

Lecture Notes in Computer Science 4199
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Oscar Nierstrasz Jon Whittle
David Harel Gianna Reggio (Eds.)

Model Driven
Engineering Languages
and Systems

9th International Conference, MoDELS 2006
Genova, Italy, October 1-6, 2006
Proceedings

13

Volume Editors

Oscar Nierstrasz
University of Bern, Institute of Computer Science and Applied Mathematics
Neubrückstr. 10, 3012 Bern, Switzerland
E-mail: oscar.nierstrasz@acm.org

Jon Whittle
George Mason University, Department of Information and Software Engineering
Science & Tech II, 4400 University Drive, Fairfax, VA 22030-4444, USA
E-mail: jwhittle@ise.gmu.edu

David Harel
The Weizmann Institute of Science
Department of Computer Science and Applied Mathematics
Rehovot 76100, Israel
E-mail: dharel@weizmann.ac.il

Gianna Reggio
University of Genova, DISI, Department of Computer Science
Via Dodecaneso 35, 16146 Genova, Italy
E-mail: gianna.reggio@disi.unige.it

Library of Congress Control Number: 2006932843

CR Subject Classification (1998): D.2, D.3, K.6, I.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-45772-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-45772-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11880240 06/3142 5 4 3 2 1 0

Preface

MoDELS/UML 2006 was the ninth incarnation of this series of conferences on
Model Driven Engineering Languages and Systems. The conference was held in
Genoa, Italy during the week of October 1-6, 2006. The local arrangements were
provided by DISI, the Department of Computer and Information Science at the
University of Genoa.

This volume contains the final versions of the papers accepted for presenta-
tion at the conference, as well as two invited papers by the keynote speakers,
Hassan Gomaa (George Mason University, USA) and Irun Cohen (The Weiz-
mann Institute of Science, Israel).

We received 178 full paper submissions for review from 34 different countries.
Of these, 24 papers were submitted with authors from more than one country.
The top three countries submitting papers were Germany (25), USA (23) and
France (20). A total of 51 papers were accepted for inclusion in the proceedings,
including six experience papers. This reflects an acceptance rate of 29%, a rate
comparable to those of previous MoDELS/UML conferences.

Each paper was reviewed by at least three Program Committee members.
Reviewing was thorough, and authors received, in most cases, detailed comments
on their submissions. Conflicts of interest were taken very seriously. No one
participated in any way in the decision process of any paper where a conflict of
interest was identified. In particular, PC members who submitted papers did not
have access to any information concerning the reviewing of their papers. (The
acceptance rate for PC papers was similar to the overall acceptance rate.)

We would like to thank everyone who submitted papers as well as proposals
for workshops and tutorials. We would also like to thank the large number of
volunteers who contributed to the success of the conference, including the PC
members, the additional reviewers who supported the review process, the mem-
bers of the local Organizing Committee, the volunteers who helped with the
local organization, and the two invited speakers. We would also like to thank
Richard van de Stadt for his prompt and gracious service in supporting special
requests for CyberChairPRO, the conference management system used to man-
age papers submissions and the virtual PC meeting. Finally, we would like to
thank our sponsors, ACM, IEEE Computer Society and DISI, for their support
of the MoDELS/UML 2006 conference.

October 2006 Oscar Nierstrasz
Jon Whittle
David Harel

Gianna Reggio

Organization

Organizing Committee

General Chair David Harel (Weizmann Institute of Science,
Israel)

Conference Chair Gianna Reggio (U. of Genoa, Italy)
Program Chair Oscar Nierstrasz (U. of Bern, Switzerland)
Experience Track Chair Jon Whittle (George Mason U., USA)
Workshop Chair Thomas Kühne (Darmstadt U. of Tech.,

Germany)
Tutorial Chair Egidio Astesiano (U. of Genoa, Italy)
Panel Chair Douglas C. Schmidt (Vanderbilt U., USA)
Doctoral Symposium Chair Robert G. Pettit (The Aerospace Corporation,

USA)
Educators Symposium Chair Ludwik Kuzniarz (Bleking Inst. of Tech.,

Sweden)
Poster Chair Eda Marchetti (ISTI-CNR, Italy)
Local Arrangements Chair Maura Cerioli (U. of Genoa, Italy)
Tool Exhibition Chair Walter Cazzola (U. of Milan, Italy)
Web Chairs Andrea Baresi (U. of Genoa, Italy)

Emanuele Crivello (U. of Genoa, Italy)
Publicity Chairs Emanuel Grant (U. of North Dakota, USA)

Laurence Tratt (King’s College, London, UK)

Program Committee

Gabriela Beatriz Arévalo (Argentina)
Colin Atkinson (Germany)
Thomas Baar (Switzerland)
Paul Baker (UK)
Antonia Bertolino (Italy)
Jean Bézivin (France)
Francis Bordeleau (Canada)
Lionel Briand (Norway)
Shigeru Chiba (Japan)
Siobhán Clarke (Ireland)
Pascal Costanza (Belgium)
Krzysztof Czarnecki (Canada)
Serge Demeyer (Belgium)
Christophe Dony (France)

Stéphane Ducasse (France)
Gregor Engels (Germany)
Jean-Marie Favre (France)
Harald Gall (Switzerland)
Geri Georg (USA)
Sudipto Ghosh (USA)
Martin Gogolla (Germany)
Hassan Gomaa (USA)
Susanne Graf (France)
Øystein Haugen (Norway)
Robert Hirschfeld (Germany)
Seongsoo Hong (Korea)
Paola Inverardi (Italy)
Jean-Marc Jézéquel (France)

VIII Organization

Jörg Kienzle (Canada)
Thomas Kühne (Germany)
Michele Lanza (Switzerland)
Timothy C. Lethbridge (Canada)
Radu Marinescu (Romania)
Tom Mens (Belgium)
Hafedh Mili (Canada)
Dragan Milicev (Serbia)
Pierre-Alain Muller (France)
Robert G. Pettit IV (USA)
Alexander Pretschner (Switzerland)
Bernhard Rumpe (Germany)

Douglas C. Schmidt (USA)
Jean-Guy Schneider (Australia)
Bran Selic (Canada)
Juha-Pekka Tolvanen (Finland)
Ellen Van Paesschen (Belgium)
Alain Wegmann (Switzerland)
Thomas Weigert (USA)
Claudia Maria Lima Werner (Brazil)
Jon Whittle (USA)
Clay E. Williams (USA)
Alan Cameron Wills (UK)

Steering Committee

Thomas Baar (Switzerland)
Jean Bézivin (France)
Lionel Briand (Norway)
Steve Cook (UK)
Andy Evans (UK)
Robert France (USA)
Geri Georg (USA)
Martin Gogolla (Germany)
Heinrich Hussmann (Germany)
Jean-Marc Jézéquel (France)
Stuart Kent (UK)

Cris Kobryn (USA)
Ana Moreira (Portugal)
Pierre-Alain Muller (France)
Oscar Nierstrasz (Switzerland)
Gianna Reggio (Italy)
David Rosenblum (UK)
Bernhard Rumpe (Germany)
Bran Selic (Canada)
Perdita Stevens (UK)
Jon Whittle (USA)

Sponsors

DISI, Dipartimento di Informatica e Scienze
dell’Informazione, Università di Genova
(www.disi.unige.it)

ACM Special Interest Group on Software Engineering
(www.sigsoft.org)

IEEE Computer Society
(www.computer.org)

CyberChairPRO Operation and Support

Richard van de Stadt, Borbala Online Conference Services

Organization IX

Additional Referees

Ilham Alloui
Carsten Amelunxen
Paul Ammann
Dave Arnold
Marco Autili
Olivier Barais
Benoit Baudry
Hanna Bauerdick
Alexandre Bergel
Christian Berger
Kirsten Berkenkötter
Ana Paula Terra Bacelo Blois
Conrad Bock
Elisa Gonzalez Boix
Antonio Bucchiarone
Fabian Büttner
Thomas Cleenewerck
Olivier Constant
Steve Cook
Alexandre Luis Correa
Jean-Pierre Corriveau
Guglielmo De Angelis
Jose Diego de la Cruz
Maja D’Hondt
Alexandre Ribeiro Dantas
Jessie Dedecker
Marcus Denker
Wolfgang De Meuter
Coen De Roover
Dirk Deridder
Brecht Desmet
Antinisca Di Marco
Jürgen Doser
Cédric Dumoulin
Peter Ebraert
Ghizlaine El-Boussaidi
Maged Elaasar
Taewook Eom
Johan Fabry
Micheal Fischer
Franck Fleurey
Beat Fluri
Lars Frantzen

Vahid Garousi
Sofie Goderis
Vincenzo Grassi
Hans Groenniger
Yann-Gaël Guéhéneuc
Kris Gybels
Baris Gühldali
Jun Han
Ulrich Hannemann
Michel Hassenforder
Michael Haupt
Jan Hendrik Hausmann
Berthold Hoffmann
Eckhardt Holz
Duwon Hong
Marianne Huchard
Marc-Philippe Huget
Karsten Hölscher
Andrew Jackson
Eshref Januzaj
Andy Kellens
Stuart Kent
Ismail Khriss
Dae-Kyoo Kim
Soyeon Kim
Anneke Kleppe
Holger Krahn
Jochen Kuester
Adrian Kuhn
Thomas Lambolais
Lam-Son Le
Jaesoo Lee
Eric Lefebvre
Lingling Liao
Jonas Lindholm
Arne Lindow
Marc Lohmann
Marco Alexandre Lopes
Marco Aurélio Mangan
Eda Marchetti
Slavǐsa Marković
Isabel Michiels
Raffaela Mirandola

X Organization

Stijn Mostinckx
Henry Muccini
Olaf Muliawan
Leonardo Gresta Paulino Murta
Sadaf Mustafiz
Clémentine Nebut
Johann Oberleitner
Erika Olimpiew
Francesco Parisi-Presicce
Jiyong Park
Patrizio Pelliccione
Jean-Marc Perronne
Jean-François Perrot
Paulo Pires
Andrea Polini
Damien Pollet
Claudia Pons
Juha Pärssinen
Gil Regev
Gerald Reif
Matthias Rieger
Dirk Riehle
Romain Robbes
Irina Rychkova
Antonino Sabetta
Murat Sahingöz
Stefan Sauer
Tim Schattkowsky
Martin Schindler
Hans Schippers
Andy Schürr

Karsten Sohr
Mike Sowka
Jim Steel
Julie A. Street
Bernard Thirion
Laurent Thiry
Yves Le Traon
Guy Tremblay
Christelle Urtado
Jorge Vallejos
Tom Van Cutsem
Ragnhild Van Der Straeten
Niels Van Eetvelde
Pieter Van Gorp
Bart Van Rompaey
Filip Van Rysselberghe
Hans Vangheluwe
Sylvain Vauttier
German Vega
Herve Verjus
Steven Voelkel
Hendrik Voigt
Didier Vojtisek
Dennis Wagelaar
Seungmin We
Duminda Wijesekera
Jonghun Yoo
Wooseok Yoo
Sergio Yovine
Tao Yue
Tewfik Ziadi

Table of Contents

Keynote 1

A Software Modeling Odyssey: Designing Evolutionary
Architecture-Centric Real-Time Systems and Product Lines 1

Hassan Gomaa

Evaluating UML

Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0 16
Brian Henderson-Sellers, Cesar Gonzalez-Perez

An Experimental Investigation of UML Modeling Conventions 27
Christian F.J. Lange, Bart Du Bois, Michel R.V. Chaudron,
Serge Demeyer

Improving the Definition of UML . 42
Greg O’Keefe

MDA in Software Development

Adopting Model Driven Software Development in Industry – A Case
Study at Two Companies . 57

Miroslaw Staron

Use Case Driven Iterative Development: Hurdles and Solutions 73
Santiago Ceria, Juan José Cukier

Model-Driven Development with SDL – Process, Tools,
and Experiences . 83

Thomas Kuhn, Reinhard Gotzhein, Christian Webel

Concrete Syntax

Model-Driven Analysis and Synthesis of Concrete Syntax 98
Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement,
Michel Hassenforder, Rémi Schneckenburger, Sébastien Gérard,
Jean-Marc Jézéquel

Correctly Defined Concrete Syntax for Visual Modeling Languages 111
Thomas Baar

XII Table of Contents

Applying UML to Interaction and Coordination

Compositional MDA . 126
Louis van Gool, Teade Punter, Marc Hamilton, Remco van Engelen

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive
Applications . 140

Jan Van den Bergh, Karin Coninx

Aspects

Domain Models Are NOT Aspect Free . 155
Awais Rashid, Ana Moreira

A Slice of MDE with AOP: Transforming High-Level Business Rules
to Aspects . 170

Maŕıa Agustina Cibrán, Maja D’Hondt

Model Intergration

Package Merge in UML 2: Practice vs. Theory? . 185
Alanna Zito, Zinovy Diskin, Juergen Dingel

Detecting and Resolving Model Inconsistencies Using Transformation
Dependency Analysis . 200

Tom Mens, Ragnhild Van Der Straeten, Maja D’Hondt

Merging Models with the Epsilon Merging Language (EML) 215
Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack

Formal Semantics of UML

Mappings, Maps and Tables: Towards Formal Semantics
for Associations in UML2 . 230

Zinovy Diskin, Juergen Dingel

Semantic Variations Among UML StateMachines . 245
Ali Taleghani, Joanne M. Atlee

Facilitating the Definition of General Constraints in UML 260
Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós,
Ernest Teniente

Table of Contents XIII

Security

Towards a MOF/QVT-Based Domain Architecture for Model Driven
Security . 275

Michael Hafner, Muhammad Alam, Ruth Breu

MDA-Based Re-engineering with Object-Z . 291
Jörn Guy Süß, Tim McComb, Soon-Kyeong Kim, Luke Wildman,
Geoffrey Watson

A Model Transformation Semantics and Analysis Methodology
for SecureUML . 306

Achim D. Brucker, Jürgen Doser, Burkhart Wolff

Model Transformation Tools and Implementation

Incremental Model Transformation for the Evolution of Model-Driven
Systems . 321

David Hearnden, Michael Lawley, Kerry Raymond

A Plugin-Based Language to Experiment with Model Transformation 336
Jesús Sánchez Cuadrado, Jesús Garćıa Molina

SiTra: Simple Transformations in Java . 351
David H. Akehurst, Behzad Bordbar, Michael J. Evans,
W. Gareth J. Howells, Klaus D. McDonald-Maier

Analyzing Dynamic Models

Analysis and Visualization of Behavioral Dependencies Among
Distributed Objects Based on UML Models . 365

Vahid Garousi, Lionel C. Briand, Yvan Labiche

Model Extraction Using Context Information . 380
Lucio Mauro Duarte, Jeff Kramer, Sebastian Uchitel

Dynamic and Generic Manipulation of Models: From Introspection
to Scripting . 395

Christophe Tombelle, Gilles Vanwormhoudt

Specifying Transformations

Model Transformation by Example . 410
Dániel Varró

XIV Table of Contents

Graphical Definition of In-Place Transformations in the Eclipse
Modeling Framework . 425

Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns,
Gabriele Taentzer, Eduard Weiss

Model Transformations? Transformation Models! . 440
Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault,
Ivan Kurtev, Arne Lindow

MOF

A Mapping Language from Models to DI Diagrams . 454
Marcus Alanen, Torbjörn Lundkvist, Ivan Porres

Basic Operations over Models Containing Subset and Union
Properties . 469

Marcus Alanen, Ivan Porres

A Metamodeling Approach to Pattern Specification 484
Maged Elaasar, Lionel C. Briand, Yvan Labiche

Keynote 2

Immune System Computation and the Immunological Homunculus 499
Irun R. Cohen

Bridging Models

Building Abstractions in Class Models: Formal Concept Analysis
in a Model-Driven Approach . 513

Gabriela Arévalo, Jean-Rémi Falleri, Marianne Huchard,
Clémentine Nebut

Lifting Metamodels to Ontologies: A Step to the Semantic Integration
of Modeling Languages . 528

Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler,
Thomas Reiter, Werner Retschitzegger, Wieland Schwinger,
Manuel Wimmer

Incremental Model Synchronization with Triple Graph Grammars 543
Holger Giese, Robert Wagner

Table of Contents XV

Risk, Trust and Dependability

Model-Driven Assessment of Use Cases for Dependable Systems 558
Sadaf Mustafiz, Ximeng Sun, Jörg Kienzle, Hans Vangheluwe

A Graphical Approach to Risk Identification, Motivated by Empirical
Investigations . 574

Ida Hogganvik, Ketil Stølen

Reusable MDA Components: A Testing-for-Trust Approach 589
Jean-Marie Mottu, Benoit Baudry, Yves Le Traon

Tool Environments

Using Smalltalk as a Reflective Executable Meta-language 604
Stéphane Ducasse, Tudor Gı̂rba

UML Model Interchange in Heterogeneous Tool Environments:
An Analysis of Adoptions of XMI 2 . 619

Björn Lundell, Brian Lings, Anna Persson, Anders Mattsson

Applying Model Fragment Copy-Restore to Build an Open
and Distributed MDA Environment . 631

Prawee Sriplakich, Xavier Blanc, Marie-Pierre Gervais

OCL

An OCL-Based Technique for Specifying and Verifying
Refinement-Oriented Transformations in MDE . 646

Claudia Pons, Diego Garcia

An OCL Semantics Specified with QVT . 661
Slavǐsa Marković, Thomas Baar

Specification of Invariability in OCL . 676
Piotr Kosiuczenko

Roundtrip Engineering

Framework-Specific Modeling Languages with Round-Trip
Engineering . 692

Micha�l Antkiewicz, Krzysztof Czarnecki

XVI Table of Contents

A Visualization Framework for the Modeling and Formal Analysis
of High Assurance Systems . 707

Heather Goldsby, Betty H.C. Cheng, Sascha Konrad,
Stephane Kamdoum

Layered Class Diagrams: Supporting the Design Process 722
Scott Hendrickson, Bryan Jett, André van der Hoek

Real Time and Embedded Systems

Using UML Activities for System-on-Chip Design and Synthesis 737
Tim Schattkowsky, Jan Hendrik Hausmann, Gregor Engels

Modeling and Early Performance Estimation for Network Processor
Applications . 753

Antonia Bertolino, Alvise Bonivento, Guglielmo De Angelis,
Alberto Sangiovanni-Vincentelli

A Formal Semantics of UML-RT . 768
Michael von der Beeck

Workshops, Tutorials and Panels

Workshops and Symposia at MoDELS 2006 . 783
Thomas Kühne

Tutorials at MoDELS 2006 . 791
Egidio Astesiano

Panels at MoDELS 2006 . 795
Douglas C. Schmidt

Author Index . 797

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 1 – 15, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Software Modeling Odyssey:
Designing Evolutionary Architecture-Centric

Real-Time Systems and Product Lines

Hassan Gomaa

Department of Information and Software Engineering
George Mason University

Fairfax, Virginia 22030, USA
hgomaa@gmu.edu

Abstract. According to OMG, “modeling is the designing of software applications
before coding.” This paper describes a modeling approach to software design. The
paper describes the key elements of design methods for component based software
product lines, which promote reuse, variability management, and evolution.
Approaches for executable models and performance analysis of concurrent and
real-time design are discussed. Finally, some outstanding challenges are outlined,
in particular the design of evolutionary and dynamically reconfigurable software
architectures.

Keywords: software modeling, software design, real-time systems, software
product lines, software architecture.

1 Introduction

Modeling is used in many walks of life, going back to early civilizations, where it was
used to provide small scale plans in art and architecture. Modeling is widely used in
science and engineering to provide abstractions of a system at some level of precision
and detail. The model is then analyzed in order to obtain a better understanding of the
system being developed. According to OMG, “modeling is the designing of software
applications before coding.” This paper describes a modeling approach to software
design, in particular the design of real-time systems and software product lines.

Real-time systems are reactive systems, so that control decisions are often state
dependent, hence the importance of finite state machines in the design of these
systems. Real-time systems typically need to process concurrent inputs from many
sources, hence the importance of concurrent software design. They have real-time
throughput and/or response time requirements, so there is a need to analyze the
performance of real-time designs. Furthermore, there is a need to integrate real-time
technology with modern software engineering concepts and methods.

A software product line (SPL) consists of a family of software systems that have
some common functionality and some variable functionality [Parnas79, Clements02,
Weiss99]. Software product line engineering involves developing the requirements,
architecture, and component implementations for a family of systems, from which
products (family members) are derived and configured. The problems of developing

2 H. Gomaa

individual software systems are scaled upwards when developing software product
lines because of the increased complexity due to variability management.

In model-based software design and development, software modeling is used as an
essential part of the software development process. Models are built and analyzed
prior to the implementation of the system, and are used to direct the subsequent
implementation. The different versions of a system as it evolves can be considered a
product line, with each version of the system a member of the product line. In order to
keep track of the evolution of the system, it is necessary to explicitly model the
different features of the system as it evolves, and use the feature model to differentiate
among the different versions of the system.

A better understanding of a system or product line can be obtained by considering
the multiple views [Gomaa98, GomaaShin04], such as requirements models, static
models, and dynamic models of the system or product line. A graphical modeling
language such as UML helps in developing, understanding and communicating the
different views. A key view in the multiple views of a software product line is the
feature modeling view [Kang90]. The feature model is crucial for managing
variability and product derivation as it describes the product line requirements in
terms of commonality and variability, as well as defining the product line
dependencies [Gomaa06]. Furthermore, it is necessary to have a development
approach that promotes software evolution, such that original development and
subsequent maintenance are both treated using feature-driven evolution.

This paper describes an architecture-centric evolutionary modeling and
development approach for real-time systems and software product lines. After
presenting an overview of the evolutionary software product line engineering
approach in Section 2, this paper describes how the different modeling views provide
a better insight into and understanding of the software product line architecture, in
particular through requirements (use case and feature) modeling in Section 3, analysis
(static and dynamic) modeling in Section 4, design modeling (modeling component-
based software architectures and software architectural patterns) in Section 5, tool
support for SPL engineering in Section 6, performance models and executable models
of software designs in Section 7, and dynamic software reconfiguration in Section 8.

2 Evolutionary Software Product Line Engineering

The Software Process Model for SPL Engineering [Gomaa05] is a highly iterative
software process that eliminates the traditional distinction between software
development and maintenance. Furthermore, because new software systems are
outgrowths of existing ones, the process takes a software product line perspective; it
consists of two main processes (see Fig. 1):

a) Product line Engineering. A product line multiple-view model, which addresses
the multiple views of a software product line, is developed. The product line multiple-
view model, product line architecture, and reusable components (referred to as core
assets in [Clements02]) are developed and stored in the product line reuse library.

b) Software Application Engineering. A software application multiple-view model
is an individual product line member derived from the software product line multiple-
view model. The user selects the required features for the individual product line
member. Given the features, the product line model and architecture are adapted and

 A Software Modeling Odyssey 3

Product Line
Engineering

Application
Engineering

Product Line
Requirements and
Analysis Models,

Product Line Software
Architecture,

Reusable Components

Application
Requirements

Product Line

Application

Unsatisfied Requirements, Errors, Adaptations

Product Line
Reuse Library

Fig. 1. Evolutionary Process Model for Software Product Lines

tailored to derive the application architecture. The architecture determines which of
the reusable components are needed for configuring the executable application.

The architecture-centric evolution approach described in this paper follows the
model driven architecture concept in which UML models of the software architecture
are developed prior to implementation. With this approach, the models can later
evolve after original deployment. The kernel software architecture represents the
commonality of the product line. Evolution is built into the software development
approach because the variability in the software architecture is developed by
considering the impact of each variable feature on the software architecture and
evolving the architecture to address the feature. The development approach is a
feature-driven evolutionary approach, meaning that it addresses both the original
development and subsequent post-deployment evolution. Being feature based, the
approach closely relates the software architecture evolution to the evolution of
software requirements.

3 Requirements Modeling

3.1 Use Case Modeling

The functional requirements of a system are defined in terms of use cases and actors
[Rumbaugh05]. For a single system, all use cases are required. In a software product
line, only some of the use cases, which are referred to as kernel use cases, are required
by all members of the family. Other use cases are optional, in that they are required
by some but not all members of the family. Some use cases may be alternative, that is
different versions of the use case are required by different members of the family. In
UML, the use cases are labeled with the stereotype «kernel», «optional» or
«alternative» [Gomaa05]. In addition, variability can be inserted into a use case

4 H. Gomaa

through variation points, which specify locations in the use case where variability can
be introduced [Jacobson97, WebberGomaa04, Gomaa05]. Examples of kernel and
optional product line use cases for a microwave oven SPL are given in Fig. 2.

Fig. 2. Product Line Use Cases

3.2 Feature Modeling

Feature modeling is an important aspect of product line engineering [Kang90].
Features are analyzed and categorized as common features (must be supported in all
product line members), optional features (only required in some product line
members), alternative features (a choice of feature is available) and prerequisite
features (dependent upon other features). There may also be dependencies among
features, such as mutually exclusive features. The emphasis in feature modeling is
capturing the product line variability, as given by optional and alternative features,
since these features differentiate one member of the family from the others.

Features are used widely in product line engineering but are not used in UML. In
order to effectively model product lines, it is necessary to incorporate feature
modeling concepts into UML. Features can be incorporated into UML using the
meta-class concept, in which features are modeled using the UML static modeling
notation and given stereotypes to differentiate between «common feature»,
«optional feature» and «alternative feature» [Gomaa05]. Furthermore, feature
groups, which place a constraint on how certain features can be selected for a
product line member, such as mutually exclusive features, are also modeled using
meta-classes and given stereotypes, e.g., «zero-or-one-of feature group» or
«exactly-one-of feature group» [Gomaa05]. Examples of an optional feature and a
feature group consisting of a default feature and an alternative feature (microwave
oven SPL) are given in Fig. 3.

In single systems, use cases are used to determine the functional requirements of a
system; they can also serve this purpose in product families. Griss [Griss98] has
pointed out that the goal of the use case analysis is to get a good understanding of the
functional requirements whereas the goal of feature analysis is to enable reuse. Use
cases and features complement each other. Thus optional and alternative use cases
(Section 3) are mapped to optional and alternative features respectively, while use
cases variation points are also mapped to features [Gomaa05]. In Fig. 3, the Light
variation point is mapped to an optional feature (light is present or not) and the
Display Unit variation point is mapped to a feature group with a default one-line
display or alternative multi-line display.

 A Software Modeling Odyssey 5

Fig. 3. Features and feature groups in UML

4 Analysis Modeling

4.1 Static Modeling

In single systems, a class is categorized by the role it plays. Application classes are
classified according to their role in the application using stereotypes, such as «entity
class», «control class», or «interface class». In modeling software product lines, each
class can be categorized according to its reuse characteristic using the stereotypes
«kernel», «optional», and «variant». In UML 2.0, a modeling element can be
described with more than one stereotype. Thus one stereotype can be used to
represent the reuse characteristic while a different stereotype is used to represent the
role played by the modeling element [Gomaa05]. The role a class plays in the
application and the reuse characteristic are orthogonal. Examples of a kernel state
dependent control class and an optional output class are given in Fig. 4. The optional
Lamp Interface class (Fig. 4) supports the optional Light feature (Fig. 3).

Fig. 4. Role and Reuse Stereotypes in Product Line Classes

4.2 Evolutionary Dynamic Analysis

Evolutionary dynamic analysis is an iterative strategy to help determine the
dynamic impact of each feature on the software architecture. This results in new
components being added or existing components having to be adapted. The kernel
system is a minimal member of the product line. In some product lines the kernel
system consists of only the kernel objects. For other product lines, some default
objects may be needed in addition to the kernel objects. The kernel system is
developed by considering the kernel use cases, which are required by every member
for the product line. For each kernel use case, an interaction diagram is developed
depicting the objects needed to realize the use case. The kernel system consists of the
integration of all these objects and the classes from which they are instantiated.

«alternative
feature»
Multi-line
Display

«default
feature»
One-line
Display

«exactly-one-of
feature group»

Display Unit

{mutually exclusive feature}

«optional
feature»

Light

6 H. Gomaa

The software product line evolution approach starts with the kernel system and
considers the impact of optional and/or alternative features [Gomaa05]. This results in
the addition of optional or variant components to the product line architecture. This
analysis is done by considering the variable (optional and alternative) use cases, as
well as any variation points in the kernel or variable use cases. For each optional or
alternative use case, an interaction diagram is developed consisting of new optional or
variant objects – the variant objects are kernel or optional objects that are impacted by
the variable scenarios, and therefore need to be adapted.

4.3 Managing Variability in Statecharts

When components are adapted for evolution, there are two main approaches to
consider, specialization or parameterization. Specialization is effective when there are
a relatively small number of changes to be made, so that the number of specialized
classes is manageable. However, in product line evolution, there can be a large degree
of variability. Consider the issue of variability in control classes, which are modeling
using statecharts [Harel96], which can be handled either by using parameterized
statecharts or specialized statecharts. Depending on whether the product line uses a
centralized or decentralized approach, it is likely that there will be several different
state dependent control components, each modeled by its own statechart. The
following discussion relates to the evolution within a given state dependent
component.

To capture product line variability and evolution, it is necessary to specify optional
states, events and transitions, and actions. A further decision that needs to be made
when using state machines to model variability is whether to use state machine
inheritance or parameterization. The problem with using inheritance is that a different
state machine is needed to model each alternative or optional feature, or feature
combination, which rapidly leads to a combinatorial explosion of inherited state
machines. For example, with only three features that could impact the statechart,
there would be eight possible feature and feature combinations, resulting in eight
variant statecharts. With 10 features, there would be over 1000 variant statecharts.
However, 10 features can be easily modeled on a parameterized statechart as 10
feature dependent transitions, states, or transitions.

It is often more effective to design a parameterized state machine, in which there
are feature-dependent states, events, and transitions. Optional transitions are specified
by having an event qualified by a feature condition, which guards entry into the state.
Thus Minute Pressed is a feature dependent transition guarded by the feature
condition minuteplus in Fig. 5. Similarly, there can be feature-dependent actions, such
as Switch On and Switch Off in Fig. 5, which are only enabled if the light feature
(Fig. 3) condition is True. Thus the feature condition is True if the optional feature is
selected for a given product line member, and false if the feature is not selected. The
impact of feature interactions can be modeled very precisely using state machines
through the introduction of alternative states or transitions. Designing parameterized
statecharts is often more manageable than designing specialized statecharts.

 A Software Modeling Odyssey 7

Fig. 5. Feature Dependent Transitions and Actions

5 Design Modeling

5.1 Modeling Component-Based Software Architectures

A software component’s interface is specified separately from its implementation and,
unlike a class, the component’s required interface is designed explicitly in addition to
the provided interface. This is particularly important for architecture-centric
evolution, since it is necessary to know the impact of the change to a component on
all components that interface to it.

Software components can be effectively modeled in UML 2.0 with structured
classes and depicted on composite structure diagrams [Rumbaugh05]. Structured
classes have ports with provided and required interfaces. Structured classes can be
interconnected via connectors that join the ports of communicating classes.

To provide a complete definition of the component-based software architecture for
a software product line, it is necessary to specify the interface(s) provided by each
component and the interface(s) required by each component. A provided interface is
a collection of operations that specify the services that a component must fulfill. A
required interface describes the services that other components provide for this
component to operate properly in a particular environment.

This capability for modeling component-based software architectures is
particularly valuable in product line engineering, to allow the development of kernel,
optional and variant components, “plug-compatible” components, and component
interface inheritance. There are various ways to design components. It is highly
desirable, where possible, to design components that are plug-compatible, so that the
required port of one component is compatible with the provided ports of other
components to which it needs to connect [Gomaa05]. Consider the case in which a
producer component needs to be able to connect to different alternative consumer
components in different product line members, as shown in Fig. 6. The most desirable
approach, if possible, is to design all the consumer components with the same
provided interface, so that the producer can be connected to any consumer without
changing its required interface. In Fig. 6, Microwave Control can be connected to
either version of the Microwave Display component (which correspond to the default

8 H. Gomaa

Fig. 6. Design of Plug-compatible Components

and alternative features in Fig 3). As the product line evolves new producers can
communicate with the consumer.

It is possible for a component to connect to different components and have
different interconnections such that in one case it communicates with one component
and in a different case it communicates with two different components. This
flexibility helps in evolving the software architecture. When plug-compatible
components are not practical, an alternative component design approach is
component interface inheritance. Consider a component architecture that evolves in
such a way that the interface through which the two components communicate needs
to be specialized to allow for additional functionality. In this case, both the
component that provides the interface and the component that requires the interface
have to be modified—the former to realize the new functionality, and the latter to
request it. The above approaches can be used to complement compositional
approaches for developing component-based software architectures.

5.2 Software Architectural Patterns

Software architectural patterns [Buschmann96, Gomaa01] provide the skeleton or
template for the overall software architecture or high-level design of an application.
These include such widely used architectures [Bass03] as client/server and layered
architectures. Basing the software architecture of a product line on one or more
software architectural patterns helps in designing the original architecture as well as
evolving the architecture. This is because the evolutionary properties of architectural
patterns can also be studied.

There are two main categories of software architectural patterns [Gomaa05].
Architectural structure patterns address the static structure of the software
architecture. Architectural communication patterns address the message
communication among distributed components of the software architecture.

Most software systems and product lines can be based on well understood overall
software architectures. For example, the client/server software architecture is
prevalent in many software applications. There is the basic client/server architecture,
with one server and many clients. However, there are also many variations on this
theme, such as multiple client / multiple server architectures and brokered

 A Software Modeling Odyssey 9

client/server architectures. Furthermore, with a client/server pattern, the server can
evolve by adding new services, which are discovered and invoked by clients. New
clients can be added that discover services provided by one or more servers.

Many real-time systems [Gomaa00] provide overall control of the environment by
providing either centralized control, decentralized control, or hierarchical control.
Each of these control approaches can be modeled using a software architectural
pattern. In a centralized control pattern, there is one control component, which
executes a statechart. It receives sensor input from input components and controls the
external environment via output components, as shown in Fig. 7. In a centralized
control pattern, evolution takes the form of adding or modifying input and/or output
components that interact with the control component, which executes a statechart that
can evolve as described in Section 4.3. Another architectural pattern that is worth
considering because of its desirable properties is the layered architecture. A layered
architectural pattern allows for ease of extension and contraction [Parnas79] because
components can be added to or removed from higher layers, which use the services
provided by components at lower layers of the architecture.

In addition to the above architectural structure patterns, certain architectural
communication patterns also encourage evolution. In software product lines, it is often
desirable to decouple components. The Broker, Discovery, and Subscription/Notification
patterns encourage such decoupling. With the broker patterns, servers register with
brokers, and clients can then discover new servers. Thus a product line can evolve with
the addition of new clients and servers. A new version of a server can replace an older
version and register itself with the broker. Clients communicating via the broker would

«kernel»
«input component»

DoorComponent

«variant»
«input component»
WeightComponent

«kernel-param-vp»
«input component»
KeypadComponent

«variant»
«output component»

HeatingElementComponent

«variant»
«output

component»
MicrowaveDisplay

«kernel»
«control component»

MicrowaveControl

Fig. 7. Example of Centralized Control Pattern

10 H. Gomaa

automatically be connected to the new version of the server. The Subscription/
Notification pattern also decouples the original sender of the message from the recipients
of the message.

A very important decision is to determine which architectural patterns—in
particular, which structure and communication patterns—are required. Architectural
structure patterns can initially be identified during dynamic modeling because
patterns can be recognized during development of the communication diagrams. For
example, client/server and any of the control patterns can first be used during
dynamic modeling. Unlike other software architectural patterns, which can be
recognized earlier in the application design, the architecture of the software
application can be molded to the layered architecture. However in many applications,
other patterns, such as the client/server and control patterns, can be integrated with the
layered pattern. Although architectural structure patterns can be identified during
dynamic modeling, the real decisions are made during software architectural design. It
is necessary to decide the architectural structure patterns first and then the
architectural communication patterns.

6 Tool Support for Software Product Line Engineering

Automated tool support is highly desirable for managing the complexity and variability
inherent in software product lines. At George Mason University, we have been
investigating methods and tools for software product lines over several years
[Gomaa96, Gomaa99, GomaaShin04]. To provide tool support for representing the
multiple graphical views of a product line, we have used various CASE tools,
including Rose, to capture the multiple views. Using the open architecture provided by
some CASE tools, we then developed our own tools to extract the underlying
representation of each view and store this information in a product line repository,
which consists of an integrated set of data base relations. We then developed a multiple
view consistency checking tool to check for consistency among the multiple views and
report any inconsistencies to the user [GomaaShin04]. We also provided automated
support for product derivation from the product line repository. This was achieved by
developing a knowledge based requirements elicitation and product derivation tool,
which interacts with the user to ensure selection of a consistent set of product features
and then derives a product (member of SPL) from the product line repository
[Gomaa96, Gomaa06]. All the tools developed are product line independent, as they
treat all product line specific information as data and facts to be manipulated by the
product line independent tools. We also integrated our product line tools with Imperial
College’s Darwin/Regis distributed programming and configuration environment
[Magee94] to allow component-based distributed applications to be configured from
product line features, architectures and components [Gomaa99], which were previously
developed and stored in the SPL repository.

7 Performance Models and Executable Models of Software Designs

Performance modeling of a system at design time is important to determine whether
the system will meet its performance goals, such as throughput and response times.

 A Software Modeling Odyssey 11

Performance modeling methods include queuing modeling [GomaaMenasce01,
[MenasceGomaa00] and simulation modeling. Performance modeling is particularly
important in real-time systems, in which failing to meet a deadline could be
catastrophic. Real-time scheduling in conjunction with event sequence modeling is an
approach for modeling real-time designs executing on given hardware configurations.

In COMET, performance analysis of software designs is achieved by applying
real-time scheduling theory. Real-time scheduling is an approach that is particularly
appropriate for hard real time systems that have deadlines that must be met
[Gomaa00]. With this approach, the real time design is analyzed to determine
whether it can meet its deadlines. A second approach for analyzing the performance
of a design is to use event sequence analysis and to integrate this with the real-time
scheduling theory. Event sequence analysis is used analyze scenarios of
communicating tasks and annotate them with the timing parameters for each of the
participating tasks, in addition to considering system overhead for inter-object
communication and context switching [Gomaa00].

Executable models of software designs allow the logic of the design to be
simulated and tested before the design is implemented. Existing modeling tools such
as Rose Real-Time and Rhapsody frequently use statecharts as the key underlying
mechanism for dynamic model execution.

An alternative approach for developing executable models for concurrent and
distributed designs is to model concurrent object behavior in the form of concurrent
behavioral design patterns (BDP), which are then mapped to Colored Petri Net (CPN)
templates [PettitGomaa06]. Each BDP represents the behavior of concurrent objects
together with associated message communication constructs, and is depicted on a
UML concurrent communication diagram. The software architecture is organized
using the concept of components and connectors, in which concurrent objects are
designed as components that can be connected through passive message
communication objects and entity objects. Each concurrent object has a behavioral
role (such as I/O, control, algorithm) which is given by the COMET concurrent object
structuring criteria and depicted by a UML stereotype. An example of a behavioral
design pattern for an asynchronous device input concurrent object is given in Fig. 8a.

For each BDP, a self-contained CPN template is designed, which by means of its
places, transitions, and tokens, models a given concurrent behavioral pattern. Figure
8b depicts the CPN template for an asynchronous device input concurrent object.
Each template is generic in the sense that it provides a basic behavioral pattern and
component connections for the concurrent object but does not contain any
application-specific information. Furthermore, concurrent component templates are
designed such that they can be interconnected via connector templates.

Using this approach, a concurrent software architecture is described in terms of
interconnected concurrent behavioral design patterns, which are then mapped to a
CPN model by interconnecting the corresponding CPN templates. The CPN templates
are elaborated to provide application specific behavior. The CPN model is then
executed using a CPN tool, thereby allowing the designer to analyze both the dynamic
behavior and performance of a simulation of the concurrent design, with a given
external workload applied to it.

12 H. Gomaa

{Execution =async;
IO = input
Process Time = <process time>
}

asyncInput
Interface

<<I/O>>

external
InputSource

<<external I/O device>> inputEvent asyncMsg To internal
connector

object

(a)

(b)(b)

Fig. 8. Asynchronous Input Concurrent Object: (a) Behavioral Design Pattern (b) CPN
Template

8 Software Evolution and Dynamic Software Reconfiguration

A more challenging situation is when a software system has to evolve after
deployment while the system is operational. The different versions of the software
system together constitute a software product line. Software configuration is the
process of adapting the architecture of a SPL to create a specific product line member
in terms of components and their interconnections. Dynamic software reconfiguration
is concerned with changing the application configuration at runtime after it has been
deployed and is needed for systems that have to evolve after original deployment.

In order to support dynamic software reconfiguration in software product lines, the
Evolutionary Process Model for SPLs (Fig. 1) needs to be extended, as depicted in
Fig. 9, to support dynamic software reconfiguration [Gomaa04]. During Target
System Reconfiguration, users specify runtime configuration changes so that the
executable target system is dynamically changed from the target system run-time
configuration for one product line member to a new target system run-time
configuration for a different product line member.

The product line design is composed of distributed software architectural patterns,
such as client/server, master/slave, and distributed control patterns, which describe the
software components that constitute the pattern and their interconnections. For each
of these architectural patterns, there is a corresponding software reconfiguration

 A Software Modeling Odyssey 13

Fig. 9. Reconfigurable Evolutionary Process Model for Software Product Lines

Fig. 10. Reconfiguration State Machine Model

pattern [Gomaa04], which models how the software components and interconnections
can be changed under predefined circumstances, such as replacing one client with
another in a client/server pattern, inserting a control component between two other
control components in a distributed control pattern, etc. A change management model
defines the precise steps involved in dynamic reconfiguration to transition from the
current software run-time configuration to the new run-time configuration. Thus, a
component that needs to be replaced has to stop being active and become quiescent,
the components that it communicates with need to stop communicating with it; the
component then needs to be unlinked, removed and replaced by the new component,

14 H. Gomaa

after which the configuration needs to be relinked and restarted. A dynamic software
reconfiguration framework is designed and implemented to initiate and control the
steps of the change management model for automatic reconfiguration of the product
line system from one run-time configuration to another.

A software reconfiguration pattern defines how a set of components that make up an
architecture or design pattern dynamically cooperate to change the software config-
uration to a new configuration given a set of reconfiguration commands. A
reconfiguration pattern requires state- and scenario-based reconfiguration behavior
models to provide for a systematic design approach. The reconfiguration patterns are
described in UML with reconfiguration communication models and reconfiguration
statechart models (such as Fig. 10). A reconfiguration statechart defines the sequence of
states a component goes through during reconfiguration from a normal operational state
to a quiescent state. Once quiescent, the component is idle and can be removed from the
configuration, so that it can be replaced with a different version of the component.

9 Conclusions

This paper has described an architecture-centric evolutionary modeling and design
approach for software product lines. Models are built and analyzed prior to
implementation of the system, and direct the subsequent implementation. The
different versions of an evolutionary system are considered a product line, with each
version of the system a product line member. After implementation, the model should
co-exist with the system and evolve with the system. Just as model development
precedes and directs the implementation of the system, so should evolution of the
model precede and direct evolution of the system. This paper has discussed several
key factors for consideration in the modeling and design of real-time systems and
product lines, which assist in developing the software architecture before
implementation and evolving the software architecture after original deployment.

Acknowledgments. The author gratefully acknowledges the contributions of R.
Pettit, M. Hussein, M.E Shin, M. Saleh, and E. Olimpiew to this research.

References

[Bass03] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice”, Addison
Wesley, Reading MA, Second edition, 2003.

[Buschmann96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, “Pattern Oriented
Software Architecture: A System of Patterns”, John Wiley & Sons, 1996.

[Clements02] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns,
Addison Wesley, 2002.

[Gomaa96] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, I Tavakoli, “A Knowledge-
Based Software Engineering Environment for Reusable Software Requirements and
Architectures”, Journal of Automated Software Engineering, Vol. 3, 285-307, 1996.

[Gomaa98] H. Gomaa and E. O'Hara, “Dynamic Navigation in Multiple View Software
Specifications and Designs”, Journal of Systems and Software, Vol. 41, 93-103, 1998.

 A Software Modeling Odyssey 15

[Gomaa99] H. Gomaa and G.A. Farrukh, “Methods and Tools for the Automated Configuration
of Distributed Applications from Reusable Software Architectures and Components”, IEE
Proceedings – Software, Vol. 146, No. 6, December 1999.

[Gomaa00] H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with
UML", Addison-Wesley Object Technology Series, 2000.

[Gomaa01] H. Gomaa, D. Menasce, E. Shin, “Reusable Component Interconnection Patterns
for Distributed Software Architectures,” Proceedings ACM Symposium on Software
Reusability, ACM Press, Pages 69-77, Toronto, Canada, May 2001

[Gomaa04] H. Gomaa and M. Hussein, “Software Reconfiguration Patterns for Dynamic
Evolution of Software Architectures”, Proc. Fourth Working IEEE/IFIP Conference on
Software Architecture, Oslo, Norway, June, 2004.

[Gomaa05] Gomaa, H., “Designing Software Product Lines with UML: From Use Cases to
Pattern-based Software Architectures”, Addison-Wesley Object Technology Series, 2005.

[Gomaa06] H. Gomaa and M. Saleh, “Feature Driven Dynamic Customization of Software
Product Lines”, Proc. Intl. Conf. on Software Reuse, Torino, Italy, Springer LNCS 4039,
June 2006.

[GomaaMenasce01] H. Gomaa and D. Menasce, “Performance Engineering of Component-
Based Distributed Software Systems”. In “Performance Engineering”, Eds. R. Dumke, C.
Rautenstrauch, A. Schmietendorf, A. Scholz, Springer Verlag LNCS 2047, 2001.

[GomaaShin04] H. Gomaa and M.E. Shin, “A Multiple-View Meta-Modeling Approach for
Variability Management in Software Product Lines”, Proc. International Conference on
Software Reuse, Madrid, Spain, Springer LNCS 3107, July 2004.

[Griss 98] Griss, M., J. Favaro, and M. d’Alessandro, “Integrating Feature Modeling with the
RSEB.” In Fifth Intl. Conf. on Software Reuse: Proc: June 1998, Victoria, BC, Canada, P.
Devanbu and J. Poulin (eds.), pp. 1–10. Los Alamitos, CA: IEEE Computer Soc. Press.

[Harel96] Harel, D. and E. Gary, “Executable Object Modeling with Statecharts”, Proc. 18th
International Conference on Software Engineering, Berlin, March 1996.

[Jacobson97] Jacobson, I., M. Griss, and P. Jonsson. 1997. Software Reuse: Architecture,
Process and Organization for Business Success. Reading, MA: Addison-Wesley.

[Kang90] Kang K. C. et. al., “Feature-Oriented Domain Analysis,” Technical Report No.
CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

[Magee94] J. Magee, N. Dulay and J. Kramer, "Regis: A Constructive Development
Environment for Parallel and Distributed Programs", Journal of Distributed Systems
Engineering, 1994, pp. 304-312.

[MenasceGomaa00] D. Menasce and H. Gomaa, “A Method for Design and Performance
Modeling of Client/Server Systems,” IEEE Transactions on Software Engineering, Vol. 26,
No.11, Pages 1066-1085, November 2000.

[Parnas79] Parnas D., "Designing Software for Ease of Extension and Contraction", IEEE
Transactions on Software Engineering, March 1979.

[PettitGomaa06] R. Pettit and H. Gomaa, “Modeling Behavioral Design Patterns of Concurrent
Objects”, Proc. International Conf. on Software Engineering, Shanghai, China, May 2006.

[Rumbaugh05] J. Rumbaugh, G. Booch, I. Jacobson, “The Unified Modeling Language
Reference Manual,” Second Edition, Addison Wesley, Reading MA, 2005.

[WebberGomaa04] D. Webber and H. Gomaa, "Modeling Variability in Software Product
Lines with the Variation Point Model", Journal of Science of Computer Programming,
Volume 53, Issue 3, Pages 305-331, Elsevier, December 2004.

[Weiss99] D M Weiss and C T R Lai, “Software Product-Line Engineering: A Family-Based
Software Development Process,” Addison Wesley, 1999.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 16 – 26, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Uses and Abuses of the Stereotype Mechanism in
UML 1.x and 2.0

B. Henderson-Sellers and C. Gonzalez-Perez

Faculty of Information Technology
 University of Technology, Sydney

PO Box 123, Broadway, NSW 2007, Australia
brian@it.uts.edu.au,

 cesargon@verdewek.com

Abstract. Stereotypes were introduced into the UML in order to offer extensi-
bility to the basic metamodel structure by the user and without actually modify-
ing the metamodel. In UML version 1.x, this was accomplished by means of
permitting virtual subtyping in the metamodel. However, this facility led many
to misuse stereotypes, particularly in places where regular domain-level model-
ling would be more appropriate. In version 2.0 of the UML, the portion of the
metamodel pertaining to stereotypes was drastically revised. The resulting
mechanism is reviewed here and compared with that of version 1.x. From a set
theory point of view, the new (2.0) metamodel is unfortunately untenable and
the examples used in the OMG documentation unconvincing. This paper out-
lines the issues and suggests some possible steps to improve the UML 2.0
stereotype theory and practice.

1 The Idea Behind Stereotypes – The Need for Extensibility

Before the UML was mooted, each individual methodologist had their own notation,
based on (often ill-defined) concepts. Such modelling languages often passed through
several versions, each extending, refining and moderating the previous version. Thus
extensibility was easy but the product itself essentially unstable.

Suggestions that a standard modelling language for object-oriented systems might
be sought were mooted (actually for the second time) in the early 1990s [1]. Although
a single standard (finally created under the auspices of the OMG) was envisaged,
there was also an idea that this would be some sort of core language which would
form the basis for tailored extensions [2]. At that time, the form of such an extension
was unclear.

When the UML began to coalesce ideas from many sources, the extension mecha-
nism we know today as stereotypes began to emerge (see e.g. [3]). This was catalysed
by a discussion on the secondary badging of objects made in [4]. They suggested that
a secondary classification might, in some specific circumstances, be useful – by at-
tributing a prescribed responsibility for each so-labelled object. The categories of
these responsibilities were intentionally implementation-focussed with names such as
“coordinator object” and “interface object”. UML took this idea originally espoused
for object classification as a secondary classification mechanism for classes. The

 Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0 17

main aim was to avoid the obvious way of extending the UML (by means of direct
extensions to the metamodel – known as a UML variant, see e.g. example of the use
of this variant approach in [5]) and replace it with an artificial means of apparently
extending the metamodel without actually so doing.

In this paper, we first review the material available on the stereotype mechanism in
UML version 1.x and then introduce a novel analysis of the new stereotype mecha-
nism introduced recently in UML version 2.0 and identify its similarities and differ-
ences with version 1.x, critically examining whether these new features improve or
degrade the previous model.

2 Stereotypes in UML Version 1.x

Based on the need for language extensibility but without extending the metamodel it-
self, UML version 1.x introduced a mechanism known as a stereotype, which can be
defined as a “user-defined virtual sub-metatype”. Although this went through a vari-
ety of incarnations [6], the basic idea is as depicted here in Figure 1. Although there is
much confusion regarding the definition of stereotypes [7] and, particularly, their cor-
rect usage (e.g. [3]), the basic idea is that the user can effectively define a new meta-
class that exists only in the context of the stereotype definition and is not actually
added to the UML metamodel. Atkinson and Kühne [7] suggest that this “represents
an alternative way of expressing the instantiation relationship1 without offering any
additional modelling power”. In Figure 1, the user wishes to enhance the standard
UML metamodel by a new concept called ControlClass that he/she envisages as a
subclass of the pre-existing metaclass called Class. Once “imagined”, then this new

M1

M2
«metaclass»

Class
ControlClass

«instanceOf»

«control»
Bird

Fig. 1. Schematic example of how a stereotype works. The stereotype here is ControlClass
which is not part of the UML metamodel but “invented” by the developer and imagined (vir-
tual) as being part of the M2 model as depicted here.

1 The kernel of strict metamodelling [8], as used in all versions of UML.

18 B. Henderson-Sellers and C. Gonzalez-Perez

ControlClass metaclass can be used to create instances at the model or M1 level in ex-
actly the same way as instantiating any other class from the metamodel. Thus, in this
example, an instance of the metaclass ControlClass is depicted as the (stereotyped)
class Bird. The Bird class is an instance of ControlClass and also of Class. Thus, it
remains a regular class as well as carrying its stereotype or “branding” [9].

The actual definition (metamodel fragment) of the stereotype mechanism of UML
version 1.4 is shown in Figure 2. A stereotype can be applied to an instance of a meta-
class defined by the baseClass attribute of Stereotype. A stereotype then may have a
tag definition (which gives the additional tagged values supported by the addition of
the stereotype) and one or more constraints. Gogolla and Henderson-Sellers [6] stress
the need to incorporate OCL [10] not only for constraint definition but also in other
parts of the stereotype definition in order that the mechanism can work effectively and
efficiently. In addition, tagged values of stereotypes play the same role as attributes of
classes: they implement properties of the type that take values for each instance. The
duality of tagged values vs. attributes is puzzling for many, because both constructs
(attributes and tagged values) seem to attempt to solve the same problem, namely, add
scalar properties to a type; if that is the case, why not a single, unified mechanism?.
Finally, another problem is that the UML 1.x specification indicates that a model ele-
ment can be marked with multiple stereotypes; although this may make sense from an
intuitive perspective, it would mean that the model element in question is a direct in-
stance of multiple user-defined virtual sub-metatypes. This contradicts the widespread
understanding that an object is a direct instance of one and only one type [11-14] – al-
though it can of course be an indirect instance of several types through single and
multiple inheritance.

ModelElement
(from Core)

Constraint
(from Core)

Generalizable
Element

(from Core)

Stereotype
TagDefinition

TaggedValue

+stereotype

*
*

0..1

1

*

*

0..1

*

*

*

*

*

1

+owner

+constrainedStereotype

+stereotypeConstraint

+constraint

+extendedElement

+constrainedElement

+referenceValue

+taggedValue +referenceTag

+typedValue
{xor}

{ordered}

+definedTag

*

+type

dataValue:String[*]

tagType:Name
multiplicity:Multiplicity

icon:Geometry
baseClass:Name[*]

ModelElement
(from Core)

Constraint
(from Core)

Generalizable
Element

(from Core)

Stereotype
TagDefinition

TaggedValue

+stereotype

*
*

0..1

1

*

*

0..1

*

*

*

*

*

1

+owner

+constrainedStereotype

+stereotypeConstraint

+constraint

+extendedElement

+constrainedElement

+referenceValue

+taggedValue +referenceTag

+typedValue
{xor}

{ordered}

+definedTag

*

+type

dataValue:String[*]

tagType:Name
multiplicity:Multiplicity

icon:Geometry
baseClass:Name[*]

Fig. 2. Metamodel fragment for the stereotype mechanism in UML version 1.x

 Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0 19

A key (yet often ignored) part of the version 1.x stereotype definition is the meta-
attribute of baseClass. This has to be defined and represents the ModelElements to
which it is allowable to add the particular stereotype being defined (Figure 3). Here, the
base class is shown graphically by the definitional arrow to the metaclass called Class.
In this example, then, the stereotype label «persistent» can only be placed on to a (M1
level) class (i.e. any instance of the metaclass called Class) – as shown in Figure 4.

«metaclass»
Class

«stereotype»
Persistent

«stereotype»

Tags
TableName: String[0..1]
SQLFile : «metaclass» Component

Constraints
{TableNameshould not be
longer than 8 characters}

«metaclass»
Class

«stereotype»
Persistent

«stereotype»

Tags
TableName: String[0..1]
SQLFile : «metaclass» Component

Constraints
{TableNameshould not be
longer than 8 characters}

«metaclass»
Class

«stereotype»
Persistent

«stereotype»

Tags
TableName: String[0..1]
SQLFile : «metaclass» Component

Constraints
{TableNameshould not be
longer than 8 characters}

«metaclass»
Class

«stereotype»
Persistent

«stereotype»

Tags
TableName: String[0..1]
SQLFile : «metaclass» Component

Constraints
{TableNameshould not be
longer than 8 characters}

Fig. 3. Graphical definition of a stereotype «persistent»

«persistent»

Queue

Fig. 4. Application of the stereotype «persistent», as defined in Figure 3, to a (M1 level) class
Queue

In practice, however, there were many abuses of this stereotype mechanism. Users
chose to employ a mixture of branding at the class level (as specified in the standard)
and branding at the instance level (not part of the standard). This led Atkinson et al.
[15] to identify three kinds of stereotype use/misuse. The first two focus on the notion
of object stereotypes and class stereotypes whereas the third identified kind of usage
simultaneously brands a class and all its objects (again strictly outside the UML
standard).

A typical good example (conformant with the UML standard) would be the brand-
ing of a class as a “commentedClass” (Figure 5) or a “controlClass” (as in Figure 1).
More dubious examples are those in which the stereotype seems to be an excuse or
replacement for a model that should be entirely at the M1 level using a generalization
relationship rather than the instantiation relationship of the version 1 stereotype
mechanism. These are readily identifiable because they typically use problem domain
concepts as labels to classifiers (less so to relationships) rather than conceptual modi-
fiers at the M2 level (Figure 6).

20 B. Henderson-Sellers and C. Gonzalez-Perez

M1

M2

«metaclass»
Class

commenter : string

CommentedClass

commenter = Bob

Worker

«instanceOf»

Fig. 5. Effect of stereotype on metamodel (after [15])

Figure 6(a)
Figure 6(b)

«civilServant»
EmergencyWorker

«civilServant»
Fireman

«civilServant»
Policeman Policeman Fireman

EmergencyWorker

CivilServant

Ben:Policeman Sam:Fireman Ben:Policeman Sam:Fireman

«instanceOf» «instanceOf»
«instanceOf» «instanceOf»

Figure 6(a)
Figure 6(b)

«civilServant»
EmergencyWorker

«civilServant»
Fireman

«civilServant»
Policeman Policeman Fireman

EmergencyWorker

CivilServant

Ben:Policeman Sam:Fireman Ben:Policeman Sam:Fireman

«instanceOf» «instanceOf»
«instanceOf» «instanceOf»

Fig. 6. Instance classification using (a) stereotypes and (b) superclasses (modified from [15])

Subsequent to these concerns being raised, both through the publications cited
above and through formal submissions to the OMG in their deliberations towards
UML version 2.0, there was optimism that a clear cut definition of a mechanism to

 Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0 21

support extensibility would be introduced. This might take the existing mechanism (as
a user-defined virtual sub-metatype) and enforce it more strongly, perhaps explicitly
forbidding what Atkinson et al. have described as “unofficial” usage or, conversely,
accepting the common practice and supplying a new mechanism to support and make
this unofficial usage into the “official” usage, abandoning the complicated extensions
through virtual subtyping. In the event, as is shown in the next section, the committee
did neither but introduced a new extension mechanism (though still called stereotype)
that parallels 1.x in the sense that its definition is at the metalevel but its examples are
counter to this at the object branding level.

3 Stereotypes in UML Version 2.0

The standard for the UML 2.0 Superstructure was finalized in late 2005 [16]. Its
metamodel (Figure 7) shows that the TaggedValue and TaggedDefinition have been
replaced by making Stereotype a (meta)class inheriting directly from Class. Since
Class has Properties that are instantiated to values, then the new 2.0 Stereotype auto-
matically inherits Properties that can be aliased to TaggedDefinition and Tagged-
Value. What appears to be missing is the association to Constraint (Figure 2) and the
important baseClass. The baseClass concept is replaced by the newly introduced con-
cept of Extension (and ExtensionEnds) that permits the connexion of two classes (but,
surprisingly, only instances of metaclass Class and no other metaclass). Extension is a
kind of Association (i.e. a relationship) and may or may not be required (meta-
attribute of isRequired). Since an association has ends, there is a parallel here for Ex-
tension to have ends, appropriately named ExtensionEnds. However, although version

Package

Profile

ProfileApplication

1

appliedProfile

*

PackageImport

*

importedProfile1

Class

Stereotype

1

ownedStereotype

*

Image

*
icon

*

/ isRequired : Boolean
Extension

/ metaclass 1

/ extension

*

Association

ExtensionEnd

1

ownedEnd

1

Property

*

type

1

ElementImport

PackageImport

0..1

metaclassReference

*

0..1

metamodelReference

*

(from Constructs)

(from Constructs)

(from Constructs)

(from Constructs)(from Constructs)

{subsets packageImport}

{subsets elementImport}

{subsets importedPackage}

{subsets packageImport}

/

Fig. 7. UML version 2.0 metamodel fragment for the metaclass Stereotype and related meta-
classes (after [16])

22 B. Henderson-Sellers and C. Gonzalez-Perez

1.x had an AssociationEnd metaclass, this is no longer the case. The place of associa-
tion ends is taken by the Property. Classes have Properties that provide the linkages
between pairs of classes via an association. However, as can be seen in Figure 7, Ex-
tension inherits from Association (so that it links Properties not Classes) but this
seems to be negated for Extension which directly links together Classes (not their
Properties as does the Association parent class).

It is the newly introduced metaclass of Extension that we examine here first in
some detail since it is the prime mechanism for stereotypical definitions and usage.
The definition states that “An extension is used to indicate that the properties of a
metaclass are extended through a stereotype, and gives the ability to flexibly add (and
later remove) stereotypes to classes”. The intention appears to be a good one – to en-
hance the existing properties of classes by those defined via the stereotype. But an in-
stance of Extension is a relationship, a kind of “super” association that links the class
in question to a set of additional properties. These additional properties must be part
of the instance of the Stereotype metaclass. The immediate problems are that the
merging of two disparate classes cannot be supported directly when one views classes
using set theory (see e.g. [17]). Merging instances of class A with instances of class B
(here the stereotype) results in a single set with mixed instances as members. It does
not and cannot amalgamate pairs of values – the one from the stereotype and the one
from the class in question – since there is no way to create and enforce a one-to-one
mapping between elements of the two sets. So perhaps the extension mechanism is in-
tended not to conform to set theory but to be a newly defined set operation that takes a
single set of values as defined by the instance of Stereotype and concatenate these
with the list of Property values in the class in question.

Finally, since only classes are now allowed to have stereotypes rather than a range
of classifiers as in version 1.x, then it appears that there are no longer any legal
stereotypes on, for instance, associations. This is very different from version 1.x and
violated in many places in the version 2.0 documentation.

Fig. 8. An example of using an Extension (after [16])

In Figure 8 is shown an example from the OMG documentation of the use of the
2.0 stereotype mechanism. The associated text states “An instance of the stereotype
Home can be added to and deleted from an instance of the class Interface at all”. Our
understanding from this sentence would support the above analysis since it is clear
that the addition and deletion is not a set theoretic possibility but that the stereotype
instance can only contain a list of property values to be concatenated with those of the
class, here class Interface. If this is correct, then the stereotyped class (here Home)
must always be a singleton.

Secondly, it is later stated, in discussion of “Changes from previous UML” [16,
page 639] that an occurrence of the baseClass attribute of the 1.4 Stereotype meta-
class “is mapped to an instance of Extension” [in 2.0]. The base class in version 1.x is
the metaclass, which states to which instances (M1 entities) the stereotype may be

 Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0 23

legally applied. If the baseClass is Class, then only M1 classes may carry the stereo-
type; if the baseClass is given as Association, then only an (M1) association can be
thus branded. The baseClass name is thus the name of a M2 class in UML version 1.x.
Mapping this to an instance of Extension would appear to be incorrect on two counts.
Firstly, the baseClass name in version 1.x is the name of an M2 class whereas an in-
stance of an Extension must be at the M1 level. Secondly, the baseClass may be the
M2 classes of, say, Class, Association, UseCase whereas the Extension is only affili-
ated with the Association metaclass and not with Class, UseCase etc.

On Page 649 of the UML 2.0 Superstructure specification [16], we read that:

An instance “S” of Stereotype is a kind of (meta)class. Relating it to a metaclass
“C” from the reference metamodel (typically UML) using an “Extension” (which is
a specific kind of association), signifies that model elements of type C can be ex-
tended by an instance of “S” … At the model level… instances of “S” are related to
“C” model elements (instances of “C”) by links (occurrences of the associa-
tion/extension from “S” to “C”)

In our analysis of this paragraph, firstly, an instance of a metaclass is a (M1) class
and cannot be a kind of metaclass. Secondly, at the M1 level, it is not instances of as-
sociation/extension (a.k.a. links) that exist but the association or extension itself.
Links occur at the M0 level in standard UML modelling.

The examples that follow are very much of the same kind as those labelled as “un-
official” by [15] in 2003. Indeed, based on the above analysis, if an instance of
Stereotype is a class with a set of fixed property values, and the merg-
ing/concatenation mechanism is accepted as valid, then these additional values will be
able to be added to the stated instance of metaclass Class. However, since the stereo-
type instance is just a bunch of structural properties (i.e. no behaviour is possible),
then the stereotype can be regarded as a data type rather than as a class/object. The
example shown in [16] on page 651 is thus perturbing since the stereotype example
shown is Clock – an M1 concept that clearly has behaviour (or at least any modeller
using it would presume so). Clock, after all, is an instance of (M2) class Class in regu-
lar OO modelling. The notation (Figure 9) is further confusing since the name in guil-
lemets on the right hand side is the name of a metaclass called Stereotype whereas the
name in guillemets on the left hand side is a generic name (metaclass) that could be
any entity in the M2 metamodel. Similarly, the name Clock refers to the instance of
the stereotype (the M1 class) but the name Class on the left hand side, according to the
text, is the name of the appropriate metaclass (here the metaclass named Class) – a
similar confusion of levels as noted by [7] in version 1. This is supported by the in-
stance notation shown in figure 18.14 of the OMG documentation (here as Figure 10).
Figure 9 is said to be “defining a stereotype” which presumably occurs at the user
level (i.e. M1). One would thus assume that the name of the target of the extension
should be something meaningful in the domain being modelled (not just “class”) and
similarly the (old version 1.x) base class should be indicated by a specific name in
guillemets above the class name (not metaclass as in Figure 9). Although figure 18.12
(Figure 9) of [16] is confusing, the presentation options given suggest a more reason-
able notation with an actual (M1) class name and an actual (M1) stereotype name
(Figure 11).

24 B. Henderson-Sellers and C. Gonzalez-Perez

Fig. 9. Stereotype definition (after [16])

Fig. 10. Instance specification (after [16])

«Clock»
StopWatch

Fig. 11. Notation for a stereotype (modified from [16])

Finally, it is worth noting that in the accepted changes to create UML version 2.1
[18], there are a number of modifications to this part of the standard (the term “stereo-
type” occurs 208 times in the document!). Comments range from the need to describe
what happens when an extending stereotype has subclasses through to the proposal
for extensive changes in order to support SysML that requires that stereotypes can
reference UML metaclasses (this requires changes to those figures shown here as
Figure 9 and Figure 10).

4 Conclusions

In this paper we have presented some problems related to the concept of stereotype in
UML 1.x and 2.0. From a theoretical perspective, stereotypes in UML 1.x are defined
as virtual metatypes that pretend to be part of the metamodel (M2) without really be-
ing there. Also, stereotypes make use of tagged values, which duplicate the concept of
attributes without a good reason, and it is supposedly possible to apply multiple
stereotypes to a single class, making the class, in fact, a direct instance of multiple
classes, which is not allowed in UML 1.x. From the practical side, stereotypes are of-
ten misused, being applied for class and object branding indiscriminately, and very
often to model application-domain concepts that should be modelled using conven-
tional classes and subtyping rather than by using stereotypes.

In UML 2.0, a new approach is used for stereotypes. Unfortunately, this approach
introduces new issues. First of all, the new Extension metaclass makes stereotyping

 Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0 25

incompatible with set theory, since an extension, when associated to a class, is sup-
posed to change the properties of instances of such class; from a set theory viewpoint,
the resulting product would be rather a mixed collection of instances of the class
being extended and Extension. Secondly, the Stereotype metaclass in UML 2.0 is a
subtype of Class, so only classes can be stereotyped. The inability of stereotypes to
express behaviour (in addition to structure) and some notation issues pertaining to the
usage of guillemets make stereotypes in UML 2.0 as puzzling as in UML 1.x.

Although it seems that UML 2.1 will make some changes in relation to stereotypes,
the problems identified in this paper are hard to solve, especially since, as we have
shown, the model used for stereotypes in UML 2.x appears to be flawed from a theo-
retical viewpoint. This suggests that any further improvement will need to utilize a
different (meta)modelling approach for representing UML language extensions, such
as stereotypes.

References

1. Monarchi, D., Booch, G., Henderson-Sellers, B., Jacobson, I., Mellor, S., Rumbaugh, J.,
Wirfs-Brock, R.: Methodology standards: help or hindrance? Procs. Ninth Annual
OOPSLA Conference, ACM SIGPLAN, 29(10) (1994) 223-228

2. Henderson-Sellers, B.: Methodologies - frameworks for OO success, American Program-
mer, 7(10) (1994) 2-11

3. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure, ACM Trans. Modeling
and Computer Simulation, 12(4) (2002) 290-321

4. Wirfs-Brock, R., Wilkerson, B., Wiener, L., Responsibility-driven design: adding to your
conceptual toolkit, ROAD, 1(2) (1994) 27-34

5. Henderson-Sellers, B., Atkinson, C., Firesmith, D.G.: Viewing the OML as a variant of the
UML, «UML»'99 - The Unified Modeling Language. Beyond the Standard (eds. R. France
and B. Rumpe), Lecture Notes in Computer Science 1723, Springer-Verlag, Berlin (1999)
49-66

6. Gogolla, M., Henderson-Sellers, B.: Analysis of UML stereotypes within the UML meta-
model, «UML»2002, Dresden, Germany, 30 September - 4 October 2002, in UML 2002 -
The Unified Modeling Language (eds. J.-M. Jezequel, H. Hussman and S. Cook), LNCS
Volume 2460, Springer-Verlag, Berlin (2002) 84-99

7. Atkinson, C., Kühne, T.: Meta-level independent modelling. In International Workshop on
Model Engineering at 14th European Conference on Object-Oriented Programming (2000)

8. Atkinson, C.: Metamodelling for distributed object environments, Procs. First Interna-
tional Enterprise Distributed Object Computing Workshop (EDOC’97), Brisbane, Austra-
lia (1997)

9. Atkinson, C., Kühne, T., Henderson-Sellers, B. Stereotypical encounters of the third kind,
in UML 2002 - The Unified Modeling Language (eds. J.-M. Jezequel, H. Hussman and S.
Cook), LNCS Volume 2460, Springer-Verlag, Berlin (2002) 100-114

10. Warmer, J.M. Kleppe, A.: The Object Constraint Language: Precise Modeling with UML,
Addison-Wesley (1998)

11. Feinberg, N., Keene, S.E., Mathews, R.O. and Withington, P.T., 1997, DylanTM Program-
ming, Addison-Wesley Longman, Section 3.2.1

12. Description of Eiffel object model accessed on 14 June 2006 at http://www.objs.com/
x3h7/eiffel.htm

26 B. Henderson-Sellers and C. Gonzalez-Perez

13. Evans, A. and Kent. S., 1999, Core meta-modelling semantics of UML: the pUML ap-
proach, Procs. UML’99 – Beyond the Standard (eds. R. France and B. Rumpe), LNCS
1793, Springer-Verlag, Berlin, 141-155

14. Soley, R.M. and Stone, C.M., 1995, Object Management Architecture Guide, Object Man-
agement Group document 97-05-05

15. Atkinson, C., Kühne, T., Henderson-Sellers, B.: Systematic stereotype usage, Software and
System Modelling, 2(3) (2003) 153-163

16. OMG: Unified Modeling Language: Superstructure, Version 2.0, formal/05-07-04, 709pp
(2005)

17. Steimann, F., Kühne, T.: A radical reduction of UML’s core semantics, in UML 2002 -
The Unified Modeling Language (eds. J.-M. Jezequel, H. Hussman and S. Cook), LNCS
Volume 2460, Springer-Verlag, Berlin (2002) 34-48

18. OMG: RTF/FTF Report of the UML 2 Revision Task Force (Revision 2.1), document
ptc/2006-01-01 (January 20, 2006), 802 pp. (2006)

An Experimental Investigation of
UML Modeling Conventions

Christian F.J. Lange1, Bart DuBois2,
Michel R.V. Chaudron1, and Serge Demeyer2

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

C.F.J.Lange@tue.nl, M.R.V.Chaudron@tue.nl
2 Lab On REengineering (LORE), University of Antwerp, Belgium

Bart.Dubois@ua.ac.be, Serge.Demeyer@ua.ac.be

Abstract. Modelers tend to exploit the various degrees of freedom pro-
vided by the UML. The lack of uniformity and the large amount of defects
contained in UML models result in miscommunication between different
readers. To prevent these problems we propose modeling conventions,
analogue to coding conventions for programming. This work reports on
a controlled experiment to explore the effect of modeling conventions on
defect density and modeling effort. 106 masters’ students participated
over a six-weeks period. Our results indicate that decreased defect den-
sity is attainable at the cost of increased effort when using modeling con-
ventions, and moreover, that this trade-off is increased if tool-support is
provided. Additionally we report observations on the subjects’ adherence
to and attitude towards modeling conventions. Our observations indicate
that efficient integration of convention support in the modeling process,
e.g. through training and seamless tool integration, forms a promising
direction towards preventing defects.

1 Introduction

The Unified Modeling Language (UML [19]) is used in different phases during
software development such as requirements analysis, architecture, detailed design
and maintenance. In these phases it serves various purposes such as communica-
tion between project stakeholders, prediction of quality properties and test case
generation. The UML is designed as a visual multi-purpose language to serve all
these needs. It allows to choose from 13 diagram types, it offers powerful exten-
sion mechanisms, but it lacks a formal semantics. Due to these characteristics
the user has the freedom to choose the language features that fit his purpose
of modeling. However, the UML does not provide guidelines on how to use the
language features for a specific purpose. For example, there is no guidance that
describes when it is useful to use multiplicities or when a class’ behavior should
be described by a state diagram. As a result, the UML user is confronted with
a large degree of freedom.

The UML possesses the risk for quality problems due to its multi-diagram
nature, its lack of a formal semantics and the large degree of freedom in using

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 27–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

28 C.F.J. Lange et al.

it. The large degree of freedom and the lack of guidelines results in the fact that
the UML is used in several different ways leading to differences in rigor, level of
detail, style of modeling and amount of defects. Industrial case studies [16] and
surveys give empirical evidence that individuals use the UML in many different
ways (even within the same project team) and that the number of defects is large
in practice. Moreover, experiments have shown that defects in UML models are
often not detected and cause misinterpretations by the reader [15].

The effort for quality assurance is typically distinguished between prevention
effort and appraisal effort [22]. Prevention effort aims at preventing for deviations
from quality norms and appraisal effort is associated with evaluating an artifact
to identify and correct deviations from these quality norms. There are techniques
in software development to detect and correct the deviations from quality norms.
Reviews, inspections and automated detection techniques are used in practice
to detect weak spots. They are associated with appraisal effort. In programming
preventive techniques to assure a uniform style and comprehensibility of the
source code are established as coding conventions or coding standards [20]. As an
analogy for UML modeling we propose modeling conventions to prevent modelers
to deviate from quality norms. We define modeling conventions as:Conventions
to ensure a uniform manner of modeling and to prevent for defects.

The main purpose of this paper is to explore experimentally the effectiveness
of modeling conventions for UML models with respect to prevention of defects.

An additional purpose of this study is to explore subjects’ attitude towards
modeling conventions and how modeling conventions are used. The observations
can be used to improve the future use of modeling conventions.

This paper is structured as follows: Section 2 describes modeling conventions
and related work. Section 3 describes the design of the experiment. Section 4
presents and discusses the results. Section 5 discusses the threats to the validity
of the experiment and Section 6 discusses conclusions and future work.

2 Modeling Conventions

2.1 Related Work

There is a large variety of coding conventions (also known as guidelines, rules,
standards, style) for almost all programming languages. The amount of research
addressing coding conventions is rather limited though. Omam and Cook [20]
present a taxonomy for coding conventions which is based on an extensive re-
view of existing coding conventions. They identify four main categories of coding
conventions: general programming practice, typographic style, control structure
style and information style. They found that there are several conflicting cod-
ing conventions and that there is only little work on theoretical or empirical
validation of coding conventions.

Our review of literature related to modeling conventions for the UML re-
vealed the following categories: design conventions, syntax conventions, diagram
conventions and application-domain specific conventions.

An Experimental Investigation of UML Modeling Conventions 29

Design conventions address the design of the software system in general,
i.e. they are not specific for UML. Design conventions such as those by Coad
and Yourdon[6] aim at the maintainability of OO-systems. The conventions that
include for example high cohesion and low coupling are empirically validated by
Briand et al. [5]. The results of their experiment show that these conventions
have a beneficial effect on the maintainability of object-oriented systems.

Syntax conventions deal with the correct use of the language. Ambler [3]
presents a collection of 308 conventions for the style of UML. His conventions
aim at understandability and consistency and address syntactical issues, naming
issues, layout issues and the simplicity of design. Object-oriented reading tech-
niques (OORT) are used in inspections to detect defects in software artefacts.
OORT’s for UML are related to modeling conventions in the sense that the rules
they prescribe for UML models can be used in a forward-oriented way during the
development of UML models to prevent for defects. Conradi et al. [7] conducted
an industrial experiment where OORT’s were applied for defect detection (i.e.
an appraisal effort). The results show defect detection rates between 68% and
98% in UML models.

Diagram conventions deal with issues related to the visual representation
of UML models in diagrams. Purchase et al. [21] present diagram conventions for
the layout of UML class diagrams and collaboration diagrams based on experi-
ments. Eichelberger [9] proposes 14 layout conventions for class diagrams aiming
at algorithms for automatic layout of class diagrams.

Application-domain specific conventions. A purpose of UML profiles is
to support modeling in a particular application domain. Hence, profiles are in
fact application-domain specific conventions. Kuzniarz et al. [12] conducted an
experiment on the effect of using stereotypes to improve the understandability
of UML models. Their results show that stereotypes improve the correctness of
understanding UML class diagrams by 25%.

2.2 Model Quality

In this experiment we investigate the effectiveness of modeling conventions on
model quality, in particular we are interested in:

– Syntactic quality: The degree to which the model contains flaws.

Here we define flaws as: lack of coverage of the model’s structural parts by
behavioral parts, presence of defects, non-conformamce to commonly accepted
design rules, and absence of uniformity in modeling.

Syntactic quality is one of the three notions of model quality according to
Lindland’s framework for conceptual models [17]. The two other notions accord-
ing to Lindland are:

– Semantic quality: The degree to which the model correctly represents the
problem domain.

– Pragmatic quality: The degree to which the model is correctly understood
by its audience.

30 C.F.J. Lange et al.

Evaluation of semantic and pragmatic quality involves participation of several
people, and, hence, is an experiment itself. This would be beyond the scope
of this experiment. We will investigate the effect of modeling conventions on
semantic and pragmatic quality in a follow-up experiment.

2.3 Modeling Conventions in This Experiment

Based on the literature review and the experience from our case studies, we
selected a set of modeling conventions. To keep the set of modeling conventions
manageable and comprehensible we decided that it should fit on one A4 page.
This led to 23 modeling conventions after applying these selection criteria:
– Relevance. The modeling convention should be relevant to improve the qual-

ity of the UML model by preventing for frequent defects [16].
– Comprehensibility. The modeling convention should be easy to comprehend

(e.g. it relates to well-known model elements).
– Measurability. The effect of the modeling convention should be measurable.
– Didactic value. Applying the modeling convention should improve the sub-

jects’ UML modeling skills.

Examples of modeling conventions used in this experiment are given in Table 1.
The entire set of modeling conventions can be found in [13]. In this experiment we
focus on assessing syntactic quality, but we deliberately don’t limit the collection
of modeling conventions to syntactic conventions only. As described by Omam
and Cook [20] there can be interaction between several conventions. To obtain
realistic results it is necessary to use a representative set of modeling conventions.
Therefore we chose conventions of all categories presented in Section 2.1.

Table 1. Examples of Modeling Conventions used in this Experiment

ID Name Description
4 Homogenity of

Accessor Usage
When you specify getters/setters/constructors for a class,
specify them for all classes

9 Model Class In-
teraction

All classes that interact with other classes should be de-
scribed in a sequence diagram

10 Use Case Instan-
tiation

Each Use Case must be described by at least one Sequence
Diagram

14 Specify Message
Types

Each message must correspond to a method (operation)

15 No Abstract
Leafs

Abstract classes should not be leafs (i.e. child classes should
inherit from abstract classes)

19 Low Coupling Your classes should have low coupling. (The number of rela-
tions between each class and other classes should be small)

3 Experiment Design

3.1 Purpose and Hypotheses

We formulate the goal of this experiment according to the Goal-Question-Metric
paradigm by Basili et al. [4]:

An Experimental Investigation of UML Modeling Conventions 31

Analyze modeling conventions for UML
for the purpose of investigating their effectiveness
with respect to model quality and effort
from the perspective of the researcher
in the context of masters students at the TU Eindhoven.

Modeling conventions require model developers to adhere to specific rules.
Therefore we expect the quality of models to be better, i.e. there are fewer defects
in a model that is created using modeling conventions. When additionally using
a tool to check for adherence to the modeling conventions, we expect the model
quality to be even better than without tool-support. In other words, we formulate
in the null hypothesis that there is no difference between the treatments:

– H10: There is no difference between the syntactic quality of UML models
that are created without modeling conventions, with modeling conventions
and with tool-supported modeling conventions.

Adherence to modeling conventions requires special diligence. We expect that
this leads to higher effort for modeling. When additionally using the tool, the
expected effort is even higher. Therefore we formulate the second hypothesis of
this experiment as follows:

– H20: There is no difference between the effort for modeling UML models
that are created without modeling conventions, with modeling conventions
and with tool-supported modeling conventions.

3.2 Design

The purpose of this experiment is to investigate the effect of modeling con-
ventions. Therefore the treatment is to apply modeling conventions with and
without tool-support during modeling. We define three treatment levels:

NoMC: no modeling conventions. The subjects use no modeling conven-
tions. This is the control group.
MC: modeling conventions. The subjects use the modeling conventions that
are described in Section 2.3.
MC+T: tool-supported modeling conventions. The subjects use the mod-
eling conventions and the analysis tool to support adherence.

The experimental task was carried out in teams of three subjects. We have
randomly assigned subjects to teams and teams to treatments. According to [10]
this allows us to assume independence between the treatment groups. Each team
performed the task for one treatment level. Hence we have an unrelated between-
subjects design with twelve teams for each treatment level.

3.3 Objects and Task

The task of the subjects was to develop a UML model of the architecture of
an information system for an insurance company. The required functionality of

32 C.F.J. Lange et al.

the system is described in a document of four pages [13]. The system involves
multiple user roles, administration and processing of several data types. The
complexity of the required system was chosen such that on the one hand the
subjects were challenged but on the other hand there was enough spare time for
possible overhead effort due to the experimental treatment. The subjects used
the Poseidon [2] UML tool to create the UML models. This tool does not assist
in adhering to the modeling conventions and preventing model flaws.

The task of the teams with treatment MC and MC+T was to apply modeling
conventions during development of the UML model. The modeling conventions
description contains for each convention a unique identifier, a brief descriptive
name, a textual description of the convention, and the name of the metric or
rule in the analysis tool, that it relates to.

The subjects of treatment MC+T used the SDMetrics [24] UML analysis tool
to assure their adherence to the modeling conventions. SDMetrics calculates
metrics and performs rule-checking on UML models. We have customized [13] the
set of metrics and rules to allow checking adherence to the modeling conventions
used in this experiment.

3.4 Subjects

In total 106 MSc students participated in the experiment, which was conducted
within the course “Software Architecting” in the fall term of 2005 at the Eind-
hoven University of Technology (TU/e). All subjects hold a bachelor degree or
equivalent. Most students have some experience in using the UML and object
oriented programming through university courses and industrial internships. We
analyzed the results of the students’ self-assessment from the post-test question-
naire and found no statistically significant differences.

The students were motivated to perform well in the task, because it was part
of an assignment which was mandatory to pass the course (see Section 4.4).

The students were not familiar with the goal and the underlying research
question of the experiment to avoid biased behavior.

3.5 Operation

Prior to the experiment we conducted a pilot run to evaluate and improve the
comprehensibility of the experiment materials. The subjects of the pilot experi-
ment did not participate in the actual experiment.

In addition to prior UML knowledge of the students we presented and ex-
plained UML during the course before the experiment. The assignment started
with an instruction session to explain the task and the tooling to all students.
Additionally the subjects were provided with the assignment material [13] in-
cluding a detailed task description, the description of the insurance company
system, and instructions of the tools. The modeling conventions and the SD-
Metrics tool were only provided to the teams which had to use them. The teams
of treatment MC and MC+T were explicitly instructed to apply the treatment
regularly and to contact the instructors in case of questions about the treatment.
The experiment was executed over a period of six weeks.

An Experimental Investigation of UML Modeling Conventions 33

3.6 Data Collection

We collected the defect data of the delivered UML models using the SDMetrics,
because the majority of the applied modeling conventions is related to rules and
metrics that we defined for SDMetrics.

The subjects were provided with an Excel Logbook template to record the
time spent during the assignment in a uniform manner. They recorded their time
for the three activities related to the development of the UML model: modeling
itself, reviewing the model and meetings related to the model.

We used a post-test questionnaire to collect data about the subjects’ educa-
tional background, experience, how the task was executed and subjects’ attitude
towards the task. The 17 questions of the questionnaire were distributed through
the university’s internal survey system.

3.7 Analysis Techniques

For quality and effort we have to analyze number of defects and time in minutes,
respectively. These metrics are measured on a ratio scale. We use descriptive
statistics to summarize the data. For hypothesis testing we compare the means
using a one-way ANOVA test. We have analyzed the data with respect to the
assumptions of the ANOVA test and have found no severe violations. The anal-
ysis is conducted using the SPSS [1] tool, version 12.0. As this is an exploratory
study we reject the null hypothesis at the significance level of 0.10 (p<0.10).

The data from the post-test questionnaire, which was designed as a multiple-
choice questionnaire, were answers on a five-point Likert-scale. Hence, they are
measured on an ordinal scale. We summarize the data by presenting the frequen-
cies as percentages for each answer option and providing additional descriptive
statistics where appropriate. The answer distributions between different treat-
ment groups are compared using the χ2-test [18]. Microsoft Excel was used for
this test. We apply the threshold of p<0.10 for statistical significance. When
comparing three distributions (NoMC, MC and MC+T) a χ2 value greater than
13.36 implies that p<0.10. In cases of comparing only two distributions the
threshold is χ2 = 7.78.

4 Results

4.1 Outlier Analysis

During the duration of the experiment eight subjects dropped out (7.5%). The
affected teams were distributed evenly over all treatments, therefore we do not
exclude their data. One team in group MC+T completely dropped out, therefore
we exclude its data.

To check whether the data is reasonable and to identify invalid data sets we
analyze the outliers. Figure 1 shows the boxplots for the size of the obtained
models (number of classes, on the left) and the total amount of time needed
by the teams to complete the task (on the right). According to Wohlin [23] the

34 C.F.J. Lange et al.

Fig. 1. Boxplots for Number of Classes and Total Time

reasons for an outlier should be analyzed in order to decide whether to include or
to exclude the data point in the analysis. We scrutinized the outliers and came
to the conclusion that they are not due to a rare event that can never happen
again. As these outliers can happen in other situations as well, we decided to
include them in the analysis.

4.2 H1: Presence of Defects

Total Number of Defects. We assess the quality of the UML model in terms
of number of defects as described in Section 3.2. Figure 2 shows the boxplot for
the total number of defects (on the left) and the number of defects normalized
by the size of the model (on the right). Table 2 shows the descriptive statis-
tics. The percentages in Table 2 are relative to the treatment level NoMC. The
descriptive statistics for the normalized number of defects show that modeling
conventions (MC) reduce the mean and the median. Tool-supported modeling
conventions (MC+T) result in a larger reduction of defects. However, according
to the ANOVA test (see Table 3) the results are not statistically significant and
we cannot reject the null hypothesis H10.

Detailed Results. In addition to the total number of defects which is dis-
cussed above, we have conducted a detailed analysis of 19 metrics and rules that
are related to the modeling conventions applied in this experiment. For nine of
these metrics the results for both MC and MC+T are better than for the control
group. An example is the metric Number of Sequence Diagrams per Use Case
which indicates how well the functionality defined in use cases is specified by the
sequence diagrams. Compared to the control group this metric is 30.8% greater
for MC and 80.5% greater for MC+T (these results are statistically significant).
Three metrics show an improvement for MC+T but a decrease for MC. An ex-
ample is the metric Number of Objects. The metric Coupling between Objects
(CBO) is the only one that has worse results for both MC and MC+T than for
the control group. A possible explanation could be, that the subjects applying

An Experimental Investigation of UML Modeling Conventions 35

Fig. 2. Boxplots for absolute Number of Defects and Defect Density

modeling conventions model associations between classes more explicitly, result-
ing in a higher CBO. The results of six metrics are inconclusive because of the
small number of occurrences of the rule-violations. Due to space limitations we
cannot provide the entire detailed results here. They can be found in [14].

4.3 H2: Effort

We measure the effort to develop the UML model in minutes using logbooks. Ta-
ble 2 shows the descriptive statistics for modeling, reviewing and team meetings.
The columns showing percentages are relative to the treatment level NoMC. The
descriptive statistics show that both the mean and the median increase for MC
are higher for MC+T. Additionally we performed an ANOVA-test for hypothesis
testing. The results of the ANOVA-test are shown in Table 3. The results for
the total effort are statistically significant. Hence, we reject the null-hypothesis
H20. However, when we analyze at the level of activities, we see that only the
results of modeling are statistically significant.

4.4 Attitude

To fully investigate the usefulness of modeling conventions it is necessary to as-
sess the subject’s attitude towards modeling conventions. We investigated the
subjects’s attitude using the post-test questionnaire. The questions are multiple-
choice questions with answers on a Likert scale ranging from 1 (very low agree-
ment) to 5 (very high agreement). The results are summarized in Table 4.

The subjects perceived the difficulty of the task as medium. The difficulty
of performing the task with tool-supported modeling conventions is about 10%
higher than for MC.

There is a statistically significant difference in the degree to which the subjects
enjoyed the task. The mean for control group (NoMC) is almost one point higher
than for the other two treatment groups. The lower enjoyment might be caused
by the extra effort (see Section 4.3).

36 C.F.J. Lange et al.

Table 2. Descriptive Statistics for Defects and Modeling Effort (in Minutes)

Treatment Mean Perc. Median Perc. StDev Max Min
Defects NoMC 102.42 100.0% 55.5 100.0% 157.280 572 42
(total) MC 53.67 52.4% 49.0 88.3% 34.102 135 9

MC+T 46.91 45.8% 29.0 52.3% 40.990 154 8
Defects NoMC 1.5181 100.0% 1.4720 100.0% 0.3964 2.312 1.032
(normalized) MC 1.3740 90.5% 1.3564 92.1% 0.4121 2.045 0.607

MC+T 1.2443 82.0% 1.2195 82.8% 0.6671 2.406 0.320
Effort NoMC 1069.17 100.0% 910 100.0% 670.22 2125 120
(Modeling) MC 1157.92 108.3% 982.5 108.0% 718.225 2280 105

MC+T 1885 176.3% 2010 220.9% 834.554 3130 540
Effort NoMC 367.5 100.0% 300 100.0% 329.224 1155 0
(Reviewing) MC 385.83 105.0% 272.5 90.8% 299.4 900 75

MC+T 524.55 142.7% 600 200.0% 379.727 1250 0
Effort NoMC 555.42 100.0% 375 100.0% 499.297 1710 0
(Meeting) MC 720 129.6% 640 170.7% 632.488 1770 0

MC+T 862.73 155.3% 690 184.0% 839.069 3060 0
Effort NoMC 1992.08 100.0% 2062.5 100.0% 1187.498 4150 480
(Total) MC 2245.42 112.7% 2545 123.4% 852.471 3265 690

MC+T 3272.27 164.3% 3330 161.5% 1151.838 4590 650

The results show that the subjects of all treatment groups slightly indicate
that they have confidence in the quality of their models. There is no significant
difference between the treatment groups.

The results show that the task and the treatment were well understood and
that the subjects were well motivated. This is necessary to be able to draw valid
conclusions from the experiment. The χ2-test did not show significant differences
between the treatments groups.

4.5 Adherence to the Treatment

We used the answers to the post-test questionnaire to investigate the subjects’
adherence to treatment MC and MC+T. The answers are summarized in Table 5.
The table shows the percentages for the points ‘1’ (very low adherence) to ‘5’
(very high adherence). On average both treatment groups adhere better than
neutral to the modeling conventions (the mean is greater than 3). The χ2-test
shows that the difference between MC and MC+T is not statistically significant.

The reported average adherence to the analysis tool is below the neutral point
(3). We conducted a χ2-test to find out whether the adherence differs significantly
from the adherence to the modeling conventions of the same treatment group.
The difference is statistically significant at the 10% significance level.

Furthermore we asked the subjects how they applied the treatment. For both
treatment groups that applied modeling conventions, more than 80% of the
subjects indicate that they read the modeling conventions several times during
the project. The tool was used up to ten times during the project at an average
of 3.32 times. The two authors who were instructors of the course report that

An Experimental Investigation of UML Modeling Conventions 37

Table 3. Results of the ANOVA test for Defects and Effort∑
Squares df Mean Squr. F Sig. Hypothesis

Defects Betw. Groups 21570.1 2 10785.09 1.144 .331 H10

(total) With. Groups 301708.5 32 9428.39 failed to
Total 323278.7 34 reject

Defects Betw. Groups .432 2 .216 .858 .433 H10

(normalized) With. Groups 8.048 32 .251 failed to
Total 8.479 34 reject

Effort Betw. Groups 453675.4 2 2268187.708 4.129 .025 rejected
(Modeling) With. Groups 17580265 32 549383.268

Total 22116640 34
Effort Betw. Groups 166964.89 2 83482.446 .738 .486 failed to
(Reviewing) With. Groups 3620239.4 32 113132.481 reject

Total 3787204.3 34
Effort Betw. Groups 544447.47 2 272223.736 .614 .547 failed to
(Meeting) With. Groups 14183091 32 443221.597 reject

Total 14727839 34
Effort Betw. Groups 10421703 2 5210851.564 4.535 .018 H20

(Total) With. Groups 36772764 32 1149148.875 rejected
Total 47194467 34

Table 4. Subjects’ Attitudes towards the Task

Treatment N χ2 Mean 1 2 3 4 5
Difficulty NoMC 34 11.860 2.94 0.00% 23.53% 61.76% 11.76% 2.94%

MC 36 3.00 2.78% 19.44% 52.78% 25.00% 0.00%
MC+T 33 2.61 6.06% 42.42% 36.36% 15.15% 0.00%

Enjoy NoMC 34 18.886 3.47 0.00% 14.71% 32.35% 44.12% 8.82%
MC 36 2.58 16.67% 27.78% 36.11% 19.44% 0.00%

MC+T 33 2.58 21.21% 21.21% 36.36% 21.21% 0.00%
Confidence NoMC 34 5.526 3.18 2.94% 17.65% 41.18% 35.29% 2.94%
in Quality MC 36 3.31 0.00% 11.11% 47.22% 41.67% 0.00%

MC+T 33 3.24 3.03% 21.21% 27.27% 45.45% 3.03%
Understanding NoMC 34 4.089 3.18 8.82% 14.71% 35.29% 32.35% 8.82%
Task MC 36 3.08 2.78% 27.78% 33.33% 30.56% 5.56%

MC+T 33 2.91 9.09% 27.27% 30.30% 30.30% 3.03%
Motivation NoMC 34 3.862 3.56 5.88% 8.82% 23.53% 47.06% 14.71%

MC 36 3.44 5.56% 5.56% 36.11% 44.44% 8.33%
MC+T 33 3.67 3.03% 3.03% 30.30% 51.52% 12.12%

Table 5. Adherence to the treatment

Adherence to Treatment N χ2 Mean 1 2 3 4 5
Modeling MC 36 5.027 3.638 0.00% 5.56% 33.33% 52.78% 8.33%
Conventions MC+T 33 3.303 3.03% 6.06% 54.55% 30.30% 6.06%
Analysis Tool MC+T 33 9.326 2.727 12.12% 27.27% 42.42% 12.12% 6.06%

38 C.F.J. Lange et al.

they received questions about both the modeling conventions and the analysis
tool starting from the second week of the experiment.

5 Threats to Validity

Internal Validity. Threats to internal validity can affect the independent vari-
ables of an experiment. A possible threat to internal validity is that the treatment
groups behave differently because of a confounding factor such as difference in
skills, experience or motivation. Our analysis results show no significant differ-
ences between the treatment groups for these factors.

A risk is that subjects apply a treatment they should not apply, because
they are eager to learn about new technology. We minimized this risk by (i) not
telling the subjects the goal of the experiment, (ii) by informing the subjects that
their grade is not influenced by the treatment group that they were in, (iii) by
making modeling conventions and tool available only to the appropriate teams,
and (iv) by informing the subjects that all technology would be made available
to all subjects after completion of the task. In the case that subjects would have
received a different treatment despite these precautions, it would only decrease
the effect between the treatment groups. Hence, in case this happened, the effect
would be larger in reality.

External Validity. Threats to external validity reduce the generalizability of
the results to industrial practice. As described in Section 3 the experiment is
designed to render a realistic situation. Hence, the experimental environment is
designed to maximize generalizability (at the cost of statistical significance). We
use students as subjects, which might be a threat to external validity. However,
all students in this experiment hold a BSc degree in computer science and have
relevant experience.

Due to curricular constraints the amount of training and, hence, experience
with modeling conventions and the analysis tool is limited. This renders the
situation in the introduction phase of the technology. We assume that more
experience results in a reduction of extra effort and possibly a larger effect on
model quality.

Construct Validity. Construct validity is the degree to which the variables
measure the concepts they are to measure. The concept of quality is difficult to
measure and it consists of several dimensions[11]. It is not feasible to cover all
dimensions in a single experiment. We limit the scope of this experiment to defect
containment. Using well-established tooling to measure the defect containment
we are confident to measure this dimension of model quality correctly.

Conclusion Validity. Conclusion validity is concerned with the relation be-
tween the treatment and the outcome. The statistical analysis of the results is
reliable, as we used robust statistical methods.

We minimized possible understanding problems by testing the experiment
material in a pilot experiment and improving it according to the observed issues.
The course instructors were available to the students for clarification questions.

An Experimental Investigation of UML Modeling Conventions 39

The results of the post-test questionnaire show that the task was well understood.
Hence, we conclude that there were no understanding problems threatening the
validity of the reported experiment.

The metrics of the UML models (defects, size...) were collected using an anal-
ysis tool and are therefore repeatable and reliable. A possible threat to the
conclusion validity is the reliability of the measured time and the data from
the post-test questionnaire. For time collection a logbook template was used to
assure uniformity. The authors analyzed the data for validity and no obvious
problems were found.

6 Conclusions

The UML consists of different diagram types, has no formal semantics and does
not provide guidelines on how to use the language features. Inherent to these
characteristics is the risk for quality problems such as defects and non-uniform
use of the language. In this study we propose modeling conventions as a forward-
oriented means to reduce these quality problems. Our literature review shows
that existing work focusses on particular categories of conventions for UML
modeling and that there is lack of empirical validation of conventions for UML
modeling.

Our main contribution is an experiment that provides empirical data about
the application of modeling conventions in a realistic environment. Our results
show that the defect density in UML models is reduced through the use of
modeling conventions. However, the improvement is not statistically significant.
Additionally, we provide data about the additional effort needed to apply mod-
eling conventions with and without tool-support. The presented data quantifies
the trade-off between improved model quality by using modeling conventions and
the cost of extra effort. Additional observations describe the developers’ attitude
towards modeling conventions and how the modeling conventions were applied
within the development teams. We observed that the adherence to modeling
conventions, especially for tool-supported modeling conventions, bears potential
for improvement. Furthermore the subjects using modeling conventions enjoyed
their task less than the subjects who did not use modeling conventions, indicat-
ing that the commitment in using modeling conventions can be improved.

Due to the time constraints of the experiment, we provided the subjects with
a set of modeling conventions, instead of letting them select the conventions
themselves. However, the subjects had no experience whether the modeling con-
ventions were useful for their task, and the subjects received no reward for
delivering a better quality model (the typical reward would be less effort during
use of the UML models in a later phase). In practice it would be desirable if the
developers who must eventually use the conventions participate in establishing
the set of modeling conventions. This would increase their knowledge about and
trust in the conventions and we expect they would have more commitment in
using modeling conventions. We expect that the commitment will also be im-
proved in a practical situation because the models will be used after they have
been developed, resulting in rewarding the models’ quality. The subjects in this

40 C.F.J. Lange et al.

experiment were not experienced using modeling conventions or the analysis
tool. Therefore the experiment resembles the introduction of modeling conven-
tions to a project. We expect that for more experienced developers the quality
improvement is larger and the amount of extra effort will be reduced.

The tool-support for adherence to the modeling conventions was given by a
stand-alone tool. We expect that integrating adherence checks into UML de-
velopment tools will decrease the extra effort and result in higher adherence,
because of a shorter feedback loop. Egyed’s instant consistency checking [8] is a
promising technique for short feedback loops.

The observations made in this experiment potentially lead to the following
guidelines for applying UML modeling conventions:

– Attention must be paid to control the adherence to the modeling conventions.
– Commitment of the developers increases the adherence to the modeling con-

ventions.
– Modeling conventions should be tailored for a specific purpose of modeling.
– Tool support to enforce adherence to the modeling conventions increases

the quality improvement. A short feedback loop is required to minimize the
amount of necessary rework.

In future work the effect of adherence and experience on the effectiveness
and efficiency of modeling conventions should be investigated in more detail.
External replications of the reported experiment should be conducted to further
confirm our findings. We focussed at syntactical quality of UML models in this
experiment. We are conducting a follow-up experiment where we investigate
semantic and pragmatic quality.

References

1. SPSS, version 12.0. http://www.spss.com.
2. Gentleware AG. Poseidon for UML, community edition, version 3.1. http://

www.gentleware.com.
3. Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge University Press,

2005.
4. Victor R. Basili, G. Caldiera, and H. Dieter Rombach. The goal question metric

paradigm. In Encyclopedia of Software Engineering, pages 528–532, 1994.
5. Lionel C. Briand, Christian Bunse, and John William Daly. A controlled exper-

iment for evaluating quality guidelines on the maintainability of object-oriented
designs. IEEE Transactions on Software Engineering, 27(6):513–530, June 2001.

6. Peter Coad and Edward Yourdon. Object Oriented Design. Prentice-Hall, first
edition, 1991.

7. Reidar Conradi, Parastoo Mohagheghi, Tayyaba Arif, Lars Christian Hedge,
Geir Arne Bunde, and Anders Pedersen. Object-oriented reading techniques for
inspection of UML models – an industrial experiment. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming ECOOP’03, volume 2749 of
LNCS, pages 483–501. Springer, July 2003.

8. Alexander Egyed. Instant consistency checking for the UML. In Proceedings of the
28th International Conference on Software Engineering (ICSE‘06), pages 381–390.
ACM, May 2006.

An Experimental Investigation of UML Modeling Conventions 41

9. Holger Eichelberger. Aesthetics of class diagrams. In Proceedings of the First IEEE
International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT 2002), pages 23–31. IEEE CS Press, 2002.

10. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous and
Practical Approach. Thomson Computer Press, second edition, 1996.

11. Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elusive
target. IEEE Software, 13(1):12–21, Januari 1996.

12. Ludwik Kuzniarz, Miroslaw Staron, and Claes Wohlin. An empirical study on
using stereotypes to improve understanding of UML models. In Proceedings of the
12th IEEE International Workshop on Program Comprehension (IWPC‘04), pages
14–23. IEEE CS Press, 2004.

13. Christian F. J. Lange. Material of the modeling conventions experiment.
http://www.win.tue.nl/˜clange.

14. Christian F. J. Lange, , Bart DuBois, Michel R. V. Chaudron, and Serge Demeyer.
Experimentally investigating the effectiveness and effort of modeling conventions
for the UML. CS-Report 06-14, Technische Universiteit Eindhoven, 2006.

15. Christian F. J. Lange and Michel R. V. Chaudron. Effects of defects in UML
models - an experimental investigation. In Proceedings of the 28th International
Conference on Software Engineering (ICSE‘06), pages 401–411. ACM, May 2006.

16. Christian F. J. Lange, Michel R. V. Chaudron, and Johan Muskens. In practice:
UML software architecture and design description. IEEE Software, 23(2):40–46,
March 2006.

17. Odd Ivar Lindland, Guttorm Sindre, and Arne Sølvberg. Understanding quality
in conceptual modeling. IEEE Software, 11(2):42–49, March 1994.

18. Meerling. Methoden en technieken van psychologisch onderzoek, volume 2. Boom,
Meppel, The Netherlands, 4th edition, 1989.

19. Object Management Group. Unified Modeling Language, Adopted Final Specifica-
tion, Version 2.0, ptc/03-09-15 edition, December 2003.

20. Paul W. Omam and Curtis R. Cook. A taxonomy for programming style. In
Proceedings of the 18th ACM Computer Science Conference, pages 244–250, 1990.

21. Helen C. Purchase, Jo-Anne Allder, and David Carrington. Graph layout aesthetics
in UML diagrams: User preferences. Journal of Graph Algoritms and Applications,
6(3):255–279, 2002.

22. Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. Evaluating
the cost of software quality. Communications of the ACM, 41(8):67–73, August
1998.

23. Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlesson, Björn Regnell,
and Anders Wesslen. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers, 2000.

24. Jürgen Wüst. The software design metrics tool for the UML, version 1.3.
http://www.sdmetrics.com.

Improving the Definition of UML

Greg O’Keefe

Research School of Information Science and Engineering, Australian National
University, Canberra, ACT 0200, Australia

greg.okeefe@anu.edu.au

Abstract. The literature on formal semantics for UML is huge and
growing rapidly. Most contributions open with a brief remark motivat-
ing the work, then quickly move on to the technical detail. How do we
decide whether more rigorous semantics are needed? Do we currently
have an adequate definition of the syntax? How do we evaluate propos-
als to improve the definition? We provide criteria by which these and
other questions can be answered. The growing role of UML is examined.
We compare formal language definition techniques with those currently
used in the definition of UML. We study this definition for both its con-
tent and form, and conclude that improvements are required. Finally, we
briefly survey the UML formalisation literature, applying our criteria to
determine which of the existing approaches show the most potential.

Many would argue that UML has no semantics [HR04,HS05], despite the nu-
merous subheadings with that title in the documents which define the language
[Obj06, Obj03, Obj05c, Obj05a]. Bran Selic [Sel04] counters these claims by col-
lecting and summarising the scattered material on semantics from the main
official document [Obj05c]. He also encourages theoreticians to study ways of
making the semantics more precise.

The only real disagreement here is over the usage of the word “semantics.”
This is the topic of Harel and Rumpe’s excellent article [HR04], and their position
is that “semantics” is a mathematical term:

Regardless of the exposition’s degree of formality, the semantic map-
ping M : L �� S must be a rigorously defined function from the lan-
guage’s syntax L to its semantic domain S. Needless to say, an adequate
semantic mapping for the full UML does not exist.

Selic, we believe, takes “semantics” to be an ordinary English word. Calling
the prose from the official UML documents “semantics,” is just saying that
it describes the intended meaning of the models. The official UML documents
exhibit an appreciation of the distinction between ordinary and technical usages:

It is important to note that the current description is not a completely
formal specification of the language because to do so would have added
significant complexity without clear benefit.

The structure of the language is nevertheless given a precise specifi-
cation, which is required for tool interoperability. The detailed semantics

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 42–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving the Definition of UML 43

are described using natural language, although in a precise way so they
can easily be understood. Currently, the semantics are not considered es-
sential for the development of tools; however, this will probably change
in the future. [Obj03, §8]

This quote sets the scene for our investigation. It notes that some degree of
precision is required to fulfil UML’s mission. It claims, with a little hesitation,
that this has been achieved without the use of rigorous mathematics. We will
argue that there is a need for improvements, which we will identify.

The task is not to invent a new language, but to improve the definition of
an existing one. The building industry has analogous situations. Sometimes a
building of cultural significance is found to be structurally lacking. The builders
will often suggest bulldozing it, and starting afresh, or making insensitive mod-
ifications like replacing a timber floor with concrete.

Too much of the UML formalisation literature takes the ham-fisted builder’s
approach to the problem, largely ignoring the existing definition, omitting large
parts of the language or suggesting significant changes to it. We propose instead a
minimal and sensitive adaptation of the existing definition to make it strong and
stable enough, and more suitable to its new usage in model driven development.
Like a good restoration architect, we should carefully consider the option of
leaving things as they are.

Throughout this paper, we state criteria by which UML definitions ought to be
evaluated. The first overarching criterion captures the conclusion just reached.

Criterion 0. An improved definition of UML should not change the language
or the definition any more than is needed to enable UML to fulfil its role.

In our first section we consider the task of defining a language, and in the second,
we show why the semantic part of the definition is important. The third section
examines the purpose of UML, and in the fourth we study two of the more
difficult aspects of the current UML definition. The fifth section evaluates the
existing definition of UML and the sixth briefly surveys the literature to identify
the most promising efforts to improve that definition. We conclude by saying
how we hope the future of UML semantics research will differ from its past.

1 Defining Languages

Diagrams do not need to conform to some defined language in order to help
us communicate. People find it quite natural to express their ideas by drawing
pictures, as any survey of publications, presentation slides or white-boards will
verify. Most of these diagrams do not conform to any specified diagram type. If
they are part of a language, it is a natural language, like English1.

A description of a natural language is a scientific theory, which must be judged
by how well it predicts actual usage. Artificial languages on the other hand, are
defined. Usage which does not conform to the definition is incorrect.
1 We will speak of “English” when we mean any arbitrary natural language such as

English, Occitan or Brazilian Portuguese.

44 G. O’Keefe

Sometimes the primary purpose of creating diagrams is not to communicate
ideas, but rather to generate or organise them. The “mind maps” technique
[Buz95] is one example. UML can be used in this way too. Building a UML
model can drive the collection of information about a problem domain, and
provide a convenient structure for organising that information. This role does
not, however, conflict with its status as a defined language.

The mind-map book provides guidelines for creating and reading these mind-
maps, which we might, very charitably, regard as a language definition. It is
certainly not a precise definition, nor is it intended to be, because precision
simply is not required. In a commentary attached to the amusing article “Death
by UML Fever” [Bel04], Philippe Kruchten implies that UML does not need to
be precisely defined.

UML is a notation that should be used in most cases simply to illus-
trate your design and to serve as as a general road-map for the corre-
sponding implementation.

UML can be used as documentation of code, but it is also intended as a means
of specifying a system. Model Driven Architecture (MDA) [MM03] calls for com-
plete systems to be generated automatically from UML models. If the language is
not precisely defined, the generated system may not be what the model creators
intended.

Computer programs are usually written as linear text, but compilers and
interpreters parse this text into a tree-like structure which is easier to process.
These structures are called the abstract syntax. Similarly, UML has an abstract
syntax which is processed by model transformation and code generation. The
relation in UML between concrete diagrammatic syntax and the abstract syntax
it represents, is complicated enough to be a potential source of error. Precisely
defining this relationship could simplify the creation of graphical model editors,
and facilitate animations [EHHS00, §6] and reverse engineering. The definition
should clearly delineate concrete syntax, abstract syntax and semantics, and it
should also specify the relationships between these parts. We therefore require
that

Criterion 1. A UML definition should unambiguously define
concrete syntax the diagrams and other notation
abstract syntax the UML models
notational conventions a unique model for each diagram collection
semantic domain the abstract systems which models “talk about”
semantics whether a given model is true of a given system

2 Applied Semantics

Avoiding possible disagreements about whether or not a given system satisfies
a model is enough to motivate the semantic parts of Criterion 1. Model driven
development raises other questions whose answer depends on well defined se-
mantics.

Improving the Definition of UML 45

Since the abstract syntax of UML is defined by a UML metamodel, we actually
require a subset of the semantics to even know whether an alleged model actually
is a well-formed model.

We need it to be clear whether or not a given model is consistent. That is,
can some system satisfy this model? When we have separately modelled dis-
tinct aspects of an envisaged system, we need a system which satisfies all of the
aspect models. Model consistency includes: preservation of association multiplic-
ities and other invariants; satisfaction of pre-post-condition contracts by object
behaviours; satisfaction of use-case contracts by a model; safety properties (bad
things can not happen) and liveness properties (system does not get stuck).

If a model is made more concrete as a project progresses, we may wish to
determine whether the more concrete model is a refinement of the more abstract
one. Indeed, we may wish to establish once and for all that a certain model
transformation always produces a refinement of its input model. We tentatively
call such a model transformation sound. Refinement and soundness have various
mathematical definitions, but this is not the place to make these choices. Note
however that it is not enough to say that one model is a refinement when it adds
some detail, because we probably want to consider non-trivial model transfor-
mations like the famous class to database schema example [BRST05] to be a
kind of refinement.

We not only want these questions to have definite answers, but we would also
appreciate any tool support in finding these answers.

Criterion 2. A UML definition should settle the following questions:
model consistency is there a system which satisfies all these models?
model refinement is this model a refinement of that one?
transformation soundness does output model always refine input?

The definition should also support maximally automatic tools to help determine
the answers to these questions.

3 Working with Ideas

Bran Selic has wisely observed that “software development consists primarily of
expressing ideas” [Sel03]. A project attempts to improve some situation by intro-
ducing or modifying a system2. Ideas describing the situation must be expressed,
absorbed, discussed, analysed, tested, revised and agreed on. The system itself
must also be described, both at a high level, in terms of the ideas about the
situation, and at the low level, using ideas about specific technologies. The high
and low levels must agree, and all the ideas must be clear and free from confusion
and contradiction. Indeed, the part of software development that is not about
expressing ideas is mostly about generating, negotiating and translating them.

High level languages have contributed enormously to development produc-
tivity [Bro87], but ideas expressed in Fortran or Java are still far from the re-
quirements level ideas of the human beings for whom a system is built. It is
2 I am indebted to Shayne Flint for this view of engineering.

46 G. O’Keefe

well known that requirements are not fully known, understood or agreed on at
the beginning of a project, and that they will change before project completion.
Hence effective software development requires the most direct possible coupling
between the thoughts of the stakeholders and their expression in implementation
languages.

When a skilled programmer writes code for her own purposes, this coupling
is perfect. The jewels of computer programming are usually formed in this way.
Extreme programming and other agile processes seek to couple high and low
level ideas by constant face-to-face communication between stakeholders and
programmers, and frequent delivery of useful code to stimulate feedback. These
forms of idea coupling depend heavily on individuals. For large projects and
organisations, it is desirable for the coupling of ideas to be systemic. This can
be achieved by establishing model transformation and code generation chains.

We agree with Steve Cook that “. . . for a language to be usable to drive an
automated development process, it is essential for the meaning of the language to
be precise” [HS05]. Without an agreed precise meaning, an automatic translators
interpretation of a model might differ from that of the stakeholders. Then the
delivered system might be unsatisfactory, even dangerous. The definition of UML
should therefore provide a reference for those who build model translators.

Criterion 3. UML and friends should enable people to reach agreement on, and
to directly express ideas about:

problem domains telecommunications, finance, logistics, . . .
implementation platforms linux cluster, enterprise Java, . . .
translation between these representations

The definition should enable tools to agree with people about what these expres-
sions mean.

We prefer to speak of “direct expression” rather than “raising the level of ab-
straction.” A highly abstract expression of ideas might still be far from the
stakeholders understanding, and thus not particularly useful.

A widespread agreement between users and toolmakers about the meaning
of UML would enable trade in models and transformations. This would in turn
greatly reduce the cost of developing systems. Brooks [Bro87] notes that the
ability to buy software rather than build it has contributed greatly to reducing
software cost. Organisations whose needs can not be met by direct purchase of
software might one day be able to purchase models and transformations which
can be assembled to satisfy those requirements much more cheaply than “ground
up” development.

4 The Definition of UML 2.0

UML 2.0, we have observed, is not defined in the way artificial language experts
normally do business. How then is it defined? In this section we will take a brief
look at the small mountain of documentation [Obj06, Obj03, Obj05c,Obj05a]
which defines UML. These documents will be collectively referred to from here
on as the definition.

Improving the Definition of UML 47

4.1 Metamodelling, Metacircularity and Reflection

The long and complicated story that is UML’s definition begins with the “In-
frastructure Specification” [Obj03]. This gives a UML model called the “In-
frastructure Library,” which “contains all the metaclasses required to define
itself” [Obj03, §7.2.8]. The Meta Object Facility (MOF) [Obj06] builds on the
infrastructure library to create a metamodelling language used to define UML
[Obj05c]. This definition of UML proper begins by including the infrastructure
library.

This technique, of using a modelling language to define a modelling language
is called metamodelling.

Metamodelling need not be circular. A metamodelling language with an in-
dependent definition can properly define the abstract syntax of a modelling
language. The UML definition describes its usage of metamodelling as metacir-
cular [Obj03, §8.1], because it uses a UML subset to define UML. Without an
independent definition of the metamodelling language though, the “meta” seems
like an unwarranted euphemism.

Because the metamodelling language used to define the abstract syntax of
UML is a subset of UML, that abstract syntax inhabits the semantic domain of
the language. Having the syntax inside the semantics is also required in order to
make sense of one of UML’s notions of instantiation. Consider a model with a
class C and an instance specification : C. Although it would be redundant in this
situation, we join the instance specification to the class with an �instanceOf�

arrow. Fix a semantic mapping i (interpretation) which takes the instance spec-
ification to an instance, and the class to a set of instances. The situation then
can be depicted as shown in Figure 1.

c C∈
��

:C

c

i

��

:C C
�instanceOf� �� C

C

i

��
c

C

instanceOfType���������

�����������

Fig. 1. Semantics of Instantiation

Ignoring the instanceOfType arrow for a moment, we have a neat separation
between syntax on the top line, and semantics on the bottom. So we see that the
�instanceOf� notation in a UML diagram corresponds to “element of” (∈) in
the system state.

The operation instanceOfType, defined in MOF for the metaclass Element,
“returns true if this element is an instance of the specified Class. . . ” [Obj06,
§13.3]. The arrow in Figure 1 marked with this name, indicates an Element,
Class pair where the operation returns true. The operation crosses the syn-
tax/semantics divide. To make sense of such reflective notions, we not only re-
quire the syntax to be in the semantic domain, we actually need each syntactic
model to be present in every system state which satisfies it.

48 G. O’Keefe

Element is a superclass of everything in UML, and of most things in MOF.
However this instanceOfType operation is only present in the MOF version. The
superstructure explicitly disowns such reflective ideas: “The [action] semantics
are also left undefined in situations that require classes as values at runtime”
[Obj05c, §11.1]. A distinction is sometimes drawn between “runtime semantics”
and “repository semantics” [Obj05c, §6.3]. We do not consider it necessary or
desirable to support two distinct semantic definitions for what is essentially
the one language. It would add work, and potentially lose the benefits of tool
reuse between metamodel and model levels. The differences arise because the
metamodels, as we have just seen, are slightly different. We therefore require
semantics that can account for reflective operations, even though the current
definition chooses to ignore them at runtime.

We summarise our findings in the following criterion. Although the last two
points entail their predecessors, we list them to provide a range of “compliance
levels” (in the style of [Obj05c, §2.2]).

Criterion 4. The definition of UML should satisfy

unity common semantics for repository and runtime
self-containment semantic domain contains abstract syntax
reflection model contained in each of its instances

4.2 Varieties of Variation

The UML definition contains a great number of “semantic variation points.”
These are places where the semantics are explicitly undefined, or where a range of
possibilities are allowed. Chapter 18 of [Obj05c] describes the profiles mechanism
of UML, which allows subsets and extensions of UML to be defined. Model driven
development may also call for domain specific languages which can interoperate
with UML models. Finally, UML 2.0 is only the latest of many revisions of the
language, and will not be the last. For all these reasons, we require semantics
which are flexible.

Criterion 5. The definition of UML must enable the language to be adapted and
extended. In particular, it requires a “semantic envelope” [Sel04] which enables
precise treatment of:

semantic variation points
profiles
domain specific languages interoperable with UML
later versions of UML

5 The UML Definition Evaluated

Having established the properties that a definition of UML ought to have, we
turn now to the existing definition and ask, is it any good? We begin with a
perfect score on Criterion 0, since no definition can be more faithful to the
current definition than the current definition.

Improving the Definition of UML 49

Criterion 1 can be summarised by saying that any proposed “definition” of
UML should actually define it. Debates on whether or not a given diagram is
a correct UML diagram, whether a system satisfies a given model and so on,
should be easily resolved by referring to the definition. Indeed, if the definition
was clear and understandable, these debates would seldom occur. That is to say,
satisfying Criterion 3 on enabling agreement, is probably our best indication
of whether Criterion 1 has been met. We therefore consider Criterion 3 before
returning to Criteria 1 and 2.

UML does not fulfil Criterion 3 so well as we could hope, because users are
not currently able to easily reach agreement about the meaning of a model.

. . . many people are confused about what these [UML] concepts . . . really
mean and how to understand and use them [HR04]

Developers can waste considerable time resolving disputes over usage
and interpretation of notation. [BF98]

We have had similar experiences when attempting to extract the precise meaning
of a diagram from groups of experienced UML practitioners: diverse interpreta-
tions each received vigorous support. Debate continues at the OMG over funda-
mental matters such as the semantics of associations and their ends [Obj, Issue
#5977][Mil06]. It seems fair to conclude that there is not widespread agreement
about the meaning of UML models.

It is not valid to infer from this that the definition lacks precision, because the
lack of agreement could be the result of the definition being difficult to under-
stand. This would be unfortunate, since it explicitly strives for understandability,
even at the cost of some precision [Obj03, §8] (quoted on Page 42). To us, it seems
more plausible that the definition is neither precise nor understandable.

The quote from the UML definition argues that a mathematical approach
involves too much work, and is not necessary to get the job done. Whether or
not Greek letters and other fancy symbols are employed, precise definitions of
abstract ideas are mathematical. If we choose to ignore the accumulated wisdom
of the mathematical discipline, and define things our own way, we commit the
same error as “hackers” who refuse to follow established software engineering
practice. Like the hackers, we are likely to get ourselves into the kind of trouble
that the experts know how to avoid. One simply does not find disagreements
about the meaning of definitions in mathematics, but after almost 10 years even
the basics of UML are still in dispute.

Turning to Criterion 2, one could hardly hope to settle questions of model
consistency, refinement and transformation soundness without true definitions
of the relevant concepts. It should not surprise us then that Stephen Mellor
finds a lack of support for model consistency testing in the current definition
[HS05]. He claims that the definition fails to detect the apparent inconsistency
of his small example model. We conclude then that the definition rates poorly
on Criteria 1, 2 and 3.

Criterion 4, on reflection, is really a detail of Criterion 0, since it records
what is entailed by the definition. Criterion 5 on flexibility, is only challenging

50 G. O’Keefe

for a rigorous definition. “Semantic variation points” offer perfect flexibility.
Interpretation of the metamodel diagrams by object-oriented folk-law is sufficient
for current tools, which only manipulate the syntax. Without adequate support
for the other criteria though, these benefits are of little use.

To achieve a definition which satisfies our criteria then, we may have to toler-
ate a little mathematics. The next section surveys some of the work applicable
to this task.

6 The UML Formalisation Literature

Since the current definition does not satisfy the requirements, we would like an
improved definition for UML. The new definition should agree with the cur-
rent one, including its reflective metamodelling approach, it should define the
semantics sufficiently to enable automated checking of consistency, refinement
and soundness, and it should be flexible and understandable. We now take a
brief look at some work related to improving the definition of UML, in the light
of our criteria.

Kim, Carrington and Burger [KC00, KBC05] give explicit translations be-
tween Object-Z and class diagrams. In the earlier work, the syntax of both
languages is expressed in Object-Z, and the translation is also defined there. A
metamodel of Object-Z is provided for the benefit of modellers unfamiliar with
this formal language. In the later work, the metamodels define the syntax, and
the translation is defined using a dedicated model transformation language. Un-
fortunately, even this recent work only addresses a subset of the class diagram
fragment of UML. The work aims to enable formal verification of UML models,
but as yet we have no demonstration nor descriptions of specific techniques.

Model Driven Architecture [MM03] aims to enable the simultaneous use of
many languages, each with syntax defined in MOF, by using model transforma-
tions between these languages. The real contribution of [KBC05] is in recognising
that formal languages can also participate in this way. Definitive formal seman-
tics could be provided by a Z (or Object-Z or dynamic logic or . . .) metamodel
and UML to Z model transformation. This would enable tool integration, and
provide insight into the formalism for the more advanced modellers. Attempts to
directly translate diagrams into formal languages usually ignore the metamodel
definition of the language, and thus violate Criterion 0.

Bruel and France [BF98] advocate an integration of UML and formal methods,
in which a UML class diagram is translated into the formal specification language
Z. The Z specification is then manually refined, adding details not expressible
using class diagrams. The rules and guidelines for semi-automatic translation,
they hope, will give insights for developing a more precise semantics for UML.

Rasch and Wehrheim [RW03] also advocate integration of a formal language,
in this case Object-Z, into the development process. The Object-Z specification
manually derived from the class diagram also specifies the class operations. The
class is further constrained by a protocol state-machine, which together with
the Object-Z schema, is translated into CSP. The choice of CSP, which is even
less readable than Z, seems to be motivated mostly by the availability of a

Improving the Definition of UML 51

model checker3 which they aim to use for consistency testing. They consider
several notions of consistency and study which of these are preserved under CSP
notions of refinement. We are not convinced that the intended semantics of the
UML fragment are captured by this translation. It is also not clear that the
CSP notions of refinement are applicable. We see little hope that modellers and
transformation authors will become familiar with both Object-Z and CSP.

The association end annotation {unique} is the subject of a recent controversy
[Obj, Issue #5977]. Dragan Milicev [Mil06] proposes semantics which reconcile
the apparently conflicting parts of the UML definition. These semantics concern
associations, their ends and the read, create, and destroy link actions. In an
appendix to the report, Milicev gives an example model to illustrate the con-
troversy, and expresses his semantics for it in Z. This is intended merely as a
precise statement of the proposal explained in the body of the paper. However,
this is the most convincing example we have seen of using Z to express dynamic
aspects of UML. It is also a good example of why Z will never be widely used
by developers: it is not easy to read.

Algebraic specification extended with “generalised labelled transition sys-
tems” is used by Gianna Reggio, Maura Cerioli and Egidio Astesiano to for-
malise parts of UML in [RCA01] and earlier papers by the same authors. They
do this by translating UML diagrams into the language Casl-LTL, though they
emphasise that the particular language is immaterial. This work explicitly aims
for a way of giving useful formal semantics to the whole of UML, and as the title
suggests, they take seriously the idea that the different diagrams combine to
specify a single system. However they ignore the fact that the official definition
already interprets the variety of diagrams into a single abstract syntactic entity,
the model. The authors note the expressive demands made by UML’s dynamic
diagrams.

It is worth noting that to state the behavioural axioms we need some
temporal logic combinators available in Casl-Ltl that we have no space
to illustrate here. The expressive power of such temporal logic will also
be crucial for the translation of sequence diagrams. . .

Indeed, Z and its derivatives would face similar difficulties. A later paper [AR02]
by Astesiano and Reggio studies UML consistency from their algebraic point of
view, and also uses a metamodel to describe the formal language being used.

The Object Constraint Language (OCL) [Obj05a] is very much like the lan-
guages of traditional symbolic logic, and at least two groups have attempted to
make it precise by translating it into well understood systems of logic, intending
to enable theorem proving about models. Brucker and Wolff [BW02] use higher
order logic (HOL) as implemented in the generic interactive theorem prover Is-
abelle. Beckert, Keller and Schmitt [BKS02] use first order logic. OCL 2.0 has a
third truth value “undefined” and allows collections of collections, so first order
logic will probably not suffice to formally define it. Neither group make use of

3 Note that this is not a tool intended for checking UML models. “Model” here is a
technical term from symbolic logic, meaning interpretation.

52 G. O’Keefe

the OCL metamodel in their translations. Beckert’s group offer different, equiv-
alent translations optimised for readability or for automated theorem proving
respectively. With a foundation as suggested in these works, OCL itself could
be the target formal language for a model transformation defining the semantics
of UML. This would probably require additions to the current limited temporal
operators of OCL though.

The OCL formalisation of Beckert and Schmitt [BKS02] is used in their the
KeY project [ABB+05]. This is a tool for the deductive verification of Java-Card
programs using a specialised dynamic logic [Bec01]. This logic is implemented in
a generic theorem prover integrated with the Together modelling tool, and thus
provides a practical platform integrating UML modelling and formal methods.
Although this work is not aimed at improving the definition of UML, it is in-
structive. The deductive rules symbolically execute the Java-Card program, and
thus give a clear and precise account of the language semantics. The rules could
even provide educational interactive animations of the language.

Unlike Java-Card, UML is non-deterministic and has no main procedure, but
it is conceivable that one could develop such a dynamic logic for UML. The logic
would have rules for each of the UML actions. This would define model dynamics,
and the meaning of each of the diagrams could be expressed by translation into
the dynamic logic language. It would also enable deductive verification of UML
models. In its traditional form, dynamic logic is even less readable than Z. But
a UML specific logic could use OCL notation for its static parts, whilst the
program parts would be written using the yet to be fixed standard UML action
language.

Wieringa and Broerson [WB97] use a formal language derived from dynamic
logic to give formal semantics for parts of UML class and state machine dia-
grams. As in earlier work by Wieringa, a “methodological analysis” leads the
authors to diverge radically from the official definition: a system is a black box,
which responds instantly to external stimuli. It is not possible for example to
make sense of a sequence diagrams in such a system. This might be a useful
interpretation of UML for requirements engineering, as these authors see it, but
from our perspective, it is inventing a new language rather than providing a
better definition of the existing one.

We take this opportunity to mention our own work [O’K06], which uses stan-
dard dynamic logic to give precise semantics to a UML subset with class, state
machine and sequence diagrams, and send and receive actions. Tableau theorem
proving techniques are employed to test model consistency. Other work on se-
quence diagrams require every occurrence to be made explicit in the diagram,
whereas our formalisation allows hidden occurrences in between the explicit ones.
This raises the level of abstraction, appropriately ignoring details that the se-
quence diagram author does not care about. This work makes no attempt to
handle visibility and polymorphism issues. Standard dynamic logic is probably
not suitable for a full UML fomalisation, as it lacks higher order expressions and
parallel composition.

Improving the Definition of UML 53

The first plausible demonstration of deductive verification of UML models is
given by Arons, Hooman, Kugler, Pnueli and van der Zwaag, in [TAKP+04].
The semantics are not described in this paper, but are derived from those of
[DJPV03]. That paper gives formal semantics to a small executable subset of
UML intended for real-time applications, using Pnueli’s “symbolic transition sys-
tems.” Much of the considerable complexity of that work comes from the need
to model hard real-time systems, which makes us wonder whether the general
modelling community might get by with something simpler. The abstract syntax
of the official definition is ignored, and a traditional formal syntax is given for the
selected UML subset. The later deductive verification work uses a temporal logic
embedded into the higher order logic of the PVS interactive theorem prover. A
model given by a class diagram and state machine diagrams with some actions,
is automatically translated from .xmi form into PVS sources. Issues of consis-
tency are deliberately avoided, since deductive verification of liveness properties
and safety properties are challenging enough at this stage. Several strong as-
sumptions are made about the execution semantics, which are not present in the
official definition. Deductive verification is not required for most applications of
UML, but supporting formal proof demonstrates that a definition is precise and
unambiguous, which we have demanded in Criterion 1. This formalisation uses
a language with both temporal and higher order features, so it is not subject to
many of the limitations we have identified for other approaches. Most of our cri-
teria are not addressed by this work however. Most urgently, we need techniques
to check consistency, and we need the meaning of models to be understood by
non-technical modellers and end users.

Several workers [ZHG05, EHHS00] employ graphs and graph transformations
[BH02] to give formal semantics to UML. In this way, a system state can lit-
erally be an object diagram, which is clearly much easier to understand than
the usual logico-mathematical offerings. The graph transformation rules, which
define the system dynamics, can be given using UML collaboration diagrams
[EHHS00]. Metamodels are usually static, consisting of only class diagrams. If
we included collaboration diagrams in the metamodelling language, we could
view metamodels as specifications of graph transformation systems. Thus we
can define semantics for a modelling language by providing a model transforma-
tion from the modelling language to the metamodelling language! This would
be a significant change to MOF, but seems well motivated and could win sup-
port. Unfortunately the specific metamodel proposed in [EHHS00] depends on
the Object metaclass in 1.x UML metamodels. This is widely accepted to have
been confused, and has been removed in UML 2.0. Model consistency from a
graphical point of view is considered in [EHHS02]. Graph transformation offers
the attractive prospect of a common language for practical software engineers
and academic theoreticians. This combination of rigour and understandability,
we believe, is the key to satisfying all our Criteria. The present author will be
reading more about graph transformation.

All the work we have discussed takes part of UML and translates it into an-
other language with formal semantics. An alternative would be to use English

54 G. O’Keefe

and elementary mathematics to define the semantics4. This approach would
allow us to use specific formalisms for specific tasks, whilst avoiding their ex-
pressive limitations when defining the semantics. It is easy to adapt an En-
glish/mathematical text, but this does not automatically integrate the new in-
terpretation with existing tools. An alternative is to directly define semantics for
a core of UML, then translate the remainder of the language into this by model
transformation. This seems to be the intention of the OMG’s current request for
proposal on an executable UML foundation [Obj05b].

Model transformation from UML to a language with precise semantics seems
the most promising method for improving the definition of UML. The formal
language must be able to express temporal and higher order concepts, handle
scoping and polymorphism, and admit automated consistency checking. Perhaps
the most challenging requirement though, is that it should enable people to
better understand UML models.

7 Conclusion

Too much of the work on UML semantics looks like a technical answer which is
glad to have found a good practical question. We have asked what that question
actually is, and refined it in the form of criteria for an improved definition. It
is our hope that future work will explicitly address the larger task of improving
the definition of UML. Our criteria might serve as goalposts for formalisation
work, or as targets for demolition by more worthy replacements. Either way, it
is a step towards the more desirable situation where a practical question seeks
a technical answer.

References

ABB+05. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Mar-
tin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and
System Modeling, 4(1):32–54, 2005.

AR02. Egidio Astesiano and Gianna Reggio. An attempt at analysing the con-
sistency problems in the UML from a classical algebraic viewpoint. In
WADT, pages 56–81, 2002.

Bec01. Bernhard Beckert. A dynamic logic for the formal verification of java card
programs. In Java on Smart Cards: Programming and Security, number
2041 in LNCS, pages 6–24. Springer, 2001.

Bel04. Alex E. Bell. Death by UML fever. Queue, 2(1):72–80, 2004.
BF98. Jean-Michel Bruel and Robert B. France. Transforming UML models to

formal specifications. In Proceedings of the OOPSLA’98 Workshop on For-
malising UML, 1998.

4 This apparently obvious idea had not occurred to us before it was pointed out by
Peter Schmitt.

Improving the Definition of UML 55

BH02. Luciano Baresi and Reiko Heckel. Tutorial introduction to graph trans-
formation: A software engineering perspective. In Proceedings of the first
International Workshop on Theory and Application of Graph Transforma-
tion, pages 402–429, 2002.

BKS02. Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating the
object constraint language into first-order predicate logic. In Proceedings
of VERIFY, Workshop at Federated Logic conferences (FLoC), 2002.

Bro87. Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software
engineering. Computer, May 1987.

BRST05. Jean Bézivin, Bernhard Rumpe, Andy Schür, and Laurence Tratt. Model
transformations in practice workshop, call for papers. web, July 2005.
http://sosym.dcs.kcl.ac.uk/events/mtip05/long cfp.pdf.

Buz95. Tony Buzan. The Mind-Map Book. BBC Books, 2nd edition, 1995.
BW02. Achim D. Brucker and Burkhart Wolff. A proposal for a formal OCL

semantics in Isabelle/HOL. In V.A Carren no, C. Mu noz, and S. Tahar,
editors, TPHOLS 2002, volume 2410 of LNCS, pages 99–114. Springer-
Verlag, 2002.

DJPV03. Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva.
Understanding UML: A formal semantics of concurrency and communica-
tion in real-time UML. In Formal Methods for Components and Objects,
Proceedings 2002, volume 2852 of LNCS. Springer, 2003.

EHHS00. Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer.
Dynamic meta modeling: A graphical approach to the operational seman-
tics of behavioural diagrams in UML. In Proceedings of UML, volume 1939.
LNCS, 2000.

EHHS02. Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer.
Testing the consistency of dynamic uml diagrams. Integrated Design and
Process Technology, 2002.

HR04. David Harel and Bernhard Rumpe. Meaningful modeling: What’s the se-
mantics of ”semantics”? Computer, pages 64–72, October 2004.

HS05. Brian Henderson-Sellers. UML - the good, the bad or the ugly? perspectives
from a panel of experts. Software and System Modeling, 4(1):4–13, 2005.

KBC05. Soon-Kyeong Kim, Damian Burger, and David A. Carrington. An MDA
approach towards integrating formal and informal modeling languages. In
FM, pages 448–464, 2005.

KC00. Soon-Kyeong Kim and David A. Carrington. A formal mapping between
UML models and object-Z specifications. In Proceedings of the First In-
ternational Conference of B and Z Users on Formal Specification and De-
velopment in Z and B, pages 2–21, 2000.

Mil06. D. Milicev. On the semantics of associations and association ends in UML.
Technical report, University of Belgrade, School of Electrical Engineering,
February 2006.

MM03. Joaquin Miller and Jishnu Mukerji. MDA guide. Technical report, Object
Management Group, 2003. http://www.omg.org/mda.

Obj. Object Management Group. Issues for the UML 2 revision task force. web.
http://www.omg.org/issues/uml2-rtf.html.

Obj03. Object Management Group. UML 2.0 infrastructure specification. Tech-
nical report, Object Management Group, 2003. http://www.omg.org/
docs/ptc/03-09-15.pdf.

56 G. O’Keefe

Obj05a. Object Management Group. OCL 2.0 specification. Technical re-
port, Object Management Group, 2005. http://www.omg.org/docs/ptc/
05-06-06.pdf.

Obj05b. Object Management Group. Request for proposals: Semantics of a foun-
dational subset for executable UML models, 2005. http://www.omg.org/
docs/ad/05-04-02.pdf.

Obj05c. Object Management Group. Unified modeling language: Superstruc-
ture. Technical report, Object Management Group, 2005. http://www.omg.
org/docs/formal/05-07-04.pdf.

Obj06. Object Management Group. Meta object facility (MOF) 2.0 core spec-
ification. Technical report, Object Management Group, 2006. http://
www.omg.org/docs/formal/06-01-01.pdf.

O’K06. Greg O’Keefe. Dynamic logic for UML consistency. In ECMDA-
FA, European Conference on Model Driven Architecture, number 4066
in Lecture Notes in Computer Science, pages 113–127. Springer, 2006.
http://rsise.anu.edu.au/∼okeefe/dl4uml.pdf.

RCA01. Gianna Reggio, Maura Cerioli, and Egidio Astesiano. Towards a rigourous
semantics of UML supporting its multiview approach. In H. Hussmann,
editor, FASE 2001, volume 2029 of LNCS, pages 171–186. Springer, 2001.

RW03. Holger Rasch and Heike Wehrheim. Checking consistency in uml dia-
gramms: Classes and state machines. In FMOODS, pages 229–243, 2003.

Sel03. Bran Selic. The pragmatics of model-driven development. IEEE Software,
2003.

Sel04. Bran V. Selic. On the semantic foundations of standard UML 2.0. In
Marco Bernardo and Flavio Corradini, editors, Formal Methods for the
Design of Real-Time Systems: International School on Formal Methods for
the Design of Computer, Communication, and Software Systems, number
3185 in LNCS, 2004.

TAKP+04. J. Hooman T. Arons, H. Kugler, A. Pnueli, , and M. van der Zwaag.
Deductive verification of UML models in tlpvs. In Proceedings UML, 2004.

WB97. Roel Wieringa and Jan Broerson. Minimal transition system semantics
for lightweight class and behaviour diagrams. In Manfred Broy, Derek
Coleman, Tom S. E. Maibaum, and Bernhard Rumpe, editors, Proceed-
ings PSMT’98 Workshop on Precise Semantics for Modeling Techniques.
Technische Universitaet Muenchen, TUM-I9803, April 1997.

ZHG05. Paul Ziemann, Karsten Hölscher, and Martin Gogolla. From UML mod-
els to graph transformation systems. Electr. Notes Theor. Comput. Sci.,
127(4):17–33, 2005.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 57 – 72, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adopting Model Driven Software Development in
Industry – A Case Study at Two Companies

Miroslaw Staron

Software Engineering and Management
Department of Applied IT

IT University in Göteborg, Box 8718
SE-402 75 Göteborg, Sweden

miroslaw.staron@ituniv.se

Abstract. Model Driven Software Development (MDD) is a vision of software
development where models play a core role as primary development artifacts.
Its industrial adoption depends on several factors, including possibilities of in-
creasing productivity and quality by using models. In this paper we present a
case study of two companies willing to adopt the principles of MDD. One of the
companies is in the process of adopting MDD while the other withdrew from its
initial intentions. The results provide insights into the differences in require-
ments for MDD in these organizations, factors determining the decision upon
adoption and the potentially suitable modeling notation for the purpose of each
of the companies. The analysis of the results from this case study, supported by
the conclusions from a previous case study of a successful MDD adoption,
show also which conditions should be fulfilled in order to increase the chances
of succeeding in adopting MDD.

1 Introduction

Model Driven Software Development (MDD, [2, 3]) is a new trend in utilizing mod-
els in software development. The models are used as primary artifacts in constructing
software; in practice it often means that the code is generated from models and thus
the models need to be used efficiently and effectively. The vision of MDD requires
shifting the focus of estimations, analyses, or evaluations from code to models. For
example, the initial complexity analyses should be done based on models or test plan-
ning and development should be done based on models.

In this paper we present an exploratory study at two companies on the adoption of
MDD in their organizations: ABB Robotics in Västerås, Sweden and Ericsson, Swe-
den. The main goal of this study is to provide evidence on how industry approaches
the issues related to adopting MDD. The results are related to the findings from other
studies on MDD or software process improvement adoption in industry (described in
the related work section). Combining these results allows choosing the most cost
efficient realization of MDD in industry given the current state-of-the-art in modeling
methods and tools. Together with another experience report [4] on MDD realization,
this paper outlines the requirements for making the introduction of MDD smoother in
large industrial organizations. In this paper we address the main research question in

58 M. Staron

the study: Which elements are important in adopting MDD in companies developing
software for embedded systems with a large knowledge base and legacy code? It was
our main intention to investigate the companies with large legacy code and proprie-
tary processes as the introduction of new technologies is significantly more difficult
than in small and medium size companies. The main research question was then di-
vided into three sub-questions:

RQ1: What are requirements for adopting MDD in the company?
RQ2: Which factors determine whether MDD should be adopted in the company?
RQ3: Which scenario of using models in software development is the most suit-
able for the company?

Our previous case studies on the adoption of a particular instance of MDD, the Model
Driven Architecture (MDA, [2]), resulted in setting up the background for the studies
presented in this paper [5, 6]. These are evaluated in another context in the two com-
panies in this study.

The findings from the two companies presented in this paper show that high de-
mands of quality, and measurements based on models lead to the decision that the
current state of the art in MDD and technology maturity do not provide enough sup-
port for cost efficient adoption of MDD. This was in the case of a company which had
a large base of legacy code to be integrated with the new code developed in the
MDD-compatible way. In the case of the company which was not so much dependent
on the legacy code (although the integration issues were still crucial, these were based
on interfaces and protocols, not static linking) it is possible to adopt MDD in a cost
efficient way.

This paper is structured as follows. The related work is presented in Section 2. The
main principles of MDD are presented in Section 3. The design of the case study is
presented in Section 4 and the results of the case study are analyzed in Section 5.
Threats to validity of the study are presented in Section 6, and are followed by identi-
fication of conditions that should be fulfilled for successful adoption are presented in
Section 7 and conclusions are drawn in Section 8.

2 Related Work

MacDonald et al. [4] present an experience report from a case study, performed par-
tially at a company and partially at academia, on model driven development of em-
bedded software. The context of the company is similar to the context of ABB as
there was a substantial amount of legacy code involved. The results of that case study
show that currently MDD does not lead to increase in efficiency, effectiveness, or
productivity in the context of software development with a large amount of legacy
code. Although their results are in line with the conclusions from ABB (part of our
study) their case study lacked the analysis of the decision on whether MDD should be
adopted or not. The results of that case study, nevertheless, are used to complement
the factors investigated in RQ2: Which factors determine whether MDD should be
adopted in the company?

An experiment performed in an industrial context by Middleware company [7]
showed that using MDA in projects increases productivity significantly. The results

 Adopting Model Driven Software Development in Industry 59

seem to be contradictory to the results from the case study by MacDonald et al. The
difference might be caused by the fact that the domains and development methods
differ. These differences indicate also that at this stage of MDD maturity it is impos-
sible to draw conclusions about MDD adoption in general and more empirical evi-
dence is needed to establish the conditions that determine the success or failure of
introducing MDD. This paper contributes with such evidence.

Modeling notations play a central role in MDD and thus building them is an impor-
tant issue for MDD adopters. Evans et al. [8] provide a set of theoretical considera-
tions on the differences between various ways of building modeling languages in
MDD. The experiences reported in their paper were included as a basis for the study
in this paper. Their results, however, suffer from two deficiencies – they are done
theoretically and seem to overlook software engineering aspects of creating and using
modeling languages. Therefore we complement their results with a study by Atkinson
and Kühne [9] which showed various ways building the modeling tools that influence
ways of defining modeling languages and creating models. In particular the combined
results were used in the workshops conducted at Ericsson (due to the time of publish-
ing their paper, it was not possible to use it in the study at ABB). As an addition to the
study of Atkinson and Kühne, we need to consider the ideas of software factories, an
alternative approach presented by Greenfield and Short [10]. The scenarios of using
models in their approach were taken into consideration while designing the case study
presented in this paper.

As UML is a core element in MDA, its adoption in industry has a significant influ-
ence on the adoption of MDA and MDD in general. A survey of the adoption of UML
by Grossman et al. [11] addressed this question. His conclusions and results are used
in the discussion while addressing RQ3 (Which scenario of using models in software
development is the most suitable for the company?). The results presented by
Grossman et al. indicated that UML is widely adopted in industry, although the sam-
ple in their survey consisted of companies that use UML for communicating require-
ments and not during designing.

3 MDD Principles

The way in which the companies can adopt MDD is presented in Figure 1 which
shows an adaptation of the modeling spectrum by Brown [1]. In this paper we per-
ceive this spectrum as a basis for describing how models are used in software devel-
opment. The left hand side of the spectrum represents the traditional development
without graphical modeling – the code is the main artifact. The right hand side of the
spectrum represents the opposite of it, the code playing a secondary role and the de-
velopment is done solely using models (e.g. utilizing executable modeling tech-
niques). The model centric approach is an ambitious goal of MDD as it still is based
on code while the models are the main artifacts. Most (or all, if possible) of the code
is generated from models; the developers, however, are given a possibility to add the
code and synchronize it with models. The fact that the code can be altered after it is
generated and it can be synchronized is close to the idea of roundtrip engineering,
where the code and the model coexist and one is synchronized once the other is up-
dated. Such a usage scenario can be seen as an advanced usage of models which is the

60 M. Staron

Fig. 1. MDD adoption spectrum, adapted from [1]

extension of the idea of basic modeling. The basic modeling represents a situation
when models are used as a documentation and as basic (usually architectural only)
sketches of the software to be built. The models and the code coexist but the code is
the main artifact which is used in the course of software development. In the code
visualization scenario the code is the main artifact; models are generated automati-
cally and are not used to develop software, but to provide means of understanding the
code. There is no sharp borderline which of the usage scenarios (except for “code
only”) can be seen as a realization of MDD; all of them are included in RQ3.

4 Case Study Design

This case study was based on the experiences from a previous case study conducted at
a company which successfully adopted MDD [6]. In this case study we adopted the
principles of fixed research design as advocated by Robson [12] in order to increase
the comparability of results between the two companies in the study. As the two com-
panies are essentially different, the interviews were quite open albeit customized for
each company.

4.1 Context and Subjects

The first studied company is ABB Robotics (further abbreviated to ABB). The core
business area of the company is development of mechatronic systems with embedded
software. The studied development unit was responsible for developing the embedded
software for the robots built in cooperation between several units at the company. The
overall intention behind the company’s interest in MDD was improving such quality
attributes of their software as portability, correctness and early assessment. The
development environment in the company consists of several development units spe-
cializing in development and lifecycle management of specialized components. The
components have been (and still are) developed for a number of years, which resulted
in a large amount of legacy code to be constantly maintained and extended. Compo-
nents are developed using various programming languages and paradigms – ranging
from assembler to C#. The company has good control over their process and their
development practices, although they could see potential for improvements. This

 Adopting Model Driven Software Development in Industry 61

company was studied as it had precise goals for adopting modeling with the long term
aim of using models as core development artifacts. There were no pilot projects re-
lated to MDD adoption in the organization prior to the case study, although the com-
pany did study the applicability of MDD in their context prior to our visit.

The other company included in this case study is a unit of Ericsson in Sweden. The
overall business of Ericsson is mobile telecommunication technology and the studied
organization was responsible for development of new services for mobile platforms.
The overall intention of this organization in adopting MDD was to increase the com-
petitiveness of the company by increasing the productivity of its developers. The
productivity increase could be achieved by increasing the portability and reuse of
the software developed in the organization. In the study of this company we used the
same materials as for ABB after verifying their applicability.

The subjects in the case study were staff of two teams (one at each company) con-
sisting of people deciding upon the adoption; staff well into the domain of the com-
pany although admitting that they are not so much into MDD (at least at the time of
the study). They, nevertheless, had experience in modeling using UML and their in-
tention was to increase the use of models to increase productivity. This staff could be
seen as frontier development people or early adopters of the technology. Their roles in
the organizations were:

• at ABB: three designers/developers and a manager
• at Ericsson: two managers, a technical coordinator, and an architect.

All subjects are working for the companies for a significant period of time and par-
ticipated in projects similar to the projects for which they considered adopting MDD
practices. At the time of the study their knowledge in modeling was sufficient since
the focus of the case study is put more on the issues related to adopting MDD in in-
dustry and not evaluating MDD or its applicability. However, we also evaluated the
other approach – Software Factories, but it was not applicable, due to the fact that the
technology was not mature enough at the current stage. The project needed stable and
reliable technology, thus going for the UML-based tools.

4.1.1 Context Differences
Despite the fact that the companies operate in a similar domain, their contexts are
different. The direct difference is the fact that Ericsson had conducted a pilot project
prior to making the decision, which was not the case of ABB. It seems that the pilot
project influenced the decision at Ericsson in the following way:

• it showed that the technology considered in the company is usable,
• it provided estimates on the required amount of changes in processes, methods,

and tools used in software development

The above bullets are feasible and we see them as highly probable, but no formal
evaluation of the pilot project was conducted at the company due to the lack of suffi-
cient data. In our interviews, however, we asked whether the success of the pilot pro-
ject was one of the major adoption factors; we found that the pilot project was mainly
done as a feasibility study to estimate the amount of effort needed to adopt MDD. As
we started our preparations for the case study, the pilot project was still on-going so it
was at a similar point of time (with respect to making the decision) as at ABB.

62 M. Staron

Although the studied organization within Ericsson has already a lot of expertise in
the domain, they are in the process of adopting Java-based technologies together with
MDD principles in this particular part of the organization. The company is also adopt-
ing the MDD and, as a part of that, the factors identified in the previous case study at
Volvo IT [6]. Ericsson’s ability to access experiences (simply due to the time differ-
ence) from other adopters might have been one of the factors influencing the decision.
This seemed not to be the factor as the studied unit at ABB did not change their deci-
sion over the course of time.

Another notable difference between the companies is the strong need for integra-
tion of diverse programming languages and paradigms at ABB. This need, together
with the need to incorporate a large legacy code-base made it impossible to introduce
MDD in a cost-effective way with risk minimization strategies – e.g. introducing
MDD in stages. These strategies are being implemented at Ericsson.

4.2 Data Collection and Analysis Methods

The instruments in the case study were questionnaires in which had several alterna-
tives to evaluate. We also used unstructured interviews as a complement to the ques-
tionnaires. At the beginning we used a workshop (with a focus group) at ABB to
elaborate the initial set of requirements, factors and modeling scenarios that should be
included in the later evaluation.

The questionnaires contained a set of questions to be valued using the 5 point
Likert scale. We deliberately chose the Likert scale since it does not force the respon-
dents to directly prioritize alternatives, but evaluate each of them independently.
Naturally, for each question there were empty spaces left for adding new alternatives
and evaluating them. The questions to be evaluated consist of three questions (corre-
sponding to research questions RQ1 – RQ3) with several alternatives to be evaluated
separately using the Likert scale.

The questions in the interviews regarded such aspects as: the purpose of adopting
MDD, the role of MDD in software development, and their intentions and hopes for
introducing MDD. In order to analyze the quantitative data from questionnaires we
used descriptive statistics (mean, median, and standard deviation). Due to a small
number of data points caused by a sample size (four persons in each organization) no
inferential statistics were used. The data obtained during the interviews was analyzed
in a qualitative way in order to obtain a more in-depth understanding of the organiza-
tions’ needs and requirements for MDD. Using qualitative approach minimized the
threat of combining the data biased by their context as advocated by Miller [13].

4.3 Operation

The case study at two companies was done in two distinct periods of time. The study
at ABB was conducted in between March and October 2004 and the study at Ericsson
was conducted between March and December 2005. At each company the study was
done in the following steps:

1. Focus group workshop and interviews
2. Questionnaires

 Adopting Model Driven Software Development in Industry 63

During the interviews and focus group meeting the context of the company we elic-
ited and exploited their intentions and views on MDD. The list of requirements, fac-
tors and potential modeling scenarios were defined as a result of step 1 at ABB. They
were later on used in the questionnaires at ABB and Ericsson. Step 1 at Ericsson was
dedicated to verifying the applicability of the study for Ericsson.

5 Results and Analysis

The results are analyzed based on the research questions posed in the introduction.
They are preceded with the presentation of the results of workshops with the focus
group at ABB which were the basis for further evaluation – i.e. the basis for creating
the questionnaires.

5.1 Aspects Important in Adopting MDD

During the workshops with both companies the aspects important in the adoption of
MDD were identified. The issues of organizational change were not considered since
the sample was not appropriate to evaluate them. The particular aspects, presented as
questions in the questionnaire were:

Question 1: If you use (would use) models how important it is to …?
a) Automatically generate code from models
b) Be able to estimate (based on models) the cost of software to be built
c) Verify correctness of software before it is built by verifying models
d) Improve quality of the created software by using models to improve under-

standing
e) Measure designs and to identify potential problems (e.g. fault-prone classes)
f) Use models to improve communication with customers
g) Use models to improve communication within your development team
h) Enable traceability throughout software development by using models
i) Automate software development process by providing means of automated

generation of various artifacts from models (e.g. initial versions of design
models from analysis models)

Question 2: If you were to decide upon choosing what kind of models to build,
which would be the factors that you would consider?
a) Availability of modeling tools
b) Knowledge of staff involved in modeling
c) Cost of introducing the modeling technique to the process
d) Cost of creating models while developing software
e) Possibility to quality assessment of model and then predict (and improve) the

quality of code
f) Ability of the model to be executed (the model itself can be executed before

the code is generated)
g) Number of changes required to use models in your current software develop-

ment practices

64 M. Staron

Question 3: What kind of modeling language(s) do you think would be the most
suitable for your purposes?
a) standard UML used only for documentation
b) standard UML used for code generation
c) UML + one specific UML profile for your needs (e.g. RT profile)
d) UML + several specific UML profiles
e) UML + another modeling language (e.g. BetterState)
f) Other modeling languages
g) None, the intention is to invent our own notation and use it informally

The answers to these questions provided us with the data to analyze the issues related
to adoption of MDD.

5.2 Requirements for MDD (RQ1)

Table 1 contains the descriptive statistics for answers to question 1. It should be noted
that no additional requirements were added by any of the respondents. The averages
which are ranked as important and very important are in boldface.

Table 1. Results for requirements

ABB EricssonAlternative
Mean Median Std. dev Mean Median Std. dev

a: automatically generate code 2 1.5 1.41 3.25 3 0.50
b: estimate cost 3.75 3.5 0.96 4.25 4 0.50
c: verify correctness 3.5 3.5 0.58 3.5 3.5 0.58
d: improve quality / understanding 4.75 5 0.50 4.25 4 0.50
e: measure des. / identify problems 4.25 4 0.50 3.75 3.5 0.96
f: improve com. w/customer 2 2 0.82 2.75 3 0.50
g: improve com. w/dev. team 4.75 5 0.50 4.25 4 0.50
h: enable traceability 3.25 3.5 0.96 4.25 4.5 0.96
i: automate generation of artifacts 2.5 2.5 1.29 3.5 4 1.00

Table 1 shows that for the adopters of MDD, the main requirements for MDD are:

b) the ability to estimate costs based on models
d) improving quality by increasing understanding
g) improving communication within development team
h) traceability throughout software development artifacts (models)

These requirements are equally important and two of them (d and g) overlap with the
most important requirements as stated by the other company which did not decide to
adopt MDD. This indicates that companies see MDD as a solution to similar prob-
lems. The third of the most important requirements for that company is the ability to
measure designs and identify problem areas based on the measurements (requirement
e). On the other hand, the non-adopting company (non-adopter) did not consider the
requirements b and h as important to the same extent as the adopting company
(adopter). Furthermore, the small values of the standard deviations indicate that the
respondents were consistent with their views, which could indicate their maturity in
opinions.

 Adopting Model Driven Software Development in Industry 65

5.3 Factors Determining Adoption (RQ2)

Table 2 contains the evaluation of the factors that are considered during the decision
whether MDD should be adopted. Neither of the respondents added any alternatives
for this question.

Table 2. Results for factors

ABB Ericsson Alternative
Mean Median Std. dev Mean Median Std. dev.

a: availability of tools 4.25 4.5 0.96 4 4 0.00
b: staff knowledge 4.5 5 1.00 3.33 3 0.58
c: introduction costs 3.75 3.5 0.96 4 4 1.00
d: modeling costs 3.75 3.5 0.96 4 4 1.00
e: quality assessment 4.5 4.5 0.58 3.67 4 0.58
f: model execution 2.5 3 1.00 2.67 3 0.58
g: process adaptation 3.75 3.5 0.96 3.67 4 1.53

The MDD adopters value three factors as the most important ones:
a) availability of modeling tools
c) cost of introducing the modeling technique to the process
d) cost of creating modeling during software development

In addition to factor a, the most important factors for the non-adopters were:
b) knowledge of staff involved in modeling
e) possibility to control quality using models

What seems to be interesting is that the adopters did not consider the knowledge of
the staff to be an important factor, while the availability of tools was rated as an im-
portant issue. This indicates that the company is willing to adopt the solutions pro-
vided by tool vendors rather than to pose requirements for their own MDD framework
and tools. This seems to be a solution that is cheaper since the company is willing to
adopt the tools that are on the market. Such an approach was also considered as one of
the crucial ones in another industrial case study [6] on MDD adoption.

In the case study by MacDonald et al [4] a set of requirements for tools supporting
MDD was drawn. These requirements contained such desired features as:

• Full support for the modeling language (i.e. the ability to use all language con-
structs in the tool – e.g. not a subset of UML)

• Rich platform independent libraries, and a possibility to map these libraries to
platform specific constructs

• Intermediate language for “text diagrams” (e.g. textual representation of UML
models) in order to increase the possibilities of using different languages that
map to the intermediate language – e.g. separate languages for PIMs and PSMs

• Sophisticated analysis which provides such possibilities as measuring models,
building prediction models and analyzing various aspects of software already at
the model level.

The last requirement seems to be one of the critical ones as it was also identified
while addressing RQ1 (requirement b – cost estimation based on models; requirement

66 M. Staron

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Mean

d b c a e f g

ABB

Ericsson

Fig. 2. Evaluation of modeling scenarios

e – identifying potential problem areas). Although these issues might be caused by the
specific domain in which all three companies operate – embedded software it seems
that these issues are more general.

5.4 Modeling Scenarios (RQ3)

The modeling scenarios evaluated in the companies are presented in Table 3. As in
the previous questions, no alternatives were added for this question either.

Table 3. Results for modeling scenarios

ABB Ericsson Alternative
Mean Median Std. dev Mean Median Std. dev.

a: standard UML for doc. 3.75 4 1.26 3.5 3.5 0.71
b: standard UML for code gen. 2.25 2 1.26 4 4 0.00
c: UML + one profile 3.25 3.5 0.96 4 4 0.00
d: UML + several profiles 2.5 2.5 0.58 4.5 4.5 0.71
e: UML + an existing DSL 2.5 2.5 1.29 2 2 1.41
f: existing DSLs 1.5 1.5 0.58 1.5 1.5 0.71
g: new DSLs 1.5 1.5 0.58 1 1 0.00

As it is shown

in the table, the
non-adopters found
that none of the
scenarios is very
suitable for them.
This stems from
their intentions
(improving the
quality control and
measurements of
models) and it is
supported by the
decision not to
adopt MDD in the
organization. On the other hand the adopters showed that the most suitable would be
to use UML with a set of profiles dedicated for their purposes (alternative d). Another
two alternatives were also considered as suitable, although to a lesser extent than the
alternative d: b) using standard UML for code generation; c) using UML and a single
specific profile. The results from evaluating the modeling scenarios are presented in
the chart in Figure 2. The results presented in Table 3 indicate that even though adopt-
ing MDD seems to require advanced modeling techniques and notations, the simple
notation is preferred. It is UML which is the notation which seems to be the most
suitable one as perceived by the adopters of MDD. Such a situation could be ex-
plained by investigating the state-of-practice in industrial usage of UML. The survey
of 150 companies by Grossman et al. [11] shows that UML is used in industry and is
perceived to be moderately suited for its needs. Despite some deficiencies with the

 Adopting Model Driven Software Development in Industry 67

standard UML notation it seems that it fulfills the needs posed by industry. This is
indicated by the average value of 3.17 (on the 5 points Likert scale where 5 denoted
the positive value) when asking about whether UML is able to represent the right
information for the companies.

5.5 Results from Interviews

We complemented the questionnaires with interviews and by observations of the work
done in the companies. As a result of these it could be observed that there are two
levels of modeling
(users of modeling
notations and the
creators of these)
at the organiza-
tions, as shown in
Figure 3.

It was also iden-
tified that creation
of a specific nota-
tion should be
done by engineers
in the companies,
not by language
engineers or tool
vendors. In the
case of Ericsson, the level of framework creators is mainly choosing which elements
should be modeled and which should only be coded in each iteration of the develop-
ment, thus customizing their modeling requirements and needs.

A set of issues related to adopting MDD in particular projects was identified. The
following questions need to be addressed:

• How much modeling is needed in the project?
• When to stop modeling and start coding?
• How to identify domain specific rules for the domains in the project?
• How many domains are there in the project?
• How to integrate the domains?
• How much reusability should the project aim for?
• How much will it cost to use only models and no code?

Some of these issues could be addressed by utilizing the evidence-based software
engineering approach [14] and analyzing experiences from generative programming.
The others, however, need to be researched and further empirical studies on these
issues should be conducted.

It was found that the right end of the spectrum in Figure 1 is an utopia and that
coding is necessary in all projects – even if everything can be modeled, then “some-
one” has to build the generators (c.f. [15]). The intentions of the companies are to
gradually adopt the ideas of MDD and introduce modeling practices in stages – from

Method – process

Methodology – meta-process

Process engineerProcess engineer
Modeling &
Development tools
Modeling &
Development tools

Modeling methodsModeling methods
createscreates

…

DeveloperDeveloper

uses
uses

Software products

createscreates

Fig. 3. Two levels of modeling in companies realizing MDD

68 M. Staron

architectural modeling to using models as the main artifacts. In the end, the intention
is to use models instead of code for measurements, predictions and estimations.

It was found that the investments in adopting MDD in the case of a large base of
legacy code to be reused cannot be done in a single step – it requires the effort which
needs to be distributed across several phases. These phases should be planned and a
lot of effort needs to be put, which in turn would require high return on investment
after adopting MDD. This return on investment, however, seems to be too slow at this
stage of technology maturity; this mainly applies to MDD tools.

We have observed that there is a very high maturity (with respect to the awareness
of the potential costs and benefits of these new technologies) in organizations willing
to adopt MDD. In particular these companies have precisely defined needs and indica-
tions which are supported by their own interpretations of certain aspects of MDD. The
perception of MDD at ABB and Ericsson were different although they have several
commonalities and the same expectations. The perception of MDD at Ericsson and at
Volvo IT (c.f. [6]) show that industry is moving in the same direction regardless of
their domain – i.e. using domain specific languages (sometimes simulated by UML
profiles) instead of shoe-horning domain specific constructs into standard UML mod-
eling elements. However, we found that at the current stage of technology using soft-
ware factories and Microsoft’s domain-specific languages was not feasible in these
cases. The reason for that was the lack of adequate support at that time (both in the
technology and the knowledge) for full integration of separate domain-specific lan-
guages. Without this support, the way of working at the company would have to be
adjusted to the extent exceeding the possibilities of changing the software processes
in the company.

6 Conditions for Adopting MDD

Based on the observations and the results from the questionnaires it is possible to
provide a set of conditions that should be fulfilled by companies in order for the MDD
adoption to be successful in their organizations. Although several requirements that
should be fulfilled from different perspectives have already been identified in the
literature (e.g. [4, 7, 16-18]), we have focused on software engineering aspects in the
conditions. If the conditions are fulfilled by MDD adopters, then the risks of not suc-
ceeding in their adoption endeavors are minimized. The conditions that were identi-
fied in the case study are as follows (prioritizing according to importance):

1. Maturity of modeling technology: The technology used in the company should:
• provide advanced features for developing and executing model transformations

(c.f. requirements posed in [19]),
• developing and executing model analysis methods (e.g. model measurements,

test case generation, and identification of problem areas), and
• developing and introducing domain-specific modeling (e.g. using UML pro-

files if the base language is UML).
This condition has been identified in other studies as well.

2. Maturity of modeling related methods: In addition to the modeling tools, the
methods for using models should be mature. These methods include activities like:

 Adopting Model Driven Software Development in Industry 69

• early model-based verification and validation,
• model-based quality assurance,
• model-based project planning and management (development efforts are dif-

ferent when using modeling, thus project managers need to know how to struc-
ture their projects taking that into consideration), etc.

MDD should be the next step in using models based on evolution of software de-
velopment processes (c.f. [6]).

3. Process compatibility: The process used in the company should be “compatible”
with MDD principles. The compatibility means that
• it should be possible to use models effectively in the process without a com-

plete redefinition of the process
• there should be a room in the process to actually use models as primary arti-

facts in the process – i.e. quality assessment should be done on models, estima-
tions should be done on models, testing should be done on models.

This condition is especially important for large companies as in such companies
software process improvement activities require heavy efforts.

4. Core language-engineering expertise: Since the advanced model usage scenarios
require either customizing a modeling language or engineering (at least to some
extent) a new language, there should be staff available in the company with the
required expertise (c.f. [20]). The required expertise is a combination of: domain
knowledge (to the most extent), tool building/extending methods, and language
engineering (to some extent, related to the expertise in tool building/extending).

5. Goal-driven adoption process: A set of precisely defined goals for introducing
MDD should be in place in the company – e.g. to improve quality of data model-
ing or improve productivity of development of a given part of software. The scope
and the methods for introducing MDD should be defined before the adoption in
order to decrease the risk of changing scope of the MDD framework and thus pro-
viding better control of the costs in the projects.

The above fundamental conditions stem from the findings presented in the paper,
although they could be supplemented with additional ones by close investigation of
MDD related research papers and experience reports (e.g. [7, 16]).

7 Validity Analysis

There exists an internal validity threat regarding the completeness of the question-
naires as they were identified in the course of the part of the case study conducted at
ABB. The requirements, factors and modeling scenarios identified seem to be com-
plete as none of the respondents identified additional elements. In addition to that, the
modeling scenarios were discussed and evaluated during meetings at ABB.

There is a construct validity threat in this case study, which is the fact that the
adopters have already conducted a pilot project, which was discussed in section 4.
There exists a conclusion validity threat, namely the lack of statistical inference test-
ing. This is caused by the small number of data points. It was our choice to choose a
small sample of people that were very much into the issues related to adopting MDD
in their organization instead of performing a survey on a larger population without the

70 M. Staron

control of their appropriateness for the purpose. Because of the variability in subjects’
background we refrained from using statistics as advocated by [13]. Using a large, yet
uninformed, sample would diminish the credibility of the results.

There exists an external validity threat that only two companies were investigated.
Although this threat cannot be minimized at the current stage we believe that the
results are generalizable to more than only two companies because the studied com-
panies were an adopter and non-adopter of MDD. Furthermore, the staffs at these
companies know the domain and have precisely specified requirements for MDD. The
fact that one of the companies did not decide to introduce MDD at this point of time
means that they are not blindly introducing innovations and software process im-
provements.

8 Conclusions

Despite the promised advantages of MDD (c.f. [2, 22, 23]), the state-of-practice in
adopting it in large industrial projects shows that the technologies behind MDD are
not yet mature enough for the industry to fully adopt the ideas of using models as the
only artifacts in software development (e.g. [4, 16, 24]). The goal of the case study
presented in this paper was to investigate the issues related to adopting MDD in in-
dustry. The study was conducted at two companies – a company adopting MDD and a
company considering the adoption and later deciding to refrain from it. The results
from interviews in the companies indicated that at the current state-of-practice in
MDD, it seems to be unrealistic to use only models in the course of software devel-
opment. There are two reasons for that: (i) the software development methods are not
fitted to use models as the main artifacts in, for example estimations, and (ii) the
software development environments are not mature enough to support the companies
to a sufficient extent. In particular, there exist a large number of modeling tools and
methods, but the integration of these is not a straightforward task. There are also sev-
eral open issues in the definition of MDD (or MDA) which cause confusion among
development teams (e.g. the meaning of the notion of “platform” is not clear for the
adopters who need to identify one in their domain). Even in the case of adopting the
new technology for new projects does not involve advanced technologies like the
dedicated domain specific modeling languages. The companies seem to rely on well
investigated UML-based technologies as they provide a large competence base (c.f.
[11]). Although it limits the possibilities of productivity increase, in comparison to
advanced technologies, they do not require that much initial investments with non-
customized notation and software processes (c.f. a study on initial productivity bottle-
necks after adopting a new development platform in a very similar organization [25]).
The interviews also indicated that the most sensible roadmap towards advanced adop-
tion of MDD is to go through stages – from introducing modeling at specific points in
the process through increasing the use of models to using models as main artifacts in
software development. It seems that the company is at the stage of experimental adop-
tion as defined by Grady and Van Slack [26]. This stage is characterized by steep
learning curve and initial failures; the failures which lead to optimizing and fine-
tuning methods for local needs.

 Adopting Model Driven Software Development in Industry 71

The high initial investments and unsure benefits of MDD were one of the issues
which influenced the decision of non-adopters to refrain from introducing MDD at the
current state of it. The case study presented in this paper provides empirical evidence
on the requirements from the vision of MDD and the possible scenarios of how to
achieve MDD in large companies. These issues seem to be important for the software
engineering community in order to direct the research into the directions that would
ease the transition to MDD for such companies.

Acknowledgments

The author would like to thank the companies for their commitment during the study
and for the possibility to cooperate.

References

1. Brown, A.: An introduction to Model Driven Architecture - Part I: MDA and today's sys-
tems. The Rational Edge (2004)

2. Miller, J., Mukerji, J.: MDA Guide. Vol. 2004. Object Management Group (2003)
3. Kent, S.: Model Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.): The Third

International Conference on Integrated Formal Methods, Vol. 2335. Springer-Verlag,
Turku, Finland (2002) 286-299

4. MacDonald, A., Russell, D., Atchison, B.: Model-Driven Development within a Legacy
System: An Industry Experience Report. Australian Software Engineering Conference
(2005) 14-22

5. Staron, M., Wohlin, C.: An Industrial Case Study on the Choice between Language Cus-
tomization Mechanisms. PROFES. Springer-Verlag, Amsterdam, The Netherlands (2006).

6. Staron, M., Kuzniarz, L., Wallin, L.: A Case Study on Industrial MDA Realization - De-
terminants of Effectiveness. Nordic Journal of Computing 11 (2004) 254-278

7. The Middleware Company: Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach. Vol. 2004 (2003)

8. Evans, A., Maskeri, G., Sammut, P., Willians, J.S.: Building Families of Languages for
Model-Driven System Development. Workshop in Software Model Engineering, San
Francisco, CA (2003) Np

9. Atkinson, C., Kühne, T.: Concepts for Comparing Modeling Tool Architectures (2005)
10. Greenfield, J., Short, K.: Software factories: assembling applications with patterns, mod-

els, frameworks, and tools. Wiley Pub., Indianapolis, IN (2004)
11. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML make the grade? Insights from

the software development community. Information and Software Technology 47 (2005)
383-397

12. Robson, C.: Real World Research. Blackwell Publishing, Oxford (2002)
13. Miller, J.: Statistical significance testing--a panacea for software technology experiments?

Journal of Systems and Software 73 (2004) 183-192
14. Dyba, T., Kitchenham, B.A., Jorgensen, M.: Evidence-Based Software Engineering for

Practitioners. IEEE Software, 22 (2005) 58-65
15. Czarnecki, K., Eisenecker, U.: Generative programming. Addison Wesley, Boston (2000)

72 M. Staron

16. De Miguel, M., Jourdan, J., Salicki, S.: Practical Experiences in the Application of MDA.
In: Stevens, P., Whittle, J., Booch, G. (eds.): The 6th Int. Conf. on UML, Vol. 2460.
Springer-Verlag (2002) 128-139

17. Staron, M., Kuzniarz, L., Wallin, L.: Factors Determining Effective Realization of MDA in
Industry. In: Koskimies, K., Kuzniarz , L., Lilius, J., Porres, I. (eds.): 2nd Nordic Work-
shop on the Unified Modeling Language, Vol. 35. Åbo Akademi, Turku, Finland (2004)
79-91

18. Knodel, J., Anastasopolous, M., Forster, T., Muthig, D.: An Efficient Migration to Model-
driven Development (MDD). Electronic Notes in Theoretical Computer Science 137
(2005) 17-27

19. Porres, I.: A toolkit for model manipulation. Software and Systems Modeling 2 (2003)
262 - 277

20. Staron, M.: Improving Modeling with UML by Stereotype-based Language Customization.
Doctoral thesis. Blekinge Institute of Technology, Ronneby (2005) 270

21. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslèn, A.: Experimenta-
tion in Software Engineering: An Introduction. Kluwer Academic Publisher, Boston MA
(2000)

22. Mellor, S.J.: MDA distilled : principles of model-driven architecture. Addison-Wesley,
Boston (2004)

23. Kleppe, A.G., Warmer, J.B., Bast, W.: MDA explained, Addison-Wesley, Boston (2003)
24. Thomas, D.: MDA: Revenge of the Modelers or UML Utopia? IEEE Software 21 (2004)

15-18
25. Tomaszewski, P., Lundberg, L.: Software development productivity on a new platform: an

industrial case study. Information and Software Technology 47 (2005) 257-269
26. Grady, R.B., Slack, T.V.: Key lessons in achieving widespread inspection use. IEEE Soft-

ware 11 (1994) 46-57

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 73 – 82, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Use Case Driven Iterative Development:
Hurdles and Solutions

Santiago Ceria1 and Juan José Cukier2

1 Hexacta SA, Arguibel 2860, Buenos Aires, Argentina
santiago@hexacta.com

2 Pragma Consultores, San Martín 575, Buenos Aires, Argentina
jcukier@pragmaconsultores.com

Abstract. Theory says that typical construction iterations in an iterative soft-
ware development project consist of taking some use cases previously identified
and then developing and testing them. However, reality says that use cases are
revisited in several iterations, creating a challenging problem in terms of how to
specify these “deltas” of functionality in a practical manner, and manage these
deltas as their number increase and “deltas of deltas” spawn. The longer the
project, the more probable is that this will happen. This paper elaborates on the
experience of a use case driven software development project and explains how
to deal with this issue.

1 Introduction

Literature on use cases and iterative development methods usually describe a series of
best practices that can be grouped in the realm of “develop your use cases iteratively”
[1].

In a recent development project we faced some of the hidden challenges of this
idea. We used RUP as our methodological framework, and therefore use case descrip-
tions contained the project’s functional requirements. The system was built along
several construction iterations.

Usually the first iterations do not present a problem. For example, during the first
construction iteration the team had a list of identified use cases, and applying the
criteria proposed by RUP we chose some of them to get started –for simplification
purposes we will ignore development done during the architecture definition itera-
tions-. Then we specified them and built them. In the second iteration we chose some
other use cases to develop, but we also wanted to enhance the ones we had previously
built. After 6 construction iterations, we had no new use cases: all development was a
series of small changes and enhancements to functionalities that had already been
implemented. And the obvious question is: how do you specify a change to a use
case? Do you manage “deltas” or do you specify them completely again, highlighting
the changes in some way? The problem may be easy to understand, but unfortunately,
solving it is not as easy as it seems.

The answer to that question has strong implications for the Development, Analysis
and Testing teams, and the Key Users (users representative of a vested-interest group)
in general. On one side of the spectrum, re-specifying again all use cases that will be

74 S. Ceria and J.J. Cukier

changed during an iteration renders a full specification per iteration and determines
the current scope, but it can produce large volumes of information due to the repeti-
tiveness of specifications. On the other side of the spectrum, a purely use case delta-
based approach reduces verboseness to a minimum and clarifies to the Development
and Testing teams where the focus should be, but makes documentation harder to read
for key users, and demands regrouping and consolidation efforts to keep the number
of deltas under control for practical use.

Another issue to consider is that Use Cases play a central role in iterative projects,
as many other deliverables are based on them, such as design documentation and test
cases. Also, they act as the main documentation for end users for validation purposes.
Therefore, maintaining a consistent and updated use case document is key for ensur-
ing requirements traceability and a smooth communication between the development
team and the end users.

In this paper we present the characteristics of our solution, a tradeoff between stud-
ied options and a series of recommendations based on our experience, both in this and
past projects. The objective is to provide the community with possible solutions to a
problem that, we believe, is pervasive but usually underestimated.

The structure of the paper is as follows: background project information is pro-
vided as for the type of project, its size, technology and methodology. Then the con-
cept of and motivation for deltas is introduced, together with a proposed segmentation
and notation. Problems related to delta management are accounted for, followed by a
proposal on delta management, tool aids and conclusions.

2 Background

2.1 Project Information

The project encompassed the development of a corporate core system for an interna-
tional company, which included, at high level, the reception of client orders, its proc-
essing and delivery, and all interfaces with ERP’s and extranets. The system was built
with generality as a critical design principle, so it could be extended to adapt to the
company’s local branches around the globe.

The project was structured in three main groups: a development group, also in
charge of analysis and design, a Project Management Office (PMO), in charge of
Quality Assurance, both of processes and products and a third group of key users that
represented our customer.

The development efforts extended for 18 months, since January 2004 until June
2005. The complete team averaged 25 people.

Iterations averaged 5 weeks long. Each of the iterations included, either fully or
partially, around 10 new or modified use cases. The complete application had a total
of 35 use cases and 15 iterations.

2.2 Technology and Methodology Used

The application was developed using J2EE under the Oracle Suite. The Rational Uni-
fied Process® was chosen as the methodological framework, and hence use cases
were the requirements’ specification technique. The main rationale for choosing RUP

 Use Case Driven Iterative Development: Hurdles and Solutions 75

was twofold: on the one hand, this was an unprecedented endeavor for the company,
so requirements had to be discovered more than elicited; in that way, the use of itera-
tions was thought to be particularly beneficial. On the other hand, since the system
was to be deployed in a number of branches around the globe, a standard notation and
syntax were of prime importance, and RUP provided for this.

No particular requirements management tool was used. Requirements were speci-
fied in a word processor, and the system’s scope was managed, due to changes
throughout the lifecycle, with a spreadsheet. Users reported requirement changes
either in a change management tool, that generated a unique change identification for
tracking purposes, or informally to the members of the functional team in require-
ments gathering meetings or user acceptance testing sessions.

All the processes used complied with the requirements of levels 2 and 3 of the Ca-
pability Maturity Model for Software from the Software Engineering Institute, as the
development organization had been assessed at Level 3 of this model shortly before
the project stated.

3 Deltas: Need, Use and Consequences

In this section we present the case for use case deltas (from now on simply deltas),
and explain the need for this specification method. We elaborate on the different del-
tas and how to write them, and how to determine whether a full use case rewrite
should be implemented. We conclude by explaining the problems that arise with the
proliferations of deltas if these are not managed properly.

3.1 The Need for Deltas

RUP’s approach of choice for segregating use cases is to identify the major risk fac-
tors, and prioritize the most architecturally significant ones. A choice should be made
on whether to select time-box segregation (fix the iteration duration and select enough
use case functionality to fit into that time frame) or scenario segregation (fix the use
case functionality and determine the time needed to carry that functionality to code).
In either, partitioning of use cases (that is, use cases that spread out though multiple
iterations) is mostly inevitable.

Following RUP’s framework, use cases with higher risk and architectural signifi-
cance were selected for specification and development in the early iterations. Once
the architecture was stable, the second line of use cases dealt with the core business
processes. These were developed early, and as consequence, suffered multiple revis-
its. Reasons for these include: a dynamic business environment, changes in the project
focus due to strategy shifts in the corporation, and a powerful group of key users that
were hard to contain and represented a never-ending source of requirement changes.
Though we understand this is not a desirable situation in a project, it is the case in
many development undertakings, no matter how mature the requirements manage-
ment processes used.

As a consequence of this, use cases had to be revisited in more than one iteration.
The extent to which the use cases suffered modifications, enhancements or changes in
general revealed the size of the delta.

76 S. Ceria and J.J. Cukier

A case could be made for better use case granularity. It is common sense to think that
finer-grained use cases should lead to a better fit of these within one iteration, eliminating
the need for increments. This was not our experience with this particular project and,
according to our understanding, it is not what the literature recommends. First, some core
use cases were clearly not candidates for development into a single iteration since they
represented a main flow for the user, and further decomposition proved discouraging for
them, as they saw these flows as indivisible. Second, even with some finer grained use
cases, change requests resulting from user acceptance tests forced to revisit many of them
in later iterations. After all, this is what iterative development is all about.

Screen prototyping was implemented and helped users think more thoroughly
about the functionality, reducing changes during the acceptance phase. Still this only
worked partially, and changes remained.

3.2 Delta Spectrum

There were cases when a shift in the business processes rendered a use case inade-
quate. An example of this was the following: during the development, our Client
switched providers for the delivery of its product, effectively altering the business
flow and the distribution of responsibilities.

In other cases, changes to use cases were very minor. There are numerous exam-
ples of this, including the addition of new fields in a screen or changes to the valida-
tions performed after data entry.

Cleary, these minor changes do not justify the full rewrite of a use case. And a
change in logic and business flow would make the treatment of deltas cumbersome,
and would probably justify a rewrite of the use case altogether.

Therefore, when planning for the scenario of use case revisiting, we came across a
whole shade of gray for deltas. And we had to define a cost-effective threshold to
define when a use case should be handled with deltas, or be rewritten completely.

3.3 Writing Deltas

As we mentioned above, a delta is any change in a use case description that has al-
ready been implemented. This can be produced by the addition, change or deletion of
functionality described in a use case.

Table 1 describes a possible way to specify a delta. The table, that has an example,
includes the critical information that needs to be specified.

Table 1. Delta Specification

Module MED – Media Management

Use Case / Step Changing delivery state – Step III

Delta Spec

Instead of entering a single parcel number for
changing the delivery state, the system shall accept
a range of parcel numbers. All the parcels in that
range will be changed by the system to the new
state indicated by the user.

Source Meeting Minute – 05 / 04 / 2005

 Use Case Driven Iterative Development: Hurdles and Solutions 77

The other options for specifying such a change, both tried by the team with no suc-
cess are:
− Use the “Track Changes” feature of the word processor. This will produce many

pages of useless documentation, and is not efficient when different persons are
making many changes to the same document, as your use case will end up resem-
bling a color palette.

− Manually highlighting changes to the document. This also has the problem of gen-
erating useless documentation, and additionally includes the risk of a use case
writer forgetting to highlight a change.
After trying the later options, we concluded that use case deltas were the best way

to go.

3.4 Delta Threshold

During the process of revisiting a use case, it should be clear that the work involved in
the rewriting is somewhat proportional to the percentage of change in the use case,
this considering that no changes are radical. To cope with this later case, and to main-
tain a favorable “redo vs. rewrite” effort ratio, we defined a threshold. If changes to
the use case fell below the threshold, it was to be added a delta. If the threshold was
exceeded, the use case was to be rewritten.

The largest determinant of this threshold was the type of change to the use case. On
the one hand, cosmetic changes were candidates to be treated as deltas, while infor-
mation flow or business changes favored the use case to be rewritten.

It should be clear though that, unless a full rewrite approach is taken (that is, a use
case is rewritten irrespective to the impact of the change), even with a low threshold,
deltas are bound to exist and proliferate.

3.5 Early Deltas, Later Nightmares

This revisiting process of early use cases generated a large number of deltas. And in
cases where the change belonged to a delta, a delta’s delta had to be created. This, as
can be seen in Figure 1, generated a chain of deltas that dismembered the functional
specification.

Fig. 1. Delta Tree - Evolution of higher order deltas for a use case

In this example, a use case specified initially in the first construction iteration (C1),
suffers two deltas on C2. We call these first-order deltas (that is, a delta that modifies

78 S. Ceria and J.J. Cukier

a use case specification directly). The second delta is again revisited in C3 and then
on C4. We call these “higher order” deltas (that is, a delta that modifies another
delta). Like this, the most updated version of the use case is given by walking the
delta tree, and replacing the original text by the update expressed in the delta.

The delta technique was useful and rendered satisfactory results for first-order del-
tas. Among others:

− It reduced the verboseness of the iteration’s specification to a minimum, speeding
up the specification time.

− It pointed the Development team exactly to what should be modified, increasing
focus and avoiding distractions.

− It instructed the Testing team on the specific test cases (or part of a test case) that
had to be modified.

− It helped with the specification validation from the Key Users by focusing them on
their latest change request, instead of functionality that was already reviewed and
approved.
However, once higher order deltas came into play, these advantages promptly

turned into drawbacks. In general, the proliferation of higher order deltas had strong
consequences for the project:
− The time needed to comprehend a use case increased, sometimes two- or three-

fold.
− This specification technique was hard to master for the Key Users.
− Newcomers for the project had to invest a long time in reading and understanding

parts of the specification that, at the current time, was useless, with the sole pur-
pose of understanding the evolution of the deltas.

− The system’s scope (that is, the sum of approved functionality) was harder to main-
tain and administer against changes during the lifecycle, since the same use cases
extended in more than one document.

− There was a load of administration tasks to make sure that the delta tree was tidy
and understood equally by all team members.

4 Delta Management

4.1 Project and Iteration Use Cases

While designing a practical strategy to deal with the proliferation of deltas, it was
useful to create a classification of use cases in project versus iteration use cases.

Project use cases are persistent, represent the functional repository, and hold the
true project scope. They embody the latest version of the use case, no matter the
modification, or when this was made.

Iteration use cases, on the other hand, are temporary. They act as working docu-
ments for refining the specification of specific use cases which are dealt with in a
particular iteration. All refinement put forth and represented in an iteration use case
will eventually have to be merged with the project use cases to be incorporated into
the project’s functional repository. This situation is represented in Figure 2.

 Use Case Driven Iterative Development: Hurdles and Solutions 79

Fig. 2. Relationship between Project and Iteration Use Cases

The merging activity includes not only the iteration use cases, but also the deltas.
They key point here is how, and when, this merging should be carried out.

4.2 Merging Alternatives

As with the deltas themselves, here we find a spectrum of possible milestones to pro-
ceed with the merging. On one side, merging could be done after each of the itera-
tions. On the other, merging could be done solely at the end of the construction.

Merging at the end of the construction minimizes overhead, but offers little help in
solving the proliferation of deltas.

Merging at the end of every iteration seems to be the reasonable approach, and a
good mitigation for the proliferation of deltas. All changes to a use case are merged
back to the project’s use case, which will then always represent the most updated
functional specification. Still, this approach has two main disadvantages:

− It can produce large works of overhead.
− The merge can potentially operate on deltas that will be rendered useless due to

new changes.

As for the first drawback, it was our experience that the extra workload was largely
compensated by a more orderly specification. As for the second, it should diminish as
the functional specification stabilizes, and as the project progresses.

Another alternative was studied and implemented with greater success, which con-
sists on performing periodical merges after a definite number of iterations. This num-
ber is dependent on:

− Total number of iterations within the project: if only two construction iterations are
planned, this scenario derives into the merge-at-the-end strategy; on the other hand,
as the number of iterations increase, more frequent merges will be needed.

80 S. Ceria and J.J. Cukier

− Project milestones: if the project is expected to deliver intermediate releases for
production, for instance, these might be natural moments for the merge.

− Number of the use cases: the number of deltas and the complexity of delta man-
agement is somewhat proportional to the number of use cases per iteration; there-
fore, project with only a handful of use cases per construction iteration might con-
sider a larger number of iterations before the merge.

− Level of the threshold: it should be clear that a low threshold would produce less
deltas, and therefore, less higher order deltas.

An alternative trigger for the merge can also be the number of higher order deltas.
If these start to proliferate, a merge will likely be needed.

It should also be observed also that the effort needed for the merge increases as the
deltas live longer. This is due to the fact that the existence of living first order deltas
favors the creation of higher order ones. In this way, the case for merging at the end
of each iteration is strengthened.

4.3 The Project Use Case Repository

In the light of these approaches, what constitutes the project use case repository? If
merging is done at the end of construction, it should detail the delta tree path that
leads to the complete specification, indicating the correct sequencing of deltas. If
merging is done at each construction iteration, it is a document itself with the latest
version of the use case. The only changes not reflected in the project use cases will be
the ones under construction in the current iteration, which, after all, have not been
validated yet.

In this way, the Project Use Case Repository, supplemented by the merging proc-
ess, is an effective tool for obtaining, and managing, the most current and complete
requirements specification. The following section gives details of a practical example
on obtaining a current specification.

4.4 Aids: Use Case Map

A good help for delta management was a mapping tool we called “use case map”. The
tool, developed in Excel by the Functional Team and the PMO, represented a descrip-
tion of the delta tree paths and detailed the following:

− The originating use case document (that is, the baseline), the document’s name and
location.

− Any rewrites for the use cases that replaced the original baseline.
− The reading order for any successive deltas and the iteration use case document

these belong to.
− New uses cases, and the iteration these belong to.

A real project use case map is represented in Figure 3. In this example, no merge
has been carried out yet.

 Use Case Driven Iterative Development: Hurdles and Solutions 81

Fig. 3. Use case map

In this example, the use case “Inputting addresses” departs from an initial docu-
ment (CP_ABC_UseCases.doc) and suffers two deltas in construction iterations C1
and C2. Therefore, three documents should be reviewed for the complete use case
specification: the originating use case document and iterations use documents for C1
and C2. The case for “Managing agreements with affiliates” is somewhat different.
Since there was a rewrite in iteration C3, reading should start there, and continue with
deltas specified in iteration use case document C4.

The tool proved to be extremely useful for navigating the use cases and managing,
at least in part, the complexity of delta proliferation. Its implementation is simple and
cost effective, and its use highly recommended.

4.5 Use of Deltas in Maintenance

Use case deltas can also be used for maintenance. How useful this technique can be
depends on several factors, such as the size of the changes (the smaller the changes,
the more useful it will be to use deltas), and the value assigned to maintaining the use
cases of the application updated. If the system’s use cases document is used fre-
quently, for example for training purposes, the deltas can be incorporated into the use
case documents with a predefined frequency (once every one or two months).

5 Conclusions and Further Work

We can draw the following conclusions from our experience:

− Although it presents some difficulties, use case deltas are probably the best way to
minimize problems caused by changes to use cases in different iterations.

− It is useful to conceptually differentiate project use cases from iteration use cases,
and employ some merging mechanism to update the former.

− The project team will need some guidance on when to write a delta vs. when to re-
specify the complete use case. We have presented in this paper a few recommenda-
tions about this issue including periodical merges after a definite number of itera-
tions, dependent on total number of iterations within the project, project milestones
and total number of use cases.

− On long projects, make sure you update your project use cases after a small num-
ber of iterations. Otherwise, the “rebuild” task will become a nightmare.

In terms of further work, we think there is a need for tools that address this issue.
Use cases are centric to iterative development, and their management will become

82 S. Ceria and J.J. Cukier

more important as this technique makes it way to becoming the de-facto standard for
functional specifications. Still, this also applies to other artifacts that may fulfill the
role of a use case in specifying what a requirement should do.

Also, the reader is invited to consider that this problem is not restricted to use
cases. Activity diagrams and all other UML diagrams are subject to this change proc-
ess during iterations. Separation between project documentation and iteration docu-
mentation, and their periodic merge is a difficult issue for any large development
project.

Acknowledgments

We would like to thank our customer, SodexhoPass International, for letting us share
the experiences of the project. Also, we want to thank our companies, Hexacta and
Pragma Consultores that encourage this type of activities. We are also grateful to
many of the team members of the project team, from the functional, technical, QA
and testing teams, who had many of the creative ideas that are presented in this paper.

References

[1] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Sotware Development Proc-
ess. Addison Wesley, 1998.

[2] Ellen Gottesdiener, Use Cases: Best Practices. IBM Technical Paper, 2003.
[3] Kurt Bittner, Ian Spence, Use Case Modeling. Addison-Wesley, 2003.
[4] Gary Evans, Getting from use cases to code Part 1: Use-Case Analysis. IBM Technical Pa-

per, 2004.
[5] Alistair Cockburn, Writing effective use cases. Addison Wesley, 2001.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 83 – 97, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model-Driven Development with SDL – Process, Tools,
and Experiences

T. Kuhn, R. Gotzhein, and C. Webel

{kuhn, gotzhein, webel}@informatik.uni-kl.de

Abstract. Model-Driven Development is a challenge and a promising
methodology for creating next-generation software systems. In this paper, we
present SDL-MDD, a model-driven development process that is based on the
ITU-T design language SDL. We present a semantically integrated tool suite,
especially supporting model-driven code generation and model-driven
simulation. Both production and simulation code are entirely generated from
SDL models and automatically instrumented to interface with different
operating systems and communication technologies. The use of SDL-MDD and
of the tool suite is illustrated by an extensive case study from the ubiquitous
computing domain.

1 Introduction

Model-Driven Development (MDD) [1] is a software engineering approach that
places the abstract, formal system model in the center of the development activity.
The objective is that models guide and direct all development activities, ranging from
system design over code generation and deployment to system maintenance, resulting
both in quality improvements and productivity increases.

One of the main benefits of MDD is the ability to specify the structure and the
behavior of a software system in a more platform-independent way than with
traditional programming approaches. This is especially relevant for software systems
within the ubiquitous computing domain, which consist of dynamic, distributed
applications and heterogeneous hardware platforms. Since ubiquitous computing
systems aim at creating an invisible, unobtrusive environment, there is a need of
supporting various hardware platforms with different resource constraints. These
platforms range from micro controllers with scarce computational and energy
resources to pc-style hardware. While some software components will be tailored to a
specific hardware platform, most components of these systems – in particular, the
communication middleware – must be able to run on multiple platforms.

In this paper, we present SDL-MDD, a domain-specific, model-driven
development process for communication systems that is based on SDL [2], the ITU-T
Specification and Description Language, and a semantically integrated tool suite for
SDL-MDD. This tool suite consists of several commercial tools, including a graphical
SDL editor, an SDL model debugger, and an SDL-to-C compiler. To entirely avoid
manual coding, we have added a tool and a library to automatically instrument the
generated C-code to interface with different operating systems and communication
technologies. Furthermore, we have extended an existing network simulator in order

84 T. Kuhn, R. Gotzhein, and C. Webel

to enable performance simulation of SDL models. We demonstrate the applicability
of SDL-MDD and the tool suite by an extensive case study from the ubiquitous
computing domain.

The remaining part of this paper is structured as follows: Section 2 gives an
overview of SDL-MDD. In Section 3, the Assisted Bicycle Trainer (ABT), which will
be used to illustrate the use of SDL-MDD, is briefly described. Section 4 elaborates
on the design stage of SDL-MDD. In Section 5, the tool suite of SDL-MDD is
presented. In Section 6, we survey related work, and conclude in Section 7.

2 The SDL-MDD Process

SDL-MDD is a model-centric, domain-specific, development process, whose main
focus is the development of distributed systems and communication systems in the
area of ubiquitous computing. It is supported by a tool suite, and uses a generic
system structure to obtain clear separation and reusability of platform-dependent and
platform-independent models.

SDL-MDD is based on SDL [2], ITU’s Specification and Description Language,
which is widely used throughout the telecommunication industry. SDL has a formal
semantics and enables developers to specify system structure and behavior in a
platform-independent manner. Additionally, it is possible to integrate native,
platform-specific code into SDL models. These features turn SDL into a valuable
candidate for model-driven development.

SDL-MDD decomposes the development of a software system into a number of
stages. Since it is an iterative process, the development of a software system may go
through some stages repeatedly, while certain stages may be skipped in the early
cycles. The following stages are distinguished (see Fig. 1):

• In the requirements stage (REQ), the requirements are elicited and described in an
informal way.

• In the formalize requirements stage (FRQ), the requirements document is partially
formalized, yielding a computation-independent model (CIM). Similar to the MDA
[3], the CIM is a system specification from the viewpoint of the domain expert. Since
SDL-MDD is directed towards the ubiquitous computing domain, we specify
message scenarios with MSC [5] on different levels of granularity. This specification
can be traced throughout all models of subsequent development stages, and be
validated against scenarios that are generated by the SDL model debugger.

• In the platform-independent design (PID) stage, the platform-independent model1
(PIM) is specified, using SDL as design language. It contains both the platform-
independent structure of the software system, and the platform-independent
behavior. The result of this stage is a functionally complete, closed SDL design
model, which can be analyzed using existing tools for debugging and validation of
the functional system behavior.

1 Actually, the concept of platform-independence is somewhat misleading. In fact, the PIM is a

model suitable for use with a number of different platforms of similar type, i.e., a generic
platform. For instance, a basic communication service consisting of send and receive
primitives could be assumed, which is later replaced by a communication platform with
specific encodings as well as specialized and additional service primitives.

 Model-Driven Development with SDL – Process, Tools, and Experiences 85

Fig. 1. SDL-MDD process

• In the platform-specific design (PSD) stage, the platform-specific model (PSM) is
specified, again using SDL as design language. The fact that the PSM incorporates
the PIM, and that the same design language as for the PIM is used, make
transformations between PIM and corresponding parts of the PSM obsolete.
However, design decisions leading to platform-specific PSM components are to be
made. The resulting SDL design model can be analyzed using existing tools for
debugging and validation of the functional system behavior. In addition, the design
model forms the basis for model-driven performance simulations (see Section 5).

• In the changed requirements (CRQ) stage, the initial requirements may be
modified, based on feedback from the performance assessment.

It should be noted that the SDL-MDD process does not contain an explicit
implementation stage. The reason is that implementations including code for
interfacing with system environments are entirely generated from SDL models (see
Section 5). This includes the runtime-independent code (RIC), which is used for
performance simulations and part of the production code. By using customized
transformation rules and a tailored runtime environment, we are able to generate
efficient code even for small, embedded devices.

domain
knowledgerequirements

transformation
rules

SDL
Environment
Frameworksimulator

executable platform
specific

executables

Performance
simulation results

ns+SDL

process step

document

generated by activity

input to activity

transformed to

directed by

changed
requirements

RIC RIC

PSM

PIM

CIM

REQ

FRQ

CRQ

PID

PSD

86 T. Kuhn, R. Gotzhein, and C. Webel

3 The Assisted Bicycle Trainer

To illustrate the use of SDL-MDD, we will show excerpts from the development of
the Assisted Bicycle Trainer (ABT), a distributed system for the training of a group
of cyclists. In a typical training scenario, a group of up to 30 cyclists covers a distance
of up to 200 km, with a varying road profile. For best training effects, each cyclist
should ride with an individual target and maximum pulse rate. The pulse rate depends
on various parameters, in particular on speed, head wind, road incline, and physical
condition of the cyclist.

The objective of the ABT is to improve the training effects such that each cyclist is
as close to his individual target pulse rate profile as possible, without exceeding his
maximum pulse rate. To achieve this objective, the ABT dynamically collects status
data of each cyclist, and displays a summary of these data to the trainer accompanying
the group of cyclists by car. Based on this information, the trainer may adjust training
parameters, for instance, by ordering the group to change speed, or by ordering a
particular cyclist to take the lead, exposing him to the headwind, while all others can
exploit the slipstream and thus need less pedal power. Orders of the trainer are shown
on small displays attached to each bicycle. The ABT is a self-organizing system,
supporting, in particular, dynamic group formation and mobility. Communication
among cyclists and human trainer is via wireless ad-hoc network. The software
system for this demonstrator consists of four main parts:

− Application software for cyclists and trainer.
− Graphical user interfaces for cyclists and trainer.
− Software for preprocessing the sensor data, running on sensor nodes (few lines of

code).
− Communication middleware to collect local sensor data, to exchange sensor data

among bicycles and with the trainer.

Both the application software and the communication middleware have been
developed with SDL-MDD.

4 Model-Driven Design with SDL-MDD

In this section, the generic structure of PIMs and PSMs for systems in the ubiquitous
computing domain is presented. This structure is instantiated and refined when
specific models are specified, as illustrated for the Assisted Bicycle Trainer.

4.1 Platform-Independent Model

The platform-independent model (PIM) is structured into two major units, containing,
for each logical node, application-specific and platform-independent functionalities,
respectively (see Fig. 2). This is a general design decision for all PIMs in the
ubiquitous computing domain developed with SDL-MDD. The application viewpoint
supports the developer in focusing on high-level design decisions. For the interaction
of distributed application components, tailored platform-independent functionalities,
such as high-level communication protocols, are identified and combined, yielding
the device middleware.

 Model-Driven Development with SDL – Process, Tools, and Experiences 87

Fig. 2. Generic high-level architecture of platform-independent models

In the ubiquitous computing domain, system functionalities strongly depend on the
resource situation. For instance, in the ABT system, cyclist nodes have to be light-
weight and mobile, which calls for micro processors operating with scarce resources.
In a distributed environment, this requires specialized communication protocols that
are tailored to the resource situation. For this reason, we have decided to incorporate
the device middleware into the PIM, which therefore is domain specific. Note that at
this point, no specific decision about devices, e.g., particular communication
technology classes such as serial communication or broadcast is made. This decision
is postponed until the platform-specific design (see Section 4.2). Also, no decisions
about operating system or compilers to generate production code are made. Therefore,
we argue that the SDL model so far is largely platform-independent.

The high-level architecture of the platform-independent model of the ABT is
derived from the generic architecture in Fig. 2. Fig. 3 shows an SDL block
cyclistApplication that incorporates all application-specific functionality that is to be
placed on bicycle nodes. In addition, a trainer application has been specified. The
SDL block cyclistCommunicationMiddleware provides a platform-independent view
of the communication functionalities, which are tailored towards the application. Both
SDL blocks are refined into further SDL blocks and finally into SDL processes (not

Fig. 3. Assisted Bicycle Trainer – PIM (abstract SDL model)

88 T. Kuhn, R. Gotzhein, and C. Webel

shown here). These processes form a hierarchically structured system of extended
finite state machines interacting through signal exchange. Signals are sent along typed
SDL channels and signal routes, connecting blocks and processes. For instance, the
bidirectional channel C1 in Fig. 3 is typed with lists of signals exchanged between the
two blocks. The size of the PIM for the ABT is 68 pages of SDL specification.

4.2 Platform-Specific Model

The platform-specific model (PSM) contains both platform-independent and platform-
specific parts of a system. A platform encapsulates the operational environment of a
system, consisting of hardware devices, operating system, and code generators. In
SDL-MDD, the PSM is obtained by adding platform-specific functionalities and
device interfaces to the PIM (see Fig. 4). These extensions are specified with SDL,
which means that the same design language as for the PIM is used, providing a
smooth transition between models.

Fig. 4. Generic architecture of platform-specific models

When moving from PIM to PSM, the device classes of the platform are
determined. Platform-specific functionalities depend on these device classes, for
instance, sensor types or types of communication technologies. Additionally, the
actual interface to interact with concrete devices is added. For instance, the device
class of serial communication may be mapped to Bluetooth, USB, or RS232. Note
that on model level, device interfaces may still be abstract in the sense that procedure
calls to device drivers are represented by SDL signal exchanges. However, the
interface is platform-specific in the sense that the procedure calls can later be
generated automatically (see Section 5).

The architecture of the platform-specific model of the ABT is derived from the
generic architecture in Fig. 4 and the PIM (see Fig. 3). In Fig. 5, the PSM for an

 Model-Driven Development with SDL – Process, Tools, and Experiences 89

Fig. 5. Assisted Bicycle Trainer – PSM (abstract SDL model)

embedded PC platform is shown. Here, SDL blocks encapsulating platform-specific
functionalities to support sensor classes – pulse rate, speed – and PDAs serving as
graphical cyclist interfaces are added. Furthermore, abstract interfaces to three
different communication technologies are specified. Interaction with local sensors is
via UART, communication with the PDA is via Bluetooth, and message exchange
among bicycles and trainer is via WLAN. This covers all platform-specific design
decisions that have to be made at this point of the development. Further platform-
specific decisions can be postponed until code generation, which is fully automated,
taking the PSM as starting point (see Section 5). The size of the PSM for the ABT is
103 pages of SDL specification, which includes 68 pages of the PIM.

We have specified another PSM for a micro controller platform, which is very
similar to the PSM in Fig. 5. The main difference is that communication among
bicycles and trainer is via CC2420, a ZigBee controller. To incorporate this into the
PSM, the WLAN interface of Fig. 5 is replaced by a CC2420 interface, and an SDL
block encapsulating platform-specific functionality for ZigBee is added.

At this point, we observe that the same PIM is used for both types of platforms.
This provides some evidence that the PIM is indeed platform-independent. Also, the
changes to the PSM when changing parts of the platform are straightforward and
systematical, even in the above case of very heterogeneous platforms.

4.3 Transitions Between PIM and PSM

SDL-MDD supports transitions between PIM and PSM in both directions (see Fig. 6).
From PIM to PSM, detailed developer guidelines are provided. Since the PSM
requires major design decisions on platform-specific functionalities, this transition is
not an automatic one. However, it is simplified by the fact that in SDL-MDD, the

90 T. Kuhn, R. Gotzhein, and C. Webel

Fig. 6. Transitions between PIM and PSM

PIM is part of the PSM, without any modifications2. This makes the backward
transition from PSM to PIM, which is desirable in iterative processes such as SDL-
MDD, straightforward.

Given a PIM, we take the following steps to obtain a PSM:

1. Select one or multiple native platforms for subsequent code generation.
 Multiple native platforms may be selected as long as they only differ in their

operating system and hardware platform – the offered environmental interfaces
must be identical. This information is used subsequently to select platform-
specific transformation rules when generating native code from the PSM. When
selecting a platform, the size and accuracy of data types in the final code are
determined, too.

2. Incorporate the PIM into the PSM.
 The PIM can be either incorporated as an SDL reference or as a copy into the

PSM. Using an SDL reference has two advantages. First, a clean separation of
PIM and platform-specific parts is enforced, since only the latter can be modified
when the PSM is specified. Second, all changes applied to the PIM immediately
apply to all related PSMs, which is important in case of iterative design.

2 One may argue that using the PIM without any modifications may lead to suboptimal

realizations of the PSM. In Section 5, we will show that the code generated from the PSM
(including the PIM) is a set of macros, which leaves much room for code optimizations. Also,
modifying the PIM would lead to different system behaviour.

PSM

 Model-Driven Development with SDL – Process, Tools, and Experiences 91

3. Add platform-specific functionalities.
 Platform-specific functionalities model device classes that are only available on

selected target platforms, or that depend on special, platform-dependent devices.
These functionalities are either specified from scratch or are selected from a
repository. Typical examples of platform-specific functionalities are MAC
layers or sensor data processing.

4. Add platform-specific device interfaces.
 Platform-specific device interfaces abstract concrete devices from device

classes, e.g. devices for serial communication. They are used to connect the
abstract interfaces that are exposed to the other modeled components to real
devices. These device interfaces are semantically integrated within the runtime
environment, which detects the presence of device interfaces and reconfigures
itself to include the interfacing code into the generated code (see Section 5).

For a given platform and a platform-specific repository, it is possible to automate
steps 2 to 4. The reason is that the platform-specific functionalities are usually not
application-specific, so the degree of reusability is substantial. Also, platform-specific
device interfaces are stable. This gives rise to a tool that, for a given platform and
PIM, generates a PSM.

5 The SDL-MDD Tool Suite

A particular strength of SDL-MDD is the availability of a semantically integrated tool
suite, i.e. a tool suite that covers all aspects of model-driven development with SDL.
This tool suite is based on Telelogic TAU SDT [11], a commercial tool suite that
comes with a graphical SDL editor, an SDL debugger (called SDT simulator), an SDL
validator to detect defects such as deadlocks and unspecified receptions, and two
SDL-to-C compilers. However, SDT has two major shortcomings. First, SDT does
not support performance simulations of SDL models. Second, the interface for the
interaction of an open SDL system with its environment (e.g. a WLAN driver) must
be hand-coded. These restrictions are similar for the PragmaDev tool suite [12]. In
this section, we present tools that we have developed to remove these restrictions.

5.1 Model-Driven Performance Simulation with ns+SDL

To support performance simulations of SDL models, we have developed ns+SDL [4],
the network simulator for SDL specifications. ns+SDL is an extension to the well-
known network simulator ns-2 [6], adding the capability of loading SDL models as
nodes into a simulated network. Thus, it is possible to directly simulate SDL models
without having to re-implement them as ns-2 classes in C++. ns+SDL supports both
platform-independent and platform-specific interfaces between SDL models and their
environment. Since it is capable of simulating platform-independent devices and
networks as well as platform-specific devices, the performance of PIMs and PSMs
can be assessed.

ns+SDL is capable of simulating hardware components that form part of the
system platform, in particular, communication hardware and processors. This way,
simulation studies for selecting a particular communication technology that is best

92 T. Kuhn, R. Gotzhein, and C. Webel

suited for the current application scenario can be performed already during system
design. These early simulation studies prevent bad design decisions that would result
in costly iterations at a later development stage.

During the development of the Assisted Bicycle Trainer, we have conducted a
number of performance simulations, based on the PSM (see Section 4.2). In the
simulated scenario, a group of 20 cyclists and one trainer are communicating via a
simulated wireless LAN (IEEE 802.11b) with a range of about 200m. The cyclists are
riding one behind the other, accompanied by the trainer. According to the mobility
model of the scenario, positions and distances of cyclists change during the ride.
While this has no consequences on connectivity between nodes in most cases, due to
the wide range of WLAN, there are two situations where the field and the network are
partitioned. At simulation times t1 = 100 sec and t2 = 530 sec, there is a gap of 200m
between two groups of nodes.

Fig. 7. Comparison of global and local broad-
cast

Fig. 8. Benefits of status message rateadap-
tation

In the simulated scenario, we have examined two aspects. First, we have compared
the connectivity for local and global broadcast (see Fig. 7). When using local
broadcast, the connectivity decreases to about 50%, when the field is partitioned. The
selective flooding protocol NXP/MPR [7] improves this situation substantially,
providing for almost full connectivity during the entire simulation. Reduced
connectivity only occurs for short periods of time, and is due to frame collisions that
prevent neighbors to receive the updated network status.

The second aspect concerns the benefits of the algorithm to adapt the status
message rate to the current number of cyclists in the group, and the available network
bandwidth. Simulation results are shown in Fig. 8 for local broadcast communication.
In the non-adaptive case, the maximum number of cyclists in the group, i.e. 30 (see
Section 3), is used to statically determine the status message rate as supported by the
network and observed by the trainer, which is 7 per second. Since the actual group
size is only 20, this leads to an actual status message rate of 5 per second when all
members of the group are within reach of the trainer. This rate drops to 2 per second
during periods of network partitioning.

 Model-Driven Development with SDL – Process, Tools, and Experiences 93

In the adaptive case, the actual number of cyclists is determined and updated
dynamically. In the simulation, the actual number of cyclists in the group allows for 7
status messages per second at the beginning. When the group is split, there is a short
drop down to 5 status messages per second before the updated number of cyclists
leads to a reduced status message interval of the cyclists within range of the trainer,
and therefore to the maximum rate of 7 per second. Interestingly, there is another drop
when the field of cyclists fuses. This can be explained by the fact that the previous
field members reduce their message rate immediately (due to the larger group size),
but the new field members start their status message transmission only after their
status interval has expired for the first time.

5.2 Model-Driven Code Generation with TAU SDT and SEnF

The transformation of a model to a native implementation is a crucial step in model-
driven development processes. Code generation from SDL models is highly
customizable. The Cadvanced code generator of TAU SDT [11] creates files that
mainly consist of macros, each macro associated with a specific language construct of
SDL. A transformation provides concrete, platform dependent code for all of these
constructs. In Fig. 9, this principle is illustrated for an SDL action.

We have extended the code generation of TAU SDT by defining special
transformations and an advanced macro processor. In addition to simple substitutions,
the macro processor can perform loops, iterations and decisions based on previously
processed macros. This way, more complex transformations are possible. So far, we
have defined two kinds of transformations. First, there is a transformation to
traceable, readable code that is used for documentation purposes. Second, optimized
code for a micro controller platform is produced, which is closely integrated with the
SDL Environment Framework (SEnF).

Fig. 9. Transformation of an SDL transition to native code

yAssF_SDL_Integer(
 yVarP->z011_int1,
 SDL_INTEGER_LIT(0),
 XASS_MR_ASS_FR
)

Transformation rulesSDL transition

Generated macros

CODE

Native code

Idle

Increment

NewValue(I)

I := I + 1

Idle

Transformation.m

yAssF_SDL_Integer(var,lit,semanticHint)
 var = lit;

SDL_INTEGER_LIT(lit)
 ((int) lit)

94 T. Kuhn, R. Gotzhein, and C. Webel

The SEnF is a library of interfacing routines for the interaction of an open SDL
system with its environment (e.g. a WLAN driver). Currently, these interfacing
routines cover the communication technologies IEEE 802.11a/b/g (WLAN), IEEE
802.15.1 (Bluetooth), RS-232 (UART), the input/output devices web cam, joy stick,
LEDs, several sensors/actuators, and are available for the operating systems Windows
NT/2000/XP, Linux, and for bare micro controller hardware. From the device
interfaces of the PSM and additional configuration information, the required library
routines are determined and added to the generated code. Thus, hand-coding of
interfacing routines is made obsolete.

Fig. 10. The Assisted Bicycle Trainer (embedded PC configuration)

We have used the Telelogic SDL-to-C code generators and SEnF in order to
automatically generate code for the Assisted Bicycle Trainer (ABT) from the PSM.
The hardware platform of the ABT is mounted on a bicycle, as shown in Fig. 10. On
the carrier, the embedded PC Arbor Technology Em104Pi6023 (with WLAN stick
Netgear MA-111, Bluetooth adapter D-Link DBT-120, and UART interface), pulse
rate receiver, and batteries (Lithium-Polymer, 1500 mAh) are mounted. A PDA (Acer
n-30) showing the current driver status (e.g., pulse rate, actual speed) and the trainer
orders (e.g., required speed, required position changes) is attached to the handlebar.
Communication between embedded PC and PDA is via Bluetooth. The cyclist carries
a pulse rate transmitter. The trainer system (not shown here) is installed on a laptop,
with a sophisticated graphical interface to monitor and direct the training. So far, we
have equipped 3 bicycles with the cyclist system, and have successfully run several
training sessions.

Due to restrictions of size and weight, we have also implemented the ABT system
on a MicaZ platform, an ultra low power wireless sensor mote manufactured by
Crossbow Industries. The MicaZ mote consists of an embedded microcontroller with
128 KB of Flash Rom and 4 KB of Ram. It is equipped with a ZigBee-Ready
transceiver chip and with two UART ports. As already mentioned, the PSM for the

 Model-Driven Development with SDL – Process, Tools, and Experiences 95

MicaZ platform is very similar to the PSM of the embedded PC solution. While the
PIM is identical for both platforms, the WLAN driver interface has been replaced by a
CC2420 interface. In addition, a tailored MAC layer called MacZ has been added.
Also, different SDL-to-C compilers and different SEnF interface routines have been
used to generate the production code for the two platforms, which is due to resource
constraints.

6 Related Work

Model-driven software development has been standardized by the OMG with MDA
[3], the Model Driven Architecture. Although not being fully MDA compliant, SDL-
MDD has many similarities with the MDA.

As in the MDA, the models are separated into CIM, PIM and PSM. Models are
stepwise refined, and platform dependent functionalities are added during the
development process. Changeable and adaptable transformation rules are used for
transforming the PSM into code that can be compiled for a specific platform. Since
the PIM is incorporated into the PSM without any modifications, the transition from a
PSM back to a PIM is straightforward.

SDL-MDD aims at generating complete implementations – the platform-specific
code that is created out of the PSM should not have to be edited manually by
developers. If this becomes necessary for some reason, either the transformation
should be changed, or platform-dependent specification should be added to the PSM.

The MDA could be extended with SDL-MDD by using SDL as a domain-specific
language for developing distributed systems and communication systems. Domain
specific languages are encouraged by the MDA – by creating an UML2 profile for
SDL, SDL could be integrated into MDA as a domain specific language for
specifying embedded communication systems. There is ongoing work to define such a
profile for the UML [8] that is also capable to transform activity charts to SDL.

SDL-MDD encourages simulations. In the domain of communication systems, it is
not possible to predict the behavior and the performance of a system in operation
effectively by static analysis techniques, especially when developing in the domain of
wireless ad-hoc networks. As a result of this, SDL-MDD and its tool-chain provide
developers the ability to simulate their models throughout the development process,
starting in the early development stages.

There are also different approaches of adding semantics to UML. Executable UML
(xUML) [9] is a UML profile that defines the semantics for the UML based on the
idea of every object having a communicating state machine. As SDL, xUML can also
be mapped to any programming language when the model is transformed to code.

7 Conclusions and Future Work

In this paper, we have presented SDL-MDD, a model-driven development process
based on the ITU-T design language SDL. SDL-MDD is an iterative development
process targeted towards distributed systems and communication systems in the

96 T. Kuhn, R. Gotzhein, and C. Webel

ubiquitous computing domain. For this domain, SDL-MDD provides a specific
methodology to define PIMs and PSMs, keeping the balance between platform-
independent and platform-specific detail. We have also presented the SDL-MDD tool
suite, consisting of commercial tools that we have extended in two directions. First,
we have developed ns+SDL, a tool for the performance simulation of SDL models.
Second, we have provided the SDL Environment Framework SEnF, a library of
interfacing routines to entirely avoid manual coding steps during the implementation
of open SDL systems. To illustrate the use of SDL-MDD, we have shown excerpts of
the model-driven development of the Assisted Bicycle Trainer, a demonstrator
developed in our lab. The size of the SDL specification for PIM and PSM is 68 pages
and 103 pages, respectively.

We aim at further integrating SDL-MDD with MDA and also with UML2 [10], for
instance, by modeling the inner structure and behavior of UML2 components with
SDL. This way, SDL could be integrated into UML models as a domain-specific
language for modeling protocols and other communication-related components.

Future work should include research on generating code for further platforms, for
example, embedded Java or .NET frameworks. Also, the field of dynamic system
reconfiguration at runtime is still widely unexplored, as well as the entirely automatic
transformation from PIM to PSM with SDL-MDD.

Acknowledgements

The work presented in this paper was carried out in the μPros project (funded by DFG
under the project number Go503/5-1), the research center Ambient Intelligence at the
University of Kaiserslautern (supported by Ministry for Science, Education, Research,
and Culture (MWWFK) of Rheinland-Pfalz), and the BelAmI project (funded by
BMBF, Fraunhofer-Gesellschaft, and MWWFK of Rheinland-Pfalz).

References

[1] M. Book, S. Beydeda, and V. Gruhn. Model-driven Software Development. Springer,
2005

[2] International Telecommunications Union. Specification and Description Language
(SDL). ITU-T Recommendation Z.100, August 2002

[3] J. Miller and J. Mukerji (Eds.). MDA Guide Version 1.0.1. OMG, 2003
[4] T. Kuhn, A. Geraldy, R. Gotzhein, and F. Rothländer. ns+SDL - The Network Simulator

for SDL System, in: A. Prinz, R. Reed, and J. Reed (Eds.), SDL 2005, Lecture Notes in
Computer Science (LNCS) 3530, pages 103-116. Springer, 2005.

[5] International Telecommunications Union. Message sequence chart (MSC). ITU-T
Recommendation Z.120, April 1996

[6] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns. Information
Sciences Institute, University of Southern California

[7] I. Fliege, A. Geraldy. NXP/MPR - An Optimized Ad-Hoc Flooding Algorithm. Technical
Report 343/05, Computer Science Department, University of Kaiserslautern, Germany,
2005

 Model-Driven Development with SDL – Process, Tools, and Experiences 97

[8] D. Hogrefe, C. Werner: UML Profile for Communicating Systems, Technical Report No.
IFI–TB–2006–03, Institute for Informatics, University of Göttingen, Germany, ISSN
1611–1044, March 2006

[9] S. J. Mellor, M. J. Balcer: Executable UML: A Foundation for Model Driven
Architecture, Addison-Wesley, 2002, ISBN: 0-201-74804-5

[10] Object Management Group. Unified Modeling Language 2.0 Infrastucture. Final Adopted
Specification. http://www.omg.org/cgi-bin/doc?ptc/2003-09-15, 2004

[11] Telelogic AB: TAU SDT, http://www.telelogic.com/products/tau/index.cfm
[12] PragmaDev: RTDS V3.1, http://www.pragmadev.com/

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 98 – 110, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model-Driven Analysis and Synthesis of Concrete Syntax

Pierre-Alain Muller1, Franck Fleurey1, Frédéric Fondement2, Michel Hassenforder3,
Rémi Schneckenburger4, Sébastien Gérard4, and Jean-Marc Jézéquel1

1 IRISA / INRIA Rennes
Rennes, France

{pierre-alain.muller, franck.fleurey}@irisa.fr
2 Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
frederic.fondement@epfl.ch

3 MIPS, Université de Haute-Alsace
Mulhouse, France

michel.hassenforder@uha.fr
4 Laboratoire d’Intégration des Systèmes et des Technologies (LIST)

Commissariat à l’Energie Atomique (CEA)
Saclay, France

{remi.schneckenburger, sebastien.gerard}@cea.fr

Abstract. Metamodeling is raising more and more interest in the field of
language engineering. While this approach is now well understood for defining
abstract syntaxes, formally defining concrete syntaxes with metamodels is still a
challenge. Concrete syntaxes are traditionally expressed with rules, conforming
to EBNF-like grammars, which can be processed by compiler compilers to
generate parsers. Unfortunately, these generated parsers produce concrete
syntax trees, leaving a gap with the abstract syntax defined by metamodels, and
further ad-hoc hand-coding is required. In this paper we propose a new kind of
specification for concrete syntaxes, which takes advantage of metamodels to
generate fully operational tools (such as parsers or text generators). The
principle is to map abstract syntaxes to concrete syntaxes via bidirectional
mapping-models with support for both model-to-text, and text-to-model
transformations.

1 Introduction

Meta-languages such as MOF [1], Ecore [2], Emfatic [3], KM3 [4] or Kermeta [5],
model interchange facilities such as XMI [6] and tools such as Netbeans MDR [7] or
Eclipse EMF [8] can be used for a wide range of purposes, including language
engineering. While metamodeling is now well understood for the definition of
abstract syntax, formal definition of concrete syntax is still a challenge, even though
concrete syntax definition is considered as an important part of metamodeling [9].

Being able to parse a text and transform it into a model, or being able to generate
text from a model are concerns that are being paid more and more attention in
industry. For instance Microsoft with the DSL Tools [10] or Xactium with XMF
Mosaic [11] in the domain-specific language engineering community, are two
industrial solutions for language engineering that involve specifications used for the
generation of tools such as parsers and editors. A new OMG standard, MOF2Text

 Model-Driven Analysis and Synthesis of Concrete Syntax 99

[12], is also being developed regarding concrete-to-abstract mapping. Although this
paper focuses on textual concrete syntaxes, it is worth noticing that there are also
ongoing researches about modeling graphical concrete syntax [13,14].

Many of the concepts behind our work take their roots in the seminal work
conducted in the late sixties on grammars and graphs and in the early eighties in the
field of generic environment generators (such as Centaur [15]) that, when given the
formal specification of a programming language (syntax and semantics), produce a
language-specific environment.

There is currently a lot of interest in the modelware community about establishing
bridges between so-called technological spaces [16]. For instance M. Wimmer and G.
Krammler have presented a bridge from grammarware to modelware [17], whereas M.
Alanen and I. Porres discuss the opposite bridge from modelware to grammarware, in
the context of mapping MOF metamodels to context-free Grammars [18]. A. Kunert
goes one step further and generates a model parser once the annotated grammar has
been converted to a metamodel [19].

While a grammar could be considered as a metamodel, the inverse is not necessarily
true, and an arbitrary metamodel cannot be transformed into a grammar [20]. Even
metamodels dedicated to the modeling of a given concrete syntax (such as HUTN [21])
may require non-trivial transformations to target existing grammarware tools. We discuss
some of these issues in a previous work, where we have experimented how to target
existing compiler compilers to generate a parser for the HUTN language. A similar
experience, turning an OMG specification (OCL) into a grammar acceptable by a parser
generator [22] has been described by D. Akehurst and O. Patrascoiu.

As we have seen, the issue of transforming models into texts, and texts into models
has been addressed as two different topics. At this time, we are not aware of a model-
based specification of concrete syntax that would allow both concrete-to-abstract and
abstract-to-concrete mappings.

In this paper, we explore such a bidirectional mapping by defining a metamodel for
the specification of textual concrete syntax in a context where abstract syntax is also
represented by metamodels. The transformations described in this paper (from model-
to-code, and from code-to-model) are symmetric, and their effect can be reversed by
each other. In the context of this paper, we call analysis the process of transforming
texts into models, and synthesis the process of transforming models into texts.

The major difference with related works is that we do not try to bridge existing
tools from modelware and grammarware. Actually, we are rather experimenting a
new way of building tools for programming languages (such as compilers or IDEs) by
using metamodels which embed results from the language theory directly in the
modelware space. Our work is close to HUTN also, but in a more general context, as
we support arbitrary concrete.

This work takes place in the context of the Kermeta project [3]. Kermeta is an
executable DSL (Domain Specific Language) for meta-modeling, which can be used
to specify both abstract syntax and operational semantics of a language.

This paper is organized as follows: the introduction examines some related works
and motivates our proposal; section 2 presents our metamodel for concrete syntax,
and explains the mechanics which are behind. Section 3 presents two examples which
illustrate the way concrete syntax can be modeled and associated to models of the
abstract syntax. Finally section 4 draws some general conclusions, and outlines future
works.

100 P.-A. Muller et al.

2 Modeling Concrete Syntax

Let’s consider the following metamodel of a language which defines models as
collection of types where types have attributes, which in turn have a type.

Fig. 1. Metamodel of abstract syntax for a simple language

A typical concrete syntax may be:

Type Mail {
 From : User
 To : User
}

Type User {
 Name : String
}

Type String;

Fig. 2. Example of concrete syntax

The metamodel on figure 1 defines the abstract syntax (the concepts of the
language), but nothing is said about concrete syntax. We have to find some way of
specifying how a construction of the language is rendered in text. In the next sub-
sections we will examine how a metamodel could be used for that purpose.

2.1 Overview of Our Metamodel for Concrete Syntax

As seen in the previous example, when defining a language, the metamodel of the
abstract syntax has to be complemented with concrete syntax information. In our case,
this information will be defined in terms of another metamodel, which has to be used
as a companion of the metamodel already used for defining the abstract syntax of the
language under specification. This work is an evolution of our previous work which
was limited to concrete syntax synthesis [23].

Figure 3 summarizes the approach. At runtime, both for analysis or synthesis, the
models of abstract and concrete syntax are interpreted by a generic machine (written
in terms of both metamodels) which performs the bidirectional transformation
between texts and models

The metamodel for concrete syntax is displayed on figure 4. A concrete syntax has
a top-level entry point, materialized by the root class which owns top-level rule
fragments and meta-classes. A model of concrete syntax is built as a set of rules (the

 Model-Driven Analysis and Synthesis of Concrete Syntax 101

Fig. 3. A model-driven generic machine performs the bidirectional transformation

sub-classes of abstract class Rule). The bridge between the metamodel of a language
and the model of its concrete syntax is based on two meta-classes: Class and Feature
respectively referencing the class of the abstract syntax metamodel and their
properties. Class Template makes the connection between a class of the metamodel
and its corresponding rules. Class Value (and its sub-classes) and class Iteration make
the connection between the properties of a class and their values. Class Value is used
for properties whose multiplicity is greater than 1. The remaining classes of the
metamodel provide the usual constructions for the specification of concrete syntax
such as terminals, sequences and alternatives.

During analysis, the input stream is tokenized, and parsed by a generic parser
which operates by model-driven recursive descent. By model-driven recursive
descent, we designate a recursive top-down parsing process which is taking advantage
of the knowledge captured in the models of abstract and concrete syntaxes. While the
parser recognizes valid sequences of tokens, it instantiates the abstract syntax, and
builds an abstract representation (actually a model) corresponding to the input text.

During synthesis, text is generated by a generic synthesizer which operates like a
model-driven template engine. The synthesizer visits the model (conform to the
abstract syntax metamodel) and uses the presentation information available in the
concrete syntax model (conform to the concrete syntax metamodel) to feed text to the
output stream.

Interestingly, both processes of analysis and synthesis are highly symmetric, and
since they share the same description, they are reversible. Indeed, a good validation

102 P.-A. Muller et al.

String

«datatype»

className: String

featureName: String

Feature

Rule

classMain: String

Class

ObjectReferencePrimitiveValue

Value

terminal: String

Terminal

Template

Sequence

Alternative Iteration

PolymorphicCond

value: EString

CustomCond

Condition

Root

RuleRef

features

*

container

0..1

1 feature

1

feature

1 identifier

ref

1

1 subRule 1..*subRules

1

subRule

rules

*

rule

1

start 1

1 metaclass

1metaclass

metaClasses

*

0..1 separator

1..*

condition

Fig. 4. Overview of the metamodel for concrete syntax

exercise is to perform two synthesis-parse sequences, and observe that there are no
significant differences in both generated texts.

The following sub-sections detail the semantics associated to each elements of our
concrete syntax metamodel, from both analysis and synthesis prospectives.

2.2 Template Rule

A Template rule makes the connection between a class of the metamodel (property
metaClass) and a sub-rule.

Analysis semantics: The template specifies that an object should be created. The
metaclass is instantiated and the object is set as the current object. The sub-rule is
invoked and the current object is initialized. If an error occurs the current object is
dismissed.

 Model-Driven Analysis and Synthesis of Concrete Syntax 103

Synthesis semantics: The template specifies which object to serialize. The sub-rule is
invoked to generate the corresponding text.

2.3 Terminal Rule

A terminal rule represents a text whose value is constant and known at modeling time.
The text value is stored in the property terminal of type String in class Terminal.

Analysis semantics: The text in the input stream must be equal to the terminal value.
The text is simply consumed. If the text does not correspond an exception is thrown.
Synthesis semantics: The terminal value is appended to the output stream along with
formatting information, such as white spaces.

2.4 Sequence Rule

A sequence rule specifies an ordered collection of sub-rules. A sequence has at least
one sub-rule.

Analysis semantics: The sub-rules are invoked successively. If any sub-rule fails the
whole sequence is dismissed.
Synthesis semantics: The sub-rules are invoked successively.

2.5 Iteration Rule

Iterations specify the repetition of a sub-rule an arbitrary number of times. An
iteration uses a collection (property container of type Feature), and may have a
terminal to be used as a separator between elements (property separator of type
Terminal).

Analysis semantics: The sub-rule (and separator, if specified) is invoked repetitively,
until the sub-rule fails. For each successful invocation the collection specified by the
container feature is updated.
Synthesis semantics: The sub-rule is applied to each object in the referenced
collection, and the optional separator (if specified) is inserted between the texts which
are synthesized for two consecutive elements.

2.6 Alternative Rule

Alternatives capture variations in the concrete syntax. An alternative has an ordered
set of conditions which refer each to a given sub-rule. We have defined two kinds of
conditions. Custom conditions are built over the features of a given class (may be a
derived property, if the condition has to involve more than one class), while
polymorphic conditions are built over the sub-classes of a given class.

Analysis semantics: This is the most complex operation. Often there is no clue in the
input stream to determine the condition (in the sense defined in the metamodel for
concrete syntax) which held when the text was created. It is therefore necessary to
infer this condition while parsing the input stream. The simplest solution (but also the
most time consuming) is to try each branch of the alternative until there is a match.
We have chosen to implement such backtracking algorithm in our prototype

104 P.-A. Muller et al.

implementation. It is worth noticing that the ordered collection of conditions can also
be used to handle priorities between conflicting sub-rules.
Synthesis semantics: The conditions are evaluated in the order defined in the
collection, and the first one which evaluates to true, triggers the associated rule.

2.7 Primitive Value Rule

The rule PrimitiveValue specifies that the value of a feature is a literal. The type of
the referenced feature should be a primitive type such as Boolean, Integer or String.

Analysis semantics: The literal value corresponding to the type of the feature is
parsed in the input stream. The result is assigned to the corresponding feature of the
current object unless the type conversion failed.
Synthesis semantics: The value of the feature in the current object is converted to a
string and appended to the output stream.

2.8 Object Reference Rule

This rule implements the de-referentiation of textual identifiers to objects. Identifiers
(such as names or numbers) are used in texts to reference objects which bear an
attribute whose value contains such identifiers.

Analysis semantics: The reference which is extracted from the input stream is used
as a key to query the model so as to find a matching element. If there is a match, the
parser updates the element under construction. If there is no match, the parser
assumes that the referenced item does not yet exist (because it might be defined later
in the text) and creates a ghost to be referenced in place, and finally updates the
element under construction with a reference to that ghost. By the end of the parsing
process, all ghosts have to be resolved unless there is a parsing error.
Synthesis semantics: The identifier is printed to the output stream.

2.9 Rule Reference Rule

The rule RuleReference references a top-level template, stored under the root of the
concrete syntax model.

Analysis semantics: The ref rule is triggered and the result is assigned to the feature
of the current object.
Synthesis semantics: The ref rule is triggered.

The following section shows how the concrete syntax metamodel is used for
specifying concrete syntax.

3 Examples

The following examples illustrate our approach.

3.1 A Very Simple Example of Concrete Syntax Specification

Going back to our small language example, we may use the reflexive editor of EMF
(see Figure 5 below) to create a model directly as instances of the classes of the
abstract syntax. This model defines three types (Mail, User and String).

 Model-Driven Analysis and Synthesis of Concrete Syntax 105

Fig. 5. Use of the reflexive editor of EMF to create a model

We will now use our metamodel of concrete syntax to specify the textual
representation. In the example of concrete syntax given earlier (see Figure 2), there is
no specific materialization of the model in the text. A type is declared by a keyword
followed by a name and an optional collection of attributes. A collection is denoted by
curly braces; an empty collection is specified by a semi-column. Notice that the
notation allows forward references to User and String.

Again, we may use the reflexive editor of EMF to instantiate the classes of the
metamodel for concrete syntax. A straightforward model of this concrete syntax
might be:

Fig. 6. Use of a reflexive editor to model concrete syntax

In this model, there is only one top-level rule which describes the concrete syntax
of the language. The model is built as a cascade of rules. The model starts with an
iteration over types. The sequence explains that types start with the keyword “Type”,
followed by a name, and then an alternative because types may have a collection of

106 P.-A. Muller et al.

attributes. Attributes when present are delimited by curly braces. The collection of
attributes is expressed by an iteration, which in turn contains a sequence made of a
name, followed by a separator (terminal ‘:’) and finally a reference to a type.

Often, it is desirable to share some part of the concrete syntax. Therefore templates
do not have to be nested, and can be defined individually at the top level of the model
of the concrete syntax. The following picture represents such variation, for the same
concrete syntax. Links between independently defined templates are realized with rule
references (RuleRef).

Fig. 7. Variation with top-level reusable templates

Both representations are totally equivalent. The parsed models or the generated
texts are identical.

3.2 Modeling Simple Arithmetic Expressions

This second example is based on the traditional example of arithmetic expressions as
found in many textbooks about compilation such as [24]. The following picture
represents the metamodel (the abstract syntax) for simple arithmetic expressions.

The abstract syntax contains the following elements:

• Model. Represents the root of any arithmetic expression.
• NumberInteger. Represents an integer.
• MultiplicativeOp. Represents a binary multiplication operator.
• AdditiveOp. Represents a binary addition operator.

Let’s first examine a prefixed concrete syntax for expression. The operator is
always located in front of the operands, and the priorities are implicitly expressed at
the invocation of each operator. The following concrete syntax model addresses such
prefixed notation.

 Model-Driven Analysis and Synthesis of Concrete Syntax 107

Fig. 8. Metamodel for simple arithmetic expressions

Fig. 9. Concrete syntax for prefixed expressions

Notice that we have here several independent top-level templates. The first
template is the entry point. The second template (MultiplicativeOp) is in charge
of multiplication operators. It is built as a sequence made of the keyword “operator”
followed by a star sign and (between parentheses) two consecutive invocations of the
expression rule, to handle respectively the left-hand-sign (lhs) and right-hand-side
(rhs) of the expression (separated by a comma). The third template (AdditiveOp) is
built on the same scheme as the precedent template. The (NumberInteger) models
simple integer values. The last template (the expression alternative) states which

108 P.-A. Muller et al.

branch to take based on the actual class of the parsed element. The order of these
alternatives is not meaningful for prefixed expressions.

Non-factorized alternatives are a typical issue for parsers which operates by
recursive descent. With our approach, a non-factorized grammar (such as the
repetition of “operator” in both multiplicative and additive operators) is not really
an issue, because the strategy used to analyze an alternative is based on backtracking.
Branches are tried in a row, until there is no parsing error, which means that the
correct branch has been found. Practically speaking, this process remains reasonably
quick, as it is possible to validate (or not) the current branch as soon as the symbol of
the operator is encountered in the input stream.

A typical concrete syntax example might be:

operator + (operator * (3 , 2) , 1)

While such prefixed notation is easy to parse by machines, humans tend to prefer
an infixed representation, closer to the way computation is done manually. The same
expression represented in infix notation is:

3*2+1

Now it is not possible anymore to ignore the operator precedence, as it was the
case with the non-ambiguous prefixed notation. The usual approach consists in
encoding the priority of operators by introducing new intermediate symbols such as
Term and Factor.

In line with parsers which operate by recursive descent, our prototype
implementation requires also converting rules with left-recursivity into rules with
right-recursivity. In the end, the grammar (expressed in BNF) becomes:

<Expression> ::= <AdditiveOP> | <Term>

<Term> ::= <MultiplicativeOp> | <Factor>

<Factor> ::= <NumberInteger>

<AdditiveOp> ::= <Term> ‘+’ <Expr>

<MultiplicativeOp> ::= <Factor> ‘*’ <Term>

<NumberInteger> ::= [0-9]+

Such rewriting may be a little bit tedious, but is only required for languages which
support infix notation for arithmetic expressions. The following picture shows how
this reformulation is presented in a model conform to our concrete syntax metamodel.

The template AdditiveOp defines a sequence which starts by invoking the
term rule, follows by a plus sign and finishes by a call to the expression rule.
The MultiplicativeOp is built on the same scheme, while the
NumberInteger template handles Integer values. As described earlier in BNF, the
expression alternative is made of either a call to the AdditiveOp rule or a call to
the term rule.

 Model-Driven Analysis and Synthesis of Concrete Syntax 109

Fig. 10. Concrete syntax for infixed expressions

4 Conclusion

This work may be viewed as an experimentation for the specification of concrete
syntax in the context of meta-modeling applied to language engineering.

We have proposed a new approach, based on metamodels, which supports a formal
bi-directional mapping of both concrete-to-abstract, and abstract-to-concrete syntax.

A prototype, based on recursive descent, which realizes both analysis and synthesis
of concrete syntax has been implemented on top of EMF in Eclipse. This prototype
has been used to parse and pretty-print several DSLs, as well as the examples
presented in this paper.

Our work is obviously far from bringing definitive answers to the complex
problems of applying metamodels to language engineering but, along with the
capabilities of executable meta-languages such as Kermeta, it suggests that languages
can be fully specified in terms of metamodels, and that tools can be automatically
derived from these metamodels to support these languages.

In the short future, we will be investigating how to avoid rewriting rules,
potentially by using mechanisms similar to those behind LL* engines such as found in
ANTLR v3 [25]. We are also working on a graphical editor (based on templates), to
make the specification of the concrete syntax even more intuitive for non-specialists.

A lot of work is still beyond us to make tools based on this approach as robust and
efficient as the one in the grammarware space. However, the presented material may
contribute, with many other ongoing research works to a better understanding of
metamodeling applied to language engineering.

References

[1] OMG, Meta-Object Facility (MOF) 1.4, OMG Document formal/02-04-03 (2002).
[2] Budinsky F., Steinberg D., Merks E., Ellersick R., Grose T. J., Eclipse Modeling

Framework, Chapter 5 Ecore Modeling Concepts, Addison-Wesley, 2003.

110 P.-A. Muller et al.

[3] IBM, Emfatic, http://www.alphaworks.ibm.com/tech/emfatic
[4] Jouault F., Bézivin J., KM3: A DSL for Metamodel Specification, FMOODS 2006: 171-

185
[5] Muller, P.-A., F. Fleurey and J.-M. Jézéquel, Weaving executability into object-oriented

meta-languages, in: International Conference on Model Driven Engineering Languages
and Systems (MoDELS), LNCS 3713 (2005), pp. 264–278.

[6] OMG, Xml Metadata Interchange (XMI 2.1), OMG Document formal/05-09-01 (2005).
[7] Sun Microsystems, Metadata repository (MDR), (2005), http://mdr.netbeans.org/
[8] Eclipse, Eclipse Modeling Framework (EMF), (2005) http://www.eclipse.org/emf/
[9] Atkinson, C. and Kuehne T., The role of meta-modeling in MDA, in: Workshop in

Software Model Engineering (WISME@UML), Dresden, Germany, 2002.
[10] Greenfield, J., Short K., Cook S. and Kent S., Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, Wiley, 2004.
[11] Clark, T., Evans A., Sammut P. and Willans J., Applied metamodelling: A foundation for

language-driven development (2005). URL http://albini.xactium.com
[12] OMG, MOF Model to Text Transformation Language (Request For Proposal), OMG

Document ad/2004-04-07 (2004).
[13] de Lara, J. and Vangheluwe H., Using AToM3 as a meta-case tool, in: Proceedings of the

4th International Conference on Enterprise Information Systems (ICEIS), 2002, pp. 642–
649.

[14] Fondement, F. and Baar T., Making Metamodels Aware of Concrete Syntax, in: European
Conference on Model Driven Architecture (ECMDA), LNCS 3748 (2005), pp. 190–204.

[15] Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B. and Pascual, V.
Centaur: the system. Proceedings of the ACM SIGSOFT/SIGPLAN software engineering
symposium on practical software development environments, 13 (5). 14-24.

[16] Kurtev, I., Aksit, M., and Bezivin, J., Technical Spaces: An Initial Appraisal. CoopIS,
DOA´2002 Federated Conferences, Industrial track, Irvine, 2002.

[17] Wimmer, M., Kramler, G., Bridging Grammarware and Modelware, WISME Workshop,
MODELS / UML’2005, Ocotober 2005, Montego Bay, Jamaica.

[18] Alanen, M., and Porres, I., A Relation Between Context-Free Grammars and Meta Object
Facility Metamodels. Technical report, Turku Centre for Computer Science, 2003.

[19] Kunert A., Semi-Automatic Generation of Metamodels and Models from Grammars and
Programs, in Proceedings of the Fifth International Workshop on Graph Transformation
and Visual Modeling Techniques at ETAPS 2006, april 2006.

[20] Klint P., Lämmel R., and Verhoef C., Towards an engineering discipline for
grammarware. ACM TOSEM, Vol. 14, N. 3, PP 331-380, May 2005.

[21] Muller, P.-A., Hassenforder M., HUTN as a Bridge between ModelWare and
GrammarWare – An Experience Report, WISME Workshop, MODELS / UML’2005,
Ocotober 2005, Montego Bay, Jamaica.

[22] OMG. UML2.0 Object Constraint Language (OCL) Final Adopted specification, Object
Management Group, http://www.omg.org/cgi-bin/doc?ptc/2003-10-14, 2003

[23] Muller, P.-A., P. Studer and J.-M. Jézéquel, Model-driven generative approach for
concrete syntax composition, in: Workshop in Best Practices for Model Driven Software
Development, Vancouver, Canada, 2004.

[24] Aho A.V., Sethi R., Ullman J.D., Compilers, Techniques and Tools, Addison Wesley,
1986.

[25] Parr, T., Another Tool for Language Recognition (ANTLR) (2005), http://www.antlr.org/

Correctly Defined Concrete Syntax for
Visual Modeling Languages

Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
thomas.baar@epfl.ch

Abstract. The syntax of modeling languages is usually defined in two
steps. The abstract syntax identifies modeling concepts whereas the con-
crete syntax clarifies how these modeling concepts are rendered by visual
and/or textual elements. While the abstract syntax is often defined in
form of a metamodel there is no such standard format yet for concrete
syntax definitions; at least as long as the concrete syntax is not purely
text-based and classical grammar-based approaches are not applicable.
In a previous paper, we proposed to extend the metamodeling approach
also to concrete syntax definitions. In this paper, we present an analysis
technique for our concrete syntax definitions that detects inconsistencies
between the abstract and the concrete syntax of a modeling language.
We have implemented our approach on top of the automatic decision
procedure Simplify.

1 Introduction

The trend to model-driven development is facing the question how modeling
languages can be defined precisely in a standardized format. Metamodeling is
today the prevailing technique in order to define the abstract syntax of modeling
languages in a precise, non-ambiguous way: metaclasses represent all modeling
concepts, metaattributes their variations, metaassociations their relationships.
Well-formedness rules written as OCL invariants insure that certain conditions
are satisfied in all syntactically correct sentences of the modeling language. The
abstract syntax definition is the most basic block when defining a modeling
language but, at the same time, it is the only block for which a commonly
agreed format exists. All other blocks of a modeling language definition, e.g. the
definition of concrete syntax and the definition of semantics, are given in many
cases only informally. A prominent example for an informal language definition
is UML, see [1]. The most important disadvantage of informal definitions is the
lack of tool support for checking the consistency of the definition.

This paper is about formal concrete syntax definitions for modeling languages
having a visual, i.e. not purely textual, notation. In the first part (Sect. 2 and
Sect. 3), we briefly describe a metamodeling approach to define not only the
abstract syntax but also the concrete syntax of a modeling language formally

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 111–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 T. Baar

(this approach has been already presented with more details in [2]). As an il-
lustration, we use UML class diagrams, mainly, because class diagrams have a
well-known visual concrete syntax. In the paper’s main part (Sect. 4), we show
how concrete syntax definitions can be analyzed rigorously and automatically
checked. Intuitively, the concrete syntax is ill-defined if two different models (i.e.
instances of the abstract syntax metamodel) can be rendered by the same dia-
gram. As a tiny example, one can take UML class diagrams whose classes can
be abstract and non-abstract according to the abstract syntax. Suppose, the
concrete syntax would only stipulate to render each class by a rectangle and to
label the rectangle with the name of the class. Then, one could not infer from
a given diagram whether a rectangle represents an abstract or a non-abstract
class and this ambiguity is an error of the concrete syntax definition.

Such errors can be automatically detected by using deductive tools. More
precisely, we generate out of a formal concrete syntax definition a proof obligation
that is valid if and only if the syntax definition does not contain any error. Then,
this proof obligation is passed to the deductive tool Simplify [3], which was able
to automatically discharge all of them for the examples given in this paper.

2 Visual Languages

Modeling languages having a visual concrete syntax use for the representation of
models graphical elements such as rectangles, circles, lines, stickmen, etc. Graph-
ical elements are also called visual objects since they can easily be described as
objects whose state is given by the value for certain attributes such as shape,
lineColor, backgroundColor, attachRegion, etc. A set of visual objects is a syn-
tactically correct sentence of a visual language when all well-formedness rules of
the visual language are met. A typical example for a well-formedness rule is that
a visual object of shape Line always connects two other visual objects, more
technically, that the start- and endpoint of the line coincide with the attach
regions of the connected visual objects. We call a syntactically correct sentence
of a visual language also diagram.

The definition of a visual language is done in two steps: (1) identification of
all attributes for visual objects, and (2) formulation of well-formedness rules. For
non-trivial visual languages, it is worthwhile to distinguish classes of visual ob-
jects because not all possible attributes are relevant for each object, e.g. a visual
object of shape Line does not need a value for an attribute backgroundColor.
Once the classes of visual objects together with their attributes are identified,
many well-formedness rules of the visual language can easily be expressed by as-
sociations between classes. For example, the above given restriction for a line to
connect two other visual objects is best expressed by two associations from class
Line to a class, let’s say, ConnectableObject (which represents the connected
visual objects) with multiplicity 1 at the latter class.

Having said this, it is obvious that a metamodel is a very appropriate format
to define a visual language formally. A diagram is then just an instance of the
metamodel of the visual language.

Correctly Defined Concrete Syntax for Visual Modeling Languages 113

Car

Door

Car

Door

Car

Door

Fig. 1. Three diagrams – when read as representations of class diagrams, the first two
diagrams should not be distinguishable

As an example, we discuss the three diagrams given in Fig. 1. What we see –
at a first glance – are two labeled rectangles, which have in all three diagrams
different dimensions and different positions. An initial version of the metamodel
could consist of one class Rectangle with attributes for (1) the label, (2) the x
and y coordinates of the position, and (3) the dimension (width, height). Accord-
ing to this metamodel, all three diagrams are different. This initial metamodel
is very suitable if the layout information of the diagrams have to be captured;
for instance, when diagramming tools have to exchange diagrams. Actually, the
initial metamodel can be seen as a drastically simplified version of the upcoming
OMG standard for Diagram Interchange [4]. However, the initial metamodel is
less useful as a basis for a concrete syntax definition for class diagrams. When
read as class diagrams, the left and middle diagram should coincide, despite the
fact, that the dimensions and positions of the two rectangles are different. While
the right diagram also shows the same classes as the first two, just the position
and the dimension were changed again, it is nevertheless semantically different
from the others.1

What this tiny example already shows is the fact, that layout information in
form of coordinates and dimensions are not necessary for the definition of a con-
crete syntax. It is better to choose such attributes for visual objects that reflect
differences of rendered models. For example, we cannot fully ignore layout infor-
mation because this would make all three diagrams in Fig. 1 non-distinguishable.

Figure 2 shows a more suitable metamodel for the visual language used in
Fig. 1. The class Rectangle has again one attribute for label but none for posi-
tion and dimension. In order to distinguish the last diagram from the two others,
a self-association on Rectangle has been introduced that encodes graphical nest-
ing of rectangles. In the lower part of Fig. 2, the three diagrams from Fig. 1 are
given as instances of the visual language metamodel and the first two diagrams
coincide indeed.

The definition and efficient processing of visual languages is a current research
area, which we cannot develop further here due to space limit. A warmly recom-
mended introduction is [5] where a classification of visual languages is presented
and formats for elegant language definitions are derived. A core technique, which

1 When read as a UML class diagram, the graphical containment of class Door in class
Car means that Car is composed of Door.

114 T. Baar

Rectangle

label:Stringcontained 0..*

:Rectangle

label='Car'

:Rectangle

label='Door'

:Rectangle

label='Car'

:Rectangle

label='Door'

:Rectangle

label='Car'

:Rectangle

label='Door'

container

0..1

container

contained

Fig. 2. Visual language definition and representation of diagrams given in Fig. 1

has been also applied in the above example, is to substitute absolute layout in-
formation (such as position, dimension) by relative ones, called spatial relation-
ships. When defining a metamodel for a visual language, one has to identify –
in a first step – all relevant spatial relationships. For example, the rendering of
UML models requires graphical nesting as one spatial relationship but there are
other spatial relationships needed as well.

3 Concrete Syntax Definition

In the previous section, we have outlined how a visual language can be formal-
ized in form of a metamodel; we will now answer the question how sentences of
a modeling language, which are given as instances of the abstract syntax meta-
model, can be rendered in this visual language. The missing part is, informally
speaking, the bridge from the abstract syntax metamodel to the metamodel of
the visual language. In the following, we describe briefly our approach to define
the concrete syntax and illustrate it on a fragment of UML class diagrams. The
approach of defining the concrete syntax has been already described in one of
our previous papers [2] and was recently implemented based on SVG technology
[6]. The core idea for bridging both metamodels is to introduce new classes in
between. This technique is well-known from Triple-Graph-Grammars [7] and is
also applied in the OMG standard for Diagram Interchange [4].

Figure 3 gives an overview on the structure of concrete syntax definitions.
In the left part, a metamodel for the abstract syntax is shown: each instance
of Class is connected to a sequence of Attribute instances and instances of
Association have two AssociationEnds which refer to exactly one Class. The
metamodel of the visual language is shown in the right part and describes graph-
ical elements like rectangles, lines and text fields.

The two classes ClassDM and AssociationDM are so-called display manager
classes (the name of these classes has, by convention, always the suffix DM) and re-
alize the bridge from the abstract syntax to the visual language. Strictly speaking,

Correctly Defined Concrete Syntax for Visual Modeling Languages 115

Attribute

name:String

Class

name:String
isAbstract:Boolean

Line

firstRole:String
secondRole:String

AssociationEnd

name:String

Association

*

1

{ordered}

1

*

1 second

attribute

0..1

Rectangle

stereotype:String

TextField

text:String
inItalic:Boolean

0..1

0..1

label

{ordered}
*

1

ClassDM

AssociationDM

1 1

1 1

1

1

1

dm

vo

me

me dm

dm

dm vo

firstEnd secondEnd

incoming outgoing

1 1

* *

Abstract Syntax MM Visual Language MM

Concrete Syntax MM

1

{XOR}

1 first 0..1

{XOR}

Fig. 3. Bridging the metamodels describing abstract syntax and visual language

display manager classes belong neither to the metamodel of the abstract syntax
nor to that of the visual language since they are added later on, when the concrete
syntax is defined. For our argumentation, however, it has advantages if they are
seen as part of the metamodel of the visual language. A display manager class is
always connected via an association with multiplicity 1-1 to a class from the ab-
stract syntax metamodel. The display manager class manages the rendering of the
referenced class. By convention, we always use me (for model element) and dm (for
display manager) as role names on this association. Display manager classes have
also an association to a class in the visual language metamodel. Usually, this asso-
ciation has multiplicity 1-1 as well and role names dm and vo (for visual object).

The bridge from the abstract syntax to the visual language is realized by
invariants that are attached to the display manager classes. These invariants
formalize synchronization conditions on the states of modeling elements and
the corresponding visual objects (which realize the rendering of the modeling
elements). For our example, the invariants are:

context AssociationDM inv :
s e l f .me . f i r s t . name=s e l f . vo . f i r s t R o l e

and s e l f .me . second . name=s e l f . vo . secondRole
and s e l f . vo . f i r s tEnd=s e l f .me . f i r s t . c l a s s .dm. vo
and s e l f . vo . secondEnd=s e l f .me . second . c l a s s .dm. vo

context ClassDM inv :
s e l f .me . name=s e l f . vo . l a b e l . t ex t

and (s e l f .me . i sAb s t r a c t implies
(s e l f . vo . s t e r e o t yp e=’ ab s t r a c t ’ or

s e l f . vo . l a b e l . i n I t a l i c))
and (not (s e l f .me . i sAb s t r a c t) implies

(s e l f . vo . s t e r e o t yp e=’ ’ and

116 T. Baar

not (s e l f . vo . l a b e l . i n I t a l i c)))
and s e l f .me . a t t r i bu t e−>s i z e ()= s e l f . vo . a t t r i bu t e−>s i z e ()
and Set { 1 . . s e l f .me . a t t r i bu t e−>s i z e ()}−> f o rA l l (i |

s e l f .me . a t t r i bu t e−>at (i) . name=
s e l f . vo . a t t r i bu t e−>at (i) . t ex t)

Based on Fig. 3 and the invariant for AssociationDM one can conclude,
that each instance of Association is rendered by a Line, whose annotations
firstRole and secondRole correspond to the names of the two association
ends. Furthermore, the line connects the two rectangles which render the classes
the two association ends are referring to. The invariant for ClassDM is slightly
more complicated since it allows for presentation options when rendering a class.
An abstract class can be marked by a stereotype ’abstract’ attached to the cor-
responding rectangle or the label of the rectangle is displayed in an italic font.
The attributes of a class are presented in the same order as textfields in the rect-
angle. For the rendering of the attributes it does not matter whether they are
set in italic or not, they just represent attributes that are given by their names.

To summarize, our approach to define concrete syntax

– describes in a declarative way all possible representations of models (in-
stances of the abstract syntax metamodel) by diagrams (instances of the
visual language metamodel). Note that our technique allows to define pre-
sentation options, i.e. one model can be rendered by different, i.e. non-
isomorphic, diagrams. But – since the concrete syntax definition is symmetric
– the opposite case that one diagram renders different, i.e. non-isomorphic,
models is possible as well. Such a concrete syntax definition would be in-
correct (a diagram should always represent only one model) and in Sect. 4
we will discuss an approach to detect such incorrect concrete syntax defini-
tions.

– does not require to define a display manager class for all classes of the ab-
stract syntax metamodel. In our example, display manager classes are defined
only for Class and Association whereas for Attribute, AssociationEnd
this was not necessary, since the rendering of these classes are captured by
ClassDM, AssociationDM as well. We will give in Sect. 4.2 a detailed analy-
sis, under which circumstances a class from the abstract syntax metamodel
does not need its own display manager class.

4 Analysis of Concrete Syntax Definitions

As already mentioned in the introduction and at the end of the last section,
concrete syntax definitions can be incorrect. Correctness basically2 means in
our context that each diagram must correspond to only one model. As a tiny
example for an incorrect concrete syntax definition we refer to the upper part

2 There is another criterium on the completeness of the concrete syntax definition say-
ing that for each model there is at least one diagram. However, this is not discussed
in this paper.

Correctly Defined Concrete Syntax for Visual Modeling Languages 117

of Fig. 4. Suppose, that the display manager class ClassDM has attached the
following invariant:

context ClassDM inv :
s e l f .me . name=s e l f . vo . t ex t

Class

name:String
isAbstract:Boolean

TextField

text:String
inItalic:Boolean

ClassDM

1 1 1
1dm vome

dm

:Class

name='Car'
isAbstract=true

:TextField

text='Car'
inItalic=true

:ClassDM
1

1dm vome

dm

:Class

name='Car'
isAbstract=false

:TextField

text='Car'
inItalic=true

:ClassDM
1

1dm vome

dm

Fig. 4. Incorrect syntax definition and counterexample

The lower part of Fig. 4 shows two instantiations that conform to all multi-
plicity constraints and to the invariant for ClassDM. These instantiations witness
an error in the concrete syntax definition since they show how two isomorphic
diagrams refer to two non-isomorphic models. If the user of an editor would
draw one of the diagrams, he could not be sure which of the two possible mod-
els this diagram actually represents. The instantiations are possible because the
invariant attached to ClassDM only stipulates how attribute name of the model
element is related to attribute text of its visual representation but ignores the
value of attribute isAbstract.

The correctness criterion for concrete syntax definitions is given with mathe-
matical rigor by the following definition:

Definition 1 (Correctness of Concrete Syntax Definitions). Let CSMM
be a concrete syntax definition given in form of a metamodel (cmp. Fig. 3). Since
CSMM is divided into two parts describing abstract syntax and visual language,
this division can also be applied to instances of CSMM. Let cs1, cs2 be two
instances of CSMM. We denote the part of cs1/cs2 belonging to the abstract
syntax part of CSMM as as1/as2 and the part belonging to the visual language
part as vl1/vl2.

We call the concrete syntax definition CS correct (or well-defined) if and only
if the following holds:

Whenever vl1 is isomorphic to vl2 then as1 must also be isomorphic to as2.

In the sequel, we show how this correctness criterion can be encoded into first-
order logic so that the decision procedure Simplify can prove or disprove the

118 T. Baar

generated proof obligation. Simplify was originally developed to decide the va-
lidity of a given formula in the theory of Pressburger Arithmetik [8], a set of
axioms defining the arithmetic operators for natural numbers except multiplica-
tion. Simplify is also applicable to prove validity in any other first-order theory,
but then, due to the undecidability of first-order logic, Simplify is not able to
prove all valid theorems. For the proof obligations that has been generated as
the encoding of our correctness criterion, however, Simplify was impressively
powerful and could prove or disprove every proof obligation for all examples we
discuss in this paper. A very useful feature of Simplify is, that it gives back
a counterexample if the proof goal has been disproven. This happens when the
concrete syntax definition is erroneous and the generated proof obligations are
not valid.

4.1 Encoding of Proof Obligations into First-Order Logic

In this subsection, we justify our encoding of the proof obligations for the most
simple kind of syntax definitions, in which the metamodel of the abstract syntax
consist of one class only (the definition given in Fig. 4 will serve as an illus-
trating example). The goal of our argumentation is to justify, that an encoding
of the above given correctness criterion into first-order logic is possible. Note
that the criterion given in Def. 1 refers to the isomorphism of graphs, a prop-
erty that can usually not be expressed using first-order logic. Fortunately, in
our case, the graphs have a unique structure, which simplifies the encoding of
graph isomorphism so that first-order logic has sufficient expressive power. In
the next subsection we will present a heuristic on how a concrete syntax def-
inition with more than one class in the abstract syntax part can be reduced
to the case we discuss now, where the abstract syntax part has merely one
class.

For the rest of this subsection, we assume a concrete syntax definition as
illustrated by Fig. 4: The abstract syntax part has only one class (Class) that
is connected by an 1-1 association with a display manager class (ClassDM) that
in turn is connected to other classes in the visual language part, in our example
we have a 1-1 association to class TextField.

The correctness criterion given in Def. 1 requires to check that two isomorphic
instances vl1, vl2 of the visual language part are always connected to isomorphic
instances as1, as2 of the abstract syntax part. The situation is sketched in Fig. 5.

We can assume that vl1 is isomorphic to vl2, that is, it exists a bijection
mapVL that maps in particular each display manager object, i.e. each instance
of display manager class ClassDM, in vl1 to an isomorphic instance in vl2. For
the display manager objects in vl1 and vl2 we further know that there is an
isomorphism to the objects in as1 and as2 (because the display manager class
ClassDM and the abstract syntax class Class are connected by an association
with multiplicity 1-1). We call this mapping vl2as. Based on mapVL and vl2as
we can now define a function mapAS as follows (variable cdm represents all
instances of ClassDM in vl1):

mapAS (vl2as(cdm)) = vl2as(mapVL(cdm))

Correctly Defined Concrete Syntax for Visual Modeling Languages 119

vl1

vl2as2

as1

mapVL

vl2as

vl2as

mapAS

Fig. 5. Bijections that justify correctness criterion

Please note that mapAS is defined as a total function from as1 into as2,
because each object in as1 has a corresponding display manager object in vl1.

If we could show now that mapAS maps the objects from as1 to isomorphic
objects in as2 then this would prove that as1 and as2 themselves (both are
sets of objects) are isomorphic what in turn would complete the proof on the
correctness of the concrete syntax definition.

It remains to show for each isomorphism mapVL between vl1 and vl2 that
the derived function mapAS is an isomorphism too (cdm is again a variable of
type ClassDM):

isIsomorphicClassDM(cdm,mapVL(cdm)) →
isIsomorphClass(vl2as(cdm),mapAS (vl2as(cdm)))

According to the above given definition of mapAS , this can be simplified to:
isIsomorphicClassDM(cdm,mapVL(cdm)) →

isIsomorphClass(vl2as(cdm), vl2as(mapVL(cdm)))

Fortunately, this proof obligation does not require anymore to formulate the
isomorphism of the whole graph but just to specify the isomorphism of two ob-
jects, a property for which first-order logic is expressive enough. For instance,
two objects of ClassDM are isomorphic if their attributes have the same val-
ues and the connected TextField objects are isomorphic. Since ClassDM and
TextField are connected by a 1-1 association, the latter means that two iso-
morphic instances of ClassDM are always linked to two instances of TextField
whose attributes have also the same value. Formulated in first-order logic, the
criteria for isomorphic ClassDM instances looks like:

isIsomorphicClassDM(cdm1, cdm2) ↔
(text(vo(cdm1)) = text(vo(cdm2))∧
(inItalic(vo(cdm1)) ↔ inItalic(vo(cdm2))))

Figure 6 shows the full encoding of the correctness criterion for the example
given in Fig. 4. We do not show here the final input file for Simplify, because
such input files have to be written in a low level notation, which is hard to read
for humans. What is shown here is an input file for the KeY system [9], which

120 T. Baar

\ s o r t s {
c l a s s ;
classdm ;
t e x t f i e l d ;
s t r i ng ;

}
\ f unc t ion s {

// a s s o c i a t i o n s
c l a s s me(classdm) ;
classdm dm(c l a s s) ;
t e x t f i e l d vo (classdm) ;
// a t t r i b u t e s
s t r i ng name(c l a s s) ;
s t r i ng t ext (t e x t f i e l d) ;

}
\ pre d i ca t e s {

// a t t r i b u t e s
i sAbs t ra c t (c l a s s) ;
i n I t a l i c (t e x t f i e l d) ;
// p r ed i c a t e s to encode isomorphism
i s I somorphi cC la s s (c la s s , c l a s s) ;
i s IsomorphicClassDM(classdm , classdm) ;

}
\problem {
// i nva r ian t on ClassDM (core o f syntax d e f i n i t i o n)
(\ f o r a l l classdm cdm ; name(me(cdm)) = text (vo (cdm))) &
// isomorphism of i n s t ance s o f C las s
(\ f o r a l l c l a s s c1 ;\ f o r a l l c l a s s c2 ; (i s I somorph icCla s s (c1 , c2)

<−> name(c1) = name(c2) &
(i sAbst rac t (c1) <−> i sAbst r ac t (c2)))) &

// isomorphism of i n s t ance s o f ClassDM
(\ f o r a l l classdm cdm1 ; \ f o r a l l classdm cdm2 ;

(is IsomorphicClassDM(cdm1 , cdm2)
<−> text (vo (cdm1)) = text (vo (cdm2)) &

(i n I t a l i c (vo (cdm1)) <−> i n I t a l i c (vo (cdm2)))))
−>
// conc l u s io
\ f o r a l l classdm cdm1 ;\ f o r a l l classdm cdm2 ;

(is IsomorphicClassDM(cdm1 , cdm2) −> i s I somorph icCla s s (me(cdm1) , me(cdm2)))
}

Fig. 6. Encoding of correctness criterion for Simplify in KeY format

can be used as a front-end for Simplify since the KeY system is able to generate
automatically equivalent input files for Simplify.

The KeY syntax requires to declare at the beginning of the file all types, func-
tions and predicates. There are standard techniques how an UML class diagram
is represented by such declarations, mainly, the classes are represented by types,
associations by functions and attributes by functions or predicates (see [9] for
details). The clause ’problem’ contains the proof obligation and has always the
form of an implication premise -> conclusio. In KeY syntax, the logical connec-
tors ’not’, ’and’, ’or’, ’if-then’, ’if-and-only-if’ are denoted by ’!’, ’&’, ’|’, ’->’,
’<->’, respectively, and the two quantifiers are written as ’forall’, ’exists’.
The premise of the proof obligation contains the encoding of the invariant of
the display manager class ClassDM and the isomorphism criteria for instances of
ClassDM and Class. The conclusio has exactly the form as analyzed above.

When invoked for this input file, Simplify cannot find a proof because the
syntax definition, for which the input file encodes the correctness criterion, is
not correct. Nevertheless, Simplify gives very useful feedback in form of a coun-
terexample. The found counterexample is exactly the same counterexample as
we have already presented in the lower part of Fig. 4. Such counterexamples are
extremely useful for the developer of the concrete syntax to find and to resolve
errors in the concrete syntax definition.

There are (theoretically) two possibilities to fix errors in a syntax definition. As
the first possibility, one could refine the visual language or change the constraints

Correctly Defined Concrete Syntax for Visual Modeling Languages 121

attached to the display manager classes. In our example, it would be sufficient to
rewrite the invariant of ClassDM to

context ClassDM inv :
s e l f .me . name=s e l f . vo . t ex t and
s e l f .me . i sAb s t r a c t = s e l f . vo . i n I t a l i c

A second possibility is to add to the abstract syntax metamodel a new well-
formedness rule but this of course changes the original abstract syntax definition.
The idea behind is to avoid the occurrence of all those models that could be
cause ambiguous interpretations of the diagrams. An example for such a well-
formedness rule is

context Class inv :
s e l f . i sAb s t r a c t = true

In both cases, Simplify is now able to prove the proof obligation fully auto-
matically what certifies the correctness of the concrete syntax definition.

4.2 Analysis of Complex Syntax Definitions

The encoding presented in the last section covers only the case where the abstract
syntax metamodel consists of merely one class. Fortunately, the same encoding
also works for abstract syntax metamodels having more than one class, as long
as all classes are not connected by any association and each class has its own
display manager class in the visual language metamodel.

We discuss now, under which circumstances our encoding is also applicable to
more complex abstract syntax metamodels, where classes are connected by as-
sociations and not every class has its own display manager class. The basic idea,
however, remains the same as in the above case where the abstract syntax meta-
model consists only of isolated classes: We strive to find a cluster of classes, i.e.
a set of class groups, that induce a partition of the metamodel. Then, we apply
our encoding for each of these class groups separately. We illustrate our analysis
with the syntax definition for simplified class diagrams as shown in Fig. 3.

In order to find a useful cluster of classes we mark all classes that have a
direct connection to a display manager class. The display manager class does
not manage only the rendering of the directly connected class, but sometimes
also the rendering of the neighboring classes, e.g. ClassDM manages the rendering
for the instances of both Class and Attribute. The relevant neighboring classes
together with the class directly connected to a display manager form one class
group in the cluster. At the end of this cluster analysis, we get a situation
as shown in the left part of Fig. 7. The cluster consists of two class groups
(Class, Attribute) and (Association, AssociationEnd) and each class group
corresponds to exactly one display manager class (ClassDM, AssociationDM).

The cluster will be the basis for the formal proof that the concrete syntax
definition is correct. The formal proof, however, can only be successful if the
cluster satisfies two properties, completeness and unique ownership. Basically,
these two properties ensure that all instances of abstract syntax classes can

122 T. Baar

Attribute

name:String

Class

name:String
isAbstract:Boolean

AssociationEnd

name:StringAssociation

*1

{ordered}

1

*

0..1

0..1

first

second

1

1

(a) original metamodel

Attribute

name:String

Class

name:String
isAbstract:Boolean

AssociationEnd

name:StringAssociation

*1

{ordered}

1

*
0..1

0..1

first

second

1

1

owning

owning

1

1

(b) after ownership annotation has
been added

Fig. 7. Cluster analysis for abstract syntax classes

be uniquely mapped to display manager objects which are responsible for the
rendering of these instances.

Completeness. The found cluster must cover all non-abstract classes, i.e. each
non-abstract class must be a member of (at least) one class group. If a class
is not a member of any group then the instances of this class do not have
any connection to any display manager object.

Unique ownership. The completeness criterion is a necessary but not a suffi-
cient condition for the cluster. Sometimes, even instances of classes covered
by the cluster miss a corresponding display manager object. Suppose, in our
running example the association between Class and Attribute had on the
side of Attribute not the multiplicity 1 but ’0..1’. That would allow, that
some instances of Attribute had no connection to any Class instance and
thus also the connection to a display manager object would be missing. In
this case, the current concrete syntax definition would be incorrect, just for
structural reasons.3

In order to prevent the case, in which an object of any abstract syntax class
has no connection to a display manager object, we change the abstract syntax
metamodel as follows. In each class group there is exactly one class, called
anchor class, that has a direct connection to a display manager class (in our
example, anchor classes are Class and Association). We add from each non-
anchor class an association with role name ’owning’ and multiplicity 1 to the
anchor class of the same class group. Furthermore, this association must be
derived and the referenced object has to be determined by a constraint.

In our running example, we have added associations from Attribute to
Class and from AssociationEnd to Association (see right part of Fig. 7).
The constraints are

context Att r ibute inv : s e l f . owning=s e l f . c l a s s

context Associat ionEnd inv : s e l f . owning=
Assoc ia t ion . a l l I n s t an c e s ()−> s e l e c t (as |

as . f i r s t=s e l f or as . second=s e l f)−>any ()

3 However, one could easily solve this problem by adding a new display manager class
AttributeDM to the concrete syntax definition.

Correctly Defined Concrete Syntax for Visual Modeling Languages 123

After the properties Completeness and UniqueOwnership have been verified
for the cluster, we know that each instantiation of the abstract syntax metamodel
can be partitioned with respect to the class groups identified by the cluster. What
remains to do, is to define predicates for the isomorphism between instances of
the same class group.

// isomorphism of i n s t ance s o f C las s
(\ f o r a l l c l a s s c1 ;\ f o r a l l c l a s s c2 ; (i s I somorph icCla s s (c1 , c2)

<−> name(c1) = name(c2) &
(i sAbst rac t (c1) <−> i sAbst r ac t (c2)) &
\ f o r a l l in t i ; (at t r ibu teDe f i ne d (c1 , i) <−> a t t r i bu teDe f in ed (c2 , i)) &
\ f o r a l l in t i ; (at t r ibu teDe f i ne d (c1 , i)

−> name(a t t r i b u t e (c1 , i)) = name(a t t r i bu te (c2 , i)))))

Fig. 8. Encoding of isomorphism for a whole class group

Figure 8 shows (in KeY syntax) the definition of the isomorphism-predicate
for the class group containing class Class. Two instances of Class are isomorphic
if their attributes have the same value and if the sequence of linked attributes
are isomorphic. The sequence of linked attributes is encoded for Simplify by
a function attribute with two arguments, the second argument encodes the
position within the sequence. Two sequences of attributes are isomorphic, if
they contain on the same position always isomorphic elements.

The final step is the generation of a proof obligation for each class group; the
proof obligations have the same structure as the one discussed in Sect. 4.1. For
our example, Simplify was again successful in discharging all proof obligations
fully automatically.

5 Related Work

Our approach of defining the concrete syntax presented in Sect. 3 has many
similarities with Triple-Graph-Grammars, already invented by Schürr in 1994
[7] (see also [10] for a more recent survey and a case study). The most important
difference between our approach and TGGs is that our goal is merely to describe
valid instances of the concrete syntax metamodel, but we are not interested in
how such instances are constructed. While the main idea of defining the concrete
syntax is quite similar to TGG, we are not aware of any work in the TGG area,
that aims at analyzing TGG definitions as we do.

Xia and Glinz present in [11] an approach to describe the concrete syntax of
their own graphical modeling language ADORA [12]. The main idea is to map
the graphical representation of a language construct to a textual representation
and to define the syntax finally in EBNF style. One restriction of this approach
is that each graphical element must correspond to exactly one model element,
and vice versa. On the other hand, Xia/Glinz were able to handle advanced
features like graphical nesting in an elegant way, the constraints they give are
much more concise than the corresponding invariants we could give as OCL
invariants in display manager classes.

124 T. Baar

6 Conclusion and Future Work

In this paper, we have described an approach to formally define the concrete
syntax of a modeling language. The formalization we propose is directly based
on the primary language definition, i.e. the metamodel that encodes the abstract
syntax. The big advantage of having a formalized version of the concrete syntax
definition is, compared to informal syntax definitions, the possibility to analyze
automatically correctness properties (cmp. Sect. 4). If the syntax definition is
incorrect, our rigorous analysis is able to report an erroneous situation. For
correct definitions, our approach is able to certify that erroneous situations never
occur.

So far, we have encoded all proof obligations manually but we plan to autom-
atize this step in a tool dedicated to formal concrete syntax definition. This tool
should also provide a visualization of the counterexamples found by Simplify,
so that the user of the tool gets feedback in the same format in which the con-
crete syntax is defined. Another direction of future activities is the development
of an OCL axiom library that codifies the knowledge on OCL’s predefined data
structures. For example, the fact that for all sets s and elements x the term
s->including(x)->excluding(x) is semantically equivalent to s is sometimes
needed. Such axiom libraries have been developed extensively for other specifica-
tion languages, e.g. Z, but – to our knowledge – not for OCL, yet. It is very likely,
that Simplify will show some weaknesses in proving proof obligations, once the
proof requires certain types of axioms, e.g. axioms describing sophisticated prop-
erties of sets. For this case, we plan to integrate other decision procedures or
model checkers into our tool.

References

1. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Object Technology Series. Addison-Wesley, second edi-
tion, 2005.

2. Frédéric Fondement and Thomas Baar. Making metamodels aware of concrete
syntax. In Alan Hartman and David Kreische, editors, Proc. European Conference
on Model Driven Architecture (ECMDA-FA), volume 3748 of LNCS, pages 190–
204. Springer, 2005.

3. D. L. Detlefs, G. Nelson, and J. Saxe. Simplify: the ESC theorem prover. Technical
report, DEC, 1996.

4. OMG. Unified Modeling Language: Diagram interchange version 2.0. Convenience
Document ptc/05-06-04, June 2005.

5. Gennaro Costagliola, Andrea De Lucia, Sergio Orefice, and Giuseppe Polese. A
classification framework to support the design of visual languages. Journal of
Visual Languages and Computing, 13(6):573–600, 2002.

6. Fabien Rohrer and François Helg. Synchronization between display objects
and representation templates in graphical language construction. Minor the-
sis at Software Engineering Laboratory of EPFL, 2006. Available from
http://lglpc35.epfl.ch/lgl/members/fondement/projects/probxs/HelgRohrer.pdf.

Correctly Defined Concrete Syntax for Visual Modeling Languages 125

7. Andy Schürr. Specification of graph translators with triple graph grammars. In
Proceedings of 20th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’94), volume 903 of LNCS, pages 151–163. Springer, 1995.

8. M. Pressburger. Über de vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchen, die addition als einzige operation hervortritt. Sprawoz-
danie z I Kongresu Matematikow Krajow Slowcanskich Warszawa, pages 92–101,
1929.

9. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. The KeY Book
– The Road to Verified Software. Springer, 2006. To appear.

10. A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A Sur-
vey. In R. Heckel, editor, Proceedings of the SegraVis School on Foundations of
Visual Modelling Techniques, volume 148 of Electronic Notes in Theoretical Com-
puter Science, pages 113–150, Amsterdam, 2006. Elsevier Science Publ.

11. Yong Xia and Martin Glinz. Rigorous EBNF-based definition for a graphic model-
ing language. In Proceedings of 10th Asia-Pacific Software Engineering Conference
(APSEC 2003), pages 186–196. IEEE Computer Society Press, 2003.

12. Martin Glinz, Stefan Berner, and Stefan Joos. Object-oriented modeling with
ADORA. Information Systems, 27(6):425–444, 2002.

Compositional MDA

Louis van Gool1, Teade Punter1, Marc Hamilton2, and Remco van Engelen2

1 Technische Universiteit Eindhoven
Den Dolech 2, P.O. box 513, 5600 MB Eindhoven, The Netherlands

l.v.gool@tue.nl, t.punter@tue.nl
2 ASML

De Run 6501, 5504 DR Veldhoven, The Netherlands
marc.hamilton@asml.com, remco.van.engelen@asml.com

Abstract. In this paper we present a language that models an impor-
tant aspect of ASML waferscanners, called coordination. The language
is a compositional subset of UML2.0 activity diagrams which by them-
selves are not compositional in our sense of the word. We show how we
transform models in this language into models for the ASML platform
that implements coordination. The fact that the language is composi-
tional enables us to define the transformation in a simple and compact
manner.

1 Introduction

ASML1 is a world-leading manufacturer of lithography systems (called wafer-
scanners) for the semiconductor industry. Important requirements of ASML
waferscanners are high performance and accurate timing. Because off-the-shelf
solutions do not suffice, ASML uses a proprietary coordination platform for con-
trolling the machine parts of their waferscanners. Input for this coordination
platform is a definition of high-level services (abstract behaviours) in terms of
low-level services (resource behaviours) and the machine parts (resources) that
execute them.

Currently the input for the coordination platform is written in plain C-code
and documented in Word documents. Technische Universiteit Eindhoven (TU/e)
is investigating how ASML can benefit from model-driven architecture (MDA) as
defined by the Object Management Group2 (OMG). We developed a language for
the design of abstract behaviours and constructed a model transformation that
enables automatic transformation into models for the ASML coordination plat-
form. In MDA terms, we are transforming platform-independent models (PIMs)
into (semantically equivalent) platform-specific models (PSMs).

For the description of PIMs, we developed a compositional language that is
based on the activity diagrams3 of the Unified Modeling Language (UML), ver-
sion 2.0. By “compositional” we mean that the language is built up from a few
1 www.asml.com
2 www.omg.org
3 This paper focuses on the behavioural part of coordination. The behavioural part is

complemented with a structural part that is not described in this paper.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 126–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Compositional MDA 127

simple patterns that can have subparts that are again built with these patterns.
This is the key idea behind the well-established principle of structured program-
ming [1], where a language consists for example only of assignment statements,
sequentially composed statements, guarded statements and looped statements.

In section 2 we present a short overview of MDA and its potential benefits
for ASML. Section 3 discusses the compositionality principle and explains what
is gained by applying this principle. In section 4 we explain the basic principles
of the coordination aspect of ASML waferscanners and define the compositional
language that we developed for it, illustrating it by means of an example PIM.
Section 5 describes a simplified version of the ASML coordination platform and
shows parts of the PSM that is the result of applying the model transformation
to the example PIM. The definition of the model transformation is given in
section 6. Section 7 concludes the paper.

2 MDA

Model-driven development (MDD) is considered to be the next step in software
engineering’s strive to construct systems at a higher level of abstraction [6].
Development in MDD is based on assemblies of domain-specific abstractions,
called models. The added value of MDD over traditional object-oriented devel-
opment (OOD) is the concept of model transformation, in particular the ability
to (semi)-automatically transform high-level models (PIMs) into (semantically
equivalent) models that fit a specific platform (PSMs), possibly enabling gener-
ation of executable code. MDA is the term used for the specific way the OMG
defines MDD.

An important ingredient in MDA is the explicit definition (standardization) of
the domain-specific languages (DSLs) that are used to describe models. ASML
expects that the use of standardized languages for concepts in their machine
domain will increase quality of designs and improve communication within and
between development teams.

MDA distinguishes two approaches for defining DSLs. In the approach called
metamodeling, DSLs (metamodels) are designed from scratch for a specific goal.
In MDA, a metamodel is described by means of the meta-object facility (MOF).
The other approach, called profiling, is based on the reuse of existing MOF-based
languages, like UML, that are customized to one’s specific needs by means of
profiles. The customization is performed by means of stereotypes, tagged values
and OCL-constraints [2].

For our case we have chosen the profiling approach. The main reason is the
expectation that (re)using standardized languages as much as possible improves
communication within the organisation. Furthermore, tools specifically designed
for a standardized language like UML can already offer advanced support for a
DSL that is based on this language. Profiling looses its benefits over metamod-
eling if one only uses a few basic elements of the existing language to represent
the elements of the profiled language. In principle one could only use the classes
and associations of UML to model any of the elements and connections of the

128 L. van Gool et al.

profiled language. However, more is gained in terms of standardization and tool
support if one reuses other UML elements as much as possible.

As mentioned at the beginning of this section, model transformation is a key
concept in MDA. An important element of our case study was the implementa-
tion of an (automated) model transformation. Automated model transformation
of PIMs into PSMs reduces coding effort because the mental gap between PSMs
and code is much smaller than the gap between PIMs and code. Furthermore,
automated construction of PSMs is only a small step away from automatic code
generation. We also created a version of the transformation that produces code
(via a code metamodel) instead of the model presented in this paper.

Apart from the UML, MOF and profile standards, OMG is also working on
the Query/View/Transformation (QVT) standard. Like UML has become the
standard for modeling, OMG’s intention is that QVT becomes the standard for
describing model transformations. The main reason for ASML to comply to stan-
dards like UML and QVT is better alignment of multiple modeling initiatives
that exist within and outside of ASML. To investigate feasiblity of automated
transformation when complying to QVT, the model transformation has been im-
plemented in the (QVT-compliant) model-transformation language of Borland4

Together Architect 2006.

3 Compositionality

As pointed out in the introduction, we have chosen to develop a language that is
compositional. Many graphical general-purpose languages, like Petri nets or the
activity diagrams of UML, are not compositional in our sense of the word. In
principle, arbitrary complex networks of elements and connections can be created
in these languages, as illustrated by the activity diagram in Fig. 1. There are no
clear identifiable patterns in such a model which makes it difficult to understand
how the activity behaves.

Besides the fact that unrestrained use of a language like activity diagrams can
easily lead to incomprehensible models, transformation of these kind of models
into models for a specific target platform, is also not feasible in general. This
would require the target platform to support the behaviour of arbitrary complex
activity-diagrams, which cannot and should not be expected from a dedicated
platform.

In the context of profiling, the remedy is to confine oneself to a sublanguage
that is compositional, like for example structured workflow languages [3]. The
constructs of a compositional sublanguage of a general-purpose language are
built using simple patterns of elements of the general-purpose language (in our
case patterns of activity-diagram elements). Figures 2 and 3 illustrate this notion
of compositionality. Figure 2 defines the patterns that are used to build the
activity that is presented in Fig. 3. The clouds in Fig. 2 represent an arbitrary
construct that is built using only the right three patterns.

4 www.borland.com

Compositional MDA 129

Fig. 1. Non-compositional activity

Fig. 2. Compositional patterns

Fig. 3. Compositional activity

The use of a language that is compositional helps in the construction of speci-
fications that are easy to understand. This principle holds under the assumption
that the language’s constructs are rich enough for a designer to express his or
her thoughts in a clear and concise manner. The development of our language
was therefore performed hand-in-hand with the reconstruction from ASML doc-
umentation and C-code of several abstract behaviours, one of which (CLBS) was
considered the most complex instance.

The PIM of CLBS was presented to ASML architects to review its correctness,
completeness and understandability. The fact that the architects were immedi-
ately able to understand the model and use it to discuss details about CLBS,
gave a clear indication of the strength of the language.

Besides understandability of specifications, another important advantage of
using a compositional language is that it makes automated model transformation
feasible because one only needs to be able to transform a few simple patterns.
The clear structure of the transformation is also expected to make it easy to
adapt the transformation to other platforms, which is crucial for a company
like ASML that develops and has to maintain many different versions of their
machines.

130 L. van Gool et al.

Next to a PIM, we also reconstructed a PSM of CLBS. The reconstruction
went hand in hand with the design of the transformation of which a simplified
version is described in this paper. As already mentioned, we also created an
adapted version of the transformation that can generate code. Because of the
clear structure of the transformation, this turned out to be a straightforward
task.

4 PIM

In this section we define our language for the coordination aspect of ASML
waferscanners (from now on simply called “coordination”) and illustrate it by
means of an example PIM. As mentioned in the introduction, coordination is
about the definition of abstract behaviours. An abstract behaviour consists of
algorithmically combined resource behaviours which are behaviours of parallel
executing parts (of an ASML waferscanner), called resources.

An abstract behaviour is not as straightforward as a simple sequence of re-
source behaviours, but can contain decisions that are based on the results of
resource behaviours. Loops and parallellism are also part of abstract behaviours,
but are outside the scope of this paper.

An important aspect of coordination is that abstract behaviours are not exe-
cuted in isolation. Abstract behaviours may execute concurrently if they do not
need a certain resource at the same moment. Sometimes one wants to prevent
that a resource is affected by another abstract behaviour, although one does not
need the resource to perform any resource behaviour. This can be guaranteed
by performing so-called passive behaviour on that resource.

We now define our language for coordination. It consists of any activity that
can be built with the patterns proc, seq, assign, guard, if and call, presented in
Fig. 4. A cloud represents an arbitrary construct that is built using the last five
patterns. We only show a specific case of the call pattern. In general there is one
active resource and several passive ones. Furthermore, the number of input pins
and output pins on the �active� action can be arbitrary (including zero).

We illustrate the language by means of a simple fictional example PIM, shown
in Fig. 5. The example describes the testing of a lamp. Two resources are in-
volved in this example: a lamp that can be turned on and off and a sensor that
can check if the lamp produces light. The test starts with resource behaviour
CHECK LIGHT on the sensor. The result of this resource behaviour is stored in
variable LGT. Next, it is checked if variable LGT is equal to OFF (the %s are
explained below). If this is the case, variable LMP is set to ON and used as in-
put for resource behaviour SET LAMP on the lamp. In other words, the lamp is
turned on in that case. It is then checked again if the sensor receives light. The
�passive� action for the lamp ensures that no other abstract behaviour can
use the lamp during this check. If the sensor reports that it does not receive any
light, we know for sure that something is wrong and return with return value
BROKEN, aborting all further execution. If in the end variable LGT is equal to
ON, the test terminates, returning the (default) return value OK.

Compositional MDA 131

proc seq assign guard

if call

Fig. 4. PIM Patterns

We now explain some peculiar details of the example. In the version of Borland
Together Architect 2006 that is available to us, expressions are strings without
any structure. For the transformation we have to be able to identify the variable
names in an expression however. We put %s around the variable names in an
expression to make it easier to recognize them. Parameter passing has been sim-
plified by only allowing the use of variable names instead of arbitrary expressions
for the specification of inputs for a resource behaviour. The variable name that
specifies an input or output also determines (by name) the resource behaviour’s
parameter that is associated with this input or output. A consequence is that
a parameter of a resource behaviour can only be associated with the variable
that has the same name as the parameter. These simplifications have no serious
influence on the expressiveness of the language and allow us to implement the
transformation with the available version of the tool.

5 PSM

We now describe the ASML platform that implements coordination and show
parts of the PSM that is obtained by transforming the lamp-test PIM. For presen-
tation and confidentiality reasons, we present a simplified version of the platform.

Within the platform, an abstract behaviour is described by a sequence of
concrete behaviours and separate definitions of these concrete behaviours. During
the execution of a sequence of concrete behaviours, the platform offers a means
to skip all concrete behaviours in the sequence until a certain one. This enables
the implementation of conditional execution.

132 L. van Gool et al.

Fig. 5. PIM of lamp test

Abstract behaviours are (in their platform-specific form) offered to a schedul-
ing component that tries to execute them in an optimal manner. For each ab-
stract behaviour, the scheduling component determines the set of resources that
are needed for its execution and when they are needed. This defines a kind of
Tetris brick for each abstract behaviour that is used to determine optimal exe-
cution of abstract behaviours in a manner that resembles a game of Tetris [4].
Figure 6 illustrates this Tetris game. The + combines two Tetris bricks into
the schedule on the right-hand side of the =. Notice that the shape of the Tetris
bricks is fixed and does not change under the influence of ‘gravity’. As mentioned
in the previous section, passive behaviour can be used to prevent unwanted in-
terference of abstract behaviours. In terms of the Tetris game, passive behaviour
can be used to extend Tetris bricks. The white Tetris brick in Fig. 6 contains
passive regions, indicated by a grey color.

Transforming algorithmic coordination of resource behaviours (PIM) into a se-
quence of concrete behaviours (PSM) is a first step in determining when resource

Compositional MDA 133

+ =
Fig. 6. Scheduling, seen as a game of Tetris

Fig. 7. Sequencing part of the lamp-test PSM

behaviours are executed. In terms of the Tetris game, this step corresponds to
the definition of the overall structure of the Tetris bricks.

We distinguish two kinds of concrete behaviours: functional behaviours and
control behaviours. A functional behaviour corresponds to a �call� of a PIM. It
determines which resource behaviour is executed and which resources are passive
during this execution. Control behaviours are used to implement coordination
constructs like �if� and �assign�.

Figure 7 shows an activity diagram that describes the sequencing of concrete
behaviours for the lamp-test example. The behaviours IF1, ASSIGN2, ENDIF1,
GUARD3 and ENDPROC are control behaviours. The integer labels on control be-
haviours are necessary to distinguish control behaviours of the same kind5,6. The
behaviours FN CHECK LIGHT and FN SET LAMP are functional behaviours. A
functional behaviour has the set of resources that should be passive as input.
5 Labeling is actually not necessary for our lamp-test example as each kind of control

behaviour occurs only once.
6 For simplicity we ignore the fact that an extra label should be added in order to

distinguish control behaviours of different abstract behaviours.

134 L. van Gool et al.

Fig. 8. Definition of EX CHECK LIGHT

Fig. 9. Definition of IF1

The definitions of concrete behaviours are specified separately from the se-
quencing of concrete behaviours. We omitted the definitions of the functional
behaviours as this requires a level of detail that would only distract from the
core issues. What is important to know, is that each functional behaviour FN X
is associated with a behaviour EX X that executes resource behaviour X with
the appropriate parameter values7.

Figure 8 shows the definition of EX CHECK LIGHT. A special variable state
contains a record of the variables that occur in the PIM (LGT and LMP in the
lamp-test example). These variables are used to provide resource behaviours
with parameter values, store resource-behaviour results and steer control be-
haviours. During execution of EX CHECK LIGHT, the result of resource be-
haviour CHECK LIGHT is stored in variable LGT.

Figure 9 shows the definition of control behaviour IF1. If the value of variable
LGT is not equal to OFF when control behaviour IF1 is executed, all concrete
behaviours until ENDIF1 are skipped.

Figures 7, 8 and 9 only specify part of the lamp-test PSM. How a complete
PSM is obtained from a PIM, is defined by the transformation that is described
in the next section.

Notice that although both PIM and PSM are represented by activity dia-
grams, they are written in different languages. Due to space limitations, the
language for the PSMs is not explicitly described in this paper.

7 The definitions of the resource behaviours are outside the PSM’s scope.

Compositional MDA 135

6 Transformation

We now describe the model transformation that transforms PIMs like the lamp
test of Fig. 5 into PSMs. A schematic description of the transformation is pre-
sented in Figs. 10, 11, 12, 13, 14 and 15. The fact that our language is com-
positional and the fact that the target platform has sufficient expressive power,
together make it possible to define the transformation in a compositional man-
ner. We now explain the notation that we used to describe the transformation,
without going into the specifics of the transformation itself.

n0@pre = 1

Fig. 10. Transformation rule for proc

n : Integer
n0@pre = n@pre
n1@pre = n0

n = n1

Fig. 11. Transformation rule for seq

Each figure shows the transformation rule for a certain pattern. A transforma-
tion rule consists of three sections, separated by double lines. The left8 section
is called the source section, the middle section the variable section and the right
section the target section.

The source section contains a source pattern, describing a pattern that can be
used in the construction of a PIM. In the source pattern, source pattern variables
may be used to abstract from specific parts. In Fig. 14 for example, X and g
are source pattern variables. Source pattern variable X is an arbitrary construct
that is inductively built with the patterns seq, assign, guard, if and call and source
pattern variable g is a string. We left these types implicit.
8 For layout-technical reasons, the transformation rule for the call (Fig. 15) is presented

top-down. For this rule “left” is “top” and “right” is “bottom”.

136 L. van Gool et al.

n : Integer
n0 = n@pre
n = n0 + 1

Fig. 12. Transformation rule for assign

n : Integer
n0 = n@pre
n = n0 + 1

Fig. 13. Transformation rule for guard

n : Integer
n0 = n@pre
n1@pre = n0 + 1
n = n1

Fig. 14. Transformation rule for if

Compositional MDA 137

n : Integer
n = n@pre

Fig. 15. Transformation rule for call

The target section contains a target pattern that describes how the source
pattern is implemented in the PSM. In Fig. 14 for example, the target pattern
is divided into two parts, separated by a single line. The left part describes
the sequencing of concrete behaviours and the right part describes their defi-
nition. The cloud with [[X]]n1 in it represents the sequencing part of the result
of transformation of X . The n1 is an integer input/output parameter for the
transformation rule that is used to transform X . This parameter is used to la-
bel control behaviours. As mentioned in the previous section, labeling of control
behaviours is necessary to distinguish control behaviours of the same kind.

The variable section consists of a list of typed parameters for the transforma-
tion (above the line) and constraints on the variables that occur in the transfor-
mation rule (below the line). The transformation rule for proc has no parameters
and the transformation rules for seq, assign, guard, if and call each have an in-
teger parameter n (“n : Integer”). In the specification of a constraint, the value
that a variable x has when a transformation is initiated (its pre value), is repre-
sented by “x@pre” and the value that a variable has when a transformation is
completed (its post value), is represented by “x”. Equation n1@pre = n0 + 1 in
the transformation rule for if (Fig. 14) for example defines that the pre value of
variable n1 equals the post value of variable n0 plus 1.

138 L. van Gool et al.

Like source pattern variables represent parts of a source pattern, target pat-
tern variables represent parts of a target pattern. The post value of a target
pattern variable determines how it is instantiated. If the transformation rule for
if (Fig. 14) is initiated with n equal to 1, then (equation n0 = n@pre defines the
post value of n0 equal to the pre value of n) each occurrence of IFn0 and ENDIFn0
in the target pattern is instantiated as IF1 and ENDIF1 respectively. In other words,
in this particular execution of the if transformation rule, the IFs and ENDIFs are
labeled with 1 (notice the implicit conversion of the integer 1 to the string 1).

The function 〈[]〉 that occurs in the target section of the transformation rules
for assign, guard and if transforms an expression (string) such that each vari-
able name “x” (indicated by %s) is replaced by the expression “state.x” that
represents the value of variable x in the target platform. If a source pattern
variable g equals for example the string “%LGT% = OFF”, then 〈[g]〉 is equal to
“state.LGT = OFF”.

7 Conclusion

In this paper we presented a language that models the concept of coordination
as it occurs in ASML waferscanners. The language is a compositional subset of
UML2.0 activity diagrams, meaning that it is built up from a few simple patterns
of UML2.0 activity-diagram elements, where the patterns can have subparts that
are again built with these patterns. We defined a model transformation that
transforms models in the language (PIMs) into models for a proprietary ASML
platform that implements coordination (PSMs).

The approach to use a compositional subset of a standardized language turned
out beneficial. ASML architects were quickly able to understand the language
and discuss details of a coordination instance that was considered very complex.
Furthermore, the language’s compositionality guided the definition of the model
transformation. Feasibility has been shown by a working implementation of the
model transformation.

We think that the compositional approach that we took can be beneficial for
companies who, like ASML, cannot use off-the-shelf solutions because of high
demands on their platforms, but still want to use well-supported easy-to-learn
design languages with a feasible approach to generation of code for all kinds of
different platforms that are used in different versions of their products.

Acknowledgements

The research presented in this paper was conducted within the IDEALS research
project, under the responsibility of the Embedded Systems Institute (ESI). This
project is partially sponsored by the Dutch Ministry of Economic Affairs under
the Senter program. We like to thank Tanja Gurzhiy from TU/e (OOTI) who im-
plemented the model transformation, Wilbert Alberts and Stefan Slootjes from
ASML for reviewing our models and Michel Reniers for discussing a draft version
of the paper. We also thank the anonymous referees for their helpful comments.

Compositional MDA 139

References

1. E.W. Dijkstra. Notes on Structured Programming. In Structured Programming
(1972) 1–82.

2. L. Fuentes, A. Vallecillo. An Introduction to UML Profiles. In UPGRADE, The
European Journal for the Informatics Professional (2004) 5–13.

3. B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler. On Structured Workflow Mod-
elling. In Conference on Advanced Information Systems Engineering (2000) 431–445.

4. N.J.M. van den Nieuwelaar. Supervisory Machine Control by Predictive-Reactive
Scheduling. Ph.D. thesis. Technische Universiteit Eindhoven (2004).

5. D.A.C. Quartel, R.M. Dijkman, M. van Sinderen. Extending Profiles with Stereo-
types for Composite Concepts. In MoDELS, Proceedings of the 8th ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Systems (2005)
232–247.

6. S. Sendall, W. Kozaczynski. Model Transformation – the Heart and Soul of Model-
Driven Software Development. In IEEE Software, Special Issue on Model Driven
Software Development (2003) 42–53.

CUP 2.0: High-Level Modeling of
Context-Sensitive Interactive Applications

Jan Van den Bergh and Karin Coninx

Hasselt University – transnationale Universiteit Limburg
Expertise Centre for Digital Media – Institute for BroadBand Technology

Wetenschapspark 2
3590 Diepenbeek

Belgium
{jan.vandenbergh, karin.coninx}@uhasselt.be

Abstract. The Unified Modeling Language is mainly being used to com-
municate about the design of a software system. In recent years, the lan-
guage is increasingly being used to specify models that can be used for
partial code generation. These efforts are mainly focussed on the gener-
ation of the application structure. It has been used to a lesser extend to
model the interaction with the user and the user interface. In this paper,
we introduce CUP 2.0, a Unified Modeling Language profile for high-
level modeling of context-sensitive interactive applications. The profile
was created to ease communication about the design of these applications
between human-computer interaction specialists and software engineers.
We further argue that the data provided by the models, suffices to (semi-)
automatically create interactive low-fidelity prototypes that can be used
for evaluation.

1 Introduction

With the advent of mobile computing, the interest in development support for
context-sensitive interactive applications has also increased. Indeed, the usage
of applications while the users are moving makes that the context in which
interactive applications is no longer a static given. The small form-factor of
most of these mobile devices makes that one should make optimal use of the
features of such a device and the context it is being used in. For example, in a
museum a digital mobile guide can automatically display information about the
art works closest to the user. Another factor is that users no longer use a single
computing device but they still want to use the same applications or services
on these different devices. Such applications can range from websites to word
processors or even games.

The design of such context-sensitive interactive applications is a complex task
that can benefit from the use of models at different levels of abstraction. The
abstraction can be useful to reduce the complexity when designing the overall
interactive application and reduce the chance to get lost in low-level features,
such as the detailed layout of the user interface of the application on a certain
target platform.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 140–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 141

In this work, we present CUP 2.0, a profile for the Unified Modeling Language
(UML) for modeling context-sensitive user interfaces that improves on an ear-
lier version [19]. The profile provides a set of stereotypes and the accompanying
tagged values that can be used to construct high-level models for these context-
sensitive applications. The models are based on the models that are used in the
model-based user interface design but are expressed using the UML. They docu-
ment the interaction of the user with the system, the data structures accessible
through the user interface, the high-level structure of the user interface and the
deployment of a user interface to a certain platform.

The rest of this paper is structured as follows: after a short discussion of some
related work, we will give an overview of the models that are supported by the
introduced profile, followed by detailed discussions of each of the models. Finally,
we will provide a discussion of the profile and conclusions.

2 Related Work

The UML has already been used by several approaches to model the user in-
terfaces of interactive applications. Wisdom [13] is a UML profile for modeling
interactive applications that is targeted towards small organizations. It sup-
ports modeling of interactive applications using eight different models that are
expressed using the UML use case, class, activity and state diagrams. The di-
agrams are extended using a set of stereotypes. All models are also on a fairly
abstract level and the generation process to an abstract user interface descrip-
tion language (AUIML) from those models is provided. CanonSketch [1] is a tool
that supports the presentation model, one of the models of the Wisdom-notation,
and combines it with the Canonical Abstract Prototypes [3] (CAP)1 to provide
multilevel modeling and HTML for prototyping on a concrete level.

UMLi [5] extends the UML using the MOF-constructs to model user inter-
faces. The authors introduce two new diagram types. The presentation diagram,
specifying the user interface structure, is represented using a notation similar to
that of the deployment diagram (for the presentation model). An enhanced ver-
sion of the activity diagram is used to represent the behaviour. They extended
an open-source UML-modeling tool to support their notation.

Elkoutbi et al. [8] use annotated collaboration diagrams and class diagrams
to model form-based user interfaces. From these diagrams, they can generate
statechart diagrams. Based on these statecharts, complete functional prototypes
are generated. The approach is concentrating on form-based user interfaces for
a single user. The specifications that are used as input, however, have to be
rigorously defined to support the generation process.

MML [16] is a UML profile to model interactive multimedia applications.
They use the notation we proposed in earlier work [19] to define the abstract
user interface and link it with a multimedia specification, and state and activity

1 The CAP notation uses nested rectangles and a set of icons to identify the type of
interaction objects contained in user interface.

142 J. Van den Bergh and K. Coninx

diagrams. A skeleton of the interactive multimedia application using SVG and
JavaScript can be generated from these models.

None of the above approaches, however, have dedicated support for modeling
context-sensitive user interfaces. Some model-based approaches that do not use
UML, however, have some support for modeling context-sensitive user interfaces.
Clerckx et al. [2] propose a method that starts from a hierarchical task model
from which they can generate a dialog model. This model can be annotated
with high-level user interface descriptions. These models are combined with a
context model to generate some concrete prototypes that can use simulated or
real context input. All models can be manipulated graphically and are serialized
to XML.

UsiXML [11] is a modeling language expressed using XML. It features support
for the specification of task models, abstract and concrete user interface models,
context models and model transformations. Tool support for various models is
provided, however there is no published tool support for context-sensitive user
interfaces.

3 Model Overview

The Context-Sensitive User interface Profile (CUP 2.0) is a UML 2.0 [14] profile
that provides stereotypes and corresponding tagged values to increase support
for the expression of the models, relevant to the high-level modeling of context-
sensitive user interfaces, in a limited number of diagrams. Figure 1 gives an
overview of the models that can be specified using the CUP 2.0 profile.

Fig. 1. Overview of the models supported by the UML profile CUP 2.0

The application model specifies the data structures and functionality that can
be accessed through the user interface. This includes the data structures and
functionality that is not part of the modeled application but that is used to
provide relevant information (context) to the application. The model is used by
both the system interaction model and the abstract user interface model to pro-
vide details of the data structures which are respectively used in the interaction
with the modeled application and in the user interface structure. The model is
discussed in more detail in section 4.

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 143

Fig. 2. Example of user interface deployment model: A context-sensitive mobile mu-
seum guide

A second model is the system interaction model. This model corresponds to
the user task model, which is the core model in many model-based user inter-
face design approaches. It is an hierarchical specification of the user’s tasks and
user-observed tasks. In contrast to the most-used task model notation, the Con-
curTaskTrees notation [15], it does not use a tree-based notation but uses the
flow-based notation of the activity diagram. It does however support all temporal
operators that are supported by the ConcurTaskTrees notation and is enhanced
with support for context-sensitiveness. More details about this model can be
found in section 6.

The structure of the context-sensitive user interface is specified in the abstract
user interface model. A single model represents a user interface structure that
is shared in multiple contexts and on multiple platforms (see section 7). The
deployment of an abstract user interface to a certain platform or to a set of
platforms for distributed user interfaces can be specified in the user interface
deployment model. To accomplish this, the stereotype �contextualNode� can
be applied to a Node to specify the relation with a certain context of use as
specified in the context model. Figure 2 shows an example of a deployment of
the user interface to a PDA. Specific contexts of use can be specified in the
context model, which uses the classes defined in the application model. More
details of the context model are found in section 5.

4 Application Model

The application model is specified using a class diagram. The model contains all
classes of the application logic that are relevant for the user interface. In addition
to those classes, also the context information and the interfaces of the relevant
applications or services to get the relevant context information are included in
the model. The latter classes are respectively identified using the stereotypes
�context� and �contextCollector�. The definition of a seperate stereotype
for the entities that gather context information is motivated by the fact that
frameworks and toolkits built to support the development of context-sensitive
applications use similar abstractions. Examples of such abstractions are context

144 J. Van den Bergh and K. Coninx

Fig. 3. Stereotypes of the UML profile CUP 2.0 relevant for the application model

Fig. 4. Example of application model: A context-sensitive mobile museum guide

widgets in the Context Toolkit [6], contextors [4] and information spaces in
ConFab [10]. A different name was chosen to be independent of the final imple-
mentation.

Each Property of classes with the stereotype �context�, can have a stereo-
type indicating how the modeled information is gathered since this information
can be important for the further design or eventual code generation. The two
stereotypes that are supported are �detected� for context information that
is delivered to the application directly from sensors or from any source after
being manipulated, merged or derived by some service or application. Profiled
context information is provided by an application or entered by a user and is
indicated by the stereotype �profiled�. The difference is also clear from the
tagged values of these stereotypes. While the values of profiled context informa-
tion can be gathered from a resource of a certain type (e.g. a URI referencing
a file), the detected context information is gathered from a context collector.
The choice to categorize context in profiled and detected was motivated by the
implications this difference has on the design of the application; an appropriate
user interface has to be defined to modify profiled context information, while de-
tected information requires mechanisms to detect the information and possibly

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 145

Fig. 5. Stereotypes of the UML profile CUP 2.0 relevant for the context model

Fig. 6. Example of context model: A context-sensitive mobile museum guide

appropriate feedback to the user when problems are encountered. This categori-
sation of context is more extensively motivated in [19].

The stereotypes that can be applied in the application model are shown in
Figure 3, while Figure 4 shows an example application model. The example shows
a particial application model of a museum guide. It clearly shows that the infor-
mation that many relations exist between parts of the model that are part of the
context and those that are not. It also shows that the location of a user is detected
by a LocationDetector, while the location of the museum artifacts is profiled.

5 Context Model

The context model specifies the different situations in which an application can
be used. For each context of use the context model contains a package with the
stereotype �contextOfUse�.Such a package can only contain instances of classes
that have the stereotype �context� as specified in the application model. As
such the context model is more open than the context model used in UsiXML [11],
which uses instances of predefined classes to specify the contexts of use.

Each instance specifies one value to which a parameter of the context of use
has to adhere. Ranges of values can be specified by specifying a minimum and
a maximum (using the corresponding stereotypes), or by listing the possible
values; when multiple instances of the same class are specified they represent
alternatives. To avoid ambiguity, when both a minimum and a maximum value
is provided, the involved instances should be linked. Figure 5 shows the stereo-
types that can be applied to the model elements, while Figure 6 shows a small
example model, demonstrating the usage of the different stereotypes. The spec-
ified context of use is relevant for users that follow a dynamic tour through the
museum and have a PDA with a certain minimal resolution.

6 System Interaction Model

The system interaction model describes the interactions of the system with the
user and the environment in which it is executed. It can be used to describe the

146 J. Van den Bergh and K. Coninx

Table 1. Icons of task categories in ConcurTaskTrees, Contextual ConcurTaskTrees
and CUP 2.0

Task Category ConcurTaskTrees Contextual ConcurTaskTrees CUP
Abstract task /
User task
Contextual User Task /
Application task
Contextual Application task /
Interaction task
Contextual Interaction task /
Environment task /

tasks of both the users and the application as well as the relevant interaction
with the environment in more detail. The basis for the system interaction model
is the UML 2.0 activity diagram. In this model, all actions have to have the
stereotype �task� or a derived stereotype applied to them.

A task corresponds to an UML Action. The task goal can be expressed using
a local postcondition, if desired. Basic tasks – tasks that are not refined within
the model – belong to four different categories. These categories are based on
the categories of the Contextual ConcurTaskTrees [18] notation, an extension
of the earlier mentioned ConcurTaskTrees notation that allows for specification
of context influences. We defined four stereotypes with the appropriate tagged
values, that cover all task categories present in the Contextual ConcurTaskTrees
as can be seen in Table 1.

One notable difference is the elimination of the task category type abstract
task, which is a task that can be refined into tasks that belong to different
categories. Since there are a great number of ConcurTaskTrees models that do
not follow this definition and a change in semantics would only be confusing,
we decided to remove this task category and to use a generic stereotype task
instead. In practise, this has the consequence that CallBehaviourActions and
StructuredActivityNodes have to have the stereotype task and not one of the
derived stereotypes.

The four stereotypes that correspond to the remaining task categories are:

�userTask� A user task is a task that is performed by the user without di-
rect interaction with the application. A user task can however have indirect
impact on an application. E.g. A museum visitor might carry an electronic
mobile guide while strolling, performing no direct interaction. The electronic
guide can however get updates about the position of the user through the
use of a positioning system in the museum. This can be modeled by applying
the stereotype to an AcceptEventAction and specifying an interface to the
positioning system in the tagged value contextSource. User tasks that are
applied to other types of Actions are optional and will not be used during
further specification of the system.

�applicationTask� An application task is a task performed entirely by the
application without user interaction. Examples of such tasks are showing

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 147

Fig. 7. Stereotypes of the UML profile CUP 2.0 relevant for the system interaction
model

information to a user or performing a computation. When an application
task has influence on the platform or the environment, the affected data
structures or systems can be indicated through the tagged value manipulate-
dObject. Examples of such influences are putting information in the system
paste buffer and triggering an external logger that has an influence on future
application execution.

�interactionTask� Direct user interaction with an application is modeled
with an interaction task. Like the previously mentioned tasks, an interaction
task can have effects on the environment which are indicated with tagged
values. The type of user interaction is indicated through the tagged value
interactionType.

�environmentTask� An environment task covers all actions that have an in-
fluence on the execution of the interactive application but are performed by
an entity other than the user and the application. An example of an envi-
ronment task is a car accident that happens on the route calculated by a
car navigation system. Similar to the user task, an environment task will be
modelled through an AcceptEventAction when it has an immediate effect on
the execution of the application, such as in the example of the car accident,
which triggers a recalculation of the route.

All stereotypes indicating task categories are derived from the stereotype
�task�, which defines some tagged values that are shared by all task categories.
These tagged values are important to reduce the complexity of the diagrams: the
tagged value optional indicates whether or not a certain task is required or not,
while the tagged value repetition indicates the number of times a task should
be executed. The tagged values manipulatedObject and requiredContext are only
applicable to basic tasks and thus are required to be empty sets for the stereo-
type �task�. Figure 7 gives an overview of the stereotypes and their tagged
values.

If the tagged value singleExecution is set to true for a certain task, that task
interrupts all other tasks that are running in parallel until it is completed. This
has as consequence that when all actions following a ForkNode have this tagged
value set to true, they have to be carried out one after the other. This makes

148 J. Van den Bergh and K. Coninx

Table 2. Temporal operators in ConcurTaskTrees and corresponding activity diagram
notation

Temporal operator Symbol Activity diagram constructs
Enabling >> and [] >> control and object flow

Disabling [> InterruptableActivityRegion with InterruptionEdge

Concurrency ||| and |[]| ForkNode and JoinNode with
control or object flows

Choice [] Decision and MergeNodes with control flows

OrderIndependent | = | same as concurrency but all tasks have
tagged value singleExecution set to true

Interruption | > concurrency with tagged value singleExecution set
to true for the interrupting task

Fig. 8. Example of system interaction model: A context-sensitive mobile museum guide

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 149

that all temporal operators supported by the ConcurTaskTrees notation can be
expressed using the UML activity diagram when the stereotypes in Figure 7 are
applied as can be seen in Table 2.

An example of a system interaction model can be seen in Figure 8. The exam-
ple shows a partial specification of a mobile museum guide that offers different
types of tours. The diagram gives only details about one type of tour: the dy-
namic tour. This type of tour does not offer a specified trajectory to the user,
but shows the user’s position in the museum as well as information about a
nearby artwork if one is available. A user can ask more information about an
artifact. This additional information temporarily blocks all other information.
Note that this example is simplified for brevity and as such will not really result
in a user-friendly application.

7 Abstract User Interface Model

The abstract user interface model provides information about the structure of the
user interface independent of the platform it will ultimately be deployed on. This
means that we abstract from the concrete components and drastically reduce the
number of components, coming to a minimal set of kinds of user interface com-
ponents. The components are differentiated according to the functionality they
offer to the user. We identified four types of abstract user interface components:
input components, which allow users to enter or manipulate data, output compo-
nents, which provide data from the application to the user, action components,
which allow a user to trigger some functionality, and group components, which
group components into a hierarchical structure.

In the UML, we represent the abstract user interface model (AUIM) using
a class diagram. All classes in a AUIM need to have a stereotype identifying
a type of abstract user interface component. There are also restrictions on the

Fig. 9. Stereotypes of the UML profile CUP 2.0 relevant for the abstract user interface
model

150 J. Van den Bergh and K. Coninx

associations that can be specified between the classes, they need to indicate
containment or have one of the stereotypes discussed later in this section applied
to them. The definition of the stereotypes is shown in Figure 9. Only one of these
stereotypes can be applied to one class. There is one exception to this rule: a
group component can also be an input component, but in this case the input
component must be a selection over the contained user interface components.

One should note that the classes with the stereotypes �inputComponent�
or �outputComponent� can each have multiple attributes that would each be
represented using a separate user interface component in a notation such as the
Canonical Abstract Prototypes [3]. Each of the attributes has the stereotype
�uiData�. The tagged value propertyInClass can be used in case there is a
reference to a property of a class. Additional meta-information, such as a la-
bel or more detailed information can be provided using the remaining tagged
values. All Operations related to an action component must have the stereo-
type �uiAction� that allows to specify information similar to the stereotype
�uiData� for each Property of an input component or output component.

The visibility specification for each Property and Operation with the stereo-
type �uiData� or �uiAction� is adapted to be more relevant to their meaning
in the model, but remains consistent with the UML specification:

public Public visibility means that the associated part of the user interface is
visible to not only the user of the application, but also other persons that
might see the user interface. This visibility is, for example, appropriate for
the part of a presentation application that shows slides.

protected Protected visibility means that the associated part of the user inter-
face is only visible to the user of the user interface. This might mean that
the value of an input component with protected visibility is hidden when
shown on a public display. An example of user interface components for
which this visibility is appropriate are the controls for moving through slides
in a presentation application.

package Parts of the user interface that have package visibility are only accessi-
ble to other parts of the user interface, but are not shown to the users of the
user interface. This visibility should be avoided in the abstract user interface
model.

private Private visibility is used for parts of the user interface whose contents
may not be seen by a user without being masked. An example of a user
interface component with private visibility is a password field.

We also defined some stereotypes for associations between abstract user in-
terface components to express relationships other than containment. These re-
lationships indicate constraints on the structure of the user interface which are
implied by the system interaction diagram and thus reduce the number of hid-
den dependencies within the abstract user interface model. These relationships
can also be used to specify relationships between user interface components
within the model that are specified in different diagrams. At the same time they
also increase visibility. The reduction of hidden dependencies is important to

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 151

Fig. 10. Example of abstract user interface model: A context-sensitive mobile museum
guide

effectively support modification, a good visibility is also important for exploratory
design [9].

The first stereotype is �precede�, which indicates that one user interface
component should be presented to a user before another user interface compo-
nent. The precedence can be spacial, temporal or both. The usage of this stereo-
type is limited to user interface components that are contained by the same
group component and can be used to establish an order in which the user inter-
face components are presented to the user. A second stereotype, �activate�,
can be applied to an association to indicate that a user interface component
activates another component. The activated components can be added to the
currently active components or can replace them. A third stereotype for associ-
ations is �update�. Application of this stereotype to an association indicates
that the contents of the target user interface component is updated by the source
user interface component.

An example of an abstract user interface model is shown in Figure 10. The
depicted model corresponds to the part of the system interaction model that
shows the functionality offered in the case of a dynamic tour. The figure shows
three group components that the user can interact with. The first group com-
ponent contains one interaction component that allows the selection of a type
of tour. When the user selects a type of tour, a second group component is ac-
tivated and replaces the one that contains the interaction component, as can be
seen from the tagged values on the association. This group shows a map, the
current user position and, optionally2 some information about a nearby artwork
2 This can be derived from the multiplicity specified for the containment relations.

152 J. Van den Bergh and K. Coninx

and, also optional, an option to show more information about the artwork. This
information is shown within a group component Extended Info, which replaces
the group component MapDisplay.

The abstract user interface description we use assigns one type of user interac-
tion to a component, similar to the approach taken for XForms [7], UMLi [5] and
Wisdom [13]. TERESA XML [12] also uses this approach but defines a deeper
hierarchy that contains special components for inputs of simple datatypes and
selections based on the number of options. UsiXML [11] only has one type of user
interface components having facets that are based on the type of interaction.

8 Discussion

The profile can be useful for designers to have rather unambiguous and relatively
compact models of a context-sensitive interactive application. Nevertheless, the
ability to generate some parts of the models and ultimately generate code tem-
plates, can help the designer to be more productive. Therefore we explored the
possibilities for automation.

We have identified two main areas where transformations as specified in the
model-driven architecture [17] can be applied. The first is a model-to-model
transformation from the system interaction model to the abstract user interface
model. The second is the generation of high-level user interface descriptions from
the abstract user interface model. The user interface deployment model can be
used to add style to the different user interface skeletons and add some design
guidelines specifically for the target platform.

To test the feasability of the prototype generation, we choose XHTML +
XForms [7] as a target language and investigated how the prototype generation
could be established. The mapping of the elements in the abstract user interface
model to XForms tags is shown in Table 3. A �uiAction� is translated into a
submission if a value is specified for the tagged value operationInClass, and into a
trigger otherwise. In XForms each component can make references to separately
defined object structure in instances. This object structure as well as its XML-
Schema can be derived from the tagged value propertyInClass of the attributes
with a �uiData� stereotype. The fully-qualified name of its class can be used

Table 3. CUP 2.0 stereotyped Elements and XForms counterparts

CUP-profile XForms tags
groupComponent group
- contained number of elements of same type > 1 repeat
uiData in inputComponent,
- selectionType is none input
- max. selectionCount = 1 select1
- max. selectionCount > 1 select
uiData in outputComponent output
uiAction in actionComponent trigger or submission

CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications 153

to generate a meaningful hierarchy of xml-tags, while the datatype itself can be
used to define the types in XMLSchema.

The effects of the activation of components can be converted to bind tags
with the right relevant settings. Precedence relations between user interface
components are reflected in the order of the corresponding XForms controls
in the document. The update relationships can also be translated into bind-
tags with the right nodeset and optionally calculate attributes. Conversion of
application or context-driven updates to the user interface are more difficult
since they cannot be described declaratively in XForms.

9 Conclusion

Despite the fact that there is no dedicated support for multimedia applications,
as is offered by the MML (see section 2) and that tool support for the proposed
transformations is ongoing or planned as future work, we can conclude that the
revised UML profile, CUP 2.0, presented in this paper offers some benefits over
related approaches. The profile allows a detailed description of both the behavior
and structure of the user interface of context-sensitive interactive applications
using a limited amount of constructs of the UML using regular UML modeling
tools that allow metamodel extension through profiles.

The profile also allows a clear specification of all datatypes that are involved,
allowing to make optimal use of specifically designed user interface components
for complex datatypes on platforms where they are available. Finally, the fact
that all information is expressed in UML makes it easier to integrate the user
interface specification with the specification of the application core.

Acknowledgements. This research was partly performed within the IWT
project Participate of Alcatel Bell. Part of the research at the Expertise Cen-
tre for Digital Media is funded by the European Regional Development Fund
(ERDF), the Flemish Government and the Flemish Interdisciplinary institute
for Broadband Technology (IBBT).

References

1. Pedro F. Campos and Nuno J. Nunes. CanonSketch: a User-Centered Tool for
Canonical Abstract Prototyping. In Proceedings of EHCI-DSVIS 2004, volume
3425 of LNCS, pages 146–163. Springer, 2005.

2. Tim Clerckx, Frederik Winters, and Karin Coninx. Tool support for designing
context-sensitive user interfaces using a model-based approach. In Proceedings
TaMoDia 2005, pages 11–18, Gdansk, Poland, September 26–27 2005.

3. Larry L. Constantine. Canonical Abstract Prototypes for Abstract Visual and
Interaction Design. In Proceedings of DSV-IS 2003, number 2844 in LNCS, pages
1 – 15, Funchal, Madeira Island, Portugal, June 11-13 2003. Springer.

4. J. Coutaz and G. Rey. Foundations for a Theory of Contextors. In CADUI, pages
13–34. Kluwer Academic Publishers, 2002.

154 J. Van den Bergh and K. Coninx

5. Paulo Pinheiro da Silva and Norman W. Paton. User Interface Modelling in UMLi.
IEEE Software, 20(4):62–69, July–August 2003.

6. Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applica-
tions. Human-Computer Interaction (HCI) Journal, 16(2-4):97–166, 2001.

7. Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman. XForms 1.0.
W3C, http://www.w3.org/TR/2003/REC-xforms-20031014/, 2003.

8. Mohammed Elkoutbi, Ismäıl Khriss, and Rudolf Keller. Automated Prototyping
of User Interfaces Based on UML Scenarios. Automated Software Engineering,
13(1):5–40, January 2006.

9. Thomas Green and Alan Blackwell. Cognitive Dimensions of Information Artifacts:
a Tutorial, 1.2 edition, October 1998.

10. Jason I. Hong and James A. Landay. An architecture for privacy-sensitive ubiq-
uitous computing. In Proceedings of MobiSYS’04, pages 177 – 189. ACM Press,
2004.

11. Quentin Limbourg and Jean Vanderdonckt. Engineering Advanced Web Applica-
tions, chapter UsiXML: A User Interface Description Language Supporting Multi-
ple Levels of Independence. Rinton Press, December 2004.

12. Giulio Mori, Fabio Paternò, and Carmen Santoro. Design and Development of Mul-
tidevice User Interfaces through Multiple Logical Descriptions. IEEE Transactions
on Sofware Engineering, 30(8):507–520, August 2004.

13. Nuno Jardim Nunes. Object Modeling for User-Centered Development and User
Interface Design: The Wisdom Approach. PhD thesis, Univ. da Madeira, 2001.

14. Object Management Group. UML 2.0 Superstructure Specification, October 8 2004.
15. Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.

Springer, 2000.
16. Andreas Pleuss. MML: A Language for Modeling Interactive Multimedia Applica-

tions. In Proceedings of Symposium on Multimedia, pages 465–473, December12–14
2005.

17. Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. World Wide Web,
http://www.omg.org/ docs/omg/03-06-01.pdf, 2003.

18. Jan Van den Bergh and Karin Coninx. Contextual ConcurTaskTrees: Integrating
Dynamic Contexts in Task Based Design. In Second IEEE Conference on Pervasive
Computing and Communications WORKSHOPS, pages 13–17, Orlando, FL, USA,
March 14–17 2004. IEEE Press.

19. Jan Van den Bergh and Karin Coninx. Towards Modeling Context-Sensitive In-
teractive Applications: the Context-Sensitive User Interface Profile (CUP). In
Proceedings of SoftVis ’05, pages 87–94, New York, NY, USA, 2005. ACM Press.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 155 – 169, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Domain Models Are NOT Aspect Free

Awais Rashid and Ana Moreira

Computing Department, Lancaster University, Lancaster LA1 4WA, UK
awais@comp.lancs.ac.uk

Departamento de Informática, Universidade Nova de Lisboa, 2829-516 Lisboa, Portugal
amm@di.fct.unl.pt

Abstract. In proceedings of MoDELS/UML 2005, Steimann argues that
domain models are aspect free. Steimann’s hypothesis is that the notion of
aspect in aspect-oriented software development (AOSD) is a meta-level
concept. He concludes that aspects are technical concepts, i.e., a property of
programming and not a means to reason about domain concepts in a modular
fashion. In this paper we argue otherwise. We highlight that, by ignoring the
body of work on Early Aspects, Steimann in fact ignores the problem domain
itself. Early Aspects techniques support improved modular and compositional
reasoning about the problem domain. Using concrete examples we argue that
domain models do indeed have aspects which need first-class support for such
reasoning. Steimann’s argument is based on treating quantification and
obliviousness as fundamental properties of AOSD. Using concrete application
studies we challenge this basis and argue that abstraction, modularity and
composability are much more fundamental.

1 Introduction

As new software development paradigms appear on the horizon, it is normal that
debates rage over their merits and demerits. Aspect-oriented software development
(AOSD) [13] is no stranger to this situation. Since Kiczales et al’s invited paper at
ECOOP’97 [22], several points and counterpoints have been made in literature
arguing about the merits and demerits of modularising crosscutting concerns in
separate abstractions. Over the years the focus of aspect-orientation has significantly
expanded beyond programming. A number of aspect-oriented analysis and design
approaches, e.g., [2, 6, 17, 26, 27, 34, 39], aimed at disentangling requirements,
architecture and design descriptions have appeared. These approaches provide explicit
support for identification, modular representation, composition and analysis of
broadly-scoped properties of both a functional and non-functional nature. In fact,
several approaches, e.g., [8, 27, 38], take a multi-dimensional perspective on the
problem and remove the strong distinction between aspects and the concerns they
crosscut. Thus they also remove any distinction about whether a concern is functional
or non-functional hence facilitating uniform modelling of concerns and their
crosscutting influences (amidst other dependencies and interactions).

In his MoDELS/UML 2005 paper [35], Friedrich Steimann, however, argues that
AOSD approaches in general, and aspect-oriented analysis and design approaches in
particular, are merely useful for representing meta-level concepts. His hypothesis is

156 A. Rashid and A. Moreira

that aspects are second order entities that only require meta-modelling support and
that domain models are in fact aspect free. His overall conclusion is that aspects are
technical concepts, i.e., a property of programming, and not a means to reason about
domain concepts in a modular fashion. In other words: there are no functional aspects
and non-functional aspects are properties of the solution domain that do not require
first-order representation. In his discussion, Steimann disregards the work on Early
Aspects indicating that just because a functional requirement crosscuts other
requirements does not mean that it should be treated as an aspect. Steimann’s notion
of an aspect is rooted in the properties of quantification and obliviousness as proposed
by Filman and Friedman [14]. He treats these as fundamental properties of any
aspect-oriented approach and, on this basis, argues about the second-ordered nature of
aspects – to paraphrase Steimann: aspects are meta-level concepts that manipulate
base-level (or first-order) elements.

In this paper we argue otherwise. We contend that if one is to discuss whether a
domain model has crosscutting concerns, one cannot disregard the problem
descriptions themselves. Therefore, we base our argument on Early Aspects
techniques which support improved modular and compositional reasoning about the
problem domain. Using concrete examples rooted in these techniques we argue that
domain models do indeed have aspects which need to be modularised effectively to
enable us to reason about them in a modular fashion. Similarly, using concrete
application studies we challenge the fundamental basis of Steimann’s argument, i.e.,
the notion of quantification and obliviousness. We demonstrate that abstraction,
modularity and composability are much more fundamental to AOSD than
quantification and obliviousness (which, though desirable are not necessary defining
characteristics of an aspect). We conclude by discussing that, even if quantification
and obliviousness were to be considered fundamental, firstly, early aspects techniques
meet these characteristics and, secondly, the notion of aspects in the problem domain,
as demonstrated by Early Aspects techniques, flows into the solution space, requiring
first-class modelling of functional and non-functional aspects.

The rest of the paper is structured as follows. Section 2 lists Steimann’s main four
perspectives that give body to his argument. Section 3 debates each of these four
arguments, showing counter examples. Section 4 explains why quantification and
obliviousness cannot be understood as necessary defining properties of an aspect,
discussing other equally valid views not aligned with Filman and Friedman’s
perspective. We argue that, just like with other separation of concerns approaches,
abstraction, modularity and composability are the fundamental characteristics of
AOSD. In Section 5 we discuss how first-class aspects, both functional and non-
functional, in the problem domain flow into the solution space hence requiring their
first class representation in the solution domain. Finally, Section 6 concludes the
paper by discussing how our argument invalidates Steimann’s hypothesis while still
satisfying several constraints set by him.

2 Steimann’s Argument

Steimann’s argument about domain models being aspect free is based on four
different perspectives:

 Domain Models Are NOT Aspect Free 157

1. Relationship between the notion of an aspect and a role;
2. The lack of any observed examples of arbitrary functional aspects in the

current literature;
3. Aspects being strictly non-functional properties that are in fact aspects of the

solution rather than the problem domain;
4. The second-order nature of aspects, i.e., aspects must always manipulate

entities in a first-order separation.

From the above four perspectives, Steimann argues that for functional aspects to
exist, and hence the need for them to be modelled, they must be at the same level of
abstraction as other elements in the domain. Using a semi-formal proof based on
quantification and obliviousness [14] he argues that aspects are always second-order
statements that manipulate first-order elements thus concluding that they are meta-
level concepts. From this semi-formal proof he also draws his conclusion that no
functional (or domain) aspects exist.

We discuss quantification and obliviousness in detail in Section 4. Before that, in
section 3, we debate each of the above four perspectives underpinning Steimann’s
argument. As mentioned above, Steimann disregards the work on Early Aspects
stating that natural language descriptions are too imprecise to be aspectised. However,
stakeholders, who are the primary descriptors of a problem domain, tend to specify
their problems using natural language. These natural language descriptions are where
aspects first manifest themselves as broadly-scoped properties leading to tangled
representations in requirements models and subsequently in architecture, design and
implementation. If we are to look for the existence of functional aspects in domain
models we must start at the requirements analysis stage. Thus, this is where we start
our search for aspects in domain models.

3 Aspects in Domain Models

When discussing the existence of aspects in domain models, we first examine
Steimann’s perspective on aspects and roles. In subsection 3.1, we demonstrate that
his perspective is just one observation on the relationship between the two concepts
and other equally valid arguments exist that demonstrate the synergy between the two
concepts and their mutual complementarity. Then, in subsection 3.2, we show
evidence, by means of practical examples drawn from the body of work on Early
Aspects, that functional aspects do exist and can be found in everyday problems. In
subsection 3.3, we discuss that non-functional requirements are not just properties of
the solution but in fact properties of the problem that, too, require first-class
modelling support. Finally, in subsection 3.4, we provide additional arguments as to
why aspects require a first-order representation.

3.1 On the Relation Between Aspects and Roles

Steimann equates an aspect to a role. He argues that for roles to be appropriately
realised, each object must explicitly implement all the roles it intends to play. In his
view, since most role implementations tend to be specific to the particular class of
objects, it is not reasonable to assume that role implementations can indeed be

158 A. Rashid and A. Moreira

aspectised. This is, however, not the case. Several roles can be very generic. Most
design patterns utilise the notion of roles to decouple the pattern implementation from
its concrete usage in a specific application. For instance, the Observer pattern uses the
Subject and Observer roles for this purpose. A number of design modelling
approaches, e.g., Theme/UML [8] have shown how aspect-oriented techniques can be
employed to improve the modular representation of design patterns such as the
Observer pattern. Similarly, Hannemann and Kiczales [16] have demonstrated how
design pattern implementations can benefit from the use of aspect-oriented
programming (AOP) in terms of code locality, reusability, composability and
pluggability. Garcia et al. have used these implementations as a basis of their
quantitative evaluation of the benefits and scalability of AOP [5, 15]. Their studies
show significant improvements in the case of 13 out of 23 design patterns with
regards to metrics such as separation of concerns, coupling, cohesion and size. These
studies mostly represent roles as interfaces with the glue code, between their abstract
representation in the modularised pattern implementation and its concrete application
instantiation, being provided through aspect-oriented composition mechanisms. This
relationship between roles and aspects is entirely different from what is perceived by
Steimann. Roles remain completely polymorphic as they are realised through
interfaces while aspects provide the modularity and composition support essential to
modularise the pattern implementation in a separate aspectual component.

Kendall’s work [20] demonstrates a similar yet orthogonal relationship. She
utilises AOP as a means to improve the implementation of role models. Through re-
engineering of an existing role-based framework to an AspectJ implementation, she
demonstrates that an aspect-oriented implementation is more cohesive than an object-
oriented one.

Hannemann and Kiczales as well as Kendall utilize AOP as a means to improve the
modularity of role-based implementations. Another different, yet equally valid,
perspective arises from the ability of roles to help us realise multi-faceted objects.
Roles can apply (often dynamically) across the system and hence, role-based systems
tend to be less prescriptive about how objects interact. This ability makes it possible
for role-models to facilitate aspect composition as is the case in CaesarJ [28]. In this
case the provided and required interfaces specify the roles an aspect can play in a
composition and those it expects of other modules in the system.

Steimann further argues that roles are polymorphic by nature and aspects are not.
This is not true. Firstly, most aspect-oriented approaches facilitate aspect inheritance
hence respecting the substitutability semantics that are normal in object-oriented
hierarchies. Though approaches such as AspectJ [1] restrict the programmer to
implicit aspect instantiation through the language framework, other techniques, e.g.,
CaesarJ [28], Composition Filters [4], JBoss [18] and Vejal [33], facilitate explicit
aspect instantiation hence supporting substitutability of an aspect instance of a sub-
aspect-type whenever an instance of a super-aspect-type is required. Since most of
these approaches reify aspects as first-class objects (or use Java classes to specify
aspect behaviour with XML descriptors specifying the aspect compositions), any role
realisation using such AOP mechanisms can have the same polymorphic nature as a
pure OO role realisation. It is perfectly conceivable that using an approach such as
Composition Filters one can have a core object with a set of attached filters, each of
which realises a specific role the object has to play (cf. Figure 1 – note only incoming

 Domain Models Are NOT Aspect Free 159

message filters are shown but similar logic applies to outgoing messages). The per
instance attachment ability of Composition Filters further facilitates an object-specific
(unlike class-specific implementation in most standard OO techniques) configuration
of roles that an object may participate in – this has been realised in the context of
implementing roles at each edge of association and aggregation relationships using
the SADES implementation of composition filter concepts [31]. Since such filters are
implemented as first-class elements, polymorphic properties of roles are fully
preserved.

Core
Object

Messages

Series of
Dispatch Filters

Role Implementations

Object
Interface

Fig. 1. Polymorphic Role Implementations with AOP using Composition Filters

Having established the complementary nature of roles and aspects, we can also say
that aspects do exist in domain models. Roles are a domain concept. Different objects
in different domains play different (perhaps sometimes overlapping) sets of roles.
Since roles have a broadly-scoped nature and aspects can be used to realise role
models in a fashion that supports role modularity without compromising role
polymorphism, aspects do exist in domain models. However, one might argue that
roles naturally form good candidates for aspects. In a system not following a role
model design principle, are there indeed crosscutting functional and non-functional
properties that are first-order domain elements? We discuss this next.

3.2 Observed Examples of Arbitrary Functional Aspects

For such observed examples, we turn to the extensive body of work on Early Aspects
[2, 6, 8, 17, 26, 27, 34, 39]. Steimann disregards the work in this space by stating that
the language of requirements is informal and that aspect-oriented requirements
engineering approaches do not satisfy the quantification and obliviousness properties.
Requirements engineering is mainly concerned with reasoning about the problem
domain and formulating an effective understanding of the stakeholders’ needs. Such
an understanding leads to the emergence of a requirements specification that forms a
bridge between the problem domain and the solution domain, the latter being the
system architecture, design and implementation. So if one is to argue about the
existence of aspects in domain models, one must examine the body of work in Early
Aspects and specifically that on aspect-oriented requirements engineering. Though we
argue in Section 4 that quantification and obliviousness are desirable, not
fundamental, properties of AOSD approaches, Steimann’s assertion that Early
Aspects techniques do not satisfy these properties is incorrect. In fact, several
approaches, e.g., [2, 6, 27, 34, 39], do not require any specific hooks within the base

160 A. Rashid and A. Moreira

decomposition hence satisfying the obliviousness property. Furthermore, they have
powerful composition mechanisms based on high-level declarative queries and
semantics-based join point models that certainly do satisfy the quantification property.
Figure 2 shows simplified viewpoint and aspect definitions as well as an example
composition specification in the viewpoint-based aspect-oriented requirements
engineering approach we presented in [34] – note we omit the XML notation for
simplification. The problem domain in question is that of online auction systems. We
can observe that the base concerns, i.e., the viewpoints Seller and Buyer are oblivious
of the aspect Bidding whose associated composition specification quantifies over a set
of viewpoint requirements to which it applies. Incidentally, note that the aspect
Bidding is a core functional property of the system and not a non-functional one.

Viewpoint: Seller
R1: A seller starts an auction.
R2: A seller sets the closing time for an auction.

Viewpoint: Buyer
R1: A buyer can browse various auctions in the

system.
R2: A buyer can bid for items available for auction.

Aspect: Bidding
R1: Bids can only be placed if an auction is in progress

Bidding Composition
For Buyer.R2 apply Bidding.R1 so that:

Seller.R1 = satisfied
and
Current Time < Closing Time in Seller.R2

Fig. 2. Obliviousness in viewpoint-based aspect-oriented requirements engineering

Reasoning about the problem domain with early aspects
Let us look at the specific problem description of an online auction system and
analyse what are the various crosscutting functional and non-functional concerns. We
use a viewpoint-based requirements specification mechanism. Aspects in the
specification crosscut the viewpoints, each of which represents requirements from a
specific stakeholders’ perspective. The viewpoints in this specific problem description
are also analogous to roles as they capture the requirements about specific user roles,
i.e. the System Administrator, Customer, Seller, Buyer, System Owner and
Webmaster. As shown in Figure 3, such a system has a number of concerns that
crosscut the requirements of these various viewpoints (or roles). For instance, the
bidding aspect affects the customer viewpoint because customers are interested in
bidding for the items being auctioned. It also affects sellers as they are the primary
stakeholders interested in the bids. At the same time, the system administrator is
interested in ensuring that bids are only received until the specified auction closing
time, and so on. The same is true of the selling aspect which affects these multiple
viewpoints. Another aspect of significance is the bid solvency concern which dictates
that all placed bids must be solvent, i.e. a customer must have more credit than the
sum total of all the bids s/he has in progress. This is of key concern to the system
administrator and owner as they wish to ensure that sellers recover their due
payments. At the same time, this is a key factor in the seller choosing the specific
auction system for the security and trust the bid solvency aspect offers. All the
aspects, i.e. bidding, selling, bid solvency, etc. are functional properties of the domain
hence requiring first-class modelling support. They are not properties of the program
to be developed to satisfy the auction system requirements. Nor are they second order
entities as the various viewpoints have strong dependencies on the semantics of these
aspects and are at the same level of abstraction as the aspects themselves.

 Domain Models Are NOT Aspect Free 161

Customer

Seller BuyerSystem AdministratorWeb Master System Owner

provide
requirements

provide requirementsprovide requirements

<<aspect>>
Bidding

<<aspect>>
Selling

<<aspect>>
Bid Solvency

<<aspect>>
Security

<<aspect>>
Concurrency

<<aspect>>
Transaction

<<aspect>>
Logging

<<aspect>>
Availability

crosscuts crosscuts crosscuts
crosscuts

crosscuts
crosscuts

crosscuts

crosscuts

Requirements structured per viewpoint
VPSeller VPBuyer VPSystemOwner

Fig. 3. Aspects in a viewpoint-oriented model of the auction system

Other evidence in existing literature
Jacobson and Ng [17] offer an aspect-oriented use case approach to handle
stakeholder concerns from requirements analysis through to low-level design. Their
proposal is based on the observation that use cases reflect stakeholders’ concerns and
are crosscutting by nature. Therefore, each use case is encapsulated in a use-case
module which typically contains one non-use-case specific slice (that only adds
classes to the module) and one or more use-case slices which contain classes and
aspects specific to the realisation of the use case. It is worth observing that use-case
slices (and, therefore, aspects) identified in this work are typical functional aspects
and may represent extensions, inclusions and certain secondary flows used in classical
object-oriented modelling, which makes use case slices abundant for each new
problem. In their hotel reservation system example, Jacobson and Ng have identified
a number of functional aspects, such as handle waiting list, checking in customer and
handle no room.

In the Theme approach by Clarke and Baniassad [8], a theme encapsulates a piece
of functionality or aspect or concern that is of interest to a developer. At the
requirements analysis level, themes are classified sets of requirements (taken directly
from the requirements description document). Aspect themes are those that might be
triggered in multiple different situations. They identify several examples of theme
aspects, many of them being functional, e.g., functional crosscutting themes in a
crystal collection game, namely, Track-Energy, Challenge, Drop.

In [26], Moreira et al use aspects to modularise and compose volatile concerns.
Many of these volatile concerns are functional, such as card solvency and calculate
fares in a subway system and bidding, order handling, payment and monitoring in a
transport system.

D’Hondt and Jonckers [10] provide an approach for representing business rules as
aspects. Business rules are highly domain- and application-dependent and crosscut
other domain elements. Examples of such business rules include: loyal customers are
entitled to a 5% discount; all customers who have a charge card are loyal, and so on.

162 A. Rashid and A. Moreira

3.3 On the Notion of Non-functional Requirements Being Solution Domain
Properties

Steimann argues that non-functional requirements are not elements of the problem
domain and are, instead, technical properties and therefore only appear at the solution
domain level. This is not so, however. Several other well-established approaches
(goal- and agent-oriented [7, 11], for example) have demonstrated the need for putting
non-functional requirements at the forefront of developers’ thinking. In fact, many of
these properties reflect real stakeholder concerns, even at the strategic organisational
level, and their existence can be noticed explicitly and implicitly in the requirements
descriptions. Therefore, we should not put those concerns on hold until the
implementation phase is reached. And, as mentioned earlier, if we are to prove that
aspects exist at the modelling analysis level, we cannot ignore a significant part of
what constitutes one of the primary bases for our work: the requirements descriptions.

Our auction system model in Figure 3 also shows a number of non-functional
aspects, i.e., security, concurrency, transaction, logging and availability. Again,
though these non-functional aspects will be present in other domains, the
requirements pertaining to these will nevertheless be domain specific and dictate
different types of needs. For instance, in the auction system, the security needs are
mainly concerned with ensuring that all users accessing the system are authorised, the
communication between the client and server uses a secure connection and so on. On
the other hand, security requirements for a home security monitoring system will
include ensuring that all doors and windows have locks, alarms are wired to those
locks, motion detectors fitted, etc. Security requirements for a transportation system
might be related to special arrangements necessary when transporting military assets
or sensitive documents. Though the non-functional property security appears in all
these domains, the specific requirements differ and so will the solutions to satisfy
those requirements. Also note that the transaction aspect is also a property of the
domain as it relates to customers completing their transactions and obtaining their
goods. Just because it may map on to a concrete transaction processing aspect in the
implementation does not imply that it is a property of the programming (as stated by
Steimann). When analysing the problem domain, the concept of a transaction will
have specific properties, e.g., a long transaction in an auction system where a
customer places several bids on the same item in response to increasing bids from
other users. This is in contrast to a transaction in a banking system where the general
nature of a transaction is typically short: users go to the ATM or bank clerk to
withdraw cash and the transactions do not last for days or weeks as is the case for an
auction system. At the domain analysis level we are interested in modelling the
semantics of a transaction from a user/stakeholder perspective and not from the
perspective of specific locking or concurrency protocols that may be employed during
implementation.

3.4 On the First-Order Nature of Aspects

The discussion in Sections 3.1-3 clearly demonstrates that functional and non-
functional aspects are properties of the domain and therefore must be modelled at the
same level of abstraction as other domain concepts being analysed. Here we offer
further evidence of the first-order nature of aspects.

 Domain Models Are NOT Aspect Free 163

In his paper, Steimann offers a semi-formal proof regarding the second-order
nature of aspects. This proof is founded on the presence of a base decomposition, i.e.
he envisages that there will always be a dominant decomposition paradigm employed
for modelling domain concepts and that aspects will crosscut concerns in this
dominant decomposition. However, a number of approaches in AOSD remove the
strong distinction between base concerns and aspects. Instead they take a multi-
dimensional perspective on separation of concerns and their subsequent modelling.
This means that there is no dominant decomposition. All concerns, whether they are
functional or non-functional, classes or aspects, are at the same level of abstraction.
This has significant advantages for domain analysis and modelling. One can fold or
project one set of concerns on another set of concerns, as needed, to understand their
mutual dependencies and influences, including crosscutting ones. This provides a
powerful composition mechanism as all concerns are composable in a uniform
fashion. Concerns can be incrementally composed to build composite concerns which
can in turn be composed together to form more coarse-grained concerns. Such multi-
dimensional approaches have been proposed for requirements analysis [8, 27, 37, 38],
design [3, 8, 19] and implementation [3, 38]. Models in such approaches invalidate
Steimann’s proof as all concerns in a multi-dimensional model are first-order entities.

4 Quantification and Obliviousness

In [14] Filman and Friedman proposed a simple classification of the relationship
between aspects and classes based on the notions of quantification and obliviousness.
Quantification is defined as the ability of an AOP pointcut language to specify a
predicate which can match a variety of join points in the static class definitions and
dynamic object interaction graphs. Obliviousness, on the other hand, is the ability of a
class to be aspectised without having to specially provide any hooks to expose the
various join points that aspects might want to quantify over. The statement in [14] is,
however, a position statement and the authors do not imply that their classification is
the only classification of fundamental properties of AOP. Nor is the classification
intended as a definition of the fundamentals of AOP. There are other classifications
that focus on other facets of the relationship between aspects and classes. For
instance, Kersten and Murphy [21] have proposed a classification based on their
experience in developing the ATLAS web-based learning system. They categorise
aspect-class relationships into:

• class directional: the aspects know about the classes but not vice versa. This is
analogous to Filman and Friedman’s obliviousness.

• aspect directional: the classes know about the aspects but not vice versa. This
means that classes are no longer oblivious of the aspects. Classes may need to be
annotated to specify the intention of fields and methods, e.g., as in meta-data-
based pointcut expressions [25], instead of relying on lexical matching in existing
pointcut expression mechanisms.

• open: this is a union of aspect directional and class directional – both aspects and
classes know about each other.

• closed: neither the aspects nor the classes know about each other. This applies to
systems with strong encapsulation, e.g., [30].

164 A. Rashid and A. Moreira

Kersten and Murphy’s classification demonstrates that there are several non-
oblivious modalities of the aspect-class relationship. In fact, a number of application
studies have shown that, in a variety of cases, obliviousness is neither achievable nor
desirable. Kienzle and Guerraoui [24] and Fabry [12] argue that when modularising
transaction management concerns only syntactic obliviousness is achievable, i.e.
syntactic representation of aspects and class models may not contain direct references
to each other. However, semantic obliviousness is not desirable as objects need to be
aware of their transactional nature. Similarly, Rashid and Chitchyan [32] demonstrate
that, in the context of a database application, persistence can be effectively aspectised.
However, only partial obliviousness is desirable. This is because persistence has to be
accounted for as an architectural decision during the design of data-consumer
components – GUI components, for instance, need to be aware of large volumes of
data so that they may be presented to users in manageable chunks. Furthermore,
designers of such components also need to consider the declarative nature of retrieval
mechanisms supported by most database systems. Similarly, deletion requires explicit
attention during application design as mostly applications trigger such an operation.

Quantification too is only a desirable property of any AOSD technique. No doubt
predicate-like pointcut expressions, e.g., [29, 36] provide a means to match a range of
join points in design or code models. However, in several situations that Colyer et al.
[9] refer to as heterogeneous aspects, a pointcut expression may only select a single
join point (i.e. no pattern-matching a la AspectJ is employed). The encapsulation of a
number of such pointcuts and their associated advice in an aspect still modularises a
crosscutting concern, though pointcuts do not employ any quantification mechanism.

There are, of course, alternative aspect composition models that do not rely on
predicate-like pointcut expressions. We discussed role-based composition in Section
2.1. Such role-based composition models are often found in aspect-oriented
architecture design approaches where connectors and associated roles manage aspect
composition [2, 30]. Similarly, the increasing drive towards semantics-based pointcut
expressions in AOSD means that at first glance a pointcut may not be explicitly
quantifying over multiple join points. However, the semantics to be matched by the
pointcut expression will inevitably be implicitly quantifying over other system
elements. One such semantics-based pointcut expression mechanism has been
developed in the requirements description language from AOSD-Europe [6]. The
language enriches existing requirements descriptions with additional semantics
derived from the semantics of the natural language itself. Therefore, as shown in
Figure 4, the constraint specification (analogous to a pointcut expression) can match
all the aspect requirements where the subject of the sentence (in a grammatical sense)
is a seller and the object (again in a grammatical sense) an auction with an end
relationship between the subject and object. Similar semantics-based matching is done
in the base and outcome expressions. Instead of using a syntactical match as in Figure
2 (bidding composition), we are instead matching elements based on the semantics
derived from the requirements descriptions, i.e. the subject, object and nature of
relationship between the subject and object. Such semantics-based join point models
have also been proposed for aspect-oriented design [36] and programming [29, 33].

 Domain Models Are NOT Aspect Free 165

<Composition name="CancelAuction">
<Constraint operator="begin/end">subject="seller" and relationship="end" and object="auction"</Constraint>
<Base operator="ifNot">subject="auction" and relationship="begin"</Base>
<Outcome operator="satisfy">all requirements where subject="start date“ or object=“start date”</Outcome>

</Composition>

Fig. 4. Semantics-based composition in the AOSD-Europe RDL

So if quantification and obliviousness are not fundamental characteristics of an
AOSD approach, what is fundamental for aspects? In our view, the same
characteristics that hold for other separation of concerns mechanisms are also
fundamental for aspects, i.e. abstraction, modularity and composability. It is not
quantification and obliviousness but the systematic support for abstraction, modularity
and composability of crosscutting concerns [34] that distinguishes AOSD techniques
from other separation of concerns mechanisms.

4.1 Aspects Are About Abstraction

Abstraction is a means to hide away the details of how a specific concept or feature
may be implemented in a system. Abstract types provide us a means to reason about
relevant properties of a problem domain without getting bogged down in
implementation details. So the first question we need to address is whether aspects
provide any benefits in terms of abstraction. In fact, abstraction is as fundamental to
AOSD as it is to any other separation of concerns mechanism. The notion of an aspect
allows us to abstract away from the details of how that aspect might be scattered and
tangled with the functionality of other modules in the system. At the modelling level,
aspects help us abstract away from implementation details, for instance, the examples
of security and transactions in Section 3.3. At the same time, we can refine aspects at
a higher-level of abstraction, e.g., aspects in requirements models, to more concrete
aspects hence gaining invaluable knowledge about how crosscutting properties in
requirements map to architecture-, design- and implementation-level aspects (this is
discussed further in Section 5). This is analogous to refining objects in requirements
models to their corresponding designs and implementations. The key difference is
that, as abstractions, aspects facilitate tracing the impact and influence of crosscutting
relationships through the various refinements.

4.2 Aspects Are About Modularity

Abstraction and modularity are closely related. When we abstract away from specific
details that may not be of interest at a certain level of abstraction, we also want to
modularise details that are of interest so that we may reason about them in isolation.
This is termed modular reasoning [23]. When modelling domain concepts, modular
reasoning is fundamental to understand the main concerns of a problem and to reason
about the individual properties of the domain concerns. The modularisation of
crosscutting requirements in aspects greatly facilitates such modular reasoning.
Returning to our example from Section 3.2, the modularisation of bidding, selling and
bid solvency requirements allows us to reason about the needs they impose on the
system as well as about their completeness regardless of how they affect or influence

166 A. Rashid and A. Moreira

various viewpoints in the system. The same applies to the non-functional aspects we
discussed. Without modularisation of such crosscutting properties, we would need to
reason about them by looking at their tangled representations in the various viewpoint
requirements, which would be an arduous and time consuming task. Because these
crosscutting concerns would be tangled with the viewpoints in the absence of aspect
modularity, this is further evidence that they are properties of the domain and not of
the programming solution.

4.3 Aspects Are About Composability

Modularity must be complemented by composability. The various modules need to
relate to each other in a systematic and coherent fashion so that one may reason about
the global or emergent properties of the system – using the modular reasoning
outcomes as a basis. We refer to this global reasoning as compositional reasoning.
Aspects facilitate such compositional reasoning about the problem domain as well as
the corresponding solution. For instance, when composing the various aspects and
viewpoints in our auction system example, we can understand the trade-offs between
the aspects even before the architecture is derived. For example, we can observe that
the bidding and bid solvency concerns may be at odds at times: we wish to allow
people to place bids yet the solvency requirements must prohibit this at times. This
allows us to reason about the overall bidding process and its administration. In
addition to reasoning about inter-aspect interactions, we can also reason about how
aspects influence the requirements of the various viewpoints. For instance, the various
viewpoints are constrained by the security requirements which may require customers
to register, login and use secure transmissions before participating in any auctions.
How this compositional reasoning is carried out is beside the point. Quantification in
pointcut expressions is just one way of doing this. That does not mean that one is
manipulating first-order elements in second-order expressions. The goal is to compose
the various domain elements, i.e. the aspects, classes, etc. to be able to reason about
the global properties of the system.

5 From Early Domain Aspects to Design and Implementation
Aspects

Capturing aspects early in the life-cycle has several advantages. In particular, this can
help to guarantee that all stakeholders’ concerns are identified and captured properly,
reducing the possibility of either losing significant requirements during development
or else keeping them in a separate list that needs to accompany the developer through
to the solution domain. Such an approach increases the consistency between
requirements, architecture, design and implementation, providing, at the same time,
improved support for traceability of all types of concerns across the development
lifecycle activities. Moreover, a systematic means to identify and manage crosscutting
concerns at the problem domain level contributes to completeness of requirements
specifications and their corresponding architecture, design and implementation. An
evident consequence is that the requirements specification can truly function as a
bridge to narrow the classic gap between the problem and the solution domains.

 Domain Models Are NOT Aspect Free 167

In [27] and [34] we observed that analysis of requirements-level aspects provides
us with an improved understanding of their mutual trade-offs and, consequently, with
the ability to make improved architectural choices. Each functional or non-functional
aspect leads to a number of architecture choices that would serve its needs with
varying levels of stakeholder satisfaction. These architectural choices are unlikely to
be the same and could even be conflicting (which is often the case). All these, often
conflicting architectural choices pull the final architecture choice in various
directions. Our requirements-level trade-off analysis gives us some early insights into
such a pull and helps us resolve some of the conflicts. This arms us with a better
understanding of the diverse and conflicting needs of aspectual concerns hence
facilitating the choice of an optimal architecture that balances these conflicting needs.

However, requirements-level aspects are more than just identifying architectural
choices and trade-offs. A requirements-level aspect can be stepwise refined into one
or more architectural aspects, and, subsequently, design and implementation aspects.
For instance, in our auction system example, the bid solvency aspect would be refined
into an aspect implementing specific algorithms for ensuring solvency across
multiple, concurrent bids by the same customer. At the same time, such an aspect
would require an awareness that customers could be selling items at the same time,
and hence receiving top-ups on their accounts. The availability aspect, on the
other hand, would map onto a decision for an architectural choice, i.e. involving
backup servers, high stability network connections and so on. At the same time, it will
also refine into concrete solution domain aspects realising replication, session
management, etc.

Similar mappings have been proposed by others. Jacobson and Ng [17], for
instance, handle each use case module, and in particular each use case slice,
separately through architecture to code, by refining the analysis elements into design
structures (classes and components) and, when necessary, adding new solution
structures. In their examples, all the use case slices identified during the requirements
analysis are kept during architecture and low level design. During architecture design,
new aspects appear to keep platform specific elements separate from the platform
independent ones. Similarly, in Theme [8], requirements analysis themes are carried
forward to the design level – each analysis-level theme is designed separately from all
the others and contains all the necessary solution domain structures to implement it.

6 Conclusion

In his conclusion Steimann encourages others to challenge and disprove his
hypothesis and sets three conditions [35]:

1. “The aspect must be an aspect in the aspect-oriented sense (in particular, it
must not be a subroutine or a role);

2. It must not be an artefact of the (technical) solution, but must be seen as
representative of an element of the underlying problem domain;

3. Its choice must have a certain arbitrariness about it so that the example
provides evidence that there are more aspects of the same kind, be it in the
same or in other domains.”

168 A. Rashid and A. Moreira

In this paper, we have shown several examples where aspects are not mere sub-
routines or roles – i.e. they are first-class problem domain concepts that crosscut other
problem domain concepts (satisfying condition 1). Modelling of such concerns as
sub-routines would require them to be triggered by viewpoints in different situations,
hence tangling these concerns with the core descriptions of the viewpoints. We have
also shown that quantification and obliviousness, though desirable, are not
fundamental properties of AOSD. However, even if these were to be considered
fundamental, aspect-oriented requirements engineering approaches offer strong
modularisation and composition mechanisms satisfying both obliviousness and
quantification (in contrast to what Steimann affirms). We have demonstrated that
functional and non-functional aspects represent important stakeholders concerns at the
domain-level and therefore need a first-order representation (satisfying condition 2).
Finally, we have pointed out a considerable number of arbitrary functional aspects
that can be found in the existing Early Aspects body of work, therefore satisfying
condition 3.

We hope to have convinced the reader that aspects are not about obliviousness and
quantification, and that they represent important stakeholder concerns present in the
requirements descriptions which cannot be ignored and left to be treated during the
implementation phase. Aspects are about more fundamental software engineering
principles. Aspects are about abstraction, modularity and composability. These are the
lemmas that should guide our decisions throughout the development lifecycle.

Acknowledgements. This work is supported by the projects: AOSD-Europe (IST-2-
004349), MULDRE (EPSRC EP/C003330/1) and SOFTAS (POSC/EIA/60189/2004).
The authors wish to thank Ruzanna Chitchyan for helpful comments and discussions.

References

[1] AspectJ Project, http://www.eclipse.org/aspectj/, 2006.
[2] E. Baniassad, et al., "Discovering Early Aspects", IEEE Software, 23(1), pp. 61-69, 2006.
[3] D. Batory, et al., "Scaling Stepwise-Refinement", IEEE Trans. on Soft. Engg., 30(6),

2004.
[4] L. Bergmans, M. Aksit, "Composing Crosscutting Concerns using Composition Filters",

CACM, 44(10), pp. 51-57, 2001.
[5] N. Cacho, et al., "Composing Design Patterns: A Scalability Study of Aspect-Oriented

Programming", Proc. AOSD Conf., 2006, ACM, pp. 109-121.
[6] R. Chitchyan, et al., "Initial Version of Aspect-Oriented Requirements Engineering

Model", AOSD-Europe Report D36 (AOSD-Europe-ULANC-17) http://www.aosd-
europe.net 2006.

[7] L. Chung, et al., Non-Functional Requirements in Software Engineering: Kluwer, 2000.
[8] S. Clarke, E. Baniassad, Aspect-Oriented Analysis and Design: The Theme Approach:

Addison-Wesley, 2005.
[9] A. Colyer, et al., "On the Separation of Concerns in Program Families", Lancaster

University Tech. Report COMP-001-2004 (http://www.comp.lancs.ac.uk/computing/aose).
[10] M. D'Hondt, V. Jonckers, "Hybrid Aspects for Weaving Object-Oriented Functionality

and Rule-based Knowledge", Proc. AOSD Conf., 2004, ACM, pp. 132-140.
[11] A. Dardenne, et al., "Goal-directed Requirements Acquisition", Science of Computer

Programming, 20, pp. 3-50, 1993.

 Domain Models Are NOT Aspect Free 169

[12] J. Fabry, "Modularizing Advanced Transaction Management - Tackling Tangled Aspect
Code": PhD Thesis, Vrije Universiteit Brussel, Belgium, 2005.

[13] R. Filman, et al. (eds.), "Aspect-Oriented Software Development": Addison-Wesley, 2004.
[14] R. Filman, D. Friedman, "Aspect-Oriented Programming is Quantification and

Obliviousness", OOPSLA WS on Advanced Separation of Concerns, 2000.
[15] A. Garcia, et al., "Modularizing Design Patterns with Aspects: A Quantitative Study",

Proc. AOSD Conf., 2005, ACM, pp. 3-14.
[16] J. Hannemann, G. Kiczales, "Design Pattern Implementation in Java and AspectJ", Proc.

OOPSLA, 2002, ACM, pp. 161-173.
[17] I. Jacobson, P.-W. Ng, Aspect-Oriented Software Development with Use Cases: Addison-

Wesley, 2004.
[18] JBoss Aspect Oriented Programming Webpage, http://www.jboss.org/products/aop, 2006.
[19] M. Kande, "A Concern-Oriented Approach to Software Architecture": PhD, EPFL, 2003.
[20] E. A. Kendall, "Role Model Designs and Implementations with Aspect-Oriented

Programming", Proc. OOPSLA, 1999, ACM, pp. 353-369.
[21] M. A. Kersten, G. C. Murphy, "Atlas: A Case Study in Building a Web-based Learning

Environment using Aspect-oriented Programming", Proc. OOPSLA, 1999, ACM, 340-
352.

[22] G. Kiczales, et al., "Aspect-Oriented Programming", ECOOP 1997, Springer, pp. 220-242.
[23] G. Kiczales, M. Mezini, "Aspect-Oriented Programming and Modular Reasoning", Proc.

ICSE, 2005, ACM, pp. 49-58.
[24] J. Kienzle, R. Guerraoui, "AOP: Does It Make Sense? The Case of Concurrency and

Failures", Proc. ECOOP, 2002, Springer, pp. 37-61.
[25] R. Laddad, "AOP with Metadata: Principles and Patterns", Industry Talk at AOSD 2005.
[26] A. Moreira, et al., "Modeling Volatile Concerns as Aspects", Proc. CAiSE, 2006,

Springer.
[27] A. Moreira, et al., "Multi-Dimensional Separation of Concerns in Requirements

Engineering", Proc. Requirements Engineering Conf., 2005, IEEE CS, pp. 285-296.
[28] K. Ostermann, "CaesarJ", http://caesarj.org/, 2006.
[29] K. Ostermann, et al., "Expressive Pointcuts for Increased Modularity", Proc. ECOOP,

2005, Springer, pp. 214-240.
[30] M. Pinto, et al., "DAOP-ADL: An Architecture Description Language for Dynamic

Component and Aspect-Based Development", Proc. GPCE, 2003, Springer, pp. 118-137.
[31] A. Rashid, Aspect-Oriented Database Systems: Springer-Verlag, 2003.
[32] A. Rashid, R. Chitchyan, "Persistence as an Aspect", Proc. AOSD, 2003, ACM, 120-129.
[33] A. Rashid, N. Leidenfrost, "VEJAL: An Aspect Language for Versioned Type Evolution

in Object Databases", AOSD 2006 Workshop on Linking Aspect Technology and
Evolution.

[34] A. Rashid, et al., "Modularisation and Composition of Aspectual Requirements", Proc.
AOSD Conf., 2003, ACM, pp. 11-20.

[35] F. Steimann, "Domain Models are Aspect Free", Proc. MODELS 2005, Springer, 171-185.
[36] D. Stein, et al., "Expressing Different Conceptual Models of Join Point Selections in

Aspect-Oriented Design", Proc. AOSD Conf., 2006, ACM, pp. 15-26.
[37] S. M. Sutton, I. Rouvellou, "Modeling of Software Concerns in Cosmos", Proc. AOSD

Conf., 2002, ACM, pp. 127-133.
[38] P. L. Tarr, et al., "N Degrees of Separation: Multi-Dimensional Separation of Concerns",

Proc. ICSE, 1999, ACM, pp. 107-119.
[39] J. Whittle, J. Araujo, "Scenario Modelling with Aspects", IEE Proceedings - Software,

151(4), pp. 157-172, 2004.

A Slice of MDE with AOP: Transforming
High-Level Business Rules to Aspects

Maŕıa Agustina Cibrán1 and Maja D’Hondt2

1 System and Software Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
mcibran@vub.ac.be

2 INRIA Jacquard - Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq, Cédex, France
dhondt@lifl.fr

Abstract. We propose an approach that combines MDE and AOSD
to automatically translate high-level business rules to aspects and in-
tegrate them with existing object-oriented applications. The separation
of rule-based knowledge from the core application as explicit business
rules has been the focus of existing approaches. However, they fail at
supporting rules that are both high-level, i.e. defined in domain terms,
and operational, i.e. automatically executable from the core application.
In this paper we propose high-level languages for expressing business
rules at the domain level as well as their connections to the core ap-
plication. We provide support for automatically translating high-level
rules to object-oriented programs and their connections to aspects, since
these crosscut the core application. Separation of concerns is preserved at
the domain and implementation levels, facilitating traceability, reusabil-
ity and adaptability. A prototype implementation and a discussion on
trade-offs are presented.

1 Introduction

Explicit business rules are a widely accepted approach to decoupling implicit
rule-based knowledge, such as regulations, policies, recommendations and pref-
erences, from a software application in a certain domain or business. This de-
coupling is pursued in all phases of the software development process [11, 17].
Ultimately, business rules are implemented either using standard software engi-
neering approaches, such as object-oriented programming languages or XML, or
dedicated approaches, such as rule-based languages.

We have observed in different industrial applications, in domains as diverse
as finance and healthcare, that once the initial application is developed, unan-
ticipated business rules need to be incorporated to accommodate the change of
regulations, policies, etc. As such, we consider as the context of this paper ex-
isting applications that are developed and maintained with traditional software

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 170–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Slice of MDE with AOP 171

engineering techniques, in which possibly unanticipated business rules have to
be integrated.

Although existing approaches support the separation of business rules from
the core application, they fail to satisfy two requirements. First of all, as busi-
ness rules are driven by the domain, they need to be defined and understood
by domain experts, who are typically not adept at programming. Therefore, it
is required that business rules are expressed in high-level domain terms, hiding
technical concerns, but are also executable. Moreover, it is more likely that busi-
ness rules expressed in terms of the domain can be more easily reused among
a variety of similar applications in the same domain. Secondly, the connection
of the business rules — i.e. applying the rules at certain events and gathering
the necessary information for their application — crosscuts the core applica-
tion. We have used Aspect-Oriented Programming (AOP) for encapsulating the
connection code in earlier work [2, 4, 5, 8]. At the same time, we identified that
the connection code consists of several recurring issues, which we abstracted in
aspect patterns. However, these patterns are again entirely expressed at the pro-
gramming level and are hence not understandable by domain experts. Therefore,
we also want to express the aspect patterns in terms of the domain, as we do
the business rules.

Our approach consists of defining business rules and their connections to the
existing application in dedicated, high-level languages and expressing them in
terms of the domain. In order to make these rules executable and integrate them
with the existing application according to the connections, we follow a Model-
Driven Engineering (MDE) approach: the rules and connections are automat-
ically translated to object-oriented and aspect-oriented programs, respectively.
The transformations use a mapping from the domain entities, used in the high-
level rules and connections, to implementation elements in the existing applica-
tion. Our approach maintains separation of concerns from the domain level to the
implementation level, thus facilitating traceability of the business rules and their
connections. Moreover, the automatically generated code pertaining to rules and
connections remains separated from the existing application code and therefore
does not interfere with the development and maintenance of the application.

This paper is organized as follows: section 2 presents the high-level rule and
connection languages, expressed in terms of the domain entities of a domain
model. The transformations from high-level specifications in those languages to
implementation are described in section 3. A prototype implementation of our
approach is described in section 4. Related work is presented in section 5. Finally,
section 6 discusses several issues as well as the advantages and limitations of our
approach and conclusions are presented in section 7.

2 A Domain Model for Business Rules

We propose a high-level domain model consisting of: domain entities, business
rules about domain entities, and connections of business rules to the core ap-
plication in terms of domain entities. The domain entities represent the domain

172 M.A. Cibrán and M. D’Hondt

vocabulary of interest and are based on the typical modeling elements that all
data modeling approaches have in common: class, attribute, method and associ-
ation. In this paper we present examples in the domain of e-commerce in which
we identify some typical domain entities used in the rest of this paper: Shop,
ShoppingBasket, Customer and ShopAccount are domain classes; ShopAccount
defines the amountSpent domain attribute, ShoppingBasket defines the applyDis-
count(discount) domain method and associations exist relating Customer with
ShopAccount and ShoppingBasket.

2.1 High-Level Business Rules

Our aim is to explicitly represent business rules at the domain level. Thus, a
high-level business rule language that allows defining rules in terms of domain
entities is proposed. Below we present the features of our high-level rule language
and argue their need:

High-level rules: As proposed by other current high-level rule languages [13,
16, 19, 10], we define a high-level rule as an IF condition THEN action state-
ment, meaning that the action of the rule is only triggered when its condition
is met. The condition and action parts only involve domain entities of a domain
model. Therefore, the business rule metamodel is related to the domain entities
metamodel.

Generic rules: A rule typically defines a comparison between some domain
entity and a hardcoded value, or analogously, a certain action involving a hard-
coded value. In order to avoid the repetition of the same logic in many rules
that only vary these hard-coded values, rules are parameterized with rule prop-
erties. In our language this is done using the PROPS 〈domainClassName〉 AS
〈propertyName〉 clause.

Connection-aware rules: Rules are parameterized with values from the con-
text in which they are going to be executed. In our language, this is done by
means of the USING 〈domainClassName〉 AS 〈domainObjectName〉 clause. The
details on how a rule is connected to the core application are presented in section
2.2.

An example high-level rule, BRDiscount, is shown below. It applies a discount
on a customer’s shopping basket if the customer has already spent more than a
certain amount of money. This rule involves the identified domain entities of the
e-commerce domain.
BR BRDiscount
PROPS int amount, float discount
USING ShoppingBasket AS basket
IF basket.customer.account.amountSpent >= amount
THEN basket.applyDiscount(discount)

2.2 High-Level Business Rule Connections

When looking at current approaches that advocate the separation of business
rules, we observe that they fail at decoupling the connection of the business rules,

A Slice of MDE with AOP 173

i.e. applying the rules at certain events and gathering the necessary information
for their application. At the implementation level, rule connections crosscut the
core application and therefore AOP is a good technique for encapsulating it,
as identified and addressed in previous work [2, 4, 5, 8]. This work has shown
that the aspects that encapsulate the rule connections are built up of the same
elements, that vary with certain situations: rule application time, contextual
information and activation time. As such, we identified several aspect patterns for
implementing different kinds of business rule connections. Although these aspect
patterns achieve the decoupling of rule connections, they are entirely expressed
at the programming level, and thus cannot be understood by the domain expert.
Moreover, as many different issues need to be taken into account as part of the
connection aspects, it becomes hard for the application engineer to write these
aspects. Thus, as the same issues recur in every connection aspect, we propose
abstracting them in high-level features of a high-level rule connection language.
This language allows expressing rule connections as separate and explicit entities
at the domain level. Separating rules from their connections (also at the domain
level) allows reusing both parts independently. Moreover, we do not only propose
new high-level abstractions but also provide a set of variations for each different
issue involved in the definition of the rule connections:

Dynamic rule application time: A rule typically needs to be applied at a
well-defined point in the execution of the core application. In our domain model
this well-defined point corresponds to the execution of a domain method and is
expressed by an event. Applying a rule at an event implies the following steps:
1) the core application is interrupted at that point, 2) the rule’s condition is
checked, 3) when the condition is met, the rule’s action is triggered, 4) the core
application’s execution is resumed, taking into account the eventual changes
introduced by the rule. Steps 1) and 2) occur as an atomic unit. In what follows
we refer to the execution of the domain method captured by the event as event
execution. We identify three ways in which a rule can be connected at an event:

a) before an event, meaning that the rule’s condition is checked just before
the execution of the event, which is then immediately followed by (in case
the condition is met) the execution of the rule’s action. For example, a rule
can be connected before a customer is checking out, meaning the point in
time just before the domain method checkout(shoppingBasket) defined in the
domain class Shop is executed.

b) after an event, meaning that the rule’s condition is checked just after the
execution of the event, which is then immediately followed by (in case the
condition is met) the execution of the rule’s action. For example, a rule can
be connected after a customer logs in, which maps to the point in time just
after the domain method logIn() is executed on a customer.

A rule that is applied before or after an event and whose condition is
satisfied executes the new behavior (defined in its action part) in addition
to the original functionality of the core application, possibly modifying it in
two ways: 1) by invoking domain methods that modify the state of the core
application (e.g. the domain method increaseStock(product1, 100) on a shop

174 M.A. Cibrán and M. D’Hondt

domain object, having as a result an increase on the amount of product1
in stock), 2) by using the IS operator to assign new values to information
passed to the rule in the USING clause. As an example of the latter, imag-
ine a product price being provided to a rule at connection time and it being
assigned a new value (e.g., the rule specifies ’price IS price - 10’). The con-
nection language ensures that the new value is considered (instead of the old
one) in the connection context where the rule was applied.

c) instead of an event, meaning that the core application is interrupted just
before the execution of the event, the rule’s condition is checked and if met,
its action is triggered, completely replacing the original behavior captured by
the event. For instance, a payment rule encapsulating a new payment policy
can be connected instead of the payment process, which means in replacement
of the execution of the domain method proceedPayment() in Shop.

In our proposed high-level connection language, a rule connection is specified as
follows: CONNECT 〈brname〉 [BEFORE|AFTER|INSTEAD OF] 〈eventname〉,
where brname is the name of the rule to be connected and eventname is the
name of the event at which to connect the rule. If brname corresponds to a rule
template, then the PROPS 〈value1〉, ..., 〈valueN〉 clause is used to instantiate
the rule template to an actual rule.

Contextual rule activation: The application of a given rule can be restricted
to certain contexts. For instance, a discount rule — which would typically be
applied when the product price is retrieved — can be restricted only to those
price retrievals that occur while the customer is checking out, or within the
period of time between the moment the customer logs in and the moment he/she
adds a product to the shopping cart, or not while the customer is browsing the
products. In our connection language, the applicability context of a rule is referred
to as activation time. The activation time is defined in terms of one or more
events in one of the following ways: a) ACTIVATE WHILE 〈event〉, meaning
that the rule is active during the period of time denoted by the execution of
event, b) ACTIVATE NOT WHILE 〈event〉 meaning that the rule is active
not while event is executing, and c) ACTIVATE BETWEEN 〈event1〉 AND
〈event2〉 meaning that the rule is active during the period of time initiated by the
execution of event1 and terminated by the execution of event2. The specification
of the activation time is optional and when not specified it is assumed that the
rule is always active.

Connection-specific information: A rule expects to receive the information
declared in the USING clause at rule connection time. At the moment the rule
is connected at an event, two situations can occur: 1) the required information
is available in the context of the connection event and thus it can be directly
passed to the rule. The kind of information that can be passed to the rule
depends on whether the rule is connected before, after or instead of an event:
in case of a connection before or instead of an event, the parameters and the
receiver of the domain method are exposed by the event and thus can be passed
to the rule, whereas if the rule is connected after an event, the parameters,

A Slice of MDE with AOP 175

the receiver and the result of invoking the domain method are available. 2) the
rule requires information that is not available in the context of the connection
event: in order to capture this unavailable information, capture points are defined
as an extra component of the connection specification, as follows: CAPTURE
AT 〈event1〉, ..., 〈eventN〉, where event1, ..., eventN are names of events that
capture the moment when the required information is reachable, and expose
it. Moreover, the rule connection language allows specifying how the available
or captured information needs to be mapped to the information required by
the rule by linking the two in mapping specifications of the form: MAPPING
〈event〉.〈infoExposed〉 TO 〈infoRequired〉.

The example below specifies that the BRDiscount rule should only be con-
sidered in the context of an express checkout (a special kind of checkout which
uses payment information already stored in the shop and that does not require
validation by the client). CheckoutExpress is a high-level event capturing the in-
vocation of a domain method mapped to the checkoutExpress(Customer) method
defined in the class Shop.

CONNECT BRDiscount PROPS 100
BEFORE Checkout
MAPPING Checkout.basket TO basket
ACTIVATE WHILE CheckoutExpress

3 Transforming the High-Level Domain Model

We propose the automatic translation of high-level rules and their connections
to executable implementations in OOP and AOP, as explained in sections 3.2
and 3.3 respectively. As a required initial step, a mapping must exist which
links the domain entities involved in the high-level definitions to a concrete
implementation, as explained in the following section.

3.1 Initial Step: Mapping Domain Entities

In the previous section we described how high-level rules are defined in terms of
high-level domain entities of a domain model. Our approach aims at generating
executable rules from those high-level specifications. Thus, in order to generate
an implementation for the rules which is ready to be integrated with an existing
core application, the high-level entities involved in the rule definition, need to be
mapped to the implementation. We briefly describe this mapping, although it is
not the focus of this paper. Given a domain entity, defining this mapping requires
pointing out which entity or entities in the existing application implement that
domain concept. If this is the case, a one-to-one mapping exists between the
domain entity and the concrete implementation entities. These one-to-one map-
pings are the only ones supported in current high-level languages [13,16,19,10].
However, the definition of the mapping can become more sophisticated when it
is not possible to identify existing implementation entities realizing the desired
domain concept. In this case we say that the mapping is unanticipated or that

176 M.A. Cibrán and M. D’Hondt

we are in the presence of an unanticipated domain entity. In our approach, so-
phisticated unanticipated mappings are supported using AOP. More details on
these mappings can be found in [3].

3.2 Transforming High-Level Business Rules

Following the rule object pattern [1], a high-level rule is transformed into a
class which defines methods implementing its condition and action, with return
types boolean and void respectively. For each property — defined in the PROPS
clause — a local variable is created which is assigned to a concrete object in the
constructor of the class. For each object expected at connection time — defined in
the USING clause — a local variable and a getter and setter are generated. The
bodies of the condition and action methods include the concrete implementations
that result from obtaining the mappings of the domain entities referred to in the
IF and THEN clauses respectively. This translation is done fully automatically.
The code below illustrates the transformation from the BRDiscount business
rule to a Java class.

public class BRDiscount {
int amount; float discount; ShoppingBasket basket;

public BRDiscount(int amount, float discount) {
this.amount = amount;
this.discount = discount;

}
...//getter and setter for basket variable

public boolean condition() {
return basket.getCustomer().getShopAccount().getTotalSpent() >= amount;

}
public void action() {
basket.setDiscountRate(this.discount);

}
}

3.3 Transforming High-Level Business Rule Connections

The connection of business rules crosscuts the core application, as observed
in [2, 4, 5]. In this work we identified the suitability of AOP for implementing
the connection of rules and propose aspect patterns for implementing rule con-
nections. The goal of AOP is to achieve the separation of crosscutting concerns,
not possible when using standard object-oriented software engineering method-
ologies. AOP claims that some concerns of an application cannot be cleanly
modularized as they are scattered amongst or tangled with different modules of
the system [14]: the code implementing a concern is either repeated in differ-
ent modules or split amongst different parts of the system. As a consequence,
it becomes difficult to add, edit or remove such a crosscutting concern in the
system. AOP proposes to capture such a crosscutting concern in a new kind of
module construct, called an aspect. An aspect typically consists of a set of points
in the base program where the aspect is applicable (called joinpoints) and the
concrete behaviour that needs to be executed at those points (called advice).

A Slice of MDE with AOP 177

BEFORE event

MAPPING event.targetObject TO X

around() {
 rule.setX(thisJoinPointObject);
 if (rule.condition()) {
 rule.action(); //X assigned by action
 return proceed(rule.getX(), args0); //new target
 } else return proceed(); //proceed normally
}

1

before() {
 rule.setX(thisJoinPointObject);
 if (rule.condition())
 rule.action();
}

rule:
X IS 'new value'

rule:
X IS 'new value'w valnew

2

BEFORE event

MAPPING event.param_i TO X

around() {
 rule.setX(args0[j]);
//param i in event's domain method maps to param j of connectionMethod

 if (rule.condition()) {
 rule.action(); //X assigned by action

args0[j] = rule.getX());//replace original param at j
 }
 return proceed(thisJoinPointObject, args0);
}

1

before() {
 rule.setX(args0[j]);
 if (rule.condition())
 rule.action();
}

rule:
X IS 'new value'

2

rule:
X IS 'new value'valueew v

INSTEAD OF event

MAPPING event.returnValue TO X

around() {
 if (rule.condition()){
 rule.action();
 return rule.getX();
 } else return proceed();
}

AFTER event

MAPPING event.returnValue TO X

around() {
 Object result = proceed();
 rule.setX(result);
 if (rule.condition()){
 rule.action();
 return result;
 return rule.getX();
 } else return proceed();
}

1

AFTER event

after() {
 if (rule.condition()){
 rule.action();
}

2

i
ii

rule:
X IS 'new value'

ii

rule:
X IS 'new value'ew va new

i

B

C

D

static connector BRConnector {
 BRConnectionAspect.ConnectionHook hook0 =
 new BRConnectionAspect.ConnectionHook(
 <<signature of method mapped to M>>);}

class BRConnectionAspect {
 BRClass rule = newBRClass(x, y, z, ...);
hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

<<advice kind>> {
 if (rule.condition())rule.action();}}

CONNECT rule PROPS x, y, z, ...

[BEFORE | AFTER | INSTEAD OF] event

DomainClass1

DomainClassN
<<domain method M>>

DomainClass2

 captures
execution of

A

Fig. 1. A: Transformations (1) and (2); B, C and D: Transformations (2) and (3)

Aspect weaving consists of merging the aspects with the base implementation of
the system.

In this section we present the automatic transformation from high-level rule
connections to aspects (based on the patterns identified in previous work). The
use of AOP in this transformation is completely transparent for the domain
expert, as the AOP peculiarities are not exposed in the high-level rule connection
language (as described in Section 2.2). We illustrate this transformation using
JAsCo [18], a dynamic AOP language that introduces two concepts: an aspect
bean which is able to specify crosscutting behavior in a reusable way by means

178 M.A. Cibrán and M. D’Hondt

of one or more logically related hooks, and a connector responsible for deploying
the reusable crosscutting behavior in a specific context and declaring how several
of these aspects collaborate.

Table 1 gives an overview of the proposed transformations in our approach:
each high-level feature is translated into an AOP implementation. However, we
observe and show that these transformations cannot be analyzed independently
of each other, as dependences exist between them. Due to the lack of space, we
illustrate this situation only describing transformations (1), (2) and (3) in detail.
Note however that all of the listed transformations have been implemented.

Table 1. Transformations from high-level rule connection constructs to AOP

High-level rule connection construct transformation output
(1) CONNECT - aspect bean defining connection hook
(2) BEFORE/AFTER/INSTEAD OF - advice in charge of applying the rule

- checks on whether the mapped information
is assigned in the rule

(3) MAPPING - code managing in/out information
to and from the rule respectively
- code injecting the information assigned by
the rule back into the application (if any)

(4) CAPTURE AT - hook capturing the required information
- variables keeping the captured information

(5) ACTIVATE WHILE/NOT WHILE - cflow and !cflow joinpoint respectively
(6) ACTIVATE BETWEEN AND - stateful hook intercepting the application

at two defined events that mark the
start and end of the activation period

Transformation (1) takes as input a CONNECT specification and produces
an aspect bean in charge of creating a new instance of the class implementing
the rule that is being connected and, if the instantiated rule is a template, it
assigns concrete values to the rule properties by means of the PROPS clause.
The aspect bean defines a hook capturing the execution of the connection method
(in JAsCo, aspect beans are reusable and thus the hooks are defined in terms
of abstract methods, which are deployed on concrete methods in connectors).
Transformation (2) takes as input a BEFORE/AFTER/INSTEAD OF 〈event〉
specification and translates it into an advice in charge of first checking the rule’s
condition — by invoking the corresponding method on the rule — and then
triggering the rule’s action (if the rule’s condition is satisfied).

Any connection specification must include at least elements (1) and (2) and
optionally elements (3) and (4) and either (5) or (6). Although the translation
of each feature is rather straightforward, it is their combination that becomes
complex: the advice (result of transformation (2)) is defined on the connection
hook (output of transformation (1)). Moreover, as a result of this combination,
a JAsCo connector is generated in charge of deploying the connection hook on a
concrete method. This concrete method is only known when a concrete event is

A Slice of MDE with AOP 179

specified and thus when the construct (2) comes into place. Part A of Figure 1
depicts the combination of transformations (1) and (2).

As mentioned before, transformation (2) generates an advice in charge of
applying the rule. However, depending on the case of a BEFORE, AFTER or
INSTEAD OF connection, a different kind of advice has to be generated. More-
over, determining the kind of advice also depends on whether the contextual
information — passed to the rule using the MAPPING clause — is assigned
to a new value in the rule. This implies the existence of dependencies between
transformations (2) and (3) as their outputs cannot be analyzed independently
of each other. The following three cases are considered, as depicted in parts B,
C and D of Figure 1 (underlined lines correspond to transformation (3) whereas
the rest corresponds to transformation (2)):

B) If the rule is connected before the connection event, then two cases are pos-
sible:

1) the information available in the context of the connection event is passed
to the rule where it is assigned to a new value: we need to be able to access
the contextual domain objects and make them available for the rule, trigger
the rule’s action where the domain objects are assigned to new values, and
retrieve the modified information from the rule to be taken into account
in the invocation of the original behavior captured by the connection event.
Thus, an around advice is created for this purpose, since it allows intercepting
the application at a certain point, adding some extra business logic and
proceeding with the original execution, eventually considering a different
target object and parameters.

2) the contextual information is passed to the rule and not assigned by the
rule: in this case, a before advice suffices to trigger the rule’s action, as the
original event execution does not need to be modified.

C) If the rule is connected after an event, then two cases are possible:

1) the result of invoking the event is passed to the rule: in this case, an around
advice is created which first invokes the original behavior captured by the
event and passes the result of that execution to the rule. Two cases are
possible regarding the return value of the around advice: i) if in the rule the
passed value is assigned to a new value, then the around advice returns that
new value; ii) otherwise, the original result is returned.

2) no result is passed to the rule: an after advice suffices to trigger the rule’s
action, after the execution of the connection event.

D) If a rule is connected instead of the execution of the connection event: the
original execution has to be replaced by the rule’s action. This is achieved in
an around advice which invokes the rule’s action and does not proceed with the
original execution.

Figure 2 illustrates the translation of the high-level connection of BRDiscount
introduced in Section 2.2.

180 M.A. Cibrán and M. D’Hondt

class BRDiscountConnection {
 BRDiscount rule = new BRDiscount(100);
hook ConnectionHook {

 ConnectionHook(connectionMethod(..args0), contextMethod(..args1)) {
 execution(connectionMethod) && cflow(contextMethod); }

before() {
 global.rule.setBasket(args0[0]);
 if(global.rule.condition())
 global.rule.action(); }
 }
}

static connector BRDiscountConnector {
 BRDiscountConnection.ConnectionHook hook0 =
 new BRDiscountConnection.ConnectionHook(
 float Customer.checkoutBasket(ShoppingBasket),
 float Shop.checkoutExpress(Customer)); }

aspect bean

connector

Fig. 2. Transformation from the high-level connection of BRDiscount to JAsCo

4 Implementation

The entire domain model has been implemented supporting the definition of
domain entities, high-level rules and their connections, as explained in section
2. Parsers for the presented rule and connection languages have been imple-
mented using JavaCC. Following the transformations described in 3.2 and 3.3,
high-level rules are automatically translated into Java classes and high-level rule
connections are automatically translated into JAsCo aspect beans and connec-
tors. During this implementation, the following challenges were tackled:

– dependencies between transformations to AOP: The transformation of a
high-level specification that combines many high-level rule connection fea-
tures is not as simple as concatenating the outputs of the individual trans-
formations for the involved features. On the contrary, the different outputs
have to be combined in a non-trivial way in order to obtain a running as-
pect. This makes the transformation process more complex as dependences
between the individual transformations need to be taken into account.

– consistency checking: At transformation time, the models involved in the
high-level definitions need to be consulted in order to ensure consistency.
Dependences between the models exist as the rule and connection models
refer to elements in the domain entities model. Thus, the domain entities
model needs to be consulted to check for the existence of the domain entities
referred to in the rules and connections.

– nested mappings : During the transformations, the mappings of the involved
domain entities are obtained in order to get an expression only in terms of
implementation entities which is included in the generated code. This process
can become very complex in the case of nested mappings.

– optimized implementations : The generated AOP implementations only in-
volve the AOP constructs that are most adequate for each connection case.

5 Related Work

High-level rule languages are proposed in some existing approaches [13, 16, 19,
10]. However, in these approaches rules are expressed in terms of high-level
domain concepts that are simply aliases for implementation entities and thus

A Slice of MDE with AOP 181

anticipated one-to-one mappings are required. This is a problem since a high-
level specification of business rules can be discrepant from the implementation of
the core application as they are not always anticipated in the original application.
Thus, one-to-one mappings are not enough to realize unanticipated business
rules. Moreover, connections are crosscutting in the core application and cannot
be expressed at the high level. Some of these approaches translate the high-
level rules to an intermediate language which is understood by a rule engine.
For instance, in [13] high-level rules are mapped to low-level executable rules
expressed in IRL (ILOG Rule Language). However, there is a certain kind of
business rules that do not require the power of a full-fledge rule engine [7]. As
our approach focusses on this last kind of business rules, high-level rules are
directly translated into OOP and AOP implementations, without relying on a
rule engine.

Most of the work that attempts at combining ideas from MDE and AOSD,
focuses on extending a general purpose modeling language (e.g. UML) with ex-
plicit support for aspects. Within this research area, approaches can be classified
as (1) model-to-code (our approach clearly fits in this category) and (2) model-
to-model: (1) Clarke et. al. extend UML to specify composition patterns [6]
that explicitly capture crosscutting concerns, which are translated into aspect
code. Similarly to our anticipated mappings, bindings are used to point to the
concrete implementation elements used to instantiate the patterns. The typical
AOP constructs are not directly exposed at the design level. (2) In [12] standard
UML stereotypes are used to model aspects whereas in [15] extensions of UML
are proposed. They both differ from our approach in that they do not raise the
level of abstraction of AOP constructs and that transformations occur at the
model level. Also in category (2), Gray et al. propose the ECL transformation
language to model aspects that quantify the modeling elements that need to
be transformed and apply the desired changes upon them [9]. Besides the fact
that transformations occur at the model level, this approach differs from ours in
that the modeler is in charge of specifying the desired modeling aspects, writing
and varying the set of rules considered by the transformation engine. In our ap-
proach the modeler is unaware of the use of aspects. The set of transformations
is part of the proposed framework, encapsulating expert knowledge on how rule
connections are translated into aspect code.

6 Discussion

A first issue in our approach is the importance of maintained modularity in
generated code and, related to that, the overhead of using AO technology in
order to achieve this modularity. One could argue that in MDE, the generated
code does not have to be modular since it is typically not regarded by humans.
However, in our particular context, the generated code is integrated with existing
code, which is most likely regarded by developers. Therefore, it is of utmost
importance that the generated code that pertains to rules and their connections
does not affect the existing source code in numerous places. However, we all

182 M.A. Cibrán and M. D’Hondt

know that aspects ultimately affect the existing application at run time even if
this is not visible in the source code. The more mature AO approaches provide
excellent tool support for showing the impact of aspects in a base application.
The same mature AO approaches have an acceptable performance overhead,
especially if one knows which are the costly features to avoid.

A second important issue is the scalability of our approach, in particular when
the number of rules grows. As always, scalability depends largely on the quality
of the tool support. Since this paper identifies, argues and presents the funda-
mental concepts of our approach, we feel that tool support and a quantitative
evaluation is outside its scope. Note, however, such an evaluation of our approach
is currently undertaken using an industrial application in the healthcare domain,
where a huge amount of business rules on healthcare regulations, medications
and so on is present. One of the concerns with respect to scalability is the size of
the domain model in terms of the number of rules. We have found that a set of
business rules typically considers the same domain entities, even if the reference
to some attributes or methods on these entities may vary between the rules.
Therefore, an initial effort is required for building the domain model, whereas a
much smaller effort is required for adapting the domain model as new rules are
added. In [3], a paper that focusses on the domain model and how it is mapped
to the implementation, we discuss possible tools that automate the construction
of the initial domain model.

Another issue related to the scalability of our approach with numerous rules,
is rule interference. In previous work we investigated current AO approaches and
their support for combining rule connection aspects at the implementation level
[4,2,5]. As such, we could extend our high-level languages with explicit constructs
for specifying rule precedence and so on. However, with large amounts of rules,
manually detecting and resolving dependencies is not scalable. Therefore, we
are currently investigating alternative techniques such as critical pair analysis
for automatically, exhaustively and statically determining dependencies between
rules. Since our high-level languages have a limited number of constructs and
use elements from the domain model, such an analysis technique is feasible.

Although in this paper we opted for illustrating the proposed transformations
using JAsCo, their implementation is not bound to the specific features of this
particular technology. We build on the common AOP concepts (i.e. aspect, ad-
vice and joinpoint) and therefore, any other AOP approach that supports the
pointcut-advice model can be used as well. As with JAsCo, in case the chosen
AOP technology is dynamic (i.e. aspects can be added or removed at run-time),
the hot deployment of rules is achieved. Otherwise, in the case of a static AOP
technology, explicit support must exist in the high-level connection language to
be able to dynamically deploy and undeploy rules.

The choice of constructs of our high-level languages is the result of extensive
previous work [2,4,5]. As such we are able to express the business rules that we
find in the applications of our industrial partners as well as the ones presented
in books on business rules [11, 17]. However, special business rules, for example
that have time-dependent conditions, cannot be expressed and this is subject

A Slice of MDE with AOP 183

of future work. Moreover, some applications have knowledge-intensive subtasks,
such as (semi-)automatic scheduling, intelligent help desks and advanced support
for configuring products and services, which require not only the specification
of rule-based knowledge in an if...then... format, but also a rule engine that
supports chaining of rules. This category of rule-based knowledge is considered
in [7], but not at the domain level.

7 Conclusion

In this paper we proposed an approach that combines MDE and AOSD in order
to automatically translate high-level business rules to OOP programs and their
connections to aspects in charge of integrating them with existing object-oriented
applications. Moving to a higher level of abstraction improves understandability
as it becomes possible to easily reason about the rule and connection concerns in
terms of the domain. Moreover, it is possible for the domain expert to add, mod-
ify and remove rules. Furthermore, the use of AOP in the transformations allows
us to keep the implementation of the rules and their connections well modularized
and localized, without invasively changing the existing core application. More-
over, as the mapping from high-level entities to their implementation is made
explicit, rule traceability becomes possible. This work also contributes to raising
the level of abstraction of common AOP constructs, at the same time keeping
domain experts oblivious to the use of AOP. Finally, the use of a dynamic AOP
approach enhances run-time adaptability and variability, as it becomes possible
to dynamically adapt the behavior of the core application by simply plugging in
different sets of business rules, creating different versions of the same applica-
tion. A prototype implementation of our approach as well as a discussion on its
advantages and limitations were presented.

Acknowledgements. This work was carried out during the tenure of Maja
D’Hondt’s ERCIM fellowship.

References

1. A. Arsanjani. Rule object 2001: A Pattern Language for Adaptive and Scalable
Business Rule Construction. 2001.

2. M. A. Cibrán, M. D’Hondt, and V. Jonckers. Aspect-Oriented Programming for
Connecting Business Rules. In Proceedings of BIS International Conference, Col-
orado Springs, USA, June 2003.

3. M. A. Cibrán, M. D’Hondt, and V. Jonckers. Mapping high-level business rules to
and through aspects. L’Objet, 12(2-3), Sept. 2006 (to appear).

4. M. A. Cibrán, M. D’Hondt, D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo
for Linking Business Rules to Object-Oriented Software. In Proceedings of CSITeA
International Conference, Rio de Janeiro, Brazil, June 2003.

5. M. A. Cibrán, D. Suvée, M. D’Hondt, W. Vanderperren, and V. Jonckers. Inte-
grating Rules with Object-Oriented Software Applications using Aspect-Oriented
Programming. In Proceedings of ASSE’04, Argentine Conference on Computer
Science and Operational Research, Córdoba, Argentina, 2004.

184 M.A. Cibrán and M. D’Hondt

6. S. Clarke and R. J. Walker. Composition patterns: An approach to designing
reusable aspects. In International Conference on Software Engineering, pages 5–
14, 2001.

7. M. D’Hondt. Hybrid Aspects for Integrating Rule-Based Knowledge and Object-
Oriented Functionality. PhD thesis, Vrije Universiteit Brussel, Belgium, 2004.

8. M. D’Hondt and V. Jonckers. Hybrid Aspects for Weaving Object-Oriented Func-
tionality and Rule-Based Knowledge. In Proceedings of the 3th International Con-
ference on AOSD, Lancaster, UK, 2004.

9. J. Gray, Y. Lin, and J. Zhang. Automating change evolution in model-driven
engineering. Computer, 39(2):51, 2006.

10. HaleyRules. http://www.haley.com/products/HaleyRules.html.
11. B. V. Halle. Business Rules Applied: Building Better Systems Using the Business

Rules Approach. John Wiley & Sons, Inc., New York, NY, USA, 2001.
12. W.-M. Ho, J.-M. Jézéquel, F. Pennaneac’h, and N. Plouzeau. A toolkit for weaving

aspect oriented UML designs. In Proceedings of the 1st International Conference
on AOSD, pages 99–105, New York, NY, USA, 2002. ACM Press.

13. JRules. http://www.ilog.com/products/jrules/.
14. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In ECOOP, pages 220–242, 1997.
15. R. Pawlak, L. Seinturier, L. Duchien, G. Florin, L. Martelli, and F. Legond-Aubry.

A uml notation for aspect-oriented software design. First AOSD Workshop on
Aspect-Oriented Modelling with UML, April 2002.

16. QuickRules. http://www.yasutech.com/.
17. R. G. Ross. Principles of the Business Rule Approach. Addison-Wesley Publishing

Company, 2003.
18. D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an Aspect-Oriented approach

tailored for Component Based Software Development. In Proceedings of the 2nd
International Conference on AOSD, Boston, USA, 2003.

19. Visual Rules. http://www.visual-rules.de.

Package Merge in UML 2: Practice vs. Theory?�

Alanna Zito, Zinovy Diskin, and Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada

{zito, zdiskin, dingel}@cs.queensu.ca

Abstract. The notion of compliance is meant to facilitate tool interop-
erability. UML 2 offers 4 compliance levels. Level Li+1 is obtained from
Level Li through an operation called package merge. Package merge is
intended to allow modeling concepts defined at one level to be extended
with new features. To ensure interoperability, package merge has to en-
sure compatibility: the XMI representation of the result of the merge has
to be compatible with that of the original package. UML 2 lacks a precise
and comprehensive definition of package merge. This paper reports on
our work to understand and formalize package merge. Its main result is
that package merge as defined in UML 2.1 does not ensure compatibility.
To expose the problem and possible remedies more clearly, we present
this result in terms of a very general classification of model extension
mechanisms.

1 Introduction

Since UML is intended to support systems engineering in general, its scope is
extremely broad. Potential application domains include not only software and
hardware engineering, but also data and business process engineering. Particular
domains may only require certain features of UML, while others may be com-
pletely irrelevant. To support its use in different domains, UML was designed in
a modular fashion: Modeling features are defined in separate, and, as much as
possible, independent units, called packages.

To support exchange of models and interoperability between UML tools,
UML 2 partitions the set of all its modeling features into 4 horizontal layers
called compliance levels. Level L0 only contains the features necessary for mod-
eling the kind of class-based structures typically encountered in object-oriented
languages. Level L3, on the other hand, encompasses all of UML. It extends level
L2 with features that allow the modeling of information flows, templates, and
model packaging. According to the UML 2.1 specification, a tool compliant at
level Li must have “the ability to output diagrams and to read in diagrams based
on the XMI schema corresponding to that compliance level” [13, Section 2.3].
Moreover, to achieve interoperability, the tool must be compatible with tools at

� Research supported by IBM CAS Ottawa and OCE Centre of Communications and
Information Technology.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 185–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 A. Zito, Z. Diskin, and J. Dingel

lower compliance levels; that is, it must be able to load all models from tools
that are compliant at lower levels, without loss of information.

The precise definition of the compliance levels in UML 2.1 rests on a novel
operation called package merge. Informally, package merge is intended to al-
low concepts defined in one package to be extended with features defined in
another. The package defining level Li+1 is obtained from Li by merging new
features into the package describing Li. For instance, the level L1 package is
created by merging 11 packages (e.g., Classes::Kernel, Actions::BasicActions,
Interactions::BasicInteractions, and UseCases) into the level L0 package. In the
UML 2.1 specification, package merge is described by a set of transformations
and constraints grouped by metamodel types [13, Section 7.3.40]. The constraints
define pre-conditions for the merge, such as when two package elements “match”,
while the post-conditions are given by the transformations. The merge of two
packages proceeds by merging their contents as follows: Two matching elements
are merged recursively. Elements that do not have a matching counterpart in the
other package are deep-copied. The specification describes the general principle
behind package merge as follows [13, Section 7.3.40, page 116]:

“a resulting element will not be any less capable than it was prior to the
merge. This means, for instance, that the resulting navigability, multi-
plicity, visibility, etc. of a receiving model element will not be reduced
as a result of a package merge.”

In the same paragraph, the specification states that package merge must ensure
compatibility in the sense that the XMI representation of the resulting package
must be compatible with that of the original package. This “compatibility prop-
erty” of package merge is crucial. It guarantees that a tool T compliant at some
level is compatible with all tools compliant at lower levels, because it allows T
to load models created with lower level tools without loss of information.

Theoretically at least, package merge may be useful not only for the definition
of the UML metamodel, but also for users of UML in general. However, a more
thorough evaluation of package merge, not to mention a more general adoption,
is not straight-forward:

– The detailed semantics of package merge is currently only discussed for cer-
tain types found mostly in metamodels (e.g., classes, associations, and prop-
erties). It is not clear how to extend package merge to other types such as
interactions and state machines.

– The semantics of package merge is perceived as complicated. For instance,
the UML manual describes it as “complex and tricky” and recommends the
use of package merge only for “metamodel builders forced to reuse the same
model for several different, divergent purposes” [14, p. 508]. One reason for
this perception may be that the general intent of package merge is not clear.
The general principle in the specification cited above is too imprecise.

The long-term goal of our work is to study the general principles underlying
package merge. The goal of this paper is to report on the first results of our

Package Merge in UML 2: Practice vs. Theory? 187

work. In particular, we will present a general classification of package exten-
sion mechnisms based on some mathematical theory, and elaborate a convenient
notational and terminological framework. Moreover, the application of this clas-
sification to package merge in UML 2 will allow us to conclude that:

1. Package merge as defined in the UML 2.1 specification does not ensure com-
patibility; that is, the XMI representation of the result of the merge is not
necessarily compatible with the XMI representation of the original package.

2. It appears that package merge as used for the definition of the compliance
levels of UML 2.1 does ensure the compatibility property.

After providing the necessary background and briefly reviewing related work
in the next section, Section 3 will present the general classification. Section 4 will
describe its application to package merge. Section 5 will conclude and outline
further work.

2 Background

2.1 Package Merge

To illustrate package merge, consider a simple class model of employees as shown
in package BasicEmployees on the left of Figure 1.

Fig. 1. A package merge example

Suppose we want to extend this model with the information an office man-
ager might have as shown in package EmployeeLocation. To this end, package
EmployeeLocation is merged into package BasicEmployees, as indicated by the
arrow in between the two packages in Figure 1. We say that BasicEmployees
is the receiving package. Its elements (classes Person, Employee, and Job and
the association worksAs) are called receiving elements. EmployeeLocation is the
merged package. Its elements (classes Employee and Building and association
worksIn) are called the merged elements. The resulting package is shown in Fig-
ure 2. It is obtained by merging the merged elements into the receiving package.
Since the class Employee in EmployeeLocation matches the class of the same
name in BasicEmployee, the two are merged recursively by adding the prop-
erty officeNum to the receiving class. The class Building and the association
worksIn, however, do not match any elements in the receiving package and are
simply copied. Note that the �merge� arrow merely implies these transforma-
tions and that the resulting package is actually not shown in Figure 1.

188 A. Zito, Z. Diskin, and J. Dingel

Fig. 2. The result of the merge in Figure 1

2.2 Compatibility

The UML specification clearly states that all model extension mechanisms used
to define compliance levels such as package merge must have the “compatibility
property” mentioned above. This property asserts the compatibility of the XMI
representation of the resulting package with that of the receiving package and
thus ensures that a tool is compatible with all tools compliant at lower levels.
We refine the definition of the “compatibility property” as follows. We say that
package A is compatible with package B, if every document allowed by the XML
Schema of B is also allowed by the XML Schema of A. We refer to the constraints
expressable in XML Schema (e.g., the elements and attributes that can appear
in a document, and the order and number of child elements) as compatibility
constraints. Additional constraints that a package may contain such as OCL
constraints are referred to as validity constraints.

2.3 Related Work

According to [15], package merge was partially inspired by two specification com-
bination mechanisms offered in Catalysis: “and” and “join”. However, while re-
lated on first glance, both differ substantially from package merge. The “and” op-
eration is for use with subtyping, while the “join” operation allows a specification
to “impose additional preconditions to those defined in another view” [10, p. 697].

Speaking in more precise terms, two issues are to be distinguished in pack-
age merge. The first is the merge procedure as such. In this context, package
merge is a particular case of a known problem in databases and, more recently,
the Semantic Web. About twenty years ago this problem was referred to as
view/schema integration [3]; its more recent name is model merge [6]. Package
merge is a typical example of the schema integration problem when schema
matching is easy (because schemas to be merged were designed by the same
team) and based on name coincidence. It also shares many similarities with the
operation of composition in aspect-oriented modeling (AOM) [11, 4], where pri-
mary models describing functional requirements are merged with aspect models.

Package Merge in UML 2: Practice vs. Theory? 189

The second issue is an evaluation of the merge result: whether it is good or
bad w.r.t. the goals of package merge. The primary criterion here is level compli-
ance; that is, in more detail, compatibility of the legal instances of the receiving
package with the resulting package (as a metadata schema). It follows then that
we need to evaluate the relationship between the resulting P ′ and receiving P
packages in terms of sets of their instances. This issue is well-studied in math-
ematical logic and model theory under the name of theory extension (and yes,
theory is one more synonym for our term package; definition and basic results
can be found in any textbook on mathematical logic, see e.g., [2]). This observa-
tion is essential for package merge, since it is a well-known fact that extensions
can be non-conservative; that is, new data/structure added to the theory can
influence the “old” part of the theory in such a way that not all old instances
can be augmented with new structure (be compatible with the new structure).
It shows that package merge mechanism as such does not guarantee, in general,
compatibility between the packages and a more thorough investigation is needed.

The notion of theory as it is formulated in mathematical logic is heavily based
on a specific syntax (logical connectives and quantifiers) and is not suited for
package merge studies. The same dependance on syntax also prevents the use
of many results obtained in schema/model integration for package merge. We
need a more abstract framework, and here the so-called institutions, introduced
in [12] and now well known in the algebraic specifications community, provide
the necessary instrumentary. Our theoretical considerations in Section 3 are
inspired by institutions and, in fact, just adjust the definitions to the package
merge context (see also [7, 1] for a similar elaboration in other contexts).

The issues of package merge and extension can be seen in a even wider context
as particular problems in generic model management, a prominent program that
has recently appeared in databases [5] and is rapidly broadening its agenda
towards a general theory of model manipulation and transformation (see [9] for
a survey).

3 Theoretical Foundations Via Examples

In this section we describe a general framework for package merge and exten-
sion. Here we use the term package as a generic term meaning either a data
model/schema, or XML Schema, or metadata model, or, in general, any object
P having an associated set of instances, inst (P).

Our plan is as follows. We will begin with considering a series of generic
examples of package merge, presented in Tables 1 and 2, to outline the scope of
the issue. While discussing these examples, we offer a convenient terminology and
notation to encode them. Particularly, we show that relations between the (sets
of) instances of the receiving and the resulting packages constitute the essence of
the compatibility issues in package merge. Moreover, we will develop a taxonomy
of these relationships and demonstrate how it works. Then we elaborate the
notation in more precise terms and, in fact, make it ready for formalization. The
latter is omitted due to space limitations.

190 A. Zito, Z. Diskin, and J. Dingel

3.1 Basic Terminology, Definitions and Taxonomy of Package
Extensions

In formal terms, package merge (PM) is an operation that takes two packages,
P1, called the receiving package, and P2, the merged package, then integrates
their contents in a certain way, and assigns the name P1 to the result. In the
usual programming language notation, it can be written as P1 := P1 + P2. The
intuition of incremental increase of the content of the receiving package suggests
another notation, P ′ = P + Δ, which we will follow further.

Consider Table 1. The top row presents a (piece of some) receiving package
P , and the second row is the merged package Δ; the resulting package is shown
in the third row. The contents of each package participating in the table are sep-
arated into three parts: the structural base (graph of classes and associations),
multiplicities (left and right) for the participating associations and correspon-
dences (constraints) between associations (columns 2..4). The merged package
Δ is parameterized by the left, L, and right, R, multiplicities of the association
drives. Since there is no association drives in the receiving package, this associa-
tion together with its multiplicities L, R will be copied to the resulting package;

Table 1. Generic examples of package extensions

1 2 3 4 5

Multiplicities for
associations

owns drives Package
Pure structural base of

the package
left right left right

Correspondences
between

associations

Compatibility of old
instances and, if not,

their fixability

P 1..* 1..3 N/A N/A N/A

Δ(L,R) 2..4 2..4 L R
Context P:Person:
P.drives ⊆ P.owns N/A

P’(L,R)=
P+Δ(L,R)

1..* 1..4 same same Depends on (L,R)

 A few versions of merge with different values of parameters (L,R)

P’1 same same 1..2 0..3 same Optional extension:
all old instances are

compatible

P’21 same same same 1..* same
(i) all of them

P’22 same same same 2..* same
(ii) some of them

P’23 same same same 5..* same
(iii) none of them
(as extension is
inconsistent)

P’3 same * same * same same

M
an

da
to

ry
 e

xt
en

si
on

: n
on

e
of

ol

d
in

st
an

ce
s

 is
 c

om
pa

ti
bl

e.

Y
et

 th
er

e
is

 a
n

o p
ti

on
 to

 f
ix

 ..
.

(iv) none of them
but the extension

is consistent

P’
Structure/Schema,

S

Compatibility constraints,
CC

Validity constraint,
CV

Type of extension:
Conservative, non-
conservative,
inconsistent, totally non-
conservative

owns
Car Person

drives

owns
Car Person

drives

owns
Car Person

Package Merge in UML 2: Practice vs. Theory? 191

hence, the latter is also parameterized by L, R. As for multiplicities for associ-
ation owns, according to the PM-rules, the resulting multiplicity has the lowest
lower bound and greatest upper bound of the receiving and merged multiplic-
ities.. This explains the P ′(L, R) row in the table. Thus, the PM-procedure as
defined in UML unambiguously determines the resulting package P’(L,R) for any
values of parameters L and R. Our goal is to analyze the relationship between
packages P and P’ in terms of their sets of instances.

The next five rows present five samples of merge differing only in the values
of parameters, mainly in the right multiplicity for drives. These quantitative
changes, however, cause all five cases to be qualitatively different w.r.t. relations
between the sets of package instances, inst (P) and inst (P ′) respectively. We
will call the elements of the former old instances and those of the latter new. In
the 1st example (package P ′

1), since the right end of association drives has the
optional multiplicity, all old instances can be well considered as new instances
and we have inclusion inst (P) ⊂ inst (P ′). In such cases, we will say that all old
instances are compatible with the new package structure, and that package P ′ is
an optional extension of package P .

The next four rows present cases when none of the old instances can be loaded
into the new package structure; in other words, sets inst (P) and inst (P ′) are
disjoint. We will say that package P ′ is a mandatory extension of P .

If an instance I of package P is incompatible, we may try to fix it by adding
missing items, in our case, missing drives-links. As examples P ′

21, P
′
22, P

′
23 show,

we can encounter situations when (i) all, (ii) some or (iii) none of the old in-
stances are fixable in this sense. Note that package P ′

23 is totally inconsistent
(has no instances), because the merged package was already inconsistent, which
of course implies that none of the old instances can be loaded into it. The case
(iv) in the P ′

3-row is more interesting. There, the left multiplicity of the owns-
association for the merged package Δ(L, R) is changed from 2..4 to *. This mul-
tiplicity will go to the result (by the same PM- rule described above), and then
package P ′

3 – in contrast to package P ′
23 – is consistent: it does have instances

consisting of Car-objects only. However, none of the old instances (of package
P) can be fixed to become one of these P3-instances. Correspondingly, we call
the three subtypes (i,ii,iv) of consistent mandatory extensions conservative, non-
conservative and totally non-conservative while in case (iii) the extension is itself
inconsistent.

Among these three, the case of non-conservative extension (P ′
22) is the most

interesting. In general, the new constraints in package P ′ are statements about
new items in the structure. Often, they relate these new items with the old
ones (those in package P) like, for example, the correspondence statement in
Table 1. The question is whether such statements can somehow constrain the
old structure embedded in the new structure. In other words, let us take an
instance I ′ ∈ inst (P ′) of the resulting package, and forget about its additional
structure, thus coming to a instance I = ←I ′ ∈ inst (P) of the receiving package.
Let inst←Δ(P) (where Δ refers to the package extension in question) denote the
set of all such reduct-instances. At first glance, it may seem that the equality

192 A. Zito, Z. Diskin, and J. Dingel

inst←Δ(P) = inst (P) should hold but, in general, this is not the case. The point
is that the new structure together with new constraints may be such a strong
imposition over its old structure subset that not every old instance can be a
reduct of some new instance. This phenomenon is well studied in mathematical
logic and model theory under the name of non-conservative extension of theories
(see, e.g., [2]). In the package merge context (where packages are, in fact, theories
in a special graph-based logic [8]), it means that (for a mandatory package
extension), not every old instance can be fixed to become compatible with the
new structure (and hence be loaded into it).

Table 2 presents a simple example of non-conservative package extension (in
the bottom row); some details for the extension P ′

22 in Table 1. It clearly shows
that while every new instance can be mapped to an old instance by forget-
ting about its new extra structure (move from the right to the left in every
row of the table), the inverse mapping is only partially defined (and, of course,
is multivalued). In more formal terms, for any mandatory package extension
P ′ = P + Δ, a forgetful or reduct mapping redΔ : inst (P ′) → inst (P) (to be
read “forget Δ”) is always defined but is not surjective. The inverse multi-
valued mapping extΔ : inst (P) → inst (P ′) (read “fix it by extending with Δ”)
is only partially defined. Note that in general we need to consider two versions of
extending mappings: one is the (incomplete) extension of old instances towards
compatibility into new package, the other is their complete extension to valid
instances of P ′. The example in the I2 − J2 row of Table 2 shows that these two
mappings can be fundamentally different.

3.2 Unification and Notation

All the examples above can be considered in some unified way and conveniently
specified as follows. Let us consider a package as a triple P = (S, CC , CV) where:

– S is some structure or schema having a certain set of instances, inst (S). A
typical example of a schema is a graph underlying a UML class diagram (nodes
are class names and edges are associations), whose instances are specified by
object diagrams over this schema. Another example is the tree structure of an
XML document declared in its DTD, where its instances are all possible XML
documents with this structure.

– CC is a set of constraints regulating compatibility (hence the subscript C)
of instances with the structure (think of UML multiplicities for associations or
DTD constraints specifying optionality of elements in the XML document).

– CV is an additional set of constraints specifying (in, say, OCL) valid in-
stances among the compatible ones.

Since constraints narrow the set of instances, a package has three sets of
instances associated with it:

instV (P) ⊂ instC(P) ⊂ instB(P) def= inst (S)

Package Merge in UML 2: Practice vs. Theory? 193

which we will call, respectively, valid, compatible and basic instances of P . For
example, instance J2 in Table 2 is a compatible but not valid instance of package
P ′, while instance J3 is valid (and hence compatible).

Correspondingly, package extension is described by the expression P ′ = P +Δ
with the increment Δ = (ΔS , ΔC , ΔV) consisting of three component incre-
ments: in pure structure, ΔS , in compatibility constraints to it, ΔC , and in
validity constraints to compatible instances, ΔV .

There is a delicate and important issue in specifying increments for con-
straints. The example in the top three rows of Table 1 shows that the merged
package Δ can (i) change the compatibility of items in the (old) structure in the
receiving package (multiplicities for association owns) and, of course, (ii) spec-
ify compatibility of new items added to the structure in the resulting package
(multiplicities for drives). Thus, in general, ΔC := ΔC + Δ∗

C , and similarly for
ΔV , where the ∗-index near Δ refers to constraints talking about the new items

Table 2. Example of non-conservative package extension (some details for the row P ′
22

in Table 1). The table is to be read from bottom to top.

Instances of package P’22 Instances of package P

compatible valid

Package P Package P22’ is a mandatory and non-conservative extension of P

:owns

:owns

John:Person #c2 :Car

Mary:Person

owns
1..3

Car Person
1..*

:owns

:owns

:owns

John: Person #c3 :Car

#c2:Car Mary: Person

#c1:Car :owns

#c4 :Car :owns

#c1:Car

instance J3

:owns

:drives

:drives

:drives :owns

John:Person #c2 :Car

#c1:Car Mary:Person

:owns
instance J2

:owns

:owns

:owns

John:Person #c2 :Car

#c1:Car Mary:Person

:owns

...

Instance J2 is compatible but
not valid.

instance I2

instance I3

1..*

1..* 2..*

1..4 owns

drives
Person Car

Validity Constraints: Context Person:
self.owns->includesAll(self.drives)

:owns

:owns

:drives

#c3 :Car

Mary:Person

#c4 :Car

John:Person

#c2 :Car
:drives

Instance I1 is not compatible and cannot
be fixed, i.e., augmented with missing
items to become compatible.

instance I1

No instances J1 (that would become I1
after forgetting their drives-links)

194 A. Zito, Z. Diskin, and J. Dingel

in the new structure while Δ without this index refers to changes in constraints
for old items in the new structure.

We will also assume that our Δ’s are always positive increments (addition),
and to specify a decrement we write (−Δ). In more formal terms, it means that
the sets of structures and constraints are partially ordered and, for example,
S′ = S + Δ means that S ⊂ S′ while S′ = S − Δ means that S′ ⊂ S in
that partial order on structures (normally, an ordinary sub-structure relation).
Similarly, C′ = C + Δ means that we strengthened the set of constraints by
either adding new constraints to it or, maybe, by strengthening some of the
constraints in C. In this notation, for example, the relation between packages P
and P ′

22 in Table 2 can be specified by the following equalities: S′ = S + ΔS ,
C′

C = CC − ΔC + Δ∗
C , C′

V = CV + Δ∗
V .

4 Applications to UML 2.1 Compliance Levels

Having described and classified the general forms that package extension can
take, we can now consider in more detail how the theory applies to package
merge and the definition of UML compliance levels. The resulting package of
a package merge can extend the receiving package in different ways, depending
on the contents of the merged package. Some of these ensure compliance level
compatibility, while others do not. We present here several examples of how
package merge is used to define the compliance levels of UML 2.1, and show how
each fits into the taxonomy of package extensions introduced in the Section 3.
The taxonomy can be briefly summarized in pseudo-code as

if (extension is optional) then
all instances are compatible

else //extension is mandatory
if (extension is conservative) then
all instances are not compatible, but can be fixed

else if (extension is non-conservative) then
if (extension is totally non-conservative) then

no instances are compatible or fixable
else

no instances are compatible, but some are fixable

4.1 Examples of Optional Extension

The top row of Table 3 shows an example of a package merge taken from the def-
inition of UML compliance levels in [13]. The Level 2 package shows the relation-
ship between the metaclasses Classifier and Generalization at level 2 compliance.
One of the packages merged in to form level 3 compliance is the PowerTypes
package, which contains additional structure for Classifiers and Generalizations.
These additional elements (one class and two associations) are copied into the
resulting package (which is also shown in Table 3), since they do not have match-
ing elements in the receiving package. According to the definitions introduced

Package Merge in UML 2: Practice vs. Theory? 195

Table 3. Examples of package merge resulting in optional extension

1a. Optional extension 1b. Resulting package of (1a)

2. Optional extension with weakened compatibility

3. Optional extension with strengthened validity

in the previous section, the resulting package is an optional extension of the
receiving package, meaning that it ensures that level 2 models are compatible
with level 3-compliant tools.

The resulting package does not always add extra structure to the receiving
package; it may only change the compatibility or validity constraints of the exist-
ing structure. This is a special case of optional extension. The second row of Table
3 shows two examples; since the resulting packages for both have the same struc-
ture as the receiving, they are not shown. The rules for package merge are such
that existing compatibility constraints are always made less strict (weakened).

196 A. Zito, Z. Diskin, and J. Dingel

For example, imagine that we want to add more features to UML with a fourth
level of compliance. In Table 3, the Level 3 package contains part of the defi-
nition of the metaclass Property at level 3 compliance. The (imaginary) Extra
Defaults package defines that a Property may have more than one default value.
According to package merge rules, the associations owningProperty:Property →
defaultValue:ValueSpecification in the merged and receiving package will match,
and their matching association ends will be recursively merged. The resulting
defaultValue end has a multiplicity of 0..*, which is calculated by taking the
lowest lower bound and the highest upper bound from the merged and receiving
ends. A level 3-compliant model will thus never lose information when being
imported into a level-4 compliant tool, since the resulting multiplicity is wider
(weaker) than that of the receiving. It is interesting to note that, while the rules
for merging multiplicities ensure the compatibility of the receiving and resulting
packages, they also allow for previously illegal instances to be legal in the re-
sulting package. For example, consider merging multiplicities 1..2 and 5..7. The
resulting multiplicity will be 1..7, which includes values (i.e., 3..4) that were not
allowed in either of the two original multiplicities. This is a consequence of the
fact that, as defined in UML 2.1, multiplicities must be a single, continuous
interval.

Validity constraints, on the other hand, can be strengthened as the result
of a merge. Section 3 introduced the notion of valid instances of a package as
those instances which are compatible and which satisfy any additional semantic
constraints on the model. The rules for package merge do not guarantee that
instances of lower compliance levels will remain valid at higher levels. For ex-
ample, Table 3 shows a package Level 0, which contains a part of the definition
of operations at compliance level 0. One of the packages merged in to form
level 1 compliance is the Infrastructure::Constructs package, which contains an
identical definition of Operation, but with the additional constraint that the or-
deredness of an operation is derived from its return value. According to the rules
for package merge, the constraint on the merged element Operation is added to
the constraints on the receiving element Operation. The resulting package has
the same structure as the receiving package, but its validity constraints have
been added to (strengthened). If a model created at compliance level 0 does not
derive the isOrdered property of its operations from their return parameters, it
could be imported into a level 1-compliant tool, but would not fulfill all semantic
constraints of that level.

4.2 Examples of Mandatory Extension

The resulting package of a package merge can also be a mandatory extension
of the receiving. Figure 3 shows an example from [13]. The Level 1 package
contains a part of the definition of an ActivityEdge at that compliance level. The
IntermediateActivities package, which is merged in to form level 2 compliance,
contains an association ActivityEdge → guard:ValueSpecification, which has a
non-optional (i.e., non-zero) multiplicity. A model created at level 1 compliance
would not be compatible with a level 2-compliant tool, since its activity edges

Package Merge in UML 2: Practice vs. Theory? 197

do not have a corresponding guard; it could not be imported “as-is” into the
tool. However, since the extension in this case is conservative, it is possible
to fix a non-compatible instance. The UML 2.1 specification explicitly states
[13, Section 12.3.5], that the default value for the guard is “true”, so a non-
compatible model can be fixed by simply adding the default value as a guard on
all ActivityEdges which do not have one.

It is also possible for a package merge to result in a non-conservative manda-
tory extension of the receiving package. Although we do not present an example
of this situation in terms of UML compliance levels, it is illustrated in examples
P ′

21, P
′
22 and P ′

23 of Table 1.

With merges Resulting package

Fig. 3. Example of package merge resulting in mandatory extension

4.3 Summary

In terms of the notation introduced in Section 3, the UML rules for package
merge ensure the following properties:

1. S′ = S + ΔS , structure is never removed;
2. C′

C = CC − ΔC + Δ∗
C , compatibility constraints to the old structure are

always weakened,
3. C′

V = CV + ΔV + Δ∗
V , validity constraints to the old structure can be

strengthened.

Based on these rules, the relation of the receiving package to the resulting can
range over our entire taxonomy of package extension. To the best of our knowl-
edge, most of the uses of package merge for defining compliance levels of UML 2.1
result in optional extensions, and are thus compatible. The few instances of
mandatory extension are conservative with fixes explicitly defined. However, in
general, using package merge to define compliance levels for MOF-based models
does not guarantee that successive levels will be compatible.

198 A. Zito, Z. Diskin, and J. Dingel

5 Conclusion and Future Work

UML 2.1 introduced the operation of package merge to faciliate the definition
of compatible compliance levels. In order to better understand package merge,
we have developed a theory of package extension, which is based on viewing an
extension to a package as being made up of a pure structural increment, a com-
patibility constraint increment, and a validity constraint increment. This theory
leads us to a taxonomy of the possible relationships between the original and ex-
tended package. The taxonomy distinguishes between optional extensions, which
ensure compatibility, and mandatory extensions which do not. Mandatory exten-
sions can be further subdivided into conservative, non-conservative and totally
non-conservative extension, based on whether all, some or none of the original
instances can be fixed to become compatible. This theory is influenced by con-
cepts in model theory and mathematical logic, where theory extension has been
well-studied. Our classification of package extension types allowed us to look at
the relationship between the receiving and resulting package of a package merge
in a more formal way. We have discovered that the rules for package merge do
not prevent mandatory extension, and thus, it cannot guarantee compatibility
when used to define compliance levels. However, in the definition of the compli-
ance levels of UML 2.1, it appears that package merge is used in such a way as
to ensure compatibility.

Future work on this topic includes completing a full formalization of our the-
ory of package extension, as well as a formal definition of package merge. We
are also interested in examining the notion of “fixability” in more depth to de-
termine some sort of general guidelines or canonical way to fix incompatible
models (where possible). Finally, another potential area of study is the impact
of this work on UML modeling tools - for example, the ideal tool would have to
assess the compatibility and validity of models imported from tools of a lower
compliance level, as well as suggest possible ways of fixing incompatible models.

Acknowledgements. We would like to thank Bran Selic and Jim Amsden for
taking the time to answer our questions about packge merge.

References

[1] S. Alagic and P. Berstein. A model theory for generic schema management. In
Eighth International Workshop on Databases and Programming Languages, pages
228–246, 2001.

[2] J. Barwise, editor. Handbook of Mathematical Logic, volume 90 of Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Company, 1977.

[3] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

[4] Robert France Benoit Baudry, Franck Fleurey and Raghu Reddy. Exploring the
relationship between model composition and model transformation. In Proc. of
Aspect Oriented Modeling Workshop, in conjunction with MoDELS’05, 2005.

[5] P. Bernstein, A. Halevy, and R. Pottinger. A vision for management of complex
models. SIGMOD Record, 29(4):55–63, 2000.

Package Merge in UML 2: Practice vs. Theory? 199

[6] P. Bernstein and R.Pottinger. Merging models based on given correspondences.
In Proc. Very large databases, VLDB’2003, 2003.

[7] Z. Diskin. Abstract metamodeling, I: How to reason about meta-metamodeling in
a formal way. In K. Baclawski, H. Kilov, A. Thalassinidis, and K. Tyson, editors,
8th OOPSLA Workshop on Behavioral Specifications, OOPSLA99. Northeastern
University, College of Computer Science, 1999.

[8] Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Universal arrow foundations for
visual modeling. In Diagrams’2000: 1st Int. Conf. on the Theory and Applications
of Diagrams, Springer LNAI#1889, pages 345–360, 2000.

[9] Zinovy Diskin and Boris Kadish. Generic model management. In Doorn, Rivero,
and Ferraggine, editors, Encyclopedia of Database Technologies and Applications,
pages 258–265. Idea Group, 2005.

[10] D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML.
Addison Wesley, 1999.

[11] Robert France Geri Georg and Indrakshi Ray. Composing aspect models. In The
4th Aspect Oriented Software Development Modeling With UML Workshop, 2003.

[12] J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of ACM, 39(1):95–146, 1992.

[13] Object Management Group. Unified Modeling Language: Superstructure (version
2.1, ptc/06-01-02), January 2006.

[14] I. Jacobson J. Rumbaugh and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 2 edition, 2004.

[15] B. Selic, January 2006. Personal communication.

Detecting and Resolving Model Inconsistencies
Using Transformation Dependency Analysis

Tom Mens1, Ragnhild Van Der Straeten2,�, and Maja D’Hondt3,��

1 Software Engineering Lab, Université de Mons-Hainaut
Av. du champ de Mars 6, 7000 Mons, Belgium

tom.mens@umh.ac.be
2 Systems and Software Engineering Lab, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
rvdstrae@vub.ac.be

3 Jacquard INRIA project, Laboratoire d’Informatique Fondamentale de Lille
59655 Villeneuve dAscq Cedex, France

dhondt@lifl.fr

Abstract. Model inconsistency management is a crucial aspect of model-driven
software engineering. It is therefore important to provide automated support for
this activity. The problem is, however, that the resolution of inconsistencies may
give rise to new inconsistencies. To address this problem, we propose to express
inconsistency detection and resolutions as graph transformation rules, and to ap-
ply the theory of critical pair analysis to analyse potential dependencies between
the detection and resolution of model inconsistencies. As a proof-of-concept, we
report on an experiment that we have carried out along these lines using the criti-
cal pair analysis algorithm implemented in the state-of-the-art graph transforma-
tion tool AGG. The results show that both anticipated and unexpected dependen-
cies between inconsistency detection and resolution rules are found by AGG. We
discuss how the integration of the proposed approach into contemporary mod-
elling tools may improve inconsistency management in various ways.

1 Introduction

One of the important challenges in current-day model-driven software engineering is the
ability to manage model inconsistencies. When designing models in a collaborative and
distributed setting, it is very likely that inconsistencies in and between the models will
arise because: (i) different models may be developed in parallel by different persons;
(ii) the interdependencies between models may be poorly understood; (iii) the require-
ments may be unclear or ambiguous at an early design stage; (iv) the models may be
incomplete because some essential information may still be unknown. In a model evo-
lution context, the ability to deal with inconsistent models becomes even more crucial,
as models are continuously subject to changes.

� Financial support provided through the European Community’s Human Potential Programme
under contract HPRN-CT-2002-00275, SegraVis.

�� This work was carried out during the tenure of an ERCIM fellowship.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 200–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Detecting and Resolving Model Inconsistencies 201

Nowadays, the UML is the de-facto general-purpose modelling language [1]. Current
UML tools, unfortunately, provide poor support for inconsistency management and, if
they do, it is usually ad-hoc. We believe that, in the process of managing inconsisten-
cies, support should be provided to detect and resolve inconsistencies at any time the
modeller wishes to do so. One way to approach this is to express inconsistency detec-
tion and resolutions as transformation rules [2]. In previous work, we explored the use
of description logics as an alternative formalism for expressing inconsistency detection
and resolutions as transformation rules [3, 4]. However, these transformation rules are
typically not independent of one another: applying one rule might inhibit the applica-
tion of another rule or, the opposite, it might trigger another rule, which suggests that an
optimal ordering of rules has to be inferred, if possible. To be able to reason about such
parallel and sequential dependencies between rules, we rely on the underlying theory
of graph transformation, that allows us to exploit theoretical results about critical pair
analyis [5].

As a proof of concept, we carry out an experiment with AGG1 (version 1.4), a state-
of-the-art graph transformation tool that implements a critical pair analysis algorithm
[6]. We express model inconsistency detection and resolutions as graph transformation
rules in this tool, and show how the transformation dependency analysis allows us to de-
tect opportunities for ordering, refactoring and generally fine-tuning the inconsistency
resolution rules. The experiment reported on in this article is carried out in four con-
secutive steps: (a) Identification. What are the model inconsistencies of interest for the
subset of the UML metamodel that will be considered? (b) Specification. How can we
formally express the model inconsistencies and their resolutions as graph transforma-
tion rules? (c) Dependency analysis. How can we detect parallel conflicts and sequential
dependencies between the rules specified in the previous step, using the technique of
critical pair analysis? (d) Interpretation of results. What can we learn from this de-
pendency analysis? How can we exploit this information to automate the inconsistency
management process?

While our intitial results look very promising, it needs to be said that this research
is still in the exploratory phase. Fully automated support of our ideas, as well as an
empirical validation on industrial case studies, remains to be done.

2 Experimental Setup

For illustration purposes, we restrict ourselves to model inconsistencies in UML models
consisting of a simplified subset of UML 2.0 class diagrams and protocol state machine
diagrams only. It is, however, straightforward to relax this restriction and to apply our
approach to other types of UML diagrams as well. For example, we are currently ex-
tending our experiment to take sequence diagrams into account.

Rather than specifying the model inconsistencies and resolutions in some dedicated
modelling tool we decided, for reasons of genericity, to represent UML models in a
graph-based format in the general-purpose graph transformation tool AGG. The meta-
model for the considered UML subset is expressed as a so-called type graph as shown in
Fig. 1. The UML models themselves will be represented as graphs that are constrained

1 See http://tfs.cs.tu-berlin.de/agg/

202 T. Mens, R. Van Der Straeten, and M. D’Hondt

Fig. 1. Simplified metamodel for UML class diagrams and state machine diagrams, expressed as
a type graph with edge multiplicities in AGG. In addition, a node type Conflict is introduced
to represent model inconsistencies.

by this type graph. These graphs can be generated automatically from the correspond-
ing UML models by exporting them from a modelling tool in XMI format, converting
them into GXL format, and importing them into AGG. An experiment along these lines
has been carried out by Laurent Scolas as a student project. Note that there need not be
any loss of information when generating graphs from UML models, provided that the
type graph is sufficiently close to the UML metamodel. Given an explicit description
of this metamodel, it would even be possible to generate the corresponding type graph
automatically.

2.1 Identification of Model Inconsistencies and Their Resolutions

The set of inconsistencies we restrict ourselves to is based on the model elements oc-
curring in the chosen subset of the UML. In [3], a classification of inconsistencies and
its motivation has been presented. In the current article, we only take into account struc-
tural inconsistencies. For example, the constraint that a concrete class should not con-
tain abstract operations yields a structural inconsistency that can be resolved in various
ways.2 Structural model inconsistencies can be found by detecting the presence or ab-
sence of certain patterns in the graph representing the model. In the example above, this
would be the presence of a concrete class node, and the presence of abstract operation
nodes contained in this class.

The specification of behaviour (especially in presence of inheritance) can also intro-
duce behavioural inconsistencies. Because structural patterns do not suffice to express
such inconsistencies, we used the formalism of description logics in earlier work [3].
As such, we do not consider this type of inconsistencies in the current article.

For each inconsistency we describe a set of resolutions using the following template:

2 Alternatively, this inconsistency could be avoided by imposing a graph invariant that prevents
this situation, but this would impose to many restrictions on the modeler.

Detecting and Resolving Model Inconsistencies 203

NameOfModelInconsistency. Description of model inconsistency.
1. First possible resolution to resolve the model inconsistency
2. Second inconsistency resolution, and so on . . .

The resolutions proposed for each inconsistency boil down to the addition, deletion
or modification of relevant model elements. Below we provide a representative, yet in-
complete, list of structural model inconsistencies and several alternative ways to resolve
them.

DanglingTypeReference. An operation has one or more parameters whose types are
not specified. It can be resolved in 3 different ways:
1. Remove the parameter whose type is undefined.
2. Assign an existing class as the type of the previously undefined parameter.
3. Assign a new class as the type of the previously undefined parameter.

ClasslessInstance. A model contains an instance specification without a correspond-
ing class. Possible resolutions are:
1. Remove the instance specification.
2. Link the instance specification to an existing class.
3. Link the instance specification to a new class.

AbstractObject. A model contains an instance specification of an abstract class that
does not have any concrete subclasses. (This is an inconsistency since abstract
classes cannot be instantiated.)
1. Change the abstract class into a concrete one.
2. Redirect the target of the instance of relation to a new concrete descendant

class of the abstract class.
3. Remove the instance specification.

AbstractOperation. An abstract operation is defined in a concrete class. (This is an
inconsistency since a concrete class is not supposed to have abstract operations.)
1. Change the abstract operation into a concrete one.
2. Remove the abstract operation.
3. Change the concrete class containing the abstract operation into an abstract

class.
4. Move up the abstract operation to an existing abstract ancestor class of the

concrete class.
5. Move up the abstract operation to a new abstract ancestor class of the concrete

class.
6. Move down the abstract operation to an existing abstract descendant class of

the concrete class.
7. Move down the abstract operation to a new abstract descendant class of the

concrete class.
AbstractStateMachine. A state machine expresses the behaviour of an abstract class

that does not have any concrete subclasses.
1. Remove the state machine.
2. Connect the state machine to an existing concrete class.
3. Change the abstract class into a concrete one.

204 T. Mens, R. Van Der Straeten, and M. D’Hondt

DanglingOperationReference. A state machine contains a transition that refers to an
operation that does not belong to any class.
1. Add the operation to the class whose behaviour is described by the state ma-

chine.
2. Let the transition refer to an existing operation belonging to the class whose

behaviour is described by the state machine.
3. Remove the reference from the transition to the operation.
4. Remove the transition.

2.2 Specification of Inconsistency Detection and Resolution Rules in AGG

In this section we explain how to specify inconsistency detection and resolutions as
graph transformation rules in AGG.

To detect occurrences of model inconsistencies, we specify them as graph transfor-
mation rules. Their left-hand side contains the graph structure corresponding to a model
inconsistency. This structure can be composed of a positive condition (presence of cer-
tain combinations of nodes and edges) and a set of negative conditions (absence of
certain combinations of nodes and edges). On the right-hand side of the transformation
rule a new node of type Conflict is introduced. It always points to one of the nodes
that characterise the model inconsistency. To avoid detecting the same occurrence of
a model inconsistency more than once, we attach a default negative application condi-
tion (NAC) to each rule, specifying that a Conflict node should be absent in the graph
structure determining the model inconsistency. Figure 2 gives some examples of model
inconsistencies specified as transformation rules. The default NACs are not shown.

In the remainder of this article, “resolution rules” denote the graph transformation
rules expressing an inconsistency resolution. To specify such resolution rules, we as-
sume that a model inconsistency occurrence has been detected before. Hence, the graph

Fig. 2. Detecting model inconsistency occurrences as graph transformation rules with optional
NACs in AGG. If a rule contains more than two panes, the leftmost pane represents a NAC,
which should be seen as a forbidden structure. The next pane represents the positive part of the
rule’s left-hand side. The rightmost pane represents the right-hand side of the rule. For the rule
AbstractOperation, no NAC has been specified.

Detecting and Resolving Model Inconsistencies 205

Fig. 3. Specification of inconsistency resolutions as graph transformation rules. The left-hand side
always contains a Conflict-node, which is removed in the right-hand side.

will already contain at least one Conflict-node indicating an inconsistency that needs
to be resolved. After applying the resolution rule, the model inconsistency is no longer
present, and the corresponding Conflict-node is removed from the graph structure.

Figure 3 shows some examples of inconsistency resolutions specified as graph trans-
formation rules. For the names of the resolution rules, we use the numbering scheme
introduced in Sect. 2.1. For example, rule AbstractObject-Res3 corresponds to the
third resolution for the AbstractObject model inconsistency. Our resolution rules typ-
ically do not require negative application conditions since they always check for the
presence of a Conflict node, introduced previously by the corresponding detection rule.

3 Transformation Dependency Analysis in AGG

In this section, we explain how to use static analysis on graph transformation rules
to detect mutual exclusions and causal dependencies between the transformation rules
introduced before. The analysis is based on the formal notion of independence of graph
transformations. It expresses the idea that, in a given situation, two transformations are
neither causally dependent nor mutually exclusive. A distinction can be made between

206 T. Mens, R. Van Der Straeten, and M. D’Hondt

Fig. 4. Example of a critical pair illustrating a mutual exclusion between resolution rules Abstract
Object-Res1 and AbstractOperation-Res4

the notions of parallel independence (absence of mutual exclusions) and sequential
independence (absence of causal dependencies). A formal treatment of these concepts
is given in [7].

Based on this notion of independence, a potential parallel or sequential dependency
is defined as a pair of transformation rules for which a counter example to parallel or
sequential independency can be found. More precisely, two rules are mutually exclusive
if application of the first rule prevents application of the second one or vice versa. They
are sequentially dependent if application of the second rule requires prior application
of the first rule.

The goal of critical pair analysis [5] is then to compute all potential mutual exclu-
sions and sequential dependencies for a given set of transformation rules by pairwise
comparison. A critical pair formalises the idea of a minimal example of a conflicting
situation. To achieve such critical pair analysis, we use the tool AGG, since it is the only
available graph transformation tool that implements this technique.

Fig. 4 illustrates a critical pair that identifies a mutual exclusion between the res-
olution rules AbstractObject-Res1 and AbstractOperation-Res4. It is computed by

Fig. 5. Example of a critical pair illustrating a sequential (causal) dependency of resolution rule
AbstractOperation-Res3 on resolution rule AbstractObject-Res1.

Detecting and Resolving Model Inconsistencies 207

Table 1. Classification of mutual exclusions and sequential dependencies. The numbers between
parentheses correspond to the explanation that can be found in the numbered lists in the text.
The top table summarises the results of the mutual exclusion analysis of Section 4.1, whereas the
bottom table summarises the results of the sequential dependency analysis of Section 4.2.

mutual exclusion analysis for the same kind
of inconsistency

between different kinds
of inconsistencies

detection rule conflicts with detection rule Always (1) Never (2)
detection rule conflicts with resolution rule Always (3) Sometimes (4)
resolution rule conflicts with resolution rule Always (5) Sometimes (6)

sequential dependency analysis for the same kind
of inconsistency

between different kinds
of inconsistencies

detection rule depends on detection rule Never (1) Never (2)
resolution rule depends on resolution rule Sometimes (3) Sometimes (4)
resolution rule depends on detection rule Always (5) Never (6)
detection rule depends on resolution rule Sometimes (7) Sometimes (8)

comparing the left-hand sides of both rules, that partially overlap in the coloured class
with label 1. This corresponds to a mutually conflicting situation (of type “change-use-
attr-conflict”), since the first resolution rule will make the class concrete, whereas the
second resolution rule requires for its application that the class remains abstract.

Figure 5 illustrates a critical pair that identifies a sequential dependency between two
resolution rules. The rules AbstractObject-Res1 and AbstractOperation-Res3 are
clearly sequentially dependent, if applied to the same class, since the first rule makes an
abstract class concrete, whereas the second rule requires the class to be concrete for its
application. As such, the application of the first rule enables the application of the sec-
ond rule. This causal dependency is detected as an overlap (the coloured class with label
1) between the right-hand side of the first rule and the left-hand side of the second rule.

4 Interpretation of Results

The main contribution of the proposed technique is that it allows for the static analysis
(i.e., independent of any concrete UML model) of mutual exclusions and sequential
dependencies between different resolution rules for structural model inconsistencies.
This section provides a detailed analysis of the results of the transformation dependency
analysis that we performed on the inconsistency detection and resolution rules presented
in Sect. 2.1.

4.1 Mutual Exclusion Analysis

When we apply the critical pair analysis algorithm to identify all mutual exclusions be-
tween inconsistency detection and resolution rules, we get the following results, which
are also summarised in the top part of Table 1:

1. Each inconsistency detection rule is mutually exclusive to itself, in order to avoid
the same occurrence of a model inconsistency being detected more than once.

208 T. Mens, R. Van Der Straeten, and M. D’Hondt

2. No mutual exclusions are found between pairs of distinct detection rules. This cor-
responds to our intuition, since each rule detects a different kind of model incon-
sistency. As a result, all detection rules are parallel independent of one another.

3. By construction, every detection rule is mutually exclusive to each of the resolu-
tion rules for a particular kind of inconsistency. This is because, for any particular
inconsistency, each of the resolution rules disables the detection rule.

4. Some detection rules are also mutually exclusive to a resolution rule for another
kind of model inconsistency, or vice versa. These situations indicate that the differ-
ent kinds of model inconsistencies and their resolutions are not completely orthog-
onal. Such information may be exploited to refactor the detection and resolution
rules to make them less redundant (see Sect. 6).

5. Alternative resolution rules for the same model inconsistency are always mutu-
ally exclusive, because they represent alternative resolutions. One needs to select
a single resolution in order to resolve the inconsistency and thus disable the other
resolutions.

6. The most interesting result concerns the mutual exclusions between resolution rules
for distinct inconsistencies. In Fig. 6, we see many such examples. They imply that
the application of a particular resolution for a particular model inconsistency may
prohibit the application of a certain resolution for another model inconsistency. An
example of such a situation was explained in the previous section, and visualised
in Fig. 4. If we have a class that causes an AbstractObject inconsistency and an
AbstractOperation inconsistency at the same time, certain pairs of resolutions
for both inconsistencies will be mutually exclusive. This is for example the case
between AbstractObject-Res1 and AbstractOperation-Res4.

Fig. 6. Graph depicting mutual exclusions between resolution rules of distinct model inconsis-
tencies. Except for some layout issues, this graph has been generated automatically by AGG. In
order not to clutter the figure, mutual exclusions between different resolution rules of the same
model inconsistency have been omitted.

4.2 Sequential Dependency Analysis

We also used AGG to compute all critical pairs that identify sequential dependencies
between the inconsistency detection and resolution rules. This leads to the following
results, which are summarised in the bottom part of Table 1:

Detecting and Resolving Model Inconsistencies 209

1. By construction, a detection rule never causally depends on itself.
2. In a similar vein, distinct detection rules are not causally dependent because they

do not essentially modify the graph structure. The only thing they do is adding a
new Conflict-node.

3. Alternative resolution rules for the same model inconsistency are sometimes se-
quentially dependent. This may be a sign of redundancy between the resolution
rules, and it may indicate an opportunity for refactoring the resolutions in order
to make them more orthogonal. For example, we noticed a dependency from the
second to the third resolution rule of DanglingTypeReference, from the second to
the third resolution of ClasslessInstance, from the fourth to the fifth resolution of
AbstractOperation, and from the sixth to the seventh resolution of AbstractOp-
eration. These four dependencies all boil down to the same underlying problem.
For each resolution rule that adds some link to an existing class, there is a simi-
lar resolution rule that first introduces a new class before adding a link to it. Such
redundancies can easily be avoided by restructuring the resolution rules.

4. As shown in Fig. 7, there are many sequential dependencies between resolution
rules for distinct model inconsistencies. This has two important implications. First,
it shows that the resolution of a particular model inconsistency may introduce new
and different opportunities for resolving other model inconsistencies. As such, the
order of resolution of model inconsistencies may be important. Second, some of
the identified sequential dependencies indicate a lack of orthogonality between the
various resolutions. This can be seen clearly in the mutual dependency between
AbstractObject-Res1 and AbstractStateMachine-Res3, and between Classless-
Instance-Res1 and AbstractObject-Res3. In both cases, the resolutions are
exactly the same, even though they are used to solve different kinds of model in-
consistencies. Again, our analysis helps us to detect such redundancies.

5. Every resolution rule for a given model inconsistency sequentially depends on the
detection rule of the same inconsistency, since the detection rule produces a Con-
flict-node that is required for the application of the resolution rule.

6. In our current setup, resolution rules for a certain inconsistency never depend on de-
tection rules for another kind of inconsistency, because the Conflict-node contains
a description specifying the kind of inconsistency being detected or resolved.

7. Sometimes, the detection of a model inconsistency is triggered by the resolution of
another occurrence of the same model inconsistency. This is a degenerate case of
the more general situation that is discussed below.

8. In general, the resolution of a model inconsistency may give rise to the introduc-
tion of new model inconsistencies. The left part of Fig. 8 shows many such cases of
model inconsistencies that are caused by application of a resolution rule. For exam-
ple, there is a sequential dependency from AbstractObject-Res1 to AbstractOp-
eration. Indeed, by applying the resolution rule AbstractObject-Res1 (see Fig. 3),
a previously abstract class will become concrete. If this abstract class happened to
have one or more abstract operations (a situation that is completely acceptable),
after the resolution all of these operations will lead to an AbstractOperation in-
consistency because a concrete class is not allowed to have abstract operations.

210 T. Mens, R. Van Der Straeten, and M. D’Hondt

Fig. 7. Graphs depicting all sequential dependencies between distinct resolution rules

5 Discussion

The ultimate goal of the mutual exclusion analysis and sequential dependency analysis
carried out in the previous subsections is to improve the inconsistency resolution pro-
cess. Mutual exclusion relationships can be used to identify situations where resolution
rules for seemingly different model inconsistencies may interfere in unexpected ways.
Sequential dependencies allow us to assess the propagation of model inconsistencies
during the resolution process.

The fact that the resolution of one model inconsistency may introduce other inconsis-
tencies is a clear sign of the fact that inconsistency resolution is a truly iterative process,
similar in spirit to bug fixing: when fixing one bug, new bugs may appear that need to
be fixed as well. One of the challenges is to find out whether the resolution process will
ever terminate. Situations that may lead to infinite application of resolution rules can
easily be recognised as cycles in the rule dependency graph. As an example of a cy-
cle of length two, we can repeatedly apply resolution rules AbstractObject-Res1 and
AbstractOperation-Res3 ad infinitum, without ever reaching a solution. On the right
of Fig. 8, another example of a cycle of three resolution rules is presented, that was
detected by analysing the dependency graph. In general, the more inconsistencies and
resolution rules there are, the more likely it becomes that longer cycles occur, and the
more difficult it becomes to detect these cycles. Therefore, automatic detection of such
cycles is essential to improve the resolution process.

Based on the analysis of all mutual exclusion relationships and causal dependen-
cies between resolution rules, we realised that these rules are not truly orthogonal, and
can be refactored in order to remove redundancy. For example, we observed that some
resolution rules for certain inconsistencies disable detection rules of other inconsisten-
cies. These resolution rules can be made more orthogonal so that they only affect the
inconsistency that they are meant to resolve. Another refactoring possibility becomes
apparent by comparing the dependencies detected by different resolution rules of the
same inconsistency. In both cases, investigating the overlap graph that is constructed in

Detecting and Resolving Model Inconsistencies 211

Fig. 8. The left graph depicts which model inconsistencies sequentially depend on which resolu-
tion rules. The right graph shows how these dependencies can give rise to cycles in the conflict
resolution process.

the critical pair analysis may be used in a semi-automatic way to suggest refactoring
opportunities.

With respect to tool support, the results of the analysis can be exploited in various
ways. If we target semi-automated tool support, we can easily imagine a user inter-
face (integrated into a UML modelling tool) where, for a given UML model, all model
inconsistencies are identified in an automated way, and the user is presented a list of
resolution actions. Upon selection of such an action, all mutually exclusive actions will
be disabled, and all sequentially dependent actions will become enabled. As such, at
any point in time, the user knows exactly which rules can be applied and which not.
Currently, different student projects are underway to integrate this kind of support into
current-day modelling environments. Once this is achieved, we will perform concrete
experiments with the evolution of UML models, which will allow us to refine and extend
the incomplete list of model inconsistencies and resolution rules presented in this paper.

A more automated kind of support would offer the user a set of different resolution
strategies and, upon selection of one of these strategies, a path of resolution rules is
computed to resolve all model inconsistencies. Since there can be many such paths, it
remains an open question on what would be the most optimal resolution strategy. In
order to find an answer to this question, practical case studies are needed in order to
determine the typical ways in which model inconsistencies are resolved in practice.

6 Limitations and Future Work

A limitation of the current approach that we are well aware of, is the fact that not all
kinds of model inconsistencies and resolution rules can be expressed easily as graph
transformation rules. For some complex model inconsistencies and resolution rules, pro-

212 T. Mens, R. Van Der Straeten, and M. D’Hondt

grammed graph transformations are required, which allow for expressing sequences,
loops and branches of transformation rules. For example, to detect the presence of un-
reachable states in a state machine, we need to apply a sequence of two rules. The first
rule should be applied as long as possible to infer all transitively reachable states, start-
ing from the initial state. The second rule is needed to identify all remaining states,
which are by construction those that are unreachable.

Behavioural inconsistencies are also difficult to express in a graph-based way. Be-
cause of this, in earlier work we have explored the formalism of description logics for
this purpose [3, 4]. How this formalism can be combined with the formalism of graph
transformation, so that we can still benefit from the technique of critical pair analysis,
remains a topic of future work.

Another limitation of our current work is that we restricted ourselves to a subset of
class diagrams and state machine diagrams only. Our work should be extended to cover
the full version of these diagrams, as well as other UML diagrams such as sequence
diagrams, component diagrams, activity diagrams, and so on.

AGG’s current implementation of critical pair analysis suffers from performance
problems. It took several hours to compute all results. This is not an immediate concern
to us since, for any given set of model inconsistency detection and resolution rules, the
computation of mutual exclusion relationships and sequential dependencies needs to
be carried out only once, and the results can be stored for future reference. Moreover,
a comparison of AGG with another tool, Condor, seems to suggest that performance
of the transformation dependency analysis algorithm may be improved without loss of
expressiveness [8].

7 Related Work

In [4, 2], another logic rule-based inconsistency resolution approach similar in spirit to
the one presented here was proposed. The main novelty of the current paper, however, is
the use of dependency analysis between the different resolution rules. The same remark
holds when comparing our work to other attempts to use graph transformation in the
context of inconsistency management. In [9], distributed graph transformation is used
to deal with inconsistencies in requirements engineering. In [10], graph transformations
are used to specify inconsistency detection rules. In [11] repair actions are also specified
as graph transformation rules.

There are other approaches to inconsistency management that define resolution ac-
tions and the way the user can select these actions [12, 13, 14, 15]. Again, in contrast to
our current work, these approaches do not rely on a formal analysis of the relationships
between the various resolution actions.

In order to analyse dependencies between transformation rules, we relied on the
technique of critical pair analysis of graph transformations. [16] also used this technique
to detect conflicting functional requirements in UML models composed of use case
diagrams, activity diagrams and collaboration diagrams. In [17], critical pair analysis
was used to detect conflicts and dependencies between software refactorings. Other
work on critical pair analysis is reported by [18].

Detecting and Resolving Model Inconsistencies 213

8 Conclusion

This article focused on the problem of model inconsistency management, and the abil-
ity to provide more disciplined support for iteratively and incrementally detecting and
resolving model inconsistencies. For this purpose we explored the use of graph trans-
formation dependency analysis, and critical pair analysis in particular. The main contri-
bution of the proposed approach is that it enables a formal and static analysis of mutual
exclusion relationships and causal dependencies between different alternative resolu-
tions for model inconsistencies that can be expressed in a graph-based way. This anal-
ysis can be exploited to improve the inconsistency resolution process, for example, by
facilitating the choice between mutually incompatible resolution strategies, by detect-
ing possible cycles in the resolution process, by proposing a preferred order in which to
apply certain resolution rules, and so on. In the future, we intend to integrate our ideas
into a modelling environment in order to provide more disciplined semi-automated tool
support for model inconsistency management.

References

1. Object Management Group: Unified Modeling Language 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf (2005)

2. Van Der Straeten, R., D’Hondt, M.: Model refactorings through rule-based inconsistency
resolution. In: ACM SAC 2006 - Track on Model Transformation. (2006) To appear.

3. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to main-
tain consistency between UML models. In: UML 2003 - The Unified Modeling Language.
Volume 2863 of Lecture Notes in Computer Science., Springer-Verlag (2003) 326–340

4. Van Der Straeten, R.: Inconsistency Management in Model-driven Engineering. An Ap-
proach using Description Logics. PhD thesis, Department of Computer Science, Vrije Uni-
versiteit Brussel, Belgium (2005)

5. Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence. In: Term
Graph Rewriting. Wiley (1993) 201–214

6. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: Proc. AGTIVE 2003. Volume 3062 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 446–453

7. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph trans-
formation. In: Proc. Int’l Conf. Graph Transformation. Volume 3256 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 161–177

8. Mens, T., Kniesel, G., Runge, O.: Transformation dependency analysis - a comparison of
two approaches. Série L’objet - logiciel, base de données, réseaux (2006)

9. Goedicke, M., Meyer, T., , Taentzer, G.: Viewpoint-oriented software development by dis-
tributed graph transformation: Towards a basis for living with inconsistencies. In: Proc.
Requirements Engineering 1999, IEEE Computer Society (1999) 92–99

10. Ehrig, H., Tsioalikis, A.: Consistency analysis of UML class and sequence diagrams using
attributed graph grammars. In: ETAPS 2000 workshop on graph transformation systems.
(2000) 77–86

11. Hausmann, J.H., Heckel, R., Sauer, S.: Extended model relations with graphical consistency
conditions. In: Proc. UML 2002 Workshop on Consistency Problems in UML-Based Soft-
ware Development. (2002) 61–74

214 T. Mens, R. Van Der Straeten, and M. D’Hondt

12. Easterbrook, S.: Handling conflict between domain descriptions with computer-supported
negotiation. Knowledge Acquisition 3 (1991) 255–289

13. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair actions.
In: Proc. 25th Int’l Conf. Software Engineering, IEEE Computer Society (2003) 455–464

14. Spanoudakis, G., Finkelstein, A.: Reconciling requirements: a method for managing inter-
ference, inconsistency and conflict. Ann. Softw. Eng. 3 (1997) 433–457

15. Kozlenkov, A., Zisman, A.: Discovering, recording, and handling inconsistencies in software
specifications. Int’l Journal of Computer and Information Science 5 (2004)

16. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach. In: Proc. Int’l Conf. Software Engineering, ACM Press (2002)

17. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph transfor-
mation. Software and Systems Modeling (2006) To appear.

18. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages based on critical
pair analysis and contextual layered graph transformation. In: Proc. IEEE Symp. Visual
Languages. (2000)

Merging Models with the
Epsilon Merging Language (EML)

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, The University of York, UK, York, YO10 5DD
{dkolovos, paige, fiona}@cs.york.ac.uk

Abstract. In the context of Model Engineering, work has focused on op-
erations such as model validation and model transformation. By contrast,
other model management operations of significant importance remain un-
derdeveloped. One of the least elaborated operations is model merging.
In this paper we discuss the special requirements of model merging and
introduce the Epsilon Merging Language (EML), a rule-based language,
with tool support, for merging models of diverse metamodels and tech-
nologies. Moreover, we identify special cases of model merging that are
of particular interest and provide a working example through which we
demonstrate the practicality and usefulness of the proposed language.

1 Introduction

As models are promoted to primary software development artefacts, demand
for model management facilities is growing. Currently, management operations
such as model validation and transformation have been extensively studied while
other aspects of Model Engineering, perhaps of equivalent importance, remain
significantly underdeveloped. One of the least elaborated management opera-
tions is model merging.

Today, there are many existing and upcoming standards for Model Engineer-
ing, most of which are managed by the Object Management Group (OMG) [1].
The Object Constraint Language (OCL) [2] is the standard language for express-
ing constraints on models and metamodels. The Queries-Views-Transformations
(QVT)[3] standard targets model-to-model transformations and relations. Re-
garding model to text transformations (code generation), proposals for a suitable
language have been requested [4] by the OMG. Finally, for text to model trans-
formations (reverse engineering), the Abstract Syntax Tree Metamodel (ASTM)
[5] and Knowledge Discovery Metamodel (KDM) [6] have been proposed and are
currently under standardisation.

Despite the wealth of standards, there are none that address model merging.
By contrast, the need for a generic model merging mechanism has been identified
in both research publications [7, 8, 9] and OMG documents [10]. For instance, in
the MDA Guide [10] a scenario of merging Platform Independent Models (PIM)
with Platform Definition Models (PDM) to produce Platform Specific Models
(PSM) is illustrated.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 215–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

The paper is organized as follows: In Section 2 we discuss proposed approaches
to model merging. In Section 3, we introduce the Epsilon Merging Language
(EML), a language for merging models of diverse metamodels and technologies.
We discuss the abstract syntax, the execution semantics and tool-support of the
language. In Section 4, we present a case study through which we discuss the
concrete syntax of the language and demonstrate its practicality and usefulness.
Finally, in Section 5 we conclude and outline our future plans for the evolution
of EML.

2 Background

In this paper we refer to model merging as the process of merging two source
models, MA and MB, instances of the metamodels MMA and MMB, into a tar-
get model MC , which is an instance of the MMC metamodel. We represent this
process as MERGEMA,MB→MC . In this section, we review proposed approaches
to model merging and discuss their strong and weak points. The purpose of this
review is to elaborate a set of guidelines for a generic model merging facility.

2.1 Phases of Model Merging

Existing research [8, 11] has demonstrated that model merging can be decom-
posed into four distinct phases: comparison, conformance checking, merging and
reconciliation (or restructuring).

Comparison Phase. In the comparison phase, correspondences between equiv-
alent elements of the source models are identified, so that such elements are not
propagated in duplicate in the merged model. Several approaches to comparison,
ranging from manual to fully automatic, have been proposed.

In [12] the ModelWeaver, a generic framework for capturing different types of
relationships, such as match relationships, between elements of different models
is illustrated. Matching pairs of elements can be defined graphically through a
tree-based user interface and declared relationships can be stored in a separate
weaving model. Weaving models can be used later by other tools such as model
transformation or model merging tools. While this is a flexible approach that
promotes reuse, it does not scale well since manual definition of each matching
pair is a labour intensive process.

In [13], matching is performed using persistent model-element identifiers (i.e.
using the xmi.id identifier). However, this only applies to comparison of mod-
els that are versions of a common ancestor. In [14], matching is performed by
comparing the names of the elements of the two models. Nevertheless, there are
model elements that do not have a name (e.g. instances of the Multiplicity UML
metaclass) to compare.

Conformance Checking Phase. In this phase, elements that have been identi-
fied as matching in the previous phase are examined for conformance with each
other. The purpose of this phase is to identify potential conflicts that would
render merging infeasible. The majority of proposed approaches, such as [15],
address conformance checking of models complying with the same metamodel.

Merging Models with the Epsilon Merging Language (EML) 217

Merging Phase. Several approaches have been proposed for the merging phase.
In [8, 9], graph-based algorithms for merging models of the same metamodel
are proposed. In [15], an interactive process for merging of UML 2.0 models is
presented. There are at least two weaknesses in the methods proposed so far.
First, they only address the issue of merging models of the same metamodel, and
some of them address a specific metamodel indeed. Second, they use an inflexible
merging algorithm and do not provide means for extending or customizing its
logic.

Reconciliation and Restructuring Phase. After the merging phase, the
target model may contain inconsistencies that need fixing. In the final step of
the process, such inconsistencies are removed and the model is polished to acquire
its final form. Although the need for a reconciliation phase is discussed in [11, 9],
in the related literature the subject is not explicitly targeted.

2.2 Relationship Between Model Merging and Model
Transformation

A merging operation is a transformation in a general sense, since it transforms
some input (source models) into some output (target models). However, as dis-
cussed throughout this section, a model merging facility has special requirements
(support for comparison, conformance checking and merging pairs of input ele-
ments) that are not required for typical one-to-one or one-to-many transforma-
tions [16] and are therefore not supported by contemporary model transforma-
tion languages.

3 The Epsilon Merging Language (EML)

The Epsilon Merging Language (EML) is a rule-based language for merging
models of diverse metamodels and technologies. In this section we discuss the
infrastructure on which EML is built as well as the abstract syntax, the execution
semantics and tool support for the language. The concrete syntax is presented
in the case study that follows.

3.1 The Epsilon Platform

EML is built atop the Extensible Platform for Specification of Integrated Lan-
guages for mOdel maNagement (Epsilon) [17]. Epsilon is a platform that provides
essential infrastructure for implementing task-specific model management lan-
guages (e.g. model transformation, model merging, model validation languages).

The foundation of Epsilon is a generic model management language, the Ep-
silon Object Language (EOL) [18]. EOL builds on the navigation facilities of
the Object Constraint Language (OCL) [2] but also provides essential model
management facilities such as model modification, statement sequencing, error
reporting and multiple model access that OCL currently lacks.

218 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Epsilon is intended to be a global model management platform. It provides
an abstraction layer that hides the implementation details of specific modelling
technologies, thus providing uniform access to different types of models. So far,
Epsilon provides stable support for management of MOF-based models, using
MDR [19], EMF [20] models, and experimental support for XML documents.
Currently, we are developing support for models of the Microsoft Domain Specific
Languages Toolkit (MSDSL) [21].

The main advantages of building task-specific languages, such as EML, on
a common foundation are orthogonality, reusability and uniformity. All task-
specific languages reuse the EOL for declaring model management logic instead
of implementing a custom language each. Thus, evolution of EOL (e.g. to en-
hance performance or syntax brevity) and integration of support for new mod-
elling technologies (e.g. MSDSL or GME [22]) enhances all the languages that
build atop it. In terms of tool support, Epsilon provides a set of reusable compo-
nents for implementing support for new task-specific languages (editors, launch
configurations) in the Eclipse [23] platform.

Apart from the merging language we are presenting in this paper, we have
implemented a model comparison language (ECL) discussed in [24], a model
to model transformation language (ETL) and a prototype of a model to text
transformation language (EGL).

3.2 Abstract Syntax of EML

As discussed in Section 2, a model merging process can be divided into four
distinct phases. In this section, we structure our discussion on the elements of
the EML abstract syntax, displayed in Figure 1, based on the phase in which
they participate. In addition to the abstract syntax, Figure 2 provides an insight
to the internals of the EML engine to facilitate better understanding of strategies
and the execution process of EML.

Comparison and Conformance Phase. In EML, matching is performed
with match-rules. Each match-rule can compare pairs of instances of two spe-
cific meta-classes and decide if they match and conform with each other. Those
decisions are made in the boolean-returning compare and conform blocks of the
rule respectively.

Merging Phase. In the merging phase, there are two activities that produce
elements in the target model; The elements that have been identified as matching
are merged into a sequence of model elements in the target model and a selection
of the elements for which a match has not been found in the opposite model are
transformed into elements of the target model. Therefore, EML provides two
different types of rules; merge-rules and transform-rules.

Each merge-rule defines the types of elements it can merge, as well as a list of
the elements it produces in the target model. In its body, the merge-rule defines
the exact way in which source elements are related to the newly created elements
in the target model. Similarly, each transform-rule defines the type of instances
it can transform, a list of model elements that it produces in the target model
and a body that implements the actual transformation.

Merging Models with the Epsilon Merging Language (EML) 219

Fig. 1. EML Abstract Syntax

Common characteristics of EML rules. All types of EML rules share some
common characteristics which we discuss here to avoid repetition.

Each rule can inherit the functionality of one or more rules of the same type
by extending them. A rule can be also declared as abstract which means that
it cannot be invoked directly, but can be extended by other rules. The effect of
inheritance on the execution semantics of the rule is discussed in the sequel.

Each rule can optionally define a guard block that enforces additional con-
straints on its applicability. For example, the guard part of a transform-rule may
define that the rule does not apply to all instances of the UML!Class but only
to those that have a certain stereotype attached.

The guard and body of each rule, as well as the compare and conform part
of match-rules, are blocks (sequences) of EOL statements. From a technical per-
spective, each rule actually prepares the context by putting the specific instances
on which it is invoked in the current scope so that the EOL body can query or
modify them to implement the desired functionality of the rule.

Strategies. There are certain cases where definition of match, merge and trans-
form rules is trivial but lengthy. For example, the UML 1.4 metamodel consists
of 120 meta-classes and consequently, a specification for merging two UML 1.4
models would consist of 3 ∗ 120 = 360 rules (for matching, merging and trans-
forming). While the length of each rule can be significantly reduced using rule
inheritance, the number of rules is still large and difficult to manage.

Through case studies on merging different types of models, we have identi-
fied cases where this complexity can be managed in a much more elegant man-

220 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Fig. 2. EML Engine Internals

ner. This is particularly true when the merging process involves more than one
model of the same metamodel. For instance, when merging models of the same
metamodel, the merging logic can be largely inferred from the structure of the
metamodel and there should be no need to define it manually. To confront such
issues in a generic way, in EML we have introduced the concept of strategies.
Strategies are pluggable (exogenous) algorithms that can be attached to an EML
specification to implement functionality that would otherwise require extensive
rule hand-writing. There are three types of strategies in EML, one for each type
of rule.

Matching Strategy. A matching strategy compares two arbitrary model elements
and returns an Match instance containing information about whether the two
instances match and conform with each other.

Practical matching strategies we have identified and implemented include the
MofIdMatchingStrategy and EmfIdMatchingStrategy that compare elements of
MOF and EMF-based models respectively by examining their persistent XMI
identity. These concrete strategies are particularly useful in the case where the
models under comparison are versions of a common ancestor model. In this case,
the vast majority of their elements are expected to have selfsame persistent
identities, a clue strong enough to characterize elements as matching.

Merging Strategy. A merging strategy has two methods. The appliesTo(left Ele-
ment : Object, rightElement : Object) : Boolean decides if the strategy applies to a
specific pair of instances by returning aBoolean value.The autoMerge(leftElement:
Object, rightElement: Object) specifies the logic that merges the two instances.

Practical merging strategies we have developed include the CommonMofMeta-
modelMergingStrategy and the CommonEmfMetamodelMergingStrategy strate-
gies for merging elements of the same type originating from MOF or EMF-based

Merging Models with the Epsilon Merging Language (EML) 221

models of a common metamodel. The merging algorithm they follow is quite
straightforward; for single-valued features they choose the value of the element
from left model while for multi-valued features they perform a union of the left
and right values and assign them to the feature of the target element.
Transformation Strategy. Similarly to the previous two types of strategies, a
transformation strategy can transform a source element into an equivalent el-
ement in the target metamodel. An EML module has two associated trans-
formation strategies; the leftTransformationStrategy and the rightTransforma-
tionStrategy that can transform elements from MA or MB respectively. As an
example, a useful concrete transformation strategy is the CommonMofMeta-
modelTransformationStrategy that creates a deep copy of the source element on
which it is applied in the target model.

Extending the behaviour of Strategies. Strategies can relieve developers
from defining rules of trivial functionality. On the other hand, for some types of
model elements a strategy may not have the exact behaviour that the user needs.
In this case, the user can define a rule that applies to specific types of elements
thus overriding the strategy. While this makes overriding feasible it is not the
most efficient way since, for example, the strategy may implement a large pro-
portion of the desired functionality and the user may need to tweak some minor
details, thus making rewriting the rule from scratch unnecessarily heavyweight.
To resolve this issue, in EML a rule can be characterized as auto. In this case,
the respective strategy is executed and following that the body of the rule.

In merge and transform rules, this affects the contents of the elements in the
target list (which would otherwise be empty). In the case of the match rules,
the autoCompare and autoConform variables are placed in the scope so that the
bodies of the compare and conform parts of the rule can combine them with
other criteria to finally decide if the two elements constitute or not a match.

Many of the strategies discussed in this section implement algorithms (e.g.
persistent identifier-based matching, metamodel-driven merging) also discussed
in Section 2. The difference is that there, they are described as standalone al-
gorithms that cannot be extended or customized by users. By contrast, in EML
they are pluggable components of a more complex architecture that allows the
user to dynamically attach them to merging specifications and customize their
behaviour.

Restructuring and Reconciliation Phase. After the merging phase, the
target model can possibly require some restructuring. Restructuring can be per-
formed in the post block of the specification. The post block is a pure EOL block
that has access to the models as well as the internal traces of the EML engine.
There, users can specify the desired restructuring functionality in an imperative
manner.

3.3 Execution Semantics

In this section we discuss the execution semantics of EML. As with the previous
section, we provide a separate paragraph for each phase.

222 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Comparison and Conformance Phase. For each pair of elements in MA,
MB, the non-abstract match-rules are iterated to find one that applies to the
pair. In case two or more rules are found to apply to a pair, this is reported
to the user and execution stops. The reason we have chosen this approach in-
stead of invoking all applicable rules is to reduce complexity since reuse can be
still implemented via rule extension. For a match-rule to apply, the elements
of the pair must be instances of the types the rule declares and the guard of
the rule must also return true. If no applicable match-rule is found, the at-
tached matchingStrategy compares the elements, and the results are stored in
the matchTrace.

If an applicable rule is found, the compare parts of the rule it extends as well
as the rule’s own compare part are executed. In the compare part of a rule, the
built-in matches(element) operation may be invoked on any element to check
(by consulting the matchTrace or invoking an appropriate match-rule) whether
it matches with the element set as parameter. The matches(element) operation
will be further discussed through a concrete example in the case study. If any
compare part returns false, the elements are stored in the matchTrace as non-
matching.

If all the compare parts return true, the conform parts are executed. If any of
them returns false, the elements are stored in the matchTrace as non-conforming,
else they are stored as conforming. In the end of the matching phase, the match-
Trace contains information about all pairs of elements in the source models.
Then, if there are elements that match with elements of the opposite model
but do not conform to them, they are reported to the user and the execution
is terminated since it is not desirable to attempt to merge models that contain
conflicting elements.

Merging Phase. After the matching phase, by examining the matchTrace, the
elements of the source models are separated into two main groups. Those that
have one or more matching elements in the opposite model and those that have
not.

For each element with one or more matching opposites, for each match the
non-abstract merge-rules are iterated to find one that applies to the pair. As
with match rules, a rule applies to a pair if the elements are instances of the
rule-defined parameters and the guard part of the rule returns true. If no rule is
applicable, the pair is merged using the defined mergingStrategy and the results
are stored in the mergeTrace.

For each element with no matching opposites, the non-abstract transform-rules
are iterated to find one that applies to the element. Applicability for transform-
rules is decided similarly to the match and merge-rules. If no transform-rule is
found, the element is transformed using the leftTransformationStrategy or the
rightTransformationStrategy depending on whether it originates from MA or MB

respectively, and the results are stored in the transTrace.

Breaking the Default Rule Execution Order. There are cases when it is
desirable to break the default execution order. For example, for a match-rule

Merging Models with the Epsilon Merging Language (EML) 223

that compares two UML attributes, a commonly accepted definition is that for
two attributes to match, apart from their names, their owning classes must also
match. To check this, the rule should invoke another rule capable of comparing
the owning classes or examine the matchTrace to discover if the owning classes
have been already matched. Since this is a usual requirement in comparison
rules, in EML we provide the built-in matches(element) operation that can be
invoked on any element with any other element (it can also compare collections
of elements) as argument to inspect the matchTrace or invoke any applicable
rule if necessary.

Similarly, in merge and transform-rules, it is often needed to determine the
equivalent of an element (or a collection of elements) from MA or MB in MC .
To avoid iteration of mergeTrace and transTrace and explicit invocation of
rules, EML provides the equivalent(element) and equivalents(elements) opera-
tions, which inspect the traces and invoke any necessary rules automatically
to return the equivalent element(s), in MC , of the elements on which they are
applied. Another advantage of the matches(element) and equivalent(element)
operations is that they are guaranteed to terminate, in contrast with explicit
rule invocation that can result to infinite circular rule invocation.

3.4 Tool Support

In the context of tool support, we have implemented an EML execution engine
built atop the EOL engine. Moreover, to enhance usability, we have developed
a set of plug-ins for Eclipse (editor, syntax validator, outline viewer, wizards
and launcher) for editing, inspecting, configuring (e.g. models, strategies) and
executing EML specifications.

4 Case Study

In this section, we demonstrate two scenarios of using EML. In the first we
merge a Platform Independent Model (in UML) with different Platform Def-
inition Models (PDMs) to acquire different Platform Specific Models (PSMs).
In the second we merge two complementary UML 1.4 models. The main rea-
son we use UML models for our examples is that the UML metamodel is well
understood and thus we do not need to explain it here. Moreover, UML has
a standard graphical notation that readers should be familiar with. Although
discussed before, we should state again that EML (and Epsilon in general) is
agnostic of UML and treats UML models like any other MOF-based models.

4.1 Merging a PIM with Different PDMs

In this scenario, we need to merge a Platform Independent Model expressed in
UML with different Platform Description Models, expressed in a simple MOF-
based language, in order to acquire different Platform Specific Models. The
simple Platform Description Metamodel contains only a PrimitiveTypeMapping
metaclass with two attributes (independent and specific) that is used to define

224 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Fig. 3. PIM, PDM and PSM Instances

mappings between platform independent and platform specific types. An exem-
plar PIM, instances of the PDMs for two different platforms (SQL and C++),
as well as the result of merging are displayed in Figure 3.

The merging is achieved with the EML specification displayed in Listing 1.1.
Since the left and the target model are of the same metamodel, we set the merg-
ing strategy to LeftAndMergedCommonMetamodelStrategy and the left trans-
formation strategy to CommonMofMetamodelStrategy while we leave the right
transformation strategy to None.

In the PimTypeMapping match-rule, a PIM primitive type is declared to be
matching with a mapping (PrimitiveTypeMapping) if the name of the primitive
type is equal to the value of the independent attribute of the mapping. The guard
part of the rule defines that a PIM primitive type is a normal UML class with
a <<primitive>> stereotype attached.

In the PimTypeToPsmType merge-rule, matching pairs of primitive types from
PIM and mappings from PDM are merged to create the platform specific types
in the PSM (which is in all other aspects an exact copy of the PIM).

Listing 1.1. PIM with PDM merging specification

rule PimTypeMapping
match pimType : PIM! Class
with mapping : PDM! PrimitiveTypeMapping {

guard {
return pimType . s t e r e o type . e x i s t s (s | s . name = ’ p r im i t i v e ’) ;

}

compare {
return pimType . name = mapping . independent ;

}

}

auto rule PimTypeToPsmType
merge pimType : PIM! Class
with mapping : PDM! PrimitiveTypeMapping
into psmType : PSM! Class {

psmType . name := mapping . s p e c i f i c ;
}

Merging Models with the Epsilon Merging Language (EML) 225

4.2 Merging Two UML Models

In this scenario, we merge two UML 1.4 models that have been developed inde-
pendently of each other1. An extra requirement is to add appropriate stereotypes
to the classes of the merged model so that users can trace back which classes
originated only from the left or right model and which existed in both of them.

Fig. 4. Source and Merged Models

We achieve this through the specification presented in Listing 1.2. Since the
source models are of the same metamodel (UML 1.4) with the target model,
we also set the merging strategy to AllCommonMofMetamodelStrategy so that
matching elements of the same metaclass may be merged automatically, and the
left and right transformation strategies to CommonMofMetamodelTransforma-
tionStrategy so that elements of the source models that do not have matching
elements in the opposite model may be deeply copied in the target model. Due
to space restrictions, we discuss only rules of particular interest.

Rule ModelElements is declared as abstract which means that it can be invoked
only through the rules that extend it (e.g. Classes, Packages). The body of the
rule defines that for two model elements to match, their names should be equal
and their namespaces should also match (using the matches() built-in operation).
Invocation of the matches() operation in this context will result in the invocation
of either the Packages or Models rule depending on whether the model element
is contained in a Package or in the Model itself.
1 Therefore we can not rely on persistent identities for comparison.

226 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Listing 1.2. Partial UML merging

pre {
def mergedStereotype : new Merged ! Stereotype ;
mergedStereotype . name := ’merged ’ ;

def l e f t S t e r e o t yp e : new Merged ! Stereotype ;
l e f t S t e r e o t yp e . name := ’ l e f t ’ ;

def r i gh tS t e r eo type : new Merged ! Stereotype ;
r i gh tS t e r eo type . name := ’ r i gh t ’ ;

}

rule Models
match l e f t : Le f t ! Model
with r i gh t : Right ! Model {

compare {
return true ;

}
}

abstract rule ModelElements
match l e f t : Le f t ! ModelElement
with r i gh t : Right ! ModelElement {

compare {
return (l e f t . name = r i gh t . name and

l e f t . namespace .
matches (r i gh t . namespace)) ;

}
}

rule Packages
match l e f t : Le f t ! Package
with r i gh t : Right ! Package
extends ModelElements {}

rule Clas s e s
match l e f t : Le f t ! Class
with r i gh t : Right ! Class
extends ModelElements {}

rule Att r ibute s
match l e f t : Le f t ! Att r ibute
with r i gh t : Right ! Att r ibute
extends ModelElements {

compare{
return l e f t . owner . matches (r i gh t . own

er) ;}
conform {

return l e f t . type . matches (r i g h t . type
) ;}

}

rule DataTypes
match l e f t : Le f t ! DataType
with r i gh t : Right ! DataType
extends ModelElements {}

rule Gene ra l i z a t i on s
match l e f t : Le f t ! Gene ra l i z a t i on
with r i gh t : Right ! Gene ra l i z a t i on {

compare {
return (

l e f t . parent . matches (r i gh t . parent) and

l e f t . c h i l d . matches (r i gh t . c h i l d)) ;
}

}

rule Assoc i a t i on
match l e f t : Le f t ! As soc i a t i on
with r i gh t : Right ! As soc i a t i on
extends ModelElements {

compare {
return (

l e f t . connect ion . matches (r i gh t . connect ion)) ;
}

}

rule Assoc iat ionEnds
match l e f t : Le f t ! Associat ionEnd
with r i gh t : Right ! Associat ionEnd
extends ModelElements {

compare {
return (

l e f t . p a r t i c i p an t . matches (r i gh t . p a r t i c i p an t) and
l e f t . otherEnd () . matches (r i gh t . otherEnd ()) and
l e f t . a s s o c i a t i o n . name = r i gh t . a s s o c i a t i o n . name) ;

}
}

auto rule ModelWithModel
merge l e f t : Le f t ! Model
with r i gh t : Right ! Model
into merged : Merged ! Model {

merged . name := l e f t . name + ’ and ’ + r i gh t . name ;
}

auto rule ClassWithClass
merge l e f t : Le f t ! Class
with r i gh t : Right ! Class
into merged : Merged ! Class {

merged . s t e r eo type . add (mergedStereotype) ;
}

auto rule ClassToClass
transform source :UML! Class
to t a r g e t : Merged ! Class {

i f (Le f t . owns (source)){
t a r g e t . s t e r eo type . add (l e f t S t e r e o t yp e) ;

} else {
t a r g e t . s t e r eo type . add (r i gh tS t e r eo type) ;

}
}

operation UML! Associat ionEnd
otherEnd () : UML! Associat ionEnd {
return se l f . a s s o c i a t i o n . connect ion .

r e j e c t (ae | ae=s e l f) . f i r s t () ;
}

post {
def mergedModel : Merged ! Model ;
mergedModel := Merged ! Model . a l l I n s t a n c e s () . f i r s t () ;
l e f t S t e r e o t yp e . namespace := mergedModel ;
r i gh tS t e r eo type . namespace := mergedModel ;
mergedStereotype . namespace := mergedModel ;

}

Merging Models with the Epsilon Merging Language (EML) 227

Rule ModelWithModel is declared as auto which means that before the invo-
cation of its body, the strategy merging behaviour is invoked. In its body the
rule defines that instead of the name of the left model2, the merged model should
have a name equal to the concatenation of the names of both models separated
with the string ‘and’.

In the pre section of the specification, three stereotypes are created in the
target model imperatively. In the ClassToClass and ClassWithClass auto-rules,
those stereotypes are attached to classes in the merged model to implement the
traceability requirement discussed above. Finally, in the post section, restruc-
turing is performed. In the pre section, the three stereotypes were created but
they were not assigned to a namespace since at that time, the merged model was
empty. This renders the merged model invalid since all model elements (except
for instances of the Model metaclass) should be contained in a namespace. In
this section, the stereotypes’ namespace is assigned to the only instance of Model
in the merged model. The result of merging two exemplar UML source models
is displayed in Figure 4.

5 Conclusions and Further Work

In this paper we have presented the Epsilon Merging Language (EML), a rule-
based language for merging models of diverse metamodels and technologies. EML
is a novel effort to provide a solution to the underdeveloped field of model merg-
ing. Through the case study, we have demonstrated its practicality and usefulness
in different merging scenarios.

Currently, we are in the final stages of the process of separating the trans-
formation (transform-rules) and comparison (match-rules) parts of EML so that
they can be used as standalone languages. Moreover, we are working on loosen-
ing the coupling between the comparison and the merging phase. Our plan is to
allow exporting the results of the matching phase in a weaving model compatible
with ModelWeaver, so that it can be refined manually. The weaving model would
then be imported back to EML to support the merging phase.

Finally, another interesting direction for future research is the three-way merg-
ing task in which the models under merge are descendants of a common ancestor
[8]. Although experiments have demonstrated that EML can support this special
type of merging, this is not achieved in the most efficient and elegant way. There-
fore, we plan to study and evaluate the possibility of integrating new constructs
in EML or even that of defining a new language, specific to the task, atop EML
(since the architecture of Epsilon renders this possible).

Acknowledgements

The work in this paper is partially supported by the European Commission
via the MODELWARE project, co-funded under the “Information Society Tech-
2 This is the default behaviour of the CommonMofMetamodelMergingStrategy as dis-

cussed in Section 3.2.

228 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

nologies” Sixth Framework Programme (2002-2006). Information included in
this document reflects only the authors views. The European Commission is not
liable for any use that may be made of the information contained herein.

References

1. Object Management Group, official web-site. http://www.omg.org.
2. Object Management Group. UML 2.0 OCL Specification. http://www.omg.org/

docs/ptc/03-10-14.pdf.
3. Object Management Group. MOF QVT Final Adopted Specification. http://

www.omg.org/cgi-bin/doc?ptc/05-11-01.pdf.
4. Object Management Group. MOF Model to Text Transformation Language Re-

quest For Proposals (RFP). http://www.omg.org/cgi-bin/doc?ad/04-04-07.pdf.
5. Object Management Group. Abstract Syntax Tree Metamodel, Request For Pro-

posals (RFP). http://www.omg.org/cgi-bin/doc?admtf/05-02-02.pdf.
6. Object Management Group. Knowledge Discovery Metamodel, Request For Pro-

posals (RFP). http://www.omg.org/cgi-bin/doc?lt/03-11-04.pdf.
7. Stephane Bonnet and Raphael Marvie and Jean-Marc Geib. Putting Concern-

Oriented Modeling into Practice. In 2nd Nordic Workshop on UML, Modeling,
Methods and Tools, 2004.

8. Rachel A. Pottinger and Philip A. Bernstein. Merging Models Based on Given
Correspondences. Technical Report UW-CSE-03-02-03, University of Washington,
2003.

9. S. Melnik, E. Rahm and P. A. Bernstein. Rondo: A Programming Platform for
Generic Model Management. In Proc. SIGMOD, pages 193–204, 2003.

10. Object Management Group, Jishnu Mukerji, Joaquin Miller. MDA Guide version
1.0.1, 2001. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

11. C. Batini, M. Lenzerini, S.B. Navathe. A Comparative Analysis of Methodolo-
gies for Database Schema Integration. ACM Computing Surveys, 18(4):323–364,
December 1986.

12. Marcos Didonet Del Fabro, Jean Bezivin, Frederic Jouault, Erwan Breton, Guil-
laume Gueltas. AMW: A Generic Model Weaver. Proceedings of IDM05, 2005.

13. Marcus Alanen and Ivan Porres. Difference and Union of Models. Technical Report
527, TUCS, April 2003.

14. Yuehua Lin, Jing Zhang, and Jeff Gray. A Testing Framework for Model Trans-
formations. In Sami Beydeda, Matthias Book, and Volker Gruhn, editor, Model-
driven Software Development, pages 219–236. Springer, 2005. http://www.gray-
area.org/Pubs/transformation-testing.pdf.

15. Kim Letkeman. Comparing and merging UML models in IBM Ratio-
nal Software Architect. IBM Developerworks, July 2005. http://www-
128.ibm.com/developerworks/rational/library/05/712 comp.

16. Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In OOPSLA?03 Workshop on Generative Techniques in the Context
of Model-Driven Architecture, 2003.

17. Dimitrios S. Kolovos. Extensible Platform for Specification of Inte-
grated Languages for mOdel maNagement (Epsilon), Official Web-Site.
http://www.cs.york.ac.uk/~dkolovos/epsilon.

Merging Models with the Epsilon Merging Language (EML) 229

18. Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack. The Epsilon Object
Language (EOL). In Proc. Model Driven Architecture Foundations and Applica-
tions: Second European Conference, ECMDA-FA, volume 4066 of LNCS, pages 128
– 142, Bilbao, Spain, June 2006.

19. Sun Microsystems. Meta Data Repository. http://mdr.netbeans.org.
20. Eclipse.org. Eclipse Modelling Framework. http://www.eclipse.org/emf.
21. Microsoft Domain Specific Languages Framework, Official Web-Site. http://

msdn.microsoft.com/vstudio/teamsystem/workshop/DSLTools/ default.aspx.
22. Generic Modeling Environment. http://www.isis.vanderbilt.edu/Projects/gme.
23. Eclipse Foundation, Official Web-Site. http://www.eclipse.org.
24. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model comparison:

a foundation for model composition and model transformation testing. In Proc.
International workshop on Global integrated model management, GaMMa, ICSE,
pages 13–20, Shanghai, China, 2006.

Mappings, Maps and Tables: Towards Formal
Semantics for Associations in UML2 �

Zinovy Diskin and Juergen Dingel

School of Computing, Queen’s University,
Kingston, Ontario, Canada

{zdiskin, dingel}@cs.queensu.ca

Abstract. In fact, UML2 offers two related yet different definitions of
associations. One is implicit in several Description and Semantics sec-
tions of the specification and belongs to the UML folklore. It simply
says that an association is a set of links. The other – official and formal
– definition is explicitly fixed by the UML metamodel and shows that
there is much more to associations than just being sets of links. Partic-
ularly, association ends can be owned by either participating classes or
by the very association (with a striking difference between binary and
multiary associations), be navigable or not, and have some constraints
on combining ownership and navigability.

The paper presents a formal framework, based on sets and mappings,
where all notions involved in the both definitions can be accurately ex-
plained and formally explicated. Our formal definitions allow us to rec-
oncile the two views of associations, unify ownership for binary and mul-
tiary associations and, finally, detect a few flaws in the association part
of the UML2 metamodel.

1 Introduction

Associations are amongst the most important modeling constructs. A clear and
accurate formal semantics for them would provide a guidance for a convenient
and precise syntax, and greatly facilitate their adequate usage. Moreover, in
the context of model-driven software development, semantics must be crystal
clear and syntax has to specify it in an unambiguous and suggestive way. An
additional demand for clarifying the meaning of associations comes from UML2
metamodel that is based on binary associations.

Unfortunately, the UML2 specification [8], further referred to as the Spec, does
not satisfy these requirements. While complaints about informality of semantics
are common for many parts of UML, for associations even their (abstract) syntax
seems to be complicated and obscure in some parts. For example, the meaning of
the (meta)associations ownedEnd and navigableOwnedEnd of the Association
(meta)class in the metamodel is not entirely clear. More accurately, it is not

� Research supported by OCE Centre for Communications and Information Technol-
ogy and IBM CAS Ottawa.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 230–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mappings, Maps and Tables: Towards Formal Semantics for Associations 231

easy to comprehend their meaning in a way equally suitable for both binary
and multiary (arity n ≥ 3) associations. The infamous multiplicity problem for
multiary associations is another point where the cases of binary and multiary
associations are qualitatively different in UML (see, e.g., [3]). Even the very
definition of association, in fact, bifurcates for the binary and multiary cases,
though this fact is hidden in the excessively fragmented presentation of the
UML metamodel via packages. A sign of distortion of the association part of the
metamodel is that many modeling tools do not implement multiary associations
(not to mention qualified associations - a rarity among the implemented modeling
elements).

We will show in the paper that all these problems grow from the same root, and
can be readily fixed as soon as the root problem is fixed. The point is that UML
mixes up three conceptually and technically different sides of the association
construct. In the most popular view, an association is just a collection of tuples
or a table. For example, a ternary association between classes X1, X2, X3 is a
three-column table T = (R, p1, p2, p3) with R the set of rows or tuples of the
association and p1, p2, p3 the columns, that is, mappings pi : R → Xi,i = 1, 2, 3,
called association ends. This is a purely extensional view and the roles of the
classes are entirely symmetric.

A more navigation-oriented view of the same association is to consider it as
a triple of binary mappings

f1 : X2 × X3 → X1, f2 : X1 × X3 → X2, and f3 : X1 × X2 → X3 (1)

which we call structural (Table 1 on p.240 presents it in visual form). Note that
each of the structural mappings is asymmetric and has a designated target, or
goal, class. Yet the set of three mappings MS = (f1, f2, f3) retains the symmetry
of the tabular view. We will call such sets structural maps of associations.

When we think about implementation of structural maps, we need to decide,
first of all, which of the possible navigation directions should be most effective
and which of the classes will implement it. For example, the mapping f1 can be
implemented as either a retrieval operation in class X2 with a formal parameter
of type X3, f12(x:X3) : X2 → X1,1 or as a retrieval operation in class X3 with a
formal parameter of type X2, f13(x:X2) : X3 → X1. We will call such mappings
operational or qualified, since UML calls formal parameters qualifiers. Thus, the
same association can be viewed as a six-tuple MQ of qualified mappings fij (see
Table 1 where only three of them shown). Note that each of the qualified map-
pings brings more asymmetry/navigational details to its structural counterpart
yet their full set MQ retains the symmetry of the entire association; we will call
such sets operational or qualified maps.

Thus, in general an association is a triple A = (T, MS, MQ) of mutually
derivable components, with T , MS and MQ also consisting of multiple member
mappings. Unfortunately, for specifying this rich instrumentary of extensional
and navigational objects, the UML metamodel offers just one concept of the
1 Which might be written as f12 : X2 → [X3 → X1] in the functional programming

style.

232 Z. Diskin and J. Dingel

association memberEnd. For example, a ternary association consists of the total
of twelve mappings while the UML metamodel states only the existence of its
three ends. Not surprisingly, that in different parts of the Spec the same notion
of memberEnd is interpreted as either a projection mapping (column), or a
structural mapping, or a qualified mapping (operation). Inevitably, it leads to
ambiguities and misconceptions, only part of which was mentioned above.2

In the paper we build a formal framework, where the notions outlined above
together with their relationships can be accurately defined and analyzed. In a
sense, we disassemble the rich intuition of the association construct into elemen-
tary building blocks and then join them together in various ways to model differ-
ent views of associations. Particularly, if association is a triple A = (T, MS , MQ)
as above, we can consider the pair AS = (T, MS) as its structural view and the
pair AO = (T, MQ) as its operational view. The metamodel in Fig. 3 on p.243
presents our building blocks and their relationships in a concise way. It shows a
few remarkable symmetries between the components and views of associations,
which is interesting to discuss (see Section 4.3). On the other hand, it forms a
useful frame of reference for analyzing the UML metamodel (Section 4.4).

Formalities as such can be boring or interesting to play with. When they are
intended to model engineering artifacts, the first and crucial requirements to
them is to be an adequate and careful formalization of the intuitions behind
the artifacts to be modeled. We have paid a close attention to deducing our
formalization from the Spec rather than from our own perception of what the
association should be. To achieve this goal, we have read the Spec as carefully
as possible, and discussed possible interpretations with the experts [10, 7]. Sec-
tions 2 and 3 present the results together with an outline of some preliminary
framework of main constructs. Section 4 presents an accurate formal model and
sets the stage for our discussion of what is association in UML2; the culmination
is in Sections 4.3 and 4.4.

Remark: What is not in the paper. Semantics for the concepts of associ-
ation/relationship and particularly, of aggregation and role is a well-known re-
search issue that can be traced back to the pioneering works on data semantics by
Abrial, Brodie, Chen, Mylopoulos, Tsichritzis and Lochovsky in seventies-early
eighties. Since then a vast body of work on the subject was done and reported
in the literature, see [5] for an early survey. Certainly, UML’s concept of associ-
ation is built on top of this work, and it might be an interesting research issue
to study the evolution of ideas and their realization in the standard (see [2] for
some results). Moreover, we believe that a real understanding of such a software
phenomenon as UML does need evolutionary studies, particularly, for associa-
tion and related concepts, and for many other parts of UML as well. However,
such a discussion would go far beyond our goals in the paper. The latter are
purely technical: take the standard as the only source of information about the
association construct and provide an accurate formal semantics for it.

2 Even the much more formally precise OCL confuses operational and projection map-
pings when it borrows UML’s notation (abstract syntax) for association classes.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 233

2 What Is a Property? The Structural View of
Associations

According to UML metamodel ([8, Fig.7.12], see our Fig. 1) an association A
between classifiers X1...Xn, n ≥ 2, is an n-tuple of properties (f1, ..., fn) called
A’s memberEnds or just ends.

Each of the properties has its type [8, Figures 7.5 and 7.10], and explanations
in Sect. 7.3.3 and 7.3.44 allow us to set the correspondence fi.type = Xi for all
i = 1..n. The main question is what is the semantic meaning of property in this
definition? The Spec says [8, Sect.7.3.44, p.121]:

when instantiated, a property represents a value or collection of values
associated with an instance of one (or, in the case of a ternary or higher-
order association, more than one) type. This set of classifiers is called
the context for the property; in the case of an attribute the context is
the owning classifier, and in the case of an association end the context
is the set of types at the other end or ends of the association.3

A natural way to interpret this definition is to consider a property in general
as a mapping from some source set called the context (and whose elements play
the role of instances “owning” the property), to a target set called the type of
the property (whose elements play the role of values that the property takes).
In particular, if the properties in question are the ends of some association, then
the quote above says that each fi is a mapping

fi : Xj1 × ... × Xjn−1 � Xi, i /∈ {j1...jn−1} ⊂ {1...n}, (2)

where the Cartesian product is the context, and the double-arrow head means
that the actual target of the mapping is the set collfi(Xi) of collections of speci-
fied (with fi) type (sets, bags or lists) built from elements of Xi. A special case,
when the value is a single element of the target class, will be denoted by the
single-arrow head, and such mappings will be called functional or functions.

The left column of Table 1 on p.240 shows examples of mappings of this
form for association arities n = 2 and n = 3. The term multiary, will be used
generically to refer to the cases n ≥ 3. Thus, an n-ary association is an n-element
set of (n−1)-ary mappings called Properties. This definition still lacks a crucial
condition. Namely, we need to require that all mappings f1, .., fn are just different
parts of the same association, or, as we will say, are mutually inverse, meaning
that they all are mutually derivable by inverting/ permuting sources and targets
(this condition is well known for the binary case).

Formally, this can be captured as follows. Given an n-ary mapping
f : X1 × .. × Xn � Y , its extension ext(f) is the collection of tuples

((extension)) [(x1, . . . , xn, y) : x1 ∈ X1, ..., xn ∈ Xn, y ∈ f(x1...xn) ∈ collf (Y)] ,

3 In this piece, the terms “type” and “classifier” are used interchangeably and, hope-
fully, can be considered synonyms here.

234 Z. Diskin and J. Dingel

Constraints for Association context in OCL
(to shorten expressions we write end for memberEnd):

self.end->includesAll(self.ownedEnd) ->includesAll(navigOwnedEnd)(2)

def: self.endType = self.end->collect(type)(3)

if self.end->size() >2 then self.ownedEnd = self.enda(4)

a this is the Constraint 5 in [8, p.37],

Fig. 1. A piece of UML metamodel extracted from [8, Fig. 7.12] with additions from
[8, Fig. 7.5, 7.10, 7.17]

which is a bag if f is bag-valued.4The most natural way of presenting such a col-
lection is to store it in a table. In fact, we have a mapping ext : Mapping → Table
sending any n-ary mapping to a (n+1)-column table recording its extension.

Now we can formulate the condition in the following way.

2.1 Definition: Let X = (X1...Xn) be a family of classes.
(i) Any (n − 1)-ary mapping of the form (2) is called a structural mapping over
X. Its source tuple of classes is called the context, and the target class the type
of the mapping.
(ii) Two or more structural mappings f1...fk over X are called mutually inverse
if they have the same extension (up to renaming of the tables’ columns)

((inverse)) ext(f1) = ext(f2) = ... = ext(fk).

(iii) An n-element set MS = {f1...fn} of mutually inverse structural mappings
over X is called a structural map over X. In other words, a structural map is a
maximal set of mutually-inverse structural mappings.

Thus, the Spec defines associations as nothing but structural maps.
4 If f is list-valued, we can either disregard the ordering information by considering

the underlying bag, or consider the extensional set to be partially-ordered.

{ordered}

/endType
1..*

{ordered}

{ordered}
{ordered}
-qualifier

- owningAsson

Mappings, Maps and Tables: Towards Formal Semantics for Associations 235

Constraints for Association:

def: self.endType = self.end->collect(type)(6)

self1 �= self2 implies disjoint(self1.end, self2.end)=true(7)

self.end satisfies the constraint (inverse) in Definition 2.1(ii) a(8)

Constraints for Property:

self.asson.endType->includesAll(self.context)(9)

self.context->size() +1 = self.asson.end->size() b(10)

a constraints (7) and (8) are missed in the Spec
b constraints (9) and (10) cannot be declared in the Spec because the meta-association

context is not there

Fig. 2. Metamodel for the structural view of associations

2.2 Definition: Structural view of association. An n-ary association, struc-
turally, is an n-element set of mutually inverse (n − 1)-ary mappings (called
properties in UML).
Precise details and terminology associated with this definition are presented in
Fig. 2. This (formal) metamodel accurately describes the corresponding part of
the Spec, and it is instructive to compare it with the UML metamodel in Fig. 1
(disregarding there, for a while, the ownership aspect).

2.3 UML metamodel of associations in the light of formalization, I.

We note that the Spec misses two important constraints on associations: disjoint-
ness, (7), and being inverse, (8), in Fig. 2 (though, of course, implicitly they are
assumed). Note also that our formal metamodel does not require the set of ends
to be ordered. Indeed, ends are analogous to labels in labeled records: ordering is
needed when there are no labels for record fields (and means, in fact, using natu-
ral numbers as labels). Thus, ordering of meta-association memberEnd required
in the UML metamodel is redundant.

Finally, the most serious (and even striking) distinction is that the meta-
association context is absent in the UML metamodel. As we have seen, the Spec
does talk about this fundamental component of the association constructs, yet for-
mally it is not entered into the metamodel. Is it hidden or lost in the long package
merge chains in which the UML metamodel is separated? Note that even if the
(meta)association context can be derived from other parts of the metamodel, its

236 Z. Diskin and J. Dingel

explicit presence in Figure 7.12 of the Spec, the main part of the UML associa-
tion metamodel, is essential. Indeed, without this association we cannot formu-
late important structural constraints (9,10) in Fig. 2 and, which maybe even more
important, without context the understandability of the metamodel is essentially
lessened.

3 A Battle of Ownerships: The Operational View of
Associations

In this section we consider that part of the UML association metamodel, which
specifies ownership relations between Classes, Properties and Associations. The
Spec considers two specific subsets of the set A.memberEnd = {f1..fm} of asso-
ciation ends: the set of ends owned by the association, A.ownedEnd ⊆ {f1..fm},
and the set of navigable owned ends, A.navOwnedEnd ⊆ A.ownedEnd . Unfortu-
nately, there is no direct explanation of the meaning of these two notions and
we need to extract it from semi-formal considerations in Sect. 7.3.3 and 7.3.44.

Since for multiary association (when n ≥ 3), the notions of memberEnd and
ownedEnd coincide due to the constraint (4) in Fig. 1, we have to consider binary
associations to understand the difference.

It appears that the Spec assumes (though does not state it explicitly) that
if an end, say, f1, is not owned by the association, f1 /∈ A.ownedEnd, then it
is owned by its source classifier X2, f1 ∈ X2.ownedAttribute. In this case, f1 is
considered to be an X2’s attribute [8, p.121]. What is, however, the meaning of
the other end, f2, owned by A?

We have two subcases:
(+), when f2 is a navigable end, f2 ∈ A.navOwnedEnd , and (–), when it is not.

In case (+), the association is navigable from X1 to X2 (Sect.7.3.3, p.36) and
hence we have a mapping f2 : X1 � X2 yet f2 is not an attribute of X1 (otherwise
it would be owned by X1 rather than A). The only reasonable explanation that
we could find for this situation is that mapping f2 is not supposed to be stored
in the instantiations of X1 yet it can be derived from other data. Namely, we
assume that mapping f1 is actually stored (with the instantiations of classifier
X2 as its attribute) while f2 can be derived from (the extension of) f1 by taking
the inverse. Strictly speaking, in case (+) association A consists of only one end
f1 (stored and owned by X2!) but can be augmented with the other end, f2, by
a suitable derivation procedure (of inverting a mapping).

Case (–): the end f2 is owned by A and is not navigable. The Spec says that
in this case A is not navigable from X1 to X2 (Sect.7.3.3, p.36) and, hence,
f2 cannot be considered as a mapping. Then the only visible role of f2 is to
serve as a place-holder for the respective multiplicity constraint, m2. We can
consider this situation as that semantically association A consists of the only
end/mapping f1 : X2 � X1, whose extension (graph, table) is constrained by a
pair of multiplicity expressions C = (m1, m2). In this treatment, the second
end f2 appears only in the concrete syntax as a way to visualize the second
component of a single constraint C = (m1, m2) rather than have any semantic
meaning.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 237

We can reformulate this situation by saying that some constraint to mapping
f1 is specified by setting a constraint m2 to a mapping f2 derived from f1.In
such a formulation case (–) becomes close to case (+). In both cases, association
A consists, in fact, from the only end f1 (owned by X2) while the second end
is derivable rather than storable and serves for (i) specifying the m2-half of the
multiplicity constraint to A and, (ii, optionally) for navigation from X1 to X2.

Thus, with help of implementation concepts, we were able to explain the mixed
ownership cases (+) and (–). To be consistent, now we need to reconsider the case
when both ends are owned by the association. Thinking along the lines we have
just used, we conclude that in this case we deal with a situation when information
about the association is stored somewhere but not in the participating classifiers
(otherwise the ends were attributes owned by the classifiers). Hence, to make the
ends derivable mappings we need to have a source of storable data for deriving
the mappings, and the classifiers X1, X2 cannot be used for that.

A reasonable idea is to introduce onto the stage a new set, say, R, immediately
storing links between instances of X1, X2, that is, pairs (x1, x2) with x1 ∈
X1, x2 ∈ X2, together with two projection mappings pi : R → Xi. In other words,
we store the links in a table T = (R, p1, p2) with R the set of rows and p1, p2
the columns so that if for a row r we have r.p1 = o1 ∈ X1 and r.p2 = o2 ∈ X2,
it means that the row stores the link (o1, o2) (see Table 1). We can advance
this interpretation even further and identify R with A and projection mappings
pi with A’s ends fi, i = 1, 2. This new view of associations (though may look
somewhat unusual for the UML style) possesses a few essential advantages:

1. It perfectly fits in with the UML idea that an association is a classifier whose
extension consists of links.

2. It is generalized for n-ary associations in a quite straitforward way: just
consider R with a family of n projections pi : R → Xi, i = 1..n, which auto-
matically makes R a collection of n-ary tuples/links.

3. A property is again a mapping and, moreover,
3.1 the classifier owning the property is again the source of the mapping,
3.2 the type of the property is the target of the mapping as before.

This interpretation brings an essential unification to the metamodel, and pos-
sesses a clear sets-and-mappings semantics. It also shows that the “ownership-
navigability” part of the UML metamodel implicitly switches the focus from the
analysis/structural view of association (Definition 2.2) to more technical (closer
to design) view, where the modeler begins to care about which parts of the
association will be stored, and which will be derived (with an eye on how to
implement that later). We will call this latter view of associations operational.

The UML metamodel attributes the operational view to binary associations
only (see Constraint (4) in Fig. 1). It appears to be an irrelevant restriction as
in the next section we show that the operational view, including all nuances of
ownership relations, can be developed for the general case of n-ary associations
as well.

238 Z. Diskin and J. Dingel

4 Formal Model for UML Associations: Separation and
Integration of Concerns

In this section we build a formal framework for an accurate definition of the con-
cepts that appeared above. We also introduce a new, and important, actor on the
stage: qualified or operational mappings, which are an analog of attributes for mul-
tiary associations. It is this actor whose improper treatment in the UML meta-
model leads to a striking difference between binary and multiary associations.

4.1 Basic Definitions and Conventions

Our first concern is to set a proper framework for working with names/labels in
labeling records and similar constructs.

4.1.1 Definition: Roles and contexts. Let L = {�1...�n} be a base set of n
different labels/symbols called role names.

(i) A role is a pair �:X with � ∈ L a role name and X a class. A(n association)
context is a set of roles X = {�1:X1, . . . , �n:Xn} such that all role names are
distinct (while the same class may appear with different roles). We write X� for
the class X in the pair (�:X). Cardinality of the base set is called the arity of the
context. For example, the set {course:Subject, student:Person, professor:Person}
is a ternary context.
(ii) We use the term class and set interchangeably. For our goals in this section,
classes are just sets of elements (called objects). We write

⋃
X for

⋃
{X� | � ∈ L}.

We also remind the reader our convention about distinguishing general and func-
tional mappings (presented in Section 2 immediately below formula (2)).
(iii) All our definitions will be parameterized by some context X. We will say
that the notions are defined over the context X.

4.1.2 Definition: Links, products, relations.
(i) A link over X is a functional mapping r : L →

⋃
X s.t. r(�) ∈ X�. The

set of all links over X will be denoted by
∏

�∈L X� or
∏

L X or just
∏

X. If
{(� : X) | � ∈ K} is a sub-context of X for some K ⊂ L, we will write

∏
K X for

the set of the corresponding sub-links.
(ii) A (multi)relation over X is a (multi)set of links over X. If R is a multi-
relation, R! will denote R with duplicates eliminated, thus, R! ⊂

∏
X. Note

that R can be written down as a table whose column names are role names from
the base set and rows are links occurring in R. Since each column name must be
assigned with its domain, actually column names are pairs �:X, that is, roles.

4.1.3 Construction: Tables vs. relations. In the relational data model a
table is viewed as a collection of rows (links). However, it is possible to switch the
focus from rows-links to columns-roles and consider the same table as a collection
of columns. Each column �:X gives rise to a functional mapping [[�]] : R → X ,
[[�]](r) def= r(�). Note that R is always a set but it may happen that two different
rows r �= r′ store the same link if [[�i]](r) = [[�i]](r′) for all �i ∈ L.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 239

(i) A table over X is an n-tuple T = (p1...pn) of functions pi : R → Xi, i = 1..n
with a common source R called the head. Elements of R will be also called rows,
and functions pi columns or, else, projections, of the table. We will often make
the head explicit and write a table as an (n + 1)-tuple T = (R, p1...pn).
(ii) We can identify projections pi with semantics of the roles in the context, and
set pi = [[�i]].

4.1.4 Definition: Mappings and maps over a context.
(i) A structural mapping over X is a mapping of the form f :

∏
K X � X�, where

(K, {�}) is a partition of L (with the second member being a singleton). The sub-
context {�:X� | � ∈ K } is called the source context of f .
(ii) A qualified or operational mapping over X is a mapping of the form
g : X�′ → [

∏
P � X�′′], where ({�′}, P , {�′′}) is a partition of L. The square

brackets denote the set of all structural mappings of the form inside the brackets.
The set X�′ is the source, the roles in P are parameters and X�′′ is the target

(goal) set. If P = {j1..jk}, in a standard programming notation the mapping
could be written as g(�j1:Xj1, . . . , �jk

:Xjk
) : X�′ � X�′′ . We will call the sub-

context P = {X�|� ∈ P} the parameter context or qualifier.
(iii) Given a structural and operational mappings f and g as above, we say that
g implements f if �′′ = � (and hence K = P ∪ {�′}). This is nothing but a
well-known Curry construction (see, e.g., [4]), and we will also call the passages
from f to g and back Currying of f and unCurrying of g. Note that they do not
change the extension of mappings.

The left and middle columns of Table 1 show how it works for the cases of
n=2 and n=3. For the case n = 2, Currying is trivial. For n = 3, Currying will
produce six operational mappings: two for each of the structural mappings. We
show only three of them. It is easy to see that any n-ary structural mapping has
n operational/qualified implementations.
(iv) An operational/qualified map over X is a set MO of n(n − 1) qualified
mappings with the same extension. In other words, such a map is the set of all
qualified mappings generated by some structural map.
(v) To ease comparison of our formal constructs with those defined in UML and
avoid terminological clash, we will call the members of a qualified map legs while
members of a structural map (Definition 2.1) will be called arms.

Let f :
∏

K X � Y = Xj, K = L \ {j}, be a structural mapping as above. Its
extension can be presented as a table T = ext(f). However, during this pas-
sage the information about which of the columns of the table corresponds to
f ’s target is lost. Any other mapping with the same extension will result in the
same table, and conversely, by looking table T up in different “directions”, we
will obtain n different structural mappings including f . We remind the reader
that we have called such sets of structural mappings structural maps (Defini-
tion 2.1(iii)). Thus, a table is an exact extensional representation of maps rather
than mappings.

4.1.5 Construction: Adding navigation to tables. We can enrich tables
with “navigational” information about the mapping generated the table if the

240 Z. Diskin and J. Dingel

Table 1. Three views of associations

 Structural:
maps of (structural) mappings

Operational: maps of
operations (parameterized

mappings)

Extensional: tables (i.e., maps
of projection mappings)

n=2

n=3

n=4 … … …

p3

p1

X2 X1

{ inverse} X1 X2

f1

f2
X1 X2

p2
p1 R

p2 p1

p3

X3

R

f2

f3

X1×X2

f1

f32

X1 X2

X3

X1

X3

X1×X3 X2×X3

{ inverse}

f13

X2

f21

{ inverse} p1

p3

p2

p2

corresponding column name will be marked (say, by a star). Similarly, if a table
stores the extension of a qualified mapping, we can keep this information by
marking the two corresponding columns. In this way we come to the notions of
(i) star-table, a table with one column specially designated and called the goal,
and (ii) double-star table, a star-table with one more column designated/marked
as the source or, in programming terms, self.

4.2 Formalization of Ownership in the UML Metamodel of
Associations

As it was noticed in sect.3, the ownership meta-associations in the UML meta-
model are related to possible implementations of structural associations. The
latter can be implemented either by a table, or/and by a number of qualified
mappings between the participating classes. Which implementation is most suit-
able depends on which navigation directions need to be implemented efficiently.
4.2.1 Definition: Operational view of associations. Operationally, an as-
sociation over X is an triple A = (MO, T, B) with MO an operational map of
qualified mappings over X, T their common extension table, and B a non-empty
subset of the set MO ∪{T }, whose elements are called basic while other elements
of MO ∪ {T } are called derived. The intuition is that the elements of the set
MO ∩ B are to be implemented as retrieval operations of the corresponding
classes (their attributes in the binary case); the classes then own these elements.
If also T ∈ B, then the extension is to be really stored in some table T . The
elements formally called “derived” can be indeed derived from the basic ele-
ments (by say looking up the extension table in the required direction, and the
extension table can be derived by recording the input-output pairs).

The rightmost part of Fig. 3 present the metamodel of this definition.

Mappings, Maps and Tables: Towards Formal Semantics for Associations 241

4.2.2 Remark: uniqueness constraints. It was proposed in [6], that even
if the extension table contains duplicates and hence all qualified mappings from
MO are bag-valued, it may be useful for navigational purposes to choose for
some of them their versions with eliminated duplicates. Then, operationally, an
association over X is defined to be a quadruple A = (MO, T, B, U) with the
triple (MO, T, B) as above and U ⊂ MO is the set (perhaps, empty) of those
members that we have chosen to consider with eliminated duplicates. Details
and a thorough discussion can be found in [6].

4.3 The Metamodel: Playing LEGO Blocks with Associations

Figure 3 on p.243 presents the metamodel of the notions and transformations
we have defined above. All meta-classes in the model are parameterized by the
association’s arity n. It allows us to capture numerous important size constraints
(like constraint (10) in Fig. 2) by stating the corresponding multiplicities. We
believe that this presentation would be also useful for the UML metamodel.

In the vertical direction, the metamodel consists of two parts: the upper half
presents the extensional, or tabular, view of associations, the lower half shows the
procedural, or map-based, view. Each of the parts is based on the corresponding
structural foundation: the role context for the maps, and the column context for
the tables. These two context are in one-one correspondence via the semantics-
name meta-association, see Construction 4.1.3(ii), and it is our conjecture that
in a deeper formal setting they could be unified into a single notion.

There is also a nice parallelism between the two parts in their treatment of
navigability as the consecutive augmentation of the respective constructs with
additional “navigational” information (what is declared to be the source and
the target of the corresponding mapping). To underline this parallelism, we
have denoted the (meta) associations “source context” for structural mappings,
and “parameter context” for operational mappings, by context* and context**
respectively. This “addition of navigability” is governed by one-to-many asso-
ciations in both parts. One n-column Table generates n starTables, and each
starTable generates (n − 1) doubleStarTables, and similarly for Maps, struc-
turalMappings and operationalMapppings. The two parts are tightly connected
by vertical meta-associations ext-lookUp and diagonal meta-associations (shown
in dashed line) derived by the respective compositions of horizontal and vertical
meta-association ends.

In the horizontal direction, the metamodel also consists of two parts: the
structural view of associations (the left half) and the operational view of associ-
ations (the right half). These two views are also tightly connected by horizontal
meta-associations of Currying-unCurrying and (set self-column) – (forget self-
column).

In fact, our metamodel presents a toolbox of blocks for building different
views/notions of associations. For example, structurally an association is a pair
AS = (MS , T) with MS a map of mutually inverse structural mappings and
T the table representing their common extension (AS ’s collections of links).
Operationally, an association is a triple AO = (MO, T, B) with MO a map of

242 Z. Diskin and J. Dingel

mutually inverse operational/qualified mappings, T the extension table and B
sorting the elements of MO ∪{T } into basic-derived. We say that AO implements
AS if they have the same extension T (and hence, mappings in MO are Currying
versions of mappings in MS). Extensionally, an association is a table T , and
procedurally, it is a pair of maps (MS , MO). We can consider an integrated
notion of association by defining it as a quadruple A = (MS , T, MO, B). Then all
the views mentioned above are indeed views, that is, different projections/parts
of the whole construct.

4.4 UML Metamodel in the Light of Formalization, II

It is instructive to compare our formal model of associations specified in Fig. 3
with the UML model (Fig. 1). Our formalization clearly shows three components
of the association concept: extensional, structural and operational (Table 1).
They all have the same underlying structure: a host object (a table/ structural
map/ qualified map) holds a number of member mappings (columns/ arms/
legs respectively). Though these components are closely related and, in fact,
mutually derivable, they consist of different elements: a simple calculation shows
that an n-ary association A = (T, MS, MO) consists of the total of m(A) =
n + n + n(n − 1) = n(n + 1) mappings (columns, arms and legs) plus one set
of links (the head). Note that all these association’s elements appear in one or
another way in different Semantics and Description sections of the Spec, and
are used for defining associations’ (meta)properties like ownerships, navigability,
multiplicity. However, as formally defined by the UML metamodel, an n-ary
association A consists of only mUML(A) = n elements, its memberEnd Properties
(UML’s analog of mappings). Thus, UML metamodel offers only n-elements
to name and manipulate n(n + 1) constructs. In Fig. 3, we have pointed out
UML counterparts of our formal constructs by their names in square brackets,
which makes the shortage of constructs in the UML metamodel explicit. Not
surprisingly, this shortage leads to ambiguities in practical usage of associations
reported by experts [7].

The comparison also reveals two more flaws in the UML metamodel. First
is the absence of meta-association context for meta-class Property. In fact, it
means that the fundamental notion of property is not completely defined in
UML. We consider this as one of the most serious problem of the entire UML
metamodel (see [2] on the value of the property construct in semantics of OO
visual modeling).

The second problem is less fundamental yet is important for practical model-
ing: the meta-association qualifier is improperly defined in the metamodel. Our
formalization clearly shows that the target of this meta-association is the meta-
class of Roles rather than that of Properties. This mistake in the metamodel can
lead to mistakes in practical modeling with qualified associations. Space limita-
tions do not allow us to demonstrate the issue with a few remarkable examples
we have in our archive (see [1] for one of them).

Mappings, Maps and Tables: Towards Formal Semantics for Associations 243

n
-1

co
lu

m
n

[m
e
m

b
e
rE

n
d]

1

se
m

a
n
tic

s

/le
g
 [

m
e
m

b
e
rE

n
d]

=

u
n
io

n
{b

a
si

cL
e
g
,d

e
dr

iv
e
d
L
e
g
}

/c

o
nt

e
xt

*
[c

o
n
te

xt
]
=

h
o
st

.c
o
nt

e
xt

 –
 {

g
o
a
l}

/c
o
nt

e
xt

**
[q

ua
lif

ie
r]

 =

u
n
C

u
rr

y.
co

n
te

xt
*

-
{s

e
lf}

1

1

lo
o
kU

p
*

n

co
lu

m
n

[m
e
m

b
e
rE

n
d]

/c

o
lu

m
n
*

=

 c

ol
um

n
–
 {

g
o
a
l}

F
u

n
ct

io
n

al
 m

ap
p

in
g

[

P
ro

p
er

ty
]

T
ab

le
*

(o
n

e
d

es
ig

n
at

ed
 c

o
lu

m
n

)

T
ab

le

[
A

ss
o

ci
at

io
n

]

T
ab

le
**

 (t
w

o

d
es

ig
n

at
ed

 c
o

lu
m

n
s)

g
o
a
l

{s
u
b
se

ts

co
lu

m
n
}

S
et

[o

f
lin

ks
] so

u
rc

e

h
e
a
d

se
t

“g
oa

l”
a
ri
ty

 =
 n

a
ri
ty

 =
 n

1 1

1
n

-1

se
t

“s
e
lf”

/c
o
lu

m
n
**

 =

co

lu
m

n
*

–
 {

se
lf}

se
lf

{s
u
b
se

ts

co
lu

m
n
}

1
n

-2

a
ri
ty

 =
 n

st
ru

ct
u

ra
l

M
ap

 [

 A
ss

o
ci

at
io

n
]

a
ri
ty

 =
 n

e
xt

*
1

1

e
xt

1

/lo
o
kU

p
*

{u
n
io

n
}

n

lo
o
kU

p

/e
xt

a
rm

[m

e
m

b
e
rE

n
d]

h
o
st

C
u
rr

y
u
n
C

u
rr

y

n

1 lo
o
kU

p
**

e
xt

**

1

/lo
o
kU

p
**

{u

n
io

n
}

/e
xt

*

n
-1

1

S
et

[C

la
ss

]

R
o

le

se
lf

co
n
te

xt

n

n
-1

g
o
a
l

1

1

n
-2

ty
p
e

1

1

/s
o
ur

ce
[c

la
ss

]=

se
lf.

ty
p
e

g
o
a
l

1

n
a
m

e

1

n
-1

1

1

T
ab

le

[A
ss

o
ci

at
io

n
]

a
ri
ty

 =
 n

q
u

al
if

ie
d

 M
ap

[A

ss
o

ci
at

io
n

]

a
ri
ty

 =
 n

b
a
si

cL
e
g
 [

o
pe

ra
tio

n
 o

w
n
e
d

b
y

th
e
 s

o
ur

ce
 c

la
ss

]

d
e
riv

e
d
L
e
g

[n
a
vi

g
O

w
n
e
d
E

n
d]

0.
.n

(n
-1

)

0.
.n

(n
-1

)

n
(n

-1
)

h
o
st

h
o
st

st
ru

ct
u

ra
l M

ap
p

in
g

[P

ro
p

er
ty

]

q
u

al
if

ie
d

 M
ap

p
in

g

[
P

ro
p

er
ty

]

 n
um

b
er

 o
f

p
a
ra

m
et

er
s

=

 n
-2

/h
o
st

co
n
te

xt

n

e
xt

1

lo
o
kU

p

1

se
t

 “
g
oa

l”&
 “

se
lf”

a
ri
ty

 =
 n

-1

S
et

[o

f
lin

ks
] so

u
rc

e

h
e
a
d

1

1

n
(n

-1
)

/t
yp

e
 [
ty

p
e]

 =

g
o
a
l.t

yp
e

/t
yp

e
 [
ty

p
e]

=

g
o
a
l.t

yp
e

1
1

n
n

F
ig

.3
.M

et
am

od
el

of
ou

r
fo

rm
al

m
od

el
fo

r
as

so
ci

at
io

ns
.I

ta
lic

te
rm

s
in

sq
ua

re
br

ac
ke

ts
re

fe
r
to

U
M

L
co

un
te

rp
ar

ts
of

ou
r
fo

rm
al

co
ns

tr
uc

ts
.

W
ar

ni
ng

:
T

he
no

de
T
ab

le
w

it
h

it
s

m
et

a-
as

so
ci

at
io

ns
is

re
pe

at
ed

tw
ic

e
to

av
oi

d
cl

ut
te

r!

244 Z. Diskin and J. Dingel

5 Conclusion

We have developed a formal framework where the complex notion of association
can be disassembled into a few basic blocks. We then built from these blocks a few
constructs that formally model different aspects of associations as described and
used in UML2. We have found that semantics of the association construct can
be uncovered in a few Semantics and Description sections of the specification,
and is presented there in a sufficiently consistent way. However, the part of this
semantics formally captured in the UML2 metamodel is much poorer, which
makes the latter incomplete and ambiguous.

Our formal model allowed us to explain a few known problems with asso-
ciations and to detect several omissions in the metamodel, which have been
unnoticed so far (see sections 2.3 and 4.4). We have also proposed a few general
suggestions on augmenting and restructuring the metamodel for associations to
capture their semantics in a precise and unambiguous way.

Acknowledgements. We are grateful to Bran Selic and Dragan Milicev for
a few stimulating discussions. Special thanks go to Bran for showing us many
delicate issues in the subject.

References

[1] Z. Diskin. Visualization vs. specification in diagrammatic notations: A case study
with the UML. In Diagrams’2002: 2nd Int. Conf. on the Theory and Applications
of Diagrams, Springer LNAI#2317, pages 112–115, 2002.

[2] Z. Diskin and B. Kadish. Variable set semantics for keyed generalized sketches:
Formal semantics for object identity and abstract syntax for conceptual modeling.
Data & Knowledge Engineering, 47:1–59, 2003.

[3] G. Génova, J. Llorens, and P. Mart́ınez. Semantics of the minimum multiplicity in
ternary associations in UML. In M. Gogolla and C. Kobryn, editors, UML’2001,
4th Int.Conference, volume 2185 of LNCS, pages 329–341. Springer, 2001.

[4] C. Gunter. Semantics of programming languages. MIT Pres, 1992.
[5] R. Hull and R. King. Semantic database modeling: Survey, applications and

research issues. ACM Computing Surveys, 19(3):201–260, 1987.
[6] D. Milicev. On the semantics of associations and association ends in UML. Sub-

mitted for publication.
[7] Dragan Milicev, Bran Selic, and the Authors. Joint E-mail Discussion, Fall 2005.
[8] Object Management Group, http://www.uml.org. Unified Modeling Language:

Superstructure. version 2.0. Formal/05-07-04, 2005.
[9] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-

erence Manual. Second Edition. Addison-Wesley, 2004.
[10] Bran Selic. Personal Communication, Fall 2005.
[11] P. Stevens. On the interpretation of binary associations in the unified modeling

language. Software and Systems Modeling, (1), 2002.

Semantic Variations Among UML StateMachines

Ali Taleghani and Joanne M. Atlee

David R. Cheriton School of Computer Science
University of Waterloo, Canada

Abstract. In this paper, we use template-semantics to express the ex-
ecution semantics of UML 2.0 StateMachines, resulting in a precise de-
scription that not only highlights the semantics decisions that have been
documented but also explicates the semantics choices that have been left
unspecified. We provide also the template semantics for StateMachines
as implemented in three UML CASE tools: Rational Rose RT, Rhap-
sody, and Bridgepoint. The result succinctly explicates (1) how each of
the tools refines the standard’s semantics and (2) which tools’ semantics
deviate from the standard.

1 Introduction

Unified Modeling Language (UML) Behavioral State Machines (hereafter called
StateMachines) are an object-based variant of Harel statecharts [6] that are
used primarily to describe the behaviour of class instances (objects) in a UML
model. Their semantics, as defined by the Object Management Group (OMG),
is described in a multi-hundred-page natural-language document [19] that is not
easy to use as a quick reference for precise queries about semantics. Moreover,
the OMG standard leaves unspecifed a number of details about the execution
semantics of UML 2.0 StateMachines. This underspecification means that users
can create a UML semantic variant that suits their modelling needs and yet still
complies with the OMG standard.

Template semantics [17] is a template-based approach for structuring the op-
erational semantics of a family of notations, such that semantic concepts that
are common among family members (e.g., enabled transitions) are expressed
as parameterized mathematical definitions. As a result, the task of specifying
a notation’s semantics is reduced to providing a collection of parameter values
that instantiate the template. And the task of comparing notations’ semantics
is reduced to comparing their respective template-parameter values.

In this paper, we extend the template-semantics templates and composition
operators to support notations that allow queue-based message passing among
concurrent objects. We then use the extended template semantics to document
concisely the semantics of UML 2.0 StateMachines, as defined in the OMG
standard [19]. Related efforts [7, 13, 12, 24] to provide a precise semantics for
UML StateMachines refine the standard’s semantics, so as to produce a com-
plete, formal semantics that is suitable for automated analysis. In contrast, our
template-semantics representation retains the semantics variation points that
are documented in the standard.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 245–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

246 A. Taleghani and J.M. Atlee

We also express the template semantics for StateMachines as implemented in
three UML CASE tools: Rational Rose RT [8], Rhapsody [5, 11], and Bridge-
point [1]. Related efforts [2] to compare UML StateMachine variants mention
some semantic distinctions, but they focus more on the differences in syntax and
in the language constructs supported. In contrast, our work formally compares
the variants’ execution semantics. As a side effect, the template-semantic de-
scription of a UML model can be used in configurable analysis tools, where the
template parameters provide the configurability.

The rest of the paper is organized as follows. Section 2 is a review of template
semantics, as used in this paper. Sections 3 and 4 provide the template semantics
for the OMG standard for UML 2.0 StateMachines. Section 5 compares this
semantics with the template semantics for StateMachines as implemented in
three UML CASE tools. The paper concludes with related work and conclusions.

2 Template Semantics

In this section, we review the template semantics and the template parameters
that we use to represent UML StateMachine semantics. A more comprehensive
description of template semantics can be found in [17, 18].

2.1 Computation Model

Template semantics are defined in terms of a computation model called a hierar-
chical transition system (HTS). An HTS is an extended StateMachine, adapted
from statecharts [6], that includes control states and state hierarchy, state transi-
tions, events, and typed variables, but not concurrency. Concurrency is achieved
by composing multiple HTSs. Transitions have the following form:

whose elements are defined in Table 1. Each transition may have one or more
source states, may be triggered by zero or more events, and may have a guard
condition (a predicate on variable values). If a transition executes, it may lead
to one or more destination states, may generate events, and may assign new
values to variables. A transition may also have an explicitly defined priority
prty, which is an integer value. An HTS includes designation of initial states, of
default substates for hierarchical states, and of initial variable values.

Table 1. HTS accessor functions from state s or transition τ

Function Signature Description

src(τ) T → 2S set of source states of τ

dest(τ) T → 2S set of destination states of τ

trig(τ) T → 2E events that trigger τ
cond(τ) T → exp τ ’s guard condition, where

exp is a (predicate) expres-
sion over V

Function Signature Description

prty(τ) T → N τ ’s priority value
ancest(s) S → 2S ancestor states of s

gen(τ) T → [E]∗ sequence of events
generated by τ

asn(τ) T → [V × exp]∗ sequence of variable
assignments made
by τ

Semantic Variations Among UML StateMachines 247

We use helper functions to access static information about an HTS. The func-
tions used in this paper appear in Table 1. In the definitions, S is the HTS’s set
of control states, T is the set of state transitions, V is the set of variables, and E
is the set of events. The notation 2X refers to the powerset of X ; thus, src maps
a transition τ to its set of source states. The notation [X]∗ refers to a sequence
of zero or more elements of X .

2.2 Parameterized Execution Semantics

The execution of an HTS is defined in terms of sequences of snapshots. A snap-
shot is data that reflects the current status of the HTS’s execution. The basic
snapshot elements are

CS - the set of current states
IE - the set of current internally generated events
AV - the current variable-value assignments
O - the set of generated events to be communicated to other HTSs

In addition, the snapshot includes auxiliary elements that store history informa-
tion about the HTS’s execution:

CSa - data about states, like enabling states or history states
IEa - data about internal events, like enabling or nonenabling events
Ia - data about inputs I from the StateMachine’s environment
AVa - data about variable values, like old values

The types of information stored in the auxillary elements differ among modelling
notations. The expression ss.X (e.g. ss.CS) refers to element X in snapshot ss.

An execution of an HTS is a sequence of snapshots, starting from an ini-
tial snapshot of initial states and variable values. Template semantics defines a
notation’s execution semantics in terms of functions and relations on snapshots:

enabled trans(ss,T) ⊂ T returns the subset of transitions in T that are enabled
in snapshot ss.

apply(ss,τ ,ss’) : bool holds if applying the effects of transition τ (e.g., variable
assignments, generated events) to snapshot ss results in next snapshot ss’.

Nmicro(ss,τ ,ss’) : bool is a micro execution step (a micro-step) representing the
execution of transition τ , such that τ is enabled in snapshot ss and its execution
results in next snapshot ss’.

reset(ss,I) : ssr resets snapshot ss with inputs I , producing snapshot ssr .
Nmacro(ss,I,ss’) : bool is a macro execution step (a macro-step) comprising a sequence

of zero or more micro-steps taken in response to inputs I . The macro-step starts
in snapshot reset(ss,I) and ends in snapshot ss’, in which the next inputs are
sensed.

We provide the definitions of enabled trans and apply below, as examples
of our template definitions. The other definitions can be found in [17].
apply(ss, τ, ss′) ≡

let 〈CS′, IE′, AV ′, O′, CS′
a, IE′

a, AV ′
a, I′

a〉 ≡ ss′ in
next CS(ss, τ, CS′) ∧ next CSa(ss, τ, CS′

a) ∧ next IE(ss, τ, IE′) ∧ next IEa(ss, τ, IE′
a)∧

next AV(ss, τ, AV ′) ∧ next AVa(ss, τ, AV ′
a) ∧ next O(ss, τ, O′) ∧ next Ia(ss, τ, I′

a)
enabled trans(ss, T) ≡

{τ ∈ T | en states(ss, τ) ∧ en events(ss, τ) ∧ en cond(ss, τ)}

248 A. Taleghani and J.M. Atlee

Table 2. Template parameters provided by users

States Events Variables Outputs
Beginning of reset CS(ss, I): CSr reset IE(ss, I):IEr reset AV(ss, I) : AV r reset O(ss, I): Or

Macro-step reset CSa(ss, I): CSr
a reset IEa(ss, I):IEr

a reset AVa(ss, I) : AV r
a

reset Ia(ss, I):Ir
a

Micro-Step next CS(ss, τ, CS′) next IE(ss, τ, IE′) next AV(ss, τ, AV ′) next O(ss, τ, O′)
next CSa(ss, τ, CS′

a) next IEa(ss, τ, IE′
a) next AVa(ss, τ, AV ′

a)
next Ia(ss, τ, I′

a)
Enabledness en states(ss, τ) en events(ss, τ) en cond(ss, τ)

Others macro semantics
pri(T) : 2T

The small-caps font denotes a template definition, and bold font denotes a
template parameter. Thus, definition apply uses template parameters next X,
each of which specifies how a single snapshot element, X , is updated to reflect the
effects of executing transition τ . And definition enable trans uses template
parameters to determine whether a transition’s source states, triggering events,
and guard conditions are enabled in snapshot ss.

The template parameters are listed in Table 2. Functions reset X(ss, I) spec-
ify how inputs I are incorporated into each snapshot element ss.X at the start of
a macro-step, returning new value X ′. Predicates next X(ss, τ, X ′) specify how
the contents of each snapshot element ss.X is updated to new value X ′, due to
the execution of transition τ . Parameters en states, en events, and en cond
specify how the state-, event-, and variable-related snapshot elements are used to
determine the set of enabled transitions. Parameter macro semantics specifies
the type of HTS-level macro-step semantics (e.g., when new inputs are sensed).
Parameter pri specifies a priority scheme over a set of transitions. Each of the 21
parameters1 represents a distinct semantics decision, although the parameters
associated with the same construct are often related.

2.3 Composition Operators

So far, we have discussed the execution of a single HTS. Composition operators
specify how multiple HTSs execute concurrently, in terms of how the HTSs’
snapshots are collectively updated.

A Composed HTS (CHTS) is the composition of two or more operands via
some composition operator op. The operands may be HTSs or may themselves
be composed HTSs. The snapshot of a CHTS is the collection of its HTSs’
snapshots, and is denoted using vector notation, −→ss. Template definitions and
access functions are generalized to apply to collections of snapshots. Thus,
enabled trans(−→ss, T) returns all transitions in T that are enabled in any snap-
shot in −→ss.

A micro-step for a CHTS that composes operands N1 and N2 via operation
op has the general form

Nop
micro((−→ss1, −→ss2), (−→τ1 , −→τ2), (−→ss1

′, −→ss2
′))

1 Template semantics has a 22nd parameter, resolve, that specifies how to resolve
concurrent assignments to shared variables. This parameter is not used in this paper.

Semantic Variations Among UML StateMachines 249

Ninterr
micro ((−→ss1,−→ss2), (−→τ1,−→τ2), (−→ss1

′,−→ss2
′)) Tinterr ≡

∨

∨

[
∧

−→τ1 ⊂ −→
T1 ∧ −→τ1 ⊂ pri(enabled trans(−→ss1,

−→
T1 ∪ Tinterr))

N1
micro(−→ss1,−→τ1,−→ss1

′) ∧ −→ss2
′ = −→ss2|AV

assign(−→ss2.AV,−→ss1
′.AV)

]
(* component 1

takes a step *)

∃−→iss.

[
∧
∧

−→τ1 ∈ Tinterr ∧ −→τ1 ∈ pri(enabled trans(−→ss1,
−→
T1 ∪ Tinterr))

apply(−→ss2,−→τ1,
−→
iss) ∧ −→ss2

′ = −→
iss|CS

ent comp(−→ss2,−→τ1)−→ss1
′ = −→ss1|CS

∅ |AV

assign(−→ss1.AV,−→ss2
′.AV)

]
(* transition

to
component 2 *)

(∗ symmetric cases of the above two cases, replacing 1 with 2 and 2 with 1 ∗)

Fig. 1. Micro-step for CHTS with interrupt operator

where operand N1 starts the micro-step in snapshots −→ss1, executes transitions
−→τ1 (at most one transition per HTS), and ends the micro-step in snapshots −→ss1

′.
Operand N2 executes in a similar manner, in the same micro-step.

What differentiates one composition operator from another are the conditions
under which it allows, or forces, its two operands to take a step. For example, a
composition operator may force its two operands to execute concurrently in lock
step, may allow its operands to execute nondeterministically, or may coordinate
the transfer of a single thread of control from one operand to the other. Operators
also differ in the assignments they make to their components’ snapshots. For
example, a composition operator may affect message passing by inserting each
operand’s set of generated events into the other operand’s event pool.

We use substitution notation to specify an operator-imposed override on snap-
shot contents. Expression ss|xv is equal to snapshot ss, except for element x,
which has value v. Substitution over a collection of snapshots denotes substi-
tutions to all of the snapshots. For example, substitution −→ss |CS

∅ is equal to
snapshots −→ss , except that all of the snapshots’ CS elements are empty.

Interleaving. Composition operator interleaving, defined by template Nintl
micro,

specifies that one but not both of its operands executes in a micro-step:
Nintl

micro((−→ss1,−→ss2), (−→τ1,−→τ2), (−→ss1
′, −→ss2

′)) ≡
N1

micro(−→ss1,−→τ1,−→ss1
′) ∧ −→ss2

′ = −→ss2|AV

assign(−→ss2 .AV,−→ss1
′.AV)∨

N2
micro(−→ss2,−→τ2,−→ss2

′) ∧ −→ss1
′ = −→ss1|AV

assign(−→ss1 .AV,−→ss2
′.AV)

In each micro-step, exactly one of the CHTS’s operands takes a micro-step.
The snapshot of the non-executing operand is overridden, to update its variable
values to reflect the executing transitions’ assignments to shared variables. (The
macro assign(X, Y) updates variable-value mappings in X with variable-value
mappings in Y , ignoring mappings for variables in Y that are not in X .)

Interrupt. Interrupt composition, shown in Figure 1, specifies how control
is passed between an CHTS’s two operands, via a provided set of interrupt
transitions, Tinterr. In each micro-step, the operand that has control either takes
a micro-step or transfers control to the other operand. The first bracketed clause
in Figure 1 shows operand N1 taking a micro-step:

250 A. Taleghani and J.M. Atlee

Table 3. Mapping UML syntax to HTS syntax

UML Template
Semantics

simple state s ∈ S
event e ∈ E
simple attribute v ∈ V
state variable v ∈ V
pseudostate

s ∈ S(except fork and join)
simple transition τ ∈ T

UML Template
Semantics

transition segment
τ ∈ T(except fork and join)

maximal composite state HTSwith no orthogonal substate
orthogonal composite state CHTS (interleaving)
nonorthogonal composite state CHTS (interrupt)with orthogonal substates
fork, join transitions interrupt transitions

– Transitions −→τ1 in operand N1 have the highest priority (according to template
parameter pri) among enabled transitions, including interrupt transitions.

– Operand N1 takes a micro-step.
– The snapshot of N2 is updated to reflect assignments to shared variables.

The second bracketed clause shows a transition from operand N1 to operand N2:

– Interrupt transition −→τ1 has the highest priority among all enabled transitions.
– N2’s snapshots −→ss2 are updated by (1) applying the effects of the interrupt

transition −→τ1 and (2) overriding their CS elements with the sets of states
entered by the interrupt transition (as determined by macro ent comp).

– N1’s snapshots −→ss1 are updated by (1) emptying their CS elements (since
this operand no longer has control) and (2) updating their variable-value
elements AV to reflect −→τ1 ’s assignments to shared variables.

The cases in which operand N2 has control are symmetric.

3 Syntactic Mapping from UML to HTS

The first step in defining a template semantics for UML is to map UML mod-
elling constructs to our computational model, the HTS. This is essentially a
mapping from UML syntax to HTS syntax, and is summarized in Table 3. Most
of the mappings are straightforward: Simple states, events, variables, and simple
transitions in UML have corresponding constructs in HTS syntax. Pseudostates
in UML (except for fork and join) are mapped to simple states in HTS syntax,
and the pseudostates’ transition segments are mapped to transitions in HTS
syntax. As will be seen in the next section, a UML compound transition maps
to a sequence of HTS transitions that executes over several micro-steps.

Recall that an HTS is a state machine with no internal concurrency, and that
concurrency is introduced by composition operators. Thus, each highest-level
(maximal) nonorthogonal composite state that contains no orthogonal descen-
dant states is mapped to an HTS. A UML orthogonal state is mapped to a
CHTS whose operands are the orthogonal regions and whose operator is in-
terleaving composition. And a nonorthogonal composite state that has one or
more orthogonal descendant states is mapped to a CHTS, whose operands are
the state’s child substates, whose composition operator is interrupt, and whose

Semantic Variations Among UML StateMachines 251

interrupt transitions transfer control between the operands. Fork and join tran-
sitions in UML, which enter or exit multiple regions of an orthogonal state, map
to interrupt transitions that enter or exit interleaved CHTSs (see Section 4.2).

We treat state entry/exit actions and submachines as syntactic macros that
are expanded by a preprocessor into transition actions and complete StateMa-
chines, respectively. Entry and exit pseudostates can be treated similarly if the
action language evaluates actions sequentially. To simplify our presentation, we
do not consider history states in this paper, but they can be handled [17]. State
activities and operations can be supported if their effects can be represented as
generated events and variable assignments. We have not attempted a template
semantics for object creation and termination and do not describe TimeEvents
in the current work.

4 Semantics of OMG UML

In this section, we describe the execution semantics of a UML StateMachine, in
terms of its corresponding HTS’s template parameters and composition opera-
tors. In what follows, we use OMG-UML to refer to the semantics of UML as
defined by the OMG [19]. In addition, we assume that a StateMachine describes
the behaviour of a UML object, and we use these two terms interchangeably.

4.1 Template Parameters

The template-parameter values for OMG-UML are listed in the second column
of Table 4. To the right of each entry (i.e., the corresponding entry in the third
column) are the page numbers in the OML-UML documentation [19] that contain
the textual description of semantics that we used in formulating that entry’s
value. Unused parameters, IE and IEa are omitted from the table.

State-Related Parameters. Rows 1-5 in Table 4 pertain to the semantics of
states. We use snapshot element CS to record the set of current states. This set
does not change at the start of a macro-step (i.e., reset CS does not modify CS).
When a transition τ executes, element CS is updated by template parameter
next CS to hold the states that are current, or that become current, whenever
τ ’s destination state is entered, including the destination state’s ancestors and
all relevant descendants’ default states.

We use snapshot element CSa to record the states that can enable transitions
(en states = (src(τ) ⊆ CSa)). In OMG-UML, only one compound transition
can execute per macro-step. To model this semantics, CSa is set to dest(τ) if
the destination state is a pseudostate, so that only the rest of the compound
transition may continue executing; otherwise, CSa is set to ∅, thereby ending
the macro-step.

Event-Related Parameters. Rows 6-10 in Table 4 pertain to event semantics.
We use snapshot element Ia to hold the event that an HTS is currently process-
ing. At the start of a macro-step, an event I from the event pool is input to the

252 A. Taleghani and J.M. Atlee

T
ab

le
4.

T
em

pl
at

e
P
ar

am
et

er
V

al
ue

s
fo

r
M

ul
ti
pl

e
U

M
L

N
ot

at
io

ns

P
ar

am
et

er
O

M
G

-U
M

L
[1

9]
R

R
T

-U
M

L
[9

]
R

H
-U

M
L

[5
]

B
P

-U
M

L
[2

3]
P
ag

e#
P
ag

e#
P
ag

e#
P
ag

e#

r
e
s
e
t

C
S
(s

s
,
I
)

=
s
s
.C

S
-

s
s
.C

S
-

s
s
.C

S
-

s
s
.C

S
-

1
n

e
x
t

C
S
(s

s
,
τ
,
C

S
′)

C
S

′
=

a
c
ti

v
e
(d

e
s
t(

τ
))

53
1

C
S

′
=

a
c
ti

v
e
(d

e
s
t(

τ
))

52
C

S
′
=

a
c
ti

v
e
(d

e
s
t(

τ
))

25
C

S
′
=

d
e
s
t(

τ
)

50
,
10

1
2

States

r
e
s
e
t

C
S

a
(s

s
,
I
)

=
s
s
.C

S
-

s
s
.C

S
-

s
s
.C

S
-

s
s
.C

S
-

3
n

e
x
t

C
S

a
(s

s
,
τ
,
C

S
′ a
)

if
p
s
e
u

d
o
(d

e
s
t(

τ
))

th
en

52
3,

if
p
s
e
u

d
o
(d

e
s
t(

τ
))

th
en

52
,
60

C
S

′ a
=

a
c
ti

v
e
(d

e
s
t(

τ
))

3,
5,

∅
50

4
C

S
′ a

=
d
e
s
t(

τ
)

53
5,

C
S

′ a
=

d
e
s
t(

τ
)

26
el

se
C

S
′ a

=
∅

54
7

el
se

C
S

′ a
=

∅
e
n

s
ta

te
s
(s

s
,
τ
)

s
r
c
(τ

)
⊆

s
s
.C

S
a

55
6

s
r
c
(τ

)
⊆

s
s
.C

S
a

52
s
r
c
(τ

)
⊆

s
s
.C

S
a

25
s
r
c
(τ

)
⊆

s
s
.C

S
a

50
5

Events

r
e
s
e
t

I
a
(s

s
,
I
)

=
I

54
6

I
54

I
25

I
10

3
6

n
e
x
t

I
a
(s

s
,
τ
,
I

′ a
)

I
′ a

=
∅

54
6

I
′ a

=
∅

54
,
49

I
′ a

=
∅

26
I

′ a
=

∅
47

,
10

7
7

e
n

e
v
e
n

ts
(s

s
,
τ
)

s
s
.I

a
⊆

tr
ig

(τ
)

55
6

s
s
.I

a
⊆

tr
ig

(τ
)

52
tr

ig
(τ

)
=

s
s
.I

a
3,

25
tr

ig
(τ

)
=

s
s
.I

a
50

8
r
e
s
e
t

O
(s

s
,
I
)

=
∅

-
∅

-
∅

-
∅

-
9

n
e
x
t

O
(s

s
,
τ
,
O

′)
O

′
=

g
e
n
(τ

)
55

7
O

′
=

g
e
n
(τ

)
48

,
49

O
′
=

g
e
n
(τ

)
6

O
′
=

g
e
n
(τ

)
47

,
10

7
10

Variables

r
e
s
e
t

A
V

(s
s
,
I
)

=
s
s
.A

V
-

s
s
.A

V
-

s
s
.A

V
-

s
s
.A

V
-

11
n

e
x
t

A
V

(s
s
,
τ
,
A

V
′)

A
V

′
=

s
s
.A

V
⊕

?
a
s
n
(τ

)
55

7
A

V
′
=

a
s
s
ig

n
(s

s
.A

V
,

47
A

V
′
=

a
s
s
ig

n
(s

s
.A

V
,

7,
25

A
V

′
=

a
s
s
ig

n
(s

s
.A

V
,

45
,
11

1
12

s
e
q

e
v
a
l(

s
s
.A

V
,
a
s
n
(τ

))
)

s
e
q

e
v
a
l(

s
s
.A

V
,
a
s
n
(τ

))
)

s
e
q

e
v
a
l(

s
s
.A

V
,
a
s
n
(τ

))
)

r
e
s
e
t

A
V

a
=

s
s
.A

V
-

s
s
.A

V
-

s
s
.A

V
-

N
/
A

-
13

n
e
x
t

A
V

a
(s

s
,
τ
,
A

V
′ a
)

if
c
h

o
ic

e
(d

e
s
t(

τ
))

th
en

52
3

if
c
h

o
ic

e
(d

e
s
t(

τ
))

th
en

47
,
60

25
N

/
A

-
14

A
V

′ a
=

(s
s
.A

V
⊕

?
a
s
n
(τ

))
A

V
′ a
=

a
s
s
ig

n
(s

s
.A

V
,

A
V

′ a
=

s
s
.A

V
a

el
se

A
V

′ a
=

s
s
.A

V
a

s
e
q

e
v
a
l(

s
s
.A

V
,
a
s
n
(τ

))
)

el
se

A
V

′ a
=

s
s
.A

V
a

e
n

c
o
n

d
(s

s
,
τ
)

s
s
.A

V
a
|=

c
o
n

d
(τ

)
55

6
s
s
.A

V
a
|=

c
o
n

d
(τ

)
52

s
s
.A

V
a
|=

c
o
n

d
(τ

)
25

T
R

U
E

-
15

m
a
c
r
o

s
e
m

a
n

ti
c
s

st
ab

le
54

6
st

ab
le

54
,
57

st
ab

le
24

si
m

p
le

50
,
10

3
16

p
r
i

p
r
i(

Γ
)
≡

{τ
∈

Γ
|∀

t
∈

Γ
.

54
7

p
r
i(

Γ
)
≡

{τ
∈

Γ
|∀

t
∈

Γ
.

62
p
r
i(

Γ
)
≡

{τ
∈

Γ
|∀

t
∈

Γ
.

22
N

/A
-

17
r
a
n

k
(s

r
c
(τ

))
≥

r
a
n

k
(s

r
c
(t

))
}

r
a
n

k
(s

r
c
(τ

))
≥

r
a
n

k
(s

r
c
(t

))
}

r
a
n

k
(s

r
c
(τ

))
≥

r
a
n

k
(s

r
c
(t

))
}

C
om

p
os

it
io

n
IN

T
E
R

R
,
IN

T
L
,

52
3,

53
5,

O
B

JE
C

T
,

50
,
82

IN
T

E
R

R
,
IN

T
L
,

14
,
24

O
B

JE
C

T
,
M

U
L
T

I-
O

B
JE

C
T

10
4,

10
7

18
O

B
JE

C
T

,
M

U
L
T

I-
O

B
JE

C
T

54
7,

55
5

M
U

L
T

I-
O

B
JE

C
T

83
O

B
JE

C
T

,
M

U
L
T

I-
O

B
JE

C
T

26

K
ey

Se
m

an
ti
cs

th
at

re
fin

e
a

se
m

an
ti
c

va
ri
at

io
n

po
in

t
in

th
e

O
M

G
st

an
da

rd
Se

m
an

ti
cs

th
at

de
vi

at
e

fr
om

th
e

O
M

G
st

an
da

rd
a
ct

iv
e(

s)
St

at
es

th
at

ar
e

ac
ti
ve

w
he

n
st

at
e

s
be

co
m

es
ac

ti
ve

,
in

cl
ud

in
g

s’
s

an
ce

st
or

s
an

d
re

le
va

nt
de

sc
en

da
nt

s’
de

fa
ul

t
st

at
es

p
se

u
d
o(

s)
R

et
ur

ns
tr

ue
if

st
at

e
s

is
a

ch
oi

ce
,
ju

nc
ti
on

or
in

it
ia

l
ps

eu
do

st
at

e
ch

oi
ce

(s
)

R
et

ur
ns

tr
ue

if
st

at
e

s
is

a
ch

oi
ce

po
in

t.
a
ss

ig
n
(X

,Y
)

U
pd

at
es

as
si
gn

m
en

ts
X

w
it
h

th
e

as
si
gn

m
en

ts
Y

,
an

d
ig

no
re

s
as

si
gn

m
en

ts
in

Y
to

va
ri

ab
le

s
th

at
ar

e
no

t
in

X
se

q
ev

a
l(

X
,A

)S
eq

ue
nt

ia
lly

ev
al

ua
te

s
as

si
gn

m
en

t
ex

pr
es

si
on

s
in

A
,
st

ar
ti
ng

w
it
h

va
ri
ab

le
va

lu
es

in
X

an
d

up
da

ti
ng

th
es

e
as

as
si
gn

m
en

ts
ar

e
pr

oc
es

se
d;

re
tu

rn
s

up
da

te
d

va
ri
ab

le
-v

al
ue

as
si
gn

m
en

ts
.

p
ri

(Γ
)

R
et

ur
ns

th
e

su
bs

et
of

tr
an

si
ti
on

s
Γ

th
at

ha
ve

hi
gh

es
t

pr
io

ri
ty

.
ra

n
k
(s

)
D

is
ta

nc
e

of
st

at
e

s
fr

om
th

e
ro

ot
st

at
e.

ra
n
k
(r

oo
t)

=
0.

ra
n
k
(S

)
re

tu
rn

s
th

e
ra

nk
of

th
e

st
at

e
w

it
h

th
e

hi
gh

es
t

ra
nk

w
it
hi

n
se

t
S
.

Semantic Variations Among UML StateMachines 253

HTS and saved in Ia. A transition is enabled only if one of its triggers matches
this event (ss.Ia ⊆ trig(τ)). Ia is set to ∅ after the first transition executes; but
subsequent segments of a compound transitions may still be enabled, since they
have no triggers.

We use snapshot element O to hold an HTS’s outputs, which are the events
generated by the HTS’s executing transition. These events are output in the
same micro-step in which they are generated. Thus, element O need only record
the events generated by the most recent transition.

Variable-Related Parameters. Rows 11-15 in Table 4 pertain to the seman-
tics of variables. We use snapshot element AV to record the current values of
variables. A transition may perform multiple variable assignments, and may even
perform multiple assignments to the same variable. OMG-UML [19] does not pin
down the action language, so the semantics of variable assignments, especially
with respect to evaluation order or execution subset, is a semantic variation
point. We use the symbol ⊕? to indicate that some of the assignments in τ ’s ac-
tions have an overriding effect on the variable values in AV , but that the exact
semantics of this effect is left open.

We use auxiliary snapshot element AVa to record the variable values that are
used when evaluating transition guards (ss.AVa |= cond(τ)) and assignment ex-
pressions. In OMG-UML semantics, transition guards are evaluted with respect
to variables’ values at the start of a macro-step – unless the transition is exiting
a choice pseudostate. Thus, AVa records the variables’ current values at the start
of a macro-step, and is not updated during the macro-step unless an executing
transition enters a choice pseudostate.

Macro-Semantics and Priority Parameters. OMG-UML has stable macro-
step semantics, meaning that an HTS processes an event to completion before
inputing the next event. With respect to priority among transitions, transitions
whose source states have the highest rank (i.e., are deepest in the state hierarchy)
have highest priority. Thus, substate behaviour overrides super-state behaviour.
The priority of a join transition is the priority of its highest-ranked segment.

4.2 Composition Operators

We use composition operators to compose HTSs into CHTSs that represent
UML StateMachines and collections of communicating StateMachines. We use
interleaving and interrupt operators for intra-object composition, to create or-
thogonal and composite states, respectively. We also introduce two inter-object
composition operators that define the behaviour of object-level composition: ob-
ject composition defines how a single object takes a micro-step with respect to
UML’s run-to-completion step semantics, and multi-object composition defines
how multiple objects execute concurrently and communicate via directed events.

Interleaving Composition. We use interleaving composition, defined in Sec-
tion 2.3, to model orthogonal composite states. According to OMG-UML se-
mantics [19], each orthogonal region executes at most one compound transition

254 A. Taleghani and J.M. Atlee

per run-to-completion step, and the order in which the regions’ transitions, or
transition segments, execute is not defined. This behaviour is captured by the
micro-step interleaving operator, which allows fine-grained interleaving of HTSs
and their transitions. The order in which the interleaved transitions’ generated
events or variable assignments occur is nondeterministic.

Interrupt Composition. We use interrupt composition, defined in Figure 1,
to model nonorthogonal composite states that contain orthogonal substates. The
semantics of execution is as described in Section 2.3: Only one of the composite
state’s direct substates is ever active; and in each micro-step, either the active
substate executes internal transitions, or one of the interrupt transitions executes
and transfers control from the active substate to another substate.

In a typical case, interrupt composition models fork and join transitions that
enter or exit, respectively, an orthogonal composite state. We model forks and
joins as single HTS transitions that have multiple destination states (forks) or
multiple source states (joins). If a fork does not specify a destination state in
one of the orthogonal regions, the macro ent comp in the interrupt operator
determines the region’s implicit (default) destination states.

Object Composition. In OMG-UML, each active object is modelled as a
StateMachine with its own event pool and thread of control2. An object executes
by performing run-to-completion steps, defined as follows:

1. An event is removed from the object’s event pool for the object to process.
2. A maximal set of non-conflicting enabled transitions are executed. Conflicts

are resolved using priorities (reflected in template parameter pri)
3. The events generated by these transitions are sent to the targeted objects.
4. Steps 2 and 3 are repeated, until no more transitions are enabled.

The object composition operator, shown in Figure 2, defines an allowable
micro-step taken by an object. Macro stable(−→ss) determines whether a run-to-
completion step has ended, meaning that no transitions are enabled. If so, then a
new event e is selected from the object’s event pool and is incorporated into the
object’s snapshots (reset(−→ss , e)). To effect a micro-step, the operator invokes
the micro-step operator for the object’s top-most hierarchical state: NHTS

micro, if
the state represents an HTS; Nintl

micro, if the state is an interleaved CHTS; or
Ninterr

micro , if the state is an interrupt CHTS.
In OMG-UML, the order in which events are removed or added to an event

pool is purposely left undefined. To model this semantics variation, we introduce
new template parameters reset Q and next Q to specify how an event pool
Q is updated with inputs from the environment or with events sent by other
objects, respectively; parameter pick specifies how an event is selected from an
event pool. The second column of Table 5 presents the parameter values for
OMG-UML. We use symbols +? and −?, to represent OMG-UML’s undefined
semantics for adding and removing events from an event pool. In addition, we
2 UML also has the notion of a passive object, which contains data only and which

executes only when an active object invokes one of its methods.

Semantic Variations Among UML StateMachines 255

Nobject
micro (−→ss ,−→τ ,−→ss ′)(Q, Q′) ≡

if stable(−→ss) then

∃ −→ss r , e .

[
pick(−→ss , Q, e, Q′) ∧ −→ss r = reset(−→ss , e) ∧
(Nmicro(−→ss r,−→τ ,−→ss ′) ∨ (stable(−→ss r) ∧ −→ss r =−→ss ′))

]
else

Nmicro(−→ss ,−→τ ,−→ss ′) ∧ Q = Q′

Nmulti-object
macro ((−→ss1, ...,−→ssn), I, (−→ss′

1, ...,−→ss′
n))(Q1...Qn, Q′

1...Q′
n) ≡

∃ k, −→τ , Q′′
k , Qr

1, ..., Qr
n ·⎡

⎢⎢⎢⎣
∀i . 1≤ i≤n . Qr

i = reset Q(Qi, directed events(I, i)) ∧
1≤k≤n ∧ Nobject

micro (−→ss k,−→τ ,−→ss ′
k)(Qr

k, Q′′
k) ∧

∀i . 1≤ i≤n . ((i = k → next Q(Q′′
k , directed events(−→ss ′

k.O, k), Q′
k) ∧

(i �= k → next Q(Qr
i , directed events(−→ss ′

k.O, i), Q′
i))

⎤
⎥⎥⎥⎦

Fig. 2. Multi-object and object composition

Table 5. Event-Pool Related Template-Parameter Values

OMG-UML [19] RRT-UML [10] RH-UML [5] BP-UML [23]
pg. 546 pg. 79 pg. 25 pg. 107

pick(−→ss, Q, e, Q′) ready ev(−→ss, Q, e)∧ e = top(Q)∧ e = top(Q)∧ e = top(Q)∧
Q′ = Q −? e Q′ = pop(Q) Q′ = pop(Q) Q′ = pop(Q)

reset Q(Q, I) = Q +? I append(Q, I) append(Q, I) append(Q, I)
next Q(Q, I, Q′) Q′ = Q +? I Q′ = append(Q, I) Q′ = append(Q, I) Q′ = append(Q, I)

Key
Semantics that refine a semantic variation point in the OMG standard
Semantics that deviate from the OMG standard

ready ev(−→ss, Q, e) Select e such that deferred(e,−→ss.CS) = ∅ ∨
(rank(deferred(e, −→ss.CS)) ≤ rank(src(en trans(reset(−→ss, e),−→T))))

deferred(e, S) Returns the subset of the states S in which event e is deferred
X +? Y Undefined operator for adding element Y to container X
X −? Y Undefined operator for removing element Y from container X
append(Q, I) Appends the event sequence I to the end of Q, and returns the resulting queue
top(Q) Returns the front element of queue Q
pop(Q) Removes the front element from Q, and returns the resulting queue

use macro ready ev(−→ss , Q, e) to help represent deferred events: it returns an event
e that either (1) is not deferred in any current state or (2) triggers a transition
whose source state has higher priority than the state(s) that defer e.

Multi-object Composition. Multi-object composition, shown in Figure 2,
models the concurrent execution of n objects. It is a UML model’s top-most
composition operator, and thus defines how input events I (e.g., user inputs) and
inter-object messages are handled. In each macro-step, (1) the inputs I are added
to the appropriate objects’ event pools, (2) some object is nondeterministically
chosen to execute a micro-step, and (3) the events generated in that micro-step
are added to the target objects’ event pools. Macro directed events filters events
by their target object, returning only the events destined for that object.

5 Semantics of UML Tools

In this section, we present template-semantics descriptions for StateMachines
as implemented in three UML CASE tools: Rational Rose RealTime [8]

256 A. Taleghani and J.M. Atlee

(RRT-UML), Rhapsody [5, 11](RH-UML) and BridgePoint [1, 23](BP-UML). We
then evaluate how well each tool complies with UML 2.0 semantics by comparing
how well its template-parameter values match those for OMG-UML 2.0, which
were presented in the last section.

The template-parameter values for the three UML CASE tools are given in
Table 4, in columns 4, 6, and 8. The reference that we used in determining each
parameter value is given in the table entry to the right of the parameter value.

State-Related Parameters. RRT-UML’s state semantics match exactly those
of OMG-UML. In RH-UML, the set of enabling states, CSa, is always equal to
the current set of states, CS. Thus, an HTS may execute multiple transitions in
a macro-step, but only the first transition can have a trigger. An HTS can even
get into an infinite loop if the states and variable values always enable a next
transition. In BP-UML, an HTS never executes more than one transition in a
macro-step, so CSa is always empty after the first transition executes.

Event-Related Parameters. All three UML variants have similar event se-
mantics: an input event can trigger only the first transition of a macro-step,
and generated events are output (to the target objects’ event pools). The only
difference is that, in OMG-UML and RRT-UML, a transition may have multiple
triggers (ss.Ia ⊆ trig(τ)), whereas in RH-UML and BP-UML, a transition may
have only one trigger (trig(τ) = ss.Ia).

Variable-Related Parameters. OMG-UML does not specify how variable
values are updated due to transitions’ assignments. RRT-UML, RH-UML, and
BP-UML all refine OMG-UML’s semantics in the same way: variable values are
updated in the order, left to right, in which they appear in the transition label.

In RRT-UML and RH-UML, (non-choice-point) transition guards and assign-
ment expressions are always evaluated with respect to variable values from the
start of the macro-step (ss.AVa |= cond). In contrast, RH-UML does not support
dynamic choice points, so its next AVa variable values are never updated in
the middle of a macro-step. BP-UML does not support guard conditions, so its
predicate en cond is always true.

Macro-Semantics and Priority Parameters. RRT-UML and RH-UML have
stable macro-semantics, to support compound transitions (in RRT-UML) or to
allow an HTS to execute multiple transitions in a macro-step (in RH-UML). In
contrast, BP-UML does not support compound transitions, and its semantics
allow an HTS to execute at most one transition per macro-step, so BP-UML
has simple macro-semantics. RRT-UML and RH-UML use the same transition
priority scheme as OMG-UML uses. BP-UML has no priority scheme.

Composition Operators. Neither RRT-UML nor BP-UML support orthogo-
nal composite states. Thus, a StateMachine in these notations maps to an HTS
and no intra-object composition is needed. RH-UML supports orthogonal com-
posite states, as well as join and fork pseudostates. Moreover, the order in which
orthogonal regions execute, and thus the order in which their transitions’ actions

Semantic Variations Among UML StateMachines 257

take effect, is nondeterministic [5]. As a result, the interleaving and interrupt
composition operators defined in Sections 2.3 apply also to RH-UML.

All three UML variants use the object and multi-object composition opera-
tors; their template-parameter values for these operators appear in columns 3-5
of Table 5. All three variants implement event pools as FIFO queues to ensure
that the order of events, as generated by a transition or as sensed by the envi-
ronment, is preserved during message passing. And they all deviate from OMG-
UML semantics by not supporting deferred events. In RRT-UML and RH-UML,
several objects may share a thread of control and an event pool for efficiency
reasons [4, 15, 21], but this has no effect on the semantics of execution.

6 Evaluation

Our template-semantics description of UML 2.0 is based on OMG documents [19],
supplemented by questions sent to the “Ask an Expert” facility on the OMG
Website. For RRT-UML, we used the Modeling Language Guide [9], our experi-
ences with Rational Rose RT [8], and e-mail correspondence with Bran Selic [21].
For RH-UML, we used conference papers [5], our experiences with Rhapsody [11],
and e-mail correspondence with David Harel [4]. For BP-UML, we used Shlaer
and Mellor’s text [23], our experiences with Nucleus Bridgepoint [1], and e-mail
correspondence with Campbell McCausland [15].

Because these sources are written in a combination of natural language, pseu-
docode, and examples, it is impossible for us to formally prove that our template-
semantics descriptions accurately represent the documented semantics. Instead,
we trace each of our template-semantics’ parameter values to statements in these
sources. We include this traceability information in Tables 4 and 5.

7 Related Work

There has been extensive work to formalize the semantics of statecharts [6, 20, 16]
and to compare different semantics [22, 14]. Shankar et al. [22] describe a two-
dimensional temporal logic that could be used to describe semantic variations
of statecharts. Maggiolo-Schettini et al. [14] use structural operational seman-
tics and labeled transition systems to describe the semantics of two statechart
variants. In both cases, it could be argued that it would be somewhat harder to
use their logics to compare statecharts variants, because it would mean compar-
ing collections of free-form axioms rather than collections of specific template
parameters.

There have been several attempts at making the semantics of UML StateMa-
chines more precise [7, 12, 13, 24], usually to enable automated analysis. Fecher
et al. [3] outline 29 new unclarities in the semantics of UML 2.0 and provide in-
formal pointers as how to eliminate those ambiguities. To our knowledge, there
has not been any other attempt to formally define and compare the semantics
of different UML StateMachine variants.

258 A. Taleghani and J.M. Atlee

Crane and Dingel [2] informally compare Rhapsody StateMachines against
the UML standard. Most of their results relate to syntax, language constructs,
and well-formedness constraints rather than the semantics of execution. In par-
ticular, little discussion is devoted to crucial aspects of the semantics, such as
orthogonal composite states, composition operators, and event pools. Also, the
differences are described using natural language, which makes an exact defini-
tion and comparison very difficult. In contrast, our work focuses on execution
semantics; we use a formalism that highlights semantics variation points; and
our work takes into consideration composition, concurrency, and event pools.

8 Conclusions

The contributions of this work are threefold. First, we add event-pool-related
template parameters to template semantics, to model message passing between
components. Second, we provide a template-semantics representation of the exe-
cution semantics of UML StateMachines, as defined by the OMG. Unlike similar
work, our approach does not result in a more precise semantics of UML, but
rather it results in a formal and concise description of UML semantics that
highlights the semantics variation points in the standard. Third, we provide
template-semantics representations for StateMachines as implemented in three
UML CASE tools, showing precisely how these tools address unspecified se-
mantics in the standard and how they deviate from specified semantics in the
standard.

One of our future goals is a more comprehensive comparison of UML StateMa-
chine variants and traditional statecharts variants, in the form of a formal version
of von der Beeck’s informal comparison of statechart variants [25]. In addition,
we are investigating the potential of automatically analyzing UML models using
tools that are semantically configured by template-parameter values.

Acknowledgments

We thank Bran Selic from IBM, David Harel from the Weizman Institute, and
Campbell McCausland and Stephen Mellor from Accelerated Technology for
helping us to understand the semantics details of UML StateMachines and of
their respective tools.

References

1. Accelerated Technology. Bridgepoint. www.acceleratedtechnology.com/, 2005.
2. M. Crane and J. Dingel. UML vs. Classical vs. Rhapsody State machines: Not All

Models are Created Equal. In Proc. 8th Int. Conf. on Model Driven Eng. Lang.
and Sys. (MoDELS/UML 2005), Montego Bay, Jamaica, Oct. 2005.

3. H. Fecher, J. Schönborn, M. Kyas, and W. P. de Roever. 29 New Unclarities in
the Semantics of UML 2.0 State Machines. In ICFEM 2005, volume 3785, pages
52–65. Springer-Verlag, 2005.

4. D. Harel. Email disucssion. Email, July 2005.

Semantic Variations Among UML StateMachines 259

5. D. Harel and H. Kugler. The RHAPSODY Semantics of Statecharts (or, On the
Executable Core of the UML). In Integration of Software Specification Techniques
for Appl. in Eng., volume 3147 of LNCS, pages 325–354. Springer-Verlag, 2004.

6. D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the Formal Semantics of
State machines. In Logic in Comp. Sci., pages 54–64. IEEE Press, 1987.

7. Z. Hu and S. M. Shatz. Explicit Modeling of Semantics Associated with Composite
States in UML State machines. Intl. Jour. of Auto. Soft. Eng., 2005.

8. IBM Rational. Rational Rose RealTime. http://www.ibm.com/rational, 2002.
9. IBM Rational. Rational Rose RealTime - Modeling Language Guide, Version

2003.06.00. http://www.ibm.com/rational, 2002.
10. IBM Rational. Rational Rose RealTime - UML Services Library, Version

2003.06.00. http://www.ibm.com/rational, 2002.
11. ilogix, Inc. Rhapsody. http://www.ilogix.com, 2005.
12. Y. Jin, R. Esser, and J. W. Janneck. Describing the Syntax and Semantics of

UML State machines in a Heterogeneous Modelling Environment. In Proc. 2nd
Int. Conf. on Diag. Repr. and Infer. (DIAGRAMS ’02), pages 320–334, London,
UK, 2002. Springer-Verlag.

13. J. Jürjens. A UML State Machines Semantics with Message-passing. In Proc. ACM
Symp. on App. Comp.(SAC ’02), pages 1009–1013, 2002.

14. A. Maggiolo-Schettini, A. Peron, and S. Tini. A comparison of statecharts step
semantics. Theor. Comput. Sci., 290:465–498, 2003.

15. C. McCausland. Email disucssion. Email, July 2005.
16. E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel. On Formal Semantics of

Statecharts as Supported by STATEMATE. In 2nd BCS-FACS Northern Formal
Methods Workshop. Springer-Verlag, 1997.

17. J. Niu, J. M. Atlee, and N. Day. Template Semantics for Model-Based Notations.
IEEE Trans. on Soft. Eng., 29(10):866–882, October 2003.

18. J. Niu, J. M. Atlee, and N. A. Day. Understanding and Comparing Model-Based
Specification Notations. In Proc. IEEE Intl. Req. Eng. Conf., pages 188–199, 2003.

19. OMG. Unified Modelling Language Specification: Version 2.0, Formal/05-07-04.
http://www.omg.org, 2003.

20. A. Pnueli and M. Shalev. What is a Step: On the Semantics of Statecharts. In
Proc. TACS, volume 526, pages 244–264. Springer-Verlag, 1991.

21. B. Selic. Email disucssion. Email, July 2005.
22. S. Shankar, S. Asa, V. Sipos, and X. Xu. Reasoning about Real-Time State ma-

chines in the Presence of Semantic Variations. In ASE, pages 243–252, 2005.
23. S. Shlaer and S. J. Mellor. Object Lifecycles: Modeling the World in States. Yourdon

Press, Upper Saddle River, NJ, USA, 1992.
24. A. Simons. On the Compositional Properties of UML State machine Diagrams. In

Proc. of Rigorous Object-Oriented Methods (ROOM2000), York, UK, 2000.
25. M. von der Beeck. A Comparison of State machines Variants. In Formal Techniques

in Real Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 128–148.
Springer-Verlag, 1994.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 260 – 274, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Facilitating the Definition of General Constraints in UML

Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós, and Ernest Teniente

Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
{dolors, cristina, aqueralt, raventos, teniente}@lsi.upc.edu

Abstract. One important aspect in the specification of conceptual schemas is
the definition of general constraints that cannot be expressed by the predefined
constructs provided by conceptual modeling languages. In general this is done
by means of general-purpose languages, like OCL. In this paper we propose a
new approach to facilitate the definition of such general constraints in UML.
More precisely, we define a profile that extends the set of UML predefined
constraints with some types of constraints that are used very frequently in
conceptual schemas. We also study the application of our ideas to the
specification of two real-life applications and we show how results in
constraint-related problems may be easily incorporated to our proposal.

1 Introduction

An information system maintains a representation of the state of a domain in its
information base (IB). The conceptual schema of an information system must include
all relevant knowledge about the domain. Hence, the structural conceptual schema
defines the structure of the IB while the behavioral conceptual schema defines how
the IB changes when events occur. In UML, structural conceptual schemas are
represented by means of class diagrams [14].

A complete conceptual schema must include the definition of all relevant integrity
constraints [6]. The form of the definition of such constraints depends on the
conceptual modeling language used [10]. Some constraints are inherent in the model
in which the language is based. This is the case, for example, of referential constraints
in UML class diagrams. Nevertheless, almost all constraints require an explicit
definition. Most conceptual modeling languages offer a number of special constructs
for defining some of them. In particular, UML offers graphical constructs for
constraints such as multiplicity and also provides a set of predefined constraints
which includes, for instance, association “xor” constraints and “disjoint” constraints.

However, there are many types of constraints that cannot be expressed using
predefined constructs. These are general constraints whose definition requires the use
of a general-purpose sublanguage. With this objective, UML provides OCL [12, 15].
The use of OCL is not mandatory and the UML designer may use other languages for
writing general constraints such as Java or C++ or even natural language.

There are some problems associated to the definition of general constraints through
general-purpose languages. Constraints defined in natural language are often impre-
cise and ambiguous. Editing OCL constraints manually, although providing the means
to write constraints with a precise semantics, is time-consuming and error-prone and

 Facilitating the Definition of General Constraints in UML 261

OCL expressions may be difficult to understand for non-technical readers. Moreover,
an automatic treatment of those constraints (either for reasoning or for automatic code
generation) may be difficult to achieve.

For these reasons, it becomes necessary to reduce the extent of cases in which
constraints must be defined through general-purpose languages. In this sense, we
propose to extend the set of UML predefined constraints with some types of constraints
that are used very frequently in conceptual schemas. We make the extension by
defining a UML profile, the standard mechanism that UML establishes to incorporate
new constructs to the language. The application of this profile has been studied in the
specification of two real-life applications: the EU-Rent Car Rentals system [4] and a
conceptual schema for e-marketplaces [13].

Our proposal facilitates the definition of general constraints in UML since it
decreases significantly the number of constraints that must be defined and,
consequently, it reduces the scope of the problems associated to their use.

Our approach provides also important advantages regarding the automatic
treatment of constraints. In particular, our profile easily allows incorporating previous
results on reasoning about constraint-related problems (such as satisfiability or
redundancy) and facilitates obtaining an automatic implementation of the constraints.
In this way, another contribution of our work is to show the significant advantages
provided by the use of constraint stereotypes in conceptual modeling.

The rest of the paper is organised as follows. Next section illustrates the problems
regarding the definition of general constraints. Section 3 presents our profile, whose
application to two case studies is discussed in Section 4. Section 5 shows how to
reason about the constraints specified in our profile. Section 6 reviews related work
while, finally, Section 7 presents our conclusions and points out future work.

2 Problems in the Definition of General Constraints

There are some problems associated to the definition of general constraints. We will
illustrate them according to the example in Figure 1 which refers to a fragment of a
system that supports teaching activities of a University. The structural schema shows
the definition of courses and their sections. It also contains information on teachers,
their course of expertise and their assignment to sections. The structural schema
includes eight general constraints, whose specification as OCL invariants is given in
Figure 1: 1) Courses are identified by their name; 2) Courses are identified by their
code; 3) Teachers are identified by the union of their name and last name; 4) Each
section is identified by its number within each course; 5) A course cannot be directly
or indirectly prerequisite of itself; 6) Teachers assigned to sections of a course must
be experts in that course; 7) The size of sections cannot be greater than 80; 8) Courses
must have at least a lecturer or a professor.

If general constraints are defined in natural language, they are often imprecise and
ambiguous and their interpretation and treatment remain as a human responsibility. In
our example, the previous descriptions of the constraints may be subject to wrong
interpretations because they do not establish unambiguously their precise meaning.

262 D. Costal et al.

Fig. 1. Fragment of the class diagram for the example application

This problem may be avoided by using formal general-purpose languages such as
OCL. Formal languages provide the means to write constraints with precise
semantics. Nevertheless, we can also identify some disadvantages of using them:

− Difficulty of understanding for non-technical readers. For example, previous
constraints would not be easy for readers not familiar with OCL.

− Time-consuming definition: the designer must define explicitly the underlying
semantics of each particular constraint. Additionally, in the frequent case in which
there are groups of constraints that share common semantic aspects, the complete
semantics of all these constraints must be defined for each individual constraint.
This happens, for example, in the definition of textual constraints nameUnique,
codeUnique, nameLastNameUnique and courseNumberUnique of Figure 1.

− Error-prone definition: formal languages are sometimes difficult to use for the
designers inducing the possibility of mistakes. For instance, the constraint
isPrerequisitOfIsAcyclic is not easily defined in OCL. Moreover, the designer
could use ‘includes’ instead of ‘includesAll’ in constraint sectionTeacher-
MustBeExpert and then the expression would be wrong.

− Difficulty of automatic treatment: constraints expressed by means of general-
purpose languages are very difficult to interpret automatically since they do not
have a pre-established interpretation that can be easily incorporated to CASE tools.
The lack of easy automatic interpretation has the following consequences on the
automatic treatments that may be performed:

 Some well-studied rules that allow reasoning about the constraints cannot
be automatically applied.

 Constraint semantics are difficult to incorporate to subsequent models
generated automatically and, in particular, to code generation. This is a
drawback towards obtaining one of the goals of the MDA, i.e., making the
transformation from platform-independent models (PIMs) to platform-
specific models (PSMs) as automatic as possible [11].

 Facilitating the Definition of General Constraints in UML 263

From the above listed difficulties, we can conclude that it is interesting to reduce
the extent of cases in which UML constraints must be defined using general-purpose
languages. Next section presents our proposal in this direction.

3 Predefining Constraints

A constraint is a condition expressed in natural language or in a machine readable
language to add some semantics to an element. UML offers a number of graphical
constructs to define some common constraints, such as multiplicity. In addition,
certain kinds of constraints, such as a disjoint constraint, are predefined in UML, but
there are many others that cannot be expressed using these constructs and their
definition requires the use of a specific language, such as OCL.

There are, however, some kinds of user-defined constraints that occur very
frequently in conceptual schemas. For instance, a very prominent kind of constraint is
the identifier constraint [5, 8], which may have several realizations such as
nameUnique or codeUnique for a given class, i.e., either the attribute name or the
attribute code uniquely identify instances of said class.

In this section we present our proposal to extend the set of predefined constraints
offered by UML. We use the standard extension mechanism provided by UML, the
definition of a profile [12, 14, 15], to achieve this goal. In particular, we define a set
of stereotypes that provide some additional semantics to UML constraints that play
the role of invariants.

We have defined stereotypes for some of the most frequent generic kinds of
constraint, namely uniqueness, recursive association, path comparison and value
comparison constraints. The use of these stereotypes allows the designer to avoid
defining explicit expressions to specify the corresponding constraints every time they
appear. Instead, these constraints can be graphically represented in the class diagram,
and, optionally, can be generated automatically in OCL.

Once applied our stereotypes to the example in Figure 1, seven out of the eight
textual constraints (all except the last one) could be expressed graphically in the class
diagram, making unnecessary their definition in natural language or in OCL.

Since one of the main goals of our paper is to illustrate the advantages provided by
the use of constraint stereotypes in conceptual modeling, we have not intended to be
exhaustive as far as the extent of constraints we are able to predefine. Instead, we
have selected here the most representative ones to stress our contribution. The
representation of other constraints in our approach as well as the complete details of
the profile may be found in [2].

3.1 UML Profile for Predefined Constraints

Our profile contains a set of stereotypes that extend the semantics of a constraint.
Thus, the metaclass Constraint of the UML metamodel is extended by means of
several stereotypes representing generic kinds of constraints, divided in four groups
according to their semantics. The metaclass Constraint refers to a set of
constrainedElement, i.e. those elements required to evaluate the constraint. The
context of Constraint may be used as a namespace for interpreting names used in the

264 D. Costal et al.

expression. Each constraint has an associated OpaqueExpression that includes the
constraint expression and the language used to define it. Each instance of Constraint
represents a user-defined constraint, which may play the role of invariant,
precondition, postcondition or body condition of an operation.

Figure 2 shows the abstract stereotype PredefinedConstraint, with four subtypes:
Uniqueness, RecursiveAssociation, PathComparison and ValueComparison
stereotypes. PredefinedConstraint defines those features shared by all constraints that
are instances of this stereotype. In particular, the constraint cannot be a precondition,
postcondition or body condition of an operation (since we only deal here with class
diagram constraints), and the language of the associated OpaqueExpression may be
either OCL (if the designer chooses to represent the constraint also in this language)
or it is left empty (if only the graphical representation is selected). This profile has
been defined in such a way that additional stereotypes can be easily extended by
defining additional subtypes of PredefinedConstraint.

Also, we provide a UML-compliant notation that allows using these stereotypes in
a class diagram. Each instance of a stereotype is represented by means of a
stereotyped constraint tied to the corresponding model elements. For those stereotypes
requiring additional information from the designer, values can be indicated in a
comment attached to the stereotyped constraint.

3.1.1 Uniqueness Constraints
A uniqueness constraint defines a uniqueness condition over the population of a class.
We distinguish two types of uniqueness constraints: the identifier constraint and the
weak identifier constraint.

Identifier constraint. Let A be a class with a set of attributes {a1,...,an}. An identifier
constraint specifies that a subset {ai,...,aj} of those attributes uniquely identifies the
instances of A. This constraint may be expressed in OCL as follows, where cai,...,caj
are the named parts of the tuple:

context A inv: A.allInstances()->isUnique(Tuple{cai=ai,...,caj=aj})

Weak identifier constraint. Let A be a class with a set of attributes {a1,...,an} and
associated, via the member end b, to a class B. A weak identifier constraint specifies
that a subset {ai,...,aj} of those attributes, combined with B, uniquely identifies the
instances of A. This constraint may be formally expressed in OCL as follows:

context A inv: A.allInstances()->isUnique(Tuple{cb=b,cai=ai,...,caj=aj})

To specify these constraints we define the abstract stereotype Uniqueness, with two
concrete subtypes Identifier and WeakIdentifier, shown in Figure 2. Since these
stereotypes define uniqueness conditions over a set of attributes of a class, their
constrainedElement must be of type Property. Additionally, this stereotype has a
constraint that guarantees that none of those attributes has the lower bound of their
multiplicity equal to zero, otherwise this identifier would not be valid.

An example of the identifier constraint is nameLastNameUnique, shown in Figure
1. It states that instances of Teacher are identified by the union of their name and
lastName. The constraint courseNumberUnique corresponds to the weak identifier
constraint, since it states that each instance of Section is identified by its number
within each instance of Course.

 Facilitating the Definition of General Constraints in UML 265

Fig. 2. UML Profile for Predefined Constraints

Figure 3 shows the use of the corresponding Uniqueness stereotypes to represent
the constraints nameLastNameUnique and courseNumberUnique stated above. There
is a dashed line between the constraint with the corresponding stereotype and its
constrained elements.

Fig. 3. Example of the use of Identifier and WeakIdentifier stereotypes

3.1.2 Recursive Association Constraints
Recursive association constraints, called ring constraints in [5], are a type of
constraints that apply over a recursive binary association, guaranteeing that the
association fulfills a certain property. We consider five types of those constraints:
irreflexive, symmetric, antisymmetric, asymmetric and acyclic constraints.

266 D. Costal et al.

Irreflexive constraint. Let A be a class and R a recursive association over A, with r1
a member end. An irreflexive constraint over R guarantees that if a is instance of A
then a is never R-related (i.e. directly linked by R) to itself. This constraint may be
formally expressed in OCL as follows:

context A inv: self.r1->excludes(self)

Symmetric constraint. Let A be a class and R a recursive association over A, with r1
a member end. A symmetric constraint over R guarantees that if a and b are instances
of A and a is R-related to b then b is R-related to a. Formally, in OCL:

context A inv: self.r1.r1->includes(self)

Antisymmetric constraint. Let A be a class and R a recursive association over A,
with r1 a member end. An antisymmetric constraint over R guarantees that if a and b
are instances of A, a is R-related to b and b is R-related to a, then a and b are the same
instance. In OCL:

context A inv: self.r1->excludes(self) implies self.r1.r1->excludes(self)

Asymmetric constraint. Let A be a class and R a recursive association over A, with
r1 a member end. An asymmetric constraint guarantees that if a and b are instances of
A and a is R-related to b then b is not R-related to a. Observe that this constraint is
equivalent to the union of antisymmetric an irreflexive constraints. It may be
expressed in OCL as follows:

context A inv: self.r1.r1->excludes(self)

Acyclic constraint. Let A be a class and R a recursive association over A, with r1 a
member end. An acyclic constraint guarantees that if a and b are instances of A and a
is R-related to b then b or instances R-related directly or indirectly to b are not R-
related to a. Formally, in OCL:

context A
def: successors(): Set(A) = self.r1->union(self.r1.successors())

context A
inv: self.successors()->excludes(self)

We have grouped these constraints in an abstract constraint stereotype
RecursiveAssociation, which constrains recursive binary associations. As can be seen
in Figure 2, it has a concrete subtype for each one of the five kinds of recursive
association constraint.

{«Acyclic»}

 «PathInclusion»
path1 = {"expert"}
path2 = {"section","teacher"}

{«PathInclusion»}

 «ValueComparison»
value = {"80"}
operator = OperatorKind::<

{«ValueComparison»}

Course

name: String
code: String
creditsNumber: Integer Teacher

name: String
lastName: String
category: CategoryType

Section

* 1..*

1..*

1

*

*

pre*

*

IsPrerequisiteOf

expert

number: Integer
numberOfStudents: Integer

Fig. 4. Applying Acyclic, PathInclusion and ValueComparison stereotypes

 Facilitating the Definition of General Constraints in UML 267

In the example of Figure 1, isPrerequisiteOfIsAcyclic is a constraint of this type
that applies to the recursive association isPrerequisiteOf. Figure 4 shows the
definition of this constraint as an instance of the Acyclic stereotype.

3.1.3 Path Comparison Constraints
Path comparison constraints restrict the way the population of one role or role
sequence (path for short) relates to the population of another [5]. Constraints
belonging to this type are path inclusion, path exclusion and path equality. They all
apply to a class A related to a class B via two different paths r1...ri, rj...rn.

Path inclusion constraint. A path inclusion constraint guarantees that if a is an
instance of A, the set of instances of B related to a via r1...ri includes the set of
instances of B related to a via rj...rn. It can be expressed in OCL as follows:

context A inv: self.r1...ri->includesAll(self.rj...rn)

Path exclusion constraint. A path exclusion constraint guarantees that if a is an
instance of A, the set of instances of B related to a via r1...ri does not contain any of
the instances of B related to a via rj...rn. Formally, in OCL:

context A inv: self.r1...ri->excludesAll(self.rj...rn)

Path equality constraint. A path equality constraint guarantees that if a is an
instance of A, the set of instances of B related to a via r1...ri coincides with the
instances of B related to a via rj...rn. In OCL, this constraint is expressed as follows:

context A inv: self.r1...ri = self.rj...rn

We propose to define path comparison constraints as instances of the abstract
stereotype PathComparison. The constrainedElement associated to an instance of
PathComparison is an element of type Class, which is the start of both paths. As
shown in Figure 2, the stereotype includes two attributes, path1 and path2, that
represent the paths to be compared. A constraint ensures that the classes reached at
the end by both paths are the same. PathComparison has a subtype for each kind of
path comparison constraint.

In the example of Figure 1 sectionTeacherMustBeExpert is a path inclusion
constraint that applies to a class Course related to a class Teacher via two different
paths: expert and section.teacher. Figure 4 shows the definition of this constraint as
an instance of the stereotype PathInclusion.

3.1.4 Value Comparison Constraints
Value comparison constraints restrict the possible values of an attribute, either by
comparing it to a constant or to the value of another attribute [1].

Let A be a class, let a1 be an attribute of A, let v be either a constant or the value of
an attribute accessible from A and let op be an operator of kind <, >, =, <>, , or . A
value comparison constraint restricts the possible values of a1 regarding the value of
v. This constraint can be formally expressed in OCL as follows:

context A inv: self.a1 op v

We propose to define value comparison constraints as instances of the stereotype
ValueComparison, shown in Fig. 2. The constrainedElement associated to an instance
of ValueComparison is an element of type Property, not belonging to an association
and with multiplicity 1. The stereotype includes two attributes, operator and value.

268 D. Costal et al.

The former is an enumeration of the different kinds of operators (OperatorKind) that
may be used in the comparison and the latter specifies the value to be compared to the
attribute, which can be a constant or the value reached by a path. In any case, the type
of the value represented in value must conform to the type of the constrained attribute.

For instance, in the example of Fig. 1, the constraint limitOnNumberOfStudents is a
value comparison constraint that applies to the attribute numberOfStudents. Fig. 4
shows its definition as an instance of ValueComparison stereotype.

3.2 Creating the Instances of an Stereotype

To be able to specify new predefined constraints, for each stereotype we have also
defined an operation that allows creating its instances. This operation associates to
each new instance its corresponding context, constrained elements and specification.
This specification has an empty body attribute if the designer only desires a graphical
representation. Otherwise, if the designer also requires the definition of the OCL
expression, the operation assigns to the body attribute the expression automatically
generated according to the type of constraint.

As an example, the operation newIdentifier allows to create an instance of the
Identifier stereotype. The parameters needed are a class, the set of attributes that
identify each of its instances, the name of the constraint and the way to represent this
constraint in the schema which is an enumeration of two values ocl and graphically.
The value ocl indicates that the constraint will be represented graphically and
textually in OCL and the value graphically indicates that the representation will be
only graphical. The postconditions guarantee that a new instance of Identifier will be
created, the constrained elements will be the set of properties and the namespace will
be the indicated class. Moreover, depending on the value of the representation
parameter the constraint will be represented graphically and textually in OCL or
represented only graphically. This operation can be defined in OCL as follows:

context Identifier::newIdentifier(c:Class, a:Set(Property), name:String[0..1],
representation:RepresentationType)

let ident = 'Tuple{'.concat(Sequence{1..a->size()}-> iterate(pn; s: String = '' | s.concat((if
(pn>1) then ', ' else'' endif).concat ('c').concat(a->at(pn). name).concat (': ').concat
(a-> at(pn). name)))).concat('}') in

 post: id.oclIsNew() and id.oclIsTypeOf(Identifier) and
 id.constrainedElement -> includesAll(a.name) and
 c.ownedRule->includes(id) and
 id.name=name and
 expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and
 id.specification = expr and
 representation=RepresentationType::ocl implies

expr.language = 'OCL' and expr.body = 'context '.concat(id.context.name).
concat(' inv ').concat(name).concat(': ').concat(c.name).concat('.allInstances()->
isUnique('). concat(ident).concat(')')

The whole set of operations to create instances of our stereotypes may be found in
[2]. In a similar way we could define operations to delete instances of our stereotypes
which are also necessary to remove integrity constraints.

 Facilitating the Definition of General Constraints in UML 269

4 Case Study

This section summarises the results obtained from the application of our profile to the
specification of two real-life applications. The analysis of both schemas allows us to
stress the advantages of using the profile. In particular, we have analysed a conceptual
schema for the well-known EU-Rent Car Rentals system [4] and we have also studied
a generic conceptual schema for the e-marketplace domain [13].

EU-Rent is a (fictitious) car rental company with branches in several countries.
The company rents cars to its customers who may be individuals or companies.
Different models of cars are offered, organized into groups and cars within a group
are charged at the same rates. The class diagram we have studied consists of 59
classes, 50 associations and 40 constraints that require an explicit definition. Our
profile allows us to avoid specifying in OCL a considerable amount of said
constraints. Only 14 out of 40 do not correspond to any of our stereotypes and, thus, a
specific OCL expression needs to be constructed to specify them.

Fig. 5. Fragment of EU-Rent class diagram

Figure 5 shows a small fragment of the EU-Rent class diagram (10 classes and 16
constraints) to further illustrate the conclusions we have drawn from the development
of this case study. The first seven constraints may be specified by applying the
Identifier stereotype since they state the attributes that identify each class. Constraints
8 and 9 may be specified by applying the ValueComparison stereotype. Constraints
10 and 11 correspond to the PathInclusion stereotype; 12 corresponds to the
PathEquality stereotype and 13 corresponds to the Acyclic stereotype. Finally,
constraints 14, 15 and 16 do not match any of our predefined constraints and thus an
ad-hoc OCL expression must be built to specify them.

270 D. Costal et al.

The second case study consists of the specification of a generic conceptual schema
for the e-marketplace domain [13] which covers the main functionalities provided by
an e-marketplace: determining product offerings, searching for products and price
discovery. The whole specification includes 40 classes, 15 associations and 41
constraints that require an explicit definition. After analysing the constraints, the
results obtained are quite similar to those obtained with EU-Rent. In this case, the
success rate is a bit lower, about 54% instead of 65% as before, but still interesting.
This means that we have to specify manually only 19 out of 41 OCL constraints.

From the results of both case studies, we see that it has been possible to use our
stereotypes almost in 60% of the constraints, by reducing the number of OCL
expressions from 81 to 33.

5 Reasoning and Generating Code

One of the main benefits of the proposed profile is the ability to reason about
constraints represented as instances of our stereotypes and their automatic code
generation into a given technological platform. In the following we show how our
profile facilitates reasoning about constraint satisfiability and constraint redundancy.
We outline also how to use the profile to generate code for checking those constraints
in a relational database.

5.1 Constraint Satisfiability

A conceptual schema is satisfiable if it admits at least one legal instance of the IB. For
some constraints it may happen that only the empty or non-finite IBs satisfy them. In
conceptual modeling, the IBs of interest are finite and may be populated. We then say
that a schema is strongly satisfiable if there is at least one fully populated (i.e each
class and association has at least one instance) instance of the IB satisfying all the
constraints [7]. Otherwise, the schema is incorrect.

Constraint satisfiability has received a lot of attention in conceptual modeling. For
instance, [5] presents in the Euler diagram in Figure 6 the relationships between
recursive association constraints. Some satisfiability rules can be deduced from the
figure. For instance, a recursive association with an acyclic and a symmetric invariant
is not strongly satisfiable because there can not exist instances in the IB of the
corresponding association that satisfy, at the same time, both invariants.

Unfortunately, and as a consequence of problems associated to the definition of
general constraints, known results in constraint satisfiability checking cannot be
applied to the definition of constraints by means of general-purpose languages. For
example, in Figure 1, the designer could define another constraint that defines the

Fig. 6. Relationships between recursive association constraints

 Facilitating the Definition of General Constraints in UML 271

association isPrerequisiteOf as symmetric. As explained before, this new invariant
makes the schema incorrect.

Our proposal allows us incorporating easily some of these results. In fact, the
definition of predefined constraints as stereotypes permits to attach new constraints
that represent well-studied satisfiability rules that detect if a set of constraints is
strongly satisfiable. Table 1 summarizes the stereotypes and the constraints we have
attached to them to incorporate the results presented in [5]. Other known results for
constraint satisfiability can be incorporated in the same way.

Table 1. Validation of recursive association constraints

Stereotype Constraint attached to the stereotype
Symmetric There cannot be another instance of acyclic, asymmetric nor antisymmetric

constraint for the same association
Antisymmetric There cannot be another instance of symmetric constraint for the same

association
Asymmetric There cannot be another instance of symmetric constraint for the same

association
Acyclic There cannot be another instance of symmetric constraint for the same

association

5.2 Constraint Redundancy

A conceptual schema is redundant if an aspect of the schema is defined more than
once [3]. For instance, a constraint is redundant with respect to another constraint if in
each state of the IB that violates the second constraint the first one is also violated.

Table 2. Redundancy of recursive association constraints

Stereotype Constraint attached to the stereotype
Irreflexive There cannot be another instance of asymmetric nor acyclic constraint for

the same association
Antisymmetric There cannot be another instance of asymmetric nor acyclic constraint for

the same association
Asymmetric There cannot be another instance of antisymmetric nor irreflexive nor

acyclic constraint for the same association
Acyclic There cannot be another instance of asymmetric nor antisymmetric nor

irreflexive constraints for the same association

We may also draw from the diagram shown in Figure 6 some rules that permit to
detect some redundancies between recursive association constraints. For example, an
acyclic constraint is redundant with respect to an asymmetric constraint of the same
association because asymmetric associations are always acyclic.

Our proposal also easily allows incorporating results on constraint redundancy.
Table 2 summarizes the stereotypes and the constraints we have attached to them to
incorporate rules that detect redundancies between recursive association constraints.
Other results can be incorporated in a similar way.

272 D. Costal et al.

5.3 Automatic Code Generation

Many UML CASE tools offer code generation capabilities. However, most of them
do not generate the code required to check whether constraints defined in general-
purpose languages are violated by the execution of a transaction. We outline in this
section how our profile may be used to facilitate such important task.

As we have seen, each stereotype explicitly states a precise semantics for the type
of constraints it defines. Semantics may be taken into account during code generation
to determine the most adequate translation from the conceptual schema to a particular
technology. Thus, assuming an implementation on a relational database, identifier
constraints could be translated into primary key or unique constraints; weak
identifiers into foreign key plus primary key constraints; value comparisons into
check constraints and other constraints by means of triggers or stored procedures. For
example, classes Course, Section and their constraints would be translated as follows:

CREATE TABLE Course (CREATE TABLE Section (
 name char(30) PRIMARY KEY, nameCourse char(30),
 code char(30) UNIQUE, number int,
 creditsNumber int NOT NULL) numbOfStud int CHECK (numbOfStud < 80),

 PRIMARY KEY (nameCourse, number),
 CONSTRAINT fkSect FOREIGN KEY (nameCourse)
 REFERENCES Course(name))

6 Related Work

In this section, we analyze other works that contribute to facilitating the definition of
general constraints in UML.

Executable UML (xUML) is a UML profile that allows defining an information
system in sufficient detail that it can be executed [8]. As part of its proposal, xUML
extends the set of constraints that can be graphically specified. In particular, it covers
our uniqueness constraints and some kinds of path comparison constraints, i.e. path
equality and path inclusion. Considering the EU-Rent and the e-marketplace case
studies, xUML would cover only 28% of the constraints instead of the 60% covered
by our proposal. Moreover, we provide the profile definition in terms of the UML 2.0
metamodel including the definition of the creation operations that permit to add
instances to the stereotypes.

Ackermann [1] proposes a set of OCL specification patterns that facilitate the
definition of some integrity constraints, namely what we call identifier constraints and
a subset of value comparison constraints. When applied to our case studies it covers
only 26% of the constraints. This approach is based on the automatic generation of
OCL expressions from a set of patterns and, thus, it does not extend the language via
a profile definition as we propose. Consequently, it does not extend the set of UML
predefined constraints which facilitates their graphical representation. Furthermore, it
does not use the established mechanisms to extend the language and, thus, it can not
be directly incorporated to UML CASE tools.

In [9] a taxonomy of integrity constraints (which includes constraints that are
inherent, graphical and user-defined in UML) is described. However, despite the

 Facilitating the Definition of General Constraints in UML 273

authors advocate the definition of stereotypes for some of them, the stereotypes are
not developed. They only mention that model elements such as associations and
attributes should be taken as base class for their definition. We think instead that all
the proposed stereotypes should be stereotypes of Constraint. The reasons are that the
semantics of Constraint corresponds to the purpose of the stereotypes, it permits to
graphically represent the incorporated constraints similarly to predefined constraints
and, finally, it facilitates a uniform treatment of the incorporated constraints together
with the rest of constraints of a UML class diagram.

In addition to already stated drawbacks of previous proposals, we must note that
none of them deals with the ability to reason about the general constraints they may
handle.

7 Conclusions and Future Work

We have proposed a new approach to facilitate the definition of general constraints in
UML. Our approach is based on the use of constraint stereotypes in conceptual
modeling and it allows specifying as predefined UML constraints some types of
general constraints that are frequently used, instead of having to specify them by
means of a general-purpose sublanguage such as OCL.

By being able to specify general constraints as predefined constraints we overcome
the limitations of having to define them manually which may usually imply a time-
consuming and error-prone definition, difficulty of understanding (since the reader
may not be familiar with the formal language used to define the general constraint)
and difficulty of automatic treatment (since general constraints do not have a pre-
established interpretation while predefined ones do).

We have applied our approach to the specification of two real-life applications: the
EU-Rent Car Rentals system [4] and a conceptual schema for the e-marketplace
domain [13], and we have seen that 60% of the general constraints of those case
studies may have been specified as predefined by means of our stereotypes.

Finally, we have also incorporated into our stereotypes previous results regarding
constraint satisfiability and constraint redundancy checking. This has been easily done
by attaching to our stereotypes well-established rules that detect whether a set of
constraints is strongly satisfiable [5] and redundancies between recursive association
constraints. We have also outlined how to automate code generation from our profile
to check integrity constraints in a relational database.

Since one of the main goals of our paper has been to illustrate the advantages
provided by the use of constraint stereotypes, we have not intended to be exhaustive
in the extent of predefined constraints considered. Future work may involve the
definition of other types of frequent general constraints. We also plan to incorporate
into our stereotypes other known results for reasoning about constraints and to further
develop the automatic code generation from our stereotypes.

Acknowledgments. We would like to thank Antoni Olivé for suggesting us this work,
and Jordi Cabot, Jordi Conesa, and Maria Ribera Sancho for helpful discussions and
comments on previous drafts of this paper. This work has been partially supported by
the Ministerio de Ciencia y Tecnología under project TIN2005-06053.

274 D. Costal et al.

References

1. Ackermann, J., Turowski, K.: A Library of OCL Specification Patterns for Behavioral
Specification of Software Components. In Proc. CAiSE'06, LNCS 4001 (2006) 255-269

2. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Facilitating the Definition
of General Constraints in UML (extended version). Technical Report LSI-06-14-R,
http://www.lsi.upc.edu/dept/techreps (2006)

3. Costal, D., Sancho, M. R., Teniente, E.: Understanding Redundancy in UML Models for
Object-Oriented Analysis. In Proc. CAiSE'02, LNCS 2348 (2002) 659-674

4. Frías, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. Technical Report
LSI-03-59-R, http://www.lsi.upc.edu/dept/techreps (2003)

5. Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to
Logical Design. Morgan Kaufmann (2001)

6. ISO/TC97/SC5/WG3, J.J. van Griethuysen (Ed.): Concepts and Terminology for the
Conceptual Schema and the Information Base (1982)

7. Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. Information Systems 15(4) (1990) 453-461

8. Mellor, S.J; Balcer, M.J.: Executable UML: A Foundation for Model-Driven Architecture.
Object Technology Ed. Addison-Wesley (2002)

9. Miliauskait , E; Nemurait , L.: Representation of Integrity Constraints in Conceptual
Models. Information Technology and Control, 34(4) (2005)

10. Olivé, A.: Integrity Constraints Definition in Object-Oriented Conceptual Modeling
Languages. In Proc. ER’03, LNCS 2813 (2003) 349-362

11. OMG: MDA Guide Version 1.0.1, omg/2003-06-01 (2003)
12. OMG: UML2.0 OCL Specification, OMG Adopted Specification (2005)
13. Queralt, A., Teniente, E.: A Platform Independent Model for the Electronic Marketplace

Domain. Technical Report LSI-05-9-R, http://www.lsi.upc.edu/dept/techreps (2005)
14. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference

Manual, Second Edition, Addison-Wesley (2005)
15. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for

MDA. 2nd edn. Addison-Wesley Professional (2003)

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 275 – 290, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a MOF/QVT-Based Domain Architecture
for Model Driven Security

Michael Hafner, Muhammad Alam, and Ruth Breu

Universität Innsbruck, Institut für Informatik, Techniker Straße 21a,
A – 6020 Innsbruck

{m.hafner, muhammad.alam, ruth.breu}@uibk.ac.at

Abstract. The SECTET-framework realizes an extensible domain architecture
for the collaborative development and management of security-critical, inter-
organizational workflows. Models integrate security requirements at the
abstract level and are rendered in a visual language based on UML 2.0. The
models form the input for a chain of integrated tools that transform them into
artefacts configuring security components of a Web services-based architecture.
Based on findings of various projects, this contribution has three objectives.
First, we detail the MOF based metamodels defining a domain specific
language for the design of inter-organizational workflows. The language
supports various categories of security patterns. We then specify model-to-
model transformations based on the MDA standard MOF-QVT. The mappings
translate platform independent models into platform specific artefacts targeting
the reference architecture. Third, we exemplarily show how model-to-code
transformation could be implemented with an MDA-framework like
OPENARCHITECTUREWARE.

1 Introduction

The SECTET-framework supports business partners during the development and
distributed management of a common Global Workflow - a decentralized, security-
critical collaboration across domain boundaries. The approach weaves three
paradigms - each one pushed by a major standardization initiative - into an extensible
framework for Model Driven Security. Based on a methodological standard (Model
Driven Architecture [1]), an architectural paradigm (Service Oriented Architecture
[2]) and a technical standard (Web services [3]), SECTET realizes a domain
architecture aiming at the correct technical implementation of domain-level security
patterns. Security requirements are integrated into the specification of a Global
Workflow as UML 2.0 model artifacts. The models form the input for a chain of
integrated tools that transform the models into artefacts configuring security
components of a Web services-based target architecture. The framework consists of
three core components.

The Modeling Component supports the collaborative definition of a Global
Workflow and related security requirements at the abstract level in a platform
independent context. It implements an intuitive domain specific language (DSL),
which is rendered in a visual language and is currently implemented as a UML 2.0
profile for MAGICDRAW [4].

276 M. Hafner, M. Alam, and R. Breu

The Reference Architecture represents a Web services based target runtime
environment for the Local Workflows and back-end services at the partner node. The
workflow and security components implement a set of workflow and security
technologies based on XML- and Web services technologies and standards.

The Transformation Component translates the models into executable
configuration artifacts for the Reference Architecture. In a first phase, the component
was prototypically implemented with XSLT technology [5]. Models were exported
from UML tools as XMI files, parsed by the transformation component and
transformed according to rules scripted into templates. The opportunity to apply the
approach to different scenarios (e.g., e-government and health-care) gave rise to a set
of requirements whose integration into the framework was essential to its usability in
a real-life context. Nevertheless, some of them touched the conceptual foundations
and questioned some of the early design decisions. Among them was the choice of
XSLT for code-generation from respective models. XSLT – a lightweight technology
for the transformation of XML documents - perfectly fits the needs of a research
project looking for an easy to use technology for the rapid development of a
demonstrator tool as a proof-of-concept. Nevertheless, the technology showed its
limitations. New requirements in the form of more complex security requirements
were constantly emerging. The domain language had to be extended syntactically and
the adaptation of XSLT templates to more complex transformation functions took a
great deal of time. The handling of XSLT revealed as being too cumbersome.
Consequently, the transformation component was redesigned from scratch. Based on
OMG’s transformation specification MOF Query /View/Transformation (QVT) [6],
the prototypical component now supports an intuitive rule-based mapping between
platform independent source and platform specific target models. Source and target
models can easily be defined or adapted by importing the respective metamodels. This
supports domain experts in rapidly developing and adapting a domain specific
language in an agile way and visualizes the transformation process.

This contribution has three objectives. First, we detail the metamodels, which
integrate a language for modelling inter-organizational workflows and various security
patterns to an intuitive domain specific language. We then specify transformations
based on QVT. Third, we exemplarily show how model-to-code transformation can be
implemented with an MDA-framework like OPENARCHITECTUREWARE.

The paper is organized as follows: section 2 sketches the background and
summarizes related work. Section 3 gives an overview of the conceptual foundations
of the SECTET-framework in context of a case study from e-government. In Section 4,
we present the three parts of the domain architecture: the domain specific language,
the QVT-based transformations and extensions and we exemplarily show how models
are translated into code for the configuration of a Reference Architecture. Section 5
closes with a conclusion and an outlook on future work.

2 Background

2.1 Standards and Technology

The term Web services commonly refers to a set of technologies for platform neutral
interaction. It specifies a software interface definong a collection of operations that

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 277

can be accessed over a network through standardized XML messaging. XML-based
protocols describe an operation to execute or data to exchange with another service.
Currently, a comprehensive set of Web services security standards is emerging.
OASIS has proposed a security extension built on top of the SOAP Protocol [7]. The
extension uses the XML encryption and signature mechanism to add security features.
Besides transport level security extensions, a variety of standards provides means to
manage and exchange security policies. The eXtensible Access Control Markup
Language (XACML) [8] is an OASIS standard supporting the specification of
authorization policies to access (Web) services. The Role Based Access Control
profile of XACML 2.0 extends the standard for expressing policies that use role based
access control with a scope confined to core and hierarchical RBAC [9].

Service Oriented Architectures (SOA) and Web services are often referenced to
as interchangeable concepts, but they represent two distinct concepts. Web services
specifications define the technical detail for services implementation and their
interaction. The concept of SOA represents an associated architectural paradigm and
expands the focus towards the realization of distributed systems that deliver
application functionality. It supports end-to-end integration of services across domain
boundaries. SOA may be realized using other technologies as well (e.g., CORBA).

The growing popularity of standards related to Web services, workflows and
security fosters the implementation of powerful infrastructures supporting
interoperability for inter-organizational workflows. The paradigm of Model Driven
Architecture (MDA) [10] makes it possible to realize their full potential. The OMG
is promoting the approach as a means for the reduction of development costs and the
improvement of application quality. The main idea is the switch of focus from
technical detail to more abstract concepts, that are principally more stable, change
less, and more intuitive. A concept is captured through a model at different levels of
abstraction. In the context of software engineering, a model is an abstract
representation of some system structure, function, or behaviour. MDA specifies three
levels of abstraction. The Platform Independent Model captures the domain level
knowledge and abstracts from implementation details of the target architecture. The
Platform Specific Model (PSM) describes the system on its intended platform by
integrating platform specific syntax and semantics. The Implementation Specific
Model (ISM) represents the target architecture that acts as the runtime environment at
local partner nodes. Applying the MDA approach means capturing abstract domain-
level specification in a PIM, transforming the PIM into a PSM through model-to-
model Transformation and / or transforming either the PIM directly or the PSM into
an ISM through model-to-code Transformation.

Model Driven Security (MDS) extends the MDA approach in the sense that
security requirements are integrated at the abstract level into the PIM. The PIM is
mapped onto the PSM and translated into artefacts configuring security components
of the runtime environment.

2.2 Related Work

Workflow Security. Security extensions for workflow management systems are
treated in [11], [12], [13] and [14] although at a quite technical level. [15] proposes an
approach for integrating security at different levels of abstraction in the system

278 M. Hafner, M. Alam, and R. Breu

development cycle, but the full potential of a model driven approach, linking abstract
domain-level models to their technical implementation, is not yet exploited. With our
contribution, we claim to fill exactly this gap.

(Model Driven) Security Engineering. We identified three major areas of work
related to ours. In [16] the author presents an approach for the application of pattern-
based software development to recurring problems in the domain of security. The
basic idea is to capture expert-knowledge in the security domain and make it available
to developers as a security pattern during software development. The approach
provides an in-depth view of security patterns, the development-process through an
ontology based knowledge base, and describes the relationship between various
security patterns. Although the author uses patterns to systematically capture
knowledge about security issues at the model level, the semantics remain close to the
technical level. The author does not address transformation in any way. Our approach
raises the level of abstraction and also provides a methodology to systematically
transform abstracts models into runtime artefacts. In [17], the authors introduce the
concept of Model Driven Security for a software development process that supports
the integration of security requirements into system models. The models form the
input for the generation of security infrastructures. However, the approach focuses
exclusively on access control in the context of application logic and targets object
oriented platform (.Net and J2EE). Our approach differs in many ways. First, we
consider various categories of secrutiy requirements, access control being alone one
of them. Second, we raise the level of abstraction and consider security from the
perspective of domain experts realizing inter-organizational workflows. And third, we
define security patterns in terms of their language. [18] presents a verification
framework for UML models enriched with security properties through a UML profile
called UMLSec. The framework stores models using XMI format in a Meta Data
Repository, which is then queried using Java Metadata Interfaces by different
analyzers. These analyzers perform static as well dynamic analysis on the UMLSec
models for security properties like confidentiality and integrity. This approach is
orthogonal to ours and the abstraction is close to the technical level, whereas our
framework is domain specific and focuses on the systematic generation of (standard)
security artefacts specified during the early phases of software development. Our
objective is to develop abstract languages for the realization of security requirements
in distributed systems.

Tools and Frameworks. In [19] the author describes an implementation, where a
local workflow is modelled in a case-tool, exported via XMI-files to a development
environment and automatically translated into executable code for a BPEL-Engine
based on web services. Nevertheless, the approach does not provide any facilities for
the integration of security requirements at the modelling level nor does it support the
specification of global workflows by means of peer-to-peer interactions as suggested
by the concept of abstract processes in [20].

MDA-frameworks provide the plumbing technology for the implementation of
domain architectures. They provide the means to define metamodels, to specify model
transformations and templates for code generation. ANDROMDA [21] is an open
source MDA-framework that provides metadata-handling facilities through the
Apache Velocity template language. The framework uses the NETBEANS metadata

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 279

repository (MDR) [22] for storing metadata and a set of cartridges for access to the
MDR. A major drawback of the framework is the complexity involved in defining
extensions. OPENARCHITECTUREWARE (OAW) is another framework that provides a
more generic solution for domain specific engineering [23]. The reason is that it is
open to other modelling frameworks like Eclipse Modelling Framework [24] or tools
like MAGICDRAW [4]. Its template language XPAND provides an intuitive way to
generate any kind of data from specified models.

3 Conceptual Foundation

In this section, we give an overview of the conceptual foundations by introducing a
motivating example, which is drawn from a case that was elaborated within the
project SECTINO [25]. The project's vision was defined as the development of a
framework supporting the systematic realization of e-government related workflows.
After a clarification of the concept Model Driven Security, we present the main
definitions of the problem domain and give an exemplary overview of the
framework’s two orthogonal model views.

3.1 Model Driven Security

Model Driven Security (MDS) is based on Model Driven Software Engineering and
OMG’s related standardization initiative Model Driven Architecture (MDA) in so far
as Security Requirements are realized according to specifications at the model level
by model transformation and partial or complete code generation. A framework for
MDS realizes a Domain Architecture (DA) aiming at the correct technical
implementation of security patterns. A DA consists of a Domain Specific Language
(DSL), a Reference Architecture (RA) and Model Transformations. A DSL
corresponds to a modelling language that captures key-aspects of a problem domain
in a formal way based on the domain’s metamodels. The SECTET framework caters to
the needs of a specific domain. In our case, the domain is defined as the area of
“Security-critical, Inter-organizational and Distributed Workflow Scenarios”.
Transformations take models from a problem domain and translate them into
solutions for a RA. In this way, the RA represents the means to realize the domain.
We differentiate between Model-to-Model Transformations, which take a source
model and translate it into a target model, and Model-to-Code Transformations,
which take the source model and directly generate code for the RA.

3.2 Definitions of the Problem Domain

A Global Workflow (GWf) specifies the message flow between partners in a distri-
buted environment with no central control. A GWf emerges through the interaction of
instances of Local Workflows executed on a Workflow Management System
(WFMS) hosted in the Domains of Partners. Our approach is based on two
orthogonal views: the Interface View and the Workflow View. The latter is further
divided into the Global Workflow Model (GWfM) specifying the message exchange
between cooperating partners, and the Local Workflow Model (LWfM), that
describes the application and the workflow logic, which is local to each partner. The

280 M. Hafner, M. Alam, and R. Breu

Interface View represents the contractual agreement between the parties to provide a
set of services. It specifies the minimum set of technical and domain level constraints
and thereby links the GWfM to the LWfM. It describes the interface of every
partner’s services independently of their usage scenario and consists of four sub-
models: the Document Model, the Interface (Sub-) Model, the Access Model and the
Role Model.

3.3 Model Views

3.3.1 The Workflow View
The example GWf AnnualStatement in Figure 1 captures an inter-organizational
process in an e-government case study. The workflow describes a Web services based
collaboration between three Partner_Roles in terms of the interactions in which the
participating parties engage: a taxpayer (Company), a business agent (TaxAdvisor) and
a public service provider (Municipality).

Client

Company

TaxAdvisor

receiveAnnualStatement

sendProcessedAS

sendConfirmation

Municipal ity

receiveProcessedAS

sendNotification

«securityRequirements»
context processedAS : ProcessedAS:
self.Confidentiality ={
 (self.annualIncome),
 (self.clientID)
 }
self.Integrity ={ (self) }
self.NonRepudiation ={ (self)
self.QualifiedSignature = {CharterdAccountant}}

processedAS

notification

Annual
Statement

Information

«securityRequirements»
context Municipality::receiveProcessedAS(processedAS:ProcessedAS):
perm[TaxAdvisor::CharteredAccountant]:
 Day <> “Saturday” and Day <> “Sunday”;

Fig. 1. Global Workflow Model as UML 2.0 Activity Diagram

Municipality_AS_Provider

«invoke»
sendProcessedAS

Entry/
notification:=sendprocessedAS

(processedAS)

InternalWebService1

«invoke»
processASDocument

Entry/
processedAS:=processASDocument

(annuaStatement)

«invoke»
processNotification

Entry/confirmation :=
processNotification (notification)

«invoke»
checkClientMandate

Entry/
Result:=checkMandate(clientID)

TaxAdivsor_Service_Requester

«receive»
receiveAnnualStatement

Entry/
sendAnnualStatement(annualStatement)

«reply»
sendConfirmation

Entry/
sendAnnualStatement := confirmation

Fig. 2. Local Workflow Model for the Partner_role TaxAdvisor

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 281

Model information is confined to "observable behavior", corresponding to the
message flow between the participants, the interaction logic and the control flow
between the elementary actions. End-to-end message security requirements are
specified by associating a constraint box to document nodes, whereas dynamic
constraints are associated to interfaces.

Figure 2 shows an activity diagram capturing some aspects of the LWfM to be
implemented by the Partner_role TaxAdvisor. The parts where the local workflow
interacts with other partners’ workflows are generated from the GWfM
(receiveAnnualStatement sendConfirmation, and sendProcessedAS).

Every actor will have to complement the part accessing his local logic
(corresponding to the port InternalWebService1). With these additions every user
holding a Partner_role can then generate WS-BPEL and WSDL files for his
execution environment (e.g., using MDA tools like UML2BPEL [19]).

3.3.2 The Interface View
The Interface View links the GWfM to the LWfM. It describes the interface of every
partner independently of its usage scenario and represents a contractual agreement
between the parties to provide a set of services based on the minimum set of technical
(operation signatures, invocation style (e.g., synchronous), formats etc.) and domain
level constraints, thereby guaranteeing a considerable level of local design autonomy.
The Interface View consists of four sub-models:

The Role Model, modelled as a UML class diagram specifies the roles accessing
the services in the global application scenario and the relationship between them. The
Interface Model describes a collection of abstract operations. They represent services
the component offers to its clients, accessible over some network. The parameters are
either basic type or classes in the Document Model. Pre- and post-conditions in OCL-
style may put constraints on service behaviour. The Document Model specifies the
application-level information and the structure of the documents that are exchanged
by the partners in the workflow or the application scenario. We model it as a UML
class diagram representing the data type view of those partners participating in the
interaction. The GWFM and the four models of the Interface View carry all
information needed by the workflow and security components of the reference
architecture to implement the secure distributed workflow. The application of
orthogonal perspectives allows us to combine the design of the components that
provide the services that may be part of various global workflows, each one realizing
a particular usage scenario. In our scenario, partners have already implemented the
application logic and made it available as a Web service.

3.3.3 Workflow Security
Security Objectives provide a generic categorization of security needs of assets that
need to be taken care of in order to reach a specific state of security. Literature
commonly identifies four basic security objectives [26]. Confidentiality is the goal
that data should be readable to actors with appropriate permission. Integrity is the
goal that data and information should not be altered if not explicitly allowed.
Accountability is the goal that actions should be traceable to the actor who performed
it. Availability is the goal that assets will be available as intended when needed.
Composite security objectives can be derived from one or more of the four basic

282 M. Hafner, M. Alam, and R. Breu

security properties (e.g., privacy and authorization are forms of confidentiality). We
introduce the term Security Requirements to underscore the use of the concept of
security objectives in the context of security engineering. Secure solutions are
realized through the framework with the help of Security Patterns, thereby
capitalizing on trusted technology and best practices in the area of security.
Summarizing, security requirements are elaborated during requirements analysis and
integrated into the models of the Workflow and the Interface View in the design
phase and realized with the help of security patterns integrated into the framework.
They are then translated into executable configuration artefacts for target
architectures. Our framework currently supports the following categories of security
requirements:

Basic Workflow Security Requirements. (Module SECTINO) allow the specifi-
cation of a secure document exchange satisfying End-to-End Security, which means
that the requirements are satisfied even in case of being routed via intermediaries.
Documents or parts of them can be qualified with the basic security requirements of
Confidentiality, Integrity, Non-repudiation of Sending/Reception. The integration into
the framework was extensively covered in [27], [28] and [29].

Advanced Workflow Security Requirements. (Module SECTET-Extensions).
Many scenarios have to integrate security patterns that satisfy complex legal or
business-driven requirements. In most cases, they are based on the basic requirements
of confidentiality, integrity, or non-repudiation. The Qualified Signature – covered in
[27] - is an e-government specific requirement that extends the concept of the system
signature, which is used to guarantee integrity to a legal entity (e.g., a citizen).

Authorization Constraints (Module Authorization). Static Constraints support
modelling User-Role and Permission-Role Assignment according to Role Based
Access Control. Dynamic Constraints, which are the focus of this contribution,
specify conditions under which a role has the right to access services in the Access
Model with the help of an extended OCL-style predicate logic [30]. The right to call
an operation of a specific Web service may depend either on the caller’s role or on
parameters that may depend on the system’s environment or sent together with the
service call.

Referring back to Figure 1 in Section 3.3.1, the document processedAS flowing
from the TaxAdvisor to the Muncipality is required to comply to requirements of
integrity, non-repudiation and confidentiality (two parts of the document
annualIncome and clientId are encrypted with recipient’s key). The constraint
associated to the action receiveProcessedAS specifies that only a qualified
accountant – defined as the role CharteredAccountant of the internal role hierarchy
of the Partner_Role TaxAdvisor - be permitted to submit a statement and this only
on working days. The constraint specifies that the CharteredAccountant has to refer
to an internal role assigned to a natural person. The actor holding the role TaxAdvisor
has to assign the Domain_Role CharteredAccountant to a corresponding internal role.
Through this specification, the partner commits himself to assign only qualified
persons to the role.

For a detailed account on the conceptual foundation of Basic and Advanced
Workflow Security Requirements within the SECTET framework and their application

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 283

in the context of an e-government case study, please refer to a series of accompanying
papers (e.g., [25], [30]and [31]).

4 Domain Architecture

In this section, we present the three parts of the domain architecture. First, we
introduce the domain specific language, which is defined through MOF-based
metamodels. Second, we specify the transformations of platform independent models
of the DSL into platform specific models based on MOF-QVT and third, we
exemplarily show, how PSMs are translated into code.

4.1 Metamodels

We differentiate between metamodels for defining the GWfM, the LWfM, the models
of the Interface View (Role, Interface and Document Model) and the metamodels
specifying the categories of security requirements. Figure 3 shows the core classes of
the security metamodel. Each one of the three classes of security requirements
references elements of models of the Workflow and / or the Interface View and is
implemented as a single Module within the SECTET framework.

The class WorkflowSecurityRequirements allows the modelling of basic workflow
security requirements, DocumentSecurityRequirements supports the modelling of
advanced workflow security requirements and AuthorizationConstraints provides
the means to specify static and dynamic constraints on interfaces. The class
StaticConstraintExpression supports modelling User-Role and Permission-Role
Assignment according to Role Based Access Control. In this contribution, we focus on
the class DynamicConstraintExpression and its dependency on model elements of the
Interface View and its references to elements of the GWfM.

WorkflowSecurityRequirements DocumentSecurityRequirements

SecurityRequirements

AuthorizationConstraints

DynamicConstraintExpression StaticConstraintExpression

Fig. 3. Overview of Security Metamodel

4.1.1 Platform Independent Models
Figure 4 shows the three metamodels of the Interface View, which are relevant for the
modelling of authorization constraints.

Figure 5 shows the metamodel for security requirements of the category
AuthorizationConstraints (grey shaded box). Four of the model’s classes reference
elements of other models, which is done by association to elements representing proxy
classes (e.g., ResourceRef, ActorAttributeRef): 1.) a ResourceRef references the
resource to be protected, 2.) an ActorAttributeRef defines attributes of a specific Actor
assigned to a Role, 3.) a RoleRef references the role, and 4.) an AssociationEndRef

284 M. Hafner, M. Alam, and R. Breu

+name : String
Service

+name : String
Operation

+name : String
Message

11..*

0..1

0..*

0..1

input

output

fault

Domain_RoleGWf_Role Partner_Role
1*

is associated to

Role Metamodel

Interface Metamodel

1
*

MessageEnvelope

MessageMetaInformation MessageBody

DocumentType

DataType

1

1 1

1

1
1

1
1..*

Document Metamodel

Fig. 4. Metamodels of Models of the Interface View

is a construct specific to the constraint language SECTET-PL, referencing any association
end in the metamodels. A Permission contains a ResourceRef - either a Service, an
Operation in the Interface Model or a Message or a DocumentType in the Document
Model – a RoleRef and a SECTETPLExp. According to the constraint in our example
(Figure 1 in Sect. 3.3.1), we show ResourceRef referencing an Operation.

SECTETPLExp LogicalOperatorBoolean
+type

1 1

MappingExpLiteralExpPropertyCallExp

NavigationPropertyCallExpLoopExp

IteratorExp

AttributeCallExp

11

AssociationEndRef AssociationEndCallExp

11

OperationCallExp

1

*

+varName

VariableDeclaration

LetExp

1
1

1

1

+variable

1

1

+in

+initialized variable

1

+sectetpl1..*

Actor

AuthorizationConstraints

DynamicConstraintExpression

+user
*

+role *

SecurityRequirements

Interface Model
Metamodel

Service

Operation

MessageRef

11..*

0..1

Authorization Constraints
Metamodel

Domain_Role

GWf_Role

Partner_Role

1
*

Role Model
Metamodel

ActorAttributeRef

<<references>>

Document Model
 Metamodel

Message

MessageBody

DocumentType

DataType

1
1

10..1

1
0..*

1

1

<<references>>

<<references>>

ResourceRef
11

1

1

<<references>>

Permission

1

+logicalOp

0..*
1 +literalExp*

1

*

1*

RoleRef

<<references>>

<<references>>

<<assigned>>

1

*

Fig. 5. Metamodel for Authorization Constraints and References to Other Models

The abstract syntax of language SECTET-PL is defined through the element Permi-
ssion, which is composed of one or more SECTETPLExp elements. The SECTETPlExp
defines the structure of constraint expressions. It is the super class of all other
expressions in the metamodel. The return type of this expression class is a Boolean.
Other expression classes like PropertyCallExp define navigation expressions to actor
attributes (ActorAttributeRef), associations (AssociationsEndRef) and operations,

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 285

services or messages (ResourceRef). LiteralExp defines string or integer values and
the MappingExp defines a function that maps the caller of an operation to a model
element (subject.map() not used here). The class IteratorExp extends the class
LoopExp and implements a loop evaluating its body over a collection of elements. The
result of an IteratorExp can be a either a single value, set of values or a Boolean
value depending on the collection operation used (e.g., select, selectOne, forAll).
For a detailed description of the SECTET-PL language, please refer to [30].

4.1.2 Platform Specific Model
Figure 6 shows the extended metamodel of the target model. In our case, it is the
abstract syntax of XACML. The grey shaded box defines the syntax for specifying
conditions according to a specific syntax pattern. In a further step, the instance of the
platform specific model will be transformed into code.

Figure 7 shows an Instance of the Source Model for a Permission Policy Set for the
Role TaxAdvisor, according to which he is permitted to access the Municipality’s
interface on working days (see Fig. 1, Sect. 3.3.1).

RolePolicySet

Target

Subject Resource Action

1

0..*

1

0..*

1

0..*

Environment

1

0..*

1

1

policySetIDReference

1

+subjAtt

0..*

+policyId
+ruleCombiningAlg

Policy

1
0..*

+ruleId

Rule

+functionId

Condition

1

0..1

1+ruleCondition0..1

1
+ResAtt0..*

1
+actAttr0..*

1

+envAttr

0..*

+name
+datatype
+value

Attribute

PermssionPolicySet

1

*

<<references>>

permissionReference

10..*

roleReference

roleTarget policies

rules

ruleTarget

10..1
policyTarget

sub res act env

+policySetId
+policyComAlg

PolicySet

SecurityPolicySet

1
0..*

+requirement

SecurityPolicy

1

0..*

SecurityRule

1

*

Effect

1
+ruleEffect1

Expression

1

+expression*

ExpressionTemplate
+functionId

Apply

+requestContextpath

AttributeSelector

1

+apply

*1

+attribute 1

1

*

1 +attributeSel*

1 0..*

Fig. 6. Abstract Syntax of XACML as Target Model

Figure 8 shows the corresponding instance of the target model. Every source model
is translated into a Role Policy Set and a Permission Policy Set. The latter is
referenced through its policyId.

286 M. Hafner, M. Alam, and R. Breu

11

:Permission

:SECTETPLExp

11

RefDomainRoleName=”TaxAdvisor”

:ResourceRef

RefService=”AnnualStatementService”
RefOperation=”SendAnnualStatement”

1 1

:LogicalOperator

Name=”and”

:LiteralExp

name=”Days”
type=”String

Value=”Saturday”
Function=”<>”

:LiteralExp

name=”Days”
type=”String

Value=”Sunday”
Function=”<>”

11

1

:RoleRef

logicalOp

literalExp
literalExp

Fig. 7. Instance of Source Model for Constraint “Access on Working Days only”

:RolePolicySet

policySetId=“RPSTaxAdvisorRole“

1

:PolicySetIdReference

policyId=“PPS:TaxAdvisor“

:Target :Subject :Attribute

value=“TaxAdvisorRole“111

:PermissionPolicySet

policySetId=“PPS:TaxAdvisor“

:Policy

policyId=“Perm:for:TaxAdvisor“

:Rule

ruleId=“TaxAdvisor“

:Condition

functionId=“and“

:Apply

functionId=“Not“

1

1

:Apply

functionId=“Not“

1

1

:Target

:Resource

:Attribute

value=“AnnualStatementService“

:Attribute

value=“SendAnnualStatement“
:Action

1

1

1

1

1

1

1

1

1

1

:Apply

functionId=“String-equal“

:Apply

functionId=“String-equal“

:Attribute

value= “Saturday“

:Attribute

value= “Sunday“

<<references>>

Fig. 8. Instances of Target Model (Role and Permission Policy Set)

4.2 Model Transformation

For the sake of brevity, we subsequently confine ourselves to a partial presentation of
the mapping from source to target models. For a comprehensive mapping, please refer
to technical reports in [33].

Figure 9 shows an excerpt from the scripts used to transform the domain model to
the XACML policy metamodel. The transformation (line 1) defines two typed
candidate models: dm of type DomainModel and xacml of type XACML. For a successful
transformation from dm to xacml, the set of relations defined within the transformation
must hold. Here, the transformation DomainModelToXACML contains a relation

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 287

1 transformation DomainModelToXACML(dm:DomainModel,xacml:XACML)
2 {
3 top relation RoleRefToRolePolicySet
4 {
5 rn:String;
6 domain dm r:RoleRef {
7 name = rn,
8 } // end of Domain RoleRef
9 domain xacml rps:RolePolicySet {
10 policySetid = "RPS:" + rn,
11
12
13 }//top relation RoleRefToRolePolicySet
14 top relation PermissionToPermissionPolicySet
15 {
16 rn:String;

17 domain dm p:Permission {
18 roleref = r:RoleRef {
19 name = rn,
20 } //RoleRef
21 sectetpl = sec:SECTETPLEXP{
22 logicalOp = logop:LogicalOperator{
23 name=opName;
24 } //LogicalOperator
25
26
27
28 domain xacml pps:PermissionPolicySet {
29 policySetid = "PPS:for" + rn,
30
31
32 }//top relation PermissionToPermissionPolicySet

Fig. 9. Excerpt of QVT Transformation Functions

RoleRefToRolePolicySet (line 3) which defines two domains RoleRef from the
domain dm (line 6) and RolePolicySet from the domain xacml (line 9). According to
the QVT specification, these domains define distinguished typed variables that are
used to match a model of a given type and related patterns. The domain RoleRef (line
6) contains a pattern, which matches to the model element RoleRef within the domain
dm. The name attribute in RoleRef is bound to the variable rn (line 7). These variables
are used to exchange information between metamodels e.g. the variable rn is used in
the domain RolePolicySet (line 10) to make a pattern of the form policySetId =
"RPS"+rn. This pattern implies that the relation RoleRefToRolePolicySet will only
hold if RoleRef has the same name as rn and RolePolicySet has the same
policySetid as "RPS" + rn (+ means concatenation). Domains can contain nested
patterns as well.:e.g. SECTETPLExp (line 21) contains a pattern LogicalOperator
which binds the value of the attribute name from the model element LogicalOperator
to opName.

4.3 Implementation

Figure 10 shows an excerpt of the XPAND-language script used to transform the
XACML RolePolicySet instance model to XACML policy files. The script starts
with an IMPORT statement (line 1) that imports the instance model package data. The
DEFINE (line 2) statement defines a link to the metamodel class for which this
template is defined. Within this definition, the EXPAND statement (line 3) defines
another definition block with different variable context (rps in this case) and works as
a subroutine.

Line 6 defines the corresponding definition block for the EXPAND statement (line 3).
This definition block starts with a FILE statement (line 7) and is used to redirect the
output from its body statements to the specified target. The attribute policySetid of
the RolePolicySet instance is used as the filename (<<policySetid>>+”.xml”)
within the FILE statement. The Subject of the Target is populated with the name
attribute of the corresponding RolePolicySet instance (line 13). The
<PolicySetIdReference> element is populated with the PermissionPolicySet (PPS)
id of the RolePolicySet (line 21). Figure 11 shows an example RolePolicySet
(RPS) generated for the XACML metamodel instance TaxAdvisor (namespaces are
omitted for brevity).

288 M. Hafner, M. Alam, and R. Breu

Fig. 10. XPAND Language Script

<PolicySet PolicySetId="RPSTaxAdvisor" PolicyCombiningAlgId="Permit-Overrides">
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId="string-equal">
<AttributeValue DataType="string">RPSTaxAdvisor</AttributeValue>
<SubjectAttributeDesignator AttributeId="role" DataType="string"/>

 </SubjectMatch>
</Subject>

</Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<PolicySetIdReference>PPS:RPSTaxAdvisor</PolicySetIdReference>

</PolicySet>

Fig. 11. Generated Role Policy Set

5 Conclusion and Outlook

SECTET defines an extensible domain architecture for a broad set of domain-level
security patterns. The framework targets the supports of domain experts during the
design and the management of security-critical workflows with no central control.
Our research efforts heavily draw on input from real-life projects and we are
constantly extending our catalogue of security requirements towards more complex
patterns, like the four-eyes-principle, transactional security and binding of duties.
Conceptually based on OMG standards like MDA, MOF and MOF-QVT, the
framework can be implemented with any of the MDA frameworks. In this respect, we
are working along two lines. We are pushing an implementation of a model
transformation engine based on MOF-QVT with the ECLIPSE MODELLING

 Towards a MOF/QVT-Based Domain Architecture for Model Driven Security 289

FRAMEWORK [25] for research purposes. However, the SECTET approach is also being
implemented as a cartridge for the commercial tool ARCSTYLER [32].

References

[1] I. Mukerji and J. Miller, "Overview and guide to OMG's architecture," 2003.
[2] E. Newcomer and G. Lomow, Understanding Service-Oriented Architecture (SOA) with

Web Services.: Addison Wesley, 2005.
[3] S. Weerawarana, et al., Web Services Platform Architecture: SOAP, WSDL, WS-Policy,

WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More: Prentice Hall PTR, 2005.
[4] W. M. P. v. d. Aalst, "Formalization and Verification of Event-driven Process Chains,"

Information and Software Technology, vol. 41, pp. 639-650, 1999.
[5] J. Clark, "XSL Transformations (XSLT) Version 1.0," World Wide Web Consortium,

W3C Recommendation 16 November 1999.
[6] OMG, "MOF QVT Final Adopted Specification," 2005.
[7] A. X12, "ASC X12 Reference Model for XML Design," ANSI ASC X12C

Communications and Controls Subcommittee, Technical Report Type II - ASC
X12C/TG3/2002- July 2002.

[8] S. Godik and T. Moses, "eXtensible Access Control Markup Language (XACML)
Version 1.0 3," 2003.

[9] A. Anderson, "XACML Profile for Role Based Access Control (RBAC)," OASIS, 2004.
[10] P. Harmon, "The OMG's Model Driven Architecture and BPM," Business Process

Trends, http://www.bptrends.com/publicationfiles/05-04 NL MDA and BPM.pdf,
Newsletter May 2004.

[11] V. Atluri and W. K. Huang, "Enforcing Mandatory and Discretionary Security in
Workflow Management Systems," Proceedings of the 5th European Symposium on
Research in Computer Security, 1996.

[12] E. Gudes, M. Olivier, and R. v. d. Riet, "Modelling, Specifying and Implementing
Workflow Security in Cyberspace. Journal of Computer Security 7 (1999) 4, pp. 287-
315," Journal of Computer Security 7 (1999) 4, pp. 287-315, 1999.

[13] W. K. Huang and V. Atluri, "SecureFlow: A secure Web-enabled Workflow
Management System," ACM Workshop on Role-Based Access Control 1999, p. 83-94,
1999.

[14] J. Wainer, P. Barthelmess, and A. Kumar, "W-RBAC A Workflow Security Model
Incorporating Controlled Overriding of Constraints," In: International Journal of
Cooperative Information Systems 12 (2003) 4, pp. 455-485., 2003.

[15] A. Hall and R. Chapman, "Correctness by Construction: Developing a Commercial
Secure System," IEEE Software, vol. 19, 2002.

[16] M. Schumacher, Security Engineering with Patterns. Origins, Theoretical Models, and
New Applications. Berlin: Springer, 2003.

[17] T. Lodderstedt, D. Basin, and J. Doser, "SecureUML: A UML-Based Modeling
Language for Model-Driven Security," presented at 5th International Conference on the
Unified Modeling Language, 2002.

[18] J. Jürjens, Secure Systems Development with UML. Hardcover: Springer Academic
Publishers, 2004.

[19] K. Mantell, "From UML to BPEL," IBM-developerWorks 2003.
[20] IBM, "Business Process Execution Language for Web Services JavaTM Run Time

(BPWS4J)," IBM, http://www.alphaworks.ibm.com/tech/bpws4j 2002.
[21] S. Jablonski and C. Bussler, Workflow Management: Concepts, Architecture and

Implementation: Int. Thompson Publishers, 1996.

290 M. Hafner, M. Alam, and R. Breu

[22] D. Edmond and A. H. M. t. Hofstede, "A Reflective Infrastructure for Workflow
Adaptability," Data and Knowledge Engineering, vol. 34, pp. 271-304, 2000.

[23] J. Eder and W. Gruber, "A Meta Model for Structured Workflows Supporting Workflow
Transformations," presented at Proc. Int'l Conf. on Advances in Databases and
Information Systems (ADBIS'02), 2002.

[24] R. M\"uller, "Event-Oriented Dynamic Adaptation of Workflows.," University of
Leipzig, Germany, 2002.

[25] M. Hafner, B. Weber, and R. Breu, "Model Driven Security for Inter-Organizational
Workflows in E-Government.," in Secure E-Government Web Services, A. Mitrakas, P.
Hengeveld, D. Polemi, and J. Gamper, Eds.: Idea Group Inc., 2006.

[26] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P.
Sommerlad, Security Patterns. Integrating Security and Systems Engineering.
Chichester: John Wiley and Sons Ltd, 2006.

[27] M. Hafner, R. Breu, B. Agreiter, and A. Nowak, "Sectet – An Extensible Framework for
the Realization of Secure Inter-Organizational Workflows" presented at Fourth
International Workshop on Security in Information System (WOSIS 2006), Paphos,
Cyprus, 2006.

[28] M. Hafner, R. Breu, and b. Weber, To Appear in: Model Driven Security for Inter-
Organizational Workflows in E-Governement: Idea Group, Inc., 2006.

[29] M. Hafner, R. Breu, M. Breu, and A. Nowak, "Modeling Inter-organizational Workflow
Security in a Peer-to-Peer Environment," presented at Proceedings of ICWS, 2005.

[30] M. Alam, R. Breu, and M. Hafner, "Modeling permissions in a (U/X)ML world," in
Accepted for ARES, 2006.

[31] M. Alam, R. Breu, and M. Breu, "Model Driven Security for Web Services (MDS4WS)."
in INMIC 2004 IEEE 8th International Multi topic Conference. Digital Object Identifier
10.1109/INMIC.2004.1492930 pp 498 - 505., 2004.

[32] M. Dumas and A. H. M. t. Hofstede, "UML Activity Diagrams as a Workflow
Specification Language.," Proc. UML '01, Toronto, Canada, 2001.

MDA-Based Re-engineering with Object-Z

Jörn Guy Süß, Tim McComb, Soon-Kyeong Kim,
Luke Wildman, and Geoffrey Watson

Information Technology and Electrical Engineering
The University of Queensland, St. Lucia, 4072, Australia
{jgsuess, tjm, soon, luke, gwat}@itee.uq.edu.au

Abstract. This paper describes a practical application of MDA and re-
verse engineering based on a domain-specific modelling language. A well
defined metamodel of a domain-specific language is useful for verifica-
tion and validation of associated tools. We apply this approach to SIFA,
a security analysis tool. SIFA has evolved as requirements have changed,
and it has no metamodel. Hence, testing SIFA’s correctness is difficult.
We introduce a formal metamodelling approach to develop a well-defined
metamodel of the domain. Initially, we develop a domain model in EMF
by reverse engineering the SIFA implementation. Then we transform
EMF to Object-Z using model transformation. Finally, we complete the
Object-Z model by specifying system behavior. The outcome is a well-
defined metamodel that precisely describes the domain and the security
properties that it analyses. It also provides a reliable basis for testing
the current SIFA implementation and forward engineering its successor.

1 Introduction

The common notion of Model-Driven Architecture [16] is one of gradual refine-
ment of models from a platform-independent to a platform-specific model. The
starting point of the process is an abstract specification of the system; the des-
tination is an executable system. This paper describes an experience which runs
contrary to that received notion: an existing application is gradually turned into
a formal specification: A process of reverse-MDA.

As part of an information security project, one of our research groups de-
veloped the “Security Information Flow Analyser” (SIFA) [12,19]. SIFA is an
analysis tool with a graphical user interface and is used to predict the impact
of faults in electronic circuits on security properties. For example, it can show
whether malicious tampering will give an attacker an opportunity to listen to
classified information passing through a device. SIFA models components, ports
and connections, and its analysis strategy is based on the calculation of paths
over the connections. Figure 1 shows a screen-shot of a typical SIFA diagram.

SIFA is a successful research tool that has evolved over time. It was origi-
nally constructed as an experimental tool which only considered an adjacency
matrix describing global connectivity. It was then extended to include a layer
of connected components on a circuit board, linking the different components

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 291–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

292 J.G. Süß et al.

Fig. 1. SIFA user interface

externally. This was further extended to include recursive composition for mod-
elling hierarchical circuits. Finally, usability refinements such as libraries and
the reuse of existing definitions (called ‘instances’) were added. During all these
changes, the underlying algorithm for calculation remained largely stable.

As SIFA is a graphical modelling tool, the Java Swing framework components
used to construct it provided a default model of the data. As a result, the data
for the three major semantic portions—port adjacency matrix, external wiring
graph, and component containment tree—were all located in different parts of
the source code of the interactive program. Although test cases had been written,
they only checked some parts of the functionality.

SIFA was recently tested in a production context and it immediately found
security weaknesses under fault conditions for prototype security devices. SIFA’s
usefulness meant that it is being considered as a serious application in the se-
curity context, which means it needs to be well-specified, well-tested and well-
organized regarding its data model. We were thus faced with the following tasks:

– To derive a meta-model for SIFA in an accessible format.
– To provide a means to specify SIFA’s behavior in a sufficiently formal way

to reason about and test it.

In the course of this paper, we describe how we used MDA concepts and the
Object-Z specification language [21,5] to deal with these requirements. There are
additional benefits to this approach, as it yields

MDA-Based Re-engineering with Object-Z 293

– A coherent metamodel supported by a MOF framework, as the basis for
efficient re-implementation, and

– A specification serving as a bridge to automated testing frameworks and
standard model-checking packages

The work presented in this paper is based on a set of models, metamodels
and services, of which we present an essential part. All resources addressed in
this paper are publicly available via an accompanying webpage located at

http://itee.uq.edu.au/∼mdavv/MDA-based%20Re-Engineering with%20Object-Z/.

In the text we will refer to this companion page for more detail. The rest
of the paper is structured as follows: The following section describes tools and
activities involved in the process, Section 3 describes the tool chain architecture
and reuse aspects, Section 4 describes the SIFA metamodel and Section 5 shows
the application of our approach in more detail. Section 6 describes related work
and Section 7 draws conclusions and discusses future work.

2 From Code to Object-Z: Reverse-MDA

In MDA the structure of a metamodel is expressed using class constructs (usu-
ally visualized in UML class diagrams) while extended static constraints are
expressed using OCL. Initially we defined our SIFA metamodel using this stan-
dard approach. However we soon found that OCL is insufficient to express the
complex behavioral constraints needed for operations (an example can be found
in Section 5). We have previously used Object-Z to formalize the UML meta-
model [8], which convinced us that Object-Z would be better suited to the task.

Eclipse Modelling Framework (EMF)

D
om

ain
Structure

Community Z Tools (CZT)

Form
alized

D
om

ain

Rational Rose

Form
alized

D
om

ain

D
raft D

om
ain

R
ose to E

core

T
ype E

rror
R

eport

T
ype C

hecker

E
core

to O
z

O
z to O

z

IDE

SIFA
 Storage

D
T

D
 to R

ose

Fig. 2. Toolchain

Object-Z [5] is an extension to the ISO-standardized mathematically-based
specification language Z [1] that adds support for object-oriented constructs:
classes, attributes, operations, object relationships, and inheritance. In this pa-
per, we use Object-Z to formalize the structural aspects of the SIFA metamodel,
initially expressed using the UML class diagram, and to specify behavioral as-
pects of the metamodel. This enabled integration of structural and behavioral
aspects of the metamodel within Object-Z classes, as a single modelling con-
struct. The rest of this section describes the MDA process and tool chain used
to define the SIFA metamodel.

294 J.G. Süß et al.

Figure 2 shows an overview of our toolchain. In the top row from left to right it
shows the four tool spaces involved in the chain. It involves Rational Rose and its
XML-DTD importer, Eclipse EMF [3] and its Rational Rose importer, the Tefkat
QVT transformation engine [10], a text-storage module, and the Community Z
Tools (CZT) suite [11]. While the chain may look complex, it does not have more
phases than a standard C++ compiler with make, pre-processor, compiler and
linker tools. We will now look at the stages of processing in more detail.

We needed to build an initial version of the metamodel quickly. As a source of
information, we had both the source code of SIFA and the DTD of its XML-based
storage format available to us. Since our primary aim in this step was to recover
structure, rather than behavior, we chose the XML DTD as the basis of our
model, because it would be both complete and minimal, and would not contain
clutter introduced by the Java graphics framework. We reverse-engineered the
data structures into a UML class diagram, using a DTD-to-UML converter,
which generated a model based on an XML DTD Profile. We then removed the
profile to turn the DTD model into a general UML model.

This model was visualized in several diagrams and reworked and refined with
the aid of SIFA’s author to yield a first draft metamodel. This metamodel was
imported into the Eclipse Metamodelling Framework (EMF). To validate the
soundness of the metamodel we created some exemplary model instances us-
ing editors generated as part of the import process. We were able to stabilize
the model within five rework cycles. Figure 3 shows the EMF Core Metamodel
(Ecore) for SIFA, drawn using the conventions of the MOF profile for UML [14].

We then used model transformation to convert the EMF representation of
SIFA into an instance of a metamodel of the Object-Z language . We believe
the semantics and correctness of this metamodel to be reliable, because these
have been demonstrated both mathematically and by example. Both Ecore and
Object-Z are object-oriented modelling languages and share the common con-
cepts of object-orientation: classes, attributes, operations, object relationships
and inheritance. Thus, transformation between the languages is straightforward.

The transformation system used is DSTC’s Tefkat, which has proved reliable
in practice. Tefkat uses a declarative language which is expressive and backed
by a prolog-based solver. Hence its formalism is well-suited to directly encode
the formal correspondences between UML static structure models and Object-Z
static structure models, as laid out in [9]. Tefkat’s expressive concrete syntax in
comparison with the adopted QVT standard[18], its high degree of reliability and
good integration with the Eclipse environment make it a particularly effective
and convenient for building the kind of semantic bridges involved in this aproach.

The specification was completed by enriching it with a behavioral description.
SIFA’s author, the program documentation, and a previous specification in Z
gave the necessary input to add this facet to the Object-Z model. We also needed
to visualize instances of the model. Object-Z is a superset of the Z notation,
which has a standard LATEX concrete syntax. We therefore created a converter
from an XMI representation of an Object-Z instance to its LATEX representation.
(This used the Eclipse API to XMI.)

MDA-Based Re-engineering with Object-Z 295

With a complete and formal domain metamodel whose instances could be
converted to LATEX we were now able to tap into the resources of the Object-Z
community: the Community Z Tools project (CZT) [11]. Among the CZT tools
are editors, textual layout tools for HTML and print-media, a type-checker,
and connectors for external model-checking tools. We use CZT to type-check
the ObjectZ and add more refined constraints and behaviors. We are currently
investigating a tool to generate input to the SAL model-checker from our Object-
Z [22], within the CZT toolset.

3 Toolchain Architecture

Originally, experiments on SIFA were conducted manually, copying files and
clicking buttons in integrated development environments. This was a substantial
impediment, as operations were closely tied to researchers personal work envi-
ronment on individual computers and parallel work was impossible. We found
that in order to automate the process in a tool chain, minimally four services had
to be developed: A transformation service from Ecore/EMF to Object-Z/EMF
which in turn requires a Tefkat transformation service, a transformation from
Object-Z/EMF to Object-Z/Latex, and a transformation from Object-Z/Latex
to postscript performed by the pdflatex compiler. Additional services were desir-
able to aggregate certain steps or the complete chain. This situation justified an
investment in development effort for a simple tool interoperability architecture,
for which we defined four requirements:

Defensive. The architecture should provide well-defined semantic interfaces,
which would reject inconsistent artefacts early. A service should not process
or pass on an artefact without examining it for correctness first. Otherwise,
errors would be hard to trace in the chain.

Light-weight. The architecture should necessitate little or no installation ef-
fort, to allow the researchers to use the different services in parallel and
immediately profit from any improvements made to them.

Reusable. Service interfaces should be standardized and allow separate reuse,
allowing third parties to integrate provided services into their own efforts.

Simple. Implementation effort should be kept to a minimum, to keep project
resources available for research.

The following paragraphs shortly introduce interesting elements of the result-
ing architecture, which resolve the requirements defined above. All our services
are available from the paper’s companion site.

Validating parsers and serializers process input and output of every service
we built. This provide semantic stability. Also, we aim to build services
in established technological spaces like XML and MOF, because of their
semantic clarity. Except for the rose import and Object-Z type check, all
services in our chain are based on EMF. The transition from the Object-
Z/EMF to the Object-Z/Latex technological space was implemented using a
templating approach due to time constraints. However, DSTC’s AntiYacc [7],

296 J.G. Süß et al.

an improved version of the OMG Human Usable Transfer Notation [15],
would have been preferred.

Resource Description Framework (RDF) [17] graphs and the notion of
mega-modelling and technological spaces were used to express the interface
types of the services. A service consumes and produces a set of artefacts
identified by an Uniform Resource Identifier. Each artefact conforms to one
or more artefacts on a higher level. For example for the Ecore to Object-Z
service, the input parameter conforms to the Object-Z/EMF metamodel,
which conforms to the Ecore/EMF metamodel. Type compatibility is calcu-
lated using the graph isomorphism check of the Jena RDF framework.

Java Servlets act as containers for our services, making them available to ev-
eryone without installation and allowing arbitrary distribution. Type infor-
mation is exchanged via HTTP GET, service invocation is mapped to POST.
Base classes allow the implementer to concentrate on functionality, rather
than integration.

4 The SIFA Metamodel

This section describes the EMF Ecore model derived from the SIFA software, and
the approach and process used to develop the model. As briefly described above,
SIFA is a software tool for analysing the connectivity of hierarchical collections
of interconnected components. The SIFA interface (see Figure 1) is discussed
later, but the basic elements of the SIFA model are components and connec-
tions between components. The function of the SIFA program is to generate
connectivity graphs from instances of this model and then to calculate queries
about connectivity over these graphs. The root of the model (see Figure 3) is the
abstract class NamedElement. This ensures that each class in the model has a
name attribute – these names are used in the unification process that generates
the connectivity graphs from instances of the model.

Connections are mediated by Ports. Each component may have many ports
each of which may have many connections. Generally each port is anchored

ExternalConnection

Resides inside
a component

Represents a wire.
Hence no mode

NamedElement

name : String

ConnectionConnectionEnd

isNavigable : boolean

InternalConnection

Port

OperationMode

isFaulty : boolean

InstanceComponent

template : String

Component

StandardComponent

isAbstract : boolean

2

1
+pair

2

10..*

0..*

+attachedPort
1 0..*1

0..*

11 0..*

0..*

0..1

0..*

0..1

+content

0..*

+component1

0..*

1

0..* 10..*

+container

1
0..1

+container

0..1

0..*

Fig. 3. SIFA Metamodel

MDA-Based Re-engineering with Object-Z 297

to a single component, but it is possible for a port to be disconnected, so the
multiplicity of the Port - Component association is 0..1. On the other hand
each connection has precisely two ports – one at either end. Ports are associated
with connections via the ConnectionEnd class which models the navigability of
connections. This is done via the attribute isNavigable of ConnectionEnd. Each
connection has exactly two connection ends, each associated with a single port,
while each port may be associated with any number of connection ends.

SIFA has two kinds of connection: ExternalConnections connect distinct com-
ponents together via their ports, while InternalConnections connect ports across
a single component. These are modelled by separate subclasses because internal
connections are associated with operation modes (which are described below)
while external connections are not. Note that both ports associated with an in-
ternal connection (via its connection ends) must belong to the same component,
and we formalize this constraint in Section 5.

Components are of two kinds. Most components are StandardComponents. A
StandardComponent may contain a collection of other components as defined by
the association content in the model. This relationship, of a component to its
container, generates the component hierarchy. Each standard component has a
boolean attribute isAbstract, which controls whether it is included in the analysis
or not. This allows libraries of common components to be constructed as part
of the description of a network, whereby instances of these components can be
used where required but, by marking the library as abstract, the definitions
themselves are ignored in any analysis.

There is a second subclass of component - the InstanceComponent, which
allows reuse of component definitions. Like a StandardComponent, an Instance-
Component is a child of some container component above it in the hierarchy,
and it defines a sub-hierarchy below it. However, this sub-hierarchy is identi-
fied indirectly via the string attribute template. In a model instance this string
must match at least one StandardComponents name, because it is substituted by
components with corresponding names during analysis. Thus an InstanceCom-
ponent’s sub-hierarchy is not represented explicitly since it is context-dependent.

SIFA also defines modes, which are modelled by the OperationMode class.
These modes are defined per component. Each internal connection of a compo-
nent is associated with an OperationMode, and multiple modes between ports
of a component are modelled by multiple internal connections. All internal con-
nections are unidirectional. Modes are used in the analysis of behavior in the
presence of faults, so the OperationMode class has a boolean attribute isFaulty,
which indicates whether the mode is a fault mode or a normal mode. A Stan-
dardComponent may have no modes at all, but typically a component will have
one (or more) normal modes and in addition may have fault modes.

Instances of the model described above and illustrated in Figure 3 are visu-
alized in the SIFA GUI—an example is shown in Figure 1. The SIFA window is
split into two parts. On the left is a tree view of all components in the model,
while the pane on the right shows a view of the currently selected component.

298 J.G. Süß et al.

In Figure 1 the main part of the viewing pane shows a view of the “DA-Sheet”
component, this general view is known as the schematic view. There are two stan-
dard components in this view, “DA in” on the left and “DA out” on the right.
These are connected via an instance of the component “DA Architecture”, this
instance is named “da”. Ports are shown as named boxes (e.g. “Next COUNT”,
“da::U8::X 2”). External connections are visualized as solid lines, with arrows
indicating navigability. For convenience of layout, ports are shown attached to
components by dotted lines.

Internal connections are not shown in the schematic view; instead, they are
visualized in the matrix view of a component. A matrix view is shown above
the schematic in Figure 1—the pane labelled “3 Gate”. The operation modes of
this component are listed on the right, with an indication of whether they are
faulty or normal modes. The internal connections are shown in the form of a
matrix. The rows and columns are labelled with the port names and each cell
in the matrix represents one possible internal connection (from port to port).
Many cells are empty, but others contain a list of the connections between these
ports indicated by their modes (each connection is associated with one of the
modes of the component). For example, the cell in row “in2” and column “out”
connects “in2” to “out” in the normal operation mode.

5 The SIFA Object-Z Specification

In this section we will outline the generated Object-Z classes first, to show their
relationship to the Ecore model, and then present our added consistency con-
straints. Finally, we will show an Object-Z specification of one of the analytical
functions that SIFA performs over instances of the metamodel. The complete
specification is available at the paper’s companion website.

5.1 Structure of the SIFA Metamodel

At the top of the inheritance hierarchy is the class NamedElement which requires
the introduction of a data type EString representing the set of all possible names
(this is a given type in Object-Z [21,8]).

[EString]

Attributes in Object-Z class definitions correspond to those in the Ecore model.
The Object-Z definition of NamedElement (see below) includes a declaration
name of type EString, as well as a constraint over the class type NamedElement
itself.

NamedElement

�(name)

name : EString

NamedElement = ∅

Component

�(port, name)
NamedElement

port : PPort c©
∀ o : port • self ∈ o.component
Component = ∅

MDA-Based Re-engineering with Object-Z 299

In Object-Z class types are interpreted as disjoint sets of object identities,
where such identities represent possible unique instantiations. By default there
are an infinite (although countable) number of possible instantiations of classes
because these sets are unbounded, but above NamedElement is constrained to
be empty(∅ is the empty set). This ensures that NamedElement cannot be in-
stantiated, as it is abstract in the domain metamodel’s specification.

Another abstract class in the metamodel is Component (next to NamedEle-
ment above). The Component class inherits from NamedElement, which in
Object-Z amounts to class inclusion [21]—the state and operations of a class
are conjoined with any inherited classes. As a result, the state of Component
includes both port and name.

The visibility list, denoted by the � symbol, contains the features of the class
that are considered public; that is to say, the features which can be externally
referenced by other classes. These features may be operations, which will be seen
later, or state variables like name above. Inheritance of features is not affected by
the visibility list, but the visibility list does determine which inherited features
are externally visible.

The declaration of port signifies that the port attribute is a set of Port in-
stances, where that set is contained [5] (the c© symbol stands for object contain-
ment in Object-Z). Containment means that the object identities appearing in
the set are distinct with respect to other instances of Component, i.e. components
cannot share ports.

The Object-Z definition of Port is as follows.

Port

�(connectionEnd, component, kind, name)
NamedElement

connectionEnd : P ConnectionEnd
component : P ↓Component

∀ o : connectionEnd • self = o.attachedPort
∀ o : component • self ∈ o.port
#component ≤ 1

The attribute component is defined to be a set of Component instances, or
instances of any subclass of Component, that ‘own’ this port (the subclasses are
included via the ↓ operator). Technically, ↓Component may be understood as:

↓Component == Component ∪ StandardComponent ∪ InstanceComponent

Since the multiplicity relationship from ports to components is specified to be
0 . . 1 in the domain model, the Tefkat translation ensures that the size of the
component set is at most one by adding the predicate “#component ≤ 1” [8].

The attribute component in the Port class corresponds to an attribute port in
the Component class, indicating a bi-directional relationship between a port and
the component with which it is associated. The consistency of the bi-directional
relationship is ensured via the predicate

300 J.G. Süß et al.

∀ o : port • self ∈ o.component

in Component and the predicate

∀ o : component • self ∈ o.port

in Port . These predicates (and classes) are characteristic of the constraints that
our Tefkat translation generates to maintain the consistency of bi-directional
relationships like this one.

All other classes in the SIFA metamodel introduced in Section 4 are gener-
ated in a similar fashion to the above classes, with much the same constraining
predicates relating to the UML, so we will omit their detail from our discussion.
Instead, we will concentrate on the additional consistency constraints that we
add to the generated Object-Z specification, and also an example specification
of an analysis that SIFA performs.

5.2 Structural Consistency Constraints

In this section we extend the generated Object-Z classes. The extensions to the
Object-Z specification either maintain indirect relationships between classes, or
introduce derived convenience variables that aggregate substructures of objects
associated with a class. Many of the features we add are to assist the specification
of the Search operation, which is introduced in Section 5.3. For conciseness, we
will not present all of the extensions that we made to the specification, but rather
we will show a representative sample.

The Object-Z class Component is extended with a derived attribute allPorts
(declarations underneath a Δ in Object-Z indicate that they are derived val-
ues [21]) which contains all of the ports that belong directly to the component
as well as all of the ports that belong to any of the component’s descendants.

Component

�(. . . , allPorts)

. . .
Δ
allPorts : P Port

. . .
allPorts = (

⋃{c : content • c.allPorts}) ∪ port

The above class definition of Component is intended to replace the one gen-
erated by the Tefkat translation, but with the detail of the generated class sub-
stituted for the ellipses. We will follow this convention for all of the extensions
listed below.

An attribute connections is added to the Port class which aggregates all of
the connections to which this port (through a ConnectionEnd) is attached.

connections = {ce : connectionEnd • ce.connection}

MDA-Based Re-engineering with Object-Z 301

To find the entire set of components inside which a standard component is con-
tained (its ancestors), we introduce the derived variable allContainers to the
class StandardComponent. Additionally, we add a constraint that holds over the
indirect relationship between a standard component and its internal connections
(which are defined through operating modes).

StandardComponent

�(. . . , allContainers)
. . .

. . .
Δ
allContainers : P StandardComponent

. . .
allContainers = (

⋃{c : container • c.allContainers}) ∪ container

All internal connections (over all operating modes) connect ports of this component.

(
⋃{mode : operationMode • mode.allPorts}) ⊆ port

The derived variable allPorts in the class OperationMode is the set of all ports
that are covered by an operating mode’s internal connections.

allPorts =
⋃

{c : internalConnection • c.allPorts}

relation =
⋃

{c : internalConnection • c.relation}

We have also assumed the existence of the attribute allPorts in Connection, so
we must extend the definition of Connection to accommodate. Additionally, we
have added some extra constraints to the Connection class to place restrictions
over the connection ends and ports associated with it.

Connection

�(. . . , allPorts, relation)
. . .

. . .
Δ
allPorts : P Port
relation : EString ↔ EString

. . .
allPorts = {c : pair • c.attachedPort}
relation =

{ce1, ce2 : pair | ce1.isNavigable •
ce1.attachedPort.name �→ ce2.attachedPort.name}

Connections are between two distinct ports.

#allPorts = 2
All connections have at least one navigable connection end.

∃ c : pair • c.isNavigable

In the definitions of StandardComponent and Connection, the derived at-
tribute relation was added which captures, as a relation between EStrings, the
connectivity of operation modes and connections respectively (the operation
mode relation is just the union of all of its constituent connection relations). For

302 J.G. Süß et al.

a unidirectional connection, this relation will have just one mapping, but for a
bidirectional connection it will usually have two. The exception in the bidirec-
tional case is when the ports’ names on each end are the same—thus only one
entry in the relation is necessary. The relation attribute is useful for defining the
searching operation, which will be introduced in the next section.

5.3 Behavior of the SIFA Metamodel

As discussed in Section 1, SIFA’s primary function is to search for pathways
through networks of components, a data structure of which we have represented
with the domain model.

Prior to any searching operation is the need to interpret instance components
by substituting in their template description (which is a standard component)
in situ. In this paper we shall assume that this operation has already been per-
formed upon the model and concentrate on the searching functionality. That is,
we assume that the model we are searching does not contain any InstanceCom-
ponent objects.

SIFA’s search is based upon port connectivity, specifically on the names of
ports. By only considering the names of ports, two or more ports with a com-
mon name will be considered as the same point in a search performed over the
model—the ports are effectively unified. This has many advantages, but the
most useful reason for doing this is to allow for the composition of different
views of connectivity over the same system just by using a common port naming
convention.

StandardComponent

�(. . . , Search)
. . .

Search
source?, sink? : EString
state! : StandardComponent �→ OperationMode
fail! : B

Every standard component hierarchically underneath this component is represented in the
‘state!’ if it has an operation mode.

dom state! = {c : StandardComponent |
self ∈ c.allContainers ∧ c.operationMode �= ∅}

In the ‘state!’, every component is associated with an operation mode that belongs to it.

(∀ c : dom state! • c = (state!(c)).component)

With the model in state ‘state!’, find a connection between ‘source?’ and ‘sink?’, otherwise
‘fail!’.
(let portExternal == λ p : Port •⋃{c : ExtenalConnection | c ∈ p.connections • c.relation} •

(let allInternal ==
⋃{m : ran state! • m.relation};

allExternal ==
⋃{p : (allPorts \ port) • portExternal(p)} •

¬ fail ⇔ source? (allInternal ∪ allExternal)+ sink?))

We define a Search operation in classe StandardComponent and declare its
inputs to be a source? EString and a sink? EString (the ”?” symbol denotes
that the variable should be considered as an input). From these inputs, we expect

MDA-Based Re-engineering with Object-Z 303

our operation to return a state! (likewise, ”!” denotes an output) of the system
in which source? and sink? can be connected. If no such path exists in any
state, the operation sets a boolean flag fail! to be true. The Search operation
is added to the StandardComponent class, as SIFA allows searches to be rooted
at any component in the hierarchy (thus determining the scope of the analysis).
However, typically the operation is invoked upon the absolute root component
of the entire hierarchy.

The state! of the system is expressed as a partial function from standard com-
ponents to their operation modes, such that every standard component (that has
at least one mode) hierarchically underneath the component where the opera-
tion is invoked is assigned to be in exactly one mode. There may be many such
configurations that allow for connectivity between the source? and sink? port
labels, in which case the Search operation chooses one non-deterministically.

It is possible in Object-Z to invoke the operation with added constraints over
which states may be chosen, so this operation serves as a base for many others.
For example, we may restrict the possible states to those with no fault modes in
order to analyze the system under normal operating conditions.

6 Related Work

The current work attempts to re-engineer an existing application applying an
MDA methodology. It thus truly represents a case of Architecture Driven Mod-
ernisation, as promoted by the Object Management Group [13]. The toolchain
represents an approach to realize open model engineering support and to achieve
tool interoperability [2]. Its design is based on the conceptualisation of tech-
nological spaces [23], and employs the semantic interrelations of artefacts to
megamodel [6] the dependencies in χ-conformance relationships.

7 Conclusions and Discussions

We have developed a formal specification of the SIFA tool by a process of reverse-
MDA. That is, we have reverse engineered a domain-specific meta-model of SIFA
from the data structure of the input, then we have transformed the meta-model
into a skeletal formal specification to which we are able to add complex con-
straints and dynamic behaviour. Our approach involved some manual massaging
of the model along the way. While some of this was to enable the composition of
the tool-chain, much of it came about through clarification of the model with the
software owner. This clarification also benefited the tool itself as some concepts
were simplified.

The resultant formal model can serve as a basis for formal verification and val-
idation, model-based testing, and possible re-engineering. Verification is possible
through add-ons to the CZT infrastructure. In particular we plan to translate
the Object-Z model to SAL [22]. This would enable us to use the SAL model-
checker to check the correctness of our specification of the search, and also to
simulate the operation of SIFA for the purpose of validation.

304 J.G. Süß et al.

We will now extend our work to generate test-cases and test-oracles for the
SIFA implementation based on work of France et al. [4] and extend it with a
metamodel of test conditions. In our case, an instance model will then cover
both dynamic and static test conditions of SIFA.

MDA offers real benefits to software engineering when a transformation be-
tween models can be described simply and flexibly. Our approach relies heavily
on TefKat to enable multiple modelling tools to be brought to the problem. In
the future we will investigate how our approach may be applied to large scale
developments. Here we see potential benefits in reliably re-engineering legacy
modelling systems because of our ability to add descriptions of behaviour to the
automatically generated models of the structure.

Acknowledgments

This research is funded by an ARC Discovery grant, DP0557972: Enhancing
MDA with support for verification and validation. SIFA was developed on ARC
linkage grant LP0347620 ”Formally-based security evaluation procedures”. We
acknowledge David Carrington’s comment on this paper.

References

1. ISO/IEC 13568:2002. Information technology—Z formal specification notation—
syntax, type system and semantics. International Standard.

2. Jean Bezivin, Hugo Brunelière, Frederic Jouault, and Ivan Kurtev. Model engi-
neering support for tool interoperability. WiSME 2005 4th Workshop in Software
Model Engineering, 10 2005. http://www.planetmde.org/wisme-2005 .

3. Frank Budinsky. The eclipse modeling framework : a developer’s guide. Addison-
Wesley, Boston, MA, USA, 2004.

4. Trung T. Dinh-Trong, Nilesh Kawane, Sudipto Ghosh, Robert B. France, and An-
neliese Amschler Andrews. A tool-supported approach to testing UML design
models. In ICECCS, pages 519–528, 2005.

5. R. Duke and G. Rose. Formal Object-Oriented Specification Using Object-Z. 2002.
6. Jean-Marie Favre. Megamodelling and etymology. In James R. Cordy, Ralf

Lämmel, and Andreas Winter, editors, Transformation Techniques in Software
Engineering, volume 05161 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.

7. David Hearnden, Kerry Raymond, and Jim Steel. Anti-yacc: MOF-to-text. In
EDOC, pages 200–211. IEEE Computer Society, 2002.

8. Soon-Kyeong Kim. A Metamodel-based Approach to Integrate Object-Oriented
Graphical and Formal Specification Techniques. PhD thesis, ITEE, 2002.

9. Soon-Kyeong Kim, Damian Burger, and David A. Carrington. An MDA approach
towards integrating formal and informal modeling languages. In Formal Methods
2005, volume 3582 of LNCS, pages 448–464. Springer, 2005.

10. Michael Lawley and Jim Steel. Practical declarative model transformation with
Tefkat. In Jean-Michel Bruel, editor, MoDELS Satellite Events, volume 3844 of
Lecture Notes in Computer Science, pages 139–150. Springer, 2005.

MDA-Based Re-engineering with Object-Z 305

11. Petra Malik and Mark Utting. CZT: A framework for Z tools. In Treharne et al.
[25], pages 65–84.

12. Tim McComb and Luke Wildman. SIFA: A tool for evaluation of high-grade
security devices. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP,
volume 3574 of Lecture Notes in Computer Science, pages 230–241. Springer, 2005.

13. Philip Newcomb. Architecture-driven modernization (ADM). In WCRE, page 237.
IEEE Computer Society, 2005.

14. Object Management Group. UML Profile for MOF, 1999.
15. Object Management Group, Needham, Massachusetts. Human-Usable Textual No-

tation (HUTN) Specification, December 2002.
16. Object Management Group, Framingham, Massachusetts. MDA Guide Version

1.0.1, June 2003.
17. World Wide Web Consortium Ora Lassila <Ora.Lassila@research.Nokia.Com>,

Nokia Research Center Ralph R. Swick <Swick@w3.Org>. Resource description
framework (RDF) model and syntax specification. Technical Report W3C Recom-
mendation 22, W3C, February 1999.

18. QVT-Partners, Revised Submission for MOF 2.0 Query/View/Transformation
RFP, August 2003. http://www.qvtp.org.

19. Andrew Rae, Colin Fidge, and Luke Wildman. Fault evaluation for security-critical
communications devices. Computer, 39(5):61–68, 2006.

20. Michelle Sibilla, André Barros De Sales, Philippe Vidal, Thierry Millan, and
François Jocteur-Monrozier. L’approche Modelware : exploitation des modèles
au cœur des systèmes - apports et besoins pour la vérification. In Génie Logiciel,
volume 69, pages 9–16. juin 2004.

21. Graeme Smith. The Object Z Specification Language. Kluwer Academic, 1999.
22. Graeme Smith and Luke Wildman. Model checking Z specifications using SAL. In

Treharne et al. [25], pages 85–103.
23. Jonathan Sprinkle. Improving CBS tool development with technological spaces. In

ECBS, pages 218–224. IEEE Computer Society, 2004.
24. Jörn Guy Süß, Andreas Leicher, Herbert Weber, and Ralf-D. Kutsche. Model-

centric engineering with the evolution and validation environment. In Perdita
Stevens, Jon Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling
Language. Model Languages and Applications. 6th International Conference, San
Francisco, CA, USA, October 2003, Proceedings, volume 2863 of LNCS, pages
31–43. Springer, 2003.

25. Helen Treharne, Steve King, Martin C. Henson, and Steve A. Schneider, editors.
ZB 2005: Formal Specification and Development in Z and B, volume 3455 of Lecture
Notes in Computer Science. Springer, 2005.

A Model Transformation Semantics and
Analysis Methodology for SecureUML

Achim D. Brucker, Jürgen Doser, and Burkhart Wolff

Information Security, eth Zurich, 8092 Zurich, Switzerland
{brucker, doserj, bwolff}@inf.ethz.ch

Abstract. SecureUML is a security modeling language for formalizing
access control requirements in a declarative way. It is equipped with a
uml notation in terms of a uml profile, and can be combined with arbi-
trary design modeling languages. We present a semantics for SecureUML
in terms of a model transformation to standard uml/ocl. The transfor-
mation scheme is used as part of an implementation of a tool chain
ranging from front-end visual modeling tools over code-generators to
the interactive theorem proving environment hol-ocl. The method-
ological consequences for an analysis of the generated ocl formulae are
discussed.

1 Introduction

Security is a major concern in the development, implementation and mainte-
nance of many distributed software systems like Web services, component-based
systems, or database systems. In traditional software engineering practice, the
development of a design model (business logic) and of a security model are
treated as completely different tasks; as a consequence, security features are
built into an existing system often in an ad-hoc manner during the system ad-
ministration phase. While the underlying motivation of this practice, a desire
for a separation of concerns, is understandable, the conflict between security re-
quirements and availability of services cannot be systematically analyzed and
reasonably balanced in this approach.

An integration of these two aspects into one unified methodology is necessary,
ranging from the modeling over the implementation to the deployment and the
maintenance phase of a system. To meet this challenge, in [1], a model driven
approach has been suggested, which is built upon the SecureUML language.
SecureUML is an embedding of a security language for access control into uml
class diagrams and statecharts. SecureUML allows for specifying system models
and security models within the same visual modeling tool. Subsequent model
transformations translate a combined secured system model (enriched by a busi-
ness model implementation) into code including a security infrastructure, e.g., a
configuration of policy enforcement points or other access control mechanisms.

While in previous work [1], the semantics of SecureUML has been given in
mathematical paper-and-pencil notation for logic and set theory, in this paper,

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 306–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Model Transformation Semantics and Analysis Methodology 307

we present its semantics as a model transformation into a secured system model
described in plain uml/ocl. In this approach, we take the semantic features of
the ocl logic into account (such as undefinedness and three-valuedness), both
on the side of the design as well as the security model. Besides the advantage
of a seamless integration of SecureUML into the semantic foundations of uml,
the approach is the basis of an implementation for a tool-chain for SecureUML
ranging from visual modeling tools such as ArgoUML to both code-generators
and analysis tools such as the proof environment hol-ocl [4].

The goal of SecureUML is to provide means for a fine-grained specification of
access-control requirements like “principals of role r may never access an object
of class A” or “method m may never be called on an object of class A satis-
fying condition c.” These properties are essentially temporal safety properties,
in the sense that “never something bad will happen.” By stating them as re-
quirements, and enforcing them by suitably configured access-control points in
an implementation, they may obviously conflict with liveness properties such
as “eventually the user will get a result, provided he has permission to it.” We
show several proof-obligations that are generated for the secured system model
to check if it satisfies such desirable properties. These proof-obligations can then
be transferred to hol-ocl and verified by tactic scripts.

Related Work. With UMLsec [6] we share the conviction that security models
should be integrated into the software engineering development process by using
uml. However, UMLsec provides a formal semantics, but does not provide any
tool support, neither for code-generation nor for (formal) model analysis.

M. Koch and F. Parisi-Presicce [7] presented an approach for specifying and
analyzing access control policies in uml diagrams. They define an access control
semantics using graph transformations into attributed graphs. However, their
analysis methodology only considers conflicts, safety, etc. of the security policy
itself. In contrast, one of our main contributions is the possibility to reason about
the relationship between the security model and the design model.

The Plan of the Paper. After a general introduction into the technical and
theoretical foundations, we present the three main contributions: In Section 3, we
describe the translation of SecureUML models into standard uml/ocl models
(thus providing a translation semantics for the security aspects of a system), in
Section 4 we present details over the system architecture and our implementation
in a tool chain, and in Section 5, we present several relevant proof obligations
representing desirable properties for the secured system model.

2 Technical Background

2.1 SecureUML

SecureUML is a security modeling language based on rbac [5, 12] with some
generalizations. The abstract syntax of SecureUML is defined by the metamodel
shown in Figure 1. In particular, SecureUML supports notions of users, roles

308 A.D. Brucker, J. Doser, and B. Wolff

RoleSubject

UserGroup

Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource
0..* 0..* 1..* 0..*

0..*

0..1

0..*0..* 1..*

0..*

0..*

0..*

0..*

0..*
0..*

Fig. 1. SecureUML Metamodel

and permissions, as well as assignments between them: Users can be assigned
to roles, and roles are assigned to specific permission. Users acquire permissions
through the roles they are assigned to. Moreover, users are organized into a
hierarchy of groups, and roles are organized into a role hierarchy. In addition
to this rbacmodel, permissions can be restricted by Authorization Constraints,
which are conditions that have to be true (at run-time) to allow access.

Permissions specify which Role may perform which Action on which Resource.
SecureUML is generic in that it does not specify the type of actions and resources
itself. Instead, these are assumed to be defined in the design modeling language
which is then “plugged” into SecureUML by specifying (in a SecureUML dialect)
exactly which elements of the design modeling language are protected resources
and what actions are available on them. A dialect may also specify a hierarchy
on these actions, so that more abstract actions, like reading a class, can be
expressed in terms of lower-level actions, like reading an attribute of the class
or executing a side-effect free method. Furthermore, a dialect specifies a default
policy, i.e., whether access for a particular action is allowed or denied in the case
that no permission is specified. Usually, and so do we in this paper, one specifies
a default policy of allow to simplify the security specification.

In previous work, we have presented two dialects: One for a component-based
design modeling language, and one for a state-machine based modeling language.
Due to limitations of space, we will not address the issue of dialect definitions
much further in this paper, and refer to [1] for more details. Instead we will
assume as given, without presenting it in detail, a SecureUML dialect definition
for uml class diagrams in the spirit of the ComponentUML dialect. This means
that the dialect specifies classes, attributes and operations to be resources. The
dialect also specifies, among others, the actions create, read, update, and delete
on classes, read and update on attributes, and execute on operations.

SecureUML features a notation that is based on uml class diagrams, using
a uml profile consisting of custom stereotypes. Users, Groups and Roles are
represented by classes with stereotypes �secureuml.user�, �secureuml.group�,
and �secureuml.role�. Assignments between them are represented by ordinary
uml associations, whereas the role hierarchy is represented by a generaliza-
tion relationship. Permissions are represented as association classes with stereo-
type �secureuml.permission� connecting the role and a permission anchor. The

A Model Transformation Semantics and Analysis Methodology 309

Meeting

+notify() : OclVoid
+cancel() : OclVoid

+start : Date
+duration : Time

Person

+name : String

Room

+number : Integer
+floor : Integer

<<secureuml.role>>
UserRole

<<secureuml.role>>
AdministratorRole

Security model

Design Model

<<secureuml.role>>
TechnicianRole

1

SystemPerson ExternalPerson

caller=self.owner.name

<<secureuml.permission>>
UserMeeting

+Meeting : create
+Meeting : read

0..* +owner

0..* 0..*

+participants

0..*

0..1

+location<<secureuml.permission>>
AdminCancel

+Meeting.cancel : execute
+Meeting.notify : execute

<<secureuml.permission>>
OwnerMeeting

+Meeting : update
+Meeting : delete

<<secureuml.permission>>
ReadMeeting

+Meeting : read

for Class Meeting

Fig. 2. Access Control Policy for Class Meeting

attributes of the association class specify which action (the attribute’s type) on
which resource (the attribute’s name) is permitted by this permission. Autho-
rization constraints are (ocl) constraints attached to the association class. Note
that attributes or operations on roles as well as operations on permission have
no semantics in SecureUML and are therefore not allowed in the uml notation.

Figure 2 and 3 show a uml model of a simplified group calendar application
together with an exemplary access control policy, which we will use as a running
example in this paper.

The left part of Figure 2 shows the access control policy for the class Meeting,
whereas the right part shows the design model of the application. The design
model consists of Meetings, Rooms, and Persons. Meetings have an owner, par-
ticipants, and may take place in a particular room. The three association classes
specify (from top to bottom) the following access control policy:

1. owners of meetings may delete them, or change the meeting data,
2. ordinary users may read meeting data and create new meetings,
3. administrators may cancel meetings (involves notifying its participants), and
4. technicians may only read meeting data.

For example, the topmost association class (OwnerMeeting) has two attributes
with type update resp. delete. This specifies that the associated role (UserRole)
has the permission to update and to delete meeting objects. According to the pol-
icy, however, only owners of meetings should be able to do so. The property of be-

310 A.D. Brucker, J. Doser, and B. Wolff

ing an owner of a meeting cannot be easily specified using a pure rbacmodel. It is
therefore specified using the authorization constraint caller = self .owner.name.
For this purpose, we introduced a new keyword caller of type String into the ocl
language that refers to the name of the authenticated user making the current
call. Attaching this authorization constraints to the permission thus restricts the
permission to system states where the name of the owner of the meeting matches
the name of the user making the request.

The name of the attribute of the association class is used to navigate from
the permission anchor, i.e., the classifier associated to the association class, to
the actual protected resource. This is necessary because we can only associate
classifiers in uml, not operations or attributes. E.g., the permission AdminCancel
in Figure 2 refers to the operations cancel () and notify () of the class Meeting.

Person

+name : String

<<secureuml.role>>
UserRole

<<secureuml.role>>
AdministratorRole

<<secureuml.permission>>
UserReadPerson

+Person : read

<<secureuml.permission>>
FullAccessPerson

+Person : fullaccess

Fig. 3. Access Control Policy for Class Person

In addition to Figure 2, Figure 3 specifies the following access control policy
for the class Person: 1. ordinary users may read person data 2. administrators
have arbitrary access on person.

Note that technicians have no permissions on person objects. Also note that
we left out the specification of users, groups and their role assignments in this
example to simplify the presentation.

2.2 HOL-OCL

hol-ocl [4] is an interactive proof environment for uml/ocl. It defines a
machine-checked formalization of the semantics as described in the standard for
ocl 2.0. This is implemented as a conservative, shallow embedding consisting of
ocl into the hol instance of the interactive theorem prover Isabelle [10]. This in-
cludes typed, extensible uml data models supporting inheritance and subtyping
inside the typed λ-calculus with parametric polymorphism. As a consequence of
conservativity wrt. hol, we can guarantee the consistency of the semantic model.
Moreover, hol-ocl provides several derived calculi for uml/ocl that allows for
formal derivations establishing the validity of uml/ocl formulae. Automated
support for such proofs is also provided.

A Model Transformation Semantics and Analysis Methodology 311

3 Transformation

The transformation is based on the idea of substituting the security model,
which is specified with SecureUML, with a model of an explicit enforcement
mechanism, which is specified in pure uml/ocl. This enforcement mechanism
consists of a constant part, i.e., this part is independent of the design model, and
a part that varies with the design model. We call the constant part “authorization
environment” and explain it in more detail in Section 3.1.

The basic idea of this enforcement mechanism is to model every action on a
protected resource by a uml operation and to transform the access control policy
into ocl constraints on these operations. Because there are actions on resources
that are not operations in the original design model, for example reading or
updating an attribute value, we have to transform the design model accordingly.
This design model transformation is described in Section 3.2.

Section 3.3 describes the security model transformation, i.e., how the access
control policy specified using SecureUML is transformed into ocl constraints.

3.1 Authorization Environment

The basis for our model transformation is a model of a basic authorization
environment, as shown in Figure 4.

Context Principal

+isInRole(s : String) : Boolean

Identity

+name : String

Role

+getRoleByName(s : String) : Role

+name : String

1 10..*

+principal

0..*

+identity

0..* 0..*

+roles

Fig. 4. Basic Authorization Environment

All protected resources get a reference to a Context object, which in turn has
a reference to a Principal object. Principal objects represent the authenticated
users of the system, i.e., the information of the system user together with au-
thentication information. They are associated with their corresponding identity
object, which represent the actual system users. To check role membership and
user identities, the principal contains an operation isInRole (s : String):Boolean.
The class Identity holds information about the system user(s), which in our case
is just its name and its roles. The distinction between Principal and Identity al-
lows a certain flexibility in the treating of authenticated users. For example,
they can hold information about the authentication method they used. Also, it
allows users to authenticate for a session using only a subset of their assigned
roles (which is currently not supported in SecureUML). In the simplified model
presented here, the principal object does not hold any extra information, and
system users will always have all their assigned roles. This is done by imposing
the following constraint:

context Principal :: isInRole (s : String) : Boolean
post: result = self . identity . roles .name−>includes(s)

312 A.D. Brucker, J. Doser, and B. Wolff

This environment is minimal on purpose, but sufficient to express authoriza-
tion requirements. In particular, we do not consider authentication here.

3.2 Design Model Transformation

The model transformation is split into two parts: transforming the design model,
and transforming the security model. Transforming the design model is necessary
to allow the expression of security policies as ocl constraints. The transforma-
tion itself consists of first copying the input design model, adding the autho-
rization environment to it, and adding new (access controlled) operations to
the model. In particular, all invariants, preconditions and postconditions of the
original design model are preserved, and new constraints are only imposed on
generated classes and operations.

For the addition of the authorization environment, we associate each permis-
sion anchor with the context class from the authorization environment. Further-
more, all access controlled actions have to be represented as operations in the
target model. Table 1 gives an overview over the operations that are generated
in this step, and how their semantics is specified using ocl postconditions.

Table 1. Overview of generated operations

model element generated operation with ocl constraints
Class C context C::new():C

post: result .oclIsNew() and result −>modifiedOnly()
context C:: delete ():OclVoid
post: self . oclIsUndefined () and self@pre−>modifiedOnly()a

Attribute att context C::getAtt ():D
post: result =self . att
context C:: setAtt(arg :D):OclVoid
post: self . att=arg and self . att−>modifiedOnly()

Operation op context C::op sec (...):...
pre: preop

post: postop = postop[f () �→ f sec (), att �→ getAtt()]

a While self@pre is unsupported by the concrete syntax, it is semantically well-defined.

For example, reading and writing an attribute value has to be represented
by getter- and setter-methods. This means that for each attribute with public
visibility, a public getter and a public setter method has to be generated, and the
visibility of the attribute has to be made private. This transformation is similar
in spirit to what one has to do when generating executable code or code skeletons
from the model, cf. [1] for example. Instead of generating code for these getter
and setter methods, we here have to generate ocl constraints to define their
semantics. As a consequence, we generate the postconditions shown in Table 1.

Also, for each operation op() in the design model, we generate a second oper-
ation op sec(). The postcondition postop for op sec() is structurally the same as
the postcondition postop for op(), where every occurrence of an attribute call is

A Model Transformation Semantics and Analysis Methodology 313

substituted with the corresponding getter operation call, and every occurrence
of an operation call is substituted with the corresponding call of the secured
operation. This substitution ensures that the functional behavior of the secured
operation stays the same, but that it is only “executable” when all security re-
quirements for establishing the postcondition are fulfilled. The reasoning here
is that a caller will need (at least) the permission necessary to establish the
postcondition for performing an operation call. Furthermore, we make the pre-
condition preop specified for op() into a precondition for op sec(), too. For this,
we keep the ocl expression unchanged, i.e., no substitutions are necessary this
time, and only change the context declaration of the ocl constraint.

In the postcondition of setter methods, i.e., C:: setAtt(arg :D):OclVoid, it is
not sufficient to specify that the attribute gets the value of the given argument.
We also need to specify that “nothing else” happens during this operation call.
Using standard ocl this is difficult or even impossible for arbitrary methods: one
has to specify that the whole system stays unchanged except for this attribute.
Therefore, hol-ocl provides an extension of ocl for specifying frame properties
within postconditions: Set(T)::modifiedOnly():Boolean. This allows for specify-
ing explicitly the set of object instances that the system can change during state
transition. For example, we can now define C:: setAtt(arg :D):OclVoid using the
postcondition self . att = arg and self . att−>modifiedOnly().

Analogous transformations are done for association ends, i.e., they are handled
as they were attributes. Also, operations for constructing and deleting objects
are created, with the given constraints specifying their semantics.

Figure 5 shows the generated authorization environment together with the
transformed permission anchors of the running example.

Context Identity

+name : String

Role

+getRoleByName(s : String) : Role

+name : String

Principal

+isInRole(s : String) : Boolean

Person

+getName() : String
+setName(arg : String) : OclVoid
+new() : Person
+delete() : OclVoid

-name : String

1 1

Meeting

+getStart() : Date
+setStart(arg : Date) : OclVoid
+...()

-start : Date
-duration : Time

1

1

0..* 0..*

+roles

0..*

+principal

0..*

+identity

+ctxt

0..*0..*
+ctxt

Fig. 5. Authorization Environment with Permission Anchors

3.3 Security Model Transformation

Role Hierarchy First, we transform the role hierarchy of the security model
into ocl invariant constraints on the classes of the authorization environment.
The total set of roles in the system is specified by enumerating them:

context Role inv : Role. allInstances (). name=Bag{<List of Role Names>}

314 A.D. Brucker, J. Doser, and B. Wolff

The inheritance relation between roles is then specified by an ocl invariant
constraint on the Identity class:

context Identity inv : self . roles .name−>includes(’<Role1>’) implies
self . roles .name−>includes(’<Role2>’)

Given this, role assignments to identities can then be stated by further ocl
invariant constraints on the Identity class:

context Identity inv : self .name = ’<userName>’ implies
self . roles .name=Bag{<List of Role Names>}

We denote by invsec the conjunction of these invariants. We have to ensure that
invsec is consistent, i.e., that situations like the following do not arise:

context Role
inv : Role. allInstances (). name=Bag{’UserRole’,’AdministratorRole’,’TechnicianRole’}

context Identity inv : self .name = ’Alice’ implies self . roles .name=Bag{’Spy’}

Security Constraints The main part, however, of the security model transfor-
mation is the generation of the security constraints for the operations generated
during the design model transformation. The existing constraints on the gener-
ated operations are transformed according to Table 2.

Table 2. Overview of Transformed Constraints

Effect of the Security Model Transformation
invC �→ invC

preop �→ preop

postop �→ let auth = authop in
if auth then postop

else result . oclIsUndefined () and Set{}−>modifiedOnly() endif

Table 2 applies only to operations generated during the design model trans-
formation. As noted above, the pre-existing model elements of the design model
are preserved. Only the postconditions are changed during this transformation,
i.e., the invariants invC for classes C of the design model and the preconditions
preop for access-controlled operations stay the same. The transformation wraps
the postcondition generated during the design model transformation with an ac-
cess control check using the authorization expression authop, which evaluates to
true if access is granted, and false otherwise. If access is granted, the behavior
of this operation will not be changed. Otherwise, the transformed postcondition
ensures that no result is returned and the system state does not change.

The expression authop is built in the following way: Let perm1, ...,permn be
the permissions for this operation call, and let rolesi be the set of roles, constri

be the authorization constraint associated with permission permi, and

constri = (constri[caller �→ctxt.principal.identity.name])
[f() �→ f@pre(), att �→ att@pre, aend �→ aend@pre]

A Model Transformation Semantics and Analysis Methodology 315

be the ocl expression where every occurrence of the non-standard keyword
caller in constri is substituted by the expression ctxt . principal . identity .name,
which evaluates the name of the current caller using the authorization environ-
ment. Operation, attribute, and association end calls are substituted by their
post-state equivalents. authop is then defined as the following ocl expression:

authop := let perm1:Boolean = Set{<list of role names r ∈ roles1>}
−>exists(s|ctxt@pre. principal@pre . isInRole@pre (s))
and constr1

−− analogous for perm2 to permn
perm:Boolean = perm1 or perm2 or ... permn

in perm.oclIsDefined () and perm

We explicitly check the authorization expression for undefinedness, mapping it
to false if it is undefined. This is necessary because undefinedness can be caused
by user-specified authorization constraints, which form a part of authop.

For illustration purpose, we show the final postcondition of the setter opera-
tion Meeting:: setStart () below:

context Meeting:: setStart (arg :Date):OclVoid
post: let auth = let perm1:Boolean = Set{’UserRole’}

−>exists(s|ctxt@pre. principal@pre . isInRole@pre (s))
and ctxt@pre. principal@pre . identity@pre .name@pre

= self .owner@pre.name@pre
perm2:Boolean = Set{’AdministratorRole’}

−>exists(s|ctxt@pre. principal@pre . isInRole@pre (s))
in perm 1 or perm 2

in if auth. oclIsDefined () and auth then true
else result . oclIsUndefined () and Set{}−>modifiedOnly() endif

4 Implementation

The transformation is part of a tool-chain (see Figure 6) that consists of a uml
case tool with an ocl type-checker for modeling software systems, a model
repository, model analyzers and various code generators.

We use the uml case tool ArgoUML (http://argouml.tigris.org) and
combine it with the Dresden ocl2 Toolkit (http://dresden-ocl.sf.net/),
which provides a ocl 2.0 compliant [11] parser and type-checker. Both tools use
the Netbeans Metadata Repository (mdr), which is a model repository support-
ing the omg mof and the Java jmi standards. Using mdr, one can instantiate
arbitrary mof-compliant metamodels, which results in a model extent, a con-
tainer for models compliant with this metamodel. mdr can automatically gen-
erate jmi interfaces from the metamodel so that one can, using these interfaces,
access and manipulate the contents of such a model extent.

Our Java-based transformation tool, su2holocl, uses different mdr extents,
namely: As first step of the transformation we parse the input model using the
SecureUML profile, into a separate model extent based on the SecureUML meta-
model. This gives us the ability to deal with the security part of the model on an

316 A.D. Brucker, J. Doser, and B. Wolff

1..∗
Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Repository
Model

(su4sml)

Model
Transformation

Model−Analysis
and

Verification

ArgoUML su2holocl HOL−OCL

Java
Code

Generation
C#

Phase Phase Phase
Design Verification and Code−GenerationTransformation

Model
Repository

(MDR)

SecureUML

UML+OCL

(SecureUML+OCL)

XMI

XMI

(UML+OCL)

Dresden OCL

Fig. 6. Tool-chain Overview

abstract level. The Dresden ocl Toolkit uses a specialized metamodel combining
the uml 1.5 and the ocl 2.0 metamodel. This results in an upward compati-
ble extension of the uml 1.5 Metamodel: every uml 1.5 model is still a model
of the combined metamodel. We use the ocl type-checker for checking user-
defined constraints that occur in the design-model and for checking the security
constraints that are generated during the transformation. As we currently only
typecheck the transformed ocl constraints, not the original authorization con-
straints, we do not need to extend the Dresden ocl Toolkit, e.g., for supporting
“caller” as a new keyword. The toolkit also provides an ocl expression visitor,
which we use to implement the substitutions for transformed postconditions.

For interfacing the results of our model transformation with Isabelle and hol-
ocl, which are written in sml, we also developed a data repository: su4sml. This
repository is also implemented in sml and supports the various metamodels we
are using, e.g., uml, ocl, SecureUML. At the moment, su4sml is used for import-
ing uml models into hol-ocl. We also developed a generic code-generator based
on su4sml that generates code from SecureUML models in various SecureUML
dialects, that respects the specified access control policy.

5 Methodology

In this section, we discuss three key issues that arise while adding access control
specifications to an object-oriented system model. In particular, we define sev-
eral well-formedness conditions on the security specification: an access control
aware variant of Liskov’s principle, a data-accessibility condition and a notion
of relative consistency.

5.1 Access Control and Inheritance

In an object-oriented system, inherited methods inherit the access control policy
assigned to the method in the superclass. However, one can assign an access

A Model Transformation Semantics and Analysis Methodology 317

control policy to a subclass which is completely independent from the inherited
policy. This leads to the idea of extending Liskov’s principle to access control
policies, i.e., access rights should be preserved along the class hierarchy. This
boils down to the following two well-formedness conditions:

1. all overridden methods must have less or equal role assignments as their
counterparts in superclasses and

2. the security constraints for an overridden operation must imply the corre-
sponding security constraints of the original operation.

A secured system model satisfying these requirements is called overriding-secure.
Note that the implication required here goes in the opposite direction of

Liskov’s principle [8]. We want to rule out security problems caused by over-
ridden methods that have more functionality and therefore need a more restric-
tive access control policy. The overriding-secure property is therefore advisable,
although violations may be adequate in certain situations.

5.2 Accessibility of Data

The following problem comparable to “dead-code-detection” in conventional
compilers may occur in a secured system model. It is not necessarily imply-
ing inconsistency (see next subsection), but indicating bad specification practice
potentially resulting from specification errors.

Using potentially inconsistent security constraints may lead to the situation
that some operation in a class can be accessed by no principal. We call an
operation of this kind inaccessible.

Accessibility of an operation op in class C may be defined as follows:

1. if op has no role assignments, it is accessible by all principals (following our
default-accessibility rule (c.f. Section 2.1)).

2. if op has role-assignments labeled with security constraints SC 1, . . . ,SC n,
then op is accessible iff SC 1 ∨ . . . ∨ SCn holds for all objects of this class.

As a well-formedness condition of a secured system model, we require that all
operations are accessible.

5.3 Relative Consistency

Following general practice, we call a system model consistent iff the conjunction
of all invariants invglobal is invariant-consistent and all operations m are imple-
mentable. An invariant inv is invariant-consistent iff there are satisfying states
(i.e., ∃σ.σ |= inv in the terminology of [11, Appendix A]). An operation m is
implementable iff for all pre-states σpre and all input parameter self , i1, . . . ,
in there exist a post-state σpost and an output result such that the operation
specification of m (consisting of preop and postop) can be satisfied:1

1 We make the implicit binding of the internal free variables self , i1, . . . , in occurring
in the ocl formulae preop and postop explicit.

318 A.D. Brucker, J. Doser, and B. Wolff

∀ σpre ∈ Σ, self , i1, . . . , in. σpre |= preop(self , i1, . . . , in) −→
∃ σpost ∈ Σ, result. (σpre, σpost) |= postop(self , i1, . . . , in, result)

where Σ is the set of legal states (i.e., Σ = {σ|σ |= invglobal}). Our notion of
implementability of an operation is only meaningful for system models where
invglobal is invariant-consistent; otherwise the above definition yields true for the
trivial reason that Σ is empty. Being implementable is also called “non-blocking”
in the literature and can be viewed as a liveness property.

The question arises what is the “desirable semantic result” of our model trans-
formation on the design model. In particular, we expect that in case of a security
violation (i.e., authop does not hold) an operation preserves the state and reports
an error. In the other case (i.e., authop does hold, meaning that a principal has
“enough” permissions), we expect that the model transformation preserves the
“functional content” of the operation specification of the system model. These
requirements are captured by a security proof obligation spoop (which is auto-
matically generated for each operation):

spoop := authop implies postop � postop

where x � y is the strong equality yielding true iff x = y (i.e., the strict ocl
equality holds) or x and y are both undefined.

The following example illustrates the role of security proof obligations, and
what sorts of inconsistencies in secured system models they rule out. Assume
that we want to add to the class Meeting the operations:

context Meeting::getNames(): Sequence(String)
post: result = self . participants .name−>asSequence()

context Meeting::getSize (): Integer
post: result = self . participants −>size()

and attempt to give execute permissions for both operations to TechnicianRole.
Recall that this role has no read permissions for objects of class Person and
therefore is not able to access the names of participants. Following the definitions
in Section 3, we have:

postgetNames � result = self . getParticipants (). getName().asSequence()

Since authop and the strong equality (�) never reduce to OclUndefined, the
security proof obligation spogetNames boils down to:

σ |= authop −→ (σ, σ′) |= postgetNames � postgetNames

However, under the assumption σ |= authop the caller is in the role Technician-
Role, i.e., has execute permission to Meeting::getNames() in the given concrete
state σ. Because users in the role TechnicianRole do not necessarily have
permission for the accessor Person:: getName(), this operation call may yield
undefined. In this case, postgetNames(self , result) = OclUndefined. For consistent

A Model Transformation Semantics and Analysis Methodology 319

design models, however, postgetNames(self , result) is never OclUndefined. There-
fore, the conclusion becomes false and the security proof obligation becomes
invalid: spogetNames = false . This indicates that it does not make sense to
give permissions for the operation Meeting::getNames() to the TechnicianRole
role, as they cannot execute it anyways. In contrast, we can prove spogetSize be-
cause read permission for the association end participants is sufficient to satisfy
the postcondition. As the TechnicianRole has this permission, we can grant the
TechnicianRole role the execute permission for Meeting:: getSize ().

Due to the construction of postop and the accessor functions, the proof or
disproof of spoop is fairly easy and can be automatically supported in the most
common case: a non-recursive postcondition containing just attribute accesses.
For recursive calls induction is needed. An important property of security proof
obligations is illustrated by the following theorem:

Theorem 1. An operation op sec of the secured system model is implementable
provided that the corresponding operation of the design model is implementable
and spoop holds.

Proof. The complete proof can be found in the extended version of this paper [2].

Inaccessible operations (as discussed in the previous section) were transformed
to totally undefined functions. They are clearly implementable operations, albeit
pathological ones.

A class system is called security consistent if all spoop hold.

Theorem 2. A secured system model is consistent provided that the design
model is consistent, the class system is security consistent, and the security model
is consistent.

Proof. By definition of the model transformation, we have invsec-global ≡ invglobal
and invsec. Since the invariant of the security model is consistent, since invglobal is
invariant-consistent by assumption, and since the signature parts of the security
model and the design model are disjunct, there must be states that satisfy both
invariants. The implementability of all methods follows from Theorem 1. ��

These theorems enable modular specifications and reasoning for secure systems,
which is important for large-scale applications.

6 Conclusions

We presented a systematic approach to include access control into data models
given by uml class diagrams. From an integrated design and security model, a
secured system model is generated which can be analyzed for consistency and
liveness properties on the one hand and further transformed to code on the other.

Access control is a necessary means to establish security, but not a sufficient
one: class invariants or implementation details may allow an attacker to infer
implicit secrets of a system. For example, the Name attribute in Person may

320 A.D. Brucker, J. Doser, and B. Wolff

be correlated via class invariants to other attributes that can be accessed by
TechnicianRole. A systematic analysis of this problem on the basis of the secured
system model requires data flow analysis (see [9, Sect. 5], for an overview) which
is out of the scope of this paper, but clearly an interesting line of future research.

Another line of future research is proving that the generated code—including
the code for the methods of the design model—complies to the secured system
model, or that a more concrete secured system model represents a refinement of
a more abstract one. This involves proofs over the correctness of implementation
issues of access control points as well as auxiliary data or different data structures
which need different internal checks to establish the security behavior specified
in the original secured system model. This type of verification problems has
already been addressed [3]; however, it remains to show how they can be applied
to an object-oriented setting and SecureUML.

References

[1] D. Basin, J. Doser, and T. Lodderstedt. Model driven security: from uml models
to access control infrastructures. acm Trans. Softw. Eng. Methodol., 15(1), 2006.

[2] A. D. Brucker, J. Doser, and B. Wolff. A model transformation semantics and
analysis methodology for SecureUML. Tech. Rep. 524, eth Zürich, 2006.

[3] A. D. Brucker and B. Wolff. A verification approach for applied system security.
Int. Journal on Software Tools for Technology, 7(3):233–247, 2005.

[4] A. D. Brucker and B. Wolff. The hol-ocl book. Tech. Rep. 525, eth Zürich,
2006.

[5] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Pro-
posed nist standard for role-based access control. acm Trans. Infor. and System
Security, 4(3):224–274, 2001.

[6] J. Jürjens. Secure Systems Development with uml. Springer, 2004.
[7] M. Koch and F. Parisi-Presicce. Access control policy specification in uml. In

Critical Systems Development with uml, pp. 63–78. 2001. tum-I0208.
[8] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. acm Trans.

Progr. Lang. and Systems, 16(6):1811–1841, 1994.
[9] H. Mantel. Information flow control and applications – bridging a gap. In J. N.

Olivera and P. Zave, eds., fme, lncs, vol. 2021, pp. 153–172. Springer, 2001.
[10] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/hol — A Proof Assistant for

Higher-Order Logic, lncs, vol. 2283. Springer, 2002.
[11] uml 2.0 ocl specification. 2003. Available as ptc/2003-10-14.
[12] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.

Incremental Model Transformation for the
Evolution of Model-Driven Systems

David Hearnden1, Michael Lawley2, and Kerry Raymond2

1 School of ITEE, University of Queensland, Australia
hearnden@itee.uq.edu.au

2 Queensland University of Technology, Australia
{m.lawley, k.raymond}@qut.edu.au

Abstract. Model transformations are an integral part of model-driven
development. Incremental updates are a key execution scenario for trans-
formations in model-based systems, and are especially important for the
evolution of such systems. This paper presents a strategy for the incre-
mental maintenance of declarative, rule-based transformation executions.
The strategy involves recording dependencies of the transformation exe-
cution on information from source models and from the transformation
definition. Changes to the source models or the transformation itself can
then be directly mapped to their effects on transformation execution,
allowing changes to target models to be computed efficiently. This par-
ticular approach has many benefits. It supports changes to both source
models and transformation definitions, it can be applied to incomplete
transformation executions, and a priori knowledge of volatility can be
used to further increase the efficiency of change propagation.

1 Introduction

In model-driven systems, the evolution and synchronisation of source and target
models often relies on the automated maintenance of transformation relation-
ships. Large models or complex transformation specifications can cause transfor-
mation execution time to become quite significant, impeding this process. Live
transformation execution is an incremental update technique designed to address
these issues.

1.1 Incremental Updates

In broad terms there are two approaches to incremental updates. The first ap-
proach involves re-running the entire transformation, producing new output
models that must then be merged with the previous output models. Updating
models in situ is a special case of this approach, where the merge is performed
implicitly. In this approach the context from the original transformation is lost,
which is why a merge strategy is necessary in order to recreate that context. The
feasibility of model merging for incremental transformations is heavily dependent
on the traceability features of the transformation language.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 321–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

322 D. Hearnden, M. Lawley, and K. Raymond

The second approach involves preserving the transformation context from the
original transformation, thus obviating a merge strategy to recreate it. A live
transformation does not terminate, rather it continuously maintains a transfor-
mation context such that the effects of changes to source inputs can be readily
identified, and the necessary recomputation performed.

Figure 1 illustrates these two approaches. In Figure 1(a), each successive up-
date to S requires a complete re-transformation t producing new versions of
T . If in-situ updates are desired, then a merge is required. In Figure 1(b), the
transformation t is continuous, starting from an initial transformation from S
producing T . Each successive source update ΔS is mapped directly to a target
update ΔT . The transformation t does not terminate as such, but rather goes
through phases of activity when S is changed.

(a) Re-transformation (b) Live transformation

Fig. 1. Incremental Update Strategies

The advantage of the second approach is that it is far more efficient, especially
for small changes, and is thus more suitable for the rapid update of transforma-
tion outputs. On average, the amount of computation necessary is proportional
to the size of the input changes and the output changes. This is particularly
important for model-driven tools in an incremental development methodology,
where models are constantly evolving and constant synchronisation is neces-
sary for consistency. Another advantage of the second approach is that it is a
more direct solution for finding the changes to outputs required in response to
changes to inputs, as opposed to finding the actual outputs themselves. For a
model evolution tool, this may be an important distinction. Consider the task of
selecting, from a set of possible source changes under consideration, the change
that produces the smallest consequent change on the target models.

The cost of the second approach is that the execution context must be con-
stantly maintained. Unless there are a large number of large transformations
being maintained, this is unlikely to be a significant problem, and section 3.1
discusses how the space cost can be scalably traded for computation time should
the context become too large.

Incremental Model Transformation 323

1.2 Transformation Languages

We restrict our analysis to logic-based transformation languages; these languages
turn out to be the most suitable for live transformation.

Of the declarative paradigms, logic languages have an advantage over func-
tional languages because program data has a direct and clear effect on program
computation. There is a single inference rule (resolution), that provides suffi-
cient power for computational completeness. With resolution, program data has
a direct influence on the evaluation process. One could say that logic languages
have data-driven evaluation.

While functional languages are also typically classed as declarative, they are
less suitable for live transformations than logic languages because the effect of
program data is less clear. Reduction operations for functional evaluation are
driven by the state of the expression being reduced, so the effect of program
data is not direct.

There have been a variety of languages and techniques proposed in response
to the MOF 2.0 Query / View / Transformation Request For Proposals [1], the
majority of which have emphasised declarative definitions for transformations.
The current adopted QVT specification [2] is a hybrid of declarative and im-
perative languages, with the declarative level being sufficiently powerful to be
executable. The DSTC’s submission to the QVT RFP [3] presents a transfor-
mation language that is completely declarative and can be executed with an
open-source tool, Tefkat [4] [5].

The incremental update techniques presented here have been investigated in
the context of Tefkat; however because of their foundational nature they should
be applicable to any declarative rule-based transformation language, such as the
QVT specification.

1.3 Related Work

Incremental update techniques have been extensively researched for deductive
databases. The specific problem they address is the maintenance of materialised
views in response to changes to base relations. The solution that has been most
influential [6] involves transforming the deductive rules that define a view into
delta-rules that define how additions and deletions to queried data could be
transformed to additions and deletions to the view. There have been several
variations on this theme (e.g. [7]), however as discussed in [8] they follow the
same basic strategy.

The live transformation approach presented in this paper adopts a fundamen-
tally different strategy by addressing the incremental update problem in terms
of the execution context of a canonical logic engine. Instead of deriving a new
transformation to perform the incremental updates, this approach tries to isolate
the effects of updates on the dynamic computation structures used for logical
evaluation. This should theoretically enable more efficient update propagation
as it is a more direct approach, however the price paid is that an implementation
must be tightly integrated with the internal structures of a particular transfor-
mation engine rather than only being dependent on language semantics. Recent

324 D. Hearnden, M. Lawley, and K. Raymond

developments in incremental evaluation of tabled logic programs [9] [10] are also
adopting an engine-oriented approach.

1.4 Overview of Paper

Section 2 describes SLD resolution, the theoretical basis for the evaluation of
logic languages. Sections 2.3 and 2.4 respectively present the extensions re-
quired to preserve dependency information and the algorithms used to respond
to changes to input models. Section 3 discusses optimisations that can be per-
formed to further increase update efficiency, as well as how the strategy described
in section 2 can be extended to allow incremental updates in response to changes
to transformation definitions as well as input models. Finally, section 4 illustrates
an example of live transformation execution.

2 Live Propagation

In this section we consider extending a transformation engine based on the stan-
dard mechanism for the interpretation of logic languages: SLD resolution. The
evaluation of a declarative rule-based transformations is driven by a search for
solutions to a goal. This search can be conceptualised as a tree, and this tree can
be used to represent the trace of a transformation execution. As mentioned previ-
ously, because resolution is data-driven, the dependencies of program execution
on input models (and also the transformation itself) have a clear manifestation,
and can be recorded for later analysis. Our strategy involves recording these de-
pendencies on source model information so that changes to the tree can be made
efficiently in response to changes to source models or the transformation defi-
nition, as opposed to rebuilding the tree from scratch with a re-transformation.
Changes to the search tree can then be readily mapped to consequent changes
in target models.

2.1 SLD Resolution

SLD resolution is a deduction rule used for the execution of logic programs. It is
a restriction of the general resolution principle [11] (the S stands for Selection,
L for Linear, and D for Definite clauses).

Given a goal G consisting of a set of atomic literals and a ruleset R consisting
of a set of rules and/or facts, two choices are made. A literal a from G and a
rule r from R are selected such that a unifies with r (there exists a variable
substitution θ such that aθ = hθ, where h is the head of rule r). The atom a in
G is then replaced with the body of rule r, then the most general unifier (mgu)
of a and h is applied, giving a new goal G′. The process continues until the goal
is empty (�), and the composition of all the unifiers, Θ, is then a solution for
the goal G. In other words, GΘ is a fact that can be deduced from the ruleset
R. SLD resolution is sound and complete, so no wrong solutions are produced
and all solutions can be deduced.

Incremental Model Transformation 325

f1 : class(c1)
f2 : class(c2)
f3 : class(c3)
f4 : super(c3, c1)
f5 : owns(c1, p1)
f6 : owns(c3, p2)

r1 : owns(C, P) ←
super(C,C′), owns(C′, P)
(a) Facts and rules.

class(C), owns(C, P)
⇒ class(C), owns(C, P) [f3, {C �→ c3}]
⇒ owns(c3, P) [r1, {C �→ c3}]
⇒ super(c3, C

′), owns(C′, P) [f4, {C′ �→ c1}]
⇒ owns(c1, P) [f5, {P �→ p1}]
⇒ �

(b) SLD resolution (one solution).

Fig. 2. Resolving a goal against a rule set

Consider the ruleset in Figure 2(a). Facts f1 to f3 describe three classes, c1,
c2 and c3, where c3 is a subtype of c1 (f4). c1 directly owns property p1 and c3
directly owns property p2 (facts f5 and f6), and rule r1 describes the transitive
ownership of inherited contents, thus c3 indirectly owns p1 too. Figure 2(b)
illustrates the resolution of a goal, class(C), owns(C, P), that is a query for
classes and their contents. In the first resolution, the selected literal (underlined)
is class(C) and the selected fact is f3. These unify to produce a mgu {C �→ c3},
and replacing class(C) with the (empty) body of f3 followed by the application of
the mgu results in the new goal owns(c3, P). Three more resolutions are applied,
resulting in an empty goal (�), indicating that a solution has been found. The
composition of the unifiers (taking care to distinguish copies of C) results in the
unifier {C �→ c3, P �→ p1}, representing one particular solution to the goal (class
c3 has property p1). Note that in this example just one solution to the goal is
found; there are others. By selecting different facts and rules, resolution can be
used to find any solution to a goal.

2.2 SLD Trees

In SLD resolution, there are two non-deterministic choices that must be made at
each resolution step: a literal must be selected, and a matching rule found. If we
remove the second choice and instead resolve against every rule that matches the
selected literal, then the resulting structure is an SLD tree. SLD trees represent
all resolution paths, and therefore contain all solutions to a goal. The leaves of
the tree are either success nodes (�) indicating a solution, or failure nodes that
have non-empty goals but can not be resolved further (×).

An SLD tree for the previous example is shown in Figure 3. The nodes and
edges have been labelled (ni,ei) only for future reference. Note that SLD trees
are not unique; they depend on the selection rule that is used to select a literal
from the goal.

The SLD tree forms the basis of an execution environment for logic programs.
Often the tree is not explicitly created, but rather exists implicitly via a search
strategy. In Tefkat, the SLD trees are explicit. The SLD tree in Prolog, however,
exists as a depth-first search.

326 D. Hearnden, M. Lawley, and K. Raymond

n1 : class(C), owns(C, P)

{C �→c1}

e1
����

�������������

{C �→c2}

e4

{C �→c3}

e6
����

�������������

n2 : owns(c1, P)

{C �→c1}

e2
��

��
��
��
��
��
��
��
��

{P �→p1}

e3

n5 : owns(c2, P)

{C �→c2}

e5

n7 : owns(c3, P)

{C �→c3}

e7
��

��
��
��
��
��
��
��
��

{P �→p2}

e11

n4 : � n6 : super(c2, C
′),

owns(C′, P)
×

n12 : �

n3 : super(c1, C
′),

owns(C′, P)
×

n8 : super(c3, C
′),

owns(C′, P)

{C′ �→c1}

e8

n9 : owns(c1, P)

{C �→c1}

e9
���

��
��

��
{P �→p1}

e10
���

��
��

��
��

�

n10 : super(c1, C
′),

owns(C′, P)
×

n12 : �

Fig. 3. An SLD tree

2.3 Tagging

Our goal is to provide a live execution environment, where changes to source
models can be efficiently mapped to changes to target models. From a logical
perspective, source models are manifested as a set of facts, and transformations
as a set of rules and facts. As those familiar with logic programming are aware,
a fact is simply a special case of a rule, so there is no real need to distinguish the
two; however if we are only observing changes to source models then we need
only be concerned with facts.

Changes to source models after a transformation has occurred are thus mani-
fested as changes to the fact base used by a logic engine. These facts can influence
the SLD tree in precisely one way: by unifying with the selected literal of a node’s
goal, thus spawning an edge in the tree. Additive changes to source models can
therefore cause new branches and subtrees to be computed. Deletive changes
can cause branches to be pruned. In order to make these incremental changes as
efficient as possible, we tag the facts with references to where they are used in
the tree, so that the effects of source changes can be made directly.

Two types of information are recorded while nodes query the fact base: the
usage of a fact by an edge, and the failure to find a matching fact for a node.
The first requires tagging of facts, the second requires tagging of fact signatures
(name and arity). For this purpose it is convenient to group facts with the same

Incremental Model Transformation 327

Resolve(U, R)
1 while U �= ∅
2 do n ← choose(U)
3 U ← U − {n}
4 if goal [n] = �

5 then solutions ← solutions ∪Solution(n)
6 else g ← goal [n]
7 l ← selectLiteral (g)
8 matches ← Find-Matches(R, l)
9 t ← getTable(l)

10 tableTags [t] ← tableTags [t] ∪ {n}
11 for each (θ, r) ∈ matches
12 do e ← Create-Branch(n)
13 unifier [e] ← θ
14 if r is a fact
15 then factTags [r] ← factTags [r] ∪ {e}
16 fact [e] ← r
17 n′ ← childNode [e]
18 goal [n′] ← ((g − {l}) ∪ body(r))θ
19 U ← U ∪ {n′}
20 return solutions

Solve(G, R)
1 r ← Create-Root
2 goal [r] ← G
3 solutions ← ∅
4 return Resolve({r}, R)

name and arity into tables. Algorithms Solve and Resolve illustrate how such
recording can be incorporated into a resolution algorithm (lines 9-10 and 14-16).

While U is non-empty, a node is chosen for expansion and removed from U
(line 2). Success nodes are nodes whose goal has been reduced to � and are
a Solution algorithm (elided) is used to compute the composition of all the
unifiers used from the root to the success node (line 5). Non-success nodes have
a literal selected from their goal (line 7), which is then matched against the rule

Fact Edges
class(c1) {e1}
class(c2) {e4}
class(c3) {e6}
super(c3, c1) {e8}
owns(c1, p1) {e3, e10}
owns(c3, p2) {e11}

(a) Fact tags

Table Nodes
class/1 {n1}
super/2 {n3, n6, n8, n10}
owns/2 {n2, n5, n7, n9}

(b) Table tags

Fig. 4. Dependencies

328 D. Hearnden, M. Lawley, and K. Raymond

database to produce a set of matching rules/facts paired with the most general
unifier for the match (line 8). The dependency of the node on a table of facts is
then recorded (line 10).

A new branch in the tree is created for each of the matching rules/facts
(line 12), and the matching rule/fact and unifier are recorded on the edge
(line 13). For fact edges, the dependency of the edge on the particular fact
that caused its creation is then recorded (lines 14- 16). The selected literal in
the goal is replaced with the body of the matching rule/fact, the matching uni-
fier applied, and the result is set as the new node’s goal (lines 17-18). The new
node is then added to the set of unexpanded nodes, to be expanded on a future
iteration. After all the nodes have been expanded, Resolve returns the set of
unifiers that represent solutions to the goal (line 20). Lines 9, 10 and 14-16 are
the only extra work required for the dependency recording.

For brevity, the detail of some used algorithms has been elided. Algorithm
Create-Branch(n) simply creates and returns a branch from node n in the
data structure for the resolution tree. Find-Matches(R, l) searches the knowl-
edge base R for rules/facts whose heads unify with l, and returns the set of all
such pairs (θ, r).

The Solve algorithm builds a tree from scratch by creating a root tree node,
setting its goal, and calling Resolve. Figures 4(a) and 4(b) show the fact and
table tags from the edge and node dependencies for the tree in Figure 3.

2.4 Responding to Change

We consider two types of change to the model and transformation definition:
fact addition and fact removal.

Fact Addition. The algorithms for responding to model or transformation
change rely on the existing resolution algorithms. Informally, the response to
the addition of new facts is to identify nodes in the tree for which resolution
needs to be resumed. Algorithm Add-Fact describes this procedure.

Add-Fact(f)
1 nodes ← tableTags [getTable(f)]
2 U ← ∅
3 for each n ∈ nodes
4 do l ← selectedLiteral [n]
5 θ ← Unify(l, head(f))
6 if θ �= nil
7 then e ← Create-Branch(n)
8 unifier [e] ← θ
9 fact [e] ← f

10 factTags [f] ← factTags [f] ∪ {e}
11 n′ ← childNode [e]
12 goal [n′] ← (goal [n] − {l})θ
13 U ← U ∪ {n′}
14 return Resolve(U)

Incremental Model Transformation 329

Add-Fact uses the table tags to identify all the nodes with a selected lit-
eral of the same name and arity as the added fact f (line 1). The selected
literals of each of these nodes are tested against the added fact, in order to
find any nodes with goals that match (more formally, unify) with the head of
f (line 5). Any nodes found have branches added from them, and they are
added to a set of unexpanded nodes U . Note that lines 7- 13 are equivalent to
lines 12- 19 from Resolve. Finally, resolution is resumed on all those new nodes
(line 14).

Add-Fact returns the set of unifiers from the new success nodes found in
response to the addition of a fact. These unifiers represent valid solutions in
the context of the new fact database, however they may not all be new solu-
tions since other paths in the tree may have already established some of those
solutions prior to the fact addition. Therefore the set of solutions returned by
Add-Fact must be compared with the original solutions in order to identify new
solutions.

Fact Removal. In response to the removal of a fact f , all the edges in the tree
that were created because of a match with a selected literal must be identified.
The subtrees rooted at these edges must then be removed, which involves re-
moving all the dependency information from that subtree as well as identifying
solutions that may have been removed. Similarly to Add-Fact, Remove-Fact
returns the set of solutions established by success nodes that have now been
removed, however other success nodes in the remaining tree may also estab-
lish some of those solutions, so again they must be compared with the original
solutions in order to identify invalidated solutions.

Remove-Fact(f)
1 edges ← factTags [f]
2 oldSolutions ← ∅
3 for each e ∈ edges
4 do oldSolutions ← oldSolutions ∪Prune-Edge(e)
5 Delete-Branch(e)

Remove-Fact is straightforward. All the edges dependent on the removed
fact f are deleted from the tree, however a pruning step occurs (line 4) before
the branch removal (line 5). This pruning step removes dependencies recorded
for the subtree, as well as accumulating solutions from success nodes in that
subtree. Mutually recursive algorithms Prune-Edge and Prune-Node define
this procedure.

Prune-Edge(e)
1 f ← fact [e]
2 if f �= nil
3 then factTags [f] ← factTags [f] − {e}
4 return Prune-Node(childNode [e])

330 D. Hearnden, M. Lawley, and K. Raymond

Prune-Node(n)
1 oldSolutions ← ∅
2 if isSuccess(goal [n])
3 then oldSolutions ← oldSolutions ∪{n}
4 t ← getTable(selectedLiteral [n])
5 tableTags [t] ← tableTags [t] − {n}
6 for each e ∈ childEdges [n]
7 do oldSolutions ← oldSolutions ∪Prune-Edge(e)
8 return oldSolutions

Prune-Edge simply removes the edge from the potential fact dependency in
which it appears, and then prunes the child node. Prune-Node accumulates a
solution if it encounters a success node (line 3), then removes the node from the
table dependency in which it appears (line 5), and then recursively prunes its
child edges, accumulating their solutions (line 7).

2.5 Negation

So far, we have only analysed SLD resolution, which does not allow negative
literals to appear in rule bodies. In other words, rules that rely on the absence
or the falsity of facts may not be used. SLD resolution can be extended to general
clauses, which do allow negative literals in goals and rule bodies; however extra
restrictions are required in order to preserve soundness and completeness.

The easiest extension to SLD resolution to allow negative literals is to use the
closed-world assumption, where all unprovable facts are considered false. This
allows us to treat negation as failure, so to prove a literal ¬p(X) it is sufficient to
show that there is no proof of p(X). To achieve this, a separate tree is created,
and if the tree finitely fails, then p(X) is considered false and hence ¬p(X) true.
However if a solution is found in this separate tree, then a proof of p(X) has
been found, so ¬p(X) is false, and hence the node that spawned the separate
tree fails.

This extension is often referred to as SLDNF (SLD with Negation as Failure).
SLDNF introduces a fundamental change to the structure of the resolution tree.
Instead of a single tree there is now a forest of negation trees plus one positive
tree (the root tree). Nodes with a negative selected literal are ‘connected’ with a
negation tree constructed to prove the positive literal. These connections must
be maintained as part of the forest.

The algorithms from section 2.4 only apply to SLD resolution and are mono-
tonic: Add-Fact can only add more solutions and Remove-Fact can only
invalidate previous solutions. If SLDNF resolution is used instead, then mono-
tonicity is lost, and incremental updates become more complex. The addition of
facts may result in the removal of branches (and hence the removal of solutions),
and the removal of facts may result in the addition of branches (and hence the
addition of solutions). It turns out that the algorithms Add-Fact and Remove-
Fact require only minor modifications in order to achieve this behaviour. The
update phase then iterates between tree pruning and tree expansion until a fixed
point is reached.

Incremental Model Transformation 331

3 Discussion

In this section we discuss two ways to further optimise incremental updates, and
how the techniques from section 2.3 can be extended to also allow incremental
changes to transformation definitions.

3.1 Incomplete Transformation Context

The price for the efficiency of live transformation is the maintenance of the trans-
formation context (the SLDNF trees) and the dependency tables. Previously it
was assumed that the context was complete, i.e. the SLDNF trees and depen-
dency tables were completely preserved. This complete context may be costly for
large and complex transformations where there may be hundreds of thousands
of tree nodes, and hundreds or even thousands of facts and rules.

The live transformation strategy can accommodate an incomplete context
with some extensions to the algorithms presented in section 2.4. Arbitrary sub-
trees can be collapsed into a single ‘collapsed’ node, with all the dependency in-
formation condensed on that node. The space of that subtree is then reclaimed,
but the aggregated tags preserve the dependency information. There is a com-
putational cost only if the dependency information identifies that the collapsed
node has been potentially affected, and then the entire subtree must be recom-
puted. However because collapsing can be performed at any point in a tree, it is
quite a scalable trade-off.

The trick to making effective choices for node collapsing is to recognise that
some facts in a model are more stable than others. For example, a person’s name
is less likely to change than their height or weight. We use the term volatility to
describes the likelihood of change for a fact or rule. It is obviously most beneficial
to collapse subtrees that are non-volatile. With good estimates of fact volatility
(either explicitly provided or obtained via heuristics), an intelligent engine can
reduce the size of the transformation context while still providing the efficiency
for most incremental changes.

3.2 Ordering of Volatile Literals

The volatility of different facts and rules can be leveraged in an even more fun-
damental way. The structure of the resolution trees is completely determined by
the selection rule that chooses which literal in a node’s goal is to be resolved.
This structure has a significant impact on the efficiency of the initial transforma-
tion and also the efficiency of the incremental updates. If volatile facts are used
towards the root of a resolution tree, then changes to those facts involve pruning
the entire subtree rooted at the usage of those facts and subsequently regrowing
the new subtree. If volatile facts are used towards the leaves of a resolution tree,
then the impact of changes to those facts is much less, as the subtrees that are
pruned and regrown are smaller.

By providing an engine with such volatility estimates, perhaps user specified
or even collected from version histories, the selection rule can choose to expand
stable literals first, and volatile literals last, reducing the cost of updates to those
volatile facts.

332 D. Hearnden, M. Lawley, and K. Raymond

3.3 Rule/Fact Equivalence

As mentioned in section 2.3, as far as logic is concerned facts are simply a special
type of rule. There is very little in the algorithms of section 2.4 that applies to
facts but not rules, and so with some very minor modifications live transforma-
tion can be used for rules as well. This is of great importance for the evolution
of transformation definitions, since changes to the rules in a transformation can
be efficiently propagated to updates on the transformation targets.

4 Live Transformation in Practice

In this section we present some preliminary measurements of the efficiency of
incremental model transformation using live resolution trees.

4.1 Sample Transformation

The sample transformation we use to demonstrate live resolution trees is a sim-
plified version of one of the many transformations from an object-oriented class
metamodel (such as UML) to a relational database schema metamodel. The
complete metamodels have been omitted due to space considerations.

The class metamodel describes classes that own properties which are at-
tributes or references, where attributes are data-valued and references are object-
valued. Classes have zero or more superclasses. The relational schema metamodel
describes tables that own typed columns, one of which is designated as a primary
key.

The transformation maps classes to tables with keys. Properties that are
owned directly or indirectly (through inheritance) are mapped to columns of
the table corresponding to the property’s owning class. For attributes, those
columns are typed by the data type corresponding to the attribute’s data type.
For references, those columns are typed by the data type corresponding to the
type of the primary key of the table mapped from the type of the reference. In
other words, references are mapped to foreign key columns. Finally, if a class
has an attribute marked as an identity attribute, the column mapped from that
class-attribute pair becomes the key column for the class’s corresponding table.
Otherwise, a primary key column called ID is inserted. This sample transforma-
tion is useful as it is small enough to be easily understood, but complex enough
to involve recursion, transitive closure and negation. The main rules for this
transformation are described in Tefkat’s concrete syntax in Figure 5.

The output of a Tefkat transformation is the unique minimal model (least
fixed point) such that all rules are true. A rule is true if and only if, for all
variable bindings for its source terms (FORALL, LINKS, WHERE), the target terms
(MAKE, LINKING) are true. Patterns, such as hasProperty/2, are equivalent to
logical predicates. Tefkat also uses trackings, which are essentially named re-
lations, and are the only elements that may be both queried/checked (with
LINKS) and asserted/enforced (with LINKING). For example, the ClassTable
tracking associates a class with a table, and is asserted in the LINKING clause of
ClassToTable, and is queried by the LINKS clauses of the other four rules.

Incremental Model Transformation 333

4.2 Sample Execution

The transformation was run on the Ecore metamodel [12], followed by three up-
dates. The first update was a simple renaming of an attribute of ETypedElement.

RULE ClassToTable
FORALL Class c { name: n; }
MAKE Table t { name: n; }
LINKING ClassTable WITH class = c, table = t;

PATTERN hasProperty(c, p)
WHERE c.properties = p OR hasProperty(c.super, p);

RULE AttributeTypes
FORALL Class c, Attribute a { name: n; }
WHERE hasProperty(c, a)
AND TypeType LINKS ooType = a.type, rdbType = rdbtype
AND ClassTable LINKS class = c, table = t
MAKE Column col { name : n; table: t; type: rdbtype; }
LINKING AttributeColumn WITH class = c, attribute = a,

column = col, type = rdbtype;

RULE ForeignKeyTypes
FORALL Class c, Reference r { name: n; type: rc; }
WHERE hasProperty(c, r)
AND ClassTable LINKS class = rc, table = ft
AND TableKey LINKS table = ft, key = _, type = fktype
AND ClassTable LINKS class = c, table = t
MAKE Column col { name : n; table: t; type: fktype; };

RULE IdKeyColumn
FORALL Class c, Attribute a
WHERE hasProperty(c, a) AND a.id = true
AND AttributeColumn LINKS class = c, attribute = a,

column = col, type = keytype
AND ClassTable LINKS class = c, table = t
MAKE Key k { table: t; column: col; }
LINKING TableKey WITH key = k, table = t, type = keytype;

RULE AutoKeyColumn
FORALL Class c
WHERE NOT (hasProperty(c, a) AND a.id = true)
AND ClassTable LINKS class = c, table = t
MAKE makeRdbType("Auto", auto),

Column col { name: "ID"; type: auto; table: t;},
Key k { table: t; column: col; }

LINKING TableKey WITH key = k, table = t, type = auto;

Fig. 5. Sample OO to RDB transformation

334 D. Hearnden, M. Lawley, and K. Raymond

The propagated changes involved the renaming of 6 columns, one from each of
the tables generated for the 6 subclasses that inherited that attribute. The sec-
ond update involved the deletion of the ETypedElement.type reference. The 6
affected columns were deleted, as were all of their properties. The final change
was marking EClassifier.instanceClassName as an identity attribute. which
caused the most significant structural change. The automatic key columns added
to the tables for EClassifier and its subclasses were deleted, those tables’ keys
were set to the columns for the instanceClassName attribute, and all columns
generated from EReferences to EClassifier or any of its subclasses (i.e. foreign
keys into the EClassifier table) had their types changed to String, the new
type of EClassifier’s key column.

Table 1 shows the number of resolution nodes added, removed, and touched
in each of the three updates. Node addition and removal are the most significant
measurements since those operations involve modifications to the resolution trees
and tag structures. Touched nodes are those nodes that were identified by the
fact and table tags as being potentially affected, but on closer inspection were
not affected.

The number of nodes is correlated with the execution time and space con-
sumption of the incremental transformation. The results clearly show significant
performance benefits from live transformation for all three updates.

Table 1. Number of tree nodes used during live transformation

.

Forest Size Added /Removed Touched Total Changed
- 7026 - / - - 7026 (100%) 100%
1 7026 78 / 78 176 332 (4.7%) 2.2%
2 6828 0 / 198 0 198 (2.9%) 2.9%
3 6760 198 / 206 349 753 (11.1%) 6.0%

5 Conclusion

Incremental updates for declarative rule-based model transformations can be
performed efficiently using live transformations. The dependencies of the trans-
formation execution on its inputs can be recorded by tagging resolution trees.
These dependencies can then be used to efficiently propagate source changes to
target changes. With minor extensions, the algorithms presented in this paper
can be used in the presence of negation and tabling, and also for incremental
updates to the transformation definitions. Finally, awareness of model volatility
can be leveraged to further increase update efficiency.

References

1. OMG: MOF 2.0 Query / Views / Transformations RFP. OMG document ad/02-
04-10 (2002)

2. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifica-
tion. OMG document ptc/2005-11-01 (2005)

Incremental Model Transformation 335

3. DSTC, IBM, CBOP: MOF Query / View / Transformation Second revised sub-
mission. OMG document ad/2004-01-06 (2004)

4. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat.
In Bruel, J.M., ed.: MoDELS Satellite Events. Volume 3844 of Lecture Notes in
Computer Science., Springer (2005) 139–150

5. Tefkat: The EMF transformation engine (2006)
6. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.

In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, Washington, D.C., May 26-28, 1993,
ACM Press (1993) 157–166

7. Ceri, S., Widom, J.: Deriving incremental production rules for deductive data.
Information Systems 19 (1994) 467–490

8. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques
and applications. IEEE Quarterly Bulletin on Data Engineering; Special Issue on
Materialized Views and Data Warehousing 18 (1995) 3–18

9. Saha, D., Ramakrishnan, C.R.: Symbolic support graph: A space efficient data
structure for incremental tabled evaluation. In: ICLP. (2005) 235–249

10. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled prolog: Beyond
pure logic programs. In: PADL. (2006) 215–229

11. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12 (1965) 23–41

12. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)

A Plugin-Based Language to Experiment with
Model Transformation

Jesús Sánchez Cuadrado and Jesús Garćıa Molina

University of Murcia, Spain
{jesusc, jmolina}@um.es

Abstract. Model transformation is a key technology of model driven
software development approaches. Several transformation languages have
appeared in the last few years, but more research is still needed for an
in-depth understanding of the nature of model transformations and to
discover desirable features of transformation languages. Research inter-
est is primarily focused on experimentation with languages by writing
transformations for real problems.

RubyTL is a hybrid transformation language defined as a Ruby inter-
nal domain specific language, and is designed as an extensible language:
a plugin mechanism allows new features to be added to core features.
In this paper, we describe this plugin mechanism, devised to facilitate
the experimentation with possible features of RubyTL. Through an ex-
ample, we show how to add a new language feature, specifically we will
develop a plugin to organize a transformation in several phases. Finally,
we discuss the advantages of this extensible language design.

1 Introduction

Model transformation is a key technology for model driven software development
(MDD) approaches to succeed. As a result of academic and industrial efforts,
several model transformation tools and languages have appeared in the last
few years, but more research is still needed for an in-depth understanding of
the nature of model transformations and to discover the essential features of
transformation languages. Therefore, the research interest of the MDD area is
focused on experimentation with existing languages, by writing transformation
definitions for real problems. Theoretical frameworks such as the feature model
discussed in [1] and the taxonomy of model transformations presented in [2] are
very useful to compare and evaluate design choices during experimentation.

A year ago, we started a project for the creation of a tool to experiment with
features of hybrid transformation languages whose declarative style is supported
by a binding construct, as is the case of the ATL language [3]. The result of
this project is RubyTL [4], an extensible transformation language created by
the technique of embedding a domain specific language (DSL) in a dynamic
programming language such as Ruby [5]. RubyTL supports extensibility through
a plugin mechanism: a set of core features can be extended with new features
by creating plugins which implement predefined extension points.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 336–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Plugin-Based Language to Experiment with Model Transformation 337

In this paper, we present the extensible design of RubyTL, analyzing the
extension points identified from the transformation algorithm. In addition, we
show how to add a plugin for the needs of a particular problem, concretely a
plugin that organizes a transformation in several phases; the extension points
involved in this plugin are identified from its requirements.

The paper is organized as follows. The next section presents the core features
of the RubyTL language and the transformation algorithm. Section 3 describes
how the plugin mechanism is implemented, while Section 4 describes the plugin
example. In Section 5 related work is discussed. Finally, conclusions and future
work are presented in Section 6.

2 Language and Algorithm

RubyTL is a model transformation language designed to satisfy three main re-
quirements: i) according to the recommendations exposed in [6][7], it should be
a hybrid language, because declarative expressiveness may not be appropriate
for complex transformation definitions, which may require an imperative style;
the declarative style is provided by a binding construct similar to that in the
ATL language [3], ii) it should allow easy experimentation with different fea-
tures of the language, and iii) a rapid implementation should be possible . These
requirements have been satisfied through two key design choices: the definition
of the language as a Ruby internal DSL and the implementation of a plug-in
extension mechanism. RubyTL provides a set of core features, and new features
can be added by plugins connected to a set of predefined extension points. In this
section we describe the core features and the transformation algorithm, whereas
the plugin mechanism will be explained in the following section.

As said in [8] the internal DSL style is much more achievable in dynamic
languages like Lisp, Smalltalk or Ruby. We have chosen Ruby, but the approach
is language independent. Ruby is a dynamically typed language which provides
an expressive power similar to Smalltalk through constructs such as code blocks
and metaclasses. Because of these characteristics, Ruby is very suitable for em-
bedding DSLs [8], so that Ruby internal DSLs are being defined in areas such
as project automation and electronic engineering [9]. Applying this technique to
create RubyTL has allowed us to have a usable language in a short development

Fig. 1. Class and relational metamodels used in the example

338 J. Sánchez Cuadrado and J. Garćıa Molina

time. Moreover, Ruby code can be integrated in the DSL constructs, so that the
hybrid nature can be obtained in a uniform way: everything is Ruby code.

Below we show a simple example of a transformation definition to illustrate
the core features of RubyTL, and then explain the basis to understand the
language. A more detailed explanation about the core language can be found
in [4]. We have considered a classical transformation problem: the class-to-table
transformation, whose metamodels are shown in Figure 1.

rule ’klass2table’ do
from ClassM::Class
to TableM::Table
mapping do |klass, table|

table.name = klass.name
table.cols = klass.attrs

end
end

rule ’property2column’ do
from ClassM::Attribute
to TableM::Column
filter { |attr| attr.type.kind_of? ClassM::PrimitiveType }
mapping do |attr, column|

column.name = attr.name
column.type = attr.type.name
column.owner.pkeys << column if attr.is_primary

end
end

rule ’reference2column’ do
from ClassM::Attribute
to Set(TableM::Column)
filter { |attr| attr.type.kind_of? ClassM::Class }
mapping do |attr, set|

table = klass2table(attr.type)
set.values = table.pkeys.map do |col|
TableM::Column.new(:name => table.name + ’_’ + col.name,

:type => col.type)
end
table.fkeys = TableM::FKey.new(:cols => set)

end
end

As can be seen in the example, a transformation definition consists of a set
of transformation rules. Each rule has a name and four parts: i) the from part,
where the source element metaclass is specified, ii) the to part, where the target
element metaclass (or metaclasses) is specified, iii) the filter part, where the
condition to be satisfied for the source element is specified, and iv) the map-
ping part, where the relationship between source and target model elements are
expressed, either in a declarative style through of a set of bindings or in an

A Plugin-Based Language to Experiment with Model Transformation 339

imperative style using Ruby constructs. A binding is a special kind of assign-
ment that makes it possible to write what needs to be transformed into what,
instead of how the transformation must be performed. A binding has the fol-
lowing form target element.property = source element, for instance in the
klass2table rule.

In the example, the first rule (klass2table) will be executed once for each
element of type Class, leading to the creation of an element with type Table.
In the mapping part of this rule, relationships between class features and table
features are specified. In particular, it is important to note how the table.cols
= klass.attrs binding will trigger the execution of the property2column rule
or reference2column rule for it to be resolved.

The property2column and reference2column rules illustrate how imperative
code can be written within a mapping part. In the property2column rule, two
bindings are followed by a Ruby sentence which checks if an attribute has to
be converted into a primary key to add the column to the set of table primary
keys. The reference2column rule is an example of a one-to-many relationship
(one-attribute to many-columns). In this case, all the mapping is written in
an imperative way, as the set of columns which take part in the foreign key is
explicitly filled.

This example raises an important question about querying the target model.
Using the expression table.pkeys.map, in the reference2column rule, we are
relying on the target model to calculate the foreign key columns, which could
cause problems because we are navigating on a partially generated model. In
this case, if circularity exists in the source model, it may cause the primary keys
of a table to be partially calculated when they are used to generate foreign key
columns. Of course, this simple example can be solved without relying on the
target model but more complex transformations, like the one proposed in [10],
could become difficult.

In Section 4 we propose a language extension to address the problem of nav-
igating the target model. With this extension, a transformation would be able
to safely navigate the target model.

2.1 Transformation Algorithm

The execution model of RubyTL can be explained through a recursive algorithm.
As we will see in the next section, this algorithm is the basis to identify extension
points.

Every transformation must have at least one entry point rule in order to start
the execution. By default, the first rule of a transformation definition is the
entry point rule, for instance the klass2table rule in the example. When the
transformation starts, each entry point rule is executed, by applying the rule to
all existing elements of the metamodel class specified in its from part (in the
example, to all instances of ClassM::Class).

The structure of the main procedure of the transformation algorithm is a loop
executing the set of entry point rules. For each entry point rule, target model

340 J. Sánchez Cuadrado and J. Garćıa Molina

elements are created for each source model element satisfying the rule filter, and
then the rule is applied, i.e. the mapping part is executed.

Transformation entry point()
entry-rules = select entry point rules
for each rule R in entry-rules

source-instances = get all instances of source type of rule R
for each instance S in source-instances

if S satisfy the rule R filter
T = create target instances
apply rule(R, S, T)

The Apply rule iterates over each binding in the mapping part of a rule,
distinguishing two cases: a primitive value must be assigned to the target element
property or the binding must be resolved by applying other rules. As said, a
binding has the following form: T.property = S, therefore S and T are part of
a binding.

Apply rule(R : rule to apply,
S : source element, T : target elements)

for each binding B in R.bindings
if B is primitive then assign value to property

else resolve binding(B)

The Resolve binding procedure below shows how the binding resolution
mechanism acts in two steps. Firstly, all the rules conforming the binding and
satisfying the rule filter are collected. Secondly, for each selected rule, proper
target elements are created and linked, and then the rule is applied.

Resolve binding(B : binding)
S = source element of B
T = target element of B
P = property of T taken from B
C = list of conforming rules initially empty

for each rule R in the set of transformation rules
if R is conforming with B and R satisfy filter

add R to C

for each rule R in C
T’ = create target instances
link T’ with P of T
apply rule(R, S, T’)

It is worth noting the recursive nature of the algorithm and how such recur-
sion is implicitly performed by means of bindings. The recursion finishes when a
mapping is only composed of primitive value assignments. Another way to finish
recursion could be by preventing a rule from transforming the same source ele-
ment twice. This key feature, which allows the language to deal with metamodels
having cycles, has been added by a plugin.

A Plugin-Based Language to Experiment with Model Transformation 341

3 Extension Mechanism

RubyTL is an extensible language, that is, the language has been designed as a
set of core features with an extension mechanism. In this section we will present
the extension mechanism based on plugins. First, we will explain the underly-
ing ideas behind the design of our extensible language, then we illustrate the
extension points we have identified.

From the transformation algorithm shown in the previous section, we have
identified some parts in the transformation process which are variable, and de-
pending on how they are implemented, the transformation algorithm will behave
differently. These variable parts will be extension points. Since the transforma-
tion algorithm is general, it can be implemented in any general purpose pro-
gramming language. What would change from one implementation to another
would be: (a) the way extension points are defined and implemented, and (b)
the concrete syntax of the language.

A plugin is a piece of code which modifies the runtime behaviour of RubyTL
by acting either on the language syntax, the evaluation engine or even the model
repository. The language can be considered as a framework providing a set of
extension points that plugins can implement to add functionality. According
to the language aspect being extended, there are three categories of extension
points: (1) related to the algorithm, (2) related to creation of new rules and
management of the rule execution cycle, and (3) related to the language syntax.
These categories are explained in detail in the following subsections.

Regarding how those extension points are implemented, there are two kinds of
extension points: hooks and filters. Hooks are methods which can be overridden
to implement a new functionality (similar to the template method design pattern
[11]), while filters follow the same schema as web application filters [12]. Filters
allow plugins to collaborate in a certain extension point. In addition, a filter can
be seen as an application of the Observer pattern [11], as it allows a plugin to
register for events occurred in the transformation process.

An extension point always has a corresponding hook, and can also have two
filters: a filter which is called just before the hook extension point is invoked, and
a filter which is called just after the hook extension point has been invoked. The
reason to use hooks and filters is because if two plugins implement the same hook
they could be incompatible, but with filters two or more plugins could share the
same extension point. Sometimes, certain extensions can be implemented by a
filter without overriding existing extensions.

We will call hook based extension points hook extension points and filter based
extension points filter extension points.

3.1 Algorithm Extensions

Extensions related to the transformation algorithm are directly based on the
three procedures explained in Section 2. Each of these procedures is a hook
extension point itself. Moreover, some parts of these procedures are also
hook extension points, as can be seen in Figure 2, where the execution order
of the extension points is shown.

342 J. Sánchez Cuadrado and J. Garćıa Molina

Fig. 2. Execution order of algorithm extension points

Therefore, the available extension points are the following:

– transformation entry point. This extension point corresponds to the
Transformation entry point procedure. It provides a way to apply en-
try rules in a different manner, as will be shown in the example in Section
4. This extension point has a nested hook extension point, select entry point
rules.

– select entry point rules. The application of entry point rules depends
on how they are selected. This extension point allows us to apply different
selection strategies, for instance based on a special kind of rule. Usually, it is
necessary to declare more than one entry point rule, which can be provided
by a plugin implementing this extension point.

– apply rule. This extension point, which corresponds to the Apply rule
procedure, specifies how a rule should be applied (by default executing its
mapping part). Since this behaviour could depend on the kind of rule being
applied, a similar extension point is included in the rule extension point
category, so that the default behaviour of this extension point is delegating
to this rule extension point.

– resolve bindings. This extension point, which corresponds to the Resolve
binding procedure, specifies how a binding is resolved by selecting and eval-
uating conforming rules, so that it delegates in two nested hook extension
points: select conforming rules and evaluate conforming rules.

– select conforming rules. It is intended to specify how to select rules con-
forming a binding. It is useful to change the conformance strategy, as will
be shown in the example in Section 4.

– evaluate conforming rules. It is intended to specify how conforming rules
are evaluated. This evaluation may require creating new target elements. In
the plugin example of the next section, this extension point must be im-
plemented because phasing needs an evaluation procedure which is different
from the default.

Regarding filter extension points, two filters not related to hook extension
points are defined, at the beginning and at the end of the transformation. The
first one allows us to set up global information before the transformation starts,
for instance, a new model could be created in the model repository to store the
transformation trace model. The second one allows us to perform “cleaning”

A Plugin-Based Language to Experiment with Model Transformation 343

activities after the transformation has finished. In addition, the following filters
related to the identified hook extension points are defined: after select entry rules,
before/after apply rule, before/after select available rules, before/after evaluate
available rules.

3.2 Rule Extensions

Rule extensions points are intended to create new kind of rules, which will have
a different behaviour than the default one. These extension points are related
to the rule execution cycle (i.e. the set of the states a rule passes through).
According to the transformation algorithm, a rule passes through the states
shown in Figure 3. Each one of these states (except waiting to be executed) is
an extension point itself. Actually, these steps are driven by the algorithm (see
Figure 2) which is in charge of delegating to the proper rule extension point in
each step of its execution.

Fig. 3. Rule execution shown as a state machine diagram

When a new kind of rule is created any of the following hook extension points
can be implemented to provide the new behaviour. Of course, some algorithm
extension points could also be implemented in a plugin in order to complete the
rule behaviour.

– instantiation. When a rule is encountered in the transformation text its
body is evaluated to set up the rule properties This extension point makes it
possible to set additional initialization data as if it were the rule constructor.

– checking conformance. Resolving a binding involves checking the confor-
mance of the set of rules with that binding. Different kinds of rules could
have different conformance strategies.

– checking filter. By default the rule filter is checked before applying the
rule by evaluating the expression in the filter part. However, another kind
of rule may establish another way of filtering applicable rules.

– creating and linking. Just before a rule is applied, new target elements
are created and linked to the corresponding target feature in the binding.
This behaviour could be different, for instance, rules which never transform
a source element twice, i.e. no new target elements are created if the source
element has been already transformed, but the previous result is linked.

– mapping application. Rule application normally consists of executing the
mapping to assign primitive values and resolve bindings. This extension point
allows a rule to modify the rule application strategy, for instance, to have
more than one mapping in a rule.

344 J. Sánchez Cuadrado and J. Garćıa Molina

Given the steps shown in Figure 3, the following filter extension points makes
sense: after definition, before/after check condition, before/after create and link,
and before/after rule application.

3.3 Syntax Extensions

Syntax extensions allow a plugin to add new keywords and define nested struc-
tures to create new language constructs. In Section 4 we will create a phase
syntax construct which encloses a set of rules; this construct is a new nested
structure defined by a keyword such as phase.

There are two kinds of syntax extensions depending on the place the new
keyword could appear. If the new construct may appear within a rule, it is said
to be rule scoped, while if it can only appear in the transformation body, it is
said to be transformation scoped. Transformation scoped syntax is intended to
specify configurations that affect the whole transformation, while rule scoped
syntax should be used to set rule properties.

Each new keyword is added to an associative table which associates each key-
word with a callback to manage it. Such callback provides the new language
construct with the proper semantics, and will be called when the keyword ap-
pears in the transformation text.

4 Plugin Example

In this section we will show an example of language extension whose main pur-
pose is to allow a transformation to be organized in several phases, and thus
facilitate dealing with complex transformations. We will show how this extension
is useful in coping with the problem explained in Section 2 related to querying
partially built target models. Also, we will show which extension points have
been used to implement the phasing mechanism.

When this extension is applied to the language, a transformation is organized
into several phases, where each phase consists of a set of rules which can only be
invoked in the context of its phase [1], but it can query target elements which
have been partially generated in previous phases. It can be considered that each
phase has a state defined by the state of all the generated target elements, both
in this phase and in previous phases. A transformation progresses by applying

Fig. 4. Use of the phasing mechanism to generate a relational model by refinement

A Plugin-Based Language to Experiment with Model Transformation 345

rules which modify the current phase state. Therefore, each phase refines a partial
transformation state established by previous phases. This is what we call rule
refinement. It is worth noting that when a rule navigates on the target model,
the query must be consistent with the previous phase state. Figure 4 shows how
a relational model is refined in three phases: firstly data columns are created,
secondly primary keys are set (marked *), and finally, foreign keys are created
(marked →).

We have identified the following requisites, which should be fulfilled by the
extension:

– Rules should be enclosed by a higher level syntax structure in order to easily
identify which phase a rule belongs to.

– Refinement of transformation state implies a rule can use target elements
created by a rule of a previous phase.

– The execution order of phases should be specified.

To satisfy such requisites the following extension points have to be imple-
mented. First, syntax extensions are made in the form of two new keywords in
the transformation scope: ordering and phase. The ordering keyword makes it
possible to specify the order in which phases will be applied, while the phase
keyword expects a code block enclosing a set of rules. The example below shows
what the syntax looks like.

Now, we must identify which rule and algorithm extension points have to
be implemented. Considering the rule execution cycle, it is necessary to know
which phase a rule belongs to. Therefore, the after instantiation filter for
rules must be implemented to detect when a rule has been read and within
which phase.

Next, we must think about how the transformation algorithm is affected by
the phasing mechanism, that is, which algorithm extension points have to be
implemented. The first difference with the core algorithm is the way entry point
rules are applied. Every phase should have its own entry point rules, and these
are executed depending on the phase order. All this logic is implemented in the
entry point extension point (see Figure 2) overriding the previous logic related
to the transformation start.

Finally, rule refinement must be addressed. The same rule could be defined
in more than one phase but with a different mapping, and new instances are
created the first time the rule is applied for a given source element, but when
the rule is applied (in another phase) for the same source element, no new target
elements are created and the previous ones are used to evaluate the mapping
part of the rule. The convention used is that a rule with a name x in a phase A,
and a rule with a name x in a phase B are supposed to be the same, with x of
B being a refinement of x of A.

In order to do so, we need to redefine how rules are selected and evaluated
to resolve bindings. First, rule selection has to take into account that only rules
belonging to the current phase can be selected. Since we do not want to over-
ride the default behaviour of the select conforming rules extension point,
but only to remove those rules not belonging to the current phase, the select

346 J. Sánchez Cuadrado and J. Garćıa Molina

conforming rules filter could be used. The use of this filter is a good example
of reuse of previous logic (selection of conforming rules), but modifying the re-
sult to serve a new purpose. Finally, the evaluate conforming rules hook is
overridden to keep track of rule refinement, so that new target elements are not
created if they have been created by a rule in a previous phase.

Below, the class-to-table example is rewritten, applying the phasing mecha-
nism just explained.

ordering :default, :primary_keys, :foreign_keys

phase ’default’ do
rule ’klass2table’ do

from ClassM::Class
to TableM::Table
mapping do |klass, table|

table.name = klass.name
table.cols = klass.attrs.select{ |a| a.type.is_a?(ClassM::PrimitiveType) }

end
end

rule ’property2column’ do
from ClassM::Attribute
to TableM::Column
mapping do |attr, column|

column.name = attr.name
column.type = attr.type.name

end
end

end

phase ’primary_keys’ do
rule ’property2column’ do

from ClassM::Attribute
to TableM::Column
filter { |attr| attr.is_primary }
mapping do |attr, column|

column.owner.pkeys << column
end

end
end

phase ’foreign_keys’ do
rule ’klass2table’ do

from ClassM::Class
to TableM::Table
mapping do |klass, table|

table.cols = klass.attrs.select{ |a| ! a.type.is_a?(ClassM::PrimitiveType)}
end

end

rule ’reference2column’ do
from ClassM::Attribute
to Set(TableM::Column)

A Plugin-Based Language to Experiment with Model Transformation 347

mapping do |attr, set|
table = klass2table(attr.type)
set.values = table.pkeys.map do |col|
TableM::Column.new(:name => table.name + "_" + col.name, :type=>col.type)

end
table.fkeys = TableM::FKey.new(:cols => set)

end
end

end

As can be seen in the example, with the phasing approach, the problem of
safely navigating the target model explained in Section 2 is solved. As said
in Section 2, we should have chosen a more complex transformation example to
show the real usefulness of phasing, but use this simpler one for the sake of clarity.
The key point of this approach is that, in any phase, it can be known which target
element have been already created. In the example, the reference2column rule
can safely get all primary keys of a table because the previous phase has created
them. In addition, the phasing mechanism makes it easy to deal with complex
transformations requiring to be organized into more than one pass (it can be
thought of as a multi-pass transformation).

5 Related Work

Several classifications of model transformation approaches have been developed
[1][6]. According to these classifications, the different model-model approaches
can be grouped into three major categories: imperative, declarative and hybrid
approaches.

Some of the latest research efforts in model transformation languages are
ATL, Tefkat, MTF, MTL and Kermeta. MTL and Kermeta [13] are imperative
executable metalanguages not specifically intended to model-model transforma-
tion, but they are used because the versatility of their constructs provides high
expressive power. However, the verbosity and the imperative style of these lan-
guages make writing complex transformations difficult because they abstract
less from the transformation details and make transformations very long and
not understandable.

ATL is a hybrid language with a very clear syntax [3][14]. It includes several
kinds of rules that facilitate writing transformations in a declarative style. How-
ever, the complete implementation of the language is not finished yet, and at the
moment only one kind of rule can be used. Therefore it may be difficult to write
some transformations declaratively. ATL and RubyTL share the same main ab-
stractions, i.e. rule and binding, but ATL is statically typed, while RubyTL uses
dynamic typing.

Tefkat is a very expressive relational language which is completely usable [15].
As noted in [2], writing complex transformations in a fully declarative style is
not straightforward, and the imperative style may be more appropriate. That is
why a hybrid approach is a desirable characteristic for a transformation language
to help in writing practical transformation definitions.

348 J. Sánchez Cuadrado and J. Garćıa Molina

MTF [16] is a set of tools including a declarative language based on checking or
enforcing consistency between models. MTF provides a extensibility mechanism
to extend its syntax by plugging in a new expression language. To our knowl-
edge, RubyTL is the first extensible model transformation language in the sense
that it provides a mechanism to extend both its syntax and the transformation
algorithm. In any case, the idea of extensible language has been applied in other
domains [17][18], and it is widely used in the Lisp language which provides a
powerful macro system to extend its syntax.

6 Conclusions and Future Work

MDD approach will succeed only if proper model transformation languages are
available. These languages should have good properties, such as being usable and
able to provide appropriate expressiveness to deal with complex transformations.
In the last few years, several languages have been defined and quality require-
ments have been identified in proposals such as [2]. Nowadays, experimentation
with existing languages is a key activity of the MDD area.

RubyTL [4] is an extensible hybrid language that provides declarative ex-
pressiveness through a binding construct. It is a usable language with a clear
syntax and a good trade-off between conciseness and verbosity. Moreover, the
transformation style is close to the usual background of developers.

In this paper we have described how RubyTL provides a framework to ex-
periment with the features of the language through a plugin mechanism. When
a new language feature is going to be added, a new plugin is created. Creating
a plugin means identifying which extension points are involved before it is im-
plementation in the Ruby language. An example of transformation organized in
phases has illustrated the process of plugin design.

The contribution of this paper is twofold. On the one hand, RubyTL is an ex-
tensible model transformation language, which provides some advantages with
regard to other non extensible transformation languages: i) the language can
be adapted to a particular family of transformation problems, ii) new language
constructs can be added without modifying the core and iii) it provides an en-
vironment to experiment with language features. Moreover, we have proposed a
phasing mechanism to allow a transformation to safely navigate the target model.

However, a limitation of our approach is that extensibility is restricted to a
particular family of languages: those which rely on the binding concept. Since we
have identified the extension points directly from an algorithm with “holes”, only
languages following such a scheme can be implemented. Anyway, the same idea
can be reused to experiment with other kinds of languages. Another concern is
that, since which extensions are going to be developed is not known in advance,
the programmatic interface of the language should be as general as possible. At
present, we are exploring ways of controlling the scope of plugins changes, so
that incompatible extensions cannot be loaded at the same time.

In our experiments with the language, in addition to the phasing mecha-
nism, we have found some language features we believe essential in this kind of

A Plugin-Based Language to Experiment with Model Transformation 349

transformation languages. We have identified four different types of rules, each
one with some properties which help to solve certain transformation problems:
normal rules like the ones shown in this paper, top rules to allow a transfor-
mation to have more than one entry point, copy rules which can transform a
source element more than once, transient rules which are able to create ele-
ments that are only valid while the transformation is being executed. Moreover,
a transformation language should be able to deal with one-to-many and many-
to-one transformations. In this paper we have shown an example of one-to-many
mappings. We are currently experimenting with different ways of implementing
many-to-one mappings, since there are important performance concerns that
must be taken into account. Another consideration is that, in a hybrid language,
language constructs are needed to call rules explicity from imperative transfor-
mation code. Finally, an important property not found in many transformation
languages is incremental consistency. We are currently experimenting with dif-
ferent ways to achieve it.

We continue experimenting with RubyTL by writing transformations for real
problems, specifically we are applying MDD to portlets development. Also, we
are currently working on the integration of our transformation engine inside the
Eclipse platform by using RDT.1 At present, an editor with syntax highlighting,
a launcher for transformation definitions, a configuration tool for plugins, and a
model-to-code template engine is available.2

Acknowledgments

This work has been partially supported by Fundación Seneca (Murcia, Spain),
grant 00648/PI/04, and Consejeŕıa de Educación y Cultura (CARM, Spain),
grant 2I05SU0018. Jesús Sánchez enjoys a doctoral grant from the Spanish Min-
istry of Education and Science.

References

1. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Technique
in the Context of the Model Driven Architecture, Anaheim, October 2003.

2. Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A taxonomy of model
transformations, 2005.

3. Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine
Rougui. First experiments with the ATL model transformation language: Trans-
forming XSLT into XQuery. In OOPSLA 2003 Workshop, Anaheim, California,
2003.

4. Jesús Sánchez, Jesús Garćıa, and Marcos Menarguez. RubyTL: A Practical, Ex-
tensible Transformation Language. In 2nd European Conference on Model Driven
Architecture, volume 4066, pages 158–172. Lecture Notes in Computer Science,
June 2006.

1 http://rubyeclipse.sourceforge.net/
2 http://gts.inf.um.es/downloads

350 J. Sánchez Cuadrado and J. Garćıa Molina

5. Dave Thomas. Programming Ruby. The Pragmatic Programmers’ Guide. Prag-
matic Bookshelf, 2004.

6. Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Software, 20(5):42–45, Septem-
ber/October 2003.

7. Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer Hauser. Review of
OMG MOF 2.0 Query/Views/Transformations Submissions and Recommenda-
tions towards final Standard, 2003.

8. Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Lan-
guages?, June 2005. http://www.martinfowler.com/articles/languageWorkbench.
html.

9. Jim Freeze. Creating DSLs with Ruby, March 2006. http://www.artima.com/
rubycs/articles/ruby as dsl.html.

10. Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt. Call for Papers
of Model Transformations in Practice ’05, 2005.

11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, March 1995.

12. Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices
and Design Strategies. 2001.

13. Pierre Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet,
Frédéric Fondement, Philippe Studer, and Jean-Marc Jézéquel. On executable
meta-languages applied to model transformations. In Model Transformations In
Practice, Jamaica, 2005.

14. Frédric Jouault and Ivan Kurtev. Transforming models with ATL. In Model Trans-
formations in Practice Workshop, Montego Bay, Jamaica, 2005.

15. Michael Lawley and Jim Steel. Practical Declarative Model Transformation With
Tefkat. In Model Transformations In Practice Workshop, Montego Bay, Jamaica,
2005.

16. Sebastien Demathieu, Catherine Griffin, and Shane Sendall. Model Transfor-
mation with the IBM Model Transformation Framework, 2005. http://www-
128.ibm.com/developerworks/rational/library/05/503 sebas/index.html.

17. Terry A. Winograd. Muir: A Tool for Language Design. Technical report, Stanford,
CA, USA, 1987.

18. Macneil Shonle, Karl J. Lieberherr, and Ankit Shah. XAspects: An extensible
system for domain-specific aspect languages. In OOPSLA Companion, pages 28–
37, 2003.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 351 – 364, 2006.
© Springer-Verlag Berlin Heidelberg 2006

SiTra: Simple Transformations in Java

D.H. Akehurst1, B. Bordbar2, M.J. Evans2, W.G.J. Howells1,
and K.D. McDonald-Maier3

1 University of Kent
{D.H.Akehurst, W.G.J.Howells}@kent.ac.uk

2 University of Birmingham
B.Bordbar@cs.bham.ac.uk, mje33@cantab.net

3 University of Essex
kdm@essex.ac.uk

Abstract. A number of different Model Transformation Frameworks (MTF) are
being developed, each of them requiring a user to learn a different language and
each possessing its own specific language peculiarities, even if they are based
on the QVT standard. To write even a simple transformation, these MTFs
require a large amount of learning time. We describe in this paper a minimal,
Java based, library that can be used to support the implementation of many
practical transformations. Use of this library enables simple transformations to
be implemented simply, whilst still providing some support for more complex
transformations.

1 Introduction

Model Driven Engineering (MDE) or Model Driven Development (MDD) [7] is an
approach to software development in which the focus is on Models as the primary
artefacts in the development process. Central to MDD are Model Transformations,
which map information from one model to another. In general, we can view MDD as
a general principle for software engineering that can be realised in a number of
different ways (using different standards) and supported by a variety of tools. One of
the most common realisations of MDD is via the set of OMG standards known as
Model Driven Architecture (MDA) [25]. MDA, it is claimed, improves the software
development process by enhancing productivity, portability, interoperability and ease
of maintenance [20]. There are currently a variety of MDD tools that can be used to
implement transformations [29].

Specification and definition of a model transformation is a complex task. This
involves significant domain knowledge and understanding of both the source and
target model domains. Even when you understand both models, defining the mapping
between corresponding model elements is no easy task. Recently a variety of model
transformation specification languages have been developed e.g. [17, 22, 32]. These
languages are very rich and are used in various domains [9, 33, 37]. However, elegant
execution of the specifications is still a research issue in many cases and may require
significant manual intervention in order to provide an implementation.
Implementation of a model transformation requires a different set of skills to those
required for specifying a transformation and understanding the domain models.

352 D.H. Akehurst et al.

In a large project, it is possible to divide the specification and implementation
between two different groups of people who have relevant skills. In the case of
smaller groups of developers and newcomers to MDD, the combined effort involved
in becoming an expert in the two sets of skills described above is overwhelming. In
particular, the steep learning curve associated with current MDD tools is an inhibitive
factor in the adoption of MDD by even very experienced programmers.

To address this issue, the current paper describes a simple Java library for
supporting a programming approach to writing transformations, based on the
following requirements:

• Use of Java for writing transformations: This relinquishes the programmer
from learning a new language for the specification of transformations

• Minimal framework: To avoid the overhead of learning a new Java library, the
presented method has a very small and simple API

The presented method is not intended as a replacement for a full Model
Transformation Framework or as a model transformation specification language,
rather it is intended as a “way in” for experienced programmers to start using the
concepts of transformations rules, without the need to learn a new language, or get to
grips with a new framework of tools and development environments.

Our library enables transformations rules to be written using Java in a modular
fashion and includes the implementation of an algorithm to execute a transformation
based on those rules.

The next section of this paper provides some background on MDD. Section 3
introduces an example transformation task which is used in section 4 to aid the
description of the use of our simple transformation library. Sections 5 and 6 discuss
the Limitations of SiTra and compare it to other model transformations approaches.
The paper concludes in section 7.

2 Background

2.1 MDD

A model transformation is a program that takes as input a graph of objects and
provides as output another graph of objects. If we consider the development of a
program that provides a solution to this problem there are a number of alternative
ways to structure it.

A very basic (unstructured) approach would be to write a single function (or
method) containing a mix of loops and if statements that explore the input model, and
create objects for the output model where appropriate. Such an approach would be
widely regarded as a bad solution and it would be very difficult to maintain.

A better solution, from a programming perspective, would be to make use of a
programming pattern, such as the visitor pattern [14]. This provides a controlled way
to traverse a source model, and a sensible means to structure the code for generating
an output model. However, this pattern does have a few drawbacks. Firstly, the input
model must be implemented in such a way that is supports the visitor pattern (i.e. the
objects must implement a certain interface); an input model may well not support the

 SiTra: Simple Transformations in Java 353

required interfaces. Secondly, the visitor pattern is designed to navigate tree structures
rather than graphs.

A Model Transformation approach to structuring a solution would make use of the
following two concepts:

1. Transformer – the primary transformation object; it contains a collection
of rules, and manages the process of transforming source model objects
into target model objects.

2. Rule – a rule deals with specific detail of how to map an object from a
source model into an object of the target model. One or more rules may or
may be applicable for the same type of object and it is necessary to have a
means to determine the applicability of a rule for a specific object, not just
its type.

2.2 Model Transformations

Within the context of MDD, model transformation is the primary operation on models
that is talked about. However, it is not the only one; operations such as model
comparison, model merging etc are also considered, although these could be seen as
particular types of model transformation.

The concept of model transformations existed before QVT and even before MDA.
The following topics each address some aspect involving the notion of transforming
data from one form to another.

• Compiling Techniques [1]
• Graph Grammar/Transformations [11]
• Triple Graph Grammars [30]
• Incremental Parsers [16]
• Viewpoint framework tools [13]
• Databases, Update queries
• Refinement [10]
• XML, XSLT, XQuery [34-36]

To be literal about it, even simple straight forward programming is frequently used
as a mechanism for transforming data. This becomes more stylised when
programming patterns such as the Visitor pattern [14] are used as a way to visit data
in one model and create data in another.

Some techniques [4, 5, 27] base the transformation language on the notion of
relations. However, this too is a new application of the old ideas as originally applied
(for example) in the fields of databases (e.g. Update Queries) and System Specifi-
cation (or refinement) using the formal language Z [31] a language which is heavily
dependent on the notion of relations and their use for the manipulation of data.

The interesting aspect of the MDD approach to transformation is the focus on:

• Executable specifications; unlike the Z approach.
• Transforming models; models being viewed as higher level concepts than

database models and certainly higher level than XML trees.
• Deterministic output; the main problem with Graph Grammars is that they

suffer from non-deterministic output, applying the rules in a different order
may result in a different output.

354 D.H. Akehurst et al.

Much work on model transformation is being driven by the OMG’s call for
proposals on Queries, Views and Transformations (commonly known as QVT) [26].
There are a number of submissions to the standard with varying approaches, a good
review of which is given by [15] along with some other (independent) approaches
such as YATL [28], MOLA[18] etc. and earlier work such as [2].

There are a set of requirements for model transformation approaches given in [15],
of which, the multiple approaches it reviews, each address a different subset. As yet
there is no approach that addresses all of the requirements.

3 A Simple Transformation Library

Our simple transformation library consists of two interfaces and a class that
implements a transformation algorithm. The aim of the library is to facilitate a style of
programming that incorporates the concept of transformation rules. One of its
purposes is to enable the introduction of the concept of transformation rules
to programmers who are, as yet, unfamiliar with MDD; thus enabling the programmer
to stay with familiar tools and languages and yet move towards an MDD approach to
software engineering.

The two simple interfaces for supporting the implementation of transformation
rules in Java are summarised in Table 1. The Rule interfaces should be implemented
for each transformation rule written. The Transformer interface is implemented by the
transformation algorithm class, and is made available to the rule classes.

Table 1.

interface Rule<S,T> {
 boolean check(S source);
 T build(S source, Transformer t);
 void setProperties(T target, S source, Transformer t);
}
interface Transformer {
 Object transform(Object source);
 List<Object> transformAll(List<Object> sourceObjects);
 <S,T> T transform(Class<Rule<S,T>> ruleType, S source);
 <S,T> List<T> transformAll(Class<Rule<S,T>> ruleType,
 List<S> source);
}

Rules
A transformation problem is split up into multiple rules; our SiTra library facilitates
this using the Rule interface. A class that implements this interface should be written
for each of the rules in the transformation. The methods of this interface are described
as follows:

1. The implementation of the check method should return a value of true if the rule
is applicable to the source object. This is particularly important if multiple rules
are applicable for objects of the same type. This method is used to distinguish
which of multiple rules should be applied by the transformer.

 SiTra: Simple Transformations in Java 355

2. The build method should construct a target object that the source object is to be
mapped to. A recursive chain of rules must not be invoked within this method.

3. The setProperties method is used for setting properties of the target object
(attributes or links to other objects). Setting the properties is split from
constructing the target (where possible) so that we can recursively call rules
when setting properties.

If it is impossible to distinguish between multiple rules using the check method,
explicit rule invocation must be used to transform objects for which multiple rules
apply. Objects that are derived from properties of the source object should be
converted to objects for properties of the target object by calling the transform method
on the transformer. It is the job of the transformer algorithm to keep track of already
mapped objects, it is not necessary to be concerned about this when writing a rule.

Transformer
In order to use the rules, add the rule classes to an instance of the Transformer
interface and call the transform method with the root object(s) of the source model.

An implementation of the Transformer interface is provided with a class
SimpleTransformerImpl. It implements the simple transformation algorithm shown in
Table 2. The full implementation of this algorithm includes additional error handling,
not shown here for clarity of reading the algorithm rather than the error handling.

The four methods on the transformer interface are simply different convenience
mechanisms for invoking the same algorithm. Two facilitate explicit invocation of a
rule, and two facilitate the transformations of a list of source objects into a list of
target objects.

Table 2.

T transform(Class<Rule<S,T>> ruleType, S source) {
 List<Rule> rules = getRules(ruleType)
 for(Rule r: rules) {
 if (r.check(source)) {
 T tgt = getExistingTargetFor(ruleType, source);
 if (tgt==null) {
 tgt = r.build(source, this);
 recordMapping(ruleType, source, tgt);
 r.setProperties(tgt,source,this);
 }
 return tgt;
 }
 }
}

The transformation algorithm takes two parameters, the type of the rule to use and
the source object to transform. This provides an explicit transformation (i.e. the rule
to use is explicitly provided). Alternatively, implicit invocation can be used (an
alternative method on the Transformer interface) which passes the Rule interface as
the ruleType for this algorithm.

The getRules method retrieves (via reflection) a list of rule objects that conform to
the type of the passed ruleType. These rules are each checked to see if they are

356 D.H. Akehurst et al.

applicable to the source object (using the check method of the Rule interface). If the
rule is applicable, and the source object has not already been mapped using that rule
(the getExistingTargetFor method), then the build method of the rule is invoked in
order to construct the target object. This target is subsequently recorded by the
transformer so that future transformations of the same source object by the same rule
do not cause duplicate target objects. Finally the setProperties method on the rule is
invoked; having recorded the mapping between source and target previously, any
transformation request within setProperties that invokes the same rule on the same
source object will simply return the already built object, rather than trying to build a
new one and causing a non terminating recursive loop.

4 Case Study

To illustrate the use of our simple transformation library, we define an example
transformation problem based on the example addressed at the Model
Transformations in Practice workshop of MoDELS 2005 [8]. The next subsection
gives an overview of this example, followed by a subsection that discusses the use of
our library to provide an implementation.

4.1 Example Problem

This example requires the definition of a transformation from a simple class diagram
language into a relational database specification. The models for each of these
languages form the source and target models for the transformation. They are
illustrated below in Figure 1.

Class
name : String

Attribute
name:String
primary:Boolean

PrimitiveDataType
name : String

*

* type

Table
name : String

*

(a) (b)

Column
name:String
type : String

*
pKeys

Classifier
name : String

FKey

*

ref

Package Schema

* *

Fig. 1.

The detailed requirements of the transformation are summarised as follows, more
details can be read in the call for papers of the workshop [8]:

• Classes are to be mapped to tables
• Attributes are to be mapped to Columns in the table
• An attribute marked as primary forms part of the primary key of the table

 SiTra: Simple Transformations in Java 357

• The name of the attribute is the name of the column
• The type of the attribute, if it is a primitive data type, is to be the type of the

column
• If the type of the attribute is a class, then the attribute should be mapped to a set

of columns that are the primary key columns of the table corresponding to the
class. In this case the name of the columns should be formed by combining the
name of the attribute being mapped and the existing column name.

• The foreign keys of a table should be defined, in accordance with the columns
correspond to an attribute with a class type.

4.2 Using SiTra

We describe here a selection of different rule implementations that help us to illustrate
how to write rules of differing complexity. We use the above example as the problem
for which the rules are written. The full implementation of the problem can be
downloaded from [3].

Simple Rule
A very simple rule to implement is one that maps one object and its attributes directly
onto another, i.e. a very simple Class to Table transformation rule. The SiTra
implementation for such a rule could be written as indicated in Table 3.

Table 3.

class Class2Table implements Rule<Class,Table> {
 ...
 public Table build(Class cls, Transformer t) {
 Table tbl = new Table(cls.getName());
 return tbl;
 }
 public void setProperties(Table tbl, Class cls, Transformer t) {
 for(Attribute att: cls.getAttribute()) {
 tbl.addColumn(new Column(att.getName(),
 att.getType().getName())
);
 }
 return tbl;
 }
}

This rule is very simple and does not fully adopt the concepts of transformation
rules. The code correctly constructs a corresponding table object for the source class
object. The name of the table object has to be set within the build method as the
constructor for table objects requires the table name as an argument.

However, the rule explicitly carries out the construction of column objects for each
attribute. Using the concept of model transformation rules, this mapping should be
carried out by a separate rule.

As a separate rule it could be reused in a different context (e.g. for determining a
set of primary keys); as it is currently we would have to repeat the code for mapping
attributes to columns if we wished to reuse it.

358 D.H. Akehurst et al.

Facilitating Rule Reuse
To illustrate the reuse of a rule, we extend the Class2Table rule to require it to set the
property on the table objects that indicates which columns are primary keys. In the
simple class diagram model, there is a property on the Attribute class for indicating
which attributes should be considered primary; and in the RDB model there is a
property on the Table class which indicates a set of columns that define the primary
key.

We split the mapping code into two rules, one for classes to tables and one for
attributes to columns. The new Class2Table rule only contains code that concerns
constructing a table object and setting its properties. All the code regarding
constructing and setting properties of columns is moved to a new Attribute2Column
rule. These rules are shown in Table 4.

Table 4.

class Class2Table implements Rule<Class, Table> {
 ...
 public Table build(Class cls, Transformer t) {
 Table tbl = new Table(cls.getName());
 return tbl;
 }
 public void setProperties(Table tbl, Class cls, Transformer t) {
 tbl.setColumn((List<Column>)t.transformAll(cls.getAttribute()));
 List<Attribute> primAtts;
 ... // select attributes from cls with ‘getPrimary()==true’
 tbl.setPKeys((List<Column>)t.transformAll(primAtts));
 return tbl;
 }
}
class Attribute2Column implements Rule<Attribute,Column> {
 public Column build(Attribute att, Transformer t) {
 Column col = new Column(att.getName(), att.getType().getName());
 return col;
 }
 ...
}

The transformation of attributes to columns, and thus the invocation of the
Attribute2Column rule, is caused by calls to the transformer (shown in bold type),
which request the transformation of a list of attributes. The Attribute2Column rule is
reused in the Class2Table rule, rather than explicitly constructing columns as in the
previous version. In fact, the transformation algorithm will determine whether or not
to invoke the Attribute2Column rule, depending on whether or not it has already
recorded a mapping for each source attribute object.

Hierarchy of Rules
The ability to write rules and reuse them is sufficient for most simple transformations.
However, to support slightly more complex transformation problems, we can
introduce a notion of a hierarchy into the rules, thus enabling us to implement
situations as follows.

 SiTra: Simple Transformations in Java 359

The example requires us to have two mechanisms for mapping attributes onto
columns:

1. If an attribute has a type that is a primitive data type, perform the mapping as
before.

2. If the type of an attribute is a class, then we map the attribute to a collection of
columns, created from the primary key attributes of the class type. The names of
the columns must be constructed from the original attribute name, and the
names of the primary key attributes of the class type. This mapping process may
of course be recursive, and the primary keys may have a type that is a class.

This requirement requires that we alter the Attribute to Column mapping rule,
rather than mapping an attribute to a single column, we map an attribute to a set of
columns; and we define two separate mapping rules:

• PrimitiveTypeAttribute2SetColumn
• ClassTypeAttribute2SetColumn.

The Class2Table rule does not need to know which of these rules is being used for
a particular attribute; it simply calls the transformer, requesting the transformation of
attributes into sets of columns, much as before, but now we must flatten the returned
list of sets of columns.

Although a primitive data type attribute always maps to a single column, the
transformation is made simpler by treating the two rules the same. We can define a
common ‘super’ rule (a common super type) for the two rules; the intention is to
ensure that the target (and source) types of each sub rule are conformant. The
common rule and sub rules are defined as shown in Table 5.

Table 5.

abstract class Attribute2SetColumn
 implements Rule<Attribute, Set<Column>> {
}
class PrimitiveTypeAttribute2SetColumn extends Attribute2SetColumn {
 public boolean check(Attribute att) {
 return att.getType() instanceof PrimativeDataType;
 }
 ...
}
class ClassAttribute2SetColumn extends Attribute2SetColumn {
 public boolean check(Attribute att) {
 return att.getType() instanceof Class;
 }
 ...
}

As you can see in the code, the check method for the two sub rules is different, and
this is used by the transformer to determine which rule to invoke for each attribute.

Explicit Rule Invocation
Another more complex feature, useful when defining model transformations, is the
ability to explicitly invoke a specific rule (or super rule) for a particular source object.

360 D.H. Akehurst et al.

In fact, based on our experience, we prefer to always invoke rules explicitly wherever
possible as this means that the transformation algorithm operates more efficiently, we
have a clearer vision of where recursive rule invocation may be occurring, and the
Java generics mechanism handles casting the result of the transform method.

In the example, a table may contain many foreign keys, and each foreign key
should reference the table for which its set of columns forms a key. Our mapping
from class to table must also set the collection of foreign keys for a table, in addition
to setting the table’s primary keys and columns. The foreign keys for a table can be
created by mapping attributes onto FKey objects.

The difficulty here is that attributes are already mapped onto a set of columns (by
the Attribute2SetColumn rule). We are now requiring a second rule (Attribute2FKey)
that also maps class type attributes, but onto different target objects.

The transformer currently has no way of knowing which of these rules it should
use when asked to transform a source object of type Attribute. Both rules are needed,
but used at different times. There is no way to distinguish between them using
properties of the source object and the check method.

The only solution is to explicitly inform the transformer of which rule we wish to
use. (In this specific case there is another way to perform the transformation without
specifying the rule, but it is messy.)

Table 6 illustrates a version of the Class2Table rule that make use of explicit rule
invocation, by calling the transform method and passing the type of the rule we wish
to invoke.

Table 6.

class Class2Table implements Rule<Class,Table> {
 ...
 public Table build(Class cls, Transformer t) {
 Table tbl = new Table(cls.getName());
 return tbl;
 }
 public void setProperties(Table tbl, Class cls, Transformer t) {
 for(Set<Column> cols:
 t.transformAll(Attribute2SetColumn.class,cls.getAttribute()) {
 tbl.getColumn().addAll(cols);
 }
 List<Attribute> primAtts;
 ... // select attributes from cls with ‘getPrimary()==true’
 for(Set<Column> cols:
 t.transformAll(Attribute2SetColumn.class, primAtts){
 tbl.getPKeys().addAll(cols);
 }
 tbl.setFKey(t.transformAll(Attribute2FKey.class,
 cls.getAttribute()));
 return tbl;
 }
}

The code highlighted in bold type shows the explicit invocation of transformation
rules.

 SiTra: Simple Transformations in Java 361

5 Limitations of SiTra

The primary purpose of SiTra is to be simple. Some of the limitations can be over
come by extending the transformer interface, but we feel that this would violate our
primary objective of a “simple” transformation approach. This of course has a cost,
specifically that there are limitations in that we cannot tackle some of the more
complex transformation problems.

One of the more general limitations regards a situation in which there is more than
one rule that should map to the same target object. There is no way to determine,
using SiTra, which of the rules should construct the target object. It is necessary for
the designer of the transformation to decide which rule should construct the object;
the others must retrieve it using that rule.

Another limitation is regarding the recursive invocation of rules. We facilitate this
by splitting the construction and setting properties of a target object. However, there
is no means to enforce this, and there are potential design issues regarding situations
in which some properties may need to be set in the build method and some not.

These limitations are associated to fairly complex transformation problems, and
given the main aim of SiTra as a tool to support the implementation of simple
transformations, they are not considered to be failings of SiTra, and they are simply
acceptable limitations given the primary purpose of the library.

6 Comparison

The example transformation was addressed by a number of different submissions to
the MTIP workshop [8]. Using these submissions we can provide a comparison with
the approach described in this paper. As stated in the introduction, the library
described in this paper is not intended as a replacement for a full Model
Transformation Framework or as a model transformation specification language,
rather it is intended as a “way in” for experienced programmers to start using the
concepts of transformations rules, without the need to learn a new language, or get to
grips with a new framework of tools and development environments.

Given this purpose it can be argued that a comparison between SiTra and the
existing transformation languages and frameworks is not really appropriate. However,
it is interesting to note what can and can’t be achieved with SiTra in relation to these
other approaches.

The graph transformation approaches [21, 32] have many merits with respect to
formalism and a long history of us. However, they require a significant amount of
new material to be learnt for novice users and also require significant libraries and
development environments in terms of supporting framework. The source and target
models are expressed using the notion of graphs, where as with SiTa, the source and
target models are simple Java objects. The transformations specification use similar
concepts of rules but require a new language to be learnt for writing them, rather than
the SiTra approach of using a programming language directly.

The declarative rule based approaches [4, 17, 22] suffer many of the same
problems. They all require a specific model transformation specification language to
be leant. Tefkat [22] and ATL [17] are both supported by a transformation engine and
environment similar in concept to our Transformer implementation class (as the

362 D.H. Akehurst et al.

engine) and a Java IDE (as the environment), although in a much more heavyweight
manner than SiTra.

Our Java based environment does not of course provide any specific support for
debugging transformations; debugging has to be done via Java debugging tools,
which are sufficient, however do make debugging a little more complex as one has to
debug the rules via the internal workings of the Transformer class.

The imperative approaches [19, 23, 24] are perhaps the most similar to SiTra in
terms of the style of writing a transformation rule. However, they too, all expect the
transformation writer to learn a new language, and require use of a bespoke
environment in which to execute the transformations.

7 Conclusion

The primary conclusion of the paper is that simple transformations can be
implemented simply. It is unnecessary to have a huge MTF framework in order to
solve a simple problem. Larger MTFs are useful for more complex situation when a
full Model Driven Development environment is used; however, for simple
transformations a simple framework is sufficient.

Model transformations are a new concept and introducing them to engineers
unfamiliar with MDD can be problematic. By using a programming language as the
basis for writing transformation rules, we eliminate one of the barriers to learning the
concept of software engineering via transformations, namely that of learning a new
language.

This paper has illustrated the use of a small code library as the basis to support
development of a model transformation. This approach includes mechanisms for rule
reuse, sub typing of rules, alternative transformation algorithms, and is not
constrained by a specific model repository implementation.

SiTra is obviously not a declarative approach to model transformation; it is
definitely an imperative approach, based on the underlying programming language of
Java. It supports the explicit or implicit invocation of specific transformation rules;
source and target objects can be single objects or collections of objects. It is design to
support single direction transformations, with no support for iterative or active
transformations. In essence it is designed to support the simplest kinds of
transformation, primarily as a means to aid a programmer in learning the concept of
writing transformation rules. However, we have found it to be a very useful and
effective mechanism for implementing a number of transformations, and made serious
use of it as a means to implement transformations as part of other projects.

In addition to the example illustrated in this paper the authors have been making
effective use of this library to support other transformation applications such as:
OWL-S to BPEL [12]; UML State diagrams to VHDL [6]; diagrams to abstract
syntax of State Diagrams; and XML to XMI.

Acknowledgements

This research is supported at the University of Kent though the European Union
ERDF Interreg IIIA initiative under the ModEasy grant.

 SiTra: Simple Transformations in Java 363

References

1. Aho, A., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison
Wesley. ISBN 0201100886 (1986)

2. Akehurst, D.H.: Model Translation: A UML-based specification technique and active
implementation approach. Computing. University of Kent at Canterbury, Canterbury
(December 2000)

3. Akehurst, D.H., Bordbar, B.: SiTra. 2006. http://www.cs.bham.ac.uk/~bxb/SiTra.html
4. Akehurst, D.H., Howells, W.G., McDonald-Maier, K.D.: Kent Model Transformation

Language. Model Transformations in Practice Workshop, part of MoDELS 2005, Montego
Bay,Jamaica (October 2005)

5. Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to defining and
implementing transformations between metamodels. Journal on Software and Systems
Modeling 2 (November 2003) 215

6. Akehurst, D.H., Uzenkov, O., Howells, W.G., McDonald-Maier, K.D.: Compiling UML
State Diagrams into VHDL: An Experiment in Using Model Driven Development.
ACM/IEEE 9th International Conference on Model Driven Engineering Languages and
Systems (formerly the UML series of conferences), Genova, Italy (submitted)

7. Berre, A., Hahn, A., Akehurst, D.H., Bezivin, J., Tsalgatidou, A., Vermaut, F., Kutvonen,
L., Linington, P.F.: State-of-the art for Interoperability architecture approaches. InterOP
Network of Excellence - Contract no.: IST-508 011, Deliverable D9.1 (November 2004)

8. Bezivin, J., Rumpe, B., Schurr, A., Tratt, L.: Call for Papers. Model Transformations in
Practice Workshop, part of MoDELS 2005, Montego Bay, Jamaica (August 2005)

9. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services.
Conceptual Modelling for Advanced Application Domain. Springer Verlag, Shanghai,
China (2004)

10. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer-Verlag, Berlin, Germany. ISBN 1-85233-245-X (2001)

11. Ehrig, H., Engels, G., Kerowski, H.-J., Rozenberg, G.: editors Handbook Of Graph
Grammars And Computing By Graph Transformation Volume 2: Applications, Languages
and Tools. World Scientific (1999)

12. Evans, M., Bordbar, B., Akehurst, D.H.: Model tranformation from OWLs to BPEL: a case
study. The 9th IEEE International EDOC Conference (EDOC 2005), Hong Kong
(submitted)

13. Finkelstein, A., Kramer, J., Nuseibah, B., Finkelstein, L., Goedicke, M.: Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. International
Journal of Software Engineering and Knowledge Engineering 2 (March 1992) 31-58

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley. ISBN 0201633612 (1995)

15. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0 Query /
Views / Transformations Submissions and Recommendations towards the final Standard.
OMG, ad/03-08-02 (2002)

16. Ghezzi, C., Mandrioli, D.: Incremental Parsing. ACM Transactions on Programming
Languages and Systems 1 (1979) 564-579

17. Jouault, F., Kurtev, I.: Transforming Models with ATL. Model Transformations in Practice
Workshop at MoDELS 2005, Montego Bay, Jamaica (October 2005)

18. Kalnins, A., Barzdins, J., Celms, E.: Basics of Model Transformation Language MOLA.
Workshop on Model Driven Development (WMDD 2004), Oslo, Norway (June 2004)

364 D.H. Akehurst et al.

19. Kalnins, A., Celms, E., Sostaks, A.: Model Transformation Approach Based on MOLA.
Model Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica
(October 2005)

20. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture--
Practice and Promise. Addison-Wesley. ISBN 032119442X (2003)

21. Konigs, A.: Model Transformations with Tripple Graph Grammars. Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica (October
2005)

22. Lawley, M., Steel, J.: Practical Declarative Model Transformation With Tefkat. Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica (October
2005)

23. Muller, P.-A., Fleurey, F., Vojtisek, D., Drey, Z., Pollet, D., Fondement, F., Studer, P.,
Jezequel, J.: On Executable Meta-Languages applied to Model Transformations. Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica (October
2005)

24. Murzek, M., Kappel, G., Kramler, G.: Model Transformation in Practice Using the BOC
Model Transformer. Model Transformations in Practice Workshop at MoDELS 2005,
Montego Bay, Jamaica (October 2005)

25. OMG: Model Driven Architecture (MDA). Object Management Group, ormsc/2001-07-01
(July 2001)

26. OMG: Request for Proposal: MOF 2.0 Query / Views / Transformations RFP. Object
Management Group, ad/2002-04-10 (April 2002)

27. OMG: Revised submission for MOF 2.0 Query / Views / Transformations RFP (ad/2002-
04-10), QVT-Merge Group, Version 1.0. Object Management Group (April 2004)

28. Patrascoiu, O.: YATL:Yet Another Transformation Language. 1st European MDA
Workshop, MDA-IA, University of Twente, the Nederlands (January 2004) 83-90

29. PlanetMDE. http://planetmde.org/
30. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Tinhofer,

G. (ed.): WG'94 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science,
Vol. 903. LNCS, Springer Verlag, Herrsching, Germany (June 1994) 151-163

31. Spivey, J.M.: The Z Notation: a reference manual. Prentice Hall (out of print, available at
http://spivey.oriel.ox.ac.uk/~mike/zrm/). ISBN 0139785299 (2001)

32. Taentzer, G., Ehrig, K., Guerra, E., Lara, J., Lengyel, L., Levendovszky, T., Prange, U.,
Varro, D., Varro-Gyapay, S.: Model Transformations by Graph Transformations: A
Comparative Study. Model Transformations in Practice Workshop at MoDELS 2005,
Montego Bay, Jamaica (October 2005)

33. Vela, B., Acuna, C.J., Marcos, E.: A Model Driven Approach for XML Database
Development. ER 2004: 23rd International Conference on Conceptual Modeling. Springer,
Shanghai, China (November 2004)

34. W3C: XSL Transformations (XSLT) Version 1.0. Clark, J. (ed.). W3C Recomendation,
REC-xslt-19991116 (November 1999)

35. W3C: XML 1.1. Yergeau, F., Cowan, J., Bray, T., Paoli, J., Sperberg-McQueen, C.M.,
Maler, E. (eds.). W3C Recomendation, REC-xml11-20040204 (April 2004)

36. W3C: XQuery 1.0 and XPath 2.0 Data Model (XDM). Fernandez, M., Malhotra, A.,
Marsh, J., Nagy, M., Walsh, N. (eds.). W3C Candidate Recomendation, CR-xpath-
datamodel-20051103 (November 2005)

37. White, J., Schmidt, D.C., Gokhale, A.: Simplifying Autonomic Enterprise Java Bean
Applications Via Model-Driven Development: A Case Study.: MoDELS, Montego Bay,
Jamaica (October 2005)

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 365 – 379, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Analysis and Visualization of Behavioral Dependencies
Among Distributed Objects Based on UML Models

Vahid Garousi1, Lionel C. Briand1,2, and Yvan Labiche1

1 Software Quality Engineering Laboratory (SQUALL)
Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada
{vahid, briand, labiche}@sce.carleton.ca

2 Simula Research Laboratory, Department of Software Engineering
Martin Linges v 17, Fornebu, P.O. Box 134, 1325 Lysaker, Norway

Abstract. The development of Behavioral Dependency Analysis (BDA) tech-
niques and the visualization of such dependencies have been identified as a high
priority in industrial Distributed Real-Time Systems (DRTS). BDA determines
the extent to which the functionality of one system entity (e.g., an object, a
node) is dependent on other entities. Among many uses, a BDA is traditionally
used to perform risk analysis and assessment, fault tolerance and redundancy
provisions (e.g. multiple instances of a system entity) in DRTS. Traditionally,
most BDA techniques are based on source code or execution traces of a system.
However, as model driven development is gaining more popularity, there is a
need for model-based BDA techniques. To address this need, we propose a set
of procedures and measures for the BDA of distributed objects based on behav-
ioral models (UML sequence diagrams). In contrast to the conventional code-
based and execution-trace-based BDA techniques, this measure can be used ear-
lier in the software development life cycle, when the UML design model of a
system becomes available, to provide engineers with early insights into depend-
encies among entities in a DRTS (e.g., early risk identification). We also pre-
sent a dependency visualization model to visualize measured dependencies. Our
approach is applied to a case study to show its applicability and potential use-
fulness in predicting behavioral dependencies based on UML models.

1 Introduction

Distributed Real-Time Systems (DRTS) are becoming more important to our every-
day life. Examples include command and control systems, aircraft aviation systems,
robotics, and nuclear power plant systems [20]. However, the development and test-
ing of such systems is difficult and takes more time than for systems without real-time
constraints or distribution.

Behavioral Dependency Analysis (BDA) determines the extent to which the func-
tionality of one system entity is dependent on other entities. The development of BDA
techniques and the visualization of dependencies have been identified as a high prior-
ity in industrial DRTS, such as avionics systems [13]. Among many uses, a BDA is
used to perform risk analysis and assessment [21], fault tolerance and redundancy

366 V. Garousi, L.C. Briand, and Y. Labiche

provisions (e.g. multiple instances of a system entity) [19], software clustering [23],
and complexity measurement [14]. For instance, incorporating fault tolerance and
redundancy provisions for all the entities of a DRTS is impossible from cost and re-
source points of view. When resources are limited, unavailability provisions should be
made only for the most critical entities, on which other entities of a system are the
most dependent. However, determining the most critical entities of a system is not a
trivial task [13]. BDA is a technique which can help developers to achieve such goals.

Furthermore, BDA information can help developers generate a cost-effective test
order of entities in unavailability robustness testing of a System Under Analysis
(SUA). Unavailability robustness testing is to simulate the unavailability of each
entity and verify a system’s robustness in such a scenario. If a system consists of
thousands of entities and millions of operations among them, the unavailability ro-
bustness testing of all of the entities and operations is infeasible. Thus, to be cost-
effective, the entities on which other entities are the most dependent on should be
tested first. BDA can also be helpful in such applications.

Based on the source of information used to perform a BDA, we can divide the
BDA techniques into three groups: code-based, execution-trace-based, and model-
based. Code-Based BDA (CBBDA) (e.g. [17]) and Execution-trace-Based BDA
(EBBDA) (e.g. [5]) are traditional BDA approaches, that rely on the available source
code or execution traces of a system. They have been greatly used in the software
engineering literature for a variety of purposes (e.g. [12, 14]): program optimization,
program comprehension, testing, debugging, maintenance, and evolution.

We define Model-Based BDA (MBBDA) to be the derivation of behavioral depend-
ency information from the design model of a software system (for instance defined
using UML [18]). There has been a few works [11, 13] on MBBDA and in particular
on UML-based BDA. UML provides ways to model the behavior of an OO system
using interaction (sequence and collaboration) diagrams, and therefore, performing a
BDA from behavioral UML diagrams should be investigated. The motivation of our
work is twofold: (1) When and where is MBBDA preferable over CBBDA and
EBBDA? and (2) What are open issues in the related MBBDA works that must be
addressed by a comprehensive MBBDA technique? Note that the current work is
based on UML models but assumes that message exchanges in models are consistent
with their implementation so as to provide engineers meaningful BDA information.

To derive behavioral dependency measures between two distributed objects, we
perform a systematic analysis of messages exchanged between them in a set of se-
quence diagrams (SDs). For example, when an object sends a synchronous message to
another object and waits for a reply, we define the former object to be behaviorally
dependent on the latter. This article provides a precise methodology to perform such
analysis, proposes a number of measures, describes a tool developed to automate our
technique, and reports on a case study using this tool.

The rest of this article is structured as follows. Related works are presented in Sec-
tion 0. An overview of the approach is presented in Section 0. Section 0 presents our
dependency analysis methodology and an overview of our tool. The application of our
methodology to a case study system is presented in Section 0. Finally, Section 0 con-
cludes the article and discusses some of the future research directions.

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 367

2 Related Works

Most of the existing model-based dependency analysis techniques analyze structural
dependency information. This group of works relate to a research area which is re-
ferred to as Impact Analysis and Change Management in UML models by the authors
of [2]. However, very few works [11, 13] have been reported on MBBDA. Given size
constraints, we focus here on this latter category of works and the reader is referred to
[7] for a wider scope discussion.

Hatcliff et al. [13] propose a Component Architecture Development ENvironment
for Avionics systems (CADENA). Among capabilities provided by CADENA for the
development of CORBA component model-based systems, is a dependency analyzer.
The technique allows tracing inter/intra-component event and data dependencies by
building a Port Dependence Graph (PDG), where each node is a component/port pair
and dependencies (i.e., edges) between nodes show inter/intra-component dependen-
cies. The dependency heuristics of [13] are the followings: For inter-component de-
pendencies, when there is an event flow from a component/port pair c2.p2 to another
pair c1.p1 in the component description, it is said that c1.p1 is event dependent on c2.p2.
For intra-component dependencies, a component/port pair c.p1 is defined to be trigger
dependent on c.p2 if p2 can trigger p1.

Gu et al. [11] propose a model-based approach to system-level dependency analy-
sis in component-based embedded systems. A tool called AIRES (Automatic Integra-
tion of Reusable Embedded Software) is the focus of the article. Similar to [13], this
work also uses a PDG as dependency analysis model, with two modifications: (1)
nodes of a PDG are only ports, instead of being component/port pairs; and (2) an edge
has a weight which is equal to the execution rate of the ports that the edge connects
multiplied by the size of data transferred at each execution cycle. However, [11] does
not clearly define what an execution cycle is, nor does it further discuss dependency
weights. The authors further define a similar graph representation to PDG, referred to
as Component Dependency Graph (CDG), for analyzing dependencies among com-
ponents. A CDG captures dependency information at a higher level of abstraction, at
the component-level instead of port-level, hiding all the intra-component dependen-
cies. It is claimed a CDG can be derived directly from PDGs. The dependency heuris-
tic between ports and components in [11] is similar to that in [13]. But the authors do
not provide a concrete example of a CDG in the paper.

The techniques in [11, 13] are based on structural/architectural models that are not
based on UML. As UML is commonly used in the development of non-real-time,
non-distributed systems and is gaining popularity in the DRTS community, there is a
need for UML-based BDA techniques. Among UML models, behavioral models are
interesting to support a MBBDA since they provide information on runtime depend-
encies.

Furthermore, we need a hierarchical representation of dependency information
among entities in DRTSs (objects, nodes, and networks). As these entity types are
usually deployed hierarchically in DRTSs (i.e., several objects per node, several
nodes per network), a hierarchical BDA model seems particularly fit as a visualization
mechanism for developers and system analysts. Furthermore, most of the existing
BDA works consider binary or enumerated measurement domains for measured de-
pendency weights. The work in [11] seems to be the only MBBDA work which

368 V. Garousi, L.C. Briand, and Y. Labiche

briefly mentions a continuous measurement domain (real values) for dependency
weights: “The weight of an edge is equal to the execution rate of the ports that it con-
nects multiplied by the size of data transferred”. Continuous dependency measure-
ment on ratio scales would greatly facilitate any subsequent, quantitative analysis.

Last, an accurate MBBDA can be performed by defining message weights in SDs
(Section 0). No BDA work in the literature has considered message weights when
analyzing behavioral dependencies. The work reported in this article aims to address
the abovementioned issues. In the remainder of this article, when dependency is men-
tioned, it implicitly means behavioral dependency, unless otherwise mentioned.

3 An Overview of Our Approach

An overview of our approach is depicted using an activity diagram in Fig. 1. The
technique takes in the UML model of a system, analyzes the behavioral dependencies
among the distributed objects in the model, and then generates, as output, a set of
dependency measures (Section 0) and a Hierarchical Dependency Graph (HDG)
(Section 0) to visualize dependencies. An HDG can be used by different visualization
techniques to perform different analyses (Section 0). The input UML model consists
of behavioral models (sequence diagrams) and a Network Deployment Diagram
(NDD) modeling the system topology. If an operational profile of a system is avail-
able, a more accurate dependency analysis can be performed (Section 0).

«Model Processor»Input system model

Network Deployment Diagram

Behavior Models
(Sequence Diagrams) Model-Based Behavioral

Dependency Analysis
(MBBDA)

Dependency measures

Operational Profile

Hierarchical
Dependency Graph

(HDG)

Visualization
techniques

(e.g., clustering)

Other types of graphs
based on dependencies

Fig. 1. An Overview of our Approach

Sequence diagrams (SDs) are standard in mainstream UML-based development
methodologies. A NDD is our extension to standard UML 2.0 deployment diagram and
is needed to describe the distributed architecture of the SUA. This concept is described
in Fig. 2-(a) as a metamodel. Such network information is paramount as one of our
objectives is to analyze dependencies on different networks and nodes. An example of
a distributed architecture appears in Fig. 2-(b) which shows networks in a hierarchical
structure (each network can have many subnets and only one supernet), nodes belong-
ing to networks, and objects distributed on nodes, e.g., node1 hosts three objects (o1,1 …
o1,3). Each node is connected to other nodes through several network paths (in general).
A path is a sequence of networks. For example, node1 is connected to node3 through the
network path <Network1, SystemNetwork, Network2> in Fig. 2-(c).

We want to describe such a distributed architecture using UML 2.0 so as to be able
to use it as an input for our dependency analysis in the context of UML-based devel-
opment. Modeling a hierarchical set of networks and their inter-connectivity is not
directly addressed in the UML 2.0 specification [18]. We therefore extend UML 2.0

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 369

deployment diagrams by adding two stereotypes to the node notation: «network» and
«node». We thus identify the type of an entity as a network or a node. Furthermore,
association roles supernet and subnet are used to model the containment relationships
between super and sub-networks. As an example, the architecture in Fig. 2-(b) is
modeled by the NDD in Fig. 2-(c).

Fig. 2. (a): A metamodel for distributed architectures. (b): An example distributed architecture.
(c): The corresponding Networks Deployment Diagram (NDD).

4 Dependency Analysis

Our dependency analysis methodology is presented in this section. Basic definitions
are given in Section 0. We then present a set of MBBDA measures: (Direct) Depend-
ency Index (Section 0) measures the intensity of a direct dependency from one object
to another one, whereas Transitive Dependency Index (defined in [7]) measures indi-
rect dependencies among objects via intermediate objects. The above two measures
are our simplest measures, and we can be used when no message weighting informa-
tion is available. We then define in Section 0 a set of five more advanced measures
(based on five message weighting mechanisms). For example, we can assign a higher
dependency value between two objects if messages with large sizes of data are ex-
changed between them. Section 0 presents how measured dependencies can be visual-
ized, how graph visualization techniques can be applied in our context, and the tool
we have developed to automate our technique.

4.1 Formalizing SD Messages

In order to determine the dependency between a pair of distributed objects, our tech-
nique needs to analyze SD messages. Thus, in order to precisely define how we per-
form BDA, we formally define SD messages in a way similar to the tabular notation
for SDs proposed by UML 2.0 (Appendix D.1 of [18]). Each SD message, in the de-
sign model of a distributed system, can be represented as a tuple message=(sender,
receiver, methodOrSignalName, msgSort, parameterList, returnList, msgType) where:

- sender denotes the sender of the message and is itself a tuple of the form
sender=(object, class, node), where: object is the object name of the sender; class is
the class name of the sender; and node is where the sender is deployed.

- receiver denotes the receiver and is itself a tuple of the same form as sender.

370 V. Garousi, L.C. Briand, and Y. Labiche

- methodOrSignalName is the name of the method or the signal class name.
- msgSort denotes the type of communication reflected by the message, and can be

either synchCall (synchronous call), asynchCall (asynchronous call), or asynchSig-
nal (asynchronous signal) [18].

- parameterList is the list of parameters for call messages. It is a sequence of the
form <(p1, C1, in/out), ..., (pn, Cn, in/out)>, where pi is the i-th parameter name of
class type Ci and in/out defines the kind of the parameter. If the method call has no
parameter, this set is empty.

- returnList is the list of return values on reply messages. UML 2.0 assumes that
there may be several return values for a reply message. returnList is a sequence
<(var1=val1,C1), …, (varn=valn,Cn)>, where vali is the return value for variable vari
with type Ci.

- msgType distinguishes between signal, call and reply messages. Although msgSort
can be used to distinguish signal and call messages, the UML metamodel does not
provide a built-in way to separate call and reply messages. A discussion of the
problem and an approach to distinguish call and reply messages can be found in [8].

4.2 Dependency Index

There can be three types of messages in SDs: synchronous, asynchronous, and reply;
and we assume that if an object sends a synchronous message or an asynchronous
message with a reply1 to another object, this indicates that the former (the dependant
object) is behaviorally dependent on the latter (the antecedent object). This stems
from the fact these are the only two situations where the sender of a message is ex-
pecting a reply from the receiver, and thus is dependent on the availability (liveliness)
of the receiver. Note that the rationale for choosing message passing as our behavioral
dependency (BD) heuristic is consistent with the definition of BD in software engi-
neering: BD exists when a code/model entity requires a service from another entity in
order to execute its own function. In asynchronous messages without a reply, the
sender sends the message and does not wait for any result or acknowledgment and thus
is not dependent on whether the receiver of the message is available (live) or not2. Note
that although we do not consider such messages in our BDA technique, failures due to
the unavailability of the receiver objects of such messages might lead to unpredictable
results in a SUA, which have to be further investigated. An approach based on OCL to
determine if an asynchronous message has a reply is presented in [7].

We define the Dependency Index (DI) measure to quantify the dependency inten-
sity between a dependant and an antecedent entity. Its input domain is Dependant ×
Antecedent where Dependant = Nodes ∪ Objects and Antecedent = Nodes ∪ Objects
∪ Networks; Nodes, Objects and Networks being the set of nodes, objects and net-
works in the SUA. Networks are not included in the Dependant set because they are

1 Note that an asynchronous message may or may not have a corresponding reply message.

However, every synchronous message must have a reply message.
2 Though two objects may asynchronously communicate through a data structure object (e.g.,

mailbox), in the design sequence diagrams such level of details is typically not represented.
This will usually be represented as asynchronous messages (with replies) from each object to
the other. This case is accounted for in our definition.

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 371

not active entities (can not initiate an activity), and therefore defining a dependency
relationship from a network to a node or object is not relevant in our context. The DI
measure captures the ratio of the amount of functionalities an entity needs from an-
other entity, over the overall functionalities it requires. For each given dependant and
antecedent entity, the DI measure is thus assigned a value in the [0…1] range, where
0 indicates no dependency and 1 indicates full dependency (i.e., the functionalities
required by an object are provided by only one other object). We define in eq. (1) a
simple DI measure capturing the dependency of object oi on object oj to be the ratio,
for all SDs in the SUA, of the number of synchronous or asynchronous (with reply)
messages from oi to oj over the total number of such type of messages sent from oi.

SDs allin from reply)(with usasynchronoor messages ssynchronou of #

SDs allin to from reply)(with usasynchronoor messages ssynchronou of #

i

ji
ji o

oo
)o,o(DI =

(1)

To better explain the DI measure, let us consider the extreme values of DI between
two objects. If DI(oi, oj)=1, this means that all the synchronous or asynchronous mes-
sages with reply from oi are sent to oj only. We consider this situation as the highest
level of dependency of one object on another. In this case, oi’s functionality is highly
dependent on the availability of oj, as all of the services oi requires are provided by oj.
Conversely, DI(oi, oj)=0 implies there are no synchronous messages or asynchronous
messages with reply from oi to oj. Thus whether oj is available or not (e.g., dead or
alive) has no effect on oi.

Using the definitions in Section 0, eq. (1) can be rewritten in a more formal form:
eq. (2). This is useful as it specifies precisely how the measures are computed in our
tool based on our formalization of messages. For brevity, synchRAsynchMsgs repre-
sents the set of synchronous messages and asynchronous messages with reply.

{ }
{ }chMsgssynchRAsynmsgoobject.sender.msg|msg

chMsgssynchRAsynmsgoobject.receiver.msgoobject.sender.msg|msg
)o,o(DI

i

ji

ji ∈∧=
∈∧=∧=

=
(2)

The definition of the DI measure can be generalized to nodes and networks. When
a sender object is dependent on a receiver object, the sender object’s node is also
dependent on the receiver object and its node. In addition, the sender object and its
node are dependent on the network links connecting the two nodes. For example, the
dependence of a node on a network, i.e., DI(node, network), can be measured by eq.
(3), where getNetworkPath(senderNode, receiverNode) is a function which returns a
set of networks paths between senderNode and receiverNode. This function and the
rest of our generalized DI measures (for node and networks) are defined in [7].

{ }chMsgssynchRAsynmsgnodenodesendermsgmsg

nodereceivermsgnodesendermsgPathgetNetworknetwork

chMsgssynchRAsynmsgnodenodesendermsgmsg

networknodeDI
∈∧=

∈
∧∈∧=

=
..|

)..,..(

..|

),((3)

As an example, we show how some of the DI values for the entities in the system
with SDs and the Networks Deployment Diagram (NDD) in Fig. 3 are calculated. For
example, DI(o1,3, o2,2) and DI(n2, network2) are calculated below. Note that the SD
messages are referenced with the SDIndex-messageName naming convention, e.g., 2-
1.1 refers to message numbered 1.1 of SD2.

372 V. Garousi, L.C. Briand, and Y. Labiche

{ }
{ }

50
121111

111

31

2231
2231

.
}.,.{

}.{

oobject.sender.msgssynchRAMsgmsg|msg

oobject.receiver.msgoobject.sender.msgssynchRAMsgmsg|msg
)o,o(DI

,

,,
,,

=
−−

−
=

=∧∈
=∧=∧∈

=

{ }
{ }

{ } 330
314112211

314

2

22

22

.
.,.,.

.

ssynchRAMsgmsgnnode.sender.msg|msg

)node.receiver.msg,node.sender.msg(PathgetNetwork

networkssynchRAMsgmsgnnode.sender.msg|msg

)network,n(DI

≈
−−−

−
=

∈∧=

∈∧∈∧=

=

o1,3
{node=node1}

SD1

1.1

o2,2
{node=node2}

o3,1
{node=node3}

1.2

1.3

1.4

o2,3
{node=node2}

SD2

1.1

o3,1
{node=node3}

o3,2
{node=node3}

1.2

1.3

o4,1
{node=node4}

SD3

o4,2
{node=node4}

o4,3
{node=node4}

1.1

1.2

1.3

1.4

o1,1
{node=node1}

SD4

o2,1
{node=node2}

o4,3
{node=node4}

1.1

1.5

[cond]

[else]

alt

1.3

1.2

1.4

o1,2
{node=node1}

2.1

2.2

«network»
SystemNetwork

«network»
Network1

«network»
Network2

«node»
n1«node»

n2
«node»

n3

«node»
n4

Fig. 3. Four SDs and the NDD of a SUA with distributed messages

We also define two system-wide indices for an entity: (1) Total Dependency Index
(TDI), which yields a single value denoting the degree to which an entity (an object or
a node) is dependent on other entities; (2) Service Role Index (SRI), which denotes the
degree to which an antecedent entity (an object, a node, or a network) provides ser-
vices to other entities. The range of both indices is [0…1]. The definitions of both
indices for all combinations of dependant and antecedent entity types are formalized
in [7]. For example TDI(object) and SRI(node) are shown in eq. (4).

Note that we have excluded the DI values of an object on itself and on its deploy-
ment node or of a node on itself. The denominators in the TDI and SRI formulas for
nodes and objects are 2 and 2+|Networks| (i.e., number of networks), because the
maximum values of the first two sums and the last sum in the TDI’s numerator are 1

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 373

and |Networks| (due to network hierarchies), respectively. Function getNodeOf(o)
returns the node name on which object o is deployed.

+=

++
+

=

≠
∈∀

≠
∈∀

≠
∈∀ ∈∀

≠
∈∀

nn
|Nodesn

i

)o(getNodeOfn
|Objectso

i

)o(getNodeOfn
|Nodesn Networksnet

ii

oo
|Objectso

i

i

i

i

i

i

i i

i

i

)n,n(DI)n,o(DI)n(SRI

)net,o(DI)n,o(DI)o,o(DI
)Networks(

)o(TDI

2
1

2
1

(4)

4.3 Dependency Index Based on Message Weights

In the definition of the DI measure in eq. (2), the messages in the set of SDs are not
differentiated (weighted), i.e., it was assumed that all messages are equivalent in
terms of the dependencies they entail. However: (1) Certain messages may be more
critical (important), and thus entail more intensive dependency, than other messages;
(2) Some messages (call or reply) may carry larger amounts of data; or (3) more pa-
rameters (return values) than other messages; (4) The return values from some mes-
sages may be used more frequently, or (5) for more critical decisions/calculations in
the caller object than other messages; or (6) Some of the messages may be triggered
more often than other messages. We thus define six measures based on the above six
weighting mechanisms: (i) Dependency Index based on Message Criticality (DIMC);
(ii) Dependency Index based on Size Of Data (DISOD); (iii) Dependency Index based
on Number Of Objects (DINOO); (iv) Dependency Index based on Number of Return
Values Usage (DINRVU); (v) Dependency Index based on Criticality of Return Value
Usages (DICRVU); (vi) Dependency Index based on Operational Profiles (DIOP).

A comprehensive discussion of the weighting mechanisms and the five measures,
including examples, formulas for the measures, as well as an analysis of how the
dependency measurements are affected by changes in the heuristic choices (message
weights) is provided in [7]. Due to space constraints, we only describe DISOD next.
In data-intensive and data-driven systems, call/reply messages which carry larger
amounts of data than others can be considered to involve the respective caller objects
in more intense dependency relationships on the called objects. For example, consider
a distributed backup system, where a Central Dispatching Server (CDS) receives a
large amount of data to backup. It then divides the data into smaller portions to be
sent to each of the four Backup Database Servers (BDS): bds1… bds4. The CDS then
sends each portion to the corresponding BDS to be backed up. Each BDS acknowl-
edges back to the CDS upon successful data backup. Suppose in this example that the
data partitioning algorithm always assign 40% of data to bds2. The rest of the data is
divided equally among bds1, bds3, and bds4 (20% for each). In such a scenario,
we can conclude that CDS’s success in backing up 100% of all the given data
respectively depends on bds1, bds2, bds3, and bds4 to an extent captured by the above
percentages of data. We define our DISOD measure in eq. (5), where msgSize(msg) is
a function to estimate the data size of a message (presented in [7]). The numerator
calculates the total data size of synchronous and asynchronous messages with reply
from oi to oj, and reply messages from oj to oi. The denominator is similar except that

374 V. Garousi, L.C. Briand, and Y. Labiche

node1

1

1

node2
.5

node3

o3,1 o3,2

o1,1 o1,2

o1,3

o2,1 o2,2

o2,3

1

1 node4

1o4,1 o4,2

o4,3

1

.51

.5

1

1

1

1

.5

1

1

1

1

1

System Network

network1

network2

Fig. 4. HDG built from the DI measures of the
SUA in Fig. 3

it considers all messages from oi (sync. And async. Messages) and to oi (reply
messages).

=∧=∀

∈∧=∀

=∧=
∧=∀

∈∧=
∧=∀

+

+

=

'reply'msgType.msgoobject.receiver.msg|msg

chMsgssynchRAsynmsgoobject.sender.msg|msg

'reply'msgType.msgoobject.receiver.msg
oobject.sender.msg|msg

chMsgssynchRAsynmsgoobject.receiver.msg
oobject.sender.msg|msg

ji

i

i

i

j

j

i

)msg(aSizemessageDat

)msg(aSizemessageDat

)msg(aSizemessageDat

)msg(aSizemessageDat

)o,o(DISOD

(5)

4.4 Visualizing Measured Dependencies

In order to visualize the results of our dependency analysis technique, we present a
graph notation, referred to as Hierarchical Dependency Graph (HDG). HDG is an
extension to conventional Dependency Graphs (DG) [11, 13], in which vertices can
be nested. For example a node can contain several objects in a HDG. A HDG is built
based on dependency measurements. Each vertex in a HDG corresponds to an entity
(node, network, or object). An edge is made from a vertex corresponding to an entity
e1 to the vertex corresponding to entity e2 only if DM(e1,e2)>0, where DM can be any
of our proposed dependency measures.
The edge is labeled with its
corresponding DM value. Each edge is
directed from a dependant to an
antecedent entity. For example, the HDG
corresponding to the SUA described in
Fig. 3 is shown in Fig. 4. To keep this
particular HDG legible, we only retained
object dependencies. In general, such
filtering mechanisms can enhance the
scalability of the visualization and help
engineers focus on specific aspects of a
SUA when visualizing a HDG
corresponding to one if its dependency
measures.

Furthermore, since there is a signifi-
cant body of work on the visualization of
complex graphs, we can use a large range
of visualization techniques on a HDG.
We have considered three such
techniques (e.g., [15]) in our work:

1. Analyzing system architectures by clustering entities based on dependency values:

We can cluster entities with dependencies on each other to highlight the set of ob-
jects which are most coupled to each other. We then follow the popular low cou-
pling/high cohesion design paradigm to perform an analysis of system architecture
based on such clusters.

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 375

2. Visualizing dependency intensities: Based on the DI value between two entities,
different line widths can be used to better visualize dependency intensities. A prac-
tical scenario where this visualization might be useful is when engineers want to
determine the regions of a large DRTS in which there are strong inter-
dependencies among objects. Such an analysis is done for a variety of purposes,
e.g.: (1) incorporating more reliable/powerful hardware and network components
in such regions; (2) performing more rigorous testing (especially testing activities
specific to distributed systems) on the software/hardware entities of such regions;
and (3) more careful runtime monitoring of distributed communications among
nodes in such regions.

3. Visualizing service role (SRI) and total dependency indices (TDI): The values of
these two indices can be visualized by a change in the radius of the entity in a
HDG. A practical scenario where this visualization would be useful is when engi-
neers want to apply load balancing techniques based on dependencies (e.g. [16]):
the less difference among the circle sizes, the more balanced the load in a DRTS.

An example of the first analysis is reported next. The second and third analyses are
applied to a SUA in the case study section. More examples can be found in [7]. In a
HDG, we can cluster entities with high dependencies on each other to highlight the set
of entities which are strongly coupled. This can help designers decide whether to
perform any architectural reconfiguration (e.g., changing the deployment nodes of
objects). However, it requires the identification of a threshold, referred to as Depend-
ency Cut-Off Threshold (DCOT), to define the meaning of strongly connected entities.
Only dependencies with a weight higher than the chosen DCOT are then considered
when clustering (e.g., using the max-connected clustering algorithm [22]). We refer to
the resulting graph as a Clustered HDG (CHDG).

For example, assume that our MBBDA technique has generated the HDG in Fig. 5-
(a): oi,j denotes object j on node i. The gray-scale color coding has been used to facili-
tate the visualization of object deployments on nodes. To cluster objects in this HDG,
we can consider that any dependency with a weight higher than 0.2 (our chosen
DCOT) denotes a strong dependency. We then obtain the CHDG in Fig. 5-(b) where
clusters are numbered c1 to c5. For example, cluster c2 includes o1,2,. o2,1, o2,2, o2,3, o3,1,
o3,2, o4,1 and o4,2 and their inter-dependencies.

The architectural reconfiguration advices implied by this cluster are based on the
fact that the clustered objects have inter-dependencies on each other and on no other
object in the system. Thus, they can potentially be deployed on only one node (mini-
mizing network communications and unnecessary traffic). To perform such a rede-
ployment, however, the designer will need to consider the SUA’s design/deployment
constraints, such as security/organizational restrictions and software/hardware com-
patibility issues. Considering such constraints, there might be no choice but to keep
the existing deployment architecture. Another important consideration is to take into
account the number of objects that will be deployed on one node given specific archi-
tectural reconfigurations. Some nodes might not be able to host that many objects
running concurrently and using node’s resources (e.g., due to excessive memory and
CPU usage).

Furthermore, the selected DCOT value has an impact on the number of clusters and
thus on reconfiguration advices [7]. Further investigations on heuristics to choose a
suitable DCOT are needed.

376 V. Garousi, L.C. Briand, and Y. Labiche

On a different aspect, providing tool support for the collection and visualization of
dependency measures is very important [3]. We designed and implemented a proto-
type tool, referred to as BDAnalyzer (Behavioral Dependency Analyzer), to extract
dependency measures from UML design models. The tool was implemented in C++
and the source code is available from the World Wide Web [6]. After reading an input
file containing the UML model of a SUA (in a specific format), the tool generates the
result of the analysis as a matrix of dependency measurements, refereed to as De-
pendency Index Matrix, and a textual representation for the corresponding HDG. We
then use the Graphviz tool [1] to automatically create graphical representations for
HDGs. Further details about our tool can be found in [7].

.1 o3,1

o3,2

o1,1

o1,2

o1,3

o2,1

o2,2

o2,3

o4,1

o4,2

o4,3

.15

o3,3

o3,4o1,4

o1,5

o2,4

o2,5

o4,4

o4,5

.7

o4,6

.2.4 .5

.12

.3

.1

.08

.3

.15

.15

.4 .04

.01
.4

.5

.45

.5

.15 .5

.7

.05 .5

.05

.05

.05

.9

.2

1 o3,1

o3,2

o1,1

o1,2

o1,3

o2,1

o2,2

o2,3

o4,1

o4,2

o4,3o3,3

o3,4o1,4

o1,5

o2,4

o2,5

o4,4

o4,5

.7

o4,6

.4 .5

.3

.3

.4

.5

.45

.5

.5

.7

.9

1

c1

(b)(a)

c2

c3

c4

c5

.5

.4DCOT=0.2

Fig. 5. (a): Example HDG. (b): A CHDG generated from (a) with DCOT=0.2.

5 Case Study

To demonstrate our MBBDA technique’s feasibility and to analyze its potential use-
fulness, we applied it to a distributed system. We report in this section on the results
of applying our analysis and deriving DI & DIOP measures (Dependency Index based
on Operational Profiles) (Section 0), service role (SRI) and total dependency index
(TDI) measures (Section 0) for this particular system.

The case study system we chose is a prototype SCADA-based power system (Su-
pervisory Control and Data Acquisition Systems [4]). The system is referred to as
SCAPS (a SCAda-based Power System) [9]. SCAPS is a system to control the power
distribution grid across a nation consisting of several provinces. We designed SCAPS
to be used in Canada, and to simplify its design and implementation, we considered
only two Canadian provinces in the system: Ontario (ON) and Quebec (QC).

We used our BDAnalyzer tool [6] on the SCAPS model file [10] (transformed to a
format specific to our tool) to derive the corresponding HDG. Due to size constraints,
only a subset of the results is shown using the partial HDG in Fig. 6 (generated by
Graphviz [1]), which, for brevity, is filtered to illustrate only object-to-object depend-
encies. More detailed results are reported in [7]. Object asa deployed in node

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 377

SEV_CA1, has significantly higher dependency on itself (self-dependency) than on
other objects (SEV_ON and SEV_QC): DI values of 0.67 and 0.17, respectively. As a
practical implication, one might want to consider a more reliable/powerful hardware
to the node (SEV_CA1) where asa is deployed (SEV_CA1).

Canada

SEV_CA1
SEV_CA2

Ontario

SEV_ON

Ottawa

TC_YOW1 TC_YOW2 TC_YOW3

Toronto

TC_YYZ1 TC_YYZ2

Quebec

SEV_QC

Montreal

TC_YMX1 TC_YMX2

QuebecCity

TC_YQB1 TC_YQB2

asa 0.67

ONProvController

0.17

QCProvController

0.17

YOW1TC

0.2

YOW2TC

0.2

YOW3TC

0.2

YYZ1TC

0.2

YYZ2TC

0.2

YMX1TC

0.25

YMX2TC

0.25

YQB1TC

0.25

YQB2TC

0.25

Fig. 6. A partial HDG showing object-to-object dependencies

SEV_CA2SEV_ON

TC_YOW1

SEV_CA1

TC_YOW2

TC_YYZ1 TC_YYZ2 SEV_QC

TC_YOW3 TC_YMX1 TC_YQB1

TC_YQB2

Canada

TC_YMX2

OntarioOttawa QuebecToronto Montreal QuebecCity

Fig. 7. A graph in which line widths are correlated with a subset of DIOP measures

We furthermore apply the dependency intensities visualization technique based on
line widths (Section 0), which yields the graph in Fig. 7. The line widths in this graph
are correlated with a subset of the DIOP measures (Section 0), corresponding to ob-
ject-to-network dependencies only. The measures were generated by our tool based
on SCAPS UML model and an operational profile for this system (discussed in detail
in [7]). As we can see in Fig. 7, two of the most intense dependencies are: from node
SEV_ON to network Ontario, and from node SEV_QC to network Quebec. As a prac-
tical implication, we might want to increase reliability in those two dependencies by
installing more reliable/powerful network interfaces between those nodes and net-
works (e.g., network cards with extended buffer sizes and higher bandwidths) [7].

We then apply the SRI and TDI visualization techniques to analyze load in
SCAPS. Recall that we relate load with objects service role and total dependency in
the system (Section 0). The corresponding graphs are shown in Fig. 8.

As it can be easily seen, system load in terms of object service roles are almost bal-
anced throughout the system: circles of approximately the same size in Fig. 8-(a).
However the load w.r.t. total dependencies of each object is mostly concentrated on
the two provincial controllers (the two large circles in Fig. 8-(b)). Note that such a
load imbalance was not clearly visible from simple DI measures in Fig. 6. If needed,

378 V. Garousi, L.C. Briand, and Y. Labiche

QCProvController

asa

ONProvController

YOW1TC

YOW2TC

YOW3TC

YYZ1TC

YYZ2TC

YMX1TC

YMX2TC

YQB1TC

YQB2TC

QCProvController

asa

ONProvController

YOW1TC

YOW2TC

YOW3TC

YYZ1TC

YYZ2TC

YMX1TC

YMX2TC

YQB1TC

YQB2TC

(b)(a)

Fig. 8. Visualization of (a): Service Role (SRI) and (b): Total Dependency Indices (TDI)

load balancing practices (e.g., re-architecturing, design changes in message communi-
cations) can be performed to normalize load.

6 Conclusions and Future Works

This paper proposes a technique for behavioral dependency analysis of distributed
objects based on UML behavioral models. It assigns a dependency index for any pair
of system entities (objects, nodes, and networks). Among many uses, the technique
can help system analysts and designers to devise appropriate provisions for the most
dependable (crucial) entities of a system, and to forecast load level on each system
entity before implementation. We also define a behavioral dependency analysis
model, referred to as Hierarchical Dependency Graphs, to visualize dependencies in
distributed systems. The analysis method was applied to a case study to show its ap-
plicability and potential usefulness in predicting behavioral dependencies based on
UML models: interesting observations could be derived from our dependency analy-
sis and would influence, in practice, practical decisions, which could not have been
easily derived without it.

Some of our future works include: (1) generalizing our dependency analysis tech-
nique to take into account other dependency attributes such as time, impact, and sensi-
tivity; (2) investigating its usage in component-based and agent-oriented software; (3)
assessing its usefulness when applying it to industry-strength distributed real-time
systems; (4) applying it to unavailability robustness testing for distributed systems;
(5) comparing transitive and weighed DI measures to simple DI measures in practice;
(6) applying the visualization techniques discussed in Section 0 to large models and
investigating their effectiveness; (7) investigating other clustering algorithms (e.g., k-
clustering and self organizing maps) in order to analyze system architectures based on
HDGs; (8) investigating the scalability of our BDAnalyzer tool; and (9) investigating
whether the dependency information generated by MBBDA is better suited for appli-
cations that are usually based on CBBDA and EBBDA (e.g. [12, 14]).

Acknowledgments

This work was in part supported by a CITO grant with IBM Canada, and a Canada
research chair grant. The authors would like to thank Michał Sówka for his helpful
comments and suggestions.

 Analysis and Visualization of Behavioral Dependencies Among Distributed Objects 379

References

[1] AT&T labs, "Graphviz," www.graphviz.org, last visited: 2006.
[2] L. Briand, Y. Labiche, L. O'Sullivan, and M. Sowka, "Automated Impact Analysis of

UML Models," Journal of Systems and Software, vol. 79, no. 3, pp. 339-352, 2006.
[3] D. Card and R. Glass, Measuring Software Design Quality: Prentice-Hall, Inc., 1990.
[4] A. Daneels and W. Salter, "What is SCADA?," Proc. of Int. Conf. on Accelerator and

Large Experimental Physics Control Systems, pp. 39-343, 1999.
[5] T. Eisenbarth, R. Koschke, and D. Simon, "Feature-Driven Program Understanding Using

Concept Analysis of Execution Traces," Proc. IWPC, pp. 300-309, 2001.
[6] V. Garousi, "BDAnalyzer," squall.sce.carleton.ca/tools/BDAnalyzer, 2006.
[7] V. Garousi, L. Briand, and Y. Labiche, "Analysis and Visualization of Behavioral De-

pendencies among Distributed Objects based on UML Models," Technical Report SCE-
06-03, Carleton University March 2006.

[8] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence
Diagrams," Proc. ECMDA, LNCS 3748, pp. 160-174, 2005.

[9] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress Testing of Distributed Sys-
tems based on UML Models," Proc. ICSE, pp. 391-400, 2006.

[10] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress Testing of Distributed Sys-
tems based on UML Models," Technical Report SCE-05-13, Carleton University 2005.

[11] Z. Gu, S. Kodase, S. Wang, and K. G. Shin, "A Model-Based Approach to System-Level
Dependency and Real-Time Analysis of Embedded Software," Proc. of Real-Time and
Embedded Technology and Applications Symp., pp. 78-85, 2003.

[12] M. Harrold, G. Rothermel, and S. Sinha, "Computation of Interprocedural Control De-
pendence," Proc. of Int. Symp. on Soft. Testing and Analysis, pp. 11-20, 1998.

[13] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath, "Cadena: An Integrated
Development, Analysis, and Verification Environment for Component-based Systems,"
Proc. ICSE, pp. 160-173, 2003.

[14] S. Horowitz and T. Reps, "The Use of Program Dependence Graphs in Software Engi-
neering," Proc. ICSE, pp. 392-411, 1992.

[15] M. Kaufmann and D. Wagner, Drawing Graphs : Methods and Models: Springer, 2001.
[16] A. Kochut and G. Kar, "Managing Virtual Storage Systems: An Approach using Depend-

ency Analysis," Proc. of Symp. on Integrated Network Management, pp. 593-604, 2003.
[17] B. Li, "Managing Dependencies in Component-based Systems based on Matrix Model,"

Proc. of Net.ObjectDays Conf., pp. 22-25, 2003.
[18] Object Management Group (OMG), "UML 2.0 Superstructure Specification," 2005.
[19] D. K. Pradhan, Fault-tolerant Computer System Design: Prentice-Hall, 1996.
[20] J. Tsai, Y. Bi, S. Yang, and R. Smith, Distributed Real-Time Systems: Monitoring, Visu-

alization, Debugging, and Analysis: John Wiley, 1996.
[21] J. K. Vaurio, "Treatment of General Dependencies in System Fault-Tree and Risk Analy-

sis," IEEE Transactions on Reliability, vol. 51, no. 3, pp. 278-287, 2002.
[22] X.-H. Vu, D. Sam-Haroud, and B. Faltings, "Clustering for Disconnected Solution Sets of

Numerical CSPs," LNCS, vol. 3010, pp. 25-43, 2004.
[23] C. Xiao and V. Tzerpos, "Software Clustering based on Dynamic Dependencies," Proc. of

European Conf. on Software Maint. and Reeng., pp. 124-133, 2005.

Model Extraction Using Context Information

Lucio Mauro Duarte�, Jeff Kramer, and Sebastian Uchitel

Department of Computing, Imperial College London
180 Queen’s Gate, London, SW7 2AZ, UK

{lmd, jk, su2}@doc.ic.ac.uk

Abstract. This work describes a new approach for behaviour model
extraction which combines static and dynamic information. We exploit
context information as a way of merging these types of information. Con-
texts are defined by evaluated control predicates and values of attributes.
They create a nested structure that can facilitate the extraction of causal
relations between system actions. We show how context information can
guide the process of constructing LTS models that are good approxima-
tions of the actual behaviour of the systems they describe. These models
can be used for automated analysis and property verification. Augmen-
tation of the values of attributes recorded in contexts produces further
refined models and leads towards correct models. Completeness of the
extracted models depends on the coverage achieved by samples of exe-
cutions. Our approach is partially automated by a tool called LTSE.
Results of one of our case studies are presented and discussed.

1 Introduction

A behaviour model is an abstract description of how a system should behave
that can be used for model checking [4]. The construction of a behaviour model
from an existing system to be used in a model checking tool, known as the model
construction problem [6], can be difficult, costly and error-prone [5]. Furthermore,
it is essential that two basic requirements be attended. Firstly, the construction
of the model must be much simpler and less time-consuming than building the
system itself [12]. Consequently, it is desirable that the model be constructed
(semi-)automatically. Manual construction of models is usually expensive and
likely to introduce errors [6]. Secondly, and most importantly, the model should
be a faithful representation of the system behaviour. Any analysis based on an
incorrect model may bias the understanding of the system behaviour [14].

Model extraction is the process of generating a model for an existing system.
Our approach for model extraction follows the idea proposed in [8] of combining
static and dynamic information. The use of static information for model extrac-
tion [6, 13, 11, 2] has demonstrated to be possible to obtain a view of all possible
executions of the system. We use control flow information to obtain such a view.
As for the dynamic part, we collect trace information, which supplies knowledge
about real (therefore feasible) executions and has also been applied to construct
models [5, 17, 3]. With this combination of information, we can use the traces
� Supported by CAPES (Brazil) under the grant BEX 1680-02/1.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 380–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Extraction Using Context Information 381

to identify feasible behaviours and, based on them, derive other behaviours not
included in - or that could not be easily inferred from - them. Such behaviours
represent, for instance, alternative paths, which, though not exercised in any
particular trace, can be detected by combining traces and identifying, according
to the control flow structure, common subsequences of actions in the code.

In order to carry out this combination, we exploit a concept called context. A
context is the combination of the execution point in the control flow graph of the
system and the system state, represented by values of its attributes. Contexts
create a nested structure that can support extracting the causal relation between
system actions.

All the information collected is processed by a single tool, called LTS Extractor
(LTSE), which implements most of the process we describe here. The created
model can be analysed using the LTSA tool [16]. Hence, the effort devoted to
the model extraction process is reasonable, requiring only basic knowledge of
verification. The user does not need to know the programming language nor
the modelling language, as the necessary information is collected automatically
through code instrumentation and execution of tests, which produce the traces.

Our models have been used to verify safety and progress properties of single-
and multi-threaded systems. As expected, though the analyses using our models
have demonstrated that they are good approximations of the behaviours of the
systems they describe, completeness of our approach (all traces exhibited by the
system are described by the extracted model) depends on the coverage of the
test suite that generates trace information. In addition, correctness (all traces
exhibited by the model are feasible) depends on the selection of attributes on
which contexts are built. However, it can be shown that, by augmenting the
context attributes, a refined model that is correct can always be built.

This paper is organised as follows. The next section presents the idea of con-
texts. Section 3 introduces our approach for model extraction in more detail.
Section 4 presents some of our experimental results through a case study. In
Section 5, we evaluate our approach and discuss related work. Section 6 contains
the conclusion and a comment on next steps.

2 Contexts

In this section we define contexts and exemplify how we exploit the combination
of control flow information and trace information. We use the code of a simple
text editor as a running toy example. The code for the editor is depicted in Fig. 1.
The code has two attributes: isOpen defines whether a file is open and isSaved
indicates whether the file’s contents have been saved. In addition, a number of
operations that modify these attributes and the text file are provided: open,
close, save, edit, exit.

Control flow information. A control flow graph (CFG) [1] is an abstract repre-
sentation of a program which models the alternative flows of execution that the
program allows. A CFG can be extracted automatically by statically analysing
the code and can be used to reason about the code behaviour. Fig. 2 illustrates
the control flow graph of constructor Editor() and method edit().

382 L.M. Duarte, J. Kramer, and S. Uchitel

The diamonds define control flow statements (statements that change the
normal, sequential control flow of the system, such as lines 9 and 12 in Fig. 1),
whereas ellipses represent all other statements. The arrows indicate the direction
of the flow of control from one statement to another.

1 public c lass E d i t o r
2 private boolean i s O p e n ;
3 private boolean i s S a v e d ;
4
5 public E d i t o r () {
6 i s O p e n=fa l s e ;
7 i s S a v e d=true ;
8 int c m d=−1;
9 while (c m d !=4){

10 c m d=r e a d C m d () ;
11 switch (c m d) {
12 case 0 : i f (! i s O p e n)
13 n a m e=o p e n () ;
14 break ;
15 case 1 : i f (i s O p e n)
16 e d i t (n a m e) ;
17 break ;
18 case 2 : i f (i s O p e n)

19 p r i n t (n a m e) ;
20 break ;
21 case 3: i f (! i s S a v e d)
22 s a v e (n a m e) ;
23 break ;
24 case 4: e x i t (n a m e) ; } }
25 }
26
27 void e x i t (S t r i n g n) {
28 i f (! i s S a v e d) {
29 int o p t=r e a d O p t () ;
30 i f (o p t==0)
31 s a v e (n) ;
32 }
33 i f (i s O p e n) c l o s e (n) ;
34 }
35 }

Fig. 1. Example Code

A control predicate [20] is a condition associated to a control flow statement.
Control predicates can, depending on their evaluation, lead the system to a
different path of execution. These alternative paths can be seen in the CFG in
Fig. 2 as multiple arrows leaving from the same diamond. The different values
of the predicates label the arrows.

The CFG reveals the control predicates that define the system behaviour
and which statements and other predicates are dependent on each predicate.
However, this static information can include paths that cannot be taken during
a real execution. Therefore, some of the paths presented in Fig. 2, though possible
according to the CFG, may not be feasible in the code when it is executed.

The use of symbolic execution [15] can, statically, rule out some infeasible
paths. However, if the control flow is dependent on the inputs, an analysis of
each case may be necessary. The set of input classes may make it impossible to
test all possible cases. Furthermore, symbolic execution usually requires the help
of a theorem prover, demanding some expertise from the user.

To fully understand the feasibility of a path of execution we need to know the
values of the predicates evaluated along that path. As the values of predicates
may change over time during the execution (due to inputs or changes in the sys-
tem state), some paths that were feasible at certain point may become infeasible
later on. For example, the path in the CFG in Fig. 2 allowing method open to
be executed is only feasible while no file has been opened for editing. Once a
document is opened, that path can never be taken again due to the fact that the
value of the control predicate !isOpen becomes false and prevents the call to
method open from being reached. If these dynamic changes are not considered,
path feasibility can be hard to analyse.

Trace information. Trace information usually gives the sequences of actions
executed by the system in the form of traces of execution. A trace is normally
a result of a real execution of the system in response to a set of inputs. For

Model Extraction Using Context Information 383

Fig. 2. Control flow graph of the editor code

example, let us consider the following sequence of inputs to the editor in Fig. 1:
0, 1, 3, 2, 1, 1, 2, 3, 2, 1, 4, 0. This generates the following trace (ignoring the
calls to method readCmd, which does not affect our analysis): open edit save
print edit edit print save print edit exit save close

Looking at the trace, we can try to infer some relations between the actions
and construct a model that approximates the system. In Fig. 3, we show one
possible model, where there is one state per label and, for any pair of consecutive
events x, y found in a trace, a transition labelled y from the state denoted by x
to that denoted by y exists.

q0 q1 q2 q4q3 q6
open edit

edit

print

printsave

save

close

q5

exit

edit

save

q0 q1 q2 q4q3 q6q6
open edit

edit

print

printsave

save

close

q5

exit

edit

save

Fig. 3. Inferred model based on trace information

Clearly, this inference is not necessarily correct, and, in particular, the model
in Fig. 3 allows the sequence open, edit, save, print, save,..., which cannot be
exhibited by the system because the second save would never occur as the file
has not been edited since the first save.

The procedure we used to construct the model in Fig. 3 is an extremely simpli-
fied version of more elaborate approaches to model inference such as [5, 17]. For
instance, Cook et al [5] use statistical analysis of patterns in the traces to deter-
mine the state space (as opposed to our simplified bijection of events to states).
Although these approaches produce models that are good approximations of the
system, they suffer from the same problem described above.

Contexts. We now show how, by merging the structural and general knowledge
gained from control flow information with the dynamic and specific knowledge

384 L.M. Duarte, J. Kramer, and S. Uchitel

obtained from traces, we can ameliorate some of the problems described previ-
ously. The basic idea is to use the traces to identify, among all possible paths in
the code (represented by its CFG), some feasible paths. Once we know that a
path is feasible (i.e., there is a set of inputs and values of predicates that causes
the system to exercise it), we can look at the control flow to understand how
the trace was generated in the code and possibly infer alternative and recurrent
paths based on the control predicates.

Besides sequences of actions, we enrich the trace information including the
value of the system state. The system state, in this work, comprises the values
of a subset of its attributes. In the case of our example in Fig. 1, for instance, it
would be composed by the values of attributes isOpen and isSaved. Attributes
are normally used in control predicates, thus affecting the control flow and,
consequently, the traces the system can generate.

Based on this, we have created our concept of contexts. We define a context
as the combination of the current point in the system control flow, which is
determined by the evaluated control predicates, and the current values of the
attributes that define the system state. Therefore, the conjunction of the control
flow information and the system state is denominated context information. An
example of a context C1 for our running example would be that the execution is
on the while-statement in line 9 of Fig. 1 with values of attributes isOpen and
isSaved being both false.

A structure of contexts can be naturally defined based on the nested structure
of blocks of code in a program. Each context is associated to a block of code by
the point of execution that the context represents. For instance, the context C1,
mentioned above, can be associated to a block B, representing the code between
lines 9 and 24. We say that a context C2 is a subcontext of C1 if the block of code
associated to C2 is a sub-block of the block of code associated to C1. Therefore,
in our example, the block between lines 11 and 24 (switch-statement) defines a
context C2 which is a subcontext of context C1.

Because we also consider the evaluation of predicates and the values of at-
tributes, each block of code can generate multiple contexts, one for each possible
combination of the evaluation of the associated predicate and the system state.
This means that, for example, the block B cited before could generate various
contexts other than C1 depending on the evaluation of its predicate (cmd!=4)
and the values of isOpen and isSaved.

The structure of contexts tells us in which conditions (according to the se-
quence of evaluated predicates, their values and the system state) a context or
action is reachable. This is somewhat similar to the idea of path condition [20],
which describes the necessary conditions to be satisfied for the system to execute
a path in the code between two given statements.

3 Context-Based Model Extraction

Our model extraction approach constructs behaviour models, in the form of
Labelled Transition Systems (LTS) [16], from Java source code. LTS has

Model Extraction Using Context Information 385

been successfully used to model and reason about the behaviour of complex
systems.

We start off the process by instrumenting the code using a source code trans-
formation language and generating traces based on a test suite. Using the col-
lected information, we identify the necessary context information. This informa-
tion, combined with the sequences of actions in each context, is used to create
an FSP description of the system to be used in the LTSA tool to obtain an LTS
model. A general view of the process is presented in Fig. 4.

JavaJava

CodeCode

TXLTXL

EngineEngine

JavaJava

GrammarGrammar

TransformationTransformation

RulesRules

InstrumentedInstrumented

CodeCode

TracesTraces

++

SystemSystem

StateState

TestTest

CasesCases

ExecutionExecution

ContextContext

TableTable

++

ContextContext

TracesTraces

ContextContext

IdentificationIdentification

FSPFSP

GeneratorGenerator

FSPFSP

DescriptionDescription

Information GatheringInformation Gathering LTSELTSE

Context IdentificationContext Identification FSP GenerationFSP Generation

JavaJava

CodeCode

TXLTXL

EngineEngine

JavaJava

GrammarGrammar

TransformationTransformation

RulesRules

InstrumentedInstrumented

CodeCode

TracesTraces

++

SystemSystem

StateState

TestTest

CasesCases

ExecutionExecution

ContextContext

TableTable

++

ContextContext

TracesTraces

ContextContext

IdentificationIdentification

FSPFSP

GeneratorGenerator

FSPFSP

DescriptionDescription

Information GatheringInformation Gathering LTSELTSE

Context IdentificationContext Identification FSP GenerationFSP Generation

Fig. 4. General view of the model extraction process

Ellipses represent processing phases and boxes represent inputs/outputs of
these processes. Horizontal arrows show the sequence of information processing,
whereas vertical arrows describe the inclusion of extra inputs needed during the
given process execution. The big block on the right-hand side represents the part
of the process automated by our tool. The whole process is described in more
detail next. We refer to the code in Fig. 1 to exemplify results from each phase.

3.1 Information Gathering

In order to collect the necessary information, we first annotate the Java source
codes of some classes of the system and then execute them according to a test
suite. The definition of which classes are instrumented depends on the user. They
normally involve the classes that produce actions (method calls) included in the
properties to be verified. In our example code from Fig. 1, the existent actions
are open, edit, print, save, exit and close.

To carry out the instrumentation, we use the TXL engine [7] to apply mo-
difications to the source code according to a set of rules1. We apply domain-
independent rules to annotate control flow statements, call sites and methods
entry and exit points.

Annotations print out predefined labels (SEL for selection statements, REP for
repetition and MET for method blocks) to the standard output along with the va-
lues of attributes. If the annotation corresponds to a control flow statement, the
annotation also prints the predicate tested and the result of its evaluation. Calls
to external methods are also annotated at the call site. Part of the instrumented
version of the editor code is shown in Fig. 5.
1 We currently do not supported nested method calls and inheritance.

386 L.M. Duarte, J. Kramer, and S. Uchitel

1 public c lass E d i t o r {
2 . . .
3 public E d i t o r () {
4 . . .
5 while (c m d !=4){
6 S y s t e m . e r r . p r i n t l n ("REP_ENTER: (cmd!=4)#"+(c m d !=4)+
7 "#{"+i s O p e n+" , "+i s S a v e d+"}") ;
8 c m d = r e a d C m d () ;
9 switch (c m d) {

10 case 0 : S y s t e m . e r r . p r i n t l n ("SEL_ENTER : (cmd)#"+c m d+
11 "#{"+i s O p e n+" , "+i s S a v e d+"}") ;
12 S y s t e m . e r r . p r i n t l n ("SEL_ENTER : (! isOpen)#"+
13 (! i s O p e n)+"#{"+i s O p e n+" , "+i s S a v e d+"}") ;
14 i f (! i s O p e n)
15 n a m e = o p e n () ;
16 S y s t e m . e r r . p r i n t l n ("SEL_END") ;
17 S y s t e m . e r r . p r i n t l n ("SEL_END") ;
18 break ;
19 . . . }
20 S y s t e m . e r r . p r i n t l n ("REP_END") ; }
21 }
22
23 void e x i t (S t r i n g n) {
24 S y s t e m . e r r . p r i n t l n ("MET_ENTER: e x i t#{"+i s O p e n+" , "+i s S a v e d+"}") ;
25 . . .
26 S y s t e m . e r r . p r i n t l n ("MET_END") ;
27 }
28 . . .
29 }

Fig. 5. Example of instrumented code

Besides the automatically identified actions, we allow the user to define their
own actions. We call these user-defined actions, which represent actions other
than the execution of a method. This is important in situations where, for exam-
ple, reaching a given point in the code has some particular meaning, such as the
completion of a task, where a task is a set of methods that should be executed
in order to realise some specific computation. User-defined actions can be in-
serted into any part of the code using a predefined format and are automatically
converted into the appropriate annotation when the code is instrumented.

The trace generation is done by logging the outputs produced by executing
the instrumented code. In order to be able to select the behaviours we want to
monitor, we use a test suite. We do not currently use any particular technique
for selecting test cases, but all test cases are chosen based on the knowledge we
have of the system and to include behaviours we would like to observe. These
behaviours are usually related to properties we intend to verify.

The result of executing the instrumented code using the test cases is the
creation of a set of logged traces, one for each test case. Part of the log for an
execution of the code in Fig. 1 is shown in Fig. 6. It includes the beginning of
the log, where the first input was the command to open a file, then the file is
edited and saved. We used the same sequence of inputs used to obtain the model
in Fig. 3 to generate this log file.

3.2 Contexts Identification

Using the information in the logs, the LTSE tool constructs a table of contexts for
each involved class. A context table (CT) stores information about the contexts
created during execution. It is used to keep track of the contexts found in the logs
in order to recognise a previously encountered context and identify new contexts.
Each new context found (represented by an annotation in the log describing the

Model Extraction Using Context Information 387

R E P _ E N T E R : (c m d !=4)#true#{fa lse , true}
S E L _ E N T E R : (c m d)#0#{fa lse , true}
S E L _ E N T E R : (! i s O p e n)#true#{fa lse , true}
M E T _ E N T E R : o p e n#true#{fa lse , true}
M E T _ E N D

S E L _ E N D
S E L _ E N D

R E P _ E N D
R E P _ E N T E R : (c m d !=4)#true#{true , true}
S E L _ E N T E R : (c m d)#1#{true , true}
S E L _ E N T E R : (i s O p e n)#true#{true , true}
M E T _ E N T E R : e d i t#true#{true , true}
M E T _ E N D

S E L _ E N D
S E L _ E N D

R E P _ E N D
R E P _ E N T E R : (c m d !=4)#true#{true , fa l s e }
S E L _ E N T E R : (c m d)#3#{true , f a l s e }
S E L _ E N T E R : (! i s S a v e d)#true#{true , f a l s e }
M E T _ E N T E R : s a v e#true#{true , fa l s e }
M E T _ E N D

S E L _ E N D
S E L _ E N D

R E P _ E N D

Fig. 6. Example of log

Context Predicate Value State
0 - true {}
0.1 (cmd!=4) true {false,true}
0.1.1 (cmd) 0 {false,true}
0.1.1.1 (!isOpen) true {false,true}
0.1.1.1.1 open true {false,true}
0.2 (cmd!=4) true {true,true}
0.2.1 (cmd) 1 {true,true}
0.2.1.1 (isOpen) true {true,true}
0.2.1.1.1 edit true {true,true}
0.3 (cmd!=4) true {true,false}
... {...}

Fig. 7. Example of context table

beginning of a control flow statement or method block) is associated to a context
ID, which uniquely identifies a context.

The result of the context identification phase is the creation of a CT and the
generation of a set of context traces for each class of the system. These context
traces are sequences of contexts IDs and actions, representing the contexts the
system went through during the execution and the actions that happened in
each one of them. The LTSE analyses each log separately, looking for context
information, updating the CT and including the identified contexts and actions
in the context traces. Its basic procedure for each class is as follows:

Context CurrentContext = INITIAL
ContextTable CT is empty /∗ Context t a b l e ∗/
ContextStack S is empty /∗ Stack to contro l current contex t ∗/
S . push (CurrentContext)
ContextTrace T is empty /∗ Context trace to be generated ∗/
For each log L containing traces of c l a s s C

While L has more annotations
Read annotation A from L
If A . l a b e l == REP_ENTER or SEL_ENTER or MET_ENTER

New Context I
If (CurrentContext , A) is in CT /∗ Already in t a b l e ∗/

I = CT . getId (CurrentContext , A) /∗ Get ID ∗/
Else I = CT . add (CurrentContext , A) /∗ Add to t a b l e ∗/
CurrentContext = I
S . push (I)
T . write (I) /∗ Inse r t contex t ID in the contex t trace ∗/
/∗ Inse r t an act ion name in the contex t trace ∗/
If A . type == MET_ENTER

T . write (A . predicate)
Else If A . type == REP_END or SEL_END or MET_END

S . pop ()
CurrentContext = S . top ()

As an example, Fig. 7 shows part of the CT generated by the LTSE tool
based on the log presented in Fig. 6. The first column contains the context
IDs. The ID 0 is reserved for the initial context. An ID 0.1 represents the first
subcontext of the initial context, 0.2, the second, and so on. The second column
describes the predicate evaluated in the context. No predicate is associated to

388 L.M. Duarte, J. Kramer, and S. Uchitel

the initial context and the name of the method is used for contexts representing
a method execution. The value of the predicate in the context is presented in
the third column. The last column contains the system state, with the first value
representing the value of attribute isOpen and the second showing the value of
attribute isSaved.

Fig. 8 presents, on its left-hand side, part of the contents of the context trace
created by the LTSE tool using this CT and the log in Fig. 6. The context trace
is the translation from the annotations in the log to context IDs, in the case of
control flow statements, and from annotations to names of actions for methods.
Note that, because methods represent the beginning of a new context, they also
cause the inclusion of a context ID in the context trace.

3.3 FSP Generation

At this stage, the LTSE tool converts the information contained in the context
trace into an FSP process definition. Finite State Processes (FSP) [16] is a pro-
cess algebra for describing LTS models. It allows for local definition (subprocess),
action prefix (->), choice (|) and recursion.

In our mapping from context traces to FSP, we create an FSP description
to represent the system, where each class for which we have traces is described
by a process definition. We create one subprocess definition for each identified
context and define the start of a process as the subprocess that represents the
initial context. Each subprocess is defined as a number of choices (e.g. of the form
P = (x1

1 → x1
2 → . . . P 1| . . . |xm

1 → xm
2 → . . . Pm) where each choice describes

a sequence of actions 〈xj
1 → xj

2 → . . .〉 found contiguously in a context trace
between the contexts denoted by P and P j .

Implementing this strategy, the LTSE tool constructs the process definition
shown on the right-hand side of Fig. 8 for the editor presented in Fig. 1. This
process definition was created based on the contents of the context file presented
on the left-hand side of Fig. 8.

During the mapping, we apply some reductions in order to create a more
compact process definition. These reductions involve the merging of contexts
into a single subprocess if the contexts appear consecutively in a context trace,
i.e., with no actions between them. These simplifications can be seen in Fig. 8
as the dotted boxes on the left-hand side. Their corresponding subprocesses are
pointed by the arrows and the actions added to the subprocesses are presented
in bold.

The LTS model derived from the FSP description of the editor is generated
automatically by the LTSA tool and is depicted in Fig. 9 (state E represents the
final state). This model is the result of processing the same trace used to create
the inferred model shown in Fig. 3. Note that the model created using contexts
does not include invalid behaviours. Moreover, it does not create any restriction
not imposed by the code presented in Fig. 1. Hence, though it is not complete,
as it does not include some feasible behaviours, it is correct with respect to the
alphabet of actions chosen. The use of more traces would eventually lead to a
complete representation of the editor’s behaviour.

Model Extraction Using Context Information 389

#0

#0.1

#0.1.1

#0.1.1.1

#0.1.1.1.1

open

#0.2

#0.2.1

#0.2.1.1

#0.2.1.1.1

edit

#0.3

#0.3.1

#0.3.1.1

#0.3.1.1.1

save

#0.2

...

Editor = P0,

P0 = (open -> P1),

P1 = (

|print -> P1),

P2 = (save -> P1

|edit -> P2

|print -> P2

|exit -> P3),

P3 = (save -> P4),

P4 = (close -> END).

edit -> P2,

Fig. 8. Mapping from the context trace to the process definition of the editor

open edit

print edit

print

save

exit save close

0 1 2 3 4 E

Fig. 9. LTS model for the text editor

It is also important to note that this model includes behaviours that were not
described in the trace, such as the possibility of repeating the command print
on state 1. Actually, the trace did not even include a sequence of two consecutive
actions print. This additional behaviour could be inferred because the context
trace shows that this action happens inside a loop and that it is always enabled
after a file has been opened. For this same reason, print can also be repeated
infinitely on state 2, which represents the context where the file has been edited.

4 Case Study: Cruise Control System

We have validated our approach through a number of case studies involving
single- and multi-threaded systems. These case studies include modelling an
ATM system, a traffic lights control system and an air conditioner control system.
In this paper we report on a cruise control system [16] to demonstrate a practical
use of our approach. This case study is a good choice for validation of our
approach as both code and model of intended behaviour exist. Hence, we can,
compare our automatically generated model to existing ones to evaluate our
work. We now present the case study, our analysis results and the discrepancies
found between the model we extracted and the existing one.

An automobile cruise control system is controlled by three buttons: on, off
and resume. Pressing on when the car engine is working causes the system to

390 L.M. Duarte, J. Kramer, and S. Uchitel

record the current speed and keep the car at that speed. The same speed is
maintained until the car is accelerated or deaccelerated or off is pressed. If
resume is then pressed, the system increases or decreases the speed to set it to
the previously recorded speed.

We used the Java implementation of the cruise controller, the Controller
class, from [16]. In the system, an object of this class is called from the user inter-
face on events on, off, resume, accelerate, brake, engineOn and engineOff.
The object reacts to these method calls by enabling (enableControl), disabling
(disableControl) and setting the cruise speed (clearSpeed and recordSpe-
ed) of the speed controller component. The speed controller computes correct
throttle values and adjusts throttle according to the desired speed.

Following the approach described in the previous subsection, the code for
the Controller class was automatically annotated. We selected the attribute
controlState of the class to compose the context information. Then, traces
were generated by executing the instrumented code according to the following
test cases:

T1 = engineOn,accelerate,on,accelerate,resume,brake,resume,off,resume,
off,resume,off,engineOff

T2 = engineOn,on,accelerate,on,brake,engineOff,engineOn,accelerate,on,
off,resume,engineOff

T3 = engineOn,accelerate,on,off,resume,off,on,accelerate,on,brake,
resume,brake,on,engineOff

T4 = engineOn,accelerate,on,engineOff,engineOn,accelerate,brake,
accelerate,on,brake,on,off, resume,off,resume,engineOff

Each test case includes the sequences of inputs provided via the system in-
terface. In other words, each label represents clicking on a button of the system
GUI. However, there is a one-to-one correspondence between these inputs and
method calls, hence the test cases can be thought of as actual method calls on
the Controller object. The test cases were chosen based on a desired safety
property CRUISESAFETY presented in [16], which states that the Controller
relinquishes control of the speed as soon as the brake, accelerator or off
button is pressed.

The generated logs were used as in the LTSE tool to create the FSP des-
cription of the Controller. The LTSA tool realised the conversion of the FSP
description into its graphical representation as an LTS model, shown in Fig. 10.

This model is very similar to the one presented in [16]. The only difference
is that the automatically extracted model describes traces in which the accele-
rator may be pressed without turning on the cruise control system. This was
a detail omitted in the model in [16] even though it can be exhibited by the
implementation taken from the same source. Fortunately, this behaviour does
not correspond to a behaviour that violates the safety property, otherwise it
would have represented undesired behaviour that would have gone undetected.

For the model checking process, we composed our model of the Controller
with those of the other components of the system as they were described in [16].

Model Extraction Using Context Information 391

engineOn clearSpeed

engineOff

accelerator

on recordSpeed enableControl

engineOff

accelerator

brake

off

disableControl

engineOff

on

resume

engineOff

on

brake

accelerator

0 1 2 3 4 5 6 7 8 9

Fig. 10. LTS model of the cruise controller

Even though there was the mentioned difference between our model and the
one proposed in [16], we obtained the same results. As expected, the property
CRUISESAFETY was verified not to be violated when the components of the
system were composed. Nevertheless, a progress check provided by the LTSA
tool showed the problem described in [16], involving the cruise control system
not being disabled when the engine was switched off. Hence, when the car engine
was turned back on again, the car would accelerate automatically to the last
recorded speed. The error trace obtained with our model in the composition
showed exactly the described problem.

In this case, the problem was twofold: firstly, the system allowed this dange-
rous situation to happen; and secondly, the property specification did not include
a check of this possible undesired behaviour. To correct this, we applied the ne-
cessary corrections to the implementation, to prevent the system from remaining
on once the engine was turned off, and to the property specification, to guarantee
that this check was now included. These changes resulted in the creation of a
model, which, when composed to the other components models, generated no
violations during the verification process.

5 Discussion and Related Work

The completeness of our models depends on the selection of test cases. If sections
of the code are never exercised by the test cases, the resulting model will not
incorporate all feasible behaviours of the code. An analysis on an incomplete
model may generate false positives, i.e., fail to identify violations, which occur
when the system executes but do not appear in the model. On the other hand,
any violation (of safety properties) found in the model corresponds to a real
violation. To ameliorate the incompleteness problem and reduce the possibility

392 L.M. Duarte, J. Kramer, and S. Uchitel

of false positives, an adequate test coverage must be achieved. This is beyond
the scope of this paper.

Correctness, the fact that all behaviours in the model correspond to feasible
executions of the code, depends crucially on the selection of attributes for con-
texts. If the model is correct (all relevant attributes, according to the property,
are chosen), the absence of violations means no violations in the system w.r.t.
the traces included in the model and the property being verified. However, if key
attributes are not selected, then the model may contain spurious behaviours,
which may give rise to false negatives, i.e., examples of violations of properties
that cannot occur when running the code.

Detection of false negatives can be done by replaying counterexamples on
the code to check if the counterexample is feasible. Confirming infeasibility of a
counterexample triggers an augmentation of the attributes selected as part of a
context, which in turn will produce, given the same test cases, a model which
is a refinement [18] of the model extracted with the smaller set of attributes
(i.e., can be simulated by it). Hence, by identifying false negatives, the extracted
model can be refined into a correct model of the system, which rules out the false
negatives. The issues described above related to correctness correspond to those
also addressed in abstraction in program verification (e.g. [11]). Techniques to
support the refinement process are beyond the scope of this paper.

We share the same underlying idea of [19] of putting static and dynamic
information together. However, in [19], the focus is on state properties, such
as invariants of attributes of a class, rather than the dynamic behaviour of a
component in terms of its required and provided services.

Unlike the FeaVer model extractor [13], our mapping from the programming
language to the verification language is predefined and automatic. Therefore, the
user does not need to know the programming nor the modelling language.

As the Bandera toolset [6], we also direct our model construction by a pro-
perty to be verified, but the properties we verify do not follow any previously
created pattern. Furthermore, we do not use a reduced version of the code to
generate models. Rather, we use the complete program to generate the traces
and then apply a selective analysis to them according to the actions required
to be in the model and the level of abstraction defined by the set of attributes
composing the system state.

Verisoft [9] and Java Pathfinder [21] present the possibility of controlling the
execution through a custom-made environment to verify all behaviours. Never-
theless, we believe that having a model is useful for a range of purposes other than
just verifying properties, such as simulations, animations, performance analysis
and model parallel composition to be used, for example, for software evolution.

Whereas modifying the level of abstraction in our work is simple and in-
volves only the selection of additional attributes to be monitored, tools such as
SLAM [2] and BLAST [11] use more complex approaches to achieve the appro-
priate abstraction. They offer techniques for the automatic refinement of abs-
tractions to prove a property. We believe this work is complementary to ours.

Model Extraction Using Context Information 393

Finally, as discussed previously, our work differs from those that take only
trace information into account, such as that of Cook & Wolf [5] and Mariani [17].

6 Conclusion and Future Work

We presented a new approach for automatic model extraction based on the iden-
tification of contexts, which has been partially implemented by the LTSE tool.
We showed how contexts can be used to combine static and dynamic information.
We discussed the results of one of our case studies to show some experimental
results. These results indicate that our model extraction process can be used
for the construction of LTS models which are good approximations of the real
systems and can be used for behaviour analysis and property verification. The
appropriate selection of the parameters of the process can lead to a compact and
faithful partial representation of the behaviour of the system to be analysed.

Future work includes investigating appropriate test coverage criteria for se-
lecting tests to generate system traces and supporting refinement of context
information. In addition, we aim to apply our technique to the model extrac-
tion of concurrent and distributed systems. Though we have already developed
a few case studies on concurrent systems (e.g., a version of the bounded-buffer
described in [10] and the single-lane bridge presented in [16]), we still need to
gain more experience in using our approach for such systems and introduce some
necessary extensions.

We have also developed initial case studies using an incremental version of
our approach. In this version, a previously created model can be improved by
the addition of new traces without requiring the repetition of the whole process
from the beginning. Hence, traces obtained through the execution of new test
cases could be added to the model. This will permit us to use our work in other
areas, such as conformance and software evolution, and enrich the models we
generate and augment their accuracy. This idea has been discussed in [17], but
the quantity and quality of the information proved to be insufficient to guarantee
good results. In our approach, however, we believe we have enough contextual
behavioural information to implement this technique.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. T. Ball and S. K. Rajamani. The SLAM Project: Debugging System Software via
Static Analysis. In POPL’02, pages 1–3, Portland, OR, USA, 2002.

3. S. Boroday, A. Petrenko, J. Singh, and et al. Dynamic Analysis of Java Applications
for Multithreaded Antipatterns. In WODA’05, pages 1–7, 2005.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, USA, 1999.

5. J. E. Cook and A. L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM TOSEM, 7(3):215–249, 1998.

394 L.M. Duarte, J. Kramer, and S. Uchitel

6. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting Finite-State Models from Java Source Code. In
ICSE’00, pages 439–448, Limerick, Ireland, 2000.

7. J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider. Source Transforma-
tion in Software Engineering Using the TXL Transformation System. Journal of
Information and Software Technology, Special Issue on Source Code Analysis and
Manipulation, 44(13):827–837, 2002.

8. M. D. Ernst. Static and Dynamic Analysis: Synergy and Duality. In WODA’03,
pages 24–27, Portland, OR, USA, 2003.

9. P. Godefroid. Software Model Checking: The Verisoft Approach. Bell Labs Tech-
nical Memorandum ITD-03-44189G, Bell Laboratories, August 2003.

10. K. Havelund and T. Pressburguer. Model Checking Java Programs Using Java
PathFinder. Intl. Journal on Software Tools for Technology Transfer, 2(4):366–
381, March 2000.

11. T. A. Henzinger, R. Jahla, R. Majumdar, and et al. Lazy Abstraction. In POPL’02,
pages 58–70, 2002.

12. G. J. Holzmann. From Code to Models. In ACSD’01, pages 3–10, Newcastle upon
Tyne, UK, 2001.

13. G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven
Software. In ICSE’99, pages 597–607, Los Angeles, USA, 1999.

14. D. Jackson and M. Rinard. Software Analysis: A Roadmap. In ICSE’00, pages
133–145, Limerick, Ireland, 2000.

15. James C. King. Symbolic Execution and Program Testing. CACM, 19(7):385–394,
July 1976.

16. J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,
1999.

17. L. Mariani. Behavior Capture and Test: Dynamic Analysis of Component-Based
Systems. Phd, Università degli Studi di Milano Bicocca, 2005.

18. R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

19. J. W. Nimmer and M. D. Ernst. Automatic Generation of Program Specifications.
In ISSTA’02, pages 232–242, Rome, Italy, 2002.

20. T. Robschink and G. Snelting. Efficient Path Conditions in Dependence Graphs.
In ICSE’02, pages 478–488, Orlando, Florida, USA, 2002.

21. W. Visser, K. Havelund, G. Brat, S. Park, and F Lerda. Model Checking Programs.
Automated Software Engineering Journal, 10(2):203–232, 2003.

Dynamic and Generic Manipulation of Models:
From Introspection to Scripting

Christophe Tombelle and Gilles Vanwormhoudt

GET / Telecom Lille 1, Laboratoire d’Informatique Fondamentale de Lille
59655 Villeneuve d’Ascq cedex - France

{tombelle, vanwormhout}@enic.fr

Abstract. Model introspection is a powerful feature of existing model-
ing frameworks like Java Metadata Interface or Eclipse Modeling Frame-
work. It allows a program to work with any model by querying its struc-
ture dynamically at runtime. Applications of model introspection are
model transformation engines and generic models editor. We show that
mechanisms for model introspection are complex to use. To address this
problem, we propose the notion of model scripting which uses intro-
spection to automatically and dynamically expose any kind of model to
program control through a compact and high-level notation. In this pa-
per, we present several principles for general model scripting. Scripting
languages built with these principles can be used for numerous model
driven activities, such as interactive model testing and rapid develop-
ment of scripts to process models and metamodels.

1 Introduction

In model driven approaches such as MDA, transformation languages [6] are not
always well-adapted to some kinds of model manipulation (checking, composi-
tion, merging, audit, ...). One solution consists in performing these manipulations
with classical languages using an API automatically generated from metamodels
as specified by standard approaches like MOF [2][11] or proprietary ones like the
Eclipse Modeling Framework (EMF) [9].

One interesting and powerful feature of these approaches is that they include
reflective interfaces to introspect models. Model introspection allows a program
to work with any model by querying its structure, i.e. its metamodel, dynami-
cally at runtime. Model introspection is a key feature of generic modeling envi-
ronments [13][1] where tools and applications (transformation engines, generic
browsers, ...) must be able to manage and process models conforming to different
modeling langages, without any prior knowledge of the metamodel.

Despite their benefits for building generic modeling tools and accessing models
dynamically, reflective interfaces are complex to use. We identify several sources
of complexity : instruction inflations, multilevel knowledge requirement, model
and implementation level conflation, model manipulation scattering. To avoid
this complexity and help developers building these generic applications, new
tools and methodologies must be provided.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 395–409, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 C. Tombelle and G. Vanwormhoudt

In this paper, we propose the notion of model scripting, a new kind of tool for
generic modeling environments. The idea of model scripting is the application
of scripting techniques, well-known in the field of component-based approaches
[7][14], to the model space. It exploits model introspection to automatically and
dynamically expose models and their elements to program control through com-
pact and high-level notation. We present the general principles of model scripting
mechanisms and show how to integrate them into a programing language. These
principles aim to integrate all modeling levels and allow the manipulation of
models and metamodels in a uniform, generic way. We illustrate the applica-
tion of these principles to JavaScript and EMF. The resulting model scripting
language can be used for numerous model driven activities such as interactive
model testing and the rapid development of generic scripts which process mod-
els or metamodels. It is also a simple and powerful tool to investigate model
introspection.

Section 2 gives some background about model introspection in existing ap-
proaches. Section 3 discusses the pros and cons of reflective interfaces. Section
4 explains the need for model scripting and gives some principles for building
a model-oriented scripting mechanism. Section 5 presents their application to
EMF and Javascript. Before concluding, we describe related works on model
manipulation languages.

2 Model Introspection in Existing Approaches

2.1 Metamodel-Specific and Reflective Interfaces

To write programs that manipulate models, standard specifications like MOF
to IDL mapping and JMI (Java Metadata Interfaces) as well as proprietary
solutions like EMF have been defined. All these approaches provide two kinds of
programing interfaces : metamodel-specific interfaces and reflective interfaces1.

Metamodel-specific Interfaces. These interfaces are used for the creation
and the manipulation of models which conforms to a specific metamodel. Rules
for generating these interfaces from the definition of a metamodel are defined by
each approach. Figure 1 gives an overview of EMF2 rules applied to an Ecore3

metamodel for representing models of a very simple program composed of as-
signment instructions. To the right of figure 1, we give a subset of the Java
interfaces generated for this metamodel4. Each class of the metamodel (Pro-
gram, Assignment) gives rise to a Java interface. Interfaces are also generated
for the metamodel package (MiniLangPackage) and an associated factory (Mini-
LangMMFactory). Thanks to these interfaces, Java programs can create, inspect
and modify model elements to obtain a correct model of programs.
1 This distinction and these terms are the ones used by existing approaches.
2 In the rest of the paper, we will refer to the EMF approach. However, the discussion

and the proposed solution are valid for any approach offering reflective interfaces.
3 ECore is the metametamodel of EMF. Its specification is similar to Essential MOF.
4 Unlike JMI, EMF also generates classes implementing these interfaces which we omit

for space reasons.

Dynamic and Generic Manipulation of Models 397

MiniLangMM

execute()
name
Program

Assignment Expression

value : Reel
Real

type : char
Operator

identifier :
String
type : String

Variable

left

* right

Fig. 1. A mini language metamodel

interface Program extends EObject {
// generated for Program metaclass
String getName();
void setName(String n);
EList getAssignments();

}
interface Assignment extends EObject {

// generated for Assignment metaclass
Program getProgram();
Expression getRight();
void setRight(Expression e);
Expression getLeft();
void setLeft(Expression e);

}
interface MiniLangMMFactory extends EFactory {

// factory interface
Program createProgram();

Assignment createAssignment();
}
interface MiniLangMMPackage extends EPackage {

// interface generated fo the package
// factory access
MiniLangMMFactory getFactory();
....

}

Reflective Interfaces. These interfaces provide metamodel independant op-
erations to manipulate models of any type. They are systematically inherited
by specific interfaces to support generic manipulations. They generally offer op-
erations for two kinds of model introspection5: structural and computational
introspection.

Structural introspection reifies the description of metamodels and offers reflec-
tive operations to access and consult the objects representing the description.
Figure 2 illustrates EMF structural introspection for a P1 Program element.
The right hand part shows a P1 model element and some elements of its Mini-
LangMM metamodel. The left hand part shows the Program specific interface
inheriting from the reflective EObject interface. At the implementation level,
P1 is represented by an instance of this interface while Program is represented
by an instance of EClass. The eClass() reflective operation6 may be invoked on
P1 to access the object representing its modeling class, namely Program. Then,
one can discover that this class has an attribute named ”name” which is con-
tained in the MiniLangMM package. With structural introspection, all relevant
informations about the structure of a model can be known.

Computational introspection provides reflective operations to create, inspect
and modify model elements from a metamodel description. Once metamodel
elements are known thanks to structural introspection, a program can create a
model or manipulate its content. In EMF, EObject brings the eGet and eSet
reflective operations to read and write a structural feature, i.e. an attribute or
link and EFactory includes a reflective operation to create an element from a

5 Model introspection is similar to introspection in programing language [8] but its
goal is to capture metainformation about the structure and properties of models
instead of programs.

6 JMI has a similar interface called RefBaseObject and a similar operation called
refMetaObject().

398 C. Tombelle and G. Vanwormhoudt

MiniLangMM specific Interfaces

Reflective Interfaces

eSet(EstructuralFeature, Object)
eGet(EstructuralFeature): Object
eClass():EClass

EObject

name="P1"
assignments={..}

P1:Program

getName(): EString
getAssignments(): EList

Program

superTypes={ }
abstract=false

 Program : EClass
eType=EString
many=false

name : EAttribute

eStructuralFeatures[0]

MiniLangMM : EPackage

container

eClass

Implementation level Modeling level

MiniLangMM
reification (partial)

classifiers[0]

Fig. 2. Reflective interfaces and model introspection

class of the metamodel. With computational introspection, one can read the
name attribute of P1 by invoking its eGet operation with the name attribute
description (reified by name:EAttribute) as an argument.

2.2 Introspection in Metamodeling Architectures

Existing approaches enable us to represent models and offer introspection fa-
cilities to represent, access and use the description of their metamodel. In gen-
eral, elements composing this description are themselves described logically by a
metametamodel and are physically implemented by specific interfaces. This gen-
eralised application of principles which are shared by every approach results in
a multi-level metamodeling architecture (similar to the OMG architecture from
model level (M1) to metametamodel level (M3)) whose implementation is real-
ized by metamodel-specific and reflective interfaces [12]. Figure 3 shows these
principles for EMF.

The metamodeling architecture is composed of objects that represent ele-
ments of different modeling levels. At the M1 level, objects representing model
elements (P1) are described by M2-level objects corresponding to metamodel el-
ement (MiniLangMM package, Program class) as seen previously. The latter are
themselves described by M3-level objects (EPackage, EClass) which are auto-
described to stop the metalevel ascension (see EClass). This way, each modeling
level of the architecture is causally described by objects of the next higher level.
These structural principles are similar to the ones adopted for reflective pro-
graming language (see Cointe’s and Smith’s seminal works in [8]).

The implementation architecture consists of specific and reflective interfaces
that together implement objects representing elements in the metamodeling ar-
chitecture. The figure shows the one-to-one correspondance between a modeling

Dynamic and Generic Manipulation of Models 399

level and the specific interfaces that implement this level. Another aspect shown
by the figure is that specific interfaces implementing one level serve to create
objects of the lower level in the modeling part. Therefore, objects representing
model elements have two instanciation links : a modeling one (eClass link) and
an implementation one (here the Java instance link).

eSet(EstructuralFeature, Object)
eGet(EstructuralFeature): Object
eClass():EClass

EObjectImpl

P1:ProgramImpl

getName(): EString
getAssignments(): EList

ProgramImpl
 Program: EClassImpl

 MiniLangMM : EPackageImpl

container

eClass

Implementation architecture Metamodeling architecture

getEClassifier(name: EString):
EClass

EPackageImpl

getEStructuralFeature(name:
EString):EList

EClassImpl

ECore : EPackageImpl

EClass : EClassImpl
 EPackage : EClassImpl

container

eClass

container

eClass

eClass

MiniLangMM

Program

ECore

EPackage

EClass

eClass

eClass

MiniLangMM
specific interfaces & classes

M1-level

ECore reification (M3-level)

ECore specific interfaces & classes

Reflective interfaces & classes

implemented-by

MiniLangMM reification (M2-level)

getFactory()

MiniLangMMPackageImpl

implemented-by

implemented-by

EObject

EPackage

EClass

Program

MiniLangMM

Fig. 3. Metamodeling and implementation architectures

A property highlighted by the previous architecture is the inheritance of re-
flective interfaces by metamodel and metametamodel-specific interfaces (in the
figure, Program, EClass and EPackage inherit from EObject). This property
has two consequences. First, it gives a uniform access to every modeling level :
elements of each level can be manipulated with the same set of reflective oper-
ations. Secondly, structural and computational introspection is generalized for
every modeling level and becomes usable to query the description of metamod-
els and manipulate their content dynamically. In the following sections, we will
show how to exploit such a property to provide a simplified access to any kind
of model and metamodel. In the next section, we will identify some problems
related to reflective interfaces.

3 Pros and Cons of Reflective Interfaces

By using our previous example, we propose to study the use of each kind
of interface in the Java programing language. This study will highlight the

400 C. Tombelle and G. Vanwormhoudt

complexity of reflective interfaces. Reflective interfaces provide all the function-
alities that metamodel-specific interfaces support. This property enables us to
compare them when building the same model. In order to make this comparison,
we give the code related to each interface for building the model of a program
including a variable assignment (similar operations are matched by the same
number).

// Meta-model specific version
1. MiniLangMM pkg = MiniLangMM.eINSTANCE ; // get the object representing the package
2. MiniLangMMFactory factory = pkg.getEFactory() ; // get the associated factory
3. Program p1 = factory.createProgram() ; // create a Program element
4. p1.setName("P1") ; // set the Program name
5. Assignment a = factory.createAssignment() ; // create an Assignment element
6. Variable v1 = factory.createVariable() ; // create a Variable element
7. v1.setIdentifier("v1") ; // set its identifier
8. a.setLeft (v1); // link the Variable to the Assignment
9. p1.getAssignment().add(a) ; // link the Assignment to the Program

// Reflective version
1. EPackage pkg = MiniLangMM.eINSTANCE ;
2. EFactory factory = pkg.getEFactory() ;
3. EClass programClass = (EClass) pkg.getEClassifier("Program") ;

EObject p1 = factory.create(programClass) ;
4. EStructuralFeature metaatt = programClass.getEStructuralFeature("name") ;

p1.eSet(metaatt, "P1") ;
5. EClass assignClass = (EClass) pkg.getEClassifier("Assignment") ;

EObject a = factory.create(assignClass) ;
6. EClass varClass = (EClass) pkg.getEClassifier("Variable") ;

EObject v1 = factory.create(varClass) ;
7. metaatt = varClass.getEStructuralFeature("identifier") ;

v1.eSet(metaatt, "v1") ;
8. EStructuralFeature metaref = assignClass.getEStructuralFeature("left") ;

a.eSet(metaref, v1) ;
9. metaref = programClass.getEStructuralFeature("assignment") ;

List l = (List) p1.eGet(metaref) ;
l.add(a) ;

The following critiques can be made about the use of reflective interfaces.

Instruction inflations: first, we see that reflective interfaces require more in-
structions. For each operation, it is necessary to access an object containing a
description of a metamodel element and pass this object to the corresponding
reflective operation. The example given below is even simplified compared to
most situations. Accesses and uses of metamodel elements is often much more
complicated requiring complex navigation through the metamodel description
and additional type controls.

Multilevel knowledge requirement: a second observation is that reflective
interfaces require the handling of several levels of modeling at the same time. For
each access at the model level, structural information at the metalevel must be
sought. Since this search uses the metametamodel-specific interfaces, knowledge
of this last level is also required. As a result, three modeling levels must be
known to perform model manipulation with reflective interfaces.

Model and implementation level conflation: reflective interfaces lead to
a mix of modeling and implementation concepts in the same program. In the

Dynamic and Generic Manipulation of Models 401

previous code, we can see that classes, attributes and operations from the model-
ing architecture are tangled with those of the implementation architecture. This
mix is confusing for the developer, particularly when using reflective interfaces
to access M2 and M3 level.

Model manipulation scattering: finally, we can see that reflective interfaces
reduce the readability of the code that manipulates models. In the previous code,
elements of the modeling part only appear as parameters of reflective operations
that are scattered throughout the code. As a result, the model elements and
their features are not highlighted and a precise analysis of code is needed to
understand their manipulation.

All these points show that reflective interfaces are less convenient to use than
those tailored to the specific metamodel. They are also harder to use, requiring a
good understanding of metalevels and a good distinction between the modeling
and implementation space.

However, despite these difficulties, reflective interfaces provide interesting ca-
pabilities. They allow us to manipulate models dynamically, by discovering their
metamodel. More over, they enable us to write generic code, that is code working
at any level of modeling (model, metamodel, metametamodel). As an example of
this last capability, we give below some code that tests whether a model element
has a sub-element of a particular type and if this is not the case, automatically
creates such an element and the associated link. This code is generic : it can be
applied to model elements of any level. Such a generic code could be useful when
writing an algorithm for copying any model as described in [5].
1. void ensureExistance(EObject elt, String linkName, String subEltClassName, EPackage pkg) {
2. EClass eltCls = elt.eClass(); // retrieve the class of elt parameter
3. // retrieve the link description from its name
4. EStructuralFeature metaref = eltCls.getEStructuralFeature(linkName) ;
5. if (metaref instanceof EReference && (EReference) metaref.containment == true &&
6. elt.eGet(metaref)) == null) { // test if subcomponent exists at the end of the link
7. // subelement creation
8. Efactory factory = pkg.getEFactory() ;
9. EClass subEltCls= (EClass) pa.getEClassifier(subEltClassName) ;
10. EObject subElt = factory.create(subEltCls) ;
11. elt.eSet(metaref, subElt); // link the created subelt to its parent via the link
12. }
13. }

In this section, we have seen that reflective interfaces offer interesting features
to dynamically manipulate models but that they are complex to use. This com-
plexity restricts the use of model introspection and the writing of programs that
perform the generic and dynamic manipulations of models. In the next section,
we propose our solution to obtain the full benefit from reflective interfaces and
facilitate their usage.

4 Scripting for Model Manipulation

4.1 From Model Introspection to Model Scripting

Scripting is a general programing technique which exposes the functionality
of existing objects or prepackaged components to program control [7][14]. In

402 C. Tombelle and G. Vanwormhoudt

general, this exposition is done dynamically to deal with new kinds of compo-
nents at runtime and is often based on introspection mechanisms to discover the
description of these components.

A scripting language is a programing language with an embedded scripting
mechanism. Scripting languages are intended primarily to access and connect
existing components. They are rarely used for writing applications from scratch
or designing complex algorithms and data structures7. The main benefits of
scripting languages are : 1) simplicity of use since a script is often easier to write
and more concise (dynamic typing, high-level instructions) than its equivalent
program written in a classical programing language, 2) improved productivity
thanks to a faster and more flexible development cycle.

Our aim is to apply a similar technique to the space of models and get the
same kind of simplicity and flexibility for model manipulation. We propose to
elaborate a mechanism for scripting models and to integrate this mechanism
into a programing language. The idea of such a scripting mechanism is to dy-
namically and automatically expose models and their elements to program con-
trol, i.e. to make them scriptable. Moreover, by integrating this mechanism into
a language, we want to systematize the scripting process for all models and
make it completely transparent thanks to high-level instructions. To build this
scripting mechanism, we suggest using model introspection facilities such as the
ones described in the previous sections : structural introspection is exploited
to discover the structure of any model ; computational introspection is used to
dynamically create and manipulate model elements according to their descrip-
tion. By using model introspection, we get a general solution which makes any
model scriptable. Such a solution can be used to write scripts that can process
models in different modeling languages and process a metamodel instead of a
model.

In the context of model-driven development, model scripting languages can be
useful for numerous applications [4] and can advantageously replace programs
using metamodel-specific interfaces or specific transformation languages. Used
interactively via a command prompt, they offer the possibility of directly oper-
ating on models and of getting the result immediately. Such an interactive mode
can be a time saving tool for tasks such as model or metamodel exploration and
testing. Used in batch mode via scripts, a model scripting language can also be
used to quickly develop small applications for processing models. Applications
can be the transformation of models, the derivation of text-based artefacts from
the model such as code or test cases and the checking of models with respect to
consistency rules.

4.2 Principles for Model Scripting

In this section, we present our principles for incorporating model scripting inside
a programing language. These principles are general and can be applied to any

7 Features like these are usually provided by components written in foreign and general
programing language.

Dynamic and Generic Manipulation of Models 403

language and any approach supporting model introspection8. The set of princi-
ples is not intended to be exhaustive but can serve as a starting point for the
definition of a more complete set (see also [4] for some other principles).

Scriptable model elements: With existing approaches, every model element
is represented by objects. These elements are organised into multiple levels ac-
cording to a modeling instanciation relationship. To guaranty coherent manipu-
lation, it is important that the scripting language exposes the same set of objects
and presents these objects according to the same organisation. Moreover, these
objects must appear like other objects of the scripting language. In particular,
instructions dedicated to objects should be suitable for model elements. It is
important to design complex manipulations by composing such instructions.

Scripting expression: The scripting mechanism for manipulating models must
provide the same capacities than the reflective interfaces. However, the complex-
ity must be hidden by the scripting language. It must be possible to accomplish
manipulations with simple language expressions. Besides simplicity, these ex-
pressions must be chosen so that models of different levels are processed in a
uniform way. A metamodel must be manipulated by scripting like a model and
with the same ease. Finally, we consider it important that expressions chosen
for the scripting reflect the metamodeling architecture and completely hide the
implementation one.

Scripting translation: The expressions for scripting models must be translated
into invocations of reflective operations. This translation must be transparent
for the user and must be performed automatically by the scripting mechanism.
It can be specified as a mapping function between scripting expressions and ex-
pressions of the language implementing the reflective interfaces. To ensure the
generality and uniformity of this translation for multiple modeling levels, it is
important that such a function obeys the following principle: for each script-
ing expression, the description of the model elements available at the metalevel
must be retrieved and this description must be used to construct the dynamic
invocation of reflective operations that create or modify model elements. To il-
lustrate this principle, we give the definition of such a function for modifying
the attributes of a model element. In this example, the function is referred to as
Φ and we use an abstract syntax to be language independent. We also consider
that the reflective interfaces include the following operations :

– elt.modelClass() : return the class of a model element in the metamodeling
architecture;

– class.lookupAtt(name) : return the attribute of the class with a specific name;
– elt.setAttValue(meta-attribute, val) : dynamic assignment of attribute iden-

tified by meta-attribute with the val value;

8 The scripting language need only include a minimal set of object-oriented concepts
(object interaction is enough) and some mechanisms to access introspection func-
tionalities.

404 C. Tombelle and G. Vanwormhoudt

Here is the definition for translating a scripting expression corresponding to the
change of attribute of a model element :

Φ(”elt.att=value”) ⇒ elt.setAttValue((elt.modelClass()).lookupAtt(att), value)

This translation shows the ascension to the metalevel and the access to the
description of the modified attribute. This description is then used with the
set operation to dynamically modify the attribute of the model element. Other
scripting expressions will be translated following similar principles. We will show
a concrete example of translation in section 5.3. It is important to precise that
the principles proposed for translating scripting expressions are suitable for any
modeling level, thanks to the generality of reflective interfaces.

Scripting validation: There are various errors that can occur in scripting ex-
pression: access to inexistant property and incompatibility of type for values are
some examples. Thanks to the structural and typing information contained in
the metalevel, the validity of a scripting expression can be checked on the fly
at execution time, before its translation. This checking consists in accessing dy-
namically the meta-level description of an element or features referenced by the
expression and in verifying that the expression conforms to this description.

In the next section, we describe the application of these principles in order to
define a concrete scripting mechanism.

5 Application to Javascript and EMF

Following the principles introduced previously, we have built a concrete scripting
mechanism that supports the manipulation of EMF models with the Javascript
language 9,10,11. This mechanism is entirely founded upon the reflective capac-
ities of EMF. It preserves the semantics (well-formedness rules) and the func-
tionalities (XMI support, change notification) provided by the implementation
of EMF interfaces.

5.1 Basic Functionalities

With our mechanism, all the model elements which make up the metamodeling
architecture are exposed as Javascript objects and can be exploited in interactive
or batch mode with simple Javascript instructions that expect objects. The cre-
ation and use of model elements (operation call-up, property and link access) are
made according to a simplified, uniform object oriented notation which conforms
to the modeling part. For instance, elements of a model are directly created by
invoking the ”create” method of objects representing classes of its metamodel.
The following code illustrates the simplified notation. It performs exactly the
same set of operations as the example described in section 3.
9 We chose Javascript because it is a popular object-oriented scripting language and

is an instance of the ECMAScript standard.
10 Available at the url : http://www.enic.fr/people/Vanwormhoudt/modelscripting
11 A similar approach could be applied for example to construct a scripting mechanism

that permits to access MOF-IDL repositories with the IDLScript standard.

Dynamic and Generic Manipulation of Models 405

// Scripting version
1. miniLang = importModelDef(’MiniLangMM’) ; // get the object representing the package
3. p1 = miniLang.$Program.create() ; // creation of a program element
4. p1.name = "P1" ; // set the name of the program
5. assign = miniLang.$Assignment.create() ; // creation of an assignment element
6. v1 = miniLang.$Variable.create() ; // creation of a variable
7. v1.identifier = "v1" ; // set the identifier of the variable
8. assign.left = v1; // link the variable to the assignment
9. p1.assignments.add(assign) ; // link the assignment to the program

As we can observe, these operations are expressed with the same ease and the
same concision as the version using metamodel-specific interfaces. However, they
are performed dynamically in the same way as the reflective version, that is by
retrieving the description at the metalevel and invoking the reflective operations.
Thanks to the scripting mechanism, the use of reflective interfaces is made com-
pletely transparent. This transparency eliminates all the drawbacks mentioned
in section 3. It is no longer necessary to know the multiple modeling levels since
access to the metalevel for retrieving description is not required. Code readabil-
ity is also improved. Lastly, the mix of modeling and implementation concepts is
eliminated because manipulations are directly expressed in conformity with the
modeling space. The use of the modeling level for scripting expression has also
the effect of giving more natural code than the one based on metamodel-specific
interface since references to implementation concepts like factory or accessors
have disappeared.

The way of manipulating the model elements is provided uniformly by the
scripting mechanism, that is for any level of modeling (model, metamodel, meta-
metamodels). The following script shows how to get structural information about
a metamodel. It lists properties of the Program metaclass that are writable. By
analyzing the script, we can see that accessing the metamodel and the elements
it contains is immediate and is manipulated as easily as for model elements.

1. miniLangMM = importModelDef(’MiniLangMM’) ; // get the object representing the package
2. cls = miniLangMM.$Program ; // access to the Program class
3. features = cls.eStructuralFeatures ; // retrieve its structural properties
4. for (i in features) { // loop over this properties
5. f = features[i] ; // access a property
6. if (f.assignable) // if the property is writable
7. printf(f.name) ; // display its name
8. }

The scripting mechanism also retains the capacity to write generic scripts.
The following code corresponds to the scripting version of our generic example
introduced in section 3. Like the version written in Java, this code works at
any modeling level. However, thanks to the scripting mechanism, the scripting
version is more synthetic and is expressed in conformity with the modeling part,
which is much more intuitive.

1. function ensureExistance(elt, linkName, subEltClassName, pkg) {
2. metaref = elt.eClass()[linkName]; // retrieve the link description
3. if (metaref instanceOf ecore.$EReference && metaref.containment &&
4. elt[subEltClassName] == null) { // test if subcomponent exists at link end
5. subElt = pkg[subEltClassName].create() ; // create the subcomponent
6. subElt[linkName] = e ; // link the created subelt to its parent
7. }
8. }

406 C. Tombelle and G. Vanwormhoudt

Finally, the scripting mechanism also uses the structure and typing informa-
tion available at the metalevel to dynamically check the validity of expressions
manipulating models and apply the automatic conversion of values between both
environments.

5.2 Specific Functionalities

The basic functionalities described above are general and can be obtained for
any scripting mechanism that uses reflective interfaces. It is also possible to
introduce some high-level, generic functionalities that exploit features of the
scripting langages or compose features of reflective interfaces. In this section, we
present two examples of functionalities developed to simplify the manipulation
of model elements within scripts12

Model Elements as associative arrays: Like the Javascript objects, a model
element can be handled like an array, whose elements are properties (attributes,
links and operations) and indexes are the name of these properties. Thanks to
this mode, a property whose name is not known in advance or is the result of
a computation, becomes accessible. Such functionality is interesting to select
the properties of model elements that respect a particular pattern or to express
generic rules of navigation. It is used on the line 4 of the third example given in
the previous section to obtain the end of a link whose name is transmitted as
a parameter. Here is another example that uses this facility with the ”for” loop
to print the value of all properties of a model element whose name satisfies a
regular expression.
for (prop in elt) { if (prop.regex(’ref*’) then print(elt[prop]) }

High-level navigation: Model elements can be reached by expressing naviga-
tion paths that are based on specified links. When a link has multiple elements
at its end, a particular element can be accessed by using an integer index or its
name if it exists. Here is one example that uses the two possibility to access the
type of the first attribute of the Variable class contained in a package:
typeOfFirstAttribute = package.eClassifiers[’Variable’].eAttributes[0].eType;

For composition links, some specific mechanisms exists, inspired by DOM
(Document Object Model) named-based navigation. Thanks to this mechanism,
a sub-element can be accessed by using the $ character and its name. The fol-
lowing expression gives the type of the identifier attribute of Variable class.
typeOfIdentifierAttribute = package.$Variable.$identifier.eType;

This navigation by name functionality is built by combining several reflective
operations. The class of a model element is queried to identify the set of com-
position links. This set is then used to access the set of subcomponents and to
search for the one which has the provided name.
12 Other high-level functionalities, not presented here for space reasons, are : OCL-like

iteration of collections, automatic model-based completion of scripting expressions
in interactive mode and dynamic extension of model elements with new properties.

Dynamic and Generic Manipulation of Models 407

5.3 Implementation

The scripting mechanism described in the previous section was implemented
using Rhino, a Javascript interpreter written in Java and extensible thanks to
its Scriptable interface. This interface specifies the operations (get, put, ...) used
by the interpreter to interact with Java objects. By providing an implementation
of this interface, it is possible to integrate new data types into the Javascript
language or provide new forms of access to some Java objects. The main idea
of our implementation is to extend the EObjectImpl root class inherited by
every Java object representing EMF model element so that it implements the
Scriptable interface. Our implementation of Scriptable performs a translation
function Φ as described in section 4.2. The concrete translation used in the put
operation invoked by the interpreter when evaluating an expression that modifies
an attribute of a model element is as follows:

Φ(”elt.att=value”) ⇒ elt.eSet(elt.eClass().getEStructuralFeature(att), value)

This translation retrieves the description of the attribute by querying the class
of the element (via eClass() and getEStructuralFeature()) available at the met-
alevel. The eSet reflective operation is then used to dynamically set the property.
The fact that every expression requires an inspection of the meta-level may have
a strong impact on performance in the case of compute-intensive manipulations.
To optimize performances, our implementation also includes a cache mechanism
of metalevel description. This mechanism memorizes objects that describe the
metalevel, so that an expression that accesses the same feature as a previous one
does not trigger the search at the metalevel and reuses objects from the cache.

6 Related Works

Some commercial UML modeling tools include a scripting language to support
model manipulations. These langages are either existing scripting languages (Vi-
sual Basic for Rational Rose, Jython for Magic Draw UML) or scripting lan-
guages specifically designed for model processing (J for Objecteering). In gen-
eral, tools integrating these langages are based on a unique metamodel, namely
UML. Therefore, manipulations supported by the language are limited to models
complying with this metamodel and can not be based on any metamodel like
our proposed solution.

Another work that uses an existing scripting language for model processing
but is not limited to a unique metamodel is [4]. In this work, the scripting
language which is Python, is used to represent and process models. Model rep-
resentation is done in a similar way to the approach described in section 2.1, by
generating Python API from a metamodel specification. Compared to this work,
our proposal is different since we do not produce API for a scripting language.
In our case, we assume the existence of a powerful API for representing and
introspecting multiple modeling levels and our goal is to propose a solution to
make any model scriptable and easily accessible to program control.

408 C. Tombelle and G. Vanwormhoudt

Several modeling languages specifically designed in the context of model driven
development allow to process models. QVT [3] addresses mappings between
model structure and is mainly suitable for model-based transformations. MOF-
Script is an extension of QVT which provides capabilities for generating text
output from MOF models. Two other standard languages can be exploited to
process models although this is not their primary usage: OCL and Actions Se-
mantics. Some works [15] have suggested using and extending OCL for model
processing with side-effect and imperative constructs similar to the ones included
in a programing language. [16] shows it is possible to apply this Action Semantics
for model manipulation by using a description of actions at the meta-level.

Apart from standards, other languages dedicated to model manipulation ex-
ist. Some examples reviewed in [10] are the Xion platform independant action
language, the MTL model transformation language and the Kermeta action lan-
guage for metamodels These languages are general-purpose, imperative, object-
oriented languages with model-navigation and model management capabilities.
Our scripting language shares many properties and constructs with them.

The interest of these standard and non standard modeling languages is that
they express manipulations with modeling concepts instead of implementation
concepts. On the other hand, most of these languages support expressions of ma-
nipulation at one level only (for example, QVT works with a specification that
maps MOF metamodels, OCL and Action Semantics are tied to the UML meta-
model). To our knowledge, none of these language exploits model introspection
as our scripting language does. As a result, they require to know metamodels in
advance. Moreover, they do not support the writing of metamodel-independant
manipulations. We think that some of these modeling language would benefit
from adopting an approach similar to the one presented here.

7 Conclusion

In the future, we will face a growing space of diversified models. The management
and processing of these models requires the development of generic modeling
environments with new tools and methodologies. In this paper, we argue that
current mechanisms for introspecting models are of great interest for constructing
generic modeling applications but are also complex to use. To facilitate the
processing of models in a generic way, we have introduced the notion of model
scripting, which is a general approach adding an abstraction level on top of the
reflective interfaces. We have presented some general principles to integrate this
approach into a language and a concrete application to Javascript and EMF.
Our proposal introduces new results to program model manipulations and could
serve as a basis for the specification of a model-scripting language which is an
important tool in the context of a generic modeling environment13.

Our scripting language is a simple and powerful tool to investigate the notion
of model introspection which has not received a lot of attention. One perspective
is to further explore model introspection from a methodological view, to better
13 Similarly to IDLScript for CORBA or E4X extension of ECMAScript for XML data.

Dynamic and Generic Manipulation of Models 409

understand its applications, to compare its benefits with those of generative
solutions and identify new mechanisms for computational model introspection14,
which is not very developed in existing approaches.

Another perspective is to study the embedding of scripts into models and
metamodels. The aim is to promote the scripting language as an action language
for specifing operations existing in models. Being able to do this will allow us to
specify executable models and metamodels in the way described in [10].

References

1. Modelware Information Society Technologies Project, European Commission.
2. Object Management Group. MOF 2.0 Specification, OMG Document/01-01-06.
3. Object Management Group. MOF QVT Specification, OMG Document/05-11-01.
4. Porres I. A Toolkit for Model Manipulation. In Journal on Software and Systems

Modeling, volume 2(4). Springer-Verlag, 2003.
5. Porres I. and Alanen M. Generic Deep Copy Algorithm for MOF-Based Mod-

els. In Model Driven Architecture, European MDA Workshops: Foundations and
Applications. University of Twente, Jul 2003.

6. Czarnecki k. and Helsen s. Classification of model transformation approaches. In
In Proceedings of the OOPSLA 2003 Workshop on Generative Techniques in the
Context of MDA, 2003.

7. Ousterhout J. K. Scripting: Higher-level Programming for the 21st Century. IEEE
Computer, 31(3), 1998.

8. P. Maes and D. Nardi. Meta-Level Architectures and Reflection. Elsevier, 1988.
9. Budinsky F.-Steinberg D. Merks E., Ellersick R. and Grose T. Eclipse Modeling

Framework. Addison Wesley, 2003.
10. D. Studer P.-Vojtisek Z. Drey D. Pollet F. Fondement F. Z. Drey D. Pollet

Muller P.A., F.Fleurey and J.M. Jézéquel. On executable meta-languages ap-
plied to model transformations. In Model Transformations In Practice Workshop,
Jamaica, 2005.

11. Java Community Process. Java Metadata Inferface (JMI) Specification.
12. Fraleigh S. Riehle D., Bucka-Lassen D., and Omorogbe N. The Architecture of a

UML Virtual Machine. In Proceedings of OOPSLA ’01. ACM Press, 2001.
13. E. Rahm S. Melnik and P. A. Bernstein. Rondo: A programming platform for

generic model management. In Proceedings of SIGMOD2003, 2003.
14. J. Schneider and O. Nierstrasz. Components, scripts and glue. In Software Archi-

tectures - Advances and Applications. Springer-Verlag, 1999.
15. Peltonen J. Siikarla M. and Selonen P. Combining OCL and Programming Lan-

guages for UML Model Processing. In Proceedings of the Workshop, OCL 2.0 –
Industry Standard or Scientific Playground, 2004.

16. Ho W-M. Le Guennec A. Sunye G., Pennaneac’h F. and Jezequel J-M. Using Uml
Action Semantics for Executable Modeling and Beyond. In Proceeding of CAISE
2001, volume LNCS 2068, Springer-Verlag, June 2001.

14 Such as generic access mechanisms described in section 5.2 or mechanisms for the
introspection of a stack containing all operations performed on a model.

Model Transformation by Example�

Dániel Varró

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2
varro@mit.bme.hu

Abstract. In advanced XML transformer tools, XSLT rules are
generated automatically after relating simple source and target XML doc-
uments. In this paper, we generalize this approach for the design of model
transformations: transformation rules are derived semi-automatically
from an initial prototypical set of interrelated source and target models.
These initial model pairs describe critical cases of the model transfor-
mation problem in a purely declarative way. The derived transformation
rules can be refined later by adding further source-target model pairs.
The main advantage of the approach is that transformation designers do
not need to learn a new model transformation language, instead they only
use the concepts of the source and target modeling languages.

Keywords: model transformation, transformation rule derivation.

1 Introduction

Due to the increasing popularity of model-driven system development techniques,
the efficient design of automated model transformations between such languages
have become major challenges to software engineering.

The evolution trend of model transformation languages is characterized by
gradually increasing the abstraction level of such languages to declarative, rule-
based formalisms as promoted by the QVT (Queries, Views and Transforma-
tions) [11] standard of the OMG. Since these model transformation languages
follow a novel paradigm in software engineering, the role of transformation en-
gineer will soon emerge in a software development process who is skilled in the
use of such model transformation languages and tools.

However, the efficient development of a large set of transformation is hindered
by the fact that the solution domain of a model transformation (i.e., the trans-
formation language) can be largely different from the problem domain (i.e., the
source and target model languages themselves). To use an analogy of program-
ming, the transformation is not only implemented (designed) in the programming
language but also specified there, which is unfortunate.

In the paper, we propose a novel approach for the specification and design of
model transformations called as model transformation by example. The essence
of the approach is that transformation rules are derived semi-automatically from
� This work was partially supported by the Sensoria European IP (IST-3-016004).

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 410–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Transformation by Example 411

an initial prototypical set of interrelated source and target models. These initial
model pairs describe critical cases of the model transformation problem in a
purely declarative way.

A main advantage of the approach is that the specification (i.e. the proto-
typical source-target model pairs) and the design (i.e. transformation rules) of
a model transformation are kept separated. In this respect, transformation de-
signers use the concepts of the source and target modeling languages for the
specification of the transformation, while a large part of the transformation de-
sign is generated semi-automatically.

The term “semi-automatic derivation of transformations” refers to the itera-
tive and interactive nature of the development process. The initial set of transfor-
mation rules (generated automatically) can be refined iteratively by regenerating
them after interactively refining the specification with additional source-target
model pairs. Moreover, the transformation designer can generalize and extend
the automatically generated set of transformation rules interactively in order
minimize the number of such rules.

While the automated (or semi-automated) synthesis of rules from a data set
has been investigated in various research fields (see Sec. 5 for details), the au-
thor is not aware of similar results in the field of model transformations. For
this reason, both the development process and the technicalities of the “model
transformation by example” approach will be presented simultaneously, and con-
sequently, on a relatively high-level of abstraction by using a motivating transfor-
mation problem (Sec. 2) for discussing the technicalities of the approach instead
of detailed mathematical algorithms and formulae.

2 Motivating Example: Object-Relational Mapping

As the motivating example of the current paper, we map UML class diagrams
into relational database tables by using one of the standard solutions. This trans-
formation problem (with several variations) is frequently used as a model trans-
formation benchmark of high practical relevance [2].

The source and target languages

Fig. 1. Metamodels of the example

(UML and relational databases, re-
spectively) are captured by their cor-
responding metamodels in Fig. 1. To
avoid mixing the notions of UML
class diagrams and metamodels, we
will refer to the concepts of the meta-
model using nodes and edges for
classes and associations, respectively.

UML class diagrams consist of
class nodes arranged into an inheri-

tance hierarchy (by parent edges). Classes contain attribute nodes (attrs), which
are typed over classes (type). Directed edges are leading from a source (src) class
to a destination (dst) class.

412 D. Varró

Relational databases consist of table nodes, which are composed of column
nodes by tcols edges. Each table has a single primary key column (pkey). Foreign
key (FKey) constraints can be assigned to tables (fkeys). A foreign key refers to
one (or more) columns (cref) of another table, and it is related to the columns
of (local) referencing table by kcols edges.

These metamodels (adapted from [2]) are extended with a reference metamodel
to interconnect the elements of the source and the target language. This way it
defines the main guidelines of (this variant of) the object-relational mapping
itself, which can be summarized as follows:

– Each top-level UML class (i.e. a top-most class in the inheritance tree) is
projected into a database table. Two additional columns are derived auto-
matically for each top-level class: one for storing a unique identifier (primary
key), and one for storing the type information of instances.

– Each attribute of a UML class will appear as a column in the table related
to the top-level ancestor of the class. For the sake of simplicity, the type of
an attribute is restricted to user-defined classes. The structural consistency
of storing only valid object instances in columns is maintained by foreign
key constraints.

– Each UML association is projected into a table with two columns pointing
to the tables related to the source and the target classes of the association
by foreign key constraints.

These informal rules provide some guidelines for capturing the transformation
rules. In the current paper, we will only rely on a set of interrelated source and
target models as the specification when deriving the transformation rules by
focusing on prototypical subproblems of the transformation.

3 Model Transformation by Example: An Overview

3.1 Overview of the Approach

This paper presents the foundations of the “model transformations by example”
approach. This approach proposes the following iterative process for developing
model transformations (illustrated in Fig. 2).

Step 1: Manual set-up of prototype mapping models. The transformation de-
signer assembles an initial set of interrelated source and target model pairs,
which are called prototype mapping models in the sequel. These prototype map-
ping models typically capture critical situations of the transformation problem
by showing how the source and target model elements should be interrelated by
appropriate reference (mapping) constructs.

Step 2: Automated derivation of rules. Based upon the available prototype
mapping models, the transformation framework should synthesize the set of
model transformation rules, which correctly transform at least the prototypical
source models into their target equivalents.

Model Transformation by Example 413

Step 3: Manual refinement of rules. The transformation designer can refine
the rules manually at any time by adding attribute conditions or providing gen-
eralizations of existing rules.

Step 4: Automated execution of transformation

Fig. 2. Process Overview

rules. The transformation designer validates the
correctness of the synthesized rules by executing
them on additional source-target model pairs as
test cases. Based upon these new test cases, the
transformation designer then comes up with ad-
ditional prototype mapping models, and the de-
velopment process is started all over again.

A main benefit of the “model transformations
by example” approach is that the transformation
designer mainly uses the concepts of the source

and target languages as the “transformation language”, which is very intuitive.
Moreover, we also emphasize in the paper that the “model transformations

by example” approach is a highly iterative and interactive process since it is
unlikely that the final set of transformation rules is derived right from the ini-
tial set of prototype models. Since the transformation designer can overrule the
automatically generated rules at any time, correctness issues are investigated
separately where the prototype mapping models may serve as test cases.

3.2 Assumptions

We make the following assumptions on the prototype mapping models (which
also comply with the mapping structure between two EMF model instances [1]):

1. Reference is also a graph. Reference (mapping) nodes relate source and target
nodes (by a pair of edges) while source and target edges are not directly
related i.e. we impose a graph structure also on references.

2. Unique references. Each reference node uniquely identifies a pair of source
and target nodes, i.e. all edges linking reference nodes to a source or target
node have exactly one multiplicity.

3. Existence of unmapped model elements. On the other hand, there may be
source (target) nodes which are not directly mapped to a target (source)
node by reference.

4. No merging transformations. Each node in the target model is allowed to
be mapped via a single reference node from the source model, thus we rule
out transformations that merge two source nodes to the same target node
by using two separate references.

5. Aggregation semantics. Each non-root node in a model is contained by at
most one other node (denoted by a corresponding containment edge), which
provides traditional containment semantics.

6. Correctness of prototype models. Finally, we assume that the prototype map-
ping models correctly reflect the intentions of the transformation designer,
i.e., no edges or nodes are omitted / created unintentionally.

414 D. Varró

4 Model Transformation by Example: Details by Example

The core of the current paper focuses on the (semi-)automatic generation of
model transformation rules, by splitting the generation process into the following
phases:

1. Setting up an initial prototype mapping model. In the first step, an initial
prototype mapping model is set up manually (Sec. 4.1) or from scratch by
using existing source and target models.

2. Creation of mapped target nodes. Then we derive model transformation rules
for each reference node (type) in the reference metamodel in order to derive
target nodes from source nodes interconnected by a reference (of some type).
(a) Context analysis. For this purpose, we first examine the contexts of all

mapped source and target nodes (Sec. 4.2-4.3).
(b) Derivation of transformation rules. Later, the context of source nodes

will identify the precondition of the derived model transformation rules
while the context of target nodes will define the postcondition of graph
transformation rules (Sec. 4.4).

3. Interconnection of target nodes. Afterwards, rules are generated to derive
links between target model elements based upon the connectivity of the
mapped source and target elements (Sec. 4.5).

4. Iterative refinement. The derived rules can be refined at any time by extend-
ing the prototype mapping model or manually generalizing the automatically
generated rules.

4.1 Initial Prototype Mapping Model

Now we discuss the main concepts of the “model transformation by example”
approach on the object-relational mapping introduced in Sec. 2.

Prototype mapping models can be derived by interrelating any existing (real)
source and target models. However, prototype mapping models are preferably
small, thus they are rather created by hand to incorporate critical situations of
the transformation problem. These prototype mapping models can also serve as
test cases later on.

Example. A simple class diagram modeling an on-line shop and its correspond-
ing relational database representation is depicted in Fig. 3. The source and target
models are related by mapping information based on the reference metamodel
of Fig. 1 in order to serve as an initial prototype mapping model.

Note that the target database model has four tables: two for the top-level
classes Customer and Product and two for the associations orders and reviews.
The favourite attribute of class VIPCustomer is first lifted up to a column in
the Customer table with a foreign key constraint (referring to the primary key
column ProdId of table Product). Further foreign key constraints (e.g. FK1 , FK2)
related to the columns (RevPid , RevCid) of the association table tRev refer to the
primary key (ProdId and CustId) columns of the corresponding tables (Product
and Customer).

Model Transformation by Example 415

Fig. 3. Initial prototype mapping model

4.2 Context Analysis of the Source Model

As a demonstration of the context analysis of the source model, we will use
reference nodes of type Cls2Tab, which connect certain (but not all) UML class
nodes to database table nodes (e.g. Product is mapped while Book is unmapped
in Fig. 3) to capture the problematic case.

Definition of 1-Context. In order identify which elements in the source model are
actually mapped into a corresponding element in the target model, we initially
examine one by one all reference nodes of a certain type and determine the
1-context of the source element identified by the reference node.

By the 1-context of a source node (of a certain type), we mean the existence or
non-existence of incoming and outgoing edges in the prototype mapping model.
When calculating the 1-context of a source node, all types of edges allowed by
the metamodel (for the type of this source node) are enumerated.

Example. The 1-context of classes Customer and Product in the prototype map-
ping model of Fig. 3 is illustrated in Fig. 4.

For instance, class Customer has an incoming src edge (from association orders),
an incoming parent edge (e.g., from class VIPCustomer), but no incoming dst edge,
no incoming type edge, no outgoing attrs edge, and no outgoing parent edge.
According to the metamodel of Fig. 1, there are no other edge types that we
need to consider for the 1-context of class Customer . The 1-context of class Product
can be derived in a similar way.

416 D. Varró

Fig. 4. Context analysis of the source model

For a more compact notation of 1-contexts, we use +parent:in to denote that
there exists an incoming parent edge, and -parent:out to denote that there are no
outgoing parent edges in the context.

Joint 1-context. The next step is to create a joint 1-context for all mapped source
nodes of a certain type calculated as the consistent merging of the individual
1-contexts:

– If an edge of a certain type is present in all individual 1-contexts, then it
becomes a must edge in the joint 1-context.

– If an edge of a certain type is not present in any of the individual 1-contexts,
then it becomes a forbidden edge in the joint 1-context.

– if an edge of a certain type is present in some but not all individual 1-contexts
then its marked as a may (optional) edge in the joint 1-context.

The joint 1-context generalizes our assumption on the existence (or non-
existence) of certain edges in the context of a node: if all possible individual
contexts are identical then this is assumed to be the general case.

Example. For instance, in the joint 1-context of mapped classes Customer and
Product in Fig. 4, one can deduce that there is an incoming parent edge, no
outgoing parent edge, and no outgoing attrs edge, while edges of other types are
optional.

Checking the 1-context for unmapped elements. Then we need to show that each
1-context of an unmapped source node (of a certain type) differs from the joint
1-context of mapped source nodes (of that type).

Example. In our example, we need to check that the joint 1-context of mapped
classes (e.g. Product and Customer) does not match the unmapped classes (like
VIPCustomer or Book). This difference is highlighted by bold-face letters in the
1-context of unmapped class nodes in Fig. 4.

Model Transformation by Example 417

Possible extensions of 1-contexts. It is easy to generalize 1-context of a node
to n-contexts etc. by considering all possible pattern graphs (as allowed by the
metamodel) with at most n distance from the node itself. Furthermore, we may
consider multiple edges of a certain type in the context by considering multi-
plicities as well (e.g. two parent incoming parent edges instead of one in case of
class Customer).

However, these extensions are only necessary to be considered if we cannot
distinguish between mapped and unmapped model elements of a certain type in
the source model based upon their 1-contexts. Our experiments show that this
is not a frequent case in typical model transformation problems.

A more common extension of 1-contexts is to identify attribute conditions for
a node. While the current technique could be easily extended to incorporate
attributes of enumeration types by treating attribute values as ordinary graph
nodes, the automated categorization of string and numeric attributes definitely
requires future investigations. For this paper, we assume that such attribute
conditions are attached manually by the transformation designer if required.

4.3 Context Analysis of the Target Model

The context analysis of the target model aims at identifying the postconditions
of the transformation rules to be derived. For this purpose, we now investigate
the target ends of references.

According to Assumption 2 (of Sec. 3.2), all target nodes are uniquely iden-
tified by a reference node. Furthermore, we also collect all the unmapped nodes
that are transitively contained by the target node in question as the target context
of the mapped node.

Finally, the joint target context is calculated as the intersection of individual tar-
get contexts. This joint target context consists of the mapped target node, all com-
mon nodes in the target contexts, and all the edges leading between these nodes.

Fig. 5. Context analysis of the target model

The main idea behind this con-
struction is that we need to de-
rive each target node only once.
Mapped target nodes are derived
according to the appropriate ref-
erence types, while unmapped
target nodes are created (i) when
a mapped target node is created
(Sec. 4.4) or (ii) when mapped
target nodes are further intercon-
nected (Sec. 4.5).

Example. The context analysis
of the target database model is il-
lustrated in Fig. 5 for references

of type Cls2Tab (which connect classes to tables). Grey nodes denote the derived
context of the target model.

418 D. Varró

The joint target context contains a mapped target node of type Table, two
unmapped nodes of type Column, two unmapped nodes of type FKey , and all the
edges leading between these nodes of types tcols, pkey , fkeys. Note, however, that
while column CustFavourite is also contained by table tCust, it is not marked since
it is mapped by a Att2Col reference, thus it belongs to another target context.

4.4 Derivation of Model Transformation Rules

Model transformation rules are derived in the form of graph transformation
rules [6] in accordance with the joint source and target contexts. Graph transfor-
mation provides a pattern and rule based manipulation of graph models, which
is frequently used in various model transformation tools. Each rule application
transforms a graph by replacing a part of it by another graph.

Graph transformation rules. A graph transformation rule contains a left–hand
side graph LHS, a right–hand side graph RHS, and a negative application condi-
tion graph NAC. The LHS and the NAC graphs are together called the precon-
dition PRE of the rule.

The application of a GT rule to a host model M replaces a matching of the
LHS in M by an image of the RHS. This is performed by (i) finding a matching
of LHS in M (by graph pattern matching), (ii) checking the negative application
conditions NAC (which prohibit the presence of certain objects and links) (iii)
removing a part of the model M that can be mapped to LHS but not to RHS
yielding the context model, and (iv) gluing the context model with an image of
the RHS by adding new objects and links (that can be mapped to the RHS but
not to the LHS) obtaining the derived model M′.

From joint contexts to graph transformation rules. When deriving a GT rule,
the joint source context for a reference of a certain type defines the LHS and
some NAC graphs, the joint target context defines a NAC for the precondition,
while the union of the joint source and target contexts (joined via a reference
node) defines the RHS.

Fig. 6. Initial version of rule class2tableR

Our construction of joint
source and target contexts pro-
vides a pessimistic approach: in
the precondition we prescribe
as much as possible, and in
the postcondition we generate
(guarantee) as little as possible.

In the paper, we use a
(slightly modified) graphical representation initially introduced in [8] where the
union of these graphs is presented. Elements to be deleted are marked by the del
keyword, elements to be created are labeled by new , while elements in the NAC
graph are denoted by the neg keyword.

Example. Figure 6 denotes the graph transformation rule derived for reference
Cls2Tab. The rule expresses that for each class C with a child subclass CC but

Model Transformation by Example 419

without attributes, a table T is generated with two columns T and K and some
foreign key FK .

Extending the prototype mapping model. Since the generation of model transfor-
mation rules is based entirely on the initial prototype mapping model, and we
follow a pessimistic approach for rule generation, usually, the derived rule set
does not fully correspond to our expectation. Therefore, the prototype mapping
model needs to be extended by the transformation desginer.

Example. Let us take rule class2tableR as an example (see Fig. 6), which is
derived from the prototype mapping model of Fig. 3. Our intuition says that if
a class does not have subclasses, it should be transformed into a database table,
but this situation is not allowed by the initial version of rule class2tableR. In
addition, the rule also prohibits the presence of attributes in the top-level class.

Fig. 7. Refinement of class2tableR by providing additional prototype mapping models

Therefore, we extend our prototype mapping model by two top-level classes
Manager and Clerk with a boss attribute of the latter to capture these situations
(in the upper part of Fig. 7).

Note that this new prototype mapping model is an addition to our initial
mapping model (of Fig. 7). After that we re-execute the previous rule generation
process, and we obtain a new version of rule class2tableR (see the lower part of
Fig. 7) instead of the old one (of Fig. 6). This new rule now fully corresponds
to our expectations: only top-level classes should be transformed into database
tables, but no further restrictions are applicable to classes in the source model.
Fortunately, the precondition of this rule distinguishes between mapped and
unmapped classes in the source model.

420 D. Varró

Other model transformation rules. After investigating references of other types
(Attr2Col and Asc2Tab) in the prototype mapping models, two additional rules
can be derived to transform attributes into columns (rule attr2columnR) and to
derive tables for associations (rule assoc2tableR, see Fig. 8).

Fig. 8. Rule assoc2tableR

It is worth observing that the tar-
get part of rule assoc2tableR contains
quite a complex structure since not
only a class is derived from an associa-
tion but also two columns and the cor-
responding foreign keys in the same
transformation step. However, these
foreign keys are not yet connected to
the referenced tables, which will be in-
vestigated in the sequel.

As a summary, the model trans-
formation rules generated in this first
phase are able to derive (i) the target equivalents of each mapped source node,
and (ii) some local context which comprises the unmapped nodes contained by
these target nodes, and the interconnecting edges between them. In the next
phase, we derive further links between target model elements based upon the
connectivity of mapped source nodes.

4.5 Linking Target Model Elements

In the first phase of rule derivation, we only investigated each reference type sep-
arately in the prototype mapping model. Now we gradually extend this technique
to investigate pairs of reference nodes (and then triples, quadruples, etc.) to de-
rive additional model transformation rules. As the number of reference nodes
increases, the derivation of a new transformation rule may become too com-
plex. Fortunately, the transformation designer may interrupt the rule derivation
process at any time and continue the creation of transformation rules manually.

The core problem in this step is to identify interconnections (paths) between
source nodes mapped by appropriate reference nodes, and then to derive the
links between the corresponding target elements created in earlier phases of
the transformation. Due to space limitations, we only sketch the essence of our
technique on the running example by deriving appropriate target connections
between tables generated for mapped associations and classes (see Fig. 9).

Connectivity analysis. Since all individual references of a certain type have been
investigated in the previous phase, now we investigate all pairs of reference nodes
in the reference metamodel.

If a source node identified by a reference is connected to the another source
node identified by the other reference in the prototype mapping model by a
path of edges leading via unmapped source nodes only, and the corresponding
(mapped) target nodes are also connected, then we derive a transformation rule
to create the connections between such target nodes.

Model Transformation by Example 421

(a) Connectivity analysis of source model (b) Connectivity analysis of target model

(c) Generalized rule assocSrcDst2fkeyR

Fig. 9. Transformation rules derived according to connectivity analysis

If mapped source (or target) nodes are also traversed along the identified
source (or target) path, then this path will be investigated later when considering
e.g. triples of references. A further restriction is that unmapped target nodes
along this path should be contained by a node in the target context (as defined
in Sec. 4.3).

Example. As an example, let us select one reference node of type Cls2Tab and
another node of type Asc2Tab1. In Fig. 9(a), four different paths can be identified
between pairs of reference nodes of these types. For instance, one of them is
composed of the reviews association linked by a src edge to unmapped class
VIPCustomer , which is connected to class Customer by a parent edge.

On the target side for this dedicated mapping instance (see Fig. 9(b)), there
is a cref edge linking the foreign key RevFCust belonging to table tRev (mapped
from association reviews) to the primary key column of table Customer (mapped
from class Customer).

Derivation of linking rules. Transformation rules linking target elements in ac-
cordance with the connectivity analysis of pairs (triples, etc.) of reference nodes
are derived by the following steps:

1. For each reference node the postcondition of transformation rules derived in
Sec. 4.4 are copied as preconditions.

1 Later, we should also investigate Cls2Tab-Cls2Tab and Asc2Tab-Asc2Tab pairs.

422 D. Varró

2. The identified path connecting mapped source nodes is also added to the
precondition.

3. The path connecting the mapped target is added as a negative condition to
the precondition and it is marked to be created by the postcondition.

Obviously, a rule is only created if for each path of the same kind (i.e. com-
posed of a certain kind of nodes and edges) identified in the source model, there
exists a corresponding path in the target model as well. In other terms, when
the connectivity of the target nodes is a consequence of the connectivity of the
source nodes.

Example. In case of pairs of Cls2Tab and Asc2Tab reference types, we can derive
four transformation rules with different source patterns (corresponding to the
four cases in Fig. 9(a)) but identical target pattern (see Fig. 9(b)).

Manual generalization of transformation rules. In order to reduce the number of
model transformation rules, the transformation designer should try to generalize
the transformation rules by identifying a more general source pattern from which
all the different cases can be derived.

Naturally, this generalization step cannot be fully automated in general, but
in theory, it is possible to check if a generalized rule (with path expressions)
derived by the intuition of the transformation designer really generalizes the
automatically derived elementary rules.

Example. Rule assocSrcDst2fkeyR (depicted in Fig. 9(c)) is such a generalization
which states that (i) the source and target ends of associations are handled
identically, and (ii) there may exist a path of parent edges between the source
(target) of an association (e.g. VIPCustomer) and the mapped (top-level) class
(e.g. Customer).

5 Related work

Up to our best knowledge, the proposed approach is novel in the field of model
transformations; but it is not unprecedented in a more general research context.

The name of “model transformation by example” was obviously influenced by
the “Programming by Example” paradigm. Programming by Example encom-
passes a number of approaches to creating programs by giving examples of their
behavior or effect, i.e., they emphasize working on concrete examples rather than
describing a procedure in the abstract. A more recent approach that has proven
quite successful is Programming by Demonstration [5]: the programmer (often
the end-user) demonstrates actions on example data, and the computer records
and possibly generalizes these actions.

Advanced XSLT tools are also capable of generating XSLT scripts from
schema-level (like MapForce from Altova [4]) or document (instance-)level map-
pings (such as the pioneering XSLerator from IBM Alphaworks, or the more
recent StylisStudio [3]). Research in the field of XSLT generation includes in-
teractive approaches like [14] or fully automated ones [7] based on a theory of
information-preserving and -approximating XML operations.

Model Transformation by Example 423

Data-driven approaches frequently guide the learning of transformation rules
for semantic query optimization (SQO) in the field of databases as proposed
e.g. in [12,10]. SQO uses query-transformation rules, e.g. semantic integrity con-
straints and functional dependencies. The objective of a semantic query opti-
mizer is to find a semantically equivalent query which yields a more efficient
execution plan that satisfy the integrity constraints and dependencies.

Finally, the mostly related work in the field of model transformations is iden-
tified by interactive model transformation approaches [13] where the composi-
tion of certain transformation patterns is driven by the transformation designer.
However, these transformation patterns are constructed manually by the trans-
formation designer (and not derived semi-automatically as in our case).

The derivation of executable graph transformation rules from a declarative
specification given in the form of triple graph grammars (TGG) is investigated
in [9]. While TGG rules are quite close to the source and target modeling lan-
guages themselves, they are still created manually by the transformation de-
signer. Anyhow, it is an interesting future work to map the techniques of the
current paper into TGGs instead of plain graph transformation rules.

6 Conclusions

The current paper introduced a new approach for the design of model trans-
formations called model transformation by example, an iterative and interactive
approach which aims at a (semi-)automated derivation of model transformation
rules from prototypical pairs of model instances.

This approach uses the fact that the majority of model transformations has
a very simple structure, and thus transformation rules can be derived auto-
matically after analyzing the contexts of model elements in related source and
target models. As a consequence, this approach can largely assist transforma-
tion designers to capture rules for the mechanic, less intuitive parts of a model
transformation problem. In the future, transformation designers are planned to
be assisted by powerful domain-specific visual languages.

Initial case studies with small and medium size transformation examples (e.g.
different versions of the object-relational mapping, and a statechart to Petri net
transformation) have been carried out as an initial validation of our approach.
The current paper used the most problematic case study to highlight both the
strengths and the limitations of the approach (and the importance of user in-
teraction as well). However, it is a future work to assess the scalability of the
approach for large, industrial model transformation problems.

Note that a fully automated synthesis of transformation rules has not been
addressed in the current paper: the intuition of the transformation designer is
still highly required (i) to come up with appropriate pairs of source-target model
instances and (ii) to generalize transformation rules (e.g. by path expression) in
order to reduce the number of automatically generated rules.

The heuristic techniques introduced in the current paper were derived from
the past model transformation experience of the author. However, systematic

424 D. Varró

optimizations in this field introduce immense challenges for the future. Quali-
tative, unsupervised learning and discovery techniques in the field of artificial
intelligence, and data mining techniques provide primary candidates for that.

References

1. Eclipse Modeling Framework. http://www.eclipse.org/emf.
2. Model transformations in practice workshop. http://sosym.dcs.kcl.ac.uk/

events/mtip/.
3. StylisStudio. http://www.stylusstudio.com.
4. Altova:. MapForce 2006. http://www.altova.com/features xml2xml mapforce.

html.
5. A. Cypher (ed.). Watch What I Do: Programming by Demonstration. The MIT

Press, 1993.
6. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.). Handbook on Graph

Grammars and Computing by Graph Transformation, vol. 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

7. M. Erwig. Toward the automatic derivation of XML transformations. In 1st Int.
Workshop on XML Schema and Data Management (XSDM’03), vol. 2814 of LNCS,
pp. 342–354. Springer, 2003.

8. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
transformation language based on UML and Java. In H. Ehrig, G. Engels, H.-
J. Kreowski, and G. Rozenberg (eds.), Proc. Theory and Application to Graph
Transformations (TAGT’98), vol. 1764 of LNCS. Springer, 2000.

9. A. Königs and A. Schürr. MDI - a rule-based multi-document and tool integration
approach. Journal of Software and Systems Modelling, 2006. Special Section on
Model-based Tool Integration (In Press).

10. B. G. T. Lowden and J. Robinson. Constructing inter-relational rules for semantic
query optimisation. In Proc. of 13th International Conference of Database and
Expert Systems Applications, (DEXA 2002), Aix-en-Provence, France, September
2-6,, vol. 2453 of LNCS, pp. 587–596. Springer, 2002.

11. Object Management Group. QVT: Request for Proposal for Queries, Views and
Transformations. http://www.omg.org.

12. S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle. Learning transformation rules
for semantic query optimization: A data-driven approach. IEEE Trans. Knowl.
Data Eng., vol. 5(6):pp. 950–964, 1993.

13. M. Siikarla and T. Systä. Transformational pattern system - some assembly re-
quired. In Proc. Intern. Workshop on Graph Transformation and Visual Modelling
Techniques (GT-VMT 2006), ENTCS, pp. 57–68. Elsevier, 2006. In Press.

14. L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven understanding and
refinement of schema mappings. In Proc. ACM SIGMOD Conference on Manage-
ment of Data. 2001.

Graphical Definition of In-Place Transformations
in the Eclipse Modeling Framework

Enrico Biermann1, Karsten Ehrig2, Christian Köhler1, Günter Kuhns1,
Gabriele Taentzer1, and Eduard Weiss1

1 Department of Computer Science, Technical University of Berlin, Germany
{enrico, jaspo, bunjip, gabi, eduardw}@cs.tu-berlin.de
2 Department of Computer Science, University of Leicester, UK

karsten@mcs.le.ac.uk

Abstract. The Eclipse Modeling Framework (EMF) provides a mod-
eling and code generation framework for Eclipse applications based on
structured data models. Although EMF provides basic operations for
modifying EMF based models, a framework for graphical definition of
rule-based modification of EMF models is still missing. In this paper we
present a framework for in-place EMF model transformation based on
graph transformation. Transformations are visually defined by rules on
object patterns typed over an EMF core model. Defined transformation
systems can be compiled to Java code building up on generated EMF
classes. As running example different refactoring methods for Ecore mod-
els are considered.

1 Introduction

In the world of model-driven software development the Eclipse Modeling Frame-
work (EMF) [7] is becoming a key reference. It is a framework for describing
class models and generating Java code which supports to create, modify, store,
and load instances of the model. Moreover, it provides generators to support the
editing of EMF models.

EMF unifies three important technologies: Java, XML, and UML. Regardless
of which one is used to define a model, an EMF model can be considered as the
common representation that subsumes the others. I.e. defining a transformation
approach for EMF, it will become also applicable to the other technologies.

In model-driven development, the transformation of models belongs to the es-
sential activities. Different kinds of model transformations [24] are distinguished:
endogenous transformations, such as refactoring or optimization in general, mod-
ify models within the same language. Exogenous transformation translate mod-
els between different languages. A prominent example for exogenous transfor-
mations are mappings from Platform Independent Models (PIMs) to Platform
Specific Models (PSMs) in the Model-Driven Architecture (MDA) approach [12].
Although different in the intention, exogenous and endogenous transformations
can simulate each other in a certain sense. An exogenous transformation with

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 425–439, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

426 E. Biermann et al.

the same source and target language can be considered as endogenous one. Cor-
responding transformation engines usually work with two models, the source and
the target model, in the exogenous case. This is not adequate for endogenous
transformations where mostly in-place model updates are needed. Vice versa,
endogenous transformations can emulate exogenous ones by constructing the
product of all source and target languages and using it as underlying language.

Furthermore, we can distinguish model-to-model transformation to be used
on a higher abstraction level, while model-to-text transformation to be defined
by approaches like JET [10], refer to e.g. code generation. In the following, we
focus on model-to-model transformations.

It has been shown that source-driven transformation languages such as XSLT
being used to transform XML documents, are well suitable for the transformation
of documents, but less suited for model transformations [18,27].

In contrast to common model-to-model transformation approaches for EMF,
we present an approach for in-place model-to-model transformations. As run-
ning example, we will consider model refactorings in EMF. We will introduce a
visual notation for transformation rules which differs largely from that of QVT.
Relations are a key concept in QVT which does not fit well to endogenous
transformations, since relationships between model elements are not of primary
interest. In contrast, the transformation approach presented focuses on struc-
ture modification and is inspired by graph transformation [19]. Transformation
rules contain left and right-hand sides being object structures; moreover, nega-
tive object patterns may be defined, restricting the rule application. Since the
transformation concepts are close to graph transformation concepts, it is pos-
sible to translate the rules to AGG [2], a tool environment for algebraic graph
transformation where they might be further analyzed. For efficient execution of
model transformations, the rules can be translated to Java code using generated
EMF classes.

2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [7] provides a modeling and code gen-
eration framework for Eclipse applications based on structured data models. The
modeling approach is similar to that of MOF, actually EMF supports Essential
MOF (EMOF) as part of the OMG MOF 2.0 specification [8]. The type informa-
tion of sets of instance models is defined in a so-called core model corresponding
to metamodel in EMOF. The core or metamodel for core models is the Ecore
model. It contains the model elements which are available for EMF core models
in principle. In Fig. 1, the main part of Ecore is shown. The kernel model contains
elements EClass, EDataType, EAttribute and EReference. These model elements
are needed to define classes by EClass, their attributes by EAttribute and inter-
relations by EReference. EClasses can be grouped to EPackages which might be
again structured into subpackages. In addition, each model element can be an-
notated by EAnnotation. Furthermore, there are some abstract classes to better
structure the Ecore model, such as ENamedElement, ETypedElement, etc.

Graphical Definition of In-Place Transformations in the EMF 427

Fig. 1. Kernel of Ecore model

Fig. 2. Transformation Overview

It is important to note that the EMF metamodel (Ecore) again is a core
model. That means that the metaclasses EClass, EDatatype, EReference etc.
actually cannot just be interpreted as, but in fact are classes of an EMF core
model. This is of great importance for our approach, since it enables us to use
native EMF notions (elements of the metamodel) for the definition of transfor-

428 E. Biermann et al.

mation rules and interprete these notions in terms of formal graphs and graph
transformations.

From an EMF model, a set of Java classes for the model and a basic, tree
based editor can be generated. The generated classes provide basic support for
creating/deleting model elements and persistency operations like loading and
saving. Relations between EMF model classes are handled by special EMF lists,
extending the Java list classes. Moreover, EMF models can be used as underly-
ing models in new application plugins. But in many cases, the EMF model by
its own is not powerful enough to express the complete model behavior. There-
fore the generated code can be extended by the developer in order to add new
functionalities that are not expressed in the EMF model.

3 Visual Definition of Endogenous Transformations

Basically, an in-place EMF transformation is a rule-based modification of an
EMF source model resulting in an EMF target model. Both, the EMF source
and target models are typed over the same EMF core model which itself is again
typed over Ecore. The transformation rules are typed over the Transformation
Model shown in Fig. 3 which itself is an instance of Ecore again (see Fig. 2).
Since the transformation model is an EMF model, a tree-based editor can be
generated automatically. For more convenient editing of the rules we developed
an additional visual editor being an Eclipse plug-in based on EMF and GEF [5].
Figs. 4 - 8 show screenshots of this editor.

A Transformation consists of a RuleSet containing the set of Rules for the
transformation. Furthermore, it has a link to the core model its instances are
typed over. If needed, a start structure can be defined as well to have a fixed
starting point for the transformation available. A transformation together with
a start structure forms an EMF grammar.

Rules are expressed mainly by two object structures LHS and RHS, the left
and right-hand sides of the rule. Furthermore, a rule has mappings between
obects and links of the LHS and the RHS indicated by numbers preceding the
class names. The left-hand side LHS represents the pre-conditions of the rule,
while the right-hand side RHS describes the post-conditions. Those symbols and
links of the LHS which are mapped to the RHS, describe a structure part which
has to occur in the EMF source model, but which is not changed during the
transformation. All objects and links of the LHS not mapped to the RHS define
the part which shall be deleted, and all objects and links of the RHS to which
nothing is mapped, define the part to be created. Attributes in the LHS have to
occur in the EMF source model in addition while they can be reassigned with
different values in the RHS of the rule.

The applicability of a rule can be further restricted by additional application
conditions. As already mentioned above, the LHS of a rule formulates some kind
of positive condition. In certain cases also negative application conditions (NACs)
which are pre-conditions prohibiting certain object structures, are needed. If
several NACs are formulated for one rule, each of them has to be fulfilled. A NAC

Graphical Definition of In-Place Transformations in the EMF 429

Fig. 3. Transformation Model

Fig. 4. Rule ”MoveClass”

is again an object structure. Moreover, mappings between the LHS and a NAC
can be defined. This feature is useful to prohibit structures in relation to the LHS.

The rule’s LHS or a NAC may contain constants or variables as attribute
values, but no Java expressions, in contrast to a RHS. A NAC may use the
variables already used in the LHS or new variables declared as input parameters.

430 E. Biermann et al.

The scope of a variable is its rule, i.e. each variable is globally known in its rule.
The Java expressions occurring in the RHS, may contain any variable used within
the LHS or declared as input parameter. Multiple usage of the same variable is
allowed and can be used to require equality of values.

A rule-based transformation system may show two kinds of non-determinism:
(1) for each rule several matches can exist, and (2) several rules can be applicable.
There are techniques to restrict both kinds of choices. The choice of matches can
be restricted by using input parameters. Moreover, some kind of control flow on
rules can be defined by applying them in a certain order. For this purpose, rules
are equipped with layers. All rules of one layer are applied as long as possible
before going over to the next layer. Later on, we will show how to use Java for
controlling rule applications.

Running Example: Refactoring of EMF Models: To illustrate the presented
transformation approach for EMF models we show two refactoring methods for
EMF models. All transformation rules are typed over the Ecore model, in more
detail over the Ecore section shown in Fig. 1. In the following, we define the
simple refactoring ”move class” where a class is moved from one package to an-
other. Moreover, the complex refactoring ”pull up attribute” is shown. If each
subclass contains an attribute with the same name, it can be pulled up to their
common superclass.

Refactoring rule ”MoveClass(EString n, EString p)” in Fig. 4 has two input
parameters ”n” and ”p” to determine the names of the class to be moved and
the package it shall be moved to. The LHS describes the pattern to be found for
refactoring consisting of the class with name ”n”, the package it is currently in,
and the package with name ”p” it shall be moved to. The RHS shows the new
pattern after refactoring where the class is contained in the package named ”p”.
In addition, the rule has a NAC which checks if the package named ”p” already
contains a class named ”n”.

Refactoring ”PullUpAttribute” is more complex, i.e. it cannot be defined by
just one rule, but four rules are needed to check the complex pre-condition, to do
the kernel refactoring, and to make the model consistent afterwards. For checking
the pre-condition, rule ”CheckAttribute(EString c, EString a)” in Fig. 5 checks
for the class named ”c” if there is a subclass not containing an attribute named
”a”. This rule can be applied at most once, since there are NACs which check if
there is already a subclass with this annotation. Thereafter, we try to apply rule
”PullUpAttribute(EString c, EString a)” in Fig. 6. If there is no subclass of the
class named ”c” which has an annotation with source ”no attribute” and if the
class named ”c” has not already an attribute named ”a”, it looks for a subclass
which has an attribute named ”a”. After the refactoring, the attribute with
name ”a” is pulled up from one subclass. This rule is applicable at most once.
Thereafter, NAC ”Attribute already pulled up” will not be satisfied anymore.
NAC ”Attribute not in all sub-types” checks a necessary pre-condition.

If ”PullUpAttribute” was successful, i.e. there is no subclass with a corre-
sponding annotation, all attributes named ”a” being still contained in subclasses
have to be deleted. This is done by rule ”DeleteAttribute(EString c, EString a)”

Graphical Definition of In-Place Transformations in the EMF 431

Fig. 5. Rule ”CheckAttribute”

in Fig. 7 applying it as long as possible. Finally, if the refactoring was not suc-
cessful, all new annotations of the class named ”c” have to be deleted again
which is performed by rule ”DeleteAnnotation(EString c)” in Fig. 8. The appli-
cation control for these rules just described can be realised by putting each of
the rules to consecutive layers in the order of description. (See attribute ”layer”
of model element ”Rule” in the transformation model in Fig. 3.)

4 Execution of EMF Transformations

To apply the defined transformation rules on a given EMF model, we either
select and apply the rules step-by-step, or take the whole rule set and let it
apply as long as possible. A transformation step with a selected rule is defined
by first finding a match of the LHS in the current instance model. A pattern
is matched to a model if its structure can be found in the model such that the
types and attribute values are compatible. In general, a pattern can match to
different parts of a model. In this case, one of the possible matches has to be
selected, either randomly or by the user.

Performing a transformation step which applies a rule at a selected match,
the resulting object structure is constructed in two passes: (1) all objects and
links present in the LHS but not in the RHS are deleted; (2) all object and links
in the RHS but not in the LHS are created. A transformation, more precisely a
transformation sequence, consists of zero or more transformation steps.

432 E. Biermann et al.

Fig. 6. Rule ”PullUpAttribute”

Fig. 7. Rule ”DeleteAttribute”

Consistency recovery: Although EMF models show a graph-like structure and
can be transformed similarly to graphs [19], there is a main difference in between.
In contrast to graphs EMF models have a distinguished tree structure which
is defined by the containment relation between their classes. An EMF model
should be defined such that all its classes are transitively contained in the root
class. Since an EMF model may have non-containment references in addition,

Graphical Definition of In-Place Transformations in the EMF 433

Fig. 8. Rule ”DeleteAnnotation”

the following question arises: What if a class which is transitively contained in
the root class, has non-containment references to other classes not transitively
contained in the root class? In this case we consider the EMF model to be
inconsistent, since e.g. it cannot be made persistent anymore. A transformation
can make an EMF model inconsistent, if its rule deletes one or more objects or
containment links. For example an inconsistent situation occurs, if one of these
objects transitively contains an object included by a non-containment reference.
To restore the consistency, all objects to be deleted or to be disconnected from
their containing objects, have to be determined. Thereafter, all non-containment
references to these indicated objects have to be removed, too. Similar to the
handling of deleted structures, consistency recovery is also applied to newly
created objects. If a rule creates objects which are not contained in the tree
structure, the consistency recovery will remove these objects at the end of a rule
application. It is possible to forbid the application of those rules entirely, since
inconsistencies on creation of objects can be determined statically.

4.1 Interpreter Approach

For executing the defined transformation by the EMF Interpreter, a new Inter-
preter instance has to be created first. (See the following code snippet.)

Interpreter interpreter = new Interpreter(eObject);
interpreter.loadTransformation(filename);
interpreter.transform();
interpreter.applyRule(rulename, parameter, mapping);

An eObject can be any class in the model instance which should be trans-
formed. After creating the interpreter, the transformation file with name ”file-
name” is loaded. It has to be ensured that the loaded transformation contains
the same classes that are used by the instance model to be transformed. After
loading a transformation, rules can be applied. For example, invoking trans-
form() results in the application of all rules as long as possible. For applying
a specific rule, method applyRule is called. The first parameter of applyRule is
simply the name of the rule to be applied. Afterwards the value of each input

434 E. Biermann et al.

parameter needs to be specified. A sample use of class Parameter is given in the
following example. The third parameter of method applyRule contains a vector
of EObjects which defines a partial match between rule objects and instance
objects. If a rule shall be matched automatically, this parameter is set to null.

Here is the sample code snippet for the application of rule MoveClass to an
EMF model for a library. Assuming you want to move class Book from package
Bookshelf to package Library.

Interpreter interpreter = new Interpreter(eClass1);
interpreter.loadTransformation("refactoring.tfm");

Parameter parameter = new Parameter();
parameter.addParameter("n","Book", "String");
parameter.addParameter("p", "Library", "String");

Vector mapping = new Vector(2);
mapping.add(eClass1);
mapping.add(ePackage1);

interpreter.applyRule("MoveClass", parameter, mapping);

Interpreting EMF Transformations by Graph Transformations: Since EMF mod-
els show a graph-like structure and can be transformed similarly to graphs, we
have chosen an interpreter approach where an EMF model is translated to a cor-
responding graph. Furthermore, the EMF transformation rules are translated to
graph rules. After having performed the corresponding graph transformation,
the result graph is translated back to an EMF model. For the execution of graph
transformations, we take AGG [2], a transformation engine for typed, attributed
graphs.

As first step, the EMF core model of the transformation is translated to a
so-called type graph. Classes are translated to node types and references to edge
types. Please note that bidirectional references are mapped to two opposite edge
types. Class attributes become node type attributes on the graph side. EMF
instance models are translated to graphs. Since each consistent instance model
has root objects which contain all other objects, we can navigate from given
EObjects being the roots for all linked objects and translate them to graph
nodes. All references are mapped to edges. Each EMF rule is translated to a
graph rule in a straightforward way.

After having performed the corresponding graph transformation, the resulting
graph has to be translated back to an EMF model. As described above, it might
happen that the resulting EMF model is not consistent, i.e. non-containment
references which make the model inconsistent, have to be removed.

Having a translation of EMF transformation to graph transformation (and
back again) at hand, the available analysis techniques may be useful to vali-
date EMF transformations. This is not always possible, but only if the EMF
models remain consistent during the transformation which is the case if objects
with subtrees are not deleted or uncoupled by removing the reference to their
container.

Graphical Definition of In-Place Transformations in the EMF 435

All refactoring rules in the running example preserve the consistency of EMF
models. Thus, analysis techniques such as critical pair analysis, termination
checks, etc. are available also for these EMF model refactorings. For example in
[23], critical pair analysis was used to detect conflicts and dependencies between
software refactorings. For example, one conflict between two different applica-
tions of rule ”PullUpAttribute” reported by AGG occurs, if a class has several
subclassses where attributes named ”a” occur. In this case only one of these
attributes is pulled up. Since all these attributes in the subclasses are equal
and are deleted afterwards, the refactoring result is independent of the concrete
attribute pulled up. Thus, this conflict can be resolved [22].

4.2 Compiler Approach

Besides interpreting an EMF transformation as graph transformation, transfor-
mation rules can also be compiled to Java methods to be used together with
previously generated EMF code. For the translation of transformation rules to
code we use JET, the code generator in EMF [7].

For each transformation rule, two classes are generated to do the rule match-
ing and the transformation. E.g. for refactoring rule ”MoveClass”, Java classes
”MoveClassRule.java” and ”MoveClassWrapper.java” are generated. The first
class contains methods for execution, undo and redo functionality. The second
class is needed for the matching process. Rule matching is formulated as a con-
straint solving problem where the LHS objects are variables, the objects of the
EMF instance model form the domain, and typing, linking und attribute values
form the set of constraints. Formulating pattern matching in this way, its effi-
ciency is directly dependent on the constraint solving algorithm as well as on
the ordering of variables and domain elements. This form of pattern matching
is influenced by graph pattern matching as done in AGG [25].

To apply one rule you create an instance of the generated rule class. This class
and the dependent wrapper class contain all information about the intended
changes of instances by the rule and how to find a match for the LHS. To have
at least one reference to the instance, on which the rule shall be applied, it
must be set by method ”setInstanceSymbol(eObject)”. Its parameter can be
an arbitrary EObject of the instance model. Input parameters can be given by
setters, which have name ”set” followed by the variable name in the rule. Matches
for the LHS are either found automatically or are given by setters, which have
the form set+Type+Counter (for objects of type ”Type” further distinguished
by ”Counter”). By method ”execute()” the given partial match is completed
and the rule applied. Here is a short code example for the application of the rule
”MoveClass”. Let’s assume you want to move class Book from package Bookshelf
to package Library.

MoveClassRule moveClassRule = new MoveClassRule();
moveClassRuse.setInstanceSymbol(eClass1);

moveClassRule.setParN("Book"); // set Name
moveClassRule.setParP("Library"); // set Package

436 E. Biermann et al.

moveClassRule.setEClass0(eClass1);
moveClassRule.setEPackage0(ePackage1);

moveClassRule.execute();

There is also a way to apply a rule with the same parameters as the In-
terpreter. To do so you call method ”applyRule()” in class ”Transformation-
Interface”. This class also needs a reference to the instance which is given in
the constructor. Additionally it allows to start a transformation by calling the
method ”transform()”.

Transformation transformation = new Transformation(eClass1);
transformation.applyRule("MoveClass", parameter, mapping);

transformation.transform();

While transform applies the rule arbitrarily in this example, the rule applica-
tion can also be controlled by Java constructs.

5 Related Work

In this paper we presented a model transformation approach based on graph
transformation concepts and the Eclipse technology. There are already several
model transformation tool environments around being based on graph trans-
formation and/or Eclipse. Most of these tool environments are designed for
exogenous model transformation, i.e. model transformations between different
languages, and do not allow in-place model updates. This fact is one of the
differences to our approach which is especially designed for endogenous model
transformation, i.e. model transformation within the same language. In the fol-
lowing, we look a little closer to several approaches and distinguish between
EMF-related and graph transformation related approaches.

5.1 EMF-Related Approaches

A rather simple approach to EMF model transformation is given by the Merlin
Eclipse plug-in [11] which can perform model-to-model and model-to-code trans-
formations. Focussing on the first type of transformations type mappings and
simple mapping rules consisting of conditions - actions pairs can be performed.
Type mappings and rules are defined in a textual form.

Sub-projects in Eclipse GMT [4] like Tefkat [20], ATL [3], MTF [1] and MO-
MENT [16] support a much more elaborated transformation approach which
is mainly declarative and close to the concepts of QVT, but might also allow
imperative feature, as in the case of ATL. Similarly, our approach is mainly rule-
based, but allows native method calls in attribute computations (as ATL does).
In contrast to ours, model transformations are formulated in textual forms in all
studied approaches.

Graphical Definition of In-Place Transformations in the EMF 437

Each of the QVT-related approaches considered provides a transformation
engine based on EMF which might be integrated in other applications as well
as a tool environment (IDE) which consists of at least an editor and a debugger
provided as Eclipse plug-ins. While also offering a transformation engine and a
(visual) editor, our approach lacks from an integrated debugger. For this pur-
pose, a model transformation has to be translated to AGG where the stepwise
execution of transformations is supported.

The MOMENT project contains an EMF transformation engine which is
based on algebraic specifications as implemented in Maude [?]. Similarly to ours,
this approach has a clear formal background. But in contrast to MOMENT our
EMF transformations are based graph transformation concepts which can be
used for verify properties of model transformations such as termination, conflu-
ence, and constraint checking, and can be executed by the AGG graph transfor-
mation engine.

5.2 Graph Transformation Related Approaches

There are a number of graph transformation-based approaches to model transfor-
mation, as e.g. supported by VIATRA2 [15], VMTS [21], AToM3 [17], GReAT [9],
MOFLON [13], Gmorph [26] and MOTMOT [14]. While all dealing with graphs
and their manipulation, these approaches differ heavily concerning the kind
of graphs used and the transformation concepts supported. All indicated ap-
proaches support exogenous model transformations.

Besides standard graph transformation concepts, such as rules with left and
right-hand sides and integrated attribute computations, a number of advanced
transformation concepts are supported. Additional forms for structuring rule
sets are supported by all of the related approaches. We decided to keep our
transformation model rather simple by supporting the standard transformation
concepts with negative application conditions for rule in addition. As advantage,
graph transformations of this form can be verified based on the theory of alge-
braic graph transformation. Additional structuring of transformation rules has
to be expressed by additional Java code and is not yet taken into account for
verification.

Most of these graph transformation-related approaches do not offer EMF im-
port/export facilities. While VIATRA2 is able to perform EMF transformations
in an interpretative mode, it is not able to generate Java code for endogenous
EMF transformations. MOFLON combines MOF with graph transformation and
supports the generation of JMI compliant Java code, but does not offer verifica-
tion facilities.

6 Conclusion and Future Work

In this paper we presented an approach for the graphical definition of in-place
model transformations. As running example, we considered model refactorings
in EMF. Our visual notation for transformation rules pretty differs from that of

438 E. Biermann et al.

QVT. Relations are a key concept in QVT which does not fit well to endogenous
transformations, since relationships between model elements are not of primary
interest. In contrast, the transformation approach presented focuses on struc-
ture modification and is inspired by graph transformation. Transformation rules
contain left and right-hand sides being object structures; moreover, negative
object patterns may be defined, restricting the rule application. Since the trans-
formation concepts are closely related to graph transformation concepts, it is
possible to translate the rules to AGG, a tool environment for algebraic graph
transformation where they might be further analyzed. For efficient execution
of model transformations, the rules can be translated to Java code to be inte-
grated into generated EMF classes. The presented tool can be downloaded at
http://tfs.cs.tu-berlin.de/emftrans.

Further application of endogenous EMF model transformation may include
the execution of editing operations in EMF-based editors such as generated by
the Eclipse Graphical Modeling Framework (GMF) [6]. Orienting the transfor-
mation model at the concepts of algebraic graph transformation techniques, we
started with a rather simple transformation model. Further concepts may be for-
mulated on top of the approach presented such that the well-developed analysis
techniques for algebraic graph transformations can still be used.

References

1. IBM Model Transformation Framework http://www.alphaworks.ibm.com/tech/
mtf, 2005.

2. AGG-System http://tfs.cs.tu-berlin.de/agg/, 2006.
3. ATL: The Atlas Transformation Language Home Page http://www.sciences.

univ-nantes.fr/lina/atl , 2006.
4. Eclipse Generative Modeling Tools (GMT) http://www.eclipse.org/gmt, 2006.
5. Eclipse Graphical Editing Framework (GEF) http://www.eclipse.org/gef, 2006.
6. Eclipse Graphical Modeling Framework (GMF) http://www.eclipse.org/gmf,

2006.
7. Eclipse Modeling Framework (EMF) http://www.eclipse.org/emf, 2006.
8. Essential MOF (EMOF) as part of the OMG MOF 2.0 specification http://www.

omg.org/docs/formal/06-01-01.pdf , 2006.
9. GReAT: Graph Rewriting And Transformation

http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp, 2006.
10. Java Emitter Templates (JET) as part of the Eclipse Modeling Framework (EMF)

http://www.eclipse.org/emf, 2006.
11. Merlin Generator http://sourceforge.net/projects/merlingenerator/, 2006.
12. Model Driven Architecture (MDA). http://www.omg.org/mda, 2006.
13. MOFLON http://gforge.echtzeitsysteme.org/projects/moflon/, 2006.
14. MoTMoT: Model driven, Template based, Model Transformer

http://www.fots.ua.ac.be/motmot/index.php , 2006.
15. VIATRA2 (VIsual Automated model TRAnsformations) framework http://

dev.eclipse.org/viewcvs/ indextech.cgi/ checkout/gmt-home/subprojects/
VIATRA2/sindex.html, 2006.

Graphical Definition of In-Place Transformations in the EMF 439

16. A. Boronat, J. Carsi, and I. Ramos. Algebraic Specification of a Model Trans-
formation Engine. In Springer LNCS 3922. Fundamental Approaches to Software
Engineering (FASE’06). ETAPS’06. Vienna (Austria)., 2006.

17. J. de Lara and H. Vangheluwe. ATOM3: A Tool for Multi-Formalism Modelling
and Meta-Modelling. In R. Kutsche and H. Weber, editors, Proc. Fundamen-
tal Approaches to Software Engineering (FASE’02), Grenoble, April 2002, pages
174 – 188. Springer LNCS 2306, 2002.

18. K. Duddy, A. Gerber, M.J. Lawley, K. Raymond, and J. Steel. Declarative Trans-
formation for Object-Oriented Models. In In Transformation of Knowledge, Infor-
mation, and Data: Theory and Applications, edited by P. van Bommel. Idea Group
Publishing, 2005.

19. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
2006.

20. M. Lawley and J. Steel. Practical Declarative Model Transformation With Tefkat.
In In Proc. Model Transformation in Practice Workshop, Models Conference, 2005.

21. T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf. Systematic Approach
to Metamodeling Environments and Model Transformation Systems in VMTS. In
2nd International Workshop on Graph Based Tools (GraBaTs), workshop at ICGT
2004, Rome, Italy, 2004.

22. T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring Con-
flicts unsing Critical Pair Analysis. In In R. Heckel and T. Mens, editors,
Proc. Workshop on Software Evolution through Transformations: Model-based vs.
Implementation-level Solutions (SETra’04), Satellite Event of ICGT’04), Rome,
Italy, 2004.

23. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using
graph transformation. Software and System Modeling, 2006. to appear.

24. T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. In Proc. In-
ternational Workshop on Graph and Model Transformation (GraMoT’05), number
152 in Electronic Notes in Theoretical Computer Science, Tallinn, Estonia, 2006.
Elsevier Science.

25. Michael Rudolf. Utilizing Constraint Satisfaction Techniques for Efficient Graph
Pattern Matching. In 6th Int. Workshop on Theory and Application of Graph
Transformation (TAGT’98), LNCS 1764, pages 238–251. Springer Verlag, 2000.

26. S. Sendall. Combining Generative and Graph Transformation Techniques for Model
Transformation: An Effective Alliance? In 18th Annual ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2003.

27. G. Taentzer and G. Toffetti Carughi. A Graph-Based Approach to Transform XML
Documents. In L. Baresi and R. Heckel, editors, Proc. Fundamental Approaches to
Software Engineering (FASE), volume 3922 of LNCS. Springer, 2006.

Model Transformations? Transformation Models!

Jean Bézivin1, Fabian Büttner2, Martin Gogolla2,
Frederic Jouault1, Ivan Kurtev1, and Arne Lindow2

1 University of Nantes, Computer Science Department & INRIA
2 University of Bremen, Computer Science Department & TZI

Abstract. Much of the current work on model transformations seems
essentially operational and executable in nature. Executable descriptions
are necessary from the point of view of implementation. But from a con-
ceptual point of view, transformations can also be viewed as descriptive
models by stating only the properties a transformation has to fulfill and
by omitting execution details. This contribution discusses the view that
model transformations can be abstracted as being transformation mod-
els. As a simple example for a transformation model, the well-known
transformation from the Entity-Relationship model to the Relational
model is shown. A transformation model in this contribution is nothing
more than an ordinary, simple model, i.e., a UML/MOF class diagram
together with OCL constraints. A transformation model may transport
syntax and semantics of the described domain. The contribution thus
covers two views on transformations: An operational model transforma-
tion view and a descriptive transformation model view.

1 Introduction

Today it is well accepted that models play an important role in software develop-
ment. Standards like UML including OCL and the recent QVT (Queries, Views,
Transformations) [OMG05] underpin a trend called model engineering [Bez05]
which can be seen as a discipline within software engineering.

QVT is a family of languages for the description of model transformations.
It is designed to formalize transformations from one model to another model.
Source and target models may be formulated in different modeling languages.
Many QVT language features are operational in nature. A main intention of
QVT seems to formulate transformations which can be executed.

A model can tell what something does (specification) as well as how
the function is accomplished (implementation). These aspects should be
separated in modeling. It is important to get the what correct before
investigating much time in the how. [RBJ05, p. 22]

QVT is strong on the how in transformations. This contribution concentrates
on the what in transformations. QVT focuses on the process and means of going
from the source model to the target model. This contribution focuses on the

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 440–453, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Transformations? Transformation Models! 441

properties of the source and target models and by this characterizes the trans-
formation without going into the details of the transformation process. Trans-
formations are viewed from a modeling perspective as transformation models.

The structure of the rest of the contribution is as follows. Section 2 discusses
how transformation models may emerge from model transformations. Section 3
puts forward an example for a transformation model. Section 4 elaborates on
advantages and disadvantages of the two views on transformation and model.
The contribution is finished with concluding remarks in Sect. 5.

2 From Model Transformations to Transformation
Models

In our view, the basic idea of model transformation is presented in Fig. 1
where (at the bottom) a transformation operation Mt takes a model Ma as the
source model and produces a model Mb as the target model. This operation Mt
is probably the most important operation in model engineering. Being models,
Ma and Mb conform to metamodels MMa and MMb. Usually, the transforma-
tion Mt has complete knowledge of the source metamodel MMa and the target
metamodel MMb. Furthermore, the metamodels MMa and MMb conform to a
metametamodel, in this figure, OMG’s MOF which in turn conforms to itself.

Fig. 1. From a Model Transformation Mt to a Model Transformation Metamodel MMt

The question of interest discussed in this contribution is concerned with sev-
eral views on the operation Mt. In fact, one might ask whether operation is the
right term at all. Our first proposal to view Mt consists in stating that Mt could
be a program written in a given (programming) language like Java which upon
execution causes the output Mb from the input Ma. Alternatively, if Mt is a
transformation expressed in XSLT, then the structure of Mt would be different,
but its execution on top of an engine like Saxon would produce a similar effect.

442 J. Bézivin et al.

Such a view on transformations with focus on execution is understandable be-
cause the most important motivation for model transformation is the generation
of code from (UML) models.

Before stating a second view on Mt, let us emphasize that we want to work
within the realm of model engineering: We want to develop software concentrat-
ing on and with the help of models and metamodels; we do not want to focus on
code or programs. Model engineering in particular means that one has to ask:
Is there a model or metamodel for the thing one is working with; if so, what
does the model or metamodel look like? Therefore, it seems natural to introduce
a metamodel MMt for Mt. The model transformation Mt must be conformant
to MMt, and, if we want to restrict ourselves to a three-level metamodeling
stack, then the model transformation metamodel MMt must again conform to
our top-level metamodel MOF.

Fig. 2. QVT Example Transformation

Example: In Fig. 2, the above abstract considerations are made more concrete
by considering the QVT standard and the example treated there. QVT (which
conforms to the MOF) is the metamodel of the model transformation, i.e., a
model transformation metamodel. The model transformation UMLtoRDBMS, the
example from the QVT standard, describes in an operational way how simple
UML class diagrams may be transformed into Relational database schemata.

For our third view on the operation Mt as shown in Fig. 3, we point to the fact
that different model transformations Mt1 and Mt2 may work on the same source
and target and may produce similar results. However, these model transforma-
tions may be syntactically different viewed as instantiations of the model trans-
formation metamodel MMt (which is not shown in Fig. 3). In order to emphasize
the commonalities between these different model transformations, we propose to
identify the commonalities by a model transformation model Tm, shortly denoted
by the term transformation model, which abstracts from the technical realization

Model Transformations? Transformation Models! 443

Fig. 3. Model Transformations Abstracted to a Transformation Model

details of the different model transformations and summarizes and concentrates
the similarities. We expect that the different model transformations all satisfy
what is required in this transformation model. This satisfies relationship is indi-
cated by the thick grey arrows. Having set this context, we state the hypothesis
which we would like to discuss further in this contribution:

Model transformations can be abstracted to a transformation model.

The reader may check, that the three highly related notions model transfor-
mation, model transformation metamodel and model transformation model, for
short denoted as transformation model, mean different things to us. As indicated
in Fig. 3, the transformation model again conforms to our metametamodel, in
our case MOF. Speaking in technical terms, this means that we only employ
MOF features for the formulation of our transformation model.

3 Er to Rel: A Transformation Model Example

We want to show the usefulness of the concept transformation model through
a proof by example. The example chosen here is the well-known transforma-
tion from the Er database model to the Relational database model. This ex-
ample is also used (with a bit different terminology) in the current QVT pro-
posal [OMG05], in [Bez05] and other works on model transformation [CESW04].
Because it is well-known, it is well-suited to demonstrate ideas and technical de-
tails of transformation principles.

444 J. Bézivin et al.

3.1 Technical Details of the Example Transformation Model

As indicated above, we employ MOF for the formulation of transformation mod-
els. Thus, a transformation model is nothing more or less than a MOF model:
We need a moderate class diagram and many OCL constraints. These language
features are supported by our system USE [RG01, GBR05] in which we have
completely realized this transformation example and which we employ as a MOF
compliant validation system.

Fig. 4. Class Diagram for Transformation Model

The class diagram in Fig. 4 shows the six parts of the transformation model:
Class names starting with Base are shown in the middle, ErSyn in the upper
left, ErSem in the upper right, RelSyn in the lower left, RelSem in the lower
right, and Er2Rel in the top. Generalization and associations are pictured as
well. ErSyn describes the syntax of the Er model, namely Er database schemas;
ErSem describes the semantics of the Er model, namely Er database states; Rel-
Syn describes the syntax of the Relational model, namely Relational database
schemas; RelSem describes the semantics of the Relational model, namely Rela-
tional database states. For example, in the Er semantics part, the assignments
of attribute values to instances is handled and a constraint is stated that the
key attributes have to uniquely identify the instances.

All syntax classes (Er and Rel) can be found in left, all semantics classes (Er
and Rel) in the right; all Er classes (Syn and Sem) are in the upper part, whereas
the Rel classes (Syn and Sem) are in the lower part. In case the reader is interest
in details like association multiplicities or constraint details, the full description
in [Gog06] can be consulted; we will illustrate this transformation model in the
following by some simple object diagrams and by sketching the transformation
constraints.

Model Transformations? Transformation Models! 445

Fig. 5. Example Transformation viewed as a Transformation from Er to Rel

Figure 5 shows the six parts of the class diagram similar to the previously
mentioned example transformation in Fig. 2 from the QVT standard. The dashed
arrows indicated dependencies.

Structuring a transformation into a source metamodel, a target metamodel,
and a metamodel part for the actual transformation is not new. This idea is
present, for example, in the QVT standard [OMG05] and the triple graph gram-
mar approach [KS06].

ErSyn ErSem

Trans

RelSyn RelSem

Fig. 6. Syntax, Semantics, and Transformation

In our approach we constrain all three components with OCL constraints,
i.e., the source, the target, and the actual transformation. As shown in Fig. 6, in
addition, we divide source and target metamodels into a syntactic and a semantic
part. This enables us to formulate transformation properties expressing syntactic
and also semantic characteristics.

446 J. Bézivin et al.

Fig. 7. Er Syntax

Figure 7 shows an Er database schema PMEr (PersonMarriage Er version)
modeling an entity Person and a reflexive relationship Marriage together with
three attributes and two relationships ends.

Fig. 8. Er Semantics

Figure 8 pictures two Er database states. The first state (StateCharles) incor-
porates one Instance (Charles) and AttrMap objects assigning attribute values
to instances; the second state (StateUnmarried) has two Instances (Charles, Di-
ana) and attribute assignments. In order to make the presentation simple, both
states do not have links. We emphasize that the two database states are part of
a single (larger) object diagram for the complete transformation model.

Figure 9 displays the interplay between syntax and semantics with a (partial)
object diagram. A syntactical thing from the left is associated and interpreted
by semantic things from the right. To make the presentation comprehensible,
each Er syntax concept is associated with only one Er semantic object. This

Model Transformations? Transformation Models! 447

Fig. 9. Interplay between Syntax and Semantics

Fig. 10. Transformation

part shows a third database state with a marriage link (the husband is ignored
in the display).

Figure 10 shows a Trans(formation) object which connects the schemas (the
syntax parts) and the states (the semantics parts). In general, a transforma-
tion object will connect source and target objects by links expressing that the
source may or must be transformed into the target (depending on the stated
multiplicities and constraints). One schema is associated (in this example object
diagram) with three database states. This transformation model covers syntax
and semantics of the two classical database models. As will be explained below,
the model covers the transformation and its properties as well. Database dynam-
ics is captured insofar that more than one state can be associated with a single
database schema. In the example, one can think of the first state having only
the Charles instance, the second state having Charles and Diana as unmarried
instances, and the third state with a marriage link between Diana and Charles.

Figure 11 gives an overview on the probably most interesting part of the trans-
formation model: the constraints for the transformation. The figure involves the
four central areas (Er and Rel; Syn and Sem) with dependencies, constraint

448 J. Bézivin et al.

Fig. 11. Overview on Transformation Constraints

names and indication of the ‘direction of the constraint’. We explain three con-
straints in more detail.

forRelSchemaExistsOneEntityXorRelship: This constraint ‘goes from’ the
Relational syntax part to the Er syntax part. It requires that for a Relational
schema from a transformed Relational database schema a uniquely deter-
mined entity or relationship in the Er schema with the same characteristics
exists.

Fig. 12. Class Diagram Illustrating Constraint forInstanceExistsOneTuple

forInstanceExistsOneTuple: This constraint ‘goes from’ the Er semantics
part to the Relational semantics part. It requires that for an instance from
an Er state occurring in a transformation an equivalent tuple in the Rela-
tional state exists.

Model Transformations? Transformation Models! 449

context self:Er2Rel_Trans inv forInstanceExistsOneTuple:
self.erState->forAll(erSt | self.relDBState->one(relSt |

erSt.instance->forAll(i | relSt.tuple->one(t |
i.attrMap->forAll(amEr |

t.attrMap->one(amRel |
amEr.attribute.name=amRel.attribute.name and
amEr.value=amRel.value))))))

com Trans ErState ErSchema: This constraint ‘goes from’ the Er semantics
part to the Er syntax part. Constraints starting with ‘com’ are commutativ-
ity constraints requiring the commutativity of two different evaluation paths
in the class diagram. This one requires that an Er state which is connected
to a Trans(formation) object must also be linked to the Er schema being
associated to the Trans(formation) object.

3.2 Explanation for Calling the Example a Transformation Model

Semantic properties: We have modeled the transformation with a class and
corresponding associations holding source and target object. By doing so,
semantic properties of the transformation can be formulated because we
can access source and target and retrieve their properties. In the example,
a bijection between database state spaces is described. But by dropping
certain constraints, this requirement could be relaxed to achieve only an
injection. For example, we could only require that each Er database state
has a corresponding equivalent Relational database states but not the other
way round. The required properties of the transformation rely merely on the
stated constraints and are under control and responsibility of the transfor-
mation developer. Only the properties of the transformation are stated, not
the realization of the transformation.

Alternatives: In the example, we have decided to make the transformation
deterministic. In general however, transformation alternatives can be allowed
in a single transformation model. For example, the transformation model
may allow two or more alternative Relational schemas to be associated with
one Er schema.

4 Model Transformation Versus Transformation Models

Executability: Model transformations can directly and efficiently be executed.
There is an international standard for them, QVT, and commercial and open
source implementations and systems like UMT, MTL, ATL, GMT or BOTL
are available (see the overview on transformation systems in [Wan05]).

Direction freeness: Transformation models may be seen as transformations in
multiple directions. Please check Fig. 13 which is nearly identical to Fig. 5 ex-
cept the central source and target decorations. Apart from the direction (Er
to Relational) which we have already discussed, the transformation model
may be seen in two other directions: As a transformation from the Relational

450 J. Bézivin et al.

Fig. 13. Two Further Views on Example Transformation (Different Source/Target)

database model to the Er database model and as a transformation from syn-
tax to semantics. In technical terms, a transformation direction has not to
be fixed in the model. This is based on the use of direction-free minimal
MOF language features: Classes, associations, attributes, and invariants.

Uniformity: Transformation models provide uniformity between the model de-
scription language and the language for transformations. If one has simple
models, for example, UML class diagrams with OCL constraints, then the
use of this language for transformations reliefs the development from the bur-
den of introducing another language like QVT. In particular in early project
development phases, it might be advisable to concentrate on transformation
properties by expressing them in transformation models instead of realizing
them already by model transformations.

Fig. 14. Example for Higher-Order Transformation

Higher-order transformations: Uniformity of the model and transformation
language also allows for higher-order transformations, i.e., transformations
that work on transformations. Our example could be understood and re-
alized as such a higher-order transformation: As shown in Fig. 14, assign-
ing semantics to the schemas could be seen as two basic transformations
realized through two classes ErSchema2ErState and RelSchema2RelState
and appropriate associations; the transformation from the Er model to the
Relational model could then be realized in a higher-order style by a third

Model Transformations? Transformation Models! 451

class Trans(formation) with associations to the two transformation classes
ErSchema2ErState and RelSchema2RelState.

Transformations of Transformations: Working with transformation mod-
els provides for the possibility for rewriting transformation models exactly
as they were ordinary models. Thus refactorings and improvements for gen-
eral models [ZLG05, GSMD03] and UML models [SGJ04, CW04, BSF02,
SPTJ01] would be applicable.

Validation and completions: Standard transformation models can be vali-
dated and checked with standard UML and OCL validation tools [GBR05,
Chi01]. Model finders (like Alloy [JSS00], to some extent USE [RG01,
GBR05]) can be employed for finding completions of partially given trans-
formations. In the example, if only the database schemas and the Er state
is provided, a model finder could search for the resulting Relational state
without explicitly describing it. Tools and approaches based on formal rea-
soning [ABB+00, JSS00, KFdB+05] can check transformations models w.r.t.
formally derivable properties. Such formal reasoning capabilities could be
used for formally checking the compatibility of two modeling languages.

Complete language descriptions: Transformation models allow complete
descriptions of modeling languages w.r.t. syntax and semantics and their
transformation properties to be described within a single framework. This
is in contrast to mainstream modeling languages like UML which do not
formally describe semantic domains.

5 Conclusion

In this contribution we have discussed model transformations and transforma-
tion models. We have put our work into the context of UML, OCL, MOF and
QVT. The main benefits we see for transformation models are direction freeness,
uniformity, higher-order transformations, and powerful possibilities for valida-
tion and verification. The benefits of model transformations lie in the efficient
execution and the availability of practically useful systems.

Further work has to investigate to what extent available transformation sys-
tems can be used for transformation model purposes. Further examples for trans-
formation models, in particular transformation models between modeling lan-
guages, have to be developed. It seems that syntax and semantics of hierarchical
and flat statecharts as well as advanced and basic UML class diagrams can be
characterized as transformation models. Lastly, the connection between model
transformations and transformation models on the one hand and domain spe-
cific languages and profiling of modeling languages on the other hand has to be
explored.

Acknowledgments

A subset of the authors have been partially supported by the IST European
project ModelWare (Contract 511731).

452 J. Bézivin et al.

References

[ABB+00] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle,
W. Menzel, and P. H. Schmitt. The KeY approach: Integrating object ori-
ented design and formal verification. In M. Ojeda-Aciego, I.P. de Guzmán,
G. Brewka, and L. M. Pereira, editors, Proc. 8th European Workshop Log-
ics in AI (JELIA’2000), LNCS 1919, pages 21–36. Springer, 2000.

[Bez05] J. Bezivin. On the Unification Power of Models. Software and System
Modeling, 4(2):171–188, 2005.

[BSF02] Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring browser
for uml. In Mehmet Aksit, Mira Mezini, and Rainer Unland, editors,
NetObjectDays, volume 2591 of Lecture Notes in Computer Science, pages
366–377. Springer, 2002.

[CESW04] T. Clark, A. Evans, P. Sammut, and J.S. Willans. Transformation lan-
guage design: A metamodelling foundation. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, ICGT, volume 3256 of
LNCS, pages 13–21. Springer, 2004.

[Chi01] D. Chiorean. Using OCL Beyond Specifications. In A. Evans, R. France,
A. Moreira, and B. Rumpe, editors, Proc. UML’2001 Workshop Rigorous
Development, pages 57–68. LNI, GI, Bonn, 2001.

[CW04] Alexandre L. Correa and Cláudia Maria Lima Werner. Applying refactor-
ing techniques to uml/ocl models. In Thomas Baar, Alfred Strohmeier,
Ana M. D. Moreira, and Stephen J. Mellor, editors, UML, volume 3273
of Lecture Notes in Computer Science, pages 173–187. Springer, 2004.

[GBR05] Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and
OCL Models in USE by Automatic Snapshot Generation. Journal on
Software and System Modeling, 4(4):386–398, 2005.

[Gog06] M. Gogolla. Tales of ER and RE Syntax and Semantics. In J.R. Cordy,
R. Lämmel, and A. Winter, editors, Transformation Techniques in Soft-
ware Engineering, number 05161 in Dagstuhl Seminar Proceedings. IBFI,
Schloss Dagstuhl, 2006.

[GSMD03] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards
automating source-consistent uml refactorings. In Perdita Stevens, Jon
Whittle, and Grady Booch, editors, UML, volume 2863 of Lecture Notes
in Computer Science, pages 144–158. Springer, 2003.

[JSS00] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: The Alloy con-
straint analyzer. In Proc. Int. Conf. Software Engineering (ICSE’2000),
pages 730–733. ACM, New York, 2000.

[KFdB+05] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der
Zwaag, T. Arons, and H. Kugler. Formalizing UML models and OCL
constraints in PVS. Electr. Notes Theor. Comput. Sci., 115:39–47, 2005.

[KS06] A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars
- A Survey. In R. Heckel, editor, Proc. SegraVis School Foundations
of Visual Modelling Techniques, volume 148 of ENTCS, pages 113–150.
Elsevier, 2006.

[OMG05] OMG, editor. MOF QVT Final Adopted Specification. OMG, 2005.
[RBJ05] J. Rumbaugh, G. Booch, and I. Jacobson. The Unified Modeling Language

Reference Manual, Second Edition. Addison-Wesley, Reading, 2005.
[RG01] Mark Richters and Martin Gogolla. OCL - Syntax, Semantics and Tools.

In Tony Clark and Jos Warmer, editors, Advances in Object Modelling
with the OCL, pages 43–69. Springer, Berlin, LNCS 2263, 2001.

Model Transformations? Transformation Models! 453

[SGJ04] Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Leveraging UML
Profiles to generate Plugins from Visual Model Transformations. In Proc.
ICGT Workshop Software Evolution through Transformations, 2004.

[SPTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel.
Refactoring uml models. In Martin Gogolla and Cris Kobryn, editors,
UML, volume 2185 of Lecture Notes in Computer Science, pages 134–
148. Springer, 2001.

[Wan05] W. Wang. Evaluation of UML Model Transformation Tools. Technical
University of Vienna, Business Informatics Group, Master Thesis, 2005.

[ZLG05] Jing Zhang, Yuehua Lin, and Jeff Gray. Generic and Domain-Specific
Model Refactoring using a Model Transformation Engine. In Sami
Beydeda, Matthias Book, and Volker Gruhn, editors, Model-Driven Soft-
ware Development, pages 199–218. Springer, 2005.

A Mapping Language from Models to DI Diagrams

Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres

TUCS Turku Centre for Computer Science
Department of Information Technologies,

Åbo Akademi University
Lemminkäisenkatu 14, FIN-20520 Turku, Finland

{marcus.alanen, torbjorn.lundkvist, ivan.porres}@abo.fi

Abstract. The OMG MOF 2.0 standard is used to define the abstract syntax of
software modeling languages while the UML 2.0 Diagram Interchange (DI) de-
scribes the concrete syntax of models. However, very few tools support the DI
standard, leading to interoperability problems. The primary reason for this is the
lack of a formal way to describe the relationship between the abstract metamodel
and its corresponding diagrams. In this article, we present a language to describe
mappings between modeling languages and diagrams, some example mappings
and our experience in using them. Better and correct support for DI would ease
interchange of visual models and hasten the adoption of model-driven develop-
ment.

Keywords: Visual languages, Diagram Interchange, XMI[DI], MOF, UML.

1 Introduction

In this paper, we study the definition of visual languages based on metamodeling and
the modeling standards maintained by the Object Management Group (OMG), such as
the Unified Modeling Language (UML) [20].

The UML has become the de facto standard for software modeling in the industry. A
rigorous and complete definition of modeling languages is necessary to enable the auto-
matic generation of tools supporting these languages. Several authors have proposed the
use of graph grammars to define visual languages [18] and there exist diagram editor
generators for languages defined using graph grammars such as GenGed [3], AToM [7],
Tiger [9] and DiaGen [14]. One of the main differences between the technical space [4]
defined by the OMG modeling standards and previous approaches is that the abstract
syntax and concrete syntax of a modeling language are two independently defined and
maintained artifacts.

In a modeling language, the definition of its abstract syntax includes the definition
of all model elements that can be used in a language, their properties and relationships
with other elements. It can also include additional constraints, also know as well-formed
rules. The definition of its concrete syntax includes the visual appearance of model
elements and layout constraints. The complete definition of a visual modeling language
should include the mapping between the abstract and its concrete syntax, that is, the
mapping between models and diagrams. This is necessary to create new diagrams from
existing models or to parse a diagram into a model.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 454–468, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Mapping Language from Models to DI Diagrams 455

In the context of the OMG standards, the abstract syntax of a language can be de-
fined using the Meta Object Facility (MOF) [22] Therefore, a model in these languages
is often called a metamodel. MOF is a rich and complex metamodeling language that
can be used to define modeling languages as large and complex as the UML 2.0 Su-
perstructure. It can also be used to define domain specific languages and extensions or
profiles to the UML.

The OMG has a standard for two-dimensional diagrams called the UML 2.0 Dia-
gram Interchange [21] (DI). DI is a modeling language that has been defined following
the same metamodeling approach as the UML. While DI has been developed to satisfy
the need for diagram interchange for UML diagrams, it is not strictly restricted to UML
in any way. That is, DI can be used to represent diagrams for other modeling languages
as well. As a consequence, DI is a key standard to exchange models between tools that
need to represent, create or transform diagrams. Examples of these tools range from a
simple diagram viewer to a full-featured interactive model editor or model transforma-
tion tool.

However, we should note that DI is a language to express concrete diagrams. It does
not address the issue of defining the concrete syntax of modeling languages. That is,
while DI can be used to represent and interchange diagrams for a model, it cannot be
used to determine if a given diagram is valid for a given model, it cannot enumerate all
the possible valid diagrams for a particular modeling language, and neither does it con-
tain the necessary information to create a new diagram from an existing model. While
Appendix A and C of the DI specification attempts to address this issue by providing
an informal mapping from UML to DI, these mappings still lack the details required for
determining precisely when a specific diagram is valid.

Considering this, we argue that the OMG standards cannot completely specify the
concrete syntax of a visual modeling language. We can see an example of this in the
definition of UML 2.0. In this language, there are a group of model elements in the in-
teraction packages that can be represented in at least three different diagrams: sequence,
interaction overview and communication diagrams. That is, the same concepts from the
UML abstract syntax can be represented in three completely different ways in a dia-
gram. Although these diagrams are explained informally in the UML standard, neither
the UML nor the DI specification contains the information required to construct se-
quence, interaction and communication diagrams using the DI language. This has also
been noticed by Dr. Guus Ramackers, who has notified the OMG about it [24].

In this article, we tackle this problem and study how to define a mapping between
the abstract syntax of a modeling language described using the MOF or the UML 2.0
Infrastructure and its concrete syntax described using the DI standard. In the context
of UML 2.0, such a mapping is necessary to complete the definition of UML and to
construct modeling and transformation tools that can create, transform and exchange
UML model diagrams. In a broader context of Model Driven Engineering, this mapping
can be used to build generic modeling tools that can create and transform visual models
and diagrams in domain specific modeling languages.

We proceed as follows. In Section 2 we present the basis of DI and define the need
of and use for a mapping language from models to diagrams in more detail. Section 3
contains our proposal for such a mapping language and explains its semantics. We

456 M. Alanen, T. Lundkvist, and I. Porres

discuss how we have validated our approach in Section 4. We finally take a look at
related work and conclude in Section 5, where we also consider future directions.

2 A Mapping Language from Models to Diagrams

In this section we describe basic concepts behind the UML and DI standards and we
describe the idea behind a mapping language between these languages.

In order to ensure interoperability between modeling tools, we consider that the map-
ping between the abstract and concrete syntax of a modeling language should be defined
precisely. This is necessary in order to fully support DI diagrams for both new and ex-
isting modeling languages. This mapping can be defined using a mapping language,
which we call DIML, from a modeling language to DI. An overview of this mapping
can be seen in Figure 1. In this setting, we assume that this mapping language is defined
using the OMG MOF standard. The actual mappings are described using a model in this
mapping language. Each of these models maps an element in the modeling language to
a set of elements in the DI language. This information can then be used by an applica-
tion of this mapping language that interprets the mappings and applies them to actual
model data.

MOF

DIDIML

DI DiagramUML Model

UML

DIML Model

Application of DIML

Fig. 1. Overview of the mapping between models and diagrams

There are three main applications of this mapping language:

Definition of UML and other languages: It can be used simply as documentation to
complement the existing UML standards. We consider that the current UML 2.0 stan-
dard should be extended to include precise definitions of the valid UML 2.0 diagrams
using the DI standard.
Creation of new DI diagrams: Another obvious application of the language is to gen-
erate new DI diagrams based on abstract models. This step may be necessary, e.g., after
reverse engineering source code into a UML model or converting models from one mod-
eling language to another. Existing modeling tools may use a different language than
DI to represent diagrams internally. However, these tools may need to create diagrams
into DI in order to interoperate with other modeling tools using the OMG standards.

A Mapping Language from Models to DI Diagrams 457

Reconciliation of diagram and models: The most ambitious application of the map-
pings is to reconcile changes in an abstract model into an existing diagram. In this case,
the mappings should be applied incrementally, preserving existing diagram information
such as layout and colors when possible. This application is also the most demanding
since it needs to be fast enough to be used in interactive model editors.

2.1 The UML 2.0 Diagram Interchange

We assume that a model is organized as an object graph that is an instance of a meta-
model. Each node in this graph is an instance of a metaclass and each edge is an instance
of a meta-association as defined in a metamodel. The UML metamodel contains more
than 150 metaclasses such as Actor, Class, Association or State which describe the con-
cepts that are familiar to UML practitioners. On the other hand, DI is a rather small
language with only 22 metaclasses; a relevant subset of them is shown in Figure 2.

There are basically three main concepts in DI: GraphNode, GraphEdge and Seman-
ticModelBridge. A GraphNode represents a rectangular shape in a diagram, such as a
UML Class or an Actor, while a GraphEdge represents an edge between two other ele-
ments such as two nodes in a UML Association or a node and another edge such as in a
UML AssociationClass. A SemanticModelBridge is used to establish a link between the
semantic or abstract model and the diagrammatic model. For example, a GraphNode
representing a UML Class is connected to that class using a SemanticModelBridge.
There are two types of bridges. A Uml1SemanticModelBridge uses a directed link to
an element, while a SimpleSemanticModelElement contains a string named typeInfo.
These concepts are explained in more detail in the DI standard.

Figure 3 shows an example of a fragment of a UML model and its diagrammatic
representation using DI. The top part of the figure is a simple UML statemachine model
with two states and one transition, presented as a UML object diagram. From this object
diagram we can see that this DI model contains elements necessary for displaying and
layouting information retrieved from the UML model. To simplify the figure, we have
omitted some UML and DI elements. Especially, we do not show the Uml1Semantic-
ModelBridge elements but merely a directed link between DI graph elements and the
UML elements. We should also note that we show the links that correspond to compo-
sition associations using a black diamond. Although this notation is not defined in the
UML standard it is useful for the purposes of this article.

Finally, the bottom part of the figure shows the same DI model rendered as an image,
in this particular case as Encapsulated Postscript. This image was created by a tool
based on the information contained in the UML model, such as the name of the states,
the DI model, such as the layout of the states, and built-in knowledge about the UML
notation for state machines, such as the fact that a state is represented as a rectangle with
rounded corners. Nothing prevents us from rendering the diagram to another graphical
format such as SVG.

2.2 DIML: From Models to Diagrams

We have seen in the previous example that the DI provides us with the basic metaclasses
that can be combined to create diagrams. However, neither the UML standard nor DI

458 M. Alanen, T. Lundkvist, and I. Porres

GraphConnector

GraphElement

GraphEdge

Uml1SemanticModelBridgeSimpleSemanticModelElement

SemanticModelBridge Diagram

MOF::Class

GraphNode

DiagramElement

typeInfo :

name :

String

String

graphEdge

*anchor

2

contained

*container

0..1

1graphElement

* achorage

graphElement 0..1

semanticModel

1

*

element

1

diagram

0..1owner

1

Fig. 2. A subset of the DI metamodel

tell us what metaclasses we should use to create a specific diagram to represent a spe-
cific model. As we have seen in the example, this task is not trivial since each UML
model element is represented using many DI elements and the mapping between the
model element and its diagram representation is arbitrary. This in turn complicates the

: :

InternalTransitionCompartment : InternalTransitionCompartment :

TransitionDescription :

Name :

NameCompartment : NameCompartment :

Name :

CompartmentSeparator : Name : CompartmentSeparator :

: : :

: : :

:

StateDiagram :

GraphNodeGraphNode

GraphNode GraphNode

GraphNode

GraphNode

GraphNodeGraphNode

GraphNode

GraphNodeGraphNodeGraphNode

GraphEdge GraphConnectorGraphConnector

SimpleStateSimpleState Transition

StateMachine

Diagram

S1 S2

Transition

Fig. 3. (Top) UML model in gray with two SimpleStates and a Transition and its diagram repre-
sentation in DI. (Bottom) DI diagram rendered using the UML concrete syntax.

A Mapping Language from Models to DI Diagrams 459

DiagramPartUML14::StateMachine

Delegation Delegation

diagramType : = "StateDiagram"

self.subvertex self.transition

Fig. 4. The DI mapping rule of StateMachines

GraphNodePartGraphNodePart

GraphNodePart GraphNodePart

Delegation

Delegation

GraphNodePart

UML14::SimpleState GraphNodePart

Delegation

typeInfo : = InternalTransitionCompartmenttypeInfo : = CompartmentSeparator

typeInfo : = StereotypeCompartment typeInfo : = Name

typeInfo : = NameCompartment

[self.stereotype->notEmpty()] self.entry->asSet()

self.doActivity->asSet()

self.exit->asSet()

acceptsConnector := true

Fig. 5. The DI mapping rule of SimpleState

interchange of DI diagrams between modeling tools, as diagrams created by one tool
may not be compatible with the diagrams the other tool creates. Full compatibility can
be ensured only if the tools use the same definitions for creating the diagrams.

To address this issue, we have created a language called the Diagram Interchange
Mapping Language (DIML). Its purpose is to define mappings between metaclasses
in MOF-based modeling languages, such as UML, and corresponding elements in the
DI language. We can see three example DIML models for UML StateMachines, Sim-
pleStates and Transitions shown in Figures 4, 5 and 6 respectively. It must be noted that
we have simplified the structure of StateMachines for the purposes of this article. In the
figures, an abstract element on the left is mapped to a hierarchy of diagram elements as
DIML Parts. Each Part, shown as rectangles, maps to a GraphNode, GraphEdge or Dia-
gram in DI. The directed arrow corresponds to the mapping concept, whereas the edges
with black diamonds correspond to parameterized element ownership based on guard
and selection statements. The hierarchy forms a skeleton which when transformed into
DI elements give us the intended result.

An example of the application of these three mappings was seen in Figure 3. The top-
most part of the figure (colored gray) shows a StateMachine with two SimpleStates and
one Transition. When the mapping for UML StateMachines (Figure 4) is applied to the
StateMachine, a DI Diagram will be created. When the mapping for UML SimpleStates
(Figure 5) is applied to the SimpleStates and the mapping for UML Transitions (Fig-

460 M. Alanen, T. Lundkvist, and I. Porres

GraphNodePart

DelegationGraphNodePartGraphNodePart

DelegationGraphNodePart

Delegation

GraphNodePart

UML14::Transition GraphEdgePart

typeInfo : = TransitionDescription

typeInfo : = EffectStarttypeInfo : = GuardEnd

typeInfo : = GuardStart

typeInfo : = Name

connectors : = Sequence { self.source, self.target }

self.trigger->asSet() [self.guard->notEmpty()] self.effect->asSet()[self.effect->notEmpty()]

[self.guard->notEmpty()] self.guard->asSet()

[diparent.oclIsKindOf(DI::Diagram)]

Fig. 6. The DI mapping rule of Transition

ure 6) is applied to the Transition, DI elements will be created for these UML elements.
Finally, these DI elements will be connected to the Diagram. As a result, the DI model
shown in the middle of the figure is obtained. By comparing the DIML models to the
actual diagram, we see that not all DIML Parts are represented in the resulting dia-
gram. For example, there is no StereotypeCompartment for the SimpleStates. This is
an example of the parameterization; since the SimpleStates had no abstract Stereotype
elements, the guard “self.stereotype–>notEmpty()” in the DIML model failed and thus
no StereotypeCompartment was created.

3 Metamodel and Semantics

This section discusses the concepts we have used in creating DIML and the semantics
of the language metaclasses. It is important to notice the separation between the DIML
language itself and the various applications of the DIML language. While the main use
of DIML is to define diagrams using the OMG standards, DIML does not define or en-
force any particular method for applying these mappings on model data. Assuming that
a DIML mapping is correct, any tool is still allowed to maintain the abstract model and
concrete models in any way it wants as long as the end result is correct, i.e., as if it had
used DIML. This as if rule is well-known from for example C compiler technology and
gives implementations the greatest leeway while still retaining compatibility between
implementations.

This separation enables us to concentrate on acquiring a usable mapping language
and its semantics, while leaving the actual applications of DIML as a separate concern
for modeling tools. In our opinion this separation works favorably for both standardiza-
tion as well as enabling competing implementations.

3.1 The Basics of the Metamodel

The metamodel for the DIML mapping language is shown in Figure 7. In the figure,
MOF::Class represents the type of any metaclass, not just UML metaclasses. The

A Mapping Language from Models to DI Diagrams 461

OCL::OclExpression refers to any OCL expression. OCL is a language for creating
arbitrary queries on models. It can be used to collect some elements from models or to
assert that certain properties hold in a model.

The MappingModel is a simple container metaclass to collect all the mappings as
children under instances of it. Every DIML model must have one MappingModel as
its root element. An ElementToDIMapping element m is a description of mapping one
abstract element of type m.element to corresponding DI elements. Thereby the three
mappings for StateMachine, SimpleState and Transition from Figures 4, 5 and 6 have
been used to create several DI tree fragments as shown by triangles in Figure 8, yielding
the final DI diagram in Figure 3.

Every mapping is considered in the specific context of the diparent variable. It is the
parent element in the DI model. It is guaranteed to exist for any GraphNode or Graph-
Edge except for Diagram, which has no DI parent. It can be used in OCL expressions
to verify that the DI parent element is the one expected by the mapping.

In Figures 4, 5 and 6, the ElementToDIMapping elements are denoted by directed
arrows and the Contained elements are the composition links. There can be two different

MappingModel

Contained

ElementToDIMapping
InitialPart

ConcretePart Delegation

GraphElementPart

MOF::Class

DiagramPart GraphEdgePart GraphNodePart

guard :

selection :

contextGuard :

acceptsConnector :

typeInfo :

diagramType : connector :

OCL::OclExpression

OCL::OclExpression

OCL::OclExpression

OCL::OclExpression

String

String OCL::OclExpression

0..1

* mappings

1 element

*

*
1

root

0..1

parent

1

child

0..1 separator0..1

parent0..1

children

*

*

validIn *

 { ordered }

Fig. 7. The DIML metamodel

Fig. 8. DI fragments created by the DIML mappings are combined into the final DI diagram

462 M. Alanen, T. Lundkvist, and I. Porres

text strings next to those links; a text in brackets is a guard expression, and a text
without brackets is a selection expression. We will explain these and the contextGuard,
acceptsConnector and validIn properties later.

3.2 DIML Tree

A DIML tree consists of an InitialPart as its root, and a hierarchy of Contained and
GraphElementPart (and its subclasses) elements. Leaves in the tree are either of type
Delegation or have no children Contained elements. The purpose of a DIML tree is to
describe a parameterized skeleton which can be used to compute a resulting DI tree. Pa-
rameterization here means that the occurrence and recurrence of child GraphElement-
Parts is determined by the slot values in Contained.guard and Contained.selection.

The DIML tree can be computed in the context of an InitialPart i, its current abstract
elements a and its diparent. For every Contained element c in the children slot of the
InitialPart, we must do the following:

– Evaluate c.guard in the context of a and with diparent as its parameter. If it does
not hold, we must proceed to the next Contained element.

– Evaluate c.selection in the context of a and with diparent as its parameter. The
expression must return an OCL collection s of abstract elements. For each element
e in s, the c.child GraphElementPart is accepted in the context of e as the abstract
element, and i as its diparent.

– If c.separator is non-empty, it denotes a DIML subtree with corresponding DI ele-
ments that must be placed between each accepted element. This enables us to easily
model the very common occurrence of having a simple separator between values,
such as a comma sign between the parameters in an operation in a UML class dia-
gram.

Here, accepting means that the same computation must be performed on the new child
DIML element if the child is a ConcretePart. Delegation elements on the other hand
arise from the need to decouple the representation and computation of individual DIML
trees. If the new child DIML elements is a Delegation, we must search for a new valid
mapping for the abstract element e. At most one mapping can be valid simultaneously
for any given context. If no mapping is valid, the element is ignored and cannot be
mapped to DI in the given context. Once a valid mapping is found, DIML tree creation
can begin in the context of a new current abstract element and diparent. The correspond-
ing DI elements of the parent DIML tree and the child DIML tree are then connected
together at the place of the Delegation element in the parent DIML tree.

The guard and selection expressions allow us to create a mapping to DI highly
context-dependent on the abstract model element and all the other abstract model ele-
ments as well as the sequence of parents in the DI model. They, together with instances
of ConcretePart and Delegation are the primary means to represent a collection of sim-
ilar DI fragments (modulo the parameterization) as one DIML tree.

3.3 Support for Diagrams

A mapping m of a diagram is such that m.root is a DiagramPart element r, with
r.diagramType denoting what diagram type is being considered (e.g. “ClassDiagram”).

A Mapping Language from Models to DI Diagrams 463

The m.contextGuard is evaluated and must return true. It is an OCL expression which
receives the abstract element and diparent (which in this case is a null pointer/reference)
as its parameters. It can be used to limit whether or not it is allowed to create a diagram
for the given abstract element.

The m.validIn slot is unused and must be empty. The m.acceptsConnector is unused.
Starting at r, the DIML tree can be described.

3.4 Support for GraphNodes and GraphEdges

The mapping m for GraphNodes or GraphEdges is otherwise similar to the mapping
for a Diagram, but with some small differences. The element m.root must either be a
GraphEdgePart or a GraphNodePart, with m.root.typeInfo being the empty string.

The m.contextGuard must still hold, but the diparent will now be a valid DI ele-
ment in the diagram. The set m.validIn.diagramType denotes the valid diagram type set,
e.g. { “ClassDiagram”, “SequenceDiagram” }. This is the set of types of diagrams in
which the mapping can be applied. Although technically the validIn information could
be embedded in the contextGuard, it is more convenient to have a set of diagrams where
a mapping can be applied because a) it avoids unnecessarily long OCL expressions in
the contextGuard, and b) the information about suitable diagrams is easier to extract
from a slot made for that purpose rather than extract it by parsing an OCL expression.
Again, starting at m.root, the DIML tree can be described.

3.5 Correspondence of DIML Elements with DI

An instance p of DiagramPart, GraphEdgePart or GraphNodePart corresponds to an
instance of the DI elements Diagram, GraphEdge or GraphNode d, respectively.

A Diagram has a SimpleSemanticModelElement s in its semanticModel slot such
that p.diagramType = s.typeInfo, and a Uml1SemanticModelBridge in its owner slot
which points to the abstract element for which the diagram was created for. A Graph-
Edge or GraphNode has either a Uml1SemanticModelBridge or a SimpleSemantic-
ModelElement. If p.typeInfo is empty, d must have a Uml1SemanticModelBridge which
points to the abstract element. Otherwise, d must have a child element s of type Simple-
SemanticModelElement such that p.typeInfo = s.typeInfo.

3.6 Connecting Edges to GraphConnectors

The connector expression is evaluated in the context of the corresponding abstract el-
ement and receives the GraphEdge as an additional parameter. For an instance p of
GraphEdgePart, p.connector describes the expression that when evaluated results in a
sequence of abstract elements. For each element e in the sequence, a GraphConnector
is created (or must already exist) and anchored to the GraphEdge corresponding to p.
The owner of the GraphConnector must then be found in the set of all GraphElements
in the same diagram whose corresponding abstract element is e. This GraphElement
must correspond to a root ConcretePart in an ElementToDIMapping m mapping such
that m.acceptsConnector is satisfied. The acceptsConnector expression does not receive
any parameters.

464 M. Alanen, T. Lundkvist, and I. Porres

Although this scheme sounds complicated, it or similar functionality is required since
not all GraphElements may be connected to and the only distinguishing mark is the
context. In our work, this context is provided by the different ElementToDIMappings.

3.7 Limitations

Having explained the semantics of DIML, we must also be concerned about its lim-
itations. The main idea of the DIML language can be stated in three assumptions or
limitations, depending on the point of view. First, that our diagrams can be built top-
down, i.e., starting from the DI Diagram element, child elements can be transitively
connected to form a complete diagram without any changes required in their parents
during diagram construction. This means that a parent DI element does not depend on
what child DI elements exist underneath it. This is emphasized by the Delegation ele-
ments in the DIML models; the decoupling they provide allows us to mix several kinds
of diagrams together. Although the various OCL expressions have access to the chain
of parents, they cannot modify them since OCL is a side-effect free query language,
and in our semantics of DIML they would nevertheless not be allowed to modify them.

Second, that an abstract element can be mapped into a DIML tree with a single root
element. The exact contents of this tree may depend on the context of the abstract ele-
ment as well as any transitive parent DI elements. In general, by using arbitrary OCL
expressions in the DIML models the tree can be dependent on any parts of the abstract
model or any DI parents. It must be emphasized that the Contained.selection allows us
to navigate the abstract model from the current abstract element via several associa-
tions to other abstract model elements. Thus the mapping language is not limited to the
structure of the abstract model regardless of the metamodel of that abstract model em-
powering us to create very versatile DI models. However, this second limitation means
that the links between elements cannot be mapped to DI elements. Although we have
not needed such a construct, it is nevertheless an important omission. Improvements to
DIML or similar mapping languages should adress this.

Third, that there are rules describing how to connect these trees together to form the
final, complete DI tree. This has been accomplished using the Delegation elements.

4 Validation of the DIML Language

We have built an experimental open source modeling tool called Coral that uses the DI
and simplified DIML mappings to represent and maintain model diagrams. We have
implemented a component for this tool that reconciles models and diagrams after ex-
ecuting model transformations or performing editing operations [2, 17], based on the
abstract model and the DIML mappings.

The guards of the rules in the simplified DIML mapping language use a very reduced
version of OCL. This is done for performance reasons. Instead of allowing complete
OCL queries that could require the traversal of the whole model, we allow the check-
ing of single property values in the Contained.guard and a subset (or subsequence) of
a property value in the Contained.selection. This restriction has enabled us to perform
reconciliation of models and diagrams using linear algorithms with very few excep-
tions, while still being able to support large and complex languages such as UML. This

A Mapping Language from Models to DI Diagrams 465

ensures that diagram reconciliation is not an expensive operation, and hence it is fast
enough to be integrated with an interactive model editor; our implementation is of suf-
ficient speed for interactive editing. We consider that the simplified language serves the
purposes we have outlined in Section 2, but we acknowledge that the language proposed
in this paper is more general.

We have implemented mappings for the UML 1.4 class, statechart, object, use case
and deployment diagrams but we are confident that the DIML language can be used
to define mappings for other UML diagrams. The mappings we have used for UML
in the Coral tool are available in [17]. From these mappings we can see that by using
Delegation elements and DIML tree parameterization extensively, we have been able to
support all the above mentioned UML diagrams.

The Coral tool supports other user-defined modeling languages and profiles besides
UML. We have used DIML to define the concrete syntax of MICAS, a domain-specific
modeling language to define peripherals for mobile phones [16]. This example shows
that DIML is viable to define the concrete syntax of DSM languages that are different
from UML. Coral can be downloaded from http://mde.abo.fi/.

5 Related Work and Conclusions

In this paper we have studied a mapping language between the abstract syntax or se-
mantic representation of a modeling language and its concrete syntax as a diagram.
Beyond the scope of this paper is anything regarding diagrams that does not relate to
the creation or reconciliation of DI diagrams. This includes the layout of diagrams and
the rendering of a diagram to an output device.

We have validated our approach by constructing an experimental tool and exchang-
ing UML models and their diagrams with a commercial modeling tool that supports DI.
This allows us to conclude that the work presented in this article is a viable approach
to define the concrete syntax of visual modeling languages based on the OMG stan-
dards. At the moment, the OMG does not have a Request For Proposals for a general
mapping or transformation language from abstract models to DI diagrams. We consider
such a language important for interoperability reasons and hope that this article will
spur further discussion on the topic.

Several authors have addressed the issue of defining the concrete syntax of modeling
languages. The Penguins system by Sitt Sen Chok and Kim Marriot [6] is based on the
intelligent diagram metaphor and uses constraint multiset grammars to map the concrete
syntax of a diagram to the abstract syntax of a model. This differs from DIML where
we have a unidirectional mapping from the abstract to the concrete syntax. While the
authors show that their approach can be used to define the semantics of a diagram, it is
unclear whether a similar approach could be applied in the context of DI. There are sev-
eral reasons for this, the most important of which is that DI uses Uml1SemanticModel-
Bridges to relate to the abstract syntax and to determine how to render the objects to an
image. That is, using DI it is implicit that the abstract model exists prior to a diagram,
which is not the case in the Penguins system. Péter Domokos and Dániel Varró [8]
use model transformation rules for transforming the abstract syntax into their own
language for drawing primitives representing the concrete syntax of models. This

466 M. Alanen, T. Lundkvist, and I. Porres

approach, however, involves several off-line transformations between intermediate
models, which in turn makes diagram reconciliation difficult to achieve. The work by
Frédéric Fondement and Thomas Baar [11] formalizes the relationship between abstract
and concrete syntaxes with OCL expressions using their own concrete syntax. While the
ideas presented are interesting, it does not yet have any tool support and although dia-
gram reconciliation is recognized as a problem, the authors do not offer any solution.
In fact, our work addresses some of their concerns on DI.

The ATLAS Model Weaver (AMW) [10] uses special weaving models to map one
modeling language to another, in order to create mappings between models in these
modeling languages. This weaving model can then be used for generating model trans-
formations. As this approach is generic, it should technically be possible to describe the
DIML mappings using AMW. However, it is still unclear how the DIML Delegation
elements would be expressed in AMW.

It can be argued that DIML is simply a specific-purpose model transformation lan-
guage and that the mapping between models and diagrams can be expressed using ex-
isting general-purpose model transformation languages. Many model transformation
languages have been developed and researched. Examples are the relational approach
by David Akehurst and Stuart Kent [1], and Octavian Patrascoiu’s YATL [23], both of
which use OCL for the declarative expressions. The relational approach is further in-
vestigated by Hausmann and Kent in [12]. There is also a special graph transformation
/ graph grammar system in VIATRA by Dániel Varró [25], which relies on graph gram-
mars instead of OCL and has operational semantics. Also the MOLA transformation
language [13] by Audris Kalnins, Janis Barzdins and Edgars Celms has a graphical im-
perative programming language with pattern-based transformation rules. Perhaps the
most important general-purpose transformation language is the Query-View-Transform
(QVT) [19] language from OMG.

We are not proposing that DIML be used as a general-purpose transformation lan-
guage. There are several limitations in it, but nevertheless we find that a domain-specific
transformation language brings benefits. It might be easier for users of the transforma-
tion language to understand and use, and it certainly is easier to define the transforma-
tion rules, although it is clear that an implementation might wish to use its underlying
general-purpose transformation technology and display a simplified version (i.e., the
mappings shown here) to the user. We firmly believe that there should and will be dif-
ferent transformation languages for models, just as there are different transformation
languages for text files, such as sed, awk and perl.

We have not found transformation technologies that specifically address transform-
ing between abstract and concrete models using the DI standard. This is unfortunate
because it also makes comparison more difficult as the differences between the diagram
languages themselves must be taken into account. Otherwise, in [5, 15], Audris Kalnins
et al. show a diagram definition facility which extends the presentational metamodel for
every concept that needs to be displayed from the abstract metamodel. This seems com-
plicated in light of the DI standard which is a static metamodel. Additionally there is no
explanation on how to declare restrictions on the mappings, which we have solved us-
ing OCL expressions, and abstract elements seem to simply map to exactly one concrete
element, which is not true for DI.

A Mapping Language from Models to DI Diagrams 467

Acknowledgments

Marcus Alanen would like to acknowledge the financial support of the Nokia Founda-
tion.

References

1. D. H. Akehurst and S. Kent. A Relational Approach to Defining Transformations in a Meta-
model. In J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, Proc. UML 2002 - The Unified
Modeling Language. Model Engineering, Languages, Concepts, and Tools. 5th International
Conference, Dresden, Germany, volume 2460 of LNCS, pages 243–258. Springer, 2002.

2. Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. Reconciling Diagrams After Executing
Model Transformations. In Proceedings of the 21st Annual ACM Symposium on Applied
Computing (SAC 2006), Dijon, France, April 2006.

3. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling with
Graph Transformation for Efficient Visual Language Definition and Model Manipulation.
In Springer, editor, Proceedings of the Fundamental Aspects of Software Engineering, 7th
Intl. Conference, FASE 2004, pages 214–228, 2004.

4. J. Bézivin. On the Unification Power of Models. Springer Journal on Software and Systems
Modeling, 3(4), 2004.

5. Edgars Celms, Audris Kalnins, and Lelde Lace. Diagram Definition Facilities Based on
Metamodel Mappings, October 2003. Invited talk at the Third OOPSLA Workshop on
Domain-Specific Modeling.

6. Sitt Sen Chok and Kim Marriott. Automatic Generation of Intelligent Diagram Editors. ACM
Transactions Computer-Human Interaction, 10(3):244–276, 2003.

7. J. de Lara and H. Vangheluwe. Using Meta-Modelling and Graph Grammars to Process
GPSS Models. Electronic Notes in Theoretical Computer Science, 72(3), 2003.

8. Péter Domokos and Dániel Varró. An Open Visualization Framework for Metamodel-Based
Modeling Languages. In Tom Mens, Andy Schürr, and Gabriele Taentzer, editors, Proc.
GraBaTs 2002, International Workshop on Graph-Based Tools, volume 72 of ENTCS, pages
78–87, Barcelona, Spain, October 7–8 2002. Elsevier.

9. Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and Gabriele Taentzer. Towards Graph Trans-
formation Based Generation of Visual Editors Using Eclipse. Electronic Notes in Theoretical
Computer Science, 127(4):127–143, 2005.

10. Marcos Didonet Del Fabro, Jean Bzivin, Frdric Jouault, Erwan Breton, and Guillaume
Gueltas. AMW: A Generic Model Weaver. In Proceedings of the 1re Journe sur l’Ingnierie
Dirige par les Modles (IDM05), 2005.

11. Frédéric Fondement and Thomas Baar. Making Metamodels Aware of Concrete Syntax.
In European Conference on Model Driven Architecture (ECMDA), volume 3748 of LNCS,
pages 190 – 204, 2005.

12. Jan Hendrik Hausmann and Stuart Kent. Visualizing model mappings in UML. In SoftVis
’03: Proceedings of the 2003 ACM symposium on Software visualization, pages 169–178,
New York, NY, USA, 2003. ACM Press.

13. Audris Kalnins, Janis Barzdins, and Edgars Celms. Basics of Model Transformation Lan-
guage MOLA. In Workshop on Model Transformation and Execution in the Context of MDA
(ECOOP 2004), June 2004.

14. Oliver Köth and Mark Minas. Structure, Abstraction, and Direct Manipulation in Diagram
Editors. LNCS, 2317:290–304, 2002.

468 M. Alanen, T. Lundkvist, and I. Porres

15. Lelde Lace, Edgars Celms, and Audris Kalnins. Diagram Definition Facilities in a Generic
Modeling Tool. In International Conference on Modelling and Simulation of Business sys-
tems, pages 220–224, 2003.

16. Johan Lilius, Tomas Lillqvist, Torbjörn Lundkvist, Ian Oliver, Ivan Porres, Kim Sandström,
Glenn Sveholm, and Asim Pervez Zaka. An Architecture Exploration Environment for Sys-
tem on Chip Design. Nordic Journal of Computing, 2006. To appear.

17. Torbjörn Lundkvist. Diagram Reconciliation and Interchange in a Modeling Tool. Master’s
Thesis in Computer Science, Department of Computer Science, Åbo Akademi University,
Turku, Finland, November 2005.

18. K. Marriot and B. Meyer. Visual Language Theory. Springer, 1998.
19. OMG. MOF 2.0 Query / View / Transformation Final Adopted Specification. OMG Docu-

ment ptc/05-11-01, available at www.omg.org, 2005.
20. OMG. UML 2.0 Superstructure Specification, August 2005. Document formal/05-07-04.

Available at http://www.omg.org/.
21. OMG. Unified Modeling Language: Diagram Interchange version 2.0, June 2005. OMG

document ptc/05-06-04. Available at http://www.omg.org.
22. OMG. Meta Object Facility (MOF) Core Specification, version 2.0, January 2006. Document

formal/06-01-01, available at http://www.omg.org/.
23. Octavian Patrascoiu. YATL:Yet Another Transformation Language. In Proceedings of the

1st European MDA Workshop, MDA-IA, pages 83–90. University of Twente, the Nederlands,
January 2004.

24. Guus Ramackers. OMG issue 7663. http://www.omg.org/issues/issue7663.txt.
25. Dániel Varró. Automatic Program Generation for and by Model Transformation Systems.

In Hans-Jörg Kreowski and Peter Knirsch, editors, Proc. AGT 2002: Workshop on Applied
Graph Transformation, pages 161–173, Grenoble, France, April 12–13 2002.

Basic Operations over Models Containing
Subset and Union Properties

Marcus Alanen and Ivan Porres

TUCS Turku Centre for Computer Science
Department of Information Technologies,

Åbo Akademi University
Lemminkäisenkatu 14, FIN-20520 Turku, Finland

{marcus.alanen, ivan.porres}@abo.fi

Abstract. The Meta Object Facility 2.0 and Unified Modeling Language 2.0 In-
frastructure standards present novel metamodeling constructs called subset and
union properties. However, they do not provide a complete definition of these
constructs. This definition is necessary to construct modeling tools and to ensure
their interoperability. In this article, we present the basic model operations over
models containing subset and union properties. These operations are formalized
using pre- and postconditions using substitutability as the main criterion for lan-
guage specialization.

Keywords: subset and derived properties, metamodeling, MOF, UML.

1 Introduction

The purpose of the Unified Modeling Language (UML) 2.0 Infrastructure [16] is to
define the Meta Object Facility (MOF) 2.0 [15] and the UML 2.0 Superstructure [14].
It introduces several new concepts not present in MOF 1.x or UML 1.x, mainly: sub-
set properties, derived union properties and property redefinitions. These concepts are
useful to define a new modeling language as an extension of an existing one. Unfortu-
nately, very little is told in [15,16] about the actual meaning of these new constructs.
This is a critical omission since these concepts are heavily used in the definition of the
UML 2.0 Superstructure and are necessary to enable interoperability between software
modeling tools, including model editors and model transformation tools.

In this article, we discuss the basic operations to edit models containing subsets
and union properties and formalize them using pre- and postconditions. These basic
operations are the elemental building blocks for a model repository supporting interac-
tive model editors for UML and model transformation engines for languages such as
QVT [13]. Although this article only presents a theoretical framework, we believe it
contains important implications for the practical implementation of model repositories
for UML 2.0.

We proceed as follows. Section 2 briefly presents a set-theoretic formalization of a
metamodeling language that supports the new subset properties of MOF 2.0 and the
UML 2.0 Infrastructure. The main contribution of the article is in Section 3, where
the basic edit operations are discussed in detail. Finally, we discuss related work in
Section 4 while Section 5 contains some concluding remarks.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 469–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

470 M. Alanen and I. Porres

2 A Simple Metamodeling Language

The main concepts used in metamodeling are classes and properties. A class represents a
concept in a modeling language such as a UML Use Case or a Transition in a Statechart,
while a property represents a feature of such a concept such as the fact that a Use Case
has a name or a Transition has an event trigger.

As an example, the left part of Figure 1 shows a metamodel for a graph. This diagram
shows two classes: Vertex and Edge, and four properties: from, to, outgoing and incom-
ing. Each property has another property as its opposite. Together they define an asso-
ciation that is represented as a single line. In the example, we have the from-outgoing
and the to-incoming associations. At the model layer, this bidirectionality means that
when a Vertex v has an Edge e in its outgoing slot, the Edge e will have Vertex v in its
from slot. The right side of Figure 1 shows an example model represented as an object
diagram where each object is an instance of a class in the metamodel.

Vertex Edge

from1 outgoing *

incoming *to1

V2:Vertex

V3:Vertex

E1:Edge

E2:Edge

V1:Vertex

outgoing

outgoingfrom

from incoming

to

to

incoming

Fig. 1. (Left) Metamodel for a Graph; (Right) Example Model

MOF 2.0 also provides three main extension mechanisms for metamodels: class spe-
cialization, property subsets and unions, and property redefinitions. Class specialization
is identical to class inheritance in object-oriented languages. A specialized class inher-
its all the properties of its base classes and can also define new properties. Subset and
union properties are a mechanism to define the relationship between the properties in
a specialized class and its base classes. Finally, property redefinition allows us to re-
place a property with another “compatible” one; however, compatibility is not precisely
defined.

We can use specialization and subset properties to create a new metamodel in Fig-
ure 2 for a bipartite graph for our running example. The classes Blue Vertex and Red
Vertex will now be specializations of Vertex. Also, the fromRed and toBlue properties
will become subsets of the from and to properties, and similarly for the other properties.
An example model is also shown in the figure. This metamodel is based on an example
presented in [18]. The reader can find many complex examples of the use of subset and
union properties in the UML 2.0 standards.

The intuition behind the metamodel is as follows: an element of type Red Vertex has
four slots that correspond to properties outgoing, incoming, outgoingRB and incom-
ingBR. Elements of type Edge can be inserted into the outgoing or incoming slot and el-
ements of type RedBlue Edge can also be inserted into outgoingRB. At any moment, the
contents of the slot outgoingRB should be a subset of the contents of the slot outgoing.

The benefit of subsets in the running example is that graph traversal algorithms which
worked on the initial metamodel in Fig. 1 should still work for bipartite graphs when

Basic Operations over Models Containing Subset and Union Properties 471

Blue Vertex

Vertex

Red Vertex

RedBlue EdgeBlueRed Edge

Edge

from1 outgoing *

incomingBR

{ subsets incoming }

*

toRed

{ subsets to }

1

outgoingBR

{ subsets outgoing }

*

fromBlue

{ subsets from }

1

incoming *to1

fromRed

{ subsets from }

1

outgoingRB

{ subsets outgoing }

*

toBlue

{ subsets to }

1 incomingRB

{ subsets incoming }

*

V2:Blue
Vertex

V3:Blue
Vertex

E1:RedBlue
Edge

E2:RedBlue
Edge

V1:Red
Vertex

outgoing
outgoingRB

outgoing
ougoingRB

from
fromRed

from
fromRed incoming

incomingRB

to
toBlue

to
toBlue

incoming
incomingRB

Fig. 2. (Top) Metamodel for a Bipartite Graph as an Extension of the Metamodel for a General
Graph. (Bottom) Example Model for the Graph Metamodel.

using the metamodel in Fig. 2, and that if we only use elements from the bipartite graph
metamodel, we can also be certain that the model describes a bipartite graph.

Our metamodeling language should support multiple inheritance since it is used ex-
tensively in MOF, as has been noticed by e.g. Anneke Kleppe [11]. Multiple inheritance
forms very complicated inheritance hierarchies, among them the diamond inheritance
structure. This leads to a possibility where property subsetting also has a diamond (or
even more complicated) structure.

Union properties are the last extension mechanism presented in MOF 2.0 which we
will discuss in this paper. If a property is subsetted by other properties, we say that it is
a union property. It is not necessary to declare a property as a union, since a designer
of a metamodel cannot know in advance if a new subset property will be defined in
the future. The UML 2.0 Infrastructure also introduced the concept of derived union.
According to page 126 of [16], a derived union property can be seen as the strict union
of its subsets. A slot with a property that is a derived union cannot contain elements that
do not appear in any of its subsets. Another way to define derived content is to create
an arbitrary query operation. This has been done in the Eclipse Modeling Framework
using so called volatile attributes as explained in [7]. This way, the contents of a slot
are defined by evaluating the associated query. The drawback is that there is no strict
mathematical relationship between the derived property and any other properties. The
benefit is that it does not restrict the metamodel creator in any way.

2.1 Metamodels

Based on the previous discussion, we can now present a simple metamodeling language
that contains the core concepts of MOF and UML 2.0. We describe all metamodels as

472 M. Alanen and I. Porres

the tuple MM = (C,P,generalizations,properties,characteristics), where C is a set of
classes, P a set of properties and C ∩ P = /0. We define the generalizations of a class
with the function generalizations : C → P (C). We ignore classes that represent prim-
itive datatypes such as integers, strings and enumeration values without loss of gen-
erality. We denote by ⊆c the extended generalization between classes that is defined
as the reflexive transitive closure of the generalization relation: ⊆c

def= {(c1,c2) · c2 ∈
generalizations(c1)}∗. It is a partially ordered set under the assumption that the gener-
alization graph is acyclic.

The properties of a class is given by the function properties : C → P (P). Every value
of the function properties is a disjoint subset of P. Thus, we can define owner : P → C
which denotes the unique owner c of a property p where p ∈ properties(c). The effective
properties of a class are those defined by the class itself and transitively by any of its
generalizations.

Finally, the characteristics of a property represent constraints for the elements that
can be contained in a slot of that property. We define characteristics def= (lower,upper,
opposite,ordered,composite,derived,supersets) as a tuple of functions detailing the
properties further. The multiplicity constraints is defined by lower : P → Z

0+ \ ∞ and
upper : P → Z

+. Each property has an opposite property represented by opposite : P →
P that is a bijective function. The opposite of a property cannot be itself but every prop-
erty is the opposite of its opposite. The function ordered : P → B is true if a property
is ordered. For example the parameters in an operation should be ordered. The func-
tion composite : P → B is true if a property is composite. For example, the property
that represents the contents of a package is a composite, since a package owns its con-
tents. Finally, there are two characteristics that represent the new property mechanism:
derived : P → B is true if a property is a derived union while supersets : P → P (P)
represents the set of properties of which a property is a subset. The graph representing
the property superset relation (P,{(p1, p2) · p2 ∈ supersets(p1)}) must be acyclic.

For convenience, we define the function subsets : P → P (P) as the inverse of super-
sets. We denote subsetting between properties by the ⊆p relation, i.e., ⊆p

def= {(p,q) ·
q ∈ supersets(p)}∗. We define a ⊂ b def= a ⊆ b ∧ a �= b for both ⊂c and ⊂p. Finally, we
denote by s � t that s is a direct subset of t, i.e., s � t def= s ⊂ t ∧ ¬(∃u · s ⊂ u ⊂ t). The
expression s || t is defined as ¬(s ⊆ t)∧¬(t ⊆ s), i.e., there is no order defined between s
and t.

The notable omission is that we cannot describe nonuniqueness (i.e., bags) with the
above definitions. This characteristics exists in UML/MOF but our current formaliza-
tion cannot cope with it. With some modifications, our framework could understand
unordered bags, but ordered bags would still be an issue.

2.2 Models

We define M = {M · M = (E, type,slots,S,property, elements)} as the infinite set of all
models in our framework. M comprises all the models in a system at some specific time.
E is a finite set of elements and S is a finite set of slots. Each element in E has a type de-
fined by a class in a metamodel, type : E → C, and a set of slots defined by the function
slots : E → P (S). Every value of the function slots is a disjoint subset of S. Thus, we can
define slotowner : S → E which denotes the unique owner e of a slot s where s ∈ slots(e).

Basic Operations over Models Containing Subset and Union Properties 473

Each slot corresponds to a property as defined by the function property : S → P. Slots
consist of element references and the function elements : S → (E,≺) returns a total or-
dered set of elements of its argument slot s if ordered(property(s)) is true, otherwise
elements : S → P (E) returns an unordered set of elements. A slot thus describes the
connection from its owner element to the elements in the slot. There is no actual or-
dering defined between the elements in an ordered slot; they merely have an assigned
position in it. An element cannot occur twice in a slot.

For convenience, we define the size of a slot to be the amount of elements in that
slot: (∀s ∈ S · #s def= #elements(s)). For the elements of an ordered set, we say s[i] to
denote the element at the zero-based index i in the ordered set s.

Models are hierarchical structures based on composition properties. We define the
function parent : E → P (E) to return a set consisting of the parent element of the argu-
ment, if any, otherwise the empty set:

parent(e) def= {x · x ∈ E ∧ (∃s ∈ S · s ∈ slots(x)∧ composite(property(s))
∧ e ∈ elements(s))}

The slot subsetting relation is ⊆s
def= {(s,t) · slotowner(s) = slotowner(t)∧

property(s) ⊆p property(t)}∗. A slot s (transitively) subsetting another slot t is denoted
by s ⊂s t.

By definition, if slot s is subsetting slot t, then the contents of s must be a subset of
the contents of t. Also, MOF [15] tells us on page 56 that “The slot’s values are a subset
of those for each slot it subsets.” For ordered slots, we also wish to preserve order, i.e.,
when elements occur in a specific order in s, they should occur in the same order in t,
although t might contain more elements in between. We denote a ≺x b if element a
precedes element b in a specific ordered slot x.

There are several constraints that must hold for any models, such as strong typing and
at most one parent element for each element. We refer the interested reader to [1] for
a more in-depth description of the constraints, but stress three novel constraints due to
subsets and unions. The constraints also serve as an invariant which must be maintained
by any operation on models.

– The contents of a derived slot is the union of the contents of its subset slots: (∀p ∈
P · derived(p) ⇒ (∀t ∈ S · property(t) = p ⇒ elements(t)\⋃{elements(s) · s�t} =
/0))

– The contents of any unordered slot must also exist in the contents of any superset
slots: (∀s, t ∈ S · s ⊆ t ∧ ¬ordered(t) ⇒ elements(s) ⊆ elements(t))

– Similarly to unordered slots, the contents of any ordered slot must also exist in
the contents of any superset slots. Additionally, the elements must occur in the
same order: (∀x,y ∈ E,s, t ∈ S · s ⊆s t ∧ x ∈ elements(s) ∧ y ∈ elements(s) ∧ x ≺s

y ∧ ordered(t) ⇒ x ∈ elements(t)∧ y ∈ elements(t)∧ x ≺t y)

These three constraints are specific to derived slots and to unordered and ordered
slots with respect to property subsetting. We call them the inherent subsetting rules, or
ISR.

2.3 Example

Based on the previous definitions, we can describe a part of Figure 2 in a little more
detail in Figure 3. We explicitly show slots as filled black circles, and the subsetting

474 M. Alanen and I. Porres

relation as a solid line between the circles. We represent a slot visually higher up if it is
subsetted by the (connected) slots below it. In the figure, we depict only elements V1,V2
and E1. Element V1 has two slots named outgoing and outgoingRB such that outgoin-
gRB ⊂s outgoing. The contents of outgoingRB is the set {E1}. As a consequence of the
ISR constraint, the contents of outgoing also include E1. The slots from and fromRed
are the opposite of outgoing and outgoingRB and, as a consequence, they link E1 to
V1. In the figure, we see four different partially ordered sets (posets) of slots as dashes
ellipses. The first and second poset are isomorphic to each other (as well as the third and
fourth) when only considering the slots and the subsetting relation, disregarding the el-
ements they point to. This is always true, since property subsets always come in pairs of
two isomorphic posets. Drawing a poset in this way is known as a Hasse diagram [10].

Fig. 3. Part of Figure 2 in More Detail

Let us assume that we want to perform some simple model transformations. The
question is what elements should be created and removed from the model and what
are the changes to the 8 slots depicted in the figure in order to accomplish these model
transformations. We address this problem in the next section.

3 Basic Edit Operations for Models

In this section we present the basic operations to create and delete elements from models
as well as to insert to or remove an element from a slot. These four operations are the
basic edit operations for models that are necessary to implement a model repository and
a model transformation system.

We should note that a valid model transformation usually involves a sequence of
many basic operations. Also, one single basic edit operation can invalidate a slot with
respect to the multiplicity constraints. Therefore, we consider a model transformation
as a sequence of basic edit operations. As an example, let us assume that we want to
create an association A between two classes C1 and C2 in a model based on a simplified
UML with only classes and associations. This requires three basic operations: create A,
connect C1 with A and connect C2 with A. The association A is invalid just after the

Basic Operations over Models Containing Subset and Union Properties 475

create operation since an association should connect at least two classes. However, the
model should be well-formed after executing all the basic operations.

We define these operations using a pre- and postcondition specification. We first
describe element creation and deletion. Then, we describe the case of insertion into or-
dered or unordered slots and finally the case of removing elements from slots. The pre-
and postconditions are described as separate enumerated clauses. All of the clauses in
the precondition must hold for the operation to succeed, and all the clauses of the post-
condition must be guaranteed by an implementation. For succinctness and understand-
ability of presentation, we only describe the semantics of an operation in the context
of one poset. When modifying a slot, similar actions must be taken for the slots in the
opposite poset for bidirectionality to hold. This means that the actual operations must,
where necessary, be augmented with an additional index parameter for the ordered slots
in the opposite poset.

In any pre- or postcondition, the old models are denoted M = (E, type,slots,S,
property,elements). In postconditions, the new values of variables are denoted with tick
marks. Thus, the new models are denoted M′ = (E ′, type′,slots′,S′,property′,elements′).

3.1 Element Creation

The operation create : M ×C → M × E such that (M′,e) = create(M,c) creates a new
element of type c ∈ C and has no preconditions. The new element will also be a root
element, i.e., it will not have any parent. The returned value is a tuple of the new mod-
els and the new element. The primary postcondition is that there must be exactly one
new element in the set of elements. The various model constraints mean that the sets
and functions in M must be updated in M′ to reflect this change; this leads to more
postconditions.

1. (∃!e ∈ E ′ · E ′ \ {e} = E ∧ type′(e) = c)
2. type′ ∩ type = type
3. #S′ = #S + #{p · p ∈ P ∧ (∃!e ∈ E ′ \ E ∧ type′(e) ⊆c owner(p))}
4. S′ ∩ S = S
5. slots′ = slots ∪ {e → s · e ∈ E ′ \ E ∧ s ∈ S′ \ S}
6. property′ = property ∪ {s → p · s ∈ S′ \ S ∧ p ∈ P ∧ {∃!e ∈ E ′ \ E · type′(e) ⊆c

owner(p)}}
7. #Range(property′ \property)= #{p · p ∈ P∧(∃!e ∈ E ′ \E ∧type′(e) ⊆c owner(p))}
8. elements′ = elements∪ {s → {} · s ∈ S′ \ S ∧ ¬ordered(property′(s))}

∪ {s → [] · s ∈ S′ \ S ∧ ordered(property′(s))}

The only relevant postcondition is the first one, the rest are implicit or informally
understandable from the various model constraints. To avoid too much repetition, we
assume that the new values of any variables not mentioned are kept identical to their pre-
vious values and that only the necessary changes to fulfill the postconditions are made.
We will refrain from listing obvious postconditions and concentrate on the important
ones.

476 M. Alanen and I. Porres

3.2 Element Deletion

The operation delete : M × E → M deletes an element. We require the element being
deleted to have no connections to other elements via its slots. Therefore the precondition
for deleting an element e is:

1. (∀s ∈ slots(e) · #s = 0)

The postcondition is that the element must no longer be in the set of elements:

1. E ′ = E \ {e}

3.3 Element Insertion into an Unordered Slot

Consider an operation insert : M × S × E → M such that insert(M,s,e) inserts ele-
ment e into slot s. The intuition behind the insertion operation is that all supersets of
s must contain the new element e for the ISR constraints to hold. The clauses for the
precondition for element insertion into an unordered slot are thus:

1. ¬derived(property(s))
2. ¬ordered(property(s))
3. e �∈ elements(s).
4. type(e) ⊆ owner(opposite(property(s)))
5. (∃t ∈ S · s ⊆s t ∧ composite(property(t)) ⇒ parent(e)\ {slotowner(t)} = /0

The clauses state that (1) we are not modifying a derived read-only slot, (2) the slot is
unordered, (3) the element must not yet exist in the slot, (4) that we obey the rules of
strong typing and (5) we do not create a connection to a second parent for e.

The postcondition for element insertion is simple. We wish element e to be found
in the slot s and all its transitive supersets. All the model constraints except for the
multiplicity constraints must also hold as a postcondition.

1. (∀t ∈ S · s ⊆s t ⇒ elements′(t) = elements(t)∪ {e}) (Note s ⊆s s)

An example of element insertion into an unordered slot can be seen in Figure 4.
Again, the Hasse diagram notation means that t ⊂s q ⊂s p ∧ q ⊂s r ∧ t ⊂s s ⊂s r. In
case (1) of the figure, we have a poset of unordered slots. Suppose we insert an element c
into slot q. This requires an insertion of c into slots p and r as well, to maintain the ISR,
with the end result shown in case (2). After this, inserting c into slot t also inserts it into
slot s, again to maintain the ISR, resulting in case (3). Slots p, q and r are not modified
because c already existed in those slots.

It can be noted that in our semantics, an insertion into a slot never modifies any
subset of that slot.

(1) (2) (3)

Fig. 4. Example of Inserting an Element into Unordered Slots

Basic Operations over Models Containing Subset and Union Properties 477

3.4 Element Insertion into an Ordered Slot

Subsetting with ordered slots is more complicated than with unordered slots, due to
the need to maintain an order between the elements in different slots. We define the
operation insert : M ×S×E ×Z

0+ → M such that insert(M,s,e, i) inserts an element e
into a slot s at index i.

We assume there is a function index : E × S → Z
0+ which returns the zero-based

index of an element in the contents of an ordered slot. A function lower_index : Z
0+ ×

S × S → Z
0+ is such that lower_index(i,x,y) returns the index in x where y[i] should be

inserted to maintain the subset x ⊆s y. It is shown in Figure 5 and is used to calculate
which restrictions from supersets apply to subsets when inserting an element. As an
example, consider what the restriction given by element c (at index position 2) in the
superset [a,b,c,d] is to its subset [a,d]. Then lower_index(2, [a,d], [a,b,c,d]) returns
1 since c should be inserted between a and d.

lower_index(i,s,t) :=
if t[i] ∈ s then return index(t[i],s)
do

if t[i] ∈ s then return index(t[i],s)+1
else if i = 0 then return 0
else i := i − 1

od

lift_interval(s,t, [v..w]) :=
if v > 0 then v′ := index(s[v − 1], t)+1

else v′ := 0
if w = #s then w′ := #t

else w′ := index(s[w],t)
return [v′..w′]

Fig. 5. (Left) The lower_index Function . (Right) The lift_interval Function.

A function lift_interval : S×S×R → R, where R denotes integer intervals is such that
lift_interval(s,t, [v..w]) “lifts” the interval [v..w] from s as superimposed on t (when
s ⊆s t). It is shown in Figure 5 and is used to calculate which restrictions from subsets
apply to supersets and works as the dual of lower_index. As an example, consider the
ordered sets s = [c] and t = [b,c]. If we were to insert element a at index 0 in s, the
corresponding interval for s would be [0..0]. This interval is superimposed onto t as the
interval [0..1], meaning that the same element can be inserted either before or after b
in t without violating the ISR. Thus, lift_interval(s, t, [0..0]) = [0..1].

The function indices_ok : P (S) × (S → R) → B returns true if when executing
indices_ok(T,F) there is a possible way to insert an element into every slot in T such
that the constraints in F are satisfied. Here, F : S → R is a map from slots to inte-
ger intervals [v..w] such that v ≤ w where e can be inserted. The function is shown in

indices_ok(/0,F) := (∀t ∈ Dom(F) · F(t) �= /0)

indices_ok(T,F) :=
(∃t ∈ T · (∀u ∈ T · t �⊃ u)

∧R def= ∩{lift_interval(c,t, [v..w]) · (∀c · s ⊆s c� t ∧ F(c) = [v..w])}
⇒ indices_ok(T \{t},F [t �→ R ∩ F(t)]))

Fig. 6. The indices_ok Function

478 M. Alanen and I. Porres

Figure 6. Here, Dom(F) returns the domain of function F . Using the lift_interval and
lower_index functions we restrict the possible intervals where e can be inserted into the
slots.

The precondition of inserting into an ordered slot is otherwise identical to the case
when inserting into an unordered slot, except for the check for an ordered slot and that
there exists an extra clause which calculates if the insertion into the slot and its transitive
supersets is at all possible without violating the ISR.

1. ¬derived(property(s))
2. ordered(property(s))
3. e �∈ elements(s)
4. type(e) ⊆c owner(opposite(property(s)))
5. (∃t ∈ S · s ⊆s t ∧ composite(property(t)) ⇒ parent(e)\ {slotowner(t)} = /0
6. indices_ok({t · s ⊂s t},

{s �→ [i..i]}
∪{t �→ [lower_index(index(e,u), t,u)..lower_index(index(e,u), t,u)] · s ⊂s t ∧ t ⊆s

u ∧ e ∈ elements(u)}
∪ {t �→ [0, #t] · s ⊂s t ∧ ¬(∃u · t ⊆s u ∧ e ∈ elements(u))}
)

The intuition behind the last clause in the precondition and the definition of the
indices_ok function is that we calculate the range restrictions of e which exist in any
super- or subsets onto the other slots. The F function is initially created by describing
constraints from supersets. F is created from three different clauses. The first, s �→ [i..i],
constrains e to be inserted at exactly index i. The second does similarly for supersets
which have a superset that already has e, whereas the third initially allows all indices
to be candidates for insertion. This initialization makes sure that F is restricted by the
the elements e that already exist in any supersets of s. Note that any slot o such that
o ⊂s t ∧s ⊂s t ∧o || s is outside of the transitive superset closure of s and any restrictions
from it will already be visible in t and thus it is not necessary to include o in F .

Then, indices_ok calculates the constraints from subsets and does set intersection to
calculate whether an insertion is possible. The actual function takes all supersets T and
picks one t ∈ T which is a bottom element, which must exist since the slots in T are part
of a finite poset. It then imposes all intervals from subset slots c (such that s ⊆s c � t)
onto t, also including the initial constraint on t. It then recurses with a modified F
until T is empty. The notation for a modified function is f [x �→ y] which returns a new
function f ′ such that (∀z �= x · f ′(z) = f (z)) and f ′(x) = y.

We claim, without proof, that if the final mapping F contains only nonempty inter-
vals, it is possible to successfully insert e into s at index i. The postcondition is:

1. elements′(s)[i] = e
2. (∀t ∈ S · s ⊆s t ∧ e �∈ elements(t) ⇒ elements′(t)\ {e} = elements(t)

∧e ∈ elements′(t))

The current definitions do not tell us the exact index where to insert e into any su-
perslot of s, only that a combination of indices exists; an index it for a superslot t of s
must exist somewhere in the range given by F(t).

Basic Operations over Models Containing Subset and Union Properties 479

An example of element insertion can be seen in Figure 7. Case (1) is the initial
configuration of the slots w, x, y and z. Let us assume an insertion of element c into
slot w at index position 0 occurs. The returned slot ranges where c should be inserted
raises the possibilities in cases (2) to (5), depending on whether c is inserted onto the left
or right side of either a in slot y or b in slot z. Cases (2), (3) and (4) are correct solutions
and our postcondition does not prefer any particular one over the another. Case (5) is
not legal, because slot x cannot maintain the superset relationship as enforced by both
slots y and z, as element c should occur both before a and after b in the ordered set. It is
up to the implementation to choose one of the correct solutions, perhaps with guidance
from the user.

(1) (2) (3)

(4) (5)

Fig. 7. Example of Inserting an Element into Ordered Slots

3.5 Element Removal from a Slot

The operation remove : M × S × E → M is defined such that remove(M,s,e) removes
the element e from s and all its subsets, as well as from those supersets which would not
acquire e via some other subset which is not comparable to s. Element removal from
an ordered slot is identical to element removal from an unordered slot since removing
a specific element from an ordered slot does not alter the relative position of the other
elements in the slot.

The precondition requires that a derived slot is not being modified and that the ele-
ment must exist in the slot:

1. ¬derived(property(s))
2. e ∈ elements(s)

The postcondition:

1. (∀r ∈ S · r ⊆s s ⇒ elements(r) = elements′(r)∪ {e} ∧ e �∈ elements′(r))
2. (∀t ∈ S · s ⊂s t ∧ ¬(∃m ∈ S · m ⊂s t ∧ m || s ∧ e ∈ elements(m))

⇒ elements(t) = elements′(t)∪ {e} ∧ e �∈ elements′(t))

480 M. Alanen and I. Porres

Both clauses in the postcondition are interesting. The first clause states that a removal
from a slot triggers a removal from any subset, so that the ISR can hold. This can be
contrasted with the insertion operation, which does not modify any subsets. The second
clause states that a removal from a slot triggers a conditional removal from any superset.
An interesting feature of the clause is shown in Figure 8. If we have an initial setting as
in case (1) and remove a from z, the clause requires that a is removed from x as shown
in case (2), although this is not necessary to maintain model consistency. However, we
believe that this feature is the intended usage by the modeling standards. Inserting into
a subset triggers insertion in all supersets, and so dually a removal from a subset ought
to trigger a removal from all supersets. A similar chain of reasoning has been reported
by Markus Scheidgen [17].

(1) (2)

Fig. 8. Removing a from an Unordered Slot z

As an example where the second clause is necessary, consider Figure 9 with the
initial setting as in case (1). Assume we wish to remove a from y. An incorrect approach
is the removal of a from supersets and subsets, which would leave x without a, but z
with a intact, violating the ISR, as shown in case (2). A correct option would be to
remove a also from z, as shown in case (3), but our opinion is that this “snowball effect”
of removing a reduces the usefulness of subsets; slot y should affect slot z as little as
possible, since they are not comparable in the Hasse diagram. Our postcondition ensures
that a must be removed from w and y, but not from x, because z still contains a; this is
seen in case (4).

(1) (2) (3)

(4) (5)

Fig. 9. Different Scenarios for Removing a from an Unordered Slot y

Basic Operations over Models Containing Subset and Union Properties 481

Another interesting case is the ISR rule for derived slots. If (and only if) z is marked
as derived, we must remember that its elements must be found in the union of its subsets.
In case (5), a is removed from y which leads to it being removed from w as well. As z
is marked as derived, a must also be removed from it, since z does not have any other
subset containing a. This in turn leads to a being removed from x!

3.6 Implementation of Edit Operations in a Modeling Toolkit

We do not discuss the actual implementation of the basic edit operations in this article
due to space restrictions. However, we have implemented the metamodeling language
with the operations as described in this article in our modeling tool Coral, with details
defined in [1]. We have tested the implementation extensively and found no consistency
errors or omissions. Coral is open source and available at http://mde.abo.fi/.

We know of no other tools that support subsets as extensively as proposed in this
article, even with different semantics. At the time of writing, the Eclipse EMF model
repository does not implement subsets, although the feature is being planned.

4 Related Work

Several others have studied the formalization of the metamodel and model layers in the
past, for example [5,3,9]. Our contribution comes from the definitions of property sub-
sets, which neither metamodeling nor traditional object oriented language descriptions
explain.

Several authors use association inheritance without defining exact semantics, and
some say that it denotes covariance. An example of this covariant specialization [8] is
the multilevel metamodeling technique called VPM by Varro and Pataricza [18], which
also limits itself to single inheritance. We argue that property subsetting is not the same
concept as covariant specialization, and requires different semantics.

Carsten Amelunxen, Tobias Rötschke and Andy Schürr are authors to the MOFLON
tool [4] inside the Fujaba framework [12]. MOFLON claims to support subsetting, but
no description of the formal semantics being used is included. It is not clear if their tool
works in the context of subsets between ordered slots, or with diamond inheritance with
subsetting.

Markus Scheidgen presents an interesting discussion of the semantics of subsets in
the context of creating an implementation of MOF 2.0 in [17]. To our knowledge, this
has been so far the most thorough attempt to formalize subset properties. The approach
is slightly different in that a slot modification creates an update graph of slots, so that a
later modification at some other slot in the update graph actually updates all the associ-
ated slots. The actual operational semantics are unfortunately not described in detail. In
comparison, we do not have to create or maintain any update graphs. Furthermore, our
contribution not only discusses but also defines pre- and postconditions and implemen-
tations for the operations for ordered and unordered sets. It is also not clear if the work
by Scheidgen supports diamond subsets or ordered sets, both of which are used in the
UML 2.0.

The object-oriented and database research communities are also researching a
similar topic, although it is called relationship or association inheritance, or first-class

482 M. Alanen and I. Porres

relationships. In [6], Bierman and Wren present a simplified Java language with first-
class relationships. In contrast with our work, they do not support multiple inheritance,
bidirectionality or ordered properties; all of these constructs are common in modeling
and in the UML 2.0 specification. However, relationship links are explicitly represented
as instances, and they can have additional data fields (just like the AssociationClass of
UML). As the authors have noticed, the semantics of link insertion and deletion is not
without problems. Albano, Ghelli and Orsini present in [2] a relationship mechanism
for a strongly-typed object-oriented database programming language. It also handles
links as relationship instances, but without additional data fields. Multiple inheritance
is supported, but ordered slot contents are not.

5 Conclusions

MOF 2.0 provides new property characteristics: subsets, (derived) unions and redef-
initions. However, it does not describe these concepts in detail, not even informally,
and therefore they cannot be applied in practice. In this article, we have first described a
simple formalization of metamodels and models and then presented pre- and postcondi-
tions for basic operations on element creation and deletion and slot modification, taking
into account subsets and derived unions. It must be stressed that we do not cover several
important aspects of MOF 2.0, such as association end ownership or navigability. They
are not in the scope of this article.

We consider that the definition of these concepts is not as straightforward as one
may think and it requires an extensive study. There is an imminent need in the model-
ing community to standardize on one formalization of subsets and derived unions, so
that tools implementing MOF 2.0 and UML 2.0 can be interoperable. The semantics
described in this article are one proposal and we hope it spurs further interest and dis-
cussion. We have avoided using OCL or any other modeling standard in order to be able
to present a relatively small and self-contained description of the core of these OMG
standards with respect to subsetting. Furthermore, the idea of subsetting is intriguing,
since it is a new construct for modeling relationships between classes and objects, and
thereby brings a novel idea to the software modeling and object-oriented community.

The authors would like to thank Patrick Sibelius for insightful discussions. Marcus
Alanen would like to acknowledge the financial support of the Nokia Foundation.

References

1. Marcus Alanen and Ivan Porres. Subset and union properties in modeling languages. Tech-
nical Report 731, TUCS, Dec 2005.

2. Antonio Albano, Giorgio Ghelli, and Renzo Orsini. A Relationship Mechanism for a
Strongly Typed Object-Oriented Database Programming Language. In Proceedings of
the 17th Conference on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA),
Barcelona, 1991.

3. José Álvarez, Andy Evans, and Paul Sammut. MML and the Metamodel Architecture. In
Jon Whittle, editor, WTUML: Workshop on Transformation in UML 2001, April 2001.

4. Carsten Amelunxen, Tobias Rötschke, and Andy Schürr. Graph Transformations with MOF
2.0. In Holger Giese and Albert Zündorf, editors, Fujaba Days 2005, September 2005.

Basic Operations over Models Containing Subset and Union Properties 483

5. Thomas Baar. Metamodels without Metacircularities. L’Objet, 9(4):95–114, 2003.
6. Gavin Bierman and Alisdair Wren. First-class relationships in an object-oriented language.

In Workshop on Foundations of Object-Oriented Languages (FOOL 2005), January 2005.
7. Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J. Grose.

Eclipse Modeling Framework. Addison Wesley Professional, August 2003.
8. Giuseppe Castagna. Covariance and Contravariance: Conflict without a Cause. ACM Trans-

actions on Programming Languages and Systems, 17(3):431–447, May 1995.
9. Tony Clark, Andy Evans, and Stuart Kent. The Metamodelling Language Calculus: Foun-

dation Semantics for UML. In H. Hussmann, editor, Fundamental Approaches to Software
Engineering. 4th International Conference, FASE 2001, volume 2029 of LNCS, pages 17–31,
2001.

10. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

11. Anneke Kleppe, April 2003. Discussion on the mailing-list puml-list@cs.york.ac.uk.
12. Ulrich A. Nickel, Jörg Niere, and Albert Zündorf. Tool demonstration: The FUJABA en-

vironment. In Proceedings of the 22nd International Conference on Software Engineering
(ICSE), pages 742–745. ACM Press, 2000.

13. OMG. MOF 2.0 Query / View / Transformation Final Adopted Specification. OMG Docu-
ment ptc/05-11-01, available at www.omg.org, 2005.

14. OMG. UML 2.0 Superstructure Specification, August 2005. Document formal/05-07-04.
Available at http://www.omg.org/.

15. OMG. Meta Object Facility (MOF) Core Specification, version 2.0, January 2006. Document
formal/06-01-01, available at http://www.omg.org/.

16. OMG. UML 2.0 Infrastructure Specification, March 2006. Document formal/05-07-05,
available at http://www.omg.org/.

17. Markus Scheidgen. On Implementing MOF 2.0—New Features for Modelling Language Ab-
stractions. July 2005. Available at http://www.informatik.hu-berlin.de/~scheidge/.

18. Dániel Varró and András Pataricza. VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML. Journal of Software and Systems
Modeling, 2(3):187–210, October 2003.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 484 – 498, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Metamodeling Approach to Pattern Specification

Maged Elaasar1,2, Lionel C. Briand1,3, and Yvan Labiche1

1 Software Quality Engineering Laboratory (SQUALL)
Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
{briand, labiche}@sce.carleton.ca

2 IBM Canada Ltd, Rational Software, Ottawa Lab
770 Palladium Dr., Kanata, ON. K2V 1C8, Canada

melaasar@ca.ibm.com
3 Simula Research Laboratory, Department of Software Engineering
Martin Linges v 17, Fornebu, P.O. Box 134, 1325 Lysaker, Norway

Abstract. This paper presents the Pattern Modeling Framework (PMF), a new
metamodeling approach to pattern specification for MOF-compliant modeling
frameworks and languages. Patterns need to be precisely specified before a tool
can manipulate them, and though several approaches to pattern specification
have been proposed, they do not provide the scalability and flexibility required
in practice. PMF provides a pattern specification language called Epattern,
which is capable of precisely specifying patterns in MOF-compliant metamod-
els. The language is defined as an extension to MOF by adding semantics in-
spired from the UML composite structure diagram. The language also comes
with a graphical notation and a recommended iterative specification process. It
also contains features to manage the complexity of specifying patterns and sim-
plify their application and detection in user models. Most importantly, the lan-
guage is implemented using state-of-the-art technologies that are heavily used
by major modeling tool vendors, thus facilitating its adoption.

1 Introduction

Model driven architecture (MDA) [1] is an approach to system development advo-
cated by the Object Management Group (OMG). The approach starts by describing
the system's specifications using a platform independent model (PIM). A PIM is usu-
ally specified in a language that is based on the Meta Object Facility (MOF), a stan-
dard by the OMG for describing modeling languages. A prominent example of such
languages is the Unified Modeling Language (UML), which is well adopted by the
software engineering community. Alternatives to UML also exist and are collectively
referred to as Domain Specific Modeling Languages (DSML) [6], as they are more
specialized and target certain modeling domains. Once a system has been specified
using a PIM, a platform is then chosen to enable the realization of the system using
specific implementation technologies, producing what is referred to as a platform
specific model (PSM).

In spite of the potential benefits of MDA including reduced development time for
new applications, improved application quality, quicker adoption of new technologies

 A Metamodeling Approach to Pattern Specification 485

into existing application and increased return on technology investment, the adoption
of MDA has not picked up to its full potential yet. One reason for this is the complex-
ity problems inherent in today's MDA tools. These tools usually appeal to the MDA
savvy but fail short of meeting the expectations of the mainstream practitioners who
are competent with their technologies but not necessarily with MDA. Another reason
is the limited support available to the user beyond authoring their models. For in-
stance, features that help the user inspect the quality of their models are lacking in
many major MDA tools.

As system models get larger and more complex, the task of inspecting their quality
becomes much harder. It is now well understood that a problem detected early on in
the system development life cycle is much cheaper to tackle than one discovered later
on. Hence, technologies that facilitate inspecting models for quality purposes can
certainly play a big role in enhancing the value of MDA. Examples of these technolo-
gies include architectural discovery [2], anti-pattern detection [10] and consistency
analysis [17]. Equally important are those technologies that assure the quality of the
process of going from PIM to PSM. Examples here include impact analysis [18].

One way to analyze the quality of user models is to look for instances of prede-
fined patterns. Patterns are recurring modeling structures that are either desirable [7]
or undesirable [10]. Desirable patterns represent elements of reuse at a higher level of
abstraction. Therefore, trying to understand a model by its usage of patterns helps by
raising the level of abstraction. Conformance to desirable patterns is expected to boost
the quality of models by expediting modeling of maintainable and robust designs. On
the other hand, the early identification of undesired patterns, or anti-patterns, protects
against making common and expensive design mistakes. It is also a first step towards
the mitigation of existing design problems.

Support for patterns has started to show up in some major modeling tools like RSA
[3]. The support can come in the form of best practice patterns that can be applied or
recovered, as well as anti-patterns that can be detected in user models. Usually, a
common prerequisite is the formal specification of those patterns for tool consump-
tion. The state of the art in this area is far yet from converging on a standard for pat-
tern specification. This paper presents a new approach to precise pattern specification
within a Pattern Modeling Framework (PMF). PMF uses a declarative and graphical
approach to pattern specification, which is based on existing metamodeling technolo-
gies. The specification language, called Epattern, allows for the specification of pat-
terns in MOF-compliant modeling languages using an iterative, graphical process.
Epattern has inherent capabilities to manage the specification of complex patterns.
PMF is implemented as a set of plug-ins [19] to the Eclipse platform and leverages
several Eclipse open source projects like the Eclipse Modeling Framework (EMF) [4].

The rest of this paper is structured as follows. An overview of the PMF is pre-
sented in Section 2. Section 3 presents the Epattern specification language and proc-
ess. Related works are discussed and compared to the proposed approach in Section 4.
Finally, Section 5 concludes and discusses some of the future research directions.

2 Overview of Pattern Modeling Framework

The Pattern Modeling Framework (PMF) offers a new approach to pattern specifica-
tion. The framework is adopting an architecture (Figure 1) that is compatible with the

486 M. Elaasar, L.C. Briand, and Y. Labiche

OMG's 4-layer metamodeling architecture [22]. In the meta-modeling architecture,
the Meta Object Facility (MOF) (M3) is used to define metamodels for various mod-
eling languages (M2). Instance models (M1) that conform to those languages can then
be defined. When these user models are deployed, user objects instantiating them are
created (M0). Along the same lines, PMF defines its pattern specification language as
an extension to MOF (M3). The new language is used to specify patterns in any
MOF-compliant modeling language (M2). Pattern instances conforming to those
patterns are hence defined in terms of instance models (M1). This conformance in
architecture gives PMF the advantage of being able to specify patterns on any MOF-
compliant modeling language (i.e., not only UML) and even patterns that involve
multiple modeling languages and viewpoints at the same time (like patterns specified
in terms of both the UML class and interaction diagrams at the same time).

The pattern specification language provided by PMF is called Epattern and is de-
fined as an extension to the MOF 2.0 specification [9]. The EMF [4] provides a plat-
form specific realization of a subset of MOF called EMOF, whose semantics resemble
those of simple UML class diagrams. This realization is called Ecore and is integrated
with the Eclipse platform. Ecore is widely used today to specify various language
metamodels including that of UML 2.0, which is available as an open source project
[8] and used by modern UML tools like RSA [3] and EclipseUML [21]. EMF pro-
vides tooling for specifying Ecore metamodels and generating corresponding java
APIs for them. The Epattern language is realized as an extension to Ecore, which
gives PMF two advantages: the ability to reuse a lot of the tools provided by EMF and
the ability to provide pattern specification capabilities in modern modeling tools.

The Epattern language contains semantics/constructs that are inspired from similar
ones in UML 2.0 composite structure diagrams (CSD) [5] and that are used in Epat-
tern to specify patterns. CSDs were recently added to UML to depict the internal
structure of a classifier (such as a class, a component, or a collaboration), including
the interaction points of the classifier to other parts of the system. While class dia-
grams model a static view of class structures, including their attributes and operations,
CSDs model specific usages of these structures. For instance, classes are viewed as
parts fulfilling some roles, and roles are interconnected to represent relationships that
might or might not be reflected by static diagrams. One use of CSDs, discussed in [4],
is to describe patterns in UML instance models (M1). However, as CSDs are part of
the UML 2.0 metamodel (M2), they cannot be used to specify general pattern struc-
tures involving elements of that same metamodel, or any other M2 metamodel. To
specify such patterns you need similar capabilities at level M3. To address this prob-
lem the Epattern language, purportedly defined at the M3 level, reuses some of the
CSD semantics and apply them to specify patterns in language metamodels.

Once patterns are specified in Epattern, their specifications can be used to derive
various types of algorithms for the purpose of pattern application and detection. Fur-
thermore, PMF includes a graphical, stepwise, and iterative process to guide the user
for specifying patterns and alleviate their complexity. Other features of the frame-
work, which are outside the scope of this paper due to space limitations, include the
ability to generate a detection algorithm for each specification and use it to detect and
visualize pattern instances in user models. The interested reader may refer to [19] for
details regarding the detection algorithm support.

 A Metamodeling Approach to Pattern Specification 487

Fig. 1. Pattern specification using OMG’s metamodeling architecture

3 Epattern Specification Language

The Epattern language can be used to formally specify patterns on MOF-compliant
modeling languages. As described in Section 0, Epattern is designed as an extension
to MOF and realized as an extension to Ecore, which includes the concepts necessary
to specify metamodels of MOF-compliant languages including UML 2.0. In the re-
mainder of the paper, we refer to concepts defined by Ecore rather than MOF as a
simplification because the terminology used there is closer to the one for Epattern.

A simplified metamodel of Ecore is shown in Figure 2. All classes in the Ecore
metamodel are subclasses of EModelElement (not shown on the diagram to avoid
cluttering). A concept in a modeling language is specified using an EClassifier, which
is a named element that has two subclasses: an EClass representing a complex type
(e.g. ‘Property’ in UML) and an EDatatype representing a simple type (e.g., ‘Aggre-
gationKind’ in UML). EClassifiers are physically arranged in hierarchical name-
spaces represented by EPackages. EClasses can either represent classes (including
abstract ones) or interfaces and may be organized into inheritance hierarchies. The
structure of an EClass is specified with a set of EStructuralFeatures, representing the
properties of a class, while its behavior is specified with a set of EOperations, repre-
senting the operations of a class. An EStructuralFeature is a named and typed element
that has two subclasses: an EAttribute, typed with an EDataType (e.g. ‘Prop-
erty.aggregation’ in UML), and an EReference, typed with an EClass (e.g. ‘Prop-
erty.type’ in UML). An EReference can represent either a containment reference, i.e.,
its value is owned by the class, or a non-containment reference, i.e., its value is refer-
enced by the class. An EReference may also point to an opposite EReference if it
represents one end of a bidirectional association between two classes. An EOperation
is a named element that has an EClassifier return type. It also has a list of EParame-
ters that are named and typed with EClassifiers.

488 M. Elaasar, L.C. Briand, and Y. Labiche

Fig. 2. A simplified Ecore metamodel

The Epattern language defines semantics for pattern specification that extend off
those of Ecore. The remainder of this section uses a working example (Section 3.1)
to explain these semantics (Section 3.2), illustrate their graphical notation
(Section .3), and describes a recommended process for using them to specify patterns
(Section 3.4).

3.1 Working Example

The example is a simple variant of the well-known Gang of Four (GoF) composite
pattern [7], shown in Figure 3. The pattern’s M2 target language is UML 2.0. It is
classified as a structural pattern and is used to allow a client to treat both single com-
ponents and collections of components identically. The pattern highlights several
roles: a ‘component’ role representing an instance of UML Interface, a ‘leaf’ role
representing an instance of UML Class that implements the ‘component’ interface, a
‘composite’ role representing an instance of UML Class that implements the ‘compo-
nent’ interface and also composes instances of the same interface, and finally a ‘com-
pose’ role representing an instance of UML Operation defined by the ‘composite’
class and used to compose ‘component’ instances.

Fig. 3. A simplified GoF composite pattern

 A Metamodeling Approach to Pattern Specification 489

3.2 Semantics

The metamodel of Epattern, shown in Figure 4, contains new metaclasses that sub-
class others in the Ecore metamodel. The following items describe the semantics of
these new metaclasses and we point the interested reader to [19] for more details:

 EPattern: subclasses EClass and represents a pattern’s context. A pattern is repre-
sented as an instance of EPattern (M3), i.e. as a metaclass at the same level as the
target metamodel (M2). Representing a pattern as a metaclass has big advantages
including the ability to build pattern inheritance hierarchies with varying levels of
abstraction, the ability to define complex patterns by composing simpler ones, the
ability to use namespaces to create pattern families, the ability to be a context for
pattern constraints, and the ability to represent pattern instances as objects of the
pattern metaclass.

In the example, the composite pattern is represented by an EPattern instance.
 ERole: subclasses EReference and represents a pattern role. Representing a role as a
reference helps characterize (using name, type and multiplicity features) M1 in-
stances that play that role in a pattern instance. A role can be typed (through
eReferenceType feature that is inherited by ERole from EReference: Figure 2) with
an instance of EClass (M2) from the pattern’s target metamodel. To implement pat-
tern composition, a role can simply be typed with an instance of EPattern (which
subclasses EClass) to represent a composed pattern. Additionally, the multiplicity
feature of a role allows the support of some common role semantics, namely the
ability to define optional roles (e.g. leaf) and collection roles, which can be bound
to more than one instance from the user model (e.g. leaf too). A role with multiplic-
ity lower bounds of 0 and 1 are considered optional and required, respectively.
Also, a multiplicity upper bound of * defines a collection role, whereas a value of 1
defines a singular role. Yet another major advantage of this role representation is
simplifying the process of role binding down to the simple process of assigning a
value to a feature in a pattern instance. One more advantage is the ability to refer-
ence roles in a pattern’s constraint (whose context is a pattern instance at M1) just
as regular features of a metaclass. Moreover, roles are connectable, i.e. a role can be
connected to other related roles in the pattern to formalize their relationship, as de-
scribed in the next paragraph.

In the example, the main identified roles (component, composite, leaf and com-
pose) are all represented by instances of ERole.

 EConnector: subclasses EModelElement and represents a connector between two
pattern roles. A connector characterizes (through its type) a relationship between
M1 model elements bound to its two roles in a pattern instance. The relationship
characterized by a connector’s type is nothing but an EReference instance from the
pattern target metamodel. This instance represents a directed relationship between
two EClass instances from the metamodel. Since it is directed, a connector specifies
which of its ends represents the source and which represents the target of the refer-
ence through its eSourceRole and eTargetRole features. If one or both roles happen
to represent a composed pattern (i.e. typed with EPattern), the connector also speci-
fies which port (refer to the EPort metaclass being defined next) instance belonging
to the composed pattern it is connecting to through the eSourcePort and eTargetPort
features.

490 M. Elaasar, L.C. Briand, and Y. Labiche

In the example, various connectors are represented by instances of EConnector:
one from composite to component representing an implementation, one from leaf to
component representing an implementation, one from composite to component rep-
resenting a composition, and one from composite to compose representing an
owned operation.

 EPort: subclasses EReference and represents a connection point on the pattern’s
boundary that is used in pattern composition. When patterns compose each other,
roles in the composing pattern are connected to ones in the composed pattern. How-
ever, this connection cannot be direct as roles are encapsulated within their defining
pattern. To expose these roles and make them available for connection to roles in
the composing pattern, ports are specified for them in the pattern. Note that not all
roles need to have ports; rather only those main roles that characterize the pattern.
An instance of EPort connects (though the eDelegatingRole feature) to an instance
of ERole in the pattern. If that role represents a composed pattern, the port needs to
also specify which port (through the eDelegatingPort feature) on the composed pat-
tern it is connecting to in turn. An EPort is represented as a reference since it char-
acterizes (through its name and type) the role it is connecting to. A port’s type has
to match that of the role it is connecting to although this restriction may be removed
in the future1.

In the example, two roles are considered defining for the composite pattern;
these are the composite and component roles. Therefore, an instance of EPort is
specified for each one of them.

 EConstraint: subclasses EOperation and represents a well-formedness constraint (a
semantic rule) for a pattern. A constraint has a boolean expression that is specified
in a constraint language like EMOF OCL [20]. The context of the constraint is
nothing but an instance of a pattern, which makes pattern roles accessible in the ex-
pression as regular features of the context. This has the added advantage of being
able to specify constraints between one or more pattern roles. For better formaliza-
tion, an instance of EConstraint references the instances of ERole that it is con-
straining.

In the example, two constraints can be specified with instances of EConstraint:
the first one is asserting that the association between the composite and the compo-
nent roles is really a ‘composition’ and that it has a ‘many’ multiplicity; the second
constraint is asserting that an operation bound to the compose role has exactly one
parameter whose type matches the interface of the component role.

 EAssociation: subclasses EClass and represents a new derived relationship between
two EClass instances from the pattern’s target metamodel. The main rationale for
defining EAssociations is to simplify pattern specification by introducing high level
relationships that can be specified between pattern roles. Without this concept, only
low level relationships represented by EReferences from the metamodel can be
used between roles. A problem usually occurs when no direct EReferences exist be-
tween EClass instances in the metamodel that are types of related roles. In this case,
a pattern author would need to work around that by introducing a set of intermedi-
ary roles increasing the complexity of the specification. An EAssociation is basi-
cally a namespace that defines two association ends (refer to EAssociationEnd

1 A port in CSD may have a different type if connected to its role with a typed connector [5].

 A Metamodeling Approach to Pattern Specification 491

metaclass being defined next). These ends characterize a new relationship between
two EClass instances from the target metamodel. An EAssociation is the container
of EReferences and hence has to subclass EClass (Ecore restriction) [4].

In the example, two instances of EAssociation are specified as they represent
high level relationships that are used by the composite pattern but do not map to di-
rect EReferences in the Ecore UML metamodel. The first one is the ‘Implementa-
tion’ relationship between the composite/leaf and component roles, and the second
is the ‘Composition’ relationship between the composite and component roles.

 EAssociationEnd: subclasses EReference and represents one end in an EAssocia-
tion. Representing an end as a reference makes it straightforward to use as a type
for EConnectors in pattern specifications. An EAssociationEnd is typed with an
EClass instance from the target metamodel, representing one end of the new rela-
tionship, and is given a name and a multiplicity. One main difference between
EReference and EAssociationEnd is that the former is owned by an EClass repre-
senting one end of a relationship and typed with the other, while the latter is always
owned by an EAssociation and the two associtated EClasses are specified by the
types of both ends of the association. Moreover, an end is a derived reference that
can either be navigable or not. If navigable, an end gets a derivation expression
specified in a language like EMOF OCL [20]. The type of the expression is the
same as that of the end and the context of the expression is an instance of the type
of the other end. If both ends are navigable, the end’s opposite EReference feature
is set to the other EAssociationEnd in the same association.

In the example, the ‘Implementation’ association has two EAssociationEnd in-
stances typed with ‘BehavioredClassifier’ and ‘Interface’ from the UML meta-
model. Also, the ‘Composition’ association has two EAssociationEnd instances
typed with ‘StructuredClassifier’ and ‘Type’ from the UML metamodel.

Fig. 4. The Epattern metamodel

492 M. Elaasar, L.C. Briand, and Y. Labiche

3.3 Notation

The notation for Epattern is based on the notation of the class and composite structure
diagrams of UML 2.0. This makes it easier to leverage already existing UML tools in
pattern specification. Table 1 below illustrates this notation.

Table 1. Epattern notation

EPattern: a frame with a name compartment and a
structure compartment showing the pattern's struc-
ture. Other optional compartments could be shown
for the pattern's super types, roles, ports, connectors
and constraints.

ERole: a box containing a compartment that shows
the role’s name, type and multiplicity (lower-
Bound…upperBound if different from 1…1). The
box is solid if the role represents a pattern composi-
tion (bottom role) and dashed otherwise (top role).
Also, the box has a structure compartment if it
represents a pattern composition.

EPort: a small filled box on the frame of the struc-
ture compartment. The box has a floating name
label that shows the name and type of the port. The
box is either connected directly to a delegating role
(left port) or to a delegating role’s port if the role
represents a composed pattern (right port).

EConstraint: a sticky note with a name compart-
ment and an expression compartment. The note is
connected to the constrained roles with dotted lines.
EConnector: a directed arrow that goes from the
pattern’s source role to its target roles. If a connec-
tor has a source/target port, the line connects that
port on the corresponding role. The connector has
floating labels showing the connector’s type refer-
ence (eType) and its opposite (if any).

EAssociation: a line connecting two EClass in-
stances from the pattern target language meta-
model. The line has a floating name label, two
floating end name labels, and two floating end
multiplicity labels. The line can be shown as an
arrow if the association is directed.

3.4 Specification Process

We propose a recommended iterative specification process for using the Epattern
language. The outcome of this process is a formal pattern specification. The process is
depicted in Figure 5 and explained in the following suggested order of steps. In prac-
tice, a pattern author may move from any step to any other step in an iterative fashion.

 A Metamodeling Approach to Pattern Specification 493

Fig. 5. The Epattern specification process

The composite pattern example is used to illustrate the process and the notation
provided above.

Understand Pattern Structure. Before a pattern is specified with Epattern, there has
to be a good understanding of its structure. A pattern's structure is a set of roles, typed
with M2 metaclasses from a target metamodel and related to each other through
metareferences. In our example, the target metamodel is UML 2.0, simplified in
Figure 6 for the purpose of our example. The class diagram in Figure 3 reveals the
following roles: component of type ‘Interface’, composite and leaf of type ‘Class’ and
compose of type ‘Operation’. The relationships between these roles include an ‘im-
plementation’ between leaf/composite and component, which is realized by an ele-
ment of type ‘InterfaceRealization’ (metaclass in Figure 6). The element is related to
the interface by the metareference ‘InterfaceRealization.contract’ and to the class by
the metareference ‘BehavioredClassifier.interfaceRealization’. Our syntax for
metareference 'X.Y' refers to an EReference named Y in an EClass named X. Another
relationship is ‘composition’ between composite and component, which is realized by
an element of type ‘Property’. The element is related to the class by the metareference
‘StructuredClassifier.ownedAttribute’ and to the interface by the metareference ‘Prop-
erty.type’. Finally, composite is related to compose directly by metareference
‘Class.ownedOperation’.

Fig. 6. A partial, simplified UML 2.0 metamodel

Create EPattern. Once there is a good understanding of the pattern’s structure, the
pattern can be specified using the Epattern metamodel (M3). The first step is to create
an instance of EPattern in an EPackage that belongs to a pattern model. The instance
is given a name representing the pattern. In our example, an instance is created
and named ‘CompositePattern’. A complete specification of this pattern is shown in
Figure 7 and described below.

Add ERoles. Once an Epattern is created, every pattern roles identified in step 1 is
modeled by an instance of ERole in the pattern’s eRoles collection. Each ERole in-
stance is given the name of the role, and typed, through its eReferenceType feature,

494 M. Elaasar, L.C. Briand, and Y. Labiche

with an EClass instance representing the type of the role in the target metamodel. If
the role represents a composed pattern, it is typed with an EPattern instance instead,
and its containment feature is set to true. In addition to the main roles identified in
step 1, some intermediary roles might be initially needed to allow the main roles to be
connected by connectors typed only with EReferences from the metamodel. In our
example, ERole instances for the main roles (component, composite, leaf and com-
pose) identified in step 1 are created. In addition, based on the metamodel in Figure 6,
instances for intermediary roles are needed to connect the main roles. Two such in-
stances typed with ‘InterfaceRealization’ are needed to represent the implementation
relationship between the composite/leaf and component roles: the former role is a
Class, the latter role is an Interface and those two metaclasses are related through
InterfaceRealization in Figure 6. The ERole instances are named ‘realization1’ and
‘realization2’. For similar reasons, another ERole instance typed with ‘Property’, and
named ‘children’, is needed to represent the composition relationship between the
composite and component roles. All our role instances have their multiplicity set to
‘1…1’ except for the leaf role, where it is set to ‘*’, indicating that the role is optional
and represents a collection.

Add EConnectors. The next step after creating roles is connecting them by EConnec-
tor instances. An instance is created in the pattern’s eConnectors collection to specify
every identified relationship in step 1 (and in previous specification phases) between
pattern roles. Instances of source and target roles are assigned to the connector’s
eSourceRole and eTargetRole features. If one or both roles represent composed pat-
terns, i.e., typed with EPattern, the connector’s eSourcePort and/or eTargetPort fea-
tures are also set to instances of EPort owned by the composed EPattern. The connec-
tor’s type is set to an EReference from the target metamodel representing a directed
relationship between the EClass instances typing the connector’s source and target
roles (or ports if specified). In the example, several connectors are specified using
metareferences in Figure 6: 1) two connectors typed with ‘InterfaceRealiza-
tion.contract’ from ‘realization1’/’realization2’ to ‘component’; 2) two connectors
typed with ‘BehavioredClassifier.interfaceRealization’ from ‘leaf’/‘composite’ to
‘realization1’/‘realization2’; 3) a connector typed with ‘StructuredClassi-
fier.ownedAttribute’ from ‘composite’ to ‘children’; 4) a connector typed with ‘Prop-
erty.type’ from ‘children’ to ‘component’; and 5) a connector typed with
‘Class.ownedOperation’ from ‘composite’ to ‘compose’.

Add EPorts. Once pattern roles have been specified, ports are added to expose some
roles that are considered public. For each such port, an instance of EPort is added to
the pattern’s ePorts collection. The instance is connected to a role through its eDele-
gatingRole feature. If the role represents a composed pattern, i.e., typed with EPat-
tern, the instance’s eDelegatingPort feature is also set to an EPort instance owned by
the composed pattern. Then the port is given a name that correlates to its connected
role and is typed with the same type of that role (or port if specified). In our example,
two ports are specified: ‘componentPort’ connected to ‘component’ and typed with
‘Interface’ and ‘compositePort’ connected to ‘composite’ and typed with ‘Class’.

Add EConstraints. After the basic pattern structure is specified, well-formedness
constraints are added. Each constraint is represented by an instance of EConstraint in

 A Metamodeling Approach to Pattern Specification 495

the pattern’s eConstraints collection. A constraint is given a name and a boolean
expression in a constraint language. The constraint’s eConstrainedRoles feature
is then set to the ERole instances constrained by the constraint. In our example,
two constraints are specified. The first is named ‘composition’, connected to
the ‘children’ role, and specified in OCL as follows: ‘children.aggregation
=AggregationKind.Composite and children.upperBound=-1’ (the second
conjunct specifies a ‘many’ multiplicity). The second is named ‘parameter’, con-
nected to both ‘component’ and ‘compose’ roles and specified in OCL as follows:
'compose.ownedParameter->size()=1 and compose.ownedParameter->

at(1).oclIsKindOf(component)'. Their meaning was already provided above
(Section 3.2).

Reduce Pattern Complexity. Pattern specifications can get large and complex. Vari-
ous features are provided in Epattern to manage this complexity including 1) specify-
ing patterns by inheritance and composition, 2) refactoring common constraint logic
in operations and 3) eliminating intermediary roles through derived associations. This
last feature can be achieved by the specification of EAssociations. An instance of
EAssociation is created in an EPackage that belongs to a pattern model and given a
name corresponding to the represented relationship. After that, two instances of EAs-
sociationEnd are created in the association’s eAssociationEnd collection. Every such
instance is typed with an EClass from the target metamodel and given a name that
corresponds to the role played by that end of the association. The end’s multiplicity is
then specified along with its navigable feature. Every navigable end represents a de-
rived reference from the end’s EClass type to the other end’s EClass type. In this case,
an end gets a derivation expression in a language like OCL to derive M1 instances
conforming to the end’s type from the context of an instance conforming to the other-
ends’s type. If both ends are navigable, they reference each other through their
eOpposite feature. Once ends are specified, complex pattern specifications can be

Fig. 7. Epattern specification for composite pattern

496 M. Elaasar, L.C. Briand, and Y. Labiche

Fig. 8. Simplified Epattern specification for composite pattern

refactored to use EAssociationEnd rather than EReferences instances to type connec-
tors. In our example, two instances of EAssociation are specified: the first is ‘Imple-
mentation’ between ‘BehavioredClassifier’ and ‘Interface’ and is used to type a
connector directly from ‘compose’/‘leaf’ to ‘component’, whereas the second is
‘Composition’ between ‘StructuredClassifier’ and ‘Type’ and is used to type a con-
nector from ‘composite’ to ‘component’. The simplified pattern specification is
shown in Figure 8. The figure also shows (bottom) the specification of the two de-
rived associations.

4 Related Works

Pattern specification is a common denominator to most work in applied pattern re-
search. Various approaches have been proposed for pattern specification [15]. One
category of approaches, that our work also belongs to, uses metamodeling techniques.
The work presented in [11] and [12] proposes specifying a pattern as a UML 1.5
meta-collaboration with pattern roles typed with M1 classes stereotyped <<meta>>
and named after metaclasses. This obviously prevents writing constraints for such
roles as their M2 type information is not available at M1. Also the binding between a
role and an element playing that role is done with an explicit dependency, rather than
a simple value assignment to a property of a pattern instance as in our approach.

The work in [13] introduces the RBML language, which is used to specify UML pat-
terns as specialized UML metamodels. Pattern roles are specified as subclasses of their
base metaclasses in UML and are related to each other though new meta-associations.
One problem with specifying a pattern as a metamodel, rather than a metaclass as in our
approach, is the inability to inherit or compose the pattern, which hinders scalability.

 A Metamodeling Approach to Pattern Specification 497

Another disadvantage is that role binding is done through a generic mapping scheme
and is not conveniently an instantiation of the pattern meta-class and an assignment of
the role values (since roles are features of the pattern metaclass).

Another proposal is found in [14], where the DPML language is used to visually
specify patterns as a collection of participants, dimensions (multiplicities), relation-
ships and constraints. One draw back is the non-standard notation adopted by the
language. Another problem is the restriction of the participants and relationships to
predefined types from the UML domain, which limits the scope of the patterns defin-
able by the language. Also, there is no mention of complexity management features.

Another approach [16] provides a metamodel to specify patterns. This metamodel
is first specialized with pattern related concepts before being instantiated to produce
an abstract model (pattern specification), which is either instantiated to create a con-
crete model (pattern instance) or parameterized to use in pattern detection. The pro-
vided metamodel contains pattern-domain metaclasses in addition to metaclasses from
the target domain (e.g. UML) defined as their subclasses. This need to define required
metaclasses from the target domain in the pattern metamodel puts a great limitation
on the generality and practicality of the approach.

To summarize, most of the above approaches lack the ability to specify patterns for
languages other than UML. They also lack features (e.g. user-defined associations,
inheritance, composition) that help alleviate the complexity of pattern specification.
Additionally, some of them specify M2-level patterns at M1, which deprives them
from using free features like pattern constraints and role binding through pattern in-
stantiation. Finally, they lack a well-defined process that allows pattern authors to
build, refine and simplify patterns in a stepwise manner.

5 Conclusions and Future Works

Detecting (un)desirable patterns is an important component of model analysis. Pat-
terns need to be formally specified before they can be manipulated by tools. The
specification approach should ideally support patterns of any MOF-compliant lan-
guage and be able to scale to patterns of different complexities. In this paper, we pre-
sent the PMF framework and its Epattern specification language that specifically
target such properties. In the context of the OMG's 4-layer metamodeling architecture,
Epattern has M3 semantics used to specify patterns at the M2 level. A pattern is basi-
cally specified as a metaclass. This gives it the ability to be instantiated, inherited and
composed. To further assess the feasibility of our approach, we are currently specify-
ing most GoF patterns with Epattern, including behavioral patterns. We also plan to
specify a sample set of anti-patterns. We are also working on deriving a pattern detec-
tion algorithm from a specification. Finally, we are implementing a tool that inte-
grates with the RSA tool to allow pattern authors to manage their pattern specifica-
tions, and use them to detect and visualize pattern instances in user model.

References

[1] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. OMG, Massachusetts, June 2003.
[2] G. Booch. Handbook of Software Architecture. http://www.booch.com/architecture/
[3] IBM Rational Software Architect. http://www-128.ibm.com/developerworks/rational/

products/rsa/

498 M. Elaasar, L.C. Briand, and Y. Labiche

[4] F. Budinsky, D. Steinberg, T. Grose, S. Brodsky and E. Merks. Eclipse Modeling Frame-
work. Pearson Education. August 2003.

[5] OMG. UML 2.0 Suprestructure Specifications. OMG Document formal/05-07-04
[6] E. Magyari et.al. UDM: An Infrastructure for Implementing Domain-Specific Modeling

Languages. The 3rd OOPSLA Workshop on Domain-Specific Modeling, OOPSLA '03.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1995.
[8] UML2: EMF-based UML 2.0 Metamodel Implementation. http://www.eclipse.org/uml2
[9] OMG. MOF Core Specification v2.0. OMG Document formal/06-01-01

[10] W. Brown, H. McCormick, T. Mowbray and RC Malveau. Antipatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley & Sons, 1998.

[11] J. Mak., C. Choy and D. Lun. Precise Modeling of Design Patterns in UML. In Proceed-
ings of the 26th International Conference on Software Engineering, 2004.

[12] A. Guennec, G. Sunye and J.M. Jezequel. Precise Modeling of Design Patterns. Proceed-
ings of UML 2000, volume 1939 of LNCS, pages 482-496. Springer Verlag, 2000.

[13] R. France, D. Kim, S. Ghosh, and E. Song. A UML-Based Pattern Specification Tech-
nique. IEEE Transactions on Software Engineering, 30(3):193-206, March 2004.

[14] D. Maplesden, J.G. Hosking and J.C. Grundy. Design Pattern Modelling and Instantiation
using DPML. In Proceedings of Tools Pacific 2002, Sydney, p. 18-21, Feb. 2002.

[15] A. Baroni, Y.G. Gueheneuc and H. Albin-Amiot. Design Patterns Formalization. Ecole
Notionale Superieure des Techniques Industrielles. Research Report 03/3/INFO, 2003.

[16] H. Albin-Amiot and Y.G. Guéhéneuc. Metamodeling Design Patterns: Application to Pat-
tern Detection and Code Synthesis. In Proceedings of the ECOOP 2001 Workshop on
Adaptative Object-Models and MetaModeling Techniques, 2001.

[17] G. Engels, J.M. Kuster and L. Groenewegen. Consistent Interaction of Software Compo-
nents. In Proceedings of Integrated Design and Process Technology, 2002.

[18] L. Briand. Y. Labiche, L. O'Sullivan, M. Sowka. Automated Impact Analysis of UML
Models. Journal of Systems and Software, vol. 79, no. 3, pp 339-352, March 2006.

[19] M. Elaasar, L. Briand and Y. Labiche. A Metamodeling Approach to Pattern Specifica-
tion and Detection. Technical Report SCE-06-08, Carleton University, March 2006.

[20] OMG. OCL for EMOF Specification v2.0. OMG Document ptc/05-06-13
[21] Omodo. EclipseUML for MDA. http://www.omondo.com
[22] OMG. UML 2.0 Infrastructure Specifications. OMG Document formal/05-07-05

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 499 – 512, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Immune System Computation and the Immunological
Homunculus

Irun R. Cohen

Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
irun.cohen@weizmann.ac.il

Two Questions

Students for the Master of Science degree at the Weizmann Institute of Science are
obliged to spend the first year of the two-year program doing three-month rotations
through three different laboratories in any of the various faculties at the Institute. In
1998, Na’aman Kam rotated through my laboratory in the Department of
Immunology where he did molecular modeling of an antibody (1). His next rotation,
he told me, would be with David Harel in the Department of Computer Science and
Applied Mathematics. When you get there, said I, tell David Harel about the immune
system and ask him two questions:

1. Is the immune system a computer?
2. If a computer scientist would set out to build a computer capable of doing

what the immune system does, what kind of computer would it have to be?

Connecting Computer and Biological Sciences

The questions (or to be more accurate, the student who transmitted them) led to a
continuing collaboration with David Harel catalyzed by joint Master’s, Doctoral and
Post-doctoral students who have worked to combine computer science and biological
systems: After Na’aman Kam came Sol Efroni (2-4), Naamah Swerdlin (5), Yaki
Setty, Hila Amir-Kroll, and Avital Sadot. Students can be a boon to inter-disciplinary
research because, being unencumbered by expertise, they fearlessly lead (or carry)
their supervisors into unfamiliar territories.

Let us return to the first of the two questions that led me to collaborate with a
computer scientist: Is the immune system a computer? Obviously, the immune
system differs from the devices made by humans called computers in its construction,
operation and use. The more interesting question is whether the immune system is a
biologic computing machine, and the most interesting questions are what it computes
and how it computes.

A Defense System

Many immunologists, probably most, would not think of the immune system in
computational terms. There are two reasons for this: the defense role assigned to the
immune system and the clonal selection theory of adaptive immunity.

500 I.R. Cohen

It has been taught for about a century, and is still taught, that the defining role of
the immune system is to defend the body against foreign invaders (6). To attack an
invader, your immune system has to detect and identify the invader as distinctly not
belonging to your body. Thus, the immune system exists, it is claimed, to discriminate
between one’s own self-molecules (ignore them) and molecules foreign to the body
(attack them). From this classical point of view, the immune system has evolved to
discriminate between self and non-self molecules in the most general sense and
concretely between one foreign molecule (antigen) and another (7, 8). (An antigen is
any molecule that can bind to the antigen receptor of a lymphocyte.) The
discriminating agent is proposed to be the individual cell, not the system of cells.

Clonal Selection

The emphasis on clones (single cells and their progeny) is anchored in the clonal
selection theory of adaptive immunity, the most widely accepted paradigm of
immunology. This theory proposes that each lymphocyte, and its clonal progeny,
either responds or does not respond to a given antigen molecule (9). Depending on the
specific structure of each lymphocyte’s unique antigen receptor, that lymphocyte will
either attack the antigen molecule, or ignore it. The classical discourse of
immunologists about such discriminations has emphasized the antigen receptors on
individual immune cells, paying little attention to computation at the level of the
system as a whole.

Maintenance

Experimental facts, however, can depart from classical teachings. It is now clear that
the immune is responsible for more than body defense; immune system cells promote,
even control, processes such as healing wounds and repairing broken bones, growing
new blood vessels, building and pruning scar tissue, disposing of dead cells, killing
and removing injured or abnormal cells, clearing effete molecules, advancing
regeneration of various body tissues, and the like. The dynamic processes initiated in
response to injury are termed inflammation; the aim of inflammation is healing (8).
The immune system is the system that commences, orchestrates and resolves
inflammation. Immune activities, including restorative inflammation and defense
against pathogens, can be generalized under the concept of body maintenance.
Indeed, the activity of the immune system is responsible for maintaining a peaceful,
ongoing host-parasite relationship with the billions of bacteria, the so-called normal
flora, that occupy niches throughout our body in the gut, skin and respiratory tract;
even our cells – nervous system cells, immune cells, and others – harbor latent viruses
quietly held in check by continuous, unimposing and covert immune maintenance.
Normal flora and latent viruses become pathogens only when the immune system has
been damaged or weakened, for example, by AIDS, cancer or immunosuppressive
medications. We may say that the immune system, by managing inflammation,
functions to maintain the body in working order in response to the daily grind of

 Immune System Computation and the Immunological Homunculus 501

existence as well as to sporadic episodes of clinical illness due to infection or injury.
The immune system acts as a maintenance system; defense is only one aspect of
maintenance (9). Actually, Eli Metchnikoff experimented with immune maintenance a
century ago, but the discovery of antibodies to infectious agents seduced immunology
away from body maintenance and into body defense (10).

(If you ask an immunologist, he or she will admit that immune cells and molecules
perform vital maintenance functions; why defense continues to be paradigmatic for
mainstream immunology is a matter for sociologists (11), not for computer scientists.)

The task of maintaining the body obviously demands immune computation.
Maintenance, including defense, requires the dynamic deployment of varied
inflammatory processes based on reliable information about cells in flux. The
inflammatory response suited to repair a broken bone, for example, is clearly different
from the inflammatory response required to hold one’s gut bacteria in check or to cure
a bout of influenza – which cells and molecules are to take part in the process, when,
where, how, in what order, in which intensity, and with what dynamics? The answers
arise from computation. The immune system mines information about the state of the
various cells of the body (Is there a problem here? What kind?), integrates the body
information into immune system information (antibody repertoires, cell repertoires,
cell differentiation and numbers, cell movements and migrations, secreted molecules,
and so forth). The modified state of the immune system, expressed locally at the site
of injury and to some extent globally, is key to the inflammatory process. Immune
inflammation, in turn, triggers a response of body cells in the area of injury leading,
usually, to healing and restoration of function. As the process evolves, the immune
system updates the inflammatory response to match the particular circumstances that
emerge on the way to healing, maintaining and/or defending the body. The general
success of physiologic inflammation in keeping us fit is highlighted by the occasional
disease caused by pathogenic inflammation – inflammation that is not properly
managed by the immune system (9) can cause autoimmune diseases such as multiple
sclerosis, degenerative diseases such as Alzheimer’s disease, or allergic diseases such
as asthma.

At the operational level, it is now clear that clones of lymphocytes do not function
in isolation, as taught by the classic clonal selection theory. The immune system
works as an integrated, whole system, and can respond potentially in many different,
and even contradictory ways when it detects an injury or an antigen. The outcome of
any immune response involves a choice between many alternative types of possible
response, and many different types of cells take part in the response choice. This
immune decision-making process uses strategies similar to those observed in nervous
system cognition (9, 12). A cognitive theory of the immune system, in contrast to the
clonal selection theory, is computational in spirit and practice.

The Immune System Computes

We can summarize thusly: If we define computation as the transformation of input
data into output data, then we should conclude that the immune system computes: the

502 I.R. Cohen

input to the immune system is the state of the body and the output of the immune
system is the healing process (the inflammatory response) that maintains a healthy
body. In this sense the immune system is a computation machine that transforms
body-state data into immune-system data that, simultaneously, feeds back on the body
to modify its state and restore body health. The difference between the
physiologically regulated inflammatory response that keeps us healthy and the
dysregulated or chronic inflammatory response that can make us ill lies in the
dynamics and fidelity of the computations performed by the immune system – the
cells and molecules that mediate inflammation, both healthy and noxious
inflammation, are exactly the same (13). In other words, the hardware of the immune
system is standard for all types of inflammation. The differences between
inflammatory responses emerge from the different possible deployments in quantities
and timing of a standard set of cells and molecules. Thus, the nature of an
inflammatory response depends on a continuous computation based on the collective
interactions between immune and body cells. These interactions are required
throughout one’s lifetime; only upon death does the immune system terminate its
computations of the state of the body. The bottom line is that the immune system is a
continuously reactive computing system (9, 14).

Living Systems Compute

I have taken the immune system as my text for discourse because I am an
immunologist; but all living systems – cells, organisms, communities – can be
characterized by the type of computations they execute to maintain life. All living
systems transform input from their immediate environment – be it other cells,
molecules, organisms, societies, physical variables such as light, sound, pressure and
temperature, nutrients, toxins, parasites, diurnal and seasonal rhythms, and so forth –
into outputs that make possible survival – or non-survival (9). All living systems
must compute to maintain themselves in the world. The way the immune system
computes provides an insight into how other living systems compute. So how does
the immune system compute?

Immune Computation

First, we should note that immune computation works without the standard features of
human computers and human computation:

No external operator or programmer;

No programs, algorithms, or software distinct from the system’s hardware – its
cells and molecules;
(Parenthetically, let me say that DNA is definitely not a program or set of
algorithms (15); DNA is information whose meaning is defined by the way
the DNA is used by the whole cell and its component molecules.)

No central processing unit (CPU);

 Immune System Computation and the Immunological Homunculus 503

No standard operating system: no two immune systems are identical, even in
identical twins (since the maintenance histories of their bodies differ, their
immune systems must differ);

 No formal, mathematical logic;

 No termination criteria; the system does not halt its operations;

 No verification procedures.

Secondly, the immune system not only lacks the standard features of human-made
computers, it expresses properties that no human computer can match:

Self-assembly: the immune system, like the rest of the individual, develops
from a single fertilized egg;

 Continuous replication: immune molecules and cells proliferate;

Continuous death: immune molecules and cells undergo death, both
physiologically (“programmed death”) and by chance, and are constantly
replaced without a hitch in function – indeed, the death of immune cells is
required for healthy immune computation (9);

Distributed in space: immune cells and molecules roam the body;

Ad hoc organization: immune cells and molecules collect and interact at
different sites throughout the body when necessary;

Immune memory is based on the evolution of the immune system in
response to accumulating experience, and not on of strings of digital
information;

A dismantled system may still operate: immune responses can be made by
cells growing in tissue culture and upon transfer of immune cells into naïve
recipient animals.

Immune Computation Defined

The computational task of he immune system, as we said, is to translate the state of
the body (locally and globally) into the state of the immune system (locally and
globally). The computational process of translation is iterative and unending; the
immune system and the body continuously respond to and update each other. That is
the essence of immune computation. How is it done?

The Data Are the Program

How can the immune system compute if, unlike a human-made computer, it has no
programmer, no program, no CPU and no termination rule? The answer is that
immune computation does not need them.

504 I.R. Cohen

No termination rule is needed because the immune system never terminates its
computation; it is continuously adjusting its state to the state of the body. The immune
system, as we said, is a concurrently reacting system (14).

The immune system computes without programmer, program or CPU because
the immune system makes no distinction between program and data or between
hardware and software; the data are the program and the hardware is the software.
Just as the infinite tape acted upon by a universal Turing machine can be
considered as both the input data and the program that dictates the computation, so
can the reciprocally responding states of the immune system and of the body be
viewed as both data and program. The data, which are cells and molecules and
their various states, are also the hardware of the immune system. The equivalence
between hardware, data and program is easy to grasp in principle; in practice, as
we shall discuss below, the details are enormously complex and pose a grand
challenge to computer science.

Immune Parallel Processing

Immune computation emerges from the parallel processing of information – parallel
processing in the extreme. Each cell in the immune system is a distinct processor;
each cell, by its thousands of receptors, collects input, and each cell, by it secretions
and behaviors, translates input into output. The immune system of a human is
composed of many millions, hundreds of millions, of individual cells, each of which
are an individual processor. The computation emerges from the integration of these
processors working in parallel; the integration occurs through networking. The
networking is organized by anatomical architecture and by cellular interactions. The
architecture of the system brings select immune cells together in discrete space and
time, and the interactions between the now adjacent cells create the integrated,
dynamic response of the system. The details are the provenance of the field of
immunology; you don’t have to know them now to grasp the principles or appreciate
the wonder.

Anatomic Networking

The cellular processors of the immune system are in a constant state of dynamic flux,
but the flow of cells is well organized by the circulatory system (blood and lymph
flows), by the variable residence of immune cells in regular lymphoid organs (lymph
nodes, spleen, bone marrow, thymus, immune cell collections associated with the gut,
the skin, the respiratory tract, and so forth), and by the ad hoc congregation of
immune cells at sites where they are needed to deal with ongoing maintenance as well
as haphazard injury, infection, and tumors (9). The position of any particular cell is
influenced by many factors, including chance and stochastics, but the dynamics of the
collective is highly organized at the population level through chemical sensing; each
immune cell expresses a variable repertoire of surface receptors that directs its
movements and its rest stations. The various cells and tissues of the body and of the

 Immune System Computation and the Immunological Homunculus 505

immune system itself produce signal molecules that call particular immune cells to
sites of interaction. This anatomical/vascular/chemical architecture ensures that the
necessary cellular processors meet and mutually interact.

Cell Diversity and Interaction Networking

Every immune cell is a processor, but they are not all the same type of processor. The
exact number of different immune cell types is a parochial matter for immunologists,
but there are at least several dozen types that differ in the inputs they receive (they
express different receptor molecules) and in the outputs they export (they secrete
different molecules and/or behave differently). The key to immune computation is the
fact that each cellular processor is strongly influenced by its neighboring cellular
processors. Immune cells not only interact with body cells and molecules, immune
cells interact with each other.

Integration by Co-respondence: Immune CPU

Each immune cell processes information about the body it patrols and, at the same
time, each immune cell processes information about how the other immune cells are
processing information about the body at or near that site. I have termed this
coordinated response of immune cells to the body co-respondence (9, 16). What is
co-respondence? Keep in mind the diversity of each immune cell: Each immune cell
expresses a particular class of receptors, and some classes of immune cells (T cells
and B cells) even express receptors unique to the individual cell (antigen receptors;
see below). Therefore, the collective of immune cells at the site of action (injury,
infection, tumor, etc.) contains classes of cells and individual cells that respond (by
their diverse receptors) to different features of the state of injury, infection, tumor, etc.
Each cell sees and responds to only a small piece of body action; no single cell sees
the whole show. Nevertheless, each cell, in responding to what it does see, produces
molecules and expresses behavior that signify its own state – its own response to what
it has seen. The essential mediator of co-respondence is the fact that each immune
cell bears receptors that collect as input part of the output of the other immune cells.
Thus, each cell sees what it sees of the body’s injury while it also sees the effect on
other immune cells of their own perceptions of the injury. In fact, there are classes of
immune cells – regulatory cells – that specialize in responding, not to the states of
body cells but directly to the states of other immune cells. Integration of the resulting
inflammatory response takes place because each cell updates its own output in co-
response to the output of its fellow cells. In other words, each immune cell
participates in the collective regulation of the inflammatory response that maintains
the organism.

Keep in mind that each of the co-responding cells continues to maintain its own
intrinsic class and individual diversity; the cells do not all do the same thing. But
whatever any of them does is strongly influenced by what the other cells see and do.
This mutual updating of individual cellular processors leads to a consensus of the

506 I.R. Cohen

immune cell collective that integrates the totality of input and output of the
different parallel processors. Co-respondence is dynamic; changes in the state of
body cells lead to an integrated change in the state of the immune cells, as the
immune cells interact with the changing states both of the body and the adjacent
immune cells.

One might say that the process of co-respondence functions as a central processing
unit – the immune CPU. The immune CPU comes into being because the immune
system is self-referential; it looks at itself looking at the body. The saving power of
self-reference is evident on many scales; a flock of birds succeeds in evading the
falcon not because every bird in the flock sees the falcon; it suffices for them each to
see what the adjacent birds are doing. Or, to laugh at the right time in the theatre, you
need not have understood the joke. Collective behavior is integrated by collective
self-reference.

Note that the body, for its part, is not merely a passive subject in co-respondence;
the body adjusts its activities in response to the adjustments of the immune cells: scar
tissue is formed or dissolved, blood vessels grow or degenerate, tissue cells express
different genes, proliferate or die, and so on and so forth on the way to healing or
containment (or to inflammatory disease, if the computation goes awry). The body,
therefore, looks at the immune system looking at the body (9). This world of
changing, reflecting mirrors may seem Cabbalistic, but such is life.

Networking Innate and Adaptive Mechanisms

Now that you have begun to grasp the complexity of immune computation, let me call
your attention to an added level of complexity: the receptors of some immune cells
are continuously created by random generation during one’s lifetime; such cells can
receive input unique to them and their descendents (the clone). These uniquely
manufactured input receivers are the famous antigen receptors of the lymphocytes –
the T cells and the B cells (9). The antigen receptors of B cells can also be secreted by
the cells as cell-free antibody molecules. The antigen receptors of B cells and T cells
are the products of new genes fashioned by these lymphocytes from raw-material
DNA inherited from the individual’s ancestors (9). The genetic endowment of the
species provides the raw-material DNA for making new receptors, but species
evolution cannot dictate any particular antigen receptor. Thus, an individual antigen
receptor is the product of an individual’s somatic development and not a molecule
predetermined by the evolution of the individual’s species.

(The creation of new genes by immune cells is just one example that supports the
conclusion that DNA cannot function as a controlling program but is only part of the
cell’s data (15). The de novo generation of antigen receptors by clones of immune
cells also explains much of the fascination of mainstream immunology with the clonal
selection paradigm.)

Along with somatically generated antigen receptors, all immune cells are quipped
with innately inherited receptors for various key molecules that serve to disclose to
the immune system the states both of body cells and of immune cells (17). These

 Immune System Computation and the Immunological Homunculus 507

innate receptors are part of the genetic endowment of the species. The interplay
between innate-receptor input (species-encoded) and clonal antigen-receptor input
(individually encoded) provides co-respondence with an unparalleled richness of
personalized information for integration and collective immune cell decision-making
(9). Indeed, the lymphocytes and their individualized receptors endow the adaptive
immune system with an evolving individual memory (9). The details are beyond our
present scope, but you can already sense the magnitude of the challenge (and the
need) for computer science to help deal with this largess of complexity.

Note that all multi-cellular organisms feature immune systems, but not all
immune systems include cells that fashion antigen receptors. In fact, most living
creatures (plants, insects, roundworms, squid, etc.) manage to populate the world
and deal with their parasites armed with immune cells that express innate receptors
only; adaptive, individualized antigen receptors and antibodies characterize only
the more complex vertebrates (9). It is conceivable that the more complex tissue
structures of vertebrates require a more complex immune system to maintain their
more complex body plan.

Scales of Computation

Biological computation takes place across multiple scales, in which systems are
embedded one within the other like Russian dolls (9, 18). A single cell is itself a
complex computing system: The cell’s many thousands of receptors
simultaneously gather a large amount of diverse input from both outside and inside
the cell. These receptors generate signals within the cell that become integrated by
intra-cellular signal-transduction networks, leading to the dynamic activation of
genes or to the silencing of genes, changes in the shape and movements of the cell,
and the evolution of the cell’s state and its output. Each immune cell is only a
single computational, reactive system within the cohorts of millions of cells
comprising the immune system. The immune system, in turn, is embedded in the
greater system we call the organism, and the organism is a single computational
element in a species, a society, a nation, a world economy, a biosphere (9). The
computational process we are exploring in the immune system repeats itself
throughout lower and higher scales of biological reality.

Immunological Homunculus

At this point, we can conclude that immune computation leads to a dynamic
representation of the body and its various states encoded within the substance of the
immune system. The immune picture of the body, as we discussed, emerges from the
fact that the state of the immune system mirrors the state of the body. Note that the
immune picture of the body does not contain the whole body; the immune
representation of the body is reduced to the body molecules that impinge on immune
receptors – both innate receptors and antigen receptors – and to the response of the
immune cells to this information. Although the amount of information contained in

508 I.R. Cohen

the limited number of body molecules perceived by the immune system is far less
than the total amount of information contained within the body itself, this limited
information would seem to be sufficiently informative for the purposes of immune
maintenance. The reduced representation of the body grasps functionally the essence
of the body’s state. How does the immune system gather and assess essential body-
state information?

Much has yet to be learned about the interplay of antigen receptors and innate
receptors in immune maintenance, but we already know that the individual’s immune
system organizes the repertoires of developing T cells and B cells around particular
body molecules (9, 19). One’s body cannot know ahead of time the exact antigen
receptors one’s lymphocytes will generate when making new genes during individual
development. Order, however, can be imposed on random events. It turns out that,
during the somatic development of new antigen receptors, the immune system selects
for survival only those T cells and B cells that receive input from particular body
molecules (self-antigens). This positive selection by self-molecules for cell survival,
together with a parallel process of negative selection for cell death, focuses the
repertoire of antigen receptors on a particular set of body molecules. In other words,
developing lymphocytes live or die depending on how they respond to representative
body molecules. It should not be surprising that some of these somatically selected
body molecules, such as stress proteins, are key players in body maintenance (17).
Evolution too has learned to focus immune attention on particularly informative
molecules; the innate receptors of different immune cells detect the concentrations of
stress proteins and other state-sensitive molecules (17).

I have termed this immune image of the body the immunological homunculus (9.
19). I adopted the term from the neurological homunculus, the functional virtual
image of the body encoded by organized sets of neurons (20). Like your brain, your
immune system maintains your body by deploying a reduced, virtual image of the
body represented in the molecular inputs and outputs of organized immune-system
cells. I originally formulated the concept of the immunological homunculus based on
the reactivity of antigen receptors of lymphocytes for selected self-antigens (9). Now,
however, I would extend the homunculus concept to include the innate receptors that
also receive input from body molecules. Some homuncular self-molecules are so
important to the immune system that immune cells of different types see these
molecules using both innate receptors and adaptive antigen receptors (17).

Three Bodies

We have not discussed here the computations made by the nervous system that
maintain the body, but in closing I would like to include the neurological homunculus
in a broader picture of the organism. In summary, one might say that each of us gets
through life manipulating three bodies: one actual full-size body and two reduced,
virtual bodies. The body we live in is the actual body; the neurological homunculus
and the immunological homunculus are the virtual bodies that help maintain the
actual body on its journey through the world (9). The actual body makes it through

 Immune System Computation and the Immunological Homunculus 509

life’s changing and often hostile environment by adjusting its neuron-based behavior
by way of the neurological homunculus and by adjusting its immune-based
inflammatory activity by way of the immunological homunculus. Know that the
immune and nervous systems influence each other’s activities, but that complex issue
is beyond the scope of the present discussion. The point here is that three-body
computation is a fact of life.

Evolutionary Programming

A universal characteristic of living systems is that they change over time: the ongoing
computational activities of the brain, the immune system and the body lead to
evolving, dynamic systems. Evolution thus plays an important role in the
development of each of the three bodies at different scales of space and time: the
evolutionary scale of the species; the developmental scale of the individual; and the
experiential scale of the individual’s life history. Evolution is central to our
understanding of life’s computational machinery (9).

I wrote above that immune computation has no external programmer. Perhaps that
statement should be revised; the evolutionary process, indeed, could be viewed as the
master programmer of immune computation, along with all the other living
computational systems that have evolved. Living systems owe their existence to
evolution. But evolution is an exceptional programmer: Human programs
characteristically precede their implementation in time; first we plan, then we do.
Evolutionary programs, in contrast, come into being only after their implementation.
Evolution is not aware of its future. We can see evolution’s program only by looking
back in time – post-implementation.

Above, I suggested that biological computation succeeds because living systems
need make no distinction between program, data, hardware and software. The
programmer of the operation, then, it is the evolutionary process itself – the process is
programmer.

The Fourth Body

Biology and computer science come together now at the beginning of the 21st Century
to create yet a fourth body. This fourth body, like the neurological and immunological
homunculi, is a reduced, but functional representation of the organism. Unlike the
neurological and immunological homunculi, this fourth body is to be built in silico.
The in silico body, to be useful, must be tailored to include the essential features of
the real-life organism, but it also must be sufficiently reduced in its complexity so that
we can understand it (4, 21). The fourth body created by the biology-computer
science alliance will serve to document, organize, represent, and model aspects of the
other three bodies – the real body and the two homunculi – in a way that will make it
possible to carry out experiments in silico supportive of new thinking, new
hypotheses and new predictions (Figure 1).

510 I.R. Cohen

Fig. 1. The four bodies. The actual body, the organism, interacts successfully with the
environment with the aid of two internal homuncular bodies – the nervous system homunculus,
which manages the organism’s behavior, and the immunological homunculus, which deals with
body maintenance and protection against invaders. The complexity of these three bodies
studied by biology requires, for understanding, an alliance with computer science to create a
fourth body, the in silico homunculus.

Fourth-Body Challenges Come in Four Sizes

The challenges of developing the in silico fourth body will engage biologists and
computer scientists productively for a long time to come. The challenges in
immunology come in four sizes:

Small: Help immunologists and others organize the masses of experimental
data into informative representations (22);

 Immune System Computation and the Immunological Homunculus 511

Medium: Simulate limited parts of essential immune interactions to make
them better understood (5);

Large: Model immune-cell and other biologic computations and make it
possible to do novel in silico experimentation (2, 3);

Extra-large: Combine the body state and the immune system state in a
detailed, comprehensive and dynamic true-to-life realistic model of body
maintenance (23).

References

1. Herkel J, Kam N, Erez N, Mimran A, Heifetz A, Eisenstein M, Rotter V, Cohen IR.
“Monoclonal antibody to a DNA-binding domain of p53 mimics charge structure of DNA:
anti-idiotypes to the anti-p53 antibody are anti-DNA.” Eur J Immunol. 2004 Dec;
34(12):3623-32.

2. Efroni S, Harel D, Cohen IR. "Toward rigorous comprehension of biological complexity:
modeling, execution, and visualization of thymic T-cell maturation." Genome Res. 2003
Nov;13(11):2485-97.

3. Efroni S, Harel D, Cohen IR. "Reactive animation: Realistic Modeling of Complex
Dynamic Systems." 2005 Computer 38:(1):38-47.

4. Efoni S, Harel D, Cohen IR. "A theory for complex systems: reactive animation." in
Multidisciplinary Approaches to Theory in Medicine. Studies in Multidisciplinarity, Vol.
3. Ray Paton and Laura McNamara (Editors). Elsevier, Amsterdam. 2005. pp 309-324.

5. Swerdlin N, Cohen IR, and Harel D. “Towards an in-silico Lymph Node: A Realistic
Approach to Modeling Dynamic Behavior of Lymphocytes.” Submitted for publication.

6. Wikipedia; http://en.wikipedia.org/wiki/Immune_system: “The immune system is the
system of specialized cells and organs that protect an organism from outside biological
influences.”

7. Efroni S, Cohen IR. "The heuristics of biologic theory: the case of self–nonself
discrimination." Cell Immunol. 2003; 223(1): 87-89.

8. Cohen IR. "Discrimination and dialogue in the immune system." Semin Immunol 2000;
12(3):215-9; 321-323.

9. Cohen IR. Tending Adam’s Garden: Evolving the Cognitive Immune Self. Academic Press,
London, UK. 2000.

10. Tauber AI. “Metchnikoff and the phagocytosis theory.” Nature Reviews 2003; 4:897-901.
11. Kuhn TS. The Structure of Scientific Revolutions, Second Edition, Enlarged. The

University of Chicago Press, Chicago, 1970.
12. Cohen IR. “The cognitive principle challenges clonal selection.” Immunol Today 1992;

13(11):441-4.
13. Cohen IR. “Kadishman’s Tree, Escher’s Angels, and the Immunological Homunculus.”

Autoimmunity: Physiology and Disease, eds. Coutinho A, Kazatchkine MD. Wiley-Liss,
Inc.1994 pp7-18.

14. Harel D and Pnueli A. “On the development of reactive systems.” Logics and Models of
Concurrent Systems, Apt KR, ed., NATO Advanced Science Institute Series, vol. F-13,
Springer-Verlag, 1985, pp. 477-498.

512 I.R. Cohen

15. Cohen IR, Atlan H. “Limits to genetic explanations impose limits on the human genome
project.” In Encyclopedia of the Human Genome, Nature Publishing Group, Macmillan,
2002.

16. Cohen IR, Hershberg U, Solomon S. “Antigen-receptor degeneracy and immunological
paradigms.” Molecular Immunology 2004; 40: 993-6.

17. Quintana FJ, Cohen IR. "Heat shock proteins as endogenous adjuvants in sterile and septic
inflammation." J Immunol. 2005 1;175(5):2777-82.

18. Cohen IR, Harel D. “Explaining a Complex Living System: Dynamics, Multi-scaling and
Emergence.” Submitted for publication.

19. Cohen IR. “The cognitive paradigm and the immunological homunculus.” Immunol Today
1992; 13(12):490-4.

20. Cohen IR. “Natural Id-Anti-Id Networks and the Immunological Homunculus,” in
Theories of Immune Networks eds. Atlan H, Cohen IR. Springer-Verlag. (Berlin),1989;
pp 6-12.

21. Cohen IR. "Informational landscapes in art, science, and evolution." Bulletin of
Mathematical Biology. 2006. [E-pub ahead of print].

22. Quintana FJ, Hagedorn PH, Elizur G, Merbl Y, Domany E, Cohen IR. "Functional
immunomics: microarray analysis of IgG autoantibody repertoires predicts the future
response of mice to induced diabetes." Proc Natl Acad Sci U S A., 2004 Oct 5;101: Suppl
2:14615-21. Epub 2004 Aug 12.

23. Harel D. “A grand challenge for computing: Full reactive modeling of a multi-cellular
animal.” Bull European Assoc Theoretical Science, no. 81, Oct. 2003, pp. 226-235.

(pdf copies of most of my publications can be down-loaded from the list of publications posted
on my website: http://www.weizmann.ac.il/immunology/ iruncohen/home.html)

Building Abstractions in Class Models: Formal
Concept Analysis in a Model-Driven Approach

Gabriela Arévalo, Jean-Rémi Falleri, Marianne Huchard, and Clémentine Nebut

LIRMM, CNRS and Université de Montpellier 2,
161, rue Ada, 34392 Montpellier cedex 5, France
{arevalo, falleri, huchard, nebut}@lirmm.fr

Abstract. Designing class models is usually an iterative process to de-
tect how to express, for a specific domain, the adequate concepts and
their relationships. During those iterations, the abstraction of concepts
and relationships is an important step. In this paper, we propose to auto-
mate this abstraction process using techniques based on Formal Concept
Analysis in a model-driven context. Using UML2.0 class diagrams as
modeling language for class models, in this proposal we show how our
model-driven approach enables parameterization, tracing and generaliza-
tion to any metamodel to express class models.

1 Introduction

In model-driven development, modeling activities have as purpose (at least par-
tially) to replace the coding tasks. Unfortunately, the model engineer does not
have all the same facilities (such as versioning and refactoring tools) as in
mostly classical coding environments. With these kinds of tools, the model-driven
paradigm could be adopted in large software companies. Specifically, within the
context of refactoring object-oriented models, in this paper we focus on au-
tomating the detection and building of class hierarchies. Designing class models
is not a trivial task. It is an iterative process to detect how to express, for a
specific domain, the adequate concepts and their relationships. During this it-
erative process, the abstraction of concepts and relationships is a crucial task.
Indeed, abstraction provides better concept structuring and more reusable arti-
facts. In this paper, we propose to automate this abstraction process using an
adaptation of Formal Concept Analysis (FCA) techniques [1] in a model-driven
context. FCA has proved to be an efficient technique to build or restructure
class hierarchies [2, 3, 4], but has not been yet applied in a model-driven ap-
proach.

The contribution of this paper is a FCA-based model-driven approach to ab-
stract concepts involved in a class model (classes, associations, attributes and
so on). Briefly, this process uses the successive application of model transfor-
mations as a main building mechanism. We use two main tools: Kermeta [5]
and UML. Using Kermeta [5] (compatible with MOF and OCL) as our meta-
modeling language, we are able to (1) give an operational semantics to every

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 513–527, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

514 G. Arévalo et al.

underlying metamodel and implement every model transformation, and (2) de-
scribe the FCA algorithms and check their performances. Using the UML as a
language, we describe class models. As a result, the transformations are defined
based on a part of the UML 2.0 metamodel. However, the specification and im-
plementation of our proposal using model transformations turns to be easily tun-
able by parameters, and applicable to other metamodels which handle adequate
concepts to detect and build abstractions. Our approach shows that formaliz-
ing FCA with model transformations gives interesting benefits, such as tracing
the different steps of the process, or the parameterization. These characteristics
are also important if we compare our contribution to the one introduced in [6].
In that approach the main limitation was that the authors consider the model
transformations as a black box, with no means of tracing or parameterizing.

The paper is structured as follows. Section 2 gives a brief overview of our
approach, recalls the main notions of FCA, and introduces the example used all
over the paper. Each main transformation is then detailed into Sections 3, 4 and
5 respectively. Section 6 discusses the benefits and limitations of this approach,
as well as related work.

2 Overview and Background

Building class models is usually not a trivial task but rather an iterative process
aiming at finding the simplest model with good properties such as, for exam-
ple, maintainability, adequate factorization and easy testing. While building a
class model, one task consists in generalizing concepts: finding regularities in
already identified concepts in order to detect new abstractions. When repre-
senting class models with UML class diagrams, several model elements can be
abstracted such as, obviously, classes, but also associations, attributes, and meth-
ods. As an example, starting from the class model shown in Fig. 1(a), the class
model of Fig. 1(b) can be obtained, where new classes have been introduced (for
example class BankClient that is an abstraction of the BasicAccountHolder
and the TeenagerClient classes), as well as new attributes (e.g. the attribute
accountList that abstracts the two attributes bAccountList and tAccount-
List). Our approach aims at automating this refactoring, i.e. at detecting and
building new abstractions in a class model, using Formal Concept Analysis
(FCA). Before going into the details, we provide in this section the minimal
notions of FCA, and then we give an overview of our approach, that will be
detailed in the next sections.

2.1 Background on FCA

FCA [1] is a mathematical technique, based on lattice theory, to discover abstrac-
tions (known as concepts) from a set of entities (formal objects) described by
attributes (formal attributes) 1. Concept specialization draws a lattice structure.
1 All over the text we use the term attributes to denote formal attributes, except in

case we must clarify the ambiguity between attributes of a class model and formal
attributes of a FCA context.

Building Abstractions in Class Models: FCA in a Model-Driven Approach 515

(a) A simple
class diagram

(b) Refactored class diagram

Fig. 1. The example of bank accounts

Basic FCA considers formal contexts K = (E, P, I) as shown in Figure 2 (left). E
is the entity set (here UML classes), P the attribute set (here UML attributes)
and I associates an entity with its attributes: (e, p) ∈ I when entity e owns
attribute p. With any entity set X ⊆ E we associate the shared attributes with
the mapping α defined by α(X) = {p ∈ P | ∀e ∈ X, (e, p) ∈ I}. Symmet-
rically, with any attribute set Y ⊆ P we associate the entities owning all the
attributes of Y . To that end, we use the mapping ω defined by ω(Y) = {e ∈
E | ∀p ∈ Y, (e, p) ∈ I}. In the example, let Y = {balance}, we have ω(Y) =
{BasicAccount, T eenagerAccount}, while for X = {BasicAccount}, α(X) =
{balance, overdraft}. A concept is a pair (X, Y) where X ⊆ E, Y ⊆ P , α(X) =
Y and ω(Y) = X . In Figure 2, {{BasicAccount, T eenagerAccount}, {balance}}
is a concept. Graphically, this concept corresponds to the vertical block in the
column balance. More generally, a concept corresponds to a block of maximal
size in the context (the blocks are found in the context modulo the order of the
columns and rows). X (resp. Y) is usually called the extent (resp. intent) of the
concept.

The specialization order between concepts corresponds to extent inclusion (or
intent containment). The concept lattice L = (C, ≤L) is the set of concepts pro-
vided with the inclusion partial order. In Figure 2, the concept {{BasicAccount},
{balance, overdraft}} specializes the concept {{BasicAccount, T eenagerAc−
count}, {balance}}.

The concept at the bottom has no interest as it represents the hypothetic set
of entities containing all attributes. The concepts at the first level correspond
to initial classes. The unique concept of the second level stems from the fac-
torization of property balance. In our example, it could generate a new UML
class factorizing balance and appearing as a superclass of BasicAccount and
TeenagerAccount (class BankAccount). The top concept gathers attributes com-
mon to all entities, in this specific case it is an empty set of attributes. This lattice
is very simple, but in general, systematic factorization in real software projects
generates too many concepts, which makes the analysis difficult to grasp. The
main advantage of using FCA for UML class diagram reconstruction is that we
obtain a sort of normal form for class models. In this normal form, redundancy is

516 G. Arévalo et al.

Concept

Concept specialization
Extent

Intent

BasicAccount,TeenagerAccount,BasicAccountHolder,TeenagerClient

BasicAccount,TeenagerAccount

balance

balance, overdraft

BasicAccount

balance, maxWithdrawal

TeenagerAccount

bAccountList

BasicAccountHolder

tAccountList

TeenagerClient

balance, overdraft, maxWithdrawal,bAccountList, tAccountList

ba
la

nc
e(

b)

ov
er

dr
af

t(
o)

m
ax

W
ith

dr
aw

al
(m

w
)

bA
cc

ou
nt

L
is

t(
bA

lis
t)

tA
cc

ou
nt

L
is

t(
tA

lis
t)

x

x

x

x

P
=

 a
ttr

ib
ut

es

E = entities

Level 0

Level 1

Level 2

Level 3

BasicAccountHolder(BAH)

TeenagerClient(TC)

TeenagerAccount(TA)

BasicAccount(BA) x

x

Fig. 2. A context K(left) and the lattice (right) describing bank accounts

eliminated (total factorization is achieved) and the specialization order between
classes exactly matches the inclusion order between property set of the classes.
Besides that, maximal factorization is obtained with minimal number of classes.

However, even in this very simple example, relevant abstractions remain undis-
covered by this naive process. Let’s see carefully at the two attributes bAccount-
List and tAccountList.Their types, respectively BasicAccountand Teenager-
Account, are evidently generalizable by a class such as BankAccount factorizing
balance. Thus, the idea is to continue the process and decide that bAccountList
and tAccountList share a common abstraction, namely list of accounts. To dis-
cover that abstraction, we need to go further into the representation of the UML
class diagram, giving the status of entities to UML properties. As a result, UML
classes and UML properties are described by characteristics including property
ownership and classes used as types for properties. In the following section we
explain how an extension to the theory of Formal Concept Analysis, named Rela-
tional Concept Analysis (RCA), allows such information to be treated.

2.2 Class Hierarchy Refactoring Using FCA in a MDE Context

Figure 3 shows an overview of our approach consisting of 3 model transforma-
tions2.

1. The first transformation, UML2Contexts, turns the original UML 2.0 class
diagram into a set of binary contexts and binary relations. It is a trans-
formation from a UML 2.0 metamodel [7] to a relational context family
metamodel.

2. The second transformation, InitialContexts2FinalLattices, aims at obtaining
a set of concept lattices of the final class diagram from the initial set of

2 All over this paper, we use an object terminology to refer to model conformance,
for example we talk about models that are instances of meta-models. It can be
seen as a terminological misuse, but since we are working with an object-oriented
language (Kermeta [5]) to define the metamodels and the model transformations,
this terminology is the most adequate one to our work.

Building Abstractions in Class Models: FCA in a Model-Driven Approach 517

Fig. 3. Overview of our approach

contexts. It is a transformation from a relational context family metamodel
to a concept lattice family metamodel.

3. The third transformation, Lattices2UML consists in translating the obtained
concept lattices into a UML 2.0 class diagram using traceability information
from the previous transformations.

Using a model-driven approach based on Formal Concept Analysis in order to
refactor models is very fruitful. First, it allows to define a simple sequence of
model transformations (in particular for the second transformation) without
using a complex algorithm. Second, the proposed approach can be applied to
classify any kind of concepts as soon as they are defined by a metamodel. Indeed,
the core of the approach is the second transformation, and adapting the approach
to another metamodel only requires to develop new transformations to replace
the first (UML2Contexts) and the third (Lattices2UML) ones. As we have said
in Section 1, every step of the approach is automated and every transformation
is implemented in Kermeta [5].

3 From UML to Formal Contexts

In this section, we detail the transformation from a UML model to formal con-
texts handled by Relational Concept Analysis.

3.1 Metamodels Involved in the Transformation

In our approach we use the small metamodel deduced from the UML 2.0 meta-
model (shown in Figure 4) to express class models. Working with such a reduced
metamodel is not restrictive, since applying work on model typing and model
type substitutability presented in [8], we can use a model conform to the whole
UML 2.0 metamodel as an entry model of our transformation. In the rest of
the paper, we will refer indifferently to the UML 2.0 metamodel or its reduced

518 G. Arévalo et al.

Fig. 4. Adaptation of a restriction of the UML metamodel

form. We focus only on classes, attributes and associations in the framework
of our example: attribute name, class Class, class Property, role type which
associates their type to properties and role ownedAttribute which associates
their attributes to classes. As a simplification, we have restricted the end of role
type to be Class rather than Type, a superclass of Class. ownedAttribute
is in fact a derived role in the original UML 2.0 metamodel and we consider
only flattened models (without inheritance relationships, just for simplification
reasons). ClassHierarchy is used as an entry point in the models, while the
derived role superclass and the role redefinedProperty are used only in the
third transformation.

Relational Concept Analysis [6] considers a family of contexts rather than a
single one, allowing to separate entities into several categories. In our example,
there are two categories: Class and Property (see the example of RCF in Fig-
ure 6). The contexts of a family include relations that link entities of one kind
to entities of another kind. Those relations come from the associations in the
underlying metamodel (here the UML 2.0 metamodel, see Fig. 4). In our exam-
ple, we deal with two relations: ownedAttribute and type. This set of contexts
together with the relations is called a Relational Context Family (RCF). The
associated metamodel is given in Figure 5. More formally, a relational context
family F is a pair (K, R) where:

– K is a set of contexts Kt = (Et, Pt, It) linking entities to attributes (Entity-
AttributeContext in Fig. 5). In our example K = {KClass, KProperty}.

– R is a set of contexts Rs expressing relations between entities coming from
different contexts of K. Rs is such that ∃ Kt1, Kt2 ∈ K, Rs ⊆ Et1 × Et2. Rs is
represented by InterEntityContext in Fig. 5. In the following, those contexts
will be denoted as relations. In our example, R = {RownedAttribute, Rtype}
where RownedAttribute ⊆ EClass × EProperty and Rtype ⊆ EProperty × EClass.

3.2 The Transformation from UML to a Family of Contexts

We here explain how a UML model is automatically transformed into a relational
context family. To illustrate this transformation, the result of its application on
the UML class diagram of Figure 1(a) is shown in Figure 6. The Relational Con-
text Family is automatically deduced from the UML 2.0 metamodel as follows
(we discuss only our restricted case but the principle is the same on the whole
UML 2.0 metamodel).

Building Abstractions in Class Models: FCA in a Model-Driven Approach 519

Fig. 5. The Relational Context Family (RCF) metamodel

KClass n
a
m

e=
”B

a
si

cA
cc

o
u
n
t”

n
a
m

e=
”T

ee
n
a
g
er

A
cc

o
u
n
t”

n
a
m

e=
"
B
a
si

cA
cc

o
u
n
tH

o
ld

er
"

n
a
m

e=
"
T
ee

n
a
g
er

C
li
en

t"

BA X

TA X

BAH X

TC X

KProperty n
a
m

e=
”b

a
la

n
ce

”

n
a
m

e=
”o

v
er

d
ra

ft
”

n
a
m

e=
”m

a
x
W

it
h
d
ra

w
a
l"

n
a
m

e=
"
b
A

cc
o
u
n
tL

is
t”

n
a
m

e=
"
tA

cc
o
u
n
tL

is
t”

bba X

bta X

o X

mw X

bAlist X

tAList X

Rtype BA TA BAH TC

bba

bta

o

mw

bAlist X

tAlist X

RownedAttribute bba bta o mw bAlist tAlist

BA X X

TA X X

BAH X

TC X

Fig. 6. The Relational Context Family obtained from the UML model of Figure 1(a)

– Selected metaclasses of the source metamodel (here: UML) give rise to
contexts: in our example, K is composed of the two contexts, KClass and
KProperty (as shown in Figure 6). Pairs composed of selected meta-attributes
of these classes and their values on the studied model are transformed into
the formal attributes in the target contexts. In our example, pairs are formed
with the meta-attribute name.

– Relations of R come from selected roles in the associations of the source meta-
model. In our example, we obtain the two relations Rtype and RownedAttribute

shown in Figure 6. Values for all the relations are deduced from a view of
the studied model as an instantiation of the UML metamodel (see the object
diagram of Figure 8).

Those two transformation rules are illustrated in Figure 7.
Part of the relevance of this transformation relies on the possibility to fine-tune

it. Choosing UML metamodel classes, attributes and associations to be encoded
in the RCF is a delicate task. Some model elements provide quite technical in-
formation, such as multiplicity or visibility, while others expose the semantics of
the domain such as names in general. For example, we do not want to generalize

520 G. Arévalo et al.

Fig. 7. Transformation from UML to context

ownedAttribute

name="overdraft"

o:Property

name="balance"

bba:Property

name="balance"

bta:PropertyownedAttribute

name="bAccountList"

bAList:Property
ownedAttribute

name="tAccountList"

tAList:Property

name="BasicAccountHolder"

BAH:Class

name="TeenagerClient"

TC:Class

type

name="TeenagerAccount"

TA:Class

ownedAttribute ownedAttribute

name="maxWithdrawal"

mw:Property
ownedAttribute

name="BasicAccount"

BA:Class
type

Fig. 8. Our class model of Fig. 1(a) as an instantiation of the simplified UML meta-
model

two classes or two associations because they are both abstract. As a result, we
do not take into account the meta-attribute isAbstract of the UML metaclass
Classifier during the generalization process.

4 Class Hierarchy Refactoring: Iterative Transformation

In this section, we describe the core transformation of our approach, named
InitialContext2FinalLattices, that aims at generating the lattice models from
the initial Relational Context Family (RCF). The metamodel for the lattices is
given in Figure 9.

This transformation (summarized in the bottom of Figure 3, and applied
on our example in Figure 10) consists in iterating on the multiple application
of two smaller transformations, context2lattice and lattice2context. Indeed, pro-
cessing a RCF involves alternative construction of lattices (one per context) and

Fig. 9. The metamodel for lattices

A family of lattices is composed of
concept lattices. The concepts of a
lattice are ordered by the special-
ization relation represented by the
association children/parents. A
concept is composed of an extent
and an intent that are two sets of
elements.

Building Abstractions in Class Models: FCA in a Model-Driven Approach 521

Fig. 10. Iterative transformation applied to the accounts example

enrichment of the relations R of the RCF by knowledge coming from lattices.
The process stops when a fix point on lattice construction is reached, namely
when no new abstraction emerges.

More precisely, we define a step of the transformation InitialContext2Final-
Lattices as a multiple application (one application per context) of the transfor-
mation context2lattice (part A of the step) followed by a multiple application
(one application per target relation) of the transformation lattice2context (part
B of the step). In the bottom of Fig. 3 and in Figure 10, a step corresponds
to a round-trip (A followed by B). The initial RCF is named RCF 1 and owns
contexts and relations also numbered 1. RCF 1 generates in step 1 (A) lattices
numbered 1 with concepts numbered 1, then those lattices generate in step 1 (B)
a new RCF numbered RCF 2 and so on. This iteration stops when no concept is
found during a step.

Part A of step i. The multiple application of the sub-transformation con-
text2lattice builds one lattice for each entity-attribute context ofRCF i. The source

522 G. Arévalo et al.

Fig. 11. Transformation rule for context2lattice

Fig. 12. Transformation rules for lattice2context

model of context2lattice is a context extended by all the relations with the same
entity set. More formally, the source model is a context Kp = (Ep, Pp, Ip) extended
by all relations Ri ∈ RCF i such that Ri ⊆ Ep × Y (Y is either an entity set Eq at
step 1, or the concept set of a lattice at step i, i > 1). The rule of this transforma-
tion is illustrated in Figure 11. For example, the Kclass context is extended by the
relation Ri

OwnedAttribute, while the KProperty context is extended by the relation
Ri

type. The transformation consists in building a lattice following classical Formal
Concept Analysis. At this step i, the target model (i.e. the lattice model) obtained
from the extended context Kp is denoted Li

p = (X i
p, ≤Li

p
) where X i

p is the set of
concepts and ≤Li

p
is the specialization order.

Part B of step i. The multiple application of the sub-transformations lat-
tice2context builds a set of relations (initial contexts – in our example KClass

and KProperty – are not modified during this transformation). During a lat-
tice2context execution, a relation Ri+1 ⊆ Ep × X i

q is generated. The princi-
ple is to replace labels of columns in initial relations by concepts. The rules
of this transformation are shown in Figure 12. Let us consider the relation
R1

j ⊆ Ep × Eq. During part B of step i, R1
j is replaced by Ri+1

j ⊆ Ep × X i
q,

with (e, Cf) ∈ Ri+1
j if (e, f) ∈ R1

j and f ∈ Extent(Cf). For example, during
part B of step 1, the labels of the columns of R1

ownedAttribute are replaced by
the concepts of the lattice L1

Property (see Figure 10). We have (BA, C1
bbabta) ∈

R2
ownedAttribute since (BA, bba) ∈ R1

ownedAttribute and bba ∈ Extent(C1
bbabta).

An interpretation is that C1
bbabta is a generalization of bba, more precisely an

abstraction of properties named "balance". Moreover, class BA owns bba, then
BA owns bba generalizations, including C1

bbabta. At the end of this transfor-
mation, each lattice is associated with a context (via traceability links) and
by construction to a class of the UML metamodel; in our example, lattices
LClass and LProperty are associated with metaclasses Class and
Property.

Building Abstractions in Class Models: FCA in a Model-Driven Approach 523

5 Effective Refactoring : Coming Back to the UML

Our last transformation, FinalLattices2UML, parses lattices and generates UML
elements. This transformation was implemented using the Kermeta language
[5]. The transformation from a set of lattices to a UML class model is specified
by three types of rules: non-relational, relational, and specialization. Figure 13
shows the rules used for the treatment of our example. At the LHS of the arrows
are the patterns of the lattices and at the RHS, two views on generated UML
static models are given: the model as an instance of the UML metamodel and
the equivalent model in the concrete UML syntax.

The non-relational rules are the following:

– Concepts of the lattice associated with metaclass M give rise to UML in-
stances of M; for example, concepts of lattice LClass are interpreted as classes
while concepts of lattice LProperty are interpreted as properties (more par-
ticularly attributes in the restricted metamodel we use). In rules R1 and R2
of Figure 13, concept Ci of the lattice LClass is transformed into a UML
class; while concept Cj of the lattice LProperty is transformed into a UML
attribute.

– Non-relational descriptors in the intension of a concept correspond to at-
tributes of metaclasses; for example name in the case of both classes and
properties. In Figure 13, the names of the class generated from the concept
Ci and of the attribute generated from the concept Cj come from values of
descriptor name in concept intensions.

The generic relational rule is as follows. When a concept Cv is the value of a
relation R in the intension of a concept C (i.e. when (C, Cv) ∈ R), then a link is

jj
ii

jj
L

Property

L
Class

L
Property

L
Property

L
Class

L
Class

L
Class

Ci
name=ii

........

name="ii"
 : Class

ii

kk

name="ii"
 : Class

name="kk"
 : Class

superclass

name=kk

........
Ck

name=ii

........
Ci

L
Property

jj

redefinedProperty

name=ll

........
Cl

name=jj

........
Cj

name="ii"
 : Property

name="ll"
 : Property

ll {redefined jj}

name="jj"

ownedAttribute

name="jj"name="ii"

 : Property

 : Class : Property

jj : kk

type

name="kk"name="jj"
 : Property : Class

Patterns in lattices
as an instance of the UML meta−model

the model written
in concrete UML syntax
the same model written

name=jjCj

name=ii
oa=Cj

Ci

Cj

name=jj
type=Ck

Cj

Ck

........

........

........

........

........

........

........

ii
R1

R2

R3

R4

R5

R6

Fig. 13. Rules for the transformation from lattices to UML

524 G. Arévalo et al.

name=TA
oA= C3

bbabta ,C 3
mw

TA

oA= C3
bbabta

BA, TA

C 4
BATA

C 4
TA

name=TC
oA= C3

bAlist−tAlist

TC

,C 3
tAlist

oA= C3
bAlist−tAlist

BAH, TC

name=BAH
oA= C3

bAlist−tAlist

BAH

,C 3
bAlist

C 4
BAHTC

C 4
BAH C 4

TC

name=BA
oA= C3

bbabta ,C 3
o

BA

C 4
BA

BA, TA, BAH, TC

name=..., oA=....

C 4
mw

C 4
tAlist

C 4
bAlist−tAlist

C 4
bAlist

name=bAlist
type=C3

BATA

bAlist
name=tAlist
type= C

TC

,C 3
BA

,CBATA
3

TA
3

type=C
bAlist, tAlist

3
BATA

name=..., type=....

bba,bta,o,mw,bAlist,tAlist

name=b
bba,bta

C 4
bbabta

C 4
o

Final class lattice

mw

name=mw

o
name=o

Final property lattice

Fig. 14. The final lattices

created between the model element corresponding to C and the model element
corresponding to Cv. The end of this link is named with the appropriate UML
name corresponding to R. As an illustration, in rule R3 of Fig. 13, the intension of
the concept Ci contains ownedAttribute = Cj (oa = Cj for short). This pattern
in the lattice LClass will be transformed into a link labelled ownedAttribute
between the class generated from Ci and the property generated from Cj . With
concrete UML syntax for class models, we obtain that class ii owns property jj.
The principle is the same for rule R4.

Specialization in the class lattice gives rise to generalization/specialization links
in the class diagram (R5 in Figure 13), and specialization in the property lattice
is interpreted as redefined constraints between attributes (R6 in Figure 13).

To illustrate this transformation, the final lattices of our example are shown
in Figure 14. As we stop at the fix point, concepts C4

x and C3
x can be consid-

ered as equivalent for any x. The refactored class diagram proposed in Figure
1(b) is obtained as follows. We first examine class lattice. Concept C4

BATA is
transformed into class BankAccount, while Concept C4

BAHTC is transformed
into class BankClient (new names are proposed by a designer after refactor-
ing; so far arbitrary names are generated by the transformations). Concepts
C4

BA, C4
TA, C4

BAH and C4
TC are respectively transformed into classes BA, TA, BAH

and TC. We can say that initial classes are re-discovered. Now let’s consider the
property lattice. Concept C4

bbabta is transformed into attribute balance, factor-
ized in class BankAccount. From concept C4

bAlist−tAlist attribute accountList
is generated. Then we recognize initial attributes in the remaining concepts.
Specialization links and redefined constraints stem from lattice partial
order.

Building Abstractions in Class Models: FCA in a Model-Driven Approach 525

6 Discussion: Advantages, Limitations, and Related Work

One of the main parameters in this approach is the discovery and choice of ap-
propriate UML elements and description of those elements to build significant
abstractions. Technical description, e.g. visibility for attributes,s is rather inad-
equate since it generates generalizations which have no semantics for the design.
Nevertheless this description has to be preserved and even sometimes general-
ized in final step. Multiplicities are a good example: they are not interesting in
the main transformation, but they should be re-injected in the last UML model
and even generalized.

One advantage is that the current specification of the approach is easily trans-
posable to a large set of UML elements (associations, parameters, operations,
etc.). We are currently working on specifying the entire process at a higher level
(M3) in the four-layered metamodeling hierarchy. This would allow to better
demonstrate that first and second transformations can be done for any other
modeling language, just by specifying which are entities, attributes and rela-
tions.

Another feature of our approach is that the technique will be useful if the de-
signer can easily fine-tune the selection of those entities, attributes and relations,
beyond traceability issues. The designer should be given the possibility to choose
the subset of UML elements he considers as relevant for a RCA application.

A last problem is determining a reasonable bound on the iteration number,
since at each iteration, abstractions are further and further from the model
elements which have triggered the generalization. Too abstract elements can be
less useful.

When specifying the metamodels and implementing the transformations, the
choice of the Kermeta language appeared as a good choice. Indeed, its com-
patibility with MOF made it possible to use a single language for the whole
implementation and its imperative syntax made the transformation implemen-
tation easy enough, whereas expressing them with a declarative syntax would
have been very difficult. FCA has been used in various software engineering
tasks, as shown in surveys like [9, 10]. Conceptual model construction has been
studied with the support of FCA, as database schema construction [11, 12], class
hierarchy construction or restructuring using class features [2, 3, 13, 14, 15, 16] or
based on feature usage [4]. Nevertheless, FCA usage has not yet been studied
in the context of Model Driven Engineering, even if several contributions were
proposed concerning model refactoring. A survey of software refactoring can be
found in [17], and a section is dedicated to model refactoring. The majority of
the contributions on refactoring addresses the code level, but the recent interest
for model-driven approaches led to several works on model refactoring, in par-
ticular UML refactoring [18]. Most of the research focuses on small and atomic
model transformations (adding a class, adding an association), except the com-
munity working on design pattern application by model refactoring (for example
[19]).

526 G. Arévalo et al.

7 Conclusion

This paper presents an approach to automatically detect and build relevant ab-
stractions in a UML class model. This method is founded on Relational Concept
Analysis, an extension of Formal Concept Analysis. It proceeds by successive
applications of model transformations, based on different metamodels (UML
2.0, context, and lattice metamodels) and implemented with the model-oriented
language Kermeta. The application of our approach results in introducing ab-
stractions for classes (with specialization links), attributes, methods and so on,
in a class model. In fact, any kind of model element can be abstracted, but
only a few of them lead to relevant abstractions. Future work will consist in
proposing to the final users the way to parameterize the application by the
metamodel elements. We are also working on defining our model transforma-
tions totally independently from the UML 2.0 metamodel, to be able to apply
it on any entry metamodel. Finally, we are starting a collaboration with natural
language experts to improve the refactored class diagram with relevant names
for the abstractions, and to resolve problems due to synonymy, homonymy and
hyperonymy.

Acknowledgements. Gabriela Arévalo gratefully acknowledges the financial
support of the Swiss National Foundation for the Project: “Advanced Object-
Oriented Reverse Engineering using Formal Concept Analysis” SNF Project No.
PBBE2-111194. We also acknowledge the useful comments from the anonymous
reviewers of this paper.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer, Berlin (1999)

2. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using
Galois lattices. In: Proc. of OOPSLA’93, Washington (DC), USA. (1993) 394–410

3. Dicky, H., Dony, C., Huchard, M., Libourel, T.: On Automatic Class Insertion
with Overloading. In: Special issue of Sigplan Notice, Proc. of OOPSLA’96. (1996)
251–267

4. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM
Transactions on Programming Languages and Systems 22(3) (2000) 540–582

5. Triskell project (IRISA): The Metamodeling Language Kermeta.
http://www.kermeta.org (2006)

6. Dao, M., Huchard, M., Hacène, M.R., Roume, C., Valtchev, P.: Improving Gen-
eralization Level in UML Models: Iterative Cross Generalization in Practice. In:
ICCS’04. Volume 3127 of Lecture Notes in Computer Science., Springer (2004)
346–360

7. OMG: UML version 2.0. http://www.omg.org/technology/documents/formal/-
uml.htm (2006)

8. Steel, J., Jézéquel, J.M.: Model typing for improving reuse in model-driven engi-
neering. In: Proceedings of MODELS/UML’2005. (2005) 84–96

Building Abstractions in Class Models: FCA in a Model-Driven Approach 527

9. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis
support for software engineering activities. In: Proc. of the First International
Conference on Formal Concept Analysis - ICFCA’03, Springer-Verlag (2003) 250–
271

10. Arévalo, G.: High-Level Views in Object-Oriented Systems using Formal Concept
Analysis. PhD thesis, Software Composition Group, University of Bern (2004)

11. Yahia, A., Lakhal, L., Cicchetti, R., Bordat, J.: iO2 - An Algorithmic Method
for Building Inheritance Graphs in Object Database Design. In: Proc. of the 15th
International Conf. on Conceptual Modeling ER’96. Volume 1157. (1996) 422–437

12. Andonnoff, E., Sallaberry, C., Zurfluh, G.: Interactive design of object oriented
databases. In: Proc. of CAISE’92. Volume 593 of LNCS., Springer-Verlag (1992)
128–146

13. Cook, W.: Interfaces and Specifications for the Smalltalk-80 Collection Classes. In
Paepcke, A., ed.: Proceedings of the 10th OOPSLA, ACM Press (1992) 1–15

14. Moore, I.: Automatic Inheritance Hierarchy Restructuring and Method Refactor-
ing. In: Proceedings of OOPSLA’96, San Jose (CA), USA. (1996) 235–250

15. Chen, J.B., Lee, S.C.: Generation and reorganization of subtype hierarchies. Jour-
nal of Object Oriented Programming 8(8) (1996) 26–35

16. Si-Said Cherfi, S., Lammari, N.: Towards and Assisted Reorganization of Is-A
Hierarchies. In: Proc. of Object-Oriented Information Systems, Springer-Verlag
(2002) 536–548

17. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2) (2004) 126–139

18. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.M.: Refactoring UML models. In:
Proc. Unified Modeling Language Conf. (2001) 134–148

19. Tokuda, L., Batory, D.: Automated software evolution via design pattern trans-
formations. In: Proc. of the Int’l Symp. on Applied Corporate Computing. (1995)

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 528 – 542, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Lifting Metamodels to Ontologies: A Step to the Semantic
Integration of Modeling Languages*

Gerti Kappel1, Elisabeth Kapsammer2, Horst Kargl1, Gerhard Kramler1,
Thomas Reiter2, Werner Retschitzegger2, Wieland Schwinger3, and Manuel Wimmer1

1 Business Informatics Group, Vienna University of Technology
{gerti, kargl, kramler, wimmer}@big.tuwien.ac.at

2 Information Systems Group, Johannes Kepler University Linz
{ek, tr, wr}@ifs.uni-linz.ac.at

3 Dept. of Telecooperation, Johannes Kepler University Linz
wieland.schwinger@jku.at

Abstract. The use of different modeling languages in software development
makes their integration a must. Most existing integration approaches are meta-
model-based with these metamodels representing both an abstract syntax of the
corresponding modeling language and also a data structure for storing models.
This implementation specific focus, however, does not make explicit certain
language concepts, which can complicate integration tasks. Hence, we propose
a process which semi-automatically lifts metamodels into ontologies by making
implicit concepts in the metamodel explicit in the ontology. Thus, a shift of fo-
cus from the implementation of a certain modeling language towards the ex-
plicit reification of the concepts covered by this language is made. This allows
matching on a solely conceptual level, which helps to achieve better results in
terms of mappings that can in turn be a basis for deriving implementation spe-
cific transformation code.

1 Introduction

The shift from code-centric to model-centric software development places models as
first-class entities in model-driven development processes. A rich variety of modeling
languages and tools are available supporting development tasks in certain domains.
Consequently, the exchange of models among different modeling tools and thus the
integration of the respective modeling languages becomes an important prerequisite
for effective software development processes. Due to a lack of interoperability, how-
ever, it is often difficult to use tools in combination, thus the potential of model-
driven software development cannot be fully exploited.

In collaboration with the Austrian Ministry of Defense and based on experiences
gained in various integration scenarios, e.g., [17], [27] we are currently realizing a
system called ModelCVS which aims at enabling tool integration through transparent
transformation of models between metamodels representing different tools’ modeling

* This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation

and Technology (BMVIT) and FFG under grant FIT-IT-810806.

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 529

languages. However, metamodels typically serve as an abstract syntax of a modeling
language and often also as an object-oriented data structure in which models are
stored. A direct integration of different modeling languages by their metamodels is
not a trivial task, and often leads to handcrafted solutions created in an error-prone
process usually inducing high maintenance overheads. The integration can be made
easier, when concentrating on the concepts described by a language, only, without
needing to worry how the language implements these concepts. Geared towards cap-
turing knowledge in a certain domain, ontologies can help to explicitly represent the
concepts of a language, and thus concentrate the integration task on a solely concep-
tual level. Furthermore, ontologies enable tasks like logical reasoning and instance
classification that can yield additional benefits for semantic integration.

In accordance with the general understanding of the term, we refer to the process of
preparing a modeling language for such integration on a conceptual level as lifting,
which allows to transform a metamodel (abstract syntax) into an ontology represent-
ing the concepts covered by the modeling language. The lifting procedure, however,
cannot be carried out straight-forwardly, as it has to achieve a shift in focus, which
stems from the fact that although metamodeling and ontology engineering share a
common ground in conceptual modeling in general, since ontologies and metamodels
are designed with different goals in mind. Metamodels prove to be more implementa-
tion-oriented as they often bear design decisions that allow producing sound, object-
oriented implementations. Due to this, language concepts can be hidden in a meta-
model, which during the lifting procedure have to be made explicit in an ontology.

The main contribution of this paper is to lay out the lifting procedure and discuss
issues that have to be considered when lifting metamodels to ontologies. Hence, the
remainder of this paper is structured as follows: The next section gives a conceptual
overview of that lifting process and establishes a big picture in context with the
ModelCVS project. Section 3 elaborates on the part of lifting, which deals with a
formalism change concerning the way metamodels and ontologies are expressed.
Section 4 introduces a pattern catalogue that helps to explicate hidden language con-
cepts and exemplifies its usage. Based on these examples, Section 5 finally shows
how the lifting procedure can benefit typical integration tasks such as schema match-
ing. Section 7 discusses related work and Section 8 concludes with an outlook on
future work.

2 Lifting at a Glance

A key focus of the ModelCVS project is to provide a framework for semi-automatic
generation of transformation programs. Although ModelCVS’ architecture allows for
an immediate integration of metamodels via specific metamodel integration operators
called bridgings, of which executable model transformations can be derived, our ap-
proach sees a conceptual integration of metamodels via the creation of ontologies
from these metamodels as a prerequisite to enhance automation support. As the lifting
process results in ontologies explicitly representing the concepts of a modeling lan-
guage, we propose that matching these ontologies can provide better results in terms
of more concise mappings, which in turn can be derived into bridgings between the
original metamodels. The left-hand side of Fig. 1 shows the general setup of

530 G. Kappel et al.

ModelCVS’ architecture, whereas details on the right hand side especially depicting
the lifting process will be given throughout the following paragraphs. For more details
on ModelCVS we refer the reader to [15],[16].

When trying to lift metamodels to ontologies, the gap between the implementation
oriented focus of metamodels and the knowledge representation focus of ontologies
has to be closed. Our approach separates the lifting process into three steps. The first
step, which we refer to as conversion, involves a change of formalism (1), meaning
that a metamodel is transformed into an ontology. The transformation is given by a
mapping between the model engineering space and the ontology engineering space,
namely a mapping from a meta-metamodel (M3) to an ontology metamodel (M2).
This transformation results in what we call a pseudo-ontology, as the structure of this
ontology basically resembles the original metamodel and typically does not represent
concepts as explicitly as ontology engineering principles would advise to do.

Hence, in the subsequent refactoring step (2), patterns (cf. Section 4) are applied to
the resulting pseudo-ontology, which aim at unfolding typically hidden concepts in
metamodels that should better be represented as explicit concepts in an ontology. As
to be shown in Section 4, however, the decision of which pattern should be applied
where, incorporates new semantics into the model, that were previously retained as
part of the user’s expert knowledge about the modeling language, only.

Class

Class ClassClass

Class
Class Class

Class

Class ClassClass

Class
Class Class

Class

Class ClassClass

Class
Class Class

Class

Class ClassClass

Class
Class Class

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Class

align

mapping

T
ra

ce
s

mapping

mapping

bridging

de
riv

e

O
n

to
lo

g
y

co
nf

or
m

s

de
riv

e

M
et

am
o

d
el

mapping

de
riv

e

lif
tin

g

lif
tin

g
co

nf
or

m
s

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Classbridging

B

M
o

de
l

Class

Class ClassClass

Class
Class Class

Class

Class ClassClass

Class
Class Class

trans-
forming

M
etam

od
el

Pseudo
Ontology

Refactored
Ontology

Enriched
Ontology

1conversion

2refactoring

3enrichm
ent

add

Additional
Axioms

Shared Ontology O
n

to
log

y

T
ra

ce
s

1conversion

2refactoring

3enrichm
ent

add

Additional
Axioms

align

Fig. 1. ModelCVS conceptual architecture

Finally, ontologies being extracted from modeling languages’ metamodels can be
enriched with axioms (3) and put in relation with other ontologies representing a
shared vocabulary about a certain domain. Thus, semantic enrichment refers to incor-
porating additional information into ontologies for integration purposes.

Instead of the original metamodels, the resulting ontologies are the driving artifacts
that enable semantic integration of the associated modeling languages. In our case,
we use matching techniques that yield a mapping between two ontologies, which is
then the basis for a code generation process that derives model transformations de-
fined between the original metamodels. To be able to relate ontology mappings back

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 531

to the original metamodels, traces linking metamodel and ontology constructs have to
be established during the lifting process and maintained during the refactoring step.
However, a discussion about how our prototype implements the tracing and the code
generation mechanisms is considered out of scope of this paper, as is the not obliga-
tory enrichment step. But nevertheless these concepts are necessary to be mentioned
to understand the lifting as a part of a meaningful whole and as a prerequisite
for operationalizing the discovered mappings in the form of executable model
transformations.

3 Conversion - Mapping Ecore to ODM

This section elaborates on a mapping from the model engineering to the ontology
engineering technical space. In particular, we focus on describing a mapping from
Ecore, which is the meta-metamodel used in the Eclipse Modeling Framework (EMF)
[6] that also constitutes ModelCVS’ technological backbone, to the Ontology Defini-
tion Metamodel (ODM) [12]. This mapping constitutes the basis of our approach, as a
transformation based on this mapping is the first step in our lifting process. However,
this mapping is not yet introducing any kind of additional semantics into the meta-
model and solely provides a change of formalism.

It is relatively easy to find semantic correspondences between Ecore and ODM, as
both formalisms are per se fit for conceptual modeling. The goals aimed at when
using either formalism, however, differ. Often the intentions behind using a certain
construct overlap, like when defining a common superclass for two subclasses to
denote that all instances of the subclasses are also instances of the superclass. This
intention would be equally satisfied in both Ecore and ODM. However, in Ecore this
also means that instances of either subclass can be instance of one of the subclasses
only, whereas individuals in OWL could actually belong to both subclasses. These
subtle semantic nuances have to be considered when committing to a mapping. Al-
though the definition of a standard metamodel for ontology definition is still under
way, the given mapping description refers to terminology used in the latest submis-
sion to the ODM RFP [12]. This mapping is similar to a mapping proposition of UML
to OWL [12] that can give more details on the partly mechanic part of mapping mod-
eling language constructs to ontology constructs. The next two sub-sections focus on
the caveats and the implementation of the Ecore to ODM mapping.

3.1 Caveats of Mapping

The conversion step can ignore meta-classes that do not represent concepts of the
modeling language and therefore, should not be lifted into an ontology. In case of
Ecore, the classes EFactory, EOperations, and EParameter fall into this category,
because these meta-constructs are necessary when generating Java implementation
classes from the metamodel, only. Furthermore, the Ecore metamodel contains ab-
stract classes which do not directly take part in the mapping as well, but their concrete
subclasses do. Table 1 gives an overview of relevant meta-classes and a catalogue
with the appropriate mapping definitions towards the ODM metamodel.

532 G. Kappel et al.

Table 1. Overview of ECore to ODM mapping

Ecore Concept OWL Concept Possible Caveat
EFactory, EOperation,
EParameter

no mapping ignored

EPackage OWLOntology inverse hierarchy
EClass OWLClass non-exclusive instanceof
EAttribute OWLDatatypeProperty name clash / qualification
EReference OWLObjectProperty name clash / qualification
EDatatype RDFSDatatype straight-forward
EEnum & EENumLiteral OWLDataRange & RDFSLiteral straight-forward
EAnnotation RDFSLiteral straight-forward

EPackage to OWLOntology. Being both containers for other metaclasses, at first
sight, the constructs EPackage and OWLOntology seem like a straight-forward match.
EPackage can be compared to traditional packaging mechanisms as known from other
modeling languages, that serves to group and compartmentalize modeling elements or
source code. Similarly an OWLOntology consists of a collection of ontology elements
like cases, properties, axioms and the like. However, the notion of the eSubpackage
reference cannot be straight-forwardly translated into the OWLimports property: An
ontology imports another ontology to make use of all the concepts defined in the
import. Thus, the top-level ontology has visibility over all imported concepts. Pack-
ages on the other hand can have sub-packages, which have visibility over all their
super-packages. Hence, the semantics of subPackage and OWLimports oppose each
other. Furthermore, the grouping of model elements in sub-packages lies in the hands
of the modeler and basically allows for arbitrary grouping to keep large models com-
prehensible. The import structure of ontologies is rather based on enabling efficient
reasoning and creating a meaningful whole out of certain domain concepts.

Albeit the above mentioned issue, from a pragmatic point of view in most cases it
is reasonable to map packages directly to ontologies. Analogously, matching the sub-
Package reference to the OWLimports property generally works well, too, when being
aware that the result can be an ‘up-side down’ class hierarchy.

EClass to OWLClass. The metaclasses EClass and OWLClass map straight-
forwardly to an OWLClass, except that an OWLClass is used to cluster a number of
individuals, which can also be individuals of other classes, whereas instances of an
EClass cannot. This issue, however, does not pose a problem when mapping from
Ecore to ODM or when instances are not considered in the lifting process.

The lifting of abstract classes or interfaces depends on whether they represent se-
mantics of the modeling language which should also be represented as concepts in the
ontology, or whether they serve solely implementation specific purposes. Our ap-
proach follows a strategy of lifting all abstract classes and interfaces, as unnecessarily
lifted concepts can usually be better filtered out in the subsequent refactoring step.

EAttribute to OWLDatatypeProperty. In difference to an EAttribute belonging
to an EClass, a property in an ontology is independent of a certain OWLClass. Thus,
the straight-forward mapping from EAttribute to OWLDatatypeProperty can be

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 533

problematic, because seemingly identical attributes in different classes can carry dif-
ferent semantics, which would then be unified in a single ontology property.

To avoid this problem, one can incorporate additional information like the owning
class’ name into the name of the newly created property. In doing so, no information
gets lost and redundant properties can be joined in the subsequent refactoring step.

EReference to OWLObjectProperty. Similar to the previous mapping description,
an EReference can be mapped onto an OWLObjectProperty when the mentioned
name clash problem is dealt with accordingly and the associated loss of semantics is
avoided. Apart from this, the eReferenceType reference can be mapped to the
RDFSDomain reference and the eContainingClass reference to the RDFSRange refer-
ence. Just like the former mapping, cardinalities do not pose a problem, as the Ecore
references in question have single cardinality which maps straight onto the multiple
cardinality of the equivalent references in the ODM.

Summarizing the above remarks, it has to be pointed out that the most important
point when defining a mapping from metamodels to ontologies is, that one has to be
aware how the resulting ontology is affected by the mapping decisions taken.

3.2 Creating Transformation Code for the Conversion Step

The executable model transformation code facilitating the conversion step is created
automatically from a mapping specification between Ecore and ODM by means of a
code generator. The mapping specification is created with the Atlas Model Weaver
(AMW) [7] which is an Eclipse plug-in allowing to weave links between metamodels
or models, resulting in a so called weaving model.

In the context of ModelCVS, which builds on AMW’s weaving mechanism, we
more specifically refer to a weaving model as a bridging, as it constitutes a mapping
specification according to a certain integration scenario [15] of which executable
model transformation code can be generated. For defining the mapping between
Ecore and ODM we employ a bridging language that denotes a translation of Ecore
models into ODM models in a semantics preserving way. This language is defined
analogously to a weaving metamodel for the AMW. The semantics of this bridging
language is then operationally specified in an adjacent code generator, which pro-
duces ATL [14] code that finally performs the actual conversion step.

Since the detailed semantics of the bridging language and the inner works of the
code generation mechanism are out of scope of this paper and we remain with a gen-
eral description of the method. In the following paragraphs a rationale for implement-
ing a custom version of the ODM is given.

Since the standardization process for the ODM is still ongoing, a decision was
made to implement a custom version of ODM. Our decision was driven by the fact
that on one hand, a working import/export functionality of XML serialized OWL
ontologies was needed, and on the other hand, an implementation providing an API
which reasoners and other ontological software infrastructure could readily use was
required. Hence, a decision was made to employ the Jena [13] framework that could
satisfy both requirements. To be able to bridge the Jena APIs into the model engineer-
ing technical space, an Ecore model was reengineered from the Jena API that in the
following is referred to as the Jena ODM. Wrapping the Jena ODM directly onto the

534 G. Kappel et al.

structure of the underlying API has the advantage, that the writing of an adapter pro-
gram calling the Jena API to instantiate a Java in-memory model from a Jena ODM
model and vice versa boils down to a trivial task. Nevertheless, once a standard is
finalized, the described approach can be modified with reasonable effort by defining a
transformation from the adopted ODM to the Jena ODM. In MDA terminology, this
approach could be compared to a PIM to PSM transformation introducing a new layer
of abstraction that helps to keep the adapter program free of transformation logic. For
reasons of brevity, we will not further elaborate on implementation details of the
conversion step. The output of this first step is a pseudo-ontology, which is the input
for the refactoring step whose associated patterns will be focused on next.

4 Refactoring Patterns for Pseudo-ontologies

The aim of metamodeling lies primarily in defining modeling languages in an object-
oriented manner leading to efficient repository implementations. This means that in a
metamodel not necessarily all modeling concepts are represented as first-class citi-
zens. Instead, the concepts are frequently hidden in attributes or in association ends.
We call this phenomenon concept hiding. Consequently, also pseudo-ontologies, i.e.,
the output of the previous conversion step, also lack the explicit representation of
modeling concepts. In order to overcome this problem, we propose refactoring as a
second step in the lifting process, which semi-automatically generates an additional
and semantically enriched view of the conversion step’s output.

As an example for concept hiding in metamodels consider Fig. 2. In the upper part
it shows a simplified version of the UML metamodel kernel which is defined in the
UML Infrastructure [19], represented as a pseudo-ontology. As we see in Fig. 2 the
pseudo-ontology covers twelve modeling concepts but uses only four classes. Hence,
most of the modeling concepts are implicitly defined, only.

To tackle the concept hiding problem, we propose certain refactoring patterns for
identifying where possible hiding places for concepts in metamodels are and also how
these structures can be rearranged to explicit knowledge representations. The refactor-
ing patterns given in the following subsections are classified into four categories. The
description of each pattern is based on [11] and consists of pattern name, problem
description, solution mechanism, and finally, of an example based on the UML ker-
nel. The kernel is shown in the upper part of Fig. 2 as a pseudo-ontology (before ap-
plying the patterns) and in the lower part of Fig. 2 as a refactored ontology (after
applying the patterns). The numbers in the figure identify where a certain pattern can
be applied and how that structure will be refactored, respectively.

4.1 Patterns for Reification of Concepts

a) Association Class Introduction: A modeling concept might not be directly repre-
sented by object properties but rather hidden within an association. In particular, it
might be represented by the combination of both properties representing the context
in which these object properties occur.

Refactoring: A new class is introduced in the ontology similar to an association class
in UML to explicitly describe the hidden concept. Since there is no language

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 535

construct for association classes in OWL, the association is split up into two parts
which are linked by the introduced class. The cardinalities of the new association ends
are fixed to one and the previously existing association ends remain unchanged.

Example: The combination of the roles of the recursive relationship of Class, subclass
and superclass, occurs in the context generalization.

NamedElement

name : String

C

P
D
P
D

Class

isAbstract : Boolean

C

subclass *
*

superclass
P
D
P
D

Property

aggregation : Kind
lower : Integer
upper : Interger

P
D
P
D

P
D
P
D

P
D
P
D

C
owningClass

*

0..1

AssociationC AssociationC

0..10..1 association

2..*

ownedEnd
*

owning-
Association

Class

name : String

C

P
D
P
D

AbstractClassC

ConcreteClassC

GeneralizationC

1

*

1

*

Property

name : String

C

P
D
P
D

CompositionP.C

SharedCompositionP.C

NonCompositionP.C

{disjoint}

AttributeCNonAttributeC

{disjoint}

C

P
D
P
D

RoleC

NonRoleC

Multiplicity

upper : Integer
lower : Integer

C

P
D
P
D

association

memberEnd

1

2..*
{disjoint}

ownedEnd

*

1
owning-

Association

0..1

owning-
Class

ownedAttribute
*

a

d1

e

f

bAssociation

name : String

memberEnd

ownedAttribute

{xor} d2

P
D
P
D

f

Re
fa

ct
or

ed
O

nt
ol

og
y

Ps
eu

do
-O

nt
ol

og
y

C

Kind

none
shared
composite

P
D
P
D

P
D
P
D

P
D
P
D

E

subClasssuperClass

P
D
P
D 1

{disjoint}

NavigableRole

Attribute
Role

NonNavigableRole

NonAttribute
Role

IntrinsicAttribute

Attribute
NonRole

C

C

C

C

C

C

g

U U U

c

c

Fig. 2. Part of the UML kernel as pseudo-ontology and as refactored-ontology

b) Concept Elicitation from Properties: In metamodels it is often sufficient to im-
plement modeling concepts as attributes of primitive data types, because the primary
aim is to be able to represent models as data in repositories. This approach is in con-
tradiction with ontology engineering which focuses on knowledge representation and
not on how concepts are representable as data.

Refactoring: Datatype properties which actually represent concepts are extracted into
separate classes. These classes are connected by an object property to the source class
and the cardinality of that object property is set to the cardinality of the original
datatype property. The introduced classes are extended by a datatype property for
covering the value of the original datatype property.

Example: The properties Property.lower and Property.upper represent the concept
Multiplicity which is used for defining cardinality constraints on a Property.

536 G. Kappel et al.

4.2 Patterns for Elimination of Abstract Concepts

c) Abstract Class Elimination: In metamodeling, generalization and abstract classes
are used as a means to gain smart object-oriented language definitions. However, this
benefit is traded against additional indirection layers and it is well-known that the use
of inheritance does not solely entail advantages. Furthermore, in metamodels, the use
of abstract classes which do not represent modeling concepts is quite common. In
such cases generalization is applied for implementation inheritance and not for spe-
cialization inheritance. However, one consequence of this procedure is a fragmenta-
tion of knowledge about the concrete modeling concepts.

Refactoring: In order to defragment the knowledge of modeling constructs, the
datatype properties and object properties of abstract classes are moved downwards to
their concrete subclasses. This refactoring pattern yields multiple definitions of prop-
erties and might be seen as an anti-pattern of object-oriented modeling practice. How-
ever, the properties can be redefined with more expressive names (e.g. hyponyms) in
their subclasses.

Example: The property NamedElement.name is used for class name, attribute name,
association name and role name.

4.3 Patterns for Explicit Specialization of Concepts

d) Datatype Property Elimination: In metamodeling it is convenient to represent
similar modeling concepts with a single class and use attribute values to identify the
particular concept represented by an instance of that class. This metamodeling prac-
tice keeps the number of classes in metamodels low by hiding multiple concepts in a
single class. These concepts are equal in terms of owned attributes and associations
but differ in their intended semantic meaning. For this purpose, attributes of arbitrary
data types can be utilized but in particular two widespread refinement patterns are
through booleans and enumerations.

d1) Refactoring for Boolean Elimination: Concepts hidden in boolean attribute are
unfolded by introducing two new subclasses of the class owning the boolean, and
defining the subclasses as disjoint due to the duality of the boolean data type range.
The subclasses might be named in an x and non-x manner but descriptive names
should be introduced into the ontology by the user.

Example: Class.isAbstract is either true or false, representing an abstract or a concrete
class, respectively.

d2) Refactoring for Enumeration Elimination: Implicit concepts hidden in an enu-
meration of literals are unfolded by introducing a separate class for each literal. The
introduced classes are subclasses of the class owning the attribute of type enumeration
and are defined as disjoint, if the cardinality of the datatype property is one, or over-
lapping if the cardinality is not restricted.

Examples: Property.aggregation is either none, shared, or composite, representing a
nonCompositionProperty, a sharedCompositionProperty or a CompositionProperty.

e) Zero-or-one Object Property Differentiation: In a metamodel the reification of a
concept is often determined by the occurrence of a certain relationship on the instance

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 537

layer. In such cases, the association end in the metamodel has a multiplicity of zero-
or-one which implicitly contains a concept refinement.

Refactoring: Two subclasses of the class owning the object property with cardinality
of zero-or-one are introduced. The subclass which represents the concept that realizes
the relationship on the instance layer receives the object property from its superclass
while the other subclass does not receive the object property under consideration.
Furthermore, the object property of the original class is deleted and the cardinality of
the shifted object property is restricted to exactly one.

Example: Property.association has a multiplicity of zero-or-one, distinguishing be-
tween a role and a nonRole, respectively.

f) Xor-Association Differentiation: Xor-constraints between n associations (we call
such associations xor-associations) with association ends of multiplicity zero-or-one
restrict models such that only one of the n possible links is allowed to occur on the
instance layer. This pattern can be used to refine concepts with n sub-concepts in a
similar way like enumeration attributes are used to distinguish between n sub-
concepts. Thus, xor-associations bind a lot of implicit semantics, namely n mutually
excluding sub-concepts which should be explicitly expressed in ontologies.

Refactoring: This pattern is resolvable similar to the enumeration pattern by introduc-
ing n new subclasses, but in addition the subclasses are responsible for taking care of
the xor-constraint. This means each class receives one out of the n object properties,
thus each subclass represents exactly one sub-concept. Hence, the cardinality of each
object property is fixed from zero-to-one to exactly one.

Example: Property.owningAssociation and Property.owingClass are both object prop-
erties with cardinality zero-or-one. At the instance layer it is determined if an instance
of the class Property is representing an attribute (contained by a class) or a nonAt-
tribute (contained by an association).

4.4 Patterns for Exploring Combinations of Refactored Concepts

Refactorings that introduce additional subclasses, i.e., patterns from category Spe-
cialization of Concepts, must always adopt a class from the original ontology as start-
ing point since the basic assumption is that different concept specializations are inde-
pendent of each other. Hence, in the case of multiple refactorings of one particular
class, subclasses introduced by different refactorings are overlapping. In Fig. 2 this is
denoted using a separate generalization set for each refactoring. However, this ap-
proach requires an additional refactoring pattern for discovering possible relationships
between combinations of sub-concepts.

g) Concept Recombination: In order to identify concepts which are hidden in the
ontology as mentioned above, the user has to extend the ontology by complex classes
which describe the concepts resulting from possible sub-concept combinations.

Refactoring: User interactions are required for identifying the concepts behind the
combination of concepts by evaluating the combinations in a matrix where the dimen-
sions of the matrix are the overlapping generalization sets in consideration.

Example: When studying the textual descriptions of the semantics of UML one finds
out that some relationships between the different kinds of properties define additional

538 G. Kappel et al.

concepts which are not explicitly represented in the ontology. In particular, the
evaluation of role/nonRole and attribute/nonAttribute combinations leads to the addi-
tional intersection classes depicted in the lower part of Fig. 2.

Summarizing, the result of the refactoring step, an ontology which facilitates an
implementation neutral view of the metamodel, is characterized as follows:

 Only datatype properties which represent semantics of the real world domain (on-
tological properties) are contained, e.g. Class.className, Multiplicity.upper. This
means no datatype properties for the reification of modeling constructs (linguistic
properties) are part of the refactored ontology.

 Most object properties have cardinalities different from zero-or-one, such that no
concepts are hidden in object properties.

 Excessive use of classes and is-a relations turns the ontology into a taxonomy.

5 Evaluation of Matching Potential

This section discusses the effects of the refactoring step as defined in the previous
section on ontology matching, which is an important task in semantic integration. In
particular, we first point out problems in matching pseudo-ontologies that negatively
affect matching quality. Subsequently we show how the application of our refactoring
patterns can alleviate matching problems and improve mapping quality.

CardinalityCardinality

max:EString

min:EString

IS_A_RelationIS_A_Relation

EntityEntity

name:EString [1..1]

RoleRole

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

1

0..1

* has_general_Entity *

1 general

has_specific_Entity

*

1

refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C C

C
EntityEntity

name:EString [1..1]

RoleRole

name:EString

CardinalityCardinality

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

*

0..1

general_Entity

*

specific_Entity

*

1

refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C

C

max:EString

min:EString

a

Refactored OntologyPseudo-Ontology

CardinalityCardinality

max:EString

min:EString

CardinalityCardinality

max:EString

min:EString

IS_A_RelationIS_A_RelationIS_A_RelationIS_A_Relation

EntityEntity

name:EString [1..1]

EntityEntity

name:EString [1..1]

RoleRole

name:EString

RoleRole

name:EString

RelationshipRelationship

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

AttributeAttribute

name:EString [1..1]

1

0..1

* has_general_Entity *

1 general

has_specific_Entity

*

1

refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C C

C
EntityEntity

name:EString [1..1]

RoleRole

name:EString

CardinalityCardinality

RelationshipRelationship

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

AttributeAttribute

name:EString [1..1]

*

0..1

general_Entity

*

specific_Entity

*

1

refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C

C

max:EString

min:EString

a

Refactored OntologyPseudo-Ontology

Fig. 3. ER pseudo-ontology (left) and refactored ontology (right)

In our example we are using pseudo-ontologies and refactored ontologies originat-
ing from ER and UML metamodels, respectively. The UML ontologies have already
been introduced in the previous section, the ER ontologies are depicted in Fig. 3. The
ontologies are mapped with COMA++ [2], which allows matching OWL ontologies
and produces mappings which represent suggested semantic correspondences. A map-
ping consists of triples of source element, target element, and a specific confidence
rate ranging from zero to one. It is configurable, by associating weights with certain
matching rules that can be modified to fit the user’s preferences. Hence, the use of
COMA++ is naturally a semi-automatic task involving tweaking of the matching
algorithm and manual editing of the proposed mapping.

In the following we discuss four general problem classes that can be identified
when defining mappings between pseudo-ontologies, and how they become obsolete
by applying refactoring. The manifestation of the mapping problems in the UML to

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 539

ClassClass
ConcreteClassConcreteClass
AbstractClassAbstractClass
ownedAttributeownedAttribute : Attribute: Attribute
classNameclassName : String: String

MultiplicityMultiplicity
lowerlower : integer: integer
upperupper : integer: integer

PropertyProperty
RoleRole

roleNameroleName : : stringstring
associationassociation : Association: Association

NonRoleNonRole
IntrinsicAttributeIntrinsicAttribute

intrinsicAttributeNameintrinsicAttributeName : : stringstring
NavigableRoleNavigableRole
NonNavigableRoleNonNavigableRole
AssociationAssociation

associationNameassociationName : : stringstring
memberEndmemberEnd : : RoleRole
ownedEndownedEnd : : NonAttributeNonAttribute

EntityEntity
namename : : stringstring
has_general_Entityhas_general_Entity : IS_A: IS_A……
has_specific_Entityhas_specific_Entity: IS_A: IS_A……
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelationshipRelationship
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

IS_A_RelationIS_A_Relation

ER.owlUML.owl

Attribute

RoleRole

IntrinsicAttribute

2

3

1

1

2

2

2

Refactored Ontologies

_Attribute

_Role
_Attribute_name:String

_Role_name : String

NamedElementNamedElement
namename : : stringstring
ClassClass

isAbstractisAbstract : : BooleanBoolean
ownedAttributeownedAttribute : : PropertyProperty
subClasssubClass : : ClassClass
superClasssuperClass : : ClassClass

AssociationAssociation
memberEndmemberEnd : : PropertyProperty
ownedEndownedEnd : : PropertyProperty

PropertyProperty
upperupper : integer: integer
lowerlower : integer: integer
associationassociation : Association: Association
owningAssociationowningAssociation : : AssoAsso……
owningClassowningClass : : ClassClass
aggregationaggregation

_Role

EntityEntity
namename : : stringstring
general_Entitygeneral_Entity : : EntityEntity
specific_Entityspecific_Entity: : EntityEntity
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelatioRelatio……
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

3

Pseudo-Ontologies

ClassClass
ConcreteClassConcreteClass
AbstractClassAbstractClass
ownedAttributeownedAttribute : Attribute: Attribute
classNameclassName : String: String

MultiplicityMultiplicity
lowerlower : integer: integer
upperupper : integer: integer

PropertyProperty
RoleRole

roleNameroleName : : stringstring
associationassociation : Association: Association

NonRoleNonRole
IntrinsicAttributeIntrinsicAttribute

intrinsicAttributeNameintrinsicAttributeName : : stringstring
NavigableRoleNavigableRole
NonNavigableRoleNonNavigableRole
AssociationAssociation

associationNameassociationName : : stringstring
memberEndmemberEnd : : RoleRole
ownedEndownedEnd : : NonAttributeNonAttribute

EntityEntity
namename : : stringstring
has_general_Entityhas_general_Entity : IS_A: IS_A……
has_specific_Entityhas_specific_Entity: IS_A: IS_A……
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelationshipRelationship
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

IS_A_RelationIS_A_Relation

ER.owlUML.owl

Attribute

RoleRole

IntrinsicAttribute

2

3

1

1

2

2

2

Refactored Ontologies

_Attribute

_Role
_Attribute_name:String

_Role_name : String

NamedElementNamedElement
namename : : stringstring
ClassClass

isAbstractisAbstract : : BooleanBoolean
ownedAttributeownedAttribute : : PropertyProperty
subClasssubClass : : ClassClass
superClasssuperClass : : ClassClass

AssociationAssociation
memberEndmemberEnd : : PropertyProperty
ownedEndownedEnd : : PropertyProperty

PropertyProperty
upperupper : integer: integer
lowerlower : integer: integer
associationassociation : Association: Association
owningAssociationowningAssociation : : AssoAsso……
owningClassowningClass : : ClassClass
aggregationaggregation

_Role

EntityEntity
namename : : stringstring
general_Entitygeneral_Entity : : EntityEntity
specific_Entityspecific_Entity: : EntityEntity
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelatioRelatio……
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

3

Pseudo-Ontologies

_Attribute

_Role
_Attribute_name:String

_Role_name : String

NamedElementNamedElement
namename : : stringstring
ClassClass

isAbstractisAbstract : : BooleanBoolean
ownedAttributeownedAttribute : : PropertyProperty
subClasssubClass : : ClassClass
superClasssuperClass : : ClassClass

AssociationAssociation
memberEndmemberEnd : : PropertyProperty
ownedEndownedEnd : : PropertyProperty

PropertyProperty
upperupper : integer: integer
lowerlower : integer: integer
associationassociation : Association: Association
owningAssociationowningAssociation : : AssoAsso……
owningClassowningClass : : ClassClass
aggregationaggregation

_Role

EntityEntity
namename : : stringstring
general_Entitygeneral_Entity : : EntityEntity
specific_Entityspecific_Entity: : EntityEntity
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelatioRelatio……
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

3

Pseudo-Ontologies

Fig. 4. COMA++ mapping between pseudo-ontologies and refactored ontologies

ER mapping and their solutions using refactored ontologies are shown in Fig. 4. The
numbers in that figure refer to the following list of problems:

(1) Ambiguous Concept Mappings: This problem originates from classes in a
pseudo-ontology that represent multiple concepts. The example illustrated in Fig. 4
(left) is the mapping from Property in UML to Role and Attribute in ER. This ambi-
guity arises because the UML pseudo-ontology defines a general concept (Property)
without explicitly stating the sub-concepts which in contrast are represented as ex-
plicit concepts in the ER pseudo-ontology. This kind of problem is solved by the pat-
terns from the Specialization and the Combination categories, which introduce the
hidden concepts as subclasses and complex classes, respectively, thus avoiding am-
biguous mappings. In Fig. 4 (right) one can see that the classes introduced from class
Property allow semantically unambiguous mappings for roles, and attributes in the
sense of UML IntrinsicAttribute.

(2) Ambiguous Property Mappings: The use of abstract classes in a metamodel is
a design decision. Hence, when mapping properties that are defined in abstract
classes, they may be fragmented over different inheritance layers. This problem is
depicted in Fig. 4 (left) by mapping the datatype property NamedElement.name to
multiple targets. After applying patterns from the Elimination category, the inheri-
tance layers become flattened and the properties are shifted to the subclasses of the
abstract classes, thus enabling unambiguous one-to-one mappings. E.g., in Fig. 4
(right) the datatype property name of the class NamedElement is flatted into the sub-
classes which lead to unambiguous mappings for the datatype property name.

(3) No Counterparts: Pseudo-ontologies might differ in their granularity of model-
ing concept definitions, although the same modeling concepts are useable by the
modeler. Consequently, some mappings cannot be expressed, because explicit con-
cepts of some pseudo-ontology are missing as explicit concept representations in the
other. In our mapping example shown in Fig. 4 (left) no corresponding concept in the
UML pseudo-ontology exists for the Cardinality concept of the ER pseudo-ontology.

540 G. Kappel et al.

Patterns from the Reification category tackle this problem by the reification of hidden
concepts, allowing to define mappings that were not possible before the refactoring
step. Concerning the missing counterpart for the Cardinality concept, after applying
the patterns it is possible to map the Cardinality concept to the introduced Multiplicity
concept as shown in Fig. 4 (right).

(4) Linguistic-to-Ontology Property Mappings: Concerning invalid mappings,
one source of defect is mapping linguistic properties to ontological properties. For
instance, in our example shown in Fig. 4 (left) Class.isAbstract which represents a
linguistic property was automatically mapped by COMA++ to Entity.name which
represents an ontological property. Patterns from the Specialization category trans-
form linguistic properties to concepts, thus tackling this problem, because only onto-
logical properties remain in the refactored ontology. In Fig. 4 (right) one can see that
no mappings between linguistic and ontological properties are possible.

When considering the effect of the refactoring step on the mapping process, one can
see a higher potential for manually fine-tuning the mapping due to the finer granular-
ity of a refactored ontology. The improvement in mapping potential, however, comes
at the cost of performing the refactoring step and of dealing with a higher number of
classes. The alternative would be to use a more sophisticated mapping language to
describe unambiguous mappings. In contrast, our approach of using refactoring pat-
terns offers a way to solve the discussed mapping problems through simple semantic
correspondences, only. Consequently, the overall complexity of the mapping process
is decreased due to its splitting into a refactoring part, which brings the pseudo-
ontologies to a common granularity and a mapping part, which relies on simple equal-
ity mappings that can be generated semi-automatically.

6 Related Work

Our work is to a good deal influenced by efforts which try to close the gap between
the model engineering technical space and the ontology engineering technical space.
Among these are, e.g. Bezivin et al. [3] who argue for a unified M3 infrastructure and
Atkinson [1] who showed that there are plenty of similarities between the two techni-
cal spaces and that differences are mostly community-based or of historic nature.
Naturally, an M3 unified infrastructure could possibly ease the proposed lifting pro-
cedure. Concrete efforts aiming to provide an adequate bridge encompass [8], specify-
ing a mapping from UML to DAML-OIL, and most prominently the submissions to
the OMG’s ODM RFP [12] also suggesting a mapping from UML to OWL. Although
these efforts influenced the mapping proposed in our conversion step, our focus is not
on making a rich language like UML fit for ontology modeling, but on extracting
meaningful ontologies from metamodels defining modeling languages.

Many other efforts aiming at semantic integration of data also use a procedure that
lifts metadata to ontologies. These efforts use XML Schemata [26],[5],[10],[24]
which are mapped to RDFS or to OWL [9], respectively. [20] carries out an additional
normalization step after lifting, but focuses on ameliorating lexical and simple struc-
tural heterogeneities, only. All of these approaches are not immediately reusable in
our metamodel-centric context, however, and none of the above approaches relies on

 Lifting Metamodels to Ontologies: A Step to the Semantic Integration 541

refactoring patterns that would allow to make hidden concepts explicit. As an exam-
ple, [22] lifts XML schemata and states that the resulting ontologies “will be ad-hoc”.
Our refactoring approach of pseudo-ontologies tries to deal with this problem. Fur-
thermore, the refactored OWL ontologies can be matched without the need for a com-
plex mapping or query language, which addresses the problem identified in [18] that
calls for an OWL query language. There is few related work in terms of refactoring
ontologies that were created from an underlying metadata representation aiming at a
shift in focus as we do. [21] tries to find implicit semantics through linguistic and
structural analysis in labels of hierarchical structures on the Web, but seems not ap-
plicable to find hidden concepts in modeling languages, nor does it provide means
like to reify these. An interesting approach to ontology refactoring is discussed in [4],
which, as opposed to our approach, has the goal of pruning an ontology and deriving a
schema thereof, that is then refactored towards an implementation oriented focus.

[25] identifies variability, which is the ability to express semantically equal con-
cepts differently, as the reason for different conceptual models being able to meet the
same requirements. Our work can be seen as addressing the problems of heterogenei-
ties introduced due to variability, as the refactoring step can help to make concepts
explicit in a uniform way, even though they are initially hidden in different ways.

7 Conclusion

In this paper we have introduced the lifting procedure, which allows to create ontolo-
gies from metamodels representing modeling languages. The application of refactor-
ing patterns on the resulting ontologies can make originally hidden concepts explicit
and thus improve automation support for semantic integration tasks. Although it is not
foreseeable that such tasks will ever be fully automated, we believe that support for
the at least semi-automatic integration of modeling tools via their modeling languages
is feasible. It is easy to see, that such tool integration tasks require proper tool support
and methods guiding the integration process themselves.

Lifting metamodels to ontologies is only one important step in realizing the
ModelCVS project. Future work will focus on defining specific domain ontologies
that can be relied on in the enrichment step to further enhance ontology matching, as
well as enhancing the tracing and the code generation mechanisms to automatically
derive model transformation programs from higher-level integration specifications.

References

1. Atkinson C.: On the Unification of MDA and Web-based Knowledge Representa-
tion Technologies. 1st International Workshop on the Model-Driven Semantic Web (2004)

2. Aumueller, D.; Do, H., Massmann, S.; Rahm, E.: Schema and ontology matching with
COMA++. SIGMOD Conference, June, (2005)

3. Bézivin J. et. al.: An M3-Neutral infrastructure for bridging model engineering and ontol-
ogy engineering. In: Proc. of the First International Conference on Interoperability of En-
terprise Software and Applications. Springer, p. 159-171. (2005)

4. Conesa J.: Ontology-Driven Information Systems: Pruning and Refactoring of Ontologies.
Doctoral Syposium of 7th Int. Conf. on the Unified Modeling Language, Lisbonl, (2004)

542 G. Kappel et al.

5. Cruz I. F., Xiao Huiyong, Hsu Feihong.: An Ontology-Based Framework for XML Seman-
tic Integration. Int. Database Engineering and Applications Symposium, 217-226 (2004)

6. Eclipse Tools Project: Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
7. Didonet Del Fabro M., Bézivin J., Jouault F., Breton E., Gueltas G.: AMW: a generic mo-

del weaver. Proc. of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles, (2005)
8. Falkovych K., Sabou M., Stuckenschmidt H.: UML for the Semantic Web: Transforma-

tion-Based Approaches. Knowledge Transformation for the Semantic Web. IOS Press,
(2003)

9. Ferdinand M. et al.: Lifting XML Schema to OWL, 4th Int. Conf. on Web Engineering
(ICWE), Munich, Germany, July, (2004)

10. Fodor O., Dell'Erba M., Ricci F., Spada A., Werthner H.: Conceptual normalisation of
XML data for interoperability in tourism. Proc. of the Workshop on Knowledge Transfor-
mation for the Semantic Web, Lyon, France, July, (2002)

11. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley Professional, (1997)

12. IBM, Sandpiper Software: Fourth Revised Submission to the OMG RFP ad/2003-03-40,
www.omg.org/docs/ad/05-09-08.pdf

13. Jena 2 Ontology API, http://jena.sourceforge.net/ontology/
14. Jouault F., Kurtev I.: Transforming Models with ATL: Proceedings of the Model Trans-

formations in Practice Workshop at MoDELS, Montego Bay, Jamaica (2005)
15. Kappel et. al.: On Models and Ontologies - A Layered Approach for Model-based Tool In-

tegration. Modellierung 2006, Innsbruck, March (2006)
16. Kappel et. al.: Towards A Semantic Infrastructure Supporting Model-based Tool Integra-

tion. 1st Int. Workshop on Global integrated Model Management, Shanghai, May, (2006)
17. Kappel G., Kapsammer E., Retschitzegger W.: Integrating XML and Relational Database

Systems, in WWW Journal, Kluwer Academic Publishers, June, (2003).
18. Lehti P., Fankhauser P.: XML Data Integration with OWL: Experiences and Challenges.

Symposium on Applications and the Internet, p. 160, (2004)
19. OMG: UML 2.0 Infrastructure Final Adopted Specification, formal/05-07-05, (2005)
20. Maedche A., Motik B., Silva N., Volz R.: MAFRA - An Ontology Mapping Framework in

the Semantic Web. ECAI Workshop on Knowledge Transformation, Lyon, France, (2002)
21. Magnini B., Serafini L., Speranza M.: Making explicit the Semantics Hidden in Schema

Models. Proc. of the Workshop on Human Language Technology for the Semantic Web
and Web Services, ISWC, Florida, October, (2003)

22. Moran M., Mocan A.: Towards Translating between XML and WSML. 2nd WSMO Im-
plementation Workshop (WIW), Innsbruck, Austria, June (2005)

23. Noy N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD Re-
cord, Special Issue on Semantic Integration, 33 (4), December, (2004)

24. Roser S.: Ontology-based Model Transformation. Doctoral Symposium of the 8th Int. Con-
ference on Model Driven Engineering Languages and Systems, Jamaica, October, (2005)

25. Verelst J., Du Bois B., Demeyer S.: Using Refactoring Techniques to Exploit Variability in
Conceptual Modeling. ERCIM-ESF Workshop, Challenges in Software Evolution, (2005)

26. Volz et al.: OntoLIFT. IST Proj. 2001-33052 WonderWeb, Del. 11, (2003)
27. Wimmer M., Kramler G.: Bridging Grammarware and Modelware, in Proc. of Satellite

Events at the MoDELS 2005 Conference, Montego Bay, Jamaica, October, (2005)

Incremental Model Synchronization
with Triple Graph Grammars�

Holger Giese and Robert Wagner

Software Engineering Group,
Department of Computer Science

University of Paderborn,
Warburger Str. 100,

D-33098 Paderborn, Germany
{hg, wagner}@upb.de

Abstract. The advent of model-driven software development has put
model transformations into focus. In practice, model transformations are
expected to be applicable in different stages of a development process
and help to consistently propagate changes between the different in-
volved models which we refer to as model synchronization. However,
most approaches do not fully support the requirements for model syn-
chronization today and focus only on classical one-way batch-oriented
transformations. In this paper, we present our approach for an incremen-
tal model transformation which supports model synchronization. Our
approach employs the visual, formal, and bidirectional transformation
technique of triple graph grammars. Using this declarative specification
formalism, we focus on the efficient execution of the transformation rules
and present our approach to achieve an incremental model transforma-
tion for synchronization purposes. We present an evaluation of our ap-
proach and demonstrate that due to the speedup for the incremental
processing in the average case even larger models can be tackled.

1 Introduction

Model-Driven Development (MDD) and the Model-Driven Architecture (MDA)
[1] approach in particular have put models and model transformations into focus.
The core idea is to move the development focus from programming languages
code to models and to generate the implementation from these models automat-
ically. The aim is to increase the development productivity and quality of the
software system under development.

However, the modeling of large and complex software systems incorporates
many informal and semi-formal notations describing the system under con-
struction at different levels of abstraction and from different, partly overlapping
view points. The usage of different levels of abstraction and the separation of
� This work was developed in the course of the Special Research Initiative 614 –

Self-optimizing Concepts and Structures in Mechanical Engineering – University of
Paderborn, and was published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 543–557, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

544 H. Giese and R. Wagner

concerns on the one hand reduce the complexity of the overall specification, but
on the other hand the increasing number of used models very often leads to a
wide range of inconsistencies [2].

A possible way to face this problem is to use model transformation technology
where a source model is transformed into a target model by applying a set of
transformation rules. This ensures that the overlapping parts and mappings
between these models are captured by the transformation itself. Unfortunately,
the development of a software system is a quite iterative process with frequent
modifications to the involved models. Therefore, frequent model synchronization
steps are required.

Due to the size of complex models, model transformation approaches which
require recomputing the transformation even though only a small fraction of the
model has been modified do not scale very well. Additionally, retransforming a
model each time the model evolves is not practical since refinements in more
detailed target models are lost when applying a transformation from scratch. To
keep the overall specification consistent after an initial model transformation,
changes of one model have to be propagated in a non-destructive manner to
the interrelated model by means of model synchronization. In the programming
language domain, modular compilation and even incremental compilation and
binding have been introduced to cope with large projects. The same problems
have to be managed in the case of MDD and MDA.

We believe that sufficient tool support for incremental model synchroniza-
tion by means of incremental model transformations with update propagation
is a crucial prerequisite for the successful and effective application of the model-
driven engineering paradigm in many cases. However, most model transforma-
tion approaches do not fully support such requirement today and focus only on
classical one-way batch-oriented transformations [3].

In this paper, we present our approach for the incremental model synchroniza-
tion which employs the visual, formal, and bidirectional transformation tech-
nique of triple graph grammars [4]. We will outline how this declarative specifi-
cation formalism can be employed to achieve an efficient, incremental execution
of the transformation rules by exploiting the known dependencies between the
transformation rules.

The remainder of this paper is organized as follows. In Section 2 we first
introduce a model transformation example from the area of flexible manufactur-
ing systems which is then used to give a brief and informal introduction to the
concepts of triple graph grammars. In Section 3 we explain our strategy for an
efficient and incremental application of triple graph grammar rules. The evalua-
tion results follow in Section 4. Related work and its limitations concerning the
requirements for model synchronization are discussed in Section 5. The paper
closes with some final conclusions and an outlook on future work in Section 6.

2 Model Transformation Approach

In this section, we first introduce a simple example which exemplifies the need
for model synchronization from the area of flexible production systems. It serves

Incremental Model Synchronization with Triple Graph Grammars 545

then as a running example for explaining the used model transformation tech-
nique of triple graph grammars and its extensions for incremental model trans-
formations.

2.1 The Example

In the Isileit project [5], we explored the possibilities of modern languages con-
cerning their usefulness for the specification of flexible and autonomous produc-
tion control systems. For the specification of the control software, we combined
subsets of the Specification and Description Language (SDL) [6] and the Unified
Modeling Language (UML) [7] to an executable graphical language [5]. For this
purpose, a SDL block diagram is used to specify the overall static communica-
tion structure where processes and blocks are connected by channels and signal
routes. This block diagram is transformed to an initial UML class diagram which
can be refined and extended to an executable specification. In Fig. 1, a simple
block diagram and the class diagram which results from a correct transformation
are presented.

ProductionSystem

 Station Robot

Interlock

Stopper

Controlc1

<<block>>
Station

<<system>>
ProductionSystem

 <<block>>
Interlock

 <<block>>
Stopper

<<block>>
Control

<<block>>
Robot

c1

Model
Transformation

Fig. 1. Application example

Basically, systems, blocks, and processes of a block diagram are transformed
to classes with corresponding stereotypes. For example, the block Station is rep-
resented by the class Station with a stereotype �block�, the system Produc-
tionSystem as a class with the stereotype �system�. The hierarchical structure
of a block diagram is expressed by composition relations between the respective
classes in the class diagram. The channels and signal routes of the block dia-
gram are mapped to associations between the derived classes. In addition, each
signal received by a process in the block diagram is mapped to a method of the
corresponding class in the class diagram (not shown in this example).

In order to support an iterative development process without any restrictions
on the order of design steps, we allow the engineer to move freely between the
block and class diagram to refine and adapt both models towards the final de-
sign. In this scenario, we have to ensure that the overlapping parts and mappings
between the interrelated models stay consistent to each other. Moreover, we do
not want to override existing structures since both models can contain manual
modifications and refinements which should be preserved if possible. For this
model synchronization we use bidirectional and incremental model transforma-
tions based on triple graph grammars.

546 H. Giese and R. Wagner

2.2 Triple Graph Grammars

From the previous example, it is clear that we need bidirectional model transfor-
mations. In order to support bidirectional model transformations, we use triple
graph grammars. In this section, we cannot discuss triple graph grammars in
full detail. Rather, we will explain the basic concepts by the help of our example
and refer to [4] for a formal definition.

In order to explain the specification technique of triple graph grammars for
model transformation, we have to take a closer look at the metamodels of the
block and class diagram as well as at an additional correspondence metamodel
needed for triple graph grammars. A metamodel defines the abstract syntax and
static semantics of a modeling language. In Fig. 2, the metamodels of the block
diagram, the class diagram, and the correspondence metamodel are shown.

 target

 + adornment
 Role

 correspondencesource

BlockDiagram

Connection

Process

 SystemBlock

+ name : String
Element

elements

0..*

0..1

0..*

children

source
target

+ name : String
 ModelElement

 ClassDiagram

 Association

 Class

 Stereotype Object

 CorrNode

CorrAxiom

 CorrSystem

 CorrBlock CorrProcess

 Connectable
0..*

0..*

0..*
 roles

0..1

0..1

0..1

 sources targets
0..* 0..*

 elements
0..*

0..1

0..1 0..1

0..1 0..1
source target

 stereotypes
0..*

0..*

0..*

succ

CorrConnection

CorrConnectable

+ cardString : String
Cardinality

0..1

0..1
card

Block

Fig. 2. Simplified metamodels of the source, correspondence, and target model

In the simplified metamodel for block diagrams, a BlockDiagram contains dif-
ferent Elements. An Element is either a Connectable element or a Connection
between Connectable elements. A Connectable element is either a Process or a
Block. A Block is a container for other Blocks and Processes. A SystemBlock
is a special Block and acts as a root container for other Blocks. The simplified
metamodel for class diagrams defines Classes, Associations and Stereotypes. An
Association is connected to a Class by a source and target Role that has a Cardi-
nality. A Stereotype can be attached to any ModelElement in the ClassDiagram.

For the specification of a triple graph grammar, we need an additional cor-
respondence metamodel. It is shown in the middle of Fig. 2. The metamodel
defines the mapping between a source and a target metamodel by the classes
CorrNode and Object and its associations sources and targets. Since all classes
inherit implicitly from the Object class (not shown here), the correspondence
model stores the traceability information needed to preserve the consistency be-
tween two models. In addition, the class CorrNode has a self-association succ

Incremental Model Synchronization with Triple Graph Grammars 547

which connects the correspondence nodes with their successor correspondence
nodes. This extra link is used by our transformation algorithm.

The two described classes and their associations are essential for our transfor-
mation algorithm. However, further correspondence nodes and refined associa-
tions can be added. In our example, we have added six additional correspondence
nodes, including the correspondence node CorrBlock used in our example rule
(cf. Figure 3). The additional correspondence classes increase the performance
of our transformation algorithm since for a given correspondence node type only
those rules have to be checked that have the same correspondence node type on
their left-hand side.

Given this three metamodels, a triple graph grammar for our example model
transformation can be specified. A triple graph grammar specification is a declar-
ative definition of a bidirectional model transformation. In Fig. 3, a triple graph
grammar rule in the Fujaba-notation is shown. Note that the vertical dashed
lines are not part of the rule - they are only shown for a better understanding
of the following rule description.

<<create>>parent : Block parentCorr :
CorrBlock

{ block.name == clazz.name }

<<create>>

<<create>> <<create>>

<<create>> <<create>>

<<create>>

<<create>>
card

sources

targetssources

<<create>>

targets
 name := clazz.name

block : Block

diagram : ClassDiagram

blockCorr :
CorrBlock

adornment == COMPOSITION
adornment := COMPOSITION

sourceRole : Role

adornment == NONE
adornment := NONE

targetRole : Role

cardString == „0..1"
cardString := „0..1"

targetCard : Cardinality

cardString == „0..1"
cardString := „0..1"

sourceCard : Cardinality

elements

elements
<<create>>

card

target

source

roles

<<create>>

roles
<<create>>

<<create>>

<<create>>

<<create>>

compositeAssoc :
Association

parentClazz
: Class

<<create>>
elements

<<create>>
targets

<<create>>

<<create>>
targets

<<create>>
targets

<<create>>

 name := block.name
clazz : Class

name == „block“
name := „block“

st : Stereotype
<<create>>

<<create>>
targets

<<create>>
targets

<<create>>
elements

<<create>>
stereotypes

source correspondence target

Fig. 3. A triple graph grammar rule mapping blocks to classes

The rule specifies a consistent correspondence mapping between the objects of
the source and target model. In particular, the presented rule defines a mapping
between a block and a corresponding class. The objects of the block diagram are
drawn on the left and the objects of the class diagram are drawn on the right.
They are marked with the �left� and �right� stereotypes respectively. The
correspondence objects in the middle of the rule are tagged with the �map�
stereotype.

548 H. Giese and R. Wagner

The rule is separated into a triple of productions (source production, cor-
respondence production, and target production), where each production is re-
garded as a context-sensitive graph grammar rule. A graph grammar rule consists
of a left-hand side and a right-hand side. All objects which are not marked with
the �create� stereotype belong to the left-hand side and to the right-hand
side; the objects which are tagged with the �create� stereotype occur on the
right-hand side only. In fact, these tags make up a production in Fujaba’s graph
grammar notation.

The production on the left shows the generation of a new sub block and linking
it to an existing parent block. The production on the right shows the addition of a
new class and stereotype and its linking to the class diagram. Moreover, to reflect
the containment of the sub block, a composition association is created between
the classes representing the parent block and the sub block. For this purpose,
the rule contains additional objects representing the roles and cardinalities of the
association. The correspondence production shows the relations between a block
and a class and an additional constraint {block.name == clazz.name} specifies
that the block and the class have to be named uniquely.

Up to this point, the assignments and constraints to the object attributes have
not been considered yet. Since triple graph grammars can be executed in both
directions, the attribute constraints help to identify the objects to be matched,
whereas the attribute assignments are applied only to created objects. How-
ever, since the computations of the attribute values may be more complicated
than in our simple example, the assignments cannot be always derived from the
constraints and have to be specified explicitly.

A graph grammar rule is applied by substituting the left-hand side with the
right-hand side if the pattern of the left-hand side can be matched to a graph, i.e., if
the left-hand side is matched all objects tagged with the �create� stereotype will
be created. Hence, our example rule, in combination with additional rules covering
other diagram elements, can generate a set of blocks along with the corresponding
classes and associations in a class diagram. Though the transformation will not be
executed this way, conceptually, we can assume that whenever a block is added to
the block diagram, a corresponding class with an appropriate association will be
generated in the class diagram. This way, the triple graph grammar rules define a
transformation between block diagrams and class diagrams.

The correspondence production in the middle of the rule enables a clear dis-
tinction between the source and target model and holds additional traceability
information. This information can be used to realize bidirectional and incre-
mental model transformations that helps to propagate changes between related
models. To ensure a unique transformation we require that the set of rules is
unambiguous. The complete specification of the triple graph grammar for model
transformation between block and class diagrams comprises ten rules.

3 Incremental Model Transformations

While triple graph grammars are in theory a natural choice for the realization
of bidirectional model transformation, in practice the required graph pattern

Incremental Model Synchronization with Triple Graph Grammars 549

matching is quite complex and can lead to serious performance problems if no
additional information to guide the graph pattern matching is available. Since
this is the most crucial part of our model transformation approach, we show in
the following a practicable and efficient solution to this problem. This is achieved
by an incremental transformation approach based on an analysis of dependencies
between the transformation rules. However, before we attempt to overcome the
limitations of the classical batch-oriented transformation approach, we identify
the nature of the transformation problem in its incremental form.

3.1 Terminology

Given two sets of possible models M1 and M2, a unidirectional model trans-
formation is a total function trans : M1 → M2 where trans can be directly
computed.

Given a model M1 ∈ M1, its transformation M2 = trans(M1), and an ar-
bitrary modification mod1 : M1 → M1, an incremental model transformation
would allow to derive a modification mod2 : M2 → M2 such that it holds:
trans(mod1(M1)) = mod2(M2).

Assuming that the required information about the mapping between M1 and
M2 is encoded into a mapping mapM1,M2

,1 we then require that functions incmod

and incmap exists which can be directly computed such that

mod2 = incmod(mod1, M1, M2, mapM1,M2
) and

mapM ′
1,M ′

2
= incmap(mod1, M1, M2, mapM1,M2

).

If the required effort is in O(| mod1 |) and thus proportional to the size of the
modification mod1 denoted by | mod1 | rather than the size of the model |M1|,
we name this a fully incremental solution. It is to be noted, that this optimal
case that mod2 only depends on mod1 and not on M1, M2, and mapM1,M2

is
usually not given. Instead, at least a small fraction of M1 and M2 has usually
to be taken into account. To make an incremental processing advantageously,
the effort to determine mod2 and compute mod2(M2) should be much less then
compute trans(mod1(M1)) in the average case. We thus call a solution effectively
incremental if the speedup results in a reasonable decoupling from the model size
(e.g., logarithmic effect only).

If we look at the opposite direction of the transformation, it is to be noted
that the codomain M∗

2 = {M2|∃M1 ∈ M1 : trans(M1) = M2} of trans is not
necessarily equal to M2. Therefore, a related bidirectional model transformation
where also trans−1 can be directly computed might not be able to relate to each
model of M2 a model in M1 using trans−1.

Possible reason for this asymmetry can be, for example, that the models in M2
are more detailed and can thus describe structures or behavior which cannot be
represented in M1. E.g., an assembled program might very well contain a whole

1 If no such mapping information is required, we can simply consider an empty
mapM1,M2

.

550 H. Giese and R. Wagner

bunch of unstructured goto statements, while a good programming language
does explicitly exclude them and supports only well-structured loop constructs.

Another problem is that trans−1 is not necessarily a function. If, for ex-
ample, two models M1 ∈ M1 and M ′

1 ∈ M1 with M1 �= M ′
1 exist with

trans(M1) = trans(M ′
1), we cannot define a unique result for trans−1 for

trans(M1). Examples for this case are several high level program constructs
which may result in the same assembler code. E.g., a while and for loop could
result in exactly the same assembler representation.

If we assume that trans is an injection, we could conclude that trans−1 must
be a function and we name this a bijective bidirectional model transformation for
M1 and M∗

2. Otherwise, we have a surjective bidirectional model transformation
for M1 and M∗

2 and trans−1 is a function from M∗
2 → ℘(M1) to encode that

there might be several valid backward transformations.
For the bidirectional incremental case, we in addition have for a given model

M1 ∈ M1, its transformation M2 = trans(M1), and an arbitrary modification
mod2 : M2 → M2, that an incremental model transformation would allow
to derive a modification mod1 : M1 → M1 such that it holds: mod1(M1) ∈
trans−1(mod2(M2)).

We have to further restrict this condition if M∗
2 �= M2 such that it must

only hold for mod2(M2) ∈ M∗
2. Otherwise we have to conclude that mod2 is an

inconsistent modification. E.g., the assembler code has been modified in such
a manner that a code structure resulted which could not be the result of any
program of the given programming language.

For the addressed incremental model synchronization, we require a bijective,
bidirectional, incremental model transformation. In a case where for the resulting
target model M ′

2 holds that M ′
2 ∈ M2 \ M∗

2, we have to reject the modification
in order to keep both models consistent.

3.2 Incremental Transformations and Updates

In order to make our algorithm incremental we have to take the correspondence
model into account. Due to the construction principle of the triple graph gram-
mar rules, each rule has at least one correspondence node in its pre-condition
which thus is a necessary prerequisite for the application of the rule and there-
fore, the rule can be only applied if the required correspondence node was already
created in a previous transformation step. Additionally, each successful applica-
tion of a rule results in at least one additional correspondence node. Therefore,
in our transformation algorithm, a directed edge from the required correspon-
dence node to the created one is inserted each time a rule is successfully applied.
We include this link in our derived graph rewriting rules. The additional link be-
tween the correspondence nodes reflects the dependency and the execution order
of the rules which will be used to extend our algorithm to the incremental case.

This observation can be exploited by using the created correspondence node as
a starting point for a local searching strategy which reduces the costs for the re-
quired pattern matching. With the additional links between the correspondence
nodes the correspondence model can be interpreted as a directed acyclic graph

Incremental Model Synchronization with Triple Graph Grammars 551

(DAG). It is a graph rather than a tree due to the fact that rules are allowed to
have more than one correspondence node as a precondition. The graph is acyclic
since in a rule application, we never connect already existing correspondence
nodes by a link.

The incremental transformation and update algorithm traverses the corre-
spondence nodes of the DAG using breadth-first search. For each correspondence
node the algorithm checks whether an inconsistent situation has occurred. This
is done by retrieving the rule which has been applied in the transformation pro-
cess to create the correspondence node and checking whether it still matches to
the current situation.

In the case that the structure of the applied rule still holds and only an
additional attribute constraint evaluates to false, it is sufficient to propagate the
attribute value change in the current transformation direction.

When the rule cannot be matched anymore, e.g., due to the deletion of a model
element, we have found indeed an inconsistency. In that case, the algorithm
has to undo the applied transformation rule. This is achieved by deleting the
correspondence node and all created elements and unmarking the remaining
nodes that have been involved in the right-side of the production. This is the
last step of the update. However, note that, by deleting the correspondence
node the precondition for all successors of the deleted correspondence node will
not hold anymore. As a consequence, this leads both to the deletion of the
succeeding correspondence nodes and the nodes in the class diagram referenced
by the deleted correspondence nodes.

In the last step of the incremental transformation the algorithm searches for
unmatched model elements and transforms those elements according to the triple
graph grammar specification. The presented incremental algorithm can be used
for unidirectional model transformations as well as for bidirectional model trans-
formation and synchronization enabling round-trip engineering between models.
We can further optimize our incremental algorithm if the involved models sup-
port change notifications. In that case, the presented transformation algorithm
starts to traverse the DAG at the correspondence node connected to the modified
element and not at the root of the DAG.

4 Evaluation

To evaluate our incremental approach, we use the model transformation exam-
ple introduced earlier which synchronizes SDL block diagrams with a related
UML class diagrams. In order to be able to evaluate large models with different
characteristics, we wrote a parameterized synthesis algorithm for a hierarchical
SDL block models where we can adjust the number of SDL blocks and the num-
ber of subblocks for each block. Therefore, we can in fact control the resulting
out-degree w.r.t. rule dependencies in the resulting correspondence graph Gc by
simply adjusting the number of subblocks for each block.

We further restrict our considerations to the forward direction as the backward
case employs the same execution engine. The measurements have been done on

552 H. Giese and R. Wagner

an computer with an Intel(R) Pentium(R) m Processor with 1.80 GHz and 1,0
GB RAM. The complied rules and the execution engine have been run on Java
1.4.2 07 on top of the Windows XP Professional operating system.

4.1 Measured Synchronization Times

Taking the directed acyclic graph structure of the correspondence graph and the
existence of a unique root node and leaf nodes into account, we can further assign
to each node in the correspondence graph Gc the related height which relates
to the length of the longest path from that node to a node without successor
(leaf). This height can then also be related to the connected graph nodes of the
source and target model. The height of the model is further simply the height
of the root node.

While for the batch-oriented processing the required model synchronization
efforts are the same for every modification in the source model, in the incremen-
tal case the specific effort required for a specific small modification on the source
model depends on the height of the related correspondence nodes. We thus also
characterize small modifications by the related height. This dependency is that
the larger the related height is the higher are the efforts for the required pro-
cessing. One extreme case is the model root. The required computation of the
incremental transformation in fact involves the whole model.

Another factor which is relevant here is of course the out degree of the corre-
spondence nodes. Obviously, a higher out-degree results in a higher computation
effort for the same height as more subordinated nodes have to be subject to the
application of the transformation rules. On the other hand a higher out-degree
results in a much smaller height of the model and much more nodes with smaller
height.

The resulting measurements for a SDL model with 5.000 blocks for the batch
and incremental algorithm are depicted in Figure 4. On the x-axis the differ-
ent possible heights of the small modifications are enumerated and the related

Fig. 4. Efforts for the synchronization after a modification

Incremental Model Synchronization with Triple Graph Grammars 553

measurement results for the models with different out-degrees (Out n) are pro-
vided. In addition, we added the results for the batch-oriented algorithm (Out n
- batch) which are independent of the height and thus are simply straight lines.

The expected effect which can be observed is that for larger out degrees we
have smaller maximal height and thus the required efforts increase more rapidly
with increasing height. For all cases holds that in case of the maximal height the
same effort as for the batch processing can be observed.

4.2 Average Synchronization Costs

To derive a useful performance prediction from these measurements, we will
further combine them to derive reasonable estimates for the average case of
modifications.

Depending on the average height of the related correspondence nodes involved
in the modification, a reasonable speedup w.r.t. a batch processing of the whole
transformation can be observed. To relate this observation to a reasonable esti-
mation of the average performance, we derive an average case effort estimation
starting with the assumption that all changes have the same likelihood. For n
the number of correspondence nodes, hmax the maximal height of the correspon-
dence graph, nh the number of correspondence nodes with height h, and Th the
measured time for processing a small modification in ms, the mean value for the
time Ta required for the processing of an arbitrary small modification is then:
Ta = (

∑hmax
h=0 nhTh)/n.

Using the data about n, hmax, nh, and Th presented in Figure 4 we thus have
the average computation times as reported in Figure 5. In addition, we also
computed the values for smaller models.

We can observe that with increasing out-degree the average synchronization
time is reasonable small (about 20-30 ms) and increases only minimally with
the model size (1-3 ms). For smaller out-degree the average case becomes more
costly (60-90 ms) and also increases significantly (100-180 ms). The visible steps
in the calculated average times and the following smooth decrease in the average
time are related to an increase in height and the related result that the lower
ranks of the correspondence DAG are that well balanced.

Fig. 5. Average computation times for small modifications and different out degrees

554 H. Giese and R. Wagner

4.3 Discussion

Taking the directed acyclic graph structure of the correspondence graph into
account, we know that only the nodes of the correspondence graph Gc beneath
the correspondence nodes which are directly related to the modified node or edge
have to be recomputed. While this already restricts the required computation
effort, in the worst case clearly nearly the same effort as in the non incremental
case is required.

G
c

Fig. 6. Incremental application of the TGG rules for arbitrary modifications

In Fig. 6, the resulting effect on the acyclic directed correspondence graph
is depicted. For sake of visual presentation, we use a tree rather than a DAG.
Depending on the average height of the correspondence nodes in the tree/graph
involved in the modification, a reasonable speedup w.r.t. a batch processing of
the whole transformation can be expected.

The described observation for the average case can be backed up by the follow-
ing theoretical derivation of the complexity: For n nodes and a maximal depth
dmax we roughly have n ≈ exp(dmax) nodes in a tree. If we further assume that
there are about N(d) ≈ exp(d) nodes for a specific depth d and that the number
of rule applications T for processing an update for a correspondence node with
depth d is T (d) ≈ exp(dmax − d), the mean number of rule applications Tm for
processing an update for an arbitrary correspondence node assuming an average
distribution is:

Tm ≈
∑dmax−1

d=0 N(d) ∗ T (d)
n

≈
∑dmax−1

0=0 exp(d) ∗ exp(dmax − d)
exp(dmax)

≈
∑dmax−1

d=0 exp(dmax)
exp(dmax)

=
(dmax − 1) ∗ exp(dmax)

exp(dmax)
= (dmax − 1)

In contrast to repeat the full computation of the correspondence graph which
would require n ≈ exp(dmax) rule applications for a model with n nodes, we only
require (dmax − 1) rule applications in the average case. Thus as dmax ≈ log(n),
we have a effectively incremental solution as the impact of the model size in the
average case is only in O(log(n)) and not O(n) as for batch processing.

It is to be noted that models in practice often have 7 or more elements at
the same abstraction level which are then further refined by assigning submod-
els to each element, while we have looked into out-degrees from 2 to 6. The
considered data indicates that for higher out-degrees we can expect even better

Incremental Model Synchronization with Triple Graph Grammars 555

performance than for the smaller out-degrees and thus the considered cases are
from a practical point of view the worst cases.2

5 Related Work

Motivated by the Model-Driven Architecture (MDA) [1] and OMG’s Request for
Proposal (RFP) on Query/Views/ Transformations (QVT) [8], model transfor-
mation has been put into the focus of many research activities. Meanwhile, a first
version of the Final Adopted Specification [9] is published and the final version
is expected in the course of this year. In this specification, incremental model
transformations are an important issue. However, to the best knowledge of the
authors, up to now there is no publicly and freely available tool implementing
the QVT standard with incremental updates for model synchronization.

A tool supporting incremental model transformations is the Model Transfor-
mation Framework (MTF) [10] developed by IBM. Unfortunately, so far, there is
no performance data nor any publication describing the used approach available.

Nevertheless, the RFP has lead to a large number of approaches for model
transformation - each for a special purpose and within a particular domain with
its own requirements [11]. A class of transformation approaches comprises graph-
ical transformation languages which are based on the theoretical work on graph
grammars and graph transformations. These approaches interpret the models as
graphs and the transformation is executed by searching a pattern in the graph
and applying an action which transforms the pattern to a new data structure.
However, these languages do not provide any explicit traceability information
about the model transformation. This prevents both incremental transformations
and consistency maintaining activities for model synchronization after an applied
transformation. Additionally, in the most graph grammar based approaches, the
transformation must be specified for each transformation direction separately.
Hence, they are not well suited for the specification of bidirectional model trans-
formation and synchronization.

In contrast to that, triple graph grammars are a special technique for the
specification and execution of bidirectional transformations. Triple graph gram-
mars were motivated by integration problems between different tools where in-
terrelated documents have to be kept consistent with each other [12, 13, 14].
In this field, triple graph grammars are used for the maintenance of the re-
quired traceability links between different document artifacts. In [13] the trans-
formation algorithm operates interactively and incrementally. In contrast to our
approach, the transformation algorithm relies on the type of so called domi-
nant increments. The incremental transformation approach in [15] is triggered
by user actions like creating, editing, or deleting elements. A complete model
transformation from scratch is not in the focus of the approach whereas our
approach handles both cases. However, some of the work served as a starting
2 The absolute worst case is a linear list where the effort is of course proportional to

the height. We are, however, not aware of any example where the metamodels and
their model instances in practice result in a linear list.

556 H. Giese and R. Wagner

point for our approach. In particular, we rely on the proposed attribute update
propagation techniques [13, 14] and the correspondence dependency introduced
by [12].

6 Conclusion and Future Work

We have presented our approach for the efficient and incremental model syn-
chronization with the model transformation approach triple graph grammars.
Our solution at first is visual, formal, and bidirectional which are all char-
acteristics it inherits from triple graph grammars. In addition, our extension
of the rule execution facilitates an incremental application which takes the
acyclic dependencies present in the correspondence graph into account and there-
fore results in an effectively incremental solution for the model synchronization
problem.

We have realized our approach in the Fujaba Tool Suite3. The available tool
support includes the visual specification of the triple graph grammar rules, the
automatic extraction of the resulting graph rewriting rules, and an execution
engine for the incremental execution of these rules.

The paper provides measurements for the effort required for an example model
transformation task and the related model synchronization in particular for the
case of large models. To our knowledge, similar data is currently not provided
by any related approach. We hope that this will change in the future and that
this contribution is a first step towards setting up benchmarks for model trans-
formation such that the finding can be based on commonly agreed examples and
that the different approaches can be systematically compared.

As future work we plan to provide a QVT compatible front-end for our ap-
proach which maps the QVT semantics to triple graph grammars in order to
make the technology available to a broader audience.

References

1. OMG: MDA Guide Version 1.0.1. (2003) Document – omg/03-06-01.
2. Wagner, R., Giese, H., Nickel, U.: A Plug-In for Flexible and Incremental Consis-

tency Management. In: Proceedings of the Workshop on Consistency Problems in
UML-based Software Development II (UML 2003, Workshop 7), Blekinge Institute
of Technology (2003) 78–85

3. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: Review of OMG MOF 2.0
Query/Views/Transformations Submissions and Recommendations towards final
Standard. OMG, 250 First Avenue, Needham, MA 02494, USA. (2003)

4. Schürr, A.: Specification of graph translators with triple graph grammars. In Mayr,
E.W., Schmidt, G., Tinhofer, G., eds.: Graph-Theoretic Concepts in Computer
Science, 20th International Workshop, WG ’94. Volume 903 of LNCS., Herrsching,
Germany (1994) 151–163

3 www.fujaba.de

Incremental Model Synchronization with Triple Graph Grammars 557

5. Schäfer, W., Wagner, R., Gausemeier, J., Eckes, R.: An Engineer’s Workstation to
support Integrated Development of Flexible Production Control Systems. In Ehrig,
H., Damm, W., Desel, J., Gros̈e-Rhode, M., Reif, W., Schnieder, E., Westkämper,
E., eds.: Integration of Software Specification Techniques for Applications in En-
gineering. Volume 3147 of Lecture Notes in Computer Science (LNCS). Springer
Verlag (2004) 48–68

6. International Telecommunication Union (ITU), Geneva: ITU-T Recommendation
Z.100: Specification and Description Language (SDL). (1994 + Addendum 1996)

7. OMG 250 First Avenue, Needham, MA 02494, USA: (Unified Modeling Language
Specification Version 1.5)

8. OMG: OMG/RFP/QVT MOF 2.0 Query/Views/Transformations RFP.
http://www.omg.org/mda/. (2003)

9. OMG: MOF QVT Final Adopted Specification, OMG Document ptc/05-11-01.
(http://www.omg.org/)

10. Griffin, C.: Eclipse Model Transformatioin Framework (MTF), available at
http://www.alphaworks.ibm.com/tech/mtf. IBM. (2006)

11. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches.
In: Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, USA, 2003. (2003)

12. Lefering, M., Schürr, A.: Specification of Integration Tools. In Nagl, M., ed.:
Building Thightly-Integrated (Software) Development Environments: The IPSEN
Approach. Volume 1170 of Lecture Notes in Computer Science., Springer Verlag
(1996) 324–334

13. Becker, S., Lohmann, S., Westfechtel, B.: Rule Execution in Graph-Based Incre-
mental Interactive Integration Tools. In: Proc. Intl. Conf. on Graph Transforma-
tions (ICGT 2004). Volume 3256 of LNCS. (2004) 22–38

14. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
In Heckel, R., ed.: Proceedings of the SegraVis School on Foundations of Visual
Modelling Techniques. Volume 148 of Electronic Notes in Theoretical Computer
Science., Amsterdam, Elsevier Science Publ. (2006) 113–150

15. Guerra, E., de Lara, J.: Event-Driven Grammars: Towards the Integration of
Meta-Modelling and Graph Transformation. In: International Conference on Graph
Transformation (ICGT’2004). Volume 3265 of LNCS. (2004) 54–69

Model-Driven Assessment of Use Cases
for Dependable Systems

Sadaf Mustafiz, Ximeng Sun, Jörg Kienzle, and Hans Vangheluwe

School of Computer Science, McGill University
Montreal, Quebec, Canada

{sadaf, xsun16, joerg, hv}@cs.mcgill.ca

Abstract. Complex real-time systems need to address dependability require-
ments early on in the development process. This paper presents a model-based
approach that allows developers to analyze the dependability of use cases and
to discover more reliable and safe ways of designing the interactions with the
system and the environment. We use a probabilistic extension of statecharts to
model the system requirements. The model is then evaluated analytically based
on the success and failure probabilities of events. The analysis may lead to further
refinement of the use cases by introducing detection and recovery measures to en-
sure dependable system interaction. A visual modelling environment for our ex-
tended statecharts formalism supporting automatic probability analysis has been
implemented in AToM3, A Tool for Multi-formalism and Meta-Modelling. Our
approach is illustrated with an elevator control system case study.

1 Introduction

Complex computer systems are increasingly built for highly critical tasks from military
and aerospace domains to industrial and commercial areas. Failures of such systems
may have severe consequences ranging from loss of business opportunities, physical
damage, to loss of human lives. Systems with such responsibilities should be highly
dependable. On the software developer’s part, this involves acknowledging that many
exceptional situations may arise during the execution of an application, and providing
measures to handle such situations to maintain system reliability and safety. Any such
exception that is not identified during requirements elicitation might potentially lead to
an incomplete system specification during analysis, and ultimately to an implementation
that behaves in an unreliable way. Rigorous requirements elicitation methods such as
the exceptional use case approach we proposed in [1] lead the analyst to define handler
use cases that address exceptional situations that threaten system reliability and safety.
These handler use cases allow exceptional interactions that require several steps of han-
dling to be described separately from the normal system behavior. But is it enough to
only define handlers for exceptions that can interrupt the normal system functionality?
What about exceptions that interrupt the handlers themselves? Do we need handlers
for handlers? To answer this question there must be a way to assess the reliability and
safety of a system.

For this purpose, this paper proposes a model-driven approach for assessing and
refining use cases to ensure that the specified functionality meets the dependability

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 558–573, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model-Driven Assessment of Use Cases for Dependable Systems 559

requirements of the system. To carry out the analysis, the use cases are mapped to
DA-Charts, a probabilistic extension of part of the statecharts formalism. The assess-
ment is then based on a tool that performs probability analysis of the model.

The paper is organized as follows: Section 2 provides background information on de-
pendability, use cases, and the exceptional use cases approach in [1]. Section 3 describes
our model-driven process for assessing and refining use cases. Section 4 presents our
probabilistic statecharts formalism used for dependability analysis. Tool support for our
formalism is discussed in Sect. 5. Section 6 illustrates our proposed process by means
of an elevator control case study. Section 7 presents related work in this area and Sect. 8
discusses future work and draws some conclusions.

2 Background

2.1 Dependability

Dependability [2] is that property of a computer system such that reliance can justifi-
ably be placed on the service it delivers. It involves satisfying several requirements:
availability, reliability, safety, maintainability, confidentiality, and integrity. The de-
pendability requirement varies with the target application, since a constraint can be
essential for one environment and not so much for others. In this paper, we focus on the
reliability and safety attributes of dependability. The reliability of a system measures
its aptitude to provide service and remain operating as long as required [3]. The safety
of a system is determined by the lack of catastrophic failures it undergoes [3].

Fault tolerance is a means of achieving system dependability. As defined in [4],
fault tolerance includes error detection and system recovery. At the use case level, error
detection involves detection of exceptional situations by means of secondary actors
such as sensors and time-outs. Recovery at the use case level involves describing the
interactions with the environment that are needed to continue to deliver the current
service, or to offer a degraded service, or to take actions that prevent a catastrophe. The
former two recovery actions increase reliability, whereas the latter ensures safety.

2.2 Use Cases

Use cases are a widely used formalism for discovering and recording behavioral re-
quirements of software systems [5]. A use case describes, without revealing the details
of the system’s internal workings, the system’s responsibilities and its interactions with
its environment as it performs work in serving one or more requests that, if success-
fully completed, satisfy a goal of a particular stakeholder. The external entities in the
environment that interact with the system are called actors.

Use cases are stories of actors using a system to meet goals. The actor that wants
to achieve the goal is referred to as the primary actor. Entities that the system needs
to fulfill the goal are called secondary actors. Secondary actors include software or
hardware that is out of our control. The system, on the other hand, is the software that
we are developing and which is under our control.

560 S. Mustafiz et al.

2.3 Exceptions and Handlers in Use Cases

In [1] we proposed an approach that extends traditional use case driven requirements
elicitation, leading the analyst to focus on all possible exceptional situations that can
interrupt normal system interaction.

An exception occurrence endangers the completion of the actor’s goal, suspending
the normal interaction temporarily or for good. To guarantee reliable service or ensure
safety, special interaction with the environment might be necessary. These handling
actions can be described in a handler use case. That way, from the very beginning,
exceptional interaction and behavior is clearly identified and separated from the normal
behavior of the system. Similar to standard use cases, handlers use cases are reusable.
Handlers can be defined for handlers in order to specify actions to be taken when an
exception is raised in a handler itself.

3 Model-Driven Dependability Analysis of Use Cases

We propose a model-driven approach for assessing and refining use cases to ensure
that the specified functionality meets the dependability requirements of the system as
defined by the stakeholders.

For the purpose of analysis, we introduce probabilities in use cases. The value asso-
ciated to each interaction step represents the probability with which the step succeeds.
If we assume reliable communication and a perfect software (which we must at the re-
quirements level), the success and failure of each interaction depends on the quality of
the hardware device, e.g. motor, sensor, etc. The reliability of each hardware component
can be obtained from the manufacturer. If the secondary actor is a software system, its
reliability is also either known or must be determined statistically.

Our proposed process is illustrated in Fig. 1. First, the analyst starts off with standard
use case-driven requirements elicitation (see step 1). Using the exceptional use case
approach described in [1] the analyst discovers exceptional situations, adds detection
hardware to the system if needed, and refines the use cases (see step 2). Then, each
use case step that represents an interaction with a secondary actor is annotated with a
probability value that specifies the chances of success of the interaction (see step 3).
Additionally, each interaction step is annotated with a safety tag if the failure of that
step threatens the safety of the system. Next, each use case is mapped to a DA-Chart
(see step 4). DA-Charts and the mapping process are described in Sect. 4. This mapping
could be automated (see Sect. 8), but for now it has to be done manually. The DA-Charts
are then mathematically analyzed by our dependability assessment tool (see step 5) and
a report is produced. Steps 3, 4, and 5 are the main contributions of this paper. The
implementation of the tool using meta-modeling is described in Sect. 5.

The assessment report allows the analyst to decide if the current system specification
achieves the desired reliability and safety. If not, several options can be investigated. It is
possible to increase the reliability of secondary actors by, for instance, buying more re-
liable hardware components, or employing redundant hardware and voting techniques.
Alternatively, the use cases have to be revisited and refined. First, the system must be
capable of detecting the exceptional situation. This might require the use of time-outs,
or even the addition of detection hardware to the system. Then, handler use cases must

Model-Driven Assessment of Use Cases for Dependable Systems 561

Fig. 1. Model-Driven Process for Assessment and Refinement of Use Cases

be defined that compensate for the failure of the actor, or bring the system to a safe halt.
The analyst can perform the refinements in the annotated use cases or on the DA-Charts.

After the changes, the effects on the system reliability and safety are determined
by re-running the probabilistic analysis. The refinement process is repeated until the
stakeholders are satisfied.

Elevator System Case Study. We demonstrate our approach by applying it to an el-
evator control system case study. An elevator system is a hard real-time application
requiring high levels of dependability.

For the sake of simplicity, there is only one elevator cabin that travels between the
floors. The job of the development team is to decide on the required hardware, and to
implement the elevator control software that processes the user requests and coordinates
the different hardware devices. Initially, only “mandatory” elevator hardware has been
added to the system: a motor to go up, go down or stop; a cabin door that opens and
closes; floor sensors that detect when the cabin is approaching a floor; two buttons on
each floor to call the elevator; and a series of buttons inside the elevator cabin.

Standard use case-driven requirements elicitation applied to the elevator control sys-
tem results in the use case model shown in Fig. 2. In the elevator system there is initially

Fig. 2. Standard Elevator Use Case Diagram

562 S. Mustafiz et al.

Use Case: ElevatorArrival
Primary Actor: N/A
Intention: System wants to move the elevator to the User’s destination floor.
Level: Subfunction
Main Success Scenario:

1. System asks motor to start moving in the direction of the destination floor.
2. System detects elevator is approaching destination floor.
3. System requests motor to stop.
4. System opens door.

Fig. 3. ElevatorArrival Use Case

only one primary actor, the User. A user has only one goal with the system: to take the
elevator to go to a destination floor. The primary actor (User) is the one that initiates the
TakeLift use case. All secondary actors (the Door, the Motor, the Exterior and Interior
Floor Buttons, as well as the Floor Sensors) that collaborate to provide the user goal
are also depicted. Due to space constraints, we only discuss the subfunction level use
case ElevatorArrival (shown in Fig. 3) in detail.

To ride the elevator the User enters the cabin, selects a destination floor, waits until
the cabin arrives at the destination floor and finally exits the elevator.

CallElevator and RideElevator both include the ElevatorArrival use case shown in
Fig. 3. It is a subfunction level use case that describes how the system directs the el-
evator to a specific floor: once the system detects that the elevator is approaching the
destination floor, it requests the motor to stop and opens the door.

The analysis of the basic use case following the approach in [1] lead to the discov-
ery of some critical exceptions that interrupt the normal elevator arrival processing:
MissedFloor, MotorFailure and DoorStuckClosed.

4 Probabilistic Statecharts

In this section, we introduce DA-Charts (short for Dependability Assessment Charts), a
probabilistic extension of the statecharts formalism introduced by David Harel [6].

4.1 Statecharts

The statecharts formalism is an extension of Deterministic Finite State Automata with
hierarchy, orthogonality and broadcast communication [7]. It is a popular formalism for
the modelling of the behaviour of reactive systems. It has an intuitive yet rigourously
defined notation and semantics. It is the basis for documentation, analysis, simulation,
and code synthesis. Many variants of statecharts exist, including the one included in the
UML standard.

4.2 Extending Statecharts with Probabilities

We extend the statecharts formalism with probabilities to enable dependability assess-
ment. While stochastic petri nets is an established formalism with clearly defined se-
mantics, statecharts seem a more natural match for our domain. This, thanks to their

Model-Driven Assessment of Use Cases for Dependable Systems 563

modularity, broadcast, and orthogonality features. Statecharts also make it possible to
design visually simple and structured models.

Standard statecharts are solely event-driven. State transitions occur if the associated
event is triggered and any specified condition is satisfied. Given the event, a source state
has only one possible target state. In the formalism we propose, DA-Charts, when an
event is triggered, a state can transition to one of two possible target states: a success
state and a failure state. When an event is triggered, the system moves to a success
state with probability p and to a failure state with probability 1-p. In most real-time
systems, the probability of ending up in a success state is closer to 1 and the failure
state probability is closer to 0. For example, if a motor in a mechanical system is asked
to stop, it might stop with a probability of 0.999 and it might fail to stop with probability
0.001. As in statecharts, the transition may broadcast events. The event that is broadcast
can be different depending on whether the transition leads to a success state or a failure
state. Hence, the outcome of the event might vary.

DA-Charts Syntax. The statecharts notation is extended to include probabilities. The
standard transition is split into two transitions, each annotated with the probability that
the event associated with the transition leads to a success state or a failed state. The
notation used for this purpose adds an attribute next to the event: event[condition]
{probability} /action. Absence of the probability attribute implies a probability of 1.

DA-Charts Semantics
Finite State Automaton: Unlike statecharts, DA-Charts are non-deterministic due to the
addition of probabilities in state transitions. Our formalism requires adaptation of the
various features of the statecharts semantics to support the notion of non-determinism.
In particular there is non-determinism in both the end states and in which events are
broadcast.

Orthogonality: In DA-Charts, orthogonal components model the concurrent behav-
ior of actors in the environment. For example, in an elevator system, we might want to
model the different hardware devices (motor/sensors) as orthogonal components. How-
ever, DA-Charts has the constraint that events cannot be triggered simultaneously in
orthogonal components.

Broadcast: The broadcasting feature is used in DA-Charts to enable sequencing of
events. In a real-time system, the system progresses with time and some devices can
only react provided that some required event preceded it. In the elevator system, the
door should only be opened if the floor sensor detects that the destination floor has been
reached.

Depth: DA-Charts as described in this paper do not currently support hierarchy in
components. However, we are currently working on allowing hierarchical states within
the system component to reflect the user goal / sub-goal hierarchy (see Sect. 8).

History: When external events or environmental hazards are considered in DA-Charts,
history states would be useful when the system needs to return to a prior state after
handling such a situation (see Sect. 8). A user inside an elevator might request an emer-
gency stop but after servicing the request, the system might want to resume normal
functionality.

564 S. Mustafiz et al.

DA-Charts Constraints. Our DA-Chart formalism is constrained by the following:

– Every DA-Chart must contain a system component describing the behaviour of the
software of the system. No probabilities are allowed in the system component, since
at the requirements level we assume a fault-free implementation.

– Each secondary actor is modelled by an orthogonal component. Each service that
an actor provides can either succeed or fail, which is modelled by two transitions
leading to either a success or a failed state, annotated with the corresponding prob-
abilities.

– To monitor the safety constraints of the system, an additional orthogonal safety-
status component is created. Whenever the failure of an actor leads to an unsafe
condition, a toUnsafe event is broadcast to the safety-status component. Other qual-
ity constraints can be modelled in a similar manner.

4.3 Mapping Exceptional Use Cases to DA-Charts

We assume that the system software and the communication channels between the sys-
tem and the actors are reliable. During requirements elicitation, the developer can as-
sume that the system itself, once it has been built, will always behave according to spec-
ification - in other words, it will not contain any faults, and will therefore never fail. As
the development continues into design and implementation phases, this assumption is
most certainly not realistic. Dependability assessment and fault forecasting techniques
have to be used to estimate the reliability of the implemented system. If needed, fault
tolerance mechanisms have to be built into the system to increase its dependability.

Although the system is assumed to function perfectly, a reliable system cannot as-
sume that it will operate in a fault free environment. Hence, at this point we need to
consider the possible failure of (secondary) actors to perform the services requested by
the system that affects the dependability of the system.

Each use case is mapped to one DA-Chart. As mentioned above, the DA-Chart has
one orthogonal system component that models the behavior of the system, one safety-
status component that records unsafe states, and one probabilistic orthogonal compo-
nent for each secondary actor.

Each step in the use case is mapped to a transition in the system component, as well
as a transition in the actor involved in the step as follows:

– An appropriately named event is created, e.g. floorDetected or stopMotor.
– A step that describes an input sent by an actor A to the system is mapped to:

• an action, e.g. floorDetected, on the success transition in the component mod-
elling the reliability of A. The probability annotation p from the step is added
to the success transition, the probability 1-p is added to the failure transition.

• an event in the system that moves the system to the next state.
– A step that describes an output sent by the system to an actor A is mapped to:

• an action in the system, e.g. stopMotor,
• an event within the component modelling the behavior of A, that leads to a

success state and a failure state. Probability annotation p from the step is added
to the success transition, the probability 1-p is added to the failure transition.

Model-Driven Assessment of Use Cases for Dependable Systems 565

– Each exception associated with the step is mapped to a failure action, e.g. motor-
Failure, and attached to the failure transition of the corresponding actor.

– If a step is tagged as Safety-critical, the failure transition broadcasts an event toUn-
safe which is recorded in the safety-status component.

5 Creating Tool Support for Probabilistic Statecharts

5.1 AToM3: A Tool for Multiformalism and MetaModelling

To allow rapid development of visual modelling tools, we use AToM3, A Tool for Multi-
formalism and Meta-Modelling [8, 9]. In AToM3, we follow the maxim “model every-
thing” (explicitly, in the most appropriate formalism). Formalisms and transformations
are modelled using meta-models and graph grammar models respectively. Also, com-
posite types and the user interfaces of the generated tools are modelled explicitly. The
tool has proven to be very powerful, allowing the meta-modelling of known formalisms
such as Petri Nets [10]. More importantly, many new formalisms were constructed us-
ing the tool, such as the Traffic formalism [11].

5.2 DA-Charts Implementation in AToM3

DA-Charts is a simple extension of the statechart syntax: a simple edge is extended
by adding a probability attribute which becomes a P-Edge, so the action and the target
depend on the outcome of a probabilistic experiment. A traditional edge can be seen as
a P-Edge whose probability is 1.

We implement tool support for DA-Charts by extending the meta-model of the
DCharts formalism (a variant of Statecharts) described in [12]. This is done in three
steps as follows. First, probability is added as a float attribute to the Hyperedge re-
lationship of the existing DCharts meta-model (an Entity-Relationship diagram). The
default value of probability is 1. Two constraints are added. One constraint allows users
to only set the probability of a transition to a maximum of 1; the other one checks if the
total probability of all transitions from the same source node and triggered by the same
event is 1. AToM3 allows for the subsequent synthesis of a visual DA-Charts modelling
environment from this meta-model. Second, a Probability Analysis (PA) module which
can compute probabilities of reaching a target state is implemented. The algorithm is
described in the next section. Lastly, a button which invokes the PA module is added to
the visual modelling environment.

The semantics of a DA-Chart are described informally as follows. When an event oc-
curs, all P-Edges which are triggered by the event and whose guards hold are taken. The
system then leaves the source node(s), chooses one of those P-Edges probabilistically,
executes the action of the chosen P-Edge, and enters the target node(s).

5.3 Probability Analysis of DA-Charts in AToM3

Given a source state (consisting of a tuple of source nodes) and a target state, the proba-
bility to reach the target from the source is computed by finding all paths that lead from

566 S. Mustafiz et al.

Fig. 4. Example DA-Chart Model in AToM3

the source to the target state. The probability of each path is calculated as the prod-
uct of all transition probabilities. The total probability is then computed by adding the
probabilities of all paths.

A probabilistic analysis algorithm based on the above observations has been imple-
mented in AToM3. It reads three arguments, model M containing all elements, such as
components, nodes and edges, a tuple of node names of the source state S, and a tuple
of node names of the target state T. It then produces a float value in the range [0,1]. The
details of the algorithm are omitted here for space reasons.

An analyst wanting to compute, for instance, the reliability of the system has to
first press the PA button, and then select the target state that symbolizes the successful
completion of the goal, after which a pop-up dialog shows the result and all possible
paths leading to the target state are highlighted in the model.

Fig. 4 shows an example DA-Chart model in AToM3. The model consists of three
components: System, D1 and D2. The default state is (s5, s1, s8) and the only transition
which can happen initially is the one from s1 to s2. The probability of reaching (s3,
) (“” means we do not care about what other nodes are when the system ends in
the state containing s3) from (s5, s1, s8) is 99.95% which is the combination of the
probabilities along two possible paths: Ts1→s2, Ts5→s6, and Ts2→s3 for path one; Ts1→s2,
Ts5→s7, Ts2→s4, Ts8→s9, and Ts4→s3 for path two. The computation performed can be
mathematically defined as follows:

Ptotal = (Ps2→s3 × Ps5→s6 +(Ps4→s3 × Ps8→s9)× Ps2→s4 × Ps5→s7)× Ps1→s2 (1)

Model-Driven Assessment of Use Cases for Dependable Systems 567

6 Dependability Analysis Using Statecharts

6.1 Analyzing Exceptions in the Elevator Arrival Use Case

We use the Elevator System case study to demonstrate our assessment approach. At
this point, the standard use case has been already analyzed for exceptional situations
that can arise while servicing a request. As discussed in Sect. 3, several failures might
occur: the destination floor might not be detected (MissedFloor); the motor might fail
(MotorFailure); or the door might not open at the floor (DoorStuckClosed).

To detect whether the elevator is approaching a floor, we need to introduce a sen-
sor, ApprFloorSensor. To detect a motor failure, an additional sensor, AtFloorSensor
is added. It detects when the cabin stopped, and therefore when it is safe to open the
doors.

Fig. 5 shows the updated version of the ElevatorArrival use case that includes the
added acknowledgment steps and the exception extensions. Some steps are annotated
with (made up) probabilities of success: the ApprFloorSensor and the AtFloorSensor
have failure chances of 2% and 5% respectively. The motor has a 1% chance of failure.
For space reasons, we assume that the motor always starts and the door always opens.
In addition, each step is tagged as Safety-critical if the failure of that step threatens the
system safety.

Use Case: ElevatorArrival
Intention: System wants to move the elevator to the User’s destination floor.
Level: Subfunction
Main Success Scenario:

1. System asks motor to start moving towards the destination floor.
2. System detects elevator is approaching destination floor. Reliability:0.98 Safety-critical
3. System requests motor to stop. Reliability:0.99 Safety-critical
4. System receives confirmation elevator is stopped at destination floor. Reliability:0.95
5. System requests door to open.
6. System receives confirmation that door is open.

Extensions:
2a. Exception{MissedFloor}
4a. Exception{MotorFailure}
6a. Exception{DoorStuckClosed}

Fig. 5. Updated ElevatorArrival Use Case

6.2 The DA-Charts Model of the Basic Elevator Arrival System with Failures

We first model the initial ElevatorArrival use case shown in Sect. 6.1 as a DA-Chart ac-
cording to the process described in Sect. 4.3. The result is shown in Fig. 6. The model
consists mainly of four orthogonal components which model the behaviour of the sys-
tem (System), a motor (Motor), and two sensors (ApprFloorSensor and AtFloorSen-
sor). An additional orthogonal component is used to monitor the safety outcome of the
system. Note that the system has no randomness.

568 S. Mustafiz et al.

Elevator_I

mtr_ready

mtr_started

mtr_stopped
mtr_failed

sys_ready

sys_started

sys_stopped

goalSuccess

apFlrSnsr_ready

apFlrSnsr_ack

sys_missed_floor

goalFailure

apFlrSnsr_failed

atFlrSnsr_ready

atFlrSnsr_ack atFlrSnsr_failed
safe

normal

unsafe

Motor System ApprFloorSensor

AtFloorSensor

Status

startAck{0.98}/apFlrSnsrD

stopAck{0.05}/atFlrSnsrFailure;toSafeatFlrSnsrFailure

/start
start/startAck

stop{0.99}/stopAck
apFlrSnsrDetected/stop

stop{0.01}/motorFailure;toUnsafe

startAck{0.02}/missedFloor;toUnsafe

floorReached/openDoor

toUnsafe

toSafe

missedFloor

motorFailure stopAck{0.95}/floorReached;toSafe

Fig. 6. DA-Chart Model of the Elevator Arrival Use Case with Failures

To clarify the model, one of the components is briefly explained here. The Mo-
tor is initially ready (in the mtr ready state). After it is triggered by the System (by
the start event), it acknowledges the System’s request (by broadcasting startAck) and
goes into running mode (by transitioning to the mtr started state). When the motor is
asked to stop (by the stop event), the Motor will either stop itself successfully (going
to mtr stopped) and send an acknowledgement (by broadcasting stopAck), or fail to
stop (going to mtr failed and broadcasting motorFailure and toUnsafe). The chances of
success and failure are 99% and 1% respectively.

6.3 Evaluating Dependability of the System

Safety Analysis. We want to ensure the safety levels maintained by the elevator arrival
system. The system is unsafe if the approaching floor sensor fails to detect the destina-
tion floor (because then the system never tells the motor to stop), or if the motor fails
to stop when told to do so. This is why the failure transition in the ApprFloorSensor
component, as well as the failure transition in the Motor component broadcast a toUn-
safe event that is recorded in the Status component. It is interesting to note that actually
achieving the goal of the use case has nothing to do with safety. Our tool then calculates
that the probability of reaching the state safe from the initial system state (sys ready) is
97.02%, which is the combination of the probabilities along two possible paths.

Reliability Analysis. Our tool calculates a reliability (probability of reaching the goal-
Success state) of 92.169%. Although we assume that the door is 100% reliable, a failure
of the AtFloorSensor would prevent the system from knowing that the destination floor
is reached, and hence the system cannot request the door to open. The person riding the
elevator would be stuck inside the cabin, and hence the goal fails.

6.4 Refining the Elevator Arrival Use Case

For a safety-critical system like the elevator control system, a higher level of safety
is desirable. Safety can be increased by using more reliable or replicated hardware,

Model-Driven Assessment of Use Cases for Dependable Systems 569

Handler Use Case: EmergencyBrake
Handler Class: Safety
Context & Exception: ElevatorArrival{MotorFailure}
Intention: System wants to stop operation of elevator and secure the cabin.
Level: Subfunction
Main Success Scenario:

1. System stops motor.
2. System activates the emergency brakes. Reliability:0.999 Safety-critical
3. System turns on the emergency display.

Fig. 7. EmergencyBrake Handler Use Case

but such hardware might not be available or might be too costly. Another possibility
is to initiate an action that can prevent catastrophes from happening. To illustrate this
approach, we focus on the motor failure problem. To remain in a safe state even if the
motor fails, it is necessary to use additional hardware like an emergency brake. This
behavior is encapsulated in the EmergencyBrake safety handler (shown in Fig. 7).

6.5 The DA-Charts Model of the Safety-Enhanced Elevator Arrival Use Case

The DA-Chart model of the elevator arrival system is updated to reflect the use of emer-
gency brakes (see Fig. 8). Another orthogonal component to model the behaviour of the
emergency brakes is added. The brake used has a 99.9% chance of success.

Elevator_I

mtr_ready

mtr_started

mtr_stopped
mtr_failed

sys_ready

sys_started

sys_stopped

goalSuccess

apFlrSnsr_ready

apFlrSnsr_ack

sys_missed_floor

goalFailure

apFlrSnsr_failed

atFlrSnsr_ready

atFlrSnsr_ack atFlrSnsr_failedsafe

normal

unsafe

eb_ready

eb_activated eb_failed

Motor System ApprFloorSensor

AtFloorSensor

Status

EmergencyBrake

floorReached/openDoor

start/startAck

missedFloor

apFlrSnsrDetected/stop

startAck{0.02}/missedFloor;toUnsafe

stopAck{0.05}/atFlrSnsrFailure

toSafe

activateEB{0.999}/toSafe

stop{0.01}/motorFailure

/start

stop{0.99}/stopAck

toUnsafe

atFlrSnsrFailure/activate

motorFailure/activateEB

activateEB{0.001}/toUnsafe

stopAck{0.95}/floorReached;toSafe

startAck{0.98}/apFlrSnsrD

Fig. 8. DA-Chart Model of the Elevator Arrival System with Failures and Handlers

570 S. Mustafiz et al.

Safety Analysis. A probability analysis of the updated model shows a significant im-
provement in the safety achieved by the system. It is now safe 97.9942% of the time,
which evaluates to an increase of 0.9742%. The safety would be even more improved if
the missedFloor exception would be detected and handled.

Reliability Analysis. The reliability of the system has not changed. The use case could
be further refined so that the elevator detects when the AtFloorSensor fails 1, and then
the system could redirect the elevator to the nearest floor. Even though the original goal
of the user is not satisfied, the system attempts to provide reliable service in a degraded
manner.

6.6 Discussion

In this paper due to space constraints, we have only shown one safety-related refinement
of the ElevatorArrival use case. Many other exceptions affect the dependability of the
elevator system, for example exceptional situations that occur due to overweight or a
door mechanism failure or a fire outbreak. However, such issues can be easily modelled
in DA-Charts following our defined process, and can then be subjected to probability
analysis. The proposed assessment approach can be easily scaled for more complex
systems.

Assessment and refinement is supposed to be an iterative process, and can be contin-
ued as long as it is realistic and feasible, until the expected system safety and reliability
is met. Thanks to our tool support, iterations are not time-consuming, and immediate
feedback is given to the analyst of how changes in the use cases affect system depend-
ability.

7 Related Work

Research has been carried out on analyzing quality of requirements mostly using for-
mal requirements specification, that is, requirements written in specification languages,
and model checking techniques. Bianco et al. [13] presents an approach for reasoning
about reliability and performance of probabilistic and nondeterministic systems using
temporal logics for formal specification of system properties and model-checking algo-
rithms for verifying that the system satisfies the specification. Automatic verification of
probabilistic systems using techniques of model checking are also covered in [14].

Atlee et al. [15] demonstrates a model-checking technique used to verify safety prop-
erties of event-driven systems. The formal requirements are transformed to state-based
structures, and then analyzed using a state-based model checker.

Huszerl et al. [16] describes a quantitative dependability analysis approach targeting
embedded systems. The system behaviour is specified with guarded statechart models
and then mapped to timed, stochastic petri nets to carry out performance evaluation.

Jansen et al. [17] proposed a probabilistic extension to statecharts, P-Statecharts,
similar to our DA-Charts formalism to aid in formal verification of probabilistic tempo-
ral properties. The probability concept in P-Statecharts has two facets: environmental

1 This can, for instance, be done using a time-out.

Model-Driven Assessment of Use Cases for Dependable Systems 571

randomness and system randomness. In our work, we focus on dependable systems in
which randomness only comes from the environment the system is exposed to, rather
than from the system itself. Unlike their formalism, DA-Charts allows different actions
to be taken (events to be broadcasted) depending on the probabilistically chosen target
state, not just on the event which initiates the transition. Based on the work in [17],
they later proposed the StoCharts approach [18] which extends UML-statecharts with
probabilities and stochastic timing features to allow for QoS modelling and analysis.

Vijaykumar et al. [19] proposed using a probabilistic statechart-based formalism to
represent performance models. The model specified using statecharts is used to generate
a Markov chain from which steady-state probabilities are obtained. Their approach is
concerned with evaluating general performance of models, such as system productivity.

Blum et al. [20] presents the System Availability Estimator (SAVE) package that
is used to build and analyze models to enable prediction of dependability constraints.
A SAVE model is constructed as a collection of components, each of which can be
subject to failure and repair. The high-level model is then automatically transformed to
a Markov chain model.

Bavuso et al. [21] introduce the Hybrid Automated Reliability Predictor (HARP) tool
developed for prediction of reliability and availability of fault-tolerant architectures. It
is Markov model-based, and provides support for coverage modelling and automatic
conversion of fault trees to Markov models.

Our approach is different in the sense that we begin with informal requirements spec-
ification, namely use cases, apply a model-driven process to map the requirements to
statecharts to evaluate the safety and reliability achieved by the system, followed by
revisiting and refining the use cases if necessary. Developers do not require expertise
in specification languages to determine the quality of their requirements. Also, com-
municating with end-users is simpler with use cases. The probability analysis is com-
pletely automated and allows quick generation of dependability-related statistics. Our
model-based assessment is similar to model-checking since we attempt to verify that
dependability constraints hold. However, the goal of our work is to evaluate and refine
the requirements of the system, and model analysis is carried out only to serve this
purpose.

8 Conclusion and Future Work

We have proposed a model-based approach for analyzing the safety and reliability of
requirements based on use cases. The contribution mainly lies in the combined use
of exceptional use cases, probabilities, statecharts, and dependability analysis means.
Each interaction step in a use case is annotated with a probability reflecting its chances
of success, and a safety tag if the failure of the step hampers the system safety. The use
cases are then mapped to DA-Charts, a probabilistic extension of the statechart model.
Precise mapping rules have been suggested. We have implemented our formalism in
the AToM3 tool to provide support for automatic dependability analysis. The tool also
verifies the formalism constraints and ensures that the mapping rules are adhered to.
Based on path analysis, the tool quantitatively determines probabilities of reaching safe
or unsafe states. The assessment allows the analyst to decide if the dependability con-

572 S. Mustafiz et al.

straints of the system are met. If not, the use cases have to be refined. This implies
introducing additional interaction steps, discovering exceptions and applying handlers
that dictate the system behavior in such situations [1]. At each refinement step, our tool
provides immediate feedback to the analyst on the impact of the changes on system
dependability.

Based on our dependability focused use cases, a specification that considers all ex-
ceptional situations and user expectations can be elaborated during a subsequent analy-
sis phase. This specification can then be used to decide on the need for employing fault
masking and fault tolerance techniques when designing the software architecture and
during detailed design of the system.

So far, our assessment technique only considers exceptions that threaten the relia-
bility and safety of the system. In the future, we want to extend our approach to also
be able to handle exceptions in the environment that change user goals. For instance,
a person riding an elevator might feel unsafe and request an emergency stop. Once
the situation is resolved, normal service should continue where it was interrupted. To
model such a situation, we are currently working on integrating hierarchy and history
into DA-Charts.

We also aim to automate the process of mapping use cases to DA-Charts (and vice-
versa). This would be a highly desirable feature, ultimately allowing developers to work
with the model (use cases or statecharts, or maybe even sequence diagrams) that best
suits them. Our tool can then ensure that all representations are consistently updated.
Any changes made to one model would automatically be reflected in the other models.

Finally, we intend to extend our process to address other dependability constraints
like availability, timeliness, and usability.

References

1. Shui, A., Mustafiz, S., Kienzle, J., Dony, C.: Exceptional use cases. In Briand, L.C.,
Williams, C., eds.: MoDELS. Volume 3713 of Lecture Notes in Computer Science., Springer
(2005) 568–583

2. Laprie, J.C., Avizienis, A., Kopetz, H., eds.: Dependability: Basic Concepts and Terminol-
ogy. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1992)

3. Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Academic
Publishers (2002)

4. Avizienis, A., Laprie, J., Randell, B.: Fundamental concepts of dependability (2001)
5. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process. 2nd edn. Prentice Hall (2002)
6. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer

Programming 8(3) (1987) 231–274
7. Harel, D.: On visual formalisms. Communications of the ACM 31(5) (1988) 514–530
8. de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation through meta-

modelling and graph transformation. Journal of Visual Languages and Computing 15(3 - 4)
(2004) 309–330 Special Issue on Domain-Specific Modeling with Visual Languages.

9. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. In:
ETAPS, FASE. LNCS 2306, Springer (2002) 174 – 188 Grenoble, France.

10. de Lara, J., Vangheluwe, H.: Computer aided multi-paradigm modelling to process petri-nets
and statecharts. In: International Conference on Graph Transformations (ICGT). Volume
2505 of Lecture Notes in Computer Science., Springer (2002) 239–253 Barcelona, Spain.

Model-Driven Assessment of Use Cases for Dependable Systems 573

11. Juan de Lara, H.V., Mosterman, P.J.: Modelling and analysis of traffic networks based on
graph transformation. Formal Methods for Automation and Safety in Railway and Automo-
tive Systems (December 2004. Braunschweig, Germany) 11

12. Feng, T.H.: DCharts, a formalism for modeling and simulation based design of reactive
software systems. M.Sc. dissertation, School of Computer Science, McGill University (2004)

13. Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic systems.
In Thiagarajan, P.S., ed.: FSTTCS. Volume 1026 of Lecture Notes in Computer Science.,
Springer (1995) 499–513

14. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verifi-
cation of probabilistic systems. In: Proc. 12th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’06). (2006) To appear.

15. Atlee, J.M., Gannon, J.: State-based model checking of event-driven system requirements.
IEEE Transactions on Software Engineering 19(1) (1993) 24–40 Special Issue on Software
for Critical Systems.

16. Huszerl, G., Majzik, I., Pataricza, A., Kosmidis, K., Cin, M.D.: Quantitative analysis of UML
statechart models of dependable systems. Comput. J 45(3) (2002) 260–277

17. Jansen, D.N., Hermanns, H., Katoen, J.P.: A probabilistic extension of uml statecharts: spec-
ification and verification. In Damm, W., Olderog, E.R., eds.: Formal techniques in real-time
and fault-tolerant systems: FTRTFT. Volume 2469 of Lecture Notes in Computer Science.,
Berlin, Germany, Springer (2002) 355–374

18. Jansen, D.N., Hermanns, H.: QoS modelling and analysis with UML-statecharts: the
stocharts approach. SIGMETRICS Performance Evaluation Review 32(4) (2005) 28–33

19. Vijaykumar, N.L., de Carvalho, S.V., de Andrade, V.M.B., Abdurahiman, V.: Introducing
probabilities in statecharts to specify reactive systems for performance analysis. Computers
& OR 33 (2006) 2369–2386

20. Blum, A.M., Goyal, A., Heidelberger, P., Lavenberg, S.S., Nakayama, M.K., Shahabuddin,
P.: Modeling and analysis of system dependability using the system availability estimator.
In: FTCS. (1994) 137–141

21. Bavuso, S., Dugan, J.B., Trivedi, K.S., Rothmann, B., Smith, E.: Analysis of typical fault-
tolerant architectures using HARP. IEEE Transactions on Reliability (1987)

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 574 – 588, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Graphical Approach to Risk Identification, Motivated
by Empirical Investigations

Ida Hogganvik and Ketil Stølen

SINTEF ICT and Department of Informatics, University of Oslo
{iho, kst}@sintef.no

Abstract. We propose a graphical approach to identify, explain and document
security threats and risk scenarios. Security risk analysis can be time consuming
and expensive, hence, it is of great importance that involved parties quickly un-
derstand the risk picture. Risk analysis methods often make use of brainstorm-
ing sessions to identify risks, threats and vulnerabilities. These sessions involve
system users, developers and decision makers. They typically often have com-
pletely different backgrounds and view the system from different perspectives.
To facilitate communication and understanding among them, we have devel-
oped a graphical approach to document and explain the overall security risk pic-
ture. The development of the language and the guidelines for its use have been
based on a combination of empirical investigations and experiences gathered
from utilizing the approach in large scale industrial field trials. The investiga-
tions involved both professionals and students, and each field trial was in the
order of 250 person hours.

1 Introduction

We have developed a graphical approach supporting the identification, communica-
tion and documentation of security threats and risk scenarios. The approach has been
applied in several large industrial field trials and the major decisions regarding its un-
derlying foundation, notation and guidelines are supported by empirical investiga-
tions. Our modeling approach originates from a UML [17] profile [15, 16], developed
as a part of the EU funded research project CORAS (IST-2000-25031) [24]
(http://coras.sourceforge.net). As a result of our work to satisfy the modeling needs in
a security risk analysis, the language and its guidelines have evolved into a more spe-
cialized and refined approach. The language is meant to be used by the analyst during
the security risk analysis, and has different purposes in each phase of the analysis. A
normal risk analysis process often includes five phases: (1) context establishment, (2)
risk identification, (3) risk estimation, (4) risk evaluation and (5) treatment identifica-
tion [2]. In the following we refer to security risk analysis as security analysis. In the
context establishment our language is used to specify the stakeholder(s) of the secu-
rity analysis and their assets in asset diagrams. The purpose is to obtain a precise
definition of what the valuable aspects of the target of analysis are, and which ones
that are more important than others. From empirical investigations [5] and field trials
we know that asset identification and valuation is very difficult, and that mistakes or
inaccuracies made there may jeopardize the value of the whole security analysis.

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 575

During risk identification we use threat diagrams to identify and document how
vulnerabilities make it possible for threats to initiate unwanted incidents and which
assets they affect. The threat diagrams give a clear and easily understandable over-
view of the risk picture and make it easier to see who or what the threat is, how the
threat works (threat scenarios) and which vulnerabilities and assets that are involved.

The threat diagrams are used as input to the risk estimation phase, where unwanted
incidents are assigned likelihood estimates and possible consequences. The likelihood
estimation is often a difficult task, but illustrating the unwanted incidents in the cor-
rect context has proved very helpful in practice.

After the risk estimation the magnitude of each risk can be calculated on the basis
of its likelihood and consequence, and modeled in risk diagrams. The risk diagrams
specify which treats that initiate the different risks and exactly which assets they may
harm. This risk representation is then compared to predefined risk tolerance levels to
decide which ones that need treatments.

In the treatment identification, the threat diagrams that contain the non-tolerated
risks are used as basis for treatment diagrams. In this phase the appropriate treatments
are identified and modeled in treatment diagrams, where they point to the particular
place where they should be implemented (e.g. pointing to a vulnerability). The result-
ing treatment diagrams can be seen as a plan for how to deal with the identified risks.

The contribution of our work is a revised, specialized, graphical language support-
ing risk identification based on structured brainstorming, and a comprehensive guide-
line for its use. Moreover, and in particular, we provide empirical support for the lan-
guage’s underlying, conceptual foundation and the main design decisions.

This paper is structured as follows: Sect. 2 introduces structured brainstorming in
risk analysis. Sect. 3 explains the language’s underlying conceptual foundation and
Sect. 4 gives an example-driven introduction to our approach, including guidelines for
modeling. Sect. 5 describes the major design decisions made during the development
and the empirical investigations supporting these. Sect. 6 discusses the threats to va-
lidity for the empirical results, Sect. 7 presents related work and summarizes the main
conclusions.

2 Structured Brainstorming for Risk Identification

A frequently used technique in security analysis, and in particular in risk identifica-
tion, is so-called structured brainstorming (HazOp-analysis [18] is a kind of structured
brainstorming). It may be understood as a structured “walk-through” of the target of
analysis. The technique is not limited to a specific type of target, but can be used to
assess anything from simple IT systems to large computerized process control sys-
tems or manual maintenance procedures in e.g. nuclear power plants. This does not
mean that exactly the same technique can be applied directly to all kinds of targets, it
has to be adapted to fit the target domain. The main idea of structured brainstorming
is that a group of people with different competences and backgrounds will view the
target from different perspectives and therefore identify more, and possibly other,
risks than individuals or a more heterogeneous group. The input to a brainstorming
session is various kinds of target models (e.g. UML models). The models are assessed
in a stepwise and structured manner under the guidance of the security analysis
leader. The identified risks are documented by an analysis secretary.

576 I. Hogganvik and K. Stølen

Deciding which roles should be present is part of tailoring the brainstorming tech-
nique towards the target in question. In some cases an expert is only participating in
the part of the analysis where his or her expertise is needed. This makes it essential
that the information is simple to communicate and comprehend.

3 The Conceptual Foundation

The first step in developing the language was constructing a conceptual model based
on standardized security risk analysis terminology. We aimed to use the most intuitive
and common interpretations. The conceptual model can be seen as a kind of abstract
syntax for the language, and is shown in Fig. 1 using UML class diagram notation.

Fig. 1. The conceptual model

The conceptual model may be explained as follows: stakeholders are those people
and organizations who may affect, be affected by, or perceive themselves to be af-
fected by, a decision or activity regarding the target of analysis [2]. An asset is some-
thing to which a stakeholder directly assigns value, and hence for which the stake-
holder requires protection [3]. Assets are subject to vulnerabilities, which are
weaknesses which can be exploited by one or more threats [9]. A threat is a potential
cause of an unwanted incident [9]. An unwanted incident [9] is an event that may
harm or reduce the value of assets and is something we want to prevent. A risk is the
chance of something happening that will have an impact upon objectives (assets) [2].
Our model captures this interpretation by defining a risk to consist of an unwanted in-
cident, a likelihood measure and a consequence. The abstract concept “risk”, the more
concrete “unwanted incident”, and their respective relationships to “asset” require
some explanation. In our definition, an unwanted incident that harms more than one
asset gives rise to one unique risk for each asset it harms. This enables us to keep the
consequences for different stakeholders separate, since an asset is always defined with
respect to a single stakeholder. The level of risk is measured by a risk value [2] (e.g.
low, medium, high or other scales) which is based upon the estimated likelihood (a
general description of frequency or probability [2]) for the unwanted incident to hap-
pen and its consequence in terms of damage to an asset. A treatment is the selection
and implementation of appropriate options for dealing with risk [2].

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 577

To validate our model and investigate the understanding of security analysis termi-
nology we conducted an empirical study [5]. The 57 subjects included both students
who had little or no knowledge of security analysis and more experienced profession-
als. We found that many of the terms as used in our conceptual model are well under-
stood, even by people without training in security analysis.

The study showed that human beings are most commonly viewed as threats, fol-
lowed by events (even if they are in fact initiated by a human). To increase the aware-
ness of non-human threats, we decided to specify threat as either human threat and
non-human threat. Our original specialization of frequency into probability and like-
lihood was not satisfactory. Both frequency and probability are measures that can be
covered by likelihood. Likelihood was on the other hand found to be one of the least
understood terms and we therefore decided to include all three concepts. For simplic-
ity we only use “frequency” throughout the rest of the paper. On the question of what
it is most common to treat, the subjects gave priority to vulnerability and thereafter
risk. To make our model suitable for all treatment strategies we associate treatment
with risk. This means that treatments can be directed towards vulnerabilities, threats,
unwanted incidents or combinations of these.

4 Graphical Risk Modeling – An Example Driven Introduction

This section provides an example of a security analysis with guidelines for how and
where the diagrams are made during the process. Fig. 2 gives the syntactical represen-
tation of the concepts from Sect.0, plus initiate (arrow), treatment direction (dashed
arrow), relationship (line), logical gates (and & or) and region (used to structure the
models). The symbols are a revised version of the ones used in Sect. 5.

Fig. 2. The graphical representation of the main concepts

The target of analysis in our example is a web-based application which communi-
cates confidential information between an insurance company and its customers. The
development project is expensive and prestigious to the company, but the governmen-
tal data inspectorate is concerned about the level of privacy of the data provided by
the service.

1 - Context establishment: The purpose of the context establishment is to character-
ize the target of the analysis and its environment. The web application is represented
as a logical region (inspired by [20]) with two independent stakeholders (Fig. 3). The

578 I. Hogganvik and K. Stølen

stakeholders value assets differently: the governmental data inspectorate has
“GDI1.data privacy” as its main asset, while the company management has identified
four assets, ordered according to value as follows: “CM1.company brand & reputa-
tion”, “CM2.data privacy”, “CM3.application availability” and finally
“CM4.application interface usability”.

Fig. 3. Asset diagram

Modeling guideline for asset diagrams:

1. Draw a region that logically or physically represents the target of analysis.
2. Place the assets within the region, numbered according to its importance to the

stakeholder, and with a reference to its stakeholder.
3. Associate the stakeholders with their assets.

2 - Risk identification: In the risk identification phase the security analysis leader
and the brainstorming participants must find answers to questions like: what are you
most concerned about with respect to your assets? (threat scenarios and unwanted in-
cidents), who/what initiates these? (threats), what makes this possible? (vulnerabili-
ties). This information is modeled in threat diagrams. Consider the threat diagram in
Fig. 4. This diagram focuses on network related threat scenarios. The asset “CM4.ap-
plication interface usability” is not harmed by this kind of incidents and therefore left
out. The stakeholders are concerned about the unwanted incidents: “disclosure of
data”, “corruption of data” and “unavailability of application”. Both threats are con-
sidered to cause incidents accidentally and are therefore modeled in the same dia-
gram. We now explain one chain of events from the initiation caused by a threat to the
left, to the impact on an asset to the right1: “IT-infrastructure” may first use “hardware
failure” to make the server crash, and second use the “poor backup solution” to cor-
rupt data and make the application unavailable.

Modeling guideline for threat diagrams:

1. Use the region from the asset diagram and add more regions if useful.
2. Model different kinds of threats in separate diagrams. E.g. deliberate sabotage in

one diagram, mistakes in an other, environmental in a third etc. (classification from
[9]). This makes it easier to generalize over the risks, e.g. “these risks are caused
by deliberate intruders” or “these risks are caused by human errors”.

3. Threats are placed to the left in the diagram.

1 Disregard the frequency and consequence information, this is added later in risk estimation.

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 579

4. Assets are listed to the right, outside the region.
5. Unwanted incidents are placed within the region with relations to assets they im-

pact.
6. Assets that are not harmed by any incidents are removed from the diagram.
7. Add threat scenarios between the threats and the unwanted incidents in the same

order as they occur in real time (i.e. in a logical sequence).
8. Insert the vulnerabilities before the threat scenario or unwanted incident they lead

to. E.g.: “poor backup solution” is placed before the threat scenario “application
database fails to switch to backup solution”.

3-Risk estimation: The threat diagrams are input to the risk estimation where threat
scenarios and unwanted incidents are assigned frequencies and consequences. In Fig. 4
the final frequency for “corruption of data” is based on the frequencies of the two
threat scenarios “application servers malfunctioning” and “application database fails
to switch to backup solution”. We here use the consequence scale: large (L), medium
(M) and small (S). In a full security analysis the scale would be mapped to what the
client considers to be large, medium and small reductions of asset value (e.g. 10%
customer loss, 2 hours unavailability, 10.000$ etc.).

Fig. 4. Threat diagram (after risk estimation)

Modeling guideline for risk estimation:

1. Add frequency estimates to the threat scenarios.
2. Add frequency estimates to the unwanted incidents, based on the threat scenarios.
3. Annotate the unwanted incident-asset relations with consequences.

4 - Risk evaluation: On the basis of the risk estimation we model the resulting risks
with their associated risk values in a risk diagram. Risk diagrams help the stake-
holders to get an overview and evaluate which risks that need treatments. The exam-
ple in Fig. 5 presents the threats and the risks they represent against the two most im-
portant assets in our example (“GDI1.data privacy” and “CM1.company brand &
reputation”). We use a short hand notation where “Disclosure of data” in reality
represents two risks with value = “major” (shown with associations to two assets).

580 I. Hogganvik and K. Stølen

Fig. 5. Risk diagram (for the two most important assets)

Modeling guideline for risk diagrams:
1. Use the threat diagram and annotate all relations between unwanted incidents and

assets with the risk symbol, showing a short risk description and the risk value
(similar risks may be grouped as in the short hand notation shown in Fig. 5).

2. Split the risk diagrams into several diagrams according to risk value or asset im-
portance (show all intolerable risks, all risks for specific assets etc.).

3. Remove threat scenarios and vulnerabilities, but keep the relations between the
threats and the unwanted incidents.

5 - Treatment identification: The threat diagrams are also used as basis for treatment
diagrams and extended with treatment options. The treatments must then be assessed
to see whether they bring the risk value to an acceptable level. This makes it possible
to optimize the treatment strategy according to a cost/benefit analysis. Fig. 6 shows
the risks for the two most important assets. The proposed treatments in our example,
“upgrade server”, “upgrade backup solution” and “limit access to the network”, are
directed toward three vulnerabilities. Since treatments often address vulnerabilities,

Fig. 6. Treatment diagram for: GCI1.data privacy and CM1.company brand & reputation

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 581

one may use the analogy “to close the padlock”, - meaning closing the specific path-
way through the graph.

Modeling guideline for treatment diagrams:
1. Use the threat diagrams as a basis and annotate all arrows from unwanted incidents

to assets with risk icons.
2. If the diagram becomes complex, split it like the risk diagrams.
3. Annotate the diagram with treatments, pointing to where they will be applied.

5 Design Decisions

Designing a language and its guidelines requires many design decisions. In the fol-
lowing we describe our design choices based on experiences from four major field tri-
als and the results from two empirical investigations.

5.1 Field Trial Experiences

The field trials were carried out within the setting of the research project SECURIS
(152839/220). Each security analysis required about 250 person hours from the analy-
sis team and 50-100 hours from the stakeholder. The clients and scopes for the analy-
ses were:

• Vessel classification company: A web based information sharing service between
customer and service provider.

• Telecom company: Mobile access for employees to e-mail, calendar and contacts.
• Energy company: A control and supervisory system for power grid lines.
• Metal production company: A web based control and supervisory system for metal

production.

The participants (the analysis team as well as the representatives of the stakeholders)
were requested to evaluate the use of graphical risk modeling after each session and
their feedback was:

• the use of the graphical models during the analysis made it easier to actively in-
volve the participants and helped ensure an effective communication between the
analysis team and the participants.

• the participants found the notation itself easy to understand and remember. It was
considered to be a good way of visualizing threat scenarios and very suitable for
presentations. According to one of the participants this type of visualization em-
phasizes the “message” or the purpose of the analysis.

• one of the main benefits was how the language helped specifying the relations be-
tween threats and the chain of events they may cause, the various states of the tar-
get, and potential incidents. The modeling method made the participants more con-
scious of the target of analysis and its risks by representing threats and
vulnerabilities more explicitly than “just talking” about them.

• the language provides an opportunity to document cause-consequence relations in a
precise and detailed manner.

582 I. Hogganvik and K. Stølen

The participants emphasized that they need a proper introduction to the notation and
sufficient time to understand the information that is presented to them. One should
limit the amount of information in one diagram, and rather split it according to threat
type, scenario type or asset type. It is also important to strive towards correctness
from the very beginning. This means that the participants must be involved early,
enabling them to adjust the diagram as they find appropriate.

The diagrams capture information gathered during brainstorming sessions and one
of the main concerns of the participants was whether or not the diagrams would be
complete. To help overcome this we recommend utilizing check lists to ensure that all
important aspects are covered. Any changes to the diagrams suggested during the
brainstorming session represent important information. Their rationale should be cap-
tured by the analysis secretary, and the diagrams should be updated real time.

5.2 The Graphical Icons Experiment

Graphical icons are often seen as mere “decoration” just to make diagrams look nicer,
but a major hypothesis in our work is that people unfamiliar with system modeling,
may considerably benefit from carefully designed icons. In particular they may help
the participants in a structured brainstorming to arrive at a common understanding of
the security risk scenarios without wasting too much time. The original UML profile
[15, 16] is characterized by its use of special graphical icons. To validate the effect of
this we conducted an experiment which compared the usefulness of the UML profile
icons compared to standard UML use case icons (Fig. 7) [5].

Fig. 7. The notation with and without special icons

In most of the tasks the group receiving normal UML icons had similar mean score
to the group using profile icons, but when the time pressure increased the subjects
with profile icons managed to complete more tasks than the other group. The positive
effects of using graphical icons in models is also supported by [13]. The icons did on
the other hand not significantly affect the correctness of interpretation of risk scenar-
ios. Nevertheless, we decided to use special graphical icons to help the participants in
a structured brainstorming to quickly get an overview of the risk scenarios.

5.3 Modeling Preferences Experiment

In the already mentioned empirical study of the conceptual foundation we found that
some concepts were difficult to understand. Our hypothesis was that an explicit repre-
sentation of these concepts in the models would mitigate this problem. To select the
best representation we conducted an experiment involving 33 professionals. We used

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 583

Fig. 8. The basic diagram (using the symbols from the previous version of the language)

variations of Fig. 8, which is a simplified version of a real threat diagram, to illustrate
the various options. For a full description of the study we refer to [4].

Representing frequency: To help visualizing which paths that are most likely to be
chosen by a threat, we investigated the effect of using different line types (Fig. 9).
Line type (thick, thin, dashed etc.) has been suggested by [23] to represent aspects of
associations between elements in a graph notation.

Fig. 9. Paths more likely than others in the graph

The result showed that neither of the line types is preferred for this purpose, pos-
sibly because a thick or dashed line does not convey a unique interpretation. During
field trials we have found it more helpful to annotate threat scenarios with frequency
estimates. The unwanted incident frequency is then estimated on the basis of the fre-
quency estimates of the threat scenarios that cause the incident. This has reduced the
need for assigning frequency information to the graph pathways.

Representing risk: The concept “risk” often leads to some confusion due to its ab-
stract nature. We tried to make the risk notion less abstract by decorating the arrows
between the unwanted incidents and the assets they harm with risk representations.

Fig. 10. “F”: one incident, but two risks

584 I. Hogganvik and K. Stølen

The alternatives we tested included “text label and icon in box”, “text label only” and
“association only” (Fig. 10).

The investigation showed that neither of the suggested representations is signifi-
cantly preferred. Based on this we decided to specify risk in separate risk diagrams. In
treatment diagrams, where we need to represent risks in their context, we use a text la-
bel and a risk icon. This alternative received the highest score, although the difference
was not sufficiently large to be statistically significant from the two others.

In risk evaluation and treatment identification it may be useful to specify the mag-
nitude of risks or unwanted incidents. We tested color, size and text label (Fig. 11),
where the two first, according to [23], can be used to visualize magnitude. The result
was clear, the participants preferred the text label version over the two other alterna-
tives. A possible explanation is that a text label has unique interpretation, while size
or color may have many interpretations.

Fig. 11. The magnitude of an unwanted incident

Representing vulnerability: In the original UML profile [15, 16], vulnerabilities
were only represented as attributes of the assets they were associated with. During
field trials we experienced a definite need for representing vulnerabilities explicitly in
the diagrams. We tested the UML profile representation against one that uses a vul-
nerability symbol (Fig. 12). The result showed that the alternative using chain locks as
a vulnerability symbols was significantly preferred.

Fig. 12. Modeling vulnerabilities

The vulnerability symbols are helpful in describing threat scenarios and an excel-
lent support in treatment identification. One of the participants in a field trial actually
pointed to a vulnerability and claimed “we’ve fixed this one now, so you should close
the chain lock”.

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 585

6 The Validity of the Empirical Results

The main threats to validity of the empirical results on which our approach builds, are
summarized in this section. For full details we refer to [4-6].

The investigation of the underlying conceptual foundation was organized as a sur-
vey and the subjects included both master students in informatics and professionals.
Despite their heterogeneous backgrounds, we believe that the results give a pretty
good picture of the opinions of people working with system development in a general
sense. The survey was formulated in natural language which always gives room for
misinterpretations; some questions were discarded from statistical analysis due to this.

The four major field trials have given us a genuine opportunity to make the model-
ing guidelines appropriate for actual and realistic modeling situations. One of the
main challenges we faced was how to optimize the structure of the diagrams. In some
cases it was feasible to structure according to the kind of threat or incident, while in
others we structured according to work processes in the target of analysis. This prob-
lem must be addressed early in the risk analysis process when the client specifies the
acceptable risk level. The other main issue was how to capture changes and comments
that arise during the brainstorming sessions. The solution seems to be modeling “on-
the-fly”. Updating and modifying diagrams real time can be challenging, but with the
appropriate tool-support it can be overcome.

The subjects that participated in the icon experiment were master students in in-
formatics. They had been introduced to the UML profile icons in a lesson focusing on
the principles of risk modeling. This gave the subjects that received profile icons an
advantage, but we believe it was too small to make a real difference.

In the modeling preferences investigation, the various alternatives were tested on a
population with mainly technical background. This kind of background is similar to
the background of most of the participants in our field trials and therefore considered
to be a representative population.

The diagrams we used were a compromise between realistic diagrams and naive
notation-only tests. This is a weakness that is difficult to avoid, and we will therefore
validate our findings by testing them in real threat diagrams in our next field trial.

In general, humans who get involved in a security analysis are rarely familiar with
the concepts or the process used. Concepts that students find intuitive to understand
and model are probably intuitive also to professionals. We therefore believe that our
use of students in two of the three investigations had little effect on the validity of the
results.

7 Conclusions and Related Work

Misuse cases [1, 21, 22] was an important source of inspiration in the development of
the above mentioned UML profile. A misuse case is a kind of UML use case [10]
which characterizes functionality that the system should not allow. The use case nota-
tion is often employed for high level specification of systems and considered to be
one of the easiest understandable notations in UML. A misuse case can be defined as
“a completed sequence of actions which results in loss for the organization or some
specific stakeholder” [22]. To obtain more detailed specifications of the system, the

586 I. Hogganvik and K. Stølen

misuse cases can be further specialized into e.g. sequence- or activity diagrams. There
are a number of security oriented extensions of UML, e.g. UMLSec [11] and Se-
cureUML [14]. These and related approaches have however all been designed to cap-
ture security properties and security aspects at a more detailed level than our lan-
guage. Moreover, their focus is not on brainstorming sessions as in our case.

Fault tree is a tree-notation used in fault tree analysis (FTA) [8]. The top node
represents an unwanted incident, or failure, and the different events that may lead to
the top event are modeled as branches of nodes, with the leaf node as the causing
event. The probability of the top node can be calculated on the basis of the probabili-
ties of the leaf nodes and the logical gates “and” and “or”. Our threat diagrams often
look a bit like fault trees, but may have more than one top node. Computing the top
node probability of a fault tree requires precise quantitative input, which rarely is
available for incidents caused by human errors or common cause failures. Our ap-
proach can model fault trees, but we also allow qualitative likelihood values as input.

Event tree analysis (ETA) [7] focuses on illustrating the consequences of an event
and the probabilities of these. It is often used as an extension of fault trees to create
“cause-consequence” diagrams. Event trees can to a large extent also be simulated in
our notation.

Attack trees [19] aim to provide a formal and methodical way of describing the se-
curity of a system based on the attacks it may be exposed to. The notation uses a tree
structure similar to fault trees, with the attack goal as the top node and different ways
of achieving the goal as leaf nodes. Our approach supports this way of modeling, but
facilitates in addition the specification of the attack initiators (threats) and the harm
caused by the attack (damage to assets).

The Riskit method [12] includes a risk modeling technique that makes it possible
to specify factors that may influence a software development project. It has similari-
ties to our approach, but targets project risks and therefore utilizes different concepts
and definitions and has not the special focus on security risks.

In security risk analysis various types of brainstorming techniques are widely used
to identify risks. The participants use their competence to discover relevant threats,
vulnerabilities and unwanted incidents that the analysis object may be subject to. The
overall idea of brainstorming is that the brainstorming group will identify more risks
together than the same individuals working separately. The participants have exten-
sive knowledge of the target of analysis, but often within different areas. The chal-
lenge is to make them understand and discuss the overall risk picture without being
hampered by misunderstandings and communication problems. Since a brainstorming
session may be exhausting, we need techniques and guidelines that make the session
as efficient and effective as possible. The findings must also be documented in a pre-
cise and comprehensive manner.

We have developed a graphical approach to risk identification to meet these re-
quirements. It captures the complete risk picture, including assets, stakeholders and
how vulnerabilities make security threats able to harm the assets. The graphical nota-
tion is both simple and expressive, and does not require extensive knowledge of mod-
eling. The language originates from a UML profile for risk assessment [15, 16].
Through application in field trials and empirical studies it has evolved towards a more
refined and specialized language. To our knowledge our approach is the only one that

 A Graphical Approach to Risk Identification, Motivated by Empirical Investigations 587

combines system modeling techniques with risk modeling techniques for use in struc-
tured brainstorming within the security domain.

A major presumption for an intuitive and understandable language is the underly-
ing conceptual foundation, which defines the various concepts in the language and
how they relate to each other. We have selected our definitions from well recognized
standards within security and risk analysis [2, 3, 9]. To ensure that the best definitions
of concepts and relations were chosen, we investigated the alternatives empirically.
We found that risk analysis terminology in general is quite well understood. In gen-
eral, those concepts that caused most uncertainty were the concepts that are least used
in daily language. As an example, frequency is less used in the daily language than
consequence and was one of the terms many of the respondents had trouble under-
standing. The subjects tend to care less about the frequency than the consequence of a
risk, even though a high frequency risk with low consequence over time may cost the
same as a large consequence risk.

The language has been utilized in four large industrial field trials. We have experi-
enced that the diagrams facilitate active involvement of the participants in the brain-
storming sessions, and they are very helpful in visualizing the risk picture. According
to the participants, the diagrams explicitly illustrate the threats and vulnerabilities in a
way that makes it easy to see the relations and precisely define the risk consequences.

The notational design decisions are supported by two empirical studies. The first
one investigated the usefulness of special graphical icons contra traditional UML use
case icons. The result showed that the group that received diagrams with special icons
was able to conclude faster. This and similar supporting studies convinced us to use
graphical icons in our language. The second study tested different modeling ap-
proaches on a group of professionals. From this we conclude amongst others that text
labels are preferable over visualization mechanisms like size, color or line type. For
our language this means that we mark a major risk with the text label “major”, rather
than representing it with a large risk icon.

The final language description will include a formal semantics and a more detailed
modeling guideline. The language is currently being implemented in the CORAS’ risk
analysis tool (v3.0) which is planned for release autumn 2006.

Acknowledgments. The research on which this paper reports has partly been funded
by the Research Council of Norway project SECURIS (152839/220). The authors es-
pecially thank Mass Soldal Lund for his valuable input. We also thank the SECURIS
analysis team: Fredrik Seehusen, Bjørnar Solhaug, Iselin Engan, Gyrd Brændeland
and Fredrik Vraalsen.

References

1. Alexander, I., Misuse cases: Use cases with hostile intent. IEEE Software, 2003. 20(1), pp.
58-66.

2. AS/NZS4360, Australian/New Zealand Standard for Risk Management. 2004, Standards
Australia/Standards New Zealand.

3. HB231, Information security risk management guidelines. 2004, Standards Austra-
lia/Standards New Zealand.

588 I. Hogganvik and K. Stølen

4. Hogganvik, I. and K. Stølen, Investigating Preferences in Graphical Risk Modeling (Tech.
report SINTEF A57). SINTEF ICT, 2006. http://heim.ifi.uio.no/~ketils/securis/the-securis-
dissemination.htm.

5. Hogganvik, I. and K. Stølen. On the Comprehension of Security Risk Scenarios. In Proc.
of 13th Int. Workshop on Program Comprehension (IWPC'05). 2005, pp. 115-124.

6. Hogganvik, I. and K. Stølen. Risk Analysis Terminology for IT-systems: does it match in-
tuition? In Proc. of Int. Symposium on Empirical Software Engineering (ISESE'05). 2005,
pp. 13-23.

7. IEC60300-3-9, Event Tree Analysis in Dependability management - Part 3: Application
guide - Section 9: Risk analysis of technological systems. 1995.

8. IEC61025, Fault Tree Analysis (FTA). 1990.
9. ISO/IEC13335, Information technology - Guidelines for management of IT Security. 1996-

2000.
10. Jacobson, I., et al., Object-Oriented Software Engineering: A Use Case Driven Approach.

1992: Addison-Wesley.
11. Jürjens, J., Secure Systems Development with UML. 2005: Springer.
12. Kontio, J., Software Engineering Risk Management: A Method, Improvement Framework,

and Empirical Evaluation. PhD thesis, Dept. of Computer Science and Engineering, Hel-
sinki University of Technology, 2001.

13. Kuzniarz, L., M. Staron, and C. Wohlin. An Empirical Study on Using Stereotypes to Im-
prove Understanding of UML Models. In Proc. of 12th Int. Workshop on Program Com-
prehension (IWPC'04). 2004, pp. 14-23.

14. Lodderstedt, T., D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language
for Model-Driven Security. In Proc. of UML'02. 2002, pp. 426-441.

15. Lund, M.S., et al., UML profile for security assessment (Tech. report STF40 A03066).
SINTEF ICT, 2003.

16. OMG, UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms. 2005, Object Management Group.

17. OMG, The Unified Modeling Language (UML) 2.0. 2004.
18. Redmill, F., M. Chudleigh, and J. Catmur, HAZOP and Software HAZOP. 1999: Wiley.
19. Schneier, B., Attack trees: Modeling security threats. Dr. Dobb's Journal, 1999. 24(12), pp.

21-29.
20. Seehusen, F. and K. Stølen. Graphical specification of dynamic network structure. In

Proc. of 7th Int. Conference on Enterprise Information Systems (ICEIS'05). 2005, pp.
p.203-209.

21. Sindre, G. and A.L. Opdahl. Eliciting Security Requirements by Misuse Cases. In Proc. of
TOOLS-PACIFIC. 2000, pp. 120-131.

22. Sindre, G. and A.L. Opdahl. Templates for Misuse Case Description. In Proc. of Workshop
of Requirements Engineering: Foundation of Software Quality (REFSQ'01). 2001, pp.
125-136.

23. Ware, C., Information Visualization: Perception for Design. 2 ed. 2004: Elsevier.
24. Aagedal, J.Ø., et al. Model-based risk assessment to improve enterprise security. In Proc.

of Enterprise Distributed Object Communication (EDOC'02). 2002, pp. 51-64.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 589 – 603, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Reusable MDA Components: A Testing-for-Trust
Approach

Jean-Marie Mottu1, Benoit Baudry1, and Yves Le Traon2

1 IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
{bbaudry, jmottu}@irisa.fr

2 France Télécom R&D/MAPS/EXA, 2 avenue Pierre Marzin, 22307 Lannion Cedex, France
yves.letraon@francetelecom.com

Abstract. Making model transformations trustable is an obvious target for
model-driven development since they impact on the design process reliability.
Ideally, model transformations should be designed and tested so that they may
be used and reused safely as MDA components. We present a method for build-
ing trustable MDA components. We first define the notion of MDA component
as composed of its specification, one implementation and a set of associated test
cases. The testing-for-trust approach checks the consistency between these three
facets using the mutation analysis. It points out the lack of efficiency of the
tests and the lack of precision of the specification. The mutation analysis thus
gives a rate that evaluates: the level of consistency between the component’s
facets and the level of trust we can have in a component. Relying on this esti-
mation of the component trustability, developers can consciously trade reliabil-
ity for resources.

1 Introduction

MDA (Model Driven Architecture) is a very promising framework to promote high
level reuse for software development. Instead of reusing code, the MDA proposes to
reuse models for software design and to make these models first-class assets. In this
context, models become more than illustrations for documentation, they are assets that
can be manipulated, stored and modified by tools. Model transformations encapsulate
specific techniques to manipulate and create models and they are used all along the
development to introduce different design aspects. These transformations are impor-
tant assets for reuse in MDA that are meant to be deployed in different software de-
velopments and at different times in the development. Thus, they must be analysed,
designed and implemented using sound software engineering techniques to ensure
that they are reused safely.

In this paper, we propose to encapsulate model transformations as components that
are called MDA components. The contribution of this work is to propose a model for
trustable components as well as a methodology to design and implement such
components. Trustworthiness is a general notion which includes security, testability,
maintainability and many other concerns. In this paper, we claim that trust is, in first,
dependent on the quality of the tests in relation with the completeness of the
specification, captured by executable contracts (as defined in design-by-contract [1]).

590 J.-M. Mottu, B. Baudry, and Y. Le Traon

While building MDA components, we consider it as an organic set composed of three
facets: test cases, an implementation and contracts defining its specification. A
trustable component is considered as being “vigilant” [2], in the sense it embeds
contracts accurate enough to detect most of the erroneous states at runtime. Trust is
evaluated using a testing-for-trust process and reflects the consistency between the
specification and the implementation of the component.

This work details this three-facet model for a MDA component and explains how
good test cases can be used to evaluate the trust associated to the component. Two
major concerns are addressed for this study. First, we investigate the use of mutation
analysis to check the consistency between the three facets of a component. This tech-
nique, originally designed to assess the efficiency of test cases, consists in systemati-
cally injecting faults in the program under test. It is then possible to measure how
many faults the test cases or the contracts can detect. The rate of detected faults is
called the mutation score. This technique was originally proposed for procedural
programs and has been adapted to object-oriented programs. Here we study how mu-
tation analysis has to be adapted to evaluate the trust in MDA components. Second,
we discuss the expression of contracts for these components. Since there is no stan-
dard today for the specification or the implementation of model transformations
(QVT, EMF, Kermeta…), this work proposes to establish a taxonomy of contracts.

Section 2 presents the notion of MDA components and the process we propose to
build trustable components. Section 3 details the mutation analysis technique and its
adaptation to the context of model transformation then section 4 details the taxonomy
of contracts for MDA components. Section 5 illustrates the application of the process
step by step on the UML2RDBMS example and provides first experimental results.

2 Trusting MDA Components

In this section, we propose a model for a MDA component that provides a basis on
which a testing-for-trust process can be applied. Then we present this process which
aims at improving the trust one may have in a MDA component by improving the
efficiency of test cases and the accuracy of the specification.

2.1 Building MDA Components with the Triangle View

The proposed model to build trustable MDA components is based on an integrated
design and test approach for software components. It is particularly adapted to a
design-by-contract [1] approach, where the specification is systematically translated
into executable contracts (invariant properties, pre/postconditions of methods). In this
approach, test cases are defined as being an “organic” part of a component: a
component is composed of its specification (documentation, methods signature,
invariant properties, pre/postconditions), one implementation and the test cases
needed for testing it (V&V: Validation and Verification). Fig. 1 illustrates this model
of a component with a triangle representation.

From a methodological point of view, we argue that the trust we have in a compo-
nent depends on the consistency between its three facets. The comparison between
these three facets leads to the improvement of each one. The improvement of each

 Reusable MDA Components: A Testing-for-Trust Approach 591

facet as well of the global consistency is an iterative process. First, a good set of test
cases is generated. Then it is possible to improve the implementation: running the
good test cases allows to detect faults and to fix them. At last the accuracy of con-
tracts can be improved to make them effective as an oracle function for test cases.

Several difficulties arise in running this process. First, test generation since input
data are models for a MDA component. Here, we consider that the test cases are
provided by the tester. Second, the oracle function for a MDA component which can
either be provided by assertions included in the test cases or by contracts. In a design-
by-contract approach, our experience is that most of the decisions are provided by
contracts. The last difficulty is the writing of contracts for a MDA component since
there is no clear definition of what contracts for model transformations should be.

The trust in the component is thus related to the test cases effectiveness and the
contracts “completeness”. We can trust the implementation since we have tested it
with a good test set, and we trust the specification because it is accurate enough to
derive effective contracts as oracle functions.

 Measure
of Trust based

on ConsistencyImplementation

Specification
 Contracts between the client

and the component

V&V

Checking Implementation
against Specification
(e.g. embedded tests)

Fig. 1. Trust based on triangle consistency

2.2 The MDA Trusted Component Process

The process for building trust in a MDA-component consists in three steps as pre-
sented in Fig. 2. The process starts with an initial component that already has its three
facets ready. The goal is then to improve each facet and to check the global consis-
tency between facets. On the right side of the figure, the evolution of the trust we
have in each facet of the triangle view of the MDA component is highlighted.

Step 1- Test cases improvement. It aims at improving the test set using a relevant test
quality criterion. In this paper, we suggest to evaluate this quality using mutation
analysis. We adapt it to evaluate the efficiency of test cases for model transformations
programs, as detailed in section 3. This analysis produces a ratio, which estimates the
fault revealing power of a test set (0 means that the test set does not detect any fault,
and 1 means that all the seeded faults have been detected). We note Qtd this ratio and
section 3 will go in the detail of its computation in the form of a mutation score (MS).

 If this ratio is low when running a mutation analysis, it means that the test set has
to be improved. This can be achieved by adding test cases by hand or by automatic
optimization techniques. Step 1 ends when the quality of the test set reaches a satis-
factory quality (good mutation score).
Step 2- Implementation improvement. This step leads to the correction of the model
transformation program with the efficient test set. Indeed, test cases generated at

592 J.-M. Mottu, B. Baudry, and Y. Le Traon

previous step have a high mutation score and are thus able to detect faults in the
model transformation program. At this stage, the tester has to run these test cases on
the model transformation, and, if some faults are detected, they have to be localized
and fixed. At the end of step 2, the implementation facet is trustable, since its correct-
ness has been validated with efficient test cases.
Step 3- Contracts improvement. It aims at embedding accurate contracts, considered
as the executable part of the specification. The precondition for this step is that the
MDA component has to possess a trustable implementation and efficient test cases.
We propose using the mutation analysis again to estimate the accuracy of contracts in
terms of fault detection rate (i.e. the proportion of faults the contracts actually detect
knowing the test cases provoke a faulty output). It thus estimates the accuracy of
contracts as embedded oracles.

The difference with step 1 is that the fault revealing power of the test data set is
known with the Qtd value. Using contracts as embedded oracles, the new proportion of
detected faults (%detected-faults) is computed. The quality of contracts is checked
w.r.t Qtd. The quality estimated for contracts Qcont is thus defined as:

Qcont = %detected-faults / Qtd.

This can be seen as an estimate of the accuracy of contracts to be a valid oracle for
the test cases. So, when Qcont equals 0, it means that no fault is detected by contracts
and when Qcont equals 1, it means that contracts are able to detect all the faulty out-
puts. So step 3 consists in improving contracts until the expected quality level is
reached. At the end of the process, the contracts are embedded in the MDA compo-
nent and it becomes ‘vigilant’, e.g. contracts have a good probability to dynamically
detect faulty states [2].

When the three steps process ends, we obtain a MDA component with an estimate
of the trust we may have in the test cases, the implementation and the contracts. This
estimate has checked the consistency between test cases and implementation, and then
between test cases, implementation and contracts. In section 3, we detail how the
mutation analysis is adapted to the specific context of model transformation, and how
contracts can be expressed in the particular context of model transformation.

contracts

testImpl.

contracts

testImpl.

contracts

testimpl .

contracts

testImpl.

contracts

testImpl.

contracts

testimpl . test

contracts

Impl. test

contracts

Impl. test

contracts

Impl.

contracts

impl . .

contracts

testimpl

step1 step2 step3
contracts

testImpl.

contracts

testImpl.

contracts

testimpl .

contracts

testImpl.

contracts

testImpl.

contracts

testImpl.

contracts

testimpl .

contracts

testImpl.

contracts

testImpl.

contracts

testimpl .

contracts

testImpl.

contracts

testImpl.

contracts

testImpl.

contracts

testimpl . test

contracts

Impl. test

contracts

Impl. test

contracts

Impl.

contracts

impl . test

contracts

Impl. test

contracts

Impl. test

contracts

Impl.

contracts

Impl. test

contracts

Impl.

contracts

impl . .

contracts

testimpl

step1 step2 step3

Fig. 2. Building a MDA trusted component

3 Mutation Analysis for Model Transformations

Mutation analysis is a testing technique that was first designed to evaluate the effi-
ciency of a test set. It also allows to improve its effectiveness and fault revealing
power. Originally proposed in 1978 [3], mutation analysis consists in creating a set of
faulty versions or mutants of a program with the ultimate goal of designing a test set
that distinguishes the program from all its mutants.

 Reusable MDA Components: A Testing-for-Trust Approach 593

The process is presented in Fig. 3 with the execution of each test case against all
the mutants of the program. A mutant is the program modified by the injection of a
single fault. In practice, faults are modelled as a set of mutation operators where each
operator represents a class of software faults. A mutation operator is applied to the
original program to create each mutant.

An oracle function is used to determine if the failure is detected. This function
compares each mutant’s result with the result of the program P; the latter being con-
sidered as correct. If one result differs, it means that one test case exhibits the fault;
the mutant is killed. The mutant stays alive if no test case detects the injected fault.
Sometimes, a mutant can never be killed, it is an equivalent mutant and it has to be
suppressed from the set of mutants.

A test set is adequate if it distinguishes the original program from all its non-
equivalent mutants. Otherwise, a mutation score is associated to the test set to
measure its effectiveness in terms of percentage of the revealed non-equivalent
mutants. A benefit of the mutation score is that even if no error is found, it still
measures how well the software has been tested giving information about the test set
quality.

MutationScore = #KilledMutants / (#Mutants - #EquivalentMutants)

If the score is insufficient, we have to improve the test set, which could be done
with new test cases or actual test set improvement.

The value of mutation analysis is based on one assumption: if the test set can kill
all the mutants, then this test set is able to detect real involuntary errors.

Mutant

P

Test
 Set

 suppress the equivalent mutants improve the test set

mutant

results

results

 of P

 sufficient

no

 yes

insert the mutation

 operators

mutants

 killed

mutants

 alive

 oracle

Fig. 3. Mutation process

The relevance of mutation analysis depends on the relevance of the mutants, which
itself strongly depends on the relevance of the mutation operators. Classical mutation
analysis is related to a set of faults specified by mutation operators which define
syntactic patterns which are identified in the program in order to inject a fault. For
example, classical mutation operators include arithmetic operator replacement (like
replacing a ‘+’ with ‘-‘). Some operators dedicated to OO programs, and especially to
Java, have been introduced by Ma et al. in [4] (method redefinition, inherited
attributes etc). These faults are related to the notions of classes, generalization, and
polymorphism. These operators take into consideration specificities related to the
semantics of OO languages, but remain simple faults which can be introduced by a
syntactic analysis of the program. To execute mutation analysis with these operators,
the faults are inserted systematically everywhere the pattern is found in the code.

594 J.-M. Mottu, B. Baudry, and Y. Le Traon

In the next section, we explain why we do not want to transpose this classical mu-
tation process to the model oriented development.

3.1 Mutation Analysis in a Model Development Context

All the classical and OO operators can be applied to model transformation programs,
but their relevance to this particular context is limited due to the following reasons:

• Mutant significance: seeded faults are far from the specific faults a transformation
programmer may do if he is competent. A transformation programmer will make
not only classical programming faults but also specific faults related to the model
transformation. He may forget some particular cases (e.g. forget to deal with the
case of multiple inheritances in an input model), manipulate the wrong model ele-
ments etc. A wrong model transformation will differ from the correct one by com-
plicated modifications in the transformation program.

• Implementation language independency: Today there are lots of model transforma-
tion languages with their own specificities and which are very heterogeneous (ob-
ject oriented, declarative, functional, mixed). Thus we can not take advantage of a
transformation language's syntax. To be independent from a given implementation
language is an important issue. That leads us to choose to focus on the semantic
part of the transformation instead of the syntactic one imposed by a language. So
we introduce semantic operators, they have to reflect the type of fault which may
appear. That is studied next section (3.2).

name: EString
Named

balance: EInt
type: EString

Account
«persistent»

Client
age: EInt

«persistent»

1

owner

*

accounts

name: EString
Named

balance: EInt
type: EString

Account
«persistent»

Client
age: EInt

«persistent»

1

owner

*

accounts

name: EString
Named

balance: EInt
type: EString

Account
«persistent»

Client
age: EInt

«persistent»

1

owner

*

accounts

name: EString
Named

balance: EInt
type: EString

Account
«persistent»

Client
age: EInt

«persistent»

1

owner

*

accounts

name: EString

ModelElement

Relationship

GeneralizationGeneralizableElement

Stereotype

Classifier

Class

Feature

StructuralFeature

Attribute

name: EString

ModelUml

AssociationEnd

Association

*stereotype

*

extendedElement

*

elements

*

specialization

1

parent
*

generalization

1

child

*

feature

1owner

*

typedFeature

1

type

*

association

1

participant

*

specifiedEnd

*

specification

2..*

connection

name: EString

ModelElement

Relationship

GeneralizationGeneralizableElement

Stereotype

Classifier

Class

Feature

StructuralFeature

Attribute

name: EString

ModelUml

AssociationEnd

Association

*stereotype

name: EString

ModelElement

Relationship

GeneralizationGeneralizableElement

Stereotype

Classifier

Class

Feature

StructuralFeature

Attribute

name: EString

ModelUml

AssociationEnd

Association

*stereotype

*

extendedElement

*

elements

*

specialization

1

parent
*

generalization

1

child

*

feature

1owner

*

typedFeature

1

type

*

association

1

participant

*

specifiedEnd

*

specification

2..*

connection

Model transformationModel transformation

name : EString

Table
name : EString

type: EString

Column

description: EString

Database
1

table

*

columns

0..1tableKey
1 key

*

elements

name : EString

Table
name : EString

type: EString

Column

description: EString

Database
1

table

*

columns

0..1tableKey
1 key

*

elements

name : EString

Table
name : EString

type: EString

Column

description: EString

Database
1

table

*

columns

0..1tableKey
1 key

*

elements

name : EString

Table
name : EString

type: EString

Column

description: EString

Database
1

table

*

columns

0..1tableKey
1 key

*

elements

specifies

input MM
describes

input M

input MM
describes

input M

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

Account

name
EString

type
EString

balance
EInt

Client

name
EString

age
EInt

RDBMSmodel: Parameter2RDBMSmodel: Parameter2

direction = output

OCLexpression: pre

direction = input

OCLexpression: preOCLexpression: pre

direction = input

OCLexpression: pre OCLexpression: post

direction = input

OCLexpression: post

direction = input

OCLexpression: post

direction = input

OCLexpression: post

direction = input

UMLmodel : Parameter1UMLmodel : Parameter1

direction = input

T : TransformationTransformation : T

Langage : l

output MM

output M

output MM
describes

output M

output MM

output M

output MM
describes

output M

Fig. 4. Model transformation process

Classical mutation operators (object oriented or not) are still useful, to check code
or predicate coverage, for example. However they depend on the language which is
used in the implementation, thus they have to be completed by injecting faults which
make sense, in terms of erroneous model transformation. These new operators that we
propose try to capture specific faults that take into account the semantics of a particu-
lar type of program: model transformation. Such mutation operators are called seman-
tic operators.

 Reusable MDA Components: A Testing-for-Trust Approach 595

We need to analyze the activities involved in the development of model transfor-
mations (Fig. 4) which may be fault-prone. The mutants produced by the mutation
operator insertions has to preserve the conformity towards the metamodels involved
in the transformation; they must be able to process the input models (depending on
their metamodels) and must not create output models that do not conform to output
metamodels. Thus mutation operators must be directly connected with the metamodel
notion.

3.2 Semantic Faults for Model Transformations Activities

The operators introduced have to be defined based on an abstract view of the trans-
formation program, by answering that question: which type of fault could be done
during a model transformation implementation? For example, a transformation goes
all over the input model to find the elements to be transformed, a fault can consist in
the navigation of the wrong association in the metamodel, or in selecting the wrong
elements in a collection. During a transformation, output model elements have to be
created; a fault can consist in creating elements with the wrong type or wrong initiali-
zation. The analysis of these possible faults for a model transformation leads to dis-
tinguish 4 abstract operations linked to the main treatments composing a model trans-
formation:

- navigation: the model is navigated thanks to the relations defined on its in-
put/output metamodels, and a set of elements is obtained.

- filtering: after a navigation, a set of elements is available, but a treatment may be
applied only on a subset of this set. The selection of this subset is done according
to a filtering property.

- output model creation: output model elements are created from extracted ele-
ments.

- input model modification: when the output model is a modification of the input
model, elements are created, deleted or modified.

These operations define a very abstract specification of transformations, which
highlights the fault-prone steps of programming a model transformation. However,
we believe they explore the most frequent model manipulations for transformations.

The decomposition of a model transformation with these fault-prone operations
provides an abstract view useful to inject faults. We define mutation operators which
are applied by injecting faulty navigation/filtering/creation/modification operations.

3.3 Example of Two Mutation Operators Dedicated to Model Transformation

For sake of conciseness, only two mutation operators are detailed. We present more
operators in [5]. The example UML2RDBMS is a transformation which creates a set
of tables (database) from the persistent classes of a UML diagram.

3.3.1 Mutation Operators Related to the Filtering
Filtering manipulates collections to select only the elements useful for the trans-
formation. In a general way, a filter may be considered as a guard on a collection,

596 J.-M. Mottu, B. Baudry, and Y. Le Traon

depending on specific criteria. Two types of filtering are considered. First, instances
of a given class may be selected in function of their properties (attributes, methods,
relations). That’s the property filtering. The second one can select some instances
among a collection of instances of generic classes. That’s the type filtering.

Collection filtering change with perturbation (CFCP): This operator aims at modi-
fying an existing filtering, by influencing its parameters. One criterion could be a
property of a class or the type of a class; this operator will disturb this criterion.

 In our transformation UML2RDBMS, this operator generates a mutant which fil-
ters the non “persistent” classes instead of the “persistent” one. In both cases, the
filtering acts on a collection of instances of the same type. Then it is viable because
the rest of the transformation will not be influenced.

Filtering depending on the type of the classes could also be disturbed. A
transformation could act on a collection of the generic class E. The instances in this
collection are of type E, or its children classes (F and G for example). If a filtering on
this collection selects only the instances of F, this operator creates two mutants: one
selects the instances of G and the other the instances of E. All these classes share the
same inherited properties. Then the fault injected by this operator will not be
discovered. Even if a class redefines a property, the programmer should not detect the
fault.

Collection filtering change with deletion (CFCD): This operator deletes a filter on a
collection; the mutant returns the collection it was supposed to filter. This operator
leads to the same cases than the CFCP operator, which justifies its relevance.

3.3.2 Operators Implementation with a Language Not Devoted to the MDE, Java
We wrote the entire transformation using Eclipse Modeling Framework (EMF). The
sample we are interested in is:

ELists cls = getClasses(modelUse);
Iterator itCls = cls.iterator();
while (itCls.hasNext()){
 Class c = (Class)(itCls.next());
 if (!c.is_persistent) cls.remove(c); }//while
createTables(cls);

Here, the filtering (on the collection cls) is implemented from line 2 to 5. If we ap-
ply the CFCP operator, a mutant is generated with the code:

ELists cls = getClasses(modelUse);
Iterator itCls = cls.iterator();
while (itCls.hasNext()){
 Class c = (Class)(itCls.next());
 if (c.is_persistent) cls.remove(c); }//while //mutant without !
createTables(cls);

If we apply the CFCD operator, a mutant is generated with the code:
ELists cls = getClasses(modelUse);
createTables(cls);

 Reusable MDA Components: A Testing-for-Trust Approach 597

If the CFCP operator modifies only one statement, the CFCD affects a larger part
of the program. This illustrates the fact that we need operators that are more than
syntactic changes.

4 Contracts as Embedded Oracles

Embedded oracles – predicates for the fault detection decision – can either be provided
by assertions included in the test cases or by executable contracts. Contracts are ex-
pressed at specification level and translated into executable properties which are
checked at execution runs of the transformation. Today, there is no standard to express
contracts for model transformations or to define the specification of a transformation.
In the following, we define two levels of contracts w.r.t. the classification of [6]:

Basic contracts: The first level, basic, or syntactic, contracts, is required simply to
make the system work. Interface definition languages, as well as typed object-based
or object-oriented languages, let the component designer specifies the operations a
component can perform, the input and output parameters each component requires,
and the possible exceptions that might be raised during operation. Applied to MDA
components, the input/output metamodels describe the “types” of the manipulated
data. They are parts of the specification: the input/output models must be conformant
to their respective metamodels. While for a classical procedure, a programmer can
declare a variable as being an integer instead of a float, it is usual to consider that a
model transformation takes a model as input not conformed to a whole metamodel but
to one of its sub-part. For example, the UML2RDBMS transformation is restricted to
the parts of the UML metamodel which describe what classes and their relations are.
Thus contracts will check the conformance to this restricted metamodel that we called
effective. Finally, we have contracts on the input models (basic precondition
contracts) and on the resulting models (basic postcondition contracts).

Behavioral semantic contracts: The second level, behavioral and semantic contracts,
improves the level of confidence in the execution context for the specific model
transformation. Because the UML2RDBMS input metamodel does not define
precisely that the input model must include at least a class with at least one attribute,
the user can only guess this fact. So, specific properties can be attached to the input
domain of the transformation, which play the role of preconditions specific to the
transformation. In classical programming, a programmer can write that the character
variable should only be equal to ‘a’ or ‘b’ for example. So, if the effective metamodel
describes the “type” of an input/output model, the precondition can express properties
which must be true only for the given transformation. Three categories of contracts
can be expressed:

- domain contracts (or precondition) are properties specifying the input domain more
precisely than a simple metamodel,

- range contracts (or postconditions) are specific properties on the output models,
- domain/range contracts (or postconditions) express properties linking the input and

output models).

In a design-by-contract approach, our experience is that most of the oracle verdicts
are provided by contracts derived from the specification. The fact that the contracts of

598 J.-M. Mottu, B. Baudry, and Y. Le Traon

components are inaccurate to detect a fault exercised by the test case reveals a lack of
precision in the specification. The specification should be refined and new contracts
added. The trust in the component is thus related to the test set efficiency and the
contracts “completeness”. We can trust the implementation since we have tested it
with a good test set, and we trust the specification because it is precise enough to
derive accurate contracts as oracle functions.

5 The Testing for Trust of a MDA Component Illustrated

This section illustrates the three steps to improve the trustability of a MDA component
using an example taken from the UML2RDBMS transformation implemented in Java.
Mutation is applied on a particular method of the transformation (createColumns)
and the improvement of the test set and the contracts to detect the mutants is
illustrated. The createColumns, given below, takes a class and a RDBMS table as a
parameter and adds one column in the table for each attribute of the class. The method
is called recursively to add columns that correspond to inherited attribute.

private static Table createColumns(Class classUse, Table tableUse) {
Iterator itClass = classUse.getFeature().iterator();
while(itClass.hasNext()){
 metaUML.Attribute attributeUsed=(metaUML.Attribute)itClass.next();
 Column newColumn = MetaRDBMSFactory.eINSTANCE.createColumn();
 newColumn.setName(attributeUsed.getName());
 newColumn.setType(attributeUsed.getType().getName());
 tableUse.getColumns().add(newColumn);
}//while
Iterator itGeneralization = classUse.getGeneralization().iterator();
if(itGeneralization.hasNext()){
 tableUse=createColumns((Class)
 ((Generalization)itGeneralization.next()).getParent(), tableUse);
}//if
return tableUse;

}//method createColumns

5.1 Test Set Improvement

The first step of the process consists in evaluating the quality of the test set. Mutation
analysis allows computing a mutation score that evaluates the proportion of simple
errors the test set can detect. If this score is not acceptable, meaning that the test cases
do not detect enough injected errors, the test set must be improved.

For example, let us consider the following excerpt of the createColumn method:

private static Table createColumns(Class classUse, Table tableUse) {

………

Iterator itGeneralization = classUse.getGeneralization().iterator();
if(itGeneralization.hasNext()){
 tableUse=createColumns((Class)
 ((Generalization)itGeneralization.next()).getParent(),tableUse);
}//if

return tableUse;

}//method createColumns

 Reusable MDA Components: A Testing-for-Trust Approach 599

The CFCP operator can modify the condition in the “if” statement to create the fol-
lowing mutant:
private static Table createColumns(Class classUse, Table tableUse) {

………
Iterator itGeneralization = classUse.getGeneralization().iterator();
if(! itGeneralization.hasNext()){
 tableUse=createColumns((Class)
 ((Generalization)itGeneralization.next()).getParent(),tableUse);
}//if
return tableUse;

}//method createColumns

To kill this mutant, it is necessary to add a test case which produces different out-
puts between the mutant and original version. We need an input model with a class
that has a super class with at least one attribute. Several models may be generated,
with simple or multiple inheritance. For example let us consider a model called
“Model 1” that contains a class A which inherits from two classes B and C (Fig. 5).
So, applying this analysis to the whole set of mutants forces the creation of new test
cases (input models) which exercise the model transformation program more effi-
ciently than the simple test set provided by the tester.

B C

« persistent » A

att2 : int att3 : int

att1 : int

Fig. 5. Model 1

5.2 Implementation Improvement

When efficient test cases (according to the mutation analysis) have been produced,
they are executed against the implementation to detect errors in the program. For
example, when running the transformation with the model 1, an error is detected: the
produced table contains only two columns named att1 and att2, it does not contain the
column called att3. The error is due to the fact that, the transformation only considers
one super class when it looks for attributes from super classes to add new columns in
a table being build. The correct version of the program is given below (the “if” is
replaced by a “while”: all the super classes are navigated instead of only one):

private static Table createColumns(Class classUse, Table tableUse) {

………
Iterator itGener = classUse.getGeneralization(). iterator();
while(itGener.hasNext())
{
 tableUse=createColumns((Class)
 ((Generalization)itGener.next()).getParent(),tableUse);}//while
return tableUse;

}//method createColumns

600 J.-M. Mottu, B. Baudry, and Y. Le Traon

If several errors are detected and fixed after running the test cases, a new mutation
analysis is ran with the corrected program since the mutants will be slightly different
from the ones generated in previous analysis. Once efficient test cases are available
and the program has been fixed, it is possible to improve the contracts.

5.3 Contracts Improvements

While for the step 1 (test set improvement) the difference between the outputs of the
original and the mutant programs was used to check the efficiency of the test set, step
3 is based only on the use of the mutants previously killed to evaluate the contracts. A
mutant that is not killed at step 3 using contracts while at least one test case killed it at
step 1 (using the difference of outputs as oracle) corresponds to a weakness of the
contracts which should be improved.

For example, let us consider the following contract for the UML2RDBMS trans-
formation. This contract is expressed in the context of the global metamodel for the
transformation: the union of UML and RDBMS metamodels. It is necessary to link
the input and output metamodels to express constraints between elements of the input
(UML) and output (RDBMS) models.

Contract: context MetaUmlRdbms inv:
 self.modelUml.elements->select(e|e.oclIsTypeOf(Class)
 and e.stereotype->exists(s|s.name='persistent'))
 ->collect(ec|ec.oclAsType (Class))
 ->forAll(cp|self.database.elements
 ->one(t|t.name=cp.name and
 cp.feature->select(f|f.oclIsTypeOf(Attribute))
 ->collect(fa|fa.oclAsType (Attribute))
 ->forAll(a|t.columns->one(tc|tc.name=a.name))
 and t.columns.size()=cp.feature
 ->select(f|f.oclIsTypeOf(Attribute)).size()))

Let us also consider a possible mutant for the createColumns method where the
initialization of the type of the created column has been deleted:

Mutant:
private static Table createColumns(Class classUse, Table tableUse) {
 Iterator itClass = classUse.getFeature().iterator();
 while(itClass.hasNext()){
 metaUML.Attribute attributeUsed=(metaUML.Attribute)itClass.next();
 Column newColumn = MetaRDBMSFactory.eINSTANCE.createColumn();
 newColumn.setName(attributeUsed.getName());
 tableUse.getColumns().add(newColumn);}//while
 ………
}//method createColumns

When running the test cases generated previously, the faulty part of the mutant pro-
gram is executed (this mutant is killed with mutation analysis). However, when run-
ning the test cases using the considered contract as the oracle function, the mutant is
not killed. Looking at this contract, it appears that a particular property has not been
expressed that prevents it from killing this particular mutant. A more complete con-
tract is given below (it adds a property that checks the type of the columns):

 Reusable MDA Components: A Testing-for-Trust Approach 601

context MetaUmlRdbms inv:
self.modelUml.elements->select(e|e.oclIsTypeOf(Class) and
 e.stereotype->exists(s|s.name='persistent'))
 ->collect(ec|ec.oclAsType (Class))
 ->forAll(cp|self.database.elements
 ->one(t|t.name=cp.name and
 cp.feature->select(f|f.oclIsTypeOf(Attribute))
 ->collect(fa|fa.oclAsType (Attribute))
 ->forAll(a|t.columns->one(tc|tc.name=a.name
 and tc.type=a.type.name))
 and t.columns.size()=cp.feature
 ->select(f|f.oclIsTypeOf(Attribute)).size()))

Table 1. Mutation scores with contracts and different mutation operators

 MS % Range contract % D/R 0 % D/R 1 % D/R 2 % D/R 3 % D/R %
classic 91,7 64,6 74,0 83,3 88,5 91,7 91,7
model 89,1 67,4 58,7 67,4 71,7 78,3 87,0
total 90,8 65,5 69,0 78,2 83,1 87,3 90,1

5.4 Results

Table 1 gives results for several mutation analyses on the UML2RDBMS example.
The three lines in the table correspond to different types of mutation operators: “clas-
sic” corresponds to classical mutation operators (mutants were obtained using MuJava
mutation tool [7]), “model” corresponds to mutation operators dedicated to model
transformation and “total” is the combination of both types of operators. The analyses
were run with 96 classical mutants and 46 model-specific mutants. The first column
(MS= Qtd) corresponds to the mutation score using the behavior difference as an ora-
cle (it estimates the quality of test set Qtd). The following columns present the quality
Qcont of contracts. The second column concerns only Range contracts (check that the
result conforms to the output metamodel). Columns 3 to 6 give the results with Do-
main/Range (D/R) contracts at 4 successive levels of improvement when applying the
step 3 of the design-for-trust process. Last column is the final score obtained with
both Range and improved D/R contracts. This first experiment shows that the range
contracts allow detecting 60-70% of the mutants killed by the test set. However, to
reach a higher score, D/R contracts are needed in complement to Range contracts. The
combination of both allows reaching a Qcont of 90%. Roughly, it means that embedded
oracles have a high probability to detect a faulty result: the MDA component is thus
robust and ‘vigilant’. These first results have to be validated with other experiments.

6 Related Works

The notion of MDA component has recently appeared as a necessary feature for a suc-
cessful deployment of MDA. In [8], this type of component is defined as “a packaging
unit for any artifact used or produced within an MDA-related process”. This paper in-
troduces several concepts and entities that are present in a MDA context and they give
several examples of MDA components. If they present model transformations as the

602 J.-M. Mottu, B. Baudry, and Y. Le Traon

most important component, they also consider metamodels, promoters, and consistency
checkers as MDA components. This concept of MDA component may thus be used in a
wider meaning than the restricted but also more precise definition we propose in this
paper. In [9], Fondement and al. also propose to use MDE components to answer meth-
odological needs. They analyze what are the different available technologies to improve
reuse and define assets that can automate a model-driven methodology. They consider,
package dependency, profiling, model transformation and metamodelling and show that
they all have serious limitations to allow a real component oriented MDE. As for [8],
this work uses a larger definition of MDA component as ours, however and they only
give clues of what could be done to actually design MDA components. In this paper, we
focus on a specific aspect of MDE, the model transformation to define MDA compo-
nent and propose a trustability assessment.

Concerning the particular techniques necessary to build trustable components,
there are few related works. These techniques are: specification of contracts for a
transformation, test generation and mutation analysis. In [10], Cariou et al. study the
applicability of OCL to express contracts to specify a model transformation. Other
works propose to express rules that declare the behavior of the transformation, but
most of these techniques are declarative implementation of the transformation and not
a specification from which the implementation is derived.

There are also few works about model transformation testing. In [11], Lin et al.,
identify all the core challenges for model transformation testing, and propose a
framework that relates the different activities. In [12], Küster considers rule-based
transformations and addresses the problem of the validation of the rules that define
the model transformation, i.e. syntactic correctness and termination of the set of rules.
In [13], we looked at the problem of test data generation for model transformations
and proposed to adapt partition testing to define test criteria to cover the input meta-
model (that describes the input domain for a transformation).

At last, mutation technique has been widely studied to evaluate the test sets for im-
perative and object-oriented programming but, as far as we know, has not been stud-
ied to validate tests or contracts for model transformation, except in our work [5]. In
[14], mutation analysis is studied in a UML context. The idea is to propose a taxon-
omy of faults when designing UML class diagrams. The work presented in this paper
focuses on the specific faults related to model transformation and not on the way
models may be faulty.

7 Conclusion

The presented work detailed a process to help programmers/developers building trust
in a model transformation encapsulated into a MDA component. This method, based
on test qualification, also leads to contracts improvement. For a given MDA compo-
nent, we propose to estimate the consistency between contracts, implementation and
tests using mutation analysis as the main qualification technique. The process to im-
prove the trustability of MDA components is incremental:

1. improving the test set by analyzing their efficiency using a mutation analysis,
2. improving the implementation, thanks to the previously evaluated test set,

 Reusable MDA Components: A Testing-for-Trust Approach 603

3. improving the contracts by measuring their accuracy as embedded oracles, know-
ing that test cases are efficient to provoke a faulty execution of the model trans-
formation program.

Test set, implementation and contracts improvements are guided by the fact that
we know which faults are injected during mutation.

References

1. Meyer, B., Object-oriented software construction. 1992: Prentice Hall. 1254.
2. Le Traon, Y., B. Baudry, and J.-M. Jézéquel, Design by Contract to Improve Software

Vigilance. IEEE Transactions on Software Enginnering, 2006.
3. DeMillo, R., R. Lipton, and F. Sayward, Hints on Test Data Selection : Help For The Prac-

ticing Programmer. IEEE Computer, 1978. 11(4): p. 34 - 41.
4. Ma, Y.-S., Y.-R. Kwon, and A.J. Offutt. Inter-Class Mutation Operators for Java. in Pro-

ceedings of ISSRE'02 (Int. Symposium on Software Reliability Engineering). Annapolis,
MD, USA: IEEE Computer Society Press, Los Alamitos, CA, USA. 2002.

5. Mottu, J.-M., B. Baudry, and Y. Le Traon. Mutation Analysis Testing for Model Trans-
formations. in Proceedings of ECMDA-FA 2006. Bilbao, Spain. 2006.

6. Beugnard, A., J.-M. Jézéquel, N. Plouzeau, and D. Watkins, Making components contract
aware. IEEE Computer, 1999. 13(7).

7. Ma, Y.-S., A.J. Offutt, and Y.-R. Kwon, MuJava : An Automated Class Mutation System.
Software Testing, Verification and Reliability, 2005.

8. Bézivin, J., S. Gérard, P.-A. Muller, and L. Rioux. MDA Components: Challenges and
Opportunities. in Proceedings of Metamodelling for MDA. York, England. 2003.

9. Fondement, F. and R. Silaghi. Defining Model Driven Engineering Processes. in Proceed-
ings of WISME. Lisbon, Portugal. 2004.

10. Cariou, E., R. Marvie, L. Seinturier, and L. Duchien. OCL for the Specification of Model
Transformation Contracts. in Proceedings of Workshop OCL and Model Driven Engineer-
ing. Lisbon, Portugual. 2004.

11. Lin, Y., J. Zhang, and J. Gray, A Testing Framework for Model Transformations, in
Model-Driven Software Development - Research and Practice in Software Engineering.
2005, Springer.

12. Küster, J.M. Systematic Validation of Model Transformations. in Proceedings of
WiSME'04 (associated to UML'04). Lisbon, Portugal. 2004.

13. Fleurey, F., J. Steel, and B. Baudry. Validation in Model-Driven Engineering: Testing
Model Transformations. in Proceedings of MoDeVa. Rennes, France. 2004.

14. Trung, D.-T., S. Ghosh, F. Robert, B. Baudry, and F. Fleurey. A Taxonomy of Faults for
UML Designs. in Proceedings of 2nd MoDeVa workshop - Model design and Validation,
in conjunction with MoDELS05. Montego Bay, Jamaica. 2005.

Using Smalltalk as a Reflective Executable
Meta-language

Stéphane Ducasse1,2 and Tudor Gı̂rba1

1 Software Composition Group, University of Bern
www.iam.unibe.ch/∼scg

2 Language and Software Evolution – LISTIC, Université de Savoie
www.listic.univ-savoie.fr

Abstract. Object-oriented meta-languages such as MOF or EMOF are often
used to specify domain specific languages. However, these meta-languages lack
the ability to describe behavior or operational semantics. Several approaches
have used a subset of Java mixed with OCL as executable meta-languages. In
this paper, we report our experience of using Smalltalk as an executable meta-
language. We validated this approach in incrementally building over the last
decade, Moose, a meta-described reengineering environment. The reflective capa-
bilities of Smalltalk support a uniform way of letting the developer focus on his
tasks while at the same time allowing him to meta-describe his domain model.
The advantage of our approach is that the developer uses the same tools and en-
vironment he uses for his regular tasks.

Keywords: meta behavior description, reflective language, Smalltalk.

1 Introduction

Object-oriented meta-languages such as MOF [OMG97], EMOF [OMG04] or ECore
[BSM+03] are often used to describe domain specific language meta-models. However,
such object-oriented meta-languages only support the description of structural entities
and their relationships. They do not have support for the definition of behavior, and, as
such, they cannot be used to specify the operational semantics of meta-models [MFJ05].

Attempts such as the UML Virtual Machine [RFBL+01] failed similarly to capture
the specification of operations at the meta level. Adaptive Object Models [RTJ05] used
the Type-Object design pattern and workflow to describe at meta-level the structure and
behavior of business models [YJ02]. Other approaches have used ECA rules to describe
the behavior of the meta-level [DT98]. Recently, Xactium [CESW04] proposed a simple
object-oriented model and imperative OCL to model state and behavior at the meta-
level in an executable form. Xion [MSFB05] was an extension of OCL with imperative
semantics to support the definition of action and behavior in web-modeling context.
More recently, Kermeta was introduced as a meta-language that is based on a subset of
Java and integrate OCL-like expressions [MFJ05].

In the late nineties we started to build a reengineering environment [DDL99,NDG05,
DGLD05] and we faced the need to be able to describe not only the structure at the
meta-level but also the behavior. After evaluating the different alternatives that were

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 604–618, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Smalltalk as a Reflective Executable Meta-language 605

offered to us at that time, we decided to use Smalltalk. In this paper, we report on
our experience of using Smalltalk as a meta-language to specify MOF structure and
behavior in an uniform way.

In the next section we list the challenges we faced when building our reengineering
environment emphasizing the need for an executable meta-description. In Section 3 we
briefly describe Smalltalk and its reflective capabilities. Section 4 details our approach
of integrating MOF in Smalltalk, and shows how we used the approach in the context
of Moose. In Section 5 we evaluate the approach, and we conclude in Section 6.

2 The Need of Executable Meta-language: The Moose Experience

Starting in 1996, our main research effort was concentrated on language design and
reengineering object-oriented legacy systems [DD99b]. Since then we incrementally
developed Moose, a reengineering environment [DL05, NDG05]. In this process, we
felt the need to meta describe our environment to enable us to be more efficient building
new tools for our reengineering research. Using meta-modeling was just a means to
introduce more flexibility and extensibility in our tools and not a research topic on its
own. Nowadays, Moose uses meta-descriptions to support automatic storage, browsing
or annotations of models. The context had practical impact on our solution. We describe
here the main constraints we faced so that the reader can assess our solution.

Not disrupting our developers. The goal of Moose is to enable other developers, mainly
researchers or consultants, to develop new source code analysis, source code visual-
izations, metrics . . . These researchers, while fluent in object-oriented programming,
should not be dealing with the details of the meta-descriptions: the environment should
let them express their ideas and require as less as possible for the meta-descriptions.
Also, the developers that want to extend the environment should be able to do so with-
out having to learn yet another language or formalisms.

The implications are the following ones. We do not want to use any generative tech-
niques that would hamper developers to use their favorite environment. In particular,
string manipulation and other such kind of low-level operations should not be used, be-
cause of breaking the object-oriented metaphor. The same environment should be used
to program the base language and the meta one. In this way, the navigation, versioning
tools, code refactorings, code browsers can be used at all levels. In particular, the devel-
opers should be able to use the same debugging tools and incremental hot recompilation
(e.g., editing and recompiling in the debugger) since this is one of the cornerstone of
fast development in Smalltalk. Possibly the same paradigm should be used at the base
and meta-level.

Even if our solution is influenced by this specific context, we believe that it presents
interesting results to enable executable meta-models in practical settings. It is the recent
publications on executable meta-languages Xion [MSFB05], Kermeta [MFJ05], Xac-
tium [CESW04] and our successful work in building our reengineering environment
that convinced us that our approach is worth being reported to the modeling commu-
nity.

606 S. Ducasse and T. Gı̂rba

2.1 A First Analysis

In this section we discuss the reasons why we need an executable meta-language.

Why meta-data description languages are not enough? As already mentioned by
[MFJ05], MOF defines operations, but not their implementation counterparts, which
have to be described in text. The following example is excerpted from the MOF 2.0
Core Specification. The definition of the isInstance operation of the EMOF class Type
(section 12.2.3 page 34) is given as follow:

Operation isInstance(element : Element) : Boolean
/*Returns true if the element is an instance of this type or a subclass of this type.

Returns false if the element is null*/

The description is informal and cannot be executed. Meta-data description languages
do not support the definition of a simple behavior such as the MOFType isInstance
behavior. In Moose, the MOFType class defines the method isInstance as follow:

MOFType>>isInstance: element
”Returns true if the element is an instance of this type or a subclass of this type.
Returns false if the element is null”

ˆ element isNil
ifTrue: [false]
ifFalse: [element metaClass == self

or: [element metaClass allSuperclasses includes: self]]

The caret sign ˆ is a return statement, and ifTrue:ifFalse: is the Smalltalk if-then-else
construct. In our approach, Smalltalk is used to specify the meta-model behavior: MOF
meta-model entity behavior is plain executable code. We did not choose Action Se-
mantics [MTAL98] as an executable meta language for the following reasons: Action
Semantics did not exist when we started, it is defined for UML models, and it is too
generic for our audience and constraints.

Customizable Executable Meta-Language. In the Moose environment any entity (e.g.,
a program element), is described by an instance of MOFClass. The description in-
cludes the way the entity should be loaded from files, saved, how it should be navigated
. . . Moose also allows for a developer to describe precisely how to specify the resolu-
tion of undefined references. For example, the developer is free to define the logic for
creating a stub1 creation which can be complex and dependent of the domain. The code
below shows that the class FamixClass which represents the class concept in a language
independent way for our analysis is in fact described by a MOFClass instance named
Class [DDL99]. What is important is that the end-user developer can specify specific
domain actions at the meta-model level: here the optimize: method specification defines
the way stub entities may be created when code models are extracted by code analyzers
or model loaders.

1 A stub is shell-entity that is creating to represent an entity that is not reified in our model: when
an access to a variable that is not extracted from the source code, we create a stub variable.

Using Smalltalk as a Reflective Executable Meta-language 607

FAMIXClass>>mofDescription
ˆ MOFClass new

addSuperclass: self superclass mofDescription
name: #Class;
optimize: [:entity | (entity belongsTo isNamespace)

ifTrue: [entity belongsTo addClass: entity]];
addAttribute: (MOFAttribute new

name: #isAbstract;
...

booleanType).
....

2.2 New Language or Not?

Defining a new language is always a challenging (and exciting) moment as we control
the features that will influence our future expression possibilities. However, develop-
ping a new language also raises practical problems such as the language performance,
memory consumption, the development of libraries or development tools and the cost
in teaching new developers.

Our goal was not to define a new meta-language. We wanted to improve our reengi-
neering environment by making it more flexible and extensible, while in the same time,
we wanted to let our developers program in an environment in which they were comfort-
able and efficient. We favored the practical issues, and chose to use the same language
(i.e., Smalltalk) for both describing the meta-model and the meta-meta-model.

In this section we described our practical constraints, and how we came to the con-
clusion that Smalltalk is the solution for our problem. To let the reader better understand
the detail, we briefly describe in the next section the key characteristics of the Smalltalk
language and its meta-model. In the subsequent section we present the architecture we
chose to integrate a MOF-based architecture inside the Smalltalk one.

3 Smalltalk in a Nutshell

While Smalltalk may seem to be an old language to a certain audience, its uniformity,
simplicity and elegance make it still an innovative language. For example, Smalltalk
iterators have influenced OCL statements (e.g., select, collect). The recent introduction
of built-in queriable declarative annotations make it a powerful language for meta de-
scriptions since we can annotate methods and query such meta-descriptions from within
the language.

The Smalltalk object model is a subset of the one of Java [GR83]. In Smalltalk every-
thing is an object and objects communicate exclusively via message passing (method
invocation). This is applied uniformly in the sense that message passing is preferred to
new language constructs. For example, select: is a method defined in Collection, rather
than being a language construct.

Objects are instances of classes. All instance variables are private to the object2 and
all methods are public. There is single inheritance between classes, classes are objects

2 Contrary to Java and C++ where private is class-based i.e., two objects of the same classes can
directly access their private fields.

608 S. Ducasse and T. Gı̂rba

Node
name
accept: aPacket
send: aPacket

Workstation
originate: aPacket
accept: aPacket

Node class
new
withName: aString

Workstation class

:Workstation

instance of

instance of

instance of

Fig. 1. The class Workstation is instance of the metaclass Workstation class

too. A class is instance of a metaclass which has this class as its sole instance. Class
methods are simply methods of the metaclasses and follow all the previous rules. For
example, in the figure below, the class Workstation is an instance of the metaclass Work-
station class.

The complete system is written in itself, therefore can be queried and manipulated
within itself allowing powerful introspective and reflective facilities [Riv96].

Query meta-language. Because of its reflective capabilities, Smalltalk can be easily
used as a query meta-language on it own structure. For example, the following expres-
sions query the methods defined locally, all the methods, and all the instances of the
class Set.

Set selectors
returns the method names defined locally

Set allSelectors size
returns the number of methods locally and inherited by Set

Set allInstances
returns all the instances of the class Set in the system

OCL like iterators. Smalltalk offers high level iterators such as collect:, select:, reject:,
includes:, do:, do:separatedBy:, occurencesOf:, and more interestingly the definition of
new iterators is open and simple. The iterators are passed closures to be evaluated. For
example, [:each |each even] is equivalent with (lambda (each) (even each)), or with
(each|each->even()) in OCL.

#(1 2 3 4) collect: [:each | each even]
returns: #(false true false true)

#(1 2 3 4) select: [:each | each even]
returns: #(2 4)

Using Smalltalk as a Reflective Executable Meta-language 609

| string |
string := ’’
#(1 2 3)

do: [:each | string := string, each printString]
separatedBy: [string := string, ’-’].

string.
returns the string ’1-2-3’

Declarative built-in meta descriptions. Since several years, several Smalltalk imple-
mentations introduced built-in declarative annotations, called Pragmas. Pragmas are
pure annotations without any behavior influence, attached to the method definitions.
These annotations can be queried from the language which makes them useful as declar-
ative registration mechanisms.

The following example shows how an application can define at the same time a
method and several menu items that will invoke such a method. In our example, the
method openFileBrowser is defined in class VisualLauncher and it consists of the last
line that open the FileBrowser application. Then two annotations between < > are used
to declare in this specific case that such a method can be invoked from the menu bar
using the browse menu item and from the Launcher tool bar by clicking on the icon (see
the Figure 2).

VisualLauncher>>openFileBrowser
<menuItem: ’File Browser’ icon: #fileBrowser menu: #(#toolBar)>
<menuItem: ’File Browser’ icon: #fileBrowser shortcut: #F2 menu: #(#menuBar file)>

FileBrowser open

An annotation is defined within a method body and in addition it should first be
declared so that the compiler can verify that the correctness of the annotations. Be-
low we give the query example that returns a collection with the annotations named
menuItem:icon:menu: defined in the system. An annotation knows the relevant meta-
information about its use such as the method and class in which it is declared.

Pragmas allNamed: #menuItem:icon:menu:

File Browser

Fig. 2. The File Browser can be invoked both from the menu and from the toolbar due to the two
Pragmas

610 S. Ducasse and T. Gı̂rba

Class Extension Mechanism. Contrary to Java or C++, in Smalltalk as well as in
Objective-C, we can package a method in a different package than the one the class
belongs to. For example, in the example above, the class VisualLauncher is defined in
one package, while the openFileBrowser is defined in another package named Tools-File
Browser. As a result, this method is available on the class VisualLauncher, and conse-
quently appears in the menu, only when the Tools-File Browser package is loaded.

This mechanism, called class extension, lets the developer add methods to classes
that did not provide the expected behavior. Inheritance is not a solution to the problem
that class extension solves since clients may still refer to the original class. In our ex-
ample, extending the VisualLauncher via subclassing would not work since the menu
can be extended by different clients, and we still want to open the VisualLauncher to
see what tools are available [BDN05]. C# recently introduced static class extensions to
improve the extensibility of the applications written with this language.

4 Integrating MOF in Smalltalk and Moose

Smalltalk being a reflective language (i.e., supporting both introspection and interces-
sion [BGW93]), it already includes a causally connected meta-description of its own
run-time and structure. To introduce a fourth layer 3, we used the architecture shown in

FAMIXClass
name
methods
...

instance of

MOFClass
name
attributes
...

MOFAttribute
name
...

:MOFClass
name = Class
...

instance of

class Point {
...
}

described by

:FAMIXClass
name = Point
...

representd by

System

Model

Meta-Model

Meta-Meta-Model

:MOFAttribute
name = isAbtract
...

instance of

Fig. 3. Mapping Meta-Descriptions to Smalltalk

3 We started in early 1997 with an entity relationship meta-meta-model then since 2003 we
replaced it by a MOF-based one.

Using Smalltalk as a Reflective Executable Meta-language 611

Figure 3. In the example, the Java class Point is represented as an instance of the FAMIX-
Class [DD99a]. The FAMIXClass is described by the instances of the class MOFAttribute
and MOFClass.

Such an architecture is not new and can be seen as a validation of the nowadays
well-known distinction between two conceptually different kinds of instance-of rela-
tionships: (i) a traditional and implementation driven one where an instance is an in-
stance of its type, and (ii) a representation one where an instance is described by an-
other entity [BG01]. Atkinson and Kühne named these two forms: form vs. contents or
linguistic and logical [AK05] [AK01]4.

4.1 Describing Smalltalk Classes with MOF

Because Smalltalk classes are objects we can attach the MOF description to the class
objects. One possibility of providing the descriptions are like in the code below.

FAMIXClass class>>mofDescription
ˆ MOFClass new

superClass: self superclass mofDescription;
name: #Class;
...
addAttribute: (MOFAttribute new

name: #isAbstract;
loadMethod: #setAbstract:;
saveMethod: #getAbstract;
booleanType)

In this example, we show an excerpt of the mofDescription method attached to the
FAMIXClass class. The method returns a MOFClass with the name Class. Attached to
the MOFClass are several attributes. For example, isAbstract is an MOFAttribute. Par-
ticular to our implementation is that we did not use MOF, but an extension of MOF.
The reason for it, is that we needed to attach executability to the descriptions as we
show in the previous section. For example, for the isAbstract attribute we added infor-
mation of which methods should be used to read or store the attribute in an instance of
FAMIXClass.

As shown by the previous example, the method mofDescription is a class method of
FAMIXClass. In Smalltalk, the class and the instance methods are clearly separated, both
in the language and in the IDE user interface. Usually, the regular programmer spends
most of the time programming on the instance side. Hence, having the mofDescription
on the class side is rather distant from the actual focus of the programmer. That is why,
we provided another way to express meta-descriptions using Pragmas. Below we give
an example of how we use the Pragmas to attach the numberOfMethods metric as a MO-
FAttribute to the description of FAMIXClass. The developer only has to write the regular
method in the model class and how he defines a property. This illustrates how the base

4 In 1997, the distinction between the implementation and the representation was not clear nor
described in the literature. Hence, our architecture was not influenced by existing readings,
and therefore it acts as a confirmation of the related work.

612 S. Ducasse and T. Gı̂rba

code is annotated with a meta-description and also how the meta-description behavior
can be specified by the end-user programmer. Note that we call numberOfMethods a
property, and not an attribute, as the reverse engineer thinks in terms of entities and
properties, rather then classes and attributes.

FAMIXClass>>numberOfMethods
<property: #NOM longName: ’Number of methods’>
ˆself methods size

We fill our MOF repository by querying the existing annotations. The below code
shows how we compute the MOF descriptions for all the entities defined as subclass of
AbstractEntity. The method traverses all the subclasses and for each of it, it initializes
the description and then it queries all the defined Pragmas and transforms them into
MOF annotations.

AbstractEntity class>>initializeAllMofDescriptions
self withAllSubclasses do: [:each | each registerMofPackage].
self withAllSubclasses do: [:each |

each initializeMofDescription.
each attachPragmasToMOFDescription]

4.2 Building Meta-aware Tools

Research in reverse engineering is about creating new ways of representing software.
As the representation is dictated by the meta-model, we needed the meta-model to be
extensible. This is not a problem per se, but in the same time we needed to be able to
browse the results and also interact with other tools via external formats. As a conse-
quence we built several generic tools that would cope with the extensions.

To be able to communicate with third parties tools we provided generic import/export.
We started with supporting the CDIF format and later we also implemented the support
for XMI [TDD00]. The generic engine depends only on the meta-description of the
meta-model. That is, the only thing the programmer has to do is to build his meta-
model, and describe the storable attributes. Based on this, the objects in the model can
be serialized in either CDIF or XMI.

The act of analyzing can be decomposed in several generic atomic actions: (i) intro-
spection - given an entity, what are its attributes, (ii) selection - given a collection of
entities, which are the entities that obey a certain rule, (iii) navigation - given an entity,
what are the nearby objects, and (iv) presentation - given a collection of entities, what is
the order of the entities. In the same time, an important factor in reverse engineering re-
search is the exposure to the data. That is why we implemented generic tools to address
the four points above while being independent on the type of data. Again, we accom-
plished this by making the tools dependent only on the meta-descriptions [DGLD05].

Because of the extension possibilities, Moose enabled several directions of research
in reverse engineering. As a result, several techniques have been implemented to deal
with the diversity of data, techniques which are orthogonal to the type of data. As a
consequence, we have implemented a mechanism for integrating these techniques. Our
solution was to extend MOF with other types of annotations. One such an annotation

Using Smalltalk as a Reflective Executable Meta-language 613

property

MOFClass

MOFAttribute
computationBlock
saveMethod
loadMethod

MOFAction
actionBlock

MOFExpression
expression

*

*

*

entitiy

menu

expression

Fig. 4. We extended MOF with new entities and new methods to hook in the execution. The
Moose Browser is a generic tool based on the meta-descriptions.

is the MOFAction that a tool can perform on an entity. Based on this annotation we
can build a menu, and different tools can register themselves to the context they can
handle.

Figure 4 shows the different extensions we performed on MOF as well as one ap-
plication in building a generic browser. We added the information about loading and
saving an attribute, and we added the possibility of hooking in a computation block that
would be executed if the attribute is not already computed for a given entity. We also
added two new classes for Action and Expression. The Action represents a particular ac-
tion that can be triggered on a certain type of entity, while the Expression is a boolean
query that shows whether an entity obeys the rule or not.

Figure 4 also shows how the generic browser of Moose uses the meta descriptions.
The mapping between the different parts of the browser and the meta-descriptions are
denoted with arrows that also show how the meta-descriptions are seen by the user. For
example, by selecting an entity we can trigger its menu which is composed of actions. In
the figure, we selected a FAMIXClass and in its menu we have a CodeCrawler submenu.
One visualization defined in CodeCrawler is the Class Blueprint, and it can be applied
on any class through the contextual menu [DL05]. The code below shows the method

614 S. Ducasse and T. Gı̂rba

that CodeCrawler uses to extend the FAMIXClass to spawn the Class Blueprint. Note
that the below method is packaged in CodeCrawler, and not in Moose where FAMIX-
Class is defined. Like this, we can trigger the menu action only when CodeCrawler is
loaded.

FAMIXClass>>openClassBlueprint

<action: ’Class Blueprint’ category: ’CodeCrawler’>
CodeCrawler openClassBlueprintOn: self

CodeCrawler is a generic visualization tool based on a graph model [LD05]. The
main technique implemented by CodeCrawler is called polymetric views which maps
on the nodes different measurements. As Moose provides the description of the mea-
surements computable on the entities, CodeCrawler offers an interactive tool for the
user to set the mapping between the measurements and the visualization properties.

4.3 Using Meta-descriptions for Generating Meta-models

While our approach is not MOF-compliant, it still holds the good property that we can
query and manipulate the meta-description and run-time of the model and programs
themselves. Indeed the fact that Smalltalk is reflective makes it possible to query the
run-time or structural representation of the language itself and to modify it in a causally
connected way [Riv96]. While we favored a code centric approach, we also believe in
generative ones when appropriate. Moose supports the generation of meta-described
meta-models from MOF description: from a MOF description, the system can generate
classes representing new models and their associated descriptions. However, while the
generation of initializers, accessors and other structural navigation facilities is trivial
(and ressemble to the work on the UML virtual machine [RFBL+01]), the behavior is
expressed as plain Smalltalk methods.

As such this domain generation can be seen as a simple model transformation. Tools
such as VAN [G0̂5] which enables the definition of temporal, history analyses, are based
on the transformation of models: starting with the structural model we can build the
historical meta-model [GD06]. In this case too, we describe the transformation itself as
Smalltalk code: we can query the models entities and manipulate them to generate new
entities [Pol05].

5 Evaluation

Our approach takes the best of the object-oriented programming and meta-modeling
worlds and uses it in a practical setup. One the one hand, we continue to use only one
paradigm and environment. This helps our developers to develop their own applications
or to extend our environment. They do not have to learn a new language and they stay
within their known environment. On the other hand, we provide a meta-described exten-
sible environment in which meta-interpreters can deliver their power. Using Smalltalk
as a meta-modeling language provided us with several advantages:

Using Smalltalk as a Reflective Executable Meta-language 615

– Executability – We obtained a meta-model that is executable and that can be ex-
tended using the Smalltalk language constructs (declarative annotations, class ex-
tensions).

– Good performance – Because we use a professional Smalltalk environment, we can
focus on our main activities and we do not have to worry about performance that
building our own language would have implied.

– Tools support – We can use the same toolsets (debugger, version management,
refactorings) to develop both our domain and our meta-domain.

– Extensibility – Using class extensions we can package our meta-model extensions
with the domain entities they describe. But we can also package new tools orthogo-
nally to the base domain and even meta-model. For example, we can package all the
navigation facilities independently of the rest even if the code is attach conceptually
to the core entities.

However, our approach is not completely MOF compliant since the MOF does not
describe execution. It does not follow a traditional MDA decomposition. As such, model
transformation of behavior may be more difficult than if we would have been using
a model to describe the behavior as suggested by Action Semantics [MTAL98], or a
dedicated language such as Kermeta [MFJ05]. However since Smalltalk also offers a
reflective API, we developed some simple meta-model transformations using Smalltalk.

The common objection against using a programming language as an executable
meta language can be summarized by saying that languages provide too much or too
few. Muller et al. said: “Existing programming languages already provide a precise
operational semantic for action specifications. Unfortunately, these languages provide
both too much (e.g., interfaces), and too few (they lack concepts available in MOF,
such as associations, enumerations, opposite properties, multiplicities, derived proper-
ties...).” [MFJ05]

However, like other mainstream object-oriented programming language, Smalltalk
does not support associations, derived entities, opposite properties directly in the
language, and because of that the developer may be facing implementation decisions
instead of meta-modeling ones. From the language point of view, the Smalltalk meta-
model is minimalist. We believe that given our constraint of use a programming lan-
guage to describe both our base domain and the meta-description, the choice of
Smalltalk was adequate and offered a good and practical solution to our problems.

6 Conclusion and Future Works

To make our reengineering environment more flexible and extensible, we introduced a
meta-description and used this meta-description to build extensible reengineering tools.
We used Smalltalk as an executable meta-language, and we simplified our code and
its logic by factoring knowledge at the meta-level. Our developers could focus on their
tasks without having to learn new languages and new tools that would not be casually
connected with the objects they manipulate.

We show how a four layer architecture can be introduced in a reflective language, val-
idating the distinction between instantiation and representation links in meta-modeling

616 S. Ducasse and T. Gı̂rba

tools architectures [BG01,AK05]. We believe that our approach can be applied in other
mainstream programming languages, and we can imagine doing the same using EMF.
Still to gain the maximum from this approach we believe that being able to annotate
methods, to query these annotations, and to package methods independently from the
classes they belong are important factors.

Our solution influenced our reengineering environment in several ways:

– The decision to use Smalltalk as a meta-language makes it possible to use all the
tools provided by the development environment: browser, debugger, versioning,
testing, refactoring, etc. Moreover it eases the entry level as developers do not need
to learn another language.

– Having first class meta-description as ordinary objects also helps manipulating the
meta-model, and building flexible tools based on it. For example, we can develop
meta-interpreters as simple methods or objects.

– Having a meta-description greatly enhances the possibilities to refactor and change
existing code, since a change to the meta-model only needs to be performed at one
single place, without requiring to change the generic tools (e.g., import/export).

By letting the end-user programmer naturally annotate his base code with meta-
descriptions, we narrow the gap between what are traditionally seen as complex and
separated tasks. We coined this approach literate meta-programming [Knu92].

In the future, we plan to describe the Smalltalk meta-entities with MOF to get a fully
MOF-compliant Smalltalk. For example, the class CompiledMethod could be described
to represent the fact that a method can be abstract and that it has parameters. We would
then have a completely executable MOF meta-language.

Acknowledgment

We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Recast: Evolution of Object-Oriented Applications (SNF 2000–
061655.00/1)” and the French National Research Agency (ANR) for the project “Cook:
Rearchitecting object-oriented applications”(2005-2008).

References

[AK01] Colin Atkinson and Thomas Kuehne. The essence of multilevel metamodeling. In
Proceedings of the UML Conference, number 2185 in LNCS, pages 19–33, 2001.

[AK05] Colin Atkinson and Thomas Kuehne. Concepts for comparing modeling tool ar-
chitecture. In Proceedings of the UML Conference, number 3713 in LNCS, pages
19–33, 2005.

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Control-
ling the scope of change in Java. In Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05), pages 177–189, New York,
NY, USA, 2005. ACM Press.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the OMG/MDA
framework. In Proceedings Automated Software Engineering (ASE 2001), pages
273–282, Los Alamitos CA, 2001. IEEE Computer Society.

Using Smalltalk as a Reflective Executable Meta-language 617

[BGW93] D.G. Bobrow, R.P. Gabriel, and J.L. White. Clos in context — the shape of the de-
sign. In A. Paepcke, editor, Object-Oriented Programming: the CLOS perspective,
pages 29–61. MIT Press, 1993.

[BSM+03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy
Grose. Eclipse Modeling Framework. Addison Wesley Professional, 2003.

[CESW04] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied metamod-
elling: A foundation for language driven development, 2004.

[DD99a] Serge Demeyer and Stéphane Ducasse. Metrics, do they really help? In Jacques
Malenfant, editor, Proceedings LMO ’99 (Languages et Modèles à Objets), pages
69–82. HERMES Science Publications, Paris, 1999.

[DD99b] Stéphane Ducasse and Serge Demeyer, editors. The FAMOOS Object-Oriented
Reengineering Handbook. University of Bern, October 1999.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse en-
gineering platform combining metrics and program visualization. In Francoise
Balmas, Mike Blaha, and Spencer Rugaber, editors, Proceedings WCRE ’99 (6th
Working Conference on Reverse Engineering). IEEE, October 1999.

[DGLD05] Stéphane Ducasse, Tudor Gı̂rba, Michele Lanza, and Serge Demeyer. Moose:
a collaborative and extensible reengineering environment. In Tools for Software
Maintenance and Reengineering, RCOST / Software Technology Series, pages
55–71. Franco Angeli, Milano, 2005.

[DL05] Stéphane Ducasse and Michele Lanza. The class blueprint: Visually supporting the
understanding of classes. IEEE Transactions on Software Engineering, 31(1):75–
90, January 2005.

[DT98] Martine Devos and Michel Tilman. Incremental development of a repository-
based framework supporting organizational inquiry and learning. In OOPSLA’98
Practioner’s Report, 1998.

[G0̂5] Tudor Gı̂rba. Modeling History to Understand Software Evolution. PhD thesis,
University of Berne, Berne, November 2005.

[GD06] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evo-
lution. International Journal on Software Maintenance: Research and Practice
(JSME), 18:207–236, 2006.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and its Imple-
mentation. Addison Wesley, Reading, Mass., May 1983.

[Knu92] Donald E. Knuth. Literate Programming. Stanford, California: Center for the
Study of Language and Information, 1992.

[LD05] Michele Lanza and Stéphane Ducasse. Codecrawler–an extensible and language
independent 2d and 3d software visualization tool. In Tools for Software Main-
tenance and Reengineering, RCOST / Software Technology Series, pages 74–94.
Franco Angeli, Milano, 2005.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving exe-
cutability into object-oriented meta-languages. In S. Kent L. Briand, editor, Pro-
ceedings of MODELS/UML’2005, volume 3713 of LNCS, pages 264–278, Mon-
tego Bay, Jamaica, October 2005. Springer.

[MSFB05] Pierre-Alain Muller, Philippe Studer, Frédérick Fondement, and Jean Bézivin. In-
dependent web application modeling and development with netsilon. Software and
System Modeling, 4(4):424–442, November 2005.

[MTAL98] Stephen J. Mellor, Steve Tockey, Rodolphe Arthaud, and Philippe LeBlanc.
Software-platform-independent, precise action specifications for UML. In Jean
Bézivin and Pierre-Alain Muller, editors, The Unified Modeling Language,
UML’98 - Beyond the Notation. First International Workshop, Mulhouse, France,
June 1998, number 1618 in LNCS, pages 281–286, 1998.

618 S. Ducasse and T. Gı̂rba

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose: an
agile reengineering environment. In Proceedings of the European Software En-
gineering Conference (ESEC/FSE 2005), pages 1–10, New York NY, 2005. ACM
Press. Invited paper.

[OMG97] Object Management Group. Meta object facility (MOF) specification. Technical
Report ad/97-08-14, Object Management Group, September 1997.

[OMG04] Object Management Group. Meta object facility (MOF) 2.0 core final adopted
specification. Technical report, Object Management Group, 2004.

[Pol05] Damien Pollet. Une architecture pour les transformations de modèles et la re-
structuration de modèles UML. PhD thesis, Université de Rennes 1, June 2005.

[RFBL+01] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, , and Nosa Omorogbe. The
architecture of a uml virtual machine. In Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA ’01), pages 327–341,
2001.

[Riv96] Fred Rivard. Pour un lien d’instanciation dynamique dans les langages à classes.
In JFLA96. INRIA — collection didactique, January 1996.

[RTJ05] Dirk Riehle, Michel Tilman, and Ralph Johnson. Dynamic object model. In Pat-
tern Languages of Program Design 5. Addison-Wesley, 2005.

[TDD00] Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. FAMIX: Exchange ex-
periences with CDIF and XMI. In Proceedings of the ICSE 2000 Workshop on
Standard Exchange Format (WoSEF 2000), June 2000.

[YJ02] Joseph W. Yoder and Ralph Johnson. The adaptive object model architectural
style. In Proceeding of The Working IEEE/IFIP Conference on Software Architec-
ture 2002 (WICSA3 ’02), August 2002.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 619 – 630, 2006.
© Springer-Verlag Berlin Heidelberg 2006

UML Model Interchange in Heterogeneous Tool
Environments: An Analysis of Adoptions of XMI 2

Björn Lundell1, Brian Lings1, Anna Persson1, and Anders Mattsson2

1 University of Skövde, P.O. Box 408, SE-541 28 SKÖVDE, Sweden
{bjorn.lundell, brian.lings, anna.persson}@his.se

2 Combitech AB, P.O. Box 1017, SE-551 11 JÖNKÖPING, Sweden
anders.mattsson@combitech.se

Abstract. Heterogeneous tool environments are often a reality and it is there-
fore increasingly important to be able to interchange model information be-
tween tools. This is not only true concerning the natural heterogeneity resulting
from distributed development contexts; the need may also arise in a tool chain
and for legacy reasons. Without this possibility, there is significantly reduced
flexibility, and a danger of tool lock-in. In this study we explore the use of the
standardised interchange format XMI for supporting interchange of model in-
formation between heterogeneous tools. We report on the current state regard-
ing XMI version 2.0 and greater. We find that there seems to be better support
for model interchange using XMI 2.0 than for earlier versions of XMI, and
speculate that one contributing factor may be the recent integrations of the
Eclipse platform in UML modelling tools.

1 Introduction

With increased globalisation, many companies are challenged with development and
maintenance of UML models in life-cycle activities which are geographically distrib-
uted. Heterogeneous tool environments are often a reality and it is therefore increas-
ingly important to be able to interchange model information between tools.

In this paper we explore adoptions of the XMI standard interchange format [1] in
UML modelling tools with a view to investigating the current practicality of support-
ing heterogeneous tool environments. Model interchange is important for two reasons.
Firstly, it is widely acknowledged that systems outlive tools (see, for example, [2]
[3]). Secondly, companies often use more than one tool in their development envi-
ronments, perhaps at different stages in the tool chain, as tools have different
strengths and weaknesses. Reliable export of models in XMI could offer the prospect
of an invigorated tool market, with niche suppliers offering specialised functionality
knowing that lock-in is not a factor in potential purchasing. Other suppliers may be
offering specialised solutions such as MDD transformers and model validation tools.

Here, we report on a study to identify combinations of modelling tools, supporting
the latest versions of UML (2.0) and XMI (2.1), which are able to successfully inter-
change UML class diagrams between them. Our specific interest is in tool lock-in:
whether it is possible to maintain models as assets even under tool change. This is a

620 B. Lundell et al.

particular problem for the many development companies that already have to maintain
models for systems originally designed using now obsolete tools. Some companies
have found it such a problem to import their existing models into a newly adopted
tool that many man months are expended in manually re-entering those models.

2 XMI

Over the years, many standardised interchange technologies have been proposed.
Current interest centres on OMG’s XML Metadata Interchange format (XMI) [1]. In
theory, any model within a tool can be exported in XMI format and imported into a
different tool also supporting XMI.

In principle, XMI allows for the interchange of models between modelling tools in
distributed and heterogeneous environments, and eases the problem of tool interop-
erability [4], [5], [6], [7], [8], [9], [10], [11], [12]. As most major UML modelling
tools currently offer model interchange using XMI [13], [14], tool lock-in should not
be a problem.

Although XMI can be used for the interchange of models in any modelling
notation, according to OMG [1] one of the main purposes of XMI is to serve as an
interchange format for UML models. The interchange of XMI-based UML models
between tools is realized by the export and import of XMI documents. An XMI docu-
ment consists of two parts: an XML document of tagged elements, and a Document
Type Definition (DTD) – or schema in XMI version 2.0 – specifying the legal tags
and defining structure.

Exporting a model into an XMI document is done by traversing the model and
building an XML tree according to a DTD or schema. The XML tree is then written to
a document. Other tools can recreate the model by parsing the resulting XMI docu-
ment. An overview of how an XMI document for an UML model is generated is
shown in Figure 1.

Fig. 1. Generation of XMI document for a UML model (from [14])

As an initial goal OMG stated that “In principle, a tool needs only to be able to
save and load the data it uses in XMI format in order to inter-operate with other XMI
capable tools” [4]. From this description tool integration using XMI-based model
interchange may seem to be simple. However, a number of reports have suggested
that in practice having a tool with XMI support is no guarantee for a working inter-
change, something we wished to explore in a case study. For example, [15] encoun-
tered some problems with XMI-based model interchange between heterogeneous
UML modelling tools. One problem was incompatibility between tools that support

 UML Model Interchange in Heterogeneous Tool Environments 621

different versions of XMI. Today, there are several versions of XMI recognised by
OMG: versions 1.0, 1.1, 1.2, 2.0, 2.0.1 and 2.1 [4], [5], [6], [7], [8], [9], [10], and
different tool producers have adopted different versions of XMI. What should be a
straightforward export/import situation instead requires extra transformations, be-
tween versions of XMI.

XMI-based model interchange may also be troublesome between tools supporting
the same version of XMI, as discussed by [14], [15], [16], [17]. According to [15],
one reason for this is that different versions of UML are supported by different tools
and a tool supporting an earlier version of UML may have problems importing XMI
documents exported from a tool supporting a later version of UML. Furthermore, it is
also noted in [15] that the implementation of XMI export was done in a variety of
different ways amongst tools. According to [16]: “Most modelling tools support an
XMI dialect that more or less complies with the XMI specification”. This is similarly
noted in [14]: “Some incompatibilities between XMI written by different tools still
exist” since two tools using the same version of XMI and UML do not necessary
generate the same XMI representation of a certain model [14], and in [17], where
several differences were detected between the tags used by tools both purportedly
using XMI 1.1.

This is partly accounted for by the changing situation with respect to XMI DTDs.
As noted by [14], the official DTD for UML 1.1 is included in the XMI 1.1 specifica-
tion, whereas for UML 1.4 the official DTD (for XMI 1.1) is officially a part of the
development of UML. For UML 1.3 there is no official DTD, meaning that several
exist in practice – this being the case found in [17]. Even with a recognised standard
DTD “validation of XMI files is extremely loose”. [18].

Given the richer semantics of schema-based definition, the situation should im-
prove with the XMI schema-based validation used from UML 2.0. In fact, OMG now
offers UML 2.1 tool certification for compliance with XMI 2.0. A word of caution is
however necessary: “Complete verification cannot be done through XML validation
because it is not currently possible to specify all of the semantic constraints for a
metamodel in an XML schema.” [18]

The successful interchange of models is further assisted in UML 2.1 by the inclu-
sion of Diagram Interchange through an improved metamodel. Losing layout and
other visual information from interchanged diagrams has been a major problem with
XMI interchange up to now. Tools exporting XMI have used either XMI extension
facilities or additional files to allow XMI export/import into the same tool; this infor-
mation is uninterpretable by other tools.

The current study sought to establish whether the potential of the new standards for
improved model interchange has yet been realised in tools which have adopted them.

3 Research Approach

Firstly, a search of the internet was made for tools claiming to support XMI 2.0 (and
later) and UML 2.0 (and later); these were considered as the base set of tools for the
study. Trial versions of these tools were downloaded for the purpose of experimenta-
tion with XMI-based model interchange. A simple model was created which con-
tained the major modelling constructs used in UML class models, based on a number

622 B. Lundell et al.

of models developed in an industrial context. This was used in all of the interchange
experiments conducted.

In order to explore the concept of tool lock-in fully, the model was first entered
into a number of legacy tools (those which use earlier versions of UML and XMI) and
exported in XMI. An attempt was then made to import the exported ‘legacy’ XMI
files into those tools identified from the internet search.

Then the scenario was used of round-trip engineering, with interchange both ways
between pairs of tools (including XMI-based export/import using the same tool).
Interchange was said to have been successful if the test model could be exchanged
round-trip without semantic loss.

Figure 2 presents an overview of our approach for analysis of model interchange.
In stages 3 and 7 of this approach we conducted a manual inspection of the exported
XMI documents.

Fig. 2. Overview of the model interchange process

4 Conducting the Study

Five UML modelling tools were identified which support XMI version 2.0 (or later):
Borland Together Architect 2006 for Eclipse, EclipseUML Free Edition, IBM Ra-
tional Software Architect 6.0, IBM Rational Software Architect 6.0 and Altova
UModel 2006.

Borland Together Architect 2006 for Eclipse
Borland Together Architect 2006 for Eclipse1 is a visual modelling platform support-
ing UML 1.4 and 2.0 modelling of all UML diagrams. Export of models conforming
to an XMI 2.0 schema for UML 2.0 is supported, as well as import of UML 1.4 mod-
els defined in XMI versions 1.1 and 1.2. Borland Together Architect includes features
such as business process models, Web Services definitions, automated design, code
reviews, and other. Borland Together Architect 2006 for Eclipse includes software
developed by the Eclipse Project.

1 http://www.borland.com/us/products/together/

 UML Model Interchange in Heterogeneous Tool Environments 623

EclipseUML Free Edition
EclipseUML Free Edition from Omondo2 is an advanced free modelling tool, natively
integrated with Eclipse 3.1 and JDK 5. Features of the tool include all UML diagrams,
UML profiles, team solution, reverse engineering from byte-code, and other. Eclip-
seUML Free Edition supports UML 1.4 and 2.0, and the export of models conforming
to an XMI 2.0 schema. Provision for well-functioning XMI interchange in the tool,
for preventing tool lock-in, seems to be a central issue for Omondo:
“The interchange of common 2.0 XMI schemas are now possible because UML ven-
dors, such as Omondo, are providing modeling values on the top of a standard and
common metamodel. Switching from one tool to another will also be possible. Pro-
jects will be free to select different technologies without being blocked by just one
vendor or technology.”

IBM Rational Software Architect 6.0
Rational Software Architect3 is an Eclipse-based UML modelling and Java Develop-
ment platform. All UML diagrams of UML version 2.0 are supported, together with
the export of models conforming to an XMI 2.0 schema. Rational Software Architect
includes features such as Web Services definitions, pattern solutions, review and
control of Java and service-oriented applications, and other.

MagicDraw Community Edition version 10.5
MagicDraw4 is a visual UML modelling and CASE tool facilitating analysis and de-
sign of object oriented systems and databases. Import of XMI version 1.0, 1.1, 1.2,
2.1 for UML versions 1.4 and 2.0 are supported, as well as export of XMI version 2.1
for UML version 2.0. Features of the MagicDraw Community Edition include code
engineering, DDL generation and reverse engineering.

Altova UModel 2006
Altova UModel 20065 is a modelling tool from Altova focusing on usability aspects
and practical software design for both programmers and project managers. Seven
UML diagram types of UML version 2.1 are supported, together with the export of
models conforming to an XMI 2.1 schema. Forward and reverse engineering of C#
and Java code are features included in the tool. Tool interoperability through XMI is
stated as an important issue on the tool’s webpage:

“To support compatibility with other tools and to maximize flexibility, UModel
2006 lets you export models as UML 2.0 or UML 2.1, and you can choose to include
or ignore UModel extensions such as custom colors assigned to elements, or image
files that represent actors in use cases. Through XMI import and export, UModel
2006 can work alongside – or even replace – higher-priced or more cumbersome
UML tools, extending the benefits of UML to more members of the project team.”

The model interchanged between the tools is shown in Figure 3. Interchange of a
model between two tools is said to be successful if all model information other than

2 http://www.omondo.com
3 http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
4 http://www.magicdraw.com/
5 http://www.altova.com/products/umodel/uml_tool.html

624 B. Lundell et al.

Fig. 3. UML model used for interchange

presentation information is preserved during the transfer. An interchange resulting in
incomplete model information is clearly unacceptable: commercial models often con-
sist of several thousand model entities [19], and manual repair is infeasible.

XMI-based model interchange between the UML modelling tools was performed
in two phases.

Table 1. UML modelling tools explored in phase 1

XMI
version
export

UML
version

ArgoUML Version 0.16.1
(argouml.tigris.org)

1.0 1.3

Fujaba Developer Version 4.2.0
(www.fujaba.de)

1.2 1.3

Umbrello UML Modeller Version 1.3.2
(http://uml.sourceforge.net)

1.2 1.3

Artisan Real-Time Studio Version 5.0.22
(www.artisansw.com)

1.1 2.0

Poseidon Emb. Enterprise Version 3.0.1
(www.gentleware.com)

1.2 2.0

Rhapsody C++ Developer Version 5.2
(www.ilogix.com)

1.0 1.3

Rose Enterprise Version 2003.06.13
(www.rational.com)

1.0, 1.1 1.3

Microsoft Office VisioVersion Prof. 2003
(www.microsoft.com)

1.0 1.3

 UML Model Interchange in Heterogeneous Tool Environments 625

Phase 1 – exploring backward compatibility
In this phase, we tried to import XMI files from UML modelling tools supporting
XMI versions less than 2.0, to check for backward compatibility functionality. Eight
tools were used, presented in Table 1. The XMI file exported from each of these tools
represents the class diagram in Figure 2. Versions of XMI earlier than 2.0 do not cater
for the exchange of presentation information, so layout aspects are lost at interchange.

It may be noted that all but two of the tools use UML 1.3, for which there is no of-
ficial XMI DTD. This can be expected to affect interoperability.

Phase 2 – exploring multiple tool usage
In this phase, the five tools found which claim support for XMI 2.0 (or later versions)
were used in the exploration. See table 2 for an overview of the XMI and UML ver-
sions adopted in these tools (note that some tools support multiple versions of UML
and XMI; the table includes earlier versions supported in italic font). XMI versions
2.0 and later support the exchange of presentation information and layout aspects at
interchange. However, none of the five tools included in the study support this fea-
ture. In practice, this is a significant problem where there is to be subsequent human
interaction with the model, but it is of less significance for many other functions -
such as code generation.

For each of the five tools under consideration, we first created the model in Figure 2
and then exported it as XMI conforming to an XMI 2 schema. All models exported
were then imported into each of the tools. Hence, in total, 25 combinations of inter-
change between the four tools were analysed.

Table 2. UML modelling tools explored in phase 2

Importing tool
XMI
version
import

XMI
version
export

UML
version

Borland Together Architect 2006 for Eclipse
(www.borland.com/us/products/together/)

2.0,
1.1, 1.2

2.0

2.0,
1.4

EclipseUML Free Edition
(www.omondo.com/)

2.0

2.0

2.0,
1.4

IBM Rational Software Architect 6.0
(www-306.ibm.com/software/awdtools/architect/
swarchitect/index.html)

2.0 2.0 2.0

MagicDraw Community Edition version 10.5
(www.magicdraw.com/)

2.1,
1.0,
1.1, 1.2

2.1

2.0,
1.4

Altova UModel 2006
(www.altova.com/products/umodel/uml_tool.html)

2.1 2.1 2.1

626 B. Lundell et al.

5 Results

Phase 1 – exploring backward compatibility
Table 3 presents the results from our analysis of backward compatibility of each tool
explored in the study. Non-coloured cells in the table are expected to work since the
versions of XMI supported in both tools are the same. Grey cells (italic) are not ex-
pected to work since the XMI versions used in the two tools differ. However, it
should be noted that for the two tools (Borland and MagicDraw, see table 2) which
claim to support some backward compatibility in terms of their claimed support for
import of XMI version 1.x they do not claim support for UML versions prior to UML
1.4. So, in that respect, unsuccessful transfer is to be expected also for these two tools.

Table 3. The results of backward compatibility tests

Import
Export

Borland Eclipse Rational MagicDraw UModel

ArgoUML Failed Failed Failed Failed Failed
Fujaba Successful Failed Failed Failed Failed
Umbrello Failed Failed Failed Failed Failed
Artisan Failed6 Failed Failed Failed Failed
Poseidon Failed7 Failed Failed Successful Failed
Rhapsody Failed Failed Failed Failed Failed
Rose 1.0 Failed Failed Failed Failed8 Failed
Rose 1.1 Failed Failed Failed Failed8 Failed
Visio Failed Failed Failed Failed Failed

Our results show unsuccessful interchange for the majority of tool combinations.
For the two tools that also claim to offer some support for backward compatibility (in
terms of their claimed support for earlier versions of XMI, see table 2), our explora-
tion shows several combinations of partial interchange. Some of these results are
expected since the tools do not claim to support the specific XMI and UML versions;
others are more surprising.

For example, when trying to import an XMI file which originates from the Ar-
goUML tool into the Borland tool the interchange fails as expected (since the Borland
tool does not claim to be able to read XMI 1.0); and the XMI exported from Fujaba is
successfully imported into the Borland tool (using XMI 1.2) – even though Fujaba
uses UML 1.3. However, even though the Borland tool can handle XMI 1.1 and UML
2.0 the Artisan combination of UML 2.0 with XMI 1.1 is not importable (see Figure 4
for a screenshot from the Borland tool). Similarly, although the Borland tool claims to
handle XMI 1.2 and UML 2.0, it fails to import that combination from the Poseidon
tool (see Figure 5 for a screenshot from the Borland tool). However, it is important to
note that the problem may lie with either tool (or both). Also, as the MagicDraw tool

6 All relations lost; Name of attribute “value” changed to “value_” (see Fig. 4 for a screenshot).
7 Five classes added; All relations lost; Added operations (see Fig. 5 for a screenshot).
8 All associations lost (see Fig. 6 for a screenshot).

 UML Model Interchange in Heterogeneous Tool Environments 627

Fig. 4. Screenshot from the Borland tool after an import from the Artisan tool

Fig. 5. Screenshot from the Borland tool after an import from the Poseidon tool

claims to import UML 1.4 (and UML 2.0) it is not surprising that it fails to import
from Rose 1.0 and 1.1 (see Figure 6 for a screenshot from the MagicDraw tool).

Phase 2 – exploring multiple tool usage
Table 4 presents the results from our analysis of one-way interchange between the
tools explored in the study.

628 B. Lundell et al.

Fig. 6. Screenshot from the MagicDraw tool after an import from the Rose 1.1 tool

Table 4. The results of one-way interchange tests

Import
Export

Borland Eclipse Rational MagicDraw UModel

Borland Successful Successful Successful Failed9 Failed

Eclipse Successful Successful Successful Failed9 Failed

Rational Successful Successful Successful Failed9 Failed

Magic-
Draw

Failed10 Failed11 Failed11 Successful Successful

UModel Failed11 Failed11 Failed11 Successful Successful

For those tools which successfully completed one-way interchange, we continued
to test for round-trip interchange. In all such cases this was successful. In summary,
our results show successful interchange between all tools supporting XMI 2.0 and
also between those tools supporting XMI 2.1. However, no success was achieved
between any pair of tools in which one supported XMI 2.0 and the other XMI 2.1.

Failure to import a model exported from, say, Rational into MagicDraw is disap-
pointing but perhaps not unreasonable since there is no claim by MagicDraw for
backward compatibility with XMI 2.0. Similarly, the unsuccessful interchange of an
exported MagicDraw model with any of the other tools is perhaps not surprising as
this would require forwards compatibility (i.e. the ability of these tools to import
models represented in a later version of XMI).

9 “Load error: xmi version”.
10 “Input file has incorrect encoding”.
11 No error message.

 UML Model Interchange in Heterogeneous Tool Environments 629

6 Summary and Implications for Practice

In considering the results of the tests it should be noted that anything short of
complete success is of limited value in practice. The work involved in repairing sig-
nificant semantic loss in an interchanged model is often considered infeasible for
industrial strength models. With this in mind, from the perspective of legacy systems
and tool lock-in, the new generation of modelling tools has not generally improved
prospects for importing existing models exported from earlier tools. The only success-
ful transfer, Poseiden to MagicDraw, is between two tools both using UML 2.0.

The success of interchange between all of the tools using XMI 2.0 is a major
improvement on experiences with tools using earlier versions of XMI. From the per-
spective of tool interoperability things have improved significantly. However, it is of
concern that the two tools utilising XMI 2.1 fail to interchange data with any of the
tools supporting XMI 2.0. Weakly supported backward compatibility of XMI versions
is a cause for continuing concern about tool lock-in. From the perspective of protect-
ing investment in models, extra tool support is needed beyond that offered by model-
ling tools themselves. This is perhaps the most reasonable way forwards, given the
plethora of combinations of versions of UML with DTDs and schemas for versions of
XMI.

Another initiative that might help to improve prospects for interoperability is the
Eclipse UML 2 project, which provides a common API for storing and retrieving
UML 2.0 models. Two of the tools in our study support its use (Rational) or state that
they will use it (Eclipse).

Acknowledgements

This research has been financially supported by the European Commission via FP6
Co-ordinated Action Project 004337 in priority IST-2002-2.3.2.3 ‘Calibre’
(http://www.calibre.ie), and by the ITEA project COSI (Co-development using inner
& Open source in Software Intensive products) (http://itea-cosi.org) through Vinnova
(http://www.vinnova.se/).

References

1. OMG-XML Metadata Interchange (XMI) Specification, version 1.0-2.1
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI.

2. Lundell, B. and Lings, B. Changing perceptions of CASE-technology, Journal of Systems
and Software, 72, 2 (2004), 271-280.

3. Lundell, B. and Lings, B. Method in Action and Method in Tool: a Stakeholder Perspec-
tive, Journal of Information Technology, 19, 3 (2004), 215-223

4. OMG XML Metadata Interchange (XMI) Specification, version 1.0. [Online]. Available:
http://www.omg.org/docs/formal/00-06-01.pdf [Accessed 3 April 2006].

5. OMG XML Metadata Interchange (XMI) Specification, version 1.1. [Online]. Available:
http://www.omg.org/docs/formal/00-11-02.pdf [Accessed 3 April 2006].

6. XML Metadata Interchange (XMI) Specification, version 1.2. [Online]. Available:
http://www.omg.org/docs/formal/02-01-01.pdf [Accessed 3 April 2006].

630 B. Lundell et al.

7. XML Metadata Interchange (XMI) Specification, May 2003, version 2.0. [Online]. Avail-
able: http://www.omg.org/docs/formal/03-05-02.pdf [Accessed 3 April 2006].

8. XML Metadata Interchange (XMI) Specification, May 2005, version 2.0, May 2005
[Online]. Available: http://www.omg.org/docs/formal/05-05-01.pdf [Accessed 3 April
2006].

9. XML Metadata Interchange Specification, version 2.0.1, [Online]. Available:
http://www.omg.org/docs/formal/05-05-06.pdf [Accessed 3 April 2006]. Also available
from ISO as ISO/IEC 19503:2005(E), July 2005.

10. MOF 2.0/XMI Mapping Specification, version 2.1 [Online]. Available:
http://www.omg.org/docs/formal/05-09-01.pdf [Accessed 3 April 2006].

11. Brodsky, S. XMI Opens Application Interchange, 1999 [Online]. Available: http://www-
4.ibm.com/software/ad/standards/xmiwhite0399.pdf [Accessed 3 April 2006].

12. Obrenovic, Z. and Starcevic, D. Modeling multimodal human-computer interaction. IEEE
Computer, 37, 9 (2004), 65-72.

13. Jeckle, M. OMG’s XML Metadata Interchange Format XMI. In Proceeding of XML Inter-
change Formats for Business Process Management (XML4BPM 2004): 1st Workshop of
German Informatics Society e.V. (GI) (in conjunction with the 7th GI Conference “Model-
lierung 2004”), Marburg, Germany, 25 March 2004.

14. Stevens, P. Small-scale XMI programming: a revolution in UML tool use? Automated
Software Engineering, 10, 1 (2003), 7-21.

15. Persson, A., Gustavsson, H., Lings, B., Lundell, B., Mattsson, A. and Ärlig, U. OSS tools
in a heterogeneous environment for embedded systems modelling: an analysis of adoptions
of XMI, In Open Source Application Spaces: Fifth Workshop on Open Source Software
Engineering (5-WOSSE), St. Louis, ACM (2005), 39-42.

16. Süß, J. G., Leicher, A., Weber, H. & Kutsche, R.-D. Model-Centric Engineering with the
Evolution and Validation Environment. In: P. Stevens, J. Whittle, & G. Booch (Eds.), Pro-
ceedings of UML 2003 – The Unified Modelling Language: Modelling Languages and
Applications, Springer-Verlag, Berlin (2003), 31-43.

17. Jiang, J. and Systä, T. Exploring Differences in Exchange Formats – Tool Support and
Case Studies. In Proceedings of the Seventh European Conference on Software Mainte-
nance and Reengineering (CSMR’03), IEEE Computer Society, Los Alamitos (2003),
389-398.

18. Objects By Design. An Interview with Geoffrey Sparks Founder of Sparx Systems.
[Online]. Available: http://www.objectsbydesign.com/tools/GeoffreySparks.html [Ac-
cessed 3 April 2006].

19. Berenbach, B. The Evaluation of Large, Complex UML Analysis and Design Models. In
Proceedings of 26th International Conference on Software Engineering (ICSE’04), IEEE
Computer Society, Los Alamitos (2004), 232-241.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 631 – 645, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying Model Fragment Copy-Restore to Build
an Open and Distributed MDA Environment*

Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais

Laboratoire d’Informatique de Paris 6
8, rue du Capitaine Scott, 75015, Paris, France

{Prawee.Sriplakich, Xavier.Blanc, Marie-Pierre.Gervais}@lip6.fr

Abstract. ModelBus is a middleware system that offers the interoperability be-
tween CASE tools for supporting software development according to MDA. This
interoperability allows tools to share services and models, by using an RPC
mechanism. ModelBus adopts the call-by-copy-restore semantic, as it is very
close to local call semantic and is flexible as regards tools’ heterogeneous model
representations. In this work, we extend this semantic to enable only specific
model fragments to be passed as parameters, instead of complete models. The
advantages are 1) improving the performance because passing only model frag-
ments requires less data processing and 2) enhancing access control to models
because the service’s modification can be restricted to the specific model frag-
ment that is specified as parameters. The implementation of this work is avail-
able as the Eclipse project Model Driven Development integration (MDDi).

1 Introduction

The Model Driven Architecture (MDA) [16] is a software development approach
which focuses on models. In MDA, all software development artifacts are represented
by models. Those models can be manipulated by a variety of CASE tools which offer
automated operations on the models, such as model visualization, model edition,
model transformation and model well-formed-ness checking.

In our previous research, we have proposed a middleware system supporting the
interoperability between heterogeneous and distributed CASE tools to support MDA.
This MDA environment, called ModelBus [2] [3] [15] [24], enables distributed and
heterogeneous CASE tools to share their functionality and models. ModelBus
achieves this interoperability by using the RPC paradigm, which enables tools to
invoke each other’s services and exchange models by parameter passing. Thus, in
ModelBus, RPC parameters are models.

ModelBus supports the call-by-copy-restore semantic1, which is very close to the
semantic of the local procedure call. Our choice is motivated by two reasons. First,

* The work presented in this paper is supported by the project MODELWARE, co-funded by

the European Commission under the "Information Society Technologies" Sixth Framework
Programme (2002-2006).

1 ModelBus offers the call-by-copy semantic for IN and OUT parameters and the call-by-copy-
restore semantic for INOUT parameters [15]; however, in this paper, we focus on call-by-
copy-restore.

632 P. Sriplakich, X. Blanc, and M.-P. Gervais

several model manipulations such as in-place model transformation [22] and model
refactoring [26] require the ability to modify models. To allow such model manipula-
tions to be shared as services, ModelBus should not limit to read-only parameter
passing but also enable tools to modify each other’s models. Second, unlike the call-
by-reference tool integration approach [9], our call-by-copy-restore approach avoids
the complexity and cost of representing parameter values as distributed objects (e.g.
CORBA, RMI).

The copy-restore mechanism of most RPC systems, such as NRMI [25], which is
Java RMI-based, and Microsoft RPC, which implements the DCE RPC specification
[20], transmits a deep copy of parameter values: the objects that a programmer specifies
as parameters and all objects reachable from them are copied. In our context, parameters
are models, which are graph data structures containing model elements and links be-
tween them. Hence, applying this deep-copy mechanism to a model will result in trans-
mitting the entire model graph, which is inappropriate for the following reasons.

- Performance. A model can include more elements than required by the service.
For instance, a UML [19] model can contain use case elements; class diagram ele-
ments, and sequence chart elements (with links between them). If the service does not
use all these elements, transmitting the entire model graph will unnecessarily waste
computing resources.

- Access control. The deep-copy mechanism offers too much access to the service:
It enables the service to modify the entire model, i.e., all elements reachable from
parameters values. Consequently, the caller can not protect parts of models from
modification by the service.

Those reasons motivate us to propose a new parameter passing semantic that
transmits and restores only a specific model fragment (i.e. a subgraph of a model).
Compared to existing graph fragment transmission solutions, our approach offers the
following novel features:

- Flexible specification of model fragments. The approaches based on the notion of
object views (reduced objects) [5] [13] or on the Demeter graph traversal language
[14] offer a way to specify graph fragments to be transmitted. However, their frag-
ment specification is statically fixed in the service definition. Therefore, at runtime, it
is not possible to change the fragment specification for each service call. On the other
hand, our approach offers the flexibility to specify arbitrary fragments and to change
them in each service call.

- Access control in parameter passing. Caching systems (e.g., CORBA caching [4],
RMI caching [5]) enables graph elements (i.e. objects) to be transmitted only when
requested (to avoid complete graph transmission). However, to our knowledge, few
works offer means for limiting the model elements that a service is allowed to modify.
I.e., if a service requests all elements in the graph, then it can modify the entire graph.
On the other hand, our approach offers a mechanism to protect parts of models from
modification.

- Preserving tools’ existing data structures. To integrate existing CASE tools with
caching systems, tool programmers would need to change the existing implementation
of tools’ data structures to the one supported by the caching systems (e.g. object
stubs). Our approach is different as it requires no change to existing data structure
implementation. For this reason, it has little impact on existing tools’ implementation
and facilitates their ad hoc integration.

 Applying Model Fragment Copy-Restore 633

This work has been implemented in ModelBus, which will be soon available as an
Eclipse open source project Model Driven Development integration (MDDi,
http://www.eclipse.org/mddi). It is built on top of the Web Services platform, which
is widely used for integrating heterogeneous applications. While the Web Services
protocol (SOAP/HTTP) only defines the RPC message format, ModelBus extends it
by providing a parameter passing mechanism for transmitting model fragments and
restoring the update made by the service to the original model.

This paper is organized as follows. Section 2 presents our research background on
tool integration and explains why the call-by-copy-restore approach is chosen. Section
3 states the objectives and requirements of this work. Section 4 describes our solution
and its rationales. Section 5 describes the implementation and performance result
achieved by ModelBus. Related works are discussed in section 6, before conclusion.

2 Background: CASE Tool Integration with Call-by-Copy-
Restore RPC

ModelBus deals with model exchange between tools via RPC. In this environment,
we assume that models being manipulated by tools (both caller and service) are stored
in the tools’ memory, similarly to the way software generally manipulate data. When
one tool invokes another tool’s service, the callee tool needs means for accessing
(reading/writing) models that are service parameters located in the caller tool’s
memory. To support this model access, RPC middleware needs to solve two compli-
cations:

- Remote communication. An open MDA environment should support the integra-
tion of tools executing in different machines, therefore middleware needs to handle
data transfer between the caller and the service.

- Heterogeneous model representations. As each CASE tool can be implemented
with different programming languages, their memory representation of models can be
different (e.g. Java objects, C data structures). If the caller and callee tools use differ-
ent model representations, the middleware needs to translate models from one repre-
sentation to another.

We focus on RPC approaches that offer close semantic to local call as this can hind
the complication of tool distribution. In our previous work [24], we have studied two
main approaches: call-by-reference and call-by-copy-restore. The call-by-reference
approach requires that models be represented as distributed objects so that the callee
tool can read and modify the remote models by using callback mechanism. On the
other hand, in the call-by-copy-restore approach, models are copied from the caller
tool to the callee tool at the beginning of service invocation. At the end, the model is
copied back to replace the original model at the caller tool.

For purpose of tool integration, we have chosen the call-by-copy-restore approach
rather than call-by-reference. First, in call-by-reference, callback makes model access
very costly. The study by Kono & al. [10] shows that, when more than 5% of objects
are accessed, call-by-copy-restore has significantly better performance than call-by-
reference.

634 P. Sriplakich, X. Blanc, and M.-P. Gervais

Second, call-by-reference requires that models be represented as distributed ob-
jects. Existing tools that have not been planned for integration usually implement
model representation with simple, local data structures. Consequently, to apply call-
by-reference, their model representations would need to be changed to distributed
objects. On the other hand, for call-by-copy-restore, the marshaling /unmarshaling
mechanism of middleware can be extended to cope with any model representations.
Hence, tool programmers do not need changing the existing model representations of
tools for integrating them.

We identify two copy-restore RPC approaches. In the first approach, parameter res-
toration is done only at the end of service call. This is the case for NRMI and DCE
RPC systems. In the second approach, systems offer a stronger guarantee: the parame-
ter value copy at the service side is kept consistent with the original copy at call time
(even after service call). This is the case for caching systems. In this work, we focus
on the first approach (restoring at the end of service call). This is because we aim to
preserve existing data representation of tools. The caching approach requires a
mechanism for intercepting when data is modified so that it can restore the data. If
this approach were used, we would face the difficulties in changing or adapting the
existing data representation of tools to support this interception.

3 Model Fragment Copy-Restore: Objectives and Requirements

Improving performance. Despite the advantages of distributed tool integration, the
RPC causes additional latency compared to local call. In fact, marshaling and unmar-
shaling complex, large data structures has been recognized as costing major latency in
RPC (25%-50%) [21]. Hence, the larger models, the more latency for marshaling,
transmitting and unmarshaling them. Moreover, if the callee tool does not entirely use
the models, transmitting the entire model can waste the memory for storing unused
fragments.

By passing only model fragments as parameters in service call, the amount of data
to be processed is reduced. Therefore, it can significantly improve the performance
especially if the model fragments are relatively small.

Enhancing access control. The access control problem has not been addressed yet in
the RPC domain. Existing call-by-copy-restore middleware, such as NRMI and DEC
RPC, enables a programmer to pass program pointers as service parameters. It con-
siders that the service should have access to all objects reachable from those pointers.
Therefore, the entire graph is transmitted to the service side and is entirely restored at
the end of service call.

In MDA, a model can be built up from a large number of model elements, each of
which describes a different software module or aspect. As those elements have rela-
tions with each other, they are parts of the same graph. According to the existing call-
by-copy-restore semantic, passing a single element as a parameter enables a service to
reach and modify the entire model. This approach can be dangerous because the ser-
vice can modify model parts beyond the caller’s intent.

This problem motivates us to integrate access control with parameter passing. The
idea is to associate each parameter value with a model fragment (i.e. a subgraph) to
restrict the service to access only elements in the fragment.

 Applying Model Fragment Copy-Restore 635

Providing consistent restoration. In the call-by-copy-restore mechanism, the modi-
fication that a service makes to the data’s copy needs to be restored back to the caller
side. Existing call-by-copy-restore systems (e.g. NRMI, DCE RPC) have already
proposed a mechanism for complete graph restoration, which we will refer to as the
“basic” mechanism. This mechanism consists in overwriting each graph element’s
content with an updated value. In the case of models, a model element’s content is a
set of properties, each of which contains either primitive data or references (pointers)
to other model elements. Hence, to restore a model, this basic mechanism would
overwrite all the property values of each model element.

In our context, the data that is transmitted to the service corresponds to a model
fragment, which also has links with the rest of the model. The links between the
model fragment and the rest of the model consist of outbound links, which are the
references owned by the fragment’s elements to elements outside the fragment and
inbound links, from outside to the fragment. E.g., the complete model in fig. 1 con-
tains the elements {A, B, C…I}; the specified fragment is {F, G, H, I}; and the
outbound and inbound links are {F A, G C} and {E H, D I} respectively.
These outbound and inbound links exist at the caller side but not at the service side
(since one of their ends does not exist). The basic restoration mechanism (i.e. for
restoring a complete graph) is not aware of this fact. Therefore, it needs to be ex-
tended or modified to deal properly with those links as follows.

Fig. 1. Consistent restoration of a model fragment

- Preserving outbound links. According to the basic mechanism, overwriting the
properties of the caller side’s elements with the properties of the service side’s ele-
ments would make the outbound links lost, e.g., in fig. 1, {F A, G C} would be
lost after restoration. For this reason, the restoration mechanism for a model fragment
needs to recognize outbound links and preserve them.

- Supporting consistent element deletion. Service logics may require the deletion of
elements passed as parameters. We observe that few call-by-copy-restore systems
enable the service to explicitly delete elements: most systems only enable a service to
do so implicitly by making elements unreferenced (to be garbage-collected). Those
systems make element deletion difficult because 1) the service needs to search for
references to be eliminated, and 2) if the model is not entirely transmitted and there
exist inbound links to some elements, then the deletion of those elements will be

A

Service side

Inbound links:
to eliminate dangling links

Outbound links:
to be preserved after restoration

Element to be deleted

Restore

Fragment
passed as parameter Fragment copy

Caller side

B C F

G H I

F

D E

G H I

636 P. Sriplakich, X. Blanc, and M.-P. Gervais

impossible, e.g., in fig. 1, the inbound link D I prevents the deletion of I, despite the
service’s intent. This motivates us towards the explicit deletion approach, in which
the service can specify elements to be deleted. In this new approach, the restoration
mechanism needs extension to support the elimination of dangling inbound links,
which reference deleted elements.

4 Design in ModelBus

Similarly to other call-by-copy-restore systems, ModelBus offers the transparent
management of partial parameter passing through client and server stub components.
The stubs offer programming interfaces enabling a tool programmer to write service
call code and service implementation code. A new aspect is that these interfaces are
extended in order that the programmer can specify a model fragment to be passed as
parameters and the stub implementation takes into account model fragment specifica-
tion when marshaling and restoring parameters.

4.1 Enabling Model Fragment Specification Through Stub Interface

A stub interface generated by most RPC systems (e.g. RMI, CORBA) enables a pro-
grammer to specify complex-structured parameter values (i.e. graphs) with program
pointers. When these pointers are passed to the service, the middleware will create a
copy of the pointed data structure at the service side and create new pointers pointing
to the copied data.

ModelBus offers a new way of generating stub interfaces to add an extra parame-
ter, called scope, which enable a programmer to specify a model fragment to be
transmitted. A scope is a subset of model elements selected from a complete model.
Independent from programming languages and regardless the model representation
used, a scope is a set of references to the objects representing model elements. This
scope parameter can be mapped to any programming languages using their native
types that can represent a set of object references, e.g., in Java, it can be mapped to
java.lang.Collection. To define a model fragment using this scope parameter, a
programmer instantiates a set and adds model element references to this set.

This approach is flexible, as it enables the specification of any arbitrary model
fragments; however, having to add each model element individually to the collection
may be cumbersome. For this reason, we also provide a helper operation enabling a
programmer to easily add a group of hierarchical elements. The helper operation
addWithChildren(Collection scope, Element e) recursively adds the ele-
ment e and also its child elements to the scope. It exploits the aggregation relations
defined in metamodels for identifying models’ hierarchical structure. An example use
of this operation is to add a UML package and all its content (the classes in this pack-
age, the classes’ features …) to a scope.

The operation in both client stub and server stub’s interfaces has the scope pa-
rameter. In the client stub interface, the scope parameter enables a client program to
specify the model fragment to which the service has access. In the server stub inter-
face, this parameter enables the service program to specify the model fragment that is
the result of service execution. It contains the model elements to be transmitted back
to the client for restoration, which include both the elements previously received from

 Applying Model Fragment Copy-Restore 637

the client (which can be modified by the service) and new elements produced by the
service. Moreover, the service program can explicitly delete existing elements by
excluding them from the scope collection.

Stub generation. The stub interfaces can be generated from the service description.
ModelBus provides a service description language dedicated to the modeling domain.
In this language, service description is defined independently from service implemen-
tation and the model representation used by the service. It uses Meta Object Facility
(MOF) for defining the structures of models that are services parameters. More pre-
cisely, service parameters are typed by metaclasses (MOF classes). At the implemen-
tation level, the metaclasses are mapped to concrete data representations that the
caller and callee tools use for manipulating models (e.g. Java classes, C structure
types). The stub generation can be extended to support any model representations
used by tools (e.g. Java Metadata Interface (JMI) [8] and Eclipse Modeling Frame-
work (EMF) [6]). ModelBus enables a programmer to choose a model representation
used by his tool for generating the corresponding stub interfaces.

Example. We illustrate an example service and its stub interfaces. The moveClass
service enables a developer to modify his UML model by moving a UML class from
one package to another. To use this service, he needs to specify two parameters: a
class to be moved and the target package to which this class will be moved. There-
fore, the abstract definition of this service is moveClass(inout c:Class, inout
targetPackage:Package), where Class and Package are metaclasses of the
UML metamodel.

If we used existing middleware to generate stub interfaces for Java, we would
obtain the method void moveClass(uml.Class c, uml.Package target-
Package), supposing that Java classes uml.Class and uml.Package concretely
represent Class and Package model element types. This method offers no means for
the client program to specify the model fragment to be passed as parameters; there-
fore, the middleware will entirely marshal the UML model. On the other hand, with
ModelBus, the generated stub will offer the method with the scope parameter: void
moveClass(Collection scope, uml.Class c, uml.Package targetPack-
age). This method enables the client program to specify a specific model fragment
relevant to the service. For example, if a developer wants to move a class C1 from a
package P1 to P2, then this service needs to modify only C1, P1, and P2, i.e. it re-
moves the containment link between C1 and P1 and it creates a new containment link
between C1 and P2. As other model elements do not concern the service, the pro-
grammer can optimize the service call by specifying the scope to be only these three
elements.

Rationale. This new stub interface is motivated by the following reasons.
- Flexible specification of model fragments. Representing a model fragment as a

collection offers the full flexibility to programmers. It enables the caller to define
fragments arbitrarily and to change the fragment definition in each service call, i.e.
the members of the scope collection can be selected dynamically. Therefore, this
approach can accommodate the different needs of tools.

- Small change to original service signatures. We only add one extra parameter to
stub interfaces, while the other parameters remained unchanged. Therefore, the effort

638 P. Sriplakich, X. Blanc, and M.-P. Gervais

of adapting our solution to existing RPC application only consists in adding the code
for specifying the scope’s value, while the existing code remain unchanged.

4.2 Model Fragment Marshaling

The stubs offer a marshaling mechanism enabling the transmission of the model frag-
ment specified by the scope parameter from the caller to the service and also from the
service back to the caller. This mechanism is different from one used by existing RPC
systems as it deals with an incomplete graph transmission. Only the elements that are
included in the scope are serialized and the elements outside the scope are not serial-
ized, even if they are linked with elements in the scope.

Marshaling a model element consists in writing its properties’ values. These values
are either primitive data or references to other elements (e.g., a UML package element
contains the property name, which is primitive data and the property ownedMember,
which contains references to other model elements owned by this package). Contrary
to the complete model marshaling mechanism, which serializes all the property val-
ues, the model fragment marshaling mechanism must avoid marshaling the references
to elements outside the scope (i.e. outbound links, see fig. 1.), because those refer-
ences will become dangling when transmitted to the other side. The code at line 7
serializes only intra-fragment links. This mechanism is written in pseudo code as
follows.

1. serializeModelFragment(Collection scope, OutputStream out) {
2. for each Element e in scope {
3. for each Property p in getProperties(e) {
4. Object v = getPropertyValue(e, p);
5. if(isPrimitiveData(v)) out.writePrimitive(v);
6. else for each Reference r in v
7. if(scope.contains(r)) out.writeLink(r) } } }

In our approach, first the model fragment specified by the scope is marshaled, and

then the service parameters are marshaled as pointers to the previously marshaled
elements. At the receiver side, first unmarshaling the scope produces model elements
in memory, and then unmarshaling the service parameters produces the pointers to
those model elements. This approach avoids duplicate model transmission when mul-
tiple parameter values reference the nodes of the same graph. In this case, only one
graph copy is created at the service side and the transmitted parameter values will
point to the nodes in this copy, which results in the identical structure to the one at the
caller side.

Example. We continue with the moveClass example from 4.1. By using the seri-
alizeModelFragment mechanism, the specified elements (C1, P1, P2) can be
transmitted without other surrounding elements. As shown in fig. 2 (a, b), even
though packages P1 and P2 contain classes C2 and C3, those classes will not be
transmitted. This example also shows the pointer transmission for service parameters
(c, targetPackage), which enables the callee tool obtains identical pointers to the
ones at the caller side.

 Applying Model Fragment Copy-Restore 639

Fig. 2. Model fragment serialization

Rationale. This approach obviously improves performance: the amount of data to be
serialized/ deserialized and transmitted is reduced proportionally to the scope’s size.
Moreover, we choose to transmit all the elements in the scope at a time, instead of
transmitting elements on demand to reduce the complication of callback. As the scope
is specified at application level, where the knowledge of service logics is available,
we assume that the high portion of the elements in the scope will be used by the ser-
vice. In this case, this approach is more optimal than on-demand transmission.

As regards access control, our approach protects the service from modifying ele-
ments outside the scope, since those elements are not transmitted to the service.

4.3 Model Fragment Restoration

As described in 4.1., the service program can access to the scope parameter, to spec-
ify the model fragment that are the result. This scope initially contains model ele-
ments transmitted from the caller. The service can modify the content of those
elements, i.e. modify their property values. As an element can contain not only primi-
tive data but also references to other elements, the service can also add/remove links
between elements.

Moreover, the service can add/ remove model elements to/from the scope collec-
tion. Adding elements to the scope enables the service to transmit back the new ele-
ments that do not exist at the caller side. Removing elements from the scope will
result in deleting those elements at the caller side.

At the end of service invocation, the server stub transmits the scope back to the cli-
ent and the client stub overwrites the original fragment with the received fragment.
The restoration consists in 1) adding new elements to the caller side’s scope, 2) updat-
ing the existing model elements’ content, and 3) deleting the model elements corre-
spondingly to the deletion at the service side. In this work, we offer the following
extensions to the “basic” restoration mechanism (cf. section 3).

- Preserving outbound links. In the basic mechanism, the content of each original
element is replaced by the content of received element. This mechanism preserves the
inbound links (because the original elements preserve their identity; hence, the links
to them remain valid). However, this mechanism makes outbound links lost; there-
fore, we propose the updateLink operation for updating intra-fragment links while
preserving outbound links, cf. following code. This operation is applied to two corre-
sponding elements: one in the original fragment and the other in the received frag-
ment. It updates a property whose value is a set of model element references. It has

P1 P2

C1

P3

C2 C3

P1 P2

C1

(a) Caller side (b) Service side:
before service execution

Parameters: c, targetPackage

scope

Parameters: c, targetPackage

P1 P2

C1

(c) Service side:
execution result

Parameters: c, targetPackage

640 P. Sriplakich, X. Blanc, and M.-P. Gervais

two parameters: originalProp is the original element’s property value to be updated
and newProp is the received element’s property value. The algorithm begins by re-
moving all the intra-fragment links in originalProp while preserving outbound links
(lines 2-3). Then, the links in newProp are copied to originalProp (lines 4-5).

1. updateLink(ReferenceSet orginalProp, ReferenceSet newProp) {
2. for each Reference r in originalProp
3. if(scope.contains(r)) originalProp.remove(r);
4. for each Reference r in newProp
5. originalProp.add(getCorrespondingElementOf(r)); }

- Supporting consistent element deletion. Our approach enables the service to de-
lete elements simply by excluding them from the scope. To apply the deletion, the
caller stub searches and deletes dangling inbound links. To optimize search perform-
ance, the search space is reduced by exploiting metamodel information. In fact, poten-
tial elements that can contain dangling inbound links are the elements that have
properties typed by the metaclasses of the deleted elements; therefore, we can filter
out non-potential elements without examining their contents. Moreover, for the poten-
tial elements found, only their specific properties are examined, instead of examining
their whole content.

Example. Fig. 2(c) shows the model fragment at the service side to be propagated
back. According to the UML class diagram structure, a package element has the prop-
erty ownedMember, which refers to the package’s elements, i.e. its value is a set of
element references. To restore this property is not to simply overwrite the property
value of the client side’s element with the one of the service side’s element; other-
wise, the outbound links (P1 C2, P2 C3) would be lost. We have proposed the
updateLink operation to restore the property value correctly.

We illustrate an element deletion example with fig. 1. In this example, the service
explicitly removes element I by excluding it from the scope; hence, the transmitted-
back fragment will not contain I. This enables the caller stub to detect element dele-
tion so that it can search and eliminate dangling inbound links.

Rationale. Our restoration mechanism satisfies the objectives of enhancing access
control and preserving the entire model’s consistency. It protects elements outside the
scope from modification and it properly manages the inbound and outbound links for
integrating the update to the entire model.

5 Implementation and Performance Results

Implementation. This work has been implemented in ModelBus, a middleware sys-
tem for CASE tool integration. ModelBus’ tool integration method has already been
described in both research papers [2] [3] and in a ModelWare project deliverable [15].
This method is similar to the one of existing RPC middleware. First, ModelBus pro-
vides the service description language, which enables heterogeneous tools’ services to
be uniformly defined. Our service description language is different from others in that
it uses MOF metamodels for defining service parameters; hence the model structures
of services’ input/output are clearly identified in a standard way. Second, ModelBus

 Applying Model Fragment Copy-Restore 641

provides the stub generation for generating client and server stubs, which imple-
ment our model fragment copy-restore mechanism. Currently, ModelBus only offers
Java stub generation; however, the proposed copy-restore mechanism is language
independent.

The stubs communicate with the SOAP/HTTP protocol. This choice is motivated
by two reasons. First, it is programming-language independent. Second, it is compati-
ble with the XML Metadata Interchange (XMI) standard [18]: models encoded with
XMI can be easily put inside SOAP messages.

Empirical performance results. We report the performance of ModelBus in two
aspects. First, we show that our approach enhances the scalability in service invoca-
tion performance: Even when the size of the complete model increases, the user can
obtain the constant performance of service invocation by limiting the size of frag-
ments to be passed as service parameters.

We set up the experiment as follows. We generate UML models with different
sizes (from 2,000 to 100,000 model elements). Each model contains UML classes
organized in an arbitrary package hierarchy, similar to usual UML models in software
development. Our benchmark program invokes a service (that has one parameter)
with different model fragment sizes extracted from those generated models (10, 50,
100, 500, 1000 elements). The cost measured by the benchmark tool is the total cost
of all activities in service invocation, except the execution of the service logic (i.e.
serialization/deserialization, data transmission through LAN, and restoration).

Service invocation time

0
50

100
150
200
250
300
350

model sizes (model elements)

tim
e

(m
s)

10

50

100

500

1000

ModelBus serialization+deserialization time compared with EMF

0

20

40

60

80

100

2000 5000 10000 20000
model sizes (model elements)

M
od

el
B

us
tim

e
/E

m
f

tim
e

(%
)

10

50

100

500

1000

Fig. 3. ModelBus’ Performance in service invocation and model serialization/ deserialization

642 P. Sriplakich, X. Blanc, and M.-P. Gervais

As illustrated with the result in fig. 3(top), our approach enables the user to work
with very large models. For example, by fixing a constant fragment size of 500 model
elements, the service invocation costs around 125 ms, regardless the size of the com-
plete model. Please note that the illustrated performance is relative to the performance
of machine, network, model encoding method and RPC protocols. In this work, we
encode model with the standard XMI format and invoke service with SOAP/HTTP.
This choice offers interoperability at the cost of XML processing.

As for the second aspect, we compare the performance of ModelBus with Eclipse
Modeling Framework (EMF), a toolkit that is optimized for performance [7]. In this
case, we compare only the performance of model serialization/ deserialization (as EMF
does not offer an RPC mechanism). We observe that when the models become large,
the EMF performance decreases rapidly (40 ms for 2,000 elements vs. 1.5 s for 50,000
elements). Moreover, when models are very large (100,000 elements in a machine with
1 GB of memory), EMF generates an out-of-memory error. In our approach, the user
can avoid this problem by limiting the size of model fragment. Fig. 3(bottom) shows
the percentage of the serialization and deserialization time of ModelBus compared to
EMF. It shows that this percentage is close to zero when the model is larger than
20,000 elements, i.e., EMF becomes significantly slow.

6 Related Works

Object views. Eberhard [5] Lipkind [13] propose the way to transmit graph frag-
ments. In their approach, graph fragments are defined with object views. An object
view is derived from a class (i.e. data type) but contains only a subset of the class’
properties. Since properties can represent links, the object view can define a subgraph
including only elements to which the object view’s properties link. E.g., given an
object view v1 that excludes the property prop1, its corresponding fragment will
exclude elements to which prop1 links. Compare to this approach, ModelBus offers
a more flexible way of specifying model fragments as follows.

- Dynamic model fragment specification. Object views are specified statically at
the service signature level, i.e., as the types of service parameters. Therefore, it is not
possible to change, for each service call, the structure of the fragment to be transmit-
ted. For example, if a service parameter is typed by object view v1 (previously de-
fined), then elements to which prop1 links will never be transmitted. On the other
hand, in our approach, a subgraph is represented by a scope (a collection), which can
be specified differently in each service call.

- Arbitrary model fragment specification. With object view, a programmer can
choose either to transmit all elements to which a property links, or not to transmit
them at all. For example, given that a package has the property ownedMember, the
programmer can either include or exclude all elements owned by this package. Our
approach gives the freedom to programmers to define an arbitrary fragment, e.g. a
package with a subset of its owned elements.

Adaptive Parameter Passing. Lopes [14] proposes a parameter passing mechanism
that avoids the transmission of entire graphs. The expression of subgraphs to be
transmitted is based on the Demeter graph traversal language [12]. It expresses a

 Applying Model Fragment Copy-Restore 643

traversal from a specified element to visit elements reachable from it. I.e., this tra-
versal contains a set of selected paths from this element to some other elements. This
approach considers that all elements in those paths will be included in the subgraph.
We illustrate an example of expressing a UML model fragment. The expression
“from Package through ownedMember to Class” expresses all paths from a Package
element to Class elements that include at least once the edge ownedMember.

This approach has a similar limitation to the object view approach. Demeter ex-
pressions are statically defined at the service signature level (as the types of service
parameters). For example, let a model consists of a UML package containing N
classes. Applying the previous expression example to this package always yield the
same subgraph. The caller can not specify a different subgraph for each service call.
Moreover, the caller can not specify an arbitrary fragment, such as, a subgraph con-
taining this package and a subset of its own classes. The subgraph will always contain
all the owned classes.

7 Conclusion and Future Works

In this work, we propose a new parameter passing semantic for transmitting only
fragments of models. This parameter passing offers the advantages of improving
performance and enhancing access control to models. Our approach enables a pro-
grammer to define a scope of service parameters, so that the middleware can transmit
and restore the model fragment specified by this scope.

Even though we focus on models in this paper, our mechanism is also applicable in
general-domain applications. In fact, metamodels are similar to class diagrams, which
define abstractly data in any application domain, and models can be manipulated by
any programming languages; therefore, our approach can be used for integrating het-
erogeneous applications in any domain, provided that they share the same abstract
data structures.

Our parameter passing approach has been implemented in ModelBus, which is
available as an Eclipse open source project MDDi. The development of ModelBus is
supported by the IST project ModelWare, which aims at promoting the successful
application of the MDA approach. Currently, we are applying the ModelBus concepts
for integrating industrial and research tools provided by the project partners, such as
Objecteering (http://www.objecteering.com), Open Source Library for OCL (OSLO,
http://oslo-project.berlios.de), and ATL model transformation engine [1].

For future works, we aim to extend our approach to overcome the following limita-
tions. First, in this approach, the caller must have the knowledge of what model ele-
ments the service needs and must specify them in the scope parameter. For future
works, we aim to relieve this complication from the caller by proposing an alterative
approach that exploits the knowledge of the service about what model elements it
needs. Our goal is to provide the service signature that can define the model elements
that the service needs. This signature can be exploited by the caller stub to identify the
model fragment to be passed to the service. Consequently, the caller can call the ser-
vice without having to specify the scope itself.

Second, in this work, we do not take into account the concurrency of model modi-
fications. We assume here that the caller tool is blocked during the service invocation

644 P. Sriplakich, X. Blanc, and M.-P. Gervais

to avoid that the caller and callee concurrently update the model, or that the caller
concurrently apply another service that will update the same model. Our recent work
to support concurrent model update [23] addresses the problem of how concurrent
modifications made by different tools on the same model can be unified. For future
work, we aim to combine the aspect of model fragment with the aspect of model up-
date concurrency. More precisely, we aim to enable each tool to make a different
model fragment corresponding to what it needs. The fragment of one tool can overlap
with the ones of others, and those tools are allowed to concurrently modify their
fragment. We would like to study how to unify the concurrent modifications made to
those overlapping fragments.

References

1. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F., Applying MDA Approach for Web Ser-
vice Platform, Proc. of the 8th Int’l IEEE Enterprise Distributed Object Computing Conf.
(EDOC), 2004.

2. Blanc, X., Gervais, M-P., Sriplakich, P., Model Bus: Towards the Interoperability of Mod-
eling Tools, Proc. of the European MDA Workshop: Foundations and Applications
(MDAFA 2004), LNCS 3599, Springer, 2005.

3. Blanc, X., Gervais, M.-P., Sriplakich, P., Modeling Services and Web Services: Applica-
tion of ModelBus, Proc. of the Int’l Conf. on Software Engineering Research and Practice
(SERP), 2005.

4. Chockler, V.G., Dolev, D., Friedman, R., Vitenberg, R., Implement a Caching Service for
Distributed CORBA objects, Proc. of the IFIP/ACM Int’l Conf. on Distributed Systems
Platforms (Middleware), 2000.

5. Eberhard, J., Tripathi, A., Efficient Object Caching for Distributed Java RMI Applications,
Proc. of the IFIP/ACM Int’l Conf. on Distributed Systems Platforms (Middleware), 2001.

6. Eclipse, Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf
7. Eclipse, EMF Performance: EMF 2.0.1 vs. EMF 2.1.0 RC1, http://www.eclipse.org/emf
8. Java Community Process, Java Metadata Interface (JMI) Specification version 1.0,

http://www.jcp.org, 2002.
9. Kath, O. et al., An Open Modeling Infrastructure integrating EDOC and CCM, Proc. of the

7th IEEE Int’l Enterprise Distributed Object Computing Conf. (EDOC), 2003.
10. Kono, K., Kato, K., Masuda, T., Smart Remote Procedure Calls: Transparent Treatment of

Remote Pointers, In Proc. of the 14th Int’l Conf. on Distributed Computing Systems
(ICDCS), 1994.

11. Krishnaswamy, V., Walther, D., Bhola, S., Efficient Implementation of Java Remote
Method Invocation (RMI), Proc. of the 4th USENIX Conf. on Object-Oriented Technolo-
gies and Systems (COOTS), 1998.

12. Lieberherr K. J., Silva-Lepe, I., Xiao, C., Adaptive object-oriented programming using
graph-based customization, Comm. of ACM, 37(5), May 1994.

13. Lipkind, I., Pechtchanski, I., and Karamcheti, V., Object views: Language support for in-
telligent object caching in parallel and distributed computations, Proc. of the 14th ACM
SIGPLAN Conf. on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 1999.

14. Lopes, C. V., Adaptive Parameter Passing, Proc. of the 2nd JSSST Int’l Symposium on Ob-
ject Technologies for Advanced Software (ISOTAS), LNCS 1049, Springer, 1996.

15. ModelBus: Functional & Technical architecture document (Vol II), ModelWare project
deliverable D3.1, http://www.modelware-ist.org, May 2005.

16. OMG, MDA Guide Version 1.0.1, document no: omg/2003-06-01, 2003.

 Applying Model Fragment Copy-Restore 645

17. OMG, Meta Object Facility version 2.0, document no: formal/06-01-01, 2006.
18. OMG, XML Metadata Interchange (XMI) Specification version 2.0, document no: for-

mal/03-05-02, 2003.
19. OMG, UML 2.0 Superstructure Specification, document no: formal/05-07-04, 2005.
20. The Open Group, DCE 1.1 RPC Specification, http://www.opengroup.org, 1997.
21. Philippsen, M., Haumacher, B., More Efficient Object Serialization, Proc. of the ACM

1999 Java Grande Conf., June 1999.
22. Porres, I., Model Refactorings as Rule-Based Update Transformations, Proc. of the 6th

Int’l Conf. on the Unified Modeling Language, 2003.
23. Sriplakich, P., Blanc, X., Gervais, M-P., Supporting Collaborative Development in an

Open MDA Environment, Proc. of the 22nd IEEE Int’l Con. on Software Maintenance
(ICSM), 2006.

24. Sriplakich, P., Blanc, X., Gervais, M-P., Supporting transparent model update in distrib-
uted CASE tool integration, Proc. of the 21st ACM Symposium on Applied Computing,
2006.

25. Tilevich, E., Y. Smaragdakis, NRMI: Natural and Efficient Middleware, Proc. of the 23rd
Int’l Conf. on Distributed Computing Systems (ICDCS), 2003.

26. Tokuda, L., and Batory, D., Evolving Object-Oriented Designs with Refactorings, Proc. of
the 14th IEEE Int’l Conf. on Automated Software Engineering (ASE), 1999.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 646 – 660, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An OCL-Based Technique for Specifying and Verifying
Refinement-Oriented Transformations in MDE

Claudia Pons1,2 and Diego Garcia1,3

1LIFIA – Facultad de Informática, Universidad Nacional de La Plata
2CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)

3UTN (Universidad Tecnológica Nacional)
La Plata, Buenos Aires, Argentina

{cpons, dgarcia}@sol.info.unlp.edu.ar

Abstract. Despite the fact that the refinement technique is one of the
cornerstones of a formal approach to software engineering, the concept of
refinement in model driven engineering is loosely defined and open to
misinterpretations. In this article we present a rigorous technique for specifying
and verifying frequently occurring forms of refinement that take place in
software modeling. Such strategy uses the formal language Object-Z as a
background foundation, whereas designers only have to deal with the broadly
accepted UML and OCL languages, thus propitiating the inclusion of
verification in ordinary software engineering activities, increasing in this way
the level of confidence on the correctness of the final product. Finally, an
automatic tool is provided to support such model refinement activities; this tool
adopts the micromodels strategy to reduce the search scope, making the
verification process feasible.

1 Introduction

The idea promoted by model-driven engineering (MDE) [7] [24] [17] is to use models
at different levels of abstraction. A series of transformations are performed starting
from a platform independent model with the aim of making the system more platform-
specific at each refinement step. Such transformations reduce non-determinism by
making design decisions, e.g., how to represent data, how to implement
communications, etc. In MDE predefined transformations, written in a standard
transformation language [21] are applied in order to evolve from model to model. It is
assumed that such transformations have been previously validated by a MDE expert,
and thus are safe to apply; such transformations are refinements in the sense of formal
languages: refinement is the process of developing a more detailed design or
implementation from an abstract specification through a sequence of mathematically-
based steps that maintain correctness with respect to the original specification.

Despite the fact that refinement technique is one of the cornerstones of a formal
approach to software engineering, the concept of refinement in MDE is loosely
defined and open to misinterpretations. This drawback takes place because of the
semi-formality present in the modeling languages used in MDE and also because of
the currently relative immaturity in this field.

 An OCL-Based Technique 647

There are two alternatives to increase the robustness of the MDE refinement
machinery. One is to translate the core language used in MDE, i.e., UML [15], into a
formal language such as Z, where properties are defined and analyzed. For example
the works presented in [1], [3], [5], [10], [11], [13] and [25] among others, belong to
this group. They are appropriate to discover and correct inconsistencies and
ambiguities of the graphical language, and in most cases they allow us to verify and
calculate refinements of (a restricted form of) UML models. However, such
approaches are non-constructive (i.e., they provide no feedback in terms of UML),
they require expertise in reading and analyzing formal specifications and generally,
properties that should be proved in the formal setting are too complex and
undecidedly. A second alternative is to promote a formal definition of refinement,
e.g., simulation in Z, and express it in MDE terms. For example, Boiten and
Bujorianu in [2] indirectly explore refinement through unification; Paige and colleges
in [18] define refinement in terms of model consistency; Liu, Jifeng, Li and Chen in
[14] define a set of refinement laws of UML models to capture the essential nature,
principles and patterns of object-oriented design, which are consistent with the
refinement definition. Finaly, Lano and colleges in [12] describe a catalogue of UML
refinement patterns which is a set of rules to systematically transform UML models to
forms closer to Java code.

Following the second alternative, in [19] and [20] well founded refinement
structures in the Object-Z formal language were used to discover refinement
structures in the UML, which are (intuitively) equivalent to their corresponding
Object-Z inspiration sources. In this article we work further on such proposal by
enriching those refinement patterns with a refinement condition written in OCL
(Object Constraint Language) [16] [22]. The advantage of this approach is that
refinement conditions get completely defined in terms of OCL, making the
application of languages which are usually hardly accepted by software engineers
unnecessary. OCL is a more familiar language and it has a simpler syntax than
Object-Z and other formal languages. Additionally, OCL is part of the UML 2.0
standard and it will probably form part of most modeling tools in the near future.

Furthermore, after defining refinement conditions, the next step is to evaluate such
conditions. Ordinary OCL evaluators are unable to determine whether a refinement
condition written in OCL holds in a UML model because OCL formulas are evaluated
on a particular instance of the model, while refinement conditions need to be validated
in all possible instantiations. Therefore, in order to make the evaluation of refinement
conditions possible, we extract from the UML model a relatively small number of
small instantiations, and check that they satisfy the refinement conditions to be proved.
This strategy, called micromodels of software was proposed by Daniel Jackson in [9]
for evaluating formulas written in Alloy. Later on, Martin Gogolla and colleges in [8]
developed a useful adaptation of such technique to verify UML and OCL models. Here
we adapt such micromodels strategy to verify refinement conditions.

The structure of this document is as follows: sections 2 serves as a brief intro-
duction to the issue of refinement specification in Object-Z and UML 2.0; section 3
describes the method for creating OCL refinement condition for UML refinement
patterns; section 4 explains how the micromodels strategy is applied to verify
refinements; finally, the paper closes with a presentation of related work, conclusions
and future projects.

648 C. Pons and D. Garcia

2 Refinements Specification and Verification in Object-Z and
UML

In Object-Z [23], a class is represented as a named box with zero or more generic
parameters. The class schema may include local type or constant definitions, at most
one state schema and an initial state schema together with zero or more operation
schemas. These operations define the behavior of the class by specifying any input
and output together with a description of how the state variables change. Operations
are defined in terms of two copies of the state: an undecorated copy which represents
the before-sate and a primed copy representing the after-state.

For example, figure 1 illustrates the specification of a simple class called Flight,
having a state (consisting of two variables) and only one operation.

 Object-Z is equipped with a
schema calculus (i.e., a set of
operators provided to manipulate
Object-Z schemas). The schema
calculus makes it possible to
create Object-Z specifications
describing properties of other
Object-Z specifications. To deal
with refinements we need to apply
at least the following operators:

- Operator STATE denotes the set
of all possible states (i.e., snapshots
or bindings) of the system under
consideration. For example, Flight.
STATE = { freeSeats=x, canceled=t

| 0≤x≤300 t∈{true, false}}
- Operator INIT denotes the initial states of a given schema. For example,

Flight.INIT={ freeSeats=300 , canceled=false | }
- Operator pre returns the precondition of an operation schema; that is to say the set

of all states where the operation can be applied. For example, pre reserve =
{ freeSeats=x, canceled=false | 0<x≤300}

- The conjunction of two schemas S and T (S T) results in a schema which
includes both S and T (and nothing else).

- Schema implication (S T) denotes the usual logical implication.
In [4], refinement is formally addressed in the context of Object-Z specifications as

follows: an Object-Z class C is a refinement (through downward simulation) of the
class A if there is a retrieve relation R on A.STATE C.STATE so that every visible
abstract operation A.op is recasted into a visible concrete operation C.op, thus the
following holds:

(Initialization) C.STATE × C.INIT (A.STATE × A.INIT R)

(Applicability) A.STATE × C.STATE× R (pre A.op pre C.op)

(Correctness) A.STATE× C.STATE× C.STATE’×

 R pre A.op C.op A.STATE’× R’ A.op

 Fig. 1. Simple Object-Z schema

 An OCL-Based Technique 649

This definition allows preconditions to be weakened and non-determinism to be
reduced. In particular, applicability requires a concrete operation to be defined
wherever the abstract operation was defined, however it also allows the concrete
operation to be defined in states for which the precondition of the abstract operation
was false. That is, the precondition of the operation can be weakened. Correctness
requires that a concrete operation be consistent with the abstract one whenever applied
in a state where the abstract operation is defined. However, the outcome of the
concrete operation only has to be consistent with the abstract, but not identical. Thus if
the abstract operation allowed a number of options, the concrete operation is free to use
any subset of these choices. In other words, non-determinism can be solved.

On the other hand, the standard modeling language UML [15] provides an artifact
named Abstraction (a kind of Dependency) with the stereotype <<refine>> to
explicitly specify the refinement relationship between UML named model elements.
In the UML metamodel an Abstraction is a directed relation from a client (or clients)
to a supplier (or suppliers) stating that the client (the refinement) depends on the
supplier (the abstraction). The Abstraction artifact has a meta-attribute called mapping
designated to record the abstraction/implementation mappings (i.e., the counterpart to
the Object-Z retrieve relation), which is an explicit documentation of how the
properties of an abstract element are mapped to its refined versions, and on the
opposite direction, how concrete elements can be simplified to fit an abstract
definition. The mapping contains an expression stated in a given language that could
be formal or not. The definition of refinement in the UML standard [15] is formulated
using natural language and it remains open to numerous contradictory interpretations.

3 Verification Strategy for UML Refinement Patterns

UML refinement patterns [12] [19] [20] document recurring refinement structures in
UML models. In this section we present a process to be applied on UML models
containing such patterns in order to automatically create OCL refinement conditions
to analyze them in a rigorous way. Figure 2 gives a description of the process at a
glance. It is based on a pipeline architecture in which the analysis is carried out by a
sequence of steps. The output of each step provides the input to the next one. In this
section we give a brief overview of each step:

Refinement pattern instantiation. Each refinement pattern P consists of two parts: a
description M of the Pattern structure, given in terms of UML diagrams and a generic
constraint F expressed in Object-Z representing refinement condition for such pattern.
Given a UML model M1 compliant with the structure of pattern P, the first step of the
process automatically generates an instance F1 of the generic formula F that
establishes the conditions to be fulfilled by M1 in order to verify the refinement.

Transformation to OCL. After being generated, the Object-Z formula F1 is auto-
matically translated into the OCL formula F1’ by applying the transformation T (the
detailed definition of T is included in the appendix).

Micromodels strategy application. In this step, the micromodels strategy is applied
to F1’ in order to produce a formula F1’’ which is analyzable within a limited scope.

650 C. Pons and D. Garcia

OCL Evaluation. Finally, F1’’ is submitted to an ordinary OCL evaluator.

The process is assisted by the automated tool ePlatero [6] that is a plug-in to the
Eclipse development environment; ePlatero implements the verification process
described above.

In the following sections this process is illustrated through a concrete example: the
state refinement pattern [19].

Fig. 2. Overview of the refinement verification process

3.1 The State Refinement Pattern

A State Refinement takes place when the data structures which were used to represent
the objects in the abstract specification are replaced by more concrete or suitable
structures; operations are accordingly redefined to preserve the behavior defined in
the abstract specification.

An instance of the pattern’s structure
Let M1 be the UML model in figure 3, which is compliant with the structure of the
state refinement pattern [19]. M1 contains information about a flight booking system
where each flight is abstractly described by the quantity of free seats in its cabin; then
a refinement is produced by recording the total capacity of the flight together with the
quantity of reserved seats. In both specifications, a Boolean attribute is used to
represent the state of the flight (open or canceled). The available operations are
reserve to make a reservation of one seat and cancel to cancel the entire flight.
A refinement relationship connects the abstract to the concrete specification. The
OCL language [16] has been used to specify initial values, operation’s pre and post
conditions and the mapping attached to the refinement relationship.

 An OCL-Based Technique 651

Fig. 3. an instance of the state refinement pattern

An instance of the pattern’s refinement condition
Object-Z refinement conditions - F1 - for UML classes FlightA and FlightC via some
retrieve relation R are automatically generated from the generic refinement condition
established by the pattern [19], based on the definition of downward simulation in
Object-Z described in [4]. Figure 4 shows the formula F1.

Initialization
FlightC.STATE ×FlightC.INIT (FlightA.STATE ×FlightA.INIT R)

Applicability (for operation reserve)

FlightA.STATE× FlightC.STATE ×
 R (pre FlightA.reserve pre FlightC.reserve)

Correctness (for operation reserve)

FlightA.STATE × FlightC.STATE × FlightC.STATE’× R

 pre FlightA.reserve FlightC.reserve FlightA.STATE’ ×R’ FlightA.reserve

Fig. 4. An instance of the refinement condition for the state refinement pattern

The transformation process from object-Z to OCL
Then, Object-Z refinement condition - F1 - is automatically transformed into OCL
expression – F1’ - by applying the transformation T in the context of a UML model

context FlightA ::
freeSeats init: 300
canceled init: false
reserve() pre: freeSeats>0 and not canceled
 post: freeSeats=freeSeats@pre -1
cancel() pre: not canceled post: canceled

context FlightC ::
capacity init: 300
reservedSeats init: 0
canceled init: false
reserve() pre: capacity-reservedSeats>0
 and not canceled
 post:reservedSeats=reservedSeats@pre+1
cancel() pre: not canceled
 post: canceled

flightA.freeSeats = flightC.capacity –
flightC.reservedSeats and flightA.canceled
= flightC.canceled

652 C. Pons and D. Garcia

M1. Apart from producing an OclExpression, T returns an OclFile containing
additional definitions, which are created during the transformation process:

T : Model-> ObjectZpredicate -> (OclExpression,OclFile)

The main features of the transformation are as follows,

Remark #1: The Object-Z retrieve relation R is replaced by its OCL counterpart.

Graphically, the abstraction mapping (i.e., the retrieve relation) describing the relation
between the attributes in the abstract element and the attributes in the concrete
element is attached to the refinement relationship; however, OCL expressions can
only be written in the context of a Classifier, but not of a Relationship. On the Z side,
the context of the abstraction mapping is the combination of the abstract and the
concrete states (i.e., A.STATE C.STATE); however, a combination of Classifiers is
not an OCL legal context. Our solution consists in translating the mapping into an
OCL formula in the context of the abstract classifier, in the following way:

context flightA:FlightA def :
mapping(flightC : FlightC):Boolean =
flightA.freeSeats= flightC.capacity – flightC.reservedSeats

and flightA.canceled= flightC.canceled

As a convention, class names in lower case are used to denote instances. It is worth
mentioning that the mapping definition could alternatively have been translated into a
formula in the context of the concrete classifier.

Formally:

TM (relationName) = (e,Φ)
Where:

e = absInstance “.mapping(” refInstance “)”

 Φ = “package” packageName

“context a:” AbstractClass “def:”

“mapping(c:” RefinedClass “):Boolean =” exp

 “endPackage”

Where:

d = M.getEnvironmentWithParents().lookup(relationName)

AbstractClass = d.supplier.name

RefinedClass = d.client.name

absInstance = toLowerCase(AbstractClass)

refInstance = toLowerCase(RefinedClass)

exp = d.mapping.body

packageName = abstractClass.package.name

 An OCL-Based Technique 653

Remark #2: Object-Z expression INIT is expressed in terms of an OCL boolean
operation isInit().

A query operation isInit()is automatically built from the specification of the
attribute’s initial values included in the UML class diagram. It returns true if all of the
instance’s attributes satisfy the initialization conditions. For example:

context FlightA def: isInit(): Boolean =
self.freeSeats = 300 and self.canceled = false

context FlightC def: isInit(): Boolean =
self.capacity=300 and self.canceled=false and

self.reservedSeats=0

In cases where the refinement involves composite classes, the initialization

condition is built in terms of the initialization of each component; additionally,
information provided for each composite association (e.g., multiplicity) is taken into
consideration.

Formally:

TM (className.INIT) =(e,Φ)
Where

e= toLowerCase(className) “.isInit()”

Φ = ”Package” packageName1
"context” className “def: isInit(): Boolean =”

attName1“=”exp1“and”...“and” attNamen“=”expn “and”
navigationName1“->size() =” size1 “and”
navigationName1 “->forAll(p| p.isInit())”...“and”
navigationNamen“->size() =” sizen “and”
navigationNamen “->forAll(p| p.isInit())”

“endPackage”

Where

packageName = class.package.name

class : UMLClass =
 M.getEnvironmentWithParents().lookup(className)

attributes: Sequence(UMLProperty) =

 class.allProperties()->select(p|p.initialValue-
>notEmpty())

∀j×1≤j≤attributes->size()× attNamej = attributes-
>at(j).name expj = attributes->at(j).initialValue.body

navigations: Sequence(UMLProperty) =

 class.allProperties()->select(p|p.association-
>notEmpty() and p.isComposite())

∀j×1≤j≤navigations->size()× navigationNamej = navigations-
>at(j).name sizej = navigations->at(j).lower

654 C. Pons and D. Garcia

Remark #3: Expressions containing the Object-Z operator “pre” are translated into
the corresponding OCL pre conditions from the UML model.

For example, the Object-Z expression “pre FlightA.reserve” is translated
into “flightA.freeSeats>0 and not flightA.canceled”

While, the expression “pre FlightC.reserve” is translated into

“flightC.capacity-flightC.reservedSeats>0 and not
flightC.canceled”

Remark #4: Object-Z expressions containing operation’s invocations are translated
to OCL post conditions from the UML model.

In Object-Z, elements belonging to the pre-state are denoted by undecorated
identifiers, while elements in the post-state are denoted by identifiers with a
decoration (i.e. a stroke). In OCL the naming convention goes exactly in the opposite
direction, that is to say, undecorated names refer to elements in the post-state. Then,
in order to be consistent with the rest of the specification, a decoration (i.e., “_post”)
is added to each undecorated identifier in the post condition and the original
decoration (i.e., @pre) is removed from the rest of the identifiers. For example the
following definition:

context FlightA::reserve()
 post: self.freeSeats= self.freeSeats@pre -1

is renamed to:

context FlightA::reserve()
 post: flightA_post.freeSeats= flightA.freeSeats -1

Remark #5: Logic connectors and quantifiers are translated to OCL operators.

The Z expression S.STATE×exp is translated to S.allInstances()-

>forAll(s | T(expr)). While the Z expression S.STATE×exp is translated
to S.allInstances()->exists(s| T(expr)).

For example, the translation for the universal quantifiers is as follows:

TM(className.STATE × Predicate) = (e,Φ)
Where

TM(Predicate)= (e1, Φ)
e=className“.allInstances()->forAll(”iteratorName“|”e1“)”

iteratorName= toLowerCase(className)

 An OCL-Based Technique 655

Notice that the name of the class, in lower case, is used to name the iterate variable.
Finally, the symbol is translated to implies and the symbol is translated to
and,

TM(Predicate1 Predicate2)= (e,Φ)

Where

TM(Predicate1)= (e1, Φ1)

TM(Predicate2)= (e2, Φ2)

e= e1 “and” e2

Φ = Φ1 merge Φ2

On top of the formal definition of T the transformation process was fully

automated [6]. Table 1 shows the formula F1’ that is the result of applying the
transformation T on both the UML model M1 (figure 3) and the Object-Z refinement
conditions F1 (figure 4).

Table 1. OCL refinement conditions for an instance of the state refinement pattern

OCL refinement condition

FlightC.allInstances()->forAll(flightC| flightC.isInit()
implies (FlightA.allInstances()-> exists(flightA|
flightA.isInit()and flightA.mapping(flightC))))

FlightA.allInstances()-> forAll(flightA|
FlightC.allInstances()-> forAll(flightC|
flightA.mapping(flightC) implies (flightA.freeSeats>0 and
not flightA.canceled implies flightC.capacity-
flightC.reservedSeats>0
and not flightC.canceled)))

FlightA.allInstances()-> forAll(flightA|
FlightC.allInstances() -> forAll(flightC|
FlightC.allInstances()-> forAll(flightC_post|
flightA.mapping(flightC)and (flightA.freeSeats>0 and
not flightA.canceled) and (flightC_post.reservedSeats =
flightC.reservedSeats+1) implies FlightA.allInstances()->
exists(flightA_post| flightA_post.mapping(flightC_post)
and flightA_post.freeSeats= flightA.freeSeats -1))))

656 C. Pons and D. Garcia

3.2 Further Patterns

A vast number of refinement patterns can be specified and verified following the
method described in the preceding section, for example:

- Object decomposition refinement pattern is a form of refinement in which an
abstract element is described in more detail by revealing its interacting internal
components and conversely, the composite represents its components in sufficient
detail in all contexts in which the fact of being composed is not relevant.

- Atomic operation refinement pattern occurs in the case that a more concrete
specification is obtained from an abstract specification by replacing any operation
Aopk by its refinement Copk. The refined operation reduces non-determinism and/or
partiality present in the abstract operation.

- Non-atomic operation refinement pattern takes place when the abstract operation
is refined not by one, but by a combination of concrete operations, thus allowing a
change of granularity in the specification. Non-atomic refinements are useful because
they allow the initial specification to be described independently of the structure of
the eventual implementation. Also it enables considerations of efficiency to be
gradually introduced.

- Promotion pattern illustrates an elegant relationship between promotion and
refinement, under certain circumstances the promotion of a refinement is a refinement
of a promotion [4].

Additionally, complex model transformations, such as the application of most GoF
design patterns and the use of refactoring can be specified as a composition of the
simpler patterns described above.

4 Micro-worlds for Evaluating Refinement Conditions

Even little models such as the one described in figure 3 specify an infinite number of
instances; thus to decide whether a certain property holds or not in the model results
generally unfeasible. In order to make the evaluation of refinement conditions viable,
the technique of micromodels (or micro-worlds) of software is applied by defining a
finite bound on the size of instances and then checking whether all instances of that
size satisfy the property under consideration:

- If we get a positive answer, we are somewhat confident that the property holds in
all worlds. In this case, the answer is not conclusive, because there could be a larger
world which fails the property, but nevertheless a positive answer gives us some
confidence.

- If we get a negative answer, then we have found a world which violates the
property. In that case, we have a conclusive answer, which is that the property does
not hold in the model.

Jackson’s small scope hypothesis [9] states that negative answers already tend to
occur in small worlds, boosting the confidence we may have in a positive answer. For
example, in order to generate suitable micro-worlds to evaluate the refinement
conditions of class diagram in figure 3, the OCL package shown in figure 5,
containing invariants that reduce the size of the micro-world, is provided.

 An OCL-Based Technique 657

package flights
 context FlightA
 inv: Set { 0 .. 300 } -> includes (self.freeSeats)
 context FlightC
 inv: Set {300} -> includes (self.capacity)
 inv: self.reservedSeats <= self.capacity
 endpackage

Fig. 5. OCL invariants reducing the search space

Apart from satisfying all the OCL invariants reducing the search space, to be
suitable to analyze refinement relationships, the micro-worlds should satisfy the
“duality property”. Such property establishes that for each instance of a concrete class
there must exist at least an instance of the abstract class being related by the
abstraction mapping. The automatic micro-world generation process implemented by
the tool guarantees the fulfillment of the duality property.

Then the tool checks whether all micro-worlds of that size satisfy the refinement
condition. For example, figure 6 displays one of the micro-worlds satisfying the
invariants and the duality property. In such micro-world the expression
FlightA.allInstances() returns a finite set of size three containing the objects
FlightA1, FlightA2 and FlightA3, while FlightC.allInstances() returns a finite set of
size three containing the objects FlightC1, FlightC2 and FlightC3.

freeSeats : int = 72
canceled : bool = true

FlightA1 : FlightA

freeSeats : int = 258
canceled : bool = false

FlightA2 : FlightA

freeSeats : int = 177
canceled : bool = false

FlightA3 : FlightA

capacity : int = 300
reservedSeats : int = 228
canceled : bool = true

FlightC1 : FlightC

capacity : int = 300
reservedSeats : int = 123
canceled : bool = false

FlightC2 : FlightC

capacity : int = 300
reservedSeats : int = 228
canceled : bool = true

FlightC3 : FlightC

Fig. 6. Micro-world automatically generated from the UML model in figure 3 enriched with the
constraints in figure 5

In this context we have, for example, the following applicability condition for
operation reserve():

Set{<FlightA1>, <FlightA2>, <FlightA3>} -> forAll (flightA |
Set{<FlightC1>, <FlightC2>, <FlightC3>} -> forAll(flightC |

flightA.mapping(flightC) implies (flightA.freeSeats>0 and not
flightA.canceled implies flightC.capacity -
flightC.reservedSeats>0 and not flightC.canceled)))

This expression is easily evaluated by an ordinary OCL evaluator, returning a

positive answer, which gives us some confidence that the property holds.

658 C. Pons and D. Garcia

Lets explore a case where the refinement conditions are not satisfied; lets consider
for example that preconditions were strengthened in class FlightC as follows,

context FlightC :: reserve()

pre:self.capacity-self.reservedSeats>200 and notself.canceled

Then, the property to be checked would be,

Set{<FlightA1>, <FlightA2>, <FlightA3>} -> forAll (flightA |
Set{<FlightC1>, <FlightC2>, <FlightC3>} -> forAll(flightC |

flightA.mapping(flightC) implies (flightA.freeSeats>0 and not
flightA.canceled implies flightC.capacity -
flightC.reservedSeats >200 and not flightC.canceled)))

which evaluates false in the micro-world in figure 6, as follows:

flightA3.mapping(flightC2)= true
flightA3.freeSeats>0 and not flightA3.canceled = true
flightC2.capacity – flightC2.reservedSeats > 200 = false

giving the conclusive answer that the refinement property does not hold in this last
model.

5 Conclusion

Each transformation step in the model driven software development process should be
amenable to formal verification in order to guarantee the correctness of the final
product. However, verification activities require the application of formal modeling
languages with a complex syntax and semantics and need to use complex formal
analysis tools; therefore, they are rarely used in practice.

To facilitate the verification task we developed an automatic method for creating
refinement conditions for UML models, written in the standard and well-accepted
OCL language. This is a lightweight approach that avoids the use of mathematical
languages and tools that while ideal and suitable for the problem, will likely be
unacceptable to developers.

The inclusion of verification in ordinary software engineering activities will be
propitiated by encouraging the use of tools that are familiar and usable to MDE
developers. The disadvantages of this approach relate to soundness and completeness;
while the approach is rigorous, it is not formal and thus it is not possible to verify that
the definition is sound and complete.

To complement such method, we adapted a strategy for reducing the search scope
in order to make the evaluation of refinement conditions feasible. Since the satisfiable
formulas that occur in practice tend to have small models, a small scope usually
suffices and the analysis is reliable.

Acknowledgement. This work was partially funded by Universidad Abierta
Interamericana (UAI), through the project ?Software modelling: a formal approach?.

 An OCL-Based Technique 659

References

[1] Astesiano E., Reggio G. An Algebraic Proposal for Handling UML Consistency”,
Workshop on Consistency Problems in UML-based Software Development. UML
Conference , San Francisco, USA (2003).

[2] Boiten E.A. and Bujorianu M.C. Exploring UML refinement through unification.
Proceedings of the UML'03 workshop on Critical Systems Development with UML, J.
Jurjens, B. Rumpe, et al., editors -TUM-I0323, Technische Universitat Munchen. (2003).

[3] Davies J. and Crichton C. Concurrency and Refinement in the Unified Modeling
Language. Electronic Notes in Theoretical Computer Science 70,3, Elsevier, 2002.

[4] Derrick, J. and Boiten,E. Refinement in Z and Object-Z. Foundation and Advanced
Applications. FACIT, Springer. (2001)

[5] Engels G., Küster J., Heckel R. and Groenewegen L. A Methodology for Specifying and
Analyzing Consistency of Object Oriented Behavioral Models. Procs. of the IEEE Int.
Conference on Foundation of Software Engineering. (2001).

[6] ePlatero. http://sol.info.unlp.edu.ar/eclipse.
[7] Favre Jean-Marie, Estublier Jacky, Blay Mireille. Beyond MDA : Model Driven

Engineering (L'Ingénierie Dirigée par les Modèles : au-délà du MDA) Edition Hezmes-
Lavoisier, ISBN 2-7462-1213-7. Février 2006.

[8] Gogolla , Martin, Bohling, Jo¨rn and Richters, Mark. Validation of UML and OCL
Models by Automatic Snapshot Generation. In G. Booch, P.Stevens, and J. Whittle,
editors, Proc. 6th Int. Conf. Unified Modeling Language (UML'2003). Springer,
LNCS 2863, (2003).

[9] Jackson, Daniel, Shlyakhter, I. and Sridharan. A micromodularity Mechanism. In
proceedings of the ACM Sigsoft Conference on the Foundation of Software Engineering
FSE’01. (2001).

[10] Kim, S. and Carrington, D., Formalizing the UML Class Diagrams using Object-Z,
proceedings UML´99 Conference, Lecture Notes in Computer Sciencie 1723 (1999).

[11] Lano,K., Biccaregui,J., Formalizing the UML in Structured Temporal Theories, 2nd.
ECOOP Workshop on Precise Behavioral Semantics, TUM-I9813, (1998).

[12] Lano, Kevin, Androutsopolous, Kelly and Clark David. Refinement Patterns for UML.
Proceedings of REFINE’2005. Elsevier Electronic Notes in Theoretical Computer
Science 137. pages 131-149 (2005).

[13] Ledang, Hung and Souquieres, Jeanine. Integration of UML and B Specification Techni-
ques: Systematic Transformation from OCL Expressions into B. Procs. of IEEE Asia-
Pacific Software Engineering Conference 2002. December 4-6, (2002).

[14] Liu, Z., Jifeng H., Li, X. Chen Y. Consistency and Refinement of UML Models. 3er
Workshop on Consistency Problems in UML-based Software Development III, event of
the UML Conference, (2004).

[15] OMG - UML 2.0. The Unified Modeling Language Superstructure version 2.0 – OMG
Final Adopted Specification.. http://www.omg.org. August 2003

[16] OCL 2.0. OMG Final Adopted Specification. October 2003.
[17] Object Management Group, MDA Guide, v1.0.1, omg/03-06-01, June 2003.
[18] Paige, R., Kolovos D. and Polack,F. Refinement via Consistency Checking in MDD. In

REFINE’2005. Electronic Notes in Theoretical Computer Science 137. (2005).
[19] Pons Claudia. On the definition of UML refinement patterns. Workshop MoDeVa at

ACM/IEEE 8th Int. Conference on Model Driven Engineering Languages and Systems
(MoDELS) Jamaica. October 2005.

660 C. Pons and D. Garcia

[20] Pons Claudia. Heuristics on the Definition of UML Refinement Patterns. 32nd
International Conference on Current Trends in Theory and Practice of Computer Science.
SOFSEM. Lecture Notes in Computer Science LNCS number 3831. Springer (2006)

[21] QVT Partners revised submission to QVT 1.1 (ad/2003-08-08).
[22] Richters, Mark and Gogolla, Martin. OCL-Syntax, Semantics and Tools. in Advances in

Object Modelling with the OCL. Lecture Notes in Computer Science number 2263.
Springer. (2001).

[23] Smith, Graeme. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers. ISBN 0-7923-8684-1. (2000)

[24] Stahl, M Voelter. Model Driven Software Development. John Wiley, ISBN 0470025700,
April 2006.

[25] Van Der Straeten, R., Mens,T., Simmonds, J. and Jonckers,V. Using description logic to
maintain consistency between UML-models. In Proc. 6th International Conference on the
Unified Modeling Language. Lecture Notes in Computer Science number 2863. Springer.
(2003).

An OCL Semantics Specified with QVT�

Slavǐsa Marković and Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{slavisa.markovic, thomas.baar}@epfl.ch

Abstract. Metamodeling became in the last decade a widely accepted
tool to describe the (abstract) syntax of modeling languages in a con-
cise, but yet precise way. For the description of the language’s semantics,
the situation is less satisfactory and formal semantics definitions are still
seen as a challenge. In this paper, we propose an approach to specify
the semantics of modeling languages in a graphical way. As an example,
we describe the evaluation semantics of OCL by transformation rules
written in the graphical formalism QVT. We believe that the graphical
format of our OCL semantics has natural advantages with respect to un-
derstandability compared to existing formalizations of OCL’s semantics.
Our semantics can also be seen as a reference implementation of an OCL
evaluator, because the transformation rules can be executed by any QVT
compliant transformation engine.

1 Introduction

Modeling is an important activity in all engineering disciplines, including soft-
ware development. While the general purpose modeling language UML has
proven to be versatile enough for many different domains (see, e.g., chapter
1 of [1]), it has also been recognized that the structure and the behavior of the
system under development can often be captured as well with a much simpler,
domain-specific modeling language [2].

UML and DSLs have much in common. Their abstract syntax is usually de-
fined by a metamodel and UML’s core modeling concepts such as Class, Object,
State, etc. can also be found, possibly under a different name, in many DSLs.
If a DSL comprises a constraint language, i.e. a language to impose restrictions
on the modeled system, then some core concepts of UML’s constraint language
OCL such as model navigation, variable quantification and pre-defined functions
are likely to be used. In this paper, we present a new approach to define the se-
mantics of constraint languages formally. We illustrate our approach on a rather
complex example, the semantics of OCL, but since our technique is based on gen-
eral techniques such as metamodeling and model transformation, the semantics
of other constraint languages can be defined in a similar way.
� This work was supported by Swiss National Scientific Research Fund under the

reference number 200020-109492/1.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 661–675, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

662 S. Marković and T. Baar

Before sketching existing approaches to define the semantics of OCL it is
worthwhile to reflect the purpose and semantics of UML diagrams that can also
be used without OCL constraints. A diagrammatic UML model describes the
structure and behavior of a system at a certain level of details. The structure
of the system clarifies which states (in UML jargon also called snapshots) the
system can have and the behavioral description imposes restrictions on system
changes. The question on how a class diagram corresponds to the state space
of the system it describes has particular relevance for our later considerations.
This correspondence (or semantics) of class diagrams has been given in the
literature in many different forms, e.g. by an informal description (see UML
User Guide [1]), by a mapping of classes into a set-theoretic domain (see [3]), by
a metamodel of the semantic domain. The metamodel for the semantic domain
became in UML1.x a part of the UML language standard because it is the basis
for object diagrams, which are used to visualize system states.

The purpose of an OCL constraint is to make the already existing diagram-
matic UML model more precise. For instance, a constraint attached as an invari-
ant to a class shrinks the statespace to those states of the system, in which the
constraint is evaluated to true. A pair of OCL constraints (preCond , postCond)
attached as pre-/postcondition to an operation op means that the implementa-
tion of op can realize only those state transitions (preState, postState), for which
postCond is evaluated in postState to true whenever preCond is evaluated in preS
to true. No matter for which purpose an OCL constraint is used (as an invari-
ant, as a guard, within pre-/postcondition), the semantics of the constraint can
always be reduced to the question, how the evaluation of a constraint in a given
state is defined. In the literature, the evaluation function eval : Constraint x
State → {true, false, undefined} is defined either mathematically by structural
induction over Constraint (see official OCL semantics, appendix A in [4]) or
by embedding OCL into another logic [5]. While these two approaches have ba-
sically succeeded in describing the evaluation of OCL constraints in a formal,
non-ambiguous manner, they still have some disadvantages. One drawback is the
gap between OCL’s official syntax definition (which is given as a metamodel) and
the OCL syntax, given by structural induction, that is assumed in the semantics
definition. The main, very related drawback, however, is understandability. We
made the experience that many of our students, who learned OCL in our course,
were quite reluctant to deepen their knowledge on OCL by reading the official
mathematical semantics, just because it is presented in a format they are not
very familiar with (in set theory). If the purpose of the semantics is to inform the
prospective OCL users about all the details of the language, then the semantics
should be given in a format OCL users are familiar with.

One technique how this can be achieved is metamodeling. Metamodels are
already frequently used in abstract syntax definitions. Metamodels are very ex-
pressive and easy to understand for people who have a background in modeling
(at least, these are our personal experiences we made with students). As men-
tioned above, metamodeling has already been applied to cover also the semantics
of class diagrams. Even more, the section ’Semantics Described using UML’ in

An OCL Semantics Specified with QVT 663

[4] presents already a metamodeling approach for the evaluation of OCL ex-
pressions. We took this approach as a starting point but added some important
improvements. The most striking difference is how the evaluation process is mod-
eled: In [4], evaluation is modeled by Evaluation-metaclasses whereas in our ap-
proach this is described by transformation rules written in QVT. We also changed
the metamodel of the semantic domain significantly for many reasons; one was
to have a better representation of predefined datatypes. Our approach has been
implemented using the QVT engine provided by Together Architect for Eclipse.

To summarize, our semantics of OCL is specified with a metamodeling ap-
proach using MOF, OCL and QVT as a formalism at the metalevel. Since QVT
depends also heavily on OCL, there is the natural question if our approach does
not describe the OCL semantics in terms of OCL and thus has fallen into the
trap of meta-circularity. We have avoided this trap because the semantics of the
OCL used at the metalevel is given by an external mechanism, in our case by
the semantics implemented by the QVT engine of Together Architect. The de-
pendency of our semantics definition on a tool implementation might be seen as
a drawback but for the purpose of our semantics – to help OCL users to deepen
their knowledge on the peculiarities of OCL evaluation – this is not really an
obstacle. Using a tool as an ’anchor’ for our OCL semantics has also signifi-
cant advantages such as automatic tool support (note that our OCL semantics
is fully executable by QVT engines) and flexibility (users can easily adapt the
OCL semantics to their needs).

The rest of the paper is organized as follows. In Sect. 2, we sketch our ap-
proach and show, by way of illustration, a concrete application scenario for our
semantics. The steps the evaluator actually has to perform are formalized as
graphical QVT rules in Sect. 3. Section 4 contains related work, while Sect. 5
draws some conclusion and points to problems, which we plan to address in the
near future.

2 Our Metamodel Based Approach for OCL Evaluation

In this section we briefly review the technique and concepts our approach relies
on and illustrate with a simple example the evaluation of OCL constraints.

2.1 Official Metamodels for UML/OCL

We base our semantics for OCL on the official metamodels for UML and OCL.
We support the last finalized version of OCL 2.0 [4] but since this version still
refers to UML1.5 [6] we were forced to support UML1.5 instead of UML2.0.
Figures 1 and 2 show the parts of the UML and OCL metamodels that are
relevant for this paper. Please note that Fig. 1 contains also in its upper part a
metamodel of the semantic domain of class diagrams.

2.2 Changes in the OCL Metamodel

In order to realize our approach in a clear and readable way, we had to add
some few metaassociations and -attributes to that part of the official metamodel

664 S. Marković and T. Baar

ModelElement

name : Name

Link LinkEnd

Association

AssociationEnd
multiplicity : Multiplicity
ordering : OrderingKind

1 2..*

{ordered}
+connection 0..*

+linkEnd

1

0..*

+associationEnd

2..*

1

{ordered}
+connection

0..*

1 +association

1

+instance AttributeLinkInstance

Object

Attribute

Classifier

DataValue

+value
0..*

0..*
+slot

0..*

1 +attribute

0..*

1..*+classifier

Feature

StructuralFeature

0..*

0..1
+owner

{ordered}
+feature

1
+type

0..*+typedFeature

Class

1
0..*
+association

+participant

+association

1

Syntax

Semantics

Fig. 1. Metamodel for Class Diagrams - Syntax and Semantics

OclExpression

LoopExp

IteratorExp

Classifier
(from Core)+type

1

VariableExp

VariableDeclaration
varName : String

+referredVariable 1

0..*
+type

1

LiteralExp

0..1

+appliedProperty0..1

+source

0..1

1+body

+loopExp

+iterators0..1 1..*

IntegerLiteralExp
integerSymbol:Integer

Attribute
(from Core)

OclExpression

AttributeCallExp

ModelPropertyCallExp

AssociationEndCallExp

AssociationEnd
(from Core)

0..1+appliedProperty

0..*

1 +referredAttribute

1

0..*

0..1+source

+referredAssociationEnd

OperationCallExp
Operation
(from Core)

0..* 1
+referredOperation

+arguments
{ordered} 0..*

+parentOperation
0..1

Fig. 2. Metamodel for OCL - Syntax

of OCL that describes the semantic domain of OCL evaluations (see Fig. 3).
The metaclass OclExpression has a new association to Instance, what represents
the evaluation of the expression in a given object diagram. We revised slightly
the concepts of bindings (association between OclExpression and NameValue-
Binding) and added to class IteratorExp two associations current and intermedi-
ateResult, and one attribute freshBinding. Furthermore, the classes StringValue,
IntegerValue, etc. have now attributes stringValue, integerValue, etc. what makes
it possible to clearly distinguish a datatype object from its value.

2.3 Evaluation

We motivate our approach to define OCL’s semantics with a small example. In
Fig. 4, a simple class diagram and one of its possible snapshots is shown. The
model consists of one class Stockwith two attributes: capacity and numOfItems,
both of type Integer, representing capacity of Stock and the current number of

An OCL Semantics Specified with QVT 665

Instance

OclExpression

NameValueBinding
varName : String

+binding0..* 0..1+val

1

ObjectDataValue

ElementValue
indexNr:Integer

PrimitiveValue OclVoidValue CollectionValue

BagTypeValue SetTypeValue

SequenceTypeValue

BooleanValue
booleanValue:Boolean

IntegerValue
integerValue:Integer

+elements

0..1

0..*

0..1

IteratorExp
freshBinding : Boolean

+current

+val
+val

0..*

0..1
+intermediateResult

StringValue
stringValue:String

RealValue
realValue:Real

0..*

0..1

1

0..10..*
0..*

Fig. 3. Changed Metamodel for OCL - Semantics

s:Stock

capacity=7
numOfItems=3

Stock

capacity: Integer
numOfItems: Integer

context Stock inv:
self.capacity>self.numOfItems

Fig. 4. Example - Class Diagram and Snapshot

items it has, respectively. The additional constraint attached to the class Stock
requires that the current number of items in a stock must always be smaller
than the capacity. The snapshot shown in the right part of Fig. 4 satisfies the
attached invariant because for each instance of Stock (class Stock has only one
instance in the snapshot) the value of numOfItems is less than the value of at-
tribute capacity. In other words, the constraint attached to the class Stock is
evaluated on object s to true.

In order to show how the evaluation of an OCL constraint is actually per-
formed on a given snapshot, we present in Fig. 5 the simplified state of the
Abstract Syntax Tree as it is manipulated by an OCL evaluator. Step (a)-(b)
performs the evaluation of the leaf nodes. Depending on the results of these eval-
uations, step (b)-(c) performs evaluation of nodes at the middle level. Finally,
the last step (c)-(d) performs evaluation of the top-level of the AST. Please note
that in this example we were not concerned about concrete binding of the self
variable. The problem of variable binding is discussed in Sect. 2.4.

The initial idea of our approach is that an OCL constraint can be analogously
evaluated by annotating directly the OCL metamodel instance instead of the AST.

Figure 6 shows the instance of the OCL metamodel representing the invariant
from Fig. 4. Here, we stipulate that all expressions have not been evaluated yet
because for each expression the link val to metaclass Instance is missing.

666 S. Marković and T. Baar

>

capacity numOfItems

self self

(a)

>

capacity numOfItems

self self

ss

(b)

>

capacity numOfItems

self self

s s

7 3

(c)

>

capacity numOfItems

self self

true

7 3

s s

(d)

Fig. 5. Evaluation of OCL expressions seen as an AST: (a) Initial AST (b) Leaf nodes
evaluated (c) Middle nodes evaluated (d) Complete AST evaluated

ace:AttributeCallExp

a:Attribute

name='capacity'

oce:OperationCallExp

source

referredAttribute

ve:VariableExp

source

vd:VariableDeclaration

name='self'referredVariable

op:Operation

name='>'

ace2:AttributeCallExp

a2:Attribute

name='noOfItems'

referredAttribute

ve2:VariableExp

source

referredVariable

arguments
parentOperation

referredOperation

o:Object

name='s'al1:AttributeLinkvalue slot
al2:AttributeLink

valueslot

System
Snapshot iv2:IntegerValue

integerValue=3
iv:IntegerValue
integerValue=7

OCL
Constraint

Fig. 6. OCL Constraint Before Evaluation

The state of the metamodel instance after the last evaluation step has been
finished is shown in Fig. 7. What has been added compared to the initial state
(Fig. 6) is highlighted by thick lines. The evaluation of the top-expression (Op-
erationCallExp) is a BooleanValue with booleanValue attribute set to true, the
two AttributeCallExpressions are evaluated to two IntegerValues with values 7
and 3, and each VariableExp is evaluated to Object with name s.

2.4 Binding

The evaluation of one OCL expression depends not only on the current sys-
tem state on which the evaluation is performed but also on the binding of free
variables to current values. The binding of variables is realized in the OCL meta-
model by the class NameValueBinding, which maps one free variable name to
one value. Every OCL expression can have arbitrarily many bindings, the only
restriction is the uniqueness of variable names within the set of linked NameVal-
ueBinding instances.

In the invariant of the Stock example we have used one free variable self.
Although self is a predefined variable in OCL, it can be treated the same way
as all other variables, which are introduced in Iterator Expressions. For example,
the invariant

s e l f . capac i ty > s e l f . numOfItems

can be rewritten as

An OCL Semantics Specified with QVT 667

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute

ve:VariableExp

source

vd:VariableDeclaration

name='self'referredVariable

op:Operation

name='>'

ace2:AttributeCallExp

referredAttribute

ve2:VariableExp

source

referredVariable

arguments
parentOperation

referredOperation

o:Object

name='s'

valval
val

a:Attribute

name='capacity'

a2:Attribute

name='noOfItems'

al1:AttributeLink

attribute

value slot
al2:AttributeLink

attribute

valueslot

System
Snapshot

OCL
Constraint

bv:BooleanValue
booleanValue=true

iv2:IntegerValue
integerValue=3

iv:IntegerValue
integerValue=7

val val

Fig. 7. OCL Constraint After Evaluation in a Given Snapshot

Stock . a l l I n s t an c e s −>f o rA l l (s e l f |
s e l f . capac ity>s e l f . numOfItems)

The binding of variables is done in a top-down approach. In other words,
variable bindings are passed from an expression to all its sub-expressions. Some
expressions do not only pass the current bindings, but also add/change bindings.
An example for adding new value-name bindings will be explained in more details
in Sect. 3 where the evaluation rules for forAll expressions are explained.

Figure 8 shows the process of binding passing on a concrete example. In the
upper part, the initial situation is given: The top-expression already has one
binding nvb for variable self. In the lower part of the figure, all subexpressions
of the top-expression are bound to the same NameValueBinding as the top-
expression.

3 Evaluation Rules Formalized in QVT

The previous section has shown the main idea of our approach: we annotate all
intermediate results of a constraint evaluation directly to the instance of the OCL

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute source

op:Operation

name='>'

ace2:AttributeCallExp

referredAttributesource

arguments
parentOperation

referredOperation

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute source

op:Operation

name='>'

ace2:AttributeCallExp

referredAttributesource

arguments
parentOperation

referredOperation

o:Object

name='s'

binding

binding

nvb:NameValueBinding

varName='self'

nvb:NameValueBinding
varName='self'

binding

binding

. . .

val

val
o:Object

name='s'

Fig. 8. Binding Passing

668 S. Marković and T. Baar

metamodel. What has not been specified yet are the evaluation steps themselves,
for example, that an AttributeCallExp is always evaluated to the attribute value
on that object to which the source expression of AttributeCallExp evaluates.

In this section, we specify these evaluation steps formally in form of QVT
rules. These rules are minimal in the sense that they do not capture any opti-
mization for an efficient evaluation nor impose any restrictions on the evaluation
ordering, unless they are really necessary.

3.1 QVT

QVT is a recent OMG standard for model transformations (see [8] for a detailed
account on QVT’s semantics), which are described by a set of transformation
rules. For our application scenario of QVT rules, source and target model are al-
ways instances of the same metamodel; the metamodel for UML/OCL including
the small changes we have proposed in Sect. 2. Each QVT rule consists of two
patterns (LHS, RHS), which are (incomplete) instantiations of the UML/OCL
metamodel. When a QVT rule is applied on a given source model, a LHS match-
ing sub model of the source model is searched. Then, the target model is obtained
by rewriting the matching sub model by a new sub model that is derived from
RHS under the same matching. If more than one QVT rule match on a given
source model, one of them is non-deterministically applied. The model transfor-
mation terminates as soon as none of the QVT rules is applicable on the current
model.

3.2 A Catalog of Rules

To specify the evaluation process, we have to formalize for each non-abstract
subclass of metaclass OclExpression one or more QVT rules. Due to space limit,
only the most important rules can be presented in this subsection. In order
to give a representative selection of our rules, we categorized them according
to the kind of expression they target: Navigation Expressions, OCL Predefined
Operations, Iterator Expressions, and Atomic Expressions. For each category,
we discuss one or two rules in detail. The main goal is to demonstrate that the
evaluation of all kinds of OCL expressions can be formulated using QVT in an
intuitive way.

Navigation Expressions. OCL expressions of this category are instances of
AttributeCallExp and AssociationEndCallExp. Such expressions are evaluated by
’navigating’ from the object, to which the source expression is evaluated, to that
element in the object diagram, which is referenced by the attribute or association
end. Before the source expression can be evaluated, the current binding of vari-
ables has to be passed from the parent expression to the sub expression. We show
in Fig. 9 how the binding rule is defined for AttributeCallExp. When applying
this rule, the binding of the parent object ace (represented by a link from ace to
the multiobject nvb in LHS) is passed to subexpression o (a link from o to nvb
is established in RHS). Analogous rules exist for all other kinds of OCL expres-
sions which have subexpressions. For the (subclasses of) LoopExp (see below) one

An OCL Semantics Specified with QVT 669

AttributeCallExp-binding

ace:AttributeCallExp

o:OclExpression a:Attribute

source referredAttribute

ace:AttributeCallExp

o:OclExpression a:Attribute

source referredAttribute

bindingnvb:NameValueBinding binding

binding

{when}
o.binding->isEmpty()

nvb:NameValueBinding

Fig. 9. Attribute Call Expression Bindings Passing

needs also additional rules for handling the binding because the subexpressions
are evaluated under a different binding than the parent expression.

AttributeCallExp. The semantics of AttributeCallExp is specified by the rule
AttributeCallExp-evaluation given in Fig. 10. The evaluation of ace is datavalue
d, which is also the value of the attribute a for object o. Note, that we stipulate
in the LHS, that oc, the source expression of ace, has been already evaluated
to object o.

AttributeCallExp-evaluation

{and}

ace:AttributeCallExp

a:Attribute

o:Object

al:AttributeLink

d:DataValue

a:Attribute

source referredAttribute

value

slot
instance

attributeLink

attribute {and}

ace:AttributeCallExp

oc:OclExpression a:Attribute

o:Object

al:AttributeLink

d:DataValue

a:Attribute

source referredAttribute

value

slot
instance

attributeLink

attribute

d:DataValue

o:Object
valo:Object

oc:OclExpression

{when}
ace.val->isEmpty()

val

val

Fig. 10. Attribute Call Expression Evaluation

As the rule for AttributeCallExp shown in Fig. 10, all our QVT rules have two
regions in the LHS and RHS patterns. The upper part of the patterns represents
the expression that should be evaluated. The lower one specifies the system state
on which the evaluation is performed. Since the evaluation of OCL rules does
not have any side-effect on the system state, the lower parts of LHS and RHS
will always coincide.

AssociationEndCallExp. We discuss here only the case of navigating to an un-
ordered association end with multiplicity greater than 1 (the case of multiplicities
equal to 1 is very similar to AttributeCallExp). The rule shown in Fig. 11 speci-
fies that the value of aece is a newly created object of type SetTypeValue whose
elements refer to all objects o2 that can be reached from object o via a link for
ae. Again, object o is the evaluation of source expression oe. The rule shown in
Fig. 11 contains at few locations the multiplicities 1-1 at the link between two
multiobjects, for example at the link between le2 and l. This is an enrichment

670 S. Marković and T. Baar

of the official QVT semantics on links between two multiobjects. Standard QVT
semantics assumes that a link between two multiobject means that each object
from the first multiobject is linked to every object from the second multiob-
ject, and vice versa. This semantics is not appropriate for the situation shown
in Fig. 11 where each element of multiobject l must be connected only to one
element from multiobject le2, and vice versa. By using 1-1 multiplicities, we
indicate a non-standard semantics of links between two multiobjects.

AssociationCallExp-evaluation-many

{and}

aece:AssociationEndCallExp

ae:AssociationEnd
source referredAssociationEnd

{and}

aece:AssociationEndCallExp

oe:OclExpression ae:AssociationEnd

source referredAssociationEndo:Object
val

o:Object

linkEnd
instance

associationEnd

l:Link
link

connectionconnection
link

instance

linkEnd

1
1

1

1

1
1

o2:Object

ae:AssociationEnd

ordering=unordered
mr:MultiplicityRange

upper=y

range

multiplicity

o:Object
o2:Object

linkEnd
instance

associationEnd

l:Link
link

connectionconnection
link

instance

linkEnd

1
1

1

1

1
1

ae:AssociationEnd

ordering=unordered
mr:MultiplicityRange

upper=y

range

multiplicity

m:ElementValue
elementsval

linkEnd

linkEnd

11

{when}

sv:SetTypeValue

m:Multiplicity

m:Multiplicity

aece.val->isEmpty() and y>1

multiplicity
multiplicity

le2:LinkEnd

o2:Object

le1:LinkEnd

o:Object

le2:LinkEndle1:LinkEnd

val

val

oe:OclExpression

Fig. 11. Association End Call Expression Evaluation that Results in Set of Objects

OCL Predefined Operations. Expressions from this category are instances
of the metaclass OperationCallExp but the called operation is a predefined one,
such as +, =. These operations are declared and informally explained in the
chapter on the OCL library in [4]. As an example, we explain in the following the
semantics of operation ”=” (equals). We show only two rules here, one specifies
the evaluation of equations between two objects, and the other the evaluation
of equations between two integers.

In Fig. 12, the evaluation is shown for the case that both subexpressions oe1,
oe2 are evaluated to two objects o1 and o2, respectively. In this case, the result
of the evaluation is bv of type BooleanValue with attribute booleanValue b, which
is true if the evaluations of oe1 and oe2 are the same object, and false otherwise.

If oe1 and oe2 evaluate to IntegerValue, the second QVT rule shown in Fig. 13
is applicable and the result of evaluation will be an instance of BooleanValue with
attribute booleanValue set to true if integerValue of iv1 is equal to integerValue
of i2, and to false otherwise.

Iterator Expressions. Iterator expressions are those in OCL which have as
the main operator one from select, reject, forAll, iterate, exists, collect
or isUnique. Since all these expressions can be expressed by macros based on
iterate, it would be sufficient to refer for their semantics just to the semantics
of iterate.

We show here nevertheless a semantics for forAll, that is independent from
the semantics of iterate. The rules describing the semantics of forAll are,

An OCL Semantics Specified with QVT 671

EqualExp-Objects-evaluation

bv:BooleanValue

booleanValue=b

{when}
if o1=o2 then b=true else b=false endif

oce:OperationCallExp

op:Operation

name= '='

referredOperation

source

val

oe2:OclExpression

arguments

oe1:OclExpression

val

o2:Objecto1:Object

oce:OperationCallExp

op:Operation

name= '='

referredOperation

source

val

oe2:OclExpression

arguments

oe1:OclExpression

val

o2:Objecto1:Object{when}
oce.val->isEmpty()

val

Fig. 12. Equal Operation Evaluation for Objects

EqualExp-Integers-evaluation

val

{when}

oce:OperationCallExp

op:Operation

name= '='

iv1:IntegerValue

integerValue=i1

source

referredOperationval

oe1:OclExpression

arguments

iv2:IntegerValue

integerValue=i2

oe2:OclExpression

val

{when}
oce.val->isEmpty()

bv:BooleanValue

booleanValue=b

if i1=i2 then b=true else b=false endif

oce:OperationCallExp

op:Operation

name= '='

iv1:IntegerValue

integerValue=i1

source

referredOperationval

oe1:OclExpression

arguments

iv2:IntegerValue

integerValue=i2

oe2:OclExpression

val

Fig. 13. Equal Operation Evaluation for Integers

compared with iterate, easier to understand, but contain already all mecha-
nisms needed to describe iterate(see Fig. 14).

The rule ForAll-Initialisation makes a copy of evaluation of the source ex-
pression, and assigns it under the role current to ie. Furthermore, the role
intermediateResult is initialized with true and, for some technical reasons, the
attribute freshBinding of ie is set to false and the evaluation of body expression
oe is also initialized with true.

The rule ForAll-IteratorBinding updates the binding on body expression oe
for the iterator variable v with a new value vp. The element with the same value
vp is chosen from the collection current and is removed afterwards from this
collection. The attribute freshBinding is set to true and the evaluation of body
expression oe is removed (note that the binding for oe has changed and the old
evaluation of oe became obsolete).

The rule ForAll-IntermediateEvaluation updates the intermediateResult of ie
based on the new evaluation of oe. Furthermore, the value of attribute fresh-
Binding is flipped.

The final rule ForAll-evaluation covers the case when the collection current
of ie is empty. In this case the value of ie is set to that value which intermedi-
ateResult currently has.

Atomic Expressions. This category consists of expressions such as LiteralExp
and VariableExp that do not have any subexpressions. As an example we present

672 S. Marković and T. Baar

ForAll-iteratorBinding

ForAll-initialisation

ForAll-evaluation

source

val

oes:OclExpression

elements
source

val
current

ForAll-intermediateEvaluation

ie:IteratorExp

freshBinding=true
name='forAll'

val

oe:OclExpression
body

intermediateResult val

oe:OclExpression
body

{when}
newVb=vb and b

intermediateResult

current

intermediateResult

bv:BooleanValue

booleanValue=vb
{when}

s.elements->isEmpty()

{when}

s:CollectionTypeValue

elements

elements
1
1

1
1

1 ec:ElementValue

ec:ElementValue es:ElementValue

s:CollectionTypeValue s:CollectionTypeValue

oes:OclExpression

c:CollectionTypeValue

vi:Instance
vc:Instancevi:Instance

current

c:CollectionTypeValue

intermediateResult
br:BooleanValue

booleanValue=true

bv:BooleanValue

booleanValue=vb

1

oe:OclExpression

body

current

oe:OclExpression

body

bindingb:NameValueBinding

varName=v

{when}

current

s:CollectionTypeValue

elements
es:ElementValue

s:CollectionTypeValue

iterators
vd:VariableDeclaration

name=v

iterators

bm=bm1->excluding(nvb|nvb.name=v)

vd:VariableDeclaration

name=v

bm:NameValueBindingbm1:NameValueBinding

bindingbinding

intermediateResult

ie:IteratorExp

freshBinding=false
name='forAll'

oe:OclExpression body

valoe:OclExpression
body

br1:BooleanValue
val

vp:Instance

ie:IteratorExp

freshBinding=false
name='forAll'

ie:IteratorExp

freshBinding=false
name='forAll'

ie:IteratorExp

freshBinding=true
name='forAll'

ie:IteratorExp

name='forAll'

ie:IteratorExp

name='forAll'

val

val val

val

val

val

bv:BooleanValue

booleanValue=b

bv:BooleanValue

booleanValue=b

br:BooleanValue

booleanValue=newVb

br:BooleanValue

booleanValue=vb

br1:BooleanValue

booleanValue=true

s.clone(c) and es.clone (ec) and vc.clone (vi)

ie:IteratorExp

name='forAll'

vp:Instance

{when}
oe.val->isEmpty()

Fig. 14. ForAll - Evaluation Rules

rules for these two cases. In Fig. 15, the evaluation of IntegerLiteralExp is shown.
By applying this rule, a new IntegerValue is created that refers to the same
integer as attribute integerSymbol in ie. Note, that this type of expressions
does not need variable bindings because their evaluation does not depend on the
evaluation of any variable. Figure 16 shows the evaluation rule for VariableExp.
When this rule is applied, a new link is created between VariableExp and the
value to which NameValueBinding, with the same name as VariableDeclaration,
is connected.

4 Related Work

The only paper we are aware of that shares similar interests in applying a graph-
transformation based approach in order to deal with OCL constraints is [9]. In

An OCL Semantics Specified with QVT 673

IntegerLiteralExp-eval

ie:IntegerLiteralExp

integerSymbol=i
ie:IntegerLiteralExp

integerSymbol=i
valiv:IntegerValue

integerValue=i
{when}

ie.val->isEmpty()

Fig. 15. Integer Literal Expression Evaluation

VariableExp-eval

ve:VariableExp

{when}
ve.val->isEmpty()

vd:VariableDeclaration

name=ni:Instance

nvb:NameValueBinding

varName=n

val

binding
referredVariable

ve:VariableExp

vd:VariableDeclaration

name=ni:Instance

nvb:NameValueBinding

varName=n

val

binding

referredVariable

val

Fig. 16. Variable Expression Evaluation

this paper, a graphical visualization of OCL constraints is proposed. On top
of this notation, simplification rules for OCL constraints are proposed, that
implicitly also define a semantics for OCL. However, the semantics of OCL is
not developed as systematically as in our approach, only the simplification rules
for select are shown. Since [9] was published at a time where OCL did not
have an official metamodel, the graph-transformation rules had to be based on
another language definition.

For a different kind of languages, behaviorial languages, Engels et al. define
in [10] their dynamic semantics in form of graph-transformation rules, which
are similar to our QVT rules. As an example, the semantics of UML statechart
diagrams is presented.

Stärk et al. define in [11] a formal semantics of Java. Even if they use a com-
pletely different notation to specify an operational semantics, we see nevertheless
a lot of striking similarities. Stärk et al. map the state space of a Java program
to an Abstract State Machine (ASM) and describe possible state changes by a
set of ASM rules that manipulate the Abstract Syntax Tree of a program. As
shown in our motivating example, there are no principal differences between an
AST and an instance of the metamodel. Also, ASM and QVT rules are based
on the same mechanisms (pattern matching and rewriting).

5 Conclusions and Future Work

We developed a metamodel-based, graphical definition of the semantics of OCL.
Our semantics consists of a metamodel of the semantic domain (we slightly
adapted existing metamodels from UML1.x) and a set of transformation rules
written in QVT that specify formally the evaluation of an OCL constraint
in a snapshot. To read our semantics, one does not need advanced skills in

674 S. Marković and T. Baar

mathematics or even knowledge in formal logic; it is sufficient to have a ba-
sic understanding of metamodeling and QVT. The most important advantage,
however, is the flexibility our approach offers to adapt the semantics of OCL
to domain-specific needs. Since the evaluation rules can directly be executed by
any QVT compliant tool, it is now very easy to provide tool support for a new
dialect of OCL. This is an important step forward to the OMG’s vision to treat
OCL as a family of languages.

We are currently investigating how an OCL semantics given in form of QVT
rules can be used to argue on the semantical correctness of refactoring rules
for UML/OCL, which we have defined as well in form of QVT rules. A refac-
toring rule describes small changes on UML class diagrams with attached OCL
constraints. A rule is considered to be syntactically correct if in all applicable
situations the refactored UML/OCL model is syntactically well-formed. We call
a rule semantically correct if in any given snapshot the evaluation of the original
OCL constraint and the refactored OCL constraint yields to the same result (in
fact, this view is a simplified one since the snapshots are sometimes refactored
as well). To argue on semantical correctness of refactoring rules, it has been very
handy to have the OCL semantics specified in the same formalism as refactoring
rules, in QVT. A more detailed description together with a complete argumen-
tation on the semantical correctness of the MoveAttribute refactoring rule can
be found in [12].

Another branch of future activities is the description of the semantics of pro-
gramming languages with graphical QVT rules. Our ultimate goal is to demon-
strate that also the description of the semantics of a programming language can
be given in an easily understandable, intuitive format. This might finally con-
tribute to a new style of language definitions where the semantics of the language
can be formally defined as easy and straightforward as it is today already the
case with the syntax of languages.

References

1. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, second edition, 2005.

2. Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

3. Mark Richters. A precise approach to validating UML models and OCL con-
straints. PhD thesis, Bremer Institut für Sichere Systeme, Universität Bremen,
Logos-Verlag, Berlin, 2001.

4. OMG. UML 2.0 OCL Specification – OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

5. Achim D. Brucker and Burkhart Wolff. A proposal for a formal OCL semantics
in Isabelle/HOL. In Victor Carreño, César Muñoz, and Sofiène Tashar, editors,
TPHOLs, volume 2410 of LNCS, pages 99–114. Springer, 2002.

6. OMG. UML 1.5 Specification. OMG Document formal/03-03-01, March 2003.
7. OMG. UML 2.0 Infrastructure Specification. OMG Document ptc/03-09-15, Sep

2003.

An OCL Semantics Specified with QVT 675

8. OMG. Meta object facility (MOF) 2.0 Query/View/Transformation Specification.
OMG Document ptc/05-11-01, Nov 2005.

9. Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.
Consistency checking and visualization of OCL constraints. In UML 2000, volume
1939 of LNCS, pages 294–308. Springer, 2000.

10. Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer. Dynamic
meta modeling: A graphical approach to the operational semantics of behavioral
diagrams in UML. In UML 2000, volume 1939 of LNCS, pages 323–337. Springer,
2000.

11. Robert F. Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual
Machine - Definition, Verification, Validation. Springer, 2001.

12. Thomas Baar and Slavǐsa Marković. A graphical approach to prove the semantic
preservation of UML/OCL refactoring rules. In Proceedings, Sixth International
Andrei Ershov Memorial Conference , Perspectives of System Informatics (PSI),
Novosibirsk, Russia, LNCS. Springer, July 2006. To appear.

Specification of Invariability in OCL

Piotr Kosiuczenko�

Department of Computer Science
University of Leicester

piotr AT mcs.le.ac.uk

Abstract. The paradigm of contractual specification provides a trans-
parent way of specifying systems. It clearly distinguishes between client
and implementer obligations. One of the best known languages used for
this purpose is OCL. Nevertheless, OCL does not provide primitives for
a compact specification of what remains unchanged when a method is
executed. In this paper, problems with specifying invariability are listed
and some weaknesses of existing solutions are pointed out. The question
of specifying invariability in OCL is studied and a simple but expressive
and flexible extension is proposed. It is shown that this extension has a
simple OCL based semantics.

1 Introduction

Contracts are the prevailing way of specifying systems from the client point of
view (see [10]). They clearly assign responsibilities to client/caller and to sys-
tem implementer/callee. They allow one to trace back a contract violation to
the corresponding party. Unfortunately, the current high-level object-oriented
specification languages, such as OCL [16], do not provide primitives to specify
what can and what must not be changed when a method is executed. OCL al-
lows explicit comparison of object attributes before and after method execution.
A method execution usually changes only a small part of a system and conse-
quently most of the system remains unchanged. In the case of large systems,
it is not feasible to specify what happens with all attributes and associations.
This problem is not restricted to object-oriented specification languages (see [2]
for an overview). In general there exist three approaches to this problem: axiom
frames, modifies clauses and nonmonotonic logics.

The axiom frames are used in artificial intelligence (cf. [11, 17]). The idea is
to specify modification of attributes using axiom schemata. It requires explicit
listing of all attributes which remain unchanged. This results in large number
of frame formulas. In principle, it is possible to specify invariable system parts
correctly, but of course it is error prone and not feasible in the case of large
systems.

The second approach dates back to Hoare logic [7]. In this logic all variables
which are not mentioned in the formulas of a Hoare triple are assumed to be
unchanged. This works fine for verification of procedural programs, since all
� This research was partially supported by the EU project Leg2Net.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 676–691, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Specification of Invariability in OCL 677

variables used in a procedure are plainly specified. However it does not work
well for object-oriented specifications because of the encapsulation principle,
which allows hiding private attributes of objects, and because of the fact that
a method execution can have very complex side effects. In particular, it may
result in changes to objects different from method’s parameters. Java Modelling
Language (JML, see [3] and the references there) provides compact specifications
of invariable parameters [12]. It allows one for static checking of invariability
properties. On the other hand, it is possible to specify invariability requirements,
which cannot be check statically and in general the problem of what remains
unchanged is undecidable.

The third approach uses nonmonotonic logics (see [17, 9] and the references
there). It provides compact specifications and allows one to deal with side effects,
but it is not appropriate for large specifications due to complex fixed-point se-
mantics. The problem is that one specification may result in several fixed points
and the number of such points may be high in the case of a large specification [9].

There exist an approach which relies on a completion procedure [2]; basically
the specifier must specify for every method and every predicate the circumstances
under which the predicate changes its truth value. Unfortunately, in the case
of large systems it is not feasible. Interestingly, there exists also an approach
allowing extending graph rewriting rules with invariability constraints [1].

Basically, the above mentioned approaches fall into two categories. Either
they specify the system parts which don’t change (frame axioms) or they specify
the islands of change (JML, Hoare logic, nonmonotonic logics, design by con-
tract advocated by Meyer). The problems with invariability specification can be
classified as follows:

– oversize - huge formulas
– non-scalability - inability to deal with large specifications
– inflexibility - the user cannot customize the approach to specific needs
– fragility - the resulting formulas must be modified after every system change
– over-specification - the specification exposes details, which should be hidden

The need of extending OCL with primitives for specifying invariability has
been recognized long time ago. For example, a working group was set to deal
with this problem at “The Constraint Language for UML 2.0” workshop (a
satellite workshop of UML’01 conference in Toronto).

OCL is a very expressive, high-level language for specification of object ori-
ented systems [15] (see also [18]). There are tools for monitoring the satisfaction
of OCL constraints (cf. e.g. [5]). This language can be used directly to specify
what cannot change, but such specifications are usually very extensive, fragile,
hard to understand and modify. What we need is a compact way of localizing
change, with simple and monotone semantics.

In this paper, we propose a simple extension of OCL allowing us to specify in-
variability in a compact way. We delimit the islands of changes using appropriate
primitives and we translate those primitives into “standard” OCL. Views proved
to be a very powerful mean of specification and presentation (cf. [4, 13]). There
are different specification styles as there are different oo-programming styles. A

678 P. Kosiuczenko

specification can be written from the client or from the implementer point of
view; it can be restricted to a single component or package. Proposed extension
allows us to specify systems from different points of view. In our approach, the
specification of invariable part can be restricted to the appropriate view. With
the help of the UML metamodel [16], we define the notion of view in the UML
framework and restrict specification of invariability to views. The OCL formulas
defining the user views may be sophisticated, but it is possible to define them
in a generic way and to reuse them. One can also define a view corresponding
to the implicit invariability assumption as it is used for example in Eiffel [6].

We study the usefulness of this extension in a series of examples and ex-
plain in which way it addresses the above mentioned problems. We show how
to translate expressions containing invariability primitives into OCL. Thanks to
this translation, our proposed extension has well defined semantics.

The paper is organized as follows. In Section 2, we consider a simple example
and use it to explain problems with invariability specification; we indicate also a
possible solution. In Section 3, we relate our extension to the UML metamodel
and show how to define views. In Section 4, we present the formal syntax of
proposed extension. In Section 5, we present the OCL based semantics of the
extension. Section 6 concludes this paper.

2 Specification of Invariability

In this section, we consider a simple example of a bank account and explain
problems with specification of invariability. We show how to specify invariability
using a rather basic OCL extension, how to deal with inheritance and side effects.

2.1 Problems with Invariability Specification

Design by contract is a very powerful method of specifying class and component
behaviour (cf. e.g. [10]). Unfortunately this approach may cause problems when
a high level specification language such as OCL [15] is used.

Let us consider the class diagram shown on Fig. 1. We can specify the method
credit in OCL in the following way:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount

This specification does not mention what happens to the attribute name, to
the association os , nor to the attribute x. Therefore we have to add the follow-
ing frame formula:

and self .name = self .name@pre
and self .os = self .os@pre
and self .os .x = self .os@pre.x@pre

Moreover, to make this specification complete, we need a formula guaranteeing
that all objects of the class BankAccount different from self are not influenced

Specification of Invariability in OCL 679

+BankAccount

-name : string

+credit(amount : real)

p1

+OtherStuff

-x : integer-balance : real 1

os

Fig. 1. Basic Class Diagram

by the execution, i.e. all their attributes remain unchanged. This requires a
separate equation for every attribute and association-end. Clearly in the case of
larger systems, writing all such axioms results in large formulas. Such formulas
are fragile in respect to modifications. It is easy to omit something or to add an
erroneous constraint. Let us point out that this problem is not OCL specific and
occurs in other object-oriented languages such as Eiffel (cf. e.g. [8]).

One of the possible solutions to the frame problem is to use the implicit in-
variability assumption. In simplistic case, this assumption says that all what is
not specified to change does not change (see for example [10, 8]). It allows one to
write simple specifications. The implicit approach to invariability is appealing,
since it does not put an extra burden on the specifier. Nevertheless, it is not
always clear what that assumption really means. In fact, the implicit invariabil-
ity assumption seems to implicitly include some best practices used to specify
object-oriented systems.

Literal interpretation of that assumption is problematic when a high level
specification language such as OCL is used. Let us consider the OCL expression
self .os.x = self .os@pre.x@pre + 1. It does not explicitly say whether self .os,
x, or perhaps both have to change. It is only clear that at least one of those
properties is supposed to change. The solution could be for example to say that
all objects mentioned in a post-condition are allowed to change. However in such
a case, logically equivalent formulas may have different meaning. In particular,
adding a tautological expression to a constraint may change its meaning. Let us
consider the following tautology:

OtherStuff .allInstances−>forAll(o | not o.oclIsNew() implies
o.x=o.x@pre or not(o.x = o.x@pre))

That assumption would allow arbitrary change of x, despite the fact that this
formula is a tautology. This disallows the use of logical deduction, since in logic
tautologically equivalent formulas are semantically equivalent.

In the case of derived attributes, one does not specify what happens to them
when a method is executed, since their values are derived from values of other
attributes. But if the implicit approach is interpreted literally, then they should
not change even if the values of the corresponding attributes change. Similarly,
specification of subclasses causes problems, which can be hardly dealt with by
the simplistic interpretation of the invariability assumption.

Another problem is the specification of side effects, i.e. effects which are not
meant to be visible to a client or concern objects different from actual parameters.

680 P. Kosiuczenko

Often, clients access component functionality via so called facades, i.e. a number
of selected classes and methods, but don’t have any knowledge about other
classes. For example let us assume that we want to save the old value of attribute
balance of the class BankAcount whenever it is changed and that this operation
should be invisible to the client. The values of the attribute balance can be saved
in a class which is not navigable from the class BankAccount (see Section 2.4).
The assumption that all objects mentioned in a clause can be modified would
disallow that kind of logging unless the changes were specified explicitly. However
this would force exposition of information, which should be hidden. All those
issues are dealt with using best practices which emerged over years of experience
in specification and implementation of object-oriented systems. Unfortunately
their solution can not be simply derived from the simplistic assumption.

2.2 Solution in the Simple Case

In this subsection, we propose a solution for the case of single classes and pack-
ages. In UML, packages are used to group model elements. They can be used to
define system views, in particular so called facades [16], which play the role of
client window on the system. It is natural to restrict a client side specification
to the corresponding facade.

In the case of the bank account (see Fig. 1, Subsection 2.1) we need to specify
what can and what must not change. In our approach we restrict the specifica-
tions to packages and to sets of model elements in general (see below). We use
the in keyword to indicate the package. The modifies clause specifies variable
object attributes.

Let us specify explicitly what changes in the package p1. The following for-
mula relativizes the specification to p1, more precisely to all properties contained
in this package. The keywords are indicated by the bold characters:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
in p1modifies : self ::balance

We use the OCL primitive :: to indicate that the attribute balance of object
self can be modified. The clause in p1modifies : self ::balance says that if we
restrict our view to the package p1, then an execution of the method credit can
change only the value of the attribute balance of the actual implicit parameter.
This specification focuses entirely on package p1 and does not say anything about
any other package.

2.3 Inheritance

In this subsection we deal with the problem of specifying invariability in the
presence of inheritance. We investigate to what extent we need to change a
specification, if a class is sub-classed.

Let us consider Fig. 2. We subclass the class BankAccount using another
package. The class BankAccount is extended by the class SavingsAccount. The

Specification of Invariability in OCL 681

+BankAccount

-name : string

+credit(amount : real)

p1

+SavingsAccount

-savingsLimit : real

-balance : real

p1a

+OtherStuff

-x : integer1

-credibility : real

os

Fig. 2. Extra Package Extension

+BankAccount

-name : string

+credit(amount : real)

p1

+SavingsAccount

-savingsLimit : real

-balance : real
+OtherStuff

-x : integer1

-credibility : real

os

Fig. 3. Intra Package Extension

attribute savingsLimit specifies the lower limit of the corresponding balance,
and the attribute credibility specifies the credibility of a client. We assume that
the second attribute is correlated with the balance; if for example the balance
grows, credibility grows as well. The previous specification does not say any-
thing about the behavior of the attributes savingsLimit and credibility when
the method credit is executed. Consequently, they can change arbitrarily. To re-
strain changes in respect to the package p1a, we have to specify them explicitly:

context p1::BankAccount::credit(amount : real)
in p1amodifies : (if self .isKindOf (SavingsAccount) then

self .oclAsType(SavingsAccount) else Set{} endif)::credibility

Let us point out that unlike Java, OCL requires that every if keyword has to
be followed by else and end up with endif . In this case, the else part is just an
empty set.

The specification of invariability is stable in respect to extensions, which do
not change the corresponding view (the package p1, for example), but changes
may be necessary, if the view is modified. Indeed, Fig. 3 shows another way of
extending the BankAccount class. In this case, the view given by package p1 is

682 P. Kosiuczenko

p2

#HistoryItem

-value : real

* ordered-items

#AccountHistory
-name : string

+BankAccount

-name : string

+credit(amount : real)

p1

+SavingsAccount

-credibility : real

-balance : real

+OtherStuff

1

-savingsLimit : real

Fig. 4. Dependent Packages

changed. We have to change the specification of credit, since it was done rela-
tively to the view defined by p1.

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
in p1modifies : self ::balance, (if self .isKindOf (SavingsAccount)

then self .oclAsType(SavingsAccount) else Set{} endif)::credibility

When specifying a method in a class, which is meant to be subclassed and
which forwards method calls to other classes, it is a good specification style to
abstract from changes the method has on attributes in subclasses and in the del-
egatee classes. In the case of our notation, it is possible to restrict a specification
to a particular class. The following specification restricts the view to the class
BankAccount only.

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
inBankAccountmodifies : self ::balance

2.4 Side Effects

A method execution may result in modification of objects different from method
parameters and their immediate neighbors. It may also modify attributes, which
are invisible in a certain view. For example, this is usually the case of method
logging. When aspect-oriented programming is used, it is possible to change
attributes, which are not navigable from methods parameters. In this subsection
we show how to deal with side effects.

Fig. 4 shows the class AccountHistory. An object of this class stores infor-
mation about the history of a bank account object. When the method credit is
executed and when the values of the attribute name of a bank account and the
value of the attribute name of a history object are equal, then the old balance

Specification of Invariability in OCL 683

of the bank account is stored in a newly created object of class HistoryItem
and appended at the end of the list items. In the previous subsection, we have
shown how to specify changes in respect to the package p1. However we may
also need to specify a system internal view, which includes package p2:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount and

AccountHistory.allInstances−>forAll(o | o.name = self .name
implies o.items−>one(hi | hi.oclIsNew()andhi.value = self .balance@pre

and o.items = o.items@pre−>including(hi)))
in p1modifies : self ::balance, (if self .isKindOf (SavingsAccount) then

self .oclAsType(SavingsAccount) else Set{} endif)::credibility
in p2modifies : AccountHistory.allInstances

−>select(o | o.name = self .name)::items

The OCL expression one means that there is exactly one object satisfying the
corresponding condition. including(hi) means that the object hi is appended to
the end of the sequence items. The last clause restricts the changes in package
p2 to the attribute items of the history objects, which have the same name as
the credited bank account.

We may want to make sure that the method does not change anything more
than specified above. To achieve this, we use the construct modifiesonly. The
expression modifies only : p1::∗, p2::∗ specifies that the changes are restricted
to packages p1 and p2. That sentence seals the specification of variable parts. It
uses the absolute modifies only clause which concerns all properties of a model.

2.5 Specification of Operations on Lists

In this subsection, we show how to specify operations on lists. In standard OCL,
it is not easy to specify what remains unchanged when a list is sorted, an element
is inserted or another list is appended. Consequently invariability specification
tends to be left out.

List
0..1
first

0..1next

sort()
+ListElement

+x : integer

Fig. 5. List with an Anchor

The class diagram in Fig. 5 shows a list composed of an anchor object of class
List and a number of elements instantiating the class ListElement. The method
sort is meant to sort lists according to the value of attribute x. We assume that
self .elements denotes the set of all elements of the list self . (We skip the defi-
nition of elements.) We consider here only finite acyclic lists. This constraint is
expressed by an invariant saying that a nonempty list must contain an element,

684 P. Kosiuczenko

which does not have a successor. We use the term elements@pre to denote all
list elements, which exist in the pre-state.

context List inv :
elements−>notEmpty() implies elements.exists(el | el.next−>isEmpty())
context List::sort()
post : self .elements = self .elements@pre and
self .elements−>forAll(el | el.next−>notEmpty() implies el.x <= el.next.x)

We can make that specification precise by adding the following two invariability
clauses:

inListmodifies : self ::first
inListElementmodifies : self .elements::next

The first clause says that the element associated to the list anchor can be
replaced. Those clauses in conjunction with the first part of the post-condition
say that the elements of the list can be rearranged, but no element can be added
or removed.

3 Views

There are different specification styles as there are different oo-programming
styles. In the preceding sections we have restricted our specifications to packages
and classes. In general, it is possible to tune a specification to specific needs. A
specification can be written from the client or from the implementer point of
view. It may focus for example on public or reachable model elements. In general,
a user may construct his/her own view. We introduce an abstract concept of
view, which defines the focus of a specification (cf. [4]). In our approach, the
specification of invariable part can be restricted to the appropriate view. The
first subsection relates the OCL extension to the UML metamodel. The second
subsection investigates in which way users may define their own views.

3.1 Relation to the UML Metamodel

UML metamodel [16] allows us for a precise definition of a view. The basic
views are defined by packages. A package is a grouping of model elements. It
owns and imports classes, other packages and model elements such as properties.
Client’s view of a system is often defined by a facade. In UML a facade is just a
package [16].

Let us observe that the inmodifies clause is defined on two levels of abstrac-
tion. The in part is defined on the level of class diagrams and the modifies part
is defined on the level of objects. The in part refers to class diagrams and it is
not fine enough to deal with run-time configuration. The modifies part on the
other hand is defined in terms of the in part but concerns objects.

Specification of Invariability in OCL 685

The in pmodifies clause refers to a number of model elements grouped in a
package p. According to the UML metamodel, a class and more generally a clas-
sifier is composed of behavioral features (in particular methods and attributes).
It is also associated to association-ends. The following OCL expression defines in
the context of the UML metamodel all OCL-properties contained in a package.
It selects all properties owned or imported (ownedElemens, importedElements,
respectively) by the package p.

p.ownedElemens−>select(pr | pr.isKindOf (StructuralFeature) and
(pr.isKindOf (Operation) and pr.oclAsType(Operation).isQuery or

pr.isKindOf (Attribute) or pr.isKindOf (AssociationEnd)))
−>union(
p.importedElements−>select(pr | pr.isKindOf (StructuralFeature) and

(pr.isKindOf (Operation) and pr.oclAsType(Operation).isQuery or
pr.isKindOf (Attribute) or pr.isKindOf (AssociationEnd))))

This OCL formula demonstrates that the content of packages can be defined
in the metamodel by OCL terms. Similarly, one can defined all properties cor-
responding to a class (cf. subsection 2.3).

3.2 User Defined Views

The notion of view is fundamental for this approach. One can use predefined
views provided by packages, however one may want to define own views corre-
sponding to different perspectives. For example, a specification can be restricted
to public or protected model elements. In fact, we can select an arbitrary set of
model elements using an OCL term defined on the meta-level. It allows us to
specify different system views and to express what is mutable and what is not.
For example, for each class one can specify a view corresponding to all classes
which are navigable from that class and restrict the invariability constraints only
to that view. One can also explicitly define a view corresponding to the implicit
invariability assumption including the best practices used in this approach.

Let us consider Fig. 4 again. We can define different views depending on
the visibility of model elements. It is possible to restrict views to public or to
protected model elements. Let us assume that for every attribute a there is a
corresponding query method getA returning the value of the attribute a and
that this method has the same visibility as its class. If we focus on the behav-
ior of public and protected properties, then the corresponding view contains
the following queries: getBalance, getSavingsLimit, getCredability, getName,
getV alue and so on. A restriction to public properties would remove getV alue
since it is a method of the protected class HistoryItem.

In Subsection 2.3, we have shown how to deal with the specification of
subclasses in a package. Actually, it is inelegant to specify what happens to
subclasses at the level of their superclass. Let p but subclasses mean all model
elements which occur in package p, but are not a part of a subclass of the context
class. This set can be defined by an OCL term. Due to lack of space, we skip the

686 P. Kosiuczenko

formal definition of this construct. The constraint specifying the method credit
can be then written in the form:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
in p1 but subclassesmodifies : self ::balance

This clause relativizes the immutability clause to classes, which do not sub-
class the class BankAccount. In this case, every class subclassing that class
requires its own contract.

In some cases it may be reasonable to restrict method specification to classes,
which are navigable from the method parameters via association-ends and gen-
eralization relationships traversed bottom up, since only objects of those classes
can be modified during a method execution. It is possible to define the set of
navigable properties, though the corresponding OCL formula would be quite
large. Such a specification can have the form:

context C::Op(p1 : C1, ..., pn : Cn) : D
...
innavigableFrom(typesOfParams(Op))modifies : ...

where typesOfParams(Op) is the list containing parameter types of method Op,
i.e. C, C1, ..., Cn, D. We assume that the term navigableFrom denotes all prop-
erties owned by classes navigable from those types; as in the previous case we
skip the definition.

In our opinion, a general specification language should not restrict users to a
particular view, such as for example navigableFrom. In contrary, a user should
be free to define own views as suits him/her best. The OCL formulas defining
on the meta-level the user view may be sophisticated and therefore hard to
write and hard to understand, but it is possible to define them in a generic and
reusable way.

4 Extension’s Grammar

In this section we define the syntax of proposed OCL extension. We restrict
this syntax with some constraints, which cannot be expressed by a context free
grammar. The grammar is presented using the EBNF notation: [] means optional
occurrence, { } means arbitrary number of repetitions and | means option. We
use capital characters for nonterminals and small characters for terminals. The
invariability constraints have the following form:

context C :: OP
pre : Pre
post : Post
{ inP modifies : M {, M }}
[modifies only : [P ::] M{, [P ::]M}]

Specification of Invariability in OCL 687

C is a context specification, Op is a method signature, Pre is a pre-condition and
Post is a post-condition as defined by OCL [15]. M describes what can change
and P is a package or more generally a term specifying a view. Furthermore:

P = (Pn::P | Pn[r] | Cn | Mt)O, O = [+] [#] [∼] [−]
M = nothing | [T]::(Pr | ∗)

Pn is a package name. The terminal r is optional; it specifies all sub-packages,
like −r in Unix. Cn is a class name. Mt is an OCL term defining a set of
OCL-properties; Mt is defined on the class diagram level. O specifies visibility
of considered properties; the visibility can be private, public, package public and
protected respectively. We allow the use of multiple visibility predicates meaning
that all listed options are possible. nothing is a terminal specifying that nothing
can change. T is an OCL term defining a collection of objects; it is defined at
the object level. Pr is an attribute or an association-end. ∗ denotes all OCL-
properties. Let us point out that terms such as p1 but subclasses correspond to
the nonterminal P (cf. Subsection 3.2).

Context free grammars are not expressive enough to deal with types. There-
fore, in addition we require that in the case of the clause:

in pmodifies : t1::a1, ..., tm::am

the term ti, for i = 1, ..., m, must be valid in the corresponding context, that
it does not contain the primitive @pre, that all objects defined by ti must have
property ai and that ai is a property of a class belonging to p, if p is a package,
and that ai is defined by p, if p is a term.

To facilitate the localization of changes we use the symbol ∗. C::∗ means all
properties of class C. Similarly, p+::∗ means all public properties contained in the
package p. We write modifies only : p1::∗, ..., pn::∗ to specify that only proper-
ties contained in packages p1, ..., pn can be modified. Similarly, modifies only :
C::∗ specifies that only properties of class C can be modified.

5 The Semantics

In this section we define the semantics of invariability clauses. We discuss the
OCL primitive allInstances and its role in the semantics. This semantics allows
us to translate invariability primitives to standard OCL. However translating
even a medium size class diagram may result in a huge OCL formula. A language
can have several semantics; one can modify the semantics proposed below by a
proper tuning of the OCL translation. The advantage of this semantics is that
one can rely on existing formal semantics of OCL and use standard OCL tools
(cf. eg. [5]).

In our semantics, we need to relate sets of objects, which exist before method
execution to sets of objects, which exist after method execution. There are two

688 P. Kosiuczenko

OCL primitives, which can be used for that purpose: allInstances and @pre.
allInstances is a predefined feature of each type, which results in the set of all
instances of the type in existence at the time when the expression is evaluated
(c.f. [15], Subsection 7.5.10). In the case of program execution, C.allInstances
can be interpreted as the set of all objects of class C, which can be navigated
from variables present in the program stack at a given moment of time.

Below we will use C.allInstances@pre in post-conditions to refer to all in-
stances of class C, which exist at the moment when the underlying method is
invoked. Interestingly, allInstances@pre is rarely used in specifications, though
its meaning is as clear as the meaning of allInstances itself. In general, OCL
allows us to use properties in invariants, pre- and post-conditions. A feature is
a property, like operation or attribute, which is encapsulated within a classi-
fier. Actually, the OCL standard (c.f. [15], Subsection 7.5) restricts the notion
of property to queries, attributes and association-ends “for the purpose of this
document”. We refer to the restricted notion of property as OCL-property. Inter-
estingly, the OCL grammar doesn’t restrict the use of @pre to OCL-properties.
On the other hand, it is common to use the feature allInstances in invariants
and post-conditions.

The semantics is defined via frame formulas. Initially we define the semantics
of constraints of the form:

context X ::Op
pre : Pre
post : Post
in pmodifies : t1::a1, ..., tm::am

We assume that a1, ..., am are attributes and association-ends, but not queries.
Moreover for simplicity we assume that packages, classes and properties have
unique names.

The term p is obtained from the nonterminal P and defines a number of OCL-
properties (see section 4). We define an invariability formula for every attribute
and every association-end belonging to p. There are two cases. Such a property
may belong to the sequence a1, ..., am (i.e. it may have the form ai); in this case
the term ti defines the scope of change of property ai during execution of Op. In
the other case, the attribute or the association-end cannot change. Let us notice
that comparing the value of a property before and after method execution makes
sense only for objects, which exist before and after operation execution.

More precisely for i = 1, ..., m, let ti be an OCL term defined in the context
X ::Op, which defines a set of objects of a class Ci. We assume that ti does
not contain @pre. Let ai be an attribute or association-end of the class Ci. We
assume also that the properties ai are pairwise different; because if ai is equal
to aj , then we can consider (ti−>union(tj))::ai. Let b1, ..., bn be all attributes
and association-ends defined by p, which are different from properties a1, ..., am.
For j = 1, ..., n, let Bj be the class corresponding to the property bj . Let t@pre
denote a term, which is obtained from the term t by suffixing all OCL-properties
by @pre. We translate the above constraint to standard OCL as follows:

Specification of Invariability in OCL 689

context X ::Op
pre : Pre
post : Post and

Ci.allInstances@pre−>intersection(Ci.allInstances)−>forAll(o |
ti@pre−>excludes(o) implies o.ai@pre = o.ai), for i = 1, ..., m, and,
Bi.allInstances@pre−>intersection(Bi.allInstances)−>forAll(o |
o.bj@pre = o.bj), for j = 1, ..., n

The resulting post-condition is a conjunction of the original post-condition
Post and a frame formula. The frame formula has two parts. The first one
identifies OCL-properties, which may change. For i = 1, ..., m, the term ti defines
the scope of change of property ai. The corresponding clause means that for
every object o of class Ci, which exist before and after execution of Op, if o is
not defined by ti in the pre-state, then the property ai of o remains unchanged.
The second part concerns all other OCL-properties defined by p; it says that for
every such property bj and every object o of the corresponding class Bj , if o
exists before and after execution of Op, then its property bj cannot change. Let
us point out that the term ti can include the implicit parameter self and other
parameters of Op.

Let us observe that the resulting post-condition does not exclude creation or
deletion of new objects, as far as properties of objects existing before and after
method execution conform to above mentioned constraints.

For example, let us consider the specification of method credit in subsec-
tion 2.4. There is no pre-condition in this case. In the case of package p2, the
change is restricted to association-end items of those account histories, which
correspond to self . More precisely, it is restricted to those objects o of class
AccountHistory, which exist before and after operation execution and which
have the same name as self in the pre-state: o.name@pre = self .name@pre.
According to the first part of the frame formula, o.items = o.items@pre must
hold for every object o of class AccountHistory, such that o exists before and
after method execution and o’s name is different from the name of self . The
post-condition says that the method appends a new object to the end of the
associated sequence of items. The attribute value does not occur in the modifies-
clause. Therefore according to the second part of the frame formula, for every
object o of class HistoryItem, which exists before and after operation execu-
tion, it must be true that o.value = o.value@pre. However as stated above,
this does not disallow proper initialization of the attribute value in the newly
created objects. The case of attribute name is similar to the case of value.

Other kinds of invariability clauses can be treated as abbreviations. In the
case of the absolute invariability clause modifies only : t1::a1, ..., tm::am, the
localization of changes is not relativized, but concerns all properties. This kind of
constraint can be seen as an abbreviation of inapmodifies : t1::a1, ..., tm::am,
where ap defines all OCL-properties in a model.

We have mentioned that it is possible to use ∗ as an abbreviation for any prop-
erty. Formally, the clause modifies only : p::∗ means that for any OCL-property
a, which is not defined by p and for the corresponding class C the following holds:

690 P. Kosiuczenko

C.allInstances@pre−>intersection(C.allInstances)
−>forAll(o | o.a@pre = o.a)

The relative expression in pmodifies : nothing means that no property
contained in p is modified. It can be equivalently expressed by the formula
in pmodifies :, which uses an empty list of terms.

6 Conclusion

Specification of invariability in OCL has been a long standing problem. OCL
extension proposed in this paper provides a solution to that problem. The UML
metamodel and OCL allow us for an elegant definition of the notion of view; this
notion proved to be essential for specification of invariability. Interestingly, OCL
turned out to be proper language to define the semantics of proposed extension.
There are only few invariability primitives with simple semantics expressed in
terms of OCL itself; so that the invariability clauses can be understood as merely
OCL macros. Consequently the existing OCL tools can be used.

In the future we are going to perform a realistic case study to demonstrate
scalability of our extension. We are going to develop methodology for specifica-
tion of invariability. On the other hand, we are going to implement a tool for
automatic generation of OCL constraints from the invariability clauses and to
integrate this tool with existing OCL tools. The notion of view proved to be very
flexible and powerful; we are going to study its applicability for layered modeling
of complex systems.

Acknowledgement. We would like to thank the anonymous referees for they
helpful comments, which helped us to improve this paper.

References

1. Baar, T., OCL and Graph-Transformations - A Symbiotic Alliance to Alleviate the
Frame Problem. Proc. of MoDELS’05 Satelite Workshop on Tool Support for OCL
and Related Formalisms, Montego Bay, Jamaica, October 4, 2005, pp. 83-99, 2005.

2. Borgida, A., Reiter, R. and Mylopoulos, J., On the Frame Problem in Procedure
Specifications. 15’th Int. Conf. on Software Engineering, Baltimore, IEEE Com-
puter Society Press, 1993.

3. Darvas, A., Mueller, P., Reasoning About Method Calls in JML Specifications. Pro-
ceedings of the 7th Workshop on Formal Techniques for Java-like Programs (FT-
fJP’05), Glasgow, Scotland, July, 2005.

4. Finkelstein A., Kramer J., Nuseibeh B., Finkelstein L., and Goedicke M., View-
points: A Framework for Integrating Multiple Perspectives in System Development.
International Journal on Software Engineering and Knowledge Engineering, 1991,
pp. 31 – 58.

5. Gogolla, M, Richters, M. Use: A UML-based Specification Environment.
http://www.db.informatik.uni-bremen.de/projects/USE/.

Specification of Invariability in OCL 691

6. Jezequel, J. M., Object-Oriented Software Engineering with Eiffel. Addison-Wesley,
(Eiffel in Practice Series), 1996.

7. Hoare, T., An Axiomatic Basis for Computer Programming. CACM, 12(10), 1969.
8. Mitchell, R., McKim, J. Design by contract by example. Addison-Wesley, 2001.
9. Marek, W., Truszczynski, M., Nonmonotonic Logic, Context-Dependent Reasoning.

Series: Artificial Intelligence, Springer, 1993.
10. Meyer, B., Object-Oriented Software Construction. Prentice, Hall, N.J., 1998.
11. Minsky, M., A framework for representing knowledge. Technical Report 306, Arti-

ficial Intelligence Laboratory, MIT, 1974.
12. Mueller, P., Poetzsch-Heffter, A., Leavens, G. T., Modular Specification of Frame

Properties in JML. Concurrency and Computation: Practice and Experience, Vol-
ume 15, pp. 117–154, Wiley, 2003.

13. OMG, MDA Guide, Version 1.0.1, Jun 2003.
14. OMG, Meta-Object Facility Specification, Version 1.4, April 2003.
15. OMG, OCL Specification, Version 2.0. October 2004.
16. OMG, Unified Modeling Language Specification, Version 2.0, October 2004.
17. Schubert, L., Monotonic Solution of the Frame Problem in the Situation Calculus.

In Kyburg, H., Loui, R., Carlson, G. eds: Knowledge Representation and Defeasible
Reasoning, Kluwer, 1990, pp. 23–67.

18. Warmer, J., Kleppe, A., Object Constraint Language: Getting Your Models Ready
for MDA. Addison Wesley Professional, 2003.

Framework-Specific Modeling Languages
with Round-Trip Engineering

Micha�l Antkiewicz and Krzysztof Czarnecki

University of Waterloo
{mantkiew, kczarnec}@swen.uwaterloo.ca

http://gp.uwaterloo.ca

Abstract. WeproposeFramework-SpecificModelingLanguages (FSMLs)
as a special category of Domain-Specific Modeling Languages that are
defined on top of an object-oriented application framework. They are
used to express models showing how framework-provided abstractions
are used in framework-based application code. Such models may be con-
nected with the application code through a forward and a reverse map-
ping enabling round-trip engineering. We also propose a lightweight and
iterative approach to round-trip engineering. Furthermore, we present a
proof-of-concept FSML for modeling the interaction of workbench parts
within Eclipse. Finally, we identify a number of challenges, opportunities,
and directions for future research on FSMLs.

1 Introduction

Object-oriented application frameworks are one of the most effective and widely
used software reuse technologies today. The creation of framework-based applica-
tions is often called framework completion. The resulting framework completion
code implements the difference in functionality between the framework and the
desired application. A framework provides a set of abstractions, referred to as
framework-provided concepts, and means of instantiating them in the framework
completion code. The concepts are instantiated by writing the completion code.

Unfortunately, framework completion can be challenging. The application pro-
grammers need to know which framework-provided concepts are available and
how to instantiate them in order to get the desired effect. The instantiation,
which usually involves steps such as implementing interfaces or invoking frame-
work services, is challenging since the implementation choices provided by the
framework are not always compatible. Furthermore, the developers need to be
able to see how the framework-provided concepts are instantiated in the ap-
plication code. The latter is challenging since some concepts instances, such as
collaborations among objects, are usually scattered in the completion code.

In this paper, we identify the challenges of framework completion and charac-
terize framework-based application development as a mixture of concept config-
uration and open-ended programming with restrictions. As a main contribution,
we show how the challenges of framework completion can be addressed by explic-
itly capturing the framework-provided concepts as a Framework-Specific Mod-
eling Language (FSML) with round-trip engineering. Furthermore, we propose

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 692–706, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Framework-Specific Modeling Languages with Round-Trip Engineering 693

an agile round-trip engineering approach, which is inspired by the Concurrent
Versioning System (CVS) and its Eclipse user interface [1] and can operate over
non-trivial abstraction gaps thanks to mappings enabled by FSMLs. Finally, we
describe a proof-of-concept prototype implementation of a FSML with round-
trip engineering for an aspect of Eclipse plug-in development and discuss the
merits and limitations of our approach.

2 Running Example: Eclipse Workbench Part Interaction

Eclipse [1] is a universal, open-source platform for building and integrating tools,
which is implemented as a set of Java-based object-oriented frameworks. In this
paper, we consider a particular part of the Eclipse Application Programming
Interface (API), which is concerned with workbench parts and their interactions.
Workbench parts are the basic building blocks of the Eclipse Workbench, which
is the working area of an Eclipse user. The parts can interact in various ways,
for example, by exchanging events.

In this paper, we only consider two kinds of workbench parts, namely editors
and views. An editor is used for displaying and editing the contents of input
resources. An example of an editor is the Java editor included in the Eclipse
Java Development Tools (JDT) [1]. A view is also used for displaying and editing
information, but unlike an editor, a view is not associated with any particular
input resource. An example of the standard workbench view is Content Outline,
which is used to display the outline of an input resource opened in an active
editor. Editors and views have to be contributed to the Workbench by declaring
them in a plug-in manifest files. The Workbench scans manifest files upon startup
and makes contributed workbench parts available to the user.

Workbench parts interact in various ways. In this paper, we consider two kinds
of part interactions, namely listens to parts and requires adapter. For example,
the Content Outline view listens to part activation events by registering itself
as a listener with the Workbench Part Service and, therefore, it participates
in the listens to parts interaction. When an editor, such as the Java editor, is
activated, the view will receive an activation event. In response to this event,
the view will ask the editor for its IContentOutlinePage adapter, which is used
to display the outline of the editor’s input resource. Therefore, the view and the
editor participate in the requires adapter interaction, with the view as a source
and the editor as a target. For a detailed description of the example see [2].

3 Challenges of Framework Completion

Framework completion is often difficult due to the extensive knowledge about the
framework design that is needed in order to write and understand the completion
code. In particular, application developers face the following challenges.

Knowing how to complete a framework. The developers need to know what
are the framework-provided concepts and how the concepts are instantiated in

694 M. Antkiewicz and K. Czarnecki

the code. Creating an instance of a concept involves making implementation
choices, some of which are stipulated by the framework’s application program-
ming interface (API). For example, creating an instance of a framework-provided
concept editor amounts to implementing IEditorPart interface and contribut-
ing the editor to the Workbench in a plug-in manifest file. Framework docu-
mentation usually provides information on what framework classes should be
extended, which interfaces should be implemented, and which API operations
need to be called in order to create an instance of the framework-provided con-
cept. Often however, concepts can be instantiated in many different ways and
the developers need to know which implementation choices are compatible. For
example, an editor can optionally be multi-page, in which case it has to extend
the framework-provided class MultiPageEditorPart and override the abstract
addPages() method. Furthermore, an editor can optionally have a contributor,
which is used to contribute editor actions to menus and toolbars. However, if a
multi-page editor has a contributor, the contributor has to extend the framework-
provided class MultiPageActionBarContributor.
Obtaining an overview of a framework-based application. As the size of
the framework completion code grows, it becomes increasingly difficult to obtain
overviews of the application from different viewpoints. For example, looking at
the code, it is difficult to see how many workbench parts are implemented and
how they interact. Creating such an overview involves recognizing instances of
concepts in the completion code, which may be challenging since it may require
verifying multiple facts across the code or even in multiple artifacts. For example,
recognizing that an editor is multi-page requires verifying that the editor class
extends MultiPageEditorPart and that its contributor, which may be specified
in the plug-in manifest file, extends MultiPageActionBarContributor.
Following the general rules of engagement for the framework. Some
APIs, such as the Eclipse API, expect the developers to follow a set of general
rules, which are referred to as rules of engagement [1]. Some of the rules are more
specific, such as the requirement that certain API classes, e.g., ContentOutline,
should not be subclassed. Examples of more general rules are that the arguments
of a API method call should not be null unless explicitly allowed and long-
running user operations should run in separate threads.
Repetitive code in the domain concept instantiation. Creating many
instances of the same concept often involves providing repetitive, boilerplate
code. For example, such code is needed when contributing a set of editor actions
to the Workbench. Creating and maintaining such code manually is tedious and
potentially error-prone.
Knowing how to migrate completion code after API changes. As a
framework evolves, its API and rules of engagement may also change. Migrating
completion code to the changed API is challenging and error-prone since it re-
quires changes in multiple locations. For example, in earlier versions of Eclipse,
the creation of a multi-page editor involved extending the MultiPageEditor
class. Currently, the MultiPageEditor class is deprecated and the implementa-
tion of an editor should extend the MultiPageEditorPart class instead.

Framework-Specific Modeling Languages with Round-Trip Engineering 695

Migration of the code to the latest versions of Eclipse requires knowledge about
what needs to be changed and how it needs to be changed to conform to the
latest API.

4 Framework Completion as Concept Configuration and
Open-Ended Programming

We can characterize the process of framework completion as two, interleaving
activities: concept configuration and open-ended programming with restrictions.
Concept configuration is deciding which and how many instances of framework-
provided concepts are to be created and deciding among framework-stipulated
implementation choices for every concept instance. Open-ended programming
is implementing application-specific functionality that goes beyond the prede-
fined implementation choices provided by the framework, such as creating the
code that implements a required interface, overriding the default behaviour by
subclassing, or implementing code that is entirely outside the scope of the frame-
work. A concrete example from the Eclipse domain is defining a button which will
allow the user to enable or disable a part interaction at run-time. Open-ended
programming is restricted in the sense that it must not violate the framework’s
rules of engagement.

Concept Configuration. The set of framework-stipulated implementation
choices for a concept and the dependencies among these choices define all cor-
rect ways in which the concept can be instantiated as foreseen by the framework
design. We can think of the implementation choices as features of a concept
and formalize the concept’s definition as a feature model. A feature model is a
tree with the concept as its root and children representing its features [3]. Filled
circles denote mandatory features and open circles denote optional features. A
feature may have an attribute, which is denoted by its type shown in parenthesis.
Additional dependencies between features can be expressed as constraints, such
as requires or excludes. Conceptually, a feature model describes a set of all valid
configurations (selections) of features.

For example, Fig. 1(a) shows a feature model describing the editor concept.
Mandatory features have to be implemented by every instance of a concept, for
example every editor has to have the implementsIEditorPart feature, mean-
ing it has to implement the IEditorPart interface. Optional features, such as
multiPage, are not required in every instance of a concept.

Fig. 1(b) presents a sample feature configuration for the instance of the
editor concept, where some features have been selected (partId) and some
eliminated (e.g., multiPage) and values of attributes have been specified (e.g.,
‘SampleEditor’ for name). The feature configuration satisfies all constraints
implied by the feature model and, therefore, the implementation choices corre-
sponding to the selected features (including the mandatory ones) are consistent.
Note that recognizing the implementation of features of a given concept in the
code also produces a configuration, which can then be checked for possible con-
straint violations.

696 M. Antkiewicz and K. Czarnecki

(a) Editor concept (b) Sample feature configuration

Fig. 1. Concept definition and concept instance configuration

5 Framework-Specific Modeling Languages

A Framework-Specific Modeling Language (FSML) is a Domain-Specific Model-
ing Language [4] that is designed for a specific framework, called its base frame-
work. A FSML consists of an abstract syntax, a mapping of the abstract syntax
to the framework API, and, optionally, a concrete syntax.

A FSML explicitly captures framework-provided concepts and their features
as language concepts in its abstract syntax. The abstract syntax encodes all
valid configurations of framework-stipulated implementation choices. Models ex-
pressed using a FSML describe concept instances. The concrete syntax may offer
specialized rendering of the models to enhance their comprehension.

The mapping of the abstract syntax to the framework API defines how con-
cepts and their features map to the framework completion code. The mapping
has two parts: the forward mapping, defining how to generate new code or up-
date existing code for a concept instance, and the reverse mapping, defining how
to recognize an instance of a concept in the code. The mappings are defined for
every concept and every feature individually, allowing for a fine-grained control
over mapping execution. Together, the forward and reverse mappings enable au-
tomated round-trip engineering, where the code can be created from the model,
the model from the code, and changes made to the code and the model can be
identified and reconciled. In situations where only a subset of the FSML benefits
considered in this paper is of interest, an FSML implementation may choose to
provide only one of the two mappings. Furthermore, the forward mapping may
also be limited to code generation only.

A FSML with round-trip engineering support addresses the challenges from
the previous section.

Knowing how to complete a framework. The creation of a model consists of
the creation of concept instances and configuring them by selecting or eliminating
features and providing attribute values. Concept configuration is controlled by
the abstract syntax and well-formedness rules, thus guiding the developer in
making correct configuration choices.

The forward mapping knows the different places where the code implement-
ing a concept instance should be inserted in the completion code. The mappings
are executed for a correct concept configuration and, therefore, produce correct

Framework-Specific Modeling Languages with Round-Trip Engineering 697

completion code. A developer can review the changes made by the forward map-
ping and learn how to complete the framework.

In the case where the completion code has already been created for a concept
instance, changing the configuration of the concept by adding or removing fea-
tures and modifying attribute values may require updating the completion code
by code transformation.
Obtaining an overview of a framework-based application. The reverse
mapping can identify instances of concepts implemented in the code. The iden-
tified instances can be presented to the developer in a form of a model, which is,
in fact, an overview of the application from the viewpoint of the FSML. Further-
more, the models can be constructed for different versions of the code, allowing
the developer to verify whether the current code still conforms to the previous
model. Also, the reverse mapping may be adjusted to recognize broken or in-
complete concept instances that need to be fixed. Finally, the reverse mapping
also provides traceability between the model and the code by locating fragments
of code implementing concept instances.
Following the general rules of engagement for the framework. The
forward mapping produces code that conforms to the rules. The reverse mapping
helps ensuring that a manual customization of the code does not violate the rules
of engagement.
Repetitive code in the domain concept instantiation. The forward map-
ping automates the creation and update of the repetitive code.
Knowing how to migrate completion code after API changes. A FSML
provides a framework to help with migration of completion code to a changed
API. Reverse mapping can be used to find uses of the deprecated API and spe-
cialized forward mappings can rewrite existing code to conform to the changed
API.

6 Agile Round-Trip Engineering

The goal of round-trip engineering is keeping a number of artifacts, such as
models and code, consistent by propagating changes among the artifacts. Mak-
ing artifacts consistent by propagating changes is also referred to as synchro-
nization. Round-trip engineering is a special case of synchronization that can
propagate changes in multiple directions, such as from models to code and vice
versa. Round-trip engineering is hard to achieve in a general setting due to the
complexity of the non-isomorphic mappings between the artifacts.

FSMLs enable round-trip engineering over non-trivial mappings that close
the abstraction gap between the framework-provided concepts and the comple-
tion code. The reverse and forward mappings can be precisely defined because
the framework prescribes a finite set of framework-stipulated implementation
choices.

In this section, we present a particular approach, which we refer to as agile
round-trip engineering. The approach supports on-demand, rather than instan-
taneous, synchronization. The artifacts to be synchronized can be independently

698 M. Antkiewicz and K. Czarnecki

edited by developers in their local workspaces, and the reconciliation of the dif-
ferences can be done iteratively. Furthermore, the agile approach assumes that a
model can be completely retrieved from the code using static analysis. We believe
that our approach fits agile development particularly well because it supports
collaborative, CVS-style development and models do not have to be maintained
separately if not desired.

Fig. 2. Artifacts and processes of agile round-trip engineering

Fig. 2 shows the artifacts and processes involved in agile round-trip engineer-
ing. The intention of agile round-trip engineering is to synchronize the current
asserted model, which represents the intended model of the application, and the
current framework completion code, which may be inconsistent with the asserted
model. The asserted model and the completion code that are consistent are also
referred to as being reconciled. In order to synchronize the asserted model and
the completion code, the current implementation model is automatically derived
from the current code. Furthermore, we assume that the last reconciled model
contains the latest copy of each concept instance that was archived after the
instance’s most recent synchronization. Special cases occur if any of the three
artifacts, namely the asserted model, the last reconciled model, or the completion
code, are missing. These cases include situations where the code has to be first
created from an existing model, the model has to be first created from existing
code, or where independently created model and code need to be synchronized
for the first time.

Given at least the asserted model or the completion code, the synchronization
procedure involves the following processes:
1. Reverse engineering. The reverse mappings of every concept and every feature
are executed on the completion code to create the implementation model. An
instance of a concept is created in the implementation model iff all mandatory
features are implemented. The requirement that all mandatory features have
to be implemented can be relaxed to enable recognizing incomplete or broken
concept instances. In the case that there is no code, the implementation model
is empty.

Framework-Specific Modeling Languages with Round-Trip Engineering 699

2. Comparison. This process compares the asserted model and the implemen-
tation model using the last reconciled model as a reference. The comparison
is similar to the three-way compare in the CVS, where the comparison of two
files uses their most recent common revision as a reference. Corresponding con-
cept instances from different models are compared. The correspondence between
concept instances is established based on the values of their key features, i.e.,
features which unambiguously identify instances. For example two instances of
the editor concept will be compared if attributes of features name and qualifier
have the same values.

The result of comparing two concept instances or two features is a synchro-
nization state, which characterizes whether a change, such as addition, removal
or modification, has occurred exclusively in the model, exclusively in the code,
or consistently in the code and the model, or inconsistently in the code and the
model. For example, the synchronization state forward addition indicates that a
concept instance or a feature has been added to the asserted model (e.g., selecting
multiPage feature in Fig. 1(b)) and, therefore, needs to be forward engineered
to the code. Synchronization state conflict indicates that incompatible changes
have been made to both the code and the asserted model (e.g., different values
have been set for the partId feature in the model and in the code). Synchroniza-
tion states are computed according to decision tables given elsewhere [2]. Here
we only explain why using the last reconciled model is important. For example,
if a concept instance is present in the asserted model but is missing in the im-
plementation model, then the instance could have been added to the asserted
model or removed from the implementation model. If the concept instance is also
present in the last reconciled model, then the instance has been removed from
the code and, therefore, the synchronization state should be reverse removal. On
the other hand, if the instance is missing from the last reconciled model, then
the instance has been added to the asserted model and, therefore, the synchro-
nization state should be forward addition. The last reconciled model also plays
an important role in the detection of conflicts.
3. Reconciliation. For all elements with synchronization state other than con-
sistent, a reconciliation decision needs to be made by the user. A reconciliation
decision specifies whether an addition, a removal, or a modification should be
propagated from the model to the code or vice versa. For example if the syn-
chronization state for an instance of the editor concept is forward addition, the
possible decisions are enforce, meaning that a new editor should be created in
the code, and replace-and-update, meaning that the asserted model should be
updated to be consistent with the code and, therefore, the instance of the editor
should be removed from the asserted model. In other cases, the possible decisions
are update and replace-and-enforce [2].

Reconciliation may also require manual editing of the completion code or the
asserted model (e.g., by providing new values for the attributes), in which case
the synchronization states need to be recomputed.
4. Forward engineering and asserted model update. Finally, any necessary changes
are executed according to the reconciliation decisions. Forward decisions trigger

700 M. Antkiewicz and K. Czarnecki

Fig. 3. Fragment of the metamodel of the WPI FSML expressed in MOF

the execution of the forward mappings and reverse decisions force an update of
the asserted model with the values from the implementation model. The last
reconciled model is updated with the copies of reconciled concepts. The execu-
tion of the individual forward mappings needs to be properly scheduled in order
to be correct.

7 Eclipse Workbench Part Interaction (WPI) FSML

In this section, we present a fragment of the design of a FSML for specifying
Eclipse workbench part interactions (WPI). The current prototype implementa-
tion of the FSML consists of a metamodel defining the abstract syntax and the
forward and reverse mappings, and it supports full round-trip engineering as de-
scribed in the previous section. Currently, the prototype only provides abstract
syntax editor. The complete design of the WPI FSML is described elsewhere [2].

Abstract Syntax. Figure 3 presents an excerpt of the metamodel of the WPI
FSML. Classes EditorPart, ListensToParts, RequiresAdapter, and PartSer-
vice are used to represent framework concepts described in Section 2.

The metamodel from Fig. 3 is derived from feature models such as the one
presented in Fig. 1(a). Concepts such as EditorPart in Fig. 1(a) and composite
features such as multiPage map to classes. Atomic subfeatures such as name or
partId map to class properties. The multiplicity of a property depends on the
corresponding feature type and is 1 for mandatory features and 0..1 for optional
features. Properties used to unambiguously identify instances of concepts, i.e.,
the key properties are annotated with the stereotype <<K>>. For example, an
instance of EditorPart is identified by its name and qualifier properties, and
an instance of RequiresAdapter interaction is identified by its source, target
and interface properties.

Property partId is an example of an optional property. An editor is not
required to have a part id, in which case, the value of the partId property is
null and indicates the absence of the feature. Mandatory features which do not
have any attributes are represented as Boolean properties. In this case, false

Framework-Specific Modeling Languages with Round-Trip Engineering 701

indicates absence of the feature. Representing mandatory features as Boolean
properties allows us to create instances for concepts partially implemented in the
code. The abstract syntax also contains additional well-formedness constraints
that correspond to the constraints from the feature model, such as requires
from Fig. 1(a).
Mapping abstract syntax to the framework API. We define a mapping for
every class and class property. A mapping for a property consists of a reverse part
and a forward part. The reverse part is a code query. The forward part is a code
transformation that reflects in the code an addition, removal, or modification of
a feature in the model. A feature is modified when its attribute value is changed.

In our prototype, we have implemented the mappings in Java. For better
presentation, we present the mappings using a concise pseudo-notation. For the
queries, we use a number of predefined functions. For transformations we use
a mixture of predefined procedures and aspect templates. An aspect generated
from a template can be woven into the source code. We specify the templates
using Meta-AspectJ [5] as it allows us to use AspectJ pointcuts, method in-
troductions and inter-type declarations to specify where the code should be
woven. In Meta-AspectJ, ‘[<code>] is the quote operator, #<variable> and
#[<expression>] are the unquote operators. The unquote operator splices the
value of a variable or an expression.

We present fragments of mappings for editor and listens to parts concepts to
highlight some of the more interesting mechanisms. We start with the mapping
declaration for the editor concept.

mapping EditorPart(EditorPart ep <-> Class editor);

The declaration of the EditorPart mapping specifies that ep is bound to an
EditorPart in the model, and editor is bound to a Class in the code. The
mapping can be executed in forward and reverse directions. For example, execut-
ing the mapping in the forward direction and providing a concrete EditorPart
instance and a null reference for editor will create a new class in the code. If
an actual class is passed as editor, that class will be modified to be consistent
with the EditorPart instance.

The above declaration is followed by mappings for individual features. We
start with the key features name and qualifier.

key name
←↩ ep.name = editor.name;
�→ RENAME(editor, ep.name);
key qualifier
←↩ ep.qualifier = editor.package;
�→ MOVE(editor, ep.qualifier);

A mapping for a property consists of two parts: a reverse mapping indicated
by the ←↩ symbol and a forward mapping indicated by the �→ symbol. For the
name and qualifier properties, the reverse mappings are assignments, and the
forward mappings execute the RENAME and MOVE refactorings, respectively. Map-
pings for some of the remaining features are as follows.

702 M. Antkiewicz and K. Czarnecki

mandatory implementsIEditorPart
←↩ ep.implementsIEditorPart = IMPLEMENTS(editor, IEditorPart);
�→ ‘[declare parents : #[ep.name] implements IEditorPart]
optional partId
←↩ ep.partId = EDITORID(editor);
�→ EDITORID(ep.qualifier + "." + ep.name, ep.partId);
optional multiPage
←↩ ep.multiPage = REVERSE(MultiPageFeature(ep <-> editor));
�→ FORWARD(MultiPageFeature(ep <-> editor));

The reverse mapping for the implementsIEditorPart property uses the IM-
PLEMENTS function to check if the class implements the IEditorPart inter-
face. The forward mapping specifies an inter-type declaration that will add the
implements declaration to the class, if woven. The mapping for the partId prop-
erty uses the EDITORID function to retrieve values from the plug-in manifest file
and the EDITORID procedure to set the values. Mappings for the multiPage
property use the FORWARD function and the REVERSE procedure to execute the
MultiPageFeature mapping.

Finally, we present a mapping for the listens to parts interaction.

mapping ListensToParts(ListensToPart ltp <-> Class s)
when Part(sp <-> s);
mandatory sourceRegistersWithPartService
←↩ ltp.sourceRegistersWithPartService =
CALLS(s, ‘[IPartService.addPartListener(IPartListener)]);

�→ ‘[private void #[sp.name].registerWithPartService() {
getSite().getPage().addPartListener(this);

}]

The reverse mapping for the property sourceRegistersWithPartService uses
the CALLS function to determine whether there exists a call to addPartListe-
ner() method in class s or any of its superclasses. The forward mapping for the
sourceRegistersWithPartService property creates a new method, register-
WithPartService(), which contains the required registration call. Note that
the programmer can move the registration call elsewhere and remove the gen-
erated method and yet, the reverse mapping will still be able to recognize the
registration call.
WPI FSML prototype. We developed a prototype of the WPI FSML as
an Eclipse plug-in. Abstract syntax of the language, including well-formedness
constraints, is implemented using Eclipse Modeling Framework (EMF) and its
model validation framework. Reverse mappings use the AST, query, and pattern
matching API of Eclipse’s Java Development Tools (JDT) and type inference
engine of the Infer Generic Type Arguments refactoring [6]. Forward mappings
use Eclipse’s JDT Java Model and AST rewriting API. The prototype supports
agile round-trip engineering. The reverse mappings are completely implemented.
To date, the forward mappings support the creation of classes with methods
implementing the framework-stipulated behaviour, addition of interfaces and

Framework-Specific Modeling Languages with Round-Trip Engineering 703

superclasses, and handling the plug-in manifest files. Weaving of before and after
advices, and code fragment removal are not yet implemented.

The initial evaluation of the prototype involved round-trip engineering of a
few Eclipse UI plug-ins as well as some of our own plug-ins. For all of these plug-
ins, we were able to completely reverse engineer the models from the plug-ins’
code. Furthermore, we were able to synchronize the models and the code after
modifying each of them. A more thorough evaluation of the precision and recall
of the reverse engineering and the correctness of the forward engineering remains
a future work. An on-line demonstration of the prototype is available at our web
page.

8 Related Work

There is a large body of related work; however, for space reasons, we can only
highlight a few works in each category.

Domain-Specific Modeling Languages (DSMLs) and frameworks. The
idea of putting a DSML on top of a framework is not new. Roberts and Johnson
consider language-based tools on top of frameworks as the highest maturity
level in framework evolution [7]. They advocate that black-box frameworks are
particularly well-suited for use with a DSML on top. However, as we discussed
in Section 4, configuration alone does not allow fine-grained customization, and
it often has to be combined with open-ended programming in practice. We are
not aware of any work exploring FSMLs with round-trip engineering support.
General-purpose code analysis tools for architecture recovery and pro-
gram comprehension. There is an enormous body of work in this category.
Two subcategories are prominent. The first subcategory includes tools (e.g.,
JQuery [8]) that allow code querying for typical dependency structures such as
call graphs and include dependencies. In contrast to these tools, our approach
uses whatever specialized analyses are needed for detecting a domain-concept
instance. For example, in order to recognize the requires adapter interaction, a
set of exact types of objects returned by a method needs to be computed.

The other subcategory groups works on detecting design patterns in code
(e.g., [9]). The main problem with these approaches is that a design pattern
can be implemented in the code in a multitude of different ways. Our approach
avoids this problem by limiting itself to the detection of API-stipulated concepts
and features, which is more tractable.
Framework instantiation. Most approaches in this category only support
forward mapping to code. They usually utilize wizards and scripts, as imple-
mented in many industrial tools, including Eclipse. Unfortunately, such wizards
or scripts can usually be run only once since they cannot take manual customiza-
tions into account. This problem is sometimes addressed by strictly separating
the generated code from the manual one using techniques such as protected re-
gions, subclassing of generated classes, and partial classes in C#. However, we
believe that the separation approach affords less flexibility in customizing the

704 M. Antkiewicz and K. Czarnecki

generated code, in particular, when the generated code dictates the structure of
customizations.

Many approaches have been proposed to assist the framework-instantiation
process through active documentation [10, 11, 12, 13], which specifies and inter-
actively guides the developer through available hotspots, instantiation tasks and
possible implementation choices. Attempts for automating the framework in-
stantiation such as [10] offer code generation based on developer’s choices, but
cannot analyze existing code for correctness. Also, the generator (the wizard) is
unable of analyzing existing code in order to determine which choices have been
made in the previous run.

AHEAD [14] offers concept configuration controlled by feature models, where
features represent modular slices through multiple artifacts, such as code and
XML files. The slices may be composed to produce framework completion code.
Step-wise refinement is a generative approach, which supports only forward en-
gineering without the ability to update customizations.

Approaches, such as SCL [15], allow framework developers formalizing frame-
work rules using a constraint language. The constraints can be checked on de-
mand against the completion code and detect rule violations. Such approaches
could be used to define the reverse mappings of FSMLS.
Round-trip engineering. According to Sendall and Küster the main differ-
ence between round-trip engineering and forward and reverse engineering is that
round-trip engineering takes both artifacts into account with the intention of
reconciling them, whereas forward and reverse engineering typically create new
artifacts, potentially replacing the old versions [16].

Round-trip engineering between UML and object-oriented languages such as
Java is supported by several commercial UML modeling tools. The provided
synchronization can be instantaneous or on demand as in our approach. However,
the mappings supported by these tools are rather simple one-to-one mappings
between UML classes and Java classes.

9 Discussion and Future Work

The prototype implementation of the WPI FSML provided us with many insights
regarding the usefulness of the presented approach to modeling and round-trip
engineering.

Most of the features of framework-provided concepts in WPI correspond to
small implementation steps such as implementing an interface or invoking a
service. However, features corresponding to higher-level requirements can also
be represented and mapped to implementation features using constraints.

The reverse mappings of FSMLS are restricted by the available static code
analysis techniques. Our agile round-trip engineering approach requires the de-
sign to be retrivable from the code, which may not always be possible using
purely static analysis. This problem could be addressed by injecting design in-
formation into the source code, e.g., as code annotations. The FSML could also
suggest to the application programmer how to restructure the code to make its
design more explicit in the static code structure.

Framework-Specific Modeling Languages with Round-Trip Engineering 705

WPI FSML currently does not use flow analysis to properly implement the
CALLS function, which should check whether there exists a call to the given
method within the control flow of an instance of a class in question. Also, con-
stant propagation and data flow analysis would improve the precision in some
other cases. Currently, we are in the process of designing a FSML for a part of
Eclipse’s Graphical Modeling Framework (GMF). Reverse engineering of GMF’s
completion code requires more powerful static analysis techniques than the ones
used in WPI, such as techniques typically used in partial evaluation and pro-
gram slicing. In general, the effectiveness of the reverse engineering depends on
the programming language and the type of the framework. This aspect requires
further research.

In our approach, the forward mappings are not required to produce fully
functional code. A FSML is intended to be used in an interactive manner. The
generated or transformed code is intended to be further customized. We think
that generation of code fragments demonstrating the use of the framework can
help application developers overcome the initially steep learning curve. Further-
more, the forward mappings need a better infrastructure in terms of automatic
scheduling of the execution of individual mappings and a more declarative way
of specifying the mappings, such as offered by scripting languages for refactor-
ing [17]. In general, forward mappings designed to update the code, which are
code transformations, are usually harder to devise than reverse mappings.

FSMLs can potentially be used for automatic or semi-automatic code migra-
tion as described in Section 5. Although we do not have any practical experience
with this aspect yet, we think that the specialized forward mappings can be
defined for different versions of the API, or even for different frameworks. Cur-
rently, we are investigating the possibility of using FSMLs for the migration of
code from the Struts framework to the Java Server Pages framework.

We think that, in practice, a single FSML will typically cover a small area
of a framework’s concern, and multiple FSMLs will be provided for a single
framework. For example, in Eclipse, in addition to WPI, another FSML could
be used to specify the graphical appearance of workbench parts. Furthermore,
round-trip engineering affords manual integration of completion codes created
for multiple frameworks. Such integration may be difficult for completion code
generated from code templates because such code can be customized in only
limited ways. Integration of multiple FSMLs remains future work.

10 Conclusion

In this paper, we propose the concept of FSMLs with round-trip engineering
support. The concept addresses a number of challenges in framework-based ap-
plication development, such as knowing how to write framework completion code,
being able to see the design of the completion code, and the migration of the code
to new framework API versions. Compared to round-trip engineering support in
the context of a general purpose modeling and programming languages such as
UML and Java, FSMLs can enable round-trip over non-trivial mappings. This

706 M. Antkiewicz and K. Czarnecki

more powerful round-trip engineering is possible because the framework API
allows capturing the design structures in the application code more explicitly.
Furthermore, the ability to freely modify application code manually gives the de-
veloper more customization flexibility than the alternative approach of strictly
separating generated code from customizations.

Acknowledgements. We would like to thank Bran Selic, Todd Veldhuizen, and
the anonymous reviewers for valuable comments on previous drafts. This work
is partially supported by IBM Centers For Advanced Studies, Ottawa.

References

1. Eclipse Foundation: Eclipse. http://www.eclipse.org/ (2006)
2. Antkiewicz, M., Czarnecki, K.: Eclipse workbench part interaction FSML. Techni-

cal Report 2006-09, ECE, University of Waterloo (2006) http://gp.uwaterloo.ca.
3. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:

a progress report. In: International Workshop on Software Factories. (2005)
4. DSM Forum: Workshop on domain-specific modeling (2001-2006) http://www.

dsmforum.org/DSMworkshops.html.
5. Zook, D., Huang, S.S., Smaragdakis, Y.: Generating AspectJ programs with Meta-

AspectJ. In: GPCE’04. Volume 3286 of LNCS., Springer (2004) 1 – 18
6. Tip, F., Fuhrer, R., Dolby, J., Kieżun, A.: Refactoring techniques for migrating

applications to generic Java container classes. IBM Research Report RC 23238,
IBM T.J. Watson Research Center (2004)

7. Roberts, D., Johnson, R.: Evolving frameworks: A pattern language for developing
object-oriented frameworks. In: PLoP’96, University of Illinois, Addison-Wesley
(1996)

8. De Volder, K.: JQuery: A generic code browser with a declarative configuration
language. In: PADL’06. Volume 3819 of LNCS., Springer (2006) 88–102

9. Shi, N., Olsson, R.A.: Reverse engineering of design patterns from Java source
code. In: ASE 2006. (2006)

10. Braga, R.T.V., Masiero, P.C.: Building a wizard for framework instantiation based
on a pattern language. In: OOIS’03. Volume 2817 of LNCS., Springer (2003) 95–106

11. Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A., Viljamaa, J.:
Generating application development environments for Java frameworks. In: GCSE
2001. Volume 2186 of LNCS. (2001) 163–176

12. Ortigosa, A., Campo, M.: Smartbooks: A step beyond active-cookbooks to aid in
framework instantiation. In: TOOLS’99, IEEE Computer Society (1999) 131

13. Tourwé, T., Mens, T.: Automated support for framework-based software evolution.
In: ICSM’03), IEEE Computer Society Press (2003) 148–157

14. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Transactions on Software Engineering (2004)

15. Hou, D., Hoover, H.J.: Using SCL to specify and check design intent in source
code. IEEE Transactions on Software Engineering 32(6) (2006) 404–423

16. Sendall, S., Küster, J.: Taming model round-trip engineering. In: Workshop on
Best Practices for Model-Driven Software Development. (2004)

17. Verbaere, M., Ettinger, R., de Moor, O.: JunGL: a scripting language for refactor-
ing. In: ICSE’06. (2006)

A Visualization Framework for the Modeling and
Formal Analysis of High Assurance Systems�

Heather Goldsby, Betty H.C. Cheng��,
Sascha Konrad, and Stephane Kamdoum

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
3115 Engineering Building

East Lansing, Michigan 48824 USA
{hjg, chengb, konradsa, kamdoumm}@cse.msu.edu

Abstract. Increasingly, object-oriented technology, specifically the Uni-
fied Modeling Language (UML), is being used to develop critical embed-
ded systems. Several efforts have attempted to translate UML models
into formal specification languages, thus enabling the models to be an-
alyzed by model checkers. Unfortunately, the complexity and volume of
the analysis results often prevents developers from fully taking advantage
of the analysis capabilities. This paper introduces a generic visualization
framework, Theseus, that provides developers with a model-based, vi-
sual interpretation of the analysis results in terms of the original UML
diagrams. Within this framework, a playback mechanism displays the
execution path that has led to a model checking violation in terms of the
original UML state diagram and a newly generated sequence diagram
that depicts the problem scenario. A Theseus prototype supporting the
Spin and SMV model checkers has been applied to the analysis of UML
models for embedded systems from industry.

1 Introduction

Embedded systems have become increasingly pervasive, particularly occurring
in high-assurance systems, such as automotive systems, medical devices, and
telecommunication systems. Given the critical nature of these embedded systems
applications, it is important to use rigorous development techniques. Increas-
ingly, object-oriented technology is being used to develop embedded systems [1].
Furthermore, the Unified Modeling Language (UML) [2], the de facto standard
� This work has been supported in part by NSF grants EIA-0000433, EIA-0130724,

CDA-9700732, CCR-9901017, CNS-0551622, CCF-0541131, Department of the Navy,
Office of Naval Research under Grant No. N00014-01-1-0744, Eaton Corporation,
Siemens Corporate Research, and a grant from Michigan State University’s Quality
Fund. Stephane Kamdoum completed a portion of this work while studying under
an International Exchange Program between the University of Kaiserslautern and
Michigan State University.

�� Corresponding author.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 707–721, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

708 H. Goldsby et al.

for object-oriented modeling, is the primary modeling notation for the recent
movement towards model-driven development (MDD), such as that used in the
model-driven architecture (MDA) by the OMG [2]. Using MDD, the models are
refined iteratively from requirements to design and eventually code is gener-
ated. One drawback with the UML has been the lack of model analysis tools.
To date, most of the UML analysis has been limited to syntactic-based analy-
sis or simulation. Recently, there have been several efforts to translate object-
oriented diagrams (e.g., state and sequence diagrams) to formal specification
languages [3, 4, 5, 6] to be analyzed for adherence to behavioral properties by
model checkers, such as Spin [7] and SMV [8]. A challenge with this approach
to analysis is how to understand and then use the error descriptions from the
analysis output to revise the original UML diagrams. This paper describes a
generic visualization framework, Theseus, that interprets the analysis output
from model checkers in terms of the original UML diagrams. Using Theseus,
the developer is alleviated from the burden of deciphering the frequently cryptic
and verbose trace output, which is often denoted in an analysis tool-specific lan-
guage, including references to line numbers of the specification, internal process
numbers, temporary variable names, etc.

In addition to the syntactic-based analysis tools, such as those provided with
XDE [9], several CASE tools [10, 11, 12, 13, 14] provide visualization support
for (UML) model simulation. Simulation provides information about a single ex-
ecution path (e.g., a scenario) through a system model, where visualizations can
be used to depict a scenario by displaying message traces in sequence diagrams
or highlighting elements of a state diagram. Simulation-based analysis validates
that a model conforms to a developer’s expectations. In contrast, the recent
work of translating the UML diagrams to model checker specification languages
is intended to support the verification of UML models. That is, does a UML
model satisfy temporal properties, such as invariants and leads-to properties,
for all possible execution paths. Particularly for high-assurance systems, it is
important to be able to verify a UML model against critical properties before
the models are refined to design and code. A notable feature of model checkers
is that if a system model does violate a property, a counterexample depicting
the sequence of events and/or states causing the violation is returned. Two chal-
lenges exist with using the analysis results. First, a developer must decipher
the verbose and often non-intuitive representation of system elements specified
in the counterexample. Second, the cause of the error must be traced back to
the original UML diagram in order to make the appropriate model refinements,
particularly in the context of MDD.

This paper describes a generic visualization framework, Theseus, that sup-
ports a model-driven, visual interpretation of analysis output from commonly
used model checkers. Three tasks were essential in the development of Theseus.
First, based on numerous trace output files generated from each model checker,
we constructed a grammar and a corresponding parser for each model checker
to be supported by Theseus; the parser generates an abstract syntax graph
(ASG) for a given trace file. Second, we developed a translator for each formal

Modeling and Formal Analysis of High Assurance Systems 709

analysis tool that traverses the ASG to generate a generic XML representation
containing only UML-relevant model elements, such as state names, transition
names, attributes, etc. The parser and translator are combined into an analy-
sis tool-specific trace processor. Third, we developed a visualization engine that
processes the XML representation of the counterexamples to support UML state
diagram animation and sequence diagram generation. The combination of these
three elements have been encompassed in the Theseus prototype that accepts as
input a UML model and the trace file for a counterexample generated from a
model checker for an error detected in the UML model, and produces a state di-
agram animation and sequence diagram depicting the counterexample. The user
has the option of either stepping (single or multi-step) through the animation
or running through the complete counterexample, where color changes are used
to depict state and transition traversals.

Theseus has been developed to provide a critical piece of a larger project
supporting a roundtrip-engineering approach to the construction of UML dia-
grams for modeling and analyzing embedded systems requirements. Specifically,
we have previously developed several techniques and tools to provide a bridge
between (semi-)informal and formal approaches to requirements engineering of
embedded systems. First, in order to enable UML diagrams to be automatically
analyzed by model checkers, we developed a meta-model based approach to
mapping UML diagrams to target specification languages [3]. Hydra is a proto-
type tool that supports the automatic generation of specification languages, such
as Promela, the specification language of the Spin model checker [7], from UML
class and state diagrams. Second, in order to help developers create the UML dia-
grams, we developed a set of object analysis patterns for embedded systems [15],
that provide sample structural and behavioral UML templates for modeling em-
bedded systems. Third, in order to facilitate the specification of formally ana-
lyzable properties using natural language, we have developed a structured nat-
ural language grammar and Spider (Specification Pattern Instantiation and
Derivation EnviRonment) [16, 17]. Using Spider, developers can create nat-
ural language specifications of properties that are automatically and transpar-
ently mapped to the property specification language of the targeted analysis
tools, e.g., linear-time temporal logic (LTL) [18] for the model checker Spin [7].
Theseus provides the fourth component of the roundtrip-engineering process,
that is, the visualization of the model checking analysis. Therefore, putting all
four elements together, a developer can use the object analysis patterns to create
a UML model for an embedded system, use Hydra to generate a formally analyz-
able model for a model checker, use Spider to specify properties to be satisfied
by the UML model, use the model checker to analyze the UML model against
the Spider-specified properties, and use Theseus to visualize counterexamples
generated from the model checker in terms of the original UML diagrams, thus
completing the roundtrip-engineering process.

In order to validate our work, Theseus has been instantiated to handle trace
output generated from two different model checkers, Spin and SMV, and we have
applied our roundtrip-engineering process to the analysis of several industrial

710 H. Goldsby et al.

embedded systems. The remainder of the paper is organized as follows. Section 2
provides background information on the supporting elements of the roundtrip-
engineering process. Section 3 gives the architecture for Theseus and describes
the visualization capabilities. Section 4 presents a case study involving the Spin
model checker results. Section 5 overviews related work. Finally, Section 6 gives
concluding remarks and discusses future investigations.

2 Roundtrip Modeling and Analysis Overview

This section introduces the roundtrip modeling and analysis process depicted in
Fig. 1, where the shaded swimlanes depict the activities encompassed by The-
seus. Specifically, we describe the process of creating a UML model, formalizing
the model, and checking the model for adherence to properties.

SPIDER Case tool Formal analysis framework

UML model
formalizer Model checker

Theseus
trace processor

Theseus
visualization

engine

User creates
NL property

Translate to
formal

property

User creates
UML model
guided by

object
analysis
patterns

Translate to
formal

specification

Perform
analysis

Translate to
intermediate
XML format

Create
visualization

elements

User views
visualizations

[property holds]

Generate
violation trace

[property does
not hold]

A

A

User
corrects

UML model

Fig. 1. Roundtrip Modeling and Analysis Process

2.1 Step 1: Creating a UML Model and Specifying a Property

In the first step, the developer uses a CASE tool, such as ArgoUML [19], to create
a UML model that describes the structure and behavior of the system. In gen-
eral, the structure of the system is described in terms of UML class diagrams.
Behavioral aspects are modeled using state diagrams associated with the classes.
Abstraction should be used to address the size and complexity of the model. Specif-
ically, we model only those portions of the system that are relevant to the analysis.
Multiple, specialized models can be created for different aspects of the system.

To aid in the creation of these models for embedded systems, we previously
developed object analysis patterns [15]. Whereas design patterns [20] guide

Modeling and Formal Analysis of High Assurance Systems 711

developers in the construction of design models, object analysis patterns guide
developers in the creation of conceptual models during the analysis phase
preceding the design phase. Specifically, these patterns aid in the construction
of conceptual models of the embedded systems focusing on functional aspects,
where these models may later be refined in the design phase through the use of
design patterns.

Next, the user specifies the properties of the UML model to be analyzed. In
our approach, these properties are specified in natural language using a pre-
viously developed process for deriving and instantiating formally analyzable
natural language properties based on real-time and qualitative specification pat-
terns [16, 17], termed Spider. Briefly, the Spider process comprises three steps:

1. Derivation: Derive a natural language sentence from a structured natural
language grammar.

2. Instantiation: Instantiate the natural language representation with model-
specific elements.

3. Mapping: Map the instantiated natural language sentence to the temporal
logic required by the targeted formal validation and verification tool and
analyze.

An important component of this process is a structured natural language
grammar. This grammar is used to derive natural language sentences that
can be mapped to formal specifications structured in terms of a specification
pattern system. In this paper, we use the qualitative portion of a previously
developed structured English grammar [21] for the specification patterns by
Dwyer et al. [22].

Using Spider, the developer specifies the property to be verified in natural
language. Spider then translates the natural language property to a form that
can be understood by the targeted analysis tool.

2.2 Step 2: Formalizing a UML Model

The UML model created from the object analysis patterns is translated into
the specification language for the targeted model checker. It is well-known that
UML lacks a precise, formally defined semantics. Therefore, numerous seman-
tic interpretations are possible for a given diagram. In order to address this
problem and to make UML diagrams amenable to rigorous analysis, McUm-
ber and Cheng [3] developed a metamodel-based formalization framework that
maps a given UML model into a formal specification language. Hydra automates
this mapping process [3]. Specifically, we have created a UML-to-Promela for-
malization, supported by Hydra, tailored to the unique properties of embedded
systems. This formalization maps objects to processes in Spin (proctypes) that
exchange messages via channels. Nested and concurrent states are also formal-
ized as processes. For the purposes of this paper, the formalization framework
is configured to read UML 1.4 [2] models1 specified in terms of XMI 1.1 [2] and
generate Promela [7] specifications.
1 CASE tool support for UML 1.5 and UML 2.0 is still limited.

712 H. Goldsby et al.

To use the SMV model checker [23, 8], Tanuan and Atlee [5] have developed
a set of rules to translate a UML model into SMV’s specification language.
Currently, there does not exist a tool that automatically translates UML models
to SMV specifications. Therefore, we manually translate a UML model into an
SMV specification using these rules. (We are extending Hydra to support this
formalization.)

2.3 Step 3: Analyzing a UML Model

Next, the developer uses a model checker to analyze the formalized UML model
for adherence to the previously specified property. If the model checker finds a
violation of the property, then a violation trace is returned. The violation trace
contains the sequence of steps performed by the system that lead to the violation.

3 Theseus Visualization Framework

The Theseus visualization framework, shown in the shaded region of the activ-
ity diagram in Fig. 1, supports visually interpreting the analysis results gener-
ated by model checkers in terms of the original UML diagrams. For example,
Fig. 2(a) depicts a state diagram that has been analyzed for our adaptive light
controller case study that will be described in detail in Section 4. Fig. 2(b) is an
excerpt of the corresponding violation trace generated by Spin. From the trace
files, Theseus extracts four types of dynamic behavior to animate: (1) A state
is visited; (2) A transition is taken; (3) A message is sent; and (4) A message
is received. The Theseus visualization framework comprises two components to
depict this behavior: the Theseus trace processor and the Theseus visualization
engine. The Theseus visualization engine takes the XML intermediate represen-
tation of the dynamic behavior from the trace output and the original UML
model as inputs and produces the UML state diagram animations and UML
sequence diagram generation. We describe the Theseus trace processor and vi-
sualization engine in more detail.

3.1 Theseus Trace Processor

The objective of the Theseus trace processor (depicted in Fig. 1) is to identify
the dynamic behavior within the violation trace file and to specify this behavior
in an intermediate XML representation. It comprises a parser, which must be
constructed for each syntactically unique trace file format, and a translator. Note
that different trace file formats will be generated by different model checkers or
by the same model checker with different output options or different instru-
mentation. However, each parser is reusable across traces generated from the
analysis of different UML models and/or different properties by the same model
checker with the same output options selected. Each parser constructs an ASG
(abstract syntax graph) representation of the dynamic behavior specified by the
trace file. The translator then traverses the ASG and creates an intermediate
XML representation of the dynamic behavior.

Modeling and Formal Analysis of High Assurance Systems 713

Idle

DisplayNormal

normalMode()[]/

(a) State Diagram

6: proc 17 (UserInterface) line 1680 "pan_in" (state 1)
[goto Idle]

8: proc 17 (UserInterface) line 1714 "pan_in" (state 50) [(1)]
in state UserInterface.Idle

8: proc 17 (UserInterface) line 1714 "pan_in" (state 51)
[printf(’in state UserInterface.Idle\\n’)]

...
200: proc 17 (UserInterface) line 1725 "pan_in" Recv normalMode

<- queue 12 (UserInterface_q)
200: proc 17 (UserInterface) line 1725 "pan_in" (state 65)

[UserInterface_q?normalMode]
Transition to UserInterface.DisplayNormal (evt:normalMode())

202: proc 17 (UserInterface) line 1727 "pan_in" (state 67)
[printf(’Transition to UserInterface.DisplayNormal
(evt:normalMode()) ’)]

204: proc 17 (UserInterface) line 1698 "pan_in" (state 27) [(1)]
in state UserInterface.DisplayNormal

204: proc 17 (UserInterface) line 1698 "pan_in" (state 28)
[printf(’in state UserInterface.DisplayNormal\\n’)]

(b) Corresponding Violation Trace

Fig. 2. Sample State Diagram and Violation Trace

An excerpt of a violation trace generated by Spin is depicted in Fig. 2(b). It
contains information from four different sources: the UML model, the Promela
specification, any instrumentation added by Hydra, and internal Spin informa-
tion (e.g., line numbers, process number, Spin states, etc.). The Theseus parser
extracts the information corresponding to the four dynamic behaviors of interest
and represents it as an ASG. We give examples of each as follows:

1. A UML state is visited:
6: proc 17 (UserInterface) line 1680 ‘‘pan in’’ (state 1) [goto
Idle]
The portion of the statement depicted in typewriter font specifies Spin inter-
nal information that is irrelevant for visualization purposes. Specifically, 6:
proc 17 represent the execution step and internal Spin process number, re-
spectively. line 1680 ‘‘pan in’’ (state 1) are the line number within
and the file name of the trace file, and the Spin internal state, respectively.
This statement specifies that the UserInterface visits state Idle.

2. A UML transition is taken:
Transition to UserInterface.DisplayNormal (evt:normalMode()^
Display.showNormMes)
This statement is produced by the instrumentation (from Hydra) added
to the Promela specification. Spin can provide this information, but only
by activating specific flags to generate even more verbose and cumbersome
output. Therefore, since we have the ability to extend Hydra, for convenience
we have added instrumentation to obtain this information. This statement
denotes that the UserInterface transitions to state DisplayNormal as a result of
the normalMode event occurring. In addition, as a result of this transition
being taken, the message showNormMes is sent to Display.

714 H. Goldsby et al.

3. A UML message is sent:
201: proc 17 (UserInterface) line 1726 ‘‘pan in’’ Send
showNormMes → queue 13 (Display q)
This statement specifies that UserInterface sends the message showNor-
mMes to Display.

4. A UML message is received:
206: proc 11 (Display) line 1248 ‘‘pan in’’ Recv showNormMes
← queue 13 (Display q)
This statement specifies that Display receives the message showNormMes.

The Spin translator translates the ASG representation of the dynamic be-
havior generated by the parser into an XML intermediate format. Specifically,
there is an intermediate XML specification for each of the four types of dynamic
behavior. For example, Fig. 3(a) shows a sample XML element specifying that
state Idle in class UserInterface is visited. Fig. 3(b) specifies that object Display
sent a message named showNormMes to object UserInterface.

<Expression>
<Process name="UserInterface"/>
<Goto>
<Read_location>

<Process name="UserInterface"/>
<State name="Idle"/>

</Read_location>
</Goto>

</Expression>

(a) Visited State

<Expression>
<Process name="UserInterface"/>
<Send_Message>
<Message name="showNormMes"/>
<End_Transition>

<Queue name="Display"/>
</End_Transition>

</Send_Message>
</Expression>

(b) Sent Message

Fig. 3. Sample XML Elements

3.2 Visualization Engine

The visualization engine has been implemented in the ArgoUML [19] CASE
tool as a plugin. ArgoUML was selected because of its open source application
programming interface (API) that allows the creation of plugins. Theseus pro-
vides two animation options: automatic playback and incremental playback. Au-
tomatic playback animates the complete violation trace; whereas, incremental
playback animates the animation trace in a stepwise fashion (single or multi-
step). The multi-step option is useful when there are a large number of steps in
the violation trace and the developer suspects the first several steps may not be
relevant to the violation. After skipping to a specific step, the developer is able
to automatically play the remaining steps, or incrementally play the next step.

Theseus provides two mechanisms for visualizing violation traces on the UML
model, state diagram animation and sequence diagram generation. Specifically,
state diagram animation depicts that a state is visited (colored red when vis-
ited and turns yellow upon departure) and that a transition fires (in red). The
generated sequence diagram is animated to depict that a message is sent (arrow

Modeling and Formal Analysis of High Assurance Systems 715

in red) and received (arrow in blue). As such, Theseus depicts all four types of
dynamic behavior useful for understanding a violation trace.

Both state diagram and sequence diagram animations help a developer to
better understand the cause for a property violation. While the state diagram
animation is better suited for understanding the behavior of an individual object,
the generated sequence diagram helps a developer to understand the context for
a property violation in terms of object interaction. Note that typically a UML
diagram may have several state diagrams, each of which represents the behavior
of a particular object in the system. Currently, Theseus displays the state dia-
gram of a particular object, depending on the part of the counterexample being
traversed. As events and messages communicate among objects, the correspond-
ing object’s state diagram is displayed. In future versions, we plan to display
more than one state diagram at a time in addition to the sequence diagram.

4 Case Study

This section describes an industrial case study we performed to validate our
visualization framework. Specifically, object analysis patterns were used to create
a UML model of an embedded system application, Hydra generated a formal
specification of the UML model, Spin verified critical system properties specified
with Spider, and Theseus visualized the analysis results in terms of the original
UML diagrams. Due to space constraints, we do not include a case study for the
SMV visualization, but a description may be found in [24].

4.1 Adaptive Light Control System

The adaptive light control system (ALCS) is responsible for moderating the
lights in a room. A class diagram depicting the structure of this system is de-
picted in Fig. 4. The class attributes and operations have been elided due to
space constraints.

The primary function of the ALCS is to ensure that if the room is occu-
pied, then the room is sufficiently illuminated, either by natural light or by the
lamps. The ALCS comprises a switch for manually turning on the lights, a dis-
play for communicating messages to a user, a motion sensor for detecting that
the room is occupied, a brightness sensor for detecting the current illumination
level of the room, and a dimmer that controls the brightness of the lamps. The
Controller Decompose, Actuator-Sensor, User Interface, Computing Component,
Fault Handling, and Detector-Corrector object analysis patterns have been used
in the specification of the structure and behavior of the ALCS. For additional
details about these patterns, please refer to [15]. Note, Fig. 2(a) describes a
portion of the behavior of the UserInterface.

4.2 Property Specification and Analysis

We analyzed the UML model for the ALCS using the Spin model checker. First,
we used Hydra to translate an XMI representation of the UML model into

716 H. Goldsby et al.

Display

UserInterface

ComputingComponent

Dimmer

GlobalFaultHandler

Detector LocalFaultHandler

Corrector

BrightnessSensor

ActiveIntegerSensor

MotionSensor

ActiveBooleanSensor

0..*
1

Indicator

BooleanControl BooleanIndicator

Control

collaborate

Actuator

IntegerActuator

1

1

0..*

1

1

1

1

1

1

monitors

1 1

collaborate

1
1

controls

1

1

controls

1
1..*

sets

1 0..*
ActiveSensor

reads
10..*

co
n

tr
o

ls

reports to

Switch

Fig. 4. Class Diagram of the ALCS

Promela. Second, we used Spider to formally specify properties to be satis-
fied by the model. For example, using Spider, we created the following natural
language property:

“Globally, it is always the case that if the initialization has succeeded, then
eventually the display shows the initialization succeeded message.” (1)

Spider then extracts UML model elements from the ALCS model to instan-
tiate the free-form text the initialization has succeeded and the display shows the
initialization has succeeded message with model-specific elements. The initial-
ization in the ALCS has succeeded if the lightStatus of the ComputingCompo-
nent is set to value 1. Therefore, the initialization has succeeded is replaced with
ComputingComponent.lightStatus=1. Similarly, the text the displays shows the
initialization succeeded message is replaced with call(Display.showNormMes())
to denote that the message showNormMes() of the Display is called. Thus, we
obtain the following instantiated natural language property:

“Globally, it is always the case that if ComputingComponent.light-
Status=1, then eventually call(Display.showNormalMes()).” (2)

From this specification, Spider automatically creates the formal specification
of the property in LTL:

�((ComputingComponent.lightStatus=1) (3)
→ ♦(call(Display.showNormMes())))

Modeling and Formal Analysis of High Assurance Systems 717

At this point, Spider invokes Spin with the Promela model of the ALCS and
the LTL property. In this case, model checking detected a violation and Spin
generated a violation trace.

4.3 Property Visualization

Theseus processed the violation trace and visualized the counterexample in terms
of the original UML state diagrams and a sequence diagram. A screen shot of a
state diagram animated to depict one step of the violation trace is depicted in
Fig. 5, where the key thing to note is the different colors of the states and the
transitions. In this case, we are viewing the state diagram for the UserInterface
object. (The intent of these figures is not to read the individual names of states
or transitions, but to note the color changes – or the levels of shading in gray
scale.) A screen shot of the sequence diagram generated by Theseus depicts the
violation trace shown in Fig. 6. Using the Theseus visualizations of the violation
path, we were able to locate the source of the error and revise the UML model
accordingly. Rerunning the overall process yielded no further violations. Without
Theseus, we would be forced to understand the syntax and semantics of the trace
output, determine the relationship between the output and the UML model, and
then locate the corresponding error within the UML model.

5 Related Work

Numerous CASE tools [10, 11, 12, 13, 14] provide visualization support for UML
model simulation. To the best of our knowledge, they do not support the visu-
alization of violation traces gathered during model checking analysis in terms
of the original UML diagrams. Most formal analysis tools, in contrast, offer vi-
sualization capabilities in terms of the analysis models, such as Spin [7] and
UPPAAL [25]. However, this visualization is on the level of the description lan-
guage of the formal analysis tool and not at a more abstract level, such as a
UML model.

Other tools visualize analysis results from model checkers in terms of UML.
vUML [4] translates UML diagrams into Promela and uses Spin for analysis pur-
poses. Violation traces revealed by formal analysis may be displayed in terms
of UML sequence diagrams. To keep the model checking process transparent,
vUML focuses on the analysis of more general properties, such as deadlocks
and livelocks. Differing from our work, vUML only supports the translation of
UML models to Promela, does not support the construction of property specifi-
cation in terms of natural language or formal specification languages, and does
not offer state diagram animation capabilities. MOCES [26] translates Statem-
ate [11] state charts into Promela. The semantics of the Statemate state charts
differs from the semantics for UML state diagrams [27]. In addition, MOCES
only supports the analysis of a single state chart, while our tool analyzes be-
havior captured in a collection of collaborating state machines. Hugo/RT [28]
supports the analysis of UML diagrams using Spin or UPPAAL [25]. In addi-
tion, Hugo/RT can translate a violation trace produced by these analysis tools

718 H. Goldsby et al.

Fig. 5. Theseus Animation of Adaptive Light Controller Violation Path

to a representation in terms of UML elements. However, Hugo/RT provides a
proprietary textual UML representation and does not interactively display the
violation trace in terms of a graphical UML representation in a CASE tool.
In summary, none of the aforementioned tools combines the capability of dis-
playing analysis results in terms of UML sequence and state diagrams and the
customizability towards numerous formal analysis tools.

6 Conclusions

This paper has described a generic visualization framework that provides a criti-
cal link in a roundtrip-engineering process for modeling and analyzing embedded
systems. The prototype of this visualization framework, offers three key bene-
fits to UML modelers who want to model check their UML diagrams. First,
Theseus supports modelers who are not proficient in interpreting the verbose
and often cryptic analysis results generated by model checkers, by locating the
source of the error identified by the violation trace. Theseus visually animates
the violation trace on the UML state diagrams and a generated sequence dia-
gram. Second, Theseus is extensible to other formal analysis tools beyond the

Modeling and Formal Analysis of High Assurance Systems 719

Fig. 6. Theseus Generated Sequence Diagram depiction of Adaptive Light Controller
Violation Path

ones mentioned in this paper. To extend Theseus to visualize output from other
analysis tools, a specific Theseus trace processor needs to be constructed. The
parser of the trace processor depends on the formalization rules (i.e., the rules
for mapping UML to the target specification language of a given analysis tool)
and the violation trace output options used in the model checker (including any
instrumentation added to the trace output). The translator of the trace proces-
sor, however, depends only on the formalization rules, and is potentially reusable
for different violation trace output options. Currently, we have developed trace
processors that support output generated by the SMV and Spin model check-
ers. Independent of the model checker, the formalization rules, and the output
options, the Theseus visualization engine is reusable across the trace output
for different state-based analysis tools. Third, Theseus completes the roundtrip
modeling and analysis process for embedded systems by enabling a developer to
automatically formalize a UML model, specify natural language properties that
the model must satisfy, analyze the model for adherence to these properties, and
visualize property violations in terms of the original UML diagrams.

720 H. Goldsby et al.

Futureworkwill include applyingTheseus to additional case studies and extend-
ingTheseus in different directions. First,we are extendingTheseus to viewmultiple
state diagrams side-by-side during animation. Additionally, we are investigating
how to extend the Theseus framework to visualize the analysis results from com-
plementary model checkers, such as the real-time model checkers Kronos [29] and
UPPAAL [25]. Finally, we are exploring a more seamless integration between the
tools and the steps of our roundtrip-engineering process for modeling and analysis.
The biggest challenge has been the vendor-specific differences in the implementa-
tion of the standard for data interchange between tools and third parties.

Bibliography

[1] Douglass, B.P.: Real-Time Design Patterns. Addison-Wesley (2003)
[2] Object Management Group: http://www.omg.org.
[3] McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with

formal languages. In: Proc. of the IEEE Int. Conf. on Software Engineering
(ICSE01), Toronto, Canada (2001)

[4] Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: Proc. of
the 14th IEEE Int. Conf. on Automated Software Engineering, Washington, DC
(1999)

[5] Tanuan, M.C.: Automated Analysis of Unifed Modeling Language (UML) Speci-
fications. Master’s thesis, University of Waterloo, Canada (2001)

[6] Inverardi, P., Muccini H., Pelliccione P.: CHARMY: An Extensible Tool for Ar-
chitectural Analysis. In: ESEC/FSE-13: Proc. of the 10th European Software
Engineering Conf. held jointly with 13th ACM SIGSOFT Int. Symposium on
Foundations of Software Engineering. (2005)

[7] Holzmann, G.: The Spin Model Checker. (2003)
[8] McMillan, K.L.: Getting started with SMV (1999)
[9] IBM: Rational Rose XDE Developer. http://www-306.ibm.com/software/

awdtools/developer/rosexde/ (2005)
[10] Telelogic: ObjectGEODE. http://www.telelogic.com/ (2005)
[11] I-logix: http://www.ilogix.com/ (2005)
[12] ARTiSAN Software: Real-time Studio. http://www.artisansw.com (2005)
[13] Ho, W.M., Jézéquel, J.M., Guennec, A.L., Pennaneac, F.: UMLAUT: an ex-

tendible UML transformation framework. In: Proc. of the Automated Software
Engineering Conf., Florida (1999)

[14] Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proc. of the
22nd Int. Conf. on Software Engineering, New York, NY, USA, ACM Press (2000)
742–745

[15] Konrad, S., Cheng, B.H.C., Campbell, L.A.: Object Analysis Patterns for Em-
bedded Systems. IEEE Trans. on Software Engineering 30(12) (2004) 970 – 992

[16] Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: Proc. of the IEEE Int. Requirements Engineering Conf.
(RE05), Paris, France (2005)

[17] Konrad, S., Cheng, B.H.C.: Automated analysis of natural language properties
for UML models. In Bruel, J.M., ed.: Satellite Events at the MoDELS 2005 Conf.:
MoDELS 2005 Int. Workshops, Montego Bay, Jamaica, October 2-7, 2005, Revised
Selected Papers. Volume 3844 of Lecture Notes in Computer Science., Springer-
Verlag GmbH (2006) 48–57

Modeling and Formal Analysis of High Assurance Systems 721

[18] Manna, Z., Pnueli., A.: The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc. (1992)

[19] Tigris.org: ArgoUML: The project home. http://argouml.tigris.org (2005)
[20] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1994)
[21] Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proc. of the Int.

Conf. on Software Engineering (ICSE05), St Louis, MO, USA (2005)
[22] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: Proc. of the 21st Int. Conf. on Software Engineering,
IEEE Computer Society Press (1999) 411–420

[23] McMillan, K.L.: Symbolic Model Checking. PhD thesis, Carnegie Mellon Univer-
sity (1993)

[24] Kamdoum, S.: Facilitating the roundtrip engineering of model-driven software
architecture. Master’s thesis, Michigan State University (2006)

[25] Pettersson, P., Larsen., K.G.: Uppaal2k. Bulletin of the European Association
for Theoretical Computer Science 70 (2000) 40–44

[26] Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts in
promela/spin. In: WIFT ’98: Proc. of the Second IEEE Workshop on Industrial
Strength Formal Specification Techniques (1998) 90

[27] Crane, M.L., Dingel, J.: UML vs. classical vs. Rhapsody statecharts: Not all
models are created equal. In: Proc. of the ACM/IEEE 8th Int. Conf. on Model
Driven Engineering Languages and Systems. (2005)

[28] Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and
collaborations. In Damm, W., Olderog, E.R., eds.: 7th Int. Symposium Formal
Techniques in Real-Time and Fault Tolerant Systems (FTRTFT 2002). Volume
2469 of Lecture Notes in Computer Science., Oldenburg, Germany, Springer-Verlag
(2002) 395–414

[29] Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems In: Proc. of the 10th Conference on
Computer-Aided Verification. (1998)

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 722 – 736, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Layered Class Diagrams: Supporting the Design Process

Scott Hendrickson, Bryan Jett, and André van der Hoek

Institute for Software Research
University of California, Irvine

Irvine, California 92697-3455, U.S.A.
+1 949 824 6326

{shendric, bjett, andre}@uci.edu

Abstract. Class diagrams model a system’s classes, their inter-relationships,
operations, and attributes and are used for a variety of purposes including
exploratory design, communication, and evaluation. However, traditional
diagrams, and the tools used to create them, focus on capturing a single con-
figuration – the product of the design process – rather than supporting the ex-
plorative design process itself that is used to create and evolve a design over
time. This process involves iteration over multiple alternatives and evaluation
of those alternatives. We present a layered approach and environment that en-
courages this process by capturing a design and its alternatives using layers.
Layers may be combined with other layers to compose and explore new design
alternatives for evaluation. Our tool provides mechanisms for creating, compos-
ing, and visualizing layers as well as detecting dependencies and conflicts
among layers and managing semantic relationships among layers.

1 Introduction

Class diagrams are primarily used for two purposes: as detailed design documents that
describe an implementation and as conceptual models that aid in designing that sys-
tem [6]. In the former case, class diagrams sufficiently capture a single design of a
corresponding system. However, as a conceptual model, class diagrams alone are
insufficient. Designing nontrivial systems generally involves a design process that
explores and evaluates multiple design alternatives. To better function as conceptual
models, class diagrams need to support this process of design by capturing and orga-
nizing these alternatives, supporting their evaluation, and incorporating new ones.

Most class diagramming tools focus only on capturing class diagrams as finished
products consisting of a single document that contains the result of all design deci-
sions. Consequently, creating a new alternative requires creating a new document, and
combining complementary alternatives requires manually merging each documents’
contributions into yet another document. Although some diff and merge tools are
starting to emerge that help this process [2, 3, 10, 18], these deal with documents as a
whole, and do not allow a designer to deal individually with each design decision,
which is often captured implicitly along with many others in a single document. For
example, a new design document may contain both minor corrections to an old design
combined with major modifications incorporating a new piece of functionality. To

 Layered Class Diagrams: Supporting the Design Process 723

incorporate one of these conceptual changes without the other requires a designer to
determine which parts of the document map to which concept. Managing the design
process in this way, without explicit support for explicitly modeling alternatives sepa-
rately, is cumbersome and error-prone.

In this paper, we present an approach and supporting environment that encourages
a creative design process by promoting a model of interaction relying on layers. Indi-
vidual layers capture individual modifications to a design. These may include minor
corrections, improvements to existing or additions of entirely new classes and asso-
ciations, or even entirely different design approaches. By selectively composing
layers on top of one another, different class diagrams are created that represent the
accumulated modifications of the selected layers. In our approach, layers are first
class entities that are independently manipulatable. This encourages capturing sepa-
rate concerns in separate layers. The result is that a design consists of many individual
alternatives and concerns that are properly separated and easily manipulatable, pro-
moting a creative, explorative design process.

Clearly, some form of validity must be maintained in this process to ensure that the
product of the design process produces consistent class diagrams. We use relation-
ships for this purpose. Relationships allow a designer to explicitly set the rules ac-
cording to which layers can be composed. Some relationships can be automatically
detected, such as a class association created in one layer that points to a class created
in another layer: the layer with the class association could not reasonably be applied
without the layer that also creates the class it points to. Other relationships are seman-
tic in nature, and must be specified by the designer, such as when two changes are
logical alternatives, only one of which can be incorporated at a time. Relationships are
modeled at the same level as, but independently from, layers. This allows a designer
to easily specify and manage different compositions from the same set of layers.

We have implemented our approach in a layered design tool, EASEL. Our tool is
similar to Rationale Rose [12] or ArgoUML [13], but is a layer and relationship cen-
tric design environment with special features to support these concepts. We view
EASEL as a proof-of-concept prototype that shows that an approach in which alterna-
tive designs can be dynamically composed through the use of layers is indeed possible
and that the issues involved in using such an environment can be addressed.

2 Motivating Example

To understand the problems in modeling class diagrams to date, we introduce a moti-
vating example that we also use as the running example throughout the remainder of
the paper. The example concerns class diagrams, shown in Figure 1, that each repre-
sents an alternative design for a hypothetical graph data model. As in a traditional
design environment, each alternative is modeled separately: Figure 1a presents one
design consisting of two classes representing edges and vertices in a graph and Fig-
ures 1b and 1c present alternative designs that reflect different design decisions.

Upon first glance, the only obvious difference between Figures 1a and 1b is that 1b
is missing the Edge class. However, two distinct issues are actually addressed: (1) the
Edge class was removed in favor of implicit out edges captured in the toVertices as-
sociation, and (2) a label attribute was added to the Vertex class. Figure 1c differs in

724 S. Hendrickson, B. Jett, and A. van der Hoek

a) Alternative #1

 b) Alternative #2

c) Alternative #3

Fig. 1. Alternative designs for a hypothetical graph data model

two distinct ways from Figure 1a as well: (1) a Graph class has been added that keeps
track of all vertices, and (2) the Vertex class has an additional fromVertices associa-
tion that keeps track of in edges.

Suppose that a designer decides that a fourth alternative would be best after exam-
ining the different alternatives shown in Figure 1. This fourth alternative would in-
clude the human readable label in Figure 1b, the Graph class in Figure 1c, the explicit
edges in Figure 1a, and an additional weight attribute for each edge that is not present
in these designs. The designer is now faced with the challenge of incorporating the
desired parts from each original alternative into a single, coherent fourth design. This
requires an understanding of the boundaries of each design concept in the first three
alternatives, since creating and merging deltas of the alternatives is insufficient be-
cause the designer only wants a subset of the design concepts incorporated in each
alternative.

Now, consider what happens if the designer later decides that a concept should be
reintroduced that was originally rejected (or vice versa). Perhaps edges do not need to
be represented explicitly and the implicit edges represented with the toVertices and
fromVertices associations are adequate. Making such a design change would once
again involve a manual revision of the design.

While the above is an overly simplistic example, these issues become more preva-
lent when one creates designs of a much larger scale and/or complexity. The example,
then, shows the following needs we wish to address in this paper:

• Separation of concerns: we want to explicitly model different design concerns
rather than implicitly mixing them together in a single document.

• Composition: we want to compose new, alternative designs from desired de-
sign concerns in order to explore and evaluate them.

• Concern permanence: we want design concerns to remain intact so that they
may be (re)incorporated or removed at any time.

• Variation: we want to explicitly support alternative ways of realizing the same
(or similar) functionality.

 Layered Class Diagrams: Supporting the Design Process 725

3 Approach

Our work was motivated by the observation that using class diagrams as conceptual
models during the design process is hindered by tools that only record design docu-
ments extensionally. This means that resulting documents capture a single design
without explicitly differentiating between the concepts that compose it, making the
process of exploration cumbersome. Typically, a designer in exploratory mode neces-
sarily must create and track multiple documents, concepts from which must be manu-
ally brought back and forth.

To facilitate an explorative design process, our solution incorporates two key in-
sights. The first is that an intensional approach based on layers provides a natural
mapping from conceptual intent and understanding to physical realization. The second
key insight is that “straight” layers, as applied in Photoshop and similar tools for
graphical editing, are not sufficient: explicit and detailed management of layer rela-
tionships must complement their use. Below, we detail these two insights and outline
our solution in the context of the motivational example.

3.1 Layers

The discipline of configuration management (CM) has been primarily concerned with
capturing the evolution of a software system at the source code level [5]. Of interest
to this paper are the concepts of extensional and intensional versioning [4]. In exten-
sional versioning, the entire configuration management system focuses on managing
the versions of artifacts that result after changes have been made. That is, versions of
artifacts are the primary “language” through which developers interact with the CM
system. Extensional versioning ensures that each version is uniquely stored and ac-
cessible through revision numbers. Deltas may be used for storage optimization, but
they are generally hidden from the user.

The key insight behind intensional versioning is to invert the relationship between
versions and changes, making changes a first class entity, storing each change as a
delta independently from the other changes. So, instead of requesting versions of
artifacts, developers retrieve a set of changes and merge them together to create a
particular “version.” Similarly, when they have completed implementing a new “ver-
sion” in their workspace, the delta between this new and the original version is stored
as an individually-identifiable delta. Accessing an artifact, then, requires the devel-
oper to request a baseline (an initial, stable configuration) and a set of deltas.

There are two advantages to this approach:

1. Because a delta encapsulates a logically-related set of changes, it provides de-
velopers with a natural model of interaction. No longer must they mentally
map desired conceptual features onto specific versions of artifacts. They can
simply request features, bug fixes, and other kinds of changes by name.

2. Because each delta is built from the baseline, they are independent from each
other. It is therefore possible to combine deltas in ways that they were not pre-
viously combined, creating new versions along the way.

726 S. Hendrickson, B. Jett, and A. van der Hoek

At the same time, there is one major disadvantage:

1. Because each delta is independent, it is possible that certain combinations of
deltas produce invalid or incomplete versions. Some of these conflicts can be
automatically resolved, but others must be resolved manually.

The advantages of this approach are exactly what we would like to achieve with re-
spect to class diagrams. We discuss how we address the disadvantage using the con-
cept of relationships in Section 3.2.

Our first step is to adopt the approach of using a baseline and deltas and apply it to
class diagrams. Making this adoption requires adjusting the concepts of a baseline and
deltas to operate at the level of design instead of lines of code. This is a straightfor-
ward adoption of the concepts of baselines and deltas, but applied to UML diagrams.
We use layers as deltas, but with one exception. Because the process of design is
highly iterative, we want a baseline to be editable in the same way that a delta is edit-
able. We therefore start out with an empty, virtual baseline, and simply treat each
layer as an increment from there. This is only a minor deviation, as the first layer
could simply be treated as an imaginative baseline, emulating the original approach.

Consider the example presented in the previous section, but with the design and its
alternatives captured using layers. Many possibilities exist for how the different de-
signs might be partitioned over multiple layers. For instance, a very fine grained ap-
proach could be used where separate layers capture individual class operations and
attributes. Alternatively, one could use a very coarse grained approach to capture the
initial design and the two alternatives using just three layers. Both of these approaches
technically work, but may not be as advantageous. The first is too fragmented, captur-
ing point changes rather than design concepts; the second is too coarse grained, in
essence reproducing the extensional approach that we are trying to overcome with our
work.

A better way of capturing the design and its alternatives is presented in Table 1,
where we capture each conceptual design feature in a separate layer. In each layer,
added class elements are annotated with a “+” and added associations are shown using
bold lines; removed class elements are annotated with an “×” and removed associa-
tions are shown using dashed lines. Unannotated elements are there for the sole bene-
fit of the reader, placing the changes within context. For instance, in Table 1 the Ini-
tial Design layer adds an Edge and Vertex class and two associations. The Use Only
Vertex layer removes the Edge class and its two associations, and adds another asso-
ciation. The other layers add, remove, or modify elements as depicted in Table 1.

Returning to the original three configurations in Figure 1, we can construct each of
these designs by selectively merging layers from Table 1. The first alternative is rep-
resented by just the Initial Design layer. We compose the second alternative by merg-
ing the changes stored in the Initial Design, Use Only Vertex, and Add Label layers.
We compose the third alternative by merging the changes stored in the Initial Design,
Use Only Vertex, Implicit In Edges, Track Vertices, and Add Label layers. Finally,
and this is where the power of our approach comes in, we can create the fourth alter-
native discussed in the text of Section 2 simply by merging the changes stored in the
Initial Design, Track Vertices, Add Label, and Add Weight layers. No new changes
needed to be made, we simply needed to compose a different set of existing layers.

 Layered Class Diagrams: Supporting the Design Process 727

Table 1. Layers capturing the design concepts of each design of Figure 1

Layer Design Concepts

Initial Design

Use Only Vertex

Implicit In Edges

Track Vertices

Add Label

Add Weight

3.2 Relationships

Producing valid designs requires composing valid combinations of layers. From the
layers presented in Table 1, we note the first basic relationships between layers: struc-
tural dependencies and structural conflicts. Structural dependencies arise when one
layer’s contents depend on elements introduced by another layer. For example, the
Add Label layer adds an attribute to the Vertex class, which is created in the Initial
Design layer. Consequently, in order to produce a valid design with the Add Label
layer, the Initial Design layer must also be included. By the same reasoning the Add
Weight layer also structurally depends on the Initial Design layer since it adds an
attribute to the Edge class, which is created in the Initial Design layer.

Structural conflicts arise when one layer’s contents depend on elements that are
removed by another layer. For example, the Edge class that the Add Weight layer adds
an attribute to, is removed by the Use Only Vertex layer. In order to produce a valid
design with the Add Weight layer, the Use Only Vertex layer must not be included.

While structural dependencies and structural conflicts are of a syntactical nature, it
is also necessary to support semantically meaningful relationships. For example, it

728 S. Hendrickson, B. Jett, and A. van der Hoek

does not make sense to have both the explicit edges from the Initial Design layer and
the implicit edge from the Implicit In Edges layer. These layers can technically be
merged, but would produce an undesired result. What is intended by the designer is
for the Implicit In Edges layer to be included only when the Use Only Vertex layer has
also been included, which removes the explicit edges it is replacing. The designer
must be able to express such semantically meaningful relationships.

To support structural and semantic relationships, our work distinguishes three
kinds of basic relationships through which layer relationships can be specified:

1. and relationships: this relationship states that if all of the layers a, b, and c are
included, then layer d must also be included.

2. or relationships: this relationship states that if any of the layers a, b, or c are
included, then layer d must also be included.

3. variant relationships: this relationship states that from a particular subset of
layers a, b, and c, only a certain minimum and maximum number can be in-
cluded at the same time.

The first two relationships are not necessarily singular: from any “source” layer(s)
they can designate the inclusion of multiple layers (e.g., if a, b, and c are included,
then d, e, and f must also be included) and exclusion of multiple layers (e.g., if a, b,
and c are included, then d, e, and f must not be included). It is also possible to negate
source layer(s) (e.g., if a is included and b is not included, then c must be included).
Finally, the variant relationship may refer to an arbitrary number of layers, limiting
the number included concurrently to one (making a group of layers mutually exclu-
sive, creating a switch [11] or variant), or multiple (creating what COVAMOF [16]
terms an alternative, which allows up to so many variants to be included at a time).

As with layers, different ways exist to choose and organize relationships. This is
influenced by the choice of layers, but also by the personal preferences of the archi-
tect. Returning to our example, we could express the structural dependency of the Add
Label and Add Weight layers on the Initial Design layer as “Add Label or Add Weight
implies Initial Design.” Similarly, we could express the structural conflict of the Add
Weight layer with the Use Only Vertex layer as “Add Weight implies not Use Only
Vertex.”

Semantic relationships are expressed using the same rules. The semantic relation-
ship that the Implicit In Edges layer is intended to be applied only when the Use Only
Vertex layer is applied could be expressed as “Implicit In Edges implies Use Only
Vertex,” or alternatively as “not Use Only Vertex implies not Implicit In Edges.”

Composition layers support the grouping of individual layers. They do not have
any changes of their own. Instead, they use relationships to group layers in particular
ways. For instance, to model the second alternative of Figure 1, we define a composi-
tion layer called Alternative 2, and a relationship stating: “Alternative 2 implies Initial
Design, Use Only Vertex, and Add Label.”

3.3 Composition Through Merging

The principal goal of our approach is to allow the designer to explore alternative de-
signs with minimal interference from tools; we want a layer composition process that
reflects this. While exploring different designs, we envision a designer turning on and

 Layered Class Diagrams: Supporting the Design Process 729

off layers frequently and editing “earlier,” previously created layers at any time. In
fact, the strength of using layers in exploratory design is that the designer has the
flexibility of not only creating a new layer to modify the outcome of other layers
composed before it, but the designer can alternatively go back and modify a layer at
any time to change the base of everything composed after it as well. This flexibility
also enables a designer to select conflicting layers in order to produce a design which
is “close to” what they want, then fix the design and build upon it using an additional
layer that brings back the design to a consistent, non-conflicting state.

These goals are in contrast to configuration management systems that disallow re-
vising previously committed deltas and whose process of merging deltas may require
the user to manually correct conflicts. We want our merge process to be flexible
enough to allow strictly incompatible layers to be merged in a predictable way and the
process to be automated so that we do not unnecessarily interrupt the designer every
time incompatible layers are selected. While the designer should be aware of incom-
patible layer selections, we do not want to prohibit the designer from selecting them
or unnecessarily burden the designer in such cases.

We, thus, base our composition algorithm on traditional merge tools, but make a
few adjustments. Specifically, we need to address ghost additions and removals. The
first problem, “ghost additions”, may occur when a class association from a first layer
relies on the presence of a class from a second layer and, vice versa, when a class
association from the second layer relies on the presence of a class from the first layer.
Regardless of which layer is applied first in the merge process, a requisite class will
not be there. The second problem is “ghost removals”: when two mutual layers
each remove a class established by the other layer, one of those removed classes is
bound to erroneously reappear. Both problems arise, because we want to explicitly
allow editing of “earlier,” previously created layers at any time (as we discussed
previously).

To address the problem of ghost additions and ghost removals, our merge process
first applies all additions of all layers, in the order of classes first and then associa-
tions, and then performs all of the removals, in the order of associations first and then
classes. The result is that all necessary classes are always present, avoiding ghost
additions, and that classes that are intended to be removed are always removed, avoid-
ing ghost removals. While the result is different from what one would expect from a
traditional merge process, from the perspective of layer composition it makes sense to
support a behavior that predictably shows added elements and hides removed ele-
ments. As an alternative solution, it would have been possible to disallow circular
dependencies, but that would greatly restrict the flexibility of our layered approach
during the exploration of design alternatives. We recognize that alternative composi-
tion behaviors may be desired. We address this in Section 5.

Even with the specialized merge process, small conflicts may still occur when lay-
ers make changes to the exact same element, i.e., two layers that each rename a class,
but to a different name. In such cases, the order in which layers are merged, from first
to last, is used to resolve the conflict (which, because layer ordering is specifically
supported in our EASEL tool, makes sense as a choice).

730 S. Hendrickson, B. Jett, and A. van der Hoek

3.4 Summary

To summarize, our approach to modeling class diagrams with layers and relationships
adheres to the following properties:

• A class diagram is specified as a series of layers. No longer is a class diagram
captured as a monolithic design specification; it is instead a group of loosely
coupled layers, each addressing a particular design alternative or concern.

• Layers consist of sets of additions and removals of design elements. The ele-
ments can be of any granularity, from classes, to associations, to properties
(properties are not shown throughout the paper, but are supported by our infra-
structure as discussed in Section 4).

• An individual design is composed from layers. Instead of working with differ-
ent, complete designs, a design is created by selecting a set of desired layers
and merging their additions and removals to construct the design.

• Relationships capture structural and semantic dependencies, including poten-
tial conflicts among layers. To avoid invalid designs, these relationships must
be taken into account when composing a design from layers.

• Complex relationships and layer hierarchies can be expressed using a combi-
nation of composition layers and relationships. This allows a designer to deal
with higher level concepts and express any Boolean expression.

• Cyclic dependencies are resolved by using an adjusted merging process. First,
all additions of all of the layers are merged and only then are all of the remov-
als applied.

We conclude by noting once more that relationships are expressed explicitly at the
level of layers. This promotes variability to be the key mechanism and representation
for design and allows the designer to reason about and manage differences among
design concepts during the process of designing.

4 EASEL

To demonstrate our approach, we have implemented it in EASEL, a layered design
environment for class diagrams. As illustrated in Figure 2, EASEL is partitioned into
two separate areas: a drawing canvas for specifying class diagrams and a variability
spreadsheet for managing layers and relationships.

The drawing canvas of EASEL operates similarly to Rationale Rose [12] or Ar-
goUML [13] in allowing a designer to add, remove, and change classes, their attrib-
utes and operations, associations, and properties. If none of the special features of
EASEL are used, EASEL simply acts as a design tool for capturing individual class
diagrams much like these existing design environments. However, this is not
EASEL’s purpose. The drawing canvas has special behaviors that change it from a
tool that merely captures a design product, to one that also supports the design proc-
ess. First, the design on the drawing canvas is composed from the layers selected in
the first column of the variability spreadsheet. For example, the design shown in Fig-
ure 2 is composed by merging the Alternative 4, Initial Design, Track Vertices, Add
Label, and Add Weight layers. Layers are merged with the specialized merge process

 Layered Class Diagrams: Supporting the Design Process 731

Fig. 2. Screen shot of EASEL. The relationships are labeled R1 through R8 for reference.

discussed in Section 3.3, avoiding large conflicts introduced by ghost additions or
ghost removals and resolving any minor conflicts that are left using the order in which
layers are listed from top to bottom. Changing this order is done by dragging layer
names up or down.

The second special behavior is that each of the elements on the drawing canvas
may be annotated with icons that explicitly illustrate each specific change recorded by
the layers. This is what the second column of the variability spreadsheet is for: by
selecting one or more layers in this column, the effects of the layers are shown. Cur-
rently, the Track Vertices layer is selected as such. This annotates the Graph class and
its attributes with a “+” and bolds the association between the Graph and Vertex
classes to indicate that these elements are added by that layer. If the layer were to
remove elements, as, for instance, the Use Only Vertex layer does, the removed ele-
ments would be annotated with a “×” or dashed as discussed previously. Of course,
when explicit display is not turned on, any elements that a layer removes are no
longer visible; the drawing canvas only displays the results after merging all of the
selected layers.

The third special behavior lies in how modifications made by a designer are stored.
In EASEL, they are incorporated in the layer that is currently selected for editing. In
Figure 2, this is the Initial Design layer, as highlighted. This means that each addition
or removal made by a designer is added to the set of additions and removals of that
layer. This is key to the power of EASEL in supporting the process of designing and
modeling class diagrams. Had we enforced an incremental model in which layers are
frozen once they have been created, much design flexibility would be lost making it
impossible to revisit and update a feature without creating an additional layer. The
drawback is that inconsistencies may arise. However, as we will see below, EASEL
has features to deal with this problem.

The final special behavior is that EASEL allows a designer to explore new layer
combinations even if they produce invalid designs. This behavior allows the designer
to freely explore new designs produced by new layer compositions. As we discuss
below, however, EASEL does inform the designer of compositions that violate

732 S. Hendrickson, B. Jett, and A. van der Hoek

relationships. Thus, relationships act as design critics [14] rather than hard con-
straints. Without allowing invalid designs, exploring new design alternatives would
be difficult.

The variability spreadsheet shown on the right hand side of Figure 2 provides a de-
signer with a graphical representation through which they can edit the relationships
that exist between layers. The rows of the variability spreadsheet represent layers and
the columns relationships. Seven different symbols are used (please read the expres-
sions carefully):

• A white circle represents a source of an or relationship (e.g., A in “A or not B
implies C” or “A or not B excludes D”).

• A white, slashed circle represents a negated source of an or relationship (e.g.,
B in “A or not B implies C” or “A or not B excludes D”).

• A yellow square represents a source of an and relationship (e.g., A in “A and
not B implies C” or “A and not B excludes D”).

• A yellow slashed square represents a negated source of an and relationship
(e.g., B in “A and not B implies C” or “A and not B excludes D”).

• A cyan plus represents an implied destination (e.g., C in the examples above).

• A red X represents an excluded destination (e.g., D in the examples above).
• An orange diamond represents a variant in a variant relationship (e.g., A, B, or

C in “variant(A, B, C)”). The minimum and maximum number of variants that
may be selected concurrently is viewable and editable using context menus.

Returning to the example in Figure 2, the way to read some of the relationships,
then, is as follows:

 R1. The Alternative 1, Alternative 2, Alternative 3, and Alternative 4 layers are
variants of each other, that is, only one can be included at a time.

 R3. The Initial Design, Use Only Vertex, and Add Label layers are implied by the
Alternative 2 layer, and they should always be included in the overall selection
of layers whenever the Alternative 2 composition layer is included (and, in
fact, EASEL performs this inclusion for the designer upon selection of the Al-
ternative 2 layer).

 R7. The Initial Design layer is implied by the Use Only Vertex, Implicit In Edges,
Track Vertices, Add Label, and Add Weight layers.

 R8. The Add Weight layer implies the Initial Design layer, but should not be in-
cluded with the Use Only Vertex layer.

EASEL automatically detects a number of relationships, adding them to the vari-
ability spreadsheet with a slightly darker background. In Figure 2, relationships R7
and R8 were automatically added by EASEL. In general, EASEL automatically de-
tects layers that structurally depend on or structurally conflict with other layers (i.e., a
layer links to a class created in another layer, or a layer removes a class that another
layer links to).

In addition to detecting direct dependencies and conflicts between two layers,
EASEL searches for additional layers that may affect these dependencies or conflicts.
For instance, if a layer creates an association to a class that is created in a second

 Layered Class Diagrams: Supporting the Design Process 733

layer, the first layer depends on the second. However, if a third layer removes this
association, the dependency between the two layers would be removed. EASEL ex-
amines the contents of all layers when creating relationships, and in such cases gener-
ates appropriate relationships.

Finally, the implementation mechanism for automatically detecting relationships is
extensible. EASEL could, for example, be easily extended to create variant relation-
ships among layers that add classes with the same name – thereby addressing one of
the minor conflicts that the specialized merge algorithm cannot automatically handle.

The current selection of layers shown in Figure 2 produces a valid design. How-
ever, if the designer were to make a selection that was invalid, EASEL would inform
the designer of the invalid selection by highlighting violated relationships in red. For
example, if the designer were to additionally include the Use Only Vertex layer in the
selection shown in Figure 2, EASEL would highlight the violated relationship, R8. In
general, when a designer is content with a particular selection of layers, despite vio-
lated relationship(s), then they have a few options to resolve the semantic and/or
structural conflicts: (1) the designer could create a new layer that adds and removes
elements that resolve the conflicts, (2) the designer could go back and modify the
problematic layers so that they are compatible when merged, or (3) the designer could
change the explicitly defined semantic relationships so that they are no longer vio-
lated. The choice will be influenced by the existing layers, their impact on other com-
positions, and by personal preferences.

Of note is that automatically-detected relationships are continuously updated while
the design at hand is being modified. These relationships serve as critics [14] and
disappear when particular dependencies or conflicts no longer exist. Hence, automati-
cally detected relationships assist a designer during the design process, as they inform
them of the fact that their current design is exhibiting some relationships that may or
may not have been intended.

5 Discussion

At this point, a full-fledged validation of EASEL and our approach versus other de-
sign editors and notations is unavailable. However, our implementation of EASEL
demonstrates that a layered approach is feasible and can be used to represent mono-
lithic designs as compositions of layers. It, in fact, was meant as such: a proof-of-
concept prototype exploring the feasibility of the technology.

To date, we have found in our early explorations that the explicit support of design
alternatives in our layered approach is convenient and non-intrusive. We found it less
prohibitive to make changes in EASEL than with tools without layered support, par-
ticularly since we could easily engage and disengage related collections of changes
while we explored various design alternatives. One strength in this process is that
layers are generic and can capture any type of change (i.e., improvements, features, or
even entirely different directions of design choices). While on the one hand this could
be said to mix metaphors and perhaps end up being confusing, on the other hand, once
one understands how layers compose, it represents a much more agile attitude in
which the designer can flexibly use layers to their best convenience.

734 S. Hendrickson, B. Jett, and A. van der Hoek

Using our tool also has revealed some weaknesses. We found that it would be
useful to allow a designer to, after exploring many different alternatives, somehow
indicate the nature of the changes stored in a layer or to otherwise organize them by
content or status (e.g., “critical baseline”, “stable”, “in flux”, “some changes still
needed”). We also found a need to allow a designer to split, merge, and rearrange
layer content. Since our tool focuses on supporting the design process (and thereby
discovering the “right” design incrementally, necessitating frequent restructuring and
redistributing concepts over layers), this is functionality that is necessary and will be
implemented soon. Additionally, we recognize that alternative composition behaviors
may be desired by designers. For example, a designer may wish that layers be applied
in the order specified and fail if there are inconsistencies, or a designer may want the
option to resolve those inconsistencies manually.

Finally, we found the automatically created relationships helpful in indicating
when we had overlooked the impact of one change on another layer’s contents. How-
ever, we found that as the number of relationships could grow very large quickly, and
the number of relationships relevant to our particular task was frequently small. We
will explore automatic filters that display only relationships relevant to the current
design and will investigate approaches to grouping and summarizing relationships to
reduce the cognitive demands on the designer.

6 Related Work

Other research has worked towards supporting the design process as well. ArgoUML
[15], for instance, eases the cognitive challenges of the design process through the use
of design critics, task organization and prioritization, and supporting a designers’
natural tendency to switch tasks during the design process. The overall focus of Ar-
goUML is on guiding a designer through the design process, which is different than,
but complimentary to, the focus of this paper.

Differencing and merging algorithms have been applied to UML [18] and generi-
cally to diagrams [2, 10]. Our approach, as we discussed in Section 3.3, uses differ-
encing and merging algorithms internally to capture and apply layers. However, our
approach makes some specific adjustments to address ghost additions and removals in
order to avoid continuously bothering the user with manual resolution requests during
the merge process.

Aspect-oriented modeling [8], programming [9], and aspect-oriented design [17]
are also related to our work. Aspects are also compositional and used to separate con-
cerns. In fact, aspects have already been applied to UML diagrams. Symmetric ap-
proaches [1, 7], which do not differentiate between “aspects” and a “base”, but treat
these as the same, are more closely related to our approach. However, the focus of our
approach is different and the resulting needs of the technology differs from those
capabilities offered by asymmetric and symmetric aspects: (1) we need both additive
and subtractive capabilities, (2) we want the ability to freely make edits rather than
through specific kinds of joinpoints, and (3) we need relationships to track how layers
are compatible to one another. Nonetheless, with sufficient work, our approach could
probably be made to support an aspect-oriented approach, and vice versa.

 Layered Class Diagrams: Supporting the Design Process 735

7 Conclusion and Future Work

The contribution of this paper is an innovative modeling approach that supports the
naturally explorative design process. Rather than forcing the specification of a mono-
lithic design that intermingles many implicit design concepts, our approach enables a
mode of work in which design concepts are separated as individually manipulatable
layers. Key to our work is the application of intensional techniques to model class
diagrams. This is supported with a specialized merge algorithm and the ability to
capture and manipulate both structural and semantic relationships.

In addition to addressing the issues raised in the discussion section, our future work
involves several different strands. First, we wish to apply EASEL to a real system and
obtain feedback from real designers. Our work to date demonstrates the feasibility of
the layered approach, but now we wish to move beyond our own experiences to
evaluate whether others experience the same benefits as we do. Second, we would
like to explore how layers could further aid a designer by capturing additional types
of information, such as example designs or templates upon which one can overlay a
design under construction. Finally, we would like to explore how EASEL could be
used to support collaborative design, using layers as a means of isolating and includ-
ing contributions from different designers.

Acknowledgements

We thank the anonymous reviewers for their insightful comments and suggestions.
Effort partially funded by the National Science Foundation under grant number DUE-
0536203.

References

[1] alphaWorks. HyperJ. http://www.alphaworks.ibm.com/tech/hyperj, IBM.
[2] Briand, L.C., Labiche, Y., et al. Impact Analysis and Change Management of UML

Models. In Proceedings of the 19th International Conference on Software Maintenance
(ICSM'03), p. 256-265, Amsterdam, The Netherlands, September 22-26, 2003.

[3] Chen, P.S., Critchlow, M., et al. Differencing and Merging within an Evolving Product
Line Architecture. In Proceedings of the Fifth International Workshop on Product Family
Engineering (PFE-5). p. 269-281, Siena, Italy, November 4-6, 2003.

[4] Conradi, R. and Westfechtel, B. Version Models for Software Configuration
Management. ACM Computing Surveys. 30(2), p. 232-282, 1998.

[5] Estublier, J., Leblang, D.B., et al. Impact of the Research Community on the Field of
Software Configuration Management. Software Engineering Notes. 27(5), p. 31-39, 2002.

[6] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
3rd ed. Addison Wesley: Reading, MA, 2003.

[7] Harrison, W.H., Ossher, H.L., et al. Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition. IBM Research Division, IBM Research Report
RC22685 (W0212-147), December 30, 2002.

736 S. Hendrickson, B. Jett, and A. van der Hoek

[8] Kienzle, J., Gray, J., et al. Report of the 7th International Workshop on Aspect-Oriented
Modeling. In Satellite Events at the MoDELS 2005 Conference, Bruel, J.-M. ed. 3844, p.
91-99, Lecture Notes in Computer Science, Springer: Montego Bay, Jamaica, 2005.

[9] Lopes, C.V., Kiczales, G., et al. Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented Programming. Jyväskylä, Finland, June 9-13,
1997.

[10] Mehra, A., Grundy, J., et al. A Generic Approach to Supporting Diagram Differencing
and Merging for Collaborative Design. In Proceedings of the International Conference on
Automated Software Engineering (ASE 2005). p. 204-213, Long Beach, CA, USA,
November 7-11, 2005.

[11] Ommering, R.v., Linden, F.v.d., et al. The Koala Component Model for Consumer
Electronics Software. IEEE Computer. 33(3), p. 78-85, March, 2000.

[12] Rational Software Corporation. Rational Rose: Using Rose. IBM Corporation, Report
800-024462-000, p. 258, 2003.

[13] Robbins, J., Hilbert, D., et al. Extending Design Environments to Software Architecture
Design. In Proceedings of the Conference on Knowledge-Based Software Engineering
(KBSE'96). p. 63, 1996.

[14] Robbins, J. and Redmiles, D. Software Architecture Critics in the Argo Design
Environment. Knowledge Based Systems. 11(1), p. 47-60, 1998.

[15] Robbins, J.E. and Redmiles, D.F. Cognitive Support, UML Adherence, and XMI
Interchange in Argo/UML. Information and Software Technology, Special Issue: The
Best of COSET '99. 42(2), p. 79-89, 2000.

[16] Sinnema, M., Deelstra, S., et al. COVAMOF: A Framework for Modeling Variability in
Software Product Families. In Proceedings of the Third International Software Product
Lines Conference (SPLC 2004). p. 197-213, Springer Berlin / Heidelberg. Boston, MA,
USA, August 30-September 2, 2004.

[17] Stein, D., Hanenberg, S., et al. A UML-based Aspect-Oriented Design Notation For
AspectJ. In Proceedings of the 1st International Conference on Aspect-Oriented Software
Development. p. 106-112, Enschede, The Netherlands, April 22-26, 2002.

[18] Xing, Z. and Stroulia, E. UMLDiff: An Algorithm for Object-Oriented Design
Differencing. In Proceedings of the Automated Software Engineering (ASE 05). p. 54-65,
Long Beach, CA, November 7-11, 2005.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 737 – 752, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using UML Activities for
System-on-Chip Design and Synthesis

Tim Schattkowsky1, Jan Hendrik Hausmann2, and Gregor Engels2

1 C-Lab, Paderborn, Germany
tim@c-lab.de

2 University of Paderborn, Paderborn, Germany
{hausmann, engels}@upb.de

Abstract. The continuous advances in manufacturing Integrated Circuits (ICs)
enable complete systems on a single chip. However, the design effort for such
System-on-Chip (SoC) solutions is significant. The productivity of the design
teams currently lags behind the advances in manufacturing and this design
productivity gap is still widening. One important reason is the lack of
abstraction in traditional Hardware Description Languages (HDLs) like VHDL.
The UML provides more abstract concepts for modeling behavior that can also
be employed for hardware design. In particular, the new UML Activity
semantics fit nicely with the inherent data flow in hardware systems. Therefore,
we introduce a UML-based design approach for complete SoC specification.
Our approach enables generation of complete synthesizable HDL code. The
equivalent hardware can be automatically generated using the existing tools
chains. As an example, we outline Handel-C code generation for an MP3
decoder design.

1 Introduction

For decades, the design of Integrated Circuits (ICs) has been driven by what has been
called Moore’s law, a self-fulfilling prophecy that the complexity of ICs doubles
every 18 months. Although physical effects recently broke the correlation between
this increase in IC complexity and a similar direct increase in performance, the law
still holds for complexity and will continue do so for at least another decade.

The design methods for ICs failed to catch up with this exponential growth in
complexity. This design productivity gap has widened over years and has become one
of the most critical issues in hardware design. At the same time, shortened product
cycles further increase the pressure for more productivity.

To cope with the increasing complexity, Hardware Description Languages (HDLs)
are currently moving from Register Transfer Level (RTL) hardware description
towards more abstraction by introducing C-based languages. To some extent, this
seems to be similar to the move from assembly language to higher level languages
like C in software engineering. It appears that IC design now essentially faces the
same complexity challenge that finally led to the move towards model-driven
methods for software systems. Thus, the investigation of such methods for hardware
design seems to be the logical next step.

738 T. Schattkowsky, J.H. Hausmann, and G. Engels

Nowadays, model-driven software development is mostly based on the Unified
Modeling Language (UML). Its upgrade to version 2.0 [11] has significantly extended
the expressiveness of some of its core notations, thereby opening up new application
areas. The new token-based Activity semantics fit nicely with the data flow
dominated behavior of hardware systems and can be employed to describe such
behavior at an increased level of abstraction while providing improved readability
compared to traditional textual HDLs.

In this paper we will make the case that UML Activities are well suited for
modeling the data and control in hardware designs and can serve as the basis for a
complete hardware design approach. The next section will discuss related work before
section 3 introduces our design approach for hardware systems which is based on
Activity Diagrams for behavioral specification and Class, Composite Structure and
Deployment Diagrams for providing types, composition and deployment information.
Our approach enables complete code generation of synthesizable HDL, which is
equivalent to the actual IC. In section 4, we demonstrate such code generation for the
Handel-C HDL before section 5 closes with a conclusion and future work.

2 Related Work

There already exist approaches employing more abstract diagrammatic specifications
for the specification of hardware designs. Various forms of Block Diagrams and Flow
Charts have been used in the industry for a long time, resulting in the IEC standard
notations Sequential Function Charts (SFC) and Function Block Diagram (FBD) [8].
However, UML 2.0 Activity Diagrams can be considered as a significant superset of
SFCs [15] and provide a higher level of abstraction. Furthermore, Block Diagrams
have been studied in [7] with the result that Class Diagrams can express all features of
Block Diagrams without loss of expressiveness.

Petri Nets are another behavioral modeling notation used for hardware
specification. An overview of different approaches can be found in [17]. Although
Activity Diagrams are based on Petri Net ideas, they seem to be more expressive and
have a broad background in the UML.

UML is the de-facto standard in the Software Engineering world. Having a
common notation is beneficial for combined hardware/software development projects.
Some compelling examples for these benefits are presented in [3]. Applying standard
UML notations to hardware design has been approached in a number of ways. Hallal
et al [7] evaluate various UML diagrams with respect to their applicability to
hardware design. McUmber and Cheng [9] provide a metamodel mapping between
UML Class Diagrams and state machines on the one hand and VHDL constructs on
the other hand. The intention of this work is not only to serve as a basis for VHDL
code generation but also to provide a precise semantics for Statecharts. A mapping
from Class Diagrams to VHDL code is also proposed by Damasevicius and Stuikys.
In [6] they complement this static mapping with metaprogramming techniques to
obtain domain specific code-generators. They also focus on the process aspect of
hardware development. This process aspect is also targeted by Bahill and Daniels in
[2]. YAML [14] is a tool based mainly on UML class and object diagrams which is
able to generate SystemC code. Interesting here is the use of Object Diagrams for the

 Using UML Activities for System-on-Chip Design and Synthesis 739

detailed specification of a chip’s design. We also model the instance level, but use
Deployment Diagrams to do this. The approach of Björklund and Lilius [3] is based
on UML state machines only and produces VHDL code.

Recently, Model Driven Architecture (MDA) has elicited a number of approaches
which generate code from UML models [4]. One possible target for these generators
are system-level hardware languages. Concrete works include X

TUML which targets
various C dialects of different microcontroller architectures, MOCCA which targets
synthesizable VHDL, and works by Thiagarajan et al which translate Rose RT models
to SystemC code. An overview of these approaches can be found in [10]. All these
approaches are based on UML 1.x. They employ state machines to model the
behavior of systems and cannot exploit the fundamentally different semantics for
Activities in UML 2.0. The approach in [3] takes Activity Diagrams into account,
albeit only as a representation of the transition system specified by a state machine.

SysML [16] is a language for system modeling derived from the UML. Although it
is syntactically a strict UML profile, it alters and adds various concepts, especially for
modeling continuous systems. These modifications seem to result in semantics that
are not consistent with the original UML. Still, the block oriented structure modeling
as well as the emphasis on Activities seem to fit with hardware modeling, but are not
directly applicable. Furthermore, these concepts are already contained in the UML.

Finally, there is ongoing work to provide specific profiles for SoC design. Fujitsu
has already presented preliminary results [12]. The approach focuses on structure
modeling for system composition rather than enabling the engineering of a complete
system including complete behavior models. The structure modeling employs similar
concepts to our approach, but lacks some important elements like support for clock
domains. The OMG MARTE RFP [1] is still in an initial phase.

In the context of these ongoing efforts, we have already proposed the application of
UML Activities as the core behavior notation for UML-based hardware description
[13]. However, there we have only sketched our initial ideas, but did not provide a
corresponding design approach. In this paper, we present a new approach for
complete SoC design which leads to complete synthesizable system specifications.

3 Hardware Design Based on UML Activities

A model-based design approach for SoC has to capture the system behavior as well as
its composition from functional blocks and certain non-functional aspects, like clock
domains or the allocation of physical resources. For this, we have identified a UML
2.0 subset for complete SoC specification. This subset is presented as a UML profile.
Such a profile is a syntactic subset of the UML with extended domain-specific
semantics. The core of this subset is formed by elements for behavior modeling
through Activity Diagrams. These elements are complemented by specialized model
elements for Class-, Composite Structure- and Deployment Diagrams for modeling
the structure and physical aspects of the system. Together, the resulting diagrams
form a complete system model. From this system model, full code generation for
automatic hardware synthesis can be performed. The following subsections describe
our modeling approach and the underlying profile. For this, we will use a MP3
decoder chip design as the illustrating example for the remainder of the paper.

740 T. Schattkowsky, J.H. Hausmann, and G. Engels

3.1 Structure Modeling

In our approach, modeling the internal structure of a System-on-Chip is based on
Class Diagrams for the type definition of its building blocks and Composite Structure
for defining the assembly of the complete SoC from such blocks. The mapping to
physical resources like clock domains is achieved through the application of
Deployment Diagrams.

g g

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version E

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version E

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version E

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version E

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version E

Classifier

«metaclass»
Class

«stereotype»
Block

«stereotype»
Interconnect

«stereotype»
Channel

«stereotype»
SizedInteger

+ Bits: int

Association

«metaclass»
AssociationClass

BehavioralFeature

«metaclass»
Reception

«metaclass»
Integer

«stereotype»
Register

StructuralFeature

«metaclass»
Property

«extends»«extends» «extends» «extends»«extends» «extends»

Fig. 1. Extensions for modeling hardware blocks

A SoC in our approach is composed from blocks of synchronous logic. Within our
profile, types of blocks are defined through specialized active Classes (see Figure 1).
Such an active class is called Block in our approach. The behavior of such a Block is
defined through a private Activity. This Activity may call sub-Activities on the same
instance as well as on instances owned through composition. The Activities belonging
to a Class can be considered as the actual methods for Operations where the
parameters are mapped to ActivityParameterNodes. However, due to the synchronous
nature of Operations, this only fits for non-stream parameters. Thus, a Block may
additionally have specialized Reception Features to receive signals that are fed as
tokens into an Activity. Such a Reception Feature is called a Channel in our approach
and is used to enable interaction between different executing Blocks.

The attributes of a Block are Registers. Their type is limited to integer numbers
and arrays and nested records of those. However, unlike in software systems, the bit

ed Trial Version EA 5.1 Unregistered Trial Version

ed Trial Version EA 5.1 Unregistered Trial Version

ed Trial Version EA 5.1 Unregistered Trial Version

ed Trial Version EA 5.1 Unregistered Trial Version

ed Trial Version EA 5.1 Unregistered Trial Version

ed Trial Version EA 5.1 Unregistered Trial Version

Classifier

«metaclass»
Interface

StructuralFeature

«metaclass»
Property

«stereotype»
Input

«stereotype»
Output

«stereotype»
TriState

«stereotype»
Interconnect

«extends» «extends» «extends» «extends»

Fig. 2. Extensions for modeling hardware block interfaces

 Using UML Activities for System-on-Chip Design and Synthesis 741

g g

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Versio

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Versio

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Versio

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Versio

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Versio

.1 Unregistered Trial Version EA 5.1 Unregistered Trial Versio

1 U i t d T i l V i EA 5 1 U i t d T i l V i

«Block»
MP3Decoder

«Interconnect»
SerialPCM

+ «Output» SCLK: int(1)
+ «Output» SDA: int(1)
+ «Output» SLRCLK: int(1)

«Block»
StereoPCMSerializer

«Block»
I2CSlav e

«Interconnect»
I2C

+ «TriState» SCL: int(1)
+ «TriState» SDA: int(1)

«Interconnect»
SerialMP3

+ «Input» DATA: int(1)
+ «Input» DCLK: int(1)

«Channel»
16BitPCM

+ PCMData: int(16)

2 2

I2C

1

1 1 1

Fig. 3. MP3 decoder Class Diagram

size of integers for hardware systems needs to be fixed as they determine the size of
the resulting circuit. Thus, in our approach the bit size of an integer is explicitly
specified through the application of a SizedInteger. For convenience, the SizedInteger
is presented as an int with the size given in braces.

Different Blocks can be connected through their electrical interfaces. This is
represented by the Interconnect stereotype. However, the implementation of such an
Interconnect is just a pair of lines. It is pointless to model these lines. Thus, we
decided to treat them as both an Interface and a Class implementing it. For Class
Diagrams, the Interface notation is employed to emphasize the interface semantics. At
the instance level, a class instance is assumed to enable symmetric links between
participating instances. The lines of the Interconnect have to be classified as Input,
Output or TriState (see Figure 2). TriState lines may be used bidirectional and are
essential for the construction of busses, be it on-chip or external.

As an example, we will consider the design of an MP3 player as shown in Figure 3.
The design consists of a core MP3Decoder class implementing the MP3 decode
algorithm to decode an incoming serial bit stream of MP3 data on its SerialMP3
Interconnect to stereo 16 bit Pulse Code Modulated (PCM) audio. The PCM audio is
sent through two 16 bit Channels to the StereoPCMSerializer class, which is
responsible for converting the PCM data into serial stereo I2S data to directly
interface with common Digital Analog Converter (DAC) circuits. However, no DAC
is included in this model. Instead, a SerialPCM Interconnect is present for interfacing
with an external DAC. Finally, the MP3Decoder contains an I2CSlave Block
implementing the Philips I2C wire interface to enable external control of the decoder.

The composition of a Block or a complete SoC from other Blocks has to be
determined at design time. Dynamic instantiation is not possible in hardware as each
instance of a block has to be implemented separately in silicon. In our approach, this
assembly is specified through the newly introduced Composite Structure Diagram
(CSD). We employ CSDs to describe the composition of a Block from other Blocks
as well as the composition of the final system. All associations need to be resolved to
actual elements. The “lollipop” notation is used to indicate Interconnections to
external hardware.

742 T. Schattkowsky, J.H. Hausmann, and G. Engels

Figure 4 shows the CSD describing the complete SoC for our MP3 decoder
example based on the Class Diagram in Figure 3. We notice the MP3Decoder, its
I2CSlave, and the two Channels for feeding the decoded PCM data into the
StereoPCMSerializer which outputs serial audio data to the PCMPort. The input for
the decoder is provided by the Mp3DataPort.

«SystemOnChip»
MP3DecoderCore

I2CPort

MP3DataPort PCMPort«Block»

Decoder :
MP3Decoder

«Block»

Slav e :
I2CSlave

«Block»

Serializer :
StereoPCMSerializer

I2C

SerialMP3 SerialPCM

+I2C

RightChannel:16BitPCM

«Channel»

LeftChannel:16BitPCM

«Channel»

Fig. 4. MP3 decoder Composite Structure Diagram

For synthesis, certain additional platform specific physical parameters must be
determined. Some physical parameters, like the physical layout in the chip, are
computed by the synthesis tools and require no explicit specification. Other properties
like physical pin assignment and the definition of clock domains are the result of
explicit design decisions. Such properties must be represented in the design model.
For this, we employ a Deployment Diagram variant (see Figure 5). We use the Nodes
to represent clock domains, which are an important feature in chip design. Deployed
in these clock domains are the same Block instances as in the CSD. All Blocks in the
SystemOnChip must be explicitly deployed on such a ClockDomain. The resulting
model must conform to the respective CSD.

Technically, a ClockDomain is a synchronous block of logic on the chip.
Logically, in our approach it may be composed from several Block instances running
synchronously at the same clock. The whole SystemOnChip is also a ClockDomain
which reflects that the chip is externally clocked at a certain rate. The clock itself may
be either an internal clock or supplied externally in the case of an
ExternalClockDomain. Internal clocks can be derived from an existing clock through
a simple divider or, in the case of DerivedClockDomain, a complex expression.
Furthermore, AbsoluteClockDomains enable the specification of absolute clock
frequencies, which will be implemented based on available system clocks. However,
the combination of the chosen target platform (i.e., FPGA or ASIC type) and the logic
depth of the real circuit are the limiting factors for the clock rate of the final circuit.
Thus, an actual design may fail to meet an AbsoluteClock specification. This can be
detected during simulation.

It is important to note that the same Block Instance may actually be part of
multiple ClockDomains in different contexts. Thus, the respective Deployment
Diagrams have to clarify this context by including all relevant Associations. If a
Block is placed only within a single ClockDomain, this is not necessary.

 Using UML Activities for System-on-Chip Design and Synthesis 743

«metaclass»
Dev ice

«stereotype»
SystemOnChip

«stereotype»
ClockDomain

+ Divider: int = 1

 Class

«metaclass»
Node

«stereotype»
ExternalClockDomain

«stereotype»
Deriv edClockDomain

+ Expression: String

«stereotype»
AbsoluteClockDomain

+ Frequency: int

«extends» «extends»

Fig. 5. Extensions for modeling Clock Domains through Deployments

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Tri

«SystemOnChip»

MP3DecoderCore

«ExternalClockDomain»

SystemClock

«Block»

Decoder :MP3Decoder

«Block»

Slav e :I2CSlav e

«AbsoluteClockDomain»

AudioClock

tags
Frequency = 14318180

«Block»

Serializer :
StereoPCMSerializer

I2C

RightChannel

«Channel»

LeftChannel

«Channel»

Fig. 6. MP3 decoder Clock Domain Diagram

The Deployment Diagram for our MP3 decoder example shown in Figure 6 shows
how the blocks from the CSD are placed in ClockDomains. The Associations are
included only for the orientation of the reader and could be omitted. In this example,
the Blocks are placed in two different ClockDomains. While the MP3Decoder runs in
the ExternalClockDomain controlled by the external chip clock, PCM related Blocks
are placed in a separate AbsoluteClockDomain using a fixed clock frequence. The
purpose here is to enable real-time playback by using a Clock that can be used to
directly derive the respective sample rate for feeding data into the external DACs that
are to be connected to the StereoPCMSerializer.

3.2 Activity Diagrams

While the structural models provide information about the outside connections of a
single block instance, the behavior specification details its inner workings. Behavior
specification in our approach is solely based on activities represented by Activity
Diagrams. These Activities represent the concurrent data flow and processing in a

744 T. Schattkowsky, J.H. Hausmann, and G. Engels

Block instance by means of the common model elements for activities. These
elements include actions interconnected by object and control flows. Decision, merge,
fork, and join nodes are used to control such flows in the Activity.

The activities in our approach may contain four types of actions. SendSignalAction
and AcceptEventAction are employed to transmit and receive data using a Channel.
The CallBehaviorAction invokes sub-Activities and OpaqueActions are employed to
embed C-style statements into the Activities (e.g., for assignments). C-style syntax is
also used for expressions (e.g., in guards).

The semantics of forks and joins for object flows must be defined. In our approach,
we essentially consider object flows as direct connections between the logic for
actions. Thus, there is no buffering of tokens in our approach. If such buffering is
desired, an explicit implementation (e.g., through a FIFO queue) has to be provided.
In this context, a fork on an object flow is considered as sending the same data input
into multiple target nodes (e.g., actions). This aligns quite well with the proposed
token copy semantics as defined by UML 2.0. Joining object flows is only allowed for
tokens representing the same object. Joining different data flows should be done by
specifying an action which combines these inputs. Finally, the concept of token
competition is not supported in our approach. Thus, there can only ever be one
outgoing edge from an object node (e.g., a pin).

Fig. 7. Pattern for spawning an unlimited number of control flows

Hardware is inherently non-reentrant. This also applies to the actions and activities
in our approach since they map directly to a part of a hardware circuit. As a
consequence, activities in our approach cannot issue recursive calls. Furthermore, a
special pattern in an activity has to be avoided. The fragment in Figure 7 demonstrates
the core problem: Along the right hand side loop any number of tokens can be
spawned at this fork, leading to multiple concurrent executions of action A For
hardware synthesis such a situation is very undesirable. We thus impose the general
wellformedness condition that for each fork which is part of a cyclic flow structure
(i.e. one flow outgoing from the fork is (transitively) also an incoming flow of the
fork), a join must exist in the path which joins all outgoing flow form the fork node.
This ensures that each action in the model may be activated by at most one logical
thread. This rule of course covers implicit joins and forks on actions. Furthermore, the
condition also holds for activities with multiple initial nodes as these can be
considered to be forked from a single initial node. Thus, the corresponding fork
cannot have a cycle and does not break the rule.

For our example, the specification of the behavior of the main MP3Decoder class
is shown in Figure 8. This activity controls the actual MP3 decode process which has
several stages represented by CallBehaviorActions to nested sub-activities. Many of
these stages can be performed concurrently for the two different channels of stereo

 Using UML Activities for System-on-Chip Design and Synthesis 745

MP3Decoder

ReadFrame()

HuffmanDecode()

Dequantize()
ScaleFactors

DecodeStereo()

DecodeScaleFactors()

ScaleFactors

Reorder(RightData)

Reordered

Antialias()

Reordered

Antialiased

HybridSynthesis()

HybridIn

HybridOut

FrequcenyInv ersion()

Hybrid

PolyphaseSynthesis()

PCM

Data

WritePCM()

RightChannel

PCM

Reorder(LeftData)

Reordered

Antialias()

Reordered

Antialiased

HybridSynthesis()

HybridIn

HybridOut

FrequcenyInv ersion()

Hybrid

PolyphaseSynthesis()

PCM

Data

WritePCM()

PCM
LeftChannel

HandleI2C()

Fig. 8. MP3Decoder Class - Main Activity

746 T. Schattkowsky, J.H. Hausmann, and G. Engels

FrequencyInversion(int(32)[32][18] *Hybrid)

int(5) ss=0

int(5) sb=0

ss=ss+1

sb=sb+1

Hybrid[sb][ss] = -Hybrid[sb][ss]

[(ss%2) && (sb%2)]

[else]

[sb<32]

[else]

[else]

[ss<18]

Fig. 9. MP3Decoder.FrequencyInversion Sub-Activity.

audio data. The extra control flow between WritePCM and Polyphase Synthesis
ensures the wellformedness of the example and prevents the data flow between these
actions until WritePCM has finished its execution from the previous iteration. Thus,
no data conflicts can occur. Note that ValuePins are employed to provide the two
WritePCM actions with the (constant) information which channel they address.

As an example for activity nesting, the MP3Decoder main activity invokes the
FrequencyInversion() sub-Activity shown in Figure 9. All actions there are
OpaqueActions containing statements using a C-style syntax. The same syntax is
employed for the guards as well.

The example presented here demonstrates that even rather complex control and
data flows can be presented in an intuitive and concise way using activity diagrams.
The required functionality can be decomposed in different levels of detail, where the

 Using UML Activities for System-on-Chip Design and Synthesis 747

upper level provides an overview while the lower level supplements details of the
single execution steps. Finally, combined with the Class and Deployment Diagrams,
we have a complete model which allows code generation.

4 Handel-C Code Generation

The SoC models based on our approach enable fully automatic generation of
synthesizable HDL hardware descriptions, which can be automatically transformed
into an actual ASIC or FPGA implementation through the application of the existing
EDA tools chains. The transformation from the SoC model to a particular HDL
differs depending on the level of abstraction provided by the HDL and the employed
language elements and semantics. Generally, C-based languages like Handel-C,
CatapultC provide the highest level of abstraction while RTL languages require the
most implementation work, as more mechanisms have to be explicitly implemented.
However, especially for system-level languages, the transformation often has to
account for complex semantics, like in the case of the SystemC simulation kernel.

Celoxica Handel-C [5] is a behavior-oriented programming language for hardware
synthesis that compiles directly to a Field Programmable Gate Array (FPGA) or
Application-Specific Integrated Circuit (ASIC). Handel-C provides a relatively high
level ob abstraction compared to RTL, but still maintains relatively simple semantics,
which make it an ideal candidate to demonstrate HDL synthesis. However, is
important to note that our approach is independent from a particular HDL and could
be employed directly for generating RTL structures.

Handel-C employs a C-style syntax using essentially value assignments based on
registers and internal and external memory grouped by control constructs. For
synthesis, the program code is transformed directly into equivalent gates and flip-
flops (e.g., for adders, multipliers, latches) representing the expression evaluation
trees and control logic. C-style flow control is achieved using conditional branches (if
and switch-statements) and loops (for, do and while-statements). Additionally, some
additions have been made to reflect the different capabilities of hardware systems.
This includes the support for parallel blocks where all statements execute
concurrently. Finally, it is very useful that the code generation for the C-style
statements employed for the OpaqueActions in our approach is quite straightforward.

Handel-C code generation based on our approach starts at the ClockDomain level
at the Deployment Diagram. Each ClockDomain must be compiled to a separate file
as Handel-C only allows one clock per source file. This clock is then defined in the
main() function of the source file which also invokes the implementation of the main
activities for all instances concurrently (see Figure 10 for an example).

Attributes are mapped to global variables which are fully qualified using their
identifier paired with an instance identifier. The actual realization of these attributes
in hardware is first determined by the use of ClockDomains and later by the synthesis
tool. The synthesis tool will automatically implement attributes using registers or on-
chip RAM depending on the characteristics of the target platform.

748 T. Schattkowsky, J.H. Hausmann, and G. Engels

 // Global Delarations
 ...
 chan int 16 PCMReader0_PCMData;
 chan int 16 PCMReader1_PCMData;
 ...
 int 1 Serializer_SerialOutput_SCLK = 0;
 interface bus_out() Serializer_SerialOutput_SCLK_Pin
 (int 1 Data=Serializer_SerialOutput_SCLK);
 int 1 Serializer_SerialOutput_SLRCLK = 0;
 interface bus_out() Serializer_SerialOutput_SLRCLK_Pin
 (int 1 Data=Serializer_SerialOutput_SLRCLK);
 int 1 Serializer_SerialOutput_SDA = 0;
 interface bus_out() Serializer_SerialOutput_SDA_Pin
 (int 1 Data=Serializer_SerialOutput_SDA);
 ...
 // Clock Definition
 set clock = internal_divide 2;
 ...
 void main void(void){
 // Local Declarations
 ...
 par {
 PCMReader0_main();
 PCMReader1_main();
 Serializer_main();
 }}

Fig. 10. Excerpt from the generated code for the second ClockDomain

All interaction between ClockDomains must take place using either Channels,
which are mapped directly to Handel-C channels, or multiported RAM. Thus
Attributes accessed across ClockDomains must be represented using Multi Ported
RAM (MPRAM). However, this is only possibly if such MPRAM is available at the
target platform and the number of ports is not less than the number of involved
ClockDomains. Otherwise the synthesis will fail.

Each Activity is compiled to a Handel-C function. This includes all sub-Activities.
The respective parameters are taken from the parameter pins in the model and
explicitly declared parameters which represent local variables in the scope of the
activity. As each Handel-C function is finally implemented as a block of non-
reentrant hardware, an individual copy of each such function is created per instance.
Handel-C directly supports this through function arrays.

The code generation for a particular Activity essentially yields a set of parallel
executing Actions or sequential blocks of Actions. While sequential actions can be
put directly into sequential code blocks, the execution of parallel Actions is
coordinated based on simulating the token flow in the Activity. For this, boolean
variables indicate enabled edges. The execution of an Action is enabled by checking
the conjunction of the corresponding variables for all incoming edges. Once an Action
is enabled, it starts execution by resetting all input edges. After executing the actual
Action, the corresponding output edges are enabled. Note that this implies that exactly
one token is buffered per edge. The actual objects for object flows between actions

 Using UML Activities for System-on-Chip Design and Synthesis 749

are mapped directly into variables. For sub-activities, these are passed by reference.
Access to these objects is still coordinated through the boolean edge variables.

As an example, we will now consider an excerpt from the generated code for an
MP3Decoder instance:

void Decoder_Main0()
{
 // Provide initial Tokens
 Action1_A_Enabled=true;
 Action2_A_Enabled=true;
 Action2_1_1_A_Enabled=false;
 Action2_2_1_A_Enabled=false;
 ...
 par
 {
 // Action1:CallOperationAction=HandleI2C()
 seq
 {
 if (Action1_A_Enabled)
 {
 // Consume Input Tokens
 par
 {
 Action1_A_Enabled=false;
 }
 // Perform Action
 HandleI2C0();
 // Produce Output Tokens
 par
 {
 seq
 {
 // Wait till Action is ready
 while (Action1_A_Enabled);
 // Produce Token
 Action1_A_Enabled=true;
 }
 }
 }
 }
 // Action2:CallOperationAction=ReadFrame()
 seq
 {
 if (Action2_A_Enabled)
 {
 // Consume Input Tokens
 par
 {
 Action2_A_Enabled=false;
 }
 // Perform Action
 ReadFrame0();
 // Produce Output Tokens

750 T. Schattkowsky, J.H. Hausmann, and G. Engels

 par
 {
 seq
 {
 // Wait till Action is ready
 while (Action2_1_1_A_Enabled);
 // Produce Token
 Action2_1_1_A_Enabled=true;
 }
 seq
 {
 // Wait till Action is ready
 while (Action2_1_2_A_Enabled);
 // Produce Token
 Action2_2_1_A_Enabled=true;
 }
 }
 }
 }
 // Action2_1_1:CallOperationAction=DecodeScaleFactors()
 seq
 {
 if (Action2_1_1_A_Enabled)
 {
 // Consume Input Tokens
 par
 {
 Action2_1_1_A_Enabled=false;
 }
 // Perform Action
 DecodeScaleFactors0(&Action2_1_1_ScaleFactors);
 // Produce Output Tokens
 par
 {
 seq
 {
 // Wait till Action is ready
 while (Action3_A_Enabled);
 // Produce Token
 Action3_A_Enabled=true;
 Action3_A_Value=&Action2_1_1_ScaleFactors;
 }
 }
 }
 }
 ...

 }

In our example, three Actions are included (see also Fig. 8). Action_1 and Action_2

are enabled at start of the Activity while Action_2_1_1 depends on a control token
from Action_2. Thus, Action_2_1_1 waits for the required control token, consumes it,
executes the actual Action by calling DecodeScaleFactors0() and stores the result in a

 Using UML Activities for System-on-Chip Design and Synthesis 751

local variable. Once no pending token is on the OutputPin, the results gets forwarded
to the variable associated with the OutputPin and the Action has completed execution.
At this point, it again waits to be enabled.

Finally, it is important to note that the same pattern for generating HDL code for
Activities can be employed in other HDLs as well. The employed concepts are
inherently supported by all common HDLs.

5 Conclusions and Future Work

In this paper we have presented a novel approach for model-based hardware design
enabling automatic code generation of synthesizable HDL for ASICs and FPGAs. We
have shown that UML 2.0 Activity Diagrams are well suited for hardware. They
nicely capture data and control flows in hardware systems implementing complex
algorithms like in our MP3 decoder example. HDL Code generation has been outlined
for synthesizable Handel-C code, but is generally not bound to a particular HDL.

Future work will include the investigation of code generation of other HDLs as
well as a deeper evaluation of the approach in different applications. The generated
code could be simplified w.r.t. certain common situations like sequential parts that
could be mapped directly to sequential HDL blocks. However, as the synthesis results
are comparable, this is more a cosmetic issue. Furthermore, the approach may be
extended to enable more explicit control of the hardware generation process to
enhance support for design space exploration.

References

[1] André, C., Cuccuru, S., Dekeyser, J.-L., De Simone, R., Dumoulin, C., Forget, J.,
Goutier, T., Gérard, S., Mallet, F., Radermachenr, A., Rioux, L., Shaunier, T, Sorel, Y.:
MARTE: A New OMG Profile RFP for the Modeling and Analysis of Real-Time
Embedded Systems. In Proc. DAC Workshop UML for SoC Design (UML-SoC) 2005,
2005.

[2] Bahill, A.T. and Daniels, J.: Using object-oriented and UML tools for hardware design: a
case study, Systems Engineering, 6(1): 28-48, 2003.

[3] Björklund, D. and Lilius, J.: From UML Behavioral Descriptions to Efficient
Synthesizable VHDL. In: Proceedings of the 20th IEEE NORCHIP Conference, Nov.
2002.

[4] M. Balcer, S. Mellor: Exploring the Role of Executable UML in Model-Driven
Architecture. In: Executable UML: A Foundation for Model-Driven Architecture,
Addison-Wesley, 2002.

[5] Celoxica: Handel-C language Overview, www.celoxica.com,2002.
[6] Damasevicius,R. and Stuikys, V.: Application of UML for hardware design based on

design process model. ASP-DAC 2004: 244-249, 2004.
[7] H. Hallal, K. Xiao-Hua, and R. Negulescu. Experiments in modeling integrated circuit

blocks by UML. In International Workshop on IP Based Synthesis and System Design,
1999.

[8] International Electrotechnical Commission: IEC 1131-3: Programmable Controllers –
Part 3: Programming Languages, IEC 1131-3, 1993.

752 T. Schattkowsky, J.H. Hausmann, and G. Engels

[9] McUmber, W. and Cheng,B.: UML-Based Analysis of Embedded Systems Using a
Mapping to VHDL, The 4th IEEE International Symposium on High-Assurance Systems
Engineering, p.56-63, November 17-19, 1999.

[10] G. Martin, W. Müller (eds.): UML for SoC Design. Kluwer, 2005.
[11] Object Management Group: UML 2.0 superstructure specification. Available at

http://www.omg.org/cgi-bin/doc?ptc/2005-07-04, 2005.
[12] Rajan, S., Hasegawa, T, Shoji, M., Zhu, Q., Tsuneo, N.: UML Profile for System-on-Chip

(SoC). In Proc. DAC Workshop UML for SoC Design (UML-SoC) 2005, 2005.
[13] Schattkowsky, T., Hausmann, J.H., Rettberg, A.:Using UML Activities for Synthesis on

Reconfigurable Hardware. In Proc. DAC Workshop UML for SoC Design (UML-SoC)
2005, 2005.

[14] Sinha, V., Doucet, F., Siska, C., Gupta, R., Liao, S., Ghosh, A.: YAML: a tool for
hardware design visualization and capture. Proceedings of the 13th international
symposium on System synthesis, pp.1080-1082, IEEE Computer Society, 2000.

[15] Stoerrle, H: Semantics and Verification of Data-Flow in UML 2.0 Activities. In Proc.
Intl. Ws. on Visual Languages and Formal Methods (VLFM04), 2004.

[16] SysML Partners: SysML Specification v. 1.0a., Available at http://www.sysml.org, 2005.
[17] Yakovlev, A., Gomes, L. and Lavagno, L. (Eds.): Hardware Design and Petri Nets,

Springer, 2000.

Modeling and Early Performance Estimation for
Network Processor Applications

Antonia Bertolino1, Alvise Bonivento2,
Guglielmo De Angelis1,�, and Alberto Sangiovanni Vincentelli2

1 ISTI – CNR
Pisa, Italy

{antonia.bertolino, guglielmo.deangelis}@isti.cnr.it
2 University of California

Berkeley, CA USA
{alvise, alberto}@eecs.berkeley.edu

Abstract. The design of modern embedded systems has to cope with quite
challenging requirements in terms of flexibility, performance, and domain space
exploration. To this purpose, we present a general methodology joining the prin-
ciples of Platform Based Design and Model Driven Engineering. The former was
especially conceived for embedded systems design, the latter focuses on models
as the primary design artifacts. From their combination, we can to introduce a
methodology for the design of Network Processor Applications. Starting from
models described using the UML notation, we provide an early estimation of
performance related parameters and compare in advance possible alternative im-
plementations. In particular, the system behavior is specified by a collection of
Sequence Diagrams describing the various usage scenarios, merged into an inter-
nal representation called Message Sequence Net. To prove the effectiveness of the
proposed methodology, a case study on the design of an SCTP client is presented.

1 Introduction

The growing complexity and time-to-market pressure make the design of embedded
systems extremely challenging. New approaches and tools are required to develop an
effective methodology that leverages design reuse [19]. Network Processors are spe-
cialized embedded systems adopted for Internet equipment such as routers, Voice over
IP (VoIP) bridges, and virtual private network (VPN) gateways.

Network Processors fill a middle ground between totally hard–coded solutions and
general purpose programmable devices. They are characterized by significant diversity
in terms of technological solutions and heterogeneity of processing elements. Designing
applications on Network Processors requires not only to verify the functional correct-
ness, but also to check the satisfaction of non–functional constraints (i.e., performance
and cost) that depend on the specific mapping of the software functionality onto the
hardware architecture [10].

To cope with this heterogeneity and with the demand for a thorough design space
exploration, we need methodologies and tools that allow the designer to specify the

� G. De Angelis PhD grant is sponsored by Ericsson Lab Italy in the framework of the PISATEL
initiative. http://www1.isti.cnr.it/ERI/

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 753–767, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

754 A. Bertolino et al.

application at a high level of abstraction and that support the early estimation of the
candidate solutions.

In the embedded systems community, similar issues were already considered in [19],
where a system is modeled as a composition of subsystems whose functionality is
specified independently from the hardware implementation. This orthogonalization of
concerns between functionality and architecture avoids to commit to a particular imple-
mentation too early in the design process [20]. To facilitate the development of such a
methodology, it is important to allow the designer to specify the functionalities using
a semantic domain that is adequate for the specific application [12]. In [32], the need
of standard techniques and languages to capture specifications is motivated. In [6], we
identify the UML profiling mechanism as a simple way to define a Domain Specific
Language (DSL) for the context of Network Processors.

In this paper, we present a methodology to capture specifications and provide an
early estimation of possible implementations over Network Processors. The structural
part of the application is specified using a UML profile called NAP [6]. The use cases
are described in scenarios and their relations are captured using a representation called
Message Sequence Net (MSN). Starting from the MSN description and a model of the
candidate mapping, we estimate the latency performance of the solution.

The rest of the paper is organized as follows: in Sec. 2 we present some related work.
In Sec. 3 we present an overview of the proposed methodology, and in Sections 4, 5,
and 6 we provide a detailed description of its steps. To validate our approach, in Sec. 7
we present a case study on the development of an SCTP client deployed over a Network
Processor. In Sec. 8 we discuss how our methodology can be seen as a particular case
in the frame of a wider, more general design methodology. Conclusions are provided in
Sec. 9.

2 Related Work

There is a large body of literature handling non–functional requirements. We identify
three main categories: analysis, profiling and translating1.

Analytical approaches based on mathematical models such as Queueing Networks
[8] and Petri Nets [22] are used to prove some non–functional properties or measure
indicators for performances estimations.

The second category involves the works whose aim is to provide high level instru-
ments to properly annotate the models. Usually these approaches cover the earliest soft-
ware development phases. In this context, attempts to merge the functional and non–
functional aspects has led to a more specialized use of UML that has proved useful to
the definition of DSLs. OMG’s UML Profile for Schedulability, Performance and Time
(SPT) [24] and the more recent MARTE [23] represent the most popular efforts in this
field.

The last category includes those works that aim to provide automated tools for man-
aging non–functional requirements in the early stage of the software design [3]. Their

1 Approaches in the area of runtime monitoring of system performance are not included in this
kind of classification, since they refer to system implementation rather than system design [3].

Modeling and Early Performance Estimation for Network Processor Applications 755

main goal is to extract the information attached to the models and transform it into in-
puts for non–functional analysis tools [29] such as the ones described in the first class.
In [5] UML Sequence Diagrams and Statecharts are used for system validation and per-
formance estimation. The authors assume that the system behavior is described by a set
of Statecharts and that Sequence Diagrams are used to emphasize specific patterns of
interaction among Statecharts. This approach is based on the derivation of a General
Stochastic Petri Net [18] composing the information coming from both kinds of dia-
grams. Similarly, [11] and [14] show how to incrementally build a performance model
from early available UML diagrams. A more recent result is presented in [26], where
the authors exploit a relational and graph grammar–based transformation, to develop an
abstraction–raising transformation based on UML.

The main inspiration for our work comes from Ulysses [28,27]. Ulysses is a
scenario–based specification technique that defines and decomposes the functional spec-
ification process into intermediate steps. Although originally thought for protocol syn-
thesis from a Message Sequence Chart (MSC) specification, it can be applied also in
other contexts.

According to Ulysses, a MSN is defined as a collection of scenarios, each one de-
scribed with a MSC [21]. The relations of ordering, concurrency or conflict among the
scenarios are expressed using Petri Nets semantics. The advantages in this approach are
twofold. First and foremost, a Petri Net can be easily checked for liveness, deadlock-
freedom and boundedness, allowing for the early detection of specification errors. Sec-
ondly, Petri Nets have partial order semantics and allow for maintaining the concurrency
between fine–grain actions until they are scheduled on shared architecture resources.

3 Methodology Overview

The UML Activity Diagram in Fig. 1 represents the flow chart for the proposed method-
ology.

Fig. 1. Design Flow

Step A consists in describing the structural part of the application using the Net-
work Processors Application Profile (NAP). NAP is a UML Profile originally intro-
duced in [6] to describe applications for Network Processors while hiding hardware
details. The NAP descriptions focus on the concept of SoftwareUnits that represent
atomic portions of a software application. In this paper, we extend NAP to support an

756 A. Bertolino et al.

explicit specification of the communication between SoftwareUnits and data structures,
and to provide a notation that is useful for the description of the behavioral model of
the application.

Then, step B consists in describing the behavioral model of the application using
a scenario–based specification. Each scenario represents a particular use case of the
system and is described using a UML Sequence Diagram. The relations among the sce-
narios are represented by means of an MSN (see Sec. 2). Using the covering algorithm
proposed in Ulysses, a consistent Petri Net from such MSN can be obtained [27]. In step
C, this Petri Net representation can be used to prove some important properties such as
liveness, deadlock-freedom and boundedness and detect errors in the specification at an
early stage.

Step D corresponds to selecting a specific Network Processor as the target platform.
Note that our intent here is to define a methodology to capture specifications and provide
an estimation of applications in the earliest phases of software design. It is out of the
scope of this work to model all the complex aspects of an embedded hardware platform
such as the Network Processor. Hence, at the software life cycle phase we refer, the
information we consider regards how the software running on the different processors
interact.

In step E the mapping of the functionality onto the architecture is divided in two
sub–steps (see Fig. 2).

Since there may be more SoftwareUnits than available processors, and even if this
is not the case the interactions among two SoftwareUnits could be so tight that imple-
menting them on different processors may be inefficient, the first sub–step consists in
partitioning the set of SoftwareUnits. All the SoftwareUnits that are required to run con-
currently on the same processor define a processing group (PG). Given a partitioning,
we determine the statistics of the required number of clock cycles to process a packet
for each PG.

The second sub–step consists in mapping the PGs over the different physical proces-
sors. If there are more available processors than PGs, we can create different instances
of some PGs and map them on the remaining processors to maximize the resource uti-
lization. However, following the definition of PG, each processor can support only a
single PG. Given a mapping, we group processors running instances of the same PG in
service centers and we estimate the latency introduced by each service center. Starting
from this estimation, in step F the designer can quantify the efficiency of the proposed
solution in terms of latency and supported throughput; if necessary, (s)he can go back-
ward in the design flow and try another mapping (or hardware platform).

Notice that the partitioning restricts the design space to those solutions following
the rule that each processor supports only a single PG. Strictly speaking this is not
a limitation of our methodology, in the sense that we are explicitly interested in the
early estimation of the impact of the selection of different hardware platforms. Our
assumption leaves out any design solution that can be characterized in terms of latency
performance only after the code development process.

We focus our analysis to the interactions between the SoftwareUnits and the data
structures stored in the different type of memories. This assumption is motivated by the
results reported in [17] and from our previous implementation experiences on Network

Modeling and Early Performance Estimation for Network Processor Applications 757

Fig. 2. Software Application Mappings

Processors [4]. In those works it is clear how the main impact to the final performance
is given by these operations. For example, the latency access for a processor to an
external memory can require from 10 to 200 of idle clock cycles [13]. Notice that com-
munications among SoftwareUnits also have a non negligible impact whenever the two
SoftwareUnits are mapped on different processors and shared memories are used as the
communication medium.

4 Network Processors Applications Profile

A generic communication protocol is logically organized in a bi–dimensional matrix,
highlighting two orthogonal concepts: the rows represent the architectural elements
composing the application (i.e. interfaces with other layers, window transmission man-
agement), while the columns represent the aspects of the protocol (i.e. send, receive, and
control). Cross points in this logical matrix identify particular aspects for specific ar-
chitectural elements and they are called SoftwareUnits. A SoftwareUnit accesses shared
data structures to perform Read or Write operations. Data structures represent the most
common abstract data types such as List, Table or Queue.

Fig. 3. Domain Viewpoint of the extension to NAP

In a domain viewpoint [24], an explicit communication between two SoftwareUnits
is modeled using a Talk instance that can be annotated with the number of required
parameters (sizeParmList). In a UML viewpoint, for each domain element introduced
by NAP, Table 1 shows the UML element extensions along with the name of the related
stereotype. These definitions allow the designers to apply the stereotypes to UML Class
Diagrams and Sequence Diagram elements. Specifically the base class sets for those
stereotypes representing SoftwareUnits, Lists, Tables and Queues, include the UML

758 A. Bertolino et al.

Class element for the structural modeling and UML Lifeline for the behavioral one.
Similarly, the
Read� and
Write� base class sets refers to the Association and
Message UML elements. The communication domain concept is modeled by means of
the stereotype
Talk�, applicable to Association and Message UML elements.

Table 1. Stereotype Definition

Concept Base Class Stereotype

SoftwareUnit Class–Lifeline
SoftwareUnit�
Read Association–Message
Read�
Write Association–Message
Write�
Talk Association–Message
Talk�
List Class–Lifeline
List�

Table Class–Lifeline
Table�
Queue Class–Lifeline
Queue�

5 Behavioral Model Generation

We describe the behavioral aspects of an application using a scenario–based specifica-
tion where each scenario represents a particular use case of the system and is described
using a UML Sequence Diagram.

We characterize a UML Sequence Diagram with the tuple (M, L, E, g, m, <), where:

– M is a finite set of asynchronous messages ((signal, stereotype)). Calling m ∈ M a
message, we refer to its components as m.signal and m.stereotype.

– L is a finite set of Lifelines.
– E is a set of events in the Sequence Diagram. An event e ∈ E is defined as a pair

(type, msg) ∈ {send, rec} × M. We refer to its components as e.type and e.msg.
– g : E → L is a function that gives for each event the corresponding Lifeline.
– m : E → E is a bijective function that links pairs of send and receive events.
– < is a partial order relation between events.

Notice that a Lifeline represents a SoftwareUnit or a data structure in NAP. The
interactions among these elements are modeled by means of asynchronous messages
using the stereotypes defined in Sec. 4.

Between different use cases there may be relations of causality or parallel execu-
tion. In [27] these relations are captured by means of a Petri Net, where each transition
represents a particular scenario and each place represents the precondition to the exe-
cution of the out–connected scenarios. As an extension to the model proposed in [27],
we introduce the notion of probability associated with the edges that connect places
with transactions. We define a Probabilistic Petri Net as an ordered pair (PN;p), where
PN is a usual Petri Net [22] and p : Place → [0..1] is a function that represents
the likelihood for a use case to be selected in case alternative use cases can be enabled.
We assume that the function p as well as the relation among the different use cases are
provided by domain experts.

Modeling and Early Performance Estimation for Network Processor Applications 759

Notice that the Probabilistic Petri Net is different from the Stochastic Petri Net
(SPN) [18]. The stochastic extension to the Petri Nets defines a firing semantics in the
case of timed transition. In our case, the probability function p is introduced to provide
a conflict resolution policy.

Fig. 4 depicts an example of the whole MSN for the case study 2 and Fig. 5 an
enlarged view of a particular scenario.

Fig. 4. MSN for the case study

Notice that in Ulysses, a scenario is described using a MSC. Considering the sim-
ilarities between a MSC and a UML Sequence Diagram, as defined by several au-
thors [1,25,15], the procedures outlined in Ulysses to derive a Petri Net from a MSN
representation are still valid.

6 Mapping and Performance Estimation

The first step in the performance evaluation is to estimate the cost of the different
processing groups. For this purpose we use the MSN description. We start by evalu-
ating the cost of each scenario in terms of clock cycles given by the number of the

Read�,
Write� and
Talk� operations. Referring to the notation introduced in
Sec. 5 for Sequence Diagram, Fig. 6 shows the algorithm that for every scenario of
the MSN returns its cost for the different processing groups (costVect). The inputs of
the function are: a scenario described with a UML Sequence Diagram SD, the function
G that for each SoftwareUnit (SU) returns the processor where it is mapped, and the
function T that, given a data structure, returns its access time in terms of clock cycles.

2 Since Ulysses approach can be applied only to safe Petri Nets [22], in some cases we have to
introduce some dummy–transitions, just to maintain this property. In the MSN, such transitions
have to be interpreted as scenarios that do not describe any interaction.

760 A. Bertolino et al.

Fig. 5. A particular scenario for the case study

scenarioCost (SD,G,T,costVect){
sortEvents(SD.E);
foreach element costVect[i]=0;
foreach SU in SD.L

costVect[G(SU)]+=suCost(SD,SU,G,T);
}

suCost(SD,SU,G,T){
cost=0;
foreach e in SD.E

if(SD.g(e) == SU){
if (e.type == "send")

switch (e.msg.stereotype){
case "Read":
case "Write":

cost+=T(SD.g(SD.m(e)));
break;

default;
}

if (e.msg.stereotype == "Talk")
if (G(SU) != G(SD.g(SD.m(e))))
cost+=δ*e.msg.stereotype.sizeParmList;

}
return cost;

}

Fig. 6. Algorithm for the cost assessment of the scenarios in the MSN

Using this information, we extract the service time in terms of clock cycles for a
particular sequence of scenarios in the MSN. This estimation is obtained executing the
relative Petri Net with a token that accumulates the cost of the scenarios represented by
the visited transitions. To solve the non–deterministic choices due to alternative com-
positions, we use the probabilistic parameter p as explained in Sec. 5. The enabling of
parallel scenarios represents concurrent situations that can occur in the modeled sys-
tem. When a transition is enabled by more than one place, its firing produces a token
whose cost is given by the sum of the costs of the enabling tokens. If as a result of
a firing more than one place has a token (see t2 in Fig. 4), only one of the produced
tokens maintains the cost accumulated until that moment, while the others start from
zero. Since the Petri Net is considered safe, any parallel composition has to narrow in

Modeling and Early Performance Estimation for Network Processor Applications 761

a synchronization configuration. Consequently, the final token effectively measures the
cost of the encountered scenarios.

Since the service times derived by a single execution of the MSN depend on a se-
quence of probabilistic choices, more executions are required to collect a statistically
relevant sample set. We call mi

x the mean number of clock cycles and mi
x2 its variance

obtained considering the results of the different executions for the ith processing group.
Starting from the average cost in terms of clock cycles for each processing group,

we need to estimate the cost of assigning different instances of the processing groups to
the different processors. To this purpose we model the result of this mapping step as a
Queueing Network, where processors running the same processing group are grouped
together in service centers. Each service center is modeled as a node in a Queueing
Network with a single unbounded input queue where the packet arrival process fol-
lows a Poisson distribution and its service time a generic distribution3. Different nodes
are connected together according to the data flow that relates the different processing
groups. These relations are usually well known to the application designer and are a
consequence of the logical structure of the protocol.

We derive the service time of each processor using the statistics for the service time
in terms of clock cycles for the relative processing group and the processor clock rate.
Given the traffic arrival rate at both ends (receiving and sending), we derive the traf-
fic arrival rate for each service center solving a system of equations associated to the
connectivity of the Queueing Network. For example, consider the Queueing Network
of Fig. 7–b where there are four nodes with two processors each and the nodes are se-
rially connected for both receiving and transmitting traffic. Call λ the traffic arrival rate
at both ends of the protocol layer and λj the traffic rate passing through the jth node.
Assuming that a share p of the output traffic of each node is related to the receiving
flow, the relative system of equations is:

⎧⎪⎪⎨
⎪⎪⎩

λ1 = λ + pλ2
λ2 = (1 − p)λ1 + pλ3
λ3 = (1 − p)λ2 + pλ4
λ4 = (1 − p)λ3 + λ

Starting from the Queueing Network topology and the service times and arrival rates
parameters, we can apply the PK–formulas [8] to estimate the mean latency introduced
by each node of the Queueing Network. These results can be used to estimate the latency
and the throughput limitations introduced by the solution.

7 Case Study

We focus on the modeling of a Stream Control Transmission Protocol (SCTP) [30]
layer on a Network Processor. SCTP is a reliable connection oriented transport protocol
proposed by the SIGTRAN Group [31]. SCTP was proposed to improve some of TCP
and UDP lacks regarding applications on call control signaling on packet network.

3 According to the Kendall notation, this type of node is an M/G/n/∞ queue [8].

762 A. Bertolino et al.

The basic unit of information in SCTP is the chunk. A chunk is a portion of an SCTP
packet, which can contain information about control and protocol status, acknowledg-
ment or a part of the upper layer protocol data.

In previous works we show how to use NAP to describe the organization of this appli-
cation [6,4]. We consider only 8 SoftwareUnits: four for the send aspect of each SCTP
architectural element (StreamEngine, FlowControl, ReliableTransfer, Bundler) and four
for the receive one. The application also requires different kind of data structure such
as a list that stores the descriptors of those sent chunks waiting for an acknowledgment
(ackChunks) and a table that contains the descriptor of each chunk (Descriptors).

Fig. 4 depicts the MSN for the case study. Since in SCTP the specification of the
functionalities refers to chunks, the data exchanged by elements in the scenarios are
chunks.

Each transition in the MSN represents a use case for the SCTP layer in the manage-
ment of a chunk. In Fig. 5 we represent the reception of an acknowledgment (SACK) by
the protocol pear (t17 in the MSN of Fig. 4). In this case, an acknowledgment descriptor
is created and its information stored in the Descriptors table from the recBundler. This
SoftwareUnit is also in charge of communicating to the recRelTrans that a SACK was
received. The receive aspect of the ReliableTransfer, looks for the correspondent data
chunk into the ackChunks list and removes it.

The selected hardware architecture is the C–5 Freescale C–Port Network Proces-
sor [13]. Briefly, the C–5 is composed by 16 RISC processor (CPRC) grouped in 4
clusters and an Executive Processor (XP) that is mainly responsible of some control
functions such as booting or hosting interface. The device provides also a set of dedi-
cated co–processors allowing the access to external memory or I/O interface: the Buffer
Management Unit (BMU), the Table Lookup Unit (TLU) and the Queue Management
Unit (QMU). The access time to the information stored into these memories depends
by the co–processors used to retrieve it.

We estimate the cost for each type of memory access using the parameters in [13].
For example, using the nominal TLU latency and considering that a chunk data descrip-
tor size is 16 bytes [16], we calculate that each interaction with such memory takes 227
clock cycles for a CPRC. In the same way, we calculate that each access to a QMU
takes 11 clock cycles.

There are two main ways to map the described software elements onto the avail-
able resources. The first mapping groups together all the SoftwareUnits with the same
aspect, while the second one all those SoftwareUnits that belong to the same architec-
tural element. Our previous study [4] advises that using the first mapping it is possible
to replicate both the send and receive software on 4 different processors. On the other
hand, the second mapping allows assigning 2 instances for each architectural element.
Fig. 7 depicts the Queueing Network representation of the two organizations. In both
cases, we decide to map the queue structures in the memory managed by the QMU and
the lists in the one managed by the TLU.

Table 2 summarizes the costs in clock cycles of each scenario obtained applying the
algorithm outlined in Sec. 6 for both mappings. The cost of each scenario is a vector
with two entries in the case of the aspect–grouping and with four entries in the case

Modeling and Early Performance Estimation for Network Processor Applications 763

a) b)

Fig. 7. Queueing Network representation of two mapping alternatives

Table 2. Scenarios Costs

Aspect Arch. Element
Send (SC1) Receive (SC2) StrEng (SC1) FlowCtrl (SC2) RelTrans (SC3) Bundler (SC4)

t1 227+227 0 227+227 0 0 0
t2 0 0 11*4 11*4+11*5 11*5 0
t3 67+227+227 0 0 0 67+227+227 0
t4 227+11 0 0 277+11 0 0
t7 11 0 0 0 0 0
t8 11 0 0 0 0 0

t10 0 0 0 11 0 11
t11 11+227 0 0 0 0 11+227
t12 11+227 0 0 0 0 11+227
t14 0 227+227 0 0 0 227+227
t16 0 227+227 0 0 0 227+227
t17 0 67+227+227 0 0 11*3+227+67 11*3+227
t20 0 11 11*3 11*3+11 0 0
t21 11 11 0 11*2 0 11*2
t22 0 227+227 227+227 0 0 0

of architectural element one. For example, entries such as t17 in Table 2 show how
different mappings of the SoftwareUnits can introduce extra communication costs.

We estimate mx and m2
x for each service center using the MSN of Fig. 4 and the

procedure outlined in Sec. 6. For the first mapping the cost vector associated to the
token has two entries, while for the second mapping the cost vector has four entries.

Considering the costs for processing group, the processors speed, the packet arrival
rate and the maximum chunk data size, it is possible to estimate the mean delay intro-
duced by each processing step. We assume a packet arrival rate λ = 20 packet/sec
and a packet size pacSize = 0, 5Mbyte. Since a maximum size for a data chunk is
chunkMaxLength = 1452 byte [30] and the C–5 processor clock frequency is
cpuFreq = 266MHz [13] the data chunk arrival rate is:

λ
′
= λ pacSize

chunkMaxLength = 0, 00137741M Chunk/sec

Converting the service time from clock cycles into seconds:

μi
x = mi

x

cpuFreq

764 A. Bertolino et al.

Table 3. Early Performance Estimation

λ
′

(MChunk/Sec) 0,006887052

nth Service Center μSCi
x (μSec) μSCi

x2
delSCi (μSec)

SC1 11,80609895 25,17047107 11,89457255
SC2 12,07582511 18,07498165 12,13938837

λ
′

(MChunk/Sec) 0,006887052

nth Service Center μSCi
x (μSec) μSCi

x2
delSCi (μSec)

SC1 3,703007519 3,0337E-24 3,703007519
SC2 1,771613835 0,014285172 1,771700848
SC3 7,83934391 18,13008343 7,980084142
SC4 9,16915068 16,59120632 9,26412752

Table 3 presents the mean delays for each service center delj obtained applying the
PK-formulas in Sec. 6 to the two queuing network models.

The last step of this case study is the interpretation of the obtained values. Assume
that we want to compare the two mappings by their relative latency performance. We
consider the maximum of the average delay values for the first mapping and the sum
of the average delays for the second mapping. Fig. 8 plots the trend of the latency
introduced by the two solutions as a function of the packet arrival rate. Assuming that
both solutions are always admissible with respects to the other constraints (e.g., internal
memories occupation), the solution that groups the SoftwareUnits by the aspect tagged
value represents the preferred choice.

8 Discussion

The proposed methodology combines principles of the Platform Based Design [33]
(PBD) and Model Driven Engineering [9] (MDE).

PBD has emerged in recent years as a methodology for embedded systems design. In
PBD, the notions of flexible hardware architectures as well as of rigorously–specified
software interfaces are captured by the general expressive concept of a platform [20].
A platform represents a layer in the design flow which abstracts away the underlying,
subsequent design–flow steps.

PBD is a combination of a top–down and a bottom–up approach. The basic tenets of
this design methodology focus on a meeting–in–the–middle process whereby the suc-
cessive refinements of the functional description (top–down part) meet with abstractions
of potential implementations (bottom–up part). The meet–in–the middle process takes
place at precisely defined layers called common semantic domains.

In the software engineering community, modeling has always played a crucial role.
However, it is only with the introduction of MDE that notations and tools have been
proposed for expressing different system views and eventually weave them together for
a specific environment [9]. MDE embraces all those approaches and tools that move the
design and the development of a software product from a code–centric perspective to a
model–based one [7]. In MDE, the notion of a model is not intended to capture all the

Modeling and Early Performance Estimation for Network Processor Applications 765

Fig. 8. Latency trends for the two solution

aspects of a system: instead a system is usually represented by a set of different models,
each one capturing some specific aspects [7].

We believe there exists a strong connection between the concepts of model and plat-
form that have inspired the two methodologies. While PBD helps to identify the most
adequate abstraction levels to model the functionality, the architecture, and the common
semantic domain, MDE provides the mathematical foundation and tools to describe,
handle and transform these models during the design and development process [32]. In
this work we have shown some preliminary evidence of how the two methodologies
can fruitfully interoperate and eventually converge into a comprehensive approach for
effective and efficient design of embedded systems.

9 Conclusions and Future Work

The main research goal for the embedded systems community is to provide a set of
tools and abstractions to facilitate the design reuse across different hardware platforms.
In this paper we proposed a methodology to address this issue for the design of Network
Processors.

First, we proposed an extension to the NAP profile that allows to describe the struc-
tural part of an application, independently from the hardware architecture. Secondly, we
presented a rigorous methodology to specify the behavioral part of an application that in
line with MDE principles allows for the early stage detection of errors in description of
the functionality. Starting from this description and a mapping onto a selected hardware
platform, we showed how to estimate the latency performance of the proposed solution.

So far our work was concerned with the latency analysis. However, network proces-
sors have constraints on the available local memory and it is important for Network
Processor applications to characterize the proposed solutions also with respect to their
local memory occupation. We plan to extend our framework to address these issues by
extracting this information from the NAP model of the application.

766 A. Bertolino et al.

References

1. M. Abdalla, F. Khendek, and G. Butler. New results on deriving SDL specifications from
MSCs. In SDL Forum, pages 51–66, 1999.

2. S. Afsharian, A. Bertolino, G. De Angelis, P. Iovanna, and R. Mirandola. A Model Based
Approach to Design Applications for Network Processor. In Proc. RISE 2004, volume LNCS
3475. Springer, 2005.

3. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based performance prediction
in software development: A survey. IEEE Trans. Software Eng, 30(5):295–310, 2004.

4. D. Barbieri. Network Processors and Next Generation Networks : Design Methodology and
Implementation of a Case of Study, 2005. Laurea Thesis, Università degli Studi di Roma
“Tor Vergata” – in Italian.

5. S. Bernardi, S. Donatelli, and J. Merseguer. From UML Sequence Diagrams and Statecharts
to analysable Petri Net Models. In Proc. 3rd Int. Workshop on Software and Performance
(WOSP-02), pages 35–45, 2002.

6. A. Bertolino, G. De Angelis, and R. Mirandola. UML-based design of network processors
applications. In Proc. EUROMICRO-SEAA, pages 424–431. IEEE Computer Society, 2005.

7. J. Bézivin. On the unification power of models. Journal of Software and Systems Modeling,
4(2):171–188, May 2005.

8. G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications. John Wiley &
Sons, August 1998.

9. A.W. Brown. Model driven architecture: Principles and practice. Software and System Mod-
eling, 3(4):314–327, 2004.

10. R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-Vincentelli, and J. Rabaey. UML
and Platform–Based design. In L. Lavagno, G. Martin, and B.V. Selic, editors, UML for
real: design of embedded real-time systems, chapter 5, pages 107–126. Kluwer Academic
Publishers, 2003.

11. V. Cortellessa and R. Mirandola. PRIMA-UML: A Performance Validation Incremental
Methodology on Early UML Diagrams. Science of Computer Programming, 44(1), 2002.

12. A. Ferrari and A. Sangiovanni-Vincentelli. System design: Traditional concepts and new
paradigms. In International Conference on Computer Design (ICCD ’99), pages 2–13. IEEE,
October 1999.

13. Freescale. C–5 DCP Architecture Guide, 1999.
14. V. Grassi and R. Mirandola. PRIMAmob-UML: a methodology for performance analysis

of mobile software architectures. In Proc. 3rd Int. Workshop on Software and Performance
(WOSP-02), pages 262–274. ACM Press, 2002.

15. Ø. Haugen. Comparing UML 2.0 interactions and MSC-2000. volume LNCS 3319, pages
65–79. Springer, 2004.

16. SCTP Prototype Implementation. http://www.sctp.de/sctp.html/.
17. S. Lakshmanamurthy, K.Y. Liu, Y. Pun, L. Huston, and U. Naik. Network processor perfor-

mance analysis methodology. Intel Technology Journal, 6(3):19–28, August 2002.
18. M. Ajmone Marsan, A. Bobbio, and S. Donatelli. Petri nets in performance analysis: An

introduction. Lectures on Petri Nets I: Basic Models, LNCS 1491:211–256, 1998.
19. G. Martin. UML for Embedded Systems Specification and Design: Motivation and

Overview. In Proc. DATE, pages 773–775, 2002.
20. G. Martin, L. Lavagno, and J. Louis-Guerin. Embedded UML: a merger of real-time UML

and co-design. In Proc. CODES, pages 23–28, 2001.
21. S. Mauw. The Formalization of Message Sequence Charts. Computer Networks and ISDN

Systems, 28(12):1643–1657, 1996.

Modeling and Early Performance Estimation for Network Processor Applications 767

22. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–574, April 1989.

23. OMG. UML Profile for Modeling and Analysis of Real-Time and Embedded systems, OMG
Document – realtime/05-02-06 edition, Jannuary 2005.

24. OMG. UML Profile for Schedulability, Performance and Time Specification, OMG Docu-
ment – formal/05-01-02 edition, Jannuary 2005.

25. E. Rudolph, J. Grabowski, and P. Graubmann. Towards a harmonization of UML-sequence
diagrams and MSC. In SDL Forum, pages 193–208, 1999.

26. A. Sabetta, D.C. Petriu, V. Grassi, and R. Mirandola. Abstraction–raising transformation for
generating analysis models. In MoDELS Satellite Events, pages 217–226, 2005.

27. M. Sgroi. Platform-based Design Methodologies for Communication Networks. PhD thesis,
U.C. Berkeley, 2002.

28. M. Sgroi, A. Kondratyev, Y. Watanabe, L. Lavagno, and A. Sangiovanni-Vincentelli. Syn-
thesis of petri nets from message sequence charts specifications for protocol design. In Pro-
ceedings of Design, Analysis and Simulation of Distributed Systems Symposium, DASD’04,
pages 262–274, 2004.

29. C. U. Smith and L. Williams. Performance Solutions: A practical Guide To Creating Re-
sponsive, Scalable Software. Addison-Wesley, 2001.

30. R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J. Schwarzbauer, T. Taylor, I. Rytina,
M. Kalla, and L. Zhang. Stream Control Transmission Protocol. Technical Report RFC
2960, IETF, October 2000.

31. The SIGTRAN Group Web Site. http://www.sigtran.org/.
32. L. Tratt. Model transformations and tool integration. Journal of Software and Systems Mod-

elling, 4(2):112–122, May 2005.
33. A. Sangiovanni Vincentelli. Defining Platform–based Design. EEDesign of EETimes, Feb-

ruary 2002.

A Formal Semantics of UML-RT

Michael von der Beeck

BMW Group
Michael.Beeck@bmw.de

Abstract. The modeling language UML-RT, a dialect of the UML, supports the
development of complex, hierarchical systems following a component-oriented
approach. However, for a solid foundation of model analysis and model transfor-
mations a formal semantics definition of UML-RT is missing. Therefore, this
paper presents a precise syntax and semantics definition of a sublanguage of
UML-RT. This sublanguage puts an emphasis on the specification of complex,
hierarchical state-based models. It considers atomic capsules - containing a state-
chart - and complex capsules that recursively consist of capsules communicating
asynchronously with each other over connectors. Labeled transition systems are
chosen as semantic domain, such that the UML-RT semantics can be defined in
an SOS style a la Plotkin.

1 Introduction

Model-based software development using standard modeling languages represents a
modern approach putting emphasis on the early development phases. Typical repre-
sentatives are UML - constituting the de-facto modeling standard for industrial object-
oriented applications - and UML-RT [13] - a dialect of UML especially designed for
the development of distributed, embedded systems.

A great advantage of these modeling notations is given by their great variety of in-
tuitive and mostly well-known graphical notations which support quite different kinds
of information to be modeled: e.g. requirements, static structure, as well as interactive
and dynamic behaviour. However, both languages - UML as well as UML-RT - suffer
from insufficient semantics definitions lacking preciseness and completeness. The po-
tential consequences are manyfold: Different persons might interprete the same model
in different ways. Furthermore, the foundation for systematic, precise model analysis
(e.g. consistency checks) and for model simulation or code generation is missing.

Some work aiming at a precise UML semantics definition has already been done or
has at least been started. Due to its very comprehensive syntax, this is a long lasting,
tedious task.

However, in this paper we consider UML-RT. More precisely, we deal with the syn-
tax and semantics definition of a sublanguage of UML-RT. In this setting we focus on
behavioural aspects modeled with UML-RT capsules: there are atomic capsules which
reside on a statechart as well as complex capsules which can also contain a statechart,
but which furthermore recursively contain a set of capsules communicating asynchro-
nously with each other and with the surrounding capsule via connectors.

We choose labeled transition systems as semantic domain for UML-RT - the reason
being twofold: on the one hand they are very appropriate for an operational semantics

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 768–782, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Formal Semantics of UML-RT 769

definition of (behavioural) modeling languages like UML-RT, on the other hand many
equivalence and refinement notions well-known from the process algebra area [9,5] are
defined with respect to labeled transition systems. Such notions are very appropriate
means for precise systematic model analysis. They can e.g. be used to define consis-
tency notions for UML-RT models.

The rest of the paper is structured as follows: In section 2 we precisely define the
syntax of UML-RT models, whereas in section 3 we precisely define their semantics.
Section 4 discusses related work. We conclude and discuss future work in section 5.

2 Syntax of UML-RT Models

We define the syntax of UML-RT models in two steps. At first we define the syntax
of UML-RT Statecharts. Then we define the syntax of UML-RT capsules using the -
already existing - syntax definition of UML-RT Statecharts. Note that we use the terms
UML-RT capsules and UML-RT models as synonyms.

2.1 UML-RT Statechart Terms

UML-RT Statecharts is a visual language. However, for our aim to define a formal
semantics, it is convenient to represent UML-RT Statecharts not visually but by textual
terms. This is also done in related work for “classical” Statecharts [8,15] as well as for
UML Statecharts [6,17].

Let N , T , Π be countable sets of state names, transition names, and events, respec-
tively. We denote events and actions by a, b, c, For a set M let M∗ denote the set of
finite sequences over M . Then, the set UML-SC of UML-RT Statechart terms is induc-
tively defined to be the least set satisfying the following conditions, where n ∈ N .

1. Basic term: s = [n] is a UML-RT Statechart term with type(s) = basic. There-
fore s is also called a basic term.

2. Or-term: If s1, . . . , sk are UML-RT Statechart terms for k > 0, ρ = {1, . . . , k},
l ∈ ρ, HT = {none, deep}, and T ⊆ TR =df T × ρ × Π × (Π ∪ {ε}) × ρ × HT
with ε /∈ Π , then s = [n, (s1, . . . , sk), l, T] is a UML-RT Statechart term with
type(s) = or. Therefore, s is also called an Or-term. Here, s1, . . . , sk are the
subterms of s, T is the set of transitions1 between the subterms of s, s1 is the
default subterm of s, l is called the active state index of s (or for short: the index of
s), and sl is the currently active subterm of s (or for short: sl is active). ε is called
the empty output.
Note that active state index l ∈ {1, . . . , k} denotes the l-th term within the k-
tuple (s1, . . . , sk) of the subterms of s. Analogously, note that components two
and five of a transition t = (t, i, e, a, j, ht) ∈ T - namely i and j - of an Or-term
s = [n, (s1, . . . , sk), l, T] refer to the i-th and j-th term of the k-tuple (s1, . . . , sk),
respectively, but not to the indexes of the states’ names in the k-tuple.
For each transition t = (t, i, e, a, j, ht) ∈ T , we define name(t) =df t, sou(t) =df

si, ev(t) =df e, act(t) =df a, tar(t) =df sj , and historyType(t) =df ht. name(t)

1 Later on, we will classify this kind of transitions as syntactic transitions.

770 M. von der Beeck

is called the transition name of t, ev(t) and act(t) are called the trigger part and
action part of t, respectively. sou(t) and tar(t) are called the source and target of
t, respectively. Furthermore, historyType(t) is called the history type of t. Finally,
(e, a) is called the label2 of t and is graphically represented as e/a or as t : e/a.

In both cases (Basic term and Or-term) we refer to n as the root name of s and
write root(s) =df n. We assume that all root names and transition names are mutually
disjoint, so that terms and transitions within UML-RT Statechart terms are uniquely
referred to by their names. For convenience, we sometimes write “state” instead of
“term” and abbreviate (s1, . . . , sk) by (s1..k).

As can be seen from our UML-RT Statechart term syntax we do not consider the fol-
lowing features of UML-RT Statecharts: entry and exit actions, interlevel transitions,
and pseudostates. However, entry and exit actions as well as interlevel transitions had
been included in our previous work [17], where we already defined a UML-RT State-
chart semantics. Due to lack of space we do not consider these features in this work,
where the UML-RT Statechart syntax only constitutes a part of the overall UML-RT
capsule syntax.

We exemplify our textual syntax of UML-RT Statecharts graphically by Fig. 1 show-
ing a complete UML-RT capsule which contains a UML-RT Statechart term S shown
as a rectangle with rounded corners and with (root) name nS in the upper part of the
figure:

S = [nS , (S5, S1), l, {t1, t2}] is a UML-RT Statechart term with type(S) = or, i.e.
S is an Or-term, where

– nS is the root name of S,
– {S1, S5} is the set of subterms of S, where

• S1 is an Or-term with S1 = [nS1, (S4, S2, S3), l′, {t3, t4, t5}],
• nS1 is the root name of S1,
• S5 is a basic term,
• nS5 is the root name of S5,

– S5 is the default subterm of S,
– l ∈ {1, 2} is the active state index of S, (but not shown in Fig. 1)
– {t1, t2} is the set of transitions between the subterms of S with

t1 = (t1, 1, e1, a1, 2, none) and t2 = (t2, 2, e2, a2, 1, none).

2.2 UML-RT Capsules

Let Nca, Npo, Nco be countable sets of capsule names, port names, and connector
names, respectively. Furthermore, let Prot, the set of protocols over Π , be defined as
Prot =df {pr | pr ⊆ Π × Π} and CO, the set of connectors over Π , be defined as
CO =df Nco × Npo × Npo ×Π∗. Then the set CAP of UML-RT capsules is inductively
defined to be the least set satisfying the following conditions:

1. Basic UML-RT Capsule:
If n ∈ Nca, po1, . . . , pol ∈ Npo for l ≥ 0, pri1 , . . . , pril

∈ Prot, S ∈ UML-SC
and σ ∈ Π∗, then

2 Later on, we will classify this type of labels as syntactic labels.

A Formal Semantics of UML-RT 771

ca = [n, (po1, . . . , pol), (pri1 , . . . , pril
), S, σ]

is a UML-RT capsule. More specifically, ca is also called a basic UML-RT capsule.
2. Complex Non-behavioral UML-RT Capsule:

If n ∈ Nca, po1, . . . , pol ∈ Npo for l ≥ 0, pri1 , . . . , pril
∈ Prot, ca1, . . . , cak are

UML-RT capsules for k > 0, and coi ∈ Nco×({po1, . . . , pol}∪
⋃k

j=1 Ports(caj))2×
Π∗ ⊆ CO for 1 ≤ i ≤ m for m ≥ 0, then

ca = [n, (po1, . . . , pol), (pri1 , . . . , pril
), (ca1, . . . , cak), (co1, . . . , com)]

is a UML-RT capsule. More specifically, ca is also called a complex non-
behavioural UML-RT capsule.

3. Complex Behavioral UML-RT Capsule:
If n ∈ Nca, po1, . . . , pol ∈ Npo for l ≥ 0, pri1 , . . . , pril

∈ Prot, S ∈ UML-SC,
σ ∈ Π∗, ca1, . . . , cak are UML-RT capsules for k > 0, and coi ∈ Nco ×
({po1, . . . , pol} ∪

⋃k
j=1 Ports(caj))2 × Π∗ for 1 ≤ i ≤ m for m ≥ 0, then

ca = [n, (po1, . . . , pol), (pri1 , . . . , pril
), S, σ, (ca1, . . . , cak), (co1, . . . , com)]

is a UML-RT capsule. More specifically, ca is also called a complex behavioural
UML-RT capsule.

For the three abovementioned cases the following notions are used:
n is called the name of ca, Ports(ca) =df {po1, . . . , pol} is called the set of ports of ca,
Prot(poj) =df prij for 1 ≤ j ≤ l is called the protocol of poj , S is called the Statechart
of ca, σ is called the input queue of ca, and Conn(ca) =df {co1, . . . , com} is called the
set of (UML-RT) connectors of ca.

Informally, a basic UML-RT capsule does not contain any capsules. In contrast, both
types of complex UML-RT capsules recursively contain capsules. Furthermore, a com-
plex non-behavioral UML-RT capsule does not contain a Statechart on its the top level,
whereas a complex behavioral UML-RT capsule contains a Statechart on its top level.

The UML-RT capsule syntax defined above does not support the following features:
conjugate ports, event priorities, do activities, and dynamic capsules.

In the subsequent sections we need the following definitions. Let Caps(poi) =df ca
for 1 ≤ i ≤ l and SubCaps(ca) =df {ca1, . . . , cak}, where ca1, . . . , cak are called
subcapsules of ca and ca is called parent capsule of cai for 1 ≤ i ≤ k . Furthermore,
we use projection functions Πj which are defined by Πj([x1, . . . , xm]) =df xj for
1 ≤ j ≤ m for m ≥ 2. Then, function type : Npo −→ {relay, end} is defined as
follows:

type(po) =df

⎧⎨
⎩

relay, if ∃ca ∈ CAP, co ∈ CO . po ∈ Ports(ca) ∧ co ∈ Conn(ca)
∧(po = Π2(co) ∨ po = Π3(co))

end, otherwise

Finally, we exemplify our textual syntax of UML-RT capsules graphically by Fig. 1:
ca = [nca, (po1, po2, po3), (pri1 , pri2 , pri3), S, σ, (ca1, ca2), (co1, co2, co3, co4)] is a
complex behavioural UML-RT capsule, where

772 M. von der Beeck

– nca is the name of ca,
– {po1, po2, po3} is the set of ports of ca,
– S is the Statechart of ca,3

– σ is the input queue of ca,
– ca1 and ca2 are subcapsules of ca (only shown as ’black boxes’ with names nca1

and nca2, respectively, i.e. without any interior structure),
– and {co1, . . . , co4} is the set of connectors of ca.

The protocols prij of poj for 1 ≤ j ≤ 3 are not presented graphically. Furthermore,
the ports of ca1 and ca2 are not named.

nca

nca1 nca2

po2
po3

po1

co2
co4

σ

nS

nS1

t4

t5

nS2 nS3

nS4

nS5

t3

co3

co1

t1: e1/a1

t2: e2/a2

Fig. 1. UML-RT Model Example

3 Semantics of UML-RT Models

We follow the SOS (Structured Operational Semantics) approach of Plotkin [10]: we
take labeled transition systems as semantic domain and use SOS rules to define the
semantics of UML-RT models in an operational and modular approach, such that com-
prehension as well as flexibility (e.g. with respect to subsequent enhancements) are
supported - without restricting preciseness.

In order to support a modular semantics definition we do not only follow Plotkin’s
SOS approach, but we also split up the overall semantics definition into three steps:

1. UML-RT Statechart semantics (section 3.1)
2. UML-RT connector semantics (section 3.2)
3. UML-RT capsule semantics = UML-RT model semantics (section 3.3)

In the first and in the second step the semantics of UML-RT Statecharts and UML-
RT connectors are defined independently from each other. Then, in the third step, we
use these semantics definitions to define the UML-RT capsule semantics.

3 The structure of S was already described at the end of Section 2.1.

A Formal Semantics of UML-RT 773

3.1 UML-RT Statechart Semantics

The following formal semantics of UML-RT Statecharts is based on our earlier work
[17].

To define the UML-RT Statechart semantics, we proceed as follows: In a first step
we define how the state resulting from transition execution is computed. We use the
solution in a second step to formally define the semantics of UML-RT Statecharts.

Computing the Next State. We define function next which computes the state which
results from a transition execution. This function will be used in the SOS rule which
handles transition execution (in an OR-state).

Given a UML-RT Statechart transition t with history type ht = historyType(t)
and target s, function next : HT × UML-SC −→ UML-SC computes the UML-RT
Statechart term s′ = next(ht, s) which results after execution of transition t. In order
to simplify the presentation of next as well as the presentation of several subsequent
definitions, we use the substitution notation .[./.] as follows: If t is a term, then t[a/b] is
the term which results from replacing all occurrences of a in t by b. Furthermore, for
l ∈ {1, . . . , k} we abbreviate (s1, . . . , sl−1, s

′
l, sl+1, . . . , sk) by (s1..k)[sl/s′

l
].

next(ht, [n]) =df [n]

next(ht, [n, (s1..k), l, T]) =df

{
[n, (s1..k), l, T] if ht = deep
[n, (s1..k)[s1/default(s1)], 1, T] if ht = none

The definition of next uses function default : UML-SC −→ UML-SC which es-
pecially defines for an Or-state that its currently active substate is given by its default
substate.

default([n]) =df [n]
default([n, (s1..k), l, T]) =df [n, (s1..k)[s1/default(s1)], 1, T]

UML-RT Statechart Semantics Definition. The UML-RT Statechart semantics will
be defined for the textual UML-RT Statechart syntax as given by the set UML-SC of
UML-RT Statechart terms.

We define the semantics by function [[.]] : UML-SC −→ LTS, where LTS is the set
of labeled transition systems and where the (semantic) transitions4 work on single input
events e ∈ Π . The semantics [[s]] of a UML-RT Statechart term s ∈ UML-SC is given
by the labeled transition system (UML-SC, L, −→, s) ∈ LTS, where

– UML-SC is the set of states,5

– L = Π × (Π ∪ {ε}) × {0, 1} is the set of (semantic) labels6.
– −→ ⊆ UML-SC × L × UML-SC is the transition relation, and
– s is the start state.

4 We use the term “semantic transition” in order to distinguish transitions in the semantics of
UML-RT Statecharts from the already defined (syntactic) transitions (cf. Section 2.1) in the
syntax of UML-RT Statecharts, more precisely in UML-RT Statechart terms of type Or.

5 This implies that each state of the transition system is given by a UML-RT Statechart term.
6 Analogously to the distinction between syntactic and semantic transitions we also distinguish

between syntactic and semantic labels. Syntactic labels have been defined in Section 2.1.

774 M. von der Beeck

For the sake of simplicity, we write s
e

a
→f s′ instead of (s, (e, a, f), s′) ∈ −→ and

s � e→f instead of � ∃s′, a . s
e

a
→f s′, where s and s′ are called the source and the target

of these (semantic) transitions, respectively, e and a are called the input and output,
respectively, and f is called the flag. We say that term s may perform a (semantic)
transition with input e, output a, and flag f (or for short: with (semantic) label (e, a, f))
to term s′. If appropriate, we do no mention the input, output, and/or target of the
transition. Intuitively, flag f states whether a semantic transition is performed,

– either because at least one (syntactic) UML-RT Statechart transition is taken (in
this case we have f = 1, denoted as positive flag)

– or without taking any (syntactic) UML-RT Statechart transition (in this case we
have f = 0, denoted as negative flag). In this case only the input is “consumed”,
whereas source and target are identical. This is usually denoted as a stuttering step.

The flag is needed to assure that stuttering steps can only occur, if no non-stuttering
step is possible. This assures a lower-first priority mechanism for transition execution
in our UML-RT Statechart semantics.

Transition relation −→ is defined by the SOS rules of Table 1 using rule format:

name
premise

conclusion

Explanation of SOS rules of UML-RT Statechart semantics

– BAS (stuttering)
A basic state may perform a semantic transition with arbitrary input event e, empty
output ε, and negative flag such that the state does not change, i.e. that the input is
just consumed.

– OR-1 (progress)
If t is a UML-Statechart transition of an Or-state s with trigger part e, then s can
perform a semantic transition with input e and positive flag if sl cannot perform a
semantic transition with input e and positive flag (sl � e→1). The condition assures the
lower-first priority of UML-RT Statecharts.
The target of the semantic transition differs from its source by changing the cur-
rently active substate from sl to si, because sl and si are the source and target of
the UML-Statechart transition t, respectively. Furthermore, the dynamic informa-
tion of si is updated according to the history type ht of t using function next. This
update is performed by the substitution (s1..k)[si/next(ht,si)]

.
– OR-2 (propagation of progress)

If a substate of an Or-state may perform a semantic transition with a label contain-
ing a positive flag, then the Or-state may perform a semantic transition with the
same label.

– OR-3 (propagation of stuttering)
If a substate of an Or-state may perform a semantic transition with a label contain-
ing a negative flag (i.e. no UML-RT Statechart transition can be taken within the
Or-state) and if the Or-state cannot perform a semantic transition with positive flag,
then the Or-state may also perform a semantic transition with the same label (in
particular with negative flag).

A Formal Semantics of UML-RT 775

The rules define that for every input event e ∈ Π and for every state s ∈ UML-SC

– either a semantic transition s
e

a
→ 1 s′ with output a ∈ Π ∪ {ε} and state s′ ∈

UML-SC
– or a semantic transition s

e

ε
→ 0 s with empty output ε and without state change

exists.

Table 1. SOS rules of the UML-RT Statechart semantics

BAS
true

[n] e

ε
→0 [n]

OR-1
(, l, e, a, i, ht) ∈ T, sl � e→1

[n, (s1..k), l, T] e

a
→1 [n, (s1..k)[si/next(ht,si)]

, i, T]

OR-2
sl

e

a
→1 s′

l

[n, (s1..k), l, T] e

a
→1 [n, (s1..k)[sl/s′

l]
, l, T]

OR-3
sl

e

ε
→0 sl, [n, (s1..k), l, T] � e→1

[n, (s1..k), l, T] e

ε
→0 [n, (s1..k), l, T]

3.2 UML-RT Connector Semantics

Connectors of UML-RT support the modeling of asynchronous communication be-
tween UML-RT capsules. In general, their behaviour is not precisely defined, but con-
stitutes a semantic variation point e.g. to allow modeling of unreliable communication
channels. However, we define UML-RT connectors as unbounded FIFO (First-In First-
Out) queues.

The semantics [[co]]c of a UML-RT connector co ∈ CO is given by the labeled tran-
sition system (CO, L′, →c , co) ∈ LTS, where

– CO is the set of states,
– L′ = {τ} ∪ {in(sig) via po | sig ∈ Π, po ∈ Npo}

∪ {out(sig) via po | sig ∈ Π, po ∈ Npo} is the set of labels (with τ /∈ Π),
– →c ⊆ CO × L′ × CO is the transition relation, and
– co is the start state.

We distinguish whether a capsule or a connector uses a signal sig as an input or
as an output by writing in(sig) or out(sig), respectively. This distinction is necessary
for the definition of synchronization between a capsule cai and a connector coj . This
synchronization occurs as an internal communication of the parent capsule ca of cai,
where coj is contained in the set of ports of ca. Synchronization is hidden from the
environment of ca, only an internal action τ can be observed outside ca. (See e.g. [9]).

We write co
l→c co′ instead of (co, l, co′) ∈ →c and say that connector co may

perform a transition with label l to co′. Transition relation →c is defined by SOS rules
co1 and co2 shown in Table 2 using three relations =̂, >, le ⊆ Npo × Npo defined by:

776 M. von der Beeck

po =̂ po′ :⇐⇒ ∃ca ∈ CAP :
(Caps(po) ∈ SubCaps(ca) ∧ Caps(po′) ∈ SubCaps(ca))

po > po′ :⇐⇒ Caps(po′) ∈ SubCaps(Caps(po))
po ≤ po′ :⇐⇒ po=̂po′ ∨ po′ > po

Relations > and ≤ are used in co1 and co2 to compare the hierarchy level of ports.

Table 2. SOS rules of UML-RT connector semantics

co1
true

[n, po, po′, σ] in(sig)viapo→c [n, po, po′, 〈sig〉 :: σ]

(po > po′ ∧ sig ∈ In(Prot(po)))
∨

(po ≤ po′ ∧ sig ∈ Out(Prot(po)))

co2
true

[n, po′, po, σ :: 〈sig〉] out(sig)viapo→c [n, po′, po, σ]

(po ≤ po′ ∧ sig ∈ In(Prot(po)))
∨

(po > po′ ∧ sig ∈ Out(Prot(po)))

Explanation of SOS rules of UML-RT connector semantics

– co1 (input event for connector)
Informally, a connector can read an input event from a port po, if po is a port of this
connector and if the event fulfils the protocol of the port.

– co2 (output event from connector)
Informally, a connector can write an output event to a port po, it po is a port of this
connector and if the event fulfils the protocol of the port.

3.3 UML-RT Capsule Semantics

In the following we distinguish two cases to define the semantics of UML-RT capsules:

– In the ’general case’ we use the UML-RT Statechart semantics of section 3.1 as
well as the UML-RT connector semantics of section 3.2 to define the semantics of
a UML-RT capsule generally, i.e. not restricted to one of the capsule’s ports.

– In the ’port-specific case’ we use the ’general case semantics’ to define the seman-
tics of a UML-RT capsule restricted to one of its ports.

General Case. The semantics [[ca]]′ of a UML-RT capsule ca ∈ CAP is given by the
labeled transition system (CAP, L′, →�, ca) ∈ LTS, where

– CAP is the set of states,
– L′ is defined as before (in the semantics of UML-RT connectors),
– →� ⊆ CAP × L′ × CAP is the transition relation, and
– ca is the start state.

A Formal Semantics of UML-RT 777

Similar to the case of UML-RT Statechart semantics we write ca
l→� ca′ instead of

(ca, l, ca′) ∈ →�. We say that capsule ca may perform a (semantic) transition with
label l to capsule ca′. For l = τ we say that ca may perform a silent transition to ca′.

Transition relation →� is defined by a set of SOS rules presented in Table 3 using the
same rule format as in the case of UML-RT Statecharts as well as the rule format

name
premise

conclusion 1
conclusion 2

(condition)

being an abbreviation for two rules with identical premises and identical conditions:

name
premise

conclusion 1
(condition) and name

premise
conclusion 2

(condition)

We abbreviate tuples (x1, . . . , xl) by x̄ and we use functions In, Out : Prot −→ Π
defined by In(pr) =df Π1(pr) and Out(pr) =df Π2(pr), respectively. In addition,
function Set is defined by Set([x1, . . . , xn]) =df {x1, . . . , xn} transforming a tuple of
elements to a set of these elements. The operator :: concatenates two lists to a single
list. The list operator 〈〉 applied to an argument sig produces a list which contains sig.

For the case sig = ε we have 〈sig〉 = 〈ε〉 def=〈〉, i.e. the empty list.
Note that the premises of rules R2 and R3 use (semantic) transitions of the UML-

RT Statecharts semantics, whereas the premises of rules R5-R8 use transitions of the
UML-RT connector semantics.

Explanation of SOS rules of UML-RT capsule semantics (general case)

– R1 (storing an input event in input queue)
A capsule can read event in(sig) at port po and can store it as event sig in its input
queue.

– R2 (processing and storing input queue events)
If Statechart term S may perform a transition with input sig, output sig′, and flag
f to term S′, then a capsule with Statechart S can read event sig from its input
queue, can produce event sig′, and can store event sig′ in its input queue.

– R3 (processing an input queue event and producing an output event)
If Statechart term S may perform a transition with input sig, output sig′, and flag f
to term S′, then a capsule with Statechart S can read event sig from its input queue
and can produce event out(sig′) which is offered at port po.

– R4 (propagation of internal communication)
If a capsule ca can perform a silent transition to capsule ca′, then a parent capsule
of ca can also perform a silent transition.

– R5 (communication from capsule to connector)
If capsule ca may perform a transition with label out(sig)viapo to ca′ and if con-
nector co may perform a transition with label in(sig)viapo to co′, then a parent
capsule of ca and co may perform a silent transition to a parent capsule of ca′ and
co′, if po is a port of ca. Informally, capsule ca offers event sig at its port po and
connector co reads event sig at this port.

– R6 (communication from connector to capsule)
If connector co may perform a transition with label out(sig)viapo to co′ and if

778 M. von der Beeck

Table 3. SOS rules of UML-RT capsule semantics (general case)

R1
true

[n, p̄o, p̄r, S, σ] in(sig)viapo→� [n, p̄o, p̄r, S, 〈sig〉 :: σ]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] in(sig)viapo→� [n, p̄o, p̄r, S, 〈sig〉 :: σ, c̄a, c̄o]

∃j : [Πj(p̄o) = po
∧

sig ∈ In(Πj(p̄r))]
∧

type(po) = end

R2
S

sig

sig′→f S′

[n, p̄o, p̄r, S, σ :: 〈sig〉] τ→� [n, p̄o, p̄r, S′, 〈sig′〉 :: σ]
[n, p̄o, p̄r, S, σ :: 〈sig〉, c̄a, c̄o] τ→� [n, p̄o, p̄r, S′, 〈sig′〉 :: σ, c̄a, c̄o]

R3
S

sig

sig′→f S′

[n, p̄o, p̄r, S, σ :: 〈sig〉] out(sig′)viapo→� [n, p̄o, p̄r, S′, σ]

[n, p̄o, p̄r, S, σ :: 〈sig〉, c̄a, c̄o] out(sig′)viapo→� [n, p̄o, p̄r, S′, σ, c̄a, c̄o]

∃j : [Πj(p̄o) = po
∧

sig′ ∈ Out(Πj(p̄r))]
∧

type(po) = end

R4
ca

τ→� ca′

[n, p̄o, p̄r, c̄a, c̄o] τ→� [n, p̄o, p̄r, c̄a[ca/ca′], c̄o]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] τ→� [n, p̄o, p̄r, S, σ, c̄a[ca/ca′], c̄o]

(ca ∈ Set(c̄a))

R5
ca

out(sig)viapo→� ca′ co
in(sig)viapo→c co′

[n, p̄o, p̄r, c̄a, c̄o] τ→� [n, p̄o, p̄r, c̄a[ca/ca′], c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] τ→� [n, p̄o, p̄r, S, σ, c̄a[ca/ca′], c̄o[co/co′]]

ca ∈ Set(c̄a)
∧

co ∈ Set(c̄o)
∧

po ∈ Ports(ca)

R6
co

out(sig)viapo→c co′ ca
in(sig)viapo→� ca′

[n, p̄o, p̄r, c̄a, c̄o] τ→� [n, p̄o, p̄r, c̄a[ca/ca′], c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] τ→� [n, p̄o, p̄r, S, σ, c̄a[ca/ca′], c̄o[co/co′]]

ca ∈ Set(c̄a)
∧

co ∈ Set(c̄o)
∧

po ∈ Ports(ca)

R7
co

in(sig)viapo→c co′

[n, p̄o, p̄r, c̄a, c̄o] in(sig)viapo→� [n, p̄o, p̄r, c̄a, c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] in(sig)viapo→� [n, p̄o, p̄r, S, σ, c̄a, c̄o[co/co′]]

co ∈ Set(c̄o)
∧

po ∈ Set(p̄o)

R8
co

out(sig)viapo→c co′

[n, p̄o, p̄r, c̄a, c̄o] out(sig)viapo→� [n, p̄o, p̄r, c̄a, c̄o[co/co′]]
[n, p̄o, p̄r, S, σ, c̄a, c̄o] out(sig)viapo→� [n, p̄o, p̄r, S, σ, c̄a, c̄o[co/co′]]

co ∈ Set(c̄o)
∧

po ∈ Set(p̄o)

capsule ca may perform a transition with label in(sig)viapo to ca′, then a parent
capsule of ca and co may perform a silent transition to a parent capsule of ca′ and
co′, if po is a port of ca. Informally, connector co offers event sig at its port po and
capsule ca reads event sig at this port.

A Formal Semantics of UML-RT 779

– R7 (propagation of external input communication)
If connector co may perform a transition with label in(sig)viapo to co′, then a
parent capsule of co may perform a transition with the same label to a parent capsule
of co′, if po is a port of the parent capsule.

– R8 (propagation of external output communication)
If connector co may perform a transition with label out(sig)viapo to co′, then a
parent capsule of co may perform a transition with the same label to a parent capsule
of co′, if po is a port of the parent capsule.

Note that due to the modularity of the UML-RT capsule syntax and semantics defi-
nition, the syntax and semantics can be easily enhanced. For example, in order to con-
sider UML-RT Statecharts with interlevel transitions and with entry and exit actions,
we could use the (enhanced) UML-RT Statechart terms UML-SC′ and the transition
relation −→′ of our earlier work [17]. Then we would only have to replace

– the set of UML-RT Statechart terms UML-SC in Section 2.2 in the definitions of
a basic UML-RT capsule and of a complex behavioural UML-RT capsule by the
(enhanced) UML-RT Statechart terms UML-SC′ and

– the transition relation in the premise of the SOS rules R2 and R3 in the same
section by transition relation −→′.

Port-specific Case. As already mentioned at the end of Section 1, process-algebraic
equivalence and refinement notions could be used for systematic analysis of UML-RT
models. Engels et al. [3] follow this approach to define UML-RT consistency notions.
As a precondition, it is neccessary to define equivalence and refinement notions on the
semantics of UML-RT. However, in some cases such a notion should not be defined
on the ”overall” UML-RT capsule semantics, but on a UML-RT capsule semantics ”re-
stricted to” a port of the considered capsule. Therefore, we now define the port-specific
semantics of a UML-RT capsule for a given port of the capsule using our already de-
fined general case UML-RT capsule semantics.

The port-specific semantics [[ca]]po of a UML-RT capsule ca ∈ CAP for port po (with
po ∈ Ports(ca)) is given by the labeled transition system (CAP, L′′, →�po , ca) ∈ LTS,
where

– CAP is the set of states,
– L′′ = {τ} ∪ Π is the set of labels,
– →�po ⊆ CAP × L′′ × CAP is the transition relation defined by the three SOS

rules7 presented in Table 4, and
– ca is the start state.

Explanation of SOS rules of UML-RT capsule semantics (port-specific case)
Informally, the port-specific semantics of a UML-RT capsule ca for a port po of this
capsule constitutes a restriction of the general case semantics of ca, as follows:

7 Note that the premises of the rules use the transition relation of the general case UML-RT
capsule semantics.

780 M. von der Beeck

Table 4. SOS rules of UML-RT capsule semantics (port-specific case)

P1
ca

dir(sig)viapo→� ca′

ca
sig→�po ca′

(dir ∈ {in, out})

P2
ca

dir(sig)viapo′→� ca′

ca
τ→�po ca′

dir ∈ {in, out}
∧

po �= po′

P3
ca

τ→� ca′

ca
τ→�po ca′

– P1
A signal sig occuring at port po is communicated - however without any annota-
tions like ’in’, ’out’ and ’via po’.

– P2
No signal occuring at another port po′ is communicated. In this case only the inter-
nal action τ is communicated.

– P3
If a silent transition can occur in the general case semantics, then a silent transition
can also occur in the port-specific semantics.

4 Related Work

Our work was motivated by results from several areas: a diversity of formal semantics
definitions of Statecharts (e.g. [8,15,6,17,7,16]) and the formal semantics definition of
SDL from Godskesen [4].

In addition, our work was influenced by the work of Engels et al. [3]. In contrast to
them, we do not restrict to atomic UML-RT models, but consider complex, hierarchical
ones. Furthermore, we select labeled transition systems as semantic domain, whereas
Engels et al. use CSP processes [5]. Finally, we explicitly distinguish between internal
and external communication in our UML-RT semantics definition.

A lot of work exists which deals with formal semantics definition in the context of
UML:

Reggio et al. [11] consider classes associated with state machines. They define a
formal semantics for flat UML state machines in terms of transition systems.

Rumpe [12] defines a formal semantics for flat automata (i.e. not for hierarchical
systems) based on traces.

Damm et al. [2] define the syntax and formal semantics for a subset krtUML of
UML encompassing - among others - asynchronous signal based communication as
well as synchronous communication using operation calls. Symbolic transition sys-
tems are chosen as semantic domain. krtUML models do not support hierarchical state-
machines, whereas rtUML-models - a superset of krtUML models - do provide this

A Formal Semantics of UML-RT 781

support. However, a translation from a rtUML model to a krtUML model is (only)
sketched. In addition, Damm et al. provide quite a detailed and well-classified overview
of related work concerning formal UML semantics definitions.

Shankar and Asa [14] also deal with formal semantics definition of real-time UML
behaviour, namely concurrently interacting statecharts and sequence diagrams, however
they do not cover hierarchical models and use propositional linear temporal logic for
defining a compositional semantics.

Arons et al. [1] present a formal semantics for a subset of UML encompassing class
diagrams and state machine diagrams. They use transition systems as semantic domain.
However, the considered UML subset is restricted to flat models.

5 Conclusions and Further Work

We presented a precise and modular syntax and semantics definition of a sublanguage
of UML-RT. We followed Plotkin’s style of Structured Operational Semantics (SOS)
based on labeled transition systems as semantic domain. To the best of our knowledge
this is the first formal semantics definition for hierarchical UML-RT models.

In future we will consider the semantics of UML 2.0 instead of UML-RT. In addition,
we want to examine and adapt existing equivalence and refinement notions to be used
for systematic analysis of UML-RT and UML 2.0 models.

References

1. T. Arons, J. Hooman, H. Kugler, A. Pnueli, and M. van der Zwaag. Deductive verification of
uml models in tlpvs. In T. Baar, A. Strohmeier, A. M. D. Moreira, and S. J. Mellor, editors,
UML, volume 3273 of Lecture Notes in Computer Science, pages 335–349. Springer, 2004.

2. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding uml: A formal semantics
of concurrency and communication in real-time uml. In F. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, editors, FMCO, volume 2852 of Lecture Notes in Computer
Science, pages 71–98. Springer, 2002.

3. G. Engels, R. Heckel, J. Kuester, and L. Groenewegen. Consistency-preserving model evo-
lution through transformations. In J.-M. Jezequel, H. Hussmann, and S. Cook, editors, UML
2002 - The Unified Modeling Language, volume 2460 of Lecture Notes in Computer Science,
pages 212–226. Springer, 2002.

4. J. Godskesen. An operational semantic model for basic sdl. Technical Report TFL RR
1991-2, Telecommunications Research Laboratory (TFL), Horsholm, 1991.

5. C. Hoare. Communicating Sequential Processes. Prentice Hall, London, UK, 1985.
6. D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of UML Stat-

echart diagrams. In Formal Methods for Open Object-based Distributed Systems. Chapman
& Hall, 1999.

7. G. Lüttgen, M. von der Beeck, and R. Cleaveland. A Compositional Approach to Statecharts
Semantics. In Proc. of ACM SIGSOFT Eighth Int. Symp. on the Foundations of Software
Engineering (FSE-8), pages 120–129. ACM, 2000.

8. A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of Statecharts. In U. Montanari
and V. Sassone, editors, CONCUR ’96 (Concurrency Theory), volume 1119 of Lecture Notes
in Computer Science, pages 687–702, Pisa, Italy, August 1996. Springer-Verlag.

9. R. Milner. Communication and Concurrency. Prentice Hall, London, UK, 1989.

782 M. von der Beeck

10. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19,
Computer Science Department, Aarhus University, Denmark, 1981.

11. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active Classes and
Associated State Machines – A Lightwight Formal Approach. In Fundamental Approaches
to Software Engineering, number 1783 in LNCS, pages 127–146. Springer, 2000.

12. B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme. PhD thesis,
Institut für Informatik, Technische Universität München, 1996.

13. B. Selic, G. Gullekson, and P. Ward. Real-time Object Oriented Modeling and Design. J.
Wiley, 1994.

14. S. Shankar and S. Asa. Formal semantics of uml with real-time constructs. In P. Stevens,
J. Whittle, and G. Booch, editors, UML, volume 2863 of Lecture Notes in Computer Science,
pages 60–75. Springer, 2003.

15. A. Uselton and S. Smolka. A compositional semantics for Statecharts using labeled transition
systems. In B. Jonsson and J. Parrow, editors, CONCUR ’94 (Concurrency Theory), volume
836 of Lecture Notes in Computer Science, pages 2–17, Uppsala, Sweden, August 1994.
Springer-Verlag.

16. M. von der Beeck. A Concise Compositional Statecharts Semantics Definition. In Proc. of
FORTE/PSTV 2000, pages 335–350. Kluwer, 2000.

17. M. von der Beeck. A structured operational semantics for UML-statecharts. Software and
Systems Modeling, 1(2):130–141, 2002.

Workshops and Symposia
at MoDELS 2006

Thomas Kühne

Darmstadt University of Technology
Hochschulstr. 10

64289 Darmstadt, Germany
kuehne@informatik.tu-darmstadt.de

1 Introduction

Following tradition, MoDELS 2006 hosted a number of workshops and symposia.
They provided collaborative forums for groups of participants to conduct inten-
sive discussions on a particular subject. They complemented the main conference
by providing particular focus on important subject areas and enabling a high
degree of interactivity.

MoDELS 2006 featured 11 workshops (10 in 2005) and three symposia (two in
2005) during the first three days of the conference. In addition to the Doctorial-
and Educators- symposia, which were already successfully held in 2005, a sym-
posium on UML semantics was held for the first time at MoDELS 2006. The
proposal for this new event was initially among the workshop proposals but due
to its organization principles we, and its organizers, agreed that it fitted more
appropriately under the heading of a symposium.

Keeping another time-tested tradition of the MoDELS/UML series, I formed
an international workshop selection committee. The following high-caliber re-
searchers agreed to evaluate and select from the submitted workshop proposals:

– Jean-Michel Bruel (University of Pau, France)
– Martin Glinz (University Zürich, Switzerland)
– Reiko Heckel (University of Leicester, England)
– Jens Jahnke (University of Victoria, Canada)
– Hans Vangheluwe (McGill University, Canada)
– Jon Whittle (George Mason University, USA)

Out of 18 workshop proposals we selected 11 workshops which are detailed in
the following section. Six of these have a history in the MoDELS/UML series
and represented a continuation of ongoing discussions on important topics. Five
of the accepted workshops featured new topics, further broadening the scope of
MoDELS, compared to its focus on UML in the past.

We are convinced that this blend of established and innovative workshop
themes has made the MoDELS 2006 satellite events a success worthwhile at-
tending. A corresponding post-conference proceedings will be published in the
LNCS series by Springer Verlag, featuring summaries as well as revised selected
papers from all symposia and workshops.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 783–790, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

784 T. Kühne

2 Detailed List of Workshops

W1: Aspect-Oriented Modeling

Organizers: Omar Aldawud (Illinois Institute of Technology, USA), Walter
Cazzola (University of Milano, Italy), Tzilla Elrad (Illinois Institute of Tech-
nology, USA), Jeff Gray (University of Alabama at Birmingham, USA), Jörg
Kienzle (McGill University, Canada), Dominik Stein (University of Duisburg-
Essen, Germany)

Abstract: The Aspect-Oriented Modeling (AOM) workshop brings together re-
searchers and practitioners from two communities: aspect-oriented software
development (AOSD) and software model engineering. This workshop pro-
vides a forum for presenting new ideas and discussing the state of research
and practice in modeling various kinds of crosscutting concerns at different
levels of abstraction. The goals of the workshop are to identify and discuss
the impacts of AOSD technologies on model engineering and how model
engineering can affect and improve aspect-oriented technologies.

URL: http://www.aspect-modeling.org/models06

W2: Critical Systems Development Using Modeling Languages

Organizers: Siv Hilde Houmb (Norwegian University of Technology and Sci-
ence, Norway), Geri Georg (Colorado State University, USA), Jan Jürjens
(TU München, Germany), Robert France (Colorado State University, USA)

Abstract: High quality development of critical systems, such as real-time, de-
pendable, safety-critical or security-critical systems is difficult. Formal meth-
ods can be effective tools for ensuring correctness but often time-to-market
and minimal cost are given higher priority.

Modeling languages offer an unprecedented opportunity for high qual-
ity development of critical systems that is feasible in an industrial con-
text. They offer a variety of rigor from informal to precise. Along with the
tools available for analysis, testing, simulation and transformation, these lan-
guages are well fitted for every-day development of systems in an industrial
setting.

Furthermore, the ability of component-based and aspect-oriented soft-
ware engineering to address non-functional properties has emerged as an
important paradigm for handling complexity. The workshop therefore also
addresses issues related to the integration of non-functional property expres-
sion, evaluation and prediction in secure systems development. This includes
semantic issues, questions of modeling language definition, support for au-
tomation, MDA-based approaches and tool-support.

URL: http://www.cs.colostate.edu/csduml2006

Workshops and Symposia at MoDELS 2006 785

W3: Metamodels, Schemas, Grammars and Ontologies
for Reverse Engineering

Organizers: Jean-Marie Favre (University of Grenoble, France), Dragan Gaše-
vić (Simon Fraser University, Canada), Ralf Lämmel (Microsoft, USA), An-
dreas Winter (University of Mainz, Germany)

Abstract: The workshop brings together researchers from different communi-
ties to study the use of meta technologies in the context of reverse engineer-
ing and software evolution. This workshop is specifically focused on meta
technologies in a generalized sense of “language descriptions”: metamod-
els, schemas, grammars and ontologies. In fact Model Driven Engineering
as the “next software engineering paradigm” must take into account the
evolution of existing (legacy) software. After all, the software industry is
still code-centric, and the huge amount of existing software cannot be ig-
nored. Recovery of models from existing assets through reverse engineering
is a key challenge in software engineering today. Although the importance of
metamodels, schemas, grammars and ontologies is generally acknowledged
in reverse engineering, as of yet, the study of these artifacts lacks a common
umbrella – hence this workshop.

URL: http://www.planetmde.org/atem2006/

W4: Quality in Modeling

Organizers: Ludwik Kuzniarz (Blekinge Institute of Technology, Sweden), Jean
Louis Sourrouille (INSA Lyon, France), Ragnhild Van Der Straeten (Vrije
Universiteit Brussel, Belgium), Miroslaw Staron (IT University, Sweden),
Michel Chaudron (Eindhoven University of Technology, The Netherlands),
Alexander Förster (University of Paderborn, Germany), Gianna Reggio (Uni-
versità di Genova, Italy)

Abstract: Quality assessment and assurance is an important part of software
engineering. The issues of software quality management are widely researched
and approached from multiple perspectives and viewpoints. The introduction
of a new paradigm in software development—namely Model Driven Develop-
ment (MDD)—raises new challenges in software quality management, and as
such should be given special attention. The issues of early quality assessment
based on models at a high abstraction level and building prediction models
for software quality are important from the software engineering perspective.
The workshop is intended to provide a premier forum for discussions related
to software quality and MDD.

URL: http://www.ituniv.se/∼miroslaw/QiM.htm

W5: Model Driven Development of Advanced User Interfaces

Organizers: Alexander Bödcher (University of Kaiserslautern, Germany), Hein-
rich Hußmann (University of Munich, Germany), Andreas Pleuß (University

786 T. Kühne

of Munich, Germany), Stefan Sauer (University of Paderborn, Germany),
Jan Van den Bergh (Hasselt University, Belgium)

Abstract: The workshop will be a platform for discussing the modeling of ad-
vanced user interfaces, such as interfaces supporting complex interactions,
visualizations, multimedia representations, multi-modality, adaptability or
customization. It should contribute to a better integration of knowledge from
the human-computer and human-machine interaction communities and the
software engineering community. The current workshop builds up on the re-
sults of its predecessor held at MoDELS 2005. The guiding principle is the
demand for a flexible composition of various different models to support the
model driven development of user interfaces with a high degree of usability
and customization.

URL: http://planetmde.org/mddaui2006/

W6: Modeling and Analysis of Real-Time and Embedded Systems

Organizers: Sébastien Gérard (Commissariat à l’Energie Atomique, France),
Susanne Graf (Verimag, France), Iulian Ober (Toulouse University, France),
Øystein Haugen (University of Oslo, Norway), Bran Selic (IBM Rational
Software, Canada)

Abstract: The MDA (Model Driven Architecture) initiative of OMG puts
forward the idea that future process development will be centered around
models, thus keeping application development, and underlying platform tech-
nology as separate as possible. The aspects influenced by the underlying plat-
form technology concern mainly non-functional aspects and communication
primitives. The first significant result of the MDA paradigm for engineers
is the possibility of building application models that can be conveniently
ported to new, emerging technologies (implementation languages, middle-
ware, etc.) with minimal effort and risk. In addition, it offers the poten-
tial for models to be analyzed either directly or through a model trans-
formation to validate and/or verify real-time properties such schedulability
and performance. In the area of distributed, real-time and embedded sys-
tems (DRES), this model-oriented trend is also very active and promising.
However, DRES have some very specific requirements. The purpose of this
workshop is to provide an opportunity to gather researchers and industrial
practitioners to survey existing efforts related to modeling and model-based
analysis of DRES. Moreover, to exchange models with the aim of apply-
ing formal validation tools and achieving interoperability, it is also impor-
tant to have a common understanding of the semantics of the modeling
notations.

URL: http://www.martes.org/2006

Workshops and Symposia at MoDELS 2006 787

W7: OCL for (Meta-) Models in Multiple Application Domains

Organizers: Dan Chiorean (Babes-Bolyai University, Romania), Birgit Demuth
(Technische Universität Dresden, Germany), Martin Gogolla (University of
Bremen, Germany), Jos Warmer (Ordina, The Netherlands)

Abstract: The requirements that the modeling community wants to see sup-
ported today by OCL go far beyond the initial requirements, when OCL
was conceived as a language meant to support precise modeling “only”. The
advent of the MDA (Model Driven Architecture) vision and the rapid ac-
ceptance of MDE (Model Driven Engineering) emphasize new application
domains (like Semantic Web or Domain Specific Languages) and call for
new OCL functionalities. Constructing compilable models and automatically
generating complete applications code are among the main MDA objectives.
OCL plays a pivotal role in accomplishing them, requiring both language ex-
tension by including imperative functionalities and the development of tools
supporting model compilation. OCL has to be redefined from “a formal lan-
guage used to describe expressions on UML models” to a formal language
meant to describe model properties in MOF-based languages.

This year’s OCL workshop will provide the opportunity for researchers,
tool developers, and users to meet and discuss these developments and their
consequences on OCL and its pragmatic usage.

URL: http://st.inf.tu-dresden.de/OCLApps2006

W8: Perspectives on integrating MDA and V&V

Organizers: David Hearnden & Jörn Guy Süß (The University of Queensland,
Australia), Nicolas Rapin (Commissariat à l’Energie Atomique, France),
Benoit Baudry (IRISA, France)

Abstract: MDA and its related approaches (DSL, MDE, . . .) primarily revolve
around manual refinement and automated transformation of models. This
approach is successful at quickly generating results. However, it is difficult
to gauge the quality of those results. Is the result of a transformation re-
ally what the user intended? Does the computed result of a transformation
really conform with its specified result? Such questions about intended and
specified behavior usually delineate the domain of Validation and Verifica-
tion (V&V). V&V is an established area of research, and a transfer of ideas
between V&V and MDA might help to improve quality and reliability of
MDA and induce a new conceptual way of thinking in established V&V.
The emergence of model-based testing can be seen as a first result of such
a transfer. However, we believe important challenges in model-based test-
ing still remain. Moreover, it is crucial to go beyond model-based testing
and take a truly model-driven-development approach to V&V to reap even
greater benefits.

URL: http://modeva.itee.uq.edu.au

788 T. Kühne

W9: Model Size Metrics

Organizers: Brian Berenbach (Siemens Corporate Research, USA), A. Winsor
Brown (University Southern California, USA), Betty H. C. Cheng (Michigan
State University, USA), Robert France (Colorado State University, USA),
Andrij Neczwid (Motorola Labs, USA), Frank Weil (Motorola Global Soft-
ware Group, USA)

Abstract: A standardized and consistent means of determining the size of an
artifact is fundamental to the ability to collect metrics about the artifact
(e.g., defect density and productivity). For example, source lines of code is
often used as the size metric for C code. However, the concept of lines of
code does not readily apply to modeling languages such as UML and SDL.

The purpose of this workshop is twofold: First, participants will share
practical experience, current work, and research directions related to tech-
niques for calculating the size of a model. Second, this workshop will act
as the kick-off for the industrial and academic consortium being formed re-
lated to model sizing metrics. As part of the discussion, we will plan how
this consortium can fit into a broader umbrella covering model-driven engi-
neering, such as the ReMoDD (Repository for Model Driven Development)
effort. The ReMoDD project will create a community resource of MDD ar-
tifacts that will provide infrastructure to improve the use of model-based
development. ReMoDD will collect a set of examples, primarily from indus-
try, that represent good models to support both research and education in
model-based software engineering.

URL: http://modeldrivenengineering.org/bin/view/Modelmetrics

W10: Models@run.time

Organizers: Nelly Bencomo & Gordon Blair (Lancaster University, UK), Ro-
bert France (Colorado State University, USA)

Abstract: In the model-driven software development area research effort has
focused primarily on using models at design, implementation, and deploy-
ment stages of development. This work has been highly productive with
several techniques now entering the commercialization phase. The use of
model-driven techniques for validating and monitoring run-time behavior
can also yield significant benefits. A key benefit is that models can be used
to provide a richer semantic base for run-time decision-making related to sys-
tem adaptation and other run-time concerns. Model-based monitoring and
management of executing systems can play a significant role as we move
towards implementing the key self-properties associated with autonomic
computing. This workshop aims to look at issues related to developing appro-
priate model-driven approaches to managing and monitoring the execution
of systems.

URL: http://www.comp.lancs.ac.uk/computing/users/bencomo/MRT06

Workshops and Symposia at MoDELS 2006 789

W11: Multi-Paradigm Modeling: Concepts and Tools

Organizers: Tihamér Levendovszky (Budapest University of Technology and
Economics, Hungary), Holger Giese (University of Paderborn, Germany)

Abstract: Today complex software-based systems often integrate different, pre-
viously isolated subsystems where different aspects such as the dynamic be-
havior or static structure are captured by notations using different paradigms
(e.g. statecharts and user interface models, block diagrams for control, etc.).
Therefore, multiple modeling paradigms have to be integrated for their model-
driven development. This is especially true when—besides general purpose
languages such as UML—domain specific languages are also employed. This
first workshop on multi-paradigm modeling addresses this need by providing
a forum for researchers and practitioners to discuss these arising issues.

URL: http://mpm06.aut.bme.hu

S1: Doctoral Symposium

Organizers: Robert Pettit (The Aerospace Corporation, USA), Gabriela Aré-
valo, (Universidad Nacional de La Plata, Argentina)

Abstract: The Doctoral Symposium at the MoDELS 2006 conference will pro-
vide an international forum for doctoral students to interact with other stu-
dents and faculty mentors. The Doctoral Symposium seeks to bring together
Ph.D. students working in model-driven engineering and fields related to
modeling. Selected students will have the opportunity to present and to
discuss their research goals, methodology, and initial/final results within a
constructive and international atmosphere.

The symposium organizers will strive to provide useful guidance for com-
pletion of the dissertation research and motivation for a research career. The
symposium is intended for students who have already settled on a specific
research proposal and have some preliminary results, but still have enough
time remaining before their final defense so that they can benefit from the
fruitful symposium discussions. Due to the mentoring aspect of the event,
the symposium will be open only to those students and mentors participating
directly in the event.

URL: http://www.modelsconference.org/doctoral symposium.php

S2: Educators Symposium

Organizers: Ludwik Kuzniarz (Blekinge Institute of Technology, Sweden)

Abstract: Putting the model-driven development vision into practice requires
not only sophisticated modeling approaches and tools, but also considerable
training and education efforts. To make people ready for model-driven devel-
opment, its principles and applications need to be taught to practitioners in

790 T. Kühne

industry, incorporated in university curricula, and probably even introduced
in schools.

The educator’s symposium at the MoDELS 2006 conference is intended
as a forum in which educators and trainers can meet to discuss pedagogy,
use of technology in the classroom, and share their experience pertaining to
teaching modeling techniques and model-driven development.

URL: http://www.modelsconference.org/educators symposium.php

S3: A Formal Semantics for UML

Organizers: Manfred Broy (TU Munich, Germany), Juergen Dingel (Queen’s
University, Canada), Alan Hartman (IBM Haifa Research Laboratory, Is-
rael), Bernhard Rumpe (TU Braunschweig, Germany), Bran Selic (IBM Ra-
tional Software, Canada)

Abstract: The UML 2.0 semantics project is an international collaboration be-
tween academia and industry. Participants include IBM (Canada, Germany,
Israel), Queen’s University (Kingston, Canada), the Technical University
of Munich(Germany), and the Technical University of Braunschweig (Ger-
many). The main objective of this project is to develop a mathematically
formalized semantic definition for the UML.

A precise and unambiguous definition of UML semantics is indispens-
able if MDD is to realize its full potential. In addition, a number of further
benefits are anticipated from this effort, such as deeper understanding of
UML concepts, detection of gaps and inconsistencies in the current stan-
dard, and determination of useful model analysis techniques. The results of
this research have the potential to be directly useful to tool vendors, software
developers, and researchers.

URL: http://www.cs.queensu.ca/∼stl/internal/uml2/MoDELS2006/

Acknowledgements

I am grateful to the members of the selection committee who spontaneously
followed my invitation and provided a dedicated performance to select the work-
shops with the maximum research relevance and highest potential of attracting
participants. Gianna Reggio was an invaluable help in resolving organizational
issues and my predecessor Jean-Michel Bruel immensely eased my work by gen-
erously sharing his experience with me.

Tutorials at MoDELS 2006

Egidio Astesiano

DISI - University of Genova
Genova, Italy

astes@disi.unige.it

Abstract. The MoDELS 2006 conference provides six half-day tutorials
on advanced topics related to model-driven engineering, presented by
recognized worldwide experts. Here, there is a short summary of each
tutorial and the list of presenters.

1 Introduction

Tutorials will give conference attendees the opportunities to acquire new knowl-
edge, to get some different insights, and to develop abilities on key subjects
and related up to date techniques. The tutorial program of the MoDELS 2006
conference seeks to continue this tested tradition. This program is intended for
practitioners, researchers, educators and students looking for a better and deeper
understanding of topics related to the model-driven engineering. It will cover
both languages and systems used to create complex applications.

For this conference, we received a large number of high quality tutorial pro-
posals, but unfortunately we had space only for six. As a result, a large number
of good proposals were not accepted as we sought to mantain a strong atten-
dance at each tutorial. In the six that we selected there is a good mixture of
tutorials covering areas that are topical and have great appeal and relevance to
the modelling community.

We summarize these tutorials in the following section; further details can be
accessed at the MoDELS 2006 conference web site www.modelsconference.org.

2 Detailed List of Tutorials

Tutorial T1: Model-Driven Engineering of Distributed Systems

Presenters: Douglas C. Schmidt (Vanderbilt University, Nashville, USA) and
Markus Völter (Independent Consultant, Heidenheim, Germany)

Despite advances in standard middleware platforms, it is hard to develop soft-
ware for distributed systems, such as airplanes, power grids, and patient moni-
tors. For example, developers still use ad hoc means to develop, configure, and
deploy applications and middleware, due to the lack of analyzable and verifiable
building block components. Model-Driven Engineering (MDE) has emerged as a
promising means to address these issues by combining domain-specific modeling

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 791–794, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

792 E. Astesiano

languages (DSMLs) with generators that analyze certain aspects of models and
then synthesize various artifacts, such as source code, simulation inputs, XML
deployment descriptions, or alternative model representations.

This tutorial provides an overview over MDE for distributed systems, focusing
on

– Fundamental concepts of MDE
– How MDE tools and metamodeling typically work
– The role of code generation and model-to-model transformation
– Frameworks and DSMLs, which are two sides of the same coin
– How MDE can be used to improve and manage software architecture
– Applying MDE to component-based distributed systems
– Deploying and configuring middleware and applications using MDE

Many of the topics mentioned above will be introduced using examples and case
studies from production distributed systems. Wherever possible, we will show
live demos of using MDE tools in the tutorial.

Tutorial T2: Defining Domain-Specific Modelling Languages

Presenter: Juha-Pekka Tolvanen (MetaCase, Finland)

Domain-Specific Modeling (DSM) languages provide a viable solution for im-
proving development productivity by raising the level of abstraction beyond
coding. With DSM, the models are made up of elements representing concepts
that are part of the domain world, not the code world. These languages follow
domain abstractions and semantics, allowing developers to perceive themselves
as working directly with domain concepts. In many cases, full final product
code can be automatically generated from these high-level specifications. This
automation is possible because both the language and generators need fit the
requirements of only one company and domain.

In the tutorial we investigate over 20 real-life examples that apply domain-
specific modeling to automate software development. Problem domains range
from embedded cell phone software to B2B insurance web applications, gen-
erating solutions from 8-bit assembler to Java. Some of the cases are used to
demonstrate language and generator creation in detail. Participants will learn
that full code generation from models is possible and different ways to implement
such automation with domain-specific languages and generators.

Tutorial T3: Model-Based Testing

Presenter: Alexander Pretschner (ETH, Zurich, Switzerland)

Model-based testing has become increasingly popular in recent years. Major rea-
sons include (i) the need for quality assurance for increasingly complex systems, (ii)
the emerging model-centric development paradigm (e.g., UML and MDA) and its
seemingly direct connection to testing, (iii) increasingly powerful formal verifica-
tion technology, and (iv) the advent of test-centered development methodologies.

Model-based testing relies on execution traces of behavior models, both of a
system under test and its environment, at different levels of abstraction. These

Tutorials at MoDELS 2006 793

traces are used as test cases for an implementation: input and expected output.
This complements the ideas of model-driven testing. The latter uses static models
to derive test drivers to automate test execution. This assumes the existence of
test cases, and is, like the particular intricacies of OO testing, not in the focus
of this tutorial.

We cover major methodological and technological issues: the business case of
model-based testing within model-based development, the need for abstraction
and inverse concretization, test selection, and test case generation. We (i) pro-
vide an overview of different flavors of model-based testing, (ii) discuss different
scenarios for model-based testing processes, (iii) present common abstractions
when building models and their consequences for testing, (iv) explain how to use
functional, structural, and stochastic test selection criteria, (v) describe today’s
test generation technology, and (vi) discuss the cost-effectiveness of model-based
testing and present available evidence.

We provide both practical guidance and a discussion of the state-of-the-art,
focusing on the latter. Potentials of model-based testing in practical applications
and future research are highlighted.

Tutorial T4: Designing Software Product Lines with UML 2.0: From
Use Cases to Pattern-Based Software Architectures

Presenter: Hassan Gomaa (George Mason University, USA)

This tutorial addresses how to develop object-oriented requirements, analysis,
and design models of software product lines using the Unified Modeling Lan-
guage (UML) 2.0 notation. During requirements modeling, kernel, optional, and
alternative use cases are developed to define the software functional require-
ments of the system. The feature model is then developed to capture product
line requirements and how they relate to the use case model. During analysis,
static models are developed for defining kernel, optional, and variant classes and
their relationships. Dynamic models are developed in which statecharts define
the state dependent aspects of the product line and interaction models describe
the dynamic interaction between the objects that participate in each kernel, op-
tional, and alternative use case. The object-oriented software architecture for the
product line is then developed, in which the system is structured into component-
based subsystems. Structural architecture patterns and communication patterns
are also used in designing component based distributed product lines.

The tutorial is illustrated by means of several examples.
The tutorial is based on a book by the author, “Designing Software Product

Lines with UML: From Use Cases to Pattern-Based Software Architectures”,
Addison Wesley Object-Oriented Technology Series, 2005.

Tutorial T5: Model Driven Engineering Basics using Eclipse

Presenter: Bruce Trask and Angel Roman (MDE Systems, USA)

MDE brings together multiple technologies and critical innovations and formal-
izes them into the next wave of software development methods. This tutorial will

794 E. Astesiano

cover the basics of MDE and how they map to Eclipse’s application, modeling
and graphical frameworks. The three main MDE categories include the develop-
ment of Domain Specific Languages, Domain Specific Editors (including Domain
Specific Visual Languages) and Domain Specific Transformation Engines or Gen-
erators. Expressed in terms of language development technology, these mirror the
development of the Abstract Syntax, Concrete Syntax and Semantics of a new
Domain Specific Language.

This tutorial will cover the basic effective patterns, principles and practices
for developing these MDE software artifacts. Additionally, this tutorial will cover
the exact details of how to leverage the Eclipse Modeling Framework (EMF), the
Eclipse Graphical Editor Framework (GEF), and the Eclipse Graphical Model-
ing Framework (GMF), to support the development of these three areas. These
three frameworks provide a unique and integrated platform in which to learn
the basics of Model Driven Engineering in full application not just in theory.
Conversely, Model Driven Engineering provides an effective context in which to
learn how to apply the power of these integrated Eclipse Frameworks developed
to support MDE.

Tutorial T6: Pragmatically going upSTAIRS with Formal Steps

Presenters: Oystein Haugen, Ragnhild Kobro (Department of Informatics,
Oslo, Norway), and Runde Ketil Stolen (Sintef ICT, Oslo, Norway)

The tutorial will present the STAIRS-method.
STAIRS addresses the challenges of harmonizing intuition and formal rea-

soning. It is an established fact that UML interactions (such as sequence di-
agrams and interaction overview diagrams) are attractive and intuitive. With
the new structuring mechanisms of UML 2.0, they have become more powerful
and compact. How can we make sure the intuitive feeling is kept in a process of
gradually making the diagrams more elaborate and precise? How can we make
the descriptions such that they are maintainable through the lifecycle of the full
UML model? Our answer lies in a precise understanding of the partial nature
of interactions, and of consistent refinement of such partial understanding to a
more complete one.

The tutorial aims at bringing the participants up to date with one branch of
current research on UML 2.0 interactions. The tutorial will be built up around
a running example, and include both the pragmatical rules and guidelines of
STAIRS, and the most important parts of the underlying formalism. Afterwards,
the participants will be able to apply STAIRS principles in practical designs
using interactions or similar techniques.

Acknowledgements

I would like to thank Thomas Baar, Gianna Reggio, Bran Selic and Tullio Ver-
nazza for their contributions during the selection process.

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, p. 795, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Panels at MoDELS 2006

Douglas C. Schmidt

Vanderbilt University
Nashville, TN, 37203, USA

d.schmidt@vanderbilt.edu

MoDELS 2006 contained the following two panels that provided an interactive forum to
conduct lively discussions on subjects that are highly germane to conference attendees:

Panel 1. Is Standardization of Model-Driven Technologies
Harming or Helping the Field?

The best standards seem to be those that arise from codifying technologies that have
been vetted after extensive experience by researchers and practitioners over many
years. Good examples of such standards include POSIX, the Internet protocols, Ada,
C, C++, and Java. Although model-driven technologies have long been studied by
researchers in-the-small, there is little practical experience yet applying model-driven
tools in-the-large. Moreover, many of the specifications proposed by various stan-
dards groups have not undergone the same degree of scrutiny and vetting as earlier
language and platform technologies. As a result, model-driven technology standards
are being proposed and adopted with neither a firm formal foundation nor significant
practical experience. This panel will explore the extent to which this phenomenon is
helping accelerate the adoption of model-driven technologies or hurting the field due
to lack of credibility.

Panel 2. Integrating Model-Driven Technology into the Computer
Science Curricula

Third-generation programming languages have been taught throughout undergraduate
CS curricula for the past 20-30 years. As a result, most undergraduates complete their
education with a thorough knowledge of the principles, abstractions, features, and pat-
terns necessary to be effective developers and managers of software written in third-
generation languages. In contrast, model-driven technologies and tools are rarely taught
in undergraduate CS programs; when they are taught are often limited to a small portion
of a Software Engineering course in the final year of study. As a result, few students
graduating from college have good grasp of these technologies, which limits their adop-
tion in the IT profession. One of the challenges to broader coverage of model-driven
technologies is where to place them in a CS curriculum, and especially which other top-
ics to omit to make room for them. This panel will explore alternative approaches to
integrating model-driven technology into CS curricula and report on lessons learned—
both pro and con—from panelist and audience experiences.

Author Index

Akehurst, David H. 351
Alam, Muhammad 275
Alanen, Marcus 454, 469
Antkiewicz, Micha�l 692
Arévalo, Gabriela 513
Astesiano, Egidio 791
Atlee, Joanne M. 245

Baar, Thomas 111, 661
Baudry, Benoit 589
Beeck, Michael von der 768
Bertolino, Antonia 753
Bézivin, Jean 440
Biermann, Enrico 425
Blanc, Xavier 631
Bonivento, Alvise 753
Bordbar, Behzad 351
Breu, Ruth 275
Briand, Lionel C. 365, 484
Brucker, Achim D. 306
Büttner, Fabian 440

Ceria, Santiago 73
Chaudron, Michel R.V. 27
Cheng, Betty H.C. 707
Cibrán, Maŕıa Agustina 170
Cohen, Irun R. 499
Coninx, Karin 140
Costal, Dolors 260
Cukier, Juan José 73
Czarnecki, Krzysztof 692

De Angelis, Guglielmo 753
Demeyer, Serge 27
D’Hondt, Maja 170, 200
Dingel, Juergen 185, 230
Diskin, Zinovy 185, 230
Doser, Jürgen 306
Duarte, Lucio Mauro 380
Du Bois, Bart 27
Ducasse, Stéphane 604

Ehrig, Karsten 425
Elaasar, Maged 484
Engelen, Remco van 126

Engels, Gregor 737
Evans, Michael J. 351

Falleri, Jean-Rémi 513
Fleurey, Franck 98
Fondement, Frédéric 98

Garcia, Diego 646
Garćıa Molina, Jesús 336
Garousi, Vahid 365
Gérard, Sébastien 98
Gervais, Marie-Pierre 631
Giese, Holger 543
Ĝırba, Tudor 604
Gogolla, Martin 440
Goldsby, Heather 707
Gomaa, Hassan 1
Gómez, Cristina 260
Gonzalez-Perez, Cesar 16
Gool, Louis van 126
Gotzhein, Richard 83

Hafner, Michael 275
Hamilton, Marc 126
Hassenforder, Michel 98
Hausmann, Jan Hendrik 737
Hearnden, David 321
Henderson-Sellers, Brian 16
Hendrickson, Scott 722
Hoek, André van der 722
Hogganvik, Ida 574
Howells, W. Gareth J. 351
Huchard, Marianne 513

Jett, Bryan 722
Jézéquel, Jean-Marc 98
Jouault, Frédéric 440

Kamdoum, Stephane 707
Kappel, Gerti 528
Kapsammer, Elisabeth 528
Kargl, Horst 528
Kienzle, Jörg 558
Kim, Soon-Kyeong 291
Köhler, Christian 425

798 Author Index

Kolovos, Dimitrios S. 215
Konrad, Sascha 707
Kosiuczenko, Piotr 676
Kramer, Jeff 380
Kramler, Gerhard 528
Kuhn, Thomas 83
Kühne, Thomas 783
Kuhns, Günter 425
Kurtev, Ivan 440

Labiche, Yvan 365, 484
Lange, Christian F.J. 27
Lawley, Michael 321
Le Traon, Yves 589
Lindow, Arne 440
Lings, Brian 619
Lundell, Björn 619
Lundkvist, Torbjörn 454

Marković, Slavǐsa 661
Mattsson, Anders 619
McComb, Tim 291
McDonald-Maier, Klous D. 351
Mens, Tom 200
Moreira, Ana 155
Mottu, Jean-Marie 589
Muller, Pierre-Alain 98
Mustafiz, Sadaf 558

Nebut, Clémentine 513

O’Keefe, Greg 42

Paige, Richard F. 215
Persson, Anna 619
Polack, Fiona A.C. 215
Pons, Claudia 646
Porres, Ivan 454, 469
Punter, Teade 126

Queralt, Anna 260

Rashid, Awais 155
Raventós, Ruth 260
Raymond, Kerry 321
Reiter, Thomas 528
Retschitzegger, Werner 528

Sánchez Cuadrado, Jesús 336
Sangiovanni-Vincentelli, Alberto 753
Schattkowsky, Tim 737
Schmidt, Douglas C. 795
Schneckenburger, Rémi 98
Schwinger, Wieland 528
Sriplakich, Prawee 631
Staron, Miroslaw 57
Stølen, Ketil 574
Süß, Jörn Guy 291
Sun, Ximeng 558

Taentzer, Gabriele 425
Taleghani, Ali 245
Teniente, Ernest 260
Tombelle, Christophe 395

Uchitel, Sebastian 380

Van den Bergh, Jan 140
Van Der Straeten, Ragnhild 200
Vangheluwe, Hans 558
Vanwormhoudt, Gilles 395
Varró, Dániel 410

Wagner, Robert 543
Watson, Geoffrey 291
Webel, Christian 83
Weiss, Eduard 425
Wildman, Luke 291
Wimmer, Manuel 528
Wolff, Burkhart 306

Zito, Alanna 185

	Frontmatter
	Keynote 1
	A Software Modeling Odyssey: Designing Evolutionary Architecture-Centric Real-Time Systems and Product Lines

	Evaluating UML
	Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0
	An Experimental Investigation of UML Modeling Conventions
	Improving the Definition of UML

	MDA in Software Development
	Adopting Model Driven Software Development in Industry -- A Case Study at Two Companies
	Use Case Driven Iterative Development: Hurdles and Solutions
	Model-Driven Development with SDL -- Process, Tools, and Experiences

	Concrete Syntax
	Model-Driven Analysis and Synthesis of Concrete Syntax
	Correctly Defined Concrete Syntax for Visual Modeling Languages

	Applying UML to Interaction and Coordination
	Compositional MDA
	CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications

	Aspects
	Domain Models Are NOT Aspect Free
	A Slice of MDE with AOP: Transforming High-Level Business Rules to Aspects

	Model Intergration
	Package Merge in UML 2: Practice vs. Theory?
	Detecting and Resolving Model Inconsistencies Using Transformation Dependency Analysis
	Merging Models with the Epsilon Merging Language (EML)

	Formal Semantics of UML
	Mappings, Maps and Tables: Towards Formal Semantics for Associations in UML2
	Semantic Variations Among UML StateMachines
	Facilitating the Definition of General Constraints in UML

	Security
	Towards a MOF/QVT-Based Domain Architecture for Model Driven Security
	MDA-Based Re-engineering with Object-Z
	A Model Transformation Semantics and Analysis Methodology for SecureUML

	Model Transformation Tools and Implementation
	Incremental Model Transformation for the Evolution of Model-Driven Systems
	A Plugin-Based Language to Experiment with Model Transformation
	SiTra: Simple Transformations in Java

	Analyzing Dynamic Models
	Analysis and Visualization of Behavioral Dependencies Among Distributed Objects Based on UML Models
	Model Extraction Using Context Information
	Dynamic and Generic Manipulation of Models: From Introspection to Scripting

	Specifying Transformations
	Model Transformation by Example
	Graphical Definition of In-Place Transformations in the Eclipse Modeling Framework
	Model Transformations? Transformation Models!

	MOF
	A Mapping Language from Models to DI Diagrams
	Basic Operations over Models Containing Subset and Union Properties
	A Metamodeling Approach to Pattern Specification

	Keynote 2
	Immune System Computation and the Immunological Homunculus

	Bridging Models
	Building Abstractions in Class Models: Formal Concept Analysis in a Model-Driven Approach
	Lifting Metamodels to Ontologies: A Step to the Semantic Integration of Modeling Languages
	Incremental Model Synchronization with Triple Graph Grammars

	Risk, Trust and Dependability
	Model-Driven Assessment of Use Cases for Dependable Systems
	A Graphical Approach to Risk Identification, Motivated by Empirical Investigations
	Reusable MDA Components: A Testing-for-Trust Approach

	Tool Environments
	Using Smalltalk as a Reflective Executable Meta-language
	UML Model Interchange in Heterogeneous Tool Environments: An Analysis of Adoptions of XMI 2
	Applying Model Fragment Copy-Restore to Build an Open and Distributed MDA Environment

	OCL
	An OCL-Based Technique for Specifying and Verifying Refinement-Oriented Transformations in MDE
	An OCL Semantics Specified with QVT
	Specification of Invariability in OCL

	Roundtrip Engineering
	Framework-Specific Modeling Languages with Round-Trip Engineering
	A Visualization Framework for the Modeling and Formal Analysis of High Assurance Systems
	Layered Class Diagrams: Supporting the Design Process

	Real Time and Embedded Systems
	Using UML Activities for System-on-Chip Design and Synthesis
	Modeling and Early Performance Estimation for Network Processor Applications
	A Formal Semantics of UML-RT

	Workshops, Tutorials and Panels
	Workshops and Symposia at MoDELS 2006
	Tutorials at MoDELS 2006
	Panels at MoDELS 2006

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

