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Abstract. The syntax of modeling languages is usually defined in two
steps. The abstract syntax identifies modeling concepts whereas the con-
crete syntax clarifies how these modeling concepts are rendered by visual
and/or textual elements. While the abstract syntax is often defined in
form of a metamodel there is no such standard format yet for concrete
syntax definitions; at least as long as the concrete syntax is not purely
text-based and classical grammar-based approaches are not applicable.
In a previous paper, we proposed to extend the metamodeling approach
also to concrete syntax definitions. In this paper, we present an analysis
technique for our concrete syntax definitions that detects inconsistencies
between the abstract and the concrete syntax of a modeling language.
We have implemented our approach on top of the automatic decision
procedure Simplify.

1 Introduction

The trend to model-driven development is facing the question how modeling
languages can be defined precisely in a standardized format. Metamodeling is
today the prevailing technique in order to define the abstract syntax of modeling
languages in a precise, non-ambiguous way: metaclasses represent all modeling
concepts, metaattributes their variations, metaassociations their relationships.
Well-formedness rules written as OCL invariants insure that certain conditions
are satisfied in all syntactically correct sentences of the modeling language. The
abstract syntax definition is the most basic block when defining a modeling
language but, at the same time, it is the only block for which a commonly
agreed format exists. All other blocks of a modeling language definition, e.g. the
definition of concrete syntax and the definition of semantics, are given in many
cases only informally. A prominent example for an informal language definition
is UML, see [1]. The most important disadvantage of informal definitions is the
lack of tool support for checking the consistency of the definition.

This paper is about formal concrete syntax definitions for modeling languages
having a visual, i.e. not purely textual, notation. In the first part (Sect. 2 and
Sect. 3), we briefly describe a metamodeling approach to define not only the
abstract syntax but also the concrete syntax of a modeling language formally
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(this approach has been already presented with more details in [2]). As an il-
lustration, we use UML class diagrams, mainly, because class diagrams have a
well-known visual concrete syntax. In the paper’s main part (Sect. 4), we show
how concrete syntax definitions can be analyzed rigorously and automatically
checked. Intuitively, the concrete syntax is ill-defined if two different models (i.e.
instances of the abstract syntax metamodel) can be rendered by the same dia-
gram. As a tiny example, one can take UML class diagrams whose classes can
be abstract and non-abstract according to the abstract syntax. Suppose, the
concrete syntax would only stipulate to render each class by a rectangle and to
label the rectangle with the name of the class. Then, one could not infer from
a given diagram whether a rectangle represents an abstract or a non-abstract
class and this ambiguity is an error of the concrete syntax definition.

Such errors can be automatically detected by using deductive tools. More
precisely, we generate out of a formal concrete syntax definition a proof obligation
that is valid if and only if the syntax definition does not contain any error. Then,
this proof obligation is passed to the deductive tool Simplify [3], which was able
to automatically discharge all of them for the examples given in this paper.

2 Visual Languages

Modeling languages having a visual concrete syntax use for the representation of
models graphical elements such as rectangles, circles, lines, stickmen, etc. Graph-
ical elements are also called visual objects since they can easily be described as
objects whose state is given by the value for certain attributes such as shape,
lineColor, backgroundColor, attachRegion, etc. A set of visual objects is a syn-
tactically correct sentence of a visual language when all well-formedness rules of
the visual language are met. A typical example for a well-formedness rule is that
a visual object of shape Line always connects two other visual objects, more
technically, that the start- and endpoint of the line coincide with the attach
regions of the connected visual objects. We call a syntactically correct sentence
of a visual language also diagram.

The definition of a visual language is done in two steps: (1) identification of
all attributes for visual objects, and (2) formulation of well-formedness rules. For
non-trivial visual languages, it is worthwhile to distinguish classes of visual ob-
jects because not all possible attributes are relevant for each object, e.g. a visual
object of shape Line does not need a value for an attribute backgroundColor.
Once the classes of visual objects together with their attributes are identified,
many well-formedness rules of the visual language can easily be expressed by as-
sociations between classes. For example, the above given restriction for a line to
connect two other visual objects is best expressed by two associations from class
Line to a class, let’s say, ConnectableObject (which represents the connected
visual objects) with multiplicity 1 at the latter class.

Having said this, it is obvious that a metamodel is a very appropriate format
to define a visual language formally. A diagram is then just an instance of the
metamodel of the visual language.
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Fig. 1. Three diagrams – when read as representations of class diagrams, the first two
diagrams should not be distinguishable

As an example, we discuss the three diagrams given in Fig. 1. What we see –
at a first glance – are two labeled rectangles, which have in all three diagrams
different dimensions and different positions. An initial version of the metamodel
could consist of one class Rectangle with attributes for (1) the label, (2) the x
and y coordinates of the position, and (3) the dimension (width, height). Accord-
ing to this metamodel, all three diagrams are different. This initial metamodel
is very suitable if the layout information of the diagrams have to be captured;
for instance, when diagramming tools have to exchange diagrams. Actually, the
initial metamodel can be seen as a drastically simplified version of the upcoming
OMG standard for Diagram Interchange [4]. However, the initial metamodel is
less useful as a basis for a concrete syntax definition for class diagrams. When
read as class diagrams, the left and middle diagram should coincide, despite the
fact, that the dimensions and positions of the two rectangles are different. While
the right diagram also shows the same classes as the first two, just the position
and the dimension were changed again, it is nevertheless semantically different
from the others.1

What this tiny example already shows is the fact, that layout information in
form of coordinates and dimensions are not necessary for the definition of a con-
crete syntax. It is better to choose such attributes for visual objects that reflect
differences of rendered models. For example, we cannot fully ignore layout infor-
mation because this would make all three diagrams in Fig. 1 non-distinguishable.

Figure 2 shows a more suitable metamodel for the visual language used in
Fig. 1. The class Rectangle has again one attribute for label but none for posi-
tion and dimension. In order to distinguish the last diagram from the two others,
a self-association on Rectangle has been introduced that encodes graphical nest-
ing of rectangles. In the lower part of Fig. 2, the three diagrams from Fig. 1 are
given as instances of the visual language metamodel and the first two diagrams
coincide indeed.

The definition and efficient processing of visual languages is a current research
area, which we cannot develop further here due to space limit. A warmly recom-
mended introduction is [5] where a classification of visual languages is presented
and formats for elegant language definitions are derived. A core technique, which

1 When read as a UML class diagram, the graphical containment of class Door in class
Car means that Car is composed of Door.
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Fig. 2. Visual language definition and representation of diagrams given in Fig. 1

has been also applied in the above example, is to substitute absolute layout in-
formation (such as position, dimension) by relative ones, called spatial relation-
ships. When defining a metamodel for a visual language, one has to identify –
in a first step – all relevant spatial relationships. For example, the rendering of
UML models requires graphical nesting as one spatial relationship but there are
other spatial relationships needed as well.

3 Concrete Syntax Definition

In the previous section, we have outlined how a visual language can be formal-
ized in form of a metamodel; we will now answer the question how sentences of
a modeling language, which are given as instances of the abstract syntax meta-
model, can be rendered in this visual language. The missing part is, informally
speaking, the bridge from the abstract syntax metamodel to the metamodel of
the visual language. In the following, we describe briefly our approach to define
the concrete syntax and illustrate it on a fragment of UML class diagrams. The
approach of defining the concrete syntax has been already described in one of
our previous papers [2] and was recently implemented based on SVG technology
[6]. The core idea for bridging both metamodels is to introduce new classes in
between. This technique is well-known from Triple-Graph-Grammars [7] and is
also applied in the OMG standard for Diagram Interchange [4].

Figure 3 gives an overview on the structure of concrete syntax definitions.
In the left part, a metamodel for the abstract syntax is shown: each instance
of Class is connected to a sequence of Attribute instances and instances of
Association have two AssociationEnds which refer to exactly one Class. The
metamodel of the visual language is shown in the right part and describes graph-
ical elements like rectangles, lines and text fields.

The two classes ClassDM and AssociationDM are so-called display manager
classes (the name of these classes has, by convention, always the suffix DM) and re-
alize the bridge from the abstract syntax to the visual language. Strictly speaking,
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Fig. 3. Bridging the metamodels describing abstract syntax and visual language

display manager classes belong neither to the metamodel of the abstract syntax
nor to that of the visual language since they are added later on, when the concrete
syntax is defined. For our argumentation, however, it has advantages if they are
seen as part of the metamodel of the visual language. A display manager class is
always connected via an association with multiplicity 1-1 to a class from the ab-
stract syntax metamodel. The display manager class manages the rendering of the
referenced class. By convention, we always use me (for model element) and dm (for
display manager) as role names on this association. Display manager classes have
also an association to a class in the visual language metamodel. Usually, this asso-
ciation has multiplicity 1-1 as well and role names dm and vo (for visual object).

The bridge from the abstract syntax to the visual language is realized by
invariants that are attached to the display manager classes. These invariants
formalize synchronization conditions on the states of modeling elements and
the corresponding visual objects (which realize the rendering of the modeling
elements). For our example, the invariants are:

context AssociationDM inv :
s e l f .me . f i r s t . name=s e l f . vo . f i r s t R o l e

and s e l f .me . second . name=s e l f . vo . secondRole
and s e l f . vo . f i r s tEnd=s e l f .me . f i r s t . c l a s s .dm. vo
and s e l f . vo . secondEnd=s e l f .me . second . c l a s s .dm. vo

context ClassDM inv :
s e l f .me . name=s e l f . vo . l a b e l . t ex t

and ( s e l f .me . i sAb s t r a c t implies
( s e l f . vo . s t e r e o t yp e=’ ab s t r a c t ’ or

s e l f . vo . l a b e l . i n I t a l i c ) )
and (not ( s e l f .me . i sAb s t r a c t ) implies

( s e l f . vo . s t e r e o t yp e=’ ’ and
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not ( s e l f . vo . l a b e l . i n I t a l i c ) ) )
and s e l f .me . a t t r i bu t e−>s i z e ()= s e l f . vo . a t t r i bu t e−>s i z e ( )
and Set { 1 . . s e l f .me . a t t r i bu t e−>s i z e ()}−> f o rA l l ( i |

s e l f .me . a t t r i bu t e−>at ( i ) . name=
s e l f . vo . a t t r i bu t e−>at ( i ) . t ex t )

Based on Fig. 3 and the invariant for AssociationDM one can conclude,
that each instance of Association is rendered by a Line, whose annotations
firstRole and secondRole correspond to the names of the two association
ends. Furthermore, the line connects the two rectangles which render the classes
the two association ends are referring to. The invariant for ClassDM is slightly
more complicated since it allows for presentation options when rendering a class.
An abstract class can be marked by a stereotype ’abstract’ attached to the cor-
responding rectangle or the label of the rectangle is displayed in an italic font.
The attributes of a class are presented in the same order as textfields in the rect-
angle. For the rendering of the attributes it does not matter whether they are
set in italic or not, they just represent attributes that are given by their names.

To summarize, our approach to define concrete syntax

– describes in a declarative way all possible representations of models (in-
stances of the abstract syntax metamodel) by diagrams (instances of the
visual language metamodel). Note that our technique allows to define pre-
sentation options, i.e. one model can be rendered by different, i.e. non-
isomorphic, diagrams. But – since the concrete syntax definition is symmetric
– the opposite case that one diagram renders different, i.e. non-isomorphic,
models is possible as well. Such a concrete syntax definition would be in-
correct (a diagram should always represent only one model) and in Sect. 4
we will discuss an approach to detect such incorrect concrete syntax defini-
tions.

– does not require to define a display manager class for all classes of the ab-
stract syntax metamodel. In our example, display manager classes are defined
only for Class and Association whereas for Attribute, AssociationEnd
this was not necessary, since the rendering of these classes are captured by
ClassDM, AssociationDM as well. We will give in Sect. 4.2 a detailed analy-
sis, under which circumstances a class from the abstract syntax metamodel
does not need its own display manager class.

4 Analysis of Concrete Syntax Definitions

As already mentioned in the introduction and at the end of the last section,
concrete syntax definitions can be incorrect. Correctness basically2 means in
our context that each diagram must correspond to only one model. As a tiny
example for an incorrect concrete syntax definition we refer to the upper part

2 There is another criterium on the completeness of the concrete syntax definition say-
ing that for each model there is at least one diagram. However, this is not discussed
in this paper.
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of Fig. 4. Suppose, that the display manager class ClassDM has attached the
following invariant:

context ClassDM inv :
s e l f .me . name=s e l f . vo . t ex t

Class
name:String
isAbstract:Boolean

TextField
text:String
inItalic:Boolean

ClassDM
1 1 1

1dm vome

dm

:Class

name='Car'
isAbstract=true

:TextField

text='Car'
inItalic=true

:ClassDM
1

1dm vome

dm

:Class

name='Car'
isAbstract=false

:TextField

text='Car'
inItalic=true

:ClassDM
1

1dm vome

dm

Fig. 4. Incorrect syntax definition and counterexample

The lower part of Fig. 4 shows two instantiations that conform to all multi-
plicity constraints and to the invariant for ClassDM. These instantiations witness
an error in the concrete syntax definition since they show how two isomorphic
diagrams refer to two non-isomorphic models. If the user of an editor would
draw one of the diagrams, he could not be sure which of the two possible mod-
els this diagram actually represents. The instantiations are possible because the
invariant attached to ClassDM only stipulates how attribute name of the model
element is related to attribute text of its visual representation but ignores the
value of attribute isAbstract.

The correctness criterion for concrete syntax definitions is given with mathe-
matical rigor by the following definition:

Definition 1 (Correctness of Concrete Syntax Definitions). Let CSMM
be a concrete syntax definition given in form of a metamodel (cmp. Fig. 3). Since
CSMM is divided into two parts describing abstract syntax and visual language,
this division can also be applied to instances of CSMM. Let cs1, cs2 be two
instances of CSMM. We denote the part of cs1/cs2 belonging to the abstract
syntax part of CSMM as as1/as2 and the part belonging to the visual language
part as vl1/vl2.

We call the concrete syntax definition CS correct (or well-defined) if and only
if the following holds:

Whenever vl1 is isomorphic to vl2 then as1 must also be isomorphic to as2.

In the sequel, we show how this correctness criterion can be encoded into first-
order logic so that the decision procedure Simplify can prove or disprove the
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generated proof obligation. Simplify was originally developed to decide the va-
lidity of a given formula in the theory of Pressburger Arithmetik [8], a set of
axioms defining the arithmetic operators for natural numbers except multiplica-
tion. Simplify is also applicable to prove validity in any other first-order theory,
but then, due to the undecidability of first-order logic, Simplify is not able to
prove all valid theorems. For the proof obligations that has been generated as
the encoding of our correctness criterion, however, Simplify was impressively
powerful and could prove or disprove every proof obligation for all examples we
discuss in this paper. A very useful feature of Simplify is, that it gives back
a counterexample if the proof goal has been disproven. This happens when the
concrete syntax definition is erroneous and the generated proof obligations are
not valid.

4.1 Encoding of Proof Obligations into First-Order Logic

In this subsection, we justify our encoding of the proof obligations for the most
simple kind of syntax definitions, in which the metamodel of the abstract syntax
consist of one class only (the definition given in Fig. 4 will serve as an illus-
trating example). The goal of our argumentation is to justify, that an encoding
of the above given correctness criterion into first-order logic is possible. Note
that the criterion given in Def. 1 refers to the isomorphism of graphs, a prop-
erty that can usually not be expressed using first-order logic. Fortunately, in
our case, the graphs have a unique structure, which simplifies the encoding of
graph isomorphism so that first-order logic has sufficient expressive power. In
the next subsection we will present a heuristic on how a concrete syntax def-
inition with more than one class in the abstract syntax part can be reduced
to the case we discuss now, where the abstract syntax part has merely one
class.

For the rest of this subsection, we assume a concrete syntax definition as
illustrated by Fig. 4: The abstract syntax part has only one class (Class) that
is connected by an 1-1 association with a display manager class (ClassDM) that
in turn is connected to other classes in the visual language part, in our example
we have a 1-1 association to class TextField.

The correctness criterion given in Def. 1 requires to check that two isomorphic
instances vl1, vl2 of the visual language part are always connected to isomorphic
instances as1, as2 of the abstract syntax part. The situation is sketched in Fig. 5.

We can assume that vl1 is isomorphic to vl2, that is, it exists a bijection
mapVL that maps in particular each display manager object, i.e. each instance
of display manager class ClassDM, in vl1 to an isomorphic instance in vl2. For
the display manager objects in vl1 and vl2 we further know that there is an
isomorphism to the objects in as1 and as2 (because the display manager class
ClassDM and the abstract syntax class Class are connected by an association
with multiplicity 1-1). We call this mapping vl2as. Based on mapVL and vl2as
we can now define a function mapAS as follows (variable cdm represents all
instances of ClassDM in vl1):

mapAS (vl2as(cdm)) = vl2as(mapVL(cdm))
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Fig. 5. Bijections that justify correctness criterion

Please note that mapAS is defined as a total function from as1 into as2,
because each object in as1 has a corresponding display manager object in vl1.

If we could show now that mapAS maps the objects from as1 to isomorphic
objects in as2 then this would prove that as1 and as2 themselves (both are
sets of objects) are isomorphic what in turn would complete the proof on the
correctness of the concrete syntax definition.

It remains to show for each isomorphism mapVL between vl1 and vl2 that
the derived function mapAS is an isomorphism too (cdm is again a variable of
type ClassDM):

isIsomorphicClassDM(cdm,mapVL(cdm)) →
isIsomorphClass(vl2as(cdm),mapAS (vl2as(cdm)))

According to the above given definition of mapAS , this can be simplified to:
isIsomorphicClassDM(cdm,mapVL(cdm)) →

isIsomorphClass(vl2as(cdm), vl2as(mapVL(cdm)))

Fortunately, this proof obligation does not require anymore to formulate the
isomorphism of the whole graph but just to specify the isomorphism of two ob-
jects, a property for which first-order logic is expressive enough. For instance,
two objects of ClassDM are isomorphic if their attributes have the same val-
ues and the connected TextField objects are isomorphic. Since ClassDM and
TextField are connected by a 1-1 association, the latter means that two iso-
morphic instances of ClassDM are always linked to two instances of TextField
whose attributes have also the same value. Formulated in first-order logic, the
criteria for isomorphic ClassDM instances looks like:

isIsomorphicClassDM(cdm1, cdm2) ↔
(text(vo(cdm1)) = text(vo(cdm2))∧
(inItalic(vo(cdm1)) ↔ inItalic(vo(cdm2))))

Figure 6 shows the full encoding of the correctness criterion for the example
given in Fig. 4. We do not show here the final input file for Simplify, because
such input files have to be written in a low level notation, which is hard to read
for humans. What is shown here is an input file for the KeY system [9], which
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\ s o r t s {
c l a s s ;
classdm ;
t e x t f i e l d ;
s t r i ng ;

}
\ f unc t ion s {

// a s s o c i a t i o n s
c l a s s me( classdm ) ;
classdm dm( c l a s s ) ;
t e x t f i e l d vo ( classdm ) ;
// a t t r i b u t e s
s t r i ng name( c l a s s ) ;
s t r i ng t ext ( t e x t f i e l d ) ;

}
\ pre d i ca t e s {

// a t t r i b u t e s
i sAbs t ra c t ( c l a s s ) ;
i n I t a l i c ( t e x t f i e l d ) ;
// p r ed i c a t e s to encode isomorphism
i s I somorphi cC la s s ( c la s s , c l a s s ) ;
i s IsomorphicClassDM( classdm , classdm ) ;

}
\problem {
// i nva r ian t on ClassDM ( core of syntax d e f i n i t i o n )
(\ f o r a l l classdm cdm ; name(me(cdm)) = text ( vo (cdm ) ) ) &
// isomorphism of i n s t ance s o f C las s
(\ f o r a l l c l a s s c1 ;\ f o r a l l c l a s s c2 ; ( i s I somorph icCla s s ( c1 , c2 )

<−> name( c1 ) = name( c2 ) &
( i sAbst ra c t ( c1 ) <−> i sAbst r ac t ( c2 ) ) ) ) &

// isomorphism of i n s t ance s o f ClassDM
(\ f o r a l l classdm cdm1 ; \ f o r a l l classdm cdm2 ;

( isIsomorphicClassDM(cdm1 , cdm2)
<−> text ( vo (cdm1 ) ) = text ( vo (cdm2 ) ) &

( i n I t a l i c ( vo (cdm1 ) ) <−> i n I t a l i c ( vo (cdm2 ) ) ) ) )
−>
// conc l u s io
\ f o r a l l classdm cdm1 ;\ f o r a l l classdm cdm2 ;

( isIsomorphicClassDM(cdm1 , cdm2) −> i s I somorph icCla s s (me(cdm1 ) , me(cdm2 ) ) )
}

Fig. 6. Encoding of correctness criterion for Simplify in KeY format

can be used as a front-end for Simplify since the KeY system is able to generate
automatically equivalent input files for Simplify.

The KeY syntax requires to declare at the beginning of the file all types, func-
tions and predicates. There are standard techniques how an UML class diagram
is represented by such declarations, mainly, the classes are represented by types,
associations by functions and attributes by functions or predicates (see [9] for
details). The clause ’problem’ contains the proof obligation and has always the
form of an implication premise -> conclusio. In KeY syntax, the logical connec-
tors ’not’, ’and’, ’or’, ’if-then’, ’if-and-only-if’ are denoted by ’!’, ’&’, ’|’, ’->’,
’<->’, respectively, and the two quantifiers are written as ’forall’, ’exists’.
The premise of the proof obligation contains the encoding of the invariant of
the display manager class ClassDM and the isomorphism criteria for instances of
ClassDM and Class. The conclusio has exactly the form as analyzed above.

When invoked for this input file, Simplify cannot find a proof because the
syntax definition, for which the input file encodes the correctness criterion, is
not correct. Nevertheless, Simplify gives very useful feedback in form of a coun-
terexample. The found counterexample is exactly the same counterexample as
we have already presented in the lower part of Fig. 4. Such counterexamples are
extremely useful for the developer of the concrete syntax to find and to resolve
errors in the concrete syntax definition.

There are (theoretically) two possibilities to fix errors in a syntax definition. As
the first possibility, one could refine the visual language or change the constraints
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attached to the display manager classes. In our example, it would be sufficient to
rewrite the invariant of ClassDM to

context ClassDM inv :
s e l f .me . name=s e l f . vo . t ex t and
s e l f .me . i sAb s t r a c t = s e l f . vo . i n I t a l i c

A second possibility is to add to the abstract syntax metamodel a new well-
formedness rule but this of course changes the original abstract syntax definition.
The idea behind is to avoid the occurrence of all those models that could be
cause ambiguous interpretations of the diagrams. An example for such a well-
formedness rule is

context Class inv :
s e l f . i sAb s t r a c t = true

In both cases, Simplify is now able to prove the proof obligation fully auto-
matically what certifies the correctness of the concrete syntax definition.

4.2 Analysis of Complex Syntax Definitions

The encoding presented in the last section covers only the case where the abstract
syntax metamodel consists of merely one class. Fortunately, the same encoding
also works for abstract syntax metamodels having more than one class, as long
as all classes are not connected by any association and each class has its own
display manager class in the visual language metamodel.

We discuss now, under which circumstances our encoding is also applicable to
more complex abstract syntax metamodels, where classes are connected by as-
sociations and not every class has its own display manager class. The basic idea,
however, remains the same as in the above case where the abstract syntax meta-
model consists only of isolated classes: We strive to find a cluster of classes, i.e.
a set of class groups, that induce a partition of the metamodel. Then, we apply
our encoding for each of these class groups separately. We illustrate our analysis
with the syntax definition for simplified class diagrams as shown in Fig. 3.

In order to find a useful cluster of classes we mark all classes that have a
direct connection to a display manager class. The display manager class does
not manage only the rendering of the directly connected class, but sometimes
also the rendering of the neighboring classes, e.g. ClassDM manages the rendering
for the instances of both Class and Attribute. The relevant neighboring classes
together with the class directly connected to a display manager form one class
group in the cluster. At the end of this cluster analysis, we get a situation
as shown in the left part of Fig. 7. The cluster consists of two class groups
(Class, Attribute) and (Association, AssociationEnd) and each class group
corresponds to exactly one display manager class (ClassDM, AssociationDM).

The cluster will be the basis for the formal proof that the concrete syntax
definition is correct. The formal proof, however, can only be successful if the
cluster satisfies two properties, completeness and unique ownership. Basically,
these two properties ensure that all instances of abstract syntax classes can
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Fig. 7. Cluster analysis for abstract syntax classes

be uniquely mapped to display manager objects which are responsible for the
rendering of these instances.

Completeness. The found cluster must cover all non-abstract classes, i.e. each
non-abstract class must be a member of (at least) one class group. If a class
is not a member of any group then the instances of this class do not have
any connection to any display manager object.

Unique ownership. The completeness criterion is a necessary but not a suffi-
cient condition for the cluster. Sometimes, even instances of classes covered
by the cluster miss a corresponding display manager object. Suppose, in our
running example the association between Class and Attribute had on the
side of Attribute not the multiplicity 1 but ’0..1’. That would allow, that
some instances of Attribute had no connection to any Class instance and
thus also the connection to a display manager object would be missing. In
this case, the current concrete syntax definition would be incorrect, just for
structural reasons.3

In order to prevent the case, in which an object of any abstract syntax class
has no connection to a display manager object, we change the abstract syntax
metamodel as follows. In each class group there is exactly one class, called
anchor class, that has a direct connection to a display manager class (in our
example, anchor classes are Class and Association). We add from each non-
anchor class an association with role name ’owning’ and multiplicity 1 to the
anchor class of the same class group. Furthermore, this association must be
derived and the referenced object has to be determined by a constraint.

In our running example, we have added associations from Attribute to
Class and from AssociationEnd to Association (see right part of Fig. 7).
The constraints are

context Att r ibute inv : s e l f . owning=s e l f . c l a s s

context Associat ionEnd inv : s e l f . owning=
Assoc ia t ion . a l l I n s t an c e s ()−> s e l e c t ( as |

as . f i r s t=s e l f or as . second=s e l f )−>any ( )

3 However, one could easily solve this problem by adding a new display manager class
AttributeDM to the concrete syntax definition.
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After the properties Completeness and UniqueOwnership have been verified
for the cluster, we know that each instantiation of the abstract syntax metamodel
can be partitioned with respect to the class groups identified by the cluster. What
remains to do, is to define predicates for the isomorphism between instances of
the same class group.

// isomorphism of i n s t ance s o f C las s
(\ f o r a l l c l a s s c1 ;\ f o r a l l c l a s s c2 ; ( i s I somorph icCla s s ( c1 , c2 )

<−> name( c1 ) = name( c2 ) &
( i sAbst ra c t ( c1 ) <−> i sAbst r ac t ( c2 ) ) &
\ f o r a l l in t i ; ( at t r ibu teDe f i ne d ( c1 , i ) <−> a t t r i bu teDe f in ed ( c2 , i ) ) &
\ f o r a l l in t i ; ( at t r ibu teDe f i ne d ( c1 , i )

−> name( a t t r i b u t e ( c1 , i ) ) = name( a t t r i bu te ( c2 , i ) ) ) ) )

Fig. 8. Encoding of isomorphism for a whole class group

Figure 8 shows (in KeY syntax) the definition of the isomorphism-predicate
for the class group containing class Class. Two instances of Class are isomorphic
if their attributes have the same value and if the sequence of linked attributes
are isomorphic. The sequence of linked attributes is encoded for Simplify by
a function attribute with two arguments, the second argument encodes the
position within the sequence. Two sequences of attributes are isomorphic, if
they contain on the same position always isomorphic elements.

The final step is the generation of a proof obligation for each class group; the
proof obligations have the same structure as the one discussed in Sect. 4.1. For
our example, Simplify was again successful in discharging all proof obligations
fully automatically.

5 Related Work

Our approach of defining the concrete syntax presented in Sect. 3 has many
similarities with Triple-Graph-Grammars, already invented by Schürr in 1994
[7] (see also [10] for a more recent survey and a case study). The most important
difference between our approach and TGGs is that our goal is merely to describe
valid instances of the concrete syntax metamodel, but we are not interested in
how such instances are constructed. While the main idea of defining the concrete
syntax is quite similar to TGG, we are not aware of any work in the TGG area,
that aims at analyzing TGG definitions as we do.

Xia and Glinz present in [11] an approach to describe the concrete syntax of
their own graphical modeling language ADORA [12]. The main idea is to map
the graphical representation of a language construct to a textual representation
and to define the syntax finally in EBNF style. One restriction of this approach
is that each graphical element must correspond to exactly one model element,
and vice versa. On the other hand, Xia/Glinz were able to handle advanced
features like graphical nesting in an elegant way, the constraints they give are
much more concise than the corresponding invariants we could give as OCL
invariants in display manager classes.
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6 Conclusion and Future Work

In this paper, we have described an approach to formally define the concrete
syntax of a modeling language. The formalization we propose is directly based
on the primary language definition, i.e. the metamodel that encodes the abstract
syntax. The big advantage of having a formalized version of the concrete syntax
definition is, compared to informal syntax definitions, the possibility to analyze
automatically correctness properties (cmp. Sect. 4). If the syntax definition is
incorrect, our rigorous analysis is able to report an erroneous situation. For
correct definitions, our approach is able to certify that erroneous situations never
occur.

So far, we have encoded all proof obligations manually but we plan to autom-
atize this step in a tool dedicated to formal concrete syntax definition. This tool
should also provide a visualization of the counterexamples found by Simplify,
so that the user of the tool gets feedback in the same format in which the con-
crete syntax is defined. Another direction of future activities is the development
of an OCL axiom library that codifies the knowledge on OCL’s predefined data
structures. For example, the fact that for all sets s and elements x the term
s->including(x)->excluding(x) is semantically equivalent to s is sometimes
needed. Such axiom libraries have been developed extensively for other specifica-
tion languages, e.g. Z, but – to our knowledge – not for OCL, yet. It is very likely,
that Simplify will show some weaknesses in proving proof obligations, once the
proof requires certain types of axioms, e.g. axioms describing sophisticated prop-
erties of sets. For this case, we plan to integrate other decision procedures or
model checkers into our tool.
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9. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. The KeY Book
– The Road to Verified Software. Springer, 2006. To appear.
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