
Mappings, Maps and Tables: Towards Formal
Semantics for Associations in UML2 �

Zinovy Diskin and Juergen Dingel

School of Computing, Queen’s University,
Kingston, Ontario, Canada

{zdiskin, dingel}@cs.queensu.ca

Abstract. In fact, UML2 offers two related yet different definitions of
associations. One is implicit in several Description and Semantics sec-
tions of the specification and belongs to the UML folklore. It simply
says that an association is a set of links. The other – official and formal
– definition is explicitly fixed by the UML metamodel and shows that
there is much more to associations than just being sets of links. Partic-
ularly, association ends can be owned by either participating classes or
by the very association (with a striking difference between binary and
multiary associations), be navigable or not, and have some constraints
on combining ownership and navigability.

The paper presents a formal framework, based on sets and mappings,
where all notions involved in the both definitions can be accurately ex-
plained and formally explicated. Our formal definitions allow us to rec-
oncile the two views of associations, unify ownership for binary and mul-
tiary associations and, finally, detect a few flaws in the association part
of the UML2 metamodel.

1 Introduction

Associations are amongst the most important modeling constructs. A clear and
accurate formal semantics for them would provide a guidance for a convenient
and precise syntax, and greatly facilitate their adequate usage. Moreover, in
the context of model-driven software development, semantics must be crystal
clear and syntax has to specify it in an unambiguous and suggestive way. An
additional demand for clarifying the meaning of associations comes from UML2
metamodel that is based on binary associations.

Unfortunately, the UML2 specification [8], further referred to as the Spec, does
not satisfy these requirements. While complaints about informality of semantics
are common for many parts of UML, for associations even their (abstract) syntax
seems to be complicated and obscure in some parts. For example, the meaning of
the (meta)associations ownedEnd and navigableOwnedEnd of the Association
(meta)class in the metamodel is not entirely clear. More accurately, it is not

� Research supported by OCE Centre for Communications and Information Technol-
ogy and IBM CAS Ottawa.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 230–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mappings, Maps and Tables: Towards Formal Semantics for Associations 231

easy to comprehend their meaning in a way equally suitable for both binary
and multiary (arity n ≥ 3) associations. The infamous multiplicity problem for
multiary associations is another point where the cases of binary and multiary
associations are qualitatively different in UML (see, e.g., [3]). Even the very
definition of association, in fact, bifurcates for the binary and multiary cases,
though this fact is hidden in the excessively fragmented presentation of the
UML metamodel via packages. A sign of distortion of the association part of the
metamodel is that many modeling tools do not implement multiary associations
(not to mention qualified associations - a rarity among the implemented modeling
elements).

We will show in the paper that all these problems grow from the same root, and
can be readily fixed as soon as the root problem is fixed. The point is that UML
mixes up three conceptually and technically different sides of the association
construct. In the most popular view, an association is just a collection of tuples
or a table. For example, a ternary association between classes X1, X2, X3 is a
three-column table T = (R, p1, p2, p3) with R the set of rows or tuples of the
association and p1, p2, p3 the columns, that is, mappings pi : R → Xi,i = 1, 2, 3,
called association ends. This is a purely extensional view and the roles of the
classes are entirely symmetric.

A more navigation-oriented view of the same association is to consider it as
a triple of binary mappings

f1 : X2 × X3 → X1, f2 : X1 × X3 → X2, and f3 : X1 × X2 → X3 (1)

which we call structural (Table 1 on p.240 presents it in visual form). Note that
each of the structural mappings is asymmetric and has a designated target, or
goal, class. Yet the set of three mappings MS = (f1, f2, f3) retains the symmetry
of the tabular view. We will call such sets structural maps of associations.

When we think about implementation of structural maps, we need to decide,
first of all, which of the possible navigation directions should be most effective
and which of the classes will implement it. For example, the mapping f1 can be
implemented as either a retrieval operation in class X2 with a formal parameter
of type X3, f12(x:X3) : X2 → X1,1 or as a retrieval operation in class X3 with a
formal parameter of type X2, f13(x:X2) : X3 → X1. We will call such mappings
operational or qualified, since UML calls formal parameters qualifiers. Thus, the
same association can be viewed as a six-tuple MQ of qualified mappings fij (see
Table 1 where only three of them shown). Note that each of the qualified map-
pings brings more asymmetry/navigational details to its structural counterpart
yet their full set MQ retains the symmetry of the entire association; we will call
such sets operational or qualified maps.

Thus, in general an association is a triple A = (T, MS, MQ) of mutually
derivable components, with T , MS and MQ also consisting of multiple member
mappings. Unfortunately, for specifying this rich instrumentary of extensional
and navigational objects, the UML metamodel offers just one concept of the
1 Which might be written as f12 : X2 → [X3 → X1] in the functional programming

style.

232 Z. Diskin and J. Dingel

association memberEnd. For example, a ternary association consists of the total
of twelve mappings while the UML metamodel states only the existence of its
three ends. Not surprisingly, that in different parts of the Spec the same notion
of memberEnd is interpreted as either a projection mapping (column), or a
structural mapping, or a qualified mapping (operation). Inevitably, it leads to
ambiguities and misconceptions, only part of which was mentioned above.2

In the paper we build a formal framework, where the notions outlined above
together with their relationships can be accurately defined and analyzed. In a
sense, we disassemble the rich intuition of the association construct into elemen-
tary building blocks and then join them together in various ways to model differ-
ent views of associations. Particularly, if association is a triple A = (T, MS , MQ)
as above, we can consider the pair AS = (T, MS) as its structural view and the
pair AO = (T, MQ) as its operational view. The metamodel in Fig. 3 on p.243
presents our building blocks and their relationships in a concise way. It shows a
few remarkable symmetries between the components and views of associations,
which is interesting to discuss (see Section 4.3). On the other hand, it forms a
useful frame of reference for analyzing the UML metamodel (Section 4.4).

Formalities as such can be boring or interesting to play with. When they are
intended to model engineering artifacts, the first and crucial requirements to
them is to be an adequate and careful formalization of the intuitions behind
the artifacts to be modeled. We have paid a close attention to deducing our
formalization from the Spec rather than from our own perception of what the
association should be. To achieve this goal, we have read the Spec as carefully
as possible, and discussed possible interpretations with the experts [10, 7]. Sec-
tions 2 and 3 present the results together with an outline of some preliminary
framework of main constructs. Section 4 presents an accurate formal model and
sets the stage for our discussion of what is association in UML2; the culmination
is in Sections 4.3 and 4.4.

Remark: What is not in the paper. Semantics for the concepts of associ-
ation/relationship and particularly, of aggregation and role is a well-known re-
search issue that can be traced back to the pioneering works on data semantics by
Abrial, Brodie, Chen, Mylopoulos, Tsichritzis and Lochovsky in seventies-early
eighties. Since then a vast body of work on the subject was done and reported
in the literature, see [5] for an early survey. Certainly, UML’s concept of associ-
ation is built on top of this work, and it might be an interesting research issue
to study the evolution of ideas and their realization in the standard (see [2] for
some results). Moreover, we believe that a real understanding of such a software
phenomenon as UML does need evolutionary studies, particularly, for associa-
tion and related concepts, and for many other parts of UML as well. However,
such a discussion would go far beyond our goals in the paper. The latter are
purely technical: take the standard as the only source of information about the
association construct and provide an accurate formal semantics for it.

2 Even the much more formally precise OCL confuses operational and projection map-
pings when it borrows UML’s notation (abstract syntax) for association classes.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 233

2 What Is a Property? The Structural View of
Associations

According to UML metamodel ([8, Fig.7.12], see our Fig. 1) an association A
between classifiers X1...Xn, n ≥ 2, is an n-tuple of properties (f1, ..., fn) called
A’s memberEnds or just ends.

Each of the properties has its type [8, Figures 7.5 and 7.10], and explanations
in Sect. 7.3.3 and 7.3.44 allow us to set the correspondence fi.type = Xi for all
i = 1..n. The main question is what is the semantic meaning of property in this
definition? The Spec says [8, Sect.7.3.44, p.121]:

when instantiated, a property represents a value or collection of values
associated with an instance of one (or, in the case of a ternary or higher-
order association, more than one) type. This set of classifiers is called
the context for the property; in the case of an attribute the context is
the owning classifier, and in the case of an association end the context
is the set of types at the other end or ends of the association.3

A natural way to interpret this definition is to consider a property in general
as a mapping from some source set called the context (and whose elements play
the role of instances “owning” the property), to a target set called the type of
the property (whose elements play the role of values that the property takes).
In particular, if the properties in question are the ends of some association, then
the quote above says that each fi is a mapping

fi : Xj1 × ... × Xjn−1 � Xi, i /∈ {j1...jn−1} ⊂ {1...n}, (2)

where the Cartesian product is the context, and the double-arrow head means
that the actual target of the mapping is the set collfi(Xi) of collections of speci-
fied (with fi) type (sets, bags or lists) built from elements of Xi. A special case,
when the value is a single element of the target class, will be denoted by the
single-arrow head, and such mappings will be called functional or functions.

The left column of Table 1 on p.240 shows examples of mappings of this
form for association arities n = 2 and n = 3. The term multiary, will be used
generically to refer to the cases n ≥ 3. Thus, an n-ary association is an n-element
set of (n−1)-ary mappings called Properties. This definition still lacks a crucial
condition. Namely, we need to require that all mappings f1, .., fn are just different
parts of the same association, or, as we will say, are mutually inverse, meaning
that they all are mutually derivable by inverting/ permuting sources and targets
(this condition is well known for the binary case).

Formally, this can be captured as follows. Given an n-ary mapping
f : X1 × .. × Xn � Y , its extension ext(f) is the collection of tuples

((extension)) [(x1, . . . , xn, y) : x1 ∈ X1, ..., xn ∈ Xn, y ∈ f(x1...xn) ∈ collf (Y)] ,

3 In this piece, the terms “type” and “classifier” are used interchangeably and, hope-
fully, can be considered synonyms here.

234 Z. Diskin and J. Dingel

Constraints for Association context in OCL
(to shorten expressions we write end for memberEnd):

self.end->includesAll(self.ownedEnd) ->includesAll(navigOwnedEnd)(2)

def: self.endType = self.end->collect(type)(3)

if self.end->size() >2 then self.ownedEnd = self.enda(4)

a this is the Constraint 5 in [8, p.37],

Fig. 1. A piece of UML metamodel extracted from [8, Fig. 7.12] with additions from
[8, Fig. 7.5, 7.10, 7.17]

which is a bag if f is bag-valued.4The most natural way of presenting such a col-
lection is to store it in a table. In fact, we have a mapping ext : Mapping → Table
sending any n-ary mapping to a (n+1)-column table recording its extension.

Now we can formulate the condition in the following way.

2.1 Definition: Let X = (X1...Xn) be a family of classes.
(i) Any (n − 1)-ary mapping of the form (2) is called a structural mapping over
X. Its source tuple of classes is called the context, and the target class the type
of the mapping.
(ii) Two or more structural mappings f1...fk over X are called mutually inverse
if they have the same extension (up to renaming of the tables’ columns)

((inverse)) ext(f1) = ext(f2) = ... = ext(fk).

(iii) An n-element set MS = {f1...fn} of mutually inverse structural mappings
over X is called a structural map over X. In other words, a structural map is a
maximal set of mutually-inverse structural mappings.

Thus, the Spec defines associations as nothing but structural maps.
4 If f is list-valued, we can either disregard the ordering information by considering

the underlying bag, or consider the extensional set to be partially-ordered.

{ordered}

/endType

Property

Class

Type

Classifier

SrtructuralFeature

Association

Classifier

0..1

- assonEnd

*

- qualifaer

0..1

- class

*

- ownedAttribute

0..1

- Asson

2..*

- memberEnd

0..1

- owingAsson

*

- ownedEnd

1

- navigOwingAsson

*

- navigOwnedEnd

1

- ...

1

- type

1..*

{ordered}

{ordered}
{ordered}

-qualifier

- owningAsson

Mappings, Maps and Tables: Towards Formal Semantics for Associations 235

Constraints for Association:

def: self.endType = self.end->collect(type)(6)

self1 �= self2 implies disjoint(self1.end, self2.end)=true(7)

self.end satisfies the constraint (inverse) in Definition 2.1(ii) a(8)

Constraints for Property:

self.asson.endType->includesAll(self.context)(9)

self.context->size() +1 = self.asson.end->size() b(10)

a constraints (7) and (8) are missed in the Spec
b constraints (9) and (10) cannot be declared in the Spec because the meta-association

context is not there

Fig. 2. Metamodel for the structural view of associations

2.2 Definition: Structural view of association. An n-ary association, struc-
turally, is an n-element set of mutually inverse (n − 1)-ary mappings (called
properties in UML).
Precise details and terminology associated with this definition are presented in
Fig. 2. This (formal) metamodel accurately describes the corresponding part of
the Spec, and it is instructive to compare it with the UML metamodel in Fig. 1
(disregarding there, for a while, the ownership aspect).

2.3 UML metamodel of associations in the light of formalization, I.

We note that the Spec misses two important constraints on associations: disjoint-
ness, (7), and being inverse, (8), in Fig. 2 (though, of course, implicitly they are
assumed). Note also that our formal metamodel does not require the set of ends
to be ordered. Indeed, ends are analogous to labels in labeled records: ordering is
needed when there are no labels for record fields (and means, in fact, using natu-
ral numbers as labels). Thus, ordering of meta-association memberEnd required
in the UML metamodel is redundant.

Finally, the most serious (and even striking) distinction is that the meta-
association context is absent in the UML metamodel. As we have seen, the Spec
does talk about this fundamental component of the association constructs, yet for-
mally it is not entered into the metamodel. Is it hidden or lost in the long package
merge chains in which the UML metamodel is separated? Note that even if the
(meta)association context can be derived from other parts of the metamodel, its

Class Property Association
*

1

- type

1..

- context {ordered}

2..*

- end

0..1

- asson

2.. - /endType

236 Z. Diskin and J. Dingel

explicit presence in Figure 7.12 of the Spec, the main part of the UML associa-
tion metamodel, is essential. Indeed, without this association we cannot formu-
late important structural constraints (9,10) in Fig. 2 and, which maybe even more
important, without context the understandability of the metamodel is essentially
lessened.

3 A Battle of Ownerships: The Operational View of
Associations

In this section we consider that part of the UML association metamodel, which
specifies ownership relations between Classes, Properties and Associations. The
Spec considers two specific subsets of the set A.memberEnd = {f1..fm} of asso-
ciation ends: the set of ends owned by the association, A.ownedEnd ⊆ {f1..fm},
and the set of navigable owned ends, A.navOwnedEnd ⊆ A.ownedEnd . Unfortu-
nately, there is no direct explanation of the meaning of these two notions and
we need to extract it from semi-formal considerations in Sect. 7.3.3 and 7.3.44.

Since for multiary association (when n ≥ 3), the notions of memberEnd and
ownedEnd coincide due to the constraint (4) in Fig. 1, we have to consider binary
associations to understand the difference.

It appears that the Spec assumes (though does not state it explicitly) that
if an end, say, f1, is not owned by the association, f1 /∈ A.ownedEnd, then it
is owned by its source classifier X2, f1 ∈ X2.ownedAttribute. In this case, f1 is
considered to be an X2’s attribute [8, p.121]. What is, however, the meaning of
the other end, f2, owned by A?

We have two subcases:
(+), when f2 is a navigable end, f2 ∈ A.navOwnedEnd , and (–), when it is not.

In case (+), the association is navigable from X1 to X2 (Sect.7.3.3, p.36) and
hence we have a mapping f2 : X1 � X2 yet f2 is not an attribute of X1 (otherwise
it would be owned by X1 rather than A). The only reasonable explanation that
we could find for this situation is that mapping f2 is not supposed to be stored
in the instantiations of X1 yet it can be derived from other data. Namely, we
assume that mapping f1 is actually stored (with the instantiations of classifier
X2 as its attribute) while f2 can be derived from (the extension of) f1 by taking
the inverse. Strictly speaking, in case (+) association A consists of only one end
f1 (stored and owned by X2!) but can be augmented with the other end, f2, by
a suitable derivation procedure (of inverting a mapping).

Case (–): the end f2 is owned by A and is not navigable. The Spec says that
in this case A is not navigable from X1 to X2 (Sect.7.3.3, p.36) and, hence,
f2 cannot be considered as a mapping. Then the only visible role of f2 is to
serve as a place-holder for the respective multiplicity constraint, m2. We can
consider this situation as that semantically association A consists of the only
end/mapping f1 : X2 � X1, whose extension (graph, table) is constrained by a
pair of multiplicity expressions C = (m1, m2). In this treatment, the second
end f2 appears only in the concrete syntax as a way to visualize the second
component of a single constraint C = (m1, m2) rather than have any semantic
meaning.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 237

We can reformulate this situation by saying that some constraint to mapping
f1 is specified by setting a constraint m2 to a mapping f2 derived from f1.In
such a formulation case (–) becomes close to case (+). In both cases, association
A consists, in fact, from the only end f1 (owned by X2) while the second end
is derivable rather than storable and serves for (i) specifying the m2-half of the
multiplicity constraint to A and, (ii, optionally) for navigation from X1 to X2.

Thus, with help of implementation concepts, we were able to explain the mixed
ownership cases (+) and (–). To be consistent, now we need to reconsider the case
when both ends are owned by the association. Thinking along the lines we have
just used, we conclude that in this case we deal with a situation when information
about the association is stored somewhere but not in the participating classifiers
(otherwise the ends were attributes owned by the classifiers). Hence, to make the
ends derivable mappings we need to have a source of storable data for deriving
the mappings, and the classifiers X1, X2 cannot be used for that.

A reasonable idea is to introduce onto the stage a new set, say, R, immediately
storing links between instances of X1, X2, that is, pairs (x1, x2) with x1 ∈
X1, x2 ∈ X2, together with two projection mappings pi : R → Xi. In other words,
we store the links in a table T = (R, p1, p2) with R the set of rows and p1, p2
the columns so that if for a row r we have r.p1 = o1 ∈ X1 and r.p2 = o2 ∈ X2,
it means that the row stores the link (o1, o2) (see Table 1). We can advance
this interpretation even further and identify R with A and projection mappings
pi with A’s ends fi, i = 1, 2. This new view of associations (though may look
somewhat unusual for the UML style) possesses a few essential advantages:

1. It perfectly fits in with the UML idea that an association is a classifier whose
extension consists of links.

2. It is generalized for n-ary associations in a quite straitforward way: just
consider R with a family of n projections pi : R → Xi, i = 1..n, which auto-
matically makes R a collection of n-ary tuples/links.

3. A property is again a mapping and, moreover,
3.1 the classifier owning the property is again the source of the mapping,
3.2 the type of the property is the target of the mapping as before.

This interpretation brings an essential unification to the metamodel, and pos-
sesses a clear sets-and-mappings semantics. It also shows that the “ownership-
navigability” part of the UML metamodel implicitly switches the focus from the
analysis/structural view of association (Definition 2.2) to more technical (closer
to design) view, where the modeler begins to care about which parts of the
association will be stored, and which will be derived (with an eye on how to
implement that later). We will call this latter view of associations operational.

The UML metamodel attributes the operational view to binary associations
only (see Constraint (4) in Fig. 1). It appears to be an irrelevant restriction as
in the next section we show that the operational view, including all nuances of
ownership relations, can be developed for the general case of n-ary associations
as well.

238 Z. Diskin and J. Dingel

4 Formal Model for UML Associations: Separation and
Integration of Concerns

In this section we build a formal framework for an accurate definition of the con-
cepts that appeared above. We also introduce a new, and important, actor on the
stage: qualified or operational mappings, which are an analog of attributes for mul-
tiary associations. It is this actor whose improper treatment in the UML meta-
model leads to a striking difference between binary and multiary associations.

4.1 Basic Definitions and Conventions

Our first concern is to set a proper framework for working with names/labels in
labeling records and similar constructs.

4.1.1 Definition: Roles and contexts. Let L = {�1...�n} be a base set of n
different labels/symbols called role names.

(i) A role is a pair �:X with � ∈ L a role name and X a class. A(n association)
context is a set of roles X = {�1:X1, . . . , �n:Xn} such that all role names are
distinct (while the same class may appear with different roles). We write X� for
the class X in the pair (�:X). Cardinality of the base set is called the arity of the
context. For example, the set {course:Subject, student:Person, professor:Person}
is a ternary context.
(ii) We use the term class and set interchangeably. For our goals in this section,
classes are just sets of elements (called objects). We write

⋃
X for

⋃
{X� | � ∈ L}.

We also remind the reader our convention about distinguishing general and func-
tional mappings (presented in Section 2 immediately below formula (2)).
(iii) All our definitions will be parameterized by some context X. We will say
that the notions are defined over the context X.

4.1.2 Definition: Links, products, relations.
(i) A link over X is a functional mapping r : L →

⋃
X s.t. r(�) ∈ X�. The

set of all links over X will be denoted by
∏

�∈L X� or
∏

L X or just
∏

X. If
{(� : X) | � ∈ K} is a sub-context of X for some K ⊂ L, we will write

∏
K X for

the set of the corresponding sub-links.
(ii) A (multi)relation over X is a (multi)set of links over X. If R is a multi-
relation, R! will denote R with duplicates eliminated, thus, R! ⊂

∏
X. Note

that R can be written down as a table whose column names are role names from
the base set and rows are links occurring in R. Since each column name must be
assigned with its domain, actually column names are pairs �:X, that is, roles.

4.1.3 Construction: Tables vs. relations. In the relational data model a
table is viewed as a collection of rows (links). However, it is possible to switch the
focus from rows-links to columns-roles and consider the same table as a collection
of columns. Each column �:X gives rise to a functional mapping [[�]] : R → X ,
[[�]](r) def= r(�). Note that R is always a set but it may happen that two different
rows r �= r′ store the same link if [[�i]](r) = [[�i]](r′) for all �i ∈ L.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 239

(i) A table over X is an n-tuple T = (p1...pn) of functions pi : R → Xi, i = 1..n
with a common source R called the head. Elements of R will be also called rows,
and functions pi columns or, else, projections, of the table. We will often make
the head explicit and write a table as an (n + 1)-tuple T = (R, p1...pn).
(ii) We can identify projections pi with semantics of the roles in the context, and
set pi = [[�i]].

4.1.4 Definition: Mappings and maps over a context.
(i) A structural mapping over X is a mapping of the form f :

∏
K X � X�, where

(K, {�}) is a partition of L (with the second member being a singleton). The sub-
context {�:X� | � ∈ K} is called the source context of f .
(ii) A qualified or operational mapping over X is a mapping of the form
g : X�′ → [

∏
P � X�′′], where ({�′}, P , {�′′}) is a partition of L. The square

brackets denote the set of all structural mappings of the form inside the brackets.
The set X�′ is the source, the roles in P are parameters and X�′′ is the target

(goal) set. If P = {j1..jk}, in a standard programming notation the mapping
could be written as g(�j1:Xj1, . . . , �jk

:Xjk
) : X�′ � X�′′ . We will call the sub-

context P = {X�|� ∈ P} the parameter context or qualifier.
(iii) Given a structural and operational mappings f and g as above, we say that
g implements f if �′′ = � (and hence K = P ∪ {�′}). This is nothing but a
well-known Curry construction (see, e.g., [4]), and we will also call the passages
from f to g and back Currying of f and unCurrying of g. Note that they do not
change the extension of mappings.

The left and middle columns of Table 1 show how it works for the cases of
n=2 and n=3. For the case n = 2, Currying is trivial. For n = 3, Currying will
produce six operational mappings: two for each of the structural mappings. We
show only three of them. It is easy to see that any n-ary structural mapping has
n operational/qualified implementations.
(iv) An operational/qualified map over X is a set MO of n(n − 1) qualified
mappings with the same extension. In other words, such a map is the set of all
qualified mappings generated by some structural map.
(v) To ease comparison of our formal constructs with those defined in UML and
avoid terminological clash, we will call the members of a qualified map legs while
members of a structural map (Definition 2.1) will be called arms.

Let f :
∏

K X � Y = Xj, K = L \ {j}, be a structural mapping as above. Its
extension can be presented as a table T = ext(f). However, during this pas-
sage the information about which of the columns of the table corresponds to
f ’s target is lost. Any other mapping with the same extension will result in the
same table, and conversely, by looking table T up in different “directions”, we
will obtain n different structural mappings including f . We remind the reader
that we have called such sets of structural mappings structural maps (Defini-
tion 2.1(iii)). Thus, a table is an exact extensional representation of maps rather
than mappings.

4.1.5 Construction: Adding navigation to tables. We can enrich tables
with “navigational” information about the mapping generated the table if the

240 Z. Diskin and J. Dingel

Table 1. Three views of associations

 Structural:
maps of (structural) mappings

Operational: maps of
operations (parameterized

mappings)

Extensional: tables (i.e., maps
of projection mappings)

n=2

n=3

n=4 … … …

p3

p1

X2 X1

{ inverse} X1 X2

f1

f2
X1 X2

p2
p1 R

p2 p1

p3

X3

R

f2

f3

X1×X2

f1

f32

X1 X2

X3

X1

X3

X1×X3 X2×X3

{ inverse}

f13

X2

f21

{ inverse} p1

p3

p2

p2

corresponding column name will be marked (say, by a star). Similarly, if a table
stores the extension of a qualified mapping, we can keep this information by
marking the two corresponding columns. In this way we come to the notions of
(i) star-table, a table with one column specially designated and called the goal,
and (ii) double-star table, a star-table with one more column designated/marked
as the source or, in programming terms, self.

4.2 Formalization of Ownership in the UML Metamodel of
Associations

As it was noticed in sect.3, the ownership meta-associations in the UML meta-
model are related to possible implementations of structural associations. The
latter can be implemented either by a table, or/and by a number of qualified
mappings between the participating classes. Which implementation is most suit-
able depends on which navigation directions need to be implemented efficiently.
4.2.1 Definition: Operational view of associations. Operationally, an as-
sociation over X is an triple A = (MO, T, B) with MO an operational map of
qualified mappings over X, T their common extension table, and B a non-empty
subset of the set MO ∪{T }, whose elements are called basic while other elements
of MO ∪ {T } are called derived. The intuition is that the elements of the set
MO ∩ B are to be implemented as retrieval operations of the corresponding
classes (their attributes in the binary case); the classes then own these elements.
If also T ∈ B, then the extension is to be really stored in some table T . The
elements formally called “derived” can be indeed derived from the basic ele-
ments (by say looking up the extension table in the required direction, and the
extension table can be derived by recording the input-output pairs).

The rightmost part of Fig. 3 present the metamodel of this definition.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 241

4.2.2 Remark: uniqueness constraints. It was proposed in [6], that even
if the extension table contains duplicates and hence all qualified mappings from
MO are bag-valued, it may be useful for navigational purposes to choose for
some of them their versions with eliminated duplicates. Then, operationally, an
association over X is defined to be a quadruple A = (MO, T, B, U) with the
triple (MO, T, B) as above and U ⊂ MO is the set (perhaps, empty) of those
members that we have chosen to consider with eliminated duplicates. Details
and a thorough discussion can be found in [6].

4.3 The Metamodel: Playing LEGO Blocks with Associations

Figure 3 on p.243 presents the metamodel of the notions and transformations
we have defined above. All meta-classes in the model are parameterized by the
association’s arity n. It allows us to capture numerous important size constraints
(like constraint (10) in Fig. 2) by stating the corresponding multiplicities. We
believe that this presentation would be also useful for the UML metamodel.

In the vertical direction, the metamodel consists of two parts: the upper half
presents the extensional, or tabular, view of associations, the lower half shows the
procedural, or map-based, view. Each of the parts is based on the corresponding
structural foundation: the role context for the maps, and the column context for
the tables. These two context are in one-one correspondence via the semantics-
name meta-association, see Construction 4.1.3(ii), and it is our conjecture that
in a deeper formal setting they could be unified into a single notion.

There is also a nice parallelism between the two parts in their treatment of
navigability as the consecutive augmentation of the respective constructs with
additional “navigational” information (what is declared to be the source and
the target of the corresponding mapping). To underline this parallelism, we
have denoted the (meta) associations “source context” for structural mappings,
and “parameter context” for operational mappings, by context* and context**
respectively. This “addition of navigability” is governed by one-to-many asso-
ciations in both parts. One n-column Table generates n starTables, and each
starTable generates (n − 1) doubleStarTables, and similarly for Maps, struc-
turalMappings and operationalMapppings. The two parts are tightly connected
by vertical meta-associations ext-lookUp and diagonal meta-associations (shown
in dashed line) derived by the respective compositions of horizontal and vertical
meta-association ends.

In the horizontal direction, the metamodel also consists of two parts: the
structural view of associations (the left half) and the operational view of associ-
ations (the right half). These two views are also tightly connected by horizontal
meta-associations of Currying-unCurrying and (set self-column) – (forget self-
column).

In fact, our metamodel presents a toolbox of blocks for building different
views/notions of associations. For example, structurally an association is a pair
AS = (MS , T) with MS a map of mutually inverse structural mappings and
T the table representing their common extension (AS ’s collections of links).
Operationally, an association is a triple AO = (MO, T, B) with MO a map of

242 Z. Diskin and J. Dingel

mutually inverse operational/qualified mappings, T the extension table and B
sorting the elements of MO ∪{T } into basic-derived. We say that AO implements
AS if they have the same extension T (and hence, mappings in MO are Currying
versions of mappings in MS). Extensionally, an association is a table T , and
procedurally, it is a pair of maps (MS , MO). We can consider an integrated
notion of association by defining it as a quadruple A = (MS , T, MO, B). Then all
the views mentioned above are indeed views, that is, different projections/parts
of the whole construct.

4.4 UML Metamodel in the Light of Formalization, II

It is instructive to compare our formal model of associations specified in Fig. 3
with the UML model (Fig. 1). Our formalization clearly shows three components
of the association concept: extensional, structural and operational (Table 1).
They all have the same underlying structure: a host object (a table/ structural
map/ qualified map) holds a number of member mappings (columns/ arms/
legs respectively). Though these components are closely related and, in fact,
mutually derivable, they consist of different elements: a simple calculation shows
that an n-ary association A = (T, MS, MO) consists of the total of m(A) =
n + n + n(n − 1) = n(n + 1) mappings (columns, arms and legs) plus one set
of links (the head). Note that all these association’s elements appear in one or
another way in different Semantics and Description sections of the Spec, and
are used for defining associations’ (meta)properties like ownerships, navigability,
multiplicity. However, as formally defined by the UML metamodel, an n-ary
association A consists of only mUML(A) = n elements, its memberEnd Properties
(UML’s analog of mappings). Thus, UML metamodel offers only n-elements
to name and manipulate n(n + 1) constructs. In Fig. 3, we have pointed out
UML counterparts of our formal constructs by their names in square brackets,
which makes the shortage of constructs in the UML metamodel explicit. Not
surprisingly, this shortage leads to ambiguities in practical usage of associations
reported by experts [7].

The comparison also reveals two more flaws in the UML metamodel. First
is the absence of meta-association context for meta-class Property. In fact, it
means that the fundamental notion of property is not completely defined in
UML. We consider this as one of the most serious problem of the entire UML
metamodel (see [2] on the value of the property construct in semantics of OO
visual modeling).

The second problem is less fundamental yet is important for practical model-
ing: the meta-association qualifier is improperly defined in the metamodel. Our
formalization clearly shows that the target of this meta-association is the meta-
class of Roles rather than that of Properties. This mistake in the metamodel can
lead to mistakes in practical modeling with qualified associations. Space limita-
tions do not allow us to demonstrate the issue with a few remarkable examples
we have in our archive (see [1] for one of them).

Mappings, Maps and Tables: Towards Formal Semantics for Associations 243

n
-1

co
lu

m
n

[m
e
m

b
e
rE

n
d]

1

se
m

a
n
tic

s

/le
g
 [

m
e
m

b
e
rE

n
d]

=

u
n
io

n
{b

a
si

cL
e
g
,d

e
dr

iv
e
d
L
e
g
}

/c

o
nt

e
xt

*
[c

o
n
te

xt
]
=

h
o
st

.c
o
nt

e
xt

 –
 {

g
o
a
l}

/c
o
nt

e
xt

**
[q

ua
lif

ie
r]

 =

u
n
C

u
rr

y.
co

n
te

xt
*

-
{s

e
lf}

1

1

lo
o
kU

p
*

n

co
lu

m
n

[m
e
m

b
e
rE

n
d]

/c

o
lu

m
n
*

=

 c

ol
um

n
–
 {

g
o
a
l}

F
u

n
ct

io
n

al
 m

ap
p

in
g

[

P
ro

p
er

ty
]

T
ab

le
*

(o
n

e
d

es
ig

n
at

ed
 c

o
lu

m
n

)

T
ab

le

[
A

ss
o

ci
at

io
n

]

T
ab

le
**

 (t
w

o

d
es

ig
n

at
ed

 c
o

lu
m

n
s)

g
o
a
l

{s
u
b
se

ts

co
lu

m
n
}

S
et

[o

f
lin

ks
] so

u
rc

e

h
e
a
d

se
t

“g
oa

l”
a
ri
ty

 =
 n

a
ri
ty

 =
 n

1 1

1
n

-1

se
t

“s
e
lf”

/c
o
lu

m
n
**

 =

co

lu
m

n
*

–
 {

se
lf}

se
lf

{s
u
b
se

ts

co
lu

m
n
}

1
n

-2

a
ri
ty

 =
 n

st
ru

ct
u

ra
l

M
ap

 [

 A
ss

o
ci

at
io

n
]

a
ri
ty

 =
 n

e
xt

*
1

1

e
xt

1

/lo
o
kU

p
*

{u
n
io

n
}

n

lo
o
kU

p

/e
xt

a
rm

[m

e
m

b
e
rE

n
d]

h
o
st

C
u
rr

y
u
n
C

u
rr

y

n

1 lo
o
kU

p
**

e
xt

**

1

/lo
o
kU

p
**

{u

n
io

n
}

/e
xt

*

n
-1

1

S
et

[C

la
ss

]

R
o

le

se
lf

co
n
te

xt

n

n
-1

g
o
a
l

1

1

n
-2

ty
p
e

1

1

/s
o
ur

ce
[c

la
ss

]=

se
lf.

ty
p
e

g
o
a
l

1

n
a
m

e

1

n
-1

1

1

T
ab

le

[A
ss

o
ci

at
io

n
]

a
ri
ty

 =
 n

q
u

al
if

ie
d

 M
ap

[A

ss
o

ci
at

io
n

]

a
ri
ty

 =
 n

b
a
si

cL
e
g
 [

o
pe

ra
tio

n
 o

w
n
e
d

b
y

th
e
 s

o
ur

ce
 c

la
ss

]

d
e
riv

e
d
L
e
g

[n
a
vi

g
O

w
n
e
d
E

n
d]

0.
.n

(n
-1

)

0.
.n

(n
-1

)

n
(n

-1
)

h
o
st

h
o
st

st
ru

ct
u

ra
l M

ap
p

in
g

[P

ro
p

er
ty

]

q
u

al
if

ie
d

 M
ap

p
in

g

[
P

ro
p

er
ty

]

 n
um

b
er

 o
f

p
a
ra

m
et

er
s

=

 n
-2

/h
o
st

co
n
te

xt

n

e
xt

1

lo
o
kU

p

1

se
t

 “
g
oa

l”&
 “

se
lf”

a
ri
ty

 =
 n

-1

S
et

[o

f
lin

ks
] so

u
rc

e

h
e
a
d

1

1

n
(n

-1
)

/t
yp

e
 [
ty

p
e]

 =

g
o
a
l.t

yp
e

/t
yp

e
 [
ty

p
e]

=

g
o
a
l.t

yp
e

1
1

n
n

F
ig

.3
.M

et
am

od
el

of
ou

r
fo

rm
al

m
od

el
fo

r
as

so
ci

at
io

ns
.I

ta
lic

te
rm

s
in

sq
ua

re
br

ac
ke

ts
re

fe
r
to

U
M

L
co

un
te

rp
ar

ts
of

ou
r
fo

rm
al

co
ns

tr
uc

ts
.

W
ar

ni
ng

:
T

he
no

de
T
ab

le
w

it
h

it
s

m
et

a-
as

so
ci

at
io

ns
is

re
pe

at
ed

tw
ic

e
to

av
oi

d
cl

ut
te

r!

244 Z. Diskin and J. Dingel

5 Conclusion

We have developed a formal framework where the complex notion of association
can be disassembled into a few basic blocks. We then built from these blocks a few
constructs that formally model different aspects of associations as described and
used in UML2. We have found that semantics of the association construct can
be uncovered in a few Semantics and Description sections of the specification,
and is presented there in a sufficiently consistent way. However, the part of this
semantics formally captured in the UML2 metamodel is much poorer, which
makes the latter incomplete and ambiguous.

Our formal model allowed us to explain a few known problems with asso-
ciations and to detect several omissions in the metamodel, which have been
unnoticed so far (see sections 2.3 and 4.4). We have also proposed a few general
suggestions on augmenting and restructuring the metamodel for associations to
capture their semantics in a precise and unambiguous way.

Acknowledgements. We are grateful to Bran Selic and Dragan Milicev for
a few stimulating discussions. Special thanks go to Bran for showing us many
delicate issues in the subject.

References

[1] Z. Diskin. Visualization vs. specification in diagrammatic notations: A case study
with the UML. In Diagrams’2002: 2nd Int. Conf. on the Theory and Applications
of Diagrams, Springer LNAI#2317, pages 112–115, 2002.

[2] Z. Diskin and B. Kadish. Variable set semantics for keyed generalized sketches:
Formal semantics for object identity and abstract syntax for conceptual modeling.
Data & Knowledge Engineering, 47:1–59, 2003.

[3] G. Génova, J. Llorens, and P. Mart́ınez. Semantics of the minimum multiplicity in
ternary associations in UML. In M. Gogolla and C. Kobryn, editors, UML’2001,
4th Int.Conference, volume 2185 of LNCS, pages 329–341. Springer, 2001.

[4] C. Gunter. Semantics of programming languages. MIT Pres, 1992.
[5] R. Hull and R. King. Semantic database modeling: Survey, applications and

research issues. ACM Computing Surveys, 19(3):201–260, 1987.
[6] D. Milicev. On the semantics of associations and association ends in UML. Sub-

mitted for publication.
[7] Dragan Milicev, Bran Selic, and the Authors. Joint E-mail Discussion, Fall 2005.
[8] Object Management Group, http://www.uml.org. Unified Modeling Language:

Superstructure. version 2.0. Formal/05-07-04, 2005.
[9] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-

erence Manual. Second Edition. Addison-Wesley, 2004.
[10] Bran Selic. Personal Communication, Fall 2005.
[11] P. Stevens. On the interpretation of binary associations in the unified modeling

language. Software and Systems Modeling, (1), 2002.

	Introduction
	What Is a Property? The \Structural View of Associations
	A Battle of Ownerships: The \Operational View of Associations
	Formal Model for UML Associations: Separation and Integration of Concerns
	Basic Definitions and Conventions
	Formalization of \Ownership in the UML Metamodel of Associations
	The Metamodel: Playing LEGO Blocks with Associations
	UML Metamodel in the Light of Formalization, II

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

