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Abstract. Increasingly, object-oriented technology, specifically the Uni-
fied Modeling Language (UML), is being used to develop critical embed-
ded systems. Several efforts have attempted to translate UML models
into formal specification languages, thus enabling the models to be an-
alyzed by model checkers. Unfortunately, the complexity and volume of
the analysis results often prevents developers from fully taking advantage
of the analysis capabilities. This paper introduces a generic visualization
framework, Theseus, that provides developers with a model-based, vi-
sual interpretation of the analysis results in terms of the original UML
diagrams. Within this framework, a playback mechanism displays the
execution path that has led to a model checking violation in terms of the
original UML state diagram and a newly generated sequence diagram
that depicts the problem scenario. A Theseus prototype supporting the
Spin and SMV model checkers has been applied to the analysis of UML
models for embedded systems from industry.

1 Introduction

Embedded systems have become increasingly pervasive, particularly occurring
in high-assurance systems, such as automotive systems, medical devices, and
telecommunication systems. Given the critical nature of these embedded systems
applications, it is important to use rigorous development techniques. Increas-
ingly, object-oriented technology is being used to develop embedded systems [1].
Furthermore, the Unified Modeling Language (UML) [2], the de facto standard
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for object-oriented modeling, is the primary modeling notation for the recent
movement towards model-driven development (MDD), such as that used in the
model-driven architecture (MDA) by the OMG [2]. Using MDD, the models are
refined iteratively from requirements to design and eventually code is gener-
ated. One drawback with the UML has been the lack of model analysis tools.
To date, most of the UML analysis has been limited to syntactic-based analy-
sis or simulation. Recently, there have been several efforts to translate object-
oriented diagrams (e.g., state and sequence diagrams) to formal specification
languages [3, 4, 5, 6] to be analyzed for adherence to behavioral properties by
model checkers, such as Spin [7] and SMV [8]. A challenge with this approach
to analysis is how to understand and then use the error descriptions from the
analysis output to revise the original UML diagrams. This paper describes a
generic visualization framework, Theseus, that interprets the analysis output
from model checkers in terms of the original UML diagrams. Using Theseus,
the developer is alleviated from the burden of deciphering the frequently cryptic
and verbose trace output, which is often denoted in an analysis tool-specific lan-
guage, including references to line numbers of the specification, internal process
numbers, temporary variable names, etc.

In addition to the syntactic-based analysis tools, such as those provided with
XDE [9], several CASE tools [10, 11, 12, 13, 14] provide visualization support
for (UML) model simulation. Simulation provides information about a single ex-
ecution path (e.g., a scenario) through a system model, where visualizations can
be used to depict a scenario by displaying message traces in sequence diagrams
or highlighting elements of a state diagram. Simulation-based analysis validates
that a model conforms to a developer’s expectations. In contrast, the recent
work of translating the UML diagrams to model checker specification languages
is intended to support the verification of UML models. That is, does a UML
model satisfy temporal properties, such as invariants and leads-to properties,
for all possible execution paths. Particularly for high-assurance systems, it is
important to be able to verify a UML model against critical properties before
the models are refined to design and code. A notable feature of model checkers
is that if a system model does violate a property, a counterexample depicting
the sequence of events and/or states causing the violation is returned. Two chal-
lenges exist with using the analysis results. First, a developer must decipher
the verbose and often non-intuitive representation of system elements specified
in the counterexample. Second, the cause of the error must be traced back to
the original UML diagram in order to make the appropriate model refinements,
particularly in the context of MDD.

This paper describes a generic visualization framework, Theseus, that sup-
ports a model-driven, visual interpretation of analysis output from commonly
used model checkers. Three tasks were essential in the development of Theseus.
First, based on numerous trace output files generated from each model checker,
we constructed a grammar and a corresponding parser for each model checker
to be supported by Theseus; the parser generates an abstract syntax graph
(ASG) for a given trace file. Second, we developed a translator for each formal
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analysis tool that traverses the ASG to generate a generic XML representation
containing only UML-relevant model elements, such as state names, transition
names, attributes, etc. The parser and translator are combined into an analy-
sis tool-specific trace processor. Third, we developed a visualization engine that
processes the XML representation of the counterexamples to support UML state
diagram animation and sequence diagram generation. The combination of these
three elements have been encompassed in the Theseus prototype that accepts as
input a UML model and the trace file for a counterexample generated from a
model checker for an error detected in the UML model, and produces a state di-
agram animation and sequence diagram depicting the counterexample. The user
has the option of either stepping (single or multi-step) through the animation
or running through the complete counterexample, where color changes are used
to depict state and transition traversals.

Theseus has been developed to provide a critical piece of a larger project
supporting a roundtrip-engineering approach to the construction of UML dia-
grams for modeling and analyzing embedded systems requirements. Specifically,
we have previously developed several techniques and tools to provide a bridge
between (semi-)informal and formal approaches to requirements engineering of
embedded systems. First, in order to enable UML diagrams to be automatically
analyzed by model checkers, we developed a meta-model based approach to
mapping UML diagrams to target specification languages [3]. Hydra is a proto-
type tool that supports the automatic generation of specification languages, such
as Promela, the specification language of the Spin model checker [7], from UML
class and state diagrams. Second, in order to help developers create the UML dia-
grams, we developed a set of object analysis patterns for embedded systems [15],
that provide sample structural and behavioral UML templates for modeling em-
bedded systems. Third, in order to facilitate the specification of formally ana-
lyzable properties using natural language, we have developed a structured nat-
ural language grammar and Spider (Specification Pattern Instantiation and
Derivation EnviRonment) [16, 17]. Using Spider, developers can create nat-
ural language specifications of properties that are automatically and transpar-
ently mapped to the property specification language of the targeted analysis
tools, e.g., linear-time temporal logic (LTL) [18] for the model checker Spin [7].
Theseus provides the fourth component of the roundtrip-engineering process,
that is, the visualization of the model checking analysis. Therefore, putting all
four elements together, a developer can use the object analysis patterns to create
a UML model for an embedded system, use Hydra to generate a formally analyz-
able model for a model checker, use Spider to specify properties to be satisfied
by the UML model, use the model checker to analyze the UML model against
the Spider-specified properties, and use Theseus to visualize counterexamples
generated from the model checker in terms of the original UML diagrams, thus
completing the roundtrip-engineering process.

In order to validate our work, Theseus has been instantiated to handle trace
output generated from two different model checkers, Spin and SMV, and we have
applied our roundtrip-engineering process to the analysis of several industrial
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embedded systems. The remainder of the paper is organized as follows. Section 2
provides background information on the supporting elements of the roundtrip-
engineering process. Section 3 gives the architecture for Theseus and describes
the visualization capabilities. Section 4 presents a case study involving the Spin
model checker results. Section 5 overviews related work. Finally, Section 6 gives
concluding remarks and discusses future investigations.

2 Roundtrip Modeling and Analysis Overview

This section introduces the roundtrip modeling and analysis process depicted in
Fig. 1, where the shaded swimlanes depict the activities encompassed by The-
seus. Specifically, we describe the process of creating a UML model, formalizing
the model, and checking the model for adherence to properties.

SPIDER Case tool Formal analysis framework

UML model 
formalizer Model checker

Theseus
trace processor

Theseus 
visualization 

engine

User creates 
NL property

Translate to  
formal 

property

User creates 
UML model
guided by 

object 
analysis 
patterns

Translate to
formal 

specification

Perform 
analysis

Translate to
intermediate
XML format

Create 
visualization 

elements

User views 
visualizations

[property holds]

Generate
violation trace

[property does
not hold]

A

A

User 
corrects 

UML model

Fig. 1. Roundtrip Modeling and Analysis Process

2.1 Step 1: Creating a UML Model and Specifying a Property

In the first step, the developer uses a CASE tool, such as ArgoUML [19], to create
a UML model that describes the structure and behavior of the system. In gen-
eral, the structure of the system is described in terms of UML class diagrams.
Behavioral aspects are modeled using state diagrams associated with the classes.
Abstraction should be used to address the size and complexity of the model. Specif-
ically, we model only those portions of the system that are relevant to the analysis.
Multiple, specialized models can be created for different aspects of the system.

To aid in the creation of these models for embedded systems, we previously
developed object analysis patterns [15]. Whereas design patterns [20] guide
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developers in the construction of design models, object analysis patterns guide
developers in the creation of conceptual models during the analysis phase
preceding the design phase. Specifically, these patterns aid in the construction
of conceptual models of the embedded systems focusing on functional aspects,
where these models may later be refined in the design phase through the use of
design patterns.

Next, the user specifies the properties of the UML model to be analyzed. In
our approach, these properties are specified in natural language using a pre-
viously developed process for deriving and instantiating formally analyzable
natural language properties based on real-time and qualitative specification pat-
terns [16, 17], termed Spider. Briefly, the Spider process comprises three steps:

1. Derivation: Derive a natural language sentence from a structured natural
language grammar.

2. Instantiation: Instantiate the natural language representation with model-
specific elements.

3. Mapping: Map the instantiated natural language sentence to the temporal
logic required by the targeted formal validation and verification tool and
analyze.

An important component of this process is a structured natural language
grammar. This grammar is used to derive natural language sentences that
can be mapped to formal specifications structured in terms of a specification
pattern system. In this paper, we use the qualitative portion of a previously
developed structured English grammar [21] for the specification patterns by
Dwyer et al. [22].

Using Spider, the developer specifies the property to be verified in natural
language. Spider then translates the natural language property to a form that
can be understood by the targeted analysis tool.

2.2 Step 2: Formalizing a UML Model

The UML model created from the object analysis patterns is translated into
the specification language for the targeted model checker. It is well-known that
UML lacks a precise, formally defined semantics. Therefore, numerous seman-
tic interpretations are possible for a given diagram. In order to address this
problem and to make UML diagrams amenable to rigorous analysis, McUm-
ber and Cheng [3] developed a metamodel-based formalization framework that
maps a given UML model into a formal specification language. Hydra automates
this mapping process [3]. Specifically, we have created a UML-to-Promela for-
malization, supported by Hydra, tailored to the unique properties of embedded
systems. This formalization maps objects to processes in Spin (proctypes) that
exchange messages via channels. Nested and concurrent states are also formal-
ized as processes. For the purposes of this paper, the formalization framework
is configured to read UML 1.4 [2] models1 specified in terms of XMI 1.1 [2] and
generate Promela [7] specifications.
1 CASE tool support for UML 1.5 and UML 2.0 is still limited.
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To use the SMV model checker [23, 8], Tanuan and Atlee [5] have developed
a set of rules to translate a UML model into SMV’s specification language.
Currently, there does not exist a tool that automatically translates UML models
to SMV specifications. Therefore, we manually translate a UML model into an
SMV specification using these rules. (We are extending Hydra to support this
formalization.)

2.3 Step 3: Analyzing a UML Model

Next, the developer uses a model checker to analyze the formalized UML model
for adherence to the previously specified property. If the model checker finds a
violation of the property, then a violation trace is returned. The violation trace
contains the sequence of steps performed by the system that lead to the violation.

3 Theseus Visualization Framework

The Theseus visualization framework, shown in the shaded region of the activ-
ity diagram in Fig. 1, supports visually interpreting the analysis results gener-
ated by model checkers in terms of the original UML diagrams. For example,
Fig. 2(a) depicts a state diagram that has been analyzed for our adaptive light
controller case study that will be described in detail in Section 4. Fig. 2(b) is an
excerpt of the corresponding violation trace generated by Spin. From the trace
files, Theseus extracts four types of dynamic behavior to animate: (1) A state
is visited; (2) A transition is taken; (3) A message is sent; and (4) A message
is received. The Theseus visualization framework comprises two components to
depict this behavior: the Theseus trace processor and the Theseus visualization
engine. The Theseus visualization engine takes the XML intermediate represen-
tation of the dynamic behavior from the trace output and the original UML
model as inputs and produces the UML state diagram animations and UML
sequence diagram generation. We describe the Theseus trace processor and vi-
sualization engine in more detail.

3.1 Theseus Trace Processor

The objective of the Theseus trace processor (depicted in Fig. 1) is to identify
the dynamic behavior within the violation trace file and to specify this behavior
in an intermediate XML representation. It comprises a parser, which must be
constructed for each syntactically unique trace file format, and a translator. Note
that different trace file formats will be generated by different model checkers or
by the same model checker with different output options or different instru-
mentation. However, each parser is reusable across traces generated from the
analysis of different UML models and/or different properties by the same model
checker with the same output options selected. Each parser constructs an ASG
(abstract syntax graph) representation of the dynamic behavior specified by the
trace file. The translator then traverses the ASG and creates an intermediate
XML representation of the dynamic behavior.
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Idle

DisplayNormal

normalMode()[]/

(a) State Diagram

6: proc 17 (UserInterface) line 1680 "pan_in" (state 1)
[goto Idle]

8: proc 17 (UserInterface) line 1714 "pan_in" (state 50) [(1)]
in state UserInterface.Idle

8: proc 17 (UserInterface) line 1714 "pan_in" (state 51)
[printf(’in state UserInterface.Idle\\n’)]

...
200: proc 17 (UserInterface) line 1725 "pan_in" Recv normalMode

<- queue 12 (UserInterface_q)
200: proc 17 (UserInterface) line 1725 "pan_in" (state 65)

[UserInterface_q?normalMode]
Transition to UserInterface.DisplayNormal (evt:normalMode())

202: proc 17 (UserInterface) line 1727 "pan_in" (state 67)
[printf(’Transition to UserInterface.DisplayNormal
(evt:normalMode()) ’)]

204: proc 17 (UserInterface) line 1698 "pan_in" (state 27) [(1)]
in state UserInterface.DisplayNormal

204: proc 17 (UserInterface) line 1698 "pan_in" (state 28)
[printf(’in state UserInterface.DisplayNormal\\n’)]

(b) Corresponding Violation Trace

Fig. 2. Sample State Diagram and Violation Trace

An excerpt of a violation trace generated by Spin is depicted in Fig. 2(b). It
contains information from four different sources: the UML model, the Promela
specification, any instrumentation added by Hydra, and internal Spin informa-
tion (e.g., line numbers, process number, Spin states, etc.). The Theseus parser
extracts the information corresponding to the four dynamic behaviors of interest
and represents it as an ASG. We give examples of each as follows:

1. A UML state is visited:
6: proc 17 (UserInterface) line 1680 ‘‘pan in’’ (state 1) [goto
Idle]
The portion of the statement depicted in typewriter font specifies Spin inter-
nal information that is irrelevant for visualization purposes. Specifically, 6:
proc 17 represent the execution step and internal Spin process number, re-
spectively. line 1680 ‘‘pan in’’ (state 1) are the line number within
and the file name of the trace file, and the Spin internal state, respectively.
This statement specifies that the UserInterface visits state Idle.

2. A UML transition is taken:
Transition to UserInterface.DisplayNormal (evt:normalMode()^
Display.showNormMes)
This statement is produced by the instrumentation (from Hydra) added
to the Promela specification. Spin can provide this information, but only
by activating specific flags to generate even more verbose and cumbersome
output. Therefore, since we have the ability to extend Hydra, for convenience
we have added instrumentation to obtain this information. This statement
denotes that the UserInterface transitions to state DisplayNormal as a result of
the normalMode event occurring. In addition, as a result of this transition
being taken, the message showNormMes is sent to Display.
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3. A UML message is sent:
201: proc 17 (UserInterface) line 1726 ‘‘pan in’’ Send
showNormMes → queue 13 (Display q)
This statement specifies that UserInterface sends the message showNor-
mMes to Display.

4. A UML message is received:
206: proc 11 (Display) line 1248 ‘‘pan in’’ Recv showNormMes
← queue 13 (Display q)
This statement specifies that Display receives the message showNormMes.

The Spin translator translates the ASG representation of the dynamic be-
havior generated by the parser into an XML intermediate format. Specifically,
there is an intermediate XML specification for each of the four types of dynamic
behavior. For example, Fig. 3(a) shows a sample XML element specifying that
state Idle in class UserInterface is visited. Fig. 3(b) specifies that object Display
sent a message named showNormMes to object UserInterface.

<Expression>
<Process name="UserInterface"/>
<Goto>
<Read_location>

<Process name="UserInterface"/>
<State name="Idle"/>

</Read_location>
</Goto>

</Expression>

(a) Visited State

<Expression>
<Process name="UserInterface"/>
<Send_Message>
<Message name="showNormMes"/>
<End_Transition>

<Queue name="Display"/>
</End_Transition>

</Send_Message>
</Expression>

(b) Sent Message

Fig. 3. Sample XML Elements

3.2 Visualization Engine

The visualization engine has been implemented in the ArgoUML [19] CASE
tool as a plugin. ArgoUML was selected because of its open source application
programming interface (API) that allows the creation of plugins. Theseus pro-
vides two animation options: automatic playback and incremental playback. Au-
tomatic playback animates the complete violation trace; whereas, incremental
playback animates the animation trace in a stepwise fashion (single or multi-
step). The multi-step option is useful when there are a large number of steps in
the violation trace and the developer suspects the first several steps may not be
relevant to the violation. After skipping to a specific step, the developer is able
to automatically play the remaining steps, or incrementally play the next step.

Theseus provides two mechanisms for visualizing violation traces on the UML
model, state diagram animation and sequence diagram generation. Specifically,
state diagram animation depicts that a state is visited (colored red when vis-
ited and turns yellow upon departure) and that a transition fires (in red). The
generated sequence diagram is animated to depict that a message is sent (arrow
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in red) and received (arrow in blue). As such, Theseus depicts all four types of
dynamic behavior useful for understanding a violation trace.

Both state diagram and sequence diagram animations help a developer to
better understand the cause for a property violation. While the state diagram
animation is better suited for understanding the behavior of an individual object,
the generated sequence diagram helps a developer to understand the context for
a property violation in terms of object interaction. Note that typically a UML
diagram may have several state diagrams, each of which represents the behavior
of a particular object in the system. Currently, Theseus displays the state dia-
gram of a particular object, depending on the part of the counterexample being
traversed. As events and messages communicate among objects, the correspond-
ing object’s state diagram is displayed. In future versions, we plan to display
more than one state diagram at a time in addition to the sequence diagram.

4 Case Study

This section describes an industrial case study we performed to validate our
visualization framework. Specifically, object analysis patterns were used to create
a UML model of an embedded system application, Hydra generated a formal
specification of the UML model, Spin verified critical system properties specified
with Spider, and Theseus visualized the analysis results in terms of the original
UML diagrams. Due to space constraints, we do not include a case study for the
SMV visualization, but a description may be found in [24].

4.1 Adaptive Light Control System

The adaptive light control system (ALCS) is responsible for moderating the
lights in a room. A class diagram depicting the structure of this system is de-
picted in Fig. 4. The class attributes and operations have been elided due to
space constraints.

The primary function of the ALCS is to ensure that if the room is occu-
pied, then the room is sufficiently illuminated, either by natural light or by the
lamps. The ALCS comprises a switch for manually turning on the lights, a dis-
play for communicating messages to a user, a motion sensor for detecting that
the room is occupied, a brightness sensor for detecting the current illumination
level of the room, and a dimmer that controls the brightness of the lamps. The
Controller Decompose, Actuator-Sensor, User Interface, Computing Component,
Fault Handling, and Detector-Corrector object analysis patterns have been used
in the specification of the structure and behavior of the ALCS. For additional
details about these patterns, please refer to [15]. Note, Fig. 2(a) describes a
portion of the behavior of the UserInterface.

4.2 Property Specification and Analysis

We analyzed the UML model for the ALCS using the Spin model checker. First,
we used Hydra to translate an XMI representation of the UML model into
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Fig. 4. Class Diagram of the ALCS

Promela. Second, we used Spider to formally specify properties to be satis-
fied by the model. For example, using Spider, we created the following natural
language property:

“Globally, it is always the case that if the initialization has succeeded, then
eventually the display shows the initialization succeeded message.” (1)

Spider then extracts UML model elements from the ALCS model to instan-
tiate the free-form text the initialization has succeeded and the display shows the
initialization has succeeded message with model-specific elements. The initial-
ization in the ALCS has succeeded if the lightStatus of the ComputingCompo-
nent is set to value 1. Therefore, the initialization has succeeded is replaced with
ComputingComponent.lightStatus=1. Similarly, the text the displays shows the
initialization succeeded message is replaced with call(Display.showNormMes())
to denote that the message showNormMes() of the Display is called. Thus, we
obtain the following instantiated natural language property:

“Globally, it is always the case that if ComputingComponent.light-
Status=1, then eventually call(Display.showNormalMes()).” (2)

From this specification, Spider automatically creates the formal specification
of the property in LTL:

�((ComputingComponent.lightStatus=1) (3)
→ ♦(call(Display.showNormMes())))



Modeling and Formal Analysis of High Assurance Systems 717

At this point, Spider invokes Spin with the Promela model of the ALCS and
the LTL property. In this case, model checking detected a violation and Spin
generated a violation trace.

4.3 Property Visualization

Theseus processed the violation trace and visualized the counterexample in terms
of the original UML state diagrams and a sequence diagram. A screen shot of a
state diagram animated to depict one step of the violation trace is depicted in
Fig. 5, where the key thing to note is the different colors of the states and the
transitions. In this case, we are viewing the state diagram for the UserInterface
object. (The intent of these figures is not to read the individual names of states
or transitions, but to note the color changes – or the levels of shading in gray
scale.) A screen shot of the sequence diagram generated by Theseus depicts the
violation trace shown in Fig. 6. Using the Theseus visualizations of the violation
path, we were able to locate the source of the error and revise the UML model
accordingly. Rerunning the overall process yielded no further violations. Without
Theseus, we would be forced to understand the syntax and semantics of the trace
output, determine the relationship between the output and the UML model, and
then locate the corresponding error within the UML model.

5 Related Work

Numerous CASE tools [10, 11, 12, 13, 14] provide visualization support for UML
model simulation. To the best of our knowledge, they do not support the visu-
alization of violation traces gathered during model checking analysis in terms
of the original UML diagrams. Most formal analysis tools, in contrast, offer vi-
sualization capabilities in terms of the analysis models, such as Spin [7] and
UPPAAL [25]. However, this visualization is on the level of the description lan-
guage of the formal analysis tool and not at a more abstract level, such as a
UML model.

Other tools visualize analysis results from model checkers in terms of UML.
vUML [4] translates UML diagrams into Promela and uses Spin for analysis pur-
poses. Violation traces revealed by formal analysis may be displayed in terms
of UML sequence diagrams. To keep the model checking process transparent,
vUML focuses on the analysis of more general properties, such as deadlocks
and livelocks. Differing from our work, vUML only supports the translation of
UML models to Promela, does not support the construction of property specifi-
cation in terms of natural language or formal specification languages, and does
not offer state diagram animation capabilities. MOCES [26] translates Statem-
ate [11] state charts into Promela. The semantics of the Statemate state charts
differs from the semantics for UML state diagrams [27]. In addition, MOCES
only supports the analysis of a single state chart, while our tool analyzes be-
havior captured in a collection of collaborating state machines. Hugo/RT [28]
supports the analysis of UML diagrams using Spin or UPPAAL [25]. In addi-
tion, Hugo/RT can translate a violation trace produced by these analysis tools
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Fig. 5. Theseus Animation of Adaptive Light Controller Violation Path

to a representation in terms of UML elements. However, Hugo/RT provides a
proprietary textual UML representation and does not interactively display the
violation trace in terms of a graphical UML representation in a CASE tool.
In summary, none of the aforementioned tools combines the capability of dis-
playing analysis results in terms of UML sequence and state diagrams and the
customizability towards numerous formal analysis tools.

6 Conclusions

This paper has described a generic visualization framework that provides a criti-
cal link in a roundtrip-engineering process for modeling and analyzing embedded
systems. The prototype of this visualization framework, offers three key bene-
fits to UML modelers who want to model check their UML diagrams. First,
Theseus supports modelers who are not proficient in interpreting the verbose
and often cryptic analysis results generated by model checkers, by locating the
source of the error identified by the violation trace. Theseus visually animates
the violation trace on the UML state diagrams and a generated sequence dia-
gram. Second, Theseus is extensible to other formal analysis tools beyond the
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Fig. 6. Theseus Generated Sequence Diagram depiction of Adaptive Light Controller
Violation Path

ones mentioned in this paper. To extend Theseus to visualize output from other
analysis tools, a specific Theseus trace processor needs to be constructed. The
parser of the trace processor depends on the formalization rules (i.e., the rules
for mapping UML to the target specification language of a given analysis tool)
and the violation trace output options used in the model checker (including any
instrumentation added to the trace output). The translator of the trace proces-
sor, however, depends only on the formalization rules, and is potentially reusable
for different violation trace output options. Currently, we have developed trace
processors that support output generated by the SMV and Spin model check-
ers. Independent of the model checker, the formalization rules, and the output
options, the Theseus visualization engine is reusable across the trace output
for different state-based analysis tools. Third, Theseus completes the roundtrip
modeling and analysis process for embedded systems by enabling a developer to
automatically formalize a UML model, specify natural language properties that
the model must satisfy, analyze the model for adherence to these properties, and
visualize property violations in terms of the original UML diagrams.
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Futureworkwill include applyingTheseus to additional case studies and extend-
ingTheseus in different directions. First,we are extendingTheseus to viewmultiple
state diagrams side-by-side during animation. Additionally, we are investigating
how to extend the Theseus framework to visualize the analysis results from com-
plementary model checkers, such as the real-time model checkers Kronos [29] and
UPPAAL [25]. Finally, we are exploring a more seamless integration between the
tools and the steps of our roundtrip-engineering process for modeling and analysis.
The biggest challenge has been the vendor-specific differences in the implementa-
tion of the standard for data interchange between tools and third parties.
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