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Abstract. The modeling language UML-RT, a dialect of the UML, supports the
development of complex, hierarchical systems following a component-oriented
approach. However, for a solid foundation of model analysis and model transfor-
mations a formal semantics definition of UML-RT is missing. Therefore, this
paper presents a precise syntax and semantics definition of a sublanguage of
UML-RT. This sublanguage puts an emphasis on the specification of complex,
hierarchical state-based models. It considers atomic capsules - containing a state-
chart - and complex capsules that recursively consist of capsules communicating
asynchronously with each other over connectors. Labeled transition systems are
chosen as semantic domain, such that the UML-RT semantics can be defined in
an SOS style a la Plotkin.

1 Introduction

Model-based software development using standard modeling languages represents a
modern approach putting emphasis on the early development phases. Typical repre-
sentatives are UML - constituting the de-facto modeling standard for industrial object-
oriented applications - and UML-RT [13] - a dialect of UML especially designed for
the development of distributed, embedded systems.

A great advantage of these modeling notations is given by their great variety of in-
tuitive and mostly well-known graphical notations which support quite different kinds
of information to be modeled: e.g. requirements, static structure, as well as interactive
and dynamic behaviour. However, both languages - UML as well as UML-RT - suffer
from insufficient semantics definitions lacking preciseness and completeness. The po-
tential consequences are manyfold: Different persons might interprete the same model
in different ways. Furthermore, the foundation for systematic, precise model analysis
(e.g. consistency checks) and for model simulation or code generation is missing.

Some work aiming at a precise UML semantics definition has already been done or
has at least been started. Due to its very comprehensive syntax, this is a long lasting,
tedious task.

However, in this paper we consider UML-RT. More precisely, we deal with the syn-
tax and semantics definition of a sublanguage of UML-RT. In this setting we focus on
behavioural aspects modeled with UML-RT capsules: there are atomic capsules which
reside on a statechart as well as complex capsules which can also contain a statechart,
but which furthermore recursively contain a set of capsules communicating asynchro-
nously with each other and with the surrounding capsule via connectors.

We choose labeled transition systems as semantic domain for UML-RT - the reason
being twofold: on the one hand they are very appropriate for an operational semantics
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definition of (behavioural) modeling languages like UML-RT, on the other hand many
equivalence and refinement notions well-known from the process algebra area [9,5] are
defined with respect to labeled transition systems. Such notions are very appropriate
means for precise systematic model analysis. They can e.g. be used to define consis-
tency notions for UML-RT models.

The rest of the paper is structured as follows: In section 2 we precisely define the
syntax of UML-RT models, whereas in section 3 we precisely define their semantics.
Section 4 discusses related work. We conclude and discuss future work in section 5.

2 Syntax of UML-RT Models

We define the syntax of UML-RT models in two steps. At first we define the syntax
of UML-RT Statecharts. Then we define the syntax of UML-RT capsules using the -
already existing - syntax definition of UML-RT Statecharts. Note that we use the terms
UML-RT capsules and UML-RT models as synonyms.

2.1 UML-RT Statechart Terms

UML-RT Statecharts is a visual language. However, for our aim to define a formal
semantics, it is convenient to represent UML-RT Statecharts not visually but by textual
terms. This is also done in related work for “classical” Statecharts [8,15] as well as for
UML Statecharts [6,17].

Let N , T , Π be countable sets of state names, transition names, and events, respec-
tively. We denote events and actions by a, b, c, . . .. For a set M let M∗ denote the set of
finite sequences over M . Then, the set UML-SC of UML-RT Statechart terms is induc-
tively defined to be the least set satisfying the following conditions, where n ∈ N .

1. Basic term: s = [n] is a UML-RT Statechart term with type(s) = basic. There-
fore s is also called a basic term.

2. Or-term: If s1, . . . , sk are UML-RT Statechart terms for k > 0, ρ = {1, . . . , k},
l ∈ ρ, HT = {none, deep}, and T ⊆ TR =df T × ρ × Π × (Π ∪ {ε}) × ρ × HT
with ε /∈ Π , then s = [n, (s1, . . . , sk), l, T ] is a UML-RT Statechart term with
type(s) = or. Therefore, s is also called an Or-term. Here, s1, . . . , sk are the
subterms of s, T is the set of transitions1 between the subterms of s, s1 is the
default subterm of s, l is called the active state index of s (or for short: the index of
s), and sl is the currently active subterm of s (or for short: sl is active). ε is called
the empty output.
Note that active state index l ∈ {1, . . . , k} denotes the l-th term within the k-
tuple (s1, . . . , sk) of the subterms of s. Analogously, note that components two
and five of a transition t = (t, i, e, a, j, ht) ∈ T - namely i and j - of an Or-term
s = [n, (s1, . . . , sk), l, T ] refer to the i-th and j-th term of the k-tuple (s1, . . . , sk),
respectively, but not to the indexes of the states’ names in the k-tuple.
For each transition t = (t, i, e, a, j, ht) ∈ T , we define name(t) =df t, sou(t) =df

si, ev(t) =df e, act(t) =df a, tar(t) =df sj , and historyType(t) =df ht. name(t)

1 Later on, we will classify this kind of transitions as syntactic transitions.
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is called the transition name of t, ev(t) and act(t) are called the trigger part and
action part of t, respectively. sou(t) and tar(t) are called the source and target of
t, respectively. Furthermore, historyType(t) is called the history type of t. Finally,
(e, a) is called the label2 of t and is graphically represented as e/a or as t : e/a.

In both cases (Basic term and Or-term) we refer to n as the root name of s and
write root(s) =df n. We assume that all root names and transition names are mutually
disjoint, so that terms and transitions within UML-RT Statechart terms are uniquely
referred to by their names. For convenience, we sometimes write “state” instead of
“term” and abbreviate (s1, . . . , sk) by (s1..k).

As can be seen from our UML-RT Statechart term syntax we do not consider the fol-
lowing features of UML-RT Statecharts: entry and exit actions, interlevel transitions,
and pseudostates. However, entry and exit actions as well as interlevel transitions had
been included in our previous work [17], where we already defined a UML-RT State-
chart semantics. Due to lack of space we do not consider these features in this work,
where the UML-RT Statechart syntax only constitutes a part of the overall UML-RT
capsule syntax.

We exemplify our textual syntax of UML-RT Statecharts graphically by Fig. 1 show-
ing a complete UML-RT capsule which contains a UML-RT Statechart term S shown
as a rectangle with rounded corners and with (root) name nS in the upper part of the
figure:

S = [nS , (S5, S1), l, {t1, t2}] is a UML-RT Statechart term with type(S) = or, i.e.
S is an Or-term, where

– nS is the root name of S,
– {S1, S5} is the set of subterms of S, where

• S1 is an Or-term with S1 = [nS1, (S4, S2, S3), l′, {t3, t4, t5}],
• nS1 is the root name of S1,
• S5 is a basic term,
• nS5 is the root name of S5,

– S5 is the default subterm of S,
– l ∈ {1, 2} is the active state index of S, (but not shown in Fig. 1)
– {t1, t2} is the set of transitions between the subterms of S with

t1 = (t1, 1, e1, a1, 2, none) and t2 = (t2, 2, e2, a2, 1, none).

2.2 UML-RT Capsules

Let Nca, Npo, Nco be countable sets of capsule names, port names, and connector
names, respectively. Furthermore, let Prot, the set of protocols over Π , be defined as
Prot =df {pr | pr ⊆ Π × Π} and CO, the set of connectors over Π , be defined as
CO =df Nco ×Npo ×Npo ×Π∗. Then the set CAP of UML-RT capsules is inductively
defined to be the least set satisfying the following conditions:

1. Basic UML-RT Capsule:
If n ∈ Nca, po1, . . . , pol ∈ Npo for l ≥ 0, pri1 , . . . , pril

∈ Prot, S ∈ UML-SC
and σ ∈ Π∗, then

2 Later on, we will classify this type of labels as syntactic labels.
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ca = [n, (po1, . . . , pol), (pri1 , . . . , pril
), S, σ]

is a UML-RT capsule. More specifically, ca is also called a basic UML-RT capsule.
2. Complex Non-behavioral UML-RT Capsule:

If n ∈ Nca, po1, . . . , pol ∈ Npo for l ≥ 0, pri1 , . . . , pril
∈ Prot, ca1, . . . , cak are

UML-RT capsules for k > 0, and coi ∈ Nco×({po1, . . . , pol}∪
⋃k

j=1 Ports(caj))2×
Π∗ ⊆ CO for 1 ≤ i ≤ m for m ≥ 0, then

ca = [n, (po1, . . . , pol), (pri1 , . . . , pril
), (ca1, . . . , cak), (co1, . . . , com)]

is a UML-RT capsule. More specifically, ca is also called a complex non-
behavioural UML-RT capsule.

3. Complex Behavioral UML-RT Capsule:
If n ∈ Nca, po1, . . . , pol ∈ Npo for l ≥ 0, pri1 , . . . , pril

∈ Prot, S ∈ UML-SC,
σ ∈ Π∗, ca1, . . . , cak are UML-RT capsules for k > 0, and coi ∈ Nco ×
({po1, . . . , pol} ∪

⋃k
j=1 Ports(caj))2 × Π∗ for 1 ≤ i ≤ m for m ≥ 0, then

ca = [n, (po1, . . . , pol), (pri1 , . . . , pril
), S, σ, (ca1, . . . , cak), (co1, . . . , com)]

is a UML-RT capsule. More specifically, ca is also called a complex behavioural
UML-RT capsule.

For the three abovementioned cases the following notions are used:
n is called the name of ca, Ports(ca) =df {po1, . . . , pol} is called the set of ports of ca,
Prot(poj) =df prij for 1 ≤ j ≤ l is called the protocol of poj , S is called the Statechart
of ca, σ is called the input queue of ca, and Conn(ca) =df {co1, . . . , com} is called the
set of (UML-RT) connectors of ca.

Informally, a basic UML-RT capsule does not contain any capsules. In contrast, both
types of complex UML-RT capsules recursively contain capsules. Furthermore, a com-
plex non-behavioral UML-RT capsule does not contain a Statechart on its the top level,
whereas a complex behavioral UML-RT capsule contains a Statechart on its top level.

The UML-RT capsule syntax defined above does not support the following features:
conjugate ports, event priorities, do activities, and dynamic capsules.

In the subsequent sections we need the following definitions. Let Caps(poi) =df ca
for 1 ≤ i ≤ l and SubCaps(ca) =df {ca1, . . . , cak}, where ca1, . . . , cak are called
subcapsules of ca and ca is called parent capsule of cai for 1 ≤ i ≤ k . Furthermore,
we use projection functions Πj which are defined by Πj([x1, . . . , xm]) =df xj for
1 ≤ j ≤ m for m ≥ 2. Then, function type : Npo −→ {relay, end} is defined as
follows:

type(po) =df

⎧
⎨

⎩

relay, if ∃ca ∈ CAP, co ∈ CO . po ∈ Ports(ca) ∧ co ∈ Conn(ca)
∧(po = Π2(co) ∨ po = Π3(co))

end, otherwise

Finally, we exemplify our textual syntax of UML-RT capsules graphically by Fig. 1:
ca = [nca, (po1, po2, po3), (pri1 , pri2 , pri3), S, σ, (ca1, ca2), (co1, co2, co3, co4)] is a
complex behavioural UML-RT capsule, where
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– nca is the name of ca,
– {po1, po2, po3} is the set of ports of ca,
– S is the Statechart of ca,3

– σ is the input queue of ca,
– ca1 and ca2 are subcapsules of ca (only shown as ’black boxes’ with names nca1

and nca2, respectively, i.e. without any interior structure),
– and {co1, . . . , co4} is the set of connectors of ca.

The protocols prij of poj for 1 ≤ j ≤ 3 are not presented graphically. Furthermore,
the ports of ca1 and ca2 are not named.

nca

nca1 nca2

po2
po3

po1

co2
co4

σ

nS

nS1

t4

t5

nS2 nS3

nS4

nS5

t3

co3

co1

t1: e1/a1

t2: e2/a2

Fig. 1. UML-RT Model Example

3 Semantics of UML-RT Models

We follow the SOS (Structured Operational Semantics) approach of Plotkin [10]: we
take labeled transition systems as semantic domain and use SOS rules to define the
semantics of UML-RT models in an operational and modular approach, such that com-
prehension as well as flexibility (e.g. with respect to subsequent enhancements) are
supported - without restricting preciseness.

In order to support a modular semantics definition we do not only follow Plotkin’s
SOS approach, but we also split up the overall semantics definition into three steps:

1. UML-RT Statechart semantics (section 3.1)
2. UML-RT connector semantics (section 3.2)
3. UML-RT capsule semantics = UML-RT model semantics (section 3.3)

In the first and in the second step the semantics of UML-RT Statecharts and UML-
RT connectors are defined independently from each other. Then, in the third step, we
use these semantics definitions to define the UML-RT capsule semantics.

3 The structure of S was already described at the end of Section 2.1.
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3.1 UML-RT Statechart Semantics

The following formal semantics of UML-RT Statecharts is based on our earlier work
[17].

To define the UML-RT Statechart semantics, we proceed as follows: In a first step
we define how the state resulting from transition execution is computed. We use the
solution in a second step to formally define the semantics of UML-RT Statecharts.

Computing the Next State. We define function next which computes the state which
results from a transition execution. This function will be used in the SOS rule which
handles transition execution (in an OR-state).

Given a UML-RT Statechart transition t with history type ht = historyType(t)
and target s, function next : HT × UML-SC −→ UML-SC computes the UML-RT
Statechart term s′ = next(ht, s) which results after execution of transition t. In order
to simplify the presentation of next as well as the presentation of several subsequent
definitions, we use the substitution notation .[./.] as follows: If t is a term, then t[a/b] is
the term which results from replacing all occurrences of a in t by b. Furthermore, for
l ∈ {1, . . . , k} we abbreviate (s1, . . . , sl−1, s

′
l, sl+1, . . . , sk) by (s1..k)[sl/s′

l
].

next(ht, [n]) =df [n]

next(ht, [n, (s1..k), l, T ]) =df

{
[n, (s1..k), l, T ] if ht = deep
[n, (s1..k)[s1/default(s1)], 1, T ] if ht = none

The definition of next uses function default : UML-SC −→ UML-SC which es-
pecially defines for an Or-state that its currently active substate is given by its default
substate.

default([n]) =df [n]
default([n, (s1..k), l, T ]) =df [n, (s1..k)[s1/default(s1)], 1, T ]

UML-RT Statechart Semantics Definition. The UML-RT Statechart semantics will
be defined for the textual UML-RT Statechart syntax as given by the set UML-SC of
UML-RT Statechart terms.

We define the semantics by function [[.]] : UML-SC −→ LTS, where LTS is the set
of labeled transition systems and where the (semantic) transitions4 work on single input
events e ∈ Π . The semantics [[s]] of a UML-RT Statechart term s ∈ UML-SC is given
by the labeled transition system (UML-SC, L, −→, s) ∈ LTS, where

– UML-SC is the set of states,5

– L = Π × (Π ∪ {ε}) × {0, 1} is the set of (semantic) labels6.
– −→ ⊆ UML-SC × L × UML-SC is the transition relation, and
– s is the start state.

4 We use the term “semantic transition” in order to distinguish transitions in the semantics of
UML-RT Statecharts from the already defined (syntactic) transitions (cf. Section 2.1) in the
syntax of UML-RT Statecharts, more precisely in UML-RT Statechart terms of type Or.

5 This implies that each state of the transition system is given by a UML-RT Statechart term.
6 Analogously to the distinction between syntactic and semantic transitions we also distinguish

between syntactic and semantic labels. Syntactic labels have been defined in Section 2.1.
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For the sake of simplicity, we write s
e

a
→f s′ instead of (s, (e, a, f), s′) ∈−→ and

s � e→f instead of � ∃s′, a . s
e

a
→f s′, where s and s′ are called the source and the target

of these (semantic) transitions, respectively, e and a are called the input and output,
respectively, and f is called the flag. We say that term s may perform a (semantic)
transition with input e, output a, and flag f (or for short: with (semantic) label (e, a, f))
to term s′. If appropriate, we do no mention the input, output, and/or target of the
transition. Intuitively, flag f states whether a semantic transition is performed,

– either because at least one (syntactic) UML-RT Statechart transition is taken (in
this case we have f = 1, denoted as positive flag)

– or without taking any (syntactic) UML-RT Statechart transition (in this case we
have f = 0, denoted as negative flag). In this case only the input is “consumed”,
whereas source and target are identical. This is usually denoted as a stuttering step.

The flag is needed to assure that stuttering steps can only occur, if no non-stuttering
step is possible. This assures a lower-first priority mechanism for transition execution
in our UML-RT Statechart semantics.

Transition relation −→ is defined by the SOS rules of Table 1 using rule format:

name
premise

conclusion

Explanation of SOS rules of UML-RT Statechart semantics

– BAS (stuttering)
A basic state may perform a semantic transition with arbitrary input event e, empty
output ε, and negative flag such that the state does not change, i.e. that the input is
just consumed.

– OR-1 (progress)
If t is a UML-Statechart transition of an Or-state s with trigger part e, then s can
perform a semantic transition with input e and positive flag if sl cannot perform a
semantic transition with input e and positive flag (sl � e→1). The condition assures the
lower-first priority of UML-RT Statecharts.
The target of the semantic transition differs from its source by changing the cur-
rently active substate from sl to si, because sl and si are the source and target of
the UML-Statechart transition t, respectively. Furthermore, the dynamic informa-
tion of si is updated according to the history type ht of t using function next. This
update is performed by the substitution (s1..k)[si/next(ht,si)]

.
– OR-2 (propagation of progress)

If a substate of an Or-state may perform a semantic transition with a label contain-
ing a positive flag, then the Or-state may perform a semantic transition with the
same label.

– OR-3 (propagation of stuttering)
If a substate of an Or-state may perform a semantic transition with a label contain-
ing a negative flag (i.e. no UML-RT Statechart transition can be taken within the
Or-state) and if the Or-state cannot perform a semantic transition with positive flag,
then the Or-state may also perform a semantic transition with the same label (in
particular with negative flag).
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The rules define that for every input event e ∈ Π and for every state s ∈ UML-SC

– either a semantic transition s
e

a
→ 1 s′ with output a ∈ Π ∪ {ε} and state s′ ∈

UML-SC
– or a semantic transition s

e

ε
→ 0 s with empty output ε and without state change

exists.

Table 1. SOS rules of the UML-RT Statechart semantics

BAS
true

[n] e

ε
→0 [n]

OR-1
( , l, e, a, i, ht) ∈ T, sl � e→1

[n, (s1..k), l, T ] e

a
→1 [n, (s1..k)[si/next(ht,si)]

, i, T ]

OR-2
sl

e

a
→1 s′

l

[n, (s1..k), l, T ] e

a
→1 [n, (s1..k)[sl/s′

l]
, l, T ]

OR-3
sl

e

ε
→0 sl, [n, (s1..k), l, T ] � e→1

[n, (s1..k), l, T ] e

ε
→0 [n, (s1..k), l, T ]

3.2 UML-RT Connector Semantics

Connectors of UML-RT support the modeling of asynchronous communication be-
tween UML-RT capsules. In general, their behaviour is not precisely defined, but con-
stitutes a semantic variation point e.g. to allow modeling of unreliable communication
channels. However, we define UML-RT connectors as unbounded FIFO (First-In First-
Out) queues.

The semantics [[co]]c of a UML-RT connector co ∈ CO is given by the labeled tran-
sition system (CO, L′, →c , co) ∈ LTS, where

– CO is the set of states,
– L′ = {τ} ∪ {in(sig) via po | sig ∈ Π, po ∈ Npo}

∪ {out(sig) via po | sig ∈ Π, po ∈ Npo} is the set of labels (with τ /∈ Π),
– →c ⊆ CO × L′ × CO is the transition relation, and
– co is the start state.

We distinguish whether a capsule or a connector uses a signal sig as an input or
as an output by writing in(sig) or out(sig), respectively. This distinction is necessary
for the definition of synchronization between a capsule cai and a connector coj . This
synchronization occurs as an internal communication of the parent capsule ca of cai,
where coj is contained in the set of ports of ca. Synchronization is hidden from the
environment of ca, only an internal action τ can be observed outside ca. (See e.g. [9]).

We write co
l→c co′ instead of (co, l, co′) ∈ →c and say that connector co may

perform a transition with label l to co′. Transition relation →c is defined by SOS rules
co1 and co2 shown in Table 2 using three relations =̂, >, le ⊆ Npo × Npo defined by:
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po =̂ po′ :⇐⇒ ∃ca ∈ CAP :
(Caps(po) ∈ SubCaps(ca) ∧ Caps(po′) ∈ SubCaps(ca))

po > po′ :⇐⇒ Caps(po′) ∈ SubCaps(Caps(po))
po ≤ po′ :⇐⇒ po=̂po′ ∨ po′ > po

Relations > and ≤ are used in co1 and co2 to compare the hierarchy level of ports.

Table 2. SOS rules of UML-RT connector semantics

co1
true

[n, po, po′, σ] in(sig)viapo→c [n, po, po′, 〈sig〉 :: σ]

�
�

(po > po′ ∧ sig ∈ In(Prot(po)))
∨

(po ≤ po′ ∧ sig ∈ Out(Prot(po)))

�
�

co2
true

[n, po′, po, σ :: 〈sig〉] out(sig)viapo→c [n, po′, po, σ]

�
�

(po ≤ po′ ∧ sig ∈ In(Prot(po)))
∨

(po > po′ ∧ sig ∈ Out(Prot(po)))

�
�

Explanation of SOS rules of UML-RT connector semantics

– co1 (input event for connector)
Informally, a connector can read an input event from a port po, if po is a port of this
connector and if the event fulfils the protocol of the port.

– co2 (output event from connector)
Informally, a connector can write an output event to a port po, it po is a port of this
connector and if the event fulfils the protocol of the port.

3.3 UML-RT Capsule Semantics

In the following we distinguish two cases to define the semantics of UML-RT capsules:

– In the ’general case’ we use the UML-RT Statechart semantics of section 3.1 as
well as the UML-RT connector semantics of section 3.2 to define the semantics of
a UML-RT capsule generally, i.e. not restricted to one of the capsule’s ports.

– In the ’port-specific case’ we use the ’general case semantics’ to define the seman-
tics of a UML-RT capsule restricted to one of its ports.

General Case. The semantics [[ca]]′ of a UML-RT capsule ca ∈ CAP is given by the
labeled transition system (CAP, L′, →�, ca) ∈ LTS, where

– CAP is the set of states,
– L′ is defined as before (in the semantics of UML-RT connectors),
– →� ⊆ CAP × L′ × CAP is the transition relation, and
– ca is the start state.
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Similar to the case of UML-RT Statechart semantics we write ca
l→� ca′ instead of

(ca, l, ca′) ∈ →�. We say that capsule ca may perform a (semantic) transition with
label l to capsule ca′. For l = τ we say that ca may perform a silent transition to ca′.

Transition relation →� is defined by a set of SOS rules presented in Table 3 using the
same rule format as in the case of UML-RT Statecharts as well as the rule format

name
premise

conclusion 1
conclusion 2

(condition)

being an abbreviation for two rules with identical premises and identical conditions:

name
premise

conclusion 1
(condition) and name

premise
conclusion 2

(condition)

We abbreviate tuples (x1, . . . , xl) by x̄ and we use functions In, Out : Prot −→ Π
defined by In(pr) =df Π1(pr) and Out(pr) =df Π2(pr), respectively. In addition,
function Set is defined by Set([x1, . . . , xn]) =df {x1, . . . , xn} transforming a tuple of
elements to a set of these elements. The operator :: concatenates two lists to a single
list. The list operator 〈〉 applied to an argument sig produces a list which contains sig.

For the case sig = ε we have 〈sig〉 = 〈ε〉 def=〈〉, i.e. the empty list.
Note that the premises of rules R2 and R3 use (semantic) transitions of the UML-

RT Statecharts semantics, whereas the premises of rules R5-R8 use transitions of the
UML-RT connector semantics.

Explanation of SOS rules of UML-RT capsule semantics (general case)

– R1 (storing an input event in input queue)
A capsule can read event in(sig) at port po and can store it as event sig in its input
queue.

– R2 (processing and storing input queue events )
If Statechart term S may perform a transition with input sig, output sig′, and flag
f to term S′, then a capsule with Statechart S can read event sig from its input
queue, can produce event sig′, and can store event sig′ in its input queue.

– R3 (processing an input queue event and producing an output event)
If Statechart term S may perform a transition with input sig, output sig′, and flag f
to term S′, then a capsule with Statechart S can read event sig from its input queue
and can produce event out(sig′) which is offered at port po.

– R4 (propagation of internal communication)
If a capsule ca can perform a silent transition to capsule ca′, then a parent capsule
of ca can also perform a silent transition.

– R5 (communication from capsule to connector)
If capsule ca may perform a transition with label out(sig)viapo to ca′ and if con-
nector co may perform a transition with label in(sig)viapo to co′, then a parent
capsule of ca and co may perform a silent transition to a parent capsule of ca′ and
co′, if po is a port of ca. Informally, capsule ca offers event sig at its port po and
connector co reads event sig at this port.

– R6 (communication from connector to capsule)
If connector co may perform a transition with label out(sig)viapo to co′ and if
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Table 3. SOS rules of UML-RT capsule semantics (general case)

R1
true

[n, p̄o, p̄r, S, σ] in(sig)viapo→� [n, p̄o, p̄r, S, 〈sig〉 :: σ]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] in(sig)viapo→� [n, p̄o, p̄r, S, 〈sig〉 :: σ, c̄a, c̄o]

�
�����

∃j : [Πj(p̄o) = po
∧

sig ∈ In(Πj(p̄r))]
∧

type(po) = end

�
�����

R2
S

sig

sig′→f S′

[n, p̄o, p̄r, S, σ :: 〈sig〉] τ→� [n, p̄o, p̄r, S′, 〈sig′〉 :: σ]
[n, p̄o, p̄r, S, σ :: 〈sig〉, c̄a, c̄o] τ→� [n, p̄o, p̄r, S′, 〈sig′〉 :: σ, c̄a, c̄o]

R3
S

sig

sig′→f S′

[n, p̄o, p̄r, S, σ :: 〈sig〉] out(sig′)viapo→� [n, p̄o, p̄r, S′, σ]

[n, p̄o, p̄r, S, σ :: 〈sig〉, c̄a, c̄o] out(sig′)viapo→� [n, p̄o, p̄r, S′, σ, c̄a, c̄o]

�
�����

∃j : [Πj(p̄o) = po
∧

sig′ ∈ Out(Πj(p̄r))]
∧

type(po) = end

�
�����

R4
ca

τ→� ca′

[n, p̄o, p̄r, c̄a, c̄o] τ→� [n, p̄o, p̄r, c̄a[ca/ca′], c̄o]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] τ→� [n, p̄o, p̄r, S, σ, c̄a[ca/ca′], c̄o]

(ca ∈ Set(c̄a))

R5
ca

out(sig)viapo→� ca′ co
in(sig)viapo→c co′

[n, p̄o, p̄r, c̄a, c̄o] τ→� [n, p̄o, p̄r, c̄a[ca/ca′], c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] τ→� [n, p̄o, p̄r, S, σ, c̄a[ca/ca′], c̄o[co/co′]]

�
�����

ca ∈ Set(c̄a)
∧

co ∈ Set(c̄o)
∧

po ∈ Ports(ca)

�
�����

R6
co

out(sig)viapo→c co′ ca
in(sig)viapo→� ca′

[n, p̄o, p̄r, c̄a, c̄o] τ→� [n, p̄o, p̄r, c̄a[ca/ca′], c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] τ→� [n, p̄o, p̄r, S, σ, c̄a[ca/ca′], c̄o[co/co′]]

�
�����

ca ∈ Set(c̄a)
∧

co ∈ Set(c̄o)
∧

po ∈ Ports(ca)

�
�����

R7
co

in(sig)viapo→c co′

[n, p̄o, p̄r, c̄a, c̄o] in(sig)viapo→� [n, p̄o, p̄r, c̄a, c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] in(sig)viapo→� [n, p̄o, p̄r, S, σ, c̄a, c̄o[co/co′]]

�
�

co ∈ Set(c̄o)
∧

po ∈ Set(p̄o)

�
�

R8
co

out(sig)viapo→c co′

[n, p̄o, p̄r, c̄a, c̄o] out(sig)viapo→� [n, p̄o, p̄r, c̄a, c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] out(sig)viapo→� [n, p̄o, p̄r, S, σ, c̄a, c̄o[co/co′]]

�
�

co ∈ Set(c̄o)
∧

po ∈ Set(p̄o)

�
�

capsule ca may perform a transition with label in(sig)viapo to ca′, then a parent
capsule of ca and co may perform a silent transition to a parent capsule of ca′ and
co′, if po is a port of ca. Informally, connector co offers event sig at its port po and
capsule ca reads event sig at this port.
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– R7 (propagation of external input communication)
If connector co may perform a transition with label in(sig)viapo to co′, then a
parent capsule of co may perform a transition with the same label to a parent capsule
of co′, if po is a port of the parent capsule.

– R8 (propagation of external output communication)
If connector co may perform a transition with label out(sig)viapo to co′, then a
parent capsule of co may perform a transition with the same label to a parent capsule
of co′, if po is a port of the parent capsule.

Note that due to the modularity of the UML-RT capsule syntax and semantics defi-
nition, the syntax and semantics can be easily enhanced. For example, in order to con-
sider UML-RT Statecharts with interlevel transitions and with entry and exit actions,
we could use the (enhanced) UML-RT Statechart terms UML-SC′ and the transition
relation −→′ of our earlier work [17]. Then we would only have to replace

– the set of UML-RT Statechart terms UML-SC in Section 2.2 in the definitions of
a basic UML-RT capsule and of a complex behavioural UML-RT capsule by the
(enhanced) UML-RT Statechart terms UML-SC′ and

– the transition relation in the premise of the SOS rules R2 and R3 in the same
section by transition relation −→′.

Port-specific Case. As already mentioned at the end of Section 1, process-algebraic
equivalence and refinement notions could be used for systematic analysis of UML-RT
models. Engels et al. [3] follow this approach to define UML-RT consistency notions.
As a precondition, it is neccessary to define equivalence and refinement notions on the
semantics of UML-RT. However, in some cases such a notion should not be defined
on the ”overall” UML-RT capsule semantics, but on a UML-RT capsule semantics ”re-
stricted to” a port of the considered capsule. Therefore, we now define the port-specific
semantics of a UML-RT capsule for a given port of the capsule using our already de-
fined general case UML-RT capsule semantics.

The port-specific semantics [[ca]]po of a UML-RT capsule ca ∈ CAP for port po (with
po ∈ Ports(ca)) is given by the labeled transition system (CAP, L′′, →�po , ca) ∈ LTS,
where

– CAP is the set of states,
– L′′ = {τ} ∪ Π is the set of labels,
– →�po ⊆ CAP × L′′ × CAP is the transition relation defined by the three SOS

rules7 presented in Table 4, and
– ca is the start state.

Explanation of SOS rules of UML-RT capsule semantics (port-specific case)
Informally, the port-specific semantics of a UML-RT capsule ca for a port po of this
capsule constitutes a restriction of the general case semantics of ca, as follows:

7 Note that the premises of the rules use the transition relation of the general case UML-RT
capsule semantics.
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Table 4. SOS rules of UML-RT capsule semantics (port-specific case)

P1
ca

dir(sig)viapo→� ca′

ca
sig→�po ca′

(dir ∈ {in, out})

P2
ca

dir(sig)viapo′
→� ca′

ca
τ→�po ca′

�
�

dir ∈ {in, out}
∧

po �= po′

�
�

P3
ca

τ→� ca′

ca
τ→�po ca′

– P1
A signal sig occuring at port po is communicated - however without any annota-
tions like ’in’, ’out’ and ’via po’.

– P2
No signal occuring at another port po′ is communicated. In this case only the inter-
nal action τ is communicated.

– P3
If a silent transition can occur in the general case semantics, then a silent transition
can also occur in the port-specific semantics.

4 Related Work

Our work was motivated by results from several areas: a diversity of formal semantics
definitions of Statecharts (e.g. [8,15,6,17,7,16]) and the formal semantics definition of
SDL from Godskesen [4].

In addition, our work was influenced by the work of Engels et al. [3]. In contrast to
them, we do not restrict to atomic UML-RT models, but consider complex, hierarchical
ones. Furthermore, we select labeled transition systems as semantic domain, whereas
Engels et al. use CSP processes [5]. Finally, we explicitly distinguish between internal
and external communication in our UML-RT semantics definition.

A lot of work exists which deals with formal semantics definition in the context of
UML:

Reggio et al. [11] consider classes associated with state machines. They define a
formal semantics for flat UML state machines in terms of transition systems.

Rumpe [12] defines a formal semantics for flat automata (i.e. not for hierarchical
systems) based on traces.

Damm et al. [2] define the syntax and formal semantics for a subset krtUML of
UML encompassing - among others - asynchronous signal based communication as
well as synchronous communication using operation calls. Symbolic transition sys-
tems are chosen as semantic domain. krtUML models do not support hierarchical state-
machines, whereas rtUML-models - a superset of krtUML models - do provide this
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support. However, a translation from a rtUML model to a krtUML model is (only)
sketched. In addition, Damm et al. provide quite a detailed and well-classified overview
of related work concerning formal UML semantics definitions.

Shankar and Asa [14] also deal with formal semantics definition of real-time UML
behaviour, namely concurrently interacting statecharts and sequence diagrams, however
they do not cover hierarchical models and use propositional linear temporal logic for
defining a compositional semantics.

Arons et al. [1] present a formal semantics for a subset of UML encompassing class
diagrams and state machine diagrams. They use transition systems as semantic domain.
However, the considered UML subset is restricted to flat models.

5 Conclusions and Further Work

We presented a precise and modular syntax and semantics definition of a sublanguage
of UML-RT. We followed Plotkin’s style of Structured Operational Semantics (SOS)
based on labeled transition systems as semantic domain. To the best of our knowledge
this is the first formal semantics definition for hierarchical UML-RT models.

In future we will consider the semantics of UML 2.0 instead of UML-RT. In addition,
we want to examine and adapt existing equivalence and refinement notions to be used
for systematic analysis of UML-RT and UML 2.0 models.
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