hash func-
tions, and the minimal hash under each permutation is stored. The result of the
process is a vector of ρ hash values. The min-wise independence property of the
hash functions means that, for two documents with resemblance r, the proba-
bility of the hash value in any given position on their corresponding vectors is
(excluding collisions) independently r. This property of the minimal-chunk sam-
pling heuristic allows us to easily analyze its performance, as the distribution of
the number of matching hashes between a pair of documents with resemblance
r is binomial parameterised by ρ and r.

Fetterly et al. [2003] use ρ = 84 to generate a vector of 84 hashes of 32 bits
each. While such a vector would undoubtedly be a high-quality feature for de-
tecting near-duplicate documents, at 336 bytes it is rather large. Even if ρ were
reduced substantially, the size of the vector would still need to be several dozen
bytes to be reliable for identification of near-duplicate documents. In the context
of DIR, an overhead of this size for each result in the ranked list could prove
burdensome; a more compact representation is desirable.

4 Grainy Hash Vectors

In this section, we describe our novel document-digest feature for near-duplicate
document identification, the grainy hash vector (GHV). Whilst the GHV is a
derivation of the minimal-chunk sampling technique described above, its innov-
ative implementation combines the benefits of regular minimal-chunk sampling
with those of deterministic term extraction. In particular, grainy hash vectors:

– Fit into a single machine word of either 32 or 64 bits;
– Have analyzable theoretical properties;
– Use bit-parallelism to allow fast comparison between vectors;
– Are robust in the presence of small differences between a pair of documents.

Compact Features for Detection of Near-Duplicates in Distributed Retrieval 115

This combination of attributes makes the GHV an attractive feature in a DIR
domain. A GHV parameterised by n and w is a n-bit vector consisting of ρ w-bit
hashes, where

ρ(n, w) =
⌊ n

w

⌋
(1)

In general, we want w to be a factor of n in order to avoid wasting space
in the vector. Each of the hashes in the GHV is produced using the minimal-
chunk sampling technique. For example, a GHV with n = 32 and w = 2 would
consist of 16 2-bit hashes, each produced using the minimal-chunk sampling
technique. By using small w, it is possible to pack a large number of hashes
into a small space. The tradeoff is that the probability of collision at each point
in the vector becomes non-negligible. However, we demonstrate that with an
appropriate match threshold GHVs can provide powerful discrimination of near-
duplicate documents even with n = 32.

When w is small, there will be an overwhelming bias in the value of the
minimal-chunk hash; with w = 1, for instance, one would expect the minimal
hash to have value 0 in most cases. In order to remove this bias, a much larger
w — for example 32 — is used for the initial ordering. Once the minimal hash
value has been identified, the w least-significant bits are stored in the GHV.

For two documents with resemblance r, the probability φ of a match between
the hashes at a given position in the GHV with vector-width w is given by:

φ(r; w) = r + (1 − r)(2−w) (2)

The first component of this function follows directly from the property of
min-wise independent hash functions that states that the probability of a hash
match between two documents with resemblance r is r; the second component
is the probability that, in the case that the two source chunks are not the same,
a collision renders them identical in the hash vector.

Given that these probabilities are independent for each field in the GHV,
we note that the number of matching fields between a pair of documents with
resemblance r is governed by a binomial distribution, parameterised as follows:

Bi(ρ(n, w), φ(r; w)) (3)

The following properties are thus directly derivable from the distribution:

P (X = k) =
(

ρ

k

)
φk(1− φ)ρ−k (4)

E(X) = ρφ (5)

σ2 = ρφ(1 − φ) (6)

In practice, GHVs would be used with a threshold to determine whether a
given pair of documents should be considered near-duplicates. For example, we
may have n = 32, w = 2 and a threshold of 14, meaning that at least 14 of

116 Y. Bernstein, M. Shokouhi, and J. Zobel

0 4 8 12 16 20 24 28 32

B

0.00

0.20

0.40

0.60

0.80

1.00

P
(a

t
le

as
t

B
 m

at
ch

in
g

bi
ts

)

r = 0%
r = 10%
r = 20%
r = 30%
r = 40%
r = 50%
r = 60%
r = 70%
r = 80%
r = 90%
r = 100%

(a)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

B

0.00

0.20

0.40

0.60

0.80

1.00

P
(a

t
le

as
t

B
 m

at
ch

in
g

bi
ts

)

r = 0%
r = 10%
r = 20%
r = 30%
r = 40%
r = 50%
r = 60%
r = 70%
r = 80%
r = 90%
r = 100%

(b)

Fig. 1. Probability that the number of matching fields exceeds a value B for (a) 32-bit
and (b) 64-bit hash vectors, w = 1 and various r

the ρ(n, r) = 16 hashes in the corresponding vectors of a pair of documents
must match for them to be considered near-duplicates. Thus, we are interested
in finding a set of parameters for our GHV that minimises the error level.

The issue of whether a pair of documents should be considered near-duplicates
is a difficult one; circular and unsatisfactory definitions of what constitutes a
duplicate or near-duplicate has weakened several previous works in the area
[Zobel and Bernstein, 2006]. Addressing the issue of what constitutes a near-
duplicate is beyond the scope of this paper; we assume only that the classification
of document-pairs is based on a resemblance threshold.

Figure 1 displays curves, derived from the binomial distribution, showing the
probability that the number of matching fields exceeds a given value for various
document resemblance values. While these graphs use w = 1, similar curves
obtain for different values of w. The steeper the gradient of the curves, the more
precise the separation between documents with high levels of resemblance and
those with low resemblance; as expected, the 64-bit GHVs are superior in this
respect.

The single-word nature of grainy hash vectors allows us to compute the num-
ber of matches between a pair of vectors quickly by taking advantage of bit
parallelism in current processors. We can use the bitwise exclusive-or (xor)

Compact Features for Detection of Near-Duplicates in Distributed Retrieval 117

operator to identify points in a pair of vectors that do not match. For a GHV of
one machine word, this operation is completed in a single instruction.

In the case of w = 1 we need only count the number of 1-bits in the xor
vector — the population function — to determine the number of mismatches
between the two vectors. While current hardware does not generally implement
this function directly, it can still be computed efficiently either with lookup
tables or using a ‘divide-and-conquer’ approach such that in Warren [2002]. If
w is greater than one then the situation becomes more complicated. We must
count the number of fields in which there is at least one mismatched bit. If w is
a power of two then we can modify the xor vector so that the number of 1-bits
equals the number of mismatches in O(log w) time by using shift operators to
collapse all bits in each field onto a single bit.

5 Experimental Evaluation

To validate the speed and effectiveness of GHVs in removing duplicates and
near-duplicates from result lists, we ran experiments using the Associated Press
(AP) newswire data, a subset of the TIPSTER collection used for the TREC
ad hoc retrieval track [Harman, 1993]. The AP collection consists of 237,569
documents totaling 729 MB. For simplicity, we used results from a centralised
IR system; however, the results are applicable to a DIR context.

For each document in AP we created 32- and 64-bit GHVs with w of 1,
2, 4, and 8. We then used deco [Bernstein and Zobel, 2004] to calculate the
resemblance between all pairs of documents in the AP collection, and the Zettair
software1 to create a ranked result list of depth 1000 on the AP documents
for each of the TREC topics 51-100. For each topic we loaded the GHVs for
the 1000 documents appearing in the ranked result list. Each pair of GHVs in
this list was then compared using the algorithm described earlier, resulting in
499,500 comparisons. Pairs where the number of mismatching fields was below
a threshold t were returned; the process was repeated for all possible values of t.

GHV efficiency. It took approximately 0.1 seconds to perform the 499,500 GHV
comparisons required for full pruning of 1000 results on a standard Pentium 4
desktop computer. This figure did not vary significantly depending on whether
the GHVs were 32 or 64 bits in length, or between values of w. In comparison
to the significant other costs present in a DIR system — in particular, network
latency — we argue that this is a reasonable cost to bear in order to improve
the user experience.

Note that the timings presented above are pessimistic, based on an assumption
that the GHVs for the full ranked list of 1000 documents need all be compared to
each other. This is not generally necessary if the comparisons are undertaken in
a ‘lazy’ fashion. Many search systems present results incrementally, often ten at
a time; we can take advantage of this by only undertaking the GHV comparisons
necessary to present the next page of results. Much of the time — depending
1 http://www.seg.rmit.edu.au/zettair/

118 Y. Bernstein, M. Shokouhi, and J. Zobel

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

w = 1
w = 2
w = 4
w = 8

Fig. 2. Recall-precision curves at r = 0.58 for various w and GHVs of size 32 bits

upon the level of duplication in the ranked list and the persistence of the user —
this can reduce the number of comparisons required from hundreds of thousands
to just hundreds. Thus, we assert that the typical cost of merge-time GHV
comparison is negligible in comparison to the cost of other stages of the DIR
process.

GHV accuracy. Based on a user study, Bernstein and Zobel [2005] suggest 0.58
as a good resemblance threshold for conditional content equivalence: a relation
between a pair of documents such that a user perceives them as being redundant
with reference to the query. We adopt this value as our threshold: we consider
all documents above this value to fulfil the condition of near-duplication, and all
documents below to not fulfil the condition.

Figure 2 shows mean recall-precision curves for the 50 TREC topics using 32-
bit GHVs and various values of w, where all document-pairs with resemblance
above 0.58 are considered ‘relevant’, and all other pairs non-relevant. As can
be seen, w = 2 clearly dominates, followed by w values of 1, 8, and 4. For
w = 4 and w = 8, the precision level is inadequate for use even at the lowest
threshold levels. For w = 1 and w = 2, precision is adequate up to a recall level
of approximately 0.5, meaning that we can use 32-bit GHVs to detect about
half the near-duplicate document pairs in the result list without introducing
significant numbers of false positives. Based on these results, we recommend
w = 2 and a threshold of 14 out of the 16 features matching.

Figure 3 shows the same curves when 64-bit GHVs are used. As expected,
these curves are significantly better than the corresponding curves for 32-bit
GHVs. Interestingly, the field widths dominate each other in the same order,
with w = 2 performing best, followed by 1, 8, and 4. With w = 2 it is possible
to achieve recall values of approximately 0.7 before precision moves below 1.
Based on these results, we recommend w = 2 and a threshold of 24 out of the
32 features matching. It remains unclear why the w = 2 value performs best.

Compact Features for Detection of Near-Duplicates in Distributed Retrieval 119

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

w = 1
w = 2
w = 4
w = 8

Fig. 3. Recall-precision curves at r = 0.58 for various w and GHVs of size 64 bits

The values represented in Figures 2 and 3 are probably underestimates of the
true effectiveness one could expect of GHVs in a distributed environment. The
main reason is that we performed our analysis on the AP collection of newswire
data. While this collection contains a moderate degree of duplication, it is less
redundant than many data sources, in particular the web. Furthermore, we have
not explicitly examined the issue of overlapping collections, which would result in
further increase in duplication in a typical result pool. As the rate of duplication
in the lists rises, the measured effectiveness of GHVs improves, as more true
positives will be identified but the false positive rate will not increase. However,
it is apparent even from these experimental results that GHVs can effectively
screen out all exact duplicate documents and many near-duplicate documents in
a cooperative DIR system.

6 Conclusions

Management of document duplication has been cited as one of the major chal-
lenges facing the field of DIR [Allan et al, 2003]. Duplication of documents occurs
in DIR due to the same phenomena that cause it to be a problem in centralised
IR [Bernstein and Zobel, 2004], but is compounded by the effect of collection
overlap. Despite the seriousness of the issue, it has seen little in-depth investiga-
tion, and techniques typically used for duplicate management in centralised IR
systems do not translate well to the DIR domain.

We have introduced a new representation, the grainy hash vector (GHV), that
can be deployed in cooperative DIR systems for efficient and accurate merge-time
duplicate detection. GHVs are able to detect near-duplicates as well as exact du-
plicates, have well-defined mathematical properties, and can be independently
constructed at index time at each site in the DIR system for transmission to
the broker at query time. We demonstrate empirically on the TREC AP collec-
tion that GHVs can be used to efficiently and effectively identify duplicate and

120 Y. Bernstein, M. Shokouhi, and J. Zobel

near-duplicate document pairs at merge time. GHVs are an excellent mechanism
for management of duplication in cooperative DIR.

Acknowledgements. This research was supported by the Australian Research
Council.

References
J. Allan et al. Challenges in information retrieval and language modeling: report of

a workshop held at the center for intelligent information retrieval, University of
Massachusetts Amherst, september 2002. SIGIR Forum, 37(1):31–47, 2003.

Y. Bernstein and J. Zobel. A scalable system for identifying co-derivative documents. In
Proc. String Processing and Information Retrieval Symposium, pages 55–67, Padova,
Italy, 2004.

Y. Bernstein and J. Zobel. Redundant documents and search effectiveness. In Proc.
ACM CIKM Conf., pages 736–743, Bremen, Germany, 2005.

S. Brin, J. Davis, and H. Garćıa-Molina. Copy detection mechanisms for digital docu-
ments. In Proc. ACM SIGMOD international conference on Management of Data,
pages 398–409, San Jose, California, 1995.

A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of
the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166, 1997.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent
permutations (extended abstract). In Proc. ACM symposium on Theory of computing
(STOC), pages 327–336, New York, NY, USA, 1998. ACM Press. ISBN 0-89791-
962-9.

J. Callan and M. Connell. Query-based sampling of text databases. ACM Transactions
on Information Systems, 19(2):97–130, 2001.

J. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference
networks. In Proc. Int. ACM-SIGIR Conf., pages 21–28, Seattle, Washington, 1995.

A. Chowdhury, O. Frieder, D. Grossman, and M. C. McCabe. Collection statistics for
fast duplicate document detection. ACM Transactions on Information Systems, 20
(2):171–191, 2002.

J. G. Conrad, X. S. Guo, and C. P. Schriber. Online duplicate document detection:
Signature reliability in a dynamic retrieval environment. In Proc. ACM-CIKM Conf.,
pages 443–452, New Orleans, Louisiana, 2003.

J. W. Cooper, A. R. Coden, and E. W. Brown. Detecting similar documents using
salient terms. In Proc. ACM-CIKM Conf., pages 245–251, McLean, Virginia, 2002.

D. Fetterly, M. Manasse, and M. Najork. On the evolution of clusters of near-duplicate
web pages. In Proc. first Latin American Web Congress, pages 37–45. IEEE, 2003.

S. Gauch, G. Wang, and M. Gomez. ProFusion: Intelligent fusion from multiple, dis-
tributed search engines. J. Universal Computer Science, 2(9):637–649, 1996.

L. Gravano, C. K. Chang, H. Garcia-Molina, and A. Paepcke. STARTS: Stanford pro-
posal for Internet meta-searching. In Proc. ACM SIGMOD international conference
on Management of Data, pages 207–218, Tucson, Arizona, 1997.

D. Harman. Overview of the first TREC conference. In Proc. ACM-SIGIR Conf.,
pages 36–47, Pittsburgh, Pennsylvania, 1993.

T. Hernandez and S. Kambhampati. Improving text collection selection with coverage
and overlap statistics. In Proc. Int. Conf. on World Wide Web, pages 1128–1129,
Chiba, Japan, 2005.

Compact Features for Detection of Near-Duplicates in Distributed Retrieval 121

T. C. Hoad and J. Zobel. Methods for identifying versioned and plagiarised documents.
J. the American Society for Information Science and Technology, 54(3):203–215,
2003.

S. Ilyinski, M. Kuzmin, A. Melkov, and I. Segalovich. An efficient method to detect
duplicates of web documents with the use of inverted index. In Proc. Int. Conf. on
World Wide Web, Honolulu, Hawaii, 2002.

A. Kolcz, A. Chowdhury, and J. Alspector. Improved robustness of signature-based
near-replica detection via lexicon randomization. In Proc. ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, pages 605–610, Seattle, WA, 2004.

C. Lyon, J. Malcolm, and B. Dickerson. Detecting short passages of similar text in large
document collections. In Proc. Conf. on Empirical Methods in Natural Language
Processing, Philadelphia, Pennsylvania, 2001.

U. Manber. Finding similar files in a large file system. In Proc. USENIX Winter
Technical Conf., pages 1–10, San Fransisco, CA, 17–21 1994.

W. Meng, C. Yu, and K. Liu. Building efficient and effective metasearch engines. ACM
Computing Surveys, 34(1):48–89, 2002.

H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval qual-
ity for resource selection. In Proc. Int. ACM-SIGIR Conf., pages 290–297, Toronto,
Canada, 2003.

A. L. Powell and J. French. Comparing the performance of collection selection algo-
rithms. ACM Transactions on Information Systems, 21(4):412–456, 2003.

W. Pugh and M. H. Henzinger. Detecting duplicate and near-duplicate files (United
States Patent 6,658,423), 2003.

E. Selberg and O. Etzioni. The MetaCrawler architecture for resource aggregation on
the Web. IEEE Expert, (January–February):11–14, 1997.

L. Si and J. Callan. Unified utility maximization framework for resource selection. In
Proc. ACM-CIKM Conf., pages 32–41, Washington, D.C., 2004.

L. Si and J. Callan. Relevant document distribution estimation method for resource
selection. In Proc. ACM-SIGIR Conf., pages 298–305, Toronto, Canada, 2003.

H. S. Warren, Jr. Hacker’s Delight. Addison Wesley, 2002.
O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to web search results.

In Proc. Int. Conf. on World Wide Web, pages 1361–1374, Toronto, Canada, 1999.
J. Zobel and Y. Bernstein. The case of the duplicate documents: Measurement, search,

and science. In Proc. Asia-Pacific Web Conf., pages 26–39, Harbin, China, 2006.

Inverted Files Versus Suffix Arrays for Locating
Patterns in Primary Memory

Simon J. Puglisi1, W. F. Smyth1,2, and Andrew Turpin3

1 Curtin University of Technology, Perth, Australia
puglissj@cs.curtin.edu.au

http://www.computing.edu.au/~puglissj
2 McMaster University, Hamilton, Canada

smyth@mcmaster.edu
3 RMIT University, Melbourne, Australia

aht@cs.rmit.edu.au

Abstract. Recent advances in the asymptotic resource costs of pat-
tern matching with compressed suffix arrays are attractive, but a key
rival structure, the compressed inverted file, has been dismissed or ig-
nored in papers presenting the new structures. In this paper we examine
the resource requirements of compressed suffix array algorithms against
compressed inverted file data structures for general pattern matching
in genomic and English texts. In both cases, the inverted file indexes
q-grams, thus allowing full pattern matching capabilities, rather than
simple word based search, making their functionality equivalent to the
compressed suffix array structures. When using equivalent memory for
the two structures, inverted files are faster at reporting the location of
patterns when the number of occurrences of the patterns is high.

1 Introduction

The problem of finding an m character pattern P [1 . . .m] in an n character text
T [1 . . . n] recurs frequently as a component in larger algorithms, and as a stand
alone problem. When n and m are sufficiently small that a O(n+m) time search
is tolerable, then one of the gamut of online string matching algorithms such as
KMP or Boyer-Moore solve the problem effectively [30]. However, when n is very
large compared with m, or when the text is to be searched many times, then
algorithms with running times linear in the text size become less attractive, and
it is worthwhile preprocessing the text to build an index to aid search.

If a suffix tree data structure is built from T , then patterns can be located
in the text in time O(m + occ), where occ is the number of occurrences of
the pattern P in T [23,31]. The problem with a suffix tree, however, is that it
typically requires upwards of 12n bytes of memory [16], assuming that characters
in T and P are drawn from a small alphabet like the ASCII alphabet of 256
characters, and even more space for larger alphabets. Using only 5n bytes of
memory, Manber and Myers introduced the suffix array, which allows a search
for P in T in O(m log n + occ) time, or O(m + log n + occ) if an extra 4n

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 122–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Inverted Files Versus Suffix Arrays for Locating Patterns 123

bytes of memory are used [20]. The search time for P in T using a suffix array
was improved to O(m + occ) time by Sim et al., by the use of auxiliary data
structures that require 1 to 4n bytes extra depending on alphabet size [8,29].
The time to construct suffix arrays has also been reduced in recent years to
that of suffix trees, O(n), making them very competitive with the suffix tree
structure [26].

Recently the memory requirements of suffix arrays have been reduced through
the use of compression techniques, intuitively similar to the Burrows-Wheeler
Transform [6], but in practice implemented quite differently. Using these struc-
tures, the suffix array can typically be stored in less than 2n bytes [11,13,17,27].
What is even more remarkable is that some of these algorithms produce a self-
index ; that is, an index that can also be used to recover the original text. Hence
there is no need to store the original text in addition to the compressed suffix
array. In general these structures take O(m + C + Locc) time to find all the
positions where P occurs in T , where C refers to the time taken to count the
number of times P occurs and L is the time required to “decode” one position of
occurrence from the compressed structure. The plethora of different approaches
for compressing the suffix array offer tradeoffs for C, L and final index size.

While these new compressed self-indexes are indeed remarkable achievements,
one of their key rivals for solving the pattern matching problem has been over-
looked or dismissed by some authors: the explicit index, or the inverted file. The
inverted file data structure has long been used as the underlying data struc-
ture of choice for the restricted pattern matching problems where P is a unit of
text, such as a word or phrase, and T is a natural language [34]. It is a funda-
mental technology underlying all Internet search engines such as Google, Yahoo
and MSN Search. In the restricted pattern matching problem, a vocabulary of
possible P ’s must be known in advance, hence allowing an inverted file to be
constructed. While this may seem to prevent inverted files from being used to
solve the unrestricted pattern matching problem—that is, where P can be of any
form—this is not the case. By assuming a vocabulary of all possible q-grams,
where a q-gram is a string of characters of length q, inverted files can be used
to solve the general pattern matching problem. Indeed, they have been success-
fully used to index P in one of the most popular and important applications of
unrestricted pattern matching of our time: the BLAST application for searching
genomic data [2,25].

Although inverted files may require O(m + n) time to locate P in T , this is
usually only realised on pathological data. In practice, the running times for re-
stricted pattern search using inverted files are extremely fast. It is unknown how
the speed of inverted files on the unrestricted pattern matching problem com-
pare to that of the new compressed self-indexes described above. In this paper
we present the first empirical comparison between a compressed inverted file on
q-grams and a compressed suffix array structure for the in-memory, unrestricted
pattern matching problem. We show that the compressed inverted file is indeed
faster than its counterpart when the number of occurrences of P is high, but
that the compressed suffix array is superior for searching when occ is low.

124 S.J. Puglisi, W.F. Smyth, and A. Turpin

11111111112222222222333333333344444444445555555555666666666
12345678901234567890123456789012345678901234567890123456789012345678
of all the saws I ever saw, I never saw a saw saw like that saw saws

Fig. 1. An example text used for illustration throughout the paper. Numbers indicate
the position of each character, for example a occurs at position 44.

An alternate technology, which we do not consider in this paper, is the Ziv-
Lempel index on q-grams published by Kärkkäinen [15].

2 Background

In this section we describe inverted files and compressed suffix arrays in turn.

2.1 Inverted Files

An inverted file is a data structure similar to a book index. Textual units of a
pre-determined form are extracted from T , for example words or q-grams, and
then the position of each occurrence of each unit is stored in an inverted list for
that pattern. For example, for the text in Figure 1, assuming a textual unit of a
3-gram, the inverted list for saw would be {12, 24, 37, 43, 47, 61, 65}; and for ver
{20, 33}. In order to locate the lists quickly, all of the textual units are stored in
a hash table with a pointer to the inverted list for that unit.

Without data compression, the size of the inverted index is obviously several
times larger than the text; for our q-gram units there is a 4 byte pointer per
text position, and some entries in a hash table, so a total space usage of at
least 4n bytes. When the lists are compressed, however, space savings accrue
that make inverted files the data structure of choice when searching for words
in English text [34]. The preferred method for compressing inverted lists is to
take differences between entries in the lists (so the list for saw would become
{12, 12, 13, 6, 4, 14, 4}) and then code these small integers with an appropriate
coding scheme [34]. In our experiments below we use the Simple-9 coding scheme
which, while not the best available, gives a good tradeoff between compression
levels and decoding speed [3].

The steps outlined in Figure 2 are followed to search for pattern P using an
inverted file. There are several nuances hidden by the pseudo code. Firstly, there
are various methods for computing a cover of P in Step 4. In the experiments
reported below we compute the set containing all the distinct substrings of P
of length q. This means we make m − q + 1 hits on the hash table but we
are guarantee to have the shortest inverted list at Step 8. As an alternative
one could use a simple greedy left-to-right match, taking the q-grams P [1 . . . q],
P [q + 1 . . . 2q], and so on, with the final q-gram being P [m− q + 1 . . .m].

The second nuance is the early termination of the loop that intersects the
inverted lists for each q-gram to generate the list of candidate matches C (Step 9).
It was observed by Zobel et al. [35] that it is often beneficial to stop intersecting
lists and go straight to the text when the length of candidates fell below some

Inverted Files Versus Suffix Arrays for Locating Patterns 125

1) If m < q then
2) Set S ← {Ps|s = any substring drawn from Σ of length q − m}.
3) else
4) Set S to be a set of strings that cover P .
5) Let pi be the starting position of si ∈ S in P .
6) For each si ∈ S, set �i to the length of inverted list for si.
7) Sort S into ascending order by �i’s.
8) Initialise C to the inverted list for s1 and remove s1 from S.
9) While S is not empty and |C| > k do
10) Set C′ ← elements of s1 less p1.
11) Set C ← C ∩ C′.
12) Remove s1 from S.
13)Check for an occurrence of P beginning at each position T [c ∈ C].

Fig. 2. Algorithm for searching for a pattern P [1 . . . m] using an inverted file con-
structed on q-grams from a text T

parameter k. Note that if k = 0, then the list of candidates C contains all the
locations of P , and there is no need to check the text. If the text is not required
for some other reason (for example, returning to the user) then the text need
not be stored which is a substantial memory saving. In our experiments below
we use k = 2000 for DNA data and k = 10000 for protein data and English text.

The time required for the search algorithm outlined in Figure 2 depends
markedly on the input to the algorithm. If m > q, then a maximum of m/q
lists will be examined, allowing Steps 1 to 7 to complete in O(m/q log(m/q))
time. On the other hand, if the pattern is shorter than q, the number of q-grams
is up to |Σ|q−m, and so this situation should be avoided for large alphabets by
keeping q small. Each text position can only occur in one inverted list, so the
total number of inverted list entries processed in Steps 9 to 12 is at most n,
hence the loop completes in O(n) time. In practice, however, it is hoped that
this will be much closer to O(occ) time. Step 13 requires at least O(max(occ, k))
time.

An important variation on the classical inverted file described above is the
block-addressing inverted file [21,24]. The idea is instead of storing a pointer i
to every occurrence of a q-gram v, one chooses a block size b, and stores only
unique values of �i/b� in each inverted list – in other words only pointers to the
blocks of the text in which v occurs are stored. For example, if we chose b = 10
then the list for saw would become {1, 2, 3, 4, 6}; and for ver {2, 3}.

The benefits of block addressing are twofold: the inverted lists are shorter (be-
cause only one pointer per occurrence per block is stored) and the gaps between
stored blocks are likely to be smaller, making the gapped lists more compress-
ible. The cost is that some sequential searching of the text is always required
to find the exact positions of occurrences inside matching blocks, and for this
reason we must always store the text explicitly, or in some accessible way.

One way to reduce the burden of storing the text is to store it in a compressed,
but searchable form. This idea has been shown to be very effective for word

126 S.J. Puglisi, W.F. Smyth, and A. Turpin

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .50 51 52 53 54 55 56 57 58 . . .68 69
S[i] 69 16 28 40 3 18 50 30 36 46 42 60 23 64 11 55 7 27 . . .15 37 47 43 61 24 65 12 59 . . .67 14

Fig. 3. Suffix array S for the example string in Figure 1. The underlined regions are
the same run of values but offset by one.

indexing inverted files [9,24]. It may be possible that those ideas could be adapted
for the q-gram case, though we do not compress the text for the inverted file
experiments reported in this work.

2.2 Compressed Suffix Arrays

The suffix array of text T is defined as an array S containing a permutation
of the integers 1 . . . n such that the suffix T [S[i] . . . n] is lexicographically not
larger than the suffix T [S[i + 1] . . . n]. In effect, S is a sorted list of pointers to
every suffix of T . Figure 3 shows portions of S built for the example text in
Figure 1. Note that it is convenient for suffix array algorithms to have a special
terminating character $ which is smaller than all other characters added to the
end of T , hence the first entry in S in the figure is 69, the position of $ in T .
The next 16 entries all point to suffixes beginning with a space, with T [S[18]]
being the comma. The middle section shown, S[51 . . . 57] shows the pointers to
suffixes beginning with saw.

In order to use S to search for P we can employ the algorithm of Manber
and Myers [20], which is a simple binary search for the suffix beginning with
the string lexicographically less than P , and the suffix beginning with the string
lexicographically greater then P . For example, in Figure 3, if the pattern was
P = saw, we would binary search to positions 51 and 57 in S which are the
boundaries of the region of pointers to suffixes beginning with saw. For each
step of the binary search we may have to do m comparisons, so the total time
is O(m log n). If an extra array of size 4n bytes, called the LCP array (longest
common prefix), is stored, then search times can be reduced to O(m + log n).
By enhancing the suffix array with various other auxiliary arrays Abouelhoda
et al., [1] and Sim et al.,[29] show how to improve search time to O(m) for texts
with constant sized alphabets.

The 5n byte requirement of text plus suffix array (assuming an alphabet of
256 characters) can be significantly reduced by compressing the “self repeti-
tions” in the suffix array. For example, in Figure 3 the entries in S[9 . . .15] are
all one less than the entries in S[51 . . . 57] (underlined). There is a myriad of tech-
niques for achieving space savings which are elegantly surveyed by Navarro and
Mäkinen [18]. It also turns out that the connection between the BWT and S can
be exploited so that you get a self-index. A self-index is capable of reproducing
any substring of the text, and so can be stored in place of the text.

For the experiments in this paper we use an implementation variant of the
Sadakane’s “succinct suffix array” (SSA) [28] described and implemented by
Makinen and Navarro [17, Section 5]. This index was selected because previous
experiments indicate it is representative of the state of the art in compressed

Inverted Files Versus Suffix Arrays for Locating Patterns 127

suffix structures [17]. It was also the fastest index for which we could find publicly
available code [12]. Asymptotically the SSA counts occurrences in O(H0m) time
and then retrieves each position in O(H0 log1+ε n) time, where H0 refers to
the zero-order empirical entropy of the text [17,22]. The total search time is
thus O(H0m + occH0 log1+ε n). Finally we remark that to reduce space further,
instead of indexing every suffix, we can sample (index) only every srth suffix –
sr is called the sample rate. This is the main way to trade index size for search
time in many compressed suffix structures, including the SSA.

3 Method

Our investigations are carried out using three datasets as summarised in Ta-
ble 1, where the “H0” column is the zero-order entropy of the collection, and
the “Occurrences” column indicates the average number of occurrences of each
pattern in the collection. Each of these three datasets is now discussed in turn.

dna A common, current string processing task employed by molecular biolo-
gists is sequence alignment, where a query sequence is matched against a data-
base of possible sequences and the best matches reported. While not an exact
string matching problem, the first phase of algorithms such as BLAST [2] and
its recent variants [7] perform an exact matching task on small subsequences
of the query sequence. These results are then post-processed to find the true
alignment. In BLAST, currently the most popular tool for the task, 80% of the
time in performing an alignment is spent in exact matching of all 11 character
subsequences of the query sequence [7].

Accordingly, this dna dataset contained chormosones 18 and 19 from the
human genome [10], and 31,165 patterns of length 11, derived from a set of
real sequences issued to BLAST in a laboratory at the Royal Womens Hospital,
Melbourne. The patterns are all 11 character substrings taken from the real
sequences, as would be used in the BLAST algorithm.

prot Another common pattern matching task studied in bioinformatics is
protein alignment. The process is similar to the DNA task described above, but
the alphabet of possible symbols is 20, rather than 4. As BLAST finds exact
matches of 2-grams in the first step of its protein alignment algorithm, we tested

Table 1. Collections and pattern sets used

Dataset Collection
Source Size (Mb) H0

prot Genbank non-redundant database 150 4.21
wsj TREC newswire 150 4.53
dna DNA Human chromosone 18 and 19 134 2.21

Pattern Set
Source m Occurrences Number

prot Random 2.0 523, 296 100
wsj Words in titles of TREC topics 200-450 8.2 4, 861 2651
dna Royal Womens Hospital, Melbourne 11.0 185 31, 165

128 S.J. Puglisi, W.F. Smyth, and A. Turpin

1000 random patterns of length 2 on a 150Mb subset of the Genbank non-
redundant protein set [4,5]. Note that in the figures reported below on the whole
pattern set, this pattern set is broken into 10 blocks of 100 patterns each, so in
fact the timing is the average for 100 patterns, not the entire 1000.

wsj One of the most common uses of pattern matching is in searching text.
Accordingly, we include a data file of newspaper articles from the Wall Street
Journal subcollection of the TREC collection [14], and 2651 English words as
patterns. The words were extracted from the Title field of the TREC topics
number 200 through 450. Only words with six or more characters were included
in the pattern set, some did include punctuation characters, and some words
appeared in the pattern set more than once.

Experimental Setup

All experiments were conducted on an otherwise unoccupied 2.8 GHz Intel Pen-
tium 4 processor with 2Gb main memory. The operating system was RedHat
Linux Fedora Core 1 (Yarrow) running kernel 2.4.23. The compiler was g++
(gcc version 3.3.2) executed with the -O6 option. Times were recorded with the
standard Unix getrusage function. All running times given are the average of at
least five runs and do not include time spent loading the index from disk. Index
sizes for the inverted file include the size of the original, uncompressed text.

4 Results

Figure 4 shows the running times and index sizes for the three real pattern sets
on the three data sets. In order to equate IF sizes with SSA sizes as much as
possible, the q-gram size differs for each IF: for prot, q = 2; for wsj, q = 3;
and for dna, q = 7. As can be seen, on the prot and wsj sets, the inverted file
outperforms the compressed suffix array. For DNA, however, the SSA is a clear
winner. This raises the question, under what circumstances is the SSA superior
to the IF? From Figure 4 it seems that increasing m, the pattern length, favours
the SSA (m increases from prot (top) to dna (bottom)). A consequence of
increasing m is (typically) a reduction in the number occurrences of the pattern.
This is readily seen in Table 1, where m decreases and the average number of
occurrences increases.

As the number of occurrences increases, it is possible for the time taken by the
inverted file to grow slowly, as the effort invested in intersecting inverted lists for
q-grams will more likely lead to matches. The suffix array, however, must trace
back from the compressed suffix array to the actual string position, so increasing
the number of occurrences will reduce run-times, more so if the sample rate is
high. This is shown convincingly in Figure 5, where there is a point on each
graph for each pattern that is the target of a search. Lines are drawn in panel
(b) to aid clarity and do not represent fitted curves. Both panels clearly show
that as occ increases, the SSA runtime increases at a greater rate than the IF
runtime. Depending on the index size and data set, the minimum number of

Inverted Files Versus Suffix Arrays for Locating Patterns 129

T
im

e
(s

ec
)

1024

163264
128

256
512 4

6
PROT

0
20

60
10

0
T

im
e

(s
ec

)

64128256512
1024

2048
10

14
WSJ

0
20

60
10

0

150 200 250 300 350 400 450

0
20

60
10

0

Size(Mb)

T
im

e
(s

ec
)

DNA

3264
128

256

45681012

0
20

60
10

0

SSA
IF

Fig. 4. Resources required for the three data sets. Numbers adjacent to the IF (open)
dots indicate the blocksize used, while the numbers adjacent to the SA (filled) dots
indicate the sample rate used.

occurrences of a pattern required so that the SSA is slower than the IF ranges
from several thousand up to 70,000.

Once the area of the SSA that contains a pattern has been located, the time
required to retrieve each pattern location from the SSA is O(H0 log1+ε n). If we
assume that the constant of proportionality is c in this bound, then for prot
the time to fetch an occurrence is

tp = 4.21c log1+ε(150),

and the time to fetch an occurrence from a located region of the dna SSA is

td = 2.21c log1+ε(134).

These two quantities give the slope of the lines for the SSA in Figure 5, and
seeing as td/tp ≈ 0.5 (assuming a small ε), the line for an SSA in panel (a)

130 S.J. Puglisi, W.F. Smyth, and A. Turpin

0 500 1000 1500

0
50

0
10

00
15

00
20

00

Number of occurences (’000)

T
im

e
(m

se
cs

)

IF q=2 bs=16

SSA sr=4

SSA sr=6

0 500 1000 1500

0
50

0
10

00
15

00
20

00

0 500 1000 1500

0
50

0
10

00
15

00
20

00

0 500 1000 1500

0
50

0
10

00
15

00
20

00

(a) prot m = 2

Number of occurences (’000)

IF q=4 bs=16

SSA sr=6

SSA sr=8

SSA sr=10

0 500 1000 1500

(b) dna m = 5

Fig. 5. Time to search for each (a) two-character pattern in prot and (b) each five-
character pattern in dna. Each dot represents a single pattern search.

should be twice as steep as the SSA with the same sample rate in panel (b).
(The sample rate is buried in the c of tp and td, so SSAs with different sample
rates will have different constants of proportionality in the bound.) Examining
Figure 5, we can see that this analysis is supported by the data. For the low
entropy dataset, dna in panel (b), the slope of the SSA with a sample rate of 6
(sr = 6) is about half that of the SSA with sr = 6 on the high entropy data set
in panel (a).

The connection between the inverted file performance and entropy is less
obvious. In the two graphs the IF curves have the same shape, but one uses
q = 2 (panel (a)), while the other uses q = 4 (panel (b)). By altering the size
of the q-grams employed, there is probably some compensation for the differing
entropies of the files. This warrants further investigation.

5 Conclusions

We have demonstrated that on several practical, general pattern matching prob-
lems, compressed, blocked inverted files built on q-grams outperform compressed
suffix arrays. For high zero-order entropy files, such as English text or protein
data, when the number of occurrences of the target pattern is lower than about
5,000, the compressed suffix array data structure is superior to the inverted
file. For more frequent patterns, inverted files provide faster search times. As
zero-order entropy decreases, however, the compressed suffix array handles an
increase in the number of occurrences more readily. For example, on DNA data,
the suffix array is faster when the pattern occurs less than 70,000 times.

In this study we have addressed the pattern matching problem where it is
required that each location of P in T be reported. This formulation of the pattern

Inverted Files Versus Suffix Arrays for Locating Patterns 131

matching problem is particularly suited to the inverted file data structure. An
alternate version of the problem is the counting problem, where the number
of occurrences of P in T is reported, but not the locations of each occurrence.
Suffix arrays (compressed or otherwise) will perform much faster on the counting
variant of the problem than on the location variant presented in this paper.
Inverted files, on the other hand, will require the same amount of time for either
problem. Inverted files should not be considered as suitable data structure for
counting patterns in text.

This study has also enforced the restriction that all indexes must fit in pri-
mary memory (RAM). However, for large texts, this is unrealistic and secondary
memory must be employed. The virtues of inverted files on disk for word queries
are well known, and they have also been successfully employed for genomic appli-
cations [32]. Recent work shows implementations of compressed suffix arrays on
disk are possible [19] but the question of their efficiency relative to the inverted
files remains open.

Finally we observe that we did not compress the text that is used for false
match checking on our inverted file system. Even simple byte-packing for the
DNA data [33] would reduce the text size to about 34Mb, down from its original
134Mb, a saving of 100Mb. In effect, the points for the IF in the bottom panel
of Figure 4 would shift left by 100Mb and, even after compensating for the
overhead of the compressed DNA matching, it seems that this change would
make the inverted file very competitive with the SSA on the DNA data.

Acknowledgments

This research is supported by by grants from the Australian Research Council
(Turpin) and the Natural Sciences and Research Council of Canada (Smyth).
Thanks to Libby Fitzpatrick at the Royal Womens Hospital, Melbourne for sup-
plying the DNA queries.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Optimal exact string match-
ing based on suffix arrays. In SPIRE 2002, number 2476 in LNCS, pages 31–43.
Springer-Verlag, Berlin, 2002.

2. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

3. V. N. Anh and A. Moffat. Inverted index compression using word-aligned binary
codes. Information Retrieval, 8:151–166, 2005.

4. D. Benson, D.J. Lipman, and J. Ostell. GenBank. Nucleic Acids Research,
21(13):2963–2965, 1993.

5. D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and D.L. Wheeler. Gen-
bank. Nucleic Acids Research, 33:D34–D38, 2005.

6. M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

132 S.J. Puglisi, W.F. Smyth, and A. Turpin

7. M. Cameron, H.E. Williams, and A. Cannane. Improved gapped alignment in
blast. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
1(3):116–129, 2004.

8. Y. Choi and K. Park. Time and space efficient search with suffix arrays. In S. Hong,
editor, Proceedings of AWOCA’04, pages 230–238, Ballina, Australia, 2004.

9. E. S. De Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible
word searching on compressed text. ACM Transactions on Information Systems,
18(2):113–139, 2000.

10. Ensembl. Ensembl Genome Browser, 2006. http://www.ensembl.org.
11. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

Proceedings of the 41st IEEE Symposium on Found. of Comp. Sci., pages 390–398,
Redondo Beach, CA, 2000. IEEE Computer Society.

12. P. Ferragina and G. Navarro. Pizza& Chili Corpus – Compressed Indexes and their
Testbeds, 2005. http://pizzachili.dcc.uchile.cl.

13. R. Grossi, J. S. Vitter, and A. Gupta. When indexing equals compression: Exper-
iments with compressing suffix arrays and applications. In Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms, pages 636–645, 2004.

14. D. K. Harman. Overview of the second text retrieval conference (TREC-2). Infor-
mation Processing and Management, 31(3):271–289, 1995.

15. J. Kärkkäinen. Ziv-Lempel index for q-grams. Algorithmica, 21(1):137–154, 1998.
16. S. Kurtz. Reducing the space requirement of suffix trees. Software, Practice and

Experience, 29(13):1149–1171, 1999.
17. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.

Nordic Journal of Computing, 12(2):40–66, 2005.
18. V. Mäkinen and G. Navarro. Compressed full text indexes. Technical Report

TR/DCC-2005-7, Department of Computer Science, University of Chile, June 2006.
19. V. Mäkinen, G. Navarro, and K. Sadakane. Advantages of backward searching -

efficient secondary memory and distributed implementation of compressed suffix
arrays. In Algorithms and Computation: 15th International Symposium, ISAAC
2004, number 3341 in LNCS, pages 681–692. Springer-Verlag, Berlin, 2004.

20. U. Manber and G. W. Myers. Suffix arrays: a new model for on-line string searches.
SIAM Journal of Computing, 22(5):935–948, 1993.

21. U. Manber and S. Wu. Glimpse: A tool to search through entire file systems.
In Proceedings of the USENIX Technical Conference, pages 23–32, Berkeley, CA,
1994. USENIX Association.

22. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

23. E. M. McCreight. A space-economical suffix tree construction algroithm. Journal
of the ACM, 23(2):262–272, 1976.

24. G. Navarro, E. S. De Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding
compression to block addressing inverted indexes. Information Retrieval, 3:49–77,
2000.

25. NCBI. NCBI Blast, 2006. http://www.ncbi.nlm.nih.gov/BLAST/.
26. Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix

array construction algorithms. In Proceedings of the Prague Stringology Conference,
pages 1–30, Prague, August 2005. Czech Technical University.

27. K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Algorithms and Computation: 11th International
Conference, ISAAC 2000, number 1969 in LNCS, pages 410–421. Springer-Verlag,
Berlin, 2000.

Inverted Files Versus Suffix Arrays for Locating Patterns 133

28. K. Sadakane. Succinct representations of lcp information and improvements in the
compressed suffix arrays. In Proceedings of the 13th ACM-SIAM Symposium on
Discrete Algorithms, pages 225–232, San Francisco, CA, 2002.

29. J. S. Sim, D. K. Kim, H. Park, and K. Park. Linear-time search in suffix arrays. In
M. Miller and K. Park, editors, Proceedings of AWOCA’03, pages 139–146, Seoul,
Korea, 2003.

30. W. F. Smyth. Computing Patterns in Strings. Addison-Wesley-Pearson Education
Limited, Essex, England, 2003.

31. P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th annual
Symposium on Foundations of Computer Science, pages 1–11, 1973.

32. H. E. Williams and J. Zobel. Indexing and retrieval for genomic databases. IEEE
Transactions on Knowledge and Data Engineering, 14(1):63–78, 2002.

33. Hugh Williams and Justin Zobel. Compression of nucleotide databases for fast
searching. CABIOS Computer Applications in the Biological Sciences, 13(5):549–
554, October 1997.

34. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images - 2nd Edition. Morgan Kaufmann Publishing,
San Francisco, 1999.

35. J. Zobel, A. Moffat, and R. Sacks-Davis. Searching large lexicons for partially
specified terms using compressed inverted files. In R. Agrawal, S. Baker, and
D. Bell, editors, Proceedings of the International Conference on Very Large Data
Bases, pages 290–301, Dublin, Ireland, August 1993.

Efficient Lazy Algorithms for Minimal-Interval
Semantics

Paolo Boldi and Sebastiano Vigna

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano

Abstract. Minimal-interval semantics [3] associates with each query
over a document a set of intervals, called witnesses, that are incom-
parable with respect to inclusion (i.e., they form an antichain): witnesses
define the minimal regions of the document satisfying the query. Minimal-
interval semantics makes it easy to define and compute several sophisti-
cated proximity operators, provides snippets for user presentation, and
can be used to rank documents: thus, computing efficiently the antichains
obtained by operations such as logic conjunction and disjunction is a ba-
sic issue. In this paper we provide the first algorithms for computing such
operators that are linear in the number of intervals and logarithmic in
the number of input antichains. The space used is linear in the number
of antichains. Moreover, the algorithms are lazy —they do not assume
random access to the input antichains. These properties make the usage
of our algorithms feasible in large-scale web search engines.

1 Introduction

Search engines are a popular way to retrieve information in the web. However, the
classical problem studied by the theory of information retrieval, that of answering
a query by returning the set of documents that match the information provided
by the user, is complicated by the huge number of documents to be taken into
consideration. On the web retrieving many relevant documents is usually not a
problem — the documents are simply too many already. Precision, rather than
recall (in particular, precision in the first 10−20 results) is the main issue.

A first possibility for extending the user capabilities is query expansion, an
automatic or semi-automatic mechanism that that tries to enrich a given query,
by using for example some semantics extracted from the context, or by asking
directly the user what is the intended meaning of his/her query.

A different approach is that of departing from the Boolean model, and pro-
vide the user with more powerful (but understandable) operators. In this paper
we concentrate on minimal-interval semantics, a semantic model that uses an-
tichains of intervals of natural numbers to represent the semantics of a query.
Each interval is a witness of the satisfiability of the query, and defines a region
of the document that the query satisfies (words in the document are numbered
starting from 0, so regions of text are identified with intervals of integers). For
instance, a query formed by the conjunction of two terms is satisfied by the min-
imal intervals of the document containing both terms: minimality is guaranteed

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 134–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Lazy Algorithms for Minimal-Interval Semantics 135

by the fact that in an antichain every pair of elements is incomparable with
respect to inclusion.

This approach has been defined and studied in full extent by Clarke, Cormack
and Burkowski in their seminal paper [3]. They showed that antichains have a
natural lattice structure that can be used to interpret conjunctions and disjunc-
tions in queries. Moreover, it is possible to define several additional operators
(proximity, followed-by, and so on) directly on the antichains. The authors have
also described families of successful ranking schemes based on the number and
length of the intervals involved.

The main feature of minimal-interval semantics is that, by its very definition,
an antichain of intervals cannot contain more than n intervals, where n is the
number of words in the document. Thus, it is in principle possible to compute all
minimal-interval operators in time linear in the document size. This is not true,
for instance, if we consider different interval-semantics approaches in which all
intervals are retained and indexed (e.g., the PAT system [5] or the sgrep tool [6]),
as the overall number of regions is quadratic in the document size.

In this paper, we attack the problem of providing efficient algorithms for the
computation of such operators. As a subproblem, we can compute the proxim-
ity of a set of terms, and indeed we are partly inspired by previous work on
proximity [11,9]. Our algorithms are linear in the number of input intervals. For
conjunction and disjunction, there is also a multiplicative logarithmic factor in
the number of input antichains, which however can be shown to be essentially
unavoidable in the disjunctive case. The space used by all algorithms is linear
in the number of input antichains (in fact, we need to store just one interval
per antichain). Moreover, our algorithms are lazy, that is, while building their
results they do not advance the input lists more than necessary.

Previously, the only attempt at linear lazy algorithms for minimal-interval
region algebras we are aware of is the work of Young–Lai and Tompa on struc-
ture selection queries [13], a special type of expressions built on the primitives
“contained-in”, “overlaps”, and so on, that can be evaluated lazily in linear time.
Their motivations are similar to ours — application of region algebras to very
large text collections. Similarly, Navarro and Baeza–Yates [8] propose a class
of algorithms that using tree-traversals are able to compute efficiently several
operations on overlapping regions. Their motivations are efficient implementa-
tion of structured query languages that permit such regions. Indeed, some of the
techniques used therein (e.g., double stacks) are similar to our double indirect
priority queues. Albeit similar in spirit, they do not provide algorithms for any
of the operators we consider.

We believe that the existence of (almost) linear lazy algorithms for minimal-
interval semantics makes it the natural candidate for advancing web search en-
gines beyond a purely Boolean model: in particular, the possibility of limiting
the interval width has a very natural interpretation for the user in terms of
proximity, and ordered conjunction has obvious applications (e.g., searching for
a verse in a song when some word is missing).

136 P. Boldi and S. Vigna

Minimal intervals can also be used together with other standard information-
retrieval techniques. For instance, the Indri search engine [10] expands a query
into a number of subqueries, many of which are interval-based, and combines
the results.

In Section 2 we briefly introduce minimal-interval semantics, referring to the
original paper for examples and motivations. The presentation is rather alge-
braic, and uses standard terms from mathematics and order theory (e.g., “inter-
val” instead of “extent” as in [3]). The resulting structure is essentially identical
to that described in the original paper, but our systematic approach makes good
use of well-known results from order theory (for instance, we do not need to
prove that antichains form a lattice, as they are a well-known representation of
the ideal completion of a partial order), making the introduction self-contained.
For some mathematical background, see, for instance, Birkhoff’s classic [1].

Another advantage of our presentation is that by representing abstractly re-
gions of text as intervals of natural numbers we can easily highlight connections
with other areas of computer science: antichains of intervals have been used for
role-based access control [4], and for testing distributed computations [7]. The
problem of computing operators on antichains has thus an intrinsic interest that
goes beyond the problems of information retrieval.

Finally, we present our algorithms. An implementation is available as a part
of MG4J (http://mg4j.dsi.unimi.it/).

2 Minimal-Interval Semantics

Let us denote with In the set of intervals of n = { 0, 1, . . . , n− 1 } (a subset X
of n is an interval if x, y ∈ X and x < z < y then z ∈ X ; note that ∅ ∈ In)
ordered by inclusion. By numbering words in the document starting from 0 (see
Figure 1), elements of In can be thought of as regions of text.

Given intervals I and J , the interval spanned by I and J is the least interval
containing I and J (in fact, the supremum in In). Nonempty intervals will
be denoted by [. . r], where 	 is the left extreme and r is the right extreme
(i.e, the smallest and largest element in the interval). Intervals are ordered by
containment: when we want to order them by reverse containment instead, we
shall write I op

n (“op” stands for “opposite”).
The idea behind minimal-interval semantics [3] is that every interval in In

is a witness that a given query is satisfied by a document made of n words.
Smaller witnesses imply a better match, or more information; in particular, if
an interval is a witness any containing interval is a witness. We also expect that
more witnesses imply more information. Thus, when expressing the semantics
of a query, we discard non-minimal intervals, as there are intervals that provide
more relevant information. As a result, minimal-interval semantics associates
with each query an antichain1 of intervals. For instance, in Figure 1 we see a
short passage of text, and the antichain of intervals corresponding to a query.
Note that, for instance, the interval [0 . . 3] is not included as it is not minimal.
1 An antichain of a partial order is a subset of elements pairwise incomparable.

Efficient Lazy Algorithms for Minimal-Interval Semantics 137

Pease

0
porridge

1
hot!

2
Pease

3
porridge

4
cold!

5
Pease

6
porridge

7
in

8
the

9
pot

10
nine

11
days

12
old!

13
Some

14
like

15
it

16
hot,

17
some

18

like

19
it

20
cold,

21
Some

22
like

23
it

24
in

25
the

26
pot

27
nine

28
days

29
old!

30
Pease

31
porridge

32
hot!

33
Pease

34
porridge

35
cold!

36

Fig. 1. A sample text; the intervals corresponding to the semantics of the query “(hot
OR cold) AND porridge AND pease” are shown. For easier reading, every other interval
is dashed.

It is however more convenient to start from an algebraic viewpoint. An order
ideal X (henceforth called just an ideal) is a subset of a partial order that is
closed downwards: if y ≤ x and x ∈ X , then y ∈ X . The ideal completion of an
order P is a distributive lattice whose elements are the ideal of P ordered by
inclusion. The ideal completion of I op

n will be the base of our semantics:

En =
{

X ⊆ I op
n | X is an ideal

}
.

It is known that (at least in the finite case) an ideal over a finite partial order is
uniquely represented by the antichain of its maximal elements. Intuitively, the
antichain of maximal elements is the “upper border” of the ideal. Because of this
bijection, antichains of intervals are endowed with a partial order, and with the
algebraic structure of a distributive lattice.

The lattice of antichains thus defined is essentially the classic Clarke–Cormack–
Burkowski minimal-interval lattice, with the important difference that since we
allow the empty interval, we have a top element that has the empty interval only
as a witness. For the purposes of this paper, the difference is immaterial, though.

To make the reader grasp more easily the meaning of En, we now describe in an
elementary way its order and its lattice operations (note that we are not giving
a definition: the operations are simply the reflection on the set of antichains of
those of En). Given antichains A and B, we have

A ≤ B ⇐⇒ ∀I ∈ A ∃J ∈ B J ⊆ I.

Intuitively, A ≤ B if every witness I in A (an interval) can be substituted by a
better (or equal) witness J in B, where “better” means that the new witness J
is contained in I.

Correspondingly, the ∨ of two antichains A and B is given by the union of the
intervals in A and B from which non-minimal intervals have been eliminated.
Finally, the ∧ of A and B is given by the set of all intervals spanned by a
pair of intervals I ∈ A and J ∈ B, from which non-minimal intervals have
been eliminated. It is this very natural algebraic structure that has led to the
definition of the Clarke–Cormack–Burkowski lattice.

For instance, if we consider Figure 1 the lists for “porridge” ({ 1, 4, 7, 32, 35 }),
“pease” ({ 0, 3, 6, 31, 34 }) and “hot” or “cold” ({ 2, 5, 17, 21, 33, 36 }) give us a large
number of spanned intervals, from which we keep the antichain

138 P. Boldi and S. Vigna

{ [0 . .2], [1 . . 3], [2 . . 4], [3 . .5], [4 . . 6], [5 . . 7], [6 . . 17], [7 . .31],
[21 . .32], [31 . .33], [32 . .34], [33 . .35], [34 . .36] }.

A simple snippet extraction algorithm would compute greedily the first k small-
est nonoverlapping intervals of the antichain, which would yield, for k = 3, the
intervals [0 . . 2], [3 . . 5], [31 . . 33], that is, “Pease porridge hot!”, “Pease porridge
cold!”, and, again, “Pease porridge hot!”. A ranking scheme such as those pro-
posed in [2] would use the number and the length of the intervals to assign a
score to the document with respect to the query.

Finally, we remark that the intervals in an antichain can be ordered in prin-
ciple either by left or by right extreme, but these orders can be easily shown to
be the same, so the intervals in an antichain are naturally linearly ordered by
their extremes.

3 Operators

We shall not give a formal definition of query: the syntax is implied by our choice
of operators. As a guide, the reader must consider that the semantics of a query
containing a single term is the antichain of singleton intervals corresponding to
the positions in which the term appears.

For completeness, we define explicitly the operators AND and OR, which are
applied to a list of input antichains A0, A1, . . . , An−1, resulting in the ∧ and ∨,
respectively, of the antichains A0, A1, . . . , An−1. There are other useful operators
that can be defined directly on the antichain representation [3]:

1. BLOCK, given input antichains A0, A1, . . . , An−1, returns the set of intervals
of the form [0 . . r0] ∪ [1 . . r1] ∪ · · · ∪ [n−1 . . rn−1] for which [i . . ri] ∈ Ai

(0 ≤ i < n) and ri−1 + 1 = li (0 < i < n).
2. AND≤, given input antichains A0, A1, . . . , An−1, returns the set of minimal

intervals among those spanned by a set of intervals [i . . ri] ∈ Ai (0 ≤ i < n)
satisfying li−1 ≤ li (0 < i < n).

3. AND<, given input antichains A0, A1, . . . , An−1, returns the set of minimal
intervals among those spanned by a set of intervals [i . . ri] ∈ Ai (0 ≤ i < n)
satisfying ri−1 < li (0 < i < n).

4. LOWPASSk, given an input antichain A, returns the set of intervals from A
not longer than k.

More informally, given input antichains A0, A1, . . . , An−1, the operator
BLOCK builds sequences of consecutive intervals, each of which is taken from a
different antichain, in the given order. It can be used, for instance, to implement
a phrase operator. The AND≤ and AND< operators are ordered-AND opera-
tors which return intervals containing intervals from all of the Ai, much like
the AND operator. However, in the case of AND≤ and AND< the left extremes
of the intervals must be nondecreasing, and in the case of AND< the intervals
must be nonoverlapping. These operators (in particular AND≤) can be used,
for instance, to search for terms that must appear in a specified order. Finally,

Efficient Lazy Algorithms for Minimal-Interval Semantics 139

LOWPASS restricts the result to intervals shorter than a given threshold, and
be easily combined with AND or AND≤ to implement searches for terms that
must not be too far apart, and possibly appear in a given order.

Note that the natural lattice operators AND and OR cannot return the empty
antichain when all their inputs are nonempty. This is not true of the above
operators: for instance, BLOCK might fail to find a sequence of consecutive
intervals even if all its inputs are nonempty.

Finally, we remark that all intervals satisfying the definition of the BLOCK
operator are minimal. Indeed, assume by contradiction that for two concatena-
tions of minimal intervals we have [. . r] ⊂ [′ . . r′] (which implies either 	′ < 	
or r < r′). Assume that 	′ < 	′ (the case r < r′ is similar), and note that remov-
ing the first component interval from both concatenations we still get intervals
strictly containing one another. We iterate the process, obtaining two intervals
of An−1 (A0, respectively) strictly containing one another.

4 Lazy Evaluation of Query Operators

Most search engines use inverted files to index their document collections [12].
Usually, inverted indices are to be scanned in a sequential, left-to-right manner.
Thus, given a document containing a term t, we assume that it is possible to
obtain a list Lt containing the positions of t in the document in increasing order.
Each call to next(Lt) returns a new position, and, when no more positions are
available, null is returned. We identify position k with the singleton interval
[k . . k], so that Lt can be viewed as an antichain of intervals. More generally, the
list Li will return the intervals of the input antichain Ai.

The main point of this paper is that algorithms for computing operators on
antichain of intervals should be always lazy and linear in the input intervals: if
an algorithm is lazy, when only a small number of intervals is needed (e.g., for
presenting snippets) the computational cost is significantly reduced. Linearity
in the input intervals is the best possible result for a lazy algorithm, as input
must be read at some point. All algorithms described in this paper satisfy this
property, albeit in the case of AND and OR there is also a logarithmic factor in
the number of input antichains.

The logarithmic factor in the number of antichains can be easily proved to be
unavoidable for the OR operator in a model in which intervals can be handled
just by comparing their extremes:

Theorem 1. Every algorithm to compute OR that is only allowed to compare
interval extremes requires Ω(n log n) comparisons.

Proof. It is possible to sort n distinct integers by computing the OR of n an-
tichains, each containing a single singleton interval containing one of the integers
to be sorted. The resulting antichain is exactly the list of sorted integers. By an
application of the Ω(n log n) lower bound for sorting in this model, we get to
the result.

140 P. Boldi and S. Vigna

5 Algorithms Based on Double Indirect Queues

The algorithms we provide for AND and OR are inspired by the plane-sweeping
technique used in [11] for their proximity algorithm, which is on its own right a
variant of the standard sorted-list merge. The algorithms are implemented using
a double indirect priority queue.

A double indirect priority queue Q is a data structure based on an array
(called the reference array), which is managed outside the queue itself, and two
priority orders that compare items from the reference array: these two orders
are called primary and secondary. At each time, the queue contains a set of
indices into the reference array (initially, a specified set, possibly empty). An
array index x can be added to the queue calling the function enqueue(Q,x).

The index of the least item in the reference array with respect to the primary
(secondary) priority order can be accessed by invoking the function topIndex(Q)
(secondaryTopIndex(Q), resp.). The index of the least item with respect to the
primary priority order is also returned by dequeue(Q), which also removes the
index from Q. Analogously, top(Q) (secondaryTop(Q), resp.) return the least
item in the reference array with respect to the primary (secondary) priority
order.

The data structure assumes that the only item of the reference array that
might change its value is the top item. Such a change must be communicated
immediately to the queue by calling the function change(Q). Table 1 summarises
the operations available on a double indirect priority queue.

A double indirect priority queue can be easily and efficiently implemented
using two priority queues: a primary semi-indirect queue and a secondary indi-
rect queue2. Note that we need the secondary queue to be fully indirect, as the
primary queue must be able to adapt just to changes of its top item, but the
secondary queue must be able to adapt to changes of any item (as it must be
able to reflect changes in the top of the primary queue).

A trivial array-based implementation requires linear space and has constant
cost for all operations modifying the queue, whereas retrieving the (secondary)
top requires O(n) time. A better implementation uses a priority queue (e.g.,
based on a heap) with linear space and logarithmic time complexity for all op-
erations modifying the queue, and constant-time access to the (secondary) top.
Sophisticated heaps with linear costs for several operations do not modify sig-
nificantly the overall behaviour, as each time the queue is advanced the interval
corresponding to the top index becomes greater: there are data structures that
make it possible to decrease in constant time the top, but not in increase it (or
we could sort in linear time by comparison).

All algorithms based on double priority queues have complexity O(m log n)
if the input is formed by n antichains containing m intervals overall. This is
immediate, as all loops contain exactly one queue advancement.
2 A semi-indirect queue has a change operation that allows to restore the correct state

after a change in the value associated to the top item. An indirect queue has a change
operation that restores the correct state after a change in the value associated to
any index.

Efficient Lazy Algorithms for Minimal-Interval Semantics 141

Table 1. The operations available for a double indirect priority queue

enqueue(Q,x) insert item with index x in the queue
topIndex(Q) returns the index of the top item

w.r.t. the primary order
secondaryTopIndex(Q) returns the index of the top item

w.r.t. the secondary order
top(Q) returns the top item w.r.t. the primary order
secondaryTop(Q) returns the top item w.r.t. the secondary order
dequeue(Q) returns the top item w.r.t. the primary order,

and deletes it from the queue
change(Q) signals that the top item has changed
size(Q) returns the number of indices currently in the queue

5.1 Basic Comparators

To describe our algorithms we will use two main priority orders. The first one,
denoted by %, is defined by

[. . r] % [′ . . r′] ⇐⇒ 	 < 	′ or 	 = 	′ and r ≥ r′.

In other words, [. . r] % [′ . . r′] if [. . r] starts before or prolongs [′ . . r′]. Note
in particular that (somewhat counterintuitively) [. . r] % [. . r′] iff r ≥ r′. This
order will always be used as a primary order in a queue.

The second order, denoted by �, is easier: it compares the right extremes
according to their natural order:

[. . r] � [′ . . r′] ⇐⇒ r ≤ r′.

We remark that in a queue using % as primary order the left extreme of the top
interval is nondecreasing.

The algorithms for AND/OR use a double indirect priority queue with pri-
mary priority order %. The reference array underlying the queue contains one
interval per input antichain, which we assume without loss of generality non-
empty (in the case of AND, an empty list implies an empty result, and in the
case of OR empty lists can be simply dropped). In the initialisation phase, the
reference array is filled with the first interval from each antichain, and the queue
contains all indices.

To simplify the description, we define a function advance(Q) that stores tem-
porarily the current top interval, updates with the next interval the list associ-
ated with the top index, notifies the queue of the change, and finally returns the
stored interval. If the update cannot be performed because the list is empty, the
top index is dequeued. The function is described in pseudocode in Algorithm 1,
where we assume that [i . . ri] is the interval in the reference array for list i.

142 P. Boldi and S. Vigna

Algorithm 1. The advance function.

0 function advance(Q) begin
1 i ← topIndex(Q);
2 c ← [�i . . ri];
3 if the input list i is not empty then
4 [�i . . ri] ← next(Li);
5 change(Q)
6 else
7 dequeue(Q)
8 end;
9 return c
10 end;

5.2 The OR Operator

We start with the simplest nontrivial operator. To compute the interval antichain
corresponding to the OR of the antichains A0, A1, . . . , An−1 we create a double
indirect priority queue Q with primary priority order % and secondary priority
order �. As a consequence, the right extreme of the secondary top interval is
nondecreasing, because every time we advance the queue we either eliminate an
interval or substitute it with one that has a larger right extreme.

When we want to compute the next interval, we advance Q and store the
returned interval [. . r] (which is, essentially, the leftmost largest remaining in-
terval) as a candidate. We repeat the process until Q is empty or [. . r] does not
contain the secondary-top interval. The algorithm is described in pseudocode in
Algorithm 2.

Theorem 2. The algorithm for OR is correct.

Proof. First of all, note that all intervals in A0, A1, . . . , An−1 are assigned to
c at some point, and if c contains a minimal interval, we certainly exit the loop
(more precisely, we exit when c is the last instance of a given minimal interval
to appear in the queue top). Thus, we only have to prove is that only minimal
intervals are returned.

Assume that at the start of the while loop [. . r] is the primary-top interval,
and, after advancing the queue, let [′ . . r′] be the primary-top interval and
[′′ . . r′′] the secondary-top interval. If [. . r] is not minimal, then it must contain
some smaller interval, say [̄ . . r̄] ⊂ [. . r] coming from the i-th list. We can
assume without loss of generality that [̄ . . r̄] is actually one of the intervals
currently in Q, as if this is not true the interval in the reference array at index i
has smaller extremes but left extreme larger than or equal to l, so it is a fortiori
included in [. . r] (note that this fact strictly depends on the definition of %).

Since [̄ . . r̄] is in the queue, we have [′′ . . r′′] � [̄ . . r̄] � [. . r] hence r′′ ≤ r,
so [. . r] ⊇ [′′ . . r′′] (by monotonicity of the top-interval left extreme 	 ≤ 	′ ≤ 	′′)
and we repeat the loop. We conclude that only minimal intervals are returned.

Efficient Lazy Algorithms for Minimal-Interval Semantics 143

To prove that all returned intervals are unique, we just have to note that if
several copies of the interval I are present in the input antichains, then as soon
as the first copy of I becomes the top, all other copies of I are in the reference
array (or there would be intervals in the reference array with left extreme smaller
than I). Thus, the while loop will be repeated until all copies are discarded. At
that point, I will be returned only if it is minimal.

Algorithm 2. The algorithm for the OR operator.

0 function next begin
1 if Q is empty return null;
2 do
3 c ← advance(Q)
4 while ¬ (Q is empty) and secondaryTop(Q) ⊆ c ;
5 return c
6 end;

5.3 The AND Operator

Then AND operator is much more subtle. The primary comparator of Q is %,
whereas the secondary comparator is � (note the inversion). At any time, the
interval spanned by Q is the interval defined by the left extreme of the primary-
top interval and the right extreme of the secondary-top interval; it will be denoted
by span(Q). Clearly, it is the minimum interval containing all intervals currently
in the queue. Note that the right extreme of the secondary top cannot decrease
while Q is full, that is, the size of Q is n.

When we want to compute the next interval, we store the interval [. . r] cur-
rently spanned by Q as a candidate and advance Q. If the new interval spanned
by Q is included in [. . r] we repeat the operation, updating the candidate.
Then, before returning [. . r] we advance Q until the spanned interval does not
contain [. . r]. If at any time Q is no longer full, we just return the candidate.
The algorithm is described in pseudocode in Algorithm 3.

Theorem 3. The algorithm for AND is correct.

Proof. We say that a queue configuration is complete if it contains all copies
of the primary top interval from all lists that contain it. Now observe that
every complete configuration of a double indirect priority queue is entirely de-
fined by its primary top interval. More precisely, if the top is an interval I from
list i, then for every other list j the corresponding interval J in the queue is
the minimum interval in Aj larger than or equal to I (following %). Indeed,
suppose by contradiction that there is another interval K from Aj satisfying
I % K ≺ J .

144 P. Boldi and S. Vigna

Algorithm 3. The algorithm for the AND operator.

0 function next begin
1 if ¬ (Q is full) then return null;
2 do
3 c ← span(Q);
4 advance(Q)
5 while Q is full and span(Q) ⊆ c ;
6
7 while Q is full and c ⊆ span(Q) do
8 advance(Q)
9 end;
10 return c
11 end;

Then, at some point K must have entered the queue, and must have been
dequeued when the top was some interval I ′ % I, so we get K % I ′ % I % K,
which yields K = I: a contradiction, as we assumed the state of the queue to be
complete.

We now show that for every minimal interval [. . r] in the AND of A0, A1,
. . . , An−1 there is a complete state of Q spanning [. . r]. Consider for each
i the set Ci of intervals of Ai contained in [. . r]. At least one of these sets
must contain a (necessarily unique) right delimiter, that is, an interval of the
form [′ . . r]. Moreover, at least one of the sets containing a delimiter must be
a singleton. Indeed, if every Ci containing a right delimiter would also contain
some other interval, the right extreme of that interval would clearly be smaller
than r: removing all right delimiters from the Ci’s, we would span a strictly
smaller new interval showing that [. . r] was not minimal. We conclude that at
least one Ci, say Cı̄, is a singleton containing a right delimiter.

Consider now for each Ci the leftmost (in the sense of %) interval Ii. The
resulting set of intervals defines a complete configuration of Q: if i is such that
Ii = [. . r′] and if Ii ∈ Aj necessarily Ii = Ij , because Aj cannot contain
two intervals with the same left extreme. The set of intervals also spans [. . r]
(because the right extreme of Iı̄ is r, and the left extreme of the %-least interval
Ii is). We conclude that all minimal intervals are sooner or later spanned
by Q.

However, no minimal interval can be spanned during the second while loop.
All intervals spanned in that loop contain the candidate interval, which makes
them nonminimal (independently of the minimality of the candidate) or copies of
the minimal candidate we are going to return. Finally, if an interval is spanned
in the first while loop and we do not get out of the loop, the next candidate
interval will be smaller or equal. We conclude that sooner or later all minimal
intervals cause an interruption of the first while loop, and are thus returned.

Efficient Lazy Algorithms for Minimal-Interval Semantics 145

We are left to prove that if an interval is returned, it is necessary minimal.
We prove at the same time the following invariant: no interval containing a
previously returned interval will be ever spanned by Q (this is trivially true at
the first call). Assume now that the interval [. . r] spanned by Q at the start of
the first while loop is not minimal, so [̄ . . r̄] ⊂ [. . r], for some minimal interval
[̄ . . r̄] that will be necessarily spanned later (because of the invariant, as we
already proved that all minimal intervals are returned). Then, letting [′′ . . r′′] be
the secondary-top interval after we advanced Q, we have r′′ ≤ r̄ by monotonicity
of the secondary-top right extreme. On the other hand, always by monotonicity
of the secondary-top right extreme, r ≤ r′′, and since [̄ . . r̄] ⊂ [. . r], r̄ ≤ r.
We conclude r = r′′ = r̄. By monotonicity of the primary-top left extreme, the
interval spanned by Q is contained in [. . r], so we will not exit the first while
loop.

We must prove that the invariant is true at the end of the call. However, this is
trivial, as the second while loop advances Q, eliminating all intervals that could
contain c. By monotonicity of the primary-top interval left extreme, after the
second while loop the left extreme of the interval spanned by Q will be larger
than that of c: thus, no following intervals spanned by Q will be able to contain c.

Finally, we remark that the invariant yields immediately that all returned
intervals are unique.

6 Greedy Algorithms

The algorithms for BLOCK, AND≤ and AND< are much simpler: they are
just a greedy enumeration procedure with backtracking (in the latter two cases,
borrowing also some ideas from queue-based algorithms). In some case they are
part of the folklore, at least when applied to list of term positions. Nonetheless,
a thorough correctness proof for the case of interval antichains is not completely
obvious. All algorithms have trivially complexity O(m), where m is the number
of intervals in the input antichains, as all loop bodies advance at least one of the
input lists.

6.1 The BLOCK Operator

We keep track of a current interval for all lists L0, L1, . . . , Ln−1; initially, these
intervals are set to [−1 . .−1]. When we want to compute the next interval, we
update the interval associated to the first list. Then, we try to fix index i (initially,
i = 1). To do so, we advance the list Li until the returned interval has left extreme
larger than the right extreme of the current interval for Li−1. If we go too far,
we just advance the first list, reset i to 1 and restart the process, otherwise we
increment i. When we find an interval for Ln−1 we return the interval spanned by
all current intervals. The algorithm is described in pseudocode in Algorithm 4.

Theorem 4. The algorithm for BLOCK is correct.

146 P. Boldi and S. Vigna

Algorithm 4. The algorithm for the BLOCK operator.

0 function next begin
1 if L0 is empty then return null;
2 [�0 . . r0] ← next(L0);
3 i ← 1;
4 while i < n do
5 while ¬ (Li is empty) and �i ≤ ri−1 do
6 [�i . . ri] ← next(Li)
7 end;
8 if �i ≤ ri−1 then return null
9 else if �i = ri−1 + 1 then i ← i + 1
10 else begin
11 if L0 is empty then return null;
12 [�0 . . r0] ← next(L0);
13 i ← 1
14 end
15 end;
16 return [�0 . . rn−1]
17 end;

Algorithm 5. The algorithm for the AND≤ / AND< operator. For the AND<

operator, the test 	i < 	i−1 must be substituted with 	i ≤ ri−1.

0 function next begin
1 if some Li is empty then return null;
2 do
3 c ← [minj∈n �j . . maxj∈n rj];
4 if L0 is empty then return c;
5 [�0 . . r0] ← next(L0);
6 i ← 1;
7 while i < n do
8 while ¬ (Li is empty) and �i < �i−1 do
9 [�i . . ri] ← next(Li)
10 end;
11 if �i < �i−1 then return null;
12 i ← i + 1;
13 end
14 while [minj∈n �j . . maxj∈n rj] ⊆ c ;
15 return c
16 end;

Efficient Lazy Algorithms for Minimal-Interval Semantics 147

Proof. At the start of an iteration of the external while loop with a certain index
i we clearly have rk + 1 = 	k+1 for k = 0, 1, . . . , i− 2. Thus, if we complete the
execution we certainly return a correct interval.

To complete the proof, we start by proving the following invariant property:
at the start of the external while loop, for all 0 < j < n there are no intervals
in Aj with left extreme in [rj−1 + 1 . . 	j − 1]. In other words, the j-th current
interval [j . . rj] has either left extreme smaller than or equal to rj−1, or it is
the first interval in Aj whose left extreme is larger than rj−1. The property is
trivially true at the beginning, and advancing [0 . . r0] cannot change this fact.
We are left to prove that the execution of the internal while loop cannot either.

During the execution of the internal loop, only [i . . ri] can change. This affects
the invariant because it modifies the intervals [ri−1+1 . . 	i−1] and [ri+1 . . 	i+1−
1], but in the second case the interval is made smaller, so the invariant is a fortiori
true. In the first case, at the beginning of the execution of the internal while loop
either ri−1 + 1 ≤ 	i − 1, that is, ri−1 < 	i, so the loop is not executed at all and
the invariant cannot change, or ri−1 + 1 > 	i− 1, which means that the interval
[ri−1 + 1 . . 	i − 1] is empty, and the loop will advance [i . . ri] up to the first
interval in Ai with a left extreme larger than or ri−1, making again the invariant
true.

Suppose now that there are [̄0 . . r̄0], [̄1 . . r̄1], . . . , [̄k . . r̄k] satisfying ri +1 =
	i+1 for some k > 0 and 0 ≤ i < k. We prove by induction on k that at some
point during the execution of the algorithm we will be at the start of the external
while loop with i = k and [j . . rj] = [̄j . . r̄j] for j = 0, 1, . . . , k. The thesis is
trivially true for k = 0. Assume the thesis for k − 1, so we are at the start of
the external while loop with i = k − 1 and lj = l̄j, rj = r̄j for j = 0, 1, . . . k − 1.
Because of the invariant, either [lk . . rk] = [l̄k . . r̄k] or [lk . . rk] will be advanced
by the execution of the internal while loop up to [l̄k . . r̄k]. Thus, at the end
of the external while loop the thesis will be true for k. We conclude that all
concatenations of intervals from A0, A1, . . . , An−1 are returned.

We note that all intervals returned are unique (minimal has been already dis-
cussed in Section 3), as [l0 . . r0] is advanced at each call, so a duplicate returned
interval would imply the existence of two comparable intervals in A0.

6.2 The AND≤ and AND< Operators

The algorithms for computing these operators are a medley of the algorithms for
AND and for BLOCK. As in the case of AND, we must check that future intervals
are not smaller then our current candidate. As in the case of BLOCK, there is no
queue and the lists L0, L1, . . . , Ln−1 are advanced greedily. Again, we keep track
of a current interval [i . . ri] for all lists L0, L1, . . . , Ln−1; initially, these intervals
are [−1 . .−1]. At any time, the spanned interval is [minj∈n 	j . .maxj∈n rj].

When we want to return a new interval, we store the interval currently
spanned. Then, we update the interval associated to the first list and try to
fix index i (initially, i = 1). To do so, in the case of AND≤ we advance Li until
the returned interval has left extreme larger than or equal to the left extreme
of the current interval; in the case of AND< we advance Li until the returned

148 P. Boldi and S. Vigna

interval has left extreme larger than the right extreme of the current interval. If
we can find a suitable interval, we increment i and continue. When we find an
interval for An−1 we check whether it is contained in the candidate, in which case
we choose it as a new candidate, and restart the process, otherwise we return
the candidate. The algorithm is described in pseudocode in Algorithm 5.

Theorem 5. The algorithm for AND≤/AND< is correct.

Proof. We discuss the correctness of the algorithm for AND≤; the case of AND<

is completely analogous.
The first part of the proof is very similar to that for the BLOCK operator.

Similarly to that case, one proves that the following invariant property is true
at the start of the internal while loop: for all 0 < j < n there are no intervals
in Aj with left extreme in [j−1 + 1 . . 	j − 1]. In other words, the j-th current
interval [j . . rj] has either left extreme smaller than to 	j−1, or it is the first
interval in Aj+1 whose left extreme is larger than or equal to 	j−1. Let us say
that a sequence [̄i . . r̄i], i = 0, 1, . . . , n of intervals, one from each list, with
nondecreasing left extremes is leftmost if for all 0 < j < n there are no intervals
in Aj with left extreme in [̄j−1 + 1 . . 	̄j − 1]. Then, it is immediate to show
that all sequences of leftmost intervals appear at some point at the start of the
external loop.

We now note that every minimal interval [. . r] spanned by minimal intervals
from the Ai’s has a unique leftmost representation. To obtain it from a generic
set of interval, substitute iteratively the interval for list i > 0 with the interval
with smallest left extreme satisfying 	i ≥ 	i−1. Note that the interval for An−1
cannot change, for [. . r] was assumed to be minimal, so the resulting set of
intervals still spans [l . . r]. We conclude that sooner or later all minimal intervals
of the result are spanned, and thus returned.

We are left to prove that only minimal intervals are returned. As in the proof
for the AND operator, we prove at the same time the following invariant: no
interval ever spanned in the future will contain a previously returned interval
(the invariant is trivially true at the start). Suppose the current candidate [. . r]
is not minimal. This means that there is an interval [̄ . . r̄] ⊂ [. . r] that will be
spanned later (because of the invariant). By monotonicity of the extremes of
spanned intervals, this implies that after advancing the interval set the new
spanned interval must be contained in [. . r], so we will not get out of the
external while loop.

We must show that the invariant holds at the end of a call. But if the candidate
does not contain the currently spanned interval, this means that both extremes
are larger than those of the candidate (the left extreme is increased each time
the external while loop is executed, and the right extreme must be larger then
that of the candidate, or the loop would repeat). We conclude that no spanned
intervals will ever contain the candidate.

Finally, as in the proof of Theorem 3 we remark that the invariant yields
immediately that all returned intervals are unique.

Efficient Lazy Algorithms for Minimal-Interval Semantics 149

7 Conclusions

We have provided efficient algorithms for the computation of several operators
based on minimal-interval semantics. In particular, the algorithm for OR has
been proved to be optimal in a comparison-based model. Moreover, the algo-
rithms are lazy and use space linear in the number of input antichains. This
compares favourably with the previously known algorithms [3], which in partic-
ular required an eager computation of all component antichains (albeit it should
be noted that the two bounds, O(ns log m) and O(m log n), are in general in-
comparable).

The algorithms for AND and OR can be slightly modified so to be even lazier
(essentially, once the right candidate to be returned is found, one can delay the
loop that advances the input lists), but the descriptions become clumsier, so we
delay them to the full version of this paper.

An interesting open problem is that of providing a matching lower bound for
the AND operator, at least for a comparison-based computational model.

References

1. Garrett Birkhoff. Lattice Theory, volume XXV of AMS Colloquium Publications.
American Mathematical Society, third (new) edition, 1970.

2. Charles L. A. Clarke and Gordon V. Cormack. Shortest-substring retrieval and
ranking. ACM Trans. Inf. Syst, 18(1):44–78, 2000.

3. Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. An algebra
for structured text search and a framework for its implementation. Comput. J.,
38(1):43–56, 1995.

4. J. Crampton and G. Loizou. The completion of a poset in a lattice of antichains.
International Mathematical Journal, 1(3):223–238, 2001.

5. G. H. Gonnet. PAT 3.1: An efficient text searching system. User’s manual. Techni-
cal report, Center for the New Oxford English Dictionary. University of Waterloo,
Waterloo, Canada, 1987.

6. Jani Jaakkola and Pekka Kilpeläinen. Nested text-region algebra. Technical Report
C-1999-2, Department of Computer Science, University of Helsinki, 1999.

7. Guy-Vincent Jourdan, Jean-Xavier Rampon, and Claude Jard. Computing on-line
the lattice of maximal antichains of posets. Order, 11(3):197–210, 1994.

8. Gonzalo Navarro and Ricardo Baeza-Yates. A class of linear algorithms to process
sets of segments. In Proc. CLEI’96, volume 2, pages 671–682, 1996.

9. Jürg Nievergelt and Franco P. Preparata. Plane-sweep algorithms for intersecting
geometric figures. Comm. ACM, 25(10):739–747, 1982.

10. The Lemur Project. Indri. http://www.lemurproject.org/indri/.
11. Kunihiko Sadakane and Hiroshi Imai. Fast algorithms for k-word proximity search.

IEICE Trans. Fundamentals, E84-A(9), September 2001.
12. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-

pressing and Indexing Documents and Images. Morgan Kaufmann Publishers, Los
Altos, CA 94022, USA, second edition, 1999.

13. Matthew Young-Lai and Frank Wm. Tompa. One-pass evaluation of region algebra
expressions. Inf. Syst., 28(3):159–168, 2003.

Output-Sensitive Autocompletion Search

Holger Bast1, Christian W. Mortensen2, and Ingmar Weber1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{bast, iweber}@mpi-inf.mpg.de
2 IT University of Copenhagen, Denmark

cworm@itu.dk

Abstract. We consider the following autocompletion search scenario: imagine a
user of a search engine typing a query; then with every keystroke display those
completions of the last query word that would lead to the best hits, and also
display the best such hits. The following problem is at the core of this feature:
for a fixed document collection, given a set D of documents, and an alphabetical
range W of words, compute the set of all word-in-document pairs (w, d) from the
collection such that w ∈ W and d ∈ D. We present a new data structure with the
help of which such autocompletion queries can be processed, on the average, in
time linear in the input plus output size, independent of the size of the underlying
document collection. At the same time, our data structure uses no more space
than an inverted index. Actual query processing times on a large test collection
correlate almost perfectly with our theoretical bound.

1 Introduction

Autocompletion, in its most basic form, is the following mechanism: the user types the
first few letters of some word, and either by pressing a dedicated key or automatically
after each key stroke a procedure is invoked that displays all relevant words that are
continuations of the typed sequence. The most prominent example of this feature is the
tab-completion mechanism in a Unix shell. In the recently launched Google Suggest
service frequent queries are completed. Algorithmically, this basic form of autocom-
pletion merely requires two simple string searches to find the endpoints of the range of
corresponding words.

1.1 Problem Definition

The problem we consider in this paper is derived from a more sophisticated form of au-
tocompletion, which takes into account the context in which the to-be-completed word
has been typed. Here, we would like an (instant) display of only those completions
of the last query word which lead to hits, as well as a display of such hits. For ex-
ample, if the user has typed search autoc , context-aware completions might be
autocomplete and autocompletion , but not autocratic . The following
definition formalizes the core problem in providing such a feature.

Definition 1. An autocompletion query is a pair (D, W), where W is a range of words
(all possible completions of the last word which the user has started typing), and D is
a set of documents (the hits for the preceding part of the query). To process the query
means to compute the set of all word-in-document pairs (w, d) with w ∈ W and d ∈ D.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 150–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Output-Sensitive Autocompletion Search 151

Given an algorithm for solving autocompletion queries according to this definition, we
obtain the context-sensitive autocompletion feature as follows:

For the example query search autoc , W would be all words from the vocabu-
lary starting with autoc , and D would be the set of all hits for the query search.
The output would be all word-in-document pairs (w, d), where w starts with autoc
and d contains w as well as a word starting with search . 1

Now if the user continues with the last query word, e.g., search autoco , then
we can just filter the sequence of word-in-document pairs from the previous queries,
keeping only those pairs (w′, d′), where w′ starts with autoc . If, on the other hand,
she starts a new query word, e.g., search autoc pub , then we have another auto-
completion query according to Definition 1, where now W is the set of all words from
the vocabulary starting with pub , and D is the set of all hits for search autoc.
For the very first query word, D is the set of all documents.

In practice, we are actually interested in the best hits and completions for a query.
This can be achieved by the following standard approach. Assume we have precom-
puted scores for each word-in-document pair. Given a sequence of pairs (w, d) accord-
ing to Definition 1, we can then easily compute for each word w′ occurring in that
sequence an aggregate of the scores of all pairs (w′, d) from that sequence, as well as
for each document d′ an aggregate of the scores of all pairs (w, d′). The precomputation
of scores for word-in-document pairs such that these aggregations reflect user-perceived
relevance to the given query is a much-researched area in information retrieval [1], and
beyond the scope of this paper. It is for these reasons that the ranking issue is factored
out of Definition 1.

To answer a series of autocompletion queries, we can obtain the new set of can-
didate documents D from the sequence of matching word-in-document pairs for the
last query by sorting the matching (w, d) pairs. This sort takes time O((

∑
w∈W |D ∩

Dw|) log(
∑

w∈W |D ∩Dw|)) and would in practice be done together with the ranking
of the completions and documents. The time for this sort is also included in the running
times of our experiments in Section 6, but is dominated by the work to find all matching
word-in-document pairs.

1.2 Main Result

Theorem 1. Given a collection with n ≥ 16 documents, m distinct words, and N ≥
32m word-in-document pairs 2, there is a data structure AUTOTREE with the following
properties:

(a) AUTOTREE can be constructed in O(N) time.
(b) AUTOTREE uses at most N(log2 n) bits of space (which is the space used by an

ordinary uncompressed inverted index)3.

1 We always assume an implicit prefix search, that is, we are actually interested in hits for all
words starting with search , which is usually what one wants in practice. Whole-word-only
matching can be enforced by introducing a special end of word symbol $.

2 The conditions on n and N are technicalities and are satified for any realistic document col-
lection.

3 Strictly speaking, an uncompressed inverted index needs even more space, to store the list
lengths.

152 H. Bast, C.W. Mortensen, and I. Weber

(c) AUTOTREE can process an autocompletion query (D, W) in time

O
(
(α + β)|D| +

∑
w∈W

|D ∩Dw|
)

,

where Dw is the set of documents containing word w. Here α = N |W |/(mn),
which is bounded above by 1, unless the word range is very large (e.g., when com-
pleting a single letter). If we assume that the words in a document with L words are
a random size-L subset of all words, β is at most 2 in expectation. In our experi-
ments, β is indeed around 2 on the average and about 4 in the (rare) worst case.
Our analysis implies a general worst-case bound of log(mn/N).

Note that for constant α and β the running time is asymptotically optimal, as it takes
Ω(|D|) time to inspect all of D and it takes Ω(

∑
w∈W |D ∩ Dw|) time to output the

result.
We implemented AUTOTREE, and in Section 6 show that its processing time cor-

relates almost perfectly with the bound from Theorem 1(c) above. In that Section, we
also compare it to an inverted index, its presumably closest competitor (see Section
1.4), which AUTOTREE outperforms by a factor of 10 in worst-case processing time
(which is key for an interactive feature), and by a factor of 4 in average-case processing
time.

1.3 Related Work

To the best of our knowledge, the autocompletion problem, as we have defined it above,
has not been explicitly studied in the literature. The problem is derived from a search
engine, which we have devised and implemented, and which is described in [2]; for a
live demo, see http://search.mpi-inf.mpg.de/wikipedia. The emphasis
in [2] is on usability (of the autocompletion feature) and on compressibility (of the data),
and not on designing an output-sensitive algorithm. The data structures and algorithms
in [2] are completely different from those presented in this article.

The most straightforward way to process an autocompletion query (D, W) would be
to explicitly search each document from D for occurrences of a word from W . However,
this would give us a non-constant query processing time per element of D, completely
independent of the respective |W | or output size

∑
w∈W |D ∩Dw|. For these reasons,

we do not consider this approach further in this paper. Instead, our baseline in this paper
is based on an inverted index, the data structure underlying most (if not all) large-scale
commercial search engines [1]; see Section 1.4.

Definition 1 looks reminiscent of multi-dimensional search problems, where the col-
lections consists of tuples (of some fixed dimensionality), and queries are asking for
all tuples contained in a tuple of given ranges [3,4,5,6]. Provided that we are will-
ing to limit the number of query words, such data structures could indeed be used to
process our autocompletion queries. If we want fast processing times, however, any of
the known data structures uses space on the order of N1+d, where N is the number of
word-in-document pairs in the collection, and d grows (fast) with the dimensionality.
In the description of our data structures we will point out some interesting analogies to
the geometric range-search data structures from [7] and [8].

Output-Sensitive Autocompletion Search 153

The large body of work on string searching concerned with data structures such as
PAT/suffix tree/arrays [9,10] is not directly applicable to our problem. Instead, it can
be seen as orthogonal to the problem we are discussing here. Namely, in the context of
our autocompletion problem these data structures would serve to get from mere prefix
search to full substring search. For example, our Theorem 1 could be enhanced to full
substring search by first building a suffix data structure like that of [10], and then build-
ing our data structure on top of the sorted list of all suffixes (instead of the list of the
distinct words).

There is a large body of more applied work on algorithms and mechanisms for pre-
dicting user input, for example, for typing messages with a mobile phone, for users with
disabilities concerning typing, or for the composition of standard letters [11,12,13,14].
In [15], contextual information has been used to select promising extensions for a query;
the emphasis of that paper is on the quality of the extensions, while our emphasis here is
on efficiency. An interesting, somewhat related phrase-browsing feature has been pre-
sented in [16,17]; in that work, emphasis was on the identification of frequent phrases
in a collection.

1.4 The BASIC Scheme and Outline of the Rest of the Paper

The following BASIC scheme is our baseline in this paper. It is based on the inverted
index [1], for which we simply precompute for each word from the collection the list
of documents containing that word. For an efficient query processing, these lists are
typically sorted, and we assume a sorting by document number.

Having precomputed these lists, BASIC processes an autocompletion query (D, W)
very simply as follows: For each word w ∈ W , fetch the list Dw of documents that
contain w, compute the intersection D ∩Dw, and append it to the output.

Lemma 1. BASIC uses time at least Ω(
∑

w∈W min{|D|, |Dw|}) to process an auto-
completion query (D, W). The inverted lists can be stored using a total of at most
N · (log2 n) bits, where n is the total number of documents, and N is the total number
of word-in-document pairs in the collection.

Lemma 1, whose proof can be found in [18], points out the inherent problem of BASIC:
its query processing time depends on the size of both |D| and |W |, and it can become
|D| · |W | in the worst case.

In the following sections, we develop a new indexing scheme AUTOTREE, with the
properties given in Theorem 1. A combination of four main ideas will lead us to this
new scheme: a tree over the words (Section 2), relative bit vectors (Section 3), pushing
up the words (Section 4), and dividing into blocks (Section 5). In Section 6, we will
complement our theoretical findings with experiments on a large test collection.

All space and time bounds are concisely stated in formal lemmas, the proofs of which
can be found in [18].

2 Building a Tree Over the Words (TREE)

The idea behind our first scheme on the way to Theorem 1 is to increase the amount
of preprocessing by precomputing inverted lists not only for words but also for their

154 H. Bast, C.W. Mortensen, and I. Weber

prefixes. More precisely, we construct a complete binary tree with m leaves, where m
is the number of distinct words in the collection. We assume here and throughout the
paper that m is a power of two. For each node v of the tree, we then precompute the
sorted list Dv of documents which contain at least one word from the subtree of that
node. The lists of the leaves are then exactly the lists of an ordinary inverted index, and
the list of an inner node is exactly the union of the lists of its two children. The list of
the root node is exactly the set of all non-empty documents. A simple example is given
in Figure 1.

Fig. 1. Toy example for the data structure of scheme TREE with 10 documents and 4 different
words

Given this tree data structure, an autocompletion query given by a word range W and a
set of documents D is then processed as follows.

1. Compute the unique minimal sequence v1, . . . , v� of nodes with the property that
their subtrees cover exactly the range of words W . Process these 	 nodes from left
to right, and for each node v invoke the following procedure.

2. Fetch the list Dv of v and compute the intersection D ∩ Dv. If the intersection is
empty, do nothing. If the intersection is non-empty, then if v is a leaf corresponding
to word w, report for each d ∈ D∩Dv the pair (w, d). If v is not a leaf, invoke this
procedure (step 2) recursively for each of the two children of v.

Scheme TREE can potentially save us time: If the intersection computed at an inner
node v in step 2 is empty, we know that none of the words in the whole subtree of v is
a completion leading to a hit, that is, with a single intersection we are able to rule out a
large number of potential completions. However, if the intersection at v is non-empty,
we know nothing more than that there is at least one word in the subtree which will lead
to a hit, and we will have to examine both children recursively. The following lemma
shows the potential of TREE to make the query processing time depend on the output
size instead of on W as for BASIC. Since TREE is just a step on the way to our final
scheme AUTOTREE, we do not give the exact query processing time here but just the
number of nodes visited, because we need exactly this information in the next section.

Lemma 2. When processing an autocompletion query (D, W) with TREE, at most
2(|W ′| + 1) log2 |W | nodes are visited, where W ′ is the set of all words from W that
occur in at least one document from D.

Output-Sensitive Autocompletion Search 155

The price TREE pays in terms of space is large. In the worst case, each level of the tree
would use just as much space as the inverted index stored at the leaf level, which would
give a blow-up factor of log2 m.

3 Relative Bitvectors (TREE+BITVEC)

In this section, we describe and analyze TREE+BITVEC, which reduces the space us-
age from the last section, while maintaining as much as possible of its potential for a
query processing time depending on W ′, the set of matching completions, instead of on
W . The basic trick will be to store the inverted lists via relative bit vectors. The result-
ing data structure turns out to have similarities with the static 2-dimensional orthogonal
range counting structure of Chazelle [7].

In the root node, the list of all non-empty documents is stored as a bit vector: when
N is the number of documents, there are N consecutive bits, and the ith bit corresponds
to document number i, and the bit is set to 1 if and only if that document contains at
least one word from the subtree of the node. In the case of the root node this means that
the ith bit is 1 if and only if document number i contains any word at all.

Now consider any one child v of the root node, and with it store a vector of N ′

bits, were N ′ is the number of 1-bits in the parent’s bit vector. To make it interesting
already at this point in the tree, assume that indeed some documents are empty, so that
not all bits of the parent’s bit vector are set to one, and N ′ < N . Now the jth bit of
v corresponds to the jth 1-bit of its parent, which in turn corresponds to a document
number ij . We then set the jth bit of v to 1 if and only if document number ij contains
a word in the subtree of v.

The same principle is now used for every node v that is not the root. Constructing
these bit vectors is relatively straightforward; it is part of the construction given in
Appendix A.

Fig. 2. The data structure of TREE+BITVEC for the toy collection from Figure 1

Lemma 3. Let stree denote the total lengths of the inverted lists of algorithm TREE.
The total number of bits used in the bit vectors of algorithm TREE+BITVEC is then at
most 2stree plus the number of empty documents (which cost a 0-bit in the root each).

The procedure for processing a query with TREE+BITVEC is, in principle, the same as
for TREE. The only difference comes from the fact that the bit vectors, except that of
the root, can only be interpreted relative to their respective parents.

156 H. Bast, C.W. Mortensen, and I. Weber

To deal with this, we ensure that whenever we visit a node v, we have the set Iv of
those positions of the bit vector stored at v that correspond to documents from the given
set D, as well as the |Iv| numbers of those documents. For the root node, this is trivial to
compute. For any other node v, Iv can be computed from its parent u: for each i ∈ Iu,
check if the ith bit of u is set to 1, if so compute the number of 1-bits at positions less
than or equal to i, and add this number to the set Iv and store by it the number of the
document from D that was stored by i. With this enhancement, we can follow the same
steps as before, except that we have to ensure now that whenever we visit a node that is
not the root, we have visited its parent before. The lemma below shows that we have to
visit an additional number of up to 2 log2 m nodes because of this.

Lemma 4. When processing an autocompletion query (D, W) with TREE+BITVEC,
at most 2(|W ′| + 1) log2 |W | + 2 log2 m nodes are visited, with W ′ defined as in
Lemma 2.

4 Pushing Up the Words (TREE+BITVEC+PUSHUP)

The scheme TREE+BITVEC+PUSHUP presented in this section gets rid of the log2
|W | factor in the query processing time from Lemma 4. The idea is to modify the
TREE+BITVEC data structure such that for each element of a non-empty intersection,
we find a new word-in-document pair (w, d) that is part of the output. For that we store
with each single 1-bit, which indicates that a particular document contains a word from
a particular range, one word from that document and that range. We do this in such a
way that each word is stored only in one place for each document in which it occurs.
When there is only one document, this leads to a data structure that is similar to the
priority search tree of McCreight, which was designed to solve the so-called 3-sided
dynamic orthogonal range-reporting problem in two dimensions [8].

Let us start with the root node. Each 1-bit of the bit vector of the root node corre-
sponds to a non-empty document, and we store by that 1-bit the lexicographically small-
est word occurring in that document. Actually, we will not store the word but rather its
number, where we assume that we have numbered the words from 0, . . . , m− 1.

More than that, for all nodes at depth i (i.e., i edges away from the root), we omit
the leading i bits of its word number, because for a fixed node these are all identical
and can be computed from the position of the node in the tree. However, asympotically
this saving is not required for the space bounds in Theorem 1 as dividing the words
into blocks will already give a sufficient reduction of the space needed for the word
numbers.

Now consider anyone child v of the root node, which has exactly one half H of
all words in its subtree. The bit vector of v will still have one bit for each 1-bit of its
parent node, but the definition of a 1-bit of v is slightly different now from that for
TREE+BITVEC. Consider the jth bit of the bit vector of v, which corresponds to the
jth set bit of the root node, which corresponds to some document number ij . Then this
document contains at least one word — otherwise the jth bit in the root node would
not have been set — and the number of the lexicographically smallest word contained
is stored by that jth bit. Now, if document ij contains other words, and at least one of
these other words is contained in H , only then the jth bit of the bit vector of v is set

Output-Sensitive Autocompletion Search 157

to 1, and we store by that 1-bit the lexicographically smallest word contained in that
document that has not already been stored in one of its ancestors (here only the root
node).

Figure 3 explains this data structure by a simple example. The construction of the
data structure is relatively straightforward and can be done in time O(N). Details are
given in Appendix A.

Fig. 3. The data structure of TREE+BITVEC+PUSHUP for the example collection from Figure
1. The large bitvector in each node encodes the inverted list. The words stored by the 1-bits of
that vector are shown in gray on top of the vector. The word list actually stored is shown below
the vector, where A=00, B=01, C=10, D=11, and for each node the common prefix is removed,
e.g., for the node marked C-D, C is encoded by 0 and D is encoded by 1. A total of 49 bits is
used, not counting the redundant 000 vectors and bookkeeping information like list lengths etc.

To process a query we start at the root. Then, we visit nodes in such an order that
whenever we visit a node v, we have the set Iv of exactly those positions in the bit
vector of v that correspond to elements from D (and for each i ∈ Iv we know its
corresponding element di in D). For each such position with a 1-bit, we now check
whether the word w stored by that 1-bit is in W , and if so output (w, di). This can be
implemented by random lookups into the bit vector in time O(|Iv |) as follows. First,
it is easy to intersect D with the documents in the root node, because we can simply
lookup the document numbers in the bitvector at the root. Consider then a child v of the
root. What we want to do is to compute a new set Iv of document indices, which gives
the numbering of the document indices of D in terms of the numbering used in v. This
amounts to counting the number of 1-bits in the bitvector of v up to a given sequence of
indices. Each of these so-called rank computations can be performed in constant time
with an auxiliary data structure that uses space sublinear in the size of the bitvector [19].

Consider again the check whether a word w stored by a 1-bit corresponding to a
document from D is actually in W . This check can only fail for relatively few nodes,
namely those with a least one leaf not from W in their subtree. These checks do not
contribute an element to the output set, and are accounted for by the factor β mentioned
in Theorem 1, and Lemmas 5 and 7 below.

Lemma 5. With TREE+BITVEC+PUSHUP, an autocompletion query (D, W) can be
processed in time O

(
|D| · β +

∑
w∈W |D ∩ Dw|

)
, where β is bounded by log2 m as

well as by the average number of distinct words in a document from D. For the special
case, where W is the range of all words, the bound holds with β = 1.

158 H. Bast, C.W. Mortensen, and I. Weber

Lemma 6. The bit vectors of TREE+BITVEC+PUSHUP require a total of at most
2N + n bits. The auxiliary data structure (for the constant-time rank computation)
requires at most N bits.

5 Divide into Blocks (TREE+BITVEC+PUSHUP+BLOCKS)

This section is our last station on the way to our main result, Theorem 1.
For a given B, with 1 ≤ B ≤ m, we divide the set of all words in blocks of equal

size B. We then construct the data structure according to TREE+BITVEC+PUSHUP
for each block separately. As we only have to consider those blocks, which contain any
words from W , this gives a further speedup in query processing time. An autocomple-
tion query given by a word range W and a set of documents D is then processed in the
following three steps.

1. Determine the set of 	 (consecutive) blocks, which contain at least one word from
W , and for i = 1, . . . , 	, compute the subrange Wi of W that falls into block i.
Note that W = W1∪̇ · · · ∪̇W�.

2. For i = 1, . . . , 	, process the query given by Wi and D according to TREE+
BITVEC+ PUSHUP, resulting in a set of matches Mi := {(w, d) ∈ C : w ∈
Wi, d ∈ D}, where C is the set of of word-in-document pairs.

3. Compute the union of the sets of matching word-in-document pairs ∪�
i=1Mi (a

simple concatenation).

Lemma 7. With TREE+BITVEC+PUSHUP+BLOCKS and block size B, an autocom-
pletion query (D, W) can be processed in time O

(
|D| · (α + β) +

∑
w∈W |D ∩Dw|

)
,

where α = |W |/B and β is bounded by log2 B as well as by the average number of
distinct words from W1∪W� (the first and the last subrange from above) in a document
from D.

Lemma 8. TREE+BITVEC+PUSHUP+BLOCKS with block size B requires at most
3N +n·(m/B) bits for its bit vectors and at most N(log2 B) bits for the word numbers
stored by the 1-bits. For B ≥ mn/N , this adds up to at most N(4 + (log2 B)) bits.

Part (a) of Theorem 1 is established by the construction given in Appendix A. Part (b)
of Theorem 1 follows from Lemma 8 by choosing B = (nm/N). This choice of B
minimizes the space bound of Lemma 8, and we call the corresponding data structure
AUTOTREE. Part (c) of Theorem 1 follows from Lemma 7 and the following remarks.
If the words in a document with L words are a random size-L subset of all words, then
the average number of words per document that fall into a fixed block is at most 1. In
our experiments, the average value for β was 2.2. For the exact definition of β, see [18].

6 Experiments

We tested both AUTOTREE and our baseline BASIC on the corpus of the TREC 2004
Robust Track (ROBUST ’04), which consists of the documents on TREC disks 4 and

Output-Sensitive Autocompletion Search 159

5, minus the Congressional Record [20]. We implemented AUTOTREE with a block
size of 4096, which is the optimal block size according to Section 5, rounded to the
nearest power of two. The following table gives details on the collection and on the
space consumption of the two schemes; as we can see, AUTOTREE does indeed use no
more space (and for this collection, in fact, significantly less) than BASIC, as guaranteed
by Theorem 1.

Table 1. The characteristics of our test collection: n = number of documents, m = number of
distinct words, N/n = average number of distinct words in a document, B∗ = space-optimal
choice for the block size. The last two columns give the space usage of BASIC and AUTOTREE

in bits per word-in-document pair.

bits per word-in-doc pair

Collection raw size n m N/n B∗ BASIC AUTOTREE

ROBUST ’04 1,904 MB 528,025 771,189 219.2 4,096 19.0 13.9

Queries are derived from the 200 “old” 4 queries (topics 301-450 and 601-650) of the
TREC Robust Track in 2004 [20], by “typing” these queries from left to right, taking
a minimum word length of 4 for the first query word, and 2 for any query word after
the first. From these autocompletion queries we further omitted those, which would
be obtained by simple filtering from a prefix according to the explanation following
Definition 1. This filtering procedure is identical for AUTOTREE and BASIC and takes
only a small fraction of the time for the autocompletion queries processed according to
Definition 1, which is why we omitted it from consideration in our experiments. To give
an example, for the ad hoc query world bank criticism , we considered the
autocompletion queries worl , world ba , and world bank cr . We considered
a total number of 512 such autocompletion queries.

We implemented BASIC and AUTOTREE in C++ and measured query processing
times on a Dual Opteron machine, with 2 Intel Xeon 3 GHz processors, 8 GB of main
memory, running Linux. We measured the time for producing the output according to
Definition 1. The time for scoring and ranking would be identical for AUTOTREE and
BASIC, and would, according to a number of tests, take only a small fraction of the
aforementioned processing time. We therefore excluded it from our measurements. For
BASIC, we implemented a fast linear-time intersect, which, on average, turned out to be
faster than its asymptotically optimal relatives [21].

The results from Table 2 conform nicely to our theoretical analysis. Four main ob-
servations can be made: (i) with respect to maximal query processing time, which is
key for an interactive application, AUTOTREE improves over BASIC by a factor of 10;
(ii) in average processing time, which is significant for throughput in a high-load sce-
nario, the improvement is still a factor of 4; (iii) processing times of AUTOTREE are
sharply concentrated around their mean, while for BASIC they vary widely (in both di-
rections as we checked); (iv) the almost perfect correlation between query processing
times and our analytical bounds (explained in the caption of Figure 2) demonstrates

4 They are “old” as they had been used in previous years for TREC.

160 H. Bast, C.W. Mortensen, and I. Weber

Table 2. Processing times statistics of BASIC and AUTOTREE for all 512 autocompletion queries.
The 6th and 7th column show the kth worst processing time, where k is 10% and 5%, respectively,
of the number of queries. The last column gives the correlation factor between query processing
times and total list volume

�
w∈W (|D| + |Dw |) for BASIC, and input size plus total output

volume |D| + 5
�

w∈W |D ∩ Dw | for AUTOTREE.

Scheme Max Mean StdDev Median 90%-ile 95%-ile Correlation

BASIC 6.32secs 0.19secs 0.55secs 0.034secs 0.41secs 0.93secs 0.996

AUTOTREE 0.63secs 0.05secs 0.06secs 0.028secs 0.11secs 0.14secs 0.973

Table 3. Breakdown of query processing for BASIC and AUTOTREE by number of query words

1-word multi-word

Scheme Max Mean Max Mean

BASIC 0.10secs 0.01secs 6.32secs 0.30secs

AUTOTREE 0.37secs 0.09secs 0.63secs 0.02secs

both the soundness of our theoretical modelling and analysis as well as the accuracy of
our implementation.

Table 3, finally, breaks down query processing times by the number of query words.
As we can see, BASIC is significantly faster than AUTOTREE for the 1-word queries,
however, not because AUTOTREE is slow, but because BASIC is extremely fast on these
queries. This is so, because BASIC does not have to compute any intersections for 1-
query but merely has to copy all relevant lists Dw to the output, whereas AUTOTREE

has to extract, for each output element, bits from its (packed) document id and word
id vectors. On multi-word queries, BASIC has to process a much larger volume than
AUTOTREE, and we see essentially the situation discussed above for the overall figures.

References

1. Witten, I.H., Bell, T.C., Moffat, A.: Managing Gigabytes: Compressing and Indexing Docu-
ments and Images, 2nd edition. Morgan Kaufmann (1999)

2. Bast, H., Weber, I.: Type less, find more: Fast autocompletion search with a succinct index.
In: 29th Conference on Research and Development in Information Retrieval (SIGIR’06).
(2006)

3. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2)
(1998) 170–231

4. Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and optimal range
search indexing. In: 18th Symposium on Principles of database systems (PODS’99). (1999)
346–357

5. Ferragina, P., Koudas, N., Muthukrishnan, S., Srivastava, D.: Two-dimensional substring
indexing. Journal of Computer and System Science 66(4) (2003) 763–774

Output-Sensitive Autocompletion Search 161

6. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In:
41st Symposium on Foundations of Computer Science (FOCS’00). (2000) 198–207

7. Chazelle, B.: A functional approach to data structures and its use in multidimensional search-
ing. SIAM Journal on Computing 17(3) (1988) 427–462

8. McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2) (1985) 257–276
9. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text

indexing and string matching (extended abstract). In: 32nd Symposium on the Theory of
Computing (STOC’00). (2000) 397–406

10. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search in external
memory and its applications. Journal of the ACM 46(2) (1999) 236–280

11. Jakobsson, M.: Autocompletion in full text transaction entry: a method for humanized input.
In: Conference on Human Factors in Computing Systems (CHI’86). (1986) 327–323

12. Darragh, J.J., Witten, I.H., James, M.L.: The reactive keyboard: A predictive typing aid.
IEEE Computer (1990) 41–49

13. Stocky, T., Faaborg, A., Lieberman, H.: A commonsense approach to predictive text entry.
In: Conference on Human Factors in Computing Systems (CHI’04). (2004) 1163–1166

14. Bickel, S., Haider, P., Scheffer, T.: Learning to complete sentences. In: 16th European
Conference on Machine Learning (ECML’05). (2005) 497–504

15. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.:
Placing search in context: The concept revisited. In: 10th World Wide Web Conference
(WWW’10). (2001) 406–414

16. Paynter, G.W., Witten, I.H., Cunningham, S.J., G., G.B.: Scalable browsing for large collec-
tions: A case study. In: 5th Conference on Digital Libraries (DL’00). (2000) 215–223

17. Nevill-Manning, C.G., Witten, I., Paynter, G.W.: Lexically-generated subject hierarchies for
browsing large collections. International Journal of Digital Libraries 2(2/3) (1999) 111–123

18. Bast, H., Mortensen, C.W., Weber, I.: Output-sensitive autocompletion search. Techni-
cal Report 1–007 (2006) See first author’s website http://www.mpi-inf.mpg.de/
˜bast/publications.html.

19. Munro, J.I.: Tables. In: 16th Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’96). (1996) 37–42

20. Voorhees, E.: Overview of the trec 2004 robust retrieval track. In: 13th Text Retrieval Confer-
ence (TREC’04). (2004) http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf.

21. Demaine, E.D., Lopez-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions, and differ-
ences. In: 11th Symposium on Discrete Algorithms (SODA’00). (2000) 743–752

A The Index Construction for TREE+BITVEC+PUSHUP

In this appendix we describe the construction of the index for TREE+BITVEC+
PUSHUP. Full proofs of Lemmas 2, 3, 4, 5, 6, 7, and 8 can be found in [18].

The construction of the tree for algorithm TREE+BITVEC+PUSHUP is relatively
straightforward and takes constant amortized time per word-in-document occurrence
(assuming each document contains its word sorted in ascending order).

1. Process the documents in order of ascending document numbers, and for each doc-
ument d do the following.

2. Process the distinct words in document d in order of ascending word number, and
for each word w do the following. Maintain a current node, which we initialize as
an artificial parent of the root node.

162 H. Bast, C.W. Mortensen, and I. Weber

3. If the current node does not contain w in its subtree, then set the current node to
its parent, until it does contain w in its subtree. For each node left behind in this
process, append a 0-bit to the bit vector of those of its children which have not been
visited.
Note: for a particular word, this operation may take non-constant time, but once
we go from a node to its parent in this step, the old node will never be visited again.
Since we only visit nodes, by which a word will be stored and such nodes are visited
at most three times, this gives constant amortized time for this step.

4. Set the current node to that one child which contains w in its subtree. Store the
word w by this node. Add a 1-bit to the bit vector of that node.

A Compressed Self-index Using a Ziv-Lempel
Dictionary

Lúıs M.S. Russo� and Arlindo L. Oliveira

INESC-ID/IST
{lsr, aml}@algos.inesc-id.pt

Abstract. A compressed full-text self-index for a text T , of size u, is a
data structure used to search patterns P , of size m, in T that requires
reduced space, i.e. that depends on the empirical entropy (Hk, H0) of T ,
and is, furthermore, able to reproduce any substring of T . In this paper
we present a new compressed self-index able to locate the occurrences of
P in O((m + occ) log n) time, where occ is the number of occurrences and
σ the size of the alphabet of T . The fundamental improvement over pre-
vious LZ78 based indexes is the reduction of the search time dependency
on m from O(m2) to O(m). To achieve this result we point out the main
obstacle to linear time algorithms based on LZ78 data compression and
expose and explore the nature of a recurrent structure in LZ-indexes, the
T78 suffix tree. We show that our method is very competitive in practice
by comparing it against the LZ-Index, the FM-index and a compressed
suffix array.

1 Overview

The exact matching problem consists in searching for a short (pattern) sequence
P in a longer (text) sequence T . Naive and linear solutions for this problem can
be found in undergraduate computer science textbooks [1]. This problem has
outgrown its initial motivation, text editing subroutines. Text databases storing
large amounts of information such as pitch sequences, DNA or protein sequences,
large natural texts, program code, etc. need fast pattern matching algorithms.
With the increasing amount of digital information available, on-line approaches
to the problem stopped being viable. The study of index data structures, that
are able to reduce the time it takes to locate the occurrences of P , has been
the focus of the string processing community for several years. Classical indexes
however have a tendency to be space greedy. This constitutes a severe problem,
since not being able to store indexes in main memory limits their usage.

In recent years a new and extremely successful approach to this problem has
emerged. Compressed full-text indexes, which use data compression techniques
to produce less space demanding data structures have been proposed by several

� Supported by the Portuguese Science and Technology Foundation by grant
SFRH/BD/12101/2003 in project POCI 2010 and Project BIOGRID POSI/SRI/
47778/2002.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 163–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 L.M.S. Russo and A.L. Oliveira

researchers [2, 3, 4, 5, 6]. Usually a text stored in compress format requires less
space than its uncompressed version. The idea is that an index based on the
compressed format may also require less space. In fact, it turns out that data
compression algorithms explore the internal structure of a string much in the
same way that indexes do. An important tool to describe the space of compressed
indexes is the k-th order empirical entropy of T defined by Manzini [7], denoted
simply by Hk. The empirical entropy provides a measure of the complexity of
T taken as a finite object. This is opposed to the classical notion of entropy by
Shannon. State of the art compressed indexes consider T as finite and organise it
globally. In a way our contribution is to organise globally Ziv-Lempel compressed
indexes that were only locally organised. The empirical entropy provides a lower
bound to the number of bits needed to compress T using a compressor that
encodes each character considering only the context of k characters that follow
it in T . Makinen and Navarro presented a comprehensive survey on compressed
full-text indexes [8].

A surprising way to reduce the space requirements of a full-text index, dis-
covered in this line of research, is to turn it into a self-index. Basically it turned
out that with a negligible amount of information, it is possible to make full-text
indexes reproduce any substring of T without storing T explicitly.

Compressed suffix arrays [6, 2] and the FM-index [3] are the main trends of
compressed indexes. This is partially due to the fact that LZ-indexes [3, 4, 5]
require a considerable amount of time to determine the number of occurrences
of P in T , denoted by occ. In fact, the index of Kärkkäinen et al. [5], which
was not a self-index, required O(m2 + (m + occ) log u) time and Navarro’s [4]
index required O((m3 log σ) + (m + occ) log u) which was recently improved to
O((m2 log m) + (m + occ) log u) by Arroyuelo et al. [9]. It can be seen that in
all these approaches the dependency on m is at least O(m2). The only LZ based
index that was able to achieve O(m) time was presented by Ferragina et al. [3].
However this index requires a considerable amount of space, O(uHk(T) logε u)+
o(u) bits. In fact the index presented by Ferragina et al. is not used in practice.
Instead they simple add an FM-Index to their structure. Using an FM-Index
may lead to alphabet related problems, i.e. large hidden σ dependencies. Some
solutions have been presented to address this problem [10, 11]. However our
approach is simpler and alphabet independent.

The Ziv-Lempel algorithm is a dictionary based compression method. In
essence, the idea is that, given T , the algorithm infers a suitable dictionary and
encodes T accordingly. The problem with compressed indexes based on this ap-
proach is that the encoding of T is not suitable for pattern matching. In fact the
dictionary generated by the Ziv-Lempel algorithm is dynamically updated at the
same time that T is processed. This means that the same string may be encoded
in several different ways, since the dictionary changes from one occurrence, of the
string, to another. This results in an undesirable encoding. The solution to this
problem forces us to destroy the on-line property of the Ziv-Lempel algorithm.
Our algorithm runs in two phases: in the first one we use the LZ78 algorithm to
infer a dictionary; in the second one we organise T in an off-line way.

A Compressed Self-index Using a Ziv-Lempel Dictionary 165

2 Basic Concepts and Notation

For basic concepts related to strings and suffix trees we refer the reader to
Gusfield [12]. We use the following conventions: strings start at index position 0;
prefixes, substrings and suffixes are denoted respectively as S[..i], S[i..j], S[j..];
m is the size of the pattern string P , u is the size of the text string T and occ
is the number of occurrences of P in T . By suffix tree we refer to a generalised
suffix tree. The terminator symbols are not considered as part of the edge-labels.
A point is a node in the suffix trie. We refer indifferently to points in a suffix tree
and to their path-labels. Sdep(p) is the string depth of point p. Father(v) is

0 1 2 3 4 5 6 7 8 9

a b c

da

b

a d

0

1

2

3 4

a b

d

d

b bc

c c

R

R(4) = 7’R(3) = 2’

R(1) = 1’

R(0) = 0’

R(2) = 4’

0*0*

1*
2’

8’7’6’3’2’

8’7’6’3’

8’7’6’

8’7’

8’

8’

7’3’ 6’

5

6 7 8

2*

3*

4*

5*

6*

7*

R(5) = 5’

R(6) = 3’ R(7) = 8’

R(8) = 6’

2*

1*

3*

4*

5*

6*

7*

Fig. 1. (top-right) Suffix tree for strings {a, b, ba, bd, cba, cbd, d}. Suffix link from cb to
b shown by a dashed arrow. Nodes show their Dfs value in T . (top-left) Reverse tree of
the suffix tree on the right. Nodes show their Dfs value in T R. The R mapping is shown
and R(3) is indicated by a bold arrow. (bottom-left) Sparse suffix tree of T , nodes show
their DfsST values. Weak descent W (RootST , 2′) shown in bold rectangle. (bottom-
right) Linking points over spaces supported by Dfs’ and DfsST values. Orthogonal
range query [5*,5*]:[5,8].

166 L.M.S. Russo and A.L. Oliveira

the father node of node v. SuffixLink(v) is v’s suffix link. Letter(v, i) equals
v[i], i.e. the i-th letter of the path-label of node v. Descend?(p, c) is true iff it is
possible to descend from point p with c and Descend(p, c) returns the resulting
point. By Dfs(v) we refer to the depth-first time-stamp [1] of a node v in a suffix
tree and by Dfs’(p) to the depth-first time-stamp of a point p in a suffix trie.
As a running example consider T = cbdbddcbababa and T as the suffix tree in
figure 1 (top-right).

Definition 1. The range I(p) of a point p of a suffix tree T is the interval of
the Dfs’ values of the points that are descendants of p.

In our example Dfs(c) is undefined, Dfs(cb) = 5, Dfs’(c) = 5, Dfs’(cb) = 6,
I(c) = [5, 8].

Definition 2. The reverse tree T R of a suffix tree T is the minimal labelled
tree that, for every node v of T , contains a node vR, where vR denotes the reverse
string of v.

The tree T R is shown in figure 1 (top-left). Observe for example that, since cbd
is a node of T , there is a node cbdR = dbc in T R. We define a canonical mapping
R that, for every node v in T , maps Dfs(v) to Dfs(vR) (see figure 1). We will
use R(v) to denote R(Dfs(v)). Note that since the nodes of T form a suffix
closed set, the nodes of T R form a prefix closed set.

2.1 Succinct Suffix Trees

Our approach is based on suffix trees. We start by presenting a representation
of suffix trees that is adequate for our goals and analyse its space requirements.

By bitmap B we refer to a string over {0, 1}. Fundamental tools to produce
succinct data structures are the Rank and Select operations over bitmaps. The
operation Rank(B, i) counts the number of 1’s in B[..i − 1] and Select(B, i)
returns the smallest j such that Rank(B, j + 1) = i. Munro [13] showed how to
support these operations in O(1) time and |B|+ o(|B|) bits.

Geary et al. [14] presented a succinct representation of ordinal d-node trees
in 2d+ o(d) bits, supporting, among others, the following operations in constant
time: Anc(v, j) returns the j-th ancestor of node v (for example Anc(v, 1) is
Father(v)); LeftRank(v) returns Dfs(v); RightRank(v) returns the largest
Dfs value among the descendants of v; Select(j) returns the node with Dfs
time j; Child(v, j) returns the j-th child of node v; Deg(v) returns the number
of children of node v; Depth(v) returns the tree depth of node v.

We assume that the tree structure of T and T R are stored using the previous
representation. Arroyuelo et al. [9] proposed a way to represent the R mapping.
Since R is a permutation, R and R−1 can be stored using the representation of
Munro et al. [15] in (1+ ε)d log d+o(d) bits, where ε is fixed and 0 < ε ≤ 1. This
way R and R−1 can be computed in O(1) and O(1/ε) time respectively.

Lemma 1. A suffix tree T with d nodes can be stored in (1 + ε)d(log d) + 5d +
o(d) bits. Let p be a point, c a letter and v a node of T . This representation

A Compressed Self-index Using a Ziv-Lempel Dictionary 167

provides the operations given by Geary et al. in O(1) time. Moreover it pro-
vides Sdep(v) in O(1) time, Suffix Link(v), Letter(v, i), in O(1/ε) time
and Descend?(p, c), Descend(p, c) in O((log σ)/ε) time.

Proof. According to our notation R(v) representsSelectT R(R(LeftRank(v))).
Sdep(v) can be computed as DepthT R(SelectT R(R(LeftRank(v)))) which
can be represented as DepthT R(R(v)). The operation Suffix Link(v) is com-
puted as R−1(FatherT R(R(v))). Observe that v[0] represents the letter just be-
low the root. For example cbd[0] = c. We define a bitmap D to compute v[0], in
a way similar to Sadakane [2]. We have that D[0] = 1 and, for i > 0, D[i] = 0 iff
Dfs(v) = i, Dfs(v′) = i + 1 and v[0] = v′[0]. In our example D = 11001001.
We can compute v[0], when v is not the Root, in O(1) as the letter in position
Rank1(D,Dfs(v)) of Σ. This requires d + o(d) bits. The operation Letter(v, i)
can be computed from R−1(AncT R(R(v), i)). This expression represents follow-
ing enough suffix links to make the letter we want appear just bellow the root, i.e.
Letter(v, i) = R−1(AncT R(R(v), i)[0]. When p is not a node, Descend?(p, c)
can be computed in O(1/ε) time by consulting Letter for the point below p. If
p is a node, we do a binary search among the children of p. If we find a child that
starts with c, we return true. Procedure Descend(p, c) updates the value of p.
When p is a point, this is done in O(1) time. When p is a node, we first proceed as
Descend?. �

Finally observe that with this representation we cannot compute Dfs’(v). The
Dfs’ values are essential to our algorithm because they serve as a supporting
space for range queries.

Lemma 2. For a suffix tree T with d nodes and t points, operations Dfs’(p) and
I(p) can be computed in O(1) time using (2 + (log t)− �log d�)d + o(d) extra bits.

Proof. Observe that the Dfs’(v) values appear sorted in Dfs(v) order. Therefore
we can store the Dfs’(v) values, for the nodes of T , with the representation of
Grossi et al. [6, Lemma 2]. For a point p, Dfs’(p) is computed as Dfs’(v) −
Sdep(v) + Sdep(p), where v is the highest node that is a descendant of p. Also
I(p) = [Dfs’(p),Dfs’(Select(RightRank(v))]. �

2.2 Descend and Suffix Walks

Given a string P we can traverse a suffix tree T in greedy way, i.e. start at Root
and descend as much as possible. When it is impossible to descend any further,
follow suffix-links until descending becomes possible again, as in Algorithm 1.

Definition 3. The descend and suffix walk of a string P over a suffix tree
T is the sequence p0 . . . p2m of points of T computed by Algorithm 1.

Definition 4. The right, left traces of a string P over a suffix tree T are the
sub-sequences of the descend and suffix walk, given respectively by lines 6 and 8
of Algorithm 1.

168 L.M.S. Russo and A.L. Oliveira

Algorithm 1. Descend and Suffix Walk Algorithm
1: procedure Descend&Suffix(P)
2: P ← P.$′

3: j ← 0
4: point ← Root
5: for i ← 0, i < |P | do
6: trace left[i] ← point
7: while NOT Descend?(point, P [i]) do
8: trace right[j] ← point
9: j++

10: point ← SuffixLink(point)
11: end while
12: point ← Descend(point, P [i])
13: end for
14: end procedure

Table 1. (Top) Descend and suffix walk of cbdbddc in T . (Bottom) Values for locating
type > 1 occurrences.

i 0 1 2 3 4 5 6 7
P[i] c b d b d d c $’
trace left[i] ε c cb cbd b bd d c
DFS’(father left[i]) 0 0 6 8 2 4 9 0
DFS’(trace left[i]) 0 5 6 8 2 4 9 5
DFS’(child left[i]) 0 6 6 8 2 4 9 6
trace right[i] cbd bd d bd d d c ε

DFS’(father right[i]) 8 4 9 4 9 9 0 0
DFS’(trace right[i]) 8 4 9 4 9 9 5 0
I(trace right[i]) [8,8] [4,4] [9,9] [4,4] [9,9] [9,9] [5,8] [0,9]
DFS’(child right[i]) 8 4 9 4 9 9 6 0
P[i..] cbd.bd.d.c bd.bd.d.c d.bd.d.c bd.d.c d.d.c d.c c ε

tail(P[i..]) c c c c c c c ε

H(P[i..]) 748 448 848 48 88 8 ε ε

R(H(P[i..])) 6’7’8’ udef udef 6’7’ 6’6’ 6’ ε ε

|father left[i]| == i FALSE TRUE TRUE FALSE FALSE FALSE FALSE
W(R(H(P[i..])), R(father left[i])) ∅ [5*,5*] ∅ ∅ ∅ ∅

I(tail(P[i..])) [5,8] [5,8] [5,8] [5,8] [5,8] [5,8] [0,9]
occ’ 0 1 0 0 0 0

By father right[i] (resp. father left[i]), we refer to the lowest ancestor of
trace right[i] (resp. trace left[i]) that is node of T and by child right[i] (resp.
child left[i]), to the highest descendant of trace right[i] (resp. trace left[i])
that is node of T .

Note that we define in an artificial way SuffixLink(Root) as a node that
descends to the root by every letter including terminator symbols. It is impor-
tant to notice that Algorithm 1 starts by appending to P a terminator character
$′ that fails to match with any other character. Observe that in Algorithm 1 the
operation SuffixLink is computed for points, not just nodes. This is done in the

A Compressed Self-index Using a Ziv-Lempel Dictionary 169

classical way. The operation SuffixLink over points doesn’t have O(1/ε) guar-
anteed time. However the total time of Algorithm 1 amortises to O((m/ε) log σ)
(see Gusfield [12] for details). Table 1 (top) shows the descend and suffix walk
of cbdbddc in T .

3 A Full-Text Index Using Suffix Tree Dictionaries

In this section we explain the main contribution of this paper. Our data structure
is very similar to an inverted file. We will use this similarity to provide insight
into the algorithm.

3.1 Generic Inverted Index

Throughout section 3 we assume that we are given an arbitrary suffix tree T
with d nodes, that we will use as a dictionary. We consider as dictionary words
the path-labels of the nodes of T . The first thing we should do is to organise
T according to our dictionary T , much like what is done in inverted files when
given a lexicon.

Definition 5. The T -maximal parsing of string T is the sequence of nodes
v1, . . . , vf such that T = v1 . . . vf and, for every j, vj is the largest prefix of
vj . . . vf that is a node of T .

We assume that T is appropriate for T , i.e. that it is possible to parse T in
a maximal way. In our example, the T -maximal parsing of a string T is the
sequence cbd, bd, d, cba, ba, ba. We refer to the elements of the T -maximal parsing
of T as blocks. We will store the T -maximal parsing of T in compact form as a
string of numbered blocks.

Definition 6. The translation V (v1 . . . vf) of a sequence v1 . . . vf of nodes is
a string such that V (v1 . . . vf)[i] = Dfs(vi).

We denote by T (T) the translation of the T -maximal parsing of T . Since the
T -maximal parsing of T is the sequence cbd, bd, d, cba, ba, ba, its translation is
the string T (T) = 748633. Note that word ba is associated with two blocks, v5
and v6.

Inverted files usually store a list of occurrences for every word of the dictionary.
To play this role we will use a stronger indexing structure, a sparse suffix tree. For
technical reasons we must reverse the string T (T). This is achieved by extend-
ing the canonical mapping R to sequences in the following way: R(v1 . . . vf) =
R(vf) . . . R(v1). In our example R(T (T)) = R(748633)=R(3)R(3)R(6)R(8)R(4)
R(7) = 2′2′3′6′7′8′. This corresponds to the notion of reverse string, because the
concatenation of the path-labels of R(T (T)) in T R is ab.ab.abc.d.db.dbc = T R.

Definition 7. The sparse suffix tree1 ST of a string T and a suffix tree T
is the suffix tree of R(T (T)).
1 Similar to a concept defined by Kärkkäinen et al. [16]

170 L.M.S. Russo and A.L. Oliveira

The sparse suffix tree of our example is shown in figure 1 (bottom-left). We can
descend in the sparse suffix tree in the usual way with DescendST . However,
since T R provides the alphabet for ST , we can also take that into consideration
when descending.

Definition 8. The weak descent W (p, vR) for a point p in ST and a node vR

in T R is the interval of DfsST values of the nodes below the following points:
{p.DfsT R(v′) | v′ is a descendant of vR in T R}

For example, W (RootST , 2′) = [1∗, 4∗], since this contains the DfsST values for
the nodes below 2′, 3′ in ST , see figure 1. This can be computed in O((log d)/ε)
time. We do two binary searches in the children of p, searching for
LeftRankT R(v) and RightRankT R(v). Then W (p, vR) = [LeftRankST (v′′),
RightRankST (v′′′)], where v′′ and v′′′ are the nodes found by the binary searches.

In order to find occurrences of strings across more than one block, we will need
to store the relations across contiguous blocks. This motivates the following two
definitions.

Definition 9. The head, tail of the T -maximal parsing are respectively se-
quence v1, . . . , vi and string vi+1 . . . vf such that v1, . . . , vi is the smallest se-
quence for which vi+1 . . . vf is a point in T .

We denote by H(T) the translation of the head of the T -maximal parsing of T .
The head of the T -maximal parsing of T is cbd, bd, d, cba, ba and the tail is the
string ba. Hence H(T) equals 74863.

Next we define a set of points relating the leaves of ST with the points in T .

Definition 10. The linking points set of the T -maximal parsing v1 . . . vf of
T is the following set:

L =
{
〈Dfs(R(V (v1 . . . vi))),Dfs’(pi)〉 pi is the largest prefix of vi+1 . . . vf

that is a point in T , for 0 < i ≤ f

}

The set L is shown in figure 1 (bottom-right) and consists of the following points:

– 〈Dfs(R(V (cbd, bd, d, cba, ba, ba))),Dfs’(ε)〉 = 〈Dfs(2′2′3′6′7′8′), 0〉 = 〈2∗, 0〉
– 〈Dfs(R(V (cbd, bd, d, cba, ba))),Dfs’(ba)〉 = 〈Dfs(2′3′6′7′8′), 3〉 = 〈3∗, 3〉
– 〈Dfs(R(V (cbd, bd, d, cba))),Dfs’(ba)〉 = 〈Dfs(3′6′7′8′), 3〉 = 〈4∗, 3〉
– 〈Dfs(R(V (cbd, bd, d))),Dfs’(cba)〉 = 〈Dfs(6′7′8′), 7〉 = 〈5∗, 7〉
– 〈Dfs(R(V (cbd, bd))),Dfs’(d)〉 = 〈Dfs(7′8′), 9〉 = 〈6∗, 9〉
– 〈Dfs(R(V (cbd))),Dfs’(bd)〉 = 〈Dfs(8′), 4〉 = 〈7∗, 4〉

We need to process the linking points to be able to compute orthogonal range
queries. Chazelle [17] presented a minimal space structure for computing range
queries in a [1, f]× [1, f] grid, that uses f log f(1+o(1)) bits and O(f log f) time
to be built. It reports points in O((1+occ′) log f) time, where occ′ is the number
of points reported. We want to use this data structure for the [0, d′−1]× [0, t−1]
space, where d′ is the number of nodes of ST . However we only need to store f
points. Therefore we must reduce the support spaces to rank spaces. The space

A Compressed Self-index Using a Ziv-Lempel Dictionary 171

[0, d′ − 1] can be reduced to [1, f] in O(1) time, with Rank over a bitmap of
d′ + o(d′) bits. The space [0, t − 1] requires more bits to be reduced. We store
an array containing the Dfs’ values of the linking points. This array requires
(2 + (log t) − �log f�)f + o(f) extra bits using the representation of Grossi et
al. [6]. The reduction is obtained in O(log f) time with a binary search over this
array.

We propose an index data structure composed of the dictionary T , the sparse
suffix tree ST and the linking points L. We will now explain how to use this index
to solve the exact matching problem. Our search algorithm proceeds differently
depending on whether the pattern is completely contained inside a block or spans
more than one block. We refer to this as type 1 and type > 1 occurrences.

3.2 Occurrences Lying Inside a Single Block

The algorithm for finding occurrences inside a single block starts by identifying
all the words in the dictionary T that contain P as a substring. Since T is a
suffix tree, it is possible to achieve this in a simple way.

– Descend by P in T . If this is impossible then there are no type 1 occurrences
of P.

– Start a depth-first traversal of the sub-tree below P .
– For each node v reached compute the range query W (RootST , pR) : [0, t].

The search in T consists in considering words that start with P and appending
some letters. The weak descend and the range query consist in prepending some
letters to the words found on the search in T . For example, consider P = b. By
reading b, we reach node 2 of T , see figure 1. The search on T returns nodes
2, 3, 4, i.e. leads us to consider words b, ba, bd. This originates the following weak
descends: W (RootST , 4′) = ∅, W (RootST , 2′) = [1∗, 4∗], W (RootST , 7′) =
[6∗, 7∗]. We don’t need to consider words that start with b, since they don’t
correspond to blocks; there may be occurrences of ba or cba because of ba;
there may be occurrences of bd and cbd because of bd. The range queries return
no occurrences for b, occurrences 2∗, 3∗ and 4∗ for ba and occurrences 6∗ and
7∗ for bd. This corresponds to occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba,
cbd.bd.d.cba.ba.ba for ba and occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba,
for bd.

Theorem 1. The above procedure is correct and complete.

Proof. (Correct) Clearly every reported block is α.P.β for some α,β and hence it
contains an occurrence of P . (Complete) Suppose block vi = α.P.β, hence α.P.β
is a node in T . Since T is a suffix tree, P.β is also a node in T . Node P.β is
reached by the search in T , since it starts by P . Every node v of ST for which
v[0] = Dfs((α.P.β)R) has its DfsST time in W (RootST , (P.β)R), hence block
vi is found in the range query. �

This algorithm was essentially presented by Navarro [4], except that the range
queries were computed as depth-first searches in a trie similar to T R. In Navarro’s

172 L.M.S. Russo and A.L. Oliveira

algorithm each node of that trie stored one block. Therefore the time of theses
searches was bounded by the number of type 1 occurrences of p, denoted by
occ1. We do not have a direct correspondence between the nodes of T R and
the blocks of T -maximal parsing, which means that this approach has no worst
case guarantees. In essence the problem is that we may be executing more range
queries than the number of occurrences found.

Definition 11. A spurious entry for string T in the suffix tree T is a leaf v
of T such that vR is a leaf of T R and v is not a block in the T -maximal parsing
of T .

For a dictionary T without spurious entries, we can guarantee that some orthog-
onal range queries must return occurrences.

Lemma 3. Assuming T has no spurious entries for T and v is a leaf of T , then
the query W (RootST , vR) : [0, t] returns at least one linking point.

Proof. There is some α such that (α.v)R is a leaf in T R. Since T is a suffix
tree and v is a leaf of T , then α.v is also a leaf of T . Hence, at least one
linking point will be found by W (RootST , vR) : [0, t], since DfsST ((α.v)R) ∈
W (RootST , vR). �

Spurious entries may be safely removed from the dictionary. Removing spurious
entries can be done by considering T and T R as a DAG, i.e. a node w in the
DAG represents simultaneously v and vR; there is an edge from w to w′ if that
edge exists in T or in T R. To remove spurious entries we perform a DFS over
this DAG. We remove nodes that do not have blocks and are sinks or unary and
the edge comes from T . The nodes are checked and removed in their finishing
time (see Cormen et al. [1] for definitions). This procedure runs in O(d) time.
Note that the resulting structure remains a suffix tree.

3.3 Occurrences Spanning More Than a Single Block

In this section we focus on finding occurrences that span two or more consecutive
blocks, i.e. type > 1. The ideas presented in this section are similar to those of
Kärkkäinen et al. [16] and related with the approach proposed by Ferragina et
al. [3].

We are now faced with the problem of retrieving the words in our dictionary
that appear concatenated in T (T) and have P as a substring. Suppose that
P = cbdbddc and that we split P in two as cbdbdd and c. We will now search for
c in T and for cbdbdd in ST . The point c in T induces the range I(c) = [5, 8]; on
the other hand string cbdbdd is parsed into cbd, bd, b and hence will be translated
into 748. To search on the sparse suffix tree, we need R(748) = 6′7′8′. This will
induce the range [5∗, 5∗]. Finally, to solve our problem we perform the orthogonal
range query [5∗, 5∗] : [5, 8] over the linking points L. This corresponds to the
question: is the string cbdbdd, parsed as cbd.bd.d, ever followed by a block that
starts by c? The answer is yes, since there is a linking point in [5∗, 5∗] : [5, 8].
This point corresponds to cbd.bd.d.cba.ba.ba.

A Compressed Self-index Using a Ziv-Lempel Dictionary 173

We will now explain how to determine in which points to break P . The pattern
should be separated in the head and tail of P [i..], for every 0 < i < m, to account
for every possible translation that can occur. These points can be determined
using the following dynamic programming equations:

tail(P [i..]) =
{

trace right[i] , if |trace right[i]| = m − i
tail(P [i + |father right[i]|..]) , otherwise

H(P [i..]) =
{

ε , if |trace right[i]| = m − i
father right[i].H(P [i + |father right[i]|..]) , otherwise

We use Algorithm 3.3 to locate points R(H(P [i..])) in ST . Whenever it is
not possible to descend by a letter, the DescendST procedure returns the udef
state. See table 1 (bottom) for an example of this computation. Assume that
the descend and suffix walk of P is already computed. Hence the arguments
of DescendST are available when DescendST is executed. Therefore Algo-
rithm 3.3 runs in O((m/ε) log d) time, since it runs m times the DescendST
operation, which requires O((log d)/ε) time.

Algorithm 2 Locate R(H(P [i..])) Algorithm
1: procedure Locate HPI
2: for i ← m − 1, 0 < i do
3: R(H(P [i..])) ← RootST

4: if |trace right[i]| < m − i then
5: R(H(P [i..])) ← DescendST (R(H(P [i + |father right[i]|..])), father right[i])
6: end if
7: end for
8: end procedure

.

Having located tail(P [i..]) in T and R(H(P [i..])) in ST , we know where to
break the pattern. Now all that we need are the ranges for the range query. The
range for T is simply I(tail(P [i..])). Whenever P [..i − 1]R is a node of T R the
range for ST is W (R(H(P [i..])), P [..i − 1]R).

Let us consider for example the case of i = 3. We have that H(P [3..]) = 48
and R(H(P [3..])) = 6′7′. Hence W (6′7′, (cbd)R) = [5∗, 5∗], since 8′ is the only
descendant of itself in T R. This means that, when we are extending bd.d to the
left by prepending a word from our dictionary that terminates in cbd, the only
such word is cbd. Therefore we end up considering only the node cbd.bd.d.

Our algorithm for finding type > 1 occurrences of P proceeds as follows:

– Compute the descend and suffix walk of P in T .
– Compute tail(P [i..]) from the descend and suffix walk of P .
– Locate the R(H(P [i..])) points in ST .
– If |father left[i]| = i then P [..i − 1]R = R(father left[i]),

compute W (R(H(P [i..])), R(father left[i])).
– Compute I(tail(P [i..])) from tail(P [i..]).
– Compute the orthogonal range queries W (R(H(P [i..])), R(father left[i])) :

I(tail(P [i..])).

174 L.M.S. Russo and A.L. Oliveira

An example of our algorithm is shown in Table 1 (bottom). The only range query
that finds occurrences (occ’) is the [5∗, 5∗] : [5, 8] query, as we have explained in
this Section.

4 A Compressed Self-Index Based on LZ78 Dictionaries

We found it interesting to present this work in a general form, since it seems
relevant to explore other techniques for inferring dictionaries, given a text T .
We will now give a concrete instantiation of the above algorithm, using the
Ziv-Lempel 78 Algorithm [18].

Definition 12. The LZ78 parsing of a string T is the sequence Z1, . . . , Zn of
strings such that T = Z1 . . . Zn and for every i, Zi = Zjc where Zj is the largest
prefix of Zi . . . Zn among the Z1, . . . , Zi−1.

Given a string T , we proceed as follows: compute the LZ78 parsing of T R =
Z1 . . . Zn, then consider the suffix tree for strings {ZR

1 , . . . , ZR
n } as our dictionary,

denoted by T78. In our example T R is parsed into a, b, ab, abc, d, db, dbc and the
resulting dictionary can be seen in figure 1 (top-right). The following lemmas
expose why the dictionary we propose is adequate in terms of space.

Lemma 4. If the number of blocks of the LZ78 parsing of T is n then the T78
has at most 2n nodes, i.e. d ≤ 2n.

Proof. Observe that every suffix of a ZR
i is a ZR

j for some j. Therefore the set
{ZR

1 , . . . , ZR
n } is suffix closed. Hence a suffix tree based on {ZR

1 , . . . , ZR
n } will

have at most 2n nodes. �

Lemma 5. If the number of blocks of the LZ78 parsing of T is n then the T78-
maximal parsing of T has at most n blocks, i.e. f ≤ n.

Proof. The idea is to show that if a block vi of the T78-maximal parsing is a
substring of some ZR

j then it is a suffix. Suppose that vi is a substring of ZR
j .

We have that ZR
j = α.vi.β. Since the dictionary is a suffix tree and ZR

j is a node,
viβ is also a node and hence a dictionary word. Since the parsing is maximal,
we have that vi.β = vi, i.e. that vi is a suffix of ZR

j . �

4.1 Space and Time Complexity

We will refer to the index that uses LZ78 dictionaries as the Inverted-LZ-Index.
The next theorem gives an overview of the space/time complexity of this struc-
ture.

Theorem 2. Let d and d′ be the number of nodes of T78 and ST 78 respectively.
Let t be the number of points of T78. Let f be the size of the T78-maximal parsing
of T . The space/time trade-off of the Inverted-LZ-Index can be summarised as
follows:

A Compressed Self-index Using a Ziv-Lempel Dictionary 175

Space in bits [d
n
(�log t�−�log d�

log u
+ 1 + ε) + d′

n
(1 + ε) + f

n
(�log t�−�log f�

log u
+ 1)]uHk

+o(u log σ)
Time to count O((occ + m/ε) log n)
Time to locate free after counting
Time to display l chars O(l/ε), improvable to O(l/(ε logσ u)) with 3u extra bits
Conditions k = o(logσ u), σ = O(n), 0 < ε ≤ 1, ε is constant

Proof. (Space) The space requirements come from adding up the space of T78,
ST 78 and the range data structure. Ziv et al. [18] showed that

√
u ≤ n ≤

u/ logσ u, and, therefore n = o(u log σ). The relation between n and Hk was
established by Kosaraju et al. [19] who showed that n log u = uHk + o(u log σ)
for k = o(logσ u).

(Count/Locate) We have already seen that Algorithm 1 runs in O((m/ε) log σ)
time. The time to find occurrences of type 1 is O((1 + occ1) log n). Observe that
the number of queries computed is less than or equal to twice the number of
leaves below P . By lemma 3 we know that the queries at the leaves must return
occurrences. Therefore the total time amortises to O((1+occ1) log n). The time to
find occurrences of type > 1 is the time of Algorithm 3.3, plus m weak descents
and m range queries. Therefore the total time for occurrences of type > 1 is
O((occ>1 + m/ε) logn), where occ>1 is the number of type > 1 occurrences.

(Display) Observe that even though we don’t store R(T78(T)) explicitly, we
have O(1/ε) access time to it. The idea is to store a pointer to the leaf of ST 78
with path-label R(T78(T)), denoted by FirstLeafST . Therefore R(T78(T))[i] =
LetterST (FirstLeafST , i). Hence we can compute the j-th letter of R(T78(T))
[i] in as Letter(LetterST (FirstLeafST , i), j), in O(1/ε) time. To achieve op-
timal O(l/(ε logσ u)) time we use an approach based on the work of Sadakane [20],
similar to Arroyuelo et al. [9]. We define a new bitmap D′ similar to bitmap D
used to retrieve the first log u bits of a node v instead of the first letter. This
requires d + o(d) bits. We also need a bitmap Q that indicates which sequences
of log u bits do appear as the first bits of some v. By (i)2 we denote the binary
representation of i, with log u bits. The Q bitmap is defined as Q[i] = 1 iff (i)2
is the prefix of some (v)2 padded with zeros. Bitmap Q contains 2log u = u bits
and can therefore be stored in u + o(u) bits. With these bitmaps we are able
to retrieve log u bits from a block in O(1) time, i.e. logσ u letters. We repeat
these bitmaps for ST 78 and hence are able to retrieve log u bits from consecu-
tive blocks. Finally we need another bitmap to be able to skip blocks. We use a
bitmap V that marks the beginnings of the blocks in R(T78(T)). This requires
another u + o(u) bits. As pointed out by Arroyuelo et al. [9], this bitmap can be
used to report the occurrences of P as positions in T instead of as a block and
an offset. �

The worst case of the space expression is (6.5 + 4ε)Hk + o(u log σ). However
the worst example we were able to find, based on De Bruijn cycles, yielded
(5.5 + 3ε)Hk + o(u log σ) bits. In the next section we show concrete values for
the space expression.

176 L.M.S. Russo and A.L. Oliveira

5 Practical Issues and Testing

We implemented a prototype for testing these ideas. It was pointed out by
Navarro [4] that the range data structure was space consuming and actually
slower in practice than to do a complete scan choosing the range that required
less work. Therefore we did not implement the range data structure. Observe
that this way we have no worst case guarantees for the search time.

The sparse suffix tree ST 78 is stored in a suffix array fashion. The nodes of
the T R

78 are stored as ranges over ST 78, that correspond to the elements of ST 78
that are traversed by the type 1 searches (see figure 1 for the range of node 2′).
The T78 tree is implemented in a pointer like fashion. Every node is stored in a
memory cell indexed by its breath-first time-stamp. For example, node 6 will be
stored in cell 3. The Letter operation is replaced by a Head pointer, that, for
every node v with father node v[..i − 1], points to node v[i..]. This information
suffices to be able to read of edge-labels, by using suffix links. Every node stores
its Dfs time, a suffix link, the string depth, the Head pointer and the range of
its corresponding R node.

We compared our implementation, Inverted-Lempel-Ziv-Index (ILZI), against
Navarro’s implementation of the FM-index (FMI), Sadakane’s CSArray
(CSAx1,CSAx8) and Navarro’s LZ-Index (LZI), all of which are publicly avail-
able [21], using the files from the Pizza&Chili corpus [22]2.

We show the size of different indexes along with experimental values for the
terms of the theoretical space requirements of our index, table 2. The FM-Index
and the compressed suffix array needed to be parametrised. The parameters we
used are also shown in table 2 in the par line. The parameter of the FM-Index
was chosen with minimum value of 5 so that its size is close to the size of ILZI.
The parameter of CSAx1 (resp. CSAx8) was chosen so that its size is close
to the size of ILZI with L = D (resp. L = 8 × D). We used all the indexes
to determine occ and reported this time divided by m as the counting time per
character (c). We used all indexes to report occurrences, subtracted the counting
time and divided by the number of occurrences found. We report this time as
the reporting time per occurrence (r). Finally we used the indexes to display
part of the text around the occurrences, subtracted the counting and reporting
times, divided by the number of occurrences and letters. We report this time as
the displaying time per character (o), also in table 2. The reporting time per
occurrence is shown for different values of m, since for the LZ-based indexes this
value is not constant. The time per occurrence and displaying time per character
are relatively constant for different values of m and therefore we only present
their values for m = 20.

In the space column of table 2 we present the ratios of the space size in bits
with u8 and uHk. In this, way for the raw string, we obtain the numbers of letters
that should fit into a byte. Observe that our index has acceptable space require-
ments both in theory and in practice. For example for the xml file the practical

2 Tested on Pentium 4, 3.2 GHz, 1 MB of L2, 1Gb of RAM, with Fedora Core 3,
compiled with gcc-3.4 -O9.

A Compressed Self-index Using a Ziv-Lempel Dictionary 177

Table 2. Results for test files. On the left we show the space values and on the right
the time values in seconds (s). In the space column variable i represents the size of the
different indexes and of the original string (Raw) in bits. Therefore i/223 gives the size
in Megabytes (MB), i/u8 gives the ratio with the original string, i/uHk gives the ratio
with a compressed string, where Hk is estimated as (n log u)/n. The bottom part of the
space column shows empirical values for the space terms of our index, d/n, d′/n, f/n,
((�log t� − �log d�)/ log u) in column Dfs’, ((�log t� − �log f�)/ log u) in column L and
the empirical value of the space expression in total. In the time column the best values
among different indexes are displayed in bold and the second best are underlined.

File Space Time

english Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 54.3 81.1 66.8 55.6 56.3 c 5 1.77e-3 6.78e-4 1.30e-6 3.41e-6 3.85e-6
i/u8 1.00 1.09 1.62 1.34 1.11 1.13 c 10 4.33e-5 4.08e-5 1.36e-6 3.30e-6 3.80e-6
i/uHk 2.76 2.99 4.47 3.69 3.07 3.11 c 20 3.35e-6 3.01e-5 1.19e-6 2.92e-6 3.48e-6
par 5 17 7 c 40 1.98e-6 3.17e-5 1.06e-6 2.43e-6 3.18e-6
d/n d′/n f/n Dfs’ L total r 20 3.32e-7 1.48e-7 3.21e-5 7.28e-6 3.23e-6
0.64 1.33 0.94 0.08 0.04 2.99 + 1.96 ε o 20 3.09e-7 2.85e-7 2.04e-7 1.28e-6 9.16e-7

xml Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 26.1 44.5 64.9 26.2 25.8 c 5 4.37e-4 5.11e-4 1.23e-6 1.90e-5 5.02e-6
i/u8 1.00 0.52 0.89 1.30 0.52 0.52 c 10 1.45e-4 1.69e-4 1.30e-6 1.41e-5 4.93e-6
i/uHk 5.08 2.65 4.52 6.60 2.67 2.62 c 20 3.25e-5 4.49e-5 1.31e-6 1.14e-5 4.86e-6
par 5 44 19 c 40 6.18e-6 2.84e-5 1.23e-6 8.64e-6 4.68e-6
d/n d′/n f/n Dfs’ L total r 20 3.40e-7 4.67e-7 3.25e-5 2.00e-5 8.35e-6
0.54 1.08 0.87 0.12 0.08 2.62 + 1.62 ε o 20 2.84e-7 2.05e-7 1.24e-7 2.99e-6 1.97e-6

dna Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 44.0 60.9 63.4 45.1 37.0 c 5 1.93e-2 7.44e-3 1.17e-6 2.85e-6 4.72e-6
i/u8 1.00 0.88 1.22 1.27 0.90 0.74 c 10 4.44e-4 1.76e-4 1.42e-6 3.57e-6 5.32e-6
i/uHk 3.63 3.19 4.42 4.60 3.27 2.69 c 20 3.51e-6 1.09e-5 1.26e-6 3.46e-6 5.16e-6
par 5 26 11 c 40 1.66e-6 1.14e-5 1.10e-6 2.94e-6 4.92e-6
d/n d′/n f/n Dfs’ L total r 20 3.61e-7 3.98e-7 3.76e-5 1.37e-5 1.05e-5
0.92 1.20 0.97 0.08 0.04 3.20 + 2.12 ε o 20 2.93e-7 2.62e-7 7.78e-7 2.44e-6 2.66e-6

proteins Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 63.7 102.8 152.9 100.9 104.8 100.1 c 5 4.71e-4 1.88e-4 1.27e-6 3.12e-6 3.43e-6
i/u8 1.00 1.61 2.40 1.58 1.64 1.57 c 10 3.77e-6 1.92e-5 1.15e-6 2.98e-6 3.37e-6
i/uHk 1.88 3.04 4.52 2.98 3.10 2.96 c 20 2.43e-6 2.16e-5 1.03e-6 2.51e-6 3.10e-6
par 10 13 6 c 40 1.80e-6 2.30e-5 9.53e-7 1.88e-6 2.80e-6
d/n d′/n f/n Dfs’ L total r 20 4.15e-7 6.00e-7 1.69e-5 8.20e-6 6.47e-6
0.85 1.22 0.98 0.04 0.04 3.11 + 2.07 ε o 20 3.12e-7 4.27e-7 5.86e-7 1.11e-6 1.16e-6

pitches Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 53.2 84.7 124.8 86.8 85.6 86.1 c 5 2.58e-4 1.19e-4 1.47e-6 2.87e-6 3.06e-6
i/u8 1.00 1.59 2.34 1.63 1.61 1.62 c 10 2.78e-5 3.78e-5 1.34e-6 2.68e-6 2.94e-6
i/uHk 1.99 3.16 4.66 3.24 3.19 3.21 c 20 1.15e-5 3.34e-5 1.18e-6 2.21e-6 2.60e-6
par 9 12 5 c 40 6.78e-6 3.23e-5 1.05e-6 1.60e-6 2.21e-6
d/n d′/n f/n Dfs’ L total r 20 3.39e-7 4.85e-7 1.66e-5 5.60e-6 2.22e-6
0.76 1.25 0.94 0.08 0.08 3.08 + 2.01 ε o 20 2.66e-7 1.45e-7 6.33e-7 5.30e-7 4.06e-7

sources Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 53.5 80.9 68.1 53.3 54.6 c 5 8.91e-4 3.66e-4 1.40e-6 3.16e-6 3.48e-6
i/u8 1.00 1.07 1.62 1.36 1.07 1.09 c 10 1.22e-4 6.43e-5 1.42e-6 3.00e-6 3.45e-6
i/uHk 2.80 3.00 4.53 3.81 2.99 3.06 c 20 1.58e-5 3.19e-5 1.27e-6 2.68e-6 3.21e-6
par 5 17 7 c 40 3.60e-6 2.95e-5 1.13e-6 2.30e-6 2.89e-6
d/n d′/n f/n Dfs’ L total r 20 3.33e-7 4.56e-7 3.67e-5 7.17e-6 3.01e-6
0.60 1.19 0.90 0.08 0.04 2.78 + 1.79 ε o 20 2.83e-7 2.70e-7 2.36e-7 1.15e-6 7.92e-7

178 L.M.S. Russo and A.L. Oliveira

value is 2.65uHk bits and the theoretical value is (2.62 + 1.62ε)uHk + o(u log σ)
bits.

The counting time per character of LZ-based indexes is affected by occ,
whereas the FM-index and CSArray have a fairly constant value. This can be
seen by the fact that the counting time per character decreases for larger values
of m, where occ is smaller. By looking at the c lines of table 2 it can be seen
that our reduction of the dependency on m from O(m2) to O(m) had significant
impact in the query time. This makes our index up to an order of magnitude
faster than LZI for counting when m is large. Also, for a large m, our index
sometimes qualifies second, being faster than the CSArray. For m = 40 it is very
close to the best counting time, expect for the xml and the pitches file where it is
respectively around 5 times and 6.5 times slower than the FM-Index. Contrarily,
for small patterns, m = 5, it is up to 2.6 times slower than LZI and up to four
orders of magnitude slower than the FM-Index and the CSArray.

On the other hand LZ-based indexes are extremely fast at reporting occur-
rences. In fact they are the only self-indexes using O(uHk) bits able to spend
O(log n) time per occurrence. This is also visible in table 2 as our index and LZI
rank first and second and are one to two orders of magnitude faster than the
alternatives.

The displaying time per character is not a very decisive factor to tell indexes
apart since all of them are very fast. The FM-index performed extremely well on
natural language based files. The LZ-based indexes had more stable performance
and are among the fastest for all samples.

6 Conclusions

This paper presents two fundamental observations on LZ78 based compressed
indexes. The first one is that our dictionary T78 is a suffix tree. This structure
was first presented by Kärkkäinen [5] but this version required T to be present
and since it was based in LZ77, it was not necessarily a suffix tree. In the work
presented by Navarro [4] the structure is called RevTrie but its suffix tree nature
is not explored and, in fact, reading an edge-label requires O(m2). In the work
presented by Ferragina and Manzini [3] it appears as an FM-Index of T R

$. They
present an argument to prove that its space requirements can be related to the
entropy of the text T . However its suffix tree structure is also not explored.
The second observation is about the way the same string appears in the LZ78
parsing. A string S may appear in O(m) different ways as the concatenation of
LZ78 blocks. This, in turn, forces algorithms based on the LZ78 parsing to have
quadratic behaviour. We solve this problem by discarding the original parsing
and using a maximal parsing. In the maximal parsing, a string S appears in at
most one way as the concatenation of blocks. Navarro uses the original LZ78
parsing. Ferragina and Manzini discard the parsing and solve the problem by
using an FM-index, i.e. resorting to the Burrows-Wheeler transformation.

Our index is a significant contribution to LZ-based compressed indexes. We
improved the counting time performance of LZ-based indexes to linear time. At

A Compressed Self-index Using a Ziv-Lempel Dictionary 179

the same time, the structure we propose is smaller than LZI, for all the files we
tested. In theory, with the terms we obtained in table 2, we can choose an ε to
make the index smaller than 4uHk+o(u log σ). In practice it can be seen in table 2
that ILZI is always smaller than LZI. However a new version of the LZ-index
proposed by Arroyuelo et al. [9] requires only (2+ ε)uHk + o(u log σ) with worst
case guarantees. Without worst case guarantees it requires (1+ε)uHk+o(u logσ)
bits and it has O(m2) average search time for m ≥ 2 logσ u. It is interesting to
notice that Arroyuelo et al. independently explored the suffix tree structure of
T78 to reduce the time to read an edge-label to O(m). We cannot achieve the
reduced space requirements of Arroyuelo et al. essentially because we are storing
more structures. In fact, as a second contribution of this paper, we pointed
out a possible representation of suffix trees (lemma 1). This representation is
not very competitive when compared to the compressed suffix trees presented
by Sadakane [23]. Nevertheless it is adequate for our goals. For suffix trees, in
general, it requires more space than the representation of Sadakane. In fact, the
problem is the space required to store R and R−1, (1 + ε)n logn bits. Arroyuelo
et al. [9] showed how to reduce the space requirements of R. However even
with such an improvement it is still not comparable to Sadakane’s approach in
terms of space. We expect further work based on this approach to produce a
competitive representation.

Acknowledgements

We are deeply grateful to Gonzalo Navarro for several reasons: organising the
Workshop on Compression, Text, and Algorithms at DCC in November of 2005
that motivated stimulating discussions on compressed indexes; providing proto-
types together with Sadakane; creating the Pizza&Chili Corpus together with
Ferragina; for suggestions and corrections along with Arroyuelo and several
anonymous reviewers. We would like to thank Luis Coelho for countless dis-
cussions about our index.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
Second edn. McGraw (2001)

2. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
J. Algorithms 48(2) (2003) 294–313

3. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4) (2005) 552–
581

4. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discrete Algorithms 2(1)
(2004) 87–114

5. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proceedings of the 3rd South American Workshop
on String Processing, Carleton University Press (1996) 141–155

6. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2) (2005) 378–407

180 L.M.S. Russo and A.L. Oliveira

7. Manzini, G.: An analysis of the burrows-wheeler transform. J. ACM 48(3) (2001)
407–430

8. Makinen, V., Navarro, G.: Compressed full text indexes. Technical Report
TR/DCC-2006-6, Dept. of Computer Science, University of Chile (2006) 2nd ver-
sion.

9. Arroyuelo, D., Navarro, G., Sadakane, K.: Reducing the space requirement of
LZ-index. In: Proceedings of CPM 2006. LNCS 4009 (2006) 319–330

10. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An alphabet-friendly FM-
index. In: Proceedings of SPIRE 2004. LNCS 3246, Springer (2004) 150–160 Ex-
tended version to appear in ACM TALG.

11. Grabowski, S., Mäkinen, V., Navarro, G.: First Huffman, then Burrows-Wheeler:
an alphabet-independent FM-index. In: Proceedings of SPIRE 2004. LNCS 3246,
Springer (2004) 210–211

12. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1999)

13. Munro, J.I.: Tables. In Chandru, V., Vinay, V., eds.: Proceedings of FSTTCS
1996. Volume 1180 of LNCS., Springer (1996) 37–42

14. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. In: SODA, SIAM (2004) 1–10

15. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permu-
tations. In: ICALP. Volume 2719 of LNCS., Springer (2003) 345–356

16. Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: COCOON. Volume 1090 of
LNCS., Springer (1996) 219–230

17. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3) (1988) 427–462

18. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5) (1978) 530–536

19. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with lempel-ziv
algorithms. SIAM J. Comput. 29(3) (1999) 893–911

20. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: SODA, ACM Press (2006) 1230–1239

21. (http://www.dcc.uchile.cl/˜gnavarro/eindex.html)
22. (http://pizzachili.dcc.uchile.cl/)
23. Sadakane, K.: Compressed suffix trees with full functionality. (to appear in Theory

of Computing Systems)

Mapping Words into Codewords on PPM�

Joaquín Adiego and Pablo de la Fuente

Depto. de Informática, Universidad de Valladolid, Valladolid, Spain
{jadiego, pfuente}@infor.uva.es

Abstract. We describe a simple and efficient scheme which allows words
to be managed in PPM modelling when a natural language text file is
being compressed. The main idea for managing words is to assign them
codes to make them easier to manipulate. A general technique is used
to obtain this objective: a dictionary mapping on PPM modelling. In
order to test our idea, we are implementing three prototypes: one imple-
ments the basic dictionary mapping on PPM, another implements the
dictionary mapping with the separate alphabets model and the last one
implements the dictionary with the spaceless words model. This tech-
nique can be applied directly or it can be combined with some word
compression model. The results for files of 1 Mb. and over are better
than those achieved by the character PPM which was taken as a base.
The comparison between different prototypes shows that the best op-
tion is to use a word based PPM in conjunction with the spaceless word
concept.

Keywords: Text Compression, PPM, Dictionary Algorithms, Natural
Language Processing.

1 Introduction

In modern computational environments, processing times and storage costs have
been reduced. On the other hand, the amount of data stored and transmitted has
increased dramatically. Although most data is multimedia, the amount of tex-
tual data, predominant a few years ago, is not negligible. Information Retrieval
Systems and Digital Libraries are systems where textual information, with and
without format, is still predominant. Besides, these systems are used in several
environments such as networks, optical and magnetical media. In these cases,
the use of compression techniques is the best choice to solve storage problems
and improve access time in storing and processing. Improvements in processing
times are achieved thanks to the reduced disk transfer times necessary to ac-
cess the text in compressed form. Since processor speeds in the last few decades
have increased much faster than disk transfer speeds, trading disk transfer times
for processor decompression times has become a much better choice [21]. On
the other hand, the use of compression techniques reduces transmission times

� This work was partially supported by the TIC2003-09268 project from MCyT, Spain.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 181–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 J. Adiego and P. de la Fuente

and increases the efficiency using communication channels. These compression
propierties allow us to keep costs down.

Classical text compression algorithms perform compression at the character
level. When an algorithm is adaptive then the algorithm slowly learns corre-
lations between sequences of characters. However, the algorithm usually has a
chance to take advantage of longer sequences before either the end of input is
reached or the tables maintained by the algorithm reach their capacity. If text
compression algorithms were to use larger units than single characters as the
basic storage element, they would be able to take advantage of the longer range
sequences and, perhaps, achieve better compression performance. Faster com-
pression may also be possible by working with larger units [13].

In this paper, we explore the use of a word representation as the basic unit in
PPM, one of the most promising lossless discrete-data compression algorithms
at the character level, which uses Markov models of order k.

When the source file is a natural language document, we have no difficulty in
recognizing a word as consisting of a sequence of consecutive letters. Each word
is separated from the next by space and/or punctuation characters. Following
the same approach as Bentley et al. [6], we generalize slightly by considering
a natural language text file to consist of alternating alphanumeric-strings and
punctuation-strings, where a word-string is a maximal sequence of alphanumeric
characters and a punctuation-string is a maximal sequence of non-alphanumeric
characters. We use the generic name word to refer to either an alphanumeric
string or a punctuation string. The generalization allows us to decompose all
kinds of text files into sequences of words. We should be able to take advantage
of the fact the the alphanumeric and non-alphanumeric words strictly alternate.

The following sections of this paper will consider the problem of generalizing
a PPM based compression algorithm to be word-based, then particular PPM
word-based algorithms will be described, and finally some experimental results
will be reported. Finally, our conclusions and future work are presented.

2 Natural Language Text Compression

With regard to compressing natural language texts the most successful tech-
niques are based on models where the text words are taken as the source symbols
[15], as opposed to the traditional models where the characters are the source
symbols.

In an English text, for example, words follow a Zipf law, that is, the relative
frequency of the i-th most frequent word is 1/iθ, for some 1 < θ < 2 [20,3].
On the other hand, the model size (assigning a codeword to each different text
word) is not significant in large text collections. Heaps law establishes that the
number of different words in a text of n words is O(nβ) for some β between 0.4
and 0.6 [12,3]. Thus, the model size grows sublinearly with the collection size.

Natural language is not only made up of words. There are also punctuation,
separator, and other special characters. The sequence of characters between every
pair of consecutive words is called a separator. Separators must also be considered

Mapping Words into Codewords on PPM 183

to be symbols of the source alphabet. There are even fewer different separators
than different words, and their distribution is even more skewed. Note that, since
words and separators strictly alternate in the text, we can have two separate
source alphabets, usually leading to better compression. As explained in the
Introduction, we will use the generic name words to refer to both text words and
separators in this paper.

Words reflect much better than characters the true entropy of the text [4]. For
example, a semiadaptive Huffman coder over the model that considers characters
as symbols typically obtains a compressed file whose size is around 60% of the
original size, in natural language. A Huffman coder, when words are the symbols,
obtains 25% [21]. Existing compression algorithms that consider the input as a
sequence of words are ad hoc in nature. The scheme described by Bentley et
al. [6] maintains a list of words sorted into least-recently used order. A word is
encoded by its position in this dynamically changing list. Words near the front of
the list tend to have shorter codes than those near the end and, assuming words
in frequent use stay near the front of the list, compression is achieved. Another
example is the WLZW algorithm, which uses Ziv-Lempel on words [10].

Since the text is not only composed of words but also separators, a model
must also be chosen for them. An obvious possibility is to consider the different
inter-word separators as symbols too, and make a unique alphabet for words and
separators. However, this idea is not using a fundamental alternation property:
words and separators always follow one another. In [15,5] two different alphabets
are used: one for words and one for separators. Once it is known that the text
starts with word or separator, there is no confusion on which alphabet to use.
This model is called separate alphabets.

In [17,21] a new idea to use the two alphabets is proposed, called spaceless
words. An important fact that is not used in the method of separate alphabets is
that a word is followed by a single space in most cases. In general, it is possible to
be emphasized that at least 70% of separators in text are single space [15]. Then,
the spaceless words model take a single space as a default. That is, if a word is
followed by a single space, we just encode the word. If not, we encode the word
and then the separator. At decoding time, we decode a word and assume that
a space follows, except if the next symbol corresponds to a separator. Of course
the alternation property does not hold anymore, so we have a single alphabet
for words and separators (single space excluded). This variation achieves slightly
better compression ratios in reported experiments.

3 k-th Order Models

These models assign a probability to each source symbol as a function of the
context of k source symbols that precede it. They are used to build very effective
compressors such as Prediction by Partial Matching (PPM) and those based on
the Burrows-Wheeler Transform (BWT).

PPM [9,18] is a statistical compressor that models the character frequencies
according to the context given by the k characters preceding it in the text (this

184 J. Adiego and P. de la Fuente

is called a k-th order model), as opposed to Huffman that does not consider the
preceding characters. Moreover, PPM is adaptive, so the statistics are updated
as the compression progresses. The larger k is, the more accurate the statisti-
cal model and the better the compression are, but more memory and time is
necessary to compress and uncompress.

The PPM technique can be viewed as blending together several fixed-order
models to predict the next character in the input sequence. More exactly, PPM
uses k+1 models, of order 0 to k, in parallel. It usually compresses using the k-th
order model, unless the character to compress has never been seen in that model.
In this case, it switches to a lower-order model until the character is found. The
coding of each character is done with an arithmetic compressor, according to the
computed statistics at that point. Well known representatives of this family are
Shkarin/Cheney’s ppmdi and Bloom/Tarhio’s ppmz.

The BWT [7] is a reversible permutation of the text that puts together char-
acters having the same k-th order context (for any k). The BWT is a composite
of three different algorithms: (i) the block sorting main engine, a lossless and
very slightly expansive preprocessor; (ii) the move-to-front coder (MTF), a byte-
for-byte simple, fast, locally adaptive noncompressive coder; and (iii) a simple
statistical compressor, like a first order Huffman or arithmetic coding, doing the
compression. Steps (ii) and (iii) work like a local optimization over the permuted
text obtaining results similar to k-th order compression.

In [16] the block-sorting algorithm of the BWT is extended to word-based
models, including other transformations, like spaceless words mentioned above,
in order to improve the compression. Experimental results shows that the com-
bination of word-based modeling, BWT and MFT-like transformations allows to
obtain good compression effectiveness to be attained within reasonable resource
costs.

4 Dictionary Mapping

In this section we propose a word-based scheme on PPM. Our objective has
been carried out plugging an additional layer to precede PPM that replaces
words by two byte codewords, and then these codewords will be codified with a
conventional PPM.

According to Skibinski et al. [19] replacing words by codewords has advantages
and drawbacks. First, the concept of replacing words with shorter codewords
from a given static dictionary has at least two shortcomings:

1. The dictionary must be quite large (at least tens of thousands of words) and
it is appropriate for natural language only.

2. No “high level” correlations, e.g. related to grammar, are implicitly taken
into account.

In spite of these drawbacks, such an approach to text compression turns out to
be an attractive one, and it has not been given as much attention as it deserves.
On the other hand, the benefits of dictionary-based text compression schemes

Mapping Words into Codewords on PPM 185

Word

Codeword[0]
Codeword[1]

(New Word)

Word[i], i=0..lenght(Word)

Words

Compressed Text

PPM BlockMapping Layer

2−byte codeword

Word/Codeword
Mapping Algorithm

LRU Dictionary PPM Compressor

PPM Compressor

Fig. 1. Dictionary mapping

are: the ease of dictionary generation (assuming enough training text in a given
language), clarity of ideas, high processing speed and acceptable compression
ratios. Our proposal tries to solve both shortcomings.

Figure 1 shows a graphical representation of the dictionary mapping scheme.
The proposal is made up of two different blocks: (1) Mapping Layer, which
manages the vocabulary and maps words into codewords. To limit the number
of different codes, a dictionary with a capacity of 216 is used, when this dictionary
is full an LRU policy is applied. (2) PPM Block, with two PPM compressors,
which can be the same or not, one in charge of coding codewords and the other
in charge of coding new words when they appear for the first time in the text.

This compression scheme can be seen as a PPC1 compression scheme. This is
a relatively new concept to compress data streams, based on the idea of pre-
processing the data stream (through permutations and/or partitions) before
compressing it. A successful PPC example is bzip2.

Algorithm 1 (Compression with dictionary mapping on PPM)

map.add(ESCAPE_WORD)
while (there are more words) do

word ← get_word()
if map.find(word) = true

then
CodePPM_ENCODE(map.codeword(word))

else
CodePPM_ENCODE(map.codeword(ESCAPE_WORD))
for 0 ≤ i < word.length() do

WordPPM_ENCODE(word[i])
od
map.add(word)

fi
od

1 Permutation–Partition–Compression

186 J. Adiego and P. de la Fuente

Algorithm 1 shows a generic scheme for compressing the text using dictionary
mapping on PPM. This scheme uses two independent PPM encoders, one codifies
the codewords and the other codifies the new words character by character. When
a new word is reached, a reserved codeword (the general escape mechanism) is
emitted, the new word is codified using another PPM encoder and it is added
to the dictionary.

We handle a limited length size dictionary in order to always obtain two byte
codewords, therefore the dictionary capacity is at most 216 words. When the
dictionary is full and it is necessary to insert a new word, the least-recently used
(LRU) word is removed from the dictionary and its place is occupied by the new
word. The idea behind this decision is to remove from the dictionary the words
that have been used just once and probably they will never be used again. Since
we are codifing natural language texts which obey the Zipf law [20] it is quite
unlikely that a word will constantly be coming in and out the dictionary. Using
this technique, we can represent any word of the vocabulary with two bytes and,
consequently, an order-k PPM modelling codewords can better predict word
sequences using the same amount of memory as another order-k PPM modelling
the untransformed text.

The decompression algorithm is similar.

5 Evaluation

Tests were carried out on the SuSE Linux 9.3 operating system, running on a
computer with a Pentium IV processor at 1.5 GHz and 384 megabytes of RAM.
We used a g++ compiler with full optimization. For the experiments we selected
all the text files from Canterbury and Large corpora of the Canterbury Corpus2
[2]. We also selected different size collections of WSJ, ZIFF and AP from TREC-
33 [11]. In this case we concatenated files so as to obtain approximately similar
subcollection sizes from the three collections, so the size in MB is approximate.

In order to test the dictionary mapping itself, and in conjunction with the two
word-based techniques described in Section 2, we implemented several prototypes
for basic dictionary mapping on PPM (denoted by mppm), dictionary mapping
with separate alphabets model (denoted by mppmsa) and dictionary mapping
with spaceless words model (denoted by mppmsw). In all the versions we used the
Shkarin/Cheney’s ppmdi [18] to obtain comparable results with the compressors
mentioned below.

First we compressed the text files from Canterbury and Large corpora of the
Canterbury Corpus. Table 1 shows the compression (in bits per character) ob-
tained with our prototypes. The two first columns show, respectively, the file
denomination and its size in bytes, whereas the third column shows the best
results reported on the Canterbury Corpus site4. Column “ppmz” shows the

2 http://corpus.canterbury.ac.nz/
3 http://trec.nist.gov/
4 http://corpus.canterbury.ac.nz/details/

Mapping Words into Codewords on PPM 187

compression obtained by Bloom/Tarhio’s ppmz v.9.1 for Linux5, one of the bet-
ter PPM variations but with high resources demand. Column “ppmdi” shows
the compression obtained by the character based Shkarin/Cheney’s ppmdi6 (ex-
tracted in turn from James Cheney’s xmlppm v.0.98.2). This ppmdi version uses
the same memory requirements as ppmdi used to codify codewords in the mppm
prototypes. In order to codify new words in mppm prototypes, another ppmdi
compressor is needed but, in this case, with minor memory requirements. Word-
based BWT compression was excluded because we could not find the software,
yet results reported in [16] indicate that the compression ratios achieved for
Canterbury Corpus are slightly worse to those of mppmsw . Although, in order
to be able to compare, it is necessary to make more tests, mainly with files of
great size.

Table 1. Compression (bpc) for each method and collection, for Canterbury and Large
corpora of the Canterbury Corpus

File Size(bytes) Best ppmz ppmdi mppm mppmsa mppmsw

LIST 3,721 2.40 2.253 2.281 2.736 2.764 2.668
MAN 4,227 2.98 2.865 2.852 3.418 3.397 3.283
CSRC 11,150 2.08 1.867 1.849 2.293 2.329 2.244
HTML 24,603 2.32 2.192 2.134 2.382 2.473 2.355
PLAY 125,179 2.49 2.335 2.307 2.411 2.488 2.371
TEXT 152,089 2.20 2.081 2.033 2.145 2.189 2.090
TECH 426,754 1.95 1.827 1.794 1.861 1.873 1.834
POEM 481,861 2.36 2.216 2.253 2.267 2.344 2.266
WORLD 2,473,400 1.40 1.295 1.436 1.391 1.426 1.346
BIBLE 4,047,392 1.53 1.473 1.516 1.464 1.547 1.436

We can observe that the ppmdi compressor is better than the mppm prototypes
for small sizes but worse for greater files (over 1 Mb), this is due to the overload
when vocabulary is coded. On the other hand, mppmsw is the best of the mppm
family and it is also the best choice for medium and large files, even improving
on ppmz by 2.5% (as it uses memory without limitation). Comparing mppmsw

with the best results reported in the site, it improves the compression from all
files greater than 100 Kb. Also, all the prototypes of the mppm family fulfill this
affirmation. In this collection, mppmsw improves ppmdi compression by up to
7%, mppm compression by up to 3.5% and mppmsa compression by up to 8%.
mppmsa was expected to be superior to basic mppm for all files since it takes
advantage of the alternation property. But it does not happen in most files in
Table 1. This surprising behavior can be due to the fact that the ppm used in
the basic mppm is able to predict longer sequences (including both words and
separators) and therefore, it uses less bits in their codification than the mppmsa,

5 http://www.cs.hut.fi/∼tarhio/ppmz/
6 http://pizzachili.dcc.uchile.cl/initiative.html

188 J. Adiego and P. de la Fuente

which is composes of two PPM encoders, one for modelling words and the other
for separators.

Next, we compressed different size collections of WSJ, ZIFF and AP from
TREC-3 in order to verify the behavior of the algorithms when managing
medium and large collections. TREC-3 collections are formed by semistructured
documents, this can harm mppm compressors but allows us to compress doc-
uments with structure-aware compressors that obtain better compression than
classical compressors. Therefore, we compressed the collections with several clas-
sic compressor systems: (1)GNU gzip v.1.3.5 7 , which use LZ77 plus a variant of
the Huffman algorithm (we also tried zip with almost identical results but slower
processing); (2)bzip2 v.1.0.2 8 , which uses the Burrows-Wheeler block sorting
text compression algorithm, plus Huffman coding (where maximum compres-
sion is the default); (3)ppmdi (extracted from xmlppm v.0.98.2), the same PPM
compressor used in mppm family and with the same parameters. This time, ppmz
has been excluded due to its high memory and time requirements. However, to
be able to have an idea of the ppmz behavior with TREC-3 collections, we have
compressed the smallest collections obtaining a compression of 1.936 bpc for
AP, 1.917 bpc for WSJ and 1.661 bpc for ZIFF. This compression ratio is just
slightly better than the obtained by mppmsw, but mppmsw demands much less
resources. For longer texts, ppmz is simply not a choice.

On the other hand, we compressed the collections with other compression sys-
tems that exploit text structure: (1)xmill v.0.8 9 [14], an XML-specific compres-
sor designed to exchange and store XML documents. Its compression approach
is not intended to directly support querying or updating of the compressed docu-
ments. xmill is based on the zlib library, which combines Lempel-Ziv compression
with a variant of Huffman. Its main idea is to split the file into three components:
elements and attributes, text, and structure. Each component is compressed sep-
arately. (2)xmlppm v.0.98.2 10 [8], a PPM-like coder, where the context is given
by the path from the root to the tree node that contains the current text. This is
an adaptive compressor that does not permit random access to individual doc-
uments. The idea is an evolution over xmill, as different compressors are used
for each component, and the XML hierarchy information is used to improve
compression. (3)scmppm v.0.93.3 11 [1], that implements SCM, a generic model
used to compress semistructured documents, which takes advantage of the con-
text information usually implicit in the structure of the text. The idea is to use
a separate model to compress the text that lies inside each different structure
type. Like xmlppm, scmppm uses Shkarin/Cheney’s ppmdi [18] compressors.

Table 2 shows the compression obtained with our prototypes for TREC-3 col-
lections. We can observe that mppmsw is the best choice for the mppm family,
improving mppmsa by up to 4% and mppm basic by up to 4.5%. Let us focus on

7 http://www.gnu.org
8 http://www.bzip.org
9 http://sourceforge.net/projects/xmill

10 http://sourceforge.net/projects/xmlppm
11 http://www.infor.uva.es/∼jadiego

Mapping Words into Codewords on PPM 189

Table 2. Compression (bpc) for each dictionary mapping prototype for each TREC-3
collection

TREC3-AP TREC3-WSJ TREC3-ZIFF
Mb mppm mppmsa mppmsw mppm mppmsa mppmsw mppm mppmsa mppmsw

1 2.035 2.030 1.955 2.002 2.022 1.932 1.692 1.756 1.652
5 1.918 1.888 1.848 1.914 1.910 1.857 1.729 1.772 1.691

10 1.896 1.856 1.823 1.901 1.879 1.832 1.748 1.782 1.708
20 1.878 1.827 1.801 1.888 1.860 1.820 1.752 1.782 1.710
40 1.874 1.818 1.796 1.886 1.854 1.814 1.749 1.776 1.706
60 1.876 1.817 1.795 1.887 1.852 1.814 1.745 1.771 1.701

100 1.879 1.819 1.797 1.879 1.840 1.801 1.750 1.772 1.706

Table 3. Compression (bpc) for classical compressors for each TREC-3 collection

TREC3-AP TREC3-WSJ TREC3-ZIFF
Mb gzip bzip2 ppmdi gzip bzip2 ppmdi gzip bzip2 ppmdi

1 3.010 2.264 2.114 2.965 2.195 2.048 2.488 1.863 1.686
5 3.006 2.193 2.057 2.970 2.148 2.034 2.604 1.965 1.803

10 2.984 2.175 2.047 2.970 2.154 2.033 2.640 2.000 1.837
20 2.970 2.168 2.041 2.973 2.153 2.035 2.647 2.012 1.850
40 2.978 2.172 2.045 2.977 2.158 2.040 2.649 2.013 1.851
60 2.983 2.174 2.046 2.983 2.160 2.043 2.648 2.010 1.849

100 2.987 2.178 2.050 2.979 2.148 2.032 2.654 2.016 1.853

Table 4. Compression (bpc) for structure-aware methods for each TREC-3 collection

TREC3-AP TREC3-WSJ TREC3-ZIFF
Mb xmill xmlppm scmppm xmill xmlppm scmppm xmill xmlppm scmppm

1 2.944 2.110 2.083 2.898 2.044 2.030 2.489 1.682 1.743
5 2.910 2.052 2.000 2.878 2.029 1.984 2.596 1.799 1.782

10 2.893 2.040 1.977 2.881 2.028 1.972 2.634 1.834 1.803
20 2.877 2.036 1.963 2.882 2.030 1.971 2.640 1.846 1.812
40 2.883 2.040 1.964 2.888 2.035 1.974 2.639 1.847 1.808
60 2.888 2.044 1.964 2.891 2.038 1.975 2.635 1.846 1.803

100 2.891 2.048 1.968 2.872 2.027 1.958 2.640 1.849 1.807

the mppmsw prototype in order to compare it with other systems. Compression
for standard systems is shown in Table 3. The gzip obtained the worst compres-
sion ratios, not competitive in this experiment. It is followed by bzip2 with the
best compression as default and a great difference between it and gzip. The best
standard compressor is ppmdi, the base for the mppm family, and with compres-
sion ratios near to bzip2. Our mppmsw prototype compressed significantly better
than standard compressors. It improves gzip by up to 66%, bzip by up to 21%
and ppmdi by up to 14%. Finally, in Table 4, we can see the compression ob-
tained with structure-aware compressors for the same collections. xmill obtains

190 J. Adiego and P. de la Fuente

an average compression roughly constant in all cases because it uses zlib as its
main compression machinery, like gzip, its compression is not competitive in this
experiment. On the other hand, xmlppm and scmppm obtain a good compres-
sion both surpassing standard compressors. However, in this case, our mppmsw

prototype also still obtains the best compression, reaching an improvement on
xmill of up to 54%, on xmlppm of up to 13.5% and on scmppm of up to 9.5%. In
addition, mppmsw uses less memory than xmlppm and scmppm. In view of these
results, we can conclude that mppmsw is an excellent alternative to compress
natural language documents. A graphical representation of average compression
is shown in Figure 2. In this graph we can observe that all the prototypes based
on dictionary mapping are better (over 1 Mb in size) than all compressor systems
against which they have been compared.

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 10 20 30 40 50 60 70 80 90 100

C
om

pr
es

si
on

 (
B

P
C

)

Collection size (Mb)

mppm
mppm−sa
mppm−sw

bzip2
ppmdi

xmlppm
scmppm

Fig. 2. Average compression for each TREC-3 collection size

The increase in space of the mppm prototypes with respect to ppmdi varies
from 40% for mppmsw to 114% for mppmsa. This increase is due to the necessity
to store the vocabulary (dictionary) and to have an additional model to codify
the new words. The mppmsw prototype is about 15% faster than mppm basic
and both use approximately the same amount of memory. Besides for files up to
1 Mb, mppmsw is about 5000% faster than ppmz and uses 92% less memory than
ppmz. That is why mppmsw is a very efficient alternative to ppmz for medium and
large text files. On the other hand, mppmsw uses about 40% more memory and
is also 40% slower than ppmdi. This increase in time is due to the time needed to
locate a word in the used data structure (in this case a balanced search tree) this

Mapping Words into Codewords on PPM 191

being O(log2 n). It is possible to turn it into O(1) if a hash table is used (where
size can be estimated previously by using Heaps law[12]). The ppmdi obtains a
constant average memory usage in all cases because it does not have to store the
vocabulary.

6 Conclusions and Future Work

We have proposed a new, simple and efficient general scheme for compressing
natural language text documents by extending the PPM to allow easy word
handling using an additional layer. When file size grows, our proposal improves
compression up to 14% with respect to the character based PPM. Our proposal
uses just a little bit more memory and is a little slower, but these drawbacks are
clearly compensated for by the gain in compression.

We have shown that the idea significantly improves compression and we have
compared our prototype with standard and specific compressor systems, showing
that our prototypes obtain the best compression for files over 1 Mb, improving
the compression when file size grows. In addition, mppmsw is an interesting
alternative for ppmz for natural language text files.

In this paper we have considered the compression of natural language text
documents, and we will have to investigate the possibility of applying word
mapping to binary files. We will have to generalize the mapping algorithm and
we will have to avoid the generation of dynamic codes, as they prevent PPM
from making good predictions. On the other hand, current mppm prototypes
are a basic implementation and we are working on several improvements, which
will make them even more competitive in terms of time and space.

References

1. J. Adiego, P. de la Fuente, and G. Navarro. Merging prediction by partial matching
with structural contexts model. In Proceedings of 14th Data Compression Confer-
ence (DCC 2004), page 522, 2004.

2. R. Arnold and T. C. Bell. A corpus for the evaluation of lossless compression
algorithms. In Proceedings of 7th Data Compression Conference (DCC 1997),
pages 201–210, 1997.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley-Longman, may 1999.

4. T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall,
Englewood Cliffs, N.J., 1990.

5. T. C. Bell, A. Moffat, C. Nevill-Manning, I. H. Witten, and J. Zobel. Data compres-
sion in full-text retrieval systems. Journal of the American Society for Information
Science, 44:508–531, 1993.

6. J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compression
scheme. Communications of the ACM, 29:320–330, 1986.

7. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

192 J. Adiego and P. de la Fuente

8. J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In
Proceedings of 11th Data Compression Conference (DCC 2001), pages 163–172,
2001.

9. J. G. Clearly and I. H. Witten. Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, COM-32(4):396–402,
April 1984.

10. J. Dvorský, J. Pokorný, and V. Snásel. Word-based compression methods and
indexing for text retrieval systems. In Proc. ADBIS’99, LNCS 1691, pages 75–84.
Springer, 1999.

11. D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third
Text REtrieval Conference (TREC-3), pages 1–19, 1995. NIST Special Publication
500-207.

12. H. S. Heaps. Information Retrieval - Computational and Theoretical Aspects. Aca-
demic Press, 1978.

13. R. N. Horspool and G. V. Cormack. Constructing word-based text compression
algorithms. In Proceedings of 2nd Data Compression Conference (DCC 1992),
pages 62–71, 1992.

14. H. Liefke and D. Suciu. XMill: an efficient compressor for XML data. In Proc.
ACM SIGMOD 2000, pages 153–164, 2000.

15. A. Moffat. Word-based text compression. Software - Practice and Experience,
19(2):185–198, 1989.

16. A. Moffat and R. Yugo Kartono Isal. Word-based text compression using the
Burrows–Wheeler transform. Information Processing & Management, 41(5):1175–
1192, 2005.

17. E. Moura, G. Navarro, and N. Ziviani. Indexing compressed text. In Proceedings
of the Fourth South American Workshop on String Processing, pages 95–111, 1997.

18. D. Shkarin. PPM: One step to practicality. In Proceedings of 12th Data Compres-
sion Conference (DCC 2002), pages 202–211, 2002.

19. P. Skibinski, Sz. Grabowski, and S. Deorowicz. Revisiting dictionary-based com-
pression. Software–Practice and Experience, 35(15):1455–1476, 2005.

20. G. Zipf. Human Behaviour and the Principle of Least Effort. Addison–Wesley,
1949.

21. N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for
next-generation text retrieval systems. IEEE Computer, 33(11):37–44, November
2000.

Improving Usability Through
Password-Corrective Hashing

Andrew Mehler and Steven Skiena

Dept. of Computer Science
SUNY Stony Brook

Stony Brook, NY 11794
{mehler, skiena}@cs.sunysb.edu

Abstract. We propose a way to increase the usability of password au-
thentication systems by compensating for transposition and substitution
errors. We show how to correct for these errors with low false positive
rates (i.e., low probability that an arbitrary string will be accepted as
the password for authentication). Thus our techniques increase usability
with provably little loss of security.

In particular, we propose applying a single password-corrective hash
function to each entered password attempt. The key property of the hash
function is that two strings differing by a single data entry error be likely
to be hashed to the same key, while more substantially differing strings
are hashed to different keys.

We develop precise analytical formulae for the precision/recall trade-
offs for a variety of corrective hash functions. We evaluate these methods
at parameter values reflecting common classes of keys/passwords. Fi-
nally, we evaluate these schemes using a popular crack-list (dictionary)
of 680,000 common words. We show that we can correct for all user trans-
position errors while reducing the computational cost of a crack attack
by only 13%.

1 Introduction

The design of any password authentication system requires a tradeoff between
security and usability. For example, mandating longer passwords in a system
improves security while complicating the user’s ability to remember passwords
and enter them correctly.

The data entry problem is by no means trivial. Empirical studies of typing
accuracy [1,2,3] suggest that typists make data-entry errors roughly once every
30 keystrokes on typical English text. Assuming ten-character passwords, this
implies that roughly one out of every three login attempts by legitimate users fail
due to data entry errors. Indeed, typing error rates are presumably even higher
on the cryptic, case-sensitive, punctuation-intensive strings recommended for
high-security passwords. An inspiration for this paper was the painful mem-
ory of repeatedly typing a 128-bit wireless encryption WEP key (consisting of
26 hexadecimal-characters) until achieving the required perfect fidelity. Finally,

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 193–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 A. Mehler and S. Skiena

users juggling passwords for several different systems can easily confuse typ-
ing errors with recalling the wrong password [4]. Subsequent cycling through
passwords on other systems may may result in users getting locked out, with a
subsequent need for a password reset.

In this paper, we propose a way to increase the usability of password au-
thentication systems by correcting for two common classes of data entry errors,
namely transposition and substitution errors. Transpositions and substitutions
can arise from physical input errors or from partial password recall. We show
how to identify and correct for these errors with low false positive rates (i.e.,
low probability that an arbitrary string will be accepted as the password for au-
thentication). Thus our techniques increase usability with provably little loss of
security. Indeed, they may arguably even increase security in practice, because
users benefiting from our correcting schemes will be more inclined to choose
strong passwords, and not resort to insecure practices such as writing down a
password.

Some naive approaches to this problem suggest themselves. The first would
involve explicitly comparing an entered string to the password on file to check
for equivalence modulo single transpositions or substitutions. However, this re-
quires that the password file be stored as plain-text instead of being encrypted,
which is clearly a bad idea for security. The second approach involves automatic
repeated login attempts using explicit transformations of the entered string. In-
deed, SAMBA appears to employ such a method to relax sensitivity to password
case and character order [5]. However, such methods quickly get expensive, as
there are n − 1 possible transpositions and nm possible substitutions on an n-
character password defined on an alphabet of size m. Finally, one might generate
all variants of a password, and then store these encrypted. A login would then
check each possibility. Not only would this increase the size of the password file,
but it may also make malicious decrypting easier if it is known that a set of
encrypted keys differ by only a transposition.

Instead, we propose a simple technique of applying a single password-corrective
hash function to each entered password attempt. That is, this hash function is
applied to the entered password, and the resulting key is then encrypted and
stored. The important property required of the hash function is that two strings
differing by a single data entry error (i.e. one transposition or substitution) be
likely to be hashed to the same key, while more substantially differing strings
are hashed to different keys.

In this paper, we study the efficiency of a variety of hash functions in correcting
single transposition and substitution errors. We rigorously analyze the recall /
false positive rate tradeoffs for each class of hash functions to determine the
most appropriate choice for common password applications. In particular:

– We develop precise analytical formulae for the precision/recall tradeoffs for
correcting transposition errors using sorting-network and block-sorting hash
functions. These functions contain parameters trading off security for usabil-
ity; tradeoffs which are made explicit through our analysis.

Improving Usability Through Password-Corrective Hashing 195

– We do the same for two classes of alphabet-weakening hash functions, which
correct for substitution errors. These alphabet-weakening schemes can be
composed with the permutation-based functions described above, yielding a
function which can simultaneously correct for transposition and substitution
errors.

– We prove the curious property that the limiting case of both of our per-
mutation-based methods (character sorting) has the highest precision among
all perfect-recall methods for correcting transposition errors.

– The explicit precision / recall performance of these methods is very sensi-
tive to the length and alphabet size of the associated keys. Therefore, we
evaluate these tradeoffs at parameter values reflecting common classes of
keys/passwords (including system passwords, social security numbers, WEP
passwords, and credit card numbers) to identify the most desirable hash
functions and parameters for each.

– Finally, we evaluate these schemes using a popular crack-list (dictionary)
of 680,000 common words. We show that we can correct for all user trans-
position errors while reducing the computational cost of a crack attack by
only 13%.

This paper is organized as follows. Previous work on password system usability
and corrective hashing techniques is reviewed in Section 1.1. We introduce the
notion of password-corrective hashing in Section 2. The next two sections present
our analysis of hashing techniques against transposition and substitution errors,
respectively. Finally, Section 5 details our experiments using standard crack-lists.

1.1 Previous Work

The importance of user interaction in password authentication is well known.
Basic facts about human memory are in conflict with most password policies.
Sasse and Adams [6] stress human factors in developing security. Sasse, Brostoff
and Weirich [4] note usability problems with password authentication, such as
the number of passwords a user must remember, strict password policies, varying
systems, and memory demands. Their studies found that users rarely completely
forget a password. Instead, users often partially recall a password or recall the
wrong password (typically from another system the user is enrolled in). They
note that the user cannot know which of these two reasons apply after a failed
authentication attempt.

There have been many human factor studies of data entry methods. Grudin [1]
investigated error rates by typists, discovering that novice typists (20 wpm) had
per-character error rates of about 3.2%, while experts (60-90 wpm) had error
rates of 0.4% − 1.9%. Mackenzie [2] sought to partition these errors by type,
identifying per-character substitution error rates of 0.962%, insertion error rates
of 0.218% and deletion rates of 1.045%. Peterson [3] found that transpositions
represented between 2.6% and 13.1% of all data-entry errors, while substitutions
accounted for between 26.9% and 40.0% of all errors.

196 A. Mehler and S. Skiena

There has been some previous work in developing password recovery schemes
that tolerates errors. Frykholm and Juels [7] require users to supplies answers
to personal questions for authentication, but the answers are not required to be
entirely correct. Spector and Ginzberg [8] propose a pass-phrase scheme that
matches phrase semantics, and is flexible on syntax and actual words used.

Cranor and Garfinkel [9] suggest system require more than 1012 different po-
tential passwords effective security. While most systems in theory allow this
many, users restricting themselves to dictionary words use only about 106 differ-
ent password keys. Our methods do reduce the theoretical number of potential
passwords for a system; however for added security, password length can be made
longer. The convenience offered by our system should make longer passwords less
of a burden.

2 Password Correction Hashing

In general, it is logical to assume that a minor difference between an entered
password and the version on file still represents an authorized attempt to access
an account. We will evaluate different hashing schemes to withstand substitu-
tion and transposition errors. These schemes transform an input string into a
generalized representation; typically similar size to the original string. We will
evaluate how these generalized representations correctly fix transposition and
substitution errors (recall) vs. how often they induce random strings to collide
(false positive rate).

2.1 Preliminaries and Notation

A transposition error is one in which two consecutive characters of a password are
switched. If the password is c1c2 . . . cn, then a transposition is c1c2 . . . ci+1ci . . . cn.
A substitution is when any single character is replaced by another. Thus for any
b ∈ Σ, c1c2 . . . ci−1bci+1 . . . cn.

In dealing with the password correcting systems, it is necessary to distinguish
the types of errors the system makes. A system that makes the error of not
allowing authorized access is preferable to one that allows unauthorized access.

We denote a pair of different strings which are considered equivalent to be
real positive. For equivalence under transposition, the pair “12345” and “12435”
represent a real positive. Similarly, “12345” and “67890” are a real negative,
since they are not equivalent. The true positives are the real positives that the
hashing scheme correctly hashes to the same representative string. The false
positives are the real negatives that the scheme incorrectly hashes to the same
representative string. The definition is symmetric for true negatives and false
positives.

We have the following relationship

true positives + false negatives = real positives (1)
true negatives + false positives = real negatives (2)

Improving Usability Through Password-Corrective Hashing 197

We will survey hash schemes on strings of length n over an alphabet Σ of size
m. Recall is defined as

recall = true positives/(real positives)

that is it is the fraction of positives the scheme correctly identifies as positive.
Higher recall means easier access to the system, whereas lower recall is less
flexible on the errors in the password. The False Positive Rate is defined as,

False positive rate = false positives/(real negatives)

i.e. the frequency an unauthorized access (negative) is incorrectly called a posi-
tive. The lower this value, the more secure a system is.

3 Correcting Transpositions

In analyzing transposition errors, we note that the number of different positives
and negatives depends on n and m. Let Ptrans[n, m] be the number of transpo-
sition positives, and Ntrans[n, m] be the number of negatives. The positives are
counted as follows. Choose among the n − 1 possible spots for a transposition.
Then choose among the m characters for the n−2 spots not in the transposition.
Finally we must choose from the m characters, 2 different characters that are
in the transposition spot. We must choose different characters, since choosing
the same character results in a transposition that gives back the original string.
Thus

Ptrans[n, m] = (n− 1)mn−2
(

m

2

)

Since there are mn different strings,

Ptrans[n, m] + Ntrans[n, m] =
(

mn

2

)

and thus

Ntrans[n, m] =
(

mn

2

)
− Ptrans[n, m]

= (mn/2)((mn − 1)− (n− 1)
m− 1

m
)

3.1 Character Sorting

Sorting is a natural choice for trying to eliminate transposition errors, since
sorting will tend to impose its own order on a string. Sorting the input sequence
renders the original order inconsequential, so character distribution is the only

198 A. Mehler and S. Skiena

distinguishing feature of a sequence. Thus all transpositions will be caught and
hence

recallsort = 1

To count the false positives associated with character sorting, we first count the
true positives plus false positives. Any pair of strings with the same character
distribution will be hashed together to a true or false positive. So we count pairs
of strings with the same character distribution:

tpsort + fpsort =
∑
ki≥0

((n
k1...km

)
2

)
=

1
2
(
∑
ki≥0

(
n

k1 . . . km

)2

−mn) (3)

Since we know the recall and total positives (from the previous section), we can
use the formula for recall to solve for true positives. We then subtract this from
the above result to get false positives, and divide by negatives to get

fp-ratesort =
X/mn − 1− n(m− 1)
mn − 1− n(m− 1)

; X =
∑
ki≥0

(
n

k1 . . . km

)2

(4)

In fact, character sorting offers the highest precision way of correcting all
single transposition errors:

Theorem 1. Character sorting has perfect recall for single transpositions, and
has the lowest false positives of any method that does so.

Proof. Character sorting must have perfect recall, since any two strings differing
by a single transposition must have the same character set. Now consider another
method M which also has perfect recall but fewer false positives. There must be
two strings S and T that are a false positive under character sorting, but not in
the new method. S and T are hashed together under character sorting, so they
have the same character set. Thus there is a sequence of strings S, s1, s2, . . . sj , T
where each consecutive strings differ by a single transposition. Since S and T
are not hashed together under M , there must exist consecutive strings si, si+1
in the sequence that are not hashed together under M . Since si and si+1 differ
by a single transposition, this contradicts the assumption that M had perfect
recall. Therefore character sorting has the best performance of any perfect recall
method.

3.2 Even-Odd Transposition Sorting Networks: Single Stage

We now consider weakening (hashing) a string by sending it through k stages of
an even-odd sorting network [10]. A sorting network is a computation graph. In
an odd/even sorting network, at each stage adjacent entries can be swapped or
left alone. Even pairs may be swapped in the even stages, and odd pairs in the

Improving Usability Through Password-Corrective Hashing 199

odd stages. We assume the first stage is an even stage. The following example
illustrates a string as it is transformed through each stage of the network:

14572463→ 14572436→ 14527346→ 14253746→ · · · → 12344567

We first consider the case of a single stage sorting network. After the first
stage of an odd-even network, all even transpositions will be corrected, but odd
transpositions will remain, so

recall1−stage =
even transpositions
total transpositions

=
�n/2�
n− 1

≈ 1/2

To calculate the false positives (fp) and the fp-rate, we first calculate the sum
of false positives and true positives and then subtract the true positives (tp =
recall∗positives). To determine tp+fp, we consider a string with k possible even
transposition locations (i.e. n−k characters are repeats, so no real transposition
is possible). There are

(�n/2�
k

)
ways to choose the k transposition locations;

m�n/2�−k ways to choose the characters for the repeated character transposition
locations;

(
m
2

)k ways to choose the characters for the k transposition locations;
and finally 2k ways to order the characters involved in the transposition locations.
Each of these 2k strings differs only in even transpositions, so all will get hashed
together giving

(2k

2

)
colliding pairs. Summing over k gives

tp1−stage + fp1−stage =
�n/2�∑
k=0

(
�n/2�

k

)(
m

2

)k

m�n/2�−k

(
2k

2

)

=
1
2
m�n/2�((2m− 1)�n/2� −m�n/2�)

Then we solve for false positives.

fp1−stage = (tp1−stage + fp1−stage)− tp1−stage

=
1
2
m�n/2�((2m− 1)�n/2� −m�n/2� − �n/2�(m− 1

m
)m�n/2�

Finally,

fp-rate1−stage = fp1−stage/N[n,m] =
(2− 1/m)�n/2� − 1− �n/2�(m−1

m)
mn − 1− (n− 1)(m−1

m)

≈ m−n(2�n/2� − 1− n)

3.3 2-Stage Sorting Networks

By adding an extra stage of sorting some odd transposition errors will now be
caught, depending on whether the first stage moved the characters involved in the

200 A. Mehler and S. Skiena

transposition. Consider the string fragment abcd; The odd transposition (acbd)
will be corrected in the second step when a ≤ b, c ≤ d. This gives

(
m+2

4

)
corrected

transposition errors from 1
2m3(m− 1) possible transposition errors. Odd length

strings have an extra odd transposition, not surrounded by 4 characters, only
3, as in abc. In this case, there are

(
m+1

3

)
transpositions that get corrected from

1
2m2(m− 1) possible errors.

recall2stage = (�n/2�+
(
n/2� − 1) ∗

(
m+2

4

)
(1
2m3(m− 1))

+ [nodd]

(
m+1

3

)
(1
2m2(m− 1))

)× (
1

n− 1
)

≈ (1/12) + (11/12)(
�n/2�
n− 1

)

where [nodd] evaluates to 1 if n is odd, and 0 otherwise. We do not have analytical
results for the false positive rate of 2-stage sorting, so we instead ran simulations
to get results. See Section 3.5 for these results.

3.4 Block Sorting Methods

With block sorting, we divide the string into fixed-size blocks, and completely
sort each block. The following example illustrates the transformation for blocks
of size 4:

1738|5901|9874|3509|1237→ 1378|0159|4789|0359|1237

The only transposition errors not matched by such a scheme are those that occur
across block boundaries.

We first consider the case of 2 blocks. The string is broken up into a block
of size n1 and one of size n− n1, typically n1 = n/2. Only a transposition that
crosses over the block boundary will not be caught, so

recall2−block = (n− 2)/(n− 1)

regardless of the block sizes. Now consider true positives. Consider the true
positives that result from a single transposition spot. We can choose among all
m characters for every digit, except the transposition digits must be different.
Thus the mn−1(m − 1) term. There are (n − 2) transposition spots (since we
cant match across the blocks). Finally, each match is counted twice, so we divide
by 2.

tp2−block = (1/2)mn−1(m− 1)(n− 2)

Let fptpcs(k) be the true positives plus false positives for complete sorting a
string of length k. We get the fp-rate by using the results from complete sorting.
Since within a block, the contents are completely sorted, we have

fp2−block = fptpcs(n1)× fptpcs(n− n1)

We can generalize for an arbitrary number of k blocks. The only transpositions
not found are still ones occurring across block boundaries, so

recallk−blocks = (n− k)/(n− 1)

Improving Usability Through Password-Corrective Hashing 201

We again get the fp-rate by using results from complete sorting.

fpk−blocks =
k∏

j=0

fptpcs(nj) (5)

3.5 Evaluation

In this section, we evaluate these transposition correction methods on a variety
of alphabet sizes and string length pairs corresponding to important classes of
passwords/keys. In particular, we consider:

– System Passwords – Typical online account passwords. We consider three
cases: the full English alphabet with case, digits, underscore and period (m =
64), a smaller case-independent alphabet of size 32, and binary passwords
on typical lengths.

– WEP Keys – Wireless encryption (WEP) keys. We consider hexadecimal
WEP keys for 64 and 128-bit WEP (n = 10, 26, m = 16).

– Social Security Numbers – Nine digit identification numbers, (n = 9, m =
10).

– Credit Cards – Credit cards numbers comprise 16 digit numbers, so (n = 16,
m = 10).

– Proper Names – The first/last names of people average about seven charac-
ters on the case-insensitive English alphabet, so (n = 7, m = 26).

Table 1 compares the performance of k-stage sorting networks, and k block
sorting for correcting transposition errors. We see for most schemes, good re-
call is achieved at reasonably low false positive rates. High recall and low false
positive rate will ensure that the added convenience of a system does not come
with a loss of security. The 2-Block scheme offers the best balance between high
recall and low false positive rates, and is recommended. It should be noted that
these schemes do become risky on small alphabets, as the row for m = 2 indi-
cates. Fortunately secure systems use large alphabet sizes, so this will not be a
problem.

4 Correcting Substitution Errors

Another common class of entry errors is substitution errors, where one character
gets replaced by another character. We now consider two classes of hash functions
that weaken the alphabet by making distinct characters the same. Such schemes
can overcome substitution errors, i.e. two strings should be hashed together if
they differ by only a single substitution. For substitutions, we have

P [n, m]subs =
1
2
mnn(m− 1)

N [n, m]subs =
(

mn

2

)
− P [n, m]subs =

1
2
mn(mn − 1− n(m− 1))

202 A. Mehler and S. Skiena

Table 1. Recall and False Positive Rate for correcting transposition errors for common
password/key lengths

Algorithm
Application 1-Stage 2-Stage Complete 2-Block 3-Block
n m Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate
Passwords
8 64 0.571 3.75e-14 0.609 3.92e-13 1 2.17e-10 0.857 6.37e-13 0.714 2.07e-14
10 32 0.556 2.11e-14 0.596 3.64e-13 1 8.20e-11 0.889 4.23e-12 0.778 1.03e-13
20 2 0.526 4.93e-5 0.645 0.0110 1 0.125 0.947 0.0146 0.894 0.002135
WEP Key
10 16 0.556 1.97e-11 0.600 3.30e-10 1 7.67e-7 0.889 3.08e-9 0.778 8.48e-11
26 16 0.520 2.67e-28 0.568 3.57e-28 1 2.39e-5 0.960 5.96e-15 0.920 2.58e-18
SSNs
9 10 0.500 8.43e-10 0.587 1.60e-7 1 5.48e-5 0.875 5.93e-7 0.750 1.77e-8
Credit Cards
16 10 0.533 1.62e-14 0.585 1.45e-12 1 4.12e-6 0.933 4.30e-9 0.867 4.06e-11
Names
7 26 0.500 1.75e-11 0.598 5.96e-9 1 4.15e-7 0.833 6.43e-9 0.667 1.34e-10

4.1 High-Low Weakening

In this scheme, we partition characters in the alphabet Σ as being either high
or low. This reduces the input key to a binary string. For example, considering
the digits 0− 4 as low (’l’) and 5− 9 as high (’h’) transforms:

17385901987435091237→ lhlhhhllhhhllhlhlllh

A substitution error is found whenever the substituted characters map to the
same symbol. Let k be the size of the low set (and thus m−k the size of the high
set). The true positives follows since there are n character positions to perform
a substitution, the other n− 1 characters can be anything.

tphigh−low = nmn−1(
(

k

2

)
+
(

m− k

2

)
)

We divide this by the number of positives to get

recallhigh−low =
k(k − 1) + (m− k)(m− k − 1)

m(m− 1)

To determine the false positives, we first calculate tp + fp. We sum over j where
j is the number of characters in the string belonging to the low set.

tphigh−low + fphigh−low =
n∑

j=0

(
kj(m− k)n−j

2

)
×
(

n

j

)

=
1
2
((2k2 + m2 − 2mk)n −mn)

We then subtract the true positives and divide by negatives to get the false
positive rate.

Improving Usability Through Password-Corrective Hashing 203

4.2 Weak Set Methods

In this scheme, a set of k ‘weak’ characters get replaced by a single character,
while the other characters remain the same. For example, defining the weak set
as consisting of all non-alphabetic characters and replacing them with the weak
symbol (’.’) yields the transformation

L1saS!mps0n → L.saS.mps.n

This leaves an alphabet of size m− k + 1. Only substitutions among these k
characters are found, so

recallweak−set =
k(k − 1)
m(m− 1)

We get the false positives by first calculating fp + tp.

tpweak−set + fpweak−set =
n∑

j=0

(
kj

2

)
(m− k)n−j

(
n

j

)
=

1
2
((m− k + k2)n −mn

Solving for fp-rate gets

fp-rateweak−set =
(1− k/m + k2/m)n − 1− n/m(k)(k − 1)

mn − 1− n(m− 1)
≈ (

1
m
− k

m2 +
k2

m2)n

4.3 Evaluation

Our experimental results for correcting single substitution errors have been omit-
ted due to lack of space, but they show a clear recall / false positive rate tradeoff;
and the false positive rates are more problematic than we obtained for transpo-
sition error correction in Table 1. Details appear in the full paper.

5 Resistance to Crack-List Attacks

Users usually choose passwords from a much smaller key space than that offered
by the system. One failing of our analytical results is that we assumed a uniform
distribution of passwords over the space of possible keys. Also, we assumed that
all keys are the same length, which is not true in many domains.

To get a more complete sense of the performance of correction schemes, we
tested on them a crack list of dictionary words and common names. We used
the lists from ftp://ftp.cerias.purdue.edu/pub/dict/dictionaries, which includes
dictionaries in English, German, Italian, Swedish, Norwegian, and Dutch; as well
as lists of common names, organizations, abbreviations, popular movie and TV
names, common slang, Internet words, famous people, and a few other popular
terms that appear in passwords. Combined, these lists had 680,000 unique terms.

Table 2 shows the ability of block sorting and sorting networks to correct
transpositions on the crack lists. We see that in the case of a complete sort, the

204 A. Mehler and S. Skiena

Table 2. Performance of Transposition Correcting Methods on Dictionary Data

Block Sorting Sorting Network
Blocks Recall Unique Codes False Pos. Rate Stages Recall Unique Codes False Pos. Rate

1 1 593347 1.42e-06 Inf 1 593347 1.42e-06
2 0.89 656475 4.79e-07 9 0.93 596026 1.41e-06
3 0.79 670265 3.16e-07 8 0.89 600209 1.39e-06
4 0.68 676146 2.68e-07 7 0.85 607036 1.33e-06
5 0.57 678491 2.51e-07 6 0.80 618944 1.21e-06
6 0.47 679395 2.42e-07 5 0.75 632101 1.03e-06
7 0.38 679737 2.39e-07 4 0.70 648115 7.61e-07
8 0.30 679873 2.38e-07 3 0.66 658338 5.74e-07
9 0.24 679932 2.37e-07 2 0.60 668050 3.80e-07
10 0.18 679972 2.36e-07 1 0.55 672544 3.17e-07
Inf 0 680000 0 0 0 680000 0

number of unique keys is now only 593,347. That is, a cracker whose initial crack-
list of 680,000 words could now get by with a list of 593,347 words; this is about
13% shorter. This is not much to pay for eliminating all transposition errors.
For more extreme security, 5-block sorting still has over 50% recall, yet allows
a reduction of only 1509 names off the crack list, or 0.22%. The performance of
sorting networks is not quite as good, though still reasonably effective.

References

1. Grudin, J.: Non-hierarchic specification of components in transcription typewrit-
ing. Acta Psychologica 54 (1983) 249–262

2. MacKenzie, I., Soukoreff., R.: A character-level error analysis technique for evalu-
ating text entry methods. proceedings of the second nordic conference on human-
computer interaction. Nordic Conference on Human-Computer Interaction (2002)
241–244

3. Peterson, J.L.: A note on undetected typing errors. Communications of the ACM
29(7) (July 1986)

4. Sasse, M.A., Brostoff, S., Weirich, D.: Transforming the weakest link ? a hu-
man/computer interaction approach to usable and effective security. British Tele-
com Technology Journal 19(3) (2001) 122–131

5. T’s, J., Eckstein, R., Collier-Brown, D.: Using Samba. O’Reilly Media (2003)
6. Adams, A., Sasse, M.: Users are not the enemy. Commun. ACM 42(12) (1999)

40–46
7. Frykholm, N., Juels, A.: Error-tolerant password recovery. In: CCS ’01: Proceedings

of the 8th ACM conference on Computer and Communications Security, New York,
NY, USA, ACM Press (2001) 1–9

8. Spector, Y., Ginzberg, J.: Pass-sentence? a new approach to computer code. Com-
put. Secur. 13(2) (1994) 145–160

9. Cranor, L.F., Garfinkel, S.: Security and Usability. O’Reilly, Sebastopol, CA (2005)
10. Knuth, D.E.: The Art of Computer Programming. Volume 3. Addison-Wesley

Publishing Company, Reading, MA (1973)

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 205 – 216, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Word-Based Correction for Retrieval of Arabic OCR
Degraded Documents

Walid Magdy and Kareem Darwish

IBM Technology Development Center
P.O. Box 166 El-Ahram, Giza, Egypt

{wmagdy, darwishk}@eg.ibm.com

Abstract. Arabic documents that are available only in print continue to be
ubiquitous and they can be scanned and subsequently OCR’ed to ease their
retrieval. This paper explores the effect of word-based OCR correction on the
effectiveness of retrieving Arabic OCR documents using different index terms.
The OCR correction uses an improved character segment based noisy channel
model and is tested on real and synthetic OCR degradation. Results show that
the effect of OCR correction depends on the length of the index term used and
that indexing using short n-grams is perhaps superior to word-based error
correction. The results are potentially applicable to other languages.

Keywords: OCR, Retrieval, and Error Correction.

1 Introduction

Since the advent of the printing press in the fifteenth century, the amount of printed
text has grown overwhelmingly. Although a great deal of text is now generated in
electronic character-coded formats (HTML, word processor files ... etc.), many
documents available only in print remain important. This is due in part to the
existence of large collections of legacy documents available only in print, and in part
because printed text remains an important distribution channel that can effectively
deliver information without the technical infrastructure that is required to deliver
character-coded text. These factors are particularly important for Arabic, which is
widely used in places where the installed computer infrastructure is often quite
limited. Printed documents can be browsed and indexed for retrieval relatively easily
in limited quantities, but effective access to the contents of large collections requires
some form of automation.

One such form of automation is to scan the documents (to produce document
images) and subsequently perform OCR on the document images to convert them into
text. Typically, the OCR process introduces errors in the text representation of the
document images. The introduced errors are more pronounced in Arabic OCR due to
some of the orthographic and morphological features of Arabic.

The introduced errors adversely affect retrieval effectiveness of OCR’ed
documents. This paper examines the effect of word-based post-OCR error correction
on Arabic retrieval effectiveness. The paper examines the effect of correction in
using different index terms on two collections of degraded Arabic documents. The
correction uses a character segment based noisy channel model to correct OCR errors.

206 W. Magdy and K. Darwish

The paper will be organized as follows: Section 2 provides background information
on Arabic OCR and retrieval along with OCR error correction; Section 3 presents the
experimental setup; Section 4 reports and discusses experimental results; and Section
5 concludes the paper and provides possible future directions.

2 Background

This section reviews prior work on OCR for Arabic, OCR error correction, and
information retrieval for Arabic text.

The goal of OCR is to transform a document image into character-coded text. The
usual process is to automatically segment a document image into character images,
apply an automatic classifier to determine the character codes that most likely
correspond to each character image, and potential exploit sequential character
contexts to select the most likely character in each position. The character error rate
can be influenced by reproduction quality (e.g., original documents are typically
better than photocopies), the resolution at which a document was scanned, and any
mismatch between the instances on which the character image classifier was trained
and the rendering of the characters in the printed document. Arabic OCR presents
several challenges, including: a) Arabic’s cursive script in which most characters are
connected and their shape vary with position in the word; b) the optional use of word
elongations and ligatures, which are special forms of certain letter sequences; c) the
presence of dots in 15 of the 28 to distinguish between different letters and the
optional use of diacritic which can be confused with dirt, dust, and speckle [9]; and d)
the morphological complexity of Arabic, which results in an estimated 60 billion
possible surface forms, complicates dictionary-based error correction. Arabic words
are built from a closed set of about 10,000 root forms that typically contain 3
characters, although 4-character roots are not uncommon, and some 5-character roots
do exist. Arabic stems are derived from these root forms by fitting the root letters into
a small set of regular patterns, which sometimes includes addition of “infix”
characters between two letters of the root [3]. There are a number of commercial
Arabic OCR systems, with Sakhr’s Automatic Reader and Shonut’s Omni Page being
perhaps the most widely used. Retrieval of OCR degraded text documents has been
reported for many languages, including English [14], Chinese [28], and Arabic [9].

Concerning OCR error correction, much research has been done to correct
recognition errors in OCR-degraded collections. There are two main categories of
determining how to correct these errors. They are word-level and passage-level post-
OCR processing. Some of the kinds of word level post-processing include the use of
dictionary lookup, probabilistic relaxation, character and word n-gram frequency
analysis [16], and morphological analysis. Passage-level post-processing techniques
include the use of word n-grams, word collocations, grammar, conceptual closeness,
passage level word clustering, linguistic context, and visual context. The following
introduces some of the error correction techniques.

• Dictionary Lookup: Dictionary Lookup, which is the basis for the correction
reported in this paper, is used to compare recognized words with words in a term list
[16, 28]. Jurafsky and Martin illustrate the use of a noisy channel model to find the
correct spelling of misspelled or misrecognized words in a dictionary [17]. The model

 Word-Based Correction for Retrieval of Arabic OCR Degraded Documents 207

assumes that text errors are due to edit operations namely insertions, deletions, and
substitutions, and the number of edit operations required to transform one words to
another is called the Levenshtein edit distance [6]. The probabilities of edit operations
are captured in confusion matrices, and the probability that a candidate correction
would be observed is obtained using word frequency in text corpus [17, 19].
However, the dictionary lookup approach has the following problems [16]: a) A
correctly recognized word might not be in the dictionary. This problem can be acute
for morphologically complex such as Arabic, German, and Turkish. b) A word that is
misrecognized is in the dictionary. This problem is pronounced in a language such as
Arabic where a large fraction of three letters sequences are valid words.
• Character N-Grams: Character n-grams maybe used alone or in combination with
dictionary lookup [19, 26]. The premise for using n-grams is that some letter
sequences are more common than others and other letter sequences are rare or
impossible.
• Using Morphology: Many morphologically complex languages, such as Arabic,
Swedish, Finnish, Turkish, and German, have enormous numbers of possible words.
Accounting for and listing all the possible words is not feasible for purposes of error
correction. Domeij proposed a method to build a spell checker that de-compounds
words into constituent stems and attempts to correct the resulting stems using
dictionary lookup techniques [11]. Similar work was done for Turkish in which an
error tolerant finite state recognizer was employed [24]. The finite state recognizer
tolerated a maximum number of edit operations away from correctly spelled candidate
words. These techniques can potentially be applied to Arabic.
• Word Clustering: Another approach tries to cluster different spellings of a word
based on a weighted Levenshtein edit distance. The insight is that an important word,
specially acronyms and named-entities, are likely to appear more than once in a
passage. Taghva described an English recognizer that identifies acronyms and named-
entities, clusters them, and then treats the words in each cluster as one word [26].
Applying this technique for Arabic requires accounting for morphology, because
prefixes or suffixes might be affixed to instances of named entities. DeRoeck
introduced a clustering technique tolerant of Arabic’s complex morphology [10].
Perhaps the technique can be modified to make it tolerant of errors.
• Using Grammar: In this approach, a passage containing spelling errors is parsed
based on a language specific grammar. In a system described by Agirre, an English
grammar was used to parse sentences with spelling mistakes [2]. Parsing such
sentences gives clues to the expected part of speech of the word that should replace
the misspelled word. Thus candidates produced by the spell checker can be filtered.
Applying this technique to Arabic might prove challenging because the work on
Arabic parsing has been very limited [22].
• Word N-Grams (Language Modeling): The word n-gram technique is a flexible
method that can be used to calculate the likelihood that a word sequence would
appear [27]. Using this method, the candidate correction of a misspelled word might
be successfully picked given the context in which it is mentioned.

As for Arabic IR, most early studies of character-coded Arabic text retrieval relied
on relatively small test collections [1, 5]; more recent results are based on a single
large collection (from TREC-2001/2002) [13, 23]. Several types of index terms have

208 W. Magdy and K. Darwish

been examined, including words, word clusters, terms obtained through morpho-
logical analysis (e.g., stems and roots), and character n-grams of various lengths. The
effects of normalizing alternative characters, removal of diacritics and stop-word
removal have also been explored [7, 12, 18, 20, 21]. Early studies conducted on small
collections suggested that roots were the best Arabic index terms [1, 5]. More recent
studies using the larger TREC-2001/2002 Arabic test collection indicate that lightly
stemmed words and character 3 and 4-grams result in better retrieval effectiveness
than roots [7, 12, 18, 20, 21]. Retrieval effectiveness is known to be affected by the
size, genre, and document length in the test collection, and by many details of system
processing (e.g., character normalization, stop-word removal, and morphological
analysis). As for OCR degraded Arabic text, a previous study suggest that 3 and 4
character grams and their combinations with index terms obtained through morpho-
logical analysis, such light stems, outperform all other kinds of index terms [9].

3 Experimental Setup

In the setup, documents are scanned, OCR’ed, OCR errors are optionally corrected,
indexed, and searched. For evaluation, two collections were used. The first is a small
collection of OCR degraded text. As for the second, due to the lack of existence of a
large collection of Arabic OCR text, a large existing character-coded Arabic
collection was corrupted to simulate OCR errors in the documents. For both
collections, a portion of the collection was used to train an m:n OCR error correction
model. The effect of corrupting the collection and its subsequent correction on
retrieval effectiveness was examined. The following will present the collections, the
error model which was used to corrupt the large collection, the error model that was
used to correct both collections, and the design of experiments that were intended to
test the effect of error correction on retrieval using different index terms.

The Document Collection. The first document collection is the Zad collection which
was built from Zad Al-Me’ad, a printed 14th century religious book, which was
scanned at 300x300 dpi and OCR’ed, and for which an electronic copy is available.
The collection consists of 2,730 separate documents, 25 topics, and relevance
judgments which were built by exhaustively searching the collection. The number of
relevant documents per topic ranges from 3 to 72, averaging 20. The average query
length is 5.4 words [9].
 As for the large collection, the best presently available Arabic test collection was
created for the TREC-2002 “Cross-Language IR (CLIR) track;” for brevity, it is
referred to here simply as the TREC collection. It contains 383,872 articles from the
Agence France Press (AFP) Arabic newswire. NIST developed 50 topics in
cooperation with the Linguistic Data Consortium (LDC), and relevance judgments
were developed at the LDC by manually judging a pool of documents obtained from
combining the top 100 documents from all the runs submitted by the participating
teams in TREC 2002 CLIR track. The number of known relevant documents ranges
from 10 to 523, with an average of 118 relevant documents per topic [23]. The topic
descriptions include a title field that briefly names the topic, a description field that
usually consists of a single sentence description, and a narrative field that is intended
to contain any information that would be needed by a human judge to accurately

 Word-Based Correction for Retrieval of Arabic OCR Degraded Documents 209

assess the relevance of a document [15]. As for the corruption of the collection, a
unigram model was used. OCR degradation was modeled as a noisy channel in which
the observed characters result from the application of some distortion function on the
real characters. The model used here accounts for three character edit operations:
insertion, deletion, and substitution. Formally, given a clean word #C1..Ci..Cn# and
the resulting word after OCR degradation #D1..Dj..Dm#, where Dj resulted from

Ci, representing the null character, L representing the position of the letter in the

word (beginning, middle, end, or isolated), and # marking word boundaries, the
probability estimates for the three edit operations for the models, are:

P substitution (Ci −> Dj) =
)|(

)|(

i

i

Ci

Cji

LCcount

LDCcount →

P deletion (Ci −> ε) =
)|(

)|(

i

i

Ci

Ci

LCcount

LCcount ε→
; P insertion (ε −> Dj) =

)(

)(

Ccount

Dcount j→ε

The models was trained using 2,000 words obtained by automatically aligning the real
OCR outputs from the 300x300 dpi version of the Zad collection with the associated
clean text version.
 The resulting character-level alignments were used to create a garbler that reads in
a clean word #C1..Ci..Cn# and synthesizes OCR degradation to produce
#D’1..D’j..D’m#. For a given character Ci, the garbler chooses a single edit operation
to perform by sampling the estimated probability distribution over the possible edit
operations. If an insertion operation is chosen, the model picks a character to be
inserted prior to Ci by sampling the estimated probability distribution for possible
insertions. Insertions before the # (end-of-word) marker are also allowed. If a
substitution operation is chosen, the substituted character is selected by sampling the
probability distribution of possible substitutions. If a deletion operation is chosen, the
selected character is simply deleted.

Error Correction Model. A noisy channel OCR correction model was trained from
manually correcting 2,000 randomly picked words from the automatically corrupted
TREC documents. Another model was trained from 4,000 randomly picked tokens
from the Zad collection. The trained models were used to correct the respective
collections.

As for OCR model training, the goal is to learn an effective model of OCR
degradation to enable effective correction of the OCR errors. It is desirable to
minimize the number of training examples, because the process of producing the
examples is manual. Previously published papers indicate that training an error model
with 2,000 examples produces a good model with as little as 5,000 examples
producing nearly the best possible model [8]. For this work, 2,000 words were
randomly picked from the corrupted TREC collection to train the error correction
model and 4,000 words were used from the Zad collection1. 2,000 words amount to
nearly 2-4 pages in an average size book and require 20 to 30 minutes of correction

1 Extra training data was used for the real OCR output because error types were more variant

than those for the automatically corrupted data.

210 W. Magdy and K. Darwish

time. The characters in the corrupted and manually corrected training examples may
be aligned in two different ways, namely: 1:1 character alignment (as done in the
synthetic degradation process), where each character is mapped to no more than one
character; or using m:n alignment, where any number of characters are aligned to any
other number of characters. The second method is more general and potentially more
accurate especially for Arabic where a character can be confused with as many as
three or four characters. The following example highlights the difference between the
1:1 and the m:n alignment approaches. Given the training pair (rnacle,made):

1:1 alignment : m:n alignment:

r n a c l e

 m a d e

r n a c l e

m a d e

 For alignment, Levenstein dynamic programming minimum edit distance algorithm
was used to produce 1:1 alignments. The algorithm computes the minimum number
of edit operations required to transform one string into another. Given the output
alignments of the algorithm, properly aligned characters (such as a a and e e) are
used as anchors, ε’s (null characters) are combined to misaligned adjacent characters
producing m:n alignments, and ε’s between correctly aligned characters are counted
as deletions or insertions.
 To formalize the error model, given a clean word #C1..Ck.. Cl..Cn# and the resulting
word after OCR degradation #D1..Dx.. Dy..Dm#, where Dx.. Dy resulted from Ck.. Cl, ε
representing the null character, and # marking word boundaries, the probability
estimates for the three edit operations for the models are:

Psubstitution (Ck..Cl −> Dx.. Dy) =
)..(

)....(

lk

yxlk

CCcount

DDCCcount →

Pdeletion (Ck..Cl −> ε) =
)..(

)..(

lk

lk

CCcount

CCcount ε→

Pinsertion (ε −> Dx.. Dy) =
)(

)..(

Ccount

DDcount yx→ε

 When decoding a corrupted string δ composed of the characters D1..Dx.. Dy..Dm, the
goal is to find a string χ composed of the characters C1..Ck.. Cl..Cn such that argmaxχ
P(δ|χ)·P(χ) is maximum. P(χ) is the prior probability of observing χ in text and
P(δ|χ) is the probability of producing δ from χ.
 For the Zad collection, P(χ) was computed from a web-mined collection of religious
text by Ibn Taymiya, who was the main teacher of the medieval author of the Zad
book. The collection contained approximately 16 million words, with 279,000 unique
surface forms. As for the TREC collection, P(χ) was computed from a web-mined
collection of Arabic newswire documents from the BBC, Al-Ahram newspaper,

 Word-Based Correction for Retrieval of Arabic OCR Degraded Documents 211

Al-Jazeera news site, Al-Wafd newspaper, and Al-Moheet news site. The collection
contains 12 million words, with nearly 260,000 unique surface words.
P(δ|χ) is calculated using the trained model, as follows:

∏=
yx DDall

lkyx CCDDPP
..:

)..|..()|(χδ

The segments Dx.. Dy are generated by finding all possible 2n-1 segmentations of the
word δ. For example, given “macle” then all possible segmentations are (m,a,c,l,e),
(ma,c,l,e), (m,ac,l,e), (mac,l,e), (m,a,cl,e), (ma,cl,e), (m,acl,e), (macl,e), (m,a,c,le),
(ma,c,le), (m,ac,le), (mac,le), (m,a,cle), (ma,cle), (m,acle), (macle).
 All segment sequences Ck.. Cl known to produce Dx.. Dy for each of the possible
segmentations are produced. If a sequence of Ck.. Cl segments generates a valid word
χ which exists in the web-mined collection, then argmaxχ P(δ|χ)·P(χ) is computed,
otherwise the sequence is discarded. Possible corrections are subsequently ranked.
 In testing, two types of tests were performed to measure the effect of error
correction. The first type examined the change in Word Error Rate (WER) which was
computed by examining a set of approximately 2,000 and 6,000 words for the Zad
and TREC collections respectively. Although the model accounts for m:n character
alignments, this would not produce significantly better results than a model that
accounts for 1:1 character alignments for the TREC collection, because the automatic
garbler used a character unigram model to generate the test examples and the TREC
collection. Offline experiments that are not reported here confirm this. The second
examined the effect of correction on retrieval effectiveness. The retrieval experiments
were performed on the original (uncorrupted/clean), automatically corrupted, and
corrected versions of the Zad and TREC collections described above. Multiple
corrected versions of the collections were generated by replacing each of the words in
the corrupted versions by the top 1, 2, 3, or 5 corrections. The collections were
indexed and searched using words, character 3-grams, character 4-grams, and lightly
stemmed words obtained using Al-Stem [23]. For all experiments, Indri was used
with default parameters with no blind relevance feedback. The figure of merit for
evaluating retrieval results was mean average precision (MAP). Statistical
significance between different retrieval results was performed using a paired 2-tailed
t-test and a p-value of less than 0.05 to assume statistical significance. The use of the
t-test was reported in this paper instead of the Wilcoxon test for two reasons. The
first is that there are some indications that the t-test is sufficiently reliable despite the
fact that the normality condition might not be met [25] and the Wilcoxon test with
continuity correction was used offline to compare results in this paper but yielded no
significant change in the conclusions reached. Hence, the Wilcoxon test p-values
were not reported here.

4 Results and Discussion

Table 1 and Figures 1 and 2 summarize the effect of correction on WER for the Zad
and TREC collections. A set of 2,000 and 6,000 words was used to test the correction
of the Zad and the TREC collections respectively. The evaluation involved

212 W. Magdy and K. Darwish

Table 1. Effect of correction on Word Error Rate for ZAD/TREC collections

 ZAD TREC
 Number of Corrections Number of Corrections

% bad 1 2 3 5 10 all bad 1 2 3 5 10 all
WER 39.0 22.2 16.9 15.0 13.2 11.5 8.1 30.8 16.7 11.9 10.2 9.2 8.1 6.8
Error

Reduction
- 42.9 56.7 61.5 66.0 70.5 79.2 - 45.8 61.4 66.8 70.1 73.7 78.0

11.5

8.1

13.213.715
16.9

39

22.2

0

5

10

15

20

25

30

35

40

No
Correction

1 2 3 4 5 10 All
N- corrections

W
or

d
E

rr
or

 R
at

e
(%

)

Fig. 1. Effect of correction on Word Error
 Rate for ZAD

9.5 9.2
8.1

6.8

10.211.9

30.8

16.7

0

5

10

15

20

25

30

35

No
Correction

1 2 3 4 5 10 All
N- corrections

W
or

d
E

rr
or

 R
at

e
(%

)

Fig. 2. Effect of correction on Word Error
 Rate for TREC

examining the top 1, 2, 3, 5, 10 generated corrections to determine if the proper
correction exists within them.

The results show that in 8.1% and 6.8% of the cases none of the proposed
corrections were actually correct for the Zad and TREC collections respectively. This
is probably due to the absence of the proper corrections from the web-mined
document collections. Perhaps, an increase in the size of the web-mined collections
would improve word coverage and further reduce the word error rate. Nonetheless,
the correction had a dramatic effect on the WER, dropping it by approximately 44%
and 46%, for the Zad and TREC collections respectively and made the documents
much easier to read (based on visual inspection of corrected documents). Another
interesting observation is that although a word may be miscorrected, the
miscorrection is often a morphological variant of the proper correction.

Figures 3 and 4 and Table 2 summarize the retrieval results of searching the
original (clean), OCR'ed (corrupted/bad), and corrected (using 1, 2, 3, and 5
corrections) versions of the Zad and TREC collections respectively using words,
character 3-grams, character 4-grams, and light stems. Table 3 provides the p-values
of the paired 2-tailed t-test of comparing the results for the Zad and TREC collections.
The results confirm that character 3 and 4-grams are indeed the best index terms with
3-grams on uncorrected text outperforming words and light stems even after
correction. The results show that retrieval effectiveness statistically significantly
generally improved or where statistically indistinguishable from the original
uncorrupted versions of the collections when indexing using words. Same is true for
the light stems for the TREC collection. However, the error correction did not

 Word-Based Correction for Retrieval of Arabic OCR Degraded Documents 213

Fig. 3. Results in MAP searching the original, bad, and corrected versions of ZAD

Fig. 4. Results in MAP searching the original, corrupted, and corrected versions of TREC

statistically significantly improve retrieval effectiveness over corrupted versions when
indexing using character 3-grams and 4-grams and was generally statistically
significantly worse than the corrected text (except for 4-grams for the Zad collection
when using 3 and 5 corrections). The results seem to suggest that the effect of error
correction on retrieval effectiveness is directly proportional to the length of the index
term, with longer index terms benefiting more from correction. This would suggest
that using sub-word correction schemes, as opposed to whole word correction, would
be better suited for languages where the best index terms are short or the best
character n-grams are short. Possibly better error correction could have had a
statistically significant positive impact for shorter index term. Nonetheless, given a
mildly or moderately degraded Arabic collection and barring the use of anything
better than word based error correction, doing no correction and searching using
character 3 or 4-grams does not seem to be a bad strategy. The results also suggest
that indexing using short n-grams such as 3-grams is a better strategy than error
correction. It is not clear whether this would be applicable to other languages, but the
results indicate that this might be the case. Lastly, the use of more than one
correction had little effect on retrieval effectiveness.

214 W. Magdy and K. Darwish

Table 2. Results in MAP of searching the original, bad, and corrected versions of ZAD and
TREC collections

 Word 3 –gram 4 - gram Light
Stem

Word 3 –gram 4 - gram Light
Stem

Original
(Clean)

0.35 0.41 0.40 0.37 0.21 0.27 0.26 0.25

Bad 0.29 0.35 0.35 0.31 0.18 0.24 0.23 0.21

1 Correction 0.31 0.37 0.37 0.34 0.19 0.25 0.23 0.22

2 Corrections 0.32 0.34 0.35 0.33 0.21 0.24 0.24 0.24

3 Corrections 0.34 0.35 0.35 0.34 0.21 0.24 0.24 0.24

5 Corrections 0.33 0.32 0.33 0.31 0.20 0.28 0.23 0.23

Table 3. p-value of the paired 2-tailed t-test comparison of retrieval results for the ZAD and
TREC Collections. Black and Grey squares indicate that results are statistically significantly
worse and better than corrected version respectively.

 Number of Corrections

 ZAD Collection TREC Collection

 1 2 3 5 1 2 3 5

Original 0.02 0.14 0.70 0.45 0.06 0.77 0.79 0.24
Words

Bad 0.12 0.05 0.03 0.06 0.46 0.00 0.01 0.05

Original 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Character
3-grams Bad 0.06 0.84 0.91 0.32 0.29 0.76 0.53 0.17

Original 0.04 0.00 0.06 0.07 0.00 0.00 0.13 0.01 Character
4-grams Bad 0.28 0.70 0.94 0.44 0.59 0.21 0.23 0.95

Original 0.07 0.00 0.01 0.02 0.04 0.05 0.10 0.15 Light
Stems Bad 0.02 0.25 0.04 0.82 0.61 0.01 0.02 0.10

5 Conclusion and Future Work

This paper examined the effect of OCR error correction on retrieval effectiveness of
Arabic OCR degraded documents. Despite the fact that word error rate was nearly
halved, the effect on retrieval effectiveness was less pronounced with statistically
significant increases for longer index terms, namely words and light stems, and no
statistically significant increases for shorter index terms. It would seem that perhaps
using error correction for some languages with shorter optimal index terms might
have less profound effect as opposed to languages with longer optimal index terms.
This would suggest that an investigation of local correction versus whole word error
correction is warranted and that indexing using short n-grams might be more
beneficial than error correction.
 For future work, there are a few clear directions to follow. They include the
investigation of further improved error correction through the use of morphology and
word n-gram (language modeling) techniques. Further, investigating sub-word error
correction techniques may prove useful for languages where the best index terms are

 Word-Based Correction for Retrieval of Arabic OCR Degraded Documents 215

short. Also, a serious exploration of the effect of correction on large real OCR
document collections is warranted. Unfortunately, there are no reports in the
literature of TREC size Arabic OCR document collections and much effort needs to
be invested to create such collections. Also, the results reported in this paper need to
be confirmed for other collection with different degradation levels.

References

1. Abu-Salem, H., M. Al-Omari, and M. Evens. Stemming Methodologies Over Individual
Query Words for Arabic Information Retrieval. JASIS, 50(6) (1999) 524-529.

2. Agirre, E., K. Gojenola, K. Sarasola, and A. Voutilainen. Towards a Single Proposal in
Spelling Correction. In COLING-ACL'98 (1998).

3. Ahmed, M. A Large-Scale Computational Processor of Arabic Morphology and
Applications. MSc. Thesis, in Faculty of Engineering Cairo University: Cairo, Egypt.
(2000).

4. Aljlayl, M., S. Beitzel, E. Jensen, A. Chowdhury, D. Holmes, M. Lee, D. Grossman, and
O. Frieder. IIT at TREC-10. In TREC-2001, Gaithersbury, MD (2001).

5. Al-Kharashi, I. and M Evens. Comparing Words, Stems, and Roots as Index Terms in an
Arabic Information Retrieval System. JASIS 45(8) (1994) 548-560.

6. Baeza-Yates, R. and G. Navarro. A Faster Algorithm for Approximate String Matching. In
Combinatorial Pattern Matching (CPM'96), Springer-Verlag LNCS (1996).

7. Darwish, K. and D. Oard. CLIR Experiments at Maryland for TREC 2002: Evidence
Combination for Arabic-English Retrieval. In TREC-2002, Gaithersburg, MD (2002).

8. Darwish, K. and D. Oard. Probabilistic Structured Query Methods. In SIGIR-2003 (2003).
9. Darwish, K. and D. Oard. Term Selection for Searching Printed Arabic. In SIGIR-2002

(2002).
10. De Roeck, A. and W. Al-Fares. A Morphologically Sensitive Clustering Algorithm for

Identifying Arabic Roots. In the 38th Annual Meeting of the ACL, Hong Kong, (2000).
11. Domeij, R., J. Hollman, V. Kann. Detection of spelling errors in Swedish not using a

word list en clair. Journal of Quantitative Linguistics (1994) 195-201.
12. Fraser, A., J. Xu, and R. Weischedel. TREC 2002 Cross-lingual Retrieval at BBN. In

TREC-2002. Gaithersburg, MD (2002).
13. Gey, F. and D. Oard. The TREC-2001 Cross-Language Information Retrieval Track:

Searching Arabic Using English, French or Arabic Queries. In TREC-2001, Gaithersburg,
MD (2001).

14. Harding, S., W. Croft, and C. Weir. Probabilistic Retrieval of OCR-degraded Text Using
N-Grams. In European Conference on Digital Libraries (1997).

15. Harman, D. Overview of the Fourth Text REtrieval Conference. In TREC (1995).
16. Hong, T. Degraded Text Recognition Using Visual and Linguistic Context. Ph.D. Thesis,

Computer Science Department, SUNY Buffalo: Buffalo (1995).
17. Jurafsky, D. and J. Martin. Speech and Language Processing. Prentice Hall (2000).
18. Larkey, L., J. Allen, M. E. Connell, A. Bolivar, and C. Wade. UMass at TREC 2002:

Cross Language and Novelty Tracks. In TREC-2002. Gaithersburg, MD (2002).
19. Lu, Z., I. Bazzi, A. Kornai, J. Makhoul, P. Natarajan, and R. Schwartz. A Robust,

Language-Independent OCR System. In the 27th AIPR Workshop: Advances in Computer
Assisted Recognition, SPIE (1999).

216 W. Magdy and K. Darwish

20. Mayfield, J., P. McNamee, C. Costello, C. Piatko, and A. Banerjee. JHU/APL at TREC
2001: Experiments in Filtering and in Arabic, Video, and Web Retrieval. In TREC-2001.
Gaithersburg, MD (2001).

21. McNamee, P., C. Piatko, and J. Mayfield. JHU/APL at TREC 2002: Experiments in
Filtering and Arabic Retrieval. In TREC-2002, Gaithersburg, MD (2002).

22. Moussa B., M. Maamouri, H. Jin, A. Bies, X. Ma. Arabic Treebank: Part 1 - 10Kword
English Translation. Linguistic Data Consortium.

23. Oard, D. and F. Gey. The TREC 2002 Arabic/English CLIR Track. In TREC-2002,
Gaithersburg, MD (2002).

24. Oflazer, K. Error-Tolerant Finite State Recognition with Applications to Morphological
Analysis and Spelling Correction. Computational Linguistics 22(1) (1996) 73-90.

25. Sanderson, M. and J. Zobel. Information Retrieval System Evaluation: Effort, Sensitivity,
and Reliability. In SIGIR 2005, Sheffield (2005).

26. Taghva, K., J. Borsack, and A. Condit. An Expert System for Automatically Correcting
OCR Output. In SPIE - Document Recognition (1994).

27. Tillenius, M., Efficient generation and ranking of spelling error corrections. NADA (1996).
28. Tseng, Y. and D. Oard. Document Image Retrieval Techniques for Chinese. In Symposium

on Document Image Understanding Technology, Columbia, MD (2001).

A Statistical Model of Query Log Generation

Georges Dupret1, Benjamin Piwowarski1, Carlos Hurtado2

and Marcelo Mendoza2

1 Yahoo! Research Latin America
2 Departamento de Ciencias de la Computación, Universidad de Chile

Abstract. Query logs record past query sessions across a time span.
A statistical model is proposed to explain the log generation process.
Within a search engine list of results, the model explains the document
selection – a user’s click – by taking into account both a document po-
sition and its popularity. We show that it is possible to quantify this
influence and consequently estimate document “un-biased” popularities.
Among other applications, this allows to re-order the result list to match
more closely user preferences and to use the logs as a feedback to improve
search engines.

1 Introduction

The query log data of a search engine record the user queries, along with the
URL and the position of selected documents in the list returned to the user. Doc-
uments can then be reordered according to their popularity for a given query. If
a discrepancy is observed between this new order and the search engine ranking,
some action can be taken to improve the engine. In Fig. 1 we plotted the number
of selections of documents against their position in the ranking of a given query.
It is intuitive that documents at positions 2 and 4 should be re-ordered because
the latter has a higher popularity among users. Nevertheless, comparison of the
documents appearing at positions 9 and 13 reveals a caveat of this method: The
lower popularity of the latter document might be caused by a less favorable
position rather than by a lower relevance to the query.

In this work, we propose to explain the selections observed in the logs as the
result of a process that reflects 1) the attractiveness of a document surrogate for
a particular query, 2) the ability of the engine to assess the document relative
relevance accurately and 3) the influence of the position of the document on user
selections.

In Section 2 we model these different aspects and gain insight into the log
generation process. To have an intuitive understanding of this model, imagine
for a moment that the search engine of Fig. 1 is stochastic and ranks a given
document, say u, half of the time at rank 6, and half of the time at rank 15. (This
situation may seem unrealistic, but in fact each time the document collection
is updated, the ranking for a given query is altered and the engine, although
deterministic, appears as stochastic in the logs.) If we observe 3 times more user
selections when u is presented at position 6 than when presented at position 15,

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 217–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

218 G. Dupret et al.

2

4

9

13

0 5 10 15 20 25 30

0

40

20

10

position

30

Fig. 1. Number of selection of documents per position for a typical query.

we can draw the conclusion that the position effect at position 6 is three times
larger than at to position 15 (Section 2.2). Once the relative position effect is
known, it is possible to compensate it on the observed popularity of document
surrogates and re-order documents accordingly. In Section 3, we derive statistics
that relate the model to aggregated values like the engine precision and the
observed number of selections at a given position. Section 4 presents the results
of numerical experiments based on the logs of a real search engine. In Section 5
we examine some re-ordering strategies found in the literature in terms of our
model. Finally, in Section 6 we compare this work to the model proposed by
Radlinski and Joachims [5] and report other potential applications.

2 Log Generation Model

In this section, we describe a probabilistic model of user selections which gives
rise to the logs. It makes use of two hidden, latent variables, namely the influence
of the position on user decisions and the attractiveness of the surrogate for a
given query. The resulting Bayesian model makes a conditional independence
assumption on these two variables.

2.1 Variables and Assumptions

We consider that an observation in the log is the realization of four random vari-
ables: A query (q) issued by the user, a document (u), the position of the docu-
ment (p) and the information about whether the document was selected or not
by the user (s). The probability of observing a selection is written PS(s, p, u, q),
where the subscript S recalls the relation with the selections observed in the
logs.

More specifically, a query q is defined as a sequence of terms given to the
search engine. A significant number of queries are repeated by different users at
different times, giving rise to various query sessions of q.

A Statistical Model of Query Log Generation 219

Table 1. Variables of the log-generation model

q discrete the query is q.
u discrete the document or URL is u.
a binary the document surrogate is attractive and justifies a selection.
p discrete the position of the document is p.
c binary the user considers a given position.
s binary the user selects the document.

The selection of a document u following a query q depends on the surrogate
“attractiveness” a of the user who issued query q. When a is true, we say that the
surrogate is attractive. The probability of a being true reflects the proportion of
users that estimate that the surrogate is promising enough to justify a selection.
If we make the assumption that the surrogate represents fairly the document,
the probability of a can be interpreted as a relative measure of relevance. This
is the approach taken by Radlinski and Joachims [5] among others. It is relative
because only the relative relevance of selected documents can be compared this
way [3].

While click-through data is typically noisy and clicks are not perfect relevance
judgements, the user selections do convey information [8,4]. Occasional user se-
lection mistakes will be cancelled out while averaging over a large number of
selections. The question of how large should the logs be to counterbalance user
variability and mistakes is an open question. The observed noise is large, which
suggests that a large quantity of data is necessary. On the other hand, commer-
cial search engines generate an enormous amount of data, and the comparatively
small amount used in experiments reported in the literature [9,10,5] have led to
satisfactory results.

The decision about the surrogate attractiveness can be regarded as a “position-
less” process where users fetch all documents whose surrogate is pertinent to their
query, wherever they are situated in the ranking. This is modelled by the upper
part of the Bayesian network in Fig. 2: If the surrogate of document u is relevant
to query q, the binary variable a is true. It is false otherwise.

Depending on the position p of document u in the ranking of query q, the
user will consider the document or not, as reflected by the variable c (“consider-
ation”). If this process was the only one involved in document selection, it would
suppose “blind” users who select documents based solely on their position in the
ranking or on any other interface artifact that appear at fixed positions like the
division of results in pages. In the “blind” process, selecting a document or not
is entirely determined by the document position p. The position p in turn is de-
termined exogenously by the search engine based on the document u, the query
q and the entire document collection (not represented because it is fixed), as
shown by the lower branch of the Bayesian network. The existence of a bias due
to the position of a document is well documented in the literature. Joachims [4]
observes that despite differences in the quality of the ranking, users tend to click
on average at the same positions.

220 G. Dupret et al.

q a

u p c
s

Fig. 2. Bayesian Network associated with the Log-Generation Model

2.2 Model and Estimation

According to the assumptions we just identified, we apply the chain rule to the
probability of observing a selection (Fig. 2):

P(s, c, a, p, u, q) = P(s|a, c)P(c|p)P(p|u, q)P(a|u, q)P(u)P(q)

where P(s|a, c) is deterministic because a user selects a document only if its
surrogate is both attractive and considered. To eliminate the latent variables,
we marginalize P(s, c, a, p, u, q) over a and c. Using the boldface (s, c or a) for
binary random variables to denote the event “s, c or a is true”, we have:

PS(s, p, u, q) = P(c|p)P(p|u, q)P(a|u, q)P(u)P(q)

We introduce mnemonic indices. The term P(c|p) is rewriten PP(c|p) to em-
phasize that it represents the position effect on user decision to make a selection.
The term P(p|u, q) is the probability that a document is presented at position
p. As this depends exclusively on the search engine, we add the subscript E . The
term P(a|u, q) is the probability that the surrogate is attractive given the query.
We use the subscript A to mark this fact. The log-generation model is:

Lemma 1 (Generation Process).
The process governing the log generation obeys to

PS(s, p, u, q) = PA(a|u, q)PP(c|p)PE(p|u, q)P(u)P(q)

The quantities PS(s, p, u, q) and PE(p|u, q) can be estimated by simple count-
ing from the logs: PS(s, p, u, q) is estimated by the number of selection of doc-
ument u at position p for all the sessions of query q, divided by the number
of query sessions. PE(p|u, q) is estimated by the number of times u appears in
position p of query q, divided by the number of sessions of q. P(u) = 1/U where
U is the total number of documents. It is uniform and independent of P(q). The
probability of observing a query is estimated by the proportion of sessions for
that query.

The remaining two probabilities PP(c|p) and PA(a|u, q) can be estimated
using Lemma 1. We remark first that if P∗

A(a, u, q) and P∗
P(c|p) represent a

solution to this system, then λP∗
A(a, u, q) and (1/λ)P∗

P(c|p) is also a solution for
any constant1 λ �= 0. This reflects that only the relative position effect can be

1 Note that this solution may not be valid from a probabilistic point of view.

A Statistical Model of Query Log Generation 221

estimated. In practice, we either set
∑

p PP(c|p) = 1 or set the effect of a given
position to a constant, say PP(c|p = 1) = 1 and normalize P∗

P(c|p) afterward.
If the search engine is deterministic, i.e. if PE(p|u, q) = {0, 1} ∀u, q, a simple

analysis shows that there are more unknowns than equations in the system. In-
tuitively, this reflects that if each document appear always at the same positions
in the ranking of a query, it is impossible to distinguish the effects of attrac-
tivity and position. The vast majority of search engines are designed to order
the documents in a deterministic way, but in practice each time the document
database is updated, the ranking of documents is altered, giving rise to a situa-
tion where the engine appears as stochastic and the system of equations can be
solved.

If we restrict the system to the cases where 0 < PE(p|u, q) < 1 (inequalities
are strict), we can transform the model into an overspecified system of linear
equations by taking the logarithm:

{
log PA(a, u, q) + log PP(c|p) = log PS(s,p,u,q)

PE(p|u,q)
log PP(c|p = 1) = log(1) = 0

(1)

where the unkowns are log PA(a, u, q) and log PP(c|p). The advantage is that
the system can be solved now using standard software for sparse matrix algebra.

3 Aggregate Behavior

In this section we study the relation between the log generation process and
aggregate values like the total number of selections at a position, the position
effect and the engine precision.

The proportion of selections at a given position is simply the sum over all
queries and documents of the selections at that position:

Definition 1 (Proportion of Selections at a position).
The proportion of selections at position p is defined as

Sp =
∑
u,q

PS(s, p, u, q)

Similarly, we also define S =
∑

p Sp.

To obtain the expected number of selections at a position, one need to aggregate
Sp over all the sessions.

Precision is traditionally defined as the concentration of relevant documents in
the result set. We can define by analogy a surrogate precision measure. To obtain
the contribution of position p to this new measure, we observe that a document
is placed at p by the engine with probability PE(p|u, q) and its surrogate is
attractive with a probability PA(a|u, q). By aggregating over documents and
queries, we obtain:

222 G. Dupret et al.

Definition 2 (Attractiveness Gain).
For a given search engine, the attractiveness gain achieved at position p is the
sum of the attractiveness of the documents surrogates appearing at that position:

Gp =
∑
u,q

PA(a|u, q)PE(p|u, q)P(u)P(q)

If we make the assumption that the surrogates are fair representations of the
documents, we can take the probability of attractiveness as an estimate of the
document probability of pertinence. The sum of the gains up to rank k is then
an empirical measure of the search engine precision at rank k. Note that this
measure cannot be used to compare two different search engines in different
settings [3].

We can now explain the selections observed in the logs as a consequence of
Lemma 1 (Log Generation Process) and Definitions 1 and 2:

Lemma 2 (Aggregate Behavior).
The proportion of selections Sp at position p is the product of the gain and the
position effect:

Sp = GpPP(c|p).

A first consequence of this lemma concerns deterministic search engines where
the probability PE(p|u, q) of finding document u at position p is 1 for a given
position puq and 0 everywhere else: Rewriting the aggregate behavior in Lemma 2
with p = puq, we obtain

PA(a|u, q) =
Gp

Sp
PS(s, p|u, q)

This matches intuition because the number of selections Sp generally decreases
with the position and because selection at a later position is a better indicator
of a surrogate attractiveness than a selection among the first positions. On the
other hand, the term Gp counter-balances this effect and reflects the ability of
the search engine to place attractive surrogates first.

4 Numerical Experiment

To illustrate the proposed method, we apply the former results to the logs of
todocl, a search engine of the Chilean Web, for two periods of approximately
3 and 6 months separated by a new crawling. Various characteristics of the logs
are shown in Table 2. The last column reports the numbers of distinct queries
and documents that appear in both logs. We denote the three months log by
L3 and the six months log by L6.

We first examine the impact of a strong and wrong simplifying assumption of
our model, namely that the popularity of a surrogate does not depend on the
surrogates that precede it in the results list and does not depend on the previous

A Statistical Model of Query Log Generation 223

Table 2. Characteristics of the three (L3) and six months (L6) logs and their intersec-
tion. The number of sessions in the last column is the sum of the number of sessions
involving the queries and URL common to both logs.

L3 L6 Common
Distinct Queries 65,282 127,642 2,159
Distinct selected URLs 122,184 238,457 9,747
Sessions 102,865 245,170 52,482

user selections during a given session, or at least that these effects cancel out. If
this hypothesis is true, we should have that the popularity estimates in L3 and
L6 are approximately equal:

P̂
3
A(a|p3, u, q) � P̂

6
A(a|p6, u, q)

where p3 and p6 are the position of u in the results of q in L3 and L6 respectively.
Because we cannot evaluate the probability of attractiveness directly, we restrict
our attention to the cases where p3 = p6: We select the document query pairs
whose document occupies the same position in the two logs. Formally, this set
is defined as I = {(u, q)|(u, q) ∈ L3, (u, q) ∈ L6, p3(u, q) = p6(u, q)}. For these
pairs, the position effect cancels out and the assumption holds if P̂

3
S(s|p3, u, q) �

P̂
6
S(s|p6, u, q) where P̂

3
S(s|p, u, q) denotes the estimate of PS(s|p, u, q) derived

from L3 and P̂
6
S(s|p, u, q) its equivalent from L6.

The set I contains 2,159 distinct queries and 7,755 distinct documents for
8,481 pairs. Although for some pairs (u, q) ∈ I the document u remains at
the same position, the ranking of the other documents do change. This change
in the context of the document is significant: Denoting Qc the sets of queries q
containing at least one document u that has not changed its position (i.e. (u, q) ∈
I), a query in Qc contains an average of 14.1 and only 5.2 distinct documents in L6
and L3 respectively, revealing that the list of results contain different documents
before and after the new crawl. The new position of documents that have been
displaced by the new crawl are in average 7.8 ranks apart from the original one.

In Fig 3, we divide the P̂
3
S(s|p, u, q) estimates for the (u, q) pairs of I in 10

bins of equal range and represent the corresponding six months estimates in 10
box-plots. Considering for example P̂

3
S(s|p, u, q) between 0.4 and 0.5 (the].4, .5]

bin on the plot), we observe that the median of the corresponding P̂
6
S(s|p, u, q) is

slightly larger than 0.4. On the other hand, the lower and upper hinges (median
of estimates smaller and larger than the median) are approximately 0.25 and
0.5, respectively.

The alignment of the box-plot medians with the diagonal shows that the sur-
rogate estimate is stable under context variations, leading to the conclusion that
the impact of previous selections tends to cancel out. If the median aligned on
a horizontal line, this would mean that selections were governed by variables
not included in the model. On the other hand, the large variation imply that

224 G. Dupret et al.

0.0

0.2

0.4

0.6

0.8

1.0

1714 979 784 166 94 178 78 28 41511

]0,.1]].2,.3]].3,.4]].4,.5]].5,.6]].6,.7]].7,.8]].8,.9]].9,1]].1,.2]

Fig. 3. On the lower axis, the estimates of the probability of selecting a document in a
session of a query have been divided in 10 bins according to their values. For example,
the second bin corresponds to the u, q pairs for which 10% < P̂

3
S(s|p, u, q) ≤ 20%.

On the ordinate, we have for each of these u, q pairs the corresponding P̂
6
S(s|p, u, q)

estimate. On the upper axis, we report the number of u, q pairs that fall into the bin.
The median is indicated by the black center line. The first and third quartiles are the
edges (hinges) of the main box. The extreme values (more than 1.5 the lower/upper
inter-quartile range) are plotted as points and are situated after the notches.

estimates will suffer from large variance. The inclusion of more variables into
the model might reduce this problem, but this needs to be verified. The medians
alignment to the diagonal deteriorates as the document popularity increases,
suggesting that surrogates that enjoyed a high popularity in L3 experience some
decrease in L6 (Sic transit gloria mundi2). This can be due partly to the docu-
ments getting outdated compared to documents that appear for the first time in
L6. Moreover, because L6 contains twice as many documents, there is potentially
a larger number of attractive surrogates for each query. This will partly divert
selections from the documents already in L3 and push down the relative number
of selections. The larger distance of the median from the diagonal will induce a
bias in the estimates of the model.

We compute the gain Sp from the solution of the linear system in Eq. 1
and plot it in Fig. 4 (triangle). While the position effect is expected to display
discontinuities, in particular where pages change, it is reasonable to make the
hypothesis that the gain decreases smoothly. We use a linear regression of second
order on the experimental values and plot it as a continuous curve on Fig. 4.
The position effect (circles) decreases from a 5% at position 1 and stabilizes
around 3% around position 20, inducing that users are approximately 1.7 more
likely to make a selection at the first than at the latter position in the blind

2 Thus passes away the glory of the world

A Statistical Model of Query Log Generation 225

Position

20 25 30151050

12%

8%

4%

2%

PP (c|p)
Gp

Sp

Fig. 4. All values are normalized by the sum of their values over positions 1 to 30. 1)
The normalized number of selections Sp at position p (squares). 2) The position effect
PP(c|p) (squares). 3) The normalized gain Gp (triangle).

process. There is a distinct increase of the position effect corresponding to the
page change at position 10.

The gain presents a slope similar to the probability of selections, suggesting
that users of the todocl engine are more influenced by the relevance of surrogates
than by their position, although much larger samples of log data should be used to
obtain reliable position effect estimates before definitive conclusions are drawn.

5 Re-ordering Strategies

We analyze in this section various strategies to take the logs into account in the
document re-ranking and derive what Radlinski and Joachims [5] call a osmo-
sis search engine, i.e. an engine that adapts itself to the users. These authors
consider that the surrogates represent fairly the documents and that ordering
according to the attractiveness respects the preference of the users for the doc-
uments themselves. We make the same hypothesis in this section and its results
are valid only if it holds.

In order to compare two ranking strategies, we need to identify what the opti-
mal ordering strategy should be. An optimal search engine estimates accurately
the relevance of documents to queries, orders them accordingly and presents
adequate surrogates to the users:

Definition 3 (Optimal Search Engine). A search engine is optimal if, for
all documents u and v and all query q, we have that

puq < pvq ⇔ PA(a|u, q) > PA(a|v, q).

where puq and pvq are the positions of documents u and v in the result list of
query q.

226 G. Dupret et al.

A consequence of this definition is that optimal search engines are almost always
deterministic: Only when PA(a|u, q) = PA(a|v, q) can a search engine be both
stochastic and optimal.

The best strategy consists in ordering the documents according to the sur-
rogates attractivity estimates, but it might be interesting to analyze the conse-
quence of ordering according to the observed number of selections. Under this
scheme, two documents are swapped if PS(s, p2, u2, q) > PS(s, p1, u1, q) and p2 >
p1. If the engine is deterministic, this can be rewritten PA(a, u2, q)PP(c|p2) >
PA(a, u1, q)PP(c|p1). This strategy implies that we have a permutation if

PA(a, u2, q) >
PP(c|p1)
PP(c|p2)

PA(a, u1, q)

This is adequate only if the position effects are equal. On the other hand, if
PP(c|p1) is sufficiently larger than PP(c|p2), document u2 remains trapped at
its original position.

Most applications that do not attempt to re-order selections, like query clus-
tering [10], simply discard document popularity and consider only whether a
document was selected or not. This is equivalent to setting the position effect
and the popularity to a constant.

6 Related Work

In [5], Radlinski and Joachims pursue a goal similar to our. Based on eye tracking
study and expert judgements, they identify six preference feedback relations
based on query logs. For example, the selection of a document is interpreted
as a preference feedback over all the documents preceding it in the list, but
not selected. They observe that users often reformulate their query to improve
search. The set of reformulation –called a query chain– is used to derive a relation
of preference among documents. The selection of a document is interpreted as a
preference feedback over all the preceding documents appearing but not selected
in earlier formulations of the query. The preference relations are then set as
constraints and used to train a Large Margin classifier.

It is interesting to compare the assumptions in Radlinski and Joachims [5]
to ours. The preference feedback over preceding unselected documents parallels
our assumption that documents should be ordered according to their (un-biased)
popularity, and that the position of the selected document is of importance. They
take popularity into account because a positive feedback is accounted for each
document selection, and they take position into account because documents
selected at latter positions have a preference relation over a larger number of
documents than selected documents appearing at the top of the list. Popularity
and position are thus two main variables in both their analysis and ours. On the
other hand (provided we have enough data) we are able to derive a quantitative
estimate of the position effect with no need of a priori hypothesis while Radlinski
and Joachims fix arbitrarily some parameters to limit how quickly the original
order is changed by the preference feedback data.

A Statistical Model of Query Log Generation 227

Our model does not take into account the influence of previous selections
on user next selection. To a certain extent, Radlinski and Joachims include this
information implicitly because no preference feedback is derived over a document
that was previously selected. This is probably the most severe limitation of our
model and the topic of future work. Future work should also attempt to take
query chains into account.

Both methods fail to address the problem of ambiguous queries. An example
of such query is “car” that refers to several topics like “renting a car”, “buying
a car”, etc. The user has probably one and only one of these topics in mind and
will select documents accordingly. The problem for both models is that they are
attempting to order documents in answer to different information needs into a
single list. A possible solution is to previously disambiguate queries [2].

In conclusion, Radlinski and Joachims model is more complete than ours es-
sentially because previous selections are taken into account although implicitly.
Our model on the other hand is less heuristic and makes explicit assumptions. It
opens the doors to a more formal analysis. It also offers some primary theoretical
results. The position effect is quantifiable, the difference between document pref-
erences and surrogate attractiveness is made and dependence relations between
variables is determined before hand.

7 Conclusions

We proposed a theoretical interpretation of data found in search engine logs.
For a given query, it assumes that two factors influence a document selection:
the position of the document in the result list and the attractiveness of the
document surrogate. The main objective of this model is to estimate the effect
of the document position in the ranking on users decisions to select it, thereby
getting an un-biased estimate of the attractiveness of the document surrogate.

We foresee various applications to this work, but the most important one re-
lates to the development of search engine that learns to rank documents from
the users. Frequent queries rankings can be altered and cached to match users
preferences rather than engine scores and consequently increase the engine pre-
cision3. Moreover, the score function of the search engine can be tuned based on
user selections to improve the engine precision both on queries already in the logs
and on future queries. Probabilistic retrieval models [7,6] rely on the probability
of a document term to flag a relevant document given a query term. The esti-
mation of this probability is based on user feedback and is unpractical to obtain
explicitly, making the possibility to extract automatically the necessary infor-
mation from the logs an important and novel method to improve significantly
these engines.

It is also important to weight appropriately the documents in the relevance
set when using feedback methods or when clustering queries. The knowledge of
the influence of the position of a document on users selections decisions can be
3 Pre-computation of frequent queries is also an effective way of improving engine

speed due to the heavy skew of the query frequency distribution [1].

228 G. Dupret et al.

used to study the interface. Our approach was developed for results presented in
list, but it is straightforward to extend it to tables of images or other multimedia
content where the automatic estimation of a relevance score to a query is usually
more problematic than for text documents.

The influence of previously seen documents on the user selection decision was
neglected in the model. A user who finds a document that fulfil his informa-
tion need is not likely to continue his search, thereby discarding other relevant
documents. This is a topic for future work.

Acknowledgments

Carlos Hurtado was supported by Millennium Nucleus, Center for Web Research
(P04-067-F), Mideplan, Chile.

References

1. R. Baeza-Yates and F. Saint-Jean. A three level search engine index based in query
log distribution. In SPIRE 2003, Manaus, Brazil, October 8-10, 2003. Proceedings,
Lecture Notes in Computer Science 2857, pages 56 – 65, 2003.

2. G. Dupret and M. Mendoza. Recommending better queries based on click-through
data. In Proceedings of the 12th International Symposium on String Processing and
Information Retrieval (SPIRE 2005), LNCS 3246, pages 41–44. Springer, 2005.

3. T. Joachims. Evaluating search engines using clickthrough data. Department of
Computer Science, Cornell University, 2002.

4. T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02:
Proceedings of the eighth ACM SIGKDD, pages 133–142, New York, NY, USA,
2002. ACM Press.

5. F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feed-
back. In KDD ’05: Proceeding of the eleventh ACM SIGKDD international confer-
ence on Knowledge discovery in data mining, pages 239–248, New York, NY, USA,
2005. ACM Press.

6. B. A. Ribeiro-Neto and R. Muntz. A belief network model for IR. In SIGIR ’96:
Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 253–260, New York, NY, USA,
1996. ACM Press.

7. S. E. Robertson and K. S. Jones. Relevance weighting of search terms. Taylor
Graham Publishing, London, UK, UK, 1988.

8. T. Joachims. Unbiased evaluation of retrieval quality using clickthrough
data. Technical report, Cornell University, Department of Computer Science,
http://www.joachims.org, 2002.

9. J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user queries of a search engine.
In WWW ’01: Proceedings of the 10th international conference on World Wide
Web, pages 162–168, New York, NY, USA, 2001. ACM Press.

10. O. R. Zäıane and A. Strilets. Finding similar queries to satisfy searches based on
query traces. In Proceedings of the International Workshop on Efficient Web-Based
Information Systems (EWIS), Montpellier, France, Sept. 2002.

Using String Comparison in Context for Improved
Relevance Feedback in Different Text Media

Adenike M. Lam-Adesina and Gareth J. F. Jones

Centre for Digital Video Processing & School of Computing
Dublin City University, Dublin 9, Ireland

{adenike, gjones}@computing.dcu.ie

Abstract. Query expansion is a long standing relevance feedback technique for
improving the effectiveness of information retrieval systems. Previous investiga-
tions have shown it to be generally effective for electronic text, to give propor-
tionally better improvement for automatic transcriptions of spoken documents,
and to be at best of questionable utility for optical character recognized scanned
text documents. We introduce two corpus-based methods based on using a string-
edit distance measure in context to automatically detect and correct transcription
errors. One method operates at query-time and requires no modification of the
document index file, and the other at index-time and operates using the standard
query-time expansion process. Experimental investigations show these methods
to produce improvements in relevance feedback for all three media types, but
most significantly mean that relevance feedback can now successfully be applied
to scanned text documents.

1 Introduction

Query expansion within relevance feedback (RF) has been shown to improve effec-
tiveness for many information retrieval (IR) tasks, However, its performance varies for
different text media for the same retrieval task. Performance differences arise from the
indexing errors associated with the individual media. In this study we are concerned
with improving the effectiveness of relevance feedback for a common retrieval task for
the following text media: standard typed electronic text, transcriptions of spoken data
created using automatic speech recognition (ASR), and transcriptions of scanned paper
text documents generated using optical character recognition (OCR). While the accu-
racy of automatically generated digital document transcriptions continues to increase
with advances in recognition technologies, the error levels are likely to remain sufficient
to adversely affect relevance feedback effectiveness for the foreseeable future. Current
transcription technologies achieve good performance on tasks such as read speech and
recently printed texts, but still have very significant error levels for more challenging
tasks such as conversational speech in noisy environments and nth generation photo-
copies or hand written texts. It can be observed that even the level of typographical
errors found in published electronic texts can be sufficient to be detrimental to rele-
vance feedback [1].

Relevance feedback using query expansion has previously been explored for all three
media for both true relevance feedback using user-entered relevance judgements and

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 229–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

230 A.M. Lam-Adesina and G.J.F. Jones

pseudo relevance feedback (PRF) where the top ranked documents in the initial retrieval
run are assumed to be relevant. The general conclusions for these studies are as follows:
on average relevance feedback improves retrieval precision for typed text retrieval (TR),
gives a proportionally greater improvement for spoken document retrieval (SDR) than
text retrieval, but is not generally effective for document image retrieval (DIR). In fact
relevance feedback can often reduce average performance for DIR.

In this paper we describe two string-based methods to improve relevance feedback
performance for these text media. One operates at query-time and can be applied to ex-
isting document search collections without re-indexing. The other operates at indexing
time and requires no modification of the standard query expansion process for rele-
vance feedback at query-time. Both techniques apply a string-edit distance measure in
context to identify likely misspellings or incorrectly transcribed valid words, and then
seek to correct them from within the document collection. Both methods produce ef-
fective relevance feedback for DIR, and small improvements in relevance feedback for
text retrieval, and the index-time method an improvement in SDR.

This paper focuses on the retrieval effectiveness of PRF in terms of standard pre-
cision and recall metrics. This is an experimental investigation and, as such, issues of
computational efficiency of the implementation of the relevance feedback process are
beyond the scope of this study.

The remainder of this paper is organised as follows: Section 2 gives a short review
of relevant existing research, Section 3 outlines details of the Okapi BM25 information
retrieval model used in this investigation, Section 4 summarizes the details of the test
collection, Section 5 describes our extended relevance feedback methods and results for
experiments using these techniques, and finally Section 6 concludes the paper.

2 Relevant Existing Research in Relevance Feedback

This section gives a brief summary of existing work in relevance feedback relevant to
this paper. While relevance feedback has been studied for many years for different tasks,
many recent investigations have taken place within tasks at the TREC workshops [2],
including the main ad hoc search tasks and tasks focusing on other media. Another no-
table activity exploring relevance feedback was the Reliable Information Access (RIA)
workshop in 2003 [3]. Within TREC, relevance feedback studies have mainly explored
PRF, with results generally indicating that across a topic set PRF on average produces
improvements in the standard TREC evaluation metrics.

Existing SDR studies of relevance feedback have again focused primarily on PRF
within TREC SDR tasks [4]. Results here in general indicate that PRF is very effective
for SDR with collections of automatically transcribed broadcast news [5]. These results
are confirmed for a very different retrieval task of unstructured oral testimonies in the
speech retrieval task introduced at CLEF 2005 [6].

The main results for DIR are again from TREC, this time in the confusion track [7].
Although participants explored a range of relevance feedback methods, the results were
inconclusive since this was a single known-item search task. The absence of exhaustive
document relevance information meant that it was not possible to study the effects of
relevance feedback techniques thoroughly. Much more extensive evaluation of DIR has

Using String Comparison in Context for Improved Relevance Feedback 231

been carried out at the University of Nevada at Las Vegas [8]. Results from these studies
were again inconclusive, but suggested that relevance feedback is much less reliable for
DIR than text retrieval and SDR.

In an earlier study of PRF for a parallel document collection for text retrieval, SDR
and DIR we showed good performance for text retrieval, better relative performance for
SDR, but a significant reduction in average precision and recall for DIR [9]. This result
motivated us to investigate both the reasons for the ineffectiveness of PRF for DIR, and
more generally to seek to understand the reasons for the variations in PRF effectiveness
for different text media. In a previous study [1], we showed that the principal problem
for PRF in DIR is the presence in the collection of high numbers of very rare index
terms which are in fact character corrupted versions of standard words. While correctly
spelled versions of these words have standard expected word frequencies within the
collection as a whole.

In this paper we describe two techniques which address PRF problems for DIR and
illustrate how these can also be effective for text retrieval and SDR.

3 Information Retrieval and Relevance Feedback Methods

The basis of our experimental setup is the City University research distribution version
of the Okapi system [10]. The Okapi retrieval model has been shown to be very effec-
tive in many comparative evaluation exercises in recent years at TREC and elsewhere.
The retrieval strategy adopted in this investigation follows standard practice for best-
match ranked retrieval. The documents and search topics are first processed to remove
common stop words from a list of around 260 words, suffix stripped using the Okapi
implementation of Porter stemming to encourage matching of different word forms, and
terms are further indexed using a small set of synonyms.

3.1 Term Weighting

Following preprocessing document terms are weighted using the Okapi BM25 weight
[10]. The BM25 weight for a term is calculated as follows,

cw(i, j) = cfw(i)× tf(i, j)× (k1 + 1)
k1 × ((1 − b) + (b× ndl(j))) + tf(i, j)

where cw(i, j) represents the weight of term i in document j, cfw(i) = log((N −
n(i)+0.5)/(n(i)+0.5)), n(i) is the total number of documents containing term i, and
N is the total number of documents in the collection, tf(i, j) is the within document
term frequency, and ndl(j) = dl(j)/Av.dl is the normalized document length where
dl(j) is the length of j. k1 and b are empirically selected tuning constants for a particular
collection. The matching score for each document is computed by summing the weights
of terms appearing in the query and the document.

3.2 Relevance Feedback

In the standard Okapi approach potential expansion terms are ranked using the Robert-
son’s offer weight (ow(i)) [10], defined as,

232 A.M. Lam-Adesina and G.J.F. Jones

ow(i) = r(i)× rw(i) (1)

where r(i) is the number of relevant documents containing term i, and rw(i) is the
standard Robertson/Sparck Jones relevance weight [10] defined as,

rw(i) = log
(r(i) + 0.5)(N − n(i)−R + r(i) + 0.5)

(n(i)− r(i) + 0.5)(R− r(i) + 0.5)

where n(i) and N have the same definitions as before and R is the total number of
relevant documents for this query. The top ranking terms are then added to the original
query. Term reweighting for relevance feedback is carried out by replacing cfw(i) with
rw(i) in the BM25 weight. In this study we explore only query expansion since we
generally observe this to be the dominant factor in relevance feedback.

Selection of expansion terms from whole documents can result in query drift if terms
associated with non-relevant material are selected. In this study we adopt our sentence-
based query-biased summary technique described in [11]. In this procedure potential
expansion terms are selected from the query-biased summary of each potentially rel-
evant document. This method has been shown to reduce the possibility of query drift
in previous studies. Potential expansion terms are selected from the top R1 documents
assumed relevant, but the ow(i) is calculated using a separate larger R value, since we
find this to give more effective ow(i)’s.

4 Test Collections

The experimental investigation was carried out using a parallel research collection of
text, spoken and image documents adapted from the TREC-8 SDR task [4]. The original
SDR test collection consisted of the documents, search requests and relevant documents
for each request. For our investigation we used a parallel document image collection
consisting of scanned images generated from manual transcriptions of the audio data.
The TREC-8 SDR collection is based on the English broadcast news portion of the
TDT-2 News Corpus. The standard SDR collection of text and spoken document sets
is augmented by forming a corresponding scanned document collection. The scanned
document collection is based on the 21,759 “NEWS” stories in TDT-2 Version 3 (De-
cember 1999).

4.1 TDT-2 Document Set

The TREC-8 SDR portion of the TDT-2 News Corpus covers a period of 5 months
from February to June 1998. The collection consists of 30 minute news broadcasts
from CNN, ABC, PRI and VOA. Each broadcast is manually segmented into a number
of news stories with unique identifers which form the basic document unit of the corpus.
An individual news story was defined as containing two or more declarative statements
about a single event. Other miscellaneous data items, e.g. commercials, were excluded
from the data set. The collection contains a total of 21,759 stories with an average length
of 180 words totalling about 385 hours of audio data.

Using String Comparison in Context for Improved Relevance Feedback 233

Text Collection. There is no high-quality human reference transcription available for
TDT-2 - only “closed-caption” quality transcriptions for the television sources and
rough manual transcriptions for the radio sources made by commercial transcription
services. A detailed manual transcription of a randomly selected 10 hour subset was
carried out by the corpus developers to enable speech recognition accuracy to be eval-
uated. The television closed-caption sources (CNN, ABC) were found to have a Word
Error Rate of approximately 14.5% and radio sources (PRI, VOA) to have a Word Error
Rate of around 7.5%. The manual transcriptions are used as the document source for
the scanned document collection used in this study.

Spoken Document Collection. The Spoken Document transcriptions used in our ex-
periments are taken from the TDT-2 version 3 CD-ROMs. The transcription set used is
designated as1 on this release and was generated by NIST using the BBN BYBLOS
Rough’N’Ready transcription system using a dynamically updated rolling language
model. Full details of this recognition system are contained in [12]. This transcription
was designated “B2” in the official NIST TREC-8 SDR documentation. The recogni-
tion Word Error Rate on a 10 hour subset of the data was reported by the developers to
be 26.7%.

Scanned Document Collection. The printed version of the collection is formatted as
hardcopy similar in style to newspaper clippings. To simulate the differences in for-
matting of stories from different newspaper sources, each story was printed in one of
four fonts: Times, Pandora, Computer Modern and San serif . The stories were divided
roughly equally between these font types with material from each source assigned to
each one on a sequential basis. The stories were printed in one of three font sizes in
single columns in one of six widths. Column width and font size were assigned sequen-
tially from the beginning of each broadcast. The stories were printed using an Epson
EPL-N4000 laser printer. In order to explore retrieval behaviour with a more errorful
transcription than would naturally result from a printing of this quality, OCR transcrip-
tion was performed with suboptimal system settings. All documents were scanned using
an HPScanJet ADF at 200 dpi in Black & White at a threshold of 100. OCR was carried
out using Page Keeper Standard Version 3.0 (OCR Engine Version 271) (SR3). Full
details of the collection design are contained in [13].

4.2 TREC-8 SDR Test Collection

The TREC-8 SDR retrieval test collection contains a set of 50 search topics and cor-
responding relevance assessments. The goal in creating the topics was to devise topics
with a few (but not too many) relevant documents in the collection to appropriately
challenge test retrieval systems. Retrieval runs submitted by the TREC-8 SDR partici-
pants were used to form document pools for manual relevance assessment. The average
topic length was 13.7 words and the mean number of relevant documents for each topic
was 36.4 [4].

234 A.M. Lam-Adesina and G.J.F. Jones

Table 1. Baseline and standard summary-based feedback results for TR, SDR and DIR

Media TR SDR DIR
P10 P30 AvP RelRet P10 P30 AvP RelRet P10 P30 AvP RelRet

Baseline 0.551 0.354 0.468 1608 0.496 0.321 0.406 1502 0.557 0.352 0.454 1581
Fbk 5 0.580 0.392 0.506 1639 0.500 0.346 0.423 1514 0.574 0.380 0.498 1578
chg bl. (%) +5.3 +10.7 +8.1 +31 +0.8 +7.8 +4.2 +12 +3.1 +7.9 +9.7 -3
Fbk 20 0.598 0.396 0.514 1631 0.553 0.361 0.459 1532 0.539 0.352 0.440 1385
chg bl. (%) +8.5 +11.9 +9.8 +23 +11.5 +12.5 +13.1 +30 -4.1 -0 -3.1 -196

5 Investigation of Relevance Feedback for Different Text Media

This section reports our investigation of query expansion for different text media. Re-
sults are shown for standard PRF methods, and our new techniques for enhancing the
effectiveness of PRF. Retrieval metrics reported are precision at 10 and 30 document
cutoff, standard TREC average precision (AvP) and the total number of relevant docu-
ments retrieved (RelRet). The total number of relevant documents retrieved for each run
can be compared for Recall to the total number of relevant documents available across
all topic statements in the TREC-8 SDR test set of 1818. Percentage change relative to
a no PRF baseline is shown for precision measures and absolute change for the number
of relevant documents retrieved.

The BM25 values were set empirically as k1 = 1.4 and b = 0.6 using the baseline
retrieval system with the text document collection without PRF to optimise AvP. The
parameters for the summary-based PRF were set as follows. Summaries were based on
the most significant 6 sentences, the top 5 ranked documents are the source of potential
feedback terms (R1), and the top 20 documents assumed relevant for computation of
ow(i) for term selection (R). The weight of the original query terms in each case was
multiplied by 1.5 relative to the expansion terms, since the original terms have been
chosen by the searcher themself. These values were again selected to optimise AvP on
the text collection.

5.1 Baseline and Standard PRF Results

Table 1 shows baseline retrieval results without feedback (Baseline) and PRF results
adding 5 (Fbk 5) and 20 (Fbk 20) expansion terms for text retrieval, SDR and DIR, with
their changes from the baseline. From Table 1 it can be seen that there is a reduction in
both baseline AvP and RelRet for SDR and a smaller one for DIR compared to TR. For
PRF results, performance in terms of both precision and RelRet improves in all cases
for TR and SDR. For DIR, PRF improves for 5 expansion terms, but AvP decreases by
-3.1% and RelRet by -196 for 20 expansion terms.

In previous work [1] we demonstrated that the reduction in PRF performance for
DIR is due to selection of some expansion terms with very low n(i) values which are
misrecognized versions of more common terms corrupted at the character level. We
could of course try to correct these errors in post-processimg with a dictionary, how-
ever existing work [14] indicates that this can introduce more problems for information
retrieval due to false substitutions than it solves. We thus do not explore dictionary-
based substitution methods.

Using String Comparison in Context for Improved Relevance Feedback 235

5.2 Improving PRF by String-Based Compensation for Transcription Errors

In previous work [1], we demonstrated that a simple filtering of terms with low n(i) val-
ues partially addresses the problems with PRF for DIR associated with spelling mistakes
illustrated in Table 1. However, the optimal value of n(i) for filtering may be sensitive
to the statistics of individual collections. Additionally, there are two notable problems
with this very basic approach. First, correctly transcribed rare words that would ac-
tually be good expansion terms will be deleted along with the incorrectly transcribed
ones, and thus not be available as potential expansion terms. Second, many incorrectly
transcribed, apparently rare, words can be recognized manually as corrupted versions of
correct terms appearing in assumed relevant documents. These variant forms are obvi-
ous to a human reader based on string similarity and the linguistic context in which they
are found. Further, in such cases the ow(i) values of the correctly transcribed terms will
often be wrong since r(i) will be underestimated when there is no other occurrence of
i in a document within which it is incorrectly transcribed. Terms of this type will often
be in high ranked documents for a query for which the terms are important. This is po-
tentially a significant problem leading to distortion in the ranking of the ow(i) ordered
list compared to the one that would be formed without spelling errors in the documents,
consequential reduction in the likelihood of choosing the best expansion terms, and
thus potentially reduction in the possible effectiveness of relevance feedback. Spelling
mistakes in text documents can also on occasion lead to similar problems for PRF in
text retrieval which are not visible when looking across averaged results such as those
shown in Table 1. While PRF works effectively for SDR, and the fixed vocabulary of
automatic speech recognition systems used to generate automatic transcriptions means
that misspellings of this type are not possible, the high overall Word Error Rate does
affect retrieval effectiveness and means that there is scope to improve performance be-
yond that seen in Table 1.

Problems of eliminating good potential expansion terms and inaccurate estimates
of ow(i) can be overcome by identifying mistranscribed words within (assumed) rele-
vant documents and combining them with correct words. In this section we introduce
two methods for doing this. The first is a query-time technique that can be applied to
existing indexed collections. While this method is found to be effective, it imposes an
additional search time computational load. The second technique operates at index-time
and imposes no additional search time cost.

Both procedures are based on a string comparison algorithm which computes an
“edit distance” between two strings giving the minimum number of changes required
to convert one string to the other [15]. These algorithms can make mistakes, sometimes
merging words that are not related. However, within the constrained context of a small
number of documents assumed to be relevant to a search query, often similar character
strings really are the same word, leading to only a small number of false merges. This
hypothesis is used as the basis of our correction techniques.

Query-Time Expansion Term Combination. In the query-time procedure the edit
distance is computed between all terms within the top 5 ranked summaries used forPRF.
Words within a preset edit distance are merged with the one with the larger n(i) value
assumed to be the correct. The r(i) values of merged words are added, and the combined

236 A.M. Lam-Adesina and G.J.F. Jones

Table 2. Results using string-comparison term merging at query-time

Media TR SDR DIR
MaxEd P10 P30 AvP RelRet P10 P30 AvP RelRet P10 P30 AvP RelRet
1 0.598 0.384 0.519 1614 0.551 0.362 0.459 1531 0.576 0.380 0.489 1593
chg bl. (%) +8.5 +8.5 +10.9 +6 +11.1 +12.8 +13.1 +29 +3.4 +8.0 +7.7 +12
2 0.608 0.387 0.524 1614 0.553 0.362 0.456 1530 0.582 0.380 0.492 1581
chg.bl. (%) +10.3 +9.3 +12.0 +6 +11.5 +12.8 +12.3 +28 +4.5 +8.0 +8.4 +0
3 0.610 0.399 0.528 1624 0.553 0.374 0.465 1541 0.596 0.385 0.505 1610
chg. bl. (%) +10.7 +12.7 +12.8 +16 +11.5 +16.5 +14.5 +39 +7.0 +9.4 +11.2 +29
4 0.604 0.399 0.521 1639 0.549 0.363 0.454 1533 0.588 0.388 0.508 1616
chg. bl. (%) +9.6 +12.7 +11.3 +31 +10.1 +13.1 +11.8 +31 +5.6 +10.2 +11.9 +35
5 0.598 0.393 0.523 1616 0.537 0.369 0.450 1552 0.592 0.386 0.507 1607
chg. bl. (%) +8.5 +11.6 +11.8 +8 +8.3 +15.5 +10.8 +50 +6.3 +9.7 +11.7 +26

n(i) value is taken as that of the larger value. The reduced set of potential expansion
terms is then ranked by the ow(i) computed using the merged r(i) values.

Table 2 shows the result of using this merging approach with 20 expansion terms for
maximum edit distance values of 1, 2, 3, 4 and 5, for TR, SDR and DIR. From Table
2 it can be seen that AvP is improved for both TR and DIR compared to the results
shown in Table 1. For DIR performance clearly improves as the maximum distance is
increased to 4 characters. There is little variation between results for maximum allowed
edit distance values of 3, 4 and 5, suggesting that using a value of 4 will give good
average stability across different queries for this collection. For TR the best maximum
edit distance is 2 or 3, although any value above 1 gives very similar results. The tech-
nique does not appear to be effective for SDR; there is one AvP result above those in
Table 1, but overall there is no trend indicating improvement. Analysis of n(i) values
in the speech documents shows that very few terms in the automatic transcription have
low n(i) values and occasional misspellings are not possible, and thus as observed the
method has little scope for impact on PRF for SDR.

The success of this technique for TR and DIR can be attributed to the elimination
of highly weighted rare misrecognized terms from the feedback terms for two reasons.
First, the rank of non-relevant documents in the assumed relevant set which contain
these terms is not now promoted by addition of these highly weighted terms to the
search query. The rank of non-relevant documents may still be promoted due to the
presence of other expansion terms, but this is a general drawback of query expansion
in PRF for all media types. Second, in addition to their presence in the assumed rele-
vant document set, although rare, if their n(i) value > 1 these individual misrecognized
terms can also occur in other documents, effectively with a random distribution. These
other documents containing incorrect terms may include some or none of the original
query terms, but when the query is expanded to include the highly weighted errorful
terms, the matching score of the documents containing them can increase dramatically
relative to other documents. While these documents may be relevant to the search re-
quest, it is most likely that they will often not be relevant. Overall then for TR and
DIR the merging technique gives better estimation of ow(i) due to more accurately
calculating r(i), and prevents problems of over promotion of documents containing

Using String Comparison in Context for Improved Relevance Feedback 237

Table 3. Baseline and PRF results for indexing-time term combination (e < 4, m > 4, R1 = 5)

Media TR SDR DIR
P10 P30 AvP RelRet P10 P30 AvP RelRet P10 P30 AvP RelRet

Baseline 0.451 0.365 0.476 1601 0.492 0.328 0.406 1487 0.559 0.359 0.464 1543
Fbk 5 0.596 0.386 0.508 1598 0.533 0.359 0.434 1520 0.598 0.378 0.499 1540
chg bl. (%) +10.2 +5.8 +6.7 -3 +8.3 +9.5 +6.9 +33 +6.9 +5.3 +7.5 -3
Fbk 20 0.602 0.406 0.519 1617 0.533 0.365 0.458 1517 0.590 0.394 0.499 1600
chg. bl. (%) +11.3 +11.2 +9.0 +16 +8.3 +11.3 +12.8 +30 +5.5 +9.7 +7.5 +57

Table 4. Baseline and PRF results for indexing-time term combination (e < 4, m > 1, R1 = 10)

Media TR SDR DIR
P10 P30 AvP RelRet P10 P30 AvP RelRet P10 P30 AvP RelRet

Baseline 0.543 0.371 0.467 1568 0.498 0.335 0.414 1492 0.549 0.362 0.457 1539
Fbk 5 0.565 0.382 0.489 1573 0.535 0.366 0.451 1523 0.584 0.383 0.484 1558
chg bl. (%) +4.1 +3.0 +4.7 1614 +7.4 +9.3 +8.9 +31 +6.4 +5.8 +5.9 +19
Fbk 20 0.588 0.412 0.525 1610 0.543 0.383 0.468 1549 0.590 0.399 0.503 1580
chg. bl. (%) +8.3 +11.1 +12.4 +42 +9.0 +14.3 +13.0 +57 +7.5 +10.2 +10.1 +41

Table 5. Baseline and PRF results for indexing-time term combination (e < 4, m > 4, R1 = 10)

Media TR SDR DIR
P10 P30 AvP RelRet P10 P30 AvP RelRet P10 P30 AvP RelRet

Baseline 0.539 0.369 0.472 1555 0.494 0.335 0.412 1487 0.539 0.378 0.464 1552
Fbk 5 0.600 0.391 0.510 1555 0.553 0.366 0.467 1493 0.569 0.378 0.495 1516
chg bl. (%) +11.3 +6.0 +8.1 +0 +11.9 +8.5 +13.3 +6 +5.6 +0.0 +6.7 -36
Fbk 20 0.592 0.399 0.519 1539 0.561 0.389 0.483 1538 0.563 0.391 0.500 1591
chg. bl. (%) +9.8 +8.1 +10.0 -16 +13.5 +16.1 +17.2 +51 +4.5 +3.4 +4.5 +39

errorful terms. While effective and not requiring re-indexing of the document collec-
tion, this method imposes a potentially significant computational load at query-time. In
the next section we describe an index-time correction method using string-comparison
in context which enables standard PRF methods to be used without modification.

Index-Time Combination for Term Correction. In addition to imposing a query-
time computational load, having identified mistakes the search time technique cannot
actually correct the mistakes in the documents. Thus incorrectly transcribed words in
documents will still not match with the expanded query in the feedback retrieval run,
there is no modification to term weights in the feedback retrieval run (for example based
on correction of tf(i, j) values), and the merging must be carried out each time a word
appears in a new query.

In most cases when an incorrect word occurs in a document, we observe that it is of-
ten the case that the word appears correctly in other documents covering similar topics.
We exploit this observation to correct mistranscribed words by using correctly tran-
scribed ones in similar contexts. This procedure operates as follows.

238 A.M. Lam-Adesina and G.J.F. Jones

All individual documents are converted into queries. Each document query is then
used to query the complete original document collection. It is expected that the query
(document) will retrieve itself in rank position 1 with the next ranked documents being
closely related linguistically, and often topically. The procedure then seeks to correct
mistranscriptions in the topmost ranked document using words within a preset edit dis-
tance contained in the next R1 documents. The string-edit distance measure is used to
compare each word in the top-ranked document to all words satisfying preset criteria in
the documents ranked below them. These criteria are as follows. A candidate word must
appear≥ m times in the R1−1 documents below rank 1 (since the item at rank 1 is the
query itself), where m =

∑R1
k=2 tf(i, k) where k represents the documents containing

the candidate combination terms. We also impose the constraint that only terms with
identical first letter are allowed candidates; failure to do this was found to introduce
too many incorrect candidates. Words satisfying these constraints and within an edit
distance e are then added to the query document. The assumption being that if they are
sufficiently frequent in the context of related documents and look similar to the term
under consideration, then they are probably correct. We also explored the use of fixed
values of n(i) as the value of m, but found this to be not sufficiently discriminatory.
Incorporating the tf(i, j) rather than just binary presence/absence in m means that we
capture multiple occurrences of a candidate word string closely related to the potential
mistranscription, even if it only occurs in a very small number of documents matching
the document query. The following is a short example snippet of a document with the
inserted “corrections” shown in bold,

“ ... look at out top stories - dosabled disabled gopfer golfer casey case martin won
right drive cart case professional tnur. tour pga argued cart case gives martin unfair
advamtage ...”

It can be seen that a number of accurate corrections are made, although some errors
are made for short words, and no insertion is made for the term “advamtage” since
candidates did not appear in the closely matching documents. “Advantage” is unlikely
to be a topically specific term in this context and its appearance in related documents is
thus likely to be a matter of chance.

This technique is similar to the document expansion technique described in [16] for
SDR, but our method focuses on seeking to correct errors in individual elements of the
identified content of the documents based on their character structure rather than using
overall collection level statistics to select terms that are likely to have occurred in a
document.

Tables 3, 4 and 5 show results for index-time combination with several settings of m
and R1, where e < 4 in all cases. These values were chosen after an extensive set of
experiments with a subset of the test collection. Interestingly the value of e < 4 is the
same as that which generally works best for the query-time technique. The tables show
new baseline results which are needed since the features of the document collection
have been changed. While the new AvP baseline figures here are only marginally higher
than those in the original baseline in Table 1, results for 5 and 20 expansion terms show
improvement in all retrieval measures. The change for the PRF runs is shown relative
to the new baseline in each case. The method produces a marginal improvement for TR
relative to Table 1, but PRF is now effective for DIR, although the absolute results are

Using String Comparison in Context for Improved Relevance Feedback 239

Table 6. Index-time additions to 50 sample documents for Text, Speech and OCR collections

Text Speech OCR
Identified Potential Errors 159 168 318
Correct Additions 54 57 95
False Positives 105 111 219

slightly lower than those in Table 2 using the query-time method. Using the indexing-
time correction method there is now an improvement in retrieval performance for SDR
compared to that in Table 1. While it may appear obvious that correction of the index
file will improve retrieval effectiveness, the degree of change is not easily predictable.
As we see here, while it only produces a small change in baseline retrieval performance,
its effect on PRF is much more dramatic.

In order to explain these results more fully, we analyzed the behaviour of the cor-
rection method. We randomly selected 50 news story documents and extracted these
for each of the document sets used to generate the results in Table 5. For each doc-
ument we assessed each identified correction in the combined transcriptions. Results
of this analysis are shown in Table 6 from which it can be seen that the number of
corrections average around one per document for the Text and Speech data and two
per document for the OCR data. A high number of False Positives appear in all cases.
However, many of these are words strongly related to the correct word (e.g. “Yugoslav”
appearing in place of “Yugoslavia”, and similarly “Buddhism” for “Buddhist”) which
when stemmed will function as the correct search term. We also noted that on a number
of occasions a word is added which, while not present in the original document, proves
to be very useful for retrieval (e.g. “rifle” being combined with “right”). This last result
indicates that there may be benefit in exploring document expansion methods further
[16]. The number of corrections for the Text documents is perhaps unexpectedly high.
However, it should be remembered that these transcriptions contain spelling mistakes
and actual manual errors in transcriptions, as noted in Section 4.1.

A number of the false positives are short words unrelated to the contents of the doc-
ument, and their presence in the document index may damage retrieval effectiveness.
In order to reduce the number of false positives we imposed a further constraint on the
index used to filter out combination words with < 6 characters. The length constraint
was found to significantly reduce the number of false positives, but also the number
correct additions. In retrieval experiments it was generally found to be more effective
not to apply this length constraint, lack of space prevents us from reporting these results
here.

Combining Index-Time and Query-Time Term Combination. Table 7 shows results
of using the indexing-time combined collection from Table 5 with 20 expansion term
PRF using query-time merging. The results follow similar trends with respect to the
maximum edit distance to those in Table 2. In all cases any improvements over the re-
sults in Table 5 are very small, and absolute values are no better than those achieved for
query-time only combination in Table 2. However, the improved result for SDR in Table
5 is preserved after the query-time combination. Overall though using both methods in

240 A.M. Lam-Adesina and G.J.F. Jones

Table 7. Results using indexing-time term combination (e < 4, m > 4, R1 = 10) with 20
expansion and query-time string-comparison term merging

Media TR SDR DIR
MaxEd P10 P30 AvP RelRet P10 P30 AvP RelRet P10 P30 AvP RelRet
1 0.600 0.409 0.522 1538 0.563 0.391 0.483 1541 0.563 0.388 0.502 1598
chg bl. (%) +11.3 +10.8 +10.6 17 +14.0 +16.7 +17.2 +54 +4.5 +8.4 +8.2 +46
2 0.598 0.409 0.523 1582 0.565 0.391 0.487 1549 0.576 0.390 0.499 1563
chg.bl. (%) +10.9 +10.8 +10.8 +27 +14.4 +16.7 +18.2 +62 +6.9 +8.9 +7.5 +11
3 0.606 0.401 0.520 1604 0.561 0.388 0.482 1518 0.582 0.389 0.503 1580
chg. bl. (%) +12.4 +8.7 +10.2 +49 +13.6 +15.8 +17.0 +31 +8.0 +8.7 +8.4 +28
4 0.586 0.398 0.507 1592 0.559 0.391 0.484 1548 0.569 0.391 0.508 1568
chg. bl. (%) +8.7 +7.9 +7.4 +37 +13.2 +16.7 +17.5 +61 +5.6 +8.4 +9.5 +16
5 0.582 0.394 0.511 1575 0.559 0.393 0.488 1529 0.586 0.391 0.501 1590
chg. bl. (%) +8.0 +6.8 +8.3 +20 +13.2 +17.3 +18.4 +42 +8.7 +8.4 +8.0 +38

combination is probably not justified computationally given the small variations from
the results for the methods in isolation.

6 Conclusions and Further Work

Query-time and index-time methods have been described and evaluated using string-
comparison in context to improve PRF for text retrieval, SDR and DIR. Positive results
have been demonstrated on a parallel collection of text, speech and paper documents
based on the TREC-8 SDR task. We are currently exploring the use of our document
correction method for the CLEF speech retrieval task based on oral testimonies [6].
Following the promising results for text retrieval in this paper, we also intend to explore
the application of these query and document combination techniques for term correction
on larger text retrieval tasks. Preliminary results using the query-time method with the
TREC-7 ad hoc search task indicate that it gives an improvement over results achieved
using our standard information retrieval with PRF system. We believe that the results
and methods described here easily extend to true relevance feedback, and we aim to
demonstrate this in further work.

While our results so far are very encouraging, we can expect them to improve further
if the correction methods are made more reliable. At present these make no formal use
of linguistic context or data from the recognition process. A possible means to improve
the correction methods accuracy could be to make use of statistical language models to
give a quantitative measure of the likelihood of a potential correction term appearing in
a particular place within a document, and the recognition likelihood data from speech
recognition or OCR, or a statistical estimate of likely character string substitutions in
combination with string-edit distance measures. Interesting methods using content cor-
rection techniques of this type have previously been reported in [17] [18].

Finally, we plan to explore the application of the results of this study for alternative
information retrieval approaches such as query expansion when using language mod-
elling methods.

Using String Comparison in Context for Improved Relevance Feedback 241

References

[1] A. M. Lam-Adesina and G. J. F. Jones. Examining and Improving the Effectiveness of
Relevance Feedback for Retrieval of Scanned Text Documents. Information Processing
and Management, 43(3):633–649, 2006.

[2] trec.nist.gov
[3] ir.nist.gov/ria/
[4] J. S. Garafolo, C. G. P. Auzanne and E. M. Voorhees. The TREC Spoken Document Re-

trieval Track: A Success Story. In Proceedings of the RIAO 2000 Conference: Content-
Based Multimedia Information Access, pages 1–20, Paris, 2000.

[5] S. E. Johnson, P. Jourlin, K. Sparck Jones and P. C. Woodland. Spoken Document Re-
trieval for TREC-8 at Cambridge University. In Proceedings of the Eighth Text REtrieval
Conference (TREC-9), pages 157–168, Gaithersburg, MD, 2000. NIST.

[6] R. W. White, D. W. Oard, G. J. F. Jones, D. Soergel and X. Huang. Overview of the
CLEF-2005 Cross-Language Speech Retrieval Track. In Proceedings of the CLEF 2005
Workshop, Vienna, 2005.

[7] P. B. Kantor and E. M. Voorhees. The TREC-5 Confusion Track: Comparing Retrieval
Methods for Scanned Text. Information Retrieval, 2:165–176, 2000.

[8] K. Taghva, J. Borsack, and A. Condit. Evaluation of Model-Based Retrieval Effectiveness
with OCR Text. ACM Transactions on Information Systems, 14(1):64–93, 1996.

[9] G. J. F. Jones and A. M. Lam-Adesina. An Investigation of Mixed-Media Information
Retrieval. In Proceedings of the 6th European Conference on Research and Development
for Digital Libraries, Rome, pages 463–478, 2002, Springer.

[10] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu and M. Gatford. Okapi at
TREC-3. In Proceedings of the Third Text REtrieval Conference (TREC-3), pages 109–126.
NIST, 1995.

[11] A. M. Lam-Adesina and G. J. F. Jones. Applying Summarization Techniques for Term
Selection in Relevance Feedback. In Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1–9, New
Orleans, 2001. ACM.

[12] C. Auzanne, J. S. Garafolo, J. G. Fiscus and W. M. Fisher. Automatic Language Model
Adaptation for Spoken Document Retrieval. In Proceedings of the RIAO 2000 Conference:
Content-Based Multimedia Information Access, pages 1–20, Paris, 2000.

[13] G. J. F. Jones and M. Han. Information Retrieval from Mixed-Media Collections: Report
on Design and Indexing of a Scanned Document Collection. Technical Report 400, Depart-
ment of Computer Science, University of Exeter, January 2001.

[14] E. Mittendorf and P. Schauble. Information Retrieval can Cope with Many Errors. Infor-
mation Retrieval, 3:189–216, 2000.

[15] J. Zobel and P. Dart. Phonetic String Mathing: Lessons from Information Retrieval. In
Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Zurich, pages 30–38, 1996, ACM.

[16] A. Singhal and F. C. N. Pereira. Document Expansion for Speech Retrieval. In Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Berkeley, pages 34–41, 1999, ACM.

[17] X. Tong and D. Evans. A Statistical Approach to Automatic OCR Error Correction in
Context. In Proceedings of the Fourth Workshop on Very Large Corpora, Copenhagen,
pages 88–100, 1996.

[18] K. Collins-Thompson, C. Schweizer and S. Dumais. Improved String Matching Under
Noisy Channel Conditions. In Proceedings of the Tenth International Conference on Infor-
mation and Knowledge Management (CIKM 2001), Atlanta, pages 357–364, 2001, ACM.

A Multiple Criteria Approach
for Information Retrieval

Mohamed Farah and Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France
{farah, vdp}@lamsade.dauphine.fr

Abstract. Research in Information Retrieval shows performance im-
provement when many sources of evidence are combined to produce a
ranking of documents. Most current approaches assess document rele-
vance by computing a single score which aggregates values of some at-
tributes or criteria. We propose a multiple criteria framework using an
aggregation mechanism based on decision rules identifying positive and
negative reasons for judging whether a document should get a better
ranking than another. The resulting procedure also handles imprecision
in criteria design. Experimental results are reported.

Keywords: Information Retrieval, Relevance, Multiple Criteria.

1 Introduction

Information Retrieval (IR) is concerned with situations where a user, having
information needs, performs queries on a collection of documents to find a limited
subset of the most relevant ones. In the literature, a wide range of models have
been proposed to rank documents according to their relevance to queries. They
result in different rankings depending on the way they define relevance. In fact,
relevance is reflected by the sources of evidence that are considered, as well as
the way they are combined.

Most of the current approaches assess document relevance by computing a sin-
gle score which aggregates values of elementary attributes related to the query
terms, the document or the relationship between these two entities. For instance,
in the Vector Space Model [1], the Okapi BM25 probabilistic model [2] as well as
language models [3], term frequency (tf), document frequency (df) and document
length (dl) are the main attributes which come into play. These attributes are
combined in the term weighting formulation which corresponds to a first aggre-
gation phase. The resulting scores are in turn considered to compute document
relevance status value (rsv) to queries, as a second aggregation phase.

With the advent of hypertext collections, such as the Web, attributes charac-
terizing the hyperlink structure are considered and led to link-based measures
such as Kleinberg’s HITS scores [4] and PageRank scores [5].

All these text- and link-based attributes can be combined to get better per-
formance. A variety of aggregation operators have been used such as the min

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 242–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Multiple Criteria Approach for Information Retrieval 243

and max operators in [6] or the weighted linear operator in [7]. Other aggrega-
tion operators include similarity-based measures [8], P-norms [9], or fuzzy-logic
conjunctive and disjunctive operators [10].

In some cases, aggregation is performed in two stages. In the first stage, text-
based attributes are combined to get scores of documents. In the second stage,
the resulting top ranked documents are re-ordered according to link information
by using techniques such as spreading activation or probabilistic argumenta-
tion [11]. Thus, these approaches do not explicitly use link-attributes.

Each aggregation operator conveys a specific aggregation logic which reflects
the degree of compensation we are ready to accept. In the IR literature, two
main classes of operators are in use. The first class corresponds to a totally
compensatory logic. It consists of building a single score using a more or less
complex operator such as the weighted sum. For such operators, a very bad
score on one criterion can be compensated by one or several good scores on
other criteria. These operators require inter-criteria information such as weights,
which are sometimes difficult to define and interpret. Indeed, these weights aim
at capturing at the same time the relative importance of criteria but also a
normalization factor when criteria are expressed on different scales.

The second class corresponds to a non compensatory logic. In this case, ag-
gregation is mainly based on one criterion value such as the worst score or
the score of the most important criterion. The remaining criteria are only used
to discriminate documents with similar scores. This gives rise to min-based or
lexicographic-based operators, variations of which are the discrimin and leximin
operators [12]. A clear weakness of this class of operators is that a large part of
the scores is ignored or plays a minor role.

In both classes, we do not consider imprecision underlying criteria design re-
sulting from the fact that there are many formulations of the same criterion
(see, e.g., [13] where four alternative formulations of the tf criterion are pro-
posed). Therefore, it is important to give a limited interpretation to values, i.e.,
we should consider that slight differences in values are often not meaningful.
This way, the resulting rankings are more robust.

In this paper, we propose a multiple criteria framework which combines any
set of criteria while taking into consideration the imprecision underlying the
criteria design process. We put emphasis on the importance of the design of
good criteria families capturing complementary aspects of relevance and give
clues to the design of such families. We describe ranking procedures based on
natural decision rules.

The paper is organized as follows. We first introduce the multiple criteria
framework where we describe the overall approach and its component phases
(Section 2). Then, we highlight some specificities of the IR problem which are
addressed in the proposed approach (Section 3). Section 4 deals with the mod-
eling phase which consists in designing a set of relevance criteria. We present
in Section 5, a filtering procedure whose purpose is to obtain a reduced set of
potentially relevant documents. Section 6 shows how to aggregate such criteria

244 M. Farah and D. Vanderpooten

and build the final ranking. We report experimental results in Section 7 and
provide conclusions in a final section.

2 A Multiple Criteria Framework for IR

Many studies argued that the reason why no consensus has been reached on the
relevance concept is that there are many kinds of relevance, not just one (see
e.g., [14]). Moreover, different sources of evidence are contributing to capture the
relevance concept. Therefore, being able to make effective use of these sources
of evidence can significantly improve retrieval effectiveness.

We propose a formal approach for IR where relevance is explicitly defined
as multidimensional (by a set of criteria) and ranking is derived from pairwise
comparisons of document performance vectors (document profiles) using decision
rules identifying positive and negative reasons for judging whether or not a
document should get a better ranking than another. The overall approach can
be split into four phases:

– The modeling phase consists in identifying various attributes affecting rele-
vance. These factors are used to develop a set of appropriate decision criteria
which model different aspects of relevance. Each criterion will give rise to a
partial preference relation (binary relation) modeling the way two documents
are compared, according to that criterion.

– The filtering phase aims at identifying the set of potentially relevant docu-
ments with respect either to the query structure or to the criteria family. In
the first case, a boolean filter selects documents that match query terms and
query formula. In the second case, a profile-based filter selects documents
that satisfy an acceptance profile defined by minimal required values on some
or all criteria.

– The aggregation phase aggregates partial preference relations derived from
pairwise comparisons of documents with respect to each criterion, into one or
more global preference relations. A global preference relation indicates how
two documents are compared with respect to all the considered criteria.

– The exploitation phase processes global preference relations resulting from
the previous phase in order to derive the final ranking.

The last two phases correspond to the ranking phase.
It is worth noting that the proposed method is collection- and representation-

independent to some extent. It can thus be used for any type of collection and
combined with the best representation available. In fact, the context is mainly
considered in the modeling phase in order to devise relevant criteria families.

3 Specificities of the IR Problem

The IR problem can be considered as a multiple criteria decision problem when
we explicitly consider the multidimensional nature of relevance. Nevertheless, it
has some particularities that have an impact on the modeling phase as well as
on the aggregation and exploitation phases.

A Multiple Criteria Approach for Information Retrieval 245

3.1 Specificities for the Modeling Phase

Specificity 1: Two kinds of criteria need to be considered to assess documents
relevance: query-dependent and query-independent criteria.

Query-dependent criteria measure semantic proximity between documents
and queries and are derived from factors about the form of occurrences of query
terms in the document and the collection. Examples of such factors are term
frequency (tf) and document frequency (df).

The evaluation of query-dependent criteria depends on the structure of the
query. In fact, we should distinguish one-term queries from multi-terms queries.
Some criteria are only relevant in the second case. Moreover, for multi-terms
queries, two evaluation levels are required: (i) evaluation for each term of the
query, and (ii) aggregation of these evaluations. Therefore, the design of such
criteria deserves thorough analysis. This is addressed in Section 4.1.

Query-independent criteria mainly refer to characteristics of the document
and the collection. They can be evaluated independently of the query. Examples
of such criteria are document length (dl) and PageRank. We need such criteria
to better help discriminating between documents. In fact, the query frequently
consists of two or three terms in average, and this cannot be sufficient to rank
thousands or millions of documents.

Specificity 2: Criteria can play different roles depending on which phase they
are used in. In the filtering phase, they are primarily used to build acceptance
profiles which help separating potentially relevant documents. In the ranking
phase, they are used for pairwise comparisons.

3.2 Specificities for the Ranking Phase

Specificity 3: Criteria to be used to establish relevance are not specified by the
user. They are rather based on factors evidenced to best capture relevance by the
IR community. Consequently, it is difficult to get precise preference information
regarding their relative importance. In this case, we assume that each criterion
is neither prevailing nor negligible and use appropriate ranking procedures.

Specificity 4: The query is too poor to justify a precise ranking of documents.
One can expect that many of the ‘most relevant’ documents should be present
in the head of the ranking, but their exact ranking is meaningless. This can also
be justified in terms of users behavior when interacting with the results pages
of search engines. In fact, research in eye-tracking analysis of users behavior has
shown that once users have started scrolling, rank becomes less of an influence
for attention (see, e.g., [15]). Therefore, even if a ranking is a handy way to
present results, its significance should not be overemphasized.

4 Modeling Phase

A criterion is the basis of relative relevance judgments as to whether a document
is more or less relevant than some other document. It is modeled by a real-valued

246 M. Farah and D. Vanderpooten

function g defined on the set of documents which aims at comparing any pair of
documents d and d′, on a specific point of view, as follows:

g(d) ≥ g(d′) ⇒ d ‘is at least as relevant as’ d′

Many formulations of each criterion are possible. Therefore, we should not
overemphasize the criterion scores of documents. We briefly discuss two im-
portant issues in the modeling phase.

4.1 Evaluation of Query-Dependent Criteria

To build some query-dependent criteria, such as the tf -like criterion, we need to
make a clear distinction between one-term and multi-terms queries. For one-term
queries, criteria building has no specific difficulties, but to deal with multi-terms
queries, i.e. conjunctive and/or disjunctive queries, we can proceed in two steps:

– build a sub-criterion corresponding to each term of the query. Each literal
of the query formula can therefore be evaluated accordingly,

– select an aggregation operator corresponding to each query-type (conjunctive
query, disjunctive query or a combination of both). This sub-aggregation step
aggregates homogeneous partial measures derived from the previous step.

Since elements being aggregated in the sub-aggregation step are homogeneous,
we can use analytic aggregation operators like conjunctive, disjunctive or com-
pensatory operators [10], depending on the aggregation logic we wish to use and
on the interpretation given to the juxtaposition of terms.

4.2 Modeling Imprecision

It is often inadequate to consider that slight differences in evaluation should give
rise to clear-cut distinctions. This is particularly true when different formulations
of criteria are acceptable. Imprecision underlying criteria design can be modeled
using the following discrimination thresholds [17]:

– An indifference threshold allows for two close-valued documents to be judged
as equivalent although they do not have exactly the same score on the crite-
rion. The indifference threshold basically draws the boundaries between an
indifference and a preference situation.

– A preference threshold is introduced when we want or need to be more precise
when describing a preference situation. Therefore, it establishes the bound-
aries between a situation of a strict preference and an hesitation between an
indifference and a preference situations, namely a weak preference.

A criterion gj , having indifference and preference thresholds, qj and pj respec-
tively (pj ≥ qj ≥ 0), is called a pseudo-criterion. Comparing two documents d

A Multiple Criteria Approach for Information Retrieval 247

and d′ according to a pseudo-criterion gj leads to the following partial preference
relations:

dIjd
′ ⇔ −qj ≤ gj(d)− gj(d′) ≤ qj

dQjd
′ ⇔ qj < gj(d)− gj(d′) ≤ pj

dPjd
′ ⇔ gj(d)− gj(d′) > pj

where Ij , Qj and Pj represent respectively indifference, weak preference and
strict preference relations restricted to criterion gj. These 3 relations could be
grouped into an outranking relation Sj = (Ij ∪ Qj ∪ Pj) such that dSjd

′ ⇔
gj(d)− gj(d′) ≥ −qj which corresponds to the assertion d ‘is as least as relevant
as’ d′ with respect to the aspects covered by criterion gj.

To model situations where a very low score of a document d′ with respect
to d, according to some criterion gj , cannot be compensated by good score on
one or several other criteria, we use a veto threshold vj (vj ≥ pj) and define the
following veto relation Vj : dVjd

′ ⇔ gj(d) − gj(d′) > vj . In this case, d′ cannot
be considered as ‘at least as relevant as’ d.

5 Filtering Procedure

In this section, we show how it is possible to get the top k best relevant documents
using acceptance profiles. In fact, acceptance profiles draw boundaries between
two sets of documents: the first set consists of documents that can be considered
better than the acceptance profile, and the second set consists of documents that
can be considered worse than the acceptance profile. Different procedures can be
used to obtain the top k best relevant documents. We give one such procedure.

Suppose that we have a set D of n documents, possibly resulting from the
application of a first boolean filter, and we need to retain only the top k best
documents, using an acceptance profile, i.e. acceptance thresholds aj on each
criterion gj . The problem is to define these values aj (j = 1, . . . , p) such that
the set of acceptable documents A = {d ∈ D|gj(d) ≥ aj (j = 1, . . . , p)} has
an approximate cardinality of k. A simple way of setting and adjusting values
aj (j = 1, . . . , p) is to adjust a single parameter α corresponding to a percentile
used on all criteria scales. In this case, aj is such that a proportion (1−α) of the
n documents satisfy gj(d) ≥ aj and a proportion α of the n documents satisfy
gj(d) < aj . Considering that we want to apply the same percentile to all criteria,
and we aim at retaining a proportion of k

n of documents from D, α can be set

to an initial value of 1− p

√
k
n . Using a dichotomic procedure, α can be adjusted

so as to obtain the required size for the filtered set A.

6 Ranking Procedure

In order to get a global relevance model on the set of documents, we use out-
ranking approaches [18], which are quite appropriate regarding the specificities
of Section 3.2 and are based on a partial compensatory logic. They consist of two
phases: an aggregation phase and an exploitation phase.

248 M. Farah and D. Vanderpooten

6.1 Aggregation Phase

Outranking approaches take as input the partial preference relations induced by
the criteria family and aggregate them into one or more global preference rela-
tion(s) S. They are particularly relevant in our context since they (i) permit con-
sidering imprecision in document evaluations, (ii) can handle criteria expressed
on heterogeneous scales, (iii) use all the available information on document per-
formances, and (iv) do not necessarily require inter-criteria information.

In order to accept the assertion dSd′, stating that ‘document d is at least as
relevant as document d′’, the following conditions should be met:

– a concordance condition which ensures that a majority of criteria are con-
cordant with dSd′ (majority principle).

– a discordance condition which ensures that none of the discordant criteria
strongly refutes dSd′ (respect of minorities principle).

In this paper, we suppose that there is no information on the relative impor-
tance of criteria. In this case, to accept the assertion dSd′, we use decision rules
based on the criteria supporting (positive reasons) or refuting (negative reasons)
this assertion. Obviously, the rules for defining this support may be more or less
demanding, resulting in different outranking relations. For example, let

– F = {g1, . . . , gp} be a family of p criteria,
– H be a global preference relation, where H is P , Q, I, V or S,
– H− be a relation such that dH−d′ ⇐⇒ d′Hd,
– Hj be a partial preference relation, i.e. restricted to criterion gj,
– C(dHd′) = {j ∈ F : dHjd

′} be the concordance coalition of criteria in favor
of establishing dHd′, and

– c(dHd′) the number of items in C(dHd′)

A candidate outranking relation is:

dS1d′ ⇔ C(dSd′) = F (1)

which is a well established, but usually poor, relation since it only holds if all
the criteria are concordant with dSd′.
We can also use less demanding outranking relations such as:

dS2d′ ⇔ c(dPd′) ≥ c(dP− ∪Q− d′) and C(dV −d′) = ∅ (2)

To accept dS2d′, there should be more criteria concordant with dPd′ than
criteria supporting a strict or weak preference in favor of d′. At the same time,
no discordant criterion should strongly disagree with this assertion.

6.2 Exploitation Phase

Outranking relations are not necessarily transitive and do not lend themselves
to immediate exploitation to get the final ranking. Therefore, we need exploita-
tion procedures in order to derive the final document ranking. We propose the

A Multiple Criteria Approach for Information Retrieval 249

following procedure which finds its roots in [19]. It consists in partitioning the
set of documents into r ranked classes where each class Ch contains documents
with the same score. This is coherent with specificity 4 of Section 3.2. Let

– R be the set of potential relevant documents for a query,
– Fi(d, E) = card({d′ ∈ E : dSid′}) be the number of documents in E(E ⊆ R)

that could be considered ‘worse’ than d according to the global relation Si,
– fi(d, E) = card({d′ ∈ E : d′Sid}) be the number of documents in E that

could be considered ‘better’ than d according to Si,
– si(d, E) = Fi(d, E)− fi(d, E) be the qualification of d in E according to Si.

Each class Ch results from a distillation process. It corresponds to the last
distillate of a series of sets E0 ⊇ E1 ⊇ . . . where E0 = R \ (C1 ∪ . . .∪Ch−1) and
Ei is a reduced subset of Ei−1 resulting from the application of the following
procedure:

1. compute for each d ∈ Ei−1 its qualification according to Si, i.e. si(d, Ei−1),
2. choose smax = maxd∈Ei−1{si(d, Ei−1)}, then
3. Ei = {d ∈ Ei−1 : si(d, Ei−1) = smax}

When one outranking relation is used, the distillation process stops after the
first application of the previous procedure, i.e., Ch corresponds to distillate E1.
When different outranking relations are used, the distillation process stops when
all the pre-defined outranking relations have been used or when card(Ei) = 1.

7 Experiments and Results

7.1 Test Setting

To facilitate empirical investigation of the proposed methodology, we developed
a prototype search engine, named WIRES, that implements a preliminary ver-
sion of our multiple criteria approach. In this paper, we apply our approach to
the Topic Distillation (TD) task of TREC-13 Web track [20]. In this task, there
are 75 topics where only a short description of each is given. For the experi-
ments, we translated each topic to a conjunctive query following most search
engine strategies. We have built an inverted index of the ‘.GOV’ TREC test col-
lection where we consider word stems as index terms using the Porter stemming
algorithm and discard common english stopwords. We also used the hyperlink
structure of this collection to build link-based criteria.

At a first level, we had to define the set F of criteria, for which we used the
following elementary features which are the main factors used in the literature:

– tfk : frequency of term tk in document d,
– dfk : number of documents the term tk occurs in,
– max tf : maximum frequency tfk of all terms tk ∈ d,
– lk,a : a binary value which equals 1 if term tk occurs in location La and 0

otherwise. The considered locations are the URL (L1), the title (L2), the
keywords tag (L3) and the description tag (L4),

250 M. Farah and D. Vanderpooten

– Γ−(d) : set of incoming hyperlinks to d,
– Child(d) : set of children documents of d. Document d′ is in Child(d) if it

appears in a lower hierarchical level than d according to their site map,
– prox : proximity of query terms in document d. It corresponds to the size

(number of terms) of the smallest text excerpt from the document that
contains all the query terms. It equals 0 if not all the query terms are in d,

– ql : query length, i.e. the number of terms of the query,
– dl : document length, and
– depth(d) : depth of the URL of d, which is the number of intermediary sub-

directories between document d and the root of its corresponding site map.

Based on these features, we defined the following candidate criteria:

– Frequency : For one-term queries (i.e. q = tk), g1(d, tk) = tfk

max tf

– Position : For one-term queries, g2(d, tk) =
∑4

a=1 lk,a

– Authority : g3(d) = card(Γ−(d))
– Prominence : g4(d) = card(Child(d))
– Proximity : g5(d) = ql

prox if prox �= 0, and 0 otherwise
– Document length : g6(d) = dl(d))
– Rareness : For one-term queries, g7(d, tk) = dfk

For multi-terms queries, we used the average operator.
It is worth noting that the concrete choice of the features as well as the

criteria family should be monitored to best correspond to the specific application
context. For our experiments, we focused on features which capture the major
well-known IR evidences. The exact definition of each criterion tries to capture
intuitive preferences but remains somewhat arbitrary, thus we considered simple
formulations, but more refined formulations can be used too.

In the TD task, a successful relevance ranking should favour ‘good entry
points’ although they could contain little detailed information. This is captured
by the prominence criterion (g4).

For evaluation, we used the ‘trec eval’ standard tool which is used by the
TREC community to calculate the standard measures of system effectiveness
which are Average precision (AvP), R-precision (R-p), Reciprocal rank (r-r) and
Success@n (S@n) (see, e.g., [20]).

Our approach effectiveness is compared against some high performing official
results from TREC-13 using the paired t-test which is shown to be highly reliable
(more than the sign or Wilcoxon tests) according to [21]. In the experiments,
significance testing is mainly based on the t-student statistic which is computed
on the basis of the AvP values of the compared runs. In the tables of the following
section, we have marked with an asterisk statistically significant differences.

7.2 Results

With the criteria described before, we performed several retrieval runs. In the
first set of runs, we rank documents according to each criterion and report per-
formances in Table 1. We aim at showing which criteria are really relevant for
the TD task.

A Multiple Criteria Approach for Information Retrieval 251

Table 1. Performances of mono-criterion runs

Run Id AvP R-p r-r S@1 S@5 S@10 ∆-AvP

prominence 12.37% 16.15% 46.42% 29.33% 74.67% 85.33% –
authority 9.27% 10.41% 31.68% 18.67% 44.00% 57.33% -25.03%*
position 7.30% 6.66% 21.62% 12.00% 29.33% 42.67% -40.99%*
frequency 7.01% 6.49% 16.44% 6.67% 24.00% 37.33% -43.36%*
random 3.17% 2.42% 9.90% 4.00% 10.67% 22.67% -74.40%*
proximity 2.78% 2.14% 4.73% 0.00% 6.67% 9.33% -77.56%*
rareness 2.27% 1.00% 4.24% 1.33% 2.67% 9.33% -81.65%*
length 1.76% 0.22% 2.19% 0.00% 2.67% 2.67% -85.74%*

Table 1 shows that the run with the prominence criterion (g4) performs signif-
icantly better than the others. Runs carried out with the first 4 criteria perform
significantly better than runs carried out with the last 3. Moreover, the random
run random performs better than the same 3. Therefore document length (g5),
proximity (g6), and rareness (g7) do not play an important role for the TD task.

In the second set of runs, we only considered the best four criteria, i.e. criteria
g1–g4. In our baseline run (mcm), the set R of potentially relevant documents is
obtained in two stages: we first use the boolean filter to identify a first set A which
is then extended to a set A+ that includes each document pointing to at least
2 documents in A. Many of the added documents should, in fact, correspond to
good entry points to relevant sites. In the aggregating procedure of Section 6.1,
each criterion is supposed to be a pseudo-criterion where indifference, preference
and veto thresholds are set to 20%, 60% and 90%, respectively. These thresholds
are set after some tunings carried with respect to TREC-12 Web track TD
topics. We suppose that there is no information on the relative importance of
criteria and use the outranking relation S2 of (2). We implement the exploitation
procedure of Section 6.2.

We now try to catch the impact of profile filtering on performance using the
procedure presented in Section 5 which allows us to get a reasonably small set R
of documents. We carried out some runs where we tried to get different numbers
of filtered documents : for each run mcm-filter-x, x corresponds to the number
of the filtered documents.

Table 2 shows that mcm-filter-x runs differs only with respect to AvP and
R-p. All the other measures remain the same. This is because all these runs have

Table 2. Impact of filtering procedure

Run Id AvP R-p r-r S@1 S@5 S@10 ∆-AvP

mcm 17.08% 18.37% 58.04% 45.33% 74.67% 81.33% –
mcm-filter-1000 17.00% 18.37% 58.04% 45.33% 74.67% 81.33% -0.46%
mcm-filter-800 16.83% 18.37% 58.04% 45.33% 74.67% 81.33% -1.45%
mcm-filter-500 16.52% 18.34% 58.04% 45.33% 74.67% 81.33% -3.26%
mcm-filter-50 15.65% 18.40% 58.04% 45.33% 74.67% 81.33% -8.35%*

252 M. Farah and D. Vanderpooten

the same ranking at the top. When we filter 50 documents, performance decreases
rather significantly, whereas considering the R-p measures, performance slightly
increases. Performances do not significantly decrease with respect to those of
mcm when we filter 1000, 800 or 500 documents. We can conclude that filtering
is beneficial for IR since it considerably reduces the size of the set of documents
to be compared in the ranking procedure, and at the same time, it does not lead
to significant performance drop.

We compare now our basic run mcm with other aggregation strategies.

Table 3. Different aggregation strategies

Run Id AvP R-p r-r S@1 S@5 S@10 ∆-AvP

mcm 17.08% 18.37% 58.04% 45.33% 74.67% 81.33% –
max 8.02% 7.70% 21.40% 8.00% 33.33% 50.67% -53.02%*
min 10.74% 12.91% 47.20% 32.00% 70.67% 77.33% -37.13%*
prod 12.06% 14.02% 53.66% 37.33% 74.67% 80.00% -29.41%*
sum 13.45% 14.37% 51.78% 36.00% 66.67% 82.67% -20.73%*

In Table 3, we report performances of four aggregation operators which are
max, min, sum and product operators. For these runs, documents performances
are normalized so that they range in the [0, 1] interval. The best performing run
is the sum run, but its performances are significantly worse than those of mcm.
This shows that a total compensatory logic (e.g., sum and prod runs) as well as
a non compensatory logic (e.g., max and min runs) perform worse than a partial
compensatory logic (e.g., mcm run) using outranking approaches for example.

We end this section by reporting performances of the official runs from TREC-
13 [20] and compare our approach accordingly.

Table 4. Performance comparison with official runs

Run Id AvP R-p r-r S@1 S@5 S@10 ∆-AvP

mcm 17.08% 18.37% 58.04% 45.33% 74.67% 81.33% –
uogWebCAU150 17.91% 20.30% 62.57% 50.67% 77.33% 89.33% +4.84%
MSRAmixed1 17.80% 20.45% 52.79% 38.67% 72.00% 88.00% +4.18%
MSRC04C12 16.45% 19.07% 53.39% 38.67% 74.67% 80.00% -3.68%
humW04rdpl 16.28% 19.72% 55.31% 37.33% 78.67% 90.67% -4.68%
THUIRmix042 14.66% 16.65% 39.54% 21.33% 58.67% 74.67% -14.17%*
average 10.53% 12.84% 36.58% 23.87% 51.50% 61.82% -38.37%*
median 11.52% 14.64% 39.99% 25.33% 58.00% 69.33% -40.86%*

In Table 4, we first report performances of the best runs of the first five
teams which participated to the track. Then, we computed average and median
performances of all the submitted runs. From this table, we can see that mcm

A Multiple Criteria Approach for Information Retrieval 253

has similar performances compared to those of the best ones. Moreover, mcm
performs significantly better than the average or the median runs.

8 Conclusions

In this paper, we propose a multiple criteria framework for evidence combination
where a set of candidate relevance criteria are proposed and used to determine
how documents should be ranked using a set of decision rules.

From the first TREC experiments, this work seems to have the potential for
high impact in the field of IR, given the possible application of evidence combi-
nation. It presents the advantage that it is applicable whatever is the collection
under consideration provided that a pertinent criteria family is used. It also over-
comes criteria heterogeneity problems by using a set of decision rules which are
easy to grasp. Moreover, the proposed approach easily helps considering domain
and context specific criteria in a natural way, rather than using complex formula
which are difficult to interpret.

Approaches from multiple criteria decision theory, and especially outranking
approaches, are generally used as an aid for decision makers. In the TREC
context, there are various assessors judging documents with different and even
conflicting preferences. This is the main explanation why it seems to be difficult
to have significantly better performances. At the same time, we can outline an
advantage of the proposed approach since we can easily carry out the study from
the user perspective by setting a criteria family according to his/her preferences,
giving rise to a personalized and valuable aid.

Future work will consist of additional experiments to strengthen the results.
More specifically, applying our method in a human centered context would be
an interesting extension of our work.

References
1. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.

Commun. ACM 18(11) (1975) 613–620
2. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi

at trec-3. In: Proc. of TREC-3, Gaithersburg, Maryland, USA (1994)
3. Gao, G., Nie, J.Y., Bai, J.: Integrating word relationships into language models. In:

SIGIR ’05: Proc. of the 28th int. conf. on Research and development in information
retrieval, New York, ACM Press (2005) 298–305

4. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5) (1999) 604–632

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: WWW7: Proc. of the 7th int. conf. on World Wide Web, Amsterdam, The
Netherlands, Elsevier (1998) 107–117

6. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Proc. of TREC-3,
Gaithersburg, Maryland, USA, NIST (1994)

7. Craswell, N., Robertson, S., Zaragoza, H., Taylor, M.: Relevance weighting for
query independent evidence. In: SIGIR ’05: Proc. of the 28th int. conf. on Research
and development in information retrieval, New York, ACM Press (2005) 416–423

254 M. Farah and D. Vanderpooten

8. Frakes, W., Baeza-Yates, R.: Information Retrieval: Data Structures and Algo-
rithms. Prentice Hall (1992)

9. Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun.
ACM 26(11) (1983) 1022–1036

10. Dubois, D., Prade, H.: Criteria aggregation and ranking of alternatives in the
framework of fuzzy set theory. In Zimmermann, H., Zadeh, L., Gaines, B., eds.:
Fuzzy Sets and Decision Analysis. North-Holland, (1984) 209–240

11. Savoy, J., Rasolofo, Y.: Report on the trec-9 experiment: Link-based retrieval and
distributed collections. In: Proc. of TREC-9, Gaithersburg, USA, NIST (2001)

12. Boughanem, M., Loiseau, Y., Prade, H.: Rank-ordering documents according to
their relevance in information retrieval using refinements of ordered-weighted aggre-
gations. In: AMR05, 3rd int. workshop on Adaptive multimedia retrieval, Glasgow,
UK, Springer-Verlag (2005)

13. Anh, V.N., Moffat, A.: Vector space ranking: Can we keep it simple? In: Proc. of
the Australian document computing symposium, Sydney (2002) 7–12

14. Borlund, P.: The concept of relevance in IR. J. Am. Soc. Inf. Sci. Technol. 54(10)
(2003) 913–925

15. Granka, L.A., Joachims, T., Gay, G.: Eye-tracking analysis of user behavior in www
search. In: SIGIR ’04: Proc. of the 27th int. conf. on Research and development in
information retrieval, New York, ACM Press (2004) 478–479

16. Shannon, C.E.: Prediction and entropy of printed english. Bell Systems Technical
Journal 30 (1951) 50–64

17. Roy, B.: Main sources of inaccurate determination, uncertainty and imprecision.
Mathematical and Computer Modelling 12(10-11) (1989) 1245–1254

18. Roy, B.: The outranking approach and the foundations of ELECTRE methods.
Theory and Decision 31 (1991) 49–73

19. Roy, B., Hugonnard, J.: Ranking of suburban line extension projects on the Paris
metro system by a multicriteria method. Transp. Research 16A(4) (1982) 301–312

20. Craswell, N., Hawking, D.: Overview of the trec-2004 web track. In: Proc. of
TREC-2004, Gaithersburg, Maryland, USA, NIST (2004)

21. Sanderson, M., Zobel, J.: Information retrieval system evaluation: effort, sensitiv-
ity, and reliability. In: SIGIR ’05: Proc. of the 28th int. conf. on Research and
development in information retrieval, New York, ACM Press (2005) 162–169

English to Persian Transliteration

Sarvnaz Karimi, Andrew Turpin, and Falk Scholer

School of Computer Science and Information Technology
RMIT University, GPO Box 2476V, Melbourne 3001, Australia

{sarvnaz, aht, fscholer}@cs.rmit.edu.au

Abstract. Persian is an Indo-European language written using Ara-
bic script, and is an official language of Iran, Afghanistan, and Tajik-
istan. Transliteration of Persian to English—that is, the character-by-
character mapping of a Persian word that is not readily available in a
bilingual dictionary—is an unstudied problem. In this paper we make
three novel contributions. First, we present performance comparisons of
existing grapheme-based transliteration methods on English to Persian.
Second, we discuss the difficulties in establishing a corpus for studying
transliteration. Finally, we introduce a new model of Persian that takes
into account the habit of shortening, or even omitting, runs of English
vowels. This trait makes transliteration of Persian particularly difficult
for phonetic based methods. This new model outperforms the existing
grapheme based methods on Persian, exhibiting a 24% relative increase
in transliteration accuracy measured using the top-5 criteria.

1 Introduction

Translating words of a text from a source language into a different target lan-
guage can be efficiently achieved using a bilingual vocabulary, where every source
word has a counterpart in the target language. In practice, however, there are
often out-of-vocabulary (OOV) words that do not appear in the source dictio-
nary. This is particularly common for proper nouns such as company, people,
place and product names. In these cases transliteration must occur, where the
OOV word is spelled out in the target language using character based methods.

Automatic transliteration of English OOV words has been studied for several
languages, including Arabic [1], Korean [7,12], Chinese [14], Japanese [2,8,12],
and the romantic languages [10,13]. Transliteration between English and Persian
has not been previously studied.

Persian, also known as Farsi, is one of the oldest Indo-European languages,
and is the official language of Iran, Afghanistan, and Tajikistan. Unlike many
of the Indo-European languages (for example, English) it is not written in the
Latin/Roman alphabet, but uses the same script as Arabic, with four additional
characters: �� , �� , ��, �. So while at first glance it may seem that translitera-
tion techniques that work for Arabic should work for Persian, the roots of the
two languages are very different, and the phonetic interpretation of the Arabic
script differs between the two languages. For example, �� and � are pronounced

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 255–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

256 S. Karimi, A. Turpin, and F. Scholer

differently in Arabic, but both are pronounced as “t” (as in “Peter”) in Persian.
If an Arabic name is being written in Persian, it is more likely that � be pre-

ferred to ��; for words from other languages, authors may have an independent

preference for either �� or �, as they convey the same phonetic sound. These
redundant characters make the transliteration of Persian a new and interesting
problem to study.

Previous transliteration methods can be grouped into three main categories:
grapheme-based approaches; phonetic-based approaches; and approaches that
combine features of both. Grapheme-based (or direct) methods map groups of
characters in the source word S directly to groups of characters in the target
word T . Phonetic (or pivot) methods, on the other hand, first try and identify
phonemes in the source word S, and then map those phonemes to character
representations in the target language to get T , the target word. As the pho-
netic approaches have extra steps, they are in general more error prone than
their grapheme-based counterparts, and typically success rates of phonetic based
only approaches are lower than combined methods [2,12]. Given that grapheme
based methods tend to be more successful than phoneme based methods, and
that Persian words often omit vowels that would appear in their English coun-
terparts making phonetic matching difficult, we adopt a grapheme based ap-
proach.

In this paper, we present results for transliterating English to Persian using
a basic grapheme model as has been proposed for Arabic [1]. We extend this
approach using more context characters from the source word S, and then intro-
duce a more complex model to deal with some specifics of the Persian language.
On a corpus of 1,857 proper names, our improved system achieves 66% accuracy
when only one candidate transliteration is generated, compared with the base-
line system at 48%. This is the first successful English to Persian transliteration
system reported in the literature. We also discuss the problems in constructing
an OOV corpus for Persian-English, and hypothesise that these problems will
re-occur in many transliteration studies.

2 Background

In general, grapheme based transliteration is a three stage process.

Alphabet selection. In the first stage, an alphabet of source and target sym-
bols, ΣS and ΣT , is created from a training corpus of known source-target word
pairs. Note that symbols may be individual characters, or groups of characters,
in the original alphabets. For example, the pair of English characters “ch” might
be included as a single symbol in the source alphabet ΣS . Symbol alphabets can
be derived using statistical methods such as hidden Markov models [7] or trans-
lation models [3]. These have been implemented in the giza++ tool [11], which
we use to obtain symbol alphabets for our experiments. An alternative approach

English to Persian Transliteration 257

is to hand-craft the alphabets of allowable source and target graphemes, for
example as adopted by AbdulJaleel and Larkey [1].

Probability generation. In the second stage, the training corpus of known
source-target word pairs is used to collect statistics on the frequency of occur-
rence of chosen alphabet symbols. In general, we wish to compute the probability
P (ti|si, ci), which represents the probability of generating target symbol ti ∈ ΣT

given the source symbol si ∈ ΣS in the context ci, which is a string drawn from
(ΣT ∪ ΣS). In the most basic model, no context is used, so ci = ε, the empty
string, and the transliteration is given simply by P (ti|si).

Use of context has been shown to improve transliteration accuracy. In his
study of transliterating six romantic languages, Linden [10] use the two previous
source symbols and one following source symbol as context to get P (ti|si, ci =
si−2si−1si+1), which gave an improvement of 69% over a baseline technique.
In similar work on Korean, Jung et al. [7] proposed taking advantage of past
and future source symbols, and one past target language symbol, to compute
P (ti|si, ci = si−2si−1si+1ti−1), which gave a 5% improvement over their baseline.

In all methods that employ a non-empty context ci, provision must be made
for backoff to a smaller context. For example, if attempting to transliterate the
symbol “o” in the word “lighthouse” in the context ci =si−4si−3si−2si−1 =
“ghth”, it is likely that the context “ghth” occurred very infrequently in the
training corpus, and so statistics derived in this context may not be reliable.
In this case, a backoff scheme may try the context ci = si−3si−2si−1 =“hth”,
which again may not occur frequently enough to be trusted, and so the next
backoff context must be tried. This backoff method is used in the PPM data
compression scheme [4].

Transliteration. The third stage of transliteration parses the source word S
into symbols from ΣS and computes, for possible target words T ,

P (T |S) = P (T)
|T |∏
i=1

P (ti|si, ci), (1)

where the first term P (T) is a target language model, that is, the probabil-
ity of the target word T appearing independently of any source information.
For example, the word “zxqj” is extremely unlikely to appear as the English
transliteration of any word in any language, and so P (“zxqj”) would be very
small. Probability P (“the”), on the other hand, may sit at around 0.01. Dis-
tribution P (T) can be computed using a zero-order model from the training
corpus as P (T) =

∏|T |
i=1(freq(ti)/D), where D is the total number of charac-

ters in the training corpus; and freq gives the frequency of its argument in the
training corpus. In our experiments below we used a first-order model where
P (T) =

∏|T |
i=2(freq(ti−1ti)/freq(ti)).

The target words can then be sorted by P (T |S), given in Equation 1, to give
a ranked list of the most likely transliterations of S.

258 S. Karimi, A. Turpin, and F. Scholer

3 Transliteration Methods

In this section we describe our implementation of the transliteration process.
First we introduce baseline systems, followed by an explanation of our novel
transliteration approach, where contexts respect vowel-consonant boundaries.

3.1 Baseline Systems

Alphabet selection. In order to select the source and target alphabets, ΣS

and ΣT , we made use of the character-level alignment of source and target word
pairs produced by giza++ [11]. If this resulted in a group of characters mapping
to a single character in either direction, then the group was added as a single
symbol to ΣS or ΣT , as required. Consider an example, where the word “stella”
is aligned between Persian and English characters:

Source (English): s t e ll a
Target (Persian, left-to-right): 	
 �� ε � 	

Here, both “te” and “ll” would be added to ΣS , as they map to a single Persian
character (ε represents a null character). The symbol “ 	
” would be added to
ΣT as these two Persian characters align with only one English character.

Probability generation. Previous Arabic transliteration systems use an empty
context [1], whereas successful transliteration systems for romantic languages
(arguably more close to Persian, in spite of script) use ci = si−2si−1si+1 for
transliterating si [10]. Accordingly, we tested a variety of contexts based on past
and future source symbols.

For brevity, we introduce the notation n\m to indicate that n previous source
symbols and m future source symbols make up a context, that is:

ci = n\m = si−n . . . si−1si+1 . . . si+m

In order to avoid boundary conditions, we also assume that S is extended to the
left and right as far as is required with a special symbol that always transliterates
to an empty symbol ε. Therefore, [−n, . . . , |S|+ m] are all valid indexes into S.

During this probability generation phase, frequency counts for each mapping
contained in the aligned words of the training set are gathered. We define

f(ti, si, n, m) = frequency of ti aligning with si in context n\m.

Once all frequencies are gathered, they are simply normalised into probabilities
to get

P (ti|si, ci = n\m) = f(ti, si, n, m)
/∑

∀j

f(tj , si, n, m).

English to Persian Transliteration 259

1) Let � be the length of the longest context in characters to the left,
r be the length of the longest context in characters to the right, and
S = [s1 . . . s|S|] be the input word made up of |S| characters.

2) Set X ← the empty set.
3) For i ← 1 to |S| do
4) Let p ← � and q ← r.
5) While p > 0, q > 0 and context S[i − p . . . i + q] has a frequency < M
6) Set p ← p − 1 and set q ← q − 1.
7) If p > 0 or q > 0 then
8) Append all possible transliterations of si in context

S[i − max(p, 0) . . . i + max(q, 0)] to the elements of X
and record the associated probabilities of resulting words.

9) else
Append all possible transliterations of si without context
to the elements of X and record associated probabilities.

10) Sort X and output transliterations.

Fig. 1. The transliteration algorithm.

Transliteration. While source symbols are readily identified in the aligned
words of the training corpus, when presented with a source word alone for
transliteration there may be several parsings possible using elements from the
source alphabet ΣS . One possible approach is to greedily choose the longest
matching source symbol from left-to-right, and then use this parsing throughout
the transliteration process [1]. An alternate is to define a source language model
which will apply probabilities to various parsings, and work this probability into
Equation 1 for P (T |S) [7].

The approach we have taken here is to not commit to a single parsing; instead,
we process the source character by character. Similarly the backoff process for
contexts is on a character by character basis, rather than a symbol by symbol
basis. Note that this requires us to keep track of the number of characters gener-
ated in the longest context of the probability generation phase; while it is known
that this context will contain n + m symbols, this will map to 	 + r characters,
where 	 is the maximum number of characters in the n previous symbols (to the
	eft), and r is the maximum number of characters in the m future symbols (to
the right).

A high level description of the transliteration algorithm is given in Figure 1.
An attempt is made to transliterate each character in the longest possible con-
text, with the context reducing by one character each time at both ends until
the context occurs at least M times in the training data (Steps 5 and 6). Once
a context is found, all possible target symbols ti that arise from the character
si in that context are incorporated into the set of transliterations so far, X . If a
context is not found, then a straight mapping of the individual character without
context is carried out (Step 9). Since there are |ΣT ||T | possible target words, it is
not practical to exhaustively generate all variants as is shown in Steps 8 and 9.
In our implementation we use the k-shortest paths algorithm due to Dijkstra [5],

260 S. Karimi, A. Turpin, and F. Scholer

which greedily expands prefixes of strings in X with the highest probabilities,
and therefore guarantees that the k highest scoring transliterations are found.

There are several alternate implementations of Step 5 and 6 for reducing
contexts. The approach we describe in Figure 1, where both past (p) and future
(q) horizons are shrunk, we call backoff-a. The second approach with which we
experimented was first fully reducing future contexts, and only when q reaches
zero do we begin to reduce past contexts (p). We label this approach backoff-b.
In all experiments we used M = 2.

3.2 Collapsed-Vowel Models

Purely selecting contexts according to a n\m model as described in the previous
section ignores any characteristics that we may know of the source and target
languages. For instance, Persian speakers tend to transliterate diphthongs (vowel
sounds that start near the articulatory position for one vowel and moves toward
the position for another) of other languages to monophthongs (two written vow-
els that represent a single sound). In addition, short vowel sounds in English
are often omitted altogether in Persian. This suggests a model where runs of
English vowels are transliterated in the context of their surrounding consonants.
Rather than employ a full natural language analysis technique, as has been done
for Chinese [14], we opt for a simpler segmentation approach and propose the
following collapsed-vowel models.

Alphabet selection. We define ΣS and ΣT as in the baseline systems: com-
posite symbols are identified by aligning words using the statistical translation
model implemented in giza++.

Once this initial parsing is complete, we re-segment the words using conso-
nant and vowel boundaries to define new symbols that we add to the existing
alphabets. Each source word is parsed into a sequence of single consonants, rep-
resented by C, and runs of consecutive vowels represented by V . These are then
grouped into segments in one of four ways:

1. V C, a run of vowels at the beginning of a word followed by a consonant;
2. CC, two consonants not separated by any vowels;
3. CV C, a run of vowels bounded by two consonants; and
4. CV , a run of vowels at the end of a word preceded by a consonant.

The first consonant in each segment overlaps the final consonant in the pre-
ceding segment. In each case the full composite symbol is added to the source
alphabet (to later be used as context), and the composite symbol without the
tailing consonant is added to both alphabets (to be used for transliteration).

For example, consider the word “baird”. This would first be parsed as:

Source (English): b ai r d
Target (Persian, left-to-right): ��
 � �

resulting in “ai” being added to ΣS (as in the baseline system).

English to Persian Transliteration 261

Method cv Method cv-broad
i S Segment si|ci si|ci

1 e n V C e|en e|eC
2 n r CC n|nr n|CC
3 r i q CV C ri|riq r|C and i|CiC
4 q u e CV que|que q|C and ue|Cue

Fig. 2. Example of the segments, symbols and contexts generated for the source word
“enrique”

In the second phase, the word would be parsed into segments as:

Source (English): b ai r d
Target (Persian, left-to-right): ��
 � �
Segmentation: C V C C

Segment 1
Segment 2

resulting in the possible contexts “bair” and “rd” being added into ΣS as a CV C
and CC segments respectively. The additional source symbol “bai”, derived by
dropping the C from CV C is added to ΣS , and “r” is already in ΣS . In the
target alphabet, ��
 is added as a truncated CV C target symbol, and the
single character “�” is already in ΣT .

Probability generation. Probabilities are generated from frequency counts in
the training data as for the baseline systems, but the contexts are now chosen
according to segments, rather than runs of symbols (graphemes). We use two
techniques for selecting contexts. In the first, labeled cv, each segment forms
a context for the symbol that prefixes the segment. For example, the fourth
column of Figure 2 shows how the contexts and symbols for the source word
“enrique” are derived.

In the second technique for choosing contexts, cv-broad, we relax the strict
matching on the consonant component of the context so that it can match all
consonants, thus increasing the amount of training data for a context. In turn,
this leads to rare, but existent, transliterations that would otherwise not be
available. Vowels are only used in a context when transliterating a symbol that
contains a vowel. This is shown in the final column of Figure 2 for the example
string “enrique”.

The backoff approach for each of the four segments is given by the following
three rules, which are applied in order:

1. if the context is a CV segment, and does not occur at least M times in the
training data, separate the symbol into a C then V context; else

2. if the context is a V segment representing a run of r vowels, and does not
occur at least M times in the training data, reduce the length of the run to
r− 1 and transliterate the final vowel as a single character with no context;
else

262 S. Karimi, A. Turpin, and F. Scholer

3. for all other contexts, if it occurs less than M times in the training data,
drop the tailing C and try this shorter context.

Transliteration. The transliteration proceeds as described for the baseline
systems in Section 3.1, where Dijkstra’s k-shortest path is used to generate the
k highest scoring transliterations.

4 Experiments

In this section we describe our experimental framework, including the data used
for training and testing purposes, the transliteration models that are evaluated,
and metrics used to quantify performance.

4.1 Data

The first two stages of transliteration require a training corpus of source and
target word pairs. An English-Persian corpus was developed by taking 40,000
phrases from lists of English names that occurred on the World Wide Web. These
names were names of geographical places, persons and companies, extracted from
different publicly available resources. This English corpus was then transliterated
by 26 native Persian speakers. Redundant and allophone characters were often
used by the transliterators for Arabic words of the collection. Depending on the
transliterator’s assumptions about the origin of a word, different characters may
have been chosen for the same word. For example, if the transliterator assumed
“John Pierre” was French, then for the character “j” the transliterator might
have employed the rare Persian character �� ,pronounced same as “su” in measure,
instead of widely used �� which sounds as “j” in jet. Finally the corpus was split
into words, and the unique word pairs extracted, resulting in 16,952 word pairs.
We refer to this collection as english+.

The corpus selection process did not guarantee that all included words were of
English origin. As a result, there are many words in the corpus that are already
transliterated from other languages such as French, Arabic, and Chinese. We
randomly chose a subset of 2,000 name pairs from the english+ collection, from
which all names with origins from non-English script languages were removed.
This resulted a sub-collection of 1,857 name pairs, labelled english.

In our experiments we apply ten-fold cross-validation; so for any one run, 90%
of a collection is used as training data, with the remaining 10% being used as
test data, and results are averages over the 10 possible runs.

4.2 Models

In our experiments we consider baseline transliteration models using a vari-
ety of context sizes and backoff options, as well as our novel collapsed-vowel
models.

English to Persian Transliteration 263

For the baseline models, we tested combinations of past (n) and future (m)
contexts n\m, using the following settings: 0\0, 1\0, 2\0, 0\1, 0\2, and 2\1.
These contexts were all run with backoff method backoff-b and a uniformly
distributed target language model. Also included is the first-order target lan-
guage model described in Section 2 for 0\0 and 1\0, denoted as 0\0T and 1\0T.
We also experimented with backoff-a for contexts 1\1, 1\1 and 2\1 using a
uniform target language model, denoted 1\1A, 2\2A and 2\1A.

These models were run on both the english and english+ collections.

4.3 Metrics

The results of our transliteration experiments are evaluated using the standard
measure of word accuracy, based on the edit distance between the transliterated
word and the correct word. The edit distance measures the number of character
insertions, deletions and substitutions that are required to transform one word
into another [9].

Word accuracy (WA), also known as transliteration accuracy, measures the
proportion of transliterations that are correct:

WA = Number of transliterations with ED=0
Total number of test words

where, ED is the edit distance between two strings [6]. WA is reported for dif-
ferent cutoff values. For example, top-1 WA indicates the proportion of words
in the test set for which the correct transliteration was the first candidate an-
swer returned by the transliteration system, while top-5 indicates the proportion
of words for which the correct transliteration was returned within the first five
candidate answers.

Where statistical tests are performed on accuracy, the test employed is a
paired t-test on the accuracy-percentages calculated for each step of the 10-fold
cross validation runs.

5 Results

In this section we present the results of our experiments into the effects of context
size, target language models, and collapsed vowel models. In the tables that
follow, the results of the most accurate methods are highlighted in bold.

Past and Future Context. The results of using varying past (n) and future
(m) context windows are shown in Table 1. The highest performance is achieved
using a context window of 1\0, that is, using a history of just one character.
The difference in performance between this context and using no context is
statistically significant (p < 0.002 for top-1).

Extending the historical context causes performance to deteriorate, compared
to using just one historical symbol. Similarly, the addition of future context
causes performance to fall when past context is also present. Using the symmetri-
cal backoff method, backoff-a, rather than backoff-b, improves performance

264 S. Karimi, A. Turpin, and F. Scholer

Table 1. Mean word accuracy (%) for changing past and future context sizes

0\0 1\0 2\0 0\1 0\2 1\1A 2\2A 2\1 2\1A

english Top-1 47.8 59.2 49.5 43.1 54.6 54.5 27.6 47.8 38.4
Top-5 73.7 84.9 73.9 70.5 76.3 79.6 41.7 72.3 65.0
Top-10 79.9 89.3 77.4 75.1 78.8 83.3 46.1 78.0 71.9

english+ Top-1 9.0 45.7 15.1 32.6 12.8 31.7 6.5 9.3 22.5
Top-5 11.7 71.3 23.6 60.1 21.6 55.7 14.1 14.9 41.9
Top-10 16.6 77.2 26.2 68.5 23.6 63.2 17.3 16.9 51.1

Table 2. Mean word accuracy (%) when using a target language model (T) and col-
lapsed vowel schemes (cv and cv-broad)

0\0 0\0T 1\0 1\0T CV CV+
english Top-1 47.8 34.8 59.2 55.1 66.4 64.9

Top-5 73.7 45.1 84.9 79.7 84.4 87.3
Top-10 79.9 50.6 89.3 84.3 88.5 95.0

english+ Top-1 9.0 3.3 45.7 40.8 50.1 49.5
Top-5 11.7 4.6 71.3 63.6 74.0 80.8
Top-10 16.6 5.2 77.2 69.3 79.4 88.0

for the larger english+ collection when both past and future context is used in
the transliteration model. However, overall performance here is still significantly
worse than when using a context of 1\0 (p < 0.005).

Target Language Models. The effect of introducing a target language model
is shown in Table 2; schemes using a first-order target language model are labeled
with a “T”. It can be seen that using a target language model has a detrimental
effect on transliteration performance for both 0\0 and 1\0 contexts.

Collapsed Vowel Approaches. The results for our novel collapsed vowel mod-
els are shown in the final columns of Table 2, labeled cv and cv-broad. The cv
scheme shows the best performance for top-1 transliteration for both the eng-
lish and english+ collections, an improvement that is statistically significant
over the best 1\0 baseline (p < 0.008). For top-5 and top-10 word accuracy, the
cv-broad model shows highest performance.

Language-based Effects. The large differences between the results on the
english and english+ collections suggest that, although a larger training col-
lection could assist the transliteration process, the origin of the source language
could have a deleterious impact on accuracy.

Figure 5(a) shows the accuracy of the cv approach on different sub-collections
that we extracted from the english+ collection. A word was assigned to a coun-
try according to its appearance on WWW pages of that country. For example,
“Groenendijk” appears in many pages of the domain .nl, and so was assigned

English to Persian Transliteration 265

Arabic Dutch Chinese Indian English All4 English+

Collection

0

20

40

60

80

100

W
or

d
A

cc
ur

ac
y

(%
)

Top-1
Top-5

(a) Different language origins (Top-1)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

Size of Collection

0

20

40

60

80

100

W
or

d
A

cc
ur

ac
y

(%
)

CV
 CV+
 1\0

(b) Different sizes (Top-5)

Fig. 3. Mean word accuracy of different collections

to the Dutch category. Note that the accuracy is substantially reduced for all
languages individually and altogether (“All4”).

Collection Size Effects. One possible reason for cv performing poorly on
the country based data sets is that they are small datasets. To investigate this
possibility, we randomly partitioned english into sets of increasing size and
computed the accuracy of cv on those partitions.

The results are shown in Figure 5(b). As can be seen, any data set above 200
words performed well, and so it would seem that the small size of the individual
country datasets (all are larger than 200) is not to blame. There appears to
be a genuine difference between the performance of cv on native English and
non-English words that have already been transliterated from another language.

6 Conclusions and Future work

In this paper, we have investigated a variety of transliteration techniques and
their effectiveness in transliterating words from English to Persian. We investi-
gated the performance of existing grapheme-based approaches, and examined a
range of context and target language model options. The use of context is im-
portant: using a small historical context (one past symbol) makes transliteration
significantly more effective than using no context. However, using larger context
sizes, or using future context, has a detrimental effect. This effect is surprising;
in general a larger context should improve the predictive power of the model.
The effect may be due in part to our symbol parsing approach. In future work,
we plan to investigate whether incorporating a full source language model into
our transliteration process can extend the range of useful contexts.

A new transliteration model of Persian, based on collapsing runs of vowels, was
introduced and evaluated. Our novel techniques increased accuracy over standard
grapheme-based approaches with no context by around 18% on a carefully chosen
native English data set (66% up from 48% for top-1), and by 41% on a more
general English data set that was not filtered (50% up from 9% for top-1). In

266 S. Karimi, A. Turpin, and F. Scholer

future work, we will evaluate our new models on other languages with similar
vowel transliteration patters as Persian, such as Arabic and Indonesian.

Investigating the effects of including different source languages in training data
demonstrated that this introduces noise, and can have a substantial negative
impact on transliteration performance. Previous work has generally avoided this
problem by using small test sets that are carefully controlled. As far as we are
aware, this is the first work on transliteration that has examined the effects of
data quality on accuracy. Our future research will be to further investigate and
quantify the noise that is generated as part of this phenomenon.

Acknowledgments

This work was supported in part by Australian Research Council Grant DP055-
8916 (AT) and the Australian government IPRS program (SK).

References

1. Nasreen AbdulJaleel and Leah S. Larkey. Statistical transliteration for English-
Arabic cross language information retrieval. In CIKM, pages 139–146, 2003.

2. Slaven Bilac and Hozumi Tanaka. Direct combination of spelling and pronunciation
information for robust back-transliteration. In CICLing, pages 413–424, 2005.

3. Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter estimation.
Computional Linguistics, 19(2):263–311, 1993.

4. John G. Cleary and Ian H. Witten. A comparison of enumerative and adaptive
codes. IEEE Transactions on Information Theory, 30(2):306–315, 1984.

5. David Eppstein. Finding the k shortest paths. SIAM J. Computing, 28(2):652–673,
1998.

6. Patrick A. V. Hall and Geoff R. Dowling. Approximate string matching. ACM
Comput. Surv., 12(4):381–402, 1980.

7. Sung Young Jung, Sung Lim Hong, and Eunok Paek. An English to Korean translit-
eration model of extended markov window. In COLING, pages 383–389, 2000.

8. Kevin Knight and Jonathan Graehl. Machine transliteration. Computational Lin-
guistics, 24(4):599–612, 1998.

9. Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

10. Krister Linden. Multilingual modeling of cross-lingual spelling variants. Inf. Re-
trieval, 9(3):295–310, 2005.

11. Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19–51, 2003.

12. Jong-Hoon Oh and Key-Sun Choi. An ensemble of transliteration models for in-
formation retrieval. Inf. Process. Manage., 42(4):980–1002, 2006.

13. Jarmo Toivonen, Ari Pirkola, Heikki Keskustalo, Kari Visala, and Kalervo Järvelin.
Translating cross-lingual spelling variants using transformation rules. Inf. Process.
Manage., 41(4):859–872, 2005.

14. Stephen Wan and Cornelia Verspoor. Automatic English-Chinese name translitera-
tion for development of multilingual resources. In COLING-ACL, pages 1352–1356,
1998.

Efficient Algorithms for Pattern Matching with
General Gaps and Character Classes

Kimmo Fredriksson1,� and Szymon Grabowski2

1 Department of Computer Science, University of Joensuu
PO Box 111, FIN–80101 Joensuu, Finland

kfredrik@cs.joensuu.fi
2 Technical University of �Lódź, Computer Engineering Department,

Al. Politechniki 11, 90–924 �Lódź, Poland
sgrabow@kis.p.lodz.pl

Abstract. We develop efficient dynamic programming algorithms for a
pattern matching with general gaps and character classes. We consider
patterns of the form p0g(a0, b0)p1g(a1, b1) . . . pm−1, where pi ⊂ Σ, where
Σ is some finite alphabet, and g(ai, bi) denotes a gap of length ai . . . bi

between symbols pi and pi+1. The text symbol tj matches pi iff tj ∈ pi.
Moreover, we require that if pi matches tj , then pi+1 should match one
of the text symbols tj+ai+1 . . . tj+bi+1. Either or both of ai and bi can
be negative. We give algorithms that have efficient average and worst
case running times. The algorithms have important applications in music
information retrieval and computational biology. We give experimental
results showing that the algorithms work well in practice.

1 Introduction

Background. Many notions of approximateness have been proposed in string
matching literature, usually motivated by some real problems. One of seemingly
underexplored problem with applications in music information retrieval (MIR)
and molecular biology (MB) is pattern matching with gaps [3]. In this prob-
lem, gaps (text substrings) of length up to α are allowed between each pair
of matching pattern characters. Moreover, in MIR applications the character
matching can be relaxed with δ-matching, i.e. the pattern character matches if
its numerical value differs at most by δ the corresponding text character. In MB
applications the singleton characters can be replaced by classes of characters,
i.e. text character t matches a pattern charater p if t ∈ p, where p is some subset
of the alphabet.

Previous work. The first algorithm for the problem [3] is based on dynamic
programming, and runs in O(nm) time, where n and m are the lengths of the
text and pattern, respectively. This basic dynamic programming solution can
also be generalized to handle more general gaps while keeping the O(nm) time

� Supported by the Academy of Finland, grant 202281.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 267–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

268 K. Fredriksson and S. Grabowski

bound [11]. The basic algorithm was later reformulated [1] to allow to find all
pattern occurrences, instead of only the positions where the occurrence ends.
This needs more time, however. The algorithm in [2] improves the average case
of the one in [1] to O(n), but they assume constant α. Bit-parallelism can be used
to improve the dynamic programming based algorithm to run in O(
n/w�m+nδ)
and O(
n/w�
αδ/σ�+ n) time in worst and average case, respectively, where w
is the number of bits in a machine word, and σ is the size of the alphabet [4].

For the α-matching with classes of characters there exists an efficient bit-
parallel nondeterministic automaton solution [10]. This also allows gaps of differ-
ent lengths for each pattern character. This algorithm can be trivially generalized
to handle (δ, α)-matching [2], but the time complexity becomes O(n
αm/w�) in
the worst case. For small α the algorithm can be made to run in O(n) time on
average. The worst case time can be improved to O(n
m log(α)/w�) [4], but this
assumes equal length gaps.

Sparse dynamic programming can be used to solve the problem in O(n +
|M|min{log(δ + 2), log log m}) time, where M = {(i, j) | |pi − tj | ≤ δ} (and
thus |M| ≤ nm) [6]. This can be extended for the harder problem variant where
transposition invariance and character insertions, substitutions or mismatches
are allowed together with (δ, α)-matching [7].

Our results. We develop several sparse dynamic programming algorithms. Our
first algorithm is essentially a reformulation of the algorithm in [7]. The worst
case running time of the algorithm is O(n + |M|). Our variant has the benefit
that it generalizes in straight-forward way to handle general and even negative
gaps, important in some MB applications [8,9]. We then give several variants
of this algorithm to improve its average case running time to close to linear,
while increasing the worst case time only up to O(n + |M| log(|M|+ α)). This
algorithm assumes fixed integer alphabet. We also present two simple and prac-
tical algorithms that run in O(n) time on average for α = O(σ/δ), but have
O(n + min(nm, |M|α)) worst case time, for any unbounded real alphabets.

These are the first algorithms that achieve good average and worst case com-
plexities simultaneously, and they are shown to perform well in practice too.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be numeri-
cal strings, where pi, tj ∈ Σ for some integer alphabet Σ of size σ. The number
of distinct symbols in the pattern is denoted by σp.

In δ-approximate string matching the symbols a, b ∈ Σ match, denoted
by a =δ b, iff |a − b| ≤ δ. Pattern P (δ, α)-matches the text substring
ti0ti1ti2 . . . tim−1 , if pj =δ tij for j ∈ {0, . . . , m − 1}, where ij < ij+1, and
ij+1 − ij ≤ α + 1. If string A (δ, α)-matches string B, we sometimes write
A =α

δ B.
In all our analyses we assume uniformly random distribution of characters

in T and P , and constant α and δ/σ, unless otherwise stated. Moreover, we

Efficient Algorithms for Pattern Matching 269

often write δ/σ to be terse, but the reader should understand that we mean
(2δ + 1)/σ, which is the upper bound for the probability that two randomly
picked characters match.

The dynamic programming solution to (δ, α)-matching is based on the follow-
ing recurrence [3,1]:

Di,j =

⎧⎨
⎩

j tj =δ pi and (i = 0 or (i, j ≥ 1 and Di−1,j−1 ≥ 0))
Di,j−1 tj �=δ pi and j > 0 and j −Di,j−1 < α + 1
−1 otherwise

(1)

In other words, if Di,j = j, then the pattern prefix p0 . . . pi has an occurrence
ending at text character tj , i.e. pi =δ tj and the prefix p0 . . . pi−1 occurs at
position Di−1,j−1, and the gap between this position and the position j is at
most α. If pi �=δ tj , then we try to extend the match by extending the gap,
i.e. we set Di,j = Di,j−1 if the gap does not become too large. Otherwise, we
set Di,j = −1. The algorithm then fills the table D0...m−1,0...n−1, and reports
an occurrence ending at position j whenever Dm−1,j = j. This is simple to
implement, and the algorithm runs in O(mn) time using O(mn) space.

We first present efficient algorithms to the above problem, and then show how
these can be generalized to handle arbitrary gaps, tackling with both upper and
lower bounded gap lengths, and even negative gap lengths, and using general
classes of characters instead of δ-matching.

3 Row-Wise Sparse Dynamic Programming

The algorithm we now present can be seen as a row-wise variant of the sparse
dynamic programming algorithm of the algorithm in [7, Sec. 5.4]. We show how
to improve its average case running time. Our variant can also be easily extended
to handle more general gaps, see Sec. 6.

3.1 Efficient Worst Case

From the recurrence of D it is clear that the interesting computation happens
when tj =δ pi, and otherwise the algorithm just copies previous entries of the
matrix or fills some of the cells with a constant.

Let M = {(i, j) | pi =δ tj} be the set of indexes of the δ-matching character
pairs in P and T . For every (i, j) ∈ M we compute a value di,j . For the pair
(i, j) where di,j is defined, it corresponds to the value of Di,j . If (i, j) �∈ M, then
di,j is not defined. Note that dm−1,j is always defined if P occurs at th...j for
some h < j. The new recurrence is

di,j = j | (i− 1, j′) ∈ M and 0 < j − j′ ≤ α + 1 and di−1,j′ �= −1,

and −1 otherwise. Computing the d values is easy once M is computed. As we
have an integer alphabet, we can use table look-ups to compute M efficiently.
Instead of computing M, we compute lists L[pi], where L[pi] = {j | pi =δ tj}.

270 K. Fredriksson and S. Grabowski

These are obtained by scanning the text linearly, and inserting j into each list
L[pi] such that tj δ-matches tj . Clearly, there are at most O(δ) and in average
only O(δσp/σ) symbols pi that δ-match tj . Therefore this can be obtained in
O(δn) worst case time, and the average case complexity is O(n(δσp/σ + 1)).
Note that |M| is O(mn) in the worst case, but the total length of all the lists is
at most O(min{σp, δ}n), hence L is a compact representation of M. The indexes
in L[pi] will be in increasing order.

Consider a row-wise computation of d. The values of the first row d0,j corre-
spond one to one to the list L[p0], that is, the text positions j where p0 =δ tj .
The subsequent rows di correspond to L[pi], with the additional constraint that
j − j′ ≤ α + 1, where j′ ∈ L[pi−1] and di−1,j′ �= −1. Since the values in L[pi]
and di−1 are in increasing order, we can compute the current row i by travers-
ing the lists L[pi] and di−1 simultaneously, trying to enforce the condition that
L[pi][h] − di−1,k ≤ α + 1 for some h, k. If the condition cannot be satisfied for
some h, we store −1 to di,h, otherwise we store the text position L[pi][h]. The
algorithm traverses L and M linearly, and hence runs in O(n + |M|) worst case
time. We now consider improving the average case time of this algorithm.

3.2 Efficient Average Case

The basic sparse algorithm still does some redundant computation. To compute
the values di,j for the current row i, it laboriously scans through the list L[pi], for
all positions, even for the positions close to where p0 . . . pi−1 did not match. In
general, the number of text positions with matching pattern prefixes decreases
exponentially on average when the prefix length i increases. Yet, the list length
|L[pi]| will stay approximately the same. The goal is therefore to improve the
algorithm so that its running time per row depends on the number of matching
pattern prefixes on that row, rather than on the number of δ-matches for the
current character on that row.

The modifications are simple: (1) the values di,j = −1 are not maintained
explicitly, they are just not stored since they do not affect the computation;
(2) the list L[pi] is not traversed sequentially, position by position, but binary
search is used to find the next value that may satisfy the condition that L[pi][h]−
di−1,k ≤ α + 1 for some h, k.

Consider now the average search time of this algorithm. The average length
of each list L[pi] is O(nδ/σ). Hence this is the time needed to compute the first
row of the matrix, i.e. we just copy the values in L[p0] to be the first row of
d. For the subsequent rows we execute one binary search over L[pi] per each
stored value in row i of the matrix. Hence in general, computing the row i of the
matrix takes time O(|di−1| log(nδ/σ)), where |di| denotes the number of stored
values in row i. For i > 0 this decreases exponentially as |di| = O(n(δ/σ) × γi),
where γ = 1 − (1 − δ/σ)α+1 < 1 is the probability that a pattern symbol
δ-matches in a text window of length α symbols. Summing up the resulting
geometric series over all rows we obtain O(n δ

σ(1−δ/σ)α+1), which is O(nαδ/σ) for
δ/σ < 1−α−1/(α+1). In particular this is O(n) for α = O(σ/δ). Hence the average
search time is O(n + nαδ/σ log(nδ/σ)). However, the worst case search time is

Efficient Algorithms for Pattern Matching 271

also increased to O(n+ |M| log(|M|/m)). We note that this can be improved to
O(n + |M| log log((mn)/|M|)) by using efficient priority queues [5].

3.3 Faster Preprocessing

The O(δn) (worst case) preprocessing time can dominate the average case search
time in some cases. Note however, that the preprocessing time can never exceed
O(n + |M|). We now present two methods to improve the preprocessing time.
The first one reduces the worst case preprocessing cost to O(

√
δn), and improves

its average case as well. The second method achieves O(n) preprocessing time,
but the worst case search time is slightly increased.

O(
√

δn) time preprocessing. The basic idea is to partition the alphabet into
σ/
√

δ disjoint intervals Ih, h = 0 . . . σ/
√

δ−1 of size
√

δ each (w.l.o.g. we assume
that δ is a square number and

√
δ divides σ). Then, for each alphabet symbol

s, its respective [s− δ, s + δ] interval wholly covers Θ(
√

δ) intervals Ih, and also
can partially cover at most two Ih intervals. Two kinds of lists are computed
in the preprocessing, Lb (for “boundary” cases) and Lc (for “core”). For each
character of T , at most 2(

√
δ − 1) lists Lb[pi] are extended with one entry, and

those correspond to the alphabet symbols from the partially covered intervals
Ih. But also each character tj causes to append j to O(

√
δ) lists Lc[pi/

√
δ], those

that correspond to the Ih intervals wholly covered by [tj − δ, tj + δ]. Clearly, the
preprocessing is done in O(

√
δn) worst case and in O(n

√
δσp/σ) average time.

The search is again based on a binary search routine, but in this variant we
binary search two lists: Lb[pi] and Lc[pi/

√
δ], as the δ-matches to pi may be

stored either at some Lb, or at some Lc list. This increases both the average and
worst case search cost only by a constant factor.

We can generalize this idea and have a preprocessing/search trade-off. Namely,
we may have k levels, turning the preprocessing cost into O(kδ1/kn), for the
price of a multiplicative factor k in the search. For k = log δ the preprocessing
cost becomes O(n log δ), and both the average and worst case search times are
multiplied by log δ as well.

O(n) time preprocessing. We partition the alphabet into
σ/δ� disjoint in-
tervals of width δ. With each interval a list of character occurrences will be as-
sociated. Namely, each list L[i], i = 0 . . .
σ/δ�−1, corresponds to the characters
iδ . . . min{(i + 1)δ − 1, σ − 1}. During the scan over the text in the preprocess-
ing phase, we append each index j to up to three lists: L[k] for such k that
kδ ≤ tj ≤ (k +1)δ−1, L[k−1] (if k−1 ≥ 0), and L[k+1] (if k+1 ≤
σ/δ�− 1).
Note that no character from the range [tj − δ . . . tj + δ] can appear out of the
union of the three corresponding intervals. Such preprocessing clearly needs O(n)
space and time in the worst case.

Now the search algorithm runs the binary search over the list L[k] for such k
that kδ ≤ pi ≤ (k+1)δ−1, as any j such that tj =δ pi must have been stored at
L[k]. Still, the problem is there can be other text positions stored on L[k] too,

272 K. Fredriksson and S. Grabowski

Alg. 1. SDP-rows(T, n, P, m, δ, α).
1 for j ← 0 to n − 1 do
2 for c ← max{0, �tj/δ� − 1} to min{�(σ − 1)/δ�, �tj/δ� + 1} do
3 L[c] ← L[c] ∪ {j}
4 for i ← 0 to |L[p0]| − 1 do
5 j ← L[p0][i]
6 if |tj − p0| ≤ δ then D′

i ← j
7 h ← |L[p0]|
8 for i ← 1 to m − 1 do
9 c ← pi; pl ← h; k ← 0; h ← 0; u ← 0
10 while u < |L[c]| and k < pl do
11 j ← L[c][u]
12 do j′ ← D′

k
13 if j − j′ > α + 1 and k < pl then k ← k + 1
14 while j − j′ > α + 1 and k < pl
15 if j′ < j and k < pl and |tj − c| ≤ δ then
16 Dh ← j; h ← h + 1
17 if i = m − 1 then report match
18 if k < pl then u ← min{v | D′

k < L[c][v], v > u}
19 Dt ← D; D ← D′; D′ ← Dt

as the only thing we can deduce is that for any j in the list L[k], tj is (2δ − 1)-
match to pi. To overcome this problem, we have to verify if tj is a real δ-match.
If tj �=δ pi, we read the next value from L[k] and continue analogously. After at
most α+1 read indexes from L[k] we either have found a δ-match prolonging the
matching prefix, or we have fallen off the (α + 1)-sized window. As a result, the
worst case time complexity is O(n + |M|(log n + α)). The average time in this
variant becomes O(n + nαδ/σ log n). Alg. 1 shows the complete pseudo code.

4 Column-Wise Sparse Dynamic Programming

In this section we present a novel column-wise variant. This algorithm runs in
O(n + nαδ/σ) and O(n + min(|M|α, nm)) average and worst case time, respec-
tively.

The algorithm processes the dynamic programming matrix column-wise. Let
us define Last Prefix Occurrence LPO as

LPOi,j =
{

j′ max j′ ≤ j | p0 . . . pi =α
δ th . . . tj′

−α− 1 otherwise (2)

Note that LPO0,j = j if p0 =δ tj . Note also that LPOi,j is just an alternative
definition of Di,j (Eq. (1)). The pattern matching task is then to report every
j such that LPOm−1,j = j. As seen, this is easy to compute in O(mn) time. In
order to do better, we maintain a list of window prefix occurrences WPOj that
contains for the current column j all the rows i such that j −LPOi,j ≤ α where
i ∈ WPOj .

Assume now that we have computed LPO and WPO up to column j − 1,
and want to compute LPO and WPO for the current column j. The invariant is
that i ∈ WPOj−1 iff j − LPOi,j−1 ≤ α + 1. In other words, if i ∈ WPOj−1 and
j′ = LPOi,j−1, then p0 . . . pi =α

δ th . . . tj′ for some h. Therefore, if tj =δ pi+1,

Efficient Algorithms for Pattern Matching 273

Alg. 2. SDP-columns(T, n, P, m, δ, α).
1 for i ← 0 to m − 1 do LPOi ← −α − 1
2 top ← 0
3 for j ← 0 to n − 1 do
4 c ← tj ; h ← 0
5 for i ← 0 to top − 1 do
6 pr ← WPO′

i
7 if |c − ppr+1| ≤ δ then
8 if pr + 1 < m − 1 then
9 WPOh ← pr + 1; h ← h + 1
10 else
11 report match
12 if |c − p0| ≤ δ then
13 WPOh ← 0; h ← h + 1
14 for i ← 0 to h − 1 do LPOWPOi

← j
15 for i ← 0 to top − 1 do
16 if LPOWPOi

�= j and j − LPOWPOi
≤ α then

17 WPOh ← WPO′
i; h ← h + 1

18 top ← h
19 Lt ← WPO;WPO ← WPO′;WPO′ ← Lt

then the (δ, α)-matching prefix from LPOi,j−1 can be extended to text position
j and row i + 1. In such case we update LPOi+1,j to be j, and put the row
number i + 1 into the list WPOj . This is repeated for all values in WPOj−1.
After this we check if also p0 δ-matches the current text character tj, and in such
case set LPO0,j = j and insert j into WPOj . Finally, we must put all the values
i ∈ WPOj−1 to WPOj if the row i was not already there, and still it holds that
j − LPOi,j ≤ α. This completes the processing for the column j.

Alg. 2 gives the code. Note that the additional space we need is just O(m),
since only the values for the previous column are needed for LPO and WPO.
In the pseudo code this is implemented by using WPO and WPO′ to store the
prefix occurrences for the current and previous column, respectively.

The average case running time of the algorithm depends on how many values
there are on average in the list WPO. Similar analysis as in Sec. 3 can be applied
to show that this is O(αδ/σ). Each value is clearly processed in constant worst
case time, and hence the algorithm runs in O(n + nαδ/σ) average time. In the
worst case the total length of the lists for all columns is O(min(|M|α, mn)),
and therefore the worst case running time is O(n+min(|M|α, mn)), since every
column must be visited. The preprocessing phase only needs to initialize LPO,
which takes O(m) time.

Finally, note that this algorithm can be seen as a simplification of the algo-
rithm in [7, Sec. 5.4]. We avoid the computation of M in the preprocessing phase
and traversing it in the search phase. The price we pay is a deterioration in the
worst case time complexity, but we achieve simpler algorithm that is efficient on
average. This also makes the algorithm alphabet independent.

5 Simple Algorithm

In this section we will develop a simple algorithm that in practice performs
very well on small (δ, α). The algorithm inherits the main idea from Alg. 1, and

274 K. Fredriksson and S. Grabowski

actually can be seen as its brute-force variant. The algorithm has two traits
that distinguish it from Alg. 1: (i) the preprocessing phase is interweaved with
the searching (lazy evaluation); (ii) binary search of the next qualifying match
position is replaced with a linear scan in an α + 1 wide text window. These two
properties make the algorithm surprisingly simple and efficient on average, but
impose an O(α) multiplicative factor in the worst case time bound.

The algorithm begins by computing a list L of δ-matches for p0:

L0 = {j | tj =δ p0}.

This takes O(n) time (and solves the (δ, α)-matching problem for patterns of
length 1). The matching prefixes are then iteratively extended, subsequently
computing lists:

Li = {j | tj =δ pi and j′ ∈ Li−1 and 0 < j − j′ ≤ α + 1}.

List Li can be easily computed by linearly scanning list Li−1, and checking if
any of the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 δ-matches pi. This
takes O(α|Li−1|) time. Clearly, in the worst case the total length of all the lists
is
∑

i Li = |M|, and hence the algorithm runs in O(n + α|M|) worst case time.
With one simple optimization the worst case can be improved to

O(min{α|M|, mn}) (improving also the average time a bit). When computing
the current list Li, Simple algorithm may inspect some text characters several
times, because the subsequent text positions stored in Li−1 can be close to each
other, in particular, they can be closer than α+1 positions. In this case the α+1
wide text windows will overlap, and same text positions are inspected more than
once. Adding a simple safeguard to detect this, each value in the list Li can be
computed in O(α) worst case time, and in O(1) best case time. In particular, if
|M| = O(mn), then the overlap between the subsequent text windows is O(α),
and each value of Li is computed in O(1) time. This results in O(mn) worst
case time. The average case is improved as well. Alg. 3 shows the pseudo code,
including this improvement.

Consider now the average case. List L0 is computed in O(n) time. The length
of this list is O(nδ/σ) on average. Hence the list L1 is computed in O(αnδ/σ)
average time, resulting in a list L1, whose average length is O(nδ/σ×αδ/σ). In
general, computing the list Li takes

O(α|Li−1|) = O(nαi(δ/σ)i) = O(n(αδ/σ)i) (3)

average time. This is exponentially decreasing if αδ/σ < 1, i.e. if α < σ/δ, and
hence, summing up, the total average time is O(n).

6 Handling Character Classes and General Gaps

We now consider the case where the gap limit can be of different length for each
pattern character, and where the δ-matching is replaced with character classes,
i.e. each pattern character is replaced with a set of characters.

Efficient Algorithms for Pattern Matching 275

Alg. 3. SDP-simple(T, n, P, m, δ, α).
1 h ← 0
2 for j ← 0 to n − 1 do
3 if |tj − p0| ≤ δ then
4 L[h] ← j; h ← h + 1
5 for i ← 1 to m − 1 do
6 pn ← h; h ← 0; L[pn] = n − 1
7 for j ← 0 to pn − 1 do
8 for j′ ← L[j] + 1 to min(L[j + 1], L[j] + α + 1) do
9 if |tj′ − pi| ≤ δ then
10 L′[h] ← j′; h ← h + 1
11 if i = m − 1 then report match
12 Lt ← L;L ← L′; L′ ← Lt

6.1 Character Classes

In the case of character classes pi ⊂ Σ, and tj matches pi if tj ∈ pi. For Alg. 2 and
Alg. 3 we can preprocess a table C[0 . . .m−1][0 . . . σ−1], where C[i][c] := c ∈ pi.
This requires O(σm) space and O(σ

∑
i |pi|) time, which is attractive for small

σ, such as protein alphabet. The search algorithm can then use C to check if
tj ∈ pi in O(1) time. For large alphabets we can use e.g. hashing or binary
search, to do the comparisons in O(1) or in O(log |pi|) time, respectively.

Alg. 1 is a bit more complicated, since we need to have M preprocessed.
First compute lists L′[c] = {i | c ∈ pi}. This can be done in one linear scan
over the pattern. Then list L[i] is defined as L[i] = {j | tj ∈ pi}. This can be
computed in one linear scan over the text appending j into each list L[i] where
i ∈ L′[tj]. The total time is then O(nδ), where we can consider δ as the average
size of the character classes. The search algorithm can now be used as is, the
only modification being that where we used L[pi] previously, we now use L[i]
instead (and the new definition of L).

6.2 Negative and Range-Restricted Gaps

We now consider gaps of the form g(ai, bi), where ai denotes the minimum and
bi the maximum (ai ≤ bi) gap length for the pattern position i. This problem
variant has important applications e.g. in protein searching, see [8,9,10]. General
gaps were considered in [10,11]. This extension is easy or even trivial to handle
in all our algorithms, i.e. it is equally easy to check if the formed gap length
satisfies g(ai, bi) as it is to check if it satisfies g(0, α). The column-wise sparse
dynamic programming is a bit trickier, but still adaptable. Yet a stronger model
[8,9] allows gaps of negative lengths, i.e. the gap may have a form g(ai, bi) where
ai < 0 (it is also possible that bi < 0). In other words, parts of the pattern
occurrence can be overlapping in the text.

Consider first the situation where for each g(ai, bi): (i) ai ≥ 0; or (ii) bi ≤ 0.
In either case we have ai ≤ bi. Handling the case (i) is just what our algorithms
already do. The case (ii) is just the dual of the case (i), and conceptually it can
be handled in any of our dynamic programming algorithms by just scanning the
current row from right to left, and using g(−bi − 2,−ai − 2) instead of g(ai, bi).

276 K. Fredriksson and S. Grabowski

The general case where we also allow ai < 0 < bi is slightly trickier. Basically,
the only modification for Alg. 1 is that we change all the conditions of the form
0 ≤ g ≤ α, where g is the formed gap length for the current position, to form
ai ≤ g ≤ bi. Note that this does not require any backtracking, even if ai < 0.

Alg. 3 can be adapted as follows. For computing the list Li, the basic algorithm
checks if any of the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 matches pi.
We modify this to check the text characters tj′+ai+1 . . . tj′+bi+1. This clearly
handles correctly both the situations bi ≤ 0 and ai < 0 < bi. The scanning time
for row i becomes now O((bi − ai + 1)|Li−1|). The average time is preserved as
O(n) if we now require that (bi − ai + 1)δ/σ < 1. The optimization to detect
and avoid overlapping text windows clearly works in this setting as well, and
hence the worst case time remains O(n + min{(b − a + 1)|M|, mn}), where for
simplicity we have considered that the gaps are of the same size for all rows.

7 Preliminary Experimental Results

We have run experiments to evaluate the performance of our algorithms.
The experiments were run on Pentium4 2GHz with 512Mb of RAM, running
GNU/Linux 2.4.18 operating system. We have implemented all the algorithms
in C, and compiled with icc 7.0.

We first experimented with (δ, α)-matching, which is an important application
in music information retrieval. For the text we used a concatenation of 7543 music
pieces, obtained by extracting the pitch values from MIDI files. The total length
is 1,828,089 bytes. The pitch values are in the range [0 . . . 127]. This data is far
from random; the six most frequent pitch values occur 915,082 times, i.e. they
cover about 50% of the whole text, and the total number of different pitch values
is just 55. A set of 100 patterns were randomly extracted from the text. Each
pattern was then searched for separately, and we report the average user times.
Fig. 1 shows the timings for different pattern lengths. The timings are for the
following algorithms:

DP: Plain Dynamic Programming algorithm [3];
DP Cut-off: “Cut-off” version of DP (as in [2]);
SDP RW: Basic Row-Wise Sparse Dynamic Programming;
SDP RW fast: Binary search version of SDP;
SDP RW fast PP: linear preprocessing time variant of SDP RW fast (Alg. 1);
SDP CW: Column-Wise Sparse Dynamic Programming (Alg. 2);
Simple: Simple algorithm (Alg. 3);
BP Cut-off: Bit-Parallel Dynamic Programming [4];
NFA: Nondeterministic finite automaton, forward matching variant [10].

We also implemented the SDP RW variant with O(
√

δn) worst case preprocessing
time, but this was not competitive in practice, so we omit the plots.

SDP is clearly better than DP, but both show the dependence on m. The “cut-
off” variants remove this dependence. The linear time preprocessing variant of
the SDP “cut-off” is always slower than the plain version. This is due to the small

Efficient Algorithms for Pattern Matching 277

 0.1

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

(1,2)-matching

 0.1

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

(2,4)-matching

 0.01

 0.1

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=16, (1,α)-matching

 0.1

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=32, (2,α)-matching

DP
DP Cut-off

SDP RW

SDP RW fast
SDP RW fast PP

SDP CW

Simple
BP Cut-off

NFA

Fig. 1. Running times in seconds for m = 8 . . . 128 (top) and for α = 1 . . . 8 (bottom).
Note the logarithmic scale.

effective alphabet size of the MIDI file. For large alphabets with flat distribution
the linear time preprocessing variant quickly becomes faster as m (and hence the
pattern alphabet) increases. We omit the plots for lack of space. The column-
wise SDP algorithm and especially Simple algorithm are very efficient, beating
everything else if δ and α are reasonably small. For large (δ, α) the differences
between the algorithms become smaller. The reason is that a large fraction of the
text begins to match the pattern. However, this means that these large parameter
values are less interesting for this application. The bit-parallel algorithm [10] is
competitive but suffers from requiring more bits than fit into a single machine
word.

7.1 PROSITE Patterns

We also ran preliminary experiments on searching PROSITE patterns from a
5MB file of concatenated proteins. The PROSITE patterns include character
classes and general bounded gaps. Searching 1323 patterns took about 0.038
seconds per pattern with Simple, and about 0.035 seconds with NFA. Searching
only the short enough patterns that can fit into a single computer word (and
hence using specialized implementation), the NFA times drops to about 0.025

278 K. Fredriksson and S. Grabowski

seconds. However, we did not implement the backward search version, which is
reported to be substantially faster in most cases [10]. Finally, note that the time
for Simple would be inaffected even if the gaps were negative, since only the
magnitude of the gap length affect the running time.

8 Conclusions

We have presented new efficient algorithms for string matching with bounded
gaps and character classes. We can handle even negative gaps efficiently. Besides
having theoretically good worst and average case complexities, the algorithms
are shown to work well in practice.

Acknowledgments

We thank anonymous referees for many helpful suggestions.

References

1. D. Cantone, S. Cristofaro, and S. Faro. An efficient algorithm for δ-approximate
matching with α-bounded gaps in musical sequences. In Proceesings of WEA’05,
volume 3503 of LNCS, pages 428–439. Springer, 2005.

2. D. Cantone, S. Cristofaro, and S. Faro. On tuning the (δ, α)-sequential-sampling
algorithm for δ-approximate matching with α-bounded gaps in musical sequences.
In Proceedings of ISMIR’05, 2005.

3. M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsich-
las. Approximate string matching with gaps. Nordic J. of Computing, 9(1):54–65,
2002.

4. K. Fredriksson and Sz. Grabowski. Efficient bit-parallel algorithms for (δ, α)-
matching. In Proceesings of WEA’06, volume 4007 of LNCS, pages 170–181.
Springer, 2006.

5. D. B. Johnson. A priority queue in which initialization and queue operations take
O(log log D) time. Mathematical Systems Theory, 15:295–309, 1982.

6. V. Mäkinen. Parameterized approximate string matching and local-similarity- based
point-pattern matching. PhD thesis, Department of Computer Science, University
of Helsinki, August 2003.

7. V. Mäkinen, G. Navarro, and E. Ukkonen. Transposition invariant string matching.
Journal of Algorithms, 56(2):124–153, 2005.

8. G. Mehldau and G. Myers. A system for pattern matching applications on biose-
quences. Comput. Appl. Biosci., 9(3):299–314, 1993.

9. G. Myers. Approximate matching of network expression with spacers. Journal of
Computational Biology, 3(1):33–51, 1996.

10. G. Navarro and M. Raffinot. Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. Journal of Computational
Biology, 10(6):903–923, 2003.

11. Y. J. Pinzón and S. Wang. Simple algorithm for pattern-matching with bounded
gaps in genomic sequences. In Proceedings of ICNAAM’05, pages 827–831, 2005.

Matrix Tightness: A Linear-Algebraic
Framework for Sorting by Transpositions

Tzvika Hartman1 and Elad Verbin2

1 Dept. of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
hartmat@cs.biu.ac.il

2 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
eladv@post.tau.ac.il

Abstract. We study the problems of sorting signed permutations by
reversals (SBR) and sorting unsigned permutations by transpositions
(SBT), which are central problems in computational molecular biology.
While a polynomial-time solution for SBR is known, the computational
complexity of SBT has been open for more than a decade and is consid-
ered a major open problem.

In the first efficient solution of SBR, Hannenhalli and Pevzner [HP99]
used a graph-theoretic model for representing permutations, called the
interleaving graph. This model was crucial to their solution. Here, we
define a new model for SBT, which is analogous to the interleaving graph.
Our model has some desirable properties that were lacking in earlier
models for SBT. These properties make it extremely useful for studying
SBT.

Using this model, we give a linear-algebraic framework in which SBT
can be studied. Specifically, for matrices over any algebraic ring, we de-
fine a class of matrices called tight matrices. We show that an efficient
algorithm which recognizes tight matrices over a certain ring, M, implies
an efficient algorithm that solves SBT on an important class of permu-
tations, called simple permutations. Such an algorithm is likely to lead
to an efficient algorithm for SBT that works on all permutations.

The problem of recognizing tight matrices is also a generalization of
SBR and of a large class of other “sorting by rearrangements” problems,
and seems interesting in its own right as. We give an efficient algorithm
for recognizing tight symmetric matrices over any field of characteristic 2.
We leave as an open problem to find an efficient algorithm for recognizing
tight matrices over the ring M.

1 Introduction

One of the most promising ways to understand evolution between species is to
reconstruct their evolutionary history based on genome rearrangements. In the
last decade, a large body of work was devoted to a family of computational
problems, called genome rearrangement problems. Genomes are represented by
permutations, where each element stands for a gene. The basic task is, given two

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 279–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 T. Hartman and E. Verbin

permutations, to find a shortest sequence of rearrangement operations (such as
reversals, transpositions, translocations, etc.) that transforms one permutation
into the other. Assuming (without loss of generality) that one of the permutations
is the identity permutation, the problem is to find the shortest way of sorting
a permutation using a given rearrangement operation (or set of operations). In
this paper we mainly address the problem of sorting signed permutations by
reversals and the problem of sorting (unsigned) permutations by transpositions.
For more background on genome rearrangements refer to [Pev00, SEM02].

A signed permutation is a permutation with + or − on every element, which
represent the direction of the corresponding gene. A reversal reverses the order
of the elements in a segment and flips their signs. The problem of sorting signed
permutations by reversals (SBR) is the problem of transforming a given signed
permutation to the positive identity permutation using a minimum number of
reversals.

A transposition is a rearrangement operation in which a segment is cut out
of the permutation and pasted in a different location. The problem of sorting
unsigned permutations by transpositions (SBT) is the problem of transforming
a given unsigned permutation to the identity permutation using a minimum
number of transpositions.1

Hannenhalli and Pevzner, in their seminal paper [HP99], gave a polynomial
time algorithm for SBR. Subsequent works gave algorithms with better running
times, and simplified the underlying theory [BH96, KST00, Ber01, KV03, TS04].
The computational complexity of SBT on the other hand is still open. There
are several 1.5-approximation algorithms [BP98, Chr99, HS06], and the best
algorithm to date has approximation ratio 1.375 [EH05].

To obtain a polynomial time algorithm for SBR, Hannenhalli and Pevzner
used a labelled graph called the interleaving graph [HP99]. Each vertex of this
graph is labelled either black or white. The interleaving graph models the effect of
a reversal on a permutation as a graph operation on a vertex. In this operation,
which we call clicking a black vertex v, we eliminate v while (1) replacing the
subgraph induced by the neighbors of v by its complement, and (2) flipping the
color of each neighbor of v.

There is a basic lower bound for the reversal distance called the cycle lower
bound [BP96]. A central subproblem of SBR is to characterize the permutations
whose reversal distance is equal to the cycle lower bound. We call these permu-
tations tight. Hannenhalli and Pevzner proved that a permutation is tight if and
only if each connected component of its interleaving graph contains a black ver-
tex. This leads to an efficient algorithm for finding a minimum sorting sequence
for tight permutations. They also showed how to find a minimal sorting sequence
for a permutation which is not tight.

We believe that a similar approach should be used to solve SBT. Indeed there
are models for SBT that try to capture the effect of performing a transposition
in a way similar to the clicking operation in the interleaving graph model (e.g.

1 See Section 3 for an explanation of why we study SBR on signed permutations, while
SBT is studied on unsigned permutations.

Matrix Tightness: A Linear-Algebraic Framework 281

[Chr99]). However, all existing models are incomplete, in the sense that they do
not capture entirely the effect of performing a transposition on the permutation.

A cycle lower-bound exists also for SBT [BP98]. Therefore, one can generalize
the notion of tightness. A characterization of tight permutations – those which
can be sorted in a number of transpositions which is equal to the cycle lower
bound – may be the key to a polynomial algorithm for SBT.

Our Contributions. Our first contribution is a graph-theoretic model for
SBT which is analogous to the interleaving graph. In contrast with previous
models, this model is complete in the sense that it captures the entire effect
of a transposition in graph-theoretic terms. Although we can define it using a
labelled graph (which has labels on both vertices and edges), it turns out that
it is more natural to specify the model in linear-algebraic terms. The model is a
matrix over a certain 16-element ring, which we denote by M. A transposition
is modelled by a certain clicking operations on a nonzero entry on the diagonal
of the matrix. Equipped with this model we can state the “tightness” question
for SBT in algebraic terms. This is presented in Section 3.

Our second contribution is a unified model, for which both the interleaving
graph and our model for SBT are special cases. This model consists of a matrix
over an arbitrary ring with a certain clicking operation. In Section 2 we define
the matrix tightness problem, which is a generalization of both the problem of
checking tightness for SBR and of checking tightness for SBT.

Next, in Sections 4 through 6 we study the matrix tightness problem. In
Section 4 we give some general results on the problem, regardless of what the
underlying ring is. In Section 5 we give an efficient algorithm for recognizing
symmetric tight matrices over any field of characteristic 2, using an extension of
the technique of Hannenhalli and Pevzner [HP99]. In Section 6 we explore the
matrix tightness problem over M, and give some starting points for solving it.

We believe that our results shed some further light on the combinatorial struc-
ture of SBR and why it is polynomially solvable. Despite the remarkable progress
in recent years and the discovery of efficient algorithms, the problem is not fully
understood. Better understanding may lead to even more efficient algorithms.
We show a nontrivial connection between SBR and SBT in showing that both
are special cases of the same algebraic question. We hope that this would trigger
further progress on SBT. The algebraic clicking scheme we propose for matrices,
and the question of tightness in this general context may find other applications.

Finally, we note that Meidanis and Dias [MD00] gave an algebraic model
for SBT. We are not aware of any connections between their model and ours.
The algebra they use is that of permutation groups, while we use mainly linear
algebra.

2 The Matrix Tightness Problem

Algebra and Linear Algebra: Preliminaries. Let R be a (not necessarily
commutative) ring. Recall that a ring has the properties of a field except that the

282 T. Hartman and E. Verbin

multiplication operation does not have to be commutative, and the multiplication
operation does not have to be invertible. There must still be a multiplicative unit
element, denoted by 1.2

Some elements x ∈ R, such as 1, have a multiplicative inverse (i.e. there exists
y ∈ R such that xy = yx = 1). We call these the unit elements of R. The other
elements, which do not have a multiplicative inverse, are called non-unit. Note
that an element x ∈ R can only have a single inverse: if y1, y2 are both inverses
of x then y1 = y1xy2 = y2.

For a prime p and an integer m ≥ 1, the Galois Field Fpm is the (unique)
field of size pm. In the literature, this field is sometimes denoted by GF (pm).

The characteristic of a ring is the number of times 1 must be added to itself
to get 0 (the characteristic is defined to be 0 if no such number exists). The
characteristic of the Galois field Fpm is p.

We now define some standard linear-algebraic concepts in somewhat non-
standard ways in order to work over a non-commutative ring instead of a field.
Specifically, we avoid using a determinant operator, since such an operator is
hard to define over non-commutative rings. On fields our definitions coincide
with the usual definitions. Let R be a ring. The vectors v1, . . . , vn ∈ Rm are
called linearly dependent if there exist α1, . . . , αn ∈ R not all of which are 0 such
that

∑n
i=1 αivi = 0. Otherwise, v1, . . . , vn are called linearly independent. We

call a matrix A over R regular if its rows are linearly independent. Otherwise,
we call A singular.

Let A be a n×n matrix over R. We always assume that the rows and columns
of A are both indexed by a set V of cardinality n in a symmetric manner: row i
and column i of A are indexed by the same element of V . As usual, for S ⊆ V we
define the minor of A on S to be the matrix A[S] which is obtained by leaving
only entries with both indices in S. A[∅] is the empty matrix, which is a matrix
indexed by the set ∅. We consider the empty matrix to be regular. For v ∈ V ,
we denote by A↓v and Av→ the column and the row indexed by v, respectively.

We denote by M the ring of 2× 2 matrices over the binary field F2, with the
usual matrix addition and matrix multiplication operations as ring operations.
This ring consists of 16 elements. Six of them are units and ten of them are
non-units.

The Matrix Tightness Problem. Let A be a n×n matrix over R indexed
by V . We define the operation of clicking an element v ∈ V . This operation
is only defined when Avv is a unit of R. In this case, v is said to be clickable.
Clicking v turns A into the matrix A(∗v) � A−A↓vA−1

vv Av→. In other words, for
every i, j ∈ V , A

(∗v)
ij = Aij − AivA−1

vv Avj . Equivalently, the clicking operation
performs n− 1 elementary operations on the rows of the matrix, which turn all
elements of column v, except Avv, into zeroes, and then it sets row v to 0.

The matrix A is called tight if there is a sequence of clicking operations where
each element of V is clicked exactly once. (So, a matrix is not tight if we always

2 In some of the literature, a ring that contains a multiplicative unit element is called
a unit ring.

Matrix Tightness: A Linear-Algebraic Framework 283

“get stuck” with no clickable vertices). Note that the final result of a sequence
of operations where every vertex is clicked exactly once is a matrix with all
elements equal to 0. A is called weakly-tight if there is some sequence of clicking
operations such that the final result is the zero matrix. In both cases, a sequence
of clicking operations with the desired property is called a sorting sequence.

Let R be a fixed ring. The tightness problem over R is the following decision
problem: The input is a n×n matrix A over R. One wishes to determine whether
A is tight in time polynomial in n.

The Symmetric and Hermitian Cases. While the tightness problem is
defined over any matrix, of special interest are two specific classes of matrices:
the symmetric matrices and the Hermitian matrices. We now define the property
of being Hermitian.

Let R be a ring, and let ∗ : R → R be a function from R to R. For convenience,
we write ∗(x) as x∗. ∗ is called an involution on R if: (a) For any x ∈ R,
(x∗)∗ = x. (so ∗ is an invertible function); (b) For any x, y ∈ R, (xy)∗ = y∗x∗;
and (c) 0∗ = 0, 1∗ = 1.

For example, the complex conjugate is an involution over C. For a matrix A
over R, its conjugate with respect to involution ∗ is the matrix AH obtained by
transposing A and applying ∗ on each element of the matrix. If A = AH then A
is called Hermitian (with respect to ∗).

If R is a ring and ∗ is an involution over it, we call the pair (R, ∗) an inv-
ring. The matrix tightness problem in its symmetric form over the ring R is the
problem of determining whether a symmetric matrix over R is tight. The matrix
tightness problem in its Hermitian form over the inv-ring (R, ∗) is the problem
of determining whether a Hermitian matrix is tight.

We often consider the matrix tightness problem over the inv-ring (M,♦),
where ♦ is the involution over M that exchanges the two elements on the main

diagonal:
�

a b
c d

�♦

=
�

d b
c a

�
. It is not hard to check that this is indeed an invo-

lution.
We believe that the tightness problem is of interest also outside the field of

genome rearrangements. We leave open the question of applicability to other
fields of research.

3 The Relation of SBR and SBT to Matrix Tightness

In this section we define the concept of r-tight and t-tight permutations, and
give a short account on why checking r-tightness or t-tightness of a permutation
is a sub-problem of the matrix tightness problems. A considerably more detailed
explanation is included in the full version of the paper (available online).

Sorting By Reversals and Sorting by Transpositions: Preliminar-
ies. Here we give a quick introduction to standard concepts from the theory
of genome rearrangements. More relaxed presentations of these concepts can be
found, e.g., in [HP99, KST00].

284 T. Hartman and E. Verbin

Let π = (π1 . . . πn) be a signed permutation on n elements3. A reversal
ri,j (for 1 ≤ i ≤ j ≤ n) on π reverses the order and sign of the segment
of π which starts at i and ends at j, yielding: ri,j · π = (π1 . . . πi−1 −
πj−1 . . . − πi πj . . . πn). A transposition ti,j,k (for 1 ≤ i < j < k ≤ n)
exchanges between the two segments bounded by i, j and k, yielding: ti,j,k · π =
(π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn).

In this paper we discuss two problems. The problem of finding a shortest se-
quence of reversals that transforms a permutation into the identity permutation
is called Sorting by Reversals, or SBR. Similarly, for transpositions the prob-
lem is Sorting by Transpositions, or SBT. Note that a transposition does not
change the signs of the elements, and thus, SBT is defined only on unsigned
permutations (permutations of only positive elements). The reversal (transposi-
tion) distance of a permutation π, denoted by dr(π) (dt(π)), is the length of the
shortest sorting sequence.

The Breakpoint Graph. Following Bafna and Pevzner [BP96], we first
transform permutation π on n elements into a permutation f(π) = π′ = (π′

1
. . . π′

2n) on 2n elements. f(π) is obtained by replacing each positive element
i by two elements 2i − 1, 2i (in this order), and each negative element −i by
2i, 2i − 1. In the rest of the paper we identify, in both indices and elements,
2n + 1 and 1.

Definition 1. The breakpoint graph BG(π) is an edge-colored graph on 2n
vertices {1, 2, . . . , 2n}. For every 1 ≤ i ≤ n, π′

2i is joined to π′
2i+1 by a black

edge, and 2i is joined to 2i + 1 by a gray edge.

(see Figure 1(a) for an example).
Since the degree of each vertex is exactly 2, this graph uniquely decomposes

into cycles. A cycle with k black edges and k gray edges is called a k-cycle and is
called odd if k is odd. A permutation is called r-simple (t-simple) if its breakpoint
graph contains only 2-cycles (3-cycles). Let c(π) (resp. codd(π)) be the number
of (odd) cycles in BG(π). Bafna and Pevzner showed that a reversal can change
c(π) by at most one [BP96], and that a transposition can change codd(π) by at
most two [BP98]. This implies the following lower bounds for SBR and SBT,
called the cycle lower bounds : dr(π) ≥ n− c(π), dt(π) ≥ n−codd(π)

2 .
A permutation π that achieves the SBR lower bound (i.e., dr(π) = n− c(π))

is called an r-tight permutation. The problem of determining if a permutation is
r-tight is called the TIGHTr problem. Similarly, a permutation that achieves the
SBT lower bound is called t-tight, and the decision problem is called TIGHTt.
The restriction of the problem TIGHTr (TIGHTt) only for input permutations
which are r-simple (t-simple) is denoted TIGHTr,simple (TIGHTt,simple).

Two gray edges in the breakpoint graph are said to intersect if they intersect
when one draws the breakpoint graph as in Figure 1(a). In other words, the
3 For convenience, in this paper we consider circular permutations, that is, we consider

(π1 . . . πn) equivalent to (π2 . . . πnπ1). This does not matter since both SBR
and SBT are computationally equivalent for linear and circular permutations, see
[MWD00, HS06].

Matrix Tightness: A Linear-Algebraic Framework 285

gray edges (a, b) and (c, d) intersect if and only if the interval whose endpoints
are (π′)−1(a) and (π′)−1(b) and the interval whose endpoints are (π′)−1(c) and
(π′)−1(d) have a non-empty intersection, but neither of them is fully contained
in the other.

The Overlap Graph. Kaplan, Shamir and Tarjan [KST00] give the overlap
graph, a graphic model which they originally used for SBR, but that we shall use
for SBT. For an unsigned permutation π, define the graph GKST (π) as follows.
GKST (π) has one vertex for each gray edge of the breakpoint graph BG(π). Two
vertices are connected by an edge if their corresponding gray edges intersect. See
an example in Figure 1(b).

3.1 The Relation to Matrix Tightness

We can now state our theorems that relate SBR and SBT to the matrix tightness
problem:

Theorem 2. The problem TIGHTr,simple is a sub-problem of the tightness prob-
lem on symmetric matrices over F2.

Theorem 3. The problem TIGHTt,simple is a sub-problem of the tightness prob-
lem on Hermitian matrices over (M,♦).

The proof of Theorem 2 is given implicitly in [HP99]: one simply translates an
r-simple permutation π to its interleaving graph, and takes the adjacency matrix
A of the interleaving graph. It holds that π is r-tight if and only if A is tight
over F2. In a similar fashion, Kaplan, Shamir and Tarjan [KST00] implicitly
prove that the problem TIGHTr is a sub-problem of the tightness problem on
symmetric matrices over F2.

For the proof of Theorem 3 we need to transform a t-simple permutation π
to a Hermitian matrix A over (M,♦) such that π is t-tight if and only if A is
tight. For simplicity, we give here only the transformation itself. A more detailed
version can be found in the full version of the paper.

To get A we perform the following 3 steps (see example in Figure 1):

1. Draw G = GKST (π), π’s overlap graph.
2. Let Ci denote the ith 3-cycle of π, under some arbitrary ordering. G has 3

vertices for each such 3-cycle. Denote them by v1
i , v2

i , v3
i . For any v, u which

are vertices of G, denote G(v, u) = 1 if there is an edge in G between v and
u, and G(v, u) = 0 otherwise.

3. Now we can write the matrix A: It is an n/3 by n/3 matrix. For every
1 ≤ i, j ≤ n/3, the entry Aij will be the following element of M:(

G(v2
i , v1

j) G(v2
i , v2

j)
G(v1

i , v1
j) G(v1

i , v2
j)

)

Another way to view this construction is: Take the overlap graph of π. Delete
one (arbitrary) vertex from each triplet. Take the adjacency matrix of the re-
sulting graph. Exchange between each consecutive pair of rows (the first and

286 T. Hartman and E. Verbin

1
2

15

16

7

8

5
6

1112

9
10

17

18

3
4

13
14

C1C2

C3

v2
1 = (2, 3)

v1
1 = (1, 18)

v3
1 = (14, 15)

v2
2 = (8, 9)

v1
2 = (12, 13)v3

2 = (4, 5)

v2
3 = (10, 11)

v1
3 = (6, 7)

v3
3 = (16, 17)

(a) (b)

1, 18 2, 3 12, 13 8, 9 6, 7 10, 11
2, 3
1, 18
8, 9

12, 13
10, 11
6, 7

�
�������

�
1 0
0 1

� �
1 0
1 0

� �
0 0
0 0

�
�

0 0
1 1

� �
1 0
0 1

� �
1 1
0 1

�
�

0 0
0 0

� �
1 1
0 1

� �
0 0
0 0

�

�
�������

(c)

Fig. 1. (a) The breakpoint graph of the permutation π = (1 8 4 3 6 5 9 2 7). The bold
lines are the black edges, and the others are the gray edges. (b) The overlap graph,
GKST (π). If you are viewing this on a color printout, the edges are colored in order
to be more distinguishable. (c) The matrix A, which is our model for the permutation
π. Observe that A is indeed Hermitian over (M,♦).

second, the third and fourth, and so on). Now view this (2n/3)× (2n/3) matrix
as a (n/3)× (n/3) matrix over M. This is A.

4 On the Matrix Tightness Problem

In this section we explore the matrix tightness problem. We give several equiv-
alent conditions for tightness. We show that the problem exhibits some connec-
tions to familiar linear-algebraic structures, such as gaussian elimination and
matrix decompositions.

Due to lack of space we only give here a brief list of results. In the full version
of the paper we give a full description of these results, and some further algebraic
connections.

Theorem 4. A is tight iff there is an ordering (v1, . . . , vn) of V such that for
all 1 ≤ k ≤ n, A[v1, . . . , vk] is regular. These orderings with this property are
exactly the sorting sequences of A.

(Here and in the sequel we write A[v1, . . . , vk] instead of A[{v1, . . . , vk}]. Recall
that this is the minor of A obtained by leaving only the entries with both indices
in the set {v1, . . . , vk}.)

Matrix Tightness: A Linear-Algebraic Framework 287

Corollary 5. If A is singular then A is not tight.

A permutation matrix is a matrix with exactly one 1 in each row and each
column, and the rest 0s.

Theorem 6. Matrix A over ring R is tight iff there exist a permutation matrix
P , a lower-triangular matrix L (over R) with diagonal 1, and an upper-triangular
matrix U (over R) whose diagonal contains only units, such that A = PLUPT .
The permutation matrices P which realize this decomposition are in 1-to-1 cor-
respondence with the sorting sequences of A.

Analogously, for the Hermitian case, one gets that a Hermitian matrix A over
inv-ring (R, ∗) is tight iff there exist a permutation matrix P , a lower-triangular
matrix L with diagonal 1, and a diagonal matrix D with only units on the
diagonal, such that A = PLDLHPT . The situation for symmetric matrices is
the same with A = PLDLT PT . These decompositions are similar to Cholesky
Decompositions of positive definite matrices.

5 Tightness over Fields of Characteristic 2

In this section we give a polynomial-time checkable characterization of tightness
for symmetric matrices over any field with characteristic 2. We do this by proving
that the H-P theorem [HP99] generalizes, with some necessary changes, to this
case.

Let A be a symmetric matrix over a field F , such that A is indexed by V .
Define G0(A) to be the graph whose vertex-set is V and which has an edge (u, v)
iff Auv �= 0. Vertex v ∈ V is colored black if Avv �= 0, and white otherwise. A
connected component of such a vertex-colored graph G is called white if all its
vertices are white, and black otherwise.

Theorem 7. Let A be a symmetric matrix over a field F of characteristic 2.
Then A is tight iff both of the following conditions hold: (a) A is regular; (b)
every connected component of G0(A) is black.

Due to lack of space, the proof is omitted. It is included in the full version of
the paper.

Theorem 7 is false over every field of characteristic other than 2. The matrix�
� 1 −1 −1

−1 1 −1
−1 −1 1

�
� has determinant −4, and is thus regular over every such field. Any

clicking operation performed on it gives the matrix
�

0 −2
−2 0

�
which is obviously

non-tight.
The problem of checking tightness over fields of characteristic other than 2,

such as F3 or R, seems interesting both in its own right and as a way to develop
techniques that will help resolve the Hermitian problem over M. Also of interest
is the problem of checking tightness of Hermitian matrices over the inv-ring

288 T. Hartman and E. Verbin

(F, ∗) where F is any field, and ∗ is the involution with x∗ = x−1 for x �= 0 and
0∗ = 0. We could not resolve this even for fields of characteristic 2 (except F2,
where it coincides with the symmetric case). This is especially interesting for
the field F4, because, as we describe in the next section, it arises naturally as a
sub-problem of the Hermitian problem over M.

6 On Tightness over M and Other Difficult Variants

In this section we consider the problem of checking tightness of Hermitian matri-
ces over the inv-ring (M,♦). Although this ring has characteristic 2, the problem
is difficult both because we are dealing with Hermitian instead of symmetric ma-
trices, and because M is a ring rather than a field. It seems natural to ask whether
this problem has any interesting sub-problems. One way to define a sub-problem
is to restrict our matrices to have elements only from a sub-ring of M. Every
sub-ring of M defines a sub-problem in this manner.

In the full version we discuss all sub-rings of M. Here we only discuss the
sub-problem where all elements are taken from the sub-ring

M4 =
{(

1 0
0 1

)
,

(
0 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)}
. This sub-problem is equivalent to a

much more elementary problem: to the tightness problem of general (i.e. not
necessarily symmetric or Hermitian) matrices over F2. Thus, we would like to
consider the tightness problem for general matrices over F2.

There is a natural graph formulation of the general problem over F2. This
formulation may be easier to visualize. Let G be a directed graph with vertices
colored black or white. The clicking operation on v, defined only when v is a
black vertex, performs the following three operations: (1) for every vertex u, flip
the color of u iff (u, v) and (v, u) are both edges of the graph; (2) For every
ordered pair of different vertices u, w, if (u, v) and (v, w) are both edges of the
graph then the directed edge (u, v) is created if it does not exist, and deleted if it
does exist; and (3) delete from the graph the vertex v and all edges touching it.
G is called tight if there is a sequence of clicking operations where every vertex
is clicked exactly once. We wish to find a polynomial-time characterization of
the tight graphs.

This problem seems to be difficult. We suspect that if this problem can be
solved then one can use it to solve the Hermitian problem over (M,♦), as well
as over other fields and rings of characteristic 2.

Here is an example that shows some phenomenon that may be surprising. Let
G be a graph consisting of a single directed cycle of length n. We are interested in
what ways of coloring it make it tight. It can easily be seen that coloring any set of
at most n− 2 vertices of G black and the other vertices white makes the graph
non-tight, while coloring n − 1 vertices black and the remaining vertex white
makes the graph tight. Coloring all vertices black makes the adjacency matrix
of the graph non-regular and therefore non-interesting (because of Corollary
5). We see here that the tightness problem over directed graphs exhibits some
“counting” properties that seem not to exist in the undirected case.

Matrix Tightness: A Linear-Algebraic Framework 289

The tightness problem over directed graphs is also non-monotonic. Consider
the following two matrices

A =

⎛
⎜⎜⎝

1 0 1 1
1 0 1 0
0 1 0 1
1 1 0 1

⎞
⎟⎟⎠ , A′ =

⎛
⎜⎜⎝

0 0 1 1
1 0 1 0
0 1 0 1
1 1 0 1

⎞
⎟⎟⎠ .

Both A and A′ are regular. However, A′ is tight while A is not. This is surprising
since this cannot happen for symmetric matrices over F2: if B, B′ are symmetric
regular matrices such that for every i, j, B′

ij ≤ Bij , and if B′ is tight then B
must also be tight. This is a consequence of Theorem 7.

7 Conclusions and Discussion

The main open problem is to resolve the tightness problem for a wider range
of fields and rings, as well as involution operators, than we have done here. A
specifically interesting and approachable problem is the general (i.e. not sym-
metric and not Hermitian) matrix tightness problem over F2, which has been
discussed in Section 6.

We have recently discovered that the results presented in this paper can be
viewed in the more general framework of the theory of delta-matroids (see e.g.
[Gee96]). It seems that one can define a tightness problem over delta-matroids,
and there exists a generalization of the H-P theorem to that setting.

We believe that the matrix tightness problem may be even more closely related
to sorting by rearrangements problems than we show in this paper. Specifically,
we show how the problem of r- or t-tightness of a permutation is a special
case of the problem of tightness of a matrix. It seems interesting to try to cast
the problem of finding a minimum-length sorting sequence of a permutation,
or determining the length of such a sequence, into the algebraic realm that we
explore here. One would perhaps first try to get a graph-theoretic model that
models the effect of any reversal/transposition.4

Our approach here can be applied to the problems of sorting under other
genome rearrangement operations (or sets of rearrangement operations). This
will be discussed in the full version of this paper.

Acknowledgements. We would like to thank Noga Alon, Isaac Elias, Felix
Goldberg, Haim Kaplan, Ron Shamir and Roded Sharan for fruitful discussions.
Elad Verbin would like to thank Martin C. Golumbic and the Caesarea Edmond
Benjamin de Rothschild Foundation for their hospitality and for the opportunity
to present preliminary results leading to this research in the France-Israel Expert
Workshop on Graph Classes and Graph Algorithms, 2004.
4 Our model for SBT can represent only a limited class of transpositions. Similarly, the

KST overlap graph and H-P’s interleaving graph model only so-called elementary
reversals. These restricted classes of operations suffice for checking r-/t- tightness,
but are not enough for giving a minimum-length sorting sequence of a non-tight
permutation.

290 T. Hartman and E. Verbin

References

[Ber01] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner
theory. In Combinatorial Pattern Matching (CPM ’01), pages 106–117, 2001.

[BH96] P. Berman and S. Hannenhalli. Fast sorting by reversal. In Daniel S.
Hirschberg and Eugene W. Myers, editors, Combinatorial Pattern Matching,
7th Annual Symposium, volume 1075 of Lecture Notes in Computer Science,
pages 168–185, Laguna Beach, California, 10-12 June 1996. Springer.

[BP96] V. Bafna and P. A. Pevzner. Genome rearragements and sorting by reversals.
SIAM Journal on Computing, 25(2):272–289, 1996.

[BP98] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240, May 1998.

[Chr99] D. A. Christie. Genome Rearrangement Problems. PhD thesis, University
of Glasgow, 1999.

[EH05] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by
transpositions. In proceedings of the Fifth Workshop on Algorithms in Bioin-
formatics (WABI), pages 204–215, 2005.

[Gee96] Jim Geelen. Matchings, matroids and unimodular matrices. PhD thesis,
University of Waterloo, 1996. available at
http://www.math.uwaterloo.ca/~jfgeelen.

[HP99] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: Polyno-
mial algorithm for sorting signed permutations by reversals. Journal of the
ACM, 46:1–27, 1999.

[HS06] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation
algorithm for sorting by transpositions. Information and Computation,
204(2):275–290, 2006.

[KST00] H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm
for sorting signed permutations by reversals. SIAM Journal on Computing,
29(3):880–892, 2000.

[KV03] H. Kaplan and E. Verbin. Effficient data structures and a new randomized
approach for sorting signed permutations by reversals. In Proc. 14th Annual
Symposium on Combinaotrial Pattern Matching (CPM ’03), pages 170–185.
Springer, 2003.

[MD00] J. Meidanis and Z. Dias. An alternative algebraic formalism for genome
rearrangements. In Comparative Genomics: Gene Order Dynamics, Map
Alignment and the Evolution of Gene Families, volume 1 of Series in Com-
putational Biology, pages 213–223, 2000.

[MWD00] J. Meidanis, M. E. Walter, and Z. Dias. Reversal distance of signed circular
chromosomes. manuscript, 2000.

[Pev00] P. A. Pevzner. Computational Molecular Biology: An Algorithmic Approach.
MIT Press, 2000.

[SEM02] D. Sankoff and N. El-Mabrouk. Genome rearrangement. In Current Topics
in Computational Molecular Biology. MIT Press, 2002.

[TS04] E. Tannier and M. Sagot. Sorting by reversals in subquadratic time. In
Proc. 15th Annual Symposium on Combinaotrial Pattern Matching (CPM
’04), pages 1–13. Springer, 2004.

How to Compare Arc-Annotated Sequences: The
Alignment Hierarchy

Guillaume Blin1 and Hélène Touzet2

1 IGM-LabInfo - UMR CNRS 8049 - Université de Marne-la-Vallée
77 454 Marne-la-Vallée Cedex 2 - France

gblin@univ-mlv.fr
2 LIFL - UMR CNRS 8022 - Université Lille 1

59 655 Villeneuve d’Ascq Cedex - France
Helene.Touzet@lifl.fr

Abstract. We describe a new unifying framework to express compari-
son of arc-annotated sequences, which we call alignment of arc-annotated
sequences. We first prove that this framework encompasses main existing
models, which allows us to deduce complexity results for several cases
from the literature. We also show that this framework gives rise to new
relevant problems that have not been studied yet. We provide a thor-
ough analysis of these novel cases by proposing two polynomial time
algorithms and an NP-completeness proof. This leads to an almost ex-
haustive study of alignment of arc-annotated sequences.

Keywords: computational biology, RNA structures, arc-annotated se-
quences, NP-hardness, edit distance, algorithm.

1 Introduction

In computational biology, comparison of RNA molecules has attracted a lot of in-
terest recently. From a combinatorial perspective, one can distinguish two types
of modeling that allow for various flexibility and preciseness in the encoding of
RNA structures: macroscopic representations, with two-interval graphs [16,4],
and microscopic representations with arc-annotated sequences, originally intro-
duced in [6]. We focus here on arc-annotated sequences, which are raw sequences
provided with related additional information in the form of arcs connecting pairs
of positions. The set of arcs determines the way the sequence folds into a three-
dimensional space.

Arc-annotated sequences may be refined into four main paradigms: tree edit
distance [15,17,11,5], tree alignment [10], longest common arc-preserving subse-
quence [6,9,12], and general edit distance [8,3]. We propose a unifying framework
to express comparison of arc-annotated sequences that is based on the introduc-
tion of the common arc-annotated supersequence. This framework has several
instances depending on the definition of the embedding involved in the notion
of supersequence, and the type of the supersequence (Nested, Crossing or

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 291–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

292 G. Blin and H. Touzet

Unlimited). It gives rise to a hierarchy of problems, that we called the Align hi-
erarchy in reference to the tree alignment. We show that this hierarchy brings to-
gether all previously mentioned comparison models for arc-annotated sequences,
and leads to the introduction of new comparison models that are biologically
relevant. In particular, we propose two polynomial time algorithms for the prob-
lem of comparing two Nested arc-annotated sequences, whereas corresponding
algorithms considering the same set of edit operations in other formalisms are
not polynomial (Sections 4.2 and 5). We also give an NP-completeness result
that gives some new insight on the hardness of the comparison of Crossing arc-
annotated sequences (Section 4.3). This leads to an almost exhaustive study of
the Align hierarchy. Due to space considerations, complete proofs are deferred
to the full version of the paper.

2 Edition Models for Arc-Annotated Sequences

Given a finite alphabet Σ, an arc-annotated sequence is defined by a pair (S, P),
where S is a string of Σ∗ and P is a set of arcs connecting pairs of characters
of S. In reference to RNA structures, characters are called bases. Bases with no
incident arc are called single bases. As usually done in the study of arc-annotated
sequences, we distinguish four levels of arc structure (originally proposed by
Evans in [6]):

– Unlimited (Unlim) – no restriction at all,
– Crossing (Cros) – there is no base incident to more than one arc,
– Nested (Nest) – there is no base incident to more than one arc and no

arcs are crossing,
– Plain – there is no arc.

There is an obvious inclusion relation between those arc types with the ⊂ op-
erator (Plain ⊂ Nested ⊂ Crossing ⊂ Unlimited). Since we focus here on
structure comparison, we do not consider Plain sequences, which do not carry
any structural information. In the remaining of this paper, we shall only deal
with sequences of type Nested, Crossing and Unlimited.

In order to compare two arc-annotated sequences, we consider the set of edit
operations (and their associated costs) introduced in [13] and classify it into two
groups:

Substitution operations, inducing renaming of bases in the arc-annotated
sequence: base-match (wm : Σ2 → IR), base-mismatch (wm : Σ2 → IR), arc-
match (wam : Σ4 → IR), arc-mismatch (wam : Σ4 → IR).

Deletion operations, inducing deletion of bases and/or of arcs:

base-deletion (wd : Σ → IR) →
arc-breaking (wb : Σ4 → IR) →
arc-removing (wr : Σ2 → IR) →
arc-altering (wa : Σ3 → IR) → or

How to Compare Arc-Annotated Sequences: The Alignment Hierarchy 293

Given the above set of operations, we define three edit models:

I : all substitution operations, base-deletions and arc-removings are allowed,
II : the operations of model I and arc-alterings are allowed,

III : the operations of model II and arc-breakings are allowed.

In the following, given two arc-annotated sequences u and v, a K-edit script from
u to v will refer to a series of non-oriented operations of the model K transform-
ing u into v. The cost of a K-edit script from u to v, denoted cost(u, v, K) is
the sum of the costs of each operation involved in the K-edit script. We define
the K-edit distance between u and v as the minimum cost of a K-edit script
from u to v. Finding this K-edit distance is called the Edit(u, v, K) problem.

For each model K ∈ {I, II, III}, we also define an ordering relation �K : if u
can be obtained from v by a series of deletion and substitution operations of the
model K, then u �K v. Provided with these notations, we propose to extend
the notion of subsequence on strings to arc-annotated sequences as follows.

Definition 1 (K-subsequence). Given two arc-annotated sequences u and v,
and an edit model K ∈ {I, II, III}, u is said to be a K-subsequence of v if, and
only if, u �K v.

Given three arc-annotated sequences u, v and w such that w �K u and w �K v,
w is said to be a common K-subsequence of u and v. We define the cost of a
common K-subsequence w of u and v as the minimum sum of operation costs
needed to transform u into w and v into w: cost(u, w, K) + cost(v, w, K).

When dealing with plain sequences, it is well-known that each edit script can
be associated with a common subsequence of the same cost. This property is
still valid with K-edit scripts on arc-annotated sequences.

Lemma 1. Given two arc-annotated sequences u and v, and an edit model K ∈
{I, II, III}, solving the Edit(u, v, K) problem is equivalent to finding a common
K-subsequence w of u and v of minimal cost.

We now turn to a novel paradigm, simply considering K-supersequences instead
of K-subsequences. We shall see that this alternative point of view is a fruitful
perspective and that it brings new insights on arc-annotated comparison.

Definition 2 (K-supersequence). Given two arc-annotated sequences u and
v, and an edit model K ∈ {I, II, III}, u is said to be a K-supersequence of v if,
and only if, v �K u.

In a similar way as for common subsequences, given three arc-annotated se-
quences u, v and w, w is a common K-supersequence of u and v if u �K w and
v �K w. The cost of w is defined as cost(w, u, K) + cost(w, v, K). First, we
prove that each Edit problem can reduce to finding an optimal supersequence.

Lemma 2. Given two arc-annotated sequences u and v, and an edit model K ∈
{I, II, III}, there exists a common K-subsequence of u and v of cost α iff there
exists a common K-supersequence of u and v of the same cost.

294 G. Blin and H. Touzet

A point worth to notice with Lemma 2 is that the type of the common superse-
quence is not guaranteed to be the same as the type of the common subsequence.
Figure 1 illustrates such an example. The edit script associated with the optimal
subsequence (which is of Nested type) has a smaller cost than the edit script
associated with the optimal Nested supersequence. Indeed, when constructing
the set of arcs of the common K-supersequence of u (above) and v (below), it is
likely to create crossing arcs or multiple arcs incident to a single character that
are absent in the initial sequences. In general, when considering arc-annotated
sequences of Nested types, searching for a common Nested supersequence is
more restrictive than searching for a common subsequence. In example of Figure
1, it is necessary to authorize Crossing supersequences to get the same cost as
for the Edit problem. This observation gives rise to a family of new problems,
which we call the Align hierarchy.

a b b c c a d d

eddccebb

optimal common
Crossing supersequence

a b b c c a

bb

d d

eddcce

Nested supersequence
optimal common

a b b c c a d d

eddccebb

optimal common
subsequence

Fig. 1. Comparison of the optimal common subsequence and the optimal common su-
persequences. The optimal common subsequence is derived from u and v with two arc-
removings. The optimal common Nested supersequence requires four arc-removings.
In this example, it is necessary to allow crossing arcs in the supersequence to get the
same cost as for the subsequence (third scheme).

Definition 3 (Arc-annotated sequence alignment). Given three types of
sequences A, B and C of {Nested,Crossing,Unlimited} and an edit model
K ∈ {I, II, III}, the Align(A, B, K) → C problem is defined as:
Input: two arc-annotated sequences u and v of type A and B respectively.
Output: a common K-supersequence w of type C of minimum cost.

The purpose of this paper is to study exhaustively the Align hierarchy and
confront it to known results for existing comparison models for arc-annotated
sequences. Since Align(A, B, K) → C is equivalent to Align(B, A, K) → C,
we can always assume that B ⊆ A. Moreover, in order for the problem to be
meaningful, we impose A ⊆ C. Therefore, the hierarchy contains thirty distinct
entries when considering all relevant possibilities for A, B, C and K.

The first result worth to notice is that the Align hierarchy includes all in-
stances of the edit distance problem, as stated in Theorem 1. This is a conse-
quence of Lemma 1 and Lemma 2.

How to Compare Arc-Annotated Sequences: The Alignment Hierarchy 295

Theorem 1. Given two types A, B in {Nested,Crossing,Unlimited} and
an edit model K ∈ {I, II, III}, the Edit(A, B, K) and Align(A, B, K) → Unlim
problems are equivalent.

3 Ordered Trees and the Edit Model I

Comparing arc-annotated sequences of Nested types when considering the edit
model I amounts to comparing ordered trees. Each pair of connected bases corre-
sponds to an internal node, and each single base corresponds to a leaf. Moreover,
in this model, considering arc-annotated I-supersequences of Unlimited type is
meaningless as stated in Lemmas 3 and 4.

Lemma 3. Given two types A, B in {Nest,Cros}, the Align(A, B, I) →
Unlim and Align(A, B, I) → Cros problems are equivalent.

Lemma 4. Given a type B in {Nest,Cros}, the Align(Unlim, B, I) →
Unlim problem has the same complexity as Align(Cros, B, I) → Cros.

Together with Theorem 1, these two lemmas imply that nine out of ten entries of
the model I are equivalent or reduce to Edit problems. The only problem that
does not reduce to an edit problem is Align(Nest, Nest, I) → Nest, which
fully corresponds to the ordered tree alignment, introduced by Jiang et al. in
[10]. Therefore, the Align hierarchy is completely solved for the edit model I,
as summed up in Table 1.

Table 1. Align hierarchy for the edit model I. According to Lemma 3, the ten problems
of the hierarchy reduce to seven distinct instances. We indicate entries that can also be
formulated as edit problems with × in the second column (see Theorem 1). Complexity
results are indicated for two arc-annotated sequences u and v s.t. max(|u|, |v|) = n.

A × B → C Edit model I

Nest × Nest → Nest O(n4) – Jiang [10]

Nest × Nest → Cros × O(n3 log(n)) – Klein [11]Nest × Nest → Unlim

Cros × Nest → Cros × O(n3 log(n)) – Ma [14]Cros × Nest → Unlim

Cros × Cros → Cros
× NP-complete – Ma [14]Cros × Cros → Unlim

Unlim × Nest → Unlim × O(n3 log(n)) – Lemma 4

Unlim × Cros → Unlim × NP-complete – Ma [14]

Unlim × Unlim → Unlim × NP-complete – Ma [14]

296 G. Blin and H. Touzet

4 The Edit Model II

4.1 Some Correspondences with the Lapcs Problem

As introduced by Evans in [6], the Longest Arc-Preserving Common Sub-
sequence problem (Lapcs for short) is defined as follows: given two arc-anno-
tated sequences u and v, find the longest – in terms of sequence length – common
arc-annotated subsequence w of u and v such that an arc (i, j) in w can only be
obtained from both an arc in u and an arc in v (i.e. arc-preserving). We prove
hereafter that the Lapcs problem is a specific case of the common subsequence
problem when considering the edit model II, namely the Edit(A, B, II) problem,
provided that the score system for edit operations is correctly chosen. The cost
of a base-deletion or of an arc-altering is 1, the cost of an arc-removing is 2, and
substitutions are prohibited, with arbitrary high costs.

Theorem 2. Let u, v, w be three arc-annotated sequences. The sequence w is a
longest arc-preserving common subsequence of u and v iff w �II v and w �II u.

This theorem combined with Theorem 1 allows us to derive several cases of the
Align hierarchy for the edit model II from recent results published in the Lapcs
literature. All known results are summed up in Table 2. It remains four specific
problems: Align(Nest,Nest, II) → {Nest,Cros} and Align(Cros, {Nest,
Cros}, II) → Cros. The first two problems can be seen as a refinement of the
Edit(Nested,Nested, II) problem, which is not tractable. We solve them in
the next two sections, and show that the first one is polynomial, whereas the
second one is NP-complete. It follows that Align(Cros,Nest, II) → Cros and
Align(Cros,Cros, II) → Cros are also NP-complete.

4.2 Align(Nested, Nested, II) → Nested Problem Is Polynomial

We exhibit a polynomial algorithm for the Align(Nest,Nest, II) → Nest
problem. This result is somehow unexpected since the associate edit problem
Edit(Nested,Nested, II) is NP-complete. It shows that imposing structural
constraints on the type of the common supersequence is an adequate way for
lower complexity of untractable problems.

We saw in Section 3 that in the model I the Align(Nest,Nest, I) → Nest
problem is polynomial, since it is equivalent to ordered tree alignment. The
algorithm proposed in [10] proceeds by dynamic programming. Each step of the
algorithm adds a component in the supersequence – one single base or two bases
connected by an arc – that is selected so as to minimize the cost of the alignment.

We show here that the formulas for the edit model I can be extended to
the edit model II by adding supplementary rules for the arc-altering opera-
tion. All rules concerning substitutions, base-deletions and arc-removings are
identical.

We introduce some notations for the representation of arc-annotated sequences.
Let ◦ be a binary operator that concatenates two arc-annotated sequences.

How to Compare Arc-Annotated Sequences: The Alignment Hierarchy 297

Table 2. Align hierarchy for edit models II and III. We indicate problems that can
be formulated as edit distance problem in the second column. In these cases, known
results stem from the Lapcs problem for the model II (Theorems 1 and 2), and from
the general edit distance for the model III (Theorem 1). Other problems are specific to
the Align hierarchy and are introduced and studied in this paper. Blank cells are for
problems that are still open. Complexity results are indicated for two arc-annotated
sequences u and v s.t. max(|u|, |v|) = n.

A × B → C Edit model II model III

Nest × Nest → Nest O(n4) O(n4)

Nest × Nest → Cros NP-complete

Nest × Nest → Unlim × NP-complete – Lin [12] NP-complete – Blin [3]

Cros × Nest → Cros NP-complete

Cros × Nest → Unlim ×
NP-complete – Evans [6] Max SNP-hard – Jiang [8]

Unlim × Nest → Unlim ×
Cros × Cros → Cros NP-complete

Cros × Cros → Unlim ×
NP-complete – Evans [6] Max SNP-hard – Jiang [8]Cros × Unlim → Unlim ×

Unlim × Unlim → Unlim ×

α(u) ◦ v denotes the arc-annotated sequence composed by an arc α spanning the
arc-annotated sequence u, concatenated to the arc-annotated sequence v. b ◦ u
denotes the arc-annotated sequence composed by the single base b concatenated
to the arc-annotated sequence u. The common supersequence is built from right
to left. We consider five cases depending on the form of the pair of arc-annotated
sequences to align, that determines which edition rules to apply. Arc-altering oper-
ation creates an arc in the common supersequence. So it should not be considered
for all forms of pairs of arc-annotated sequences: At least one of the two sequences
should begin with a base incident to an arc. We write A for the cost of the align-
ment between two arc annotated-sequences.

1.A(α(u), β(w)) =

min

⎧⎨
⎩

wam(α, β) + A(u, w) – arc-(mis)match
wr(β) + min{A(y, w) + A(z, ε)|y ◦ z = α(u)} – arc-removing
wr(α) + min{A(u, y) + A(ε, z)| y ◦ z = β(w)} – arc-removing

2.A(α(u) ◦ v, β(w) ◦ x) =

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wam(α, β) + A(u, w) + A(v, x) – arc-(mis)match
wr(β) + min{A(y, w) + A(z, x)|y ◦ z = α(u) ◦ v} – arc-removing
wr(α) + min{A(u, y) + A(v, z)| y ◦ z = β(w) ◦ x} – arc-removing
wa(α, b) + min{A(u, y) + A(v, z)| y ◦ b ◦ z = β(w) ◦ x} – arc-altering
wa(β, b) + min{A(y, w) + A(z, x)| y ◦ b ◦ z = α(u) ◦ v} – arc-altering

298 G. Blin and H. Touzet

3.A(b ◦ v, β(w) ◦ x) =

min

⎧⎪⎪⎨
⎪⎪⎩

wd(b) + A(v, β(w) ◦ x) – base-deletion
wr(β) + min{A(y, w) + A(z, x)|y ◦ z = b ◦ v} – arc-removing
wa(β, b) + min{A(y, w) + A(z, x)| y ◦ z = v} – arc-altering
wa(β, b2) + min{A(y, w) + A(z, x)| y ◦ b2 ◦ z = b ◦ v} – arc-altering

and symetrically
4.A(α(u) ◦ v, b ◦ x) =

min

⎧⎪⎪⎨
⎪⎪⎩

wd(b) + A(α(u) ◦ v, x) – base-deletion
wr(α) + min{A(u, y) + A(v, z)|y ◦ z = b ◦ x} – arc-removing
wa(α, b) + min{A(u, y) + A(v, z)| y ◦ z = x} – arc-altering
wa(α, b2) + min{A(u, y) + A(v, z)| y ◦ b2 ◦ z = b ◦ x} – arc-altering

5.A(b ◦ v, b2 ◦ x) =

min

⎧⎨
⎩

wd(b) + A(v, b2 ◦ x) – base-deletion
wd(b2) + A(b ◦ v, x) – base-deletion
wm(b, b2) + A(v, x) – base-(mis)match

The hypothesis that the common supersequence is of Nested type guarantees
the correctness of the recurrence relations. The whole complexity remains un-
changed: it is O(n4). A full analysis of this algorithm and its application to
RNA structure comparison (global alignment, local alignment etc.) is presented
in further detail in [7].

Theorem 3. Align(Nest,Nest, II) → Nest is polynomial.

4.3 Hardness Result for Align(Nested, Nested, II) → Crossing

We show in this section that relaxing the constraint on crossing arcs in the
common supersequence makes the problem difficult.

Theorem 4. Align(Nest,Nest, II) → Cros is NP-complete.

The decision problem is defined formally as follows.
Input: two arc-annotated sequences u and v of Nested type and an integer 	.
Question: can one find an arc-annotated sequence w of Crossing type which
is a common II-supersequence of u and v of cost lower than or equal to 	 ?
We initially notice that this problem is in NP since given three arc-annotated
sequences u, v and w one can check polynomially if (1) w is of Crossing type,
(2) w is a common II-supersequence of u and v, and (3) the cost of w is lower
than or equal to 	. In order to prove that it is NP-complete, we propose a
polynomial reduction from the NP-complete problem mis-3p [2].
mis-3p
Input: a cubic planar bridgeless connected graph G = (V, E) and an integer k.
Question: is there an independent set of vertices of G – i.e. a set V ′ ⊆ V such
that no two vertices of V ′ are connected by an edge in E – of cardinality greater
than or equal to k ?

How to Compare Arc-Annotated Sequences: The Alignment Hierarchy 299

A graph G = (V, E) is said to be a cubic planar bridgeless connected graph if
any vertex of V is of degree three (cubic), G can be drawn in the plane in such
a way that no two edges of E cross (planar), and there are a least two paths
– with no edge in common – connecting any pair of vertices of V (bridgeless
connected).

The idea of the proof is to encode a cubic planar bridgeless connected graph
by two arc-annotated sequences. The construction uses first a 2-page book em-
bedding.

Theorem 5 (Bernhart and al. [1]). One can always find, in polynomial
time, a 2-page book embedding of a cubic planar bridgeless connected graph
with the following additional property: on each page, any vertex has a non-null
degree.

A 2-page book embedding of a graph G is a linear ordering of the vertices of G
along a line and an assignment of the edges of G to the two half-planes delimited
by the line – called the pages – so that no two edges assigned to the same page
cross. For convenience, we will refer to the page above (resp. below) the line as
the top-page (resp. bottom-page).

Given a 2-page book embedding, we construct two arc-annotated sequences of
Nested type u = (S, P) and v = (T, Q) on the three-letters alphabet {a, b, #}.
The underlying raw sequences S and T are defined as follows:

S = #n S1 #n S2 . . . #n Sn

T = #n T1 #n T2 . . . #n Tn

where n is the number of vertices of the initial graph, and for each 1 ≤ i ≤ n, Si

(resp. Ti) is a segment baaa if the degree of the vertex vi ∈ V in the top-page
(resp. bottom-page) equals two, a segment aaab otherwise.

Now that the sequences S and T are defined, we have to copy the arc config-
uration of the top-page (resp. bottom-page) on S (resp. T). Each edge (vi, vj)
of the top-page is represented by an arc in P . More precisely, this arc connects
a base a of Si and a base a of Sj . We proceed in a similar way for each edge of
the bottom-page by adding, for each one, an arc in Q. Moreover, we impose that
when a vertex vi is of degree two on the top-page (resp. bottom-page), the two
corresponding arcs in P (resp. Q) are incident to the rightmost two bases a of
the segment Si (resp. Ti). And, consequently, we impose that, when a vertex vi

is of degree one on the top-page (resp. bottom-page), the corresponding arc in
P (resp. Q) is incident to the leftmost base a of the segment Si (resp. Ti). It is
easy to check that it is always possible to reproduce on u and v the non-crossing
edge configuration of each page. An example of such a construction is given in
Figure 2. The size of u and v is quadratic in n: the length of S and T is n(n+4)
and the total number of arcs is 3n

2 . In the following, we will refer to any such
construction as an align-construction.

300 G. Blin and H. Touzet

v1 v2 v3 v4 v5 v6

a a b
a a a#n

#n

b
a a a a

a a b
b
a#n

#n a a a
a a b

b
a#n

#n a a b
a a a#n

#n

b
a a a a

a a b
b
a#n

#na a a
a a b

b
a

(b)

(c)

(a) v2 v5

v1

v3 v4

v6

#n

#n

Fig. 2. Example of an align-construction. The graph (a) is a cubic planar bridgeless
connected graph of 6 vertices. The graph (b) is a 2-page book embedding of the graph
(a) such that, on each page, any vertex has a non-null degree. (c) The two arc-annotated
sequences of Nested type obtained from the graph (a) by an align-construction.

For the sake of simplicity, but w.l.o.g.1, we set the score system as follows:
wd(b) = 2, wd(#) = 6, wd(a) = 1, wa(a, a, a) = 1.5, wr(a, a) = 2. As a matter
of fact, the proof is still valid with any combination of parameters that fullfils
these two inequalities: 3wa(a, a, a)+2wd(b) < 3wr(a, a)+3wd(a) and wr(a, a)+
3wd(a) < wa(a, a, a) + 2wd(b).

We first show that for any such pair of arc-annotated sequences with the given
score system, there exists a ”canonical” optimal common II-supersequence whose
form is easy to characterize. This is the purpose of the two following Lemmas.

Lemma 5. Let u and v be two arc-annotated sequences of Nested type obtained
by an align-construction for an initial graph of n vertices. There exists an optimal
common II-supersequence w = (U, R) such that U is of the form #nU1 . . . #nUn

where for each i ∈ 1..n, Ui = aaabaaa or Ui = baaab.

Lemma 6. Let u and v be two arc-annotated sequences of Nested type obtained
by an align-construction. In any optimal common II-supersequence w = (U, R)
of u and v, if there is an arc in R connecting a base of the segment Ui and a
base of the segment Uj, then Ui and Uj cannot be both of the form baaab.

These lemmas allow us to express the cost of an optimal Nested supersequence
between two arc-annotated sequences obtained with the align-construction.

Lemma 7. Let u and v be two arc-annotated sequences of Nested type obtained
by an align-construction. The cost of any optimal common II-supersequence w is
3pwa(a, a, a)+3(n

2 −p)wr(a, a)+3(n−p)wd(a)+2pwd(b), where p is the number
of segments of w of type baaab.

We now turn to prove that Align(Nest,Nest,II) → Cros is NP-complete
with this following Lemma. This concludes the proof of Theorem 4.
1 Since a subcase of Align(Nest,Nest, II) → Cros is hard, so does the general

problem.

How to Compare Arc-Annotated Sequences: The Alignment Hierarchy 301

Lemma 8. A cubic planar bridgeless connected graph G = (V, E) admits an
independent set of vertices of cardinality greater than or equal to k if, and only
if, there exists an arc-annotated sequence w of Crossing type that is a common
II-supersequence of u and v of cost lower than or equal to 	 = 3kwa(a, a, a) +
3(n

2 − k)wr(a, a) + 3(n − k)wd(a) + 2kwd(b), where u and v are arc-annotated
sequences of Nested type resulting from an align-construction of G and n = |V |.

Remark 1. The arc-annoted sequences of the NP-completeness proof are not
conform to the representation of an RNA molecule. It is likely to impose sup-
plementary constraints on the encoding of the 2-page book embedding in order
to get sequences that are more RNA-like: the alphabet is {A, U, C, G}, all arcs
correspond to Watson-Crick pairings (A ↔ U and C ↔ G) and base-deletion
costs are more realistic. To achieve this goal, we modify the definition of u and v
in the following way: replace # with twelve occurrences of C, b with GGGGGG
and a with AU (AU is self-complementary). Each edge in the 2-page book em-
bedding now corresponds to two arcs between AU and AU . Figure 3 shows this
new representation for the example of Figure 2.

Fig. 3. RNA-like arc-annotated sequences for the example of Figure 2

5 The General Edit Distance and the Edit Model III

The edit model III corresponds to the set of operations introduced by Jiang
et al. in the general edit distance problem [8]. Therefore it allows us to de-
rive several complexity results from known results on the general edit distance
[8,3] with Theorem 1. As illustrated in Table 2, the complexity of Align(Nest,
Nest, III) → {Nest,Cros} and of Align(Cros, {Nest,Cros}, III) → Cros
only is still to elucidate. We solve Align(Nest, Nest, III) → Nest.

Theorem 6. Align(Nest,Nest, III) → Nest is polynomial.

To prove the correctness of the above Theorem, we show that we can enrich
the polynomial time algorithm defined in Section 4.2 by incorporating rules
for arc-breaking operations. At each step of the construction of the common
supersequence, it is necessary that one of the sequence begins with an arc, and
the other one with a single base for the arc-breaking operation to be valid. So
only cases 3 and 4 in the recurrence relations are concerned by the application
of an arc-breaking rule.

302 G. Blin and H. Touzet

3. A(b ◦ v, β(w) ◦ x) =

min
{

. . .
wb(β, b, b2) + min{A(y, w) + A(z, x)|x ◦ b2 ◦ z = v}

4. A(α(u) ◦ v, b ◦ x) =

min
{

. . .
wb(α, b, b2) + min{A(u, y) + A(v, z)|y ◦ b2 ◦ z = x}

6 Conclusion

In this article, we have proposed and studied a new framework for comparing
arc-annotated sequences, namely the Align hierarchy. We think that this study
is relevant both from a practical perspective and theoretical perspective. We
have provided two polynomial time algorithms to compare arc-annotated se-
quences of Nested type with arc-altering and arc-breaking operations, whereas
when considering other models, the problem is NP-complete. We also gave a
new NP-completeness result, that enhances understanding of the complexity
of arc-annotated sequences comparison. This result sheds a new light on the
border between tractability and untractability when dealing with arc-annotated
sequences – especially of Crossing type.

Those results, combined with the ones derived from Edit and Lapcs compar-
ison models, have almost filled the complexity table of the Align hierarchy. As
illustrated in Table 2, there still exist some open questions for the model III. But
we can notice that the edit model III reduces to the edit model II when the cost
of any arc-breaking is arbitrary high. As a consequence, the NP-completeness of
Align(Nest,Nest, II) → Cros and of Align(Cros, ∗, II) → Cros shows that
there exists no polynomial algorithm for arbitrary values of parameters (such as
usual dynamic programming algorithms do). We, thus, conjecture that both
Align(Nest,Nest, III) → Cros and Align(Cros, ∗, III) → Cros problems
are NP-complete.

References

1. F. Bernhart and B. Kainen. The book thickness of a graph. J. Comb. Theory
Series B, 27:320–331, 1979.

2. T.C. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs under the
four-connectivity constraint. Algorithmica, 19(4):427–446, 1997.

3. G. Blin, G. Fertin, I. Rusu, and C. Sinoquet. RNA sequences and the
EDIT(NESTED, NESTED) problem. technical report - LINA, 2003.

4. M. Crochemore, D. Hermelin, G.M. Landau, and S. Vialette. Approximating the
2-interval pattern problem. In ESA’05, pages 426–437, 2005.

5. S. Dulucq and H. Touzet. Decomposition algorithms for the tree edit distance
problem. Journal of Discrete Algorithms, 3(2-4):448–471, 2005.

6. P. Evans. Algorithms and Complexity for Annotated Sequences Analysis. PhD
thesis, University of Victoria, 1999.

How to Compare Arc-Annotated Sequences: The Alignment Hierarchy 303

7. C. Herrbach, A. Denise, S. Dulucq, and H. Touzet. A polynomial algorithm for
comparing RNA secondary structures using a full set of operations.

8. T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–388, 2002.

9. T. Jiang, G. Lin, B. Ma, and K. Zhang. The longest common subsequence problem
for arc-annotated sequences. Journal of Dicrete Algorithms, pages 257–270, 2004.

10. T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an alternative to tree edit.
Theoretical Computer Science, 143(1):137–148, 1995.

11. P. Klein. Computing the edit-distance between unrooted ordered trees. In 6th
European Symposium on Algorithms, pages 91–102, 1998.

12. G. Lin, Z.-Z. Chen, T. jiang, and J. Wen. The longest common subsequence prob-
lem for sequences with nested arc annotations. Journal of Computer and System
Sciences, 65:465–480, 2002.

13. G. Lin, B. Ma, and K. Zhang. Edit distance between two rna structures. In
RECOMB, pages 211–220, 2001.

14. B. Ma, L. Wang, and K. Zhang. Computing similarity between RNA structures.
Theoretical Computer Sciences, 276:111–132, 2002.

15. K.C. Tai. The tree-to-tree correction problem. Journal of the Association for
Comput. Machi., 26:422–433, 1979.

16. S. Vialette. On the computational complexity of 2-interval pattern matching. The-
oretical Computer Science, 312(2-3):223–249, 2004.

17. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, 18(6):1245–1262, 1989.

Structured Index Organizations for
High-Throughput Text Querying

Vo Ngoc Anh and Alistair Moffat

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria 3010, Australia

Abstract. Inverted indexes are the preferred mechanism for supporting content-
based queries in text retrieval systems, with the various data items usually stored
compressed in some way. But different query modalities require that different
information be held in the index. For example, phrase querying requires that word
offsets be held as well as document numbers. In this study we describe an inverted
index organization that provides efficient support for all of conjunctive Boolean
queries, ranked queries, and phrase queries. Experimental results on a 426 GB
document collection show that the methods we describe provide fast evaluation
of all three querying modes.

1 Introduction

Inverted indexes are the preferred mechanism for supporting content-based queries in
text retrieval systems, with the various data items usually stored compressed in some
way [Witten et al., 1999, Zobel and Moffat, 2006]. For text documents, a document-
level inverted index can typically be stored in under 10% of the space of the original
documents.

However, different query modalities require that different information be held in the
index, a need that creates tensions in the way that the index lists are organized. For
example, phrase querying requires that word offsets be maintained in the index as well
as document numbers, but those same word offsets represent unwanted decoding when
conjunctive Boolean queries are being processed, or when ranked queries are being
handled. One solution to this dilemma – and not as wasteful as it might at first appear –
is to store two indexes, one of which contains word positions, and one of which contains
only document numbers. Queries of different types can then be routed to the appropriate
index, and overall average query throughput rates increased at the cost of additional disk
space.

In this paper we first briefly summarize different types of index organization, and
consider their ability to support fast evaluation of different types of query. A uniform
framework is introduced that allows different organizations to be described in a succinct
and unambiguous manner. The second part of the paper then describes a blocked inter-
leaved inverted index organization that provides efficient support for all of conjunctive
Boolean queries, ranked queries, and phrase queries. The proposed representation is a
hybrid between a single index and a duplicated index, and exploits the best features of

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 304–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Structured Index Organizations for High-Throughput Text Querying 305

both. The paper concludes with experimental results on a 426 GB document collection
show that the methods we describe provide fast evaluation of all of Boolean, ranked,
and phrase queries.

2 Inverted Indexes

An inverted index for a collection of documents associates with each of its distinct term
an inverted list, that stores a pointer for each document the term appears in. In simplest
form a pointer consists of nothing more than an ordinal document number, meaning that
the inverted list for a term t can be described as

〈d〉ft ,

where ft is the number of documents containing t; d is a document number; and the 〈x〉k
notation indicates k repetitions of objects of type x. To resolve a query, the inverted lists
for the query terms are fetched, and various operations performed on them, depending
on the semantics assigned to the query operators.

There are a number of factors that determine what exactly is stored in the index, and
how it is used to resolve queries. The rest of this section discusses these choices.

Pointer ordering: In a document-sorted index, the pointers in each inverted list are
stored in increasing document order, allowing differences between consecutive term
appearances to be stored as d-gaps, rather than absolute document numbers. Storing
differences yields a more compact inverted file once compression techniques are ap-
plied, but requires that processing of each inverted list be in document number order.

An alternative is to use a frequency-sorted index [Persin et al., 1996] or an impact-
sorted [Anh et al., 2001, Anh and Moffat, 2006b]. In the former structure, each inverted
list is ordered in decreasing term frequency score fd,t. In the latter, the pointers are or-
dered according to the impact value ωd,t, which is a small integer representing the
overall contribution of term t to the score of document d, including the factor used to
normalize for document length. In both arrangements, each index list is a sequence of
groups of equally weighted pointers, and within each group the document numbers are
sorted, and again stored as d-gaps. Experiments by Persin et al. [1996] and Anh et al.
[2001] showed that these alternative representations can be stored in approximately the
same space as a standard document-sorted index, but yield significantly faster process-
ing of ranked queries.

Processing mode: Independent of the structure of the index or the type of query being
handled, there are two main approaches to processing queries: the document-at-a-time
model in which all inverted lists are simultaneously accessed, and |q|-way processing is
carried out to handle a query q of |q| terms; and the term-at-a-time model, in which only
one inverted list is accessed at any given time, and a sequence of |q|−1 binary operations
are performed. Recent work has tended to focus on term-at-a-time processing as applied
to ranked querying, but it is not clear that term-at-a-time processing is fundamentally
better than document-at-a-time processing. For example, Strohman et al. [2005] have

306 V.N. Anh and A. Moffat

Table 1. Types of index and supported query modes

Type d ωd,t pos. Organization Processing modes supported
D Y – – document-sorted term-at-a-time, document-at-a-time

DS Y Y – document-sorted term-at-a-time, document-at-a-time
impact or frequency-sorted term-at-a-time, score-at-a-time

DSP Y Y Y document-sorted term-at-a-time, document-at-a-time

experimented with document-at-a-time orderings. As well as describing an improved
index organization, this paper re-examines the issue of processing model, discussing
the relative advantages of the two approaches, and comparing them experimentally on
the same large 426 GB text collection.

For ranked querying with impact-sorted indexes, another approach, score-at-a-time
has been mooted [Hawking, 1998, Anh et al., 2001]. In this mode, all of the term lists
are open for reading, but are processed in decreasing score contribution order rather
than in increasing document number order. Similar to the term-at-a-time approach, this
method requires a set of accumulator variables, but facilitates dynamic query pruning;
and the parts of each inverted list that are not required are potentially never read from
disk.

Word positions and index levels: Another important way of categorizing an index is
whether or not it includes within-document frequencies and within-document word po-
sitions. We distinguish between three levels of detail in regard to the index information
stored and summarize the three respective index types in Table 1 along with the possi-
ble index organizations and the supported processing modes. As is listed in the table, a
Type D index (document numbers only) contains only document numbers, and is capa-
ble of supporting Boolean queries only. A Type DS (document and score) index stores
both document numbers and either ωd,t impact scores or fd,t within-document frequen-
cies (from which ωd,t values can be computed), or both, and can handle Boolean and
ranked queries, but not phrase-queries. A Type DSP index (document, score, positions)
contains document numbers, ωd,t values (or fd,t values), and, for each document that
the term appears in, a list of the ordinal word positions within the document at which
the term appears. Type DSP indexes are capable of supporting all of the three mentioned
query types (Boolean, ranked, phrase) and some other types such as proximity queries.

Table 1 also shows that impact- and frequency-sorting applies only to Type DS in-
dexes, and is beneficial only when ranked queries are being performed. These indexes
must be processed using a term-at-a-time strategy, or a score-at-a-time approach.

One of our aims in this investigation was to evaluate the extent to which – with
suitable internal organizations applied to each inverted list – Type DSP indexes can
be used to efficiently support Boolean and ranked queries. We sought to determine
whether including positional information necessarily degraded querying performance
for Boolean and ranked queries compared to the less voluminous Type D and Type DS
indexes.

Structured Index Organizations for High-Throughput Text Querying 307

3 Interleaving

One key issue that has received little previous attention is that of interleaving, which
also relates to the internal organization of each inverted list in a document-sorted index.

Pointer interleaving: In typical descriptions of Type DS inverted indexes, each docu-
ment number (usually stored as a difference, or d-gap) is immediately followed by the
corresponding ωd,t or fd,t value. This arrangement can be described as:

〈d, fd,t〉ft .

In a Type DSP index, the word positions are usually described as being inserted im-
mediately adjacent to the corresponding document number and fd,t value.. If, in addi-
tion, impact-based ranking is required (which is possible even if the index is document-
sorted), the impact score is also included. The Type DSP index then has the form:

〈
d, ωd,t, fd,t, 〈p〉fd,t

〉ft

,

where p is a positional offset, and ωd,t is a small integer [Anh et al., 2001].
We categorize such indexes as being pointer-interleaved, since the interleaving of

different quantities is at the level of the individual pointers. Pointer-interleaving is the
way that Type DS and Type DSP indexes are presented in textbooks (for example,
[Witten et al., 1999]); in the research literature (for example, [Williams et al., 2004]);
and in public domain software systems such as Zettair (available from www.seg.
rmit.edu.au). What is not clear is whether or not commercial systems use pointer-
interleaved indexes – such information is, of course, kept confidential.

Term interleaving: An alternative is to keep the various related parts of each inverted
list in contiguous blocks, so that (in the case of a Type DSP index), the arrangement in
each inverted list becomes:〈

〈d〉ft , 〈ωd,t〉ft , 〈fd,t〉ft , 〈p〉Σfd,t

〉
.

Non-interleaved indexing: The final option is for all of the document numbers for all of
the pointers for all of the terms to be stored, then all of the ranking weights for all of the
terms, then all of the within-document frequencies for all of the terms, and finally all of
the word offsets for all of the terms. The arrangement is somewhat akin to having four
separate inverted files, each storing a particular type of information, with four distinct
disk pointers maintained in each entry in the vocabulary.

For completeness, our experiments also cover impact-sorted Type DS indexes, de-
spite the fact that they are primarily designed for term-at-a-time and score-at-a-time
processing of ranked queries. This kind of index has a specific structure where one im-
pact score is shared by (in general) a sequence of documents, and allows fast querying
because the amount of query-time computation is kept small.

308 V.N. Anh and A. Moffat

Tradeoffs: There are many tensions between these representational and execution op-
tions. In a pointer-interleaved index, the information required for phrase and mixed
querying is tightly clustered, and immediately available. In a term-interleaved index,
the positional information is available within the terms’ lists, but Boolean and ranked
queries can be processed without the need to decode, or even bypass, the positional
information. However the presence of the positional information at the end of every list
might erode the effectiveness of buffering and caching strategies.

In a non-interleaved index, the positional information is fetched and decoded only
when phrase queries are encountered in the input stream. Non-interleaved indexes also
make it somewhat easier to apply compression, as longer sequences of values likely
to be drawn from the same underlying probability distribution. This latter point is es-
pecially important in our system, which employs the binary-based slide compression
technique, in which sequences of values of similar magnitudes are identified and repre-
sented compactly [Anh and Moffat, 2006a].

However, for phrase queries, non-interleaved indexes have the drawback of requiring
information to be consolidated from several different access points, or cursors.

4 Block-Interleaved Indexes

To allow exploration of the trade-offs possible with different interleaving strategies, we
introduce a hybrid approach called block-interleaved indexing

Groups and fixed-size blocks: The structure of a k-block interleaved index is given by:

〈
〈d〉k, 〈ωd,t〉k, 〈fd,t〉k,

〈
〈p〉k

〉�Σfd,t/k�
〉�ft/k�

Each sub-unit 〈x〉k for some kind of value x is a k-block, and each unit of k complete
pointers is a group. That is, each inverted list is built up as a sequence of one or more
groups, and within each group there are four or more k-blocks. Figure 1 gives an exam-
ple list that is stored as two groups of (at most) k = 4 pointers; and within each group,
all of the values are stored as k-blocks. Note that the set of positional offsets 〈p〉k are
also in blocks of k, and might cross pointer boundaries. In this structure a group is a
streamlined bundle of k pointers.

p4
d,t p3

d,tf3
d,td3 ω3

d,tp3
d,tp4

d,tf4
d,tω4

d,td4 p4
d,t

Fig. 1. An example block-interleaved index structure for an inverted list of ft = 7 pointers, using
k = 4. The list is organized in two groups. The first group contain k = 4 pointers, and the
second group holds 3 pointers. Within the groups, all of the data items are stored in blocks. In
the example, the sum of the fd,t values in the first group is assumed to be 11; and in the second
group, 7. The shaded items are internal access structures to facilitate skipping past unneeded data.

Structured Index Organizations for High-Throughput Text Querying 309

The routines that manipulate k-blocks are optimized to support an interface that
fetches and decodes the next (as many as) k values from an inverted list. A key benefit
of this approach is that the decoding buffer is exactly bounded at k values for each of
the blocks that are required. None of the query modes require that more than four blocks
be active per term, and thus that each term requires decode buffer space of 4k words.

Skip pointers: The shaded items in Figure 1 are internal skips, that allow sections to be
stepped over and not decoded. Skips are typically represented as byte or bit increments
that lead to the start of some future codeword. Each group in a block-interleaved list has
two skip pointers: a group skip that references the start position of the next group, and
a block skip that provides access within the group, allowing the k-block of ωd,t values
to be stepped over, so that the set of fd,t values can be directly accessed. The blocks
of positional offsets are never accessed without the block of fd,t values being retrieved
first; and so there is no need for a skip to the start of the positions.

The group skips described here are similar to the skips used by Moffat and Zobel
[1996] to speed up the term-at-a-time processing of Boolean and ranked queries. Similar
improvement can be expected for our group skips. On the other hand, the block skips
have a different function, and they allow bypassing of blocks of values that are not
required in processing this query, for example, the positional information when Boolean
queries are being processed. The skips of Moffat and Zobel are to facilitate searching
for candidates, perhaps as a result of dynamic query pruning and accumulator limiting,
and their index is stored in a pointer interleaved manner. Though it is possible, no
pruning of ranked queries occurs in any of the experiments reported in this paper, so
that unfair comparison between different processing modes is avoided.

Processing queries: A further issue worth elaboration is that of how queries are
processed. Taking the simplest possible example, and presuming a document-sorted in-
dex and a conjunctive Boolean query, the task at hand is to identify the set of document
numbers that appear in all of the terms’ inverted lists.

If a term-at-a-time processing strategy is adopted, then the standard mechanism for
doing this is to process the terms in increasing ft order, using the first term to establish
a set of candidate answers C, and then for each subsequent term t, checking each of the
candidates against t’s inverted list:

1: open the inverted list for the term t1 with the smallest ft.
2: set C ← copy list(t1).
3: for i ← 2 to |q| do
4: open the inverted list for term ti.
5: for each candidate c ∈ C, in increasing order, do
6: set d ← seek list value(ti, c).
7: if d > c then
8: set C ← C − {c}.
9: if |C| = 0 then

10: return the empty set.
11: return C.

310 V.N. Anh and A. Moffat

The key operation performed is that of “seek list value(t, c)”, which seeks forwards
in the inverted list of term t until a document number greater than or equal to c is
encountered. If c is actually found, it is retained as a candidate; if the next document
number d is greater than c, then c is removed as a candidate.

If document-at-a-time processing is being carried out, the set of candidates is not
required, but all of the terms’ lists need to be simultaneously open:

1: set C ← {}.
2: for i ← 1 to |q| do
3: open the inverted list for term ti.
4: set di ← next list value(ti).
5: while all lists have pointers remaining do
6: set d ← max{di | 1 ≤ i ≤ |q|}.
7: for i ← 1 to |q| do
8: set di ← seek list value(ti, d).
9: set d ← max{d, di}.

10: if min{di | 1 ≤ i ≤ |q|} = d then
11: set C ← C + {d}.
12: for i ← 1 to |q| do
13: set di ← next list value(ti).
14: return C.

Note that the locus of activity does not pause at every pointer in every inverted list.
Instead, the focus leap-frogs down the set of lists, using seek list value operations to
try and catch each list’s activity zone up to the current document number in the list that
to date has progressed the furthest. In particular, the costly “max” and “min” operations
over the full set of |q| current document numbers are relatively infrequent, and occur at
most once for each of the items in the shortest inverted list. They do not occur for every
pointer in every list, as would be the case in a heap-based merging process.

In a block-interleaved index, the seek list value operation still proceeds as a sequen-
tial decoding of a k-block of d-gaps, but is done within the routines handling the in-
verted list. They transparently use the block skip pointer in a group to access the next
group if the sum of the remaining d-gaps in the current block does not reach the spec-
ified target value. While linear-time in its underlying operation, the nature of the com-
pression process means that this operation is extremely fast, and only the first k-block
of values is read and decoded in any groups that are otherwise completely skipped.

Also worth noting is that the same basic operations are used to implement phrase
queries. The query is initially handled as a Boolean one, and only when a document is
determined to contain all of the query terms is any access made to any of the k-blocks
storing the positional information. On the other hand, the current implementation of
ranked querying does require that every d-gap and every ωd,t impact value be processed
– dynamic pruning issues have not yet been explored.

Other blocking issues: The parameter k determines the amount of compressed infor-
mation decoded in each access to the pointers in a group, and reflects the amount of
decompressed information that is maintained at any point in time. Another important
parameter is the unit of access to compressed information – the size of the buffers into

Structured Index Organizations for High-Throughput Text Querying 311

which inverted lists are read when required by the decoding routines. Our system does
not read the whole of each inverted list in a single operation, since doing so requires
compressed buffers of indeterminate (and variable) size. Instead, each inverted list is
read “on demand” in compressed blocks of a fixed size, and input buffers are bounded.
The drawback is that multiple seeks may be required to access a given list in its entirety,
even in a term-at-a-time processing model; but in a disk-block-based file system this is
likely anyway, and our arrangement simply acknowledges that reality.

Setting a size to the list buffers again involves competing tensions. Large buffers
reduce the number of seek operations, but may add unnecessary decoding costs. On
the other hand, use of overly short logical blocks implies multiple accesses even when
relatively short inverted lists are being processed. In the experiments reported below the
compressed block size (the unit read from disk) was fixed at 8 kB; and the logical block
size (the amount of data decoded in each call to the decoding routines, the value k in
Figure 1) was initially set at 8,192 integers.

5 Experimental Evaluation

The various implementation options have been tested and compared on a large collec-
tion of typical web data – the 426 GB GOV2 collection. This collection was created as
part of the TREC initiative, see trec.nist.gov, and was drawn from an early-2004
crawl of the .gov domain. It contains approximately 25 million documents.

Queries: Two query sets, Q1000 and Q321, are drawn from the set of 50,000 real-life
queries used in the 2005 TREC Terabyte Track experiments. The former set consists
of the first 1,000 queries from the superset; the latter set contains only those queries of
Q1000 that contain at least two terms and have at least one answer when considered as
phrase queries against the GOV2 collection. There are 321 queries that satisfy these two
requirements. Over the two sets, the average numbers of terms per query are 2.79 and
2.41; the average number of conjunctive Boolean answers are approximately 79× 103

and 72× 103, respectively.

Baseline: To establish a reference point for query speed, we started with conjunctive
Boolean querying. The second data column of Table 2 shows the average query process-
ing rate (queries per second) for Boolean queries, document-at-a-time processing, the
GOV2 collection and Q1000 queries, and several different index types.

As was anticipated, the best Boolean querying performance is achieved by a Type D
index. Use of a pointer-interleaved Type DS index slows query handling by around 40%,
and a pointer-interleaved Type DSP index slices more than 90% off the performance. A
term-interleaved Type DS index allows the original level of performance to be regained,
but even with a Type DSP term-interleaved index there is some loss of throughput.

The next column of Table 2 shows the throughput rate at which the Q1000 queries can
be processed as ranked queries. All of the Type DS indexes provide comparable perfor-
mance, at throughput rates around half of what can achieved when the same queries are
treated as being Boolean conjunctions. Querying rates with a Type DSP index are again
slow if a pointer-interleaved index is used. Recall that these throughput rates represent
exhaustive document-at-a-time processing without any form of query pruning.

312 V.N. Anh and A. Moffat

Table 2. Performance on a single 2.8 GHz Intel Xeon with 1 GB RAM and the collection GOV2:
index size and querying throughput for different query types with document-at-a-time processing
using two query sets, measured as queries per second. The logical access unit in to the compressed
streams is k = 8,192 integers.

Index arrangement
Index Size Q1000 Q321

(GB) Boolean Ranked Phrase Boolean Ranked Phrase
Type D 5.05 5.73 – – 5.24 – –

Type DS pointer-interl. 9.21 3.23 2.46 – 3.47 3.02 –
term-interl. 6.85 5.71 2.49 – 4.99 2.80 –
non-interl. 6.85 5.52 2.46 – 5.12 2.69 –

Type DSP pointer-interl. 47.18 0.48 0.46 0.46 0.58 0.58 0.60
term-interl 36.13 5.35 2.33 0.47 4.95 2.62 0.64
non-interl. 36.13 5.50 2.37 0.47 5.02 2.56 0.64

The fourth column of Table 2 shows the throughput rate at which the Q1000 queries
can be processed as phrase queries. A Type DSP index is required, and the low through-
put levels achieved reflect processing of a large volume of compressed data. All types
of interleaving give comparable speeds. Note that there are many queries in Q1000 that
are just a single term, and many multi-term queries for which there are no answers.

The last three columns of Table 2 show query throughput rates for the query subset
Q321, for which every query has at least one Boolean answer and one phrase answer.
Similar trends in performance are observed.

Index size: The first data column in Table 2 shows the size of the various inverted in-
dexes used in these experiments. When compressed, the document components account
for space equivalent to only a little over 1% of the initial collection; the ωd,t components
for a further 0.5% in a term-interleaved setting (which allows “runs” of like values to be
exploited by the compression regime); and then the word positions account for a further
approximately 6%. The total Type DSP term-interleaved index can be stored in less than
40 GB, or under 10% of the size of the data. Note also that with the particular compres-
sion mechanism used the pointer interleaved index is more expensive to store than the
term-interleaved and non-interleaved variants, because pointer interleaving makes the
values in each list less locally homogeneous [Anh and Moffat, 2006a].

Block-interleaved indexes: Table 3 shows the performance of Type DS and Type DSP
block-interleaved indexes, in an experimental setting comparable to that used to obtain
the results in Table 2, but with a logical block size of k = 1,048,576. Even with word
positions included (the Type DSP index), all of Boolean, ranked, and phrase queries are
processed at similar or better rates to those shown in Table 2.

Nor is there any penalty in terms of index size – the change to block interleaving
involves an index cost for the GOV2 collection 1.59% for the Type DS index, and 8.44%
for the Type DSP index.

Choosing a block size: Figure 2 shows how query throughput is affected by the choice
of the logical block size parameter k. Because one of the key query processing costs

Structured Index Organizations for High-Throughput Text Querying 313

Table 3. Querying throughput for block-interleaved indexes and two query sets. The logical ac-
cess unit in to the compressed streams is the same as the blocksize, k = 1,048,576.

Index arrangement
Q1000 Q321

Boolean Ranked Phrase Boolean Ranked Phrase
Type DS block-interl. 5.76 2.56 – 5.16 3.07 –
Type DSP block-interl. 5.15 2.41 1.32 4.76 2.88 0.69

is disk seek times, small values of k are relatively inefficient. At the left of the graph,
when k < 1,000, performance is very similar to that obtained from a pointer-interleaved
Type DSP index, because multiple blocked groups fit within each 8 kB physical access
block. Savings appear when k is 10,000 or more, because groups now span more than
one disk block, and the skip pointers mean that some of the seeks are eliminated. The
best performance for all querying modalities arises at k or around one million. With
this value of k only a small fraction of the inverted lists are split into more than one
group, meaning that the majority of the index is stored as if it were term-interleaved.
Nevertheless, buffer sizes and thus caching costs are controlled at the same time as all
of the throughput gains of the term-interleaved index are attained.

Processing modes and speed: All of the experiments reported in the previous section
are for document-at-a-time evaluation, which has the advantage of requiring per-query
execution space proportional to the number of answers being generated rather than pro-
portional to the length of any of the inverted lists being processed. For example, Heaps
[1978, Chapter 6] describes the document-at-a-time mechanism, as do Turtle and Flood
[1995] and Strohman et al. [2005]. But Section 2 mentioned two other ways in which
queries can be evaluated: the term-at-a-time, and the score-at-a-time approaches. In
particular, Witten et al. [1999] present query processing using the term-at-a-time para-
digm, for both Boolean and ranked queries. Kaszkiel et al. [1999] evaluate both of those

10 100 1000 10000 100000 1000000 10000000

Block size k

0

1

2

3

4

5

T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
c)

Boolean
ranked
phrase

Fig. 2. Query throughput rate as a function of the logical block size parameter k, using collection
GOV2, a Type DSP block-interleaved index, query set Q1000, document-at-a-time processing, and
three different query types.

314 V.N. Anh and A. Moffat

Table 4. Querying throughput for different query processing modes using query sets Q1000 and
Q321, with other details as for Table 3. The two pointer-interleaved indexes are document-sorted.

Index arrangement
Index Size Q1000 Q321

(GB) Ranked Ranked
Type DS pointer-interl. document-at-a-time 9.21 2.46 3.02
Type DS pointer-interl. term-at-a-time 9.21 2.35 2.29
Type DS impact-sorted score-at-a-time 5.99 4.12 3.50

strategies in the context of passage retrieval, and conclude that document-at-a-time is
superior when the number of terms is small, but that term-at-a-time is to be preferred
when the number of terms in the query is more than around 3–5. Kaszkiel et al. also
describe a hybrid mechanism that processes rare terms in document-at-a-time mode,
then the remainder in term-at-a-time mode.

The score-at-a-time approach of Anh et al. [2001] represents a hybrid between the
term-at-a-time and document-at-a-time approaches. (Anh et al. also showed that the
use of integer impacts and the avoidance of floating point computations allowed fast
processing or ranked queries, and an integer-based similarity calculation is used in all
of the experiments reported here.) To round out our experiments, we thus carried out
a final set of runs using Type DS impact-sorted indexes and the same similarity com-
putation, and score-at-a-time processing to handle ranked queries. Table 4 shows the
results.

The score-at-a-time regime provides faster query processing than either document-
at-a-time or term-at-a-time processing, primarily because of the way the index is struc-
tured. In an impact-sorted index, each impact score is followed by a sequence of d-gaps
representing documents that all share that impact, and so each pointer that is processed
requires 1+ε values to be decoded (the ε being the shared impact value) rather than the 2
values per pointer that are decoded in a pointer-interleaved document-sorted index. The
index is also slightly smaller, and for the GOV2 collection the Type DS impact-sorted
index occupies just 1.42% of the source files. Even faster impact-ordered processing is
possible if dynamic query pruning is employed [Anh and Moffat, 2006b].

6 Conclusion

We have categorized inverted index structures in a number of ways, including with
respect to the information that they contain, the way that information is organized within
the index, and the way that the index is used to resolve queries. We have also carried out
comprehensive experiments using a 426 GB collection of web documents, and a stream
of 1,000 real-world queries.

At one level, the results we have achieved are relatively “intuitive” – it is hardly
surprising that non-interleaved or term-interleaved index structures give faster Boolean
query throughput than do pointer-interleaved structures. But the extent of the throughput
difference is notable, and it is clear from our results that pointer interleaved structures
should not be considered for practical implementation, despite their simplicity. In this

Structured Index Organizations for High-Throughput Text Querying 315

respect the careful implementation and experimentation reported in this paper repre-
sents a significant and tangible contribution. In addition, the block-interleaved index or-
ganization we have introduced allows buffering costs to be controlled, without sacrific-
ing any querying speed. Block-interleaved indexes provide support for both document-
at-a-time and term-at-a-time processing, and establish a query evaluation framework
against which other proposed developments can be measured.

A key area for ongoing investigation is in the area of dynamic pruning techniques,
and document-at-a-time query processing. All of the results presented here are for
exhaustive evaluation of queries; further throughput improvements are likely to be pos-
sible when pruning techniques appropriate to block-interleaved indexes are tested.

Acknowledgment. This work was supported by the Australian Research Council, the
ARC Special Research Center for Perceptive and Intelligent Machines in Complex En-
vironments, and by the NICTA Victoria Laboratory.

References

V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early termination.
In W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors, Proc. 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 35–42,
New Orleans, Louisiana, Sept. 2001. ACM Press, New York.

V. N. Anh and A. Moffat. Improved word-aligned binary compression for text indexing. IEEE
Transactions on Knowledge and Data Engineering, 18(6):857–861, June 2006a.

V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts. In Proc. 29th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, Seattle, WA, Aug. 2006b. ACM Press, New York. To appear.

D. Hawking. Efficiency/effectiveness trade-offs in query processing. ACM SIGIR Forum, 32(2):
16–22, Sept. 1998.

H. S. Heaps. Information Retrieval, Computational and Theoretical Aspects. Academic Press,
1978.

M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient passage ranking for document databases.
ACM Transactions on Information Systems, 17(4):406–439, Oct. 1999.

A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Transactions on
Information Systems, 14(4):349–379, Oct. 1996.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with frequency-sorted in-
dexes. Journal of the American Society for Information Science, 47(10):749–764, Oct. 1996.

T. Strohman, H. Turtle, and W. B. Croft. Optimization strategies for complex queries. In G. Mar-
chionini, A. Moffat, J. Tait, R. Baeza-Yates, and N. Ziviani, editors, Proc. 28th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 219–225, Salvador, Brazil, Aug. 2005. ACM Press, New York.

H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Information Processing
& Management, 31(1):831–850, Nov. 1995.

H. E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with combined indexes. ACM
Transactions on Information Systems, 22(4):573–594, 2004.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

J. Zobel and A. Moffat. Inverted files for text search engines. Computing Surveys, 2006. To
appear.

Adaptive Query-Based Sampling
of Distributed Collections

Mark Baillie, Leif Azzopardi, and Fabio Crestani

Department of Computing and Information Sciences,
University of Strathclyde, Glasgow, UK
{mb, leif, fabioc}@cis.strath.ac.uk

Abstract. As part of a Distributed Information Retrieval system a de-
scription of each remote information resource, archive or repository is
usually stored centrally in order to facilitate resource selection. The ac-
quisition of precise resource descriptions is therefore an important phase
in Distributed Information Retrieval, as the quality of such represen-
tations will impact on selection accuracy, and ultimately retrieval per-
formance. While Query-Based Sampling is currently used for content
discovery of uncooperative resources, the application of this technique is
dependent upon heuristic guidelines to determine when a sufficiently ac-
curate representation of each remote resource has been obtained. In this
paper we address this shortcoming by using the Predictive Likelihood to
provide both an indication of the quality of an acquired resource descrip-
tion estimate, and when a sufficiently good representation of a resource
has been obtained during Query-Based Sampling.

1 Introduction

An open problem that Distributed Information Retrieval systems (DIR) face is
how to represent large document repositories, also known as resources, both ac-
curately and efficiently. To facilitate resource selection, the process of assessing
which collections contain relevant information with respect to a user’s informa-
tion request, a description of each information resource a DIR service searches
is required. The obtained resource descriptions form a collection selection index
that enables the DIR system to determine which online collections to search
given a query [6]. Therefore, obtaining precise resource descriptions is an im-
portant phase as the quality of such representations will impact on resource
selection accuracy, and ultimately retrieval performance. The acquisition and
representation of an information resource presents many research challenges,
particularly in uncooperative environments. When co-operation from an infor-
mation resource provider cannot be guaranteed, it is necessary to obtain an
unbiased and accurate description of the underlying content with respect to a
number of constraints including: costs (computation and monetary), consider-
ation of intellectual property, handling legacy and different indexing choices of
the resource provider [6,11]. While Query-Based Sampling is currently used for
content discovery of uncooperative resources, the application of this technique

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 316–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Query-Based Sampling of Distributed Collections 317

is dependent upon heuristic guidelines to determine when a sufficiently accu-
rate representation of each remote resource has been obtained. In this paper we
address this shortcoming by using the Predictive Likelihood to provide both an
indication of: (i) the quality of an acquired resource description estimate, and (ii)
when a sufficiently good representation of a resource has been obtained during
Query-Based Sampling.

The remainder of this paper is structured as follows. First, we provide a brief
outline of Query-Based Sampling and how it can be used to build resource de-
scriptions, then we outline how Predictive Likelihood can be adopted as a mea-
sure of resource description quality with respect to the user information needs
(Section 2). Next, we compare Predictive Likelihood to existing measures and
show that it provides a comparable indication of resource quality despite the fact
no a priori knowledge is used (Section 3). Finally, we demonstrate and evaluate
the application of Predictive Likelihood in Query-Based Sampling on two DIR
testbeds (Section 4). Our analysis validates that this unsupervised approach can
substantially reduce the number of documents sampled without detracting from
resource selection accuracy. We then conclude the paper with a short discussion
detailing the implications of using such an approach and indicate directions for
future work (Section 5).

2 Query-Based Sampling and Predictive Likelihood

A resource description is a representation of the content contained within a
resource (e.g. a document collection). It can take a variety of forms depending
on a number of influencing factors; such as the retrieval model used for resource
selection, and the level of co-operation between a search service and information
provider. Currently adopted representations include a term vector of counts or
probabilities (i.e. a language model) [7], a sample of indexed documents from
each collection [14], or indeed the full index [6].

The widely accepted solution for resource description acquisition is Query-
Based Sampling (QBS) [7]. During QBS an estimated representation is obtained
by submitting random queries to the actual collection, incrementally adding the
newly retrieved documents to the estimated resource representation. Queries
are randomly selected to ensure that an unbiased resource estimate is achieved.
Sampling is then terminated when it is believed a sufficiently good representa-
tion of the underlying resource has been acquired, facilitating effective retrieval.
Through empirical analysis, the number of documents required to be sampled,
on average, was estimated to be approximately 300-500. This was believed to
obtained a sufficiently good representation of a resource [7]. This threshold was
estimated by measuring the estimated resource description against the actual
resource using two indicators of quality, and then considering the corresponding
retrieval selection accuracy.

While it has been shown that this criterion provides adequate resource selec-
tion accuracy under certain conditions, there are potential limitations. A fixed
threshold will not always generalise across other collections and environments.

318 M. Baillie, L. Azzopardi, and F. Crestani

Cases when the blanket application of such a heuristic would be inappropriate
include: (i) when the sizes of resources are highly skewed, and (ii) when the
resources are heterogeneous. In the former, if a resource is large then undersam-
pling may occur because not enough documents are obtained. Conversely, if a
collection is small in size, then oversampling may occur, increasing costs beyond
necessity. In the latter case, if the resource is varied and highly heterogeneous
then to obtain a sufficiently accurate description would require more documents
to be sampled than when a resource is homogenous. For both scenarios, adopting
a threshold based heuristic will not ensure a sufficiently good resource descrip-
tion for all resources. This has been recently verified by Shokouhi et al. [13] over
a number of different DIR testbeds.

Ideally QBS should be curtailed only when a sufficiently good description of
the resource has been acquired such that the number of documents sampled
is minimised and system performance preserved. In this paper we argue that
the Predictive Likelihood of the user’s information needs given the estimated
resource description can be utilised as a measure of the goodness of a resource
description estimate. We believe that the Predictive Likelihood can be used to:
(i) provide an indication of the resource description quality, and (ii) to indicate
when a sufficiently good representation of the resource has been obtained.

In statistical modelling the log-likelihood of a model on a held out sample
of data is often applied as a measure for the “goodness of fit” of that model.
This measure is also known as the Predictive Likelihood (PL) of the model [8].
PL is generally used to measure the quality of a language model in the fields
of Statistical Language Modelling, but has been more recently applied to esti-
mate language model parameters in text retrieval [1,10,16]. In these studies it
has been generally assumed that those models which maximise PL will achieve
better retrieval performance. Following this intuition, in the context of measur-
ing description quality, we aim to maximise the PL of the user’s information
needs given the estimated resource description. By using PL we are measuring
how representative each distributed information resource is when compared to
the known (typical) information needs of the users of the DIR system. This
is a departure from the original QBS assumption that a resource description
should be a sufficient sample of the actual entire collection. Instead, by us-
ing PL descriptions are measured with respect to the information needs of the
users of the system. Before discussing this main difference, we first define the
Predictive Likelihood measure and how it incorporates the user’s information
needs.

Formally, given a sequence of queries Q = {qij : 1, . . . , N ; 1, . . . , M}, where
qij is the jth term of the ith query, which corresponds to a particular term t

in the estimated resource description p(t = qij |θ̂). The likelihood of a resource
description estimate θ̂ generating Q is given by the conditional probability:

p(Q|θ̂) =
N∏

i=1

M∏
j=1

p(t = qij |θ̂)

Adaptive Query-Based Sampling of Distributed Collections 319

where,

p(t|θ̂) =
n(t, θ̂)∑

t′∈θ̂ n(t′, θ̂)

and n(t, θ̂) is the number of times term t occurs in the resource estimate θ̂.
We engage the standard assumption of independence between query terms and
also between queries [16]. For computational connivence, however, we use the
Predictive Log Likelihood of the estimated resource θ̂:

	(θ̂, Q) = log p(Q|θ̂) =
N∑

i=1

M∑
j=1

log p(t = qij |θ̂)

Using this approach for measuring the quality of a resource description is
fundamentally different to existing standard approaches. Current methods mea-
sure the quality of an estimate against the actual resource, thus requiring full
collection knowledge a priori. As mentioned previously such information is not
readily available except in artificial or simulated environments. In comparison,
PL requires that a set of queries Q are available for evaluating each resource
description instead of the actual collection. Therefore, the selection of this set
of queries is an important step in training the DIR system.

We assume that the set of queries Q are representative of the information
needs of the users of that system. To elaborate, these information needs, or
queries, can take the form of: (i) the previous interactions of the system obtained
through the query logs [2] or (ii) profiles that represent the interests of the
user-base, similar to profiles used in Information Filtering systems [4]. In the
former, a query set consistent with the information needs of the user-base of the
system can be obtained from query logs. For instance, the query logs of each
user can be mined to extract a representative set of queries. Alternatively, if no
historical queries are freely available, it is possible to access example queries from
Information Retrieval test collections or a similar web based corpus. Conversely,
or even supplementary, users of the system could be profiled explicitly, such as
through a questionnaire or survey, where profiles represent typical topics, subject
areas and tasks that the users of the system will undertake. However, both
solutions for representing Q enable the DIR system to be tuned either towards an
average user-base or even tailored towards specific users or user groups depending
on the requirements of the system. Throughout the development of the system,
Q can also be re-assessed with respect to the user’s dynamically changing needs.

3 Predictive Likelihood as an Indicator of Quality

In this section PL is evaluated and compared as a measure of resource descrip-
tion quality alongside a currently adopted method. In this experiment we are
motivated to evaluate whether a relationship exists between PL and the cur-
rently applied measure. If a relationship does exist, this will provide evidence
that PL can be utilised as a surrogate measure of resource description quality

320 M. Baillie, L. Azzopardi, and F. Crestani

with the added advantage that PL does not require a priori knowledge of the
underlying information resource statistics.

3.1 Existing Measures of Resource Description Quality

Current measures of resource description quality include the Collection Term
Frequency ratio (CTF), Spearman Rank Correlation Coefficient (SRCC) [7],
and the Kullback-Leibler (KL) divergence [3,11]. CTF and SRCC are normally
applied in tandem, where the former provides an indication of the percentage
of terms seen, while the latter is an indication of term ranking order, although
neither consider the term frequency which is an important information source
for all resource selection algorithms. In a recent study, the SRCC measure was
shown to be unstable and unreliable [3]. As an alternative measure the KL di-
vergence was proposed. With respect to the goal of measuring the quality of
a resource description the KL divergence is appealing for a number of reasons.
The term probability distributions of the actual and estimated resource descrip-
tions capture the relative (or normalised) term frequencies, when an accurate
estimation of such information is pertinent to many of the state of the art re-
source selection algorithms [6,11,14,15]. It also fulfils the criteria set forth in the
original QBS study by Callan and Connell [7] of measuring the correspondence
between the estimated and actual resource vocabulary while not overly weighting
low frequency terms (CTF), and also measuring the correspondence between the
estimated and actual frequency information (SRCC). Essentially the KL diver-
gence measures this phenomena precisely, resulting in a more stable and precise
measure in comparison to the surrogate indicators CTF and SRCC.

We therefore compare the KL against the PL. In this experiment we hypothe-
sise that the PL will provide a comparable indication of the resource description
quality to KL.

3.2 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KL) provides a measure for comparing the
difference between two probability distributions[12]. When applied to the prob-
lem of resource description quality, KL measures the relative entropy between
the probability of a term t occurring in the actual resource θ (i.e. p(t|θ)), and
the probability of the term t occurring in the resource description θ̂, i.e. p(t|θ̂).
Formally, the KL Divergence is defined as:

KL(θ|θ̂) =
∑
t∈V

p(t|θ)log p(t|θ)
p(t|θ̂)

where, p(t|θ) = n(t,θ)�
t∈θ n(t,θ) , p(t|θ̂) =

�
d∈θ̂ n(t,d)+α

�
t(
�

d∈θ̂ n(t,d)+α) , n(t, d) is the number of
times t occurs in a document d and α is a small non-zero constant (Laplace
smoothing). The smaller the KL divergence, the more accurate the description,
with a score of zero indicating two identical distributions. To account for the

Adaptive Query-Based Sampling of Distributed Collections 321

Table 1. Collection Statistics

Collection # Documents # Collection Terms # Unique Terms Mean Doc. Length
Aquaint 1,033,461 284,597,335 707,778 275
WT10g 1,692,096 675,181,452 4,716,811 399

sparsity within the set of sampled documents, Laplace smoothing is applied to
alleviate the zero probability problem and to ensure a fair comparison between
each estimated resource description.

3.3 Experimental Methodology

Our aim is to evaluate whether PL provides a similar indication of the true qual-
ity of a resource description estimate. Here, we assume that the KL divergence
is the true measure of quality because it’s measurement is taken against the
actual resource description (ground truth). Our hypothesis is that for a set of
estimated resource descriptions the PL measure will rank these estimated re-
source descriptions in the same order as the KL measure. If this is the case then
PL will provide a comparable indication of the quality of that resource according
to the KL measure.

200 400 600 800 1000 1200 1400 1600 1800

2

4

6

8

10

12

14

Number of documents seen

K
L

ctf
df
avetf
unif

200 400 600 800 1000 1200 1400 1600 1800

−1600

−1500

−1400

−1300

−1200

−1100

−1000

−900

−800

−700

−600

Number of documents seen

P
re

di
ct

iv
e

Li
ke

lih
oo

d

ctf
df
avetf
unif
baseline

Fig. 1. Measuring the quality of resource description estimates obtained from Aquaint
collection by the four QBS approaches. KL and PL measurements for each sampling
approach are displayed as the number of documents sampled increases.

The experiments were performed on several different TREC collections, with
varying characteristics. For brevity, though, we only report on two of these collec-
tions, the news collection Aquaint, and the Web collection WT10g (See Table 1).

Estimated resource descriptions were then created for these collections using
QBS as follows:

1. A term is randomly selected from an unrelated vocabulary and is used as
the first query for sampling.

322 M. Baillie, L. Azzopardi, and F. Crestani

200 400 600 800 1000 1200 1400 1600 1800

1

2

3

4

5

6

7

8

9

10

11

12

Number of documents seen

K
L

ctf
df
avetf
unif

200 400 600 800 1000 1200 1400 1600 1800
−9000

−8500

−8000

−7500

−7000

−6500

−6000

−5500

−5000

−4500

−4000

−3500

Number of documents seen

P
L

ctf
df
avetf
unif
baseline

Fig. 2. Measuring resource description estimates obtained from the WT10g collection

2. The resource is queried and the top four documents returned are added to
the estimated resource description.

3. The KL and PL are measured and recorded.
4. The next query is generated using the currently estimated resource descrip-

tion using one of the four sampling strategies: the collection frequency (ctf),
the document frequency (df), the average term frequency (avetf), or ran-
domly (unif) [7].

5. If the stopping criterion has not been satisfied, return to step (2).

We continued sampling until we obtained 2000 documents. For each sampling
strategy the entire process was repeated 25 times because the initial term affects
the quality of the resource description. This generated 100 estimated resource
descriptions for each collection along with the corresponding measurements. The
query set to compute PL for both collections consisted of TREC Topics 1-200.
The title field from these topics were extracted as queries which formed Q for
each collection respectively.

3.4 Experimental Results

Resource description quality. Figures 1 and 2 summarise the performance
of each sampling strategy by displaying the mean quality score over the 25 runs
for the Aquaint and WT10g collection respectively. In the KL plots, a score of
zero indicates that the estimate is identical to the actual description. While in
the PL plots, the higher the PL the better the quality, where the baseline is
shown as a solid line which denotes the PL score for Q given the actual resource
description θ.

We were first concerned with the rate of improvement as more documents
were added to each resource description estimate. The general trend when mea-
suring the quality of resource descriptions, as further documents were sampled,
appeared to be similar (See Figures 1 and 2). As the number of documents ini-
tially sampled increased, a sharp drop in KL and a corresponding rise in PL,

Adaptive Query-Based Sampling of Distributed Collections 323

Table 2. The Kendall τ Correlation of KL and PL for ranking resource description
estimates in terms of quality, recorded at different intervals of documents sampled. An
asterisk indicates a statistically significant correlation at p < 0.05.

Documents Sampled
Collection 200 500 1000 2000
Aquaint 0.85* 0.68* 0.62* 0.53*
WT10g 0.38* 0.51* 0.57* 0.82*

was found. As QBS sampling continued, the rate of improvement for each re-
source description levelled out using either measure. This trend indicated that
by adding further documents to the estimate provided small gains in quality.
At this point, a decision to terminate QBS based on the cost of sampling fur-
ther documents versus the gain in further representation of the resource should
be made. For the Aquaint collection, Figure 1, this point occurs when approxi-
mately 800-1200 documents are sampled across all term selection methods. For
the WT10g collection, Figure 2, this was found at approximately 1200-1600 for
KL and somewhat later when measuring with PL.

We were also concerned with which term selection method (i.e. df, unif, ctf
or avetf) acquired the better resource description estimates in terms of KL and
PL, and in particular if there was agreement between both measures. Focusing
first on the Aquaint collection, the ordering of the mean quality of each sampling
strategy was found to be identical when using KL and PL. For both measures the
rank order was: unif, df, ctf then avetf (best to worst). For the WT10g collection,
both measures also ranked the methods the same: df, unif, avetf followed by ctf.

Both KL and PL ranked the resource descriptions obtained from each term
selection method in the same order. However, across the two collections this
rank order varied with the random term selection method (unif) preferred
for Aquaint, while the document frequency strategy (df) considered better for
WT10g. This is an unexpected outcome as it reveals that PL can be used in
a novel way for determining which sampling method will provide a better es-
timate on a per collection basis, potentially increasing sampling effectiveness
during QBS.

Correlation between the measures. We ranked all the estimated resource
descriptions, irrespective of term selection strategy, according to KL and PL pro-
ducing two ranked lists. We then compared the ranked lists produced by each
measure using Kendall’s τ correlation test at various points in the sampling
process. By doing so, we could determine if there was a strong concordance be-
tween the rankings (i.e. quantify how close in agreement each measure is when
ranking the different resource description estimates in terms of quality). This
approach has been used previously in IR to compare different measures of re-
trieval performance in [5]. The assumption is that a good estimate would be
ranked highly for both measures. A correlation score close to 1 would indicate
that two measures have identical rankings. A score closer to 0 would indicate no

324 M. Baillie, L. Azzopardi, and F. Crestani

relationship between the measures. Table 2 provides the τ correlation coefficient
at 200, 500, 1000 and 2000 documents sampled.

At each of the different sampling points, shown in Table 2, the results reveal
that there was a close agreement between both ranked lists complied using both
measures. This relationship was found to be statistically significant across both
collections, and at each of the different intervals, providing stronger evidence to
support our hypothesis that the PL measure provides a comparable indication
of quality with respect to the KL measure.

4 Predictive Likelihood as a Stopping Criterion

QBS is an iterative process where sampling is curtailed when a single or set of
stopping criteria has been reached. In the standard approach to QBS, once n
unique documents have been retrieved then sampling is stopped [7]. We propose
to use the PL measure to inform the decision making process in order to decide
when enough documents have been sampled. Our stopping criterion is based on
the difference in the PL score for the estimated resource description, between
the previous iteration k− 1 and the current iteration k of the sampling process.
The difference φk at iteration k, where k > 1, is given by:

φk = 	(θ̂k, Q)− 	(θ̂k−1, Q) = log

(
p(Q|θ̂k)

p(Q|θ̂k−1)

)

where θ̂k is the resource description estimate at the kth iteration. If φk is below
a threshold ε, then sampling is curtailed, where ε indicates the necessary amount
of improvement required to continue sampling. By doing so we are using a gradi-
ent ascent optimisation to maximise the Predictive Likelihood of the estimated
resource description given Q [9]. The ratio of PL scores provides an indication
of the rate of improvement over the previous iteration. Consequently, the free
parameter ε is independent of the document collection characteristics (such as
size and heterogeneity). Unlike the fixed n document curtailment strategy, this
parameter is generalisable to other collections.

By using this technique we believe that a sufficiently good estimation of the
resource will be obtained, which will minimise any unnecessary wastage from
oversampling, and will also avoid obtaining an insufficient sample through under-
sampling. We further hypothesise that because sufficient representations of each
resource will be obtained, this will translate into better selection accuracy over
the fixed method. We shall now refer to the proposed method as QBS-PL and
the previous threshold based approach as QBS-T.

4.1 Evaluation

The aim of the next set of experiments was to determine whether QBS-PL pro-
vided better resource selection accuracy over QBS-T. This was examined in two
ways: (1) if QBS-PL improved selection accuracy when the number of sampled

Adaptive Query-Based Sampling of Distributed Collections 325

documents were approximately equal, and (2) if QBS-PL provided comparable
resource selection accuracy to QBS-T when the number of sampled documents
were substantially less than the threshold approach.

Experimental Settings. Two DIR testbeds based on the TREC Aquaint col-
lection were formed for these experiments, with the documents partitioned By-
source and By-topic. The By-source testbed contains 112 simulated collections,
with the documents arranged into collections based on both the news agency
that published each document, and the month the document was published. In
this testbed the size of each collection is uniform. The By-topic testbed contains
88 collections, with documents grouped by topical similarity using single pass
k-means clustering. In this testbed, collection sizes are skewed and represent a
realistic setting with respect to the distribution of content.

For QBS, sampling was performed with the term selection strategy set to
df, with four documents retrieved per query. The thresholds used for the QBS-T
ranged from 100-1000 unique documents. For QBS-PL, ε was set to 0.01. We also
include descriptions using the full collection information (‘complete’) as a bench-
mark (i.e. all the documents in the resource to build the description). To provide
an indication of how sensitive the retrieval accuracy is when applying QBS-PL
with different query sets, we used four different sized query sets Q constructed
from 200 TREC Topics (Topics 1-200). The number of queries in each set were
50, 100, 150 and 200. So as not to train and test using the same set of queries,
another set of queries from the TREC HARD 2005 track were used for resource
selection. This set contained 50 test topics, where the title field was used as the
query. Resource selection was performed using the DIR benchmark algorithm
CORI [6]. Resource selection accuracy was measured using the recall-based R̂
metric. R̂ is a measure of the overall percentage of relevant documents contained
in the top r collections [7]. We measured R̂ at r = {5%, 10%, 15%, 20%, 25%}
of all collections searched. We also captured the average number of documents
sampled per collection, and the total number of documents overall.

Experimental Results. Table 3 provides an overview of the results obtained
for QBS-PL, QBS-T and also using the complete estimates (not all thresholds
for QBS-T are shown). Figure 3 is a plot of QBS-PL using 200 queries, QBS with
two document thresholds (t = 500, 1000), and the resource selection performance
using complete information, compared across each of the R̂@r values.

The performance of the QBS-PL method varied as the size of the Q increased,
see Table 3. For both collections, an increase in the Q coincided with an im-
provement in R̂, across all collection cut-offs, with the QBS-PL Q = 200 method
performing best over both testbeds. In both cases, there was a steady increase
in the number of documents sampled as the size of Q grew. We suspect that this
would tail off as more queries are added, but this is as yet unconfirmed due to
the finite number of test queries available. As more queries are added to Q, it
is sensible to expect more documents will be sampled in order to cover the new
subject areas expressed in these queries. This is intuitively appealing because
as the information needs of the users of a system diversify and change, a larger

326 M. Baillie, L. Azzopardi, and F. Crestani

Table 3. Each technique is evaluated by R̂@r percent of the collections searched, and
the overall document statistics for each QBS technique across the two testbeds

Aquaint: By-source testbed
Parameters R̂@5% R̂@10% R̂@15% R̂@20% R̂@25% Ave. docs. Total docs.
QBS-PL, Q = 50 0.093 0.162 0.231 0.283 0.341 247.9 27767
QBS-PL, Q = 100 0.110 0.182 0.248 0.301 0.366 347.3 38893
QBS-PL, Q = 150 0.116 0.188 0.250 0.308 0.360 434.8 48699
QBS-PL, Q = 200 0.126 0.212 0.279 0.332 0.378 500.6 56066
QBS-T n = 300 0.108 0.179 0.248 0.308 0.360 300 36960
QBS-T n = 500 0.113 0.191 0.249 0.310 0.362 500 56000
QBS-T n = 1000 0.124 0.207 0.291 0.353 0.415 1000 112000
Complete 0.163 0.249 0.315 0.390 0.454 11743.9 1033461

Aquaint: By-topic testbed
QBS-PL, Q = 50 0.63 0.73 0.79 0.83 0.85 235.2 20466
QBS-PL, Q = 100 0.64 0.74 0.82 0.84 0.87 344.2 29952
QBS-PL, Q = 150 0.65 0.74 0.82 0.85 0.87 394.4 34315
QBS-PL, Q = 200 0.66 0.75 0.82 0.85 0.86 456.4 39685
QBS-T n = 500 0.54 0.69 0.75 0.81 0.84 500 44000
QBS-T n = 1000 0.58 0.73 0.79 0.84 0.87 1000 88000
Complete 0.64 0.74 0.81 0.85 0.88 2262 1033461

number of documents will be required in order to sufficiently describe a resource
given those needs.

In comparison with the threshold method, QBS-T, the performance of QBS-
PL provides comparable selection accuracy while reducing the number of docu-
ments sampled (See Figure 3 and Table 3). If we consider QBS-PL Q = 200 on
the By-source testbed, the fixed threshold of n = 500 returns a similar number
of documents sampled, but QBS-T’s selection accuracy is worse. It is not until
the threshold was increased to n = 1000 that similar selection accuracy was

5% 10% 15% 20% 25%
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of collections searched

R
−

va
lu

e

PL, Q=200
t=500
t=1000
Complete

5% 10% 15% 20% 25%
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of collections searched

R
−

va
lu

e

PL, Q=200
t=500
t=1000
Complete

Fig. 3. QBS-PL versus QBS-T across a range of cut off values of r over By-source (left)
and By-topic (right) respectively

Adaptive Query-Based Sampling of Distributed Collections 327

obtained. However, this means that over 55,000 extra documents were sampled,
an increase of almost 100%. On the By-topic testbed, QBS-PL provides better
accuracy when compared with the QBS-T estimates. Even when QBS-T was
set to n = 1000, with an increase of 40,000 to 50,000 extra documents sampled
over the QBS-PL estimates, the selection accuracy was still 6-12% worse. It was
only when complete information was used that performance similar to QBS-PL
Q = 200 was obtained. The seems to suggest that there are problems with under
and over sampling of many collections, which was not so problematic when col-
lection size was uniform as in the By-source testbed (and in previous work [7]);
but is problematic when the collection sizes are skewed.

5 Conclusions and Future Work

Both experiments have shown that PL can be effectively used as a measure of
resource description quality, and as a consequence can be integrated into the
QBS algorithm. It was shown that a significant relationship exists between PL
and KL divergence. However, PL is a radical departure from existing measures
such as KL. It is radical because it questions whether a completely unbiased rep-
resentation of the underlying resource is actually required. By using PL, we are
not measuring quality in terms of sampling a sufficiently good representation of
the actual collection, but measuring whether the resource description estimate
satisfies the information needs of the users of the DIR system. With PL we mea-
sure each resource description with respect to a set of queries that represent the
typical information needs, Q, of the user-base of a system i.e. evaluating each
estimate with respect to the information users want from that resource. For ex-
ample, by increasing Q, it was highlighted that further documents were required
to be sampled before a sufficient representation of the collection was obtained.
This increase in the number of documents required to satisfy Q mirrored the
addition of new information needs in Q.

We then highlighted that the problem of under and oversampling does ex-
ist when employing a QBS algorithm which uses a fixed document threshold
(QBS-T). As previously posited, this is especially problematic in a situation
when resources are of varying size and content. Consequently, the efficiency and
effectiveness of the QBS approach is compromised when using such criteria. By
employing QBS-PL, it was shown that this problem can be addressed. Using
PL to measure resource description quality without a priori knowledge of each
distributed collection, the original QBS algorithm was improved both in terms of
accuracy and efficiency. QBS-PL minimised the problems of under and oversam-
pling, and in particular when faced with collections of varying size and content,
we were able to determine when a sufficiently good representation of each col-
lection had been obtained, which in turn was reflected by performance gains. In
contrast, a fixed threshold resulted both in poorer resource selection performance
and also increased overheads.

A main advantage of utilising PL is that it enables the resource descriptions
to be tailored specifically to the information needs of the user. This is appealing

328 M. Baillie, L. Azzopardi, and F. Crestani

and paves the way for the development of personalised (distributed) retrieval
systems. Defining the query set Q provides an intuitive mechanism for obtaining
resource descriptions that are personalised to specific users or user groups; an
unexplored area of research that we are currently investigating.

Acknowledgements

This work was supported by PENG, a Specific Targeted Research Project funded
within the 6th PF of the European Research Area. More information on the
project can be found at http://www.peng-project.org/.

References

1. L. Azzopardi, M. Girolami, and C. J. Risjbergen. Investigating the relationship be-
tween language model perplexity and IR precision-recall measures. In Proceedings
of the 26th ACM SIGIR conference, pages 369–370, 2003.

2. R. A. Baeza-Yates. Applications of web query mining. In Proceedings of the 27th
ECIR, pages 7–22, Santiago de Compostela, Spain, 2005.

3. M. Baillie, L. Azzopardi, and F. Crestani. Towards better measures: Evaluation
of estimated resource description quality for distributed IR. In First International
Conference on Scalable Information Systems. IEEE CS Society, 2006.

4. N. J. Belkin and W. B. Croft. Information filtering and information retrieval: two
sides of the same coin. Communications of the ACM, 35(12):29–38, 1992.

5. C. Buckley and E. M. Voorhees. Evaluating evaluation measure stability. In Pro-
ceedings of the 23rd ACM SIGIR conference, pages 33–40, 2000.

6. J. P. Callan. Advances in information retrieval, chapter Distributed information
retrieval, pages 127–150. Kluwer Academic Publishers, 2000.

7. J. P. Callan and M. Connell. Query-based sampling of text databases. ACM
Transactions of Information Systems, 19(2):97–130, 2001.

8. M. H. Degroot. Optimal Statistical Decisions (Wiley Classics Library). Wiley-
Interscience, April 2004.

9. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience
Publication, 2000.

10. T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Ma-
chine Learning, 42(1-2):177–196, 2001.

11. P. G. Ipeirotis and L. Gravano. When one sample is not enough: improving text
database selection using shrinkage. In Proceedings of the ACM SIGMOD Confer-
ence, pages 767–778, 2004.

12. S. Kullback. Information theoery and statistics. Wiley, New York, 1959.
13. M. Shokouhi, F. Scholer, and J. Zobel. Sample sizes for query probing in unco-

operative distributed information retrieval. In APWeb 2006, volume 3841, pages
63–75. Springer Lecture Notes in Computer Science, 2006.

14. L. Si and J. P. Callan. Modeling search engine effectiveness for federated search.
In Proceedings of the 28th ACM SIGIR Conference, pages 83–90, 2005.

15. J. Xu and W. B. Croft. Cluster-based language models for distributed retrieval.
In Proceedings of the 22nd ACM SIGIR conference, pages 254–261, 1999.

16. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to information retrieval. ACM Transaction of Information Systems, 22(2):179–214,
2004.

Dotted Suffix Trees
A Structure for Approximate Text Indexing

Lúıs Pedro Coelho� and Arlindo L. Oliveira

INESC-ID/IST
{luis, aml}@algos.inesc-id.pt

Abstract. In this work, the problem we address is text indexing for ap-
proximate matching. Given a text T which undergoes some preprocessing
to generate an index, we can later query this index to identify the places
where a string occurs up to a certain number of errors k (edition dis-
tance). The indexing structure occupies space O(n logk n) in the average
case, independent of alphabet size. This structure can be used to report
the existence of a match with k errors in O(3kmk+1) and to report the
occurrences in O(3kmk+1+ed) time, where m is the length of the pattern
and ed and the number of matching edit scripts. The construction of the
structure has time bound by O(kN |Σ|), where N is the number of nodes
in the index and |Σ| the alphabet size.

Keywords: string algorithms, suffix trees, approximate text matching,
text indexing.

1 Introduction

Since their introduction [1], suffix trees have been one of the methods of choice
for text indexing. However, in many real-life problems one is interested in finding
places in the text where an approximate form of the pattern occurs. In 2001,
Navarro et al presented a survey of existing approaches to solving this prob-
lem [2]. More recently, Maaß [3] presents both a survey of other work and his
own solution, which occupies, on average, O(|Σ|kn logk n)1 space for a search
time O(m). In this work we present an approach based on an extension of suffix
trees. The main advantage of this approach is that both the search and the index
size are alphabet independent (although the indexing time is not).

The structure presented here is superficially very similar to the one presented
by Chattaraj [4] as an inexact suffix tree, but that work has different objectives.
Cole el al [5] present a structure whose initial intuition resemble ours in that
it involves error trees. However, they make different time and space tradeoffs
to achieve O(m + log log n + occ) searching (Hamming distance) with a size
O(n logk n

k!) index.

� Supported by the Portuguese Science and Technology Foundation, project
posi/sri/47778/2002 BioGrid.

1 Maaß considers |Σ| and k as constant and presents O(n logk n) as a complexity
result. However, this analysis ignores the potentially large impact of alphabet size.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 329–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

330 L.P. Coelho and A.L. Oliveira

2 The Indexing Structure

Definition 1 (Character, string). Given a set Σ, we say that S is a string
over Σ if S is a (possibly empty) sequence of elements of Σ. Elements of Σ will
be called characters. The length of the string S will be denoted by |S|. We shall
write Si for the i-th element of S.

The set of all strings is denoted by Σ∗ and Σ+ = Σ∗ − {empty string}.

For denoting characters we shall use letters from the beginning of the roman
alphabet (a, b, c,. . .) and, for strings, we shall use letters from the end of the
alphabet (w, x, . . .). In what follows we assume that there are two special
symbols ($ and .) which are not part of Σ.

Definition 2 (Concatenation, Prefix and Suffix). wx or aw will denote
the usual concatenation operation. If S = wxy, then w is a prefix of S, x is a
substring of S and y is a suffix of S (at position |wx|).

Definition 3 (Patricia tree, Suffix Tree, Suffix Link). T is a Patricia tree
if T is a rooted tree with edge labels from Σ+. For each a ∈ Σ and every node
n in T , there exists at most one edge leaving n whose label starts with a. Each
node in a Patricia tree has a path leading to it which forms a string. If the node
n has the leading path w, we shall also refer to n as w. A compact Patricia tree
omits nodes with just one child.

A suffix tree for a string S is a compact Patricia tree whose leaf nodes (those
without children) have paths corresponding to all suffixes of the string S$. A
suffix link in a suffix tree is a link from the node aw to the node w. This link has
the label a.

In a suffix tree, all internal nodes have a well defined suffix link. McCreight’s [6]
algorithm constructs a suffix tree with suffix links in linear time.

Definition 4 (Occurrence Set, Position Set). Given a node w in a suffix
tree, we call its occurrence set the set of indexes in the original string where the
string w occurs.

Given a node w in a suffix tree, its position set is the set formed by taking its
occurrence set and adding the length of w to each element.

Lemma 1 (Position set at the suffix node). Given two nodes aw and w, if
one takes the position set of w, subtracts one from each element, one obtains a
superset of the position set of w. The items shared by both sets are those positions
of the string which contain an a.

The lemma is fairly obvious given that the position set of aw contains all the
positions where aw occurs which are exactly those positions where w occurs
preceded by a.

Definition 5 (Aproximate Match). We say that the string s matches the
string t at position p with k errors if we can make k modifications in s to obtain s′

which is a substring of t at position p. A modification is either deletion, insertion
or substitution of one character.

Dotted Suffix Trees: A Structure for Approximate Text Indexing 331

Definition 6 (Error Tree). For any node w, its error tree is formed by taking
its position set, adding one to each element and forming the Patricia tree of the
suffixes starting at those positions. If the position set includes the end of the
string, that element is removed.

The leaves are labeled by the position of the string in which their paths occur
minus |w|+ 1.

Definition 7 (1-error dotted Tree). A 1-error dotted tree is the tree which
is formed by adding to each node in a suffix tree, a new edge labeled by · which
points to its error tree. The edge labeled · shall be called a dot link.

1

i$

10

7

4

sippi$

pi$

9

i$

10

$

3

6

7

21 3

6

5

si

i

8 9

10

10

ppi$

ssippi$

i

s p

pi$

i$

ssi

$ ppi$
ppi$

4

ppi$

$

ssippi$

ssippi$

ssi

8

i

i

2

5

$

s

6

si

3

s

s

si

8

i ss

sippi$
ppi$

5
2

5
2

6
3

i

4

7

ppi$

ssippi$

ppi$

ssippi$

ppi$

ppi$

ssippi$

ssippi$

ppi$

ssippi$

11
pi$

pi$

p
pi$

9

$

11i

m
ississippi$

sippi$

pi$

ssippi$

7

ppi$

4

Fig. 1. 1-error dotted tree for mississippi

The 1-error dotted tree for mississippi is shown in Figure 1. The nodes are
connected to their error trees by thick diagonal links. We can see some examples
of the concepts above: for the node issi, the occurrence set is {2, 5} and its
position set is {6, 9}. In a sense, one can say that being at node issi is being at
positions 6 and 9 simultaneously. The error tree (at issi) is formed by taking
the strings starting at positions {7, 10} (ie, sippi$ and pi$) in a Patricia tree. In
a leaf, the occurrence set is a singleton, and we label the leaf by its element.

The paths in the dotted tree are paths in the extended alphabet Σ ∪ {., $}.
The notions of occurrence set, position set and error tree are valid for all nodes
in a dotted tree.

Definition 8 (k-error dotted tree). We define a k-error dotted tree as the
tree obtained by adding error trees to each node in the (k − 1)-error dotted tree
which does not already contain one.

332 L.P. Coelho and A.L. Oliveira

3 Searching

Given a pattern to search for, we follow it character by character, descending the
tree. We represent this walk by keeping a node and an offset from the start of its
incoming link. Inside an edge, we consider that there is an implicit dot link which
goes forward one character. At each point, we can take four possible actions: (1)
match, where we descend according to the pattern (may not be possible); (2)
substitution, where we follow the dot link (possibly implicit), moving in the
pattern; (3) insertion, where we follow the (possibly implicit) dot link, not
moving in the pattern; (4) deletion, where we advance in the pattern, while
not moving in the tree. We limit ourselves to at most k non-matching operations
(editions). Algorithm 1 implements the process just described.

Algorithm 1. Function findString(w, offset, s, k)
Input: Current node w
Input: Current offset offset
Input: String s
Input: Maximum errors k
Data: The tree’s string treeString
if k < 0 then return string not found1

if s is empty then report all w’s children2

findString(w,offset,s + 1,k − 1)// deletion3

if offset = length(w) then4

findString(w.dotLink, 0, s,k − 1)// insertion5

findString(w.dotLink, 0, s + 1,k − 1)// substituition6

child ←w.getSon(s0)// try matching7

if child isn’t null then findString(child, 0, s + 1,k)8

else9

findString(w,offset +1,s,k-1)// insertion10

if s0 �= treeStringstart(w)+offset then k ←k − 111

findString(w,offset +1,s + 1,k)// either match or substituition12

There are at most
∑k

i=1

(
m
i

)
= O(mk) ways to combine k edit operations

into a string of size m. Since there are 3 operations (substitution, insertion, and
deletion), we have at most O(3kmk) sequences. Each sequence has at most m +
k = O(m) elements and therefore the total time to find matches is O(3kmk+1).
Once a match has been found in the tree, reporting the leaves below the node
takes time proportional to the number of leaves, ie. to the number of edit scripts
which can be used to match the pattern to a substring of the text (which can be
greater than the number of occurrences).2 The total search time is O(3kmk+1

+ ed).

2 As often happens, strings of the form am serve as examples of pathological behaviour
as they can match any position of a string of form an in a large number of ways.

Dotted Suffix Trees: A Structure for Approximate Text Indexing 333

4 Constructing the Dotted Tree

We start with a suffix tree and show first how to construct a one-error dotted
tree. We construct the error tree for the root which is almost a copy of the entire
tree, except for two properties: (1) it does not have the leaf labeled 1 in the
original tree and; (2) for any other leaf w$ occurring at position p in the string,
we have a new leaf .w$ which occurs at position p−1 in the string. For any other
node aw, the error tree is a copy of the error tree at node w (the node pointed
to by node aw’s suffix link) with the following changes: (1) the leaf labeled 1 in
the original error tree is not included; (2) leaves in the copy have a label which
is the original value minus one; (3) a leaf labeled p is included only if sp−1 = a.

Algorithm 2. Copying a sub tree
Input: A node in a suffix tree w
Input: An optional character a (not given when copying the root)
Data: The original string string
copy ←make-copy(w)1

if w is a leaf then2

p ←w.label3

if p = 1 then return null4

if a was not given or stringp−1 = a then5

copy.label ←copy.label - 16

foreach n ∈ w.sons do7

copy of son ←copySubtree(n,a)8

if copy of son isn’t null then9

copy.sons ←copy.sons ∪ copy of son10

if copy.sons is empty then return null11

if copy.sons has only one element then12

merge copy.sons into copy and return that13

return copy14

These conditions are an expression of Lemma 1 and an extension of the condi-
tions for the root. Both are implemented by Algorithm 2. The only point to note
is line 12. Since we filter some leaves, we can create nodes with only one child.
These are removed by merging a child with its (single) parent. Since a typical
suffix tree implementation just stores, at each node, indices to the start and end
of the subtring labeling its incoming edge, merging is achieved by adjusting the
start index. The construction of the tree using either Ukonnen’s or McCreight’s
algorithm assures that this operation is correct.

Copying a tree takes time proportional to the number of nodes it contains.
The error tree at the root is a straightforward copy of the whole tree. Every other
error tree is a copy of an existing one. Since each node can have at most |Σ|
incoming suffix links, each error tree is transversed at most |Σ| times. The sum

334 L.P. Coelho and A.L. Oliveira

of all these operations is therefore bounded by |Σ|N . Therefore, if the number
of nodes in the final tree is N , construction is done in time O(N |Σ|).

The above algorithm can be used to construct trees with any number of errors
by iterating it. To construct the (k + 1)-error tree from the k-error tree, make
an adjusted copy of the tree as above (adjusting leaves and filtering the leaves
with label 1) and make this the new root error tree. Then, for every other node,
remove the current error tree. Finally, for every node except the root, construct
its error tree as above.

Let Nk be the number of nodes of the k-error dotted tree. We will use N for
Nk if k is known from context. The analysis above remains valid and we now
have that the time cost is O(N1|Σ|+ . . . + Nk|Σ|) = O(kN |Σ|).

5 Space Considerations

Let l be the maximum string depth of any node in the tree.3 We show Nk =
O(nlk) by induction. It is known that N0 = O(n). The algorithm for turning
a k-error into a (k + 1)-error dotted tree, can be looked at the following way 4.
First it constructs the error tree at the root and clears all the other error trees.
Then it proceeds in stages, making a (possibly incomplete) copy of this tree
spread amongst the nodes at string-depth 1. It processes the other nodes in
increasing string-depths. At each string depth, the number of nodes is increased
by a maximum of Nk. Therefore, we start with Nk nodes, make an almost full
copy, and copy that at most l times, Nk+1 = O(Nk(l + 1)). Assuming Nk =
O(nlk) by induction we conclude Nk+1 = O(nlk+1).

So far, we have achieved little since in the worst case l = n − 1 (consider
aaaa . . .). However, under very general assumptions (which natural language
textes and dna experimentally verify), the expected case is l = O(log n) [7] and
we have Nk = O(n logk n).

6 Experimental Results

Three data sets were used: English text, the dna of yeast, and randomly gener-
ated text. Results on all sets are qualitatively similar.

To experimentally verify the average case prediction, we show in Figure 2
the ratios between the k-error and the (k + 1)-error dotted trees regarding the
number of nodes in the trees. We can easily see that the experimental values do
resemble a logarithm as predicted.

Searches were then performed on top of previously indexed text. We only
report whether the string exists in the text (and not all occurrences). Therefore,
the number of occurrences has no influence on the search time. Figure 3 shows

3 For a node w, its string depth is |w|.
4 Having the node processed in this order is, in fact, difficult to code for. However, as

an analysis tool, it is a valid assumption.

Dotted Suffix Trees: A Structure for Approximate Text Indexing 335

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0k 50k 100k 150k 200k 250k

R
a

ti
o

Number of Characters

No errors to one error 1 error to 2 errors

Fig. 2. Size ratio on English text

 0k

 2k

 4k

 6k

 8k

 10k

 12k

 14k

 16k

 18k

 20k

 0k 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

S
te

p
s
 (

a
v
e
ra

g
e
)

Text Size

Existing string, dna
Existing string, english
Existing string, random text

Non-existing string, dna
Non-existing string, english
Non-existing string, random text

Fig. 3. Searching with 2 errors

the results of searching for 15 character long patterns with 2 errors, while varying
the text size. After an initial small growth explainable by the increasing density
of the tree, the search time is roughly constant.

7 Conclusions

We presented an indexing structure for approximate text matching which takes,
on average, O(n logk n) space. This complexity was predicted theoretically and
observed experimentally. This structure reports the existence of a match in
O(3kmk+1) and reports the positions where the matches occur inO(3kmk+1+ed)
time. It can be constructed in O(kN |Σ|) time, N being the actual number of
nodes. The structure and the algorithms to construct it are simple and easy to
implement. The fact that the structure uses O(ed) time (instead of O(occ)) to
report the occurrences of a pattern may be a disadvantage in some applications.
In other applications (eg, searching in dna strings for degenerated occurrences
of long strings), this will not be a problem since each occurrence will, in general,
correspond to only one edit script.

The amount of space the index takes might limit its applicability. One direc-
tion for tackling this problem is the following remark: in the example for the
string mississippi, presented in Figure 1, one can see that the tree below s.i and
ssi are exactly the same. Whether such occurrences are the basis for a significant
space saving and how to exploit them is an open question. Going further, the
definition of error trees might be extended to structures such as the suffix-dag
presented by Gusfield [8, § 7.7].

Another limitation that should be addressed in future work is related with
the fact that the complexity for reporting occurrences depends on the number
of edit scripts, and not on the number of occurrences.

Acknowledgments. We thank L. Russo and S. Madeira for several productive
discussions.

336 L.P. Coelho and A.L. Oliveira

References

1. Weiner, P.: Linear pattern matching algorithms. In: FOCS, IEEE (1973) 1–11
2. Navarro, G.: A guided tour to approximate string matching. ACM Computing

Surveys 33 (2001)
3. Maaß, M.G., Nowak, J.: Text indexing with erros. In: Proc. 16th Annual Symp. on

Combinatorial Pattern Matching (CPM). Volume 3537 of LNCS., Springer (2005)
21–32

4. Chattaraj, A., Parida, L.: An inexact-suffix-tree-based algorithm for detecting ex-
tensible patterns. Theor. Comput. Sci. 335 (2005) 3–14

5. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: STOC. (2004) 91–100

6. McCreight, E.: A space-economical suffix tree construction algorithm. J. ACM 23
(1976) 262–272

7. Apostolico, A., Szpankowski, W.: Self-alignments in words and their applications.
J. Algorithms 13 (1992) 446–467

8. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA (1997)

Phrase-Based Pattern Matching in Compressed Text

J. Shane Culpepper and Alistair Moffat

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Victoria 3010, Australia

Abstract. Byte codes are a practical alternative to the traditional bit-oriented
compression approaches when large alphabets are being used, and trade away
a small amount of compression effectiveness for a relatively large gain in de-
coding efficiency. Byte codes also have the advantage of being searchable using
standard string matching techniques. Here we describe methods for searching in
byte-coded compressed text and investigate the impact of large alphabets on tradi-
tional string matching techniques. We also describe techniques for phrase-based
searching in a restricted type of byte code, and present experimental results that
compare our adapted methods with previous approaches.

1 Introduction

The compressed pattern matching problem is defined as: given a pattern P , a text T ,
and a corresponding compressed text Z generated by some compression algorithm, find
all occurrences of P in T , that is, determine the set {|x| | T = xPy}, using P and Z .

The naive approach is to decompress the text before performing the pattern match-
ing step, and fifteen years ago, this would probably have been the fastest mechanism.
But ongoing growth in CPU power compared to I/O seek times in secondary storage
devices has created a hardware speed gap, which allows increasingly complex algo-
rithms to be utilised within the time that might otherwise be spent on I/O costs. It
is, however, still necessary to balance efficiency (how quickly the compressed opera-
tion can be performed) and effectiveness (how good the compression is), and to take
into account practical effects such as caching performance. In this framework, word-
based modelling methods, combined with byte-aligned codes, offer several benefits
[de Moura et al., 2000]. In particular, the use of byte codes allows use of available exact
pattern matching algorithms, with only minimal modification required. The emphasis
in previous research has been on variants of the Boyer-Moore approach, particularly the
Horspool modification, see, for example, Fariña [2005]. While the BMH algorithm is
clearly efficient on character-based alphabets in uncompressed text, it is unclear how it
performs on the extended alphabets that arise from word-based compression models.

The traditional pattern matching problem has been studied for more than thirty years,
and a broad range of efficient solutions have been proposed. All of the practical ap-
proaches use one of three searching techniques, and the notion of a search window,
that positions the pattern relative to the text. The general techniques of interest include
prefix-based searching, suffix-based searching, and factor-based searching. Several em-
pirical studies of pattern searching strategies have also been conducted, and the reader
is referred to, for example, the work of Navarro and Raffinot [2002], who consider the

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 337–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

338 J.S. Culpepper and A. Moffat

impact of both varying pattern sizes and also varying alphabet size, and draw much of
the previous work together.

However, relatively little is known about the performance impact of removing re-
dundancy from the search text. This paper examines that question, and also evalu-
ates the impact of large alphabets on uncompressed and compressed search times. We
consider prefix-based and factor-based searching approaches as well as the favoured
suffix-based approaches. We also examine the restricted-prefix byte codes introduced
by Culpepper and Moffat [2005], and show that they too can be searched quickly using a
modified Boyer-Moore-Horspool mechanism. Indeed, compression accelerates pattern
matching so much that byte-coded sequences can be searched faster after compression
than they can in their raw, uncompressed, form.

2 Byte-Aligned Compression

One of the first practical compressed pattern matching approaches was proposed by
Manber [1997]. Manber’s simple byte-pair encoding is efficient, but does not give com-
petitive compression effectiveness. However, the idea of using bytes instead of bits was
an important first step in creating algorithms that are both effective and efficient.

Simple byte coding techniques have also been used to compress sequences of inte-
gers in information retrieval systems, because they provide fast decoding compared to
more principled bit-based codes. As an example application, consider the following text
fragment taken from the popular children’s book “Fox in Socks” [Seuss, 1965]:

Bim comes.\n Ben comes.\n Bim brings Ben broom.\n Ben brings Bim broom.\n

Instead of using a character-based approach to compression, de Moura et al. [2000]
built on previous word-based approaches, and described what they called the spaceless
words model. A spaceless words parser assumes that the text to be represented is a
sequence of words followed by non-words, but with the added constraint that if any
non-word is a single space, the space can be discarded by the encoder, and re-introduced
later by the decoder. Words and non-words are assigned ordinal symbol identifiers as
they appear, so that the sequence of words is transformed into a sequence of integer
indices into a dictionary of strings. The resulting integer sequence can be represented
by any coding method, including byte-aligned coding approaches. In the example, the
text segment from “Fox in Socks” is transformed into the integer sequence:

1, 3, 4, 5, 3, 4, 1, 6, 5, 7, 4, 5, 6, 1, 7, 4 ,

where the “missing” symbol number 2 represents a single space character, and is not
needed anywhere in this short message. Table 1 shows the sequential codewords as-
signed to this text fragment and the corresponding frequencies, and radix-4 codeword
assignments for a range of byte-aligned codes.

The basic byte coding method (bc) uses codes that are fully static and easy to con-
struct. It represents input integers using a radix-256 code in which values greater than
127 are continuers and are always followed by another byte, while values less than 128
are stoppers. The codewords generated are prefix-free, and it is easy to identify code-
word boundaries directly in the compressed output, since the last byte of each codeword
is less than 128. Note, however, that the code is static, and that actual frequency of each

Phrase-Based Pattern Matching in Compressed Text 339

Table 1. Symbol assignments and corresponding radix-4 codewords generated using a space-
less words model on a text fragment from “Fox in Socks”. In the column bc the codewords are
assigned based on ordinal symbol ordering; all other columns take the symbol frequency into
account and bypass symbol 2, which does not appear in the message.

Word Sym. Freq. bc phc thc dbc scbc rpbc
.\n 4 4 10 01 00 00 10 00 00 00
Bim 1 3 00 01 00 11 01 01 01
Ben 5 3 11 00 10 01 10 10 10 00 10 10
comes 3 2 10 00 11 00 01 10 11 10 01 11 00 11 00
brings 6 2 11 01 11 01 01 11 10 11 00 11 01 11 01
broom 7 2 10 10 00 11 10 01 11 11 11 01 11 10 11 10
(space) 2 0 01 — — — — —

symbol is ignored. The “bc” column of Table 1 shows the codewords assigned when
the set of symbol identifiers are taken at face value, and a radix-4 code computed (rather
than the more usual radix-256 one). In a radix-4 version of bc, the “byte” values 00 and
01 are stoppers and the values 10 and 11 denote continuers. Note that symbol 2, which
represents a single space, is assigned a code even though it does not appear in trans-
formed source message, and that the most frequent symbol is not necessarily assigned
the shortest codeword.

Another option is to calculate a radix-256 Huffman code, denoted phc (for plain
Huffman code) in Table 1. Now an optimal code is computed for the set of symbol
frequencies, and the source message represented accordingly. However, while phc pro-
vides maximal flexibility in assignment of codewords, it is impossible to search directly
in the compressed text because one codeword can be a suffix of another codeword.
Consider the codewords assigned by phc for the words Bim and brings in Table 1. The
codeword 01 assigned to Bim is a suffix of the codeword 11 01 assigned to brings, and
a search for Bim will result in a match against the second part of brings. In the example
code the ambiguity could be resolved by looking at the preceding “byte” to see if it con-
tains 11, but in a larger code, direct searching is impossible, since codeword boundaries
are not identifiable.

To reintroduce searchability, de Moura et al. [2000] described tagged Huffman codes
(thc), as a variation of the arrangement used in bc. Tagged Huffman codes are radix-
128 Huffman codes which use 7 bits in each byte to store the Huffman code and 1 bit to
signal the beginning of a codeword. With the extra tag bit inserted, thc codes are suffix
free and allow any string matching algorithm such as shift-or or horspool to be used
directly on the compressed text. The suffix-free property ensures that no false matches
occur. Note that the cost of thc is exaggerated in Table 1 since in two-bit nibblets, only
one actual data bit can be stored. Experimentally, searching in thc sequences is fast
[de Moura et al., 2000], and searches are two to eight times faster than if the cost of
decompression is added to the cost of uncompressed searching.

Brisaboa et al. [2003b] then noted that a static byte code could also be used, and in
a system they call end-tagged dense codes (dbc), applied the same bc coding mech-
anism, but with the alphabet permuted into a new ordering dictated by decreasing oc-
currence frequency. A prelude describing the permutation is then necessary, to ensure
that the decoder knows which source symbol should be assigned which codeword. In

340 J.S. Culpepper and A. Moffat

general, the cost of the permutation is recovered through the use of shorter codewords
for more frequent symbols, and overall compression is improved. The prelude proposed
by Brisaboa et al. [2003b] is a rank-based mapping. For example, in Table 1, the sym-
bol 5 is the 3rd most frequent and is assigned the codeword 10 00. Note that symbol
2, which does not appear at all in the example message, is no longer allocated a code-
word – this is the “dense” part of the name. A drawback of the use of a prelude is that
decoding is slower than the direct use of bc, because each decoded symbol must now
be de-permuted via a large array, and cache-miss issues intrude [Culpepper and Moffat,
2005].

Brisaboa et al. [2003a] further realised that partitioning values other than 128 are
possible, and that the sets of stoppers and continuers can be of different sizes – that
better compression can be achieved by calculating an optimal partition based on the
probability distribution of the input symbols. Brisaboa et al. [2003a] call this method
(S, C)-dense coding (scbc). The only constraint is that the number of stoppers plus the
number of continuers must satisfy S + C = R, where, as before, R is the radix of the
coding system. For example, if R = 4 (as is used in the examples shown in Table 1)
there are three possible (S, C)-dense arrangements: (1, 3), (2, 2), and (3, 1). Note that
the (2, 2)-arrangement corresponds to dbc. Table 1 shows the (3, 1)-arrangement, the
best choice for the example text.

The most recent byte code variant provides a more flexible compromise between
phc and the scbc coding approach [Culpepper and Moffat, 2005]. This method, called
restricted prefix byte coding (rpbc), uses the first byte of each codeword to com-
pletely describe its length. Additional bytes can then use all of the remaining codespace.
This allows compression gains, because different probability distributions can be more
closely approximated by codes. Culpepper and Moffat showed that optimal codes can
be calculated using a simple brute force method; and that additional compression gains
are possible if care is taken when constructing the prelude. In Table 1, the optimal rpbc
code turns out to be (1, 1, 1, 2)-arrangement, where the set of four values describe the
codeword lengths associated with each of the four possible first “bytes”.

The compression gain of rpbc does not come without cost. It is harder to track code-
word boundaries in the compressed text, and backwards decoding – starting at a given
codeword, and moving backwards in the byte stream to identify preceding codewords
– is not possible. These new constraints make searching directly in the compressed text
more challenging, particularly when using suffix-based searching algorithms.

3 Searching in Byte-Aligned Compressed Text

The ability to apply any searching algorithm with minimal modification is one of the
key strengths of the byte-aligned compression systems. For example, the only alteration
necessary to search directly in a stopper-continuer byte code is to add a false match
filter that tests the byte immediately prior to a proposed match location. If that prior
byte is a continuer then this proposed location is a false match, since it is not aligned
on a codeword boundary in the byte stream. If it is a stopper, then the proposed match
can be accepted as a valid appearance of the compressed codeword sequence. On the
other hand, the rpbc method requires a different approach to false matches, because the
codeword set is assigned exhaustively rather than partially, and it no longer suffices to
look at the prior byte.

Phrase-Based Pattern Matching in Compressed Text 341

Algorithm 1. Brute force searching in rpbc. Function create tables appears in
Culpepper and Moffat [2005].
input: an rpbc-compressed array txt of compressed length txtlen bytes, a compressed pattern
pat of length patlen bytes when compressed, and rpbc control parameters v1, v2, v3, and v4,
with v1 + v2 + v3 + v4 ≤ R, where R is the radix (typically 256).
1: set t ← 0 and p ← 0 and occurrences ← {}
2: create tables(v1, v2, v3, v4, R)
3: while t ≤ txtlen − patlen do
4: while p < patlen and pat [p] = txt [t + p] do
5: set p ← p + 1
6: if p = patlen then
7: set occurrences ← occurrences ∪ {t}
8: set t ← t + suffix [txt [t]] + 1 and p ← 0

output: the set of occurrences at which pat appears in txt , presented as a set of byte offsets in
the compressed text txt .

Algorithm 2. Jump-based searching in rpbc
input: an array txt of txtlen bytes representing rpbc-compressed symbols being searched, with
a current pattern alignment that currently associates the first byte of the rpbc-compressed
pattern with txt [t]; and an integer b that represents the number of bytes by which the pattern
needs to be shifted.
1: while b > 0 do
2: set s ← suffix [txt [t]]
3: set t ← t + s + 1
4: set b ← b − s − 1

output: pointer t indicates a new offset in txt that is again rpbc-symbol aligned.

The simplest way of making rpbc-coded sequences searchable is to ensure that false
matches can never occur, by only testing valid pattern-to-text alignments. To do this,
the pattern shifting step of the search process must ensure that codeword boundaries are
identified and respected. Of itself this is not an onerous requirement, since in the rpbc
code the first byte of each codeword can be used to index a table that unambiguously
records how many more bytes there are in that codeword. On the other hand, the extra
table lookup is required for each source symbol that is skipped, and potentially disrupts
the tight searching loops that are the hallmark of efficient pattern matching algorithms.

To see the necessary modification, Algorithm 1 shows how a brute-force pattern
searching mechanism is modified to maintain codeword alignments. Step 8 is the criti-
cal one; normally it would shift the text pointer t by one, in order to accommodate the
next byte alignment. But, because source symbols typically span multiple bytes, the in-
crement to t is augmented by suffix [txt[t]], the number of trailing bytes in the codeword
that commences at txt[t].

The symbol-stepping approach is not possible with stopper-continuer byte codes
since there is no way to compute the codeword length without examining each byte of
the codeword. That is, fewer comparisons are necessary on average in the rpbc-brute
force approach than in (say) a scbc-brute force approach; and false matches are impos-
sible since a shift never places the byte-level alignment between codeword boundaries.

342 J.S. Culpepper and A. Moffat

A similar technique can be employed in any searching approach that employs longer
shifts, such as the horspool algorithm. For example, suppose that a pattern align-
ment shift of b bytes is indicated by a state-based searching process that is operating
at the byte level, a shift that would normally be effected by an assignment of the form
t ← t + b. Algorithm 2 shows how the assignment is replaced by a loop that steps at
least that many bytes forward, while retaining codeword alignment. This modification
can be applied to any jump-based pattern matching algorithm, including the kmp and
horspool techniques, and when shift values are returned from the processing tables
which fall in the middle of a codeword, the next codeword boundary is found via a
longer shift. However, additional lookups of text prefix bytes are needed to find code-
word boundaries, possibly affecting overall performance.

The other key issue with the rpbc codes is that, in the form described by
Culpepper and Moffat [2005], they cannot be decoded backwards. Reverse decoding
is useful when, for example, a small snippet is required, to show a context surrounding
the location of an identified match in the compressed text. One possibility – viable be-
cause the first-byte of every codeword is touched during the loop shown in Algorithm 2
– is to maintain a stack or sliding window of codeword starting points. The window
would need to be as long as the maximum extent of any backwards decoding.

A more elegant solution is also possible, by separating the prefix bytes and the suffix
bytes into separate compressed sequences. This approach, which we denote rpbc pa,
offers additional pattern matching alternatives. For example, using the code shown in
Table 1, the integer sequence

1, 3, 4, 5, 3, 4, 1, 6, 5, 7, 4, 5, 6, 1, 7, 4,

can be represented as a set of first “bytes”

01, 11, 00, 10, 11, 00, 01, 11, 10, 11, 00, 10, 11, 01, 11, 00,

and a corresponding set of suffix bytes,

, 00, , , 00, , , 01, , 10, , , 01, , 10, ,

where the commas show which of the first bytes each suffix byte is associated with.
Because all the first bytes are extracted out into a single sequence, they can be ac-

cessed either backwards or forwards. And the first bytes indicate the length of each
codeword. That is, if the current location is known in both the sequence of first bytes
and also in the sequence of suffix bytes, backwards decoding is now possible.

The searching process must change, and is carried out in two parts. First, the se-
quence of first bytes is searched, looking for matches against the first bytes of the
codewords that make up the pattern. As the sequence of first bytes is processed, the
cumulative sum of suffix [txt[t]] is noted for each location t at which there is a first-byte
match against the pattern. Once a set of candidate locations has been identified, the
suffix bytes at those locations are checked against the suffix bytes of the pattern’s code-
words. Sentinels, or partial cumulative sums, can be used at predetermined locations in
the prefix array to remove the requirement of inspecting each prefix byte, but at the cost
of compression effectiveness. This rpbc pa (prefix array) version of rpbc is one of the
methods evaluated in the next section.

Phrase-Based Pattern Matching in Compressed Text 343

4 Experimental Results

To evaluate the speed at which the various byte codes can be searched, we built two files
of symbols from a 267 MB segment of SGML-tagged newspaper text, drawn from the
WSJ component of the TREC data (see trec.nist.gov). The first one, wsj267.wrd,
is the sequence of integers generated by the spaceless word model that was de-
scribed earlier. The second file, wsj267.repair, is a sequence of integers representing
phrases generated via an off-line, word-pair based encoding method called RE-PAIR

[Larsson and Moffat, 2000]. Each symbol number represents a repeated phrase identi-
fied in the original word sequence, and because of the way the file is constructed, no
pair of symbol numbers repeats. As well as integer-on-integer searching and character-
on-character searching, five byte coding algorithms were investigated: bc, dbc, scbc,
rpbc, and rpbc pa. The bc and dbc methods were uniformly a little slower then scbc,
and are not shown in the graphs below.

The average length of queries in web search systems is around 2.4 words per query
[Spink et al., 2001]. To mirror this type of searching, took patterns of length 1 to 5
symbols, representing (in the case of wsj267.wrd) sequences of 1 to 5 words, or (in
the case of wsj267.repair), 1 to 5 phrases. One hundred queries of each length were
generated from the uncompressed integer sequences in the source files, by generating a
random offset into it, and recording the sequence of symbols at that point. This process
ensured that each pattern appeared at least once.

The integer pattern so generated can then be processed in different ways. For ex-
ample, it can be used to measure the speed of an integer-on-integer search process; or
converted back to the underlying character string and used in a character-on-character
manner; or converted into codewords using any of the byte coding schemes, and then ap-
plied in a compressed codeword-on-codeword approach. For example, the three-symbol
sequence 910, 2685, 153 represents the original sequence “offer may be”. The five dif-
ferent byte coding methods result in different corresponding patterns, with lengths vary-
ing from 4 bytes to 6 bytes.

The first experiment was designed to evaluate the cost of integer-on-integer search-
ing techniques. Figure 1 shows the measured performance of several different pattern
matching techniques, without any compression having been applied. Algorithms which
use preprocessed lookup tables proportional to the size of the alphabet tend to perform
poorly when pattern lengths are short. Accesses to the large lookup table result in cache
misses, which offset any gains achieved by the improved shifts. This effect continues
until the search patterns become moderately long. In fact, brute force outperforms all
of the more principled algorithms for patterns of three words or less, irrespective of the
input file’s probability distribution.

Figure 2 shows the speed at which the same patterns can be searched in the com-
pressed domain, using two different pattern search algorithms, and a range of different
byte-aligned coding methods. Both graphs in this figure relate to the spaceless words
file wsj267.wrd; with the additional char method representing character-on-character
searching in the uncompressed original form of the source file; and with the int method
representing integer-by-integer searching in the uncompressed sequence of integers.
When coupled with the brute-force searching approach (Figure 2a), rpbc performs

344 J.S. Culpepper and A. Moffat

1 2 3 4 5

Pattern Length (words)

100

1000

T
im

e
(m

se
c)

 brute
kmp
shift-or
bndm
horsp

(a) Results for wsj267.wrd

1 2 3 4 5

Pattern Length (phrases)

100

1000

T
im

e
(m

se
c)

 brute
kmp
shift-or
bndm
horsp

(b) Results for wsj267.repair

Fig. 1. Baseline searching times for uncompressed, integer-on-integer pattern matching, us-
ing a 2.8 Ghz Intel Xeon with 2 GB of RAM. The methods are brute force; the Knuth-
Morris-Pratt method; Shift-Or searching; Backward Nondeterministic DAWG Matching; and
the Horspool variant of the Boyer-Moore method. All of these approaches are described by
Navarro and Raffinot [2002].

1 2 3 4 5

Pattern Length (words)

100

1000

T
im

e
(m

se
c)

 char
int
scbc
rpbc
rpbc_pa

(a) Brute force search results

1 2 3 4 5

Pattern Length (words)

100

1000

T
im

e
(m

se
c)

char
int
scbc
rpbc

(b) Horspool search results

Fig. 2. Searching wsj267.wrd using two different search techniques, and a range of uncom-
pressed and compressed representations of text and patterns, using a 2.8 Ghz Intel Xeon with
2 GB of RAM

faster than any of the other byte code methods, and at the same speed as searching in the
uncompressed integer file. With decompression costs (assuming that the data is stored
in compressed form) included, the byte coding methods perform considerably better
than the “decompress then search” baselines reflected in the int and char lines.

Figure 2b shows that the stopper-continuer byte code scbc performs better when
coupled with the horspool searching method than when coupled with the brute force
method. The rpbc variant has the same speed as in the brute force mode, and is clearly
hampered by the additional operations involved in maintaining codeword boundaries.

Figure 3 shows the same experiment, but applied to file wsj267.repair. Now,
when the symbol distribution is essentially flat and the alphabet size is large and dense,
the integer-based horspool variant performs very poorly. Once again, the rpbc algo-
rithm gives the same performance in the horspool environment as it does in the brute
force one.

Phrase-Based Pattern Matching in Compressed Text 345

1 2 3 4 5

Pattern Length (phrases)

100

1000

T
im

e
(m

se
c)

int
scbc
rpbc
rpbc_pa

(a) Brute force search results

1 2 3 4 5

Pattern Length (phrases)

100

1000

T
im

e
(m

se
c)

int
scbc
rpbc

(b) Horspool search results

Fig. 3. Searching wsj267.repair using two different search techniques, and a range of uncom-
pressed and compressed representations of text and patterns, using a 2.8 Ghz Intel Xeon with
2 GB of RAM.

Acknowledgement. The second author was funded by the Australian Research Coun-
cil, and by the ARC Center for Perceptive and Intelligent Machines in Complex Envi-
ronments. National ICT Australia (NICTA) is funded by the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Research Council.

References

N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller. (S, C)-dense coding: An optimized
compression code for natural language text databases. In M. A. Nascimento, editor, Proceed-
ings of the 10th International Symposium on String Processing and Information Retrieval,
volume 2857 of LNCS, pages 122–136, October 2003a.

N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. Paramá. An efficient compression code for
text databases. In F. Sebastiani, editor, Proceedings of the 25th European Conference on
Information Retrieval Research, volume 2633 of LNCS, pages 468–481, April 2003b.

J. S. Culpepper and A. Moffat. Enhanced byte codes with restricted prefix properties. In M. Con-
sens and G. Navarro, editors, Proceedings of the 12th International Symposium on String
Processing and Information Retrieval, volume 3772 of LNCS, pages 1–12, November 2005.

E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word searching on
compressed text. ACM Transactions on Information Systems, 18(2):113–139, 2000.

A. Fariña. New compression codes for text databases. PhD thesis, Universidade de Coruña, April
2005.

N. J. Larsson and A. Moffat. Offline dictionary-based compression. Proceedings of the IEEE, 88
(11):1722–1732, November 2000.

U. Manber. A text compression scheme that allows fast searching directly in the compressed file.
ACM Transactions on Information Systems, 5(2):124–136, April 1997.

G. Navarro and M. Raffinot. Flexible pattern matching in strings. Cambridge University Press,
Cambridge, United Kingdom, first edition, 2002.

Dr. Seuss. Fox in socks. Random House, first edition, 1965. Written by T. Geisel.
A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic. Searching the web: The public and their

queries. Journal of the American Society for Information Science, 52(3):226–234, 2001.

Discovering Context-Topic Rules in Search
Engine Logs�

Carlos A. Hurtado1 and Mark Levene2

1 Universidad de Chile
churtado@dcc.uchile.cl

2 Birkbeck, University of London
mlevene@dcs.bbk.ac.uk

Abstract. In this paper, we present a class of rules, called context-topic
rules, for discovering associations between topics and contexts, where a
context is defined as a set of features that can be extracted from the log
file of a Web search engine. We introduce a notion of rule interesting-
ness that measures the level of the interest of the topic within a context,
and provide an algorithm to compute concise representations of inter-
esting context-topic rules. Finally, we present the results of applying the
methodology proposed to a large data log of a search engine.

1 Introduction

Search engines now receive hundreds of millions queries a day, so by inspecting
their log files they are able to get an accurate picture of what users are looking
for at any given moment in time. In this paper, the problem we are looking at is,
in general terms: Given a query topic, what are the “interesting” contexts for that
topic?, where a context is defined as a set of features that can be extracted from
a log file of a search engine. Typical features present in search engine logs include
the date and time of the query, the IP address from which the query was made, or
more specific cookie information when available. The temporal contexts of day of
the week (dayOfWeek) and time of day (hourOfDay) are particularly interesting,
since the popularity of topics drastically changes according to these contexts. For
example, broadly speaking, “chat” is more popular on the weekend during the
evening, while “automoblie” is also popular during the week at various times
of the day. Here we will concentrate our analysis on these temporal contexts,
although our formalism is by no means limited to temporal queries and will be
presented in a general setting of contexts.

Our approach to tackling the problem of context is by adapting the notion of
an association rule [HGN00] to what we call a context-topic rule (or simple a c-t
rule). In our approach, the antecedent of our rules is a set of features, while the
consequent is a topic. For example, the c-t rule

{dayOfWeek : {Saturday}, hourOfDay : {11, 20}} → automobile (1)
� Carlos A. Hurtado was supported by Millennium Nucleus, Center for Web Research

(P04-067-F), Mideplan, Chile.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 346–353, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Discovering Context-Topic Rules in Search Engine Logs 347

states that the topic “automobile” is interesting on Saturday at times 11AM and
8PM. Note that we also allow the features themselves to be sets of values; when
all the features are singletons the c-t rule is called atomic.

Informally, for a c-t rule such as (1) to be interesting we need to ascertain that
the ratio of the conditional probability, P (t | c), of the topic (i.e. the consequent
of the rule) given the context (i.e. the antecedent of the rule) to the probability,
P (t), of its topic in any context, is higher than a predefined threshold. Moreover,
to allow for statistical variation we extend the ratio to a 100(1−α)% confidence
interval in a standard fashion; the formal definition is given in Section 2. There
remains the problem of forming maximal rules such as (1) from a set of atomic
rules, in order to provide us with a compact representation of a set of interesting
atomic c-t rules. We also address this problem in Section 2.

The contributions of the paper are now described. We formalise the notion
of context-topic rules for finding associations between contexts and topic in a
search engine log, and model a context as a region in a feature space extracted
from the log. We then introduce a notion of rule interestingness as a measure
of the level of interest in the topic inside a context compared with the level of
interest in the topic throughout the entire log; we call this measure the lift of the
c-t rule. We also provide an algorithm to compute c-t rules, which consists of two
stages: (i) the computation of a set of atomic c-t rules, and (ii) their compression
into a set of maximal c-t rules that cover the atomic rule set. Finally, we applied
the proposed methodology to a large data log for a search engine.

2 Context-Topic Rules

In this section, we formalise c-t rules and present an algorithm to compute
maximal rules.

2.1 Formalising Context-Topic Rules

We consider a fixed set of features V = {X1, . . . , Xn}, over nominal (i.e., cate-
gorical) or integer domains. We denote by dom(Xi) the domain of the feature Xi.
We assume a distinguished nominal feature called Topic whose domain contains
the topics of interest. In the data analysis carried out here, we are assuming that
the topic of a query is already known, and can be deduced from the query terms,
for example, with the aid of a classifier or even manually.

A log file L is a set of events. An event is a vector (x1, . . . , xn, t) where each
xi ∈ dom(Xi). An event represents a request for information on a topic t with
respect to a vector, (x1, . . . , xn), in the feature space. In particular, a log file is a
sample of the behaviour of the entire user population over a certain time period,
so we make the usual distinction between a true probability P and an estimated
probability P̂ . As an example, P̂ (Topic = cars) is the fraction of events in L
with Topic = car from the total number of events in L, while P (Topic = cars)
is the corresponding true probability.

A context-topic rule (c-t rule) is an expression of the form {X1 : S1, X2 :
S2, . . . , Xn : Sn} → t, where X1, . . . , Xn are the features in V , each

348 C.A. Hurtado and M. Levene

Si ⊆ dom(Xi), and t ∈ dom(Topic). Whenever every Si is a singleton set, we
say that the rule is atomic, and denote Si = {ei} simply by ei.

As an example, the following c-t rule associates the topic “chat” to the context
“night time during the weekend”:

{dayOfWeek : {Saturday,Sunday}, hourOfDay : {21, 22, 23, 24, 1, 2}}→ chat .

A c-t rule {X1 : S1, . . . , Xn : Sn} → t, represents the following set of atomic
c-t rules: {{X1 : e1, . . . , Xn : en} → t | ei ∈ Si}, which will be denoted by
atomRules({X1 : S1, . . . , Xn : Sn} → t). Given two c-t rules r1, r2, we say that
r1 � r2 (r2 contains r1) if and only if atomRules(r1) ⊆ atomRules(r2). Strict
containment, denoted r1 � r2, requires that atomRules(r1) ⊂ atomRules(r2).

We next formalise the conditions under which a c-t rule is “interesting” in a
similar fashion to other notions of interestingness in data mining such as rules or
sequential patterns; see for example, [HMS01]). A c-t rule will be defined to be
interesting if all the atomic rules it represents are interesting. For an atomic rule
c → t, the required condition is that the true probability of a request for the topic
t with respect to the context c, denoted by P (t | c) is “much larger” than the
true probability of a request for the topic t with respect to the entire population
of events, i.e. P (t). Thus, we need a method to estimate a confidence interval
of the ratio P (t | c)

P (t) . For this purpose, we use the lower limit of a 100(1 − α)%
Taylor series confidence interval for the ratio of two proportions [FLP03], and
define the lift of a rule in terms of this lower limit.

Let c → t be an atomic c-t rule and L be a log file. The lift of c → t in L at
confidence level β = 100(1−α)%, denoted liftL(c → t, β), is defined as follows:

liftL(c → t, β) =
P̂ (t | c)

P̂ (t)
exp

(
−Z1−α

2

√
(1− P̂ (t | c))

ncP̂ (t | c)
+

(1 − P̂ (t))
nP̂ (t)

)
,

where nc is the number of events in L where c holds, and n is the number of
events in L.

We now define interestingness of a c-t rule given β as above, and ρ, which
is the lift threshold parameter. Let r be a c-t rule, and L be a log file. We say
that r is (ρ, β)-interesting in L if and only if the following holds: (a) if r is
atomic then liftL(r, β) ≥ ρ; and (b) if r is non-atomic then all the rules in
atomRules(r) are (ρ, β)-interesting. A c-t rule r is defined to be (ρ, β)-maximal
if it is (ρ, β)-interesting and there is no (ρ, β)-interesting rule r′ such that r � r′.

2.2 Algorithm for Computing c-t Rules

Given a log file L, a minimum lift threshold ρ, and a confidence level β, our goal
is to provide an algorithm to find all (ρ, β)-maximal c-t rules in L. Intuitively, we
are searching for the maximal contexts inside which the proportion of requests
for a topic is ρ times larger that on average. Our algorithm utilises the following
two steps:

Discovering Context-Topic Rules in Search Engine Logs 349

1. Finding the set A of all interesting atomic rules. In a single pass of the
log file we set up a hash table and count the occurrences of tuples of the
form (ci, tj), (ci, ∗), and (∗, tj), for each context ci that appears in the table,
and each topic tj ∈ dom(Topic). Then, we enumerate all rules ci → tj ,
extracted from the hash table counters, compute the lift of each rule, and
check if it is greater or equal than ρ. At the end of this step we obtain
a table A(X1, . . . , X2, Topic) that contains all the atomic interesting rules
represented in the form of tuples. This step requires two passes of the table
containing the log events, and takes time linear in the size of this table.

2. Finding maximal rules r such that atomRules(r) are the tuples in A. In this
step we iteratively compress the rule tuples in the table A by applying a
modified version of a nesting operator.

In the remainder of the section we focus on the problem of obtaining maximal
rules. As previously explained, we focus here on the discovery of c-t rules with
the temporal features dayOfWeek and hourOfDay . For these two features, the
problem of computing the maximal rules from a given table A containing atomic
rules is equivalent to enumerating maximal cliques in a bipartite graph (for k
features the problem reduces to enumerating cliques in k-partite graphs). A
bipartite graph is a graph with two distinct vertex sets, and a maximal clique is
a maximal complete bipartite subgraph of it. The problem is also equivalent to
enumerating closed frequent sets in association rule mining and to constructing
a Galois lattice in formal concept analysis [ZO98]. As an example, in Figure 1
table A is also depicted as a bipartite graph (last figure). Table C below contains
the maximal rules, which can viewed as maximal cliques in the bipartite graph.

For the sake of brevity, we only give an intuitive explanation of the algorithm.
We assume table A has two attributes denoted X1 and X2 and that it allows tu-
ples to record sets of values in an attribute. The maximal cliques are computed in
two steps. In a first step, we group (nest) the tuples by the values of one attribute.
This operation is similar to the SQL group-by computation, where the tuples
are grouped by a single attribute, and can be implemented with a single pass
of the table. As an example, after this step, table A in Figure 1 is transformed

X1 X2

1 c
1 b
2 c
1 a
2 a
4 c
3 a

Table A

X1 X2

{1,2,4} c
1 b

{1,2,3} a

Table B

X1 X2

{1,2,4} c
{1,2,3} a

1 {a,b,c}
{1,2} {a,c}

Table C

1

2

3
c

b

a

4

Table A viewed
as a bipartite graph.

Fig. 1. Example showing the compression step of the c-t rule mining algorithm

350 C.A. Hurtado and M. Levene

into table B. In a second step, we compute all possible combination of tuples in
table B such that they are maximal (a tuple is maximal if it is not subsumed
by any other tuple in the table), obtaining the maximal rules in table C.

Since a bipartite graph can have an exponential number of bipartite cliques,
even for two features, we may have an exponential number of maximal rules. How-
ever, when the graph is sparse we can obtain linear complexity in the size of the
graph. Consider the maximal rule having context {X1 : S1, X2 : S2}, such that
|S1|×|S2|

|S1|+|S2|−1 is the maximum amongst all the maximal rules. This number, called
the arboricity of the graph, measures the sparsity of the graph; we denote it by
r(A). From a result by Epstein [Epp94] it can be verified that the final table has
O(n22r(A)) tuples, where n = |A|; this expression is an upper bound for the num-
ber of maximal cliques in the bipartite graph. Clearly, r(A) is constant, since
r(A) ≤ |dom(Xi)|

2 , for any of the two features. Therefore our algorithm runs in O(n)
time, though the constant in this expression could be large. However, in practice
the graph is sparse. In particular, in our experiments r(A) did not exceed 3.

3 Experiments

We implemented the algorithm described in Section 2.2 in Java and used it to
extract c-t rules from the logs of the search engine, TodoCl. This search engine
covers the domain of Chile and some pages included in the .net high level domain
that are related to ISP providers in Chile. Its index contains over 3 million web
pages and currently, in mid 2006, has over 50,000 requests per day. The data
we used come from the logs over a period of six months from July to December
2004. Over these six months the log registered a total of 245,170 query sessions
(sessions from meta-search engines were deleted), which corresponds to 127,642
queries.

Top-5 atomic rules at conf. level 95%
Rank dayOfWeek hourOfDay Topic lift at 95% lift at 80% lift at 60% plain lift nc,t nc

1 Monday 8 gamesOfChance 2.86 4.99 7.11 14.26 16 187
2 Sunday 6 adult 2.57 3.06 3.41 4.20 20 46
3 Monday 9 gamesOfChance 1.38 2.66 4.02 9.00 19 349
4 Saturday 3 adult 1.34 1.71 1.99 2.69 21 76
5 Wednesday 5 adult 1.28 1.72 2.07 3.00 12 39

Atomic rules at conf. level 70% for nc,t > 50 and nc − nc,t > 50
Rank dayOfWeek hourOfDay Topic lift at 95% lift at 80% lift at 60% plain lift nc,t nc

1 Friday 0 adult 1.15 1.37 1.54 1.92 59 299
8 Monday 20 culture 0.84 1.07 1.21 1.53 76 511
10 Saturday 11 automobile 0.82 1.07 1.17 1.52 52 314
16 Wednesday 12 locations 0.70 0.94 1.13 1.62 59 695

Fig. 2. (above) Top-5 most interesting atomic rules at confidence level 95%. (be-
low) Best-ranked rule for each of the topics: adult , culture , automobile , and locations , at
confidence level 70% and nc,t > 50 and nc −nc,t > 50 (see Section 2) for the formalism.

Discovering Context-Topic Rules in Search Engine Logs 351

We performed a manual classification task for the top-2000 most frequent
queries into 37 topics plus a class “unclassified”, which includes the queries which
could not be assigned to any of the 37 topics. The top-2000 queries account for
58,681 query sessions in the log, that is a 23.9% of the total number of sessions.
This set of 58,681 query sessions was used as the dataset over which we ran the
experiments.

Measure Confidence level (β)
60% 70% 80% 90% 95%

Mean (lift) 1.43 1.43 1.45 1.34 1.32
Standard dev. (lift) 0.76 0.72 0.68 0.55 0.50
Max (lift) 7.11 6.08 4.99 3.70 2.86
Num. atom. rules 87 63 41 30 18
Num. max. rules 55 32 23 20 11
Num. topics included 14 12 8 5 4

dayOfWeek hourOfDay Topic
Saturday 0 chat
Sunday 1 chat
Friday , Saturday 20 goingOut
Monday 8, 9 gamesOfChance
Sunday 22 gamesOfChance
Monday 11 jobs
Tuesday 9 health
Monday ,Tuesday 20 culture
Sunday 12 culture
Tuesday 20, 21 culture
Wednesday 19 culture

(A) (B)

Fig. 3. (A) Measures for the interesting atomic rules obtained at different confidence
levels. (B) (1, 70%)-maximal rules for six topics.

As mentioned before, we considered the two features dayOfWeek and
hourOfDay to model contexts in c-t rules. Thus there are potentially 24×7 = 189
contexts and 24×7×37 = 6, 993 atomic c-t rules to discover. The dataset, how-
ever, registers events for only 168 contexts and 5320 atomic c-t rules, which are
the ones that show activity in the log. We implemented an algorithm that scans
the log table and counts the occurrences of contexts and occurrences of topics
inside each context, as explained in Section 2.2. From these frequencies, the al-
gorithm computes the lift of all possible atomic rules that arise at confidence
levels 60%, 70%, 80%, 90%, and 95%. The computation took a few seconds for
each of the cases. Figure 2 (above) shows the five atomic rules with the largest
lift, among the (1, 95%)-interesting atomic rules obtained. The table shows lifts
at confidence levels 95%, 80%, and 60%, along with its lift, i.e. the ratio P̂ (t | c)

P̂ (t)
,

as explained in Section 2. The last two columns depict the number of requests
for the topic in the context, i.e. nt,c, and the number of requests for the con-
text, i.e. nc. Since the normality assumption that underlies the definition of
lift is more accurate for larger nc,t and nc − nc,t, in Figure 2 (below) we show
(1, 70%)-interesting atomic rules for which these values are greater than 50. The
figure shows the best ranked rules for each of the topics adult (search for adult
material), culture (queries related to cultural information), automobile (search
for cars, car rentals, car sales, etc.), and locations (search for geographical areas,
political divisions, cities, etc.).

We next studied the sets of atomic rules obtained at different confidence
levels. Figure 3 (A) shows statistics for each of the sets of rules obtained. As

352 C.A. Hurtado and M. Levene

might be expected, the number of rules obtained decreases as the confidence is
increased; this number goes from 87 to 18 rules in our results. In all cases the
algorithm took only a few seconds to compute the rules. Figure 3 (B) shows
the (1, 70%)-maximal rules obtained for the topics chat (search for chat sites),
goingOut (search for restaurants, theaters, pubs, etc.), gamesOfChance (lottery,
keno, etc.), jobs (search for jobs), health (hospitals, doctors, medical services,
etc.) and culture.

The experiments performed provide evidence for the utility of c-t rules to
discover habits of users that search for information on the Web. Many of the
rules found reveal clear dependencies between contexts and information needs.
As an example, the rules for the topic gamesOfChance , Figure 3 (B), may be
explained by the fact that the results of the most popular games of chance in
Chile are announced every Sunday afternoon, and presumably people query the
search engine on Sunday at 10pm or early on Monday morning in order to look
at the results. Users requesting for information on automobiles on Saturday at
11am are probably doing research to find information on places where they can
buy or look at cars.

4 Related Work

Context-topic rules are related to temporal association rules. The closest class
of temporal association rules to c-t rules are the rules introduced by Li et
al. [LNWJ03]. In their setting, a temporal association rule is an association
rule that holds during specific time intervals. A time interval is represented us-
ing a calendar schema, which is a template that specifies a set of dates. The
data mining problem studied is to find all the interesting rules that arise inside
a fixed calendar schema. Our problem is different, since we focus on single topics
rather than rules inside the calendar schemas (or context in our terminology),
which yields a different notion of interestingness. Furthermore, our problem is
to discover the calendar schemas themselves (along with compressed represen-
tations for them) inside which topics are interesting. The problem of finding
the maximal c-t rules is related to the problem of obtaining a Minimum De-
scription Length (MDL) encoding that captures the set of atomic rules. Pu and
Mendelzon [PM05] studied this problems for several variations of languages that
represent structured sets. For instance, if we consider ordered domains our prob-
lem is similar to the setting studied by Agrawal et al. [AGGR05], where the goal
is to obtain a MDL encoding that covers a cluster within feature space. The prob-
lem of testing whether a set of maximal rules is a minimal cover is NP-complete
(reduction from the minimal set cover problem), in other words, finding a MDL
description for the atomic rules in our setting is computationally hard.

5 Concluding Remarks

In this paper we have introduced a method to capture the temporal contexts
users search for with respect to a specified topic. We can see several potential

Discovering Context-Topic Rules in Search Engine Logs 353

applications for context-topic rules. They can be used to support recommenda-
tion of web pages on a given topic according to context. This is also related to
contextual advertising as the temporal context of a c-t rule may indicate the
best time to advertise/recommend items related to the topic. In addition, for
search engines that maintain a directory, the context of a topic could have an
effect on the prominence it is given when presented to the user. Within a web
site c-t rules can also be utilised in the context of web log data mining [BL00].
In this setting the topic could be obtained from a query to the local search en-
gine, from a referral from a web search engine, or from the topic of a web page
being browsed. The knowledge attained from c-t rules could provide assistance
in deciding which queries a search engine should cache and when to cache them.

In the context of search engine query logs, requests are queries (related to
topics) submitted to a search engine. However, our framework is much more
general and could be relevant to other types of web interaction such as web page
accesses or requests for topics in a web directory. Directions for future research
include ranking criterion and visualisation of c-t rules, experiments over larger
data sets and additional features such as IP and day of year, complexity and
empirical evaluation and a more efficient implementation of algorithms.

Acknowledgments. We thank the Center for Web Research (www.cwr.cl) and
Marcelo Mendoza for providing the query log database used in the experiments.

References

[AGGR05] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic sub-
space clustering of high dimensional data. Data Min. Knowl. Discov.,
11(1):5–33, 2005.

[BL00] J. Borges and M. Levene. Data mining of user navigation patterns. In
B. Masand and M. Spiliopoulou, editors, Web Usage Analysis and User
Profiling, Lecture Notes in Artificial Intelligence (LNAI 1836), pages 92–
111. Springer-Verlag, Berlin, 2000.

[Epp94] D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Infor-
mation Processing Letters, pages 51:2007–211, 1994.

[FLP03] J. L. Fleiss, B. Levin, and M. C. Paik. Statistical Methods for Rates and
Proportions. Wiley, 2003.

[HGN00] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association
rule mining – A general survey and comparison. SIGKDD Explorations,
2:58–64, 2000.

[HMS01] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data
Mining. The MIT Press, 2001.

[LNWJ03] Y. Li, P. Ning, X. Sean Wang, and S. Jajodia. Discovering calendar-based
temporal association rules. Data Knowl. Eng., 44(2):193–218, 2003.

[PM05] K. Pu and A. Mendelzon. Concise descriptions of subsets of structured
sets. ACM Trans. Database Syst., 30 (1), 2005.

[ZO98] Mohammed J. Zaki and Mitsunori Ogihara. Theoretical foundations of as-
sociation rules. In Proceedings of 3rd SIGMOD’98 Workshop on Research
Issues in Data Mining and Knowledge Discovery (DMKD’98), Seattle,
Washington, 1998.

Incremental Aggregation of Latent Semantics
Using a Graph-Based Energy Model

Aditya Ramana Rachakonda and Srinath Srinivasa

IIIT-Bangalore, 26/C, Electronics City, Bangalore 560100, India
aditya.ramana@iiitb.ac.in, sri@iiitb.ac.in

Abstract. A graph-theoretic model for incrementally detecting latent
associations among terms in a document corpus is presented. The algo-
rithm is based on an energy model that quantifies similarity in context
between pairs of terms. Latent associations that are established in turn
contribute to the energy of their respective contexts. The proposed model
avoids the polysemy problem where spurious associations across terms
in different contexts are established due to the presence of one or more
common polysemic terms. The algorithm works in an incremental fash-
ion where energy values are adjusted after each document is added to
the corpus. This has the advantage that computation is localized around
the set of terms contained in the new document, thus making the algo-
rithm run much faster than conventional matrix computations used for
singular value decompositions.

1 Introduction

Latent semantic analysis (LSA) [3,8] is a popular mechanism for detecting seman-
tic associations across terms by analyzing a document corpus. The underlying
idea behind LSA is singular value decomposition (SVD) of the term-document
(or more precisely, a term-context1) matrix. LSA detects similarity in context
by mapping the high-dimensional term/document space to a lower dimensional
latent semantic space, whose dimensionality corresponds to the rank of the term-
document matrix. Dimensionality reduction results in associations being estab-
lished across terms (and documents) based on their projections into the latent
semantic space. LSA can detect associations arising due to various linguistic
constructs like synonymy, co-occurrence and polysemy.

SVD computation however, suffers from a few shortcomings. Conventionally,
SVD calculation is a compute-intensive process and can be performed only on
a static data set. It does not scale up to extremely large and dynamic docu-
ment collections like the web. In addition, LSA sometimes produces negative
associations among terms, which cannot be adequately interpreted [6]. In large
document collections, comprising of several polysemic terms, LSA can create
spurious associations across terms from different contexts [1].

1 We shall be using the terms “document” and “context” interchangeably. In our
experiments, each paragraph from which terms were extracted, formed their context.

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 354–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Incremental Aggregation of Latent Semantics 355

Several enhancements have been proposed to the basic LSA model. These in-
clude the following. The HITS algorithm by Kleinberg [7] for computing hub and
authority scores for web pages is shown to be equivalent to an SVD computation
if it were run on a bipartite graph of terms and documents (cf. [2]). Gorell and
Webb [5] propose an incremental model of the LSA algorithm based on gener-
alized Hebbian learning, where SVD computations are incrementally performed
whenever documents are added to the corpus. While this enables SVD to be
computed incrementally, other problems like that of polysemy remain.

In this work, we develop an approach towards detecting latent associations,
that is qualitatively different from LSA. The main idea here is to directly com-
pute similarity in contexts between pairs of terms and add latent association
weights based on this similarity measure. Similarity in context is measured by
looking at the common terms occurring in their contexts and the connectivity
among terms. This is a graph-based model, which can be incrementally updated,
with localized computations and also does not suffer from the polysemy problem.

2 Model for the Term Graph

The central data structure in the energy model is a term-term graph. A term-
document co-occurrence matrix is separately maintained in order to retrieve
documents based on terms. But the energy model itself runs wholly on the
term-term graph.

Fig. 1. Terms are extracted from a context, made into a clique and embedded into the
global term-term graph G

The term-term graph is an undirected graph G = (V, E), where V is set of
all terms that have been found in the corpus till now and E is the set of all
associations across terms that have either been found in documents or have
been established by the energy model algorithm.

Edges are undirected and weighted. The weight of an edge indicates related-
ness between terms which share the edge. If two terms do not share an edge then
the algorithm considers the edge weight to be zero. Documents are incrementally
added and the graph gets updated after each such addition.

When a new document or “bag of words” D is to be added to the corpus, it
is first split into contexts2 D = {C1, C2, . . . Cn} such that for any distinct i and
2 A context is usually a paragraph.

356 A.R. Rachakonda and S. Srinivasa

j, Ci ∩Cj = φ and
⋃

i Ci = D. Then, from each Ci, stopwords are eliminated3.
The resulting terms are stemmed and terms which occur only once in the whole
document are also eliminated [10].

From the resulting set of terms in each Ci, a clique is formed by connecting all
terms in Ci to one another 4. Once the clique Ci is formed, all edge weights in the
clique are set to 1. Now Ci is embedded into the global term-term graph G (as
shown in figure 1). For every edge of the form (u, v) found in Ci a corresponding
edge is created in G or, if an edge already exists, its weight is incremented by 1.

The subgraph of G corresponding to Ci is now taken as the starting context
for establishing latent associations based on the energy model. Once the energy
model stops propagating, the next context from the document is added to the
graph G.

3 Energy Equations and Dynamics

Energy Equation. A context C in the term-term graph G is any subgraph com-
prising of terms and all associations between them that exist in G. Energy (ξ)
is the measure of relatedness defined on a set of words. The energy of a set is
directly proportional to the mean (µ) of all edge-weights between every pair of
words in the set. A high mean edge-weight indicates that the words in the set
co-occur together a lot and hence belong to the same context. On the other
hand, the energy of a set is inversely proportional to its variance (σ2). A high
variance of edge-weights implies that the set has some elements which do not
quite belong to the context. So the energy of a set of words is,

ξ = µ/(1 + σ2) (1)

Fig. 2. Set A is the context in the term graph and Set B is the clique

Merging a Context into the Global term-term Graph. Figure 2 schematically
shows two graphs A and B. A is some subgraph of the global term-term graph.
B is the clique, which is being added to the term-term graph. When B is merged
into G, some edges in B only add weights to existing edges of G, while some
3 In this work, stopwords from the Swish-e project was used: http://swish-e.org/
4 When there is no ambiguity, we shall use the same terminology Ci to refer to both

the ith bag of terms, as well as the ith clique.

Incremental Aggregation of Latent Semantics 357

edges in B form new edges in G. The subgraph A is chosen such that A − B is
the set of all terms in G, which are related to A ∩ B but not quite related to
B −A. We begin energy calculations with A∩ B as the starting context. Terms
in A − B share the same context A ∩ B with terms from B − A. The energy
of their common context is ξA∩B. So we potentially add edges for all terms in
(A− B)× (B −A). The terms in A− B and B −A are called “pendant nodes”
for the context A ∩ B. They are terms that directly relate to the context. At
any arbitrary propagation level, pendant nodes for establishing associations are
calculated by notions called the “least set” and the “most set” explained below.

Least Set. Given a context C, the least set (LC), is the set of all terms, which
have occured rarely in this context C. To determine LC , we compute the energy
of C and note the energy change we get by removing each term of C individually.
All those terms whose removal resulted in a rise in the energy level of C are
added to LC .

Most Set. Given a context C, its most set (MC), is the set of all terms which are
not present in the context, but are nevertheless quite relavent to the context.
Before computing MC, terms in C is partitioned into two sets RC and LC , where
RC = C − LC . Here, LC is the least set defined earlier. To determine MC , we
take set of all terms in G that directly connect to one or more terms in RC ,
and add it to the context RC . We then compute the energy of RC with the new
additional term. All those terms which resulted in an increase in the energy of
RC are added to MC.

Adding Semantic Associations. For any context C, once LC and MC are calcu-
lated, weighted edges are added for all nodes in LC ×MC . This is because, the
words in LC are new to the context and the words in MC are already related
to the context. So adding edges between them is analogous to mining new as-
sociations. If for any (i, j) ∈ LC ×MC , an edge already exists, then the new
weight εi,j that is calculated, is simply added to the existing edge weight. The
edge-weights εi,j between the terms (i, j) ∈ LC ×MC , are calculated based on
the set of equations given below:

w = Li +Mj (2)
r = |RC | (3)

εi,j =
µ(1− e−

r
ρ)(1 − e−

w
ω)

k
(4)

In equation 2, Li is the increase in energy by removing the term i from C and
Mj is the increase in the energy by adding the term j to RC . In equation 3, |RC |
is the number of terms in RC . In equation 4, µ is the mean of the edge-weights in
RC . k is the current iteration number or the propagation level. The terms ρ and
ω in 4 are tweakable parameters that determine the sensitivity of the various
parameters to εi,j .

358 A.R. Rachakonda and S. Srinivasa

Rationale for the Edge-weight Equation. The edge added can not be arbitrarily
large, so it is limited by the mean (upper-bound). The edge-weight should be
directly proportional to the size of the context. After a certain size that entity
(1 − e−

r
ρ) saturates to one. To tweak this size there is an added parameter

ρ. Similarly if w is high the edge-weight should reflect that. Here the tweakable
parameter ω is used to adjust where the algorithm saturates5. The denominator,
k is used as a dampening factor to regulate propagation. limρ,ω→0 εi,j = µ/k.

Propagation. For a given context C, after LC and MC are calculated and new
edges are added, MC is now added to C and the whole process is recomputed at
the next iteration level, until no edges are added in an iteration (or the maximum
εi,j computed at this iteration is smaller than a threshold ε). At this point the
propagation stops.

4 Performance Evaluation

The energy model algorithm was tested and benchmarked against LSA. This
was primarily based on the Web-KB dataset [11].

The Web-KB dataset is a large dataset comprising of 9721 documents. Both
LSA and the energy model were run on this data set and the resulting term-term
associations were then sorted based on their weights and compared. The values
of ρ and ω in the energy model was set to 7 and 17 respectively. The value of k in
LSA was set to 40. Given that Web-KB is a heterogenous document collection,
it is hard to determine a good value for these parameters. For homogenous
document collections some value of k between 70 and 100 was found to be most
effective [4]. No such estimate seems to exist for LSA on heterogenous document
collections. The energy model is yet to be fully analyzed for its performance on
datasets of different levels of heterogeneity. The results were compared to those
of LSA and a positive correlation between them was found.

Before comparing, all the negative values returned by LSA were set to 0. The
term graph was largely maintained on disk and hence the memory requirement
was significantly less when compared to LSA.

Polysems in LSA and Energy Model. In LSA during the dimension reduction
step if a polysemic dimension is elimated then terms from two different contexts
will merge together and spurious associations are created [9].

In the energy model, relatedness of terms with respect to context C is directly
proportional to the size of RC , i.e., r (equation 3). When r is considerably large
and has high energy, heavier edges are added between (A − B) and (B − A)6;
and the less the value of r, or the weaker is its energy, the chances of an edge
getting added are also quite small. For the polysemy problem to occur in this
5 The saturation happens approximately at the tripled value of the tweakable para-

meter, i.e., if ρ is set to 10 then (1 − e
− r

ρ) tends to one when r is 30.
6 As r increases the number of edges added decreases, this means to say that only if

it finds contexts which are quite similar the algorithm will extract semantics.

Incremental Aggregation of Latent Semantics 359

algorithm, it is not sufficient if a term is a polysem but a whole context having
high energy, should be polysemic. For more details on performance evaluation
refer to [9].

5 Conclusions

The energy model presents a qualitatively different approach from LSA for estab-
lishing latent associations. The model is based on primarily tweaking a term-term
graph. It can incrementally compute associations and computations are usually
localized, enabling the term-term graph to be very large. It also does not suffer
from the polysem problem.

In future work, we plan to integrate document retrieval into the energy model.
Primarily, the issue of ranking documents and correlating document rank with
the energy of co-occurring terms seems to hold promise.

References

1. Bassu, D., and Behrens, C. (2003). Distributed LSI: Scalable Concept-based Infor-
mation Retrieval with High Semantic Resolution. In Proceedings of the 3rd SIAM
International Conference on Data Mining (Text Mining Workshop), San Francisco,
CA, May 3, 2003.

2. Chakrabarti, S. (2003). Mining the web: Discovering knowledge from hypertext
data. 1st Edition. Elsevier Science (USA).

3. Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman,
R. A. (1990). Indexing by latent semantic analysis. Journal of the Society for
Information Science 41, 6, 391 – 407.

4. Dumais, S. T. (1992). Enhancing Performance in Latent Semantic Indexing (LSI)
Retrieval. Technical Report, Bellcore.

5. Gorell, G., Webb, B. (2005). Generalized Hebbian Algorithm for Latent Semantic
Analysis. In Proceedings of InterSpeech’05, Lisbon.

6. Hoffman, T. (1999). Probabilistic Latent Semantic Analysis. Uncertainty in Arti-
ficial Intelligence, UAI‘99, Stockholm.

7. Kleinberg J. M. (1998). Authoritative Sources in a Hyperlinked Environment. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms.

8. Landauer, T. K., Foltz, P. W., and Laham, D. (1998). Introduction to Latent
Semantic Analysis. Discourse Processes, 25, 259-284.

9. Rachakonda, A. R. (2006). Incremental Aggregation of Latent Semantics. Master’s
Thesis. International Institute of Information Technology, Bangalore, June 2006.

10. van Rijsbergen, C. J. (1999). Automatic Text Analysis. Information Retrieval. 2nd
Edition.

11. Carnegie Mellon University World Wide Knowledge Base (Web-KB) project,
http://www-2.cs.cmu.edu/~webkb/, as of 15 February 2006.

A New Algorithm for Fast All-Against-All
Substring Matching

Marina Barsky, Ulrike Stege, Alex Thomo, and Chris Upton

University of Victoria, Canada
{mgbarsky, stege, thomo}@cs.uvic.ca and cupton@uvic.ca

Abstract. We present a new and efficient algorithm to solve the ’thresh-
old all vs. all’ problem, which involves searching of two strings (with
length N and M respectively) for finding all maximal approximate
matches of length at least S and with up to K differences. The algo-
rithm is based on a novel graph model, and it solves the problem in
time O(NMK2).

1 Introduction

An important problem in the field of string matching is the extraction of exact
and approximate common patterns from a set of strings. In special application
areas such as biological sequence analysis, finding exact patterns only can miss
a great deal of useful information.

The problem can be defined as “all-against-all approximate substring match-
ing” [1,2,4], and is notorius for its computational difficulty [5]. In practice, various
constraints are set for the sought solutions, such as the maximum allowed num-
ber of approximations or “errors” and the minimum length of substrings. Despite
past attempts, this problem is far from being efficiently solved. Our contribution
is a fast algorithm for solving “all-against-all approximate substring matching”
for two strings.

A naive approach to this problem is to exhaustively test each pair of substrings
from s and t respectively. This approach has O(N2M2) time complexity.

The best known solution was proposed by Baeza-Yates and Gonnet in [1,2],
and is widely used [8]. Their solution significantly improved the average time
complexity of the naive approach, by avoiding the examination of repeating
substrings. In their method, the two input strings are organized into a suffix
tree structure, and the order of substrings comparisons is guided by a depth-first
traversal of the suffix tree nodes. The time complexity based on their practical
results lies between NM (best case) and N2M2 (worst case), but closer to N2M2

[4]. Setting threshold criteria bounding the error number, i.e., allowing at most
K differences in an approximate substring match, significantly improves the
performance of the Baeza-Yates and Gonnet algorithm. This is because the value
of K can be directly incorporated into their algorithm to cut down the depth
of the suffix tree traversal. As we verify through experiments, for small values
of K, the Baeza-Yates and Gonnet algorithm performs very well. However, as

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 360–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New Algorithm for Fast All-Against-All Substring Matching 361

K increases, the number of suffix tree nodes that are examined grows almost
exponentially in K, which is in accordance with Ukkonen [7].

We cast the original problem into the problem of finding “maximal paths” in
a special “matching” graph.1 Via a careful study of this graph, we are able to
derive interesting and useful properties that help us in devising a higly optimized
depth-first search procedure for finding “maximal paths,” which correspond to
the solutions of the original string problem. Our proposed algorithm runs in
O(NMK2) time, which is a significant improvement over the Baeza-Yates and
Gonnet algorithm. Moreover, we experimentally show that our algorithm scales
linearly (as opposed to quadratically) in K and it outperforms the Baeza-Yates
and Gonnet algorithm by an order of magnitude for bigger values of K. Finally,
our algorithm has an additional nice feature: it reversely depends on the alphabet
size. This is contrary to the behavior of the Baeza-Yates and Gonnet algorithm,
whose running time worsens with the increase of the alphabet size.

2 A Graph Model for the All-Against-All Substring
Matching

Let Σ be a finite alphabet. A sequence of letters a1a2 . . . aN , where ai ∈ Σ is
called a string over Σ. We denote strings with s and t. Given string s, we denote
its i-th letter with s[i], and we denote a substring of s starting at position i and
ending at position j with s[i, j]. Substring s[i, j] has length j − i + 1.

Let the edit distance for two strings s and t be the minimum number of edit
operations needed to transform s into t, as defined in [4] . We say the pair (s, t)
is a K-bounded approximate match if the edit distance between s and t is at
most K.

Problem 1. All error-bounded approximate matches
Input: Strings s and t over alphabet Σ, and positive integers K and S.
Output: All error bounded approximate maximal matches (s[i, j], t[k, l]) such
that (1) the edit distance between s[i, j] and t[k, l] is at most K and (2) the
lengths of both s[i, j] and t[k, l] are at least S.

We solve Problem 1 by casting it to an equivalent problem on graphs induced
by a “matching matrix”.

The matching matrix of s and t (Ms,t) is defined as

Ms,t[i, j] =
{

1 if s[i] = t[j]
0 otherwise.

Based on matching matrix M, we define a weighted directed graph GM with
vertices vij corresponding to the 1-elements of the matrix, and with (directed)
edges defined in a “top-down” and “left-right” fashion as follows: there is an
edge e(vij , vkl) iff i < k and j < l (cf. Fig. 1).

1 The full version of an article can be downloaded from [3].

362 M. Barsky et al.

10100114a

00010003b

10100112a

00010001b

10100110a

6543210s

acabcaat

10100114a

00010003b

10100112a

00010001b

10100110a

6543210s

acabcaat

●●●●4a

●3b

●●●●2a

●1b

●●●●0a

6543210s

acabcaat

●●●●4a

●3b

●●●●2a

●1b

●●●●0a

6543210s

acabcaat

Fig. 1. Matching matrix and partial induced graph. Only edges of cost at most 3 are
shown; the directions of the edges are left out.

We define the cost of an edge e(vij , vkl) to be c(vij , vkl) = max(k− i, l−j)−1.
A path in graph GM is a sequence of vertices connected by edges. For a path in
GM, we define two characteristic properties. The match length of path π between
vij and vkl is defined as ML(π) = min(k − i + 1, l − j + 1). The error number,
EN(π), is defined as the sum of all costs of edges in π.

Note that GM is not a dynamic programming (induced) graph (edit graph
[4]); DP graphs have been very well studied in the literature. However, to the
best of our knowledge there is no work that formally studies the properties of
GM graph. Graph GM possesses a very desirable property which is as follows.

Theorem 1. The edit distance between s[i, k] and t[j, l] is equal to the error
number of the cheapest path(s) from vij to vkl in GM.

Problem 2. All paths below threshold
Input: The graph GM for two strings s and t, and positive integers K and S.
Output: All maximal paths with EN ≤ K and with match length at least S.

Based on Theorem 1 we conclude that:

Corollary 1. The problem all bounded approximate matches can be reduced to
the all paths below threshold problem.

We show next how to construct an instance for all paths below threshold from an
instance of all bounded approximate matches.

3 Solving “All Paths Below the Threshold” (APBT)

We outline the logic flow of algorithm APBT, omitting all formal proofs due
to space constraints. In the full version of the paper we give a simple way for
building and storing the matching matrix in linear time and space. As for graph
GM, we never explicitly construct and store it (remaining so linear w.r.t. space).
Rather, as we show, we traverse it by constructing the needed paths “on the fly.”

Path Expansion. We scan the matching matrix in row-major order. When
a vertex of GM is encountered, we initialize a path π with EN(π) = 0 and
ML(π) = 1. The algorithm then builds all the possible expansions of this initial

A New Algorithm for Fast All-Against-All Substring Matching 363

path by adding one vertex at a time and by keeping track of the best paths
found so far. As paths are constructed, the algorithm examines each partially
completed path π: if no more vertices can be added without exceeding threshold
K, then we stop the expansion and check whether ML(π) ≥ S. If true, then we
report path π as a solution.

A Single-Step Path Expansion. Since the error number of a path cannot
exceed K, an edge to be appended to a path clearly has to have a cost of at
most K. As a consequence all edges in GM of cost higher than K are excluded
from further consideration. Consider a path π with error number EN(π), which
ends at vertex vij . From the above discussion, it is clear that for a single-step
expansion of π we need to search (in M) for a possible “next vertex” only inside
square ABCD, where A = (i + 1, j + 1), and C = (i + 1 + κ, j + 1 + κ), for
κ = K − EN(π). We call square ABCD the target square for path π at vertex
vij . The area of the target square decreases as the error number accumulated by
π increases.

On the first sight, for any vertex vij in GM there are at most (κ+1)× (κ+1)
outgoing edges to be considered. We show how to reduce the number of edges for
consideration. For this, we introduce the following definitions regarding diagonals
in the matching matrix M.

Let (i, j) be an arbitrary cell in M. (1) The (i, j)-main diagonal for M is the
sequence of (i+p, j +p)-cells in M, where 0 ≤ p ≤ min{M − i, N− j}. (2) Let q
be a value between 0 and N − j. The (i, j)-q-upper diagonal is the (i, j + q)-main
diagonal. (3) Let r be a value between 0 and M − i. The (i, j)-r-lower diagonal
is the (i + r, j)-main diagonal.

Let π be a path in GM ending at vertex vij and with EN(π) ≤ K. Now,
assume that vkl and vmn are two vertices in the target square for π at vij , which
lie on one of the upper diagonals w.r.t. vij . In terms of edge cost it means, that
c(vij , vkl) = l− j − 1, and c(vij , vmn) = n− j − 1. Now, assume that i < k < m
and j < l < n. This means that if we build an edge from vij directly to vmn, we
“ignore” vertex vkl, and unnecessarily increase EN(π). Rather, we better expand
path π to vkl and later on, in the next round, continue to vmn. Practically, this
means that: if we find a vertex vkl on an upper diagonal of the target square,
then we can exclude from the search for single-step expansion all the triangular
area of the target square, which is bounded by (1) row k (exclusive), and (2)
the upper diagonal passing through vkl (inclusive). Symmetrically, if vertex vkl

lies on some lower diagonal, then we can exclude from the search for expansion
all the triangular area of the target square, which is bounded by (1) column l
(exclusive), and (2) the lower diagonal passing through vkl (inclusive). If vertex
vkl lies on the main diagonal of the target square, then both triangular areas are
excluded at once.

In the full paper, we strengthen the above result by showing that we can safely
exclude the row k (or column l) from the search for path expansion.

Optimization 1. In search for expansions, we scan the cells of the target square
in a diagonal-major order, that is: first scan the main diagonal, possibly excluding
parts of the target square from further scan. Next, scan the remaining of the target

364 M. Barsky et al.

square through the 1-upper diagonal and the 1-lower diagonal, possibly excluding
other areas of the target square. Then, continue with the 2-upper diagonal and
the 2-lower diagonal and so on.

Observe that, the scanning of a target square in this order guarantees that the
exclusion of triangular areas takes place as early as possible.

Corollary 2. Single path extension from an arbitrary vertex vij in GM is per-
formed at most once for each of the 2K + 1 diagonals surrounding vij, and
therefore the number of possible extensions for vij is bounded by 2K + 1.

Corollary 3. An arbitrary cell of a matrix M[i, j] is accessed at most once from
each of 2K + 1 diagonals. This also implies that an arbitrary vertex vij serves
as a path extension for at most 2K + 1 vertices.

Interdependence of Paths in GM. We show next how the information from
previously explored paths can be reused.

Let π1 be a previously explored path, which connects vertex vij with vmn. Let
π2 be another path that we are currently exploring, which originates in vkl, and is
built up to vertex vmn. Clearly, if EN(π2) ≥ EN(π1) and ML(π2) ≤ ML(π1),
we can omit the further expansion of π2. An illustration is given in Fig. 1,
where path v01, v13, v24, v46 serves as π1, which is explored earlier in a row-major
order, and path v04, v46 serves to exemplify π2. Clearly, path π2 will only offer a
sub-solution to the solution corresponding to π1, since the substring t[4, 6] is a
substring of t[1, 6].

Thus, if we remember the smallest error number among all paths, which
reached a particular vertex, then at each vertex, we will do at most (K + 1)
expansions. The row major processing order ensures, that if ML is defined by
the length of the vertical substring, then ML(π2) ≤ ML(π1). This is because
both paths end at the same vertex, and π2 starts at the same or later (greater)
row than π1. Notably, if we repeat the computation in a column-major order,
all paths where ML was defined by the horizontal substring will now be defined
by the vertical substring, thus ML of the later path will again be less than ML
of the previously built path. For more detailed explanations see the full version.

The union of the solution sets of the two runs of the algorithm yields the final
solution set.

From the above, we can conclude, that each vertex in GM is expanded at most
2(K + 1) times.

Theorem 2. The All Paths Below Threshold algorithm has a time complexity
of O(NMK2).

Proof. Since during path extension, any cell is accessed only once from at
most 2K + 1 vertices (cf. Corollary 3) and each of these cells, if it is a vertex, is
expanded at most 2(K +1) times (cf. discussion), the upper bound for traversing
a particular cell of the matrix is at most 2(K + 1)(2K + 1). Since there are at
most MN many cells in M, the total time complexity is O(NMK2). �
The pseudocode of our algorithm is given below.

A New Algorithm for Fast All-Against-All Substring Matching 365

All paths below threshold(M,K,S) Expand path(π)
scan M in row major order if ML(π) ≥ S then
if M[i, j] = 1 then add π to the set of solutions
create a single-vertex vij path π
EN(π) = 0 if a path with error number EN(π)
Expand path(π) has already been extended through

vkl then abort π and return
scan M in column major order
if M[i, j] = 1 then Do a single-step expansion (if possible) of π
create a single-vertex vij path π creating new expanded path πexp

EN(π) = 0
Expand path(π) Expand path (πexp)

4 Experimental Evaluation

We present an experimental evaluation of our All Paths Below Threshold algo-
rithm as it compares with the algorithm of Baeza-Yates and Gonnet [2].

We implemented Gusfield’s variant of the Baeza-Yates and Gonnet algorithm
[4].2 We optimized it using Ukkonen’s error bounded dynamic programming
method [6] We abbreviate this optimized variant by BY G + U .

The running time was tested on the same 1.2 GHz PC with 312 MB of RAM.
Fig. 2 represents the running time of BY G+U and APBT on a pair of RNA

sequences belonging to viruses from the same family, and where the minimum
length of matches is set to S = 50. Notably the APBT algorithm outperforms
the BY G+U algorithm for values of K ≥ 6. We also show the size of the output,
and this clearly shows that in order to obtain any output at all, even for similar
RNA sequences, one has to set a bigger or equal to 6 value of K.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 2 4 6 8

number of differences, K

tim
e,

 s
ec

0

20,000

40,000

60,000

80,000

100,000

120,000

0 5 10 15

number of differences, K

tim
e,

 s
ec

BYG+U

APBT

Fig. 2. Running time for two viral RNA sequences (30,000 bp): Human coronavirus
229E (27317 bp) and Human coronavirus OC43 (30738 bp) from [9]. The figure on the
right is a zooming of the figure on the left for K < 8.

Interestingly, for K ≤ 5, the BY G + U algorithm outperforms the APBT
algorithm. This is because the BY G+U algorithm benefits from the early stop of
deeply going in the suffix trees, when the accumulated error exceeds K. However,
2 The original code of [2] is unfortunately not available anymore.

366 M. Barsky et al.

as K grows the BY G+U algorithm goes deeper in the suffix trees, and we observe
an almost exponential in K increase in the running time. In contrast, APBT
scales on average linearly with K.

Also, we emphasize the fact that for alphabets of bigger size the APBT algo-
rithm performs better than the BY G+U algorithm. The performance of APBT
is orders of magnitute better than BY G+U for protein sequences with alphabet
size of 20. This can be explained by the greater “bushiness” of the suffix trees
(used by BY G + U) close to the root, and by the fact that with the increase
of the alphabet size, our matching matrix becomes much sparser. The APBT
algorithm behaves so much better than the BY G + U algorithm that we had to
plot their behavior in different scales (cf. Fig. 3).

APBT

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 10 20 30
number of differences, K

tim
e,

 s
ec

 |Σ|=4

 |Σ|=20

BYG+U

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

0 5 10 15 20 25

number of differences, K

tim
e,

 s
ec

 |Σ|=4

 |Σ|=20

Fig. 3. Effect of alphabet size (random strings pairs of length 1000)

References

1. Baeza-Yates R.A., and Gonnet G.H. All-against-all sequence matching.
Rep. Dept. of CS, U. de Chile, 1990.

2. Baeza-Yates R.A., and Gonnet G.H. A fast algorithm on average for all-against-all
sequence matching. Proc. SPIRE/CRIWG ′99, pp. 16–23.

3. Barsky M., Stege U., Thomo A., and Upton C.A. A New Algorithm for Fast All-
Against-All Substring Matching. http://www.cs.uvic.ca/∼mgbarksy/apbt.pdf, 2006.

4. Gusfield D. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

5. Pevzner P., and Sze S.H. Combinatorial approaches to finding subtle signals in DNA
sequences. Proc. ISMB ′00, pp. 269-278.

6. Ukkonen E. Algorithms for approximate string matching. Information and Control
64: 100–18, 1985.

7. Ukkonen E. Approximate string matching over suffix trees. CPM93, LNCS 684,
228–242, 1993.

8. Vilo J. Pattern Discovery from Biosequences. PhD Thesis, Series of Publications A,
Report A-2002-3 U. of Helsinki, Finland, 2002.

9. Virus Orthologous Clusters database at http://athena.bioc.uvic.ca Viral Bioinfor-
matics Resource Center, U. of Victoria, Canada.

Author Index

Adiego, Joaqúın 181
Anh, Vo Ngoc 304
Azzopardi, Leif 316

Baeza-Yates, Ricardo 98
Baillie, Mark 316
Barsky, Marina 360
Bast, Holger 150
Bernstein, Yaniv 110
Blin, Guillaume 291
Boldi, Paolo 134

Calderón-Benavides, Liliana 98
Chen, Gen-Huey 74
Chirita, Paul-Alexandru 86
Coelho, Lúıs Pedro 329
Crestani, Fabio 316
Culpepper, J. Shane 337

Darwish, Kareem 205
de la Fuente, Pablo 181
Dupret, Georges 37, 217

Esuli, Andrea 1, 13

Fagni, Tiziano 1, 13
Farah, Mohamed 242
Fredriksson, Kimmo 267

Geraci, Filippo 25
González-Caro, Cristina 98
Grabowski, Szymon 267
Guo, Qing 49

Hartman, Tzvika 279
Hong, Jin-Ju 74
Hurtado, Carlos A. 217, 346

Iliopoulos, Costas S. 49
Inenaga, Shunsuke 61

Jones, Gareth J.F. 229

Karimi, Sarvnaz 255

Lam-Adesina, Adenike M. 229
Levene, Mark 346

Magdy, Walid 205
Maggini, Marco 25
Mehler, Andrew 193
Mendoza, Marcelo 217
Moffat, Alistair 304, 337
Mortensen, Christian W. 150

Nejdl, Wolfgang 86

Oliveira, Arlindo L. 163, 329

Pellegrini, Marco 25
Piwowarski, Benjamin 37, 217
Puglisi, Simon J. 122

Rachakonda, Aditya Ramana 354
Russo, Lúıs M.S. 163

Scholer, Falk 255
Sebastiani, Fabrizio 1, 13, 25
Shokouhi, Milad 110
Skiena, Steven 193
Smyth, W.F. 122
Srinivasa, Srinath 354
Stege, Ulrike 360

Takeda, Masayuki 61
Thomo, Alex 360
Touzet, Hélène 291
Turpin, Andrew 122, 255

Upton, Chris 360

Vanderpooten, Daniel 242
Verbin, Elad 279
Vigna, Sebastiano 134

Weber, Ingmar 150

Zhang, Hui 49
Zobel, Justin 110

	Frontmatter
	Web Clustering and Text Categorization
	MP-Boost: A Multiple-Pivot Boosting Algorithm and Its Application to Text Categorization
	TreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical Text Categorization
	Cluster Generation and Cluster Labelling for Web Snippets: A Fast and Accurate Hierarchical Solution
	Principal Components for Automatic Term Hierarchy Building

	Strings
	Computing the Minimum Approximate λ-Cover of a String
	Sparse Directed Acyclic Word Graphs
	On-Line Repetition Detection

	User Behavior
	Analyzing User Behavior to Rank Desktop Items
	The Intention Behind Web Queries

	Web Search Algorithms
	Compact Features for Detection of Near-Duplicates in Distributed Retrieval
	Inverted Files Versus Suffix Arrays for Locating Patterns in Primary Memory
	Efficient Lazy Algorithms for Minimal-Interval Semantics
	Output-Sensitive Autocompletion Search

	Compression
	A Compressed Self-index Using a Ziv-Lempel Dictionary
	Mapping Words into Codewords on PPM

	Correction
	Improving Usability Through Password-Corrective Hashing
	Word-Based Correction for Retrieval of Arabic OCR Degraded Documents

	Information Retrieval Applications
	A Statistical Model of Query Log Generation
	Using String Comparison in Context for Improved Relevance Feedback in Different Text Media
	A Multiple Criteria Approach for Information Retrieval
	English to Persian Transliteration

	Bio Informatics
	Efficient Algorithms for Pattern Matching with General Gaps and Character Classes
	Matrix Tightness: A Linear-Algebraic Framework for Sorting by Transpositions
	How to Compare Arc-Annotated Sequences: The Alignment Hierarchy

	Web Search Engines
	Structured Index Organizations for High-Throughput Text Querying
	Adaptive Query-Based Sampling of Distributed Collections

	Short Papers
	Dotted Suffix Trees A Structure for Approximate Text Indexing
	Phrase-Based Pattern Matching in Compressed Text
	Discovering Context-Topic Rules in Search Engine Logs
	Incremental Aggregation of Latent Semantics Using a Graph-Based Energy Model
	A New Algorithm for Fast All-Against-All Substring Matching

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

