
Program Optimizations and Transformations
in Calculation Form

Zhenjiang Hu, Tetsuo Yokoyama, and Masato Takeichi

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo 113-8656, Tokyo, JAPAN

{hu, takeichi}@mist.i.u-tokyo.ac.jp
yokoyama@ipl.t.u-tokyo.ac.jp

Abstract. The world of program optimization and transformation takes on a new
fascination when viewed through the lens of program calculation. Unlike the tra-
ditional fold/unfold approach to program transformation on arbitrary programs,
the calculational approach imposes restrictions on program structures, resulting in
some suitable calculational forms such as homomorphisms and mutumorphisms
that enjoy a collection of generic algebraic laws for program manipulation. In
this tutorial, we will explain the basic idea of program calculation, demonstrate
that many program optimizations and transformations, such as the optimization
technique known as loop fusion and the parallelization transformation, can be
concisely reformalized in calculational form, and show that program transforma-
tion in calculational forms is of higher modularity and more suitable for efficient
implementation.

Keywords: Program Transformation, Program Calculation, Program Optimiza-
tion, Meta Programming, Functional Programming.

1 Introduction

There is a well-known Chinese proverb: aFs (one cannot have both fishes and bear
palms at the same time), implying that one can hardly obtain two treasures simultane-
ously. The same thing happens in our programming: clarity is and is not next to good-
ness. Clearly written programs have the desirable properties of being easy to under-
stand, show correct, and modify, but they can also be extremely inefficient. In software
engineering, one major design technique for achieving clarity is modularity: breaking a
problem into independent components. But modularity can lead to inefficiency, because
of the overhead of communication between components, and because it may preclude
potential optimizations across component boundaries.

However, it is possible to have both fishes and bear palms at different times: we
start by writing clean and correct (but probably inefficient) programs, and then use
program calculation techniques to transform them to more efficient equivalents. To see
this, consider the problem of summing up all bigger elements in an array. An element is
bigger if it is greater than the sum of the elements that follow it till the end of the array.
We may start with the following C program, which clearly solves the problem.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 144–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Program Optimizations and Transformations in Calculation Form 145

/* copy all bigger elements from A[0..n-1] into B[] */
count = 0;
for (i=0; i<n; i++) {

sumAfter = 0;
for (j=i+1; j<n; j++) {

sumAfter += A[j];
}
if (A[i] > sumAfter)

B[count++] = A[i];
}

/* compute the sum of all elements in B[] */
sumBiggers = 0;
for (i=0; i<count; i++) {

sumBiggers += B[i];
}
return sumBiggers;

This program, though being straightforward, is inefficient due to (1) some unnecessary
repeated computations of sumAfter and (2) the use of additional array B[] pass-
ing from the upper for-loop to the lower for-loop. We may expect that an automatic
transformation can produce the following efficient linear-time program.

sumBiggers = 0;
sumAfter = 0;
for (i=n-1; i>=0; i--) {

if (A[i] > sumAfter)
sumBiggers += A[i];

sumAfter += A[i];
}
return sumBiggers;

In this paper, rather than writing programs using C or Java, we use the functional
language Haskell [1, 2]. The special characteristics and advantages of functional pro-
gramming are two-fold. First, it is good for writing clear and modular programs because
it supports a powerful and elegant programming style. As pointed by Hughes [3], func-
tional programming offers important advantages for software development. Second, it
is good for performing transformation because of its nice mathematical properties.

We can express the above two C programs, inefficient and efficient, in Haskell, where
loops are represented by recursions.

sumBiggers = sum ◦ biggers
where

biggers [] = []
biggers (a : x) = if a > sum x then a : biggers x else biggers x
sum [] = 0
sum (a : x) = a + sum x

146 Z. Hu, T. Yokoyama, and M. Takeichi

sumBiggers x = let (b, c) = sumBiggers’ x in b
where

sumBiggers’ [] = (0, 0)
sumBiggers’ (a : x) = let (b, c) = sumBiggers’ x

in if a > c then (a + b, a + c) else (b, a + c)

One methodology that offers some scope for making the construction of efficient
programs more mathematical is transformational programming [4, 5, 6]. Program cal-
culation is a kind of program transformation based on the theory of Constructive
Algorithmics [7, 8, 9, 10, 11, 12]. It is a kind of transformational programming that
derives an efficient program in a step-by-step way through a series of ”transformations”
that preserve the meaning and hence the correctness. A significant practical problem
in traditional transformational programming is that a very large number of steps seem
needed: the individual steps are too small, while in program calculation, formalisms
and theories are developed with which a whole series of small steps can be combined
into one single step at a higher level.

Program calculation proceeds by means of manipulation of programs based on a
rich collection of identities and transformation laws. It resembles the manipulation of
formulas as in high school algebra: a formula F is broken up into its semantic relevant
constituents and the pieces are assembled together into a different but semantically
equivalent formula F ′, thus yielding the equality F ≡ F ′. The following example
shows a calculation of the solution of x for the equation x2 − c2 = 0.

x2 − c2 = 0
≡ { by identity: a2 − b2 = (a − b)(a + b) }

(x − c)(x + c) = 0
≡ { by law: ab = 0 ⇔ a = 0 or b = 0 }

x − c = 0 or x + c = 0
≡ { by law: a = b ⇔ a ± d = b ± d }

x = c or x = −c

Here we calculate x rather than guess or just invent, based on some identities and laws
(rules). Particularly, we make use of the transformation law that a higher order equation
should be factored into several first order ones whose solution can be easily obtained.

In this tutorial, we will see that program calculation provides a powerful tool to for-
malize various kinds of program transformations [13, 14, 15, 16], besides its usefulness
in guiding people to derive efficient algorithms. We will explain the basic idea of pro-
gram calculation from the practical point of view, demonstrate that a lot of program
optimizations and transformations, including the well-known loop fusion and paral-
lelization, can be concisely reformalized in calculational forms, and show that program
transformation in calculational forms is of higher modularity and more suitable for ef-
ficient implementation.

It is worth noting that all transformations in this tutorial have been tested with the
Yicho system [17], a transformation system developed at the University of Tokyo. We
encourage the reader to play with the Yicho system when reading this material. The
Yicho system is available at the following site.

http://www.ipl.t.u-tokyo.ac.jp/yicho/

Program Optimizations and Transformations in Calculation Form 147

The rest of this tutorial is organized as follows. We start with a simple example to
illustrate the basic concepts of program calculation, and clarify its difference from the
traditional fold/unfold transformations in Section 2. Then, we demonstrate how to for-
malize two nontrivial transformations, namely loop fusion and parallelization, in calcu-
lational forms in Sections 3 and 4 respectively. And we show that program calculations
can be efficiently implemented by the Yicho system in Section 5. Finally, we conclude
the paper with a summary of the advantages of formalizing program transformations in
calculational forms in Section 6.

2 Program Calculation vs Fold/Unfold Transformations

In this section, we illustrate with a simple example the basic concepts of program cal-
culation, show the main idea of calculational approach to program transformation, and
clarify its difference from the traditional fold/unfold approach to program transforma-
tions and program optimizations.

2.1 Notational Conventions

First of all, we briefly review the notational conventions known as Bird-Meertens For-
malisms [7]. The notations are similar to those in Haskell [2].

Functions. Programs are defined as functions. Function application is denoted by jux-
taposition of function and argument. Thus f a means f (a). Functions are curried, and
application associates to the left. Thus f a b means (f a) b. Function application is re-
garded as more binding than any other operator, so f a ⊕ b means (f a) ⊕ b, but not
f (a ⊕ b). Function composition is denoted by a centralized circle ◦. By definition,
(f ◦ g) a = f (g a). Function composition is an associative operator, and the identity
function is denoted by id.

Lambda expressions are sometimes used to define a function without giving it a
name. So λx. e denotes a function, accepting an input x, computing e, and returning its
value as result. For example, λx.2 ∗ x simply denotes a function doubling the input.

Infix binary operators will often be denoted by ⊕, ⊗ and can be sectioned; an infix
binary operator like ⊕ can be turned into unary functions as follows.

(a⊕) b = a ⊕ b = (⊕ b) a

Lists. Lists are finite sequences of values of the same type. The type of the cons lists
with elements of type a is defined as follows.

data [a] = [] | a : [a]

A list is either empty or a list constructed by inserting a new element to a list. We write
[] for the empty list, [a] for the singleton list with element a (and [·] for the function
taking a to [a]), and x ++ y for the concatenation of two lists x and y. Concatenation is
associative, and [] is its unit. For example, the term [1] ++ [2] ++ [3] denotes a list with

148 Z. Hu, T. Yokoyama, and M. Takeichi

three elements, often abbreviated to [1, 2, 3]. As seen above, we usually use a, b, c to
denote list elements, and x, y, z to denote lists.

Recursive Functions. Functions may be defined recursively. The following are two
recursive functions for sorting a list.

sort [] = []
sort (a : x) = insert a (sort x)
insert a [] = [a]
insert a (b : x) = if a ≥ b then a : (b : x)

else b : insert a x

Here sort is recursively called in its definition body, and so does insert.

Higher Order Functions. Higher order functions are functions which can take other
functions as arguments, and may also return functions as results. A simple but useful
higher order function is map, which applies a function to each element of a list. For
instance, we may write map (1+) to increase each element of a list by 1.

map (1+) [1, 2, 3, 4, 5] = [2, 3, 4, 5, 6]

2.2 The Fold/Unfold Approach to Program Transformation

Before explaining the calculational approach [7, 18, 9, 12] to program transformation,
the topic of this tutorial, let us take a look at the traditional unfold/fold approach
[4, 5, 6, 19] and explain its problems.

To be concrete, consider the problem of finding a maximum in a list. Suppose that
we already have sort (as defined above) in hand. Then, a direct solution is to sort the
input and to return the first element:

max x = hd (sort x)

where hd is a function to return the first element from a list if the list is not empty, and
to return −∞ otherwise:

hd [] = −∞
hd (a : x) = a.

This solution is obviously inefficient; it is a quadratic algorithm.
Let us demonstrate how to apply the fold/unfold transformations to obtain a new

efficient recursive definition for max. For the base case, we unfold the definition step by
step.

max []
= { unfold max }

hd (sort [])
= { unfold sort }

hd []
= { unfold hd }

−∞

Program Optimizations and Transformations in Calculation Form 149

Then for the recursive case, we do unfolding similarly.

max (a : x)
= { unfold max }

hd (sort (a : x))
= { unfold sort }

hd (insert a (sort x))

We get stuck here; we cannot perform folding to get a recursive definition unless more
information is exposed. To expose more information, we unfold insert, by assuming
b : x′ = sort x, that is

b = hd (sort x)
x′ = tail (sort x)

and continue our transformation.

hd (insert a (b : x′))
= { unfold insert }

hd (if a ≥ b then a : (b : x′) else b : insert a x′)
= { law: f (if b then e1 else e2) = if b then f e1 else f e2 }

if a ≥ b then hd (a : (b : x′)) else hd (b : insert a x′)
= { unfold hd }

if a ≥ b then a else b
= { unfold b }

if a ≥ hd (sort x) then a else hd (sort x)
= { fold max }

if a ≥ max x then a else max x

The last folding step is the key to the success of the derivation of the following efficient
program.

max [] = −∞
max (a : x) = if a ≥ max x then a else max x

The fold/unfold approach to program transformation is general and powerful, but it
suffers from several problems which often prevent it from being used in practice.

– It is difficult to decide when unfolding steps should stop while guaranteeing expo-
sition of enough information for later folding steps.

– It is expensive to implement, because it requires keeping records of all possible
folding patterns and have them checked upon any new subexpressions produced
during transformation.

– Each transformation step is very small, but an effective way is lacking to group
and/or structure them into bigger steps.

2.3 Program Transformations in Calculational Form

A distinguished feature of the calculational approach to program transformation is no
use of folding during transformation, which solves the first two problems the fold/unfold

150 Z. Hu, T. Yokoyama, and M. Takeichi

approach has, and the challenge is how to formalize necessary folding steps by means
of calculation laws (rules). Transformations that are based on a set of calculation laws
but exclude the use of folding steps will be called transformation in calculation form
in this paper. The calculational approach to program transformation advocates more
structured programming, where the inner structure of a loop (recursion) is taken into
account.

Procedure to Formalize Transformations in Calculational Form

The procedure to formalize a program transformation in calculational form consists of
the following three major steps.

1. Define a specific form of programs that are best suitable for the transformation and
can be used to describe a class of interesting computations.

2. Develop calculational rules (laws) for implementing the transformation on pro-
grams in the specific form.

3. Show how to turn more general programs into those in the specific form and how
to apply the newly developed calculational rules systematically.

The first step plays a very important role in this formalization. The specific form de-
fined in the first step should meet two requirements. First, it should be powerful enough
to describe computations of our interest. Second, it should be manipulable and suitable
for later development of calculational laws. In fact, the Constructive Algorithmics the-
ory [7, 18, 9, 10] provides us a nice theoretical framework to define such specific forms
and to develop calculational rules.

In Constructive Algorithmics, the calculations are based on calculation rules that are
built upon the algebra of programs, a collection of identities. These identities can be
provided by exploiting the algebraic structure of the algebraic data concerned, such
as lists or trees. In particular, there is a close correspondence between data structures
(terms in an algebra) and control structures (homomorphisms mapping from that alge-
bra to another). This correspondence is well captured by categorical functors, which are
very theoretical and fall outside the scope of this tutorial.

Homomorphisms: General Structured Recursive Functions

Recall the structured programming methodology for imperative language, where the
use of arbitrary goto’s is abandoned in favor of structured control flow primitives such
as conditionals and while-loop so that program transformation becomes easier and el-
egant. For high level algorithmic programming like functional programming, recursive
definitions provide a powerful control mechanism for specifying programs. Consider
the following recursive definition on lists:

f (a : x) = · · · f x · · · f (g x) · · · f (f x) · · ·

There is usually no specific restriction on the right hand side; it can be any expression
where recursive calls to f may be of any form and appear anywhere. This somehow
resembles the arbitrary use of goto’s in imperative programs, which makes recursive

Program Optimizations and Transformations in Calculation Form 151

definitions hard to manipulate. In contrast, the calculational approach imposes suitable
restrictions on the right hand side resulting in a suitable calculation form. Homomor-
phisms are one of the most general and important calculational forms.

Homomorphisms are functions that manipulate algebraic data structures such as lists
and trees. They are derivable from the concerned structure of the algebraic data. Recall
the list data structure [α]. It can be considered as the algebra of

([α], [] :: [α], (:) :: a → [α] → [α])

in which the carrier [α] denotes all lists whose elements are of type α, and two opera-
tions, namely [] with type [α] and (:) with type a → [α] → [α], are the data constructors
for building up lists. An important recursive form known as list homomorphism homl,
capturing a basic recursive form of recursive functions over lists, maps from this algebra
to another similar one, say (R, e :: R, (⊕) :: a → R → R), and is defined by

homl :: [α] → R
homl [] = e
homl (a : x) = a ⊕ homl x.

In essence, homl is a relabeling: it replaces every occurrence of [] with e and every
occurrence of : with ⊕ in the cons list. Since such a list homomorphism is uniquely
determined by e and ⊕, we usually describe it by

homl = ([e, ⊕])l

and when it is clear from the context, we may omit the subscript l which is used to
denote homomorphism on lists.

List homomorphisms are important in defining functions to manipulate lists. The fol-
lowing lists several useful functions: sum sums up all elements of a list, prod multiples
all elements of a list, maxlist returns the maximum element of a list, reverse reverses a
list, inits computes all initial prefix lists of a list, and map f applies function f to every
element of a list.

sum = ([0, +])
prod = ([1, ×])
maxlist = ([−∞, ↑]) where a ↑ r = if a ≥ r then a else r
reverse = ([[], ⊕]) where a ⊕ r = r ++ [a]
inits = ([[[]], ⊕]) where a ⊕ r = [] : map (a :) r
map f = ([[], ⊕]) where a ⊕ r = f a : r

For a complicated computation on lists, it may be difficult to define it by a single
homomorphism, but it should be easy to define it by composition (combination) of sim-
pler homomorphisms. For example, the following gives a clear program for computing
the maximum sum of all initial segments of a list:

mis = maxlist ◦ (map sum) ◦ inits

which is defined by composition of several list homomorphisms.
Similar studies can be addressed on trees or other algebraic data structures. In this

tutorial, we shall focus ourselves on lists.

152 Z. Hu, T. Yokoyama, and M. Takeichi

Promotion Rule

Homomorphisms enjoy many calculation properties. Among them, the following pro-
motion rule is of great importance, saying that a composition of a function with a ho-
momorphism can be merged into a single homomorphism under a certain condition.

promotion:
f (a ⊕ x) = a ⊗ f x

f ◦ ([e, ⊕]) = ([f e, ⊗])

If functions are defined only by homomorphisms rather than by arbitrary recursive
definitions, we can use the promotion rule to manipulate them. Recall the example of
computing the maximum from a list early this section:

max = hd ◦ sort

Inefficiency of this program lies in that sort x computes a result that contains too much
useless information for the later computation by hd. The standard way is to fuse the two
functions hd and sort into a single one which does not include unnecessary computation.
Fusion based on the fold/unfold transformations has been explained before. Let us see
how to calculate an efficient max with the promotion calculation rule. Notice that sort =
([[], insert]). The promotion rule tells us that if we can derive ⊗ such that

∀a, x. hd (insert a x) = a ⊗ hd x

then we can transform hd◦sort to ([−∞, ⊗]). This ⊗ may be obtained via a higher order
matching algorithm [20]. Here, we show another concise calculation.

a ⊗ b = { let x be any list }
a ⊗ hd (b : x)

= { the condition in the promotion rule }
hd (insert a (b : x))

= { definition of insert }
hd (if a ≥ b then a : (b : x) else b : insert a x)

= { if property }
if a ≥ b then hd (a : (b : x)) else hd (b : insert a x)

= { definition of hd }
if a ≥ b then a else b

In summary, we have derived the following definition for max.

max = ([−∞, ⊗])
where a ⊗ b = if a ≥ b then a else b

And it is equivalent to

max [] = −∞
max (a : x) = if a ≥ max x then a else max x

which is the same as the result obtained by the fold/unfold program transformation
before. It is worth noting that the transformation here does not need any folding step,
rather we focus on deriving a new operator from the condition of the promotion rule.

Program Optimizations and Transformations in Calculation Form 153

3 Loop Fusion in Calculation Form

In this section, we demonstrate how to formalize loop fusion in calculational form.
Loop fusion, a well-known optimization technique in compiler construction [21, 22], is
to fuse some adjacent loops into one loop to reduce loop overhead and improve run-time
performance. In the introduction, we have seen an inefficient program for sumBiggers
which consists of three loops, and an equivalent efficient one which uses only a single
loop.

In our framework, loops are specified by recursive definitions. There are basically
three cases for two adjacent loops: (1) one loop is put after another and the result com-
puted by the first is used by the second; (2) one loop is put after another and the result
computed by the first is not used by the second; and (3) one loop is used inside another.
The second case is much simpler. We have seen the first and the third cases in the defi-
nition of sumBiggers in the introduction. Recall the following definition of sumBiggers:

sumBiggers = sum ◦ biggers
biggers [] = []
biggers (a : x) = if a > sum x then a : biggers x else biggers x
sum [] = 0
sum (a : x) = a + sum x

The use of one loop after another is specified by a composition of two recursive func-
tions (sum ◦ biggers), and a nested loop is specified by other function calls applying
to the same input data in the definition body (sum x appears in the definition body of
biggers).

We shall illustrate how to formalize the loop fusion in calculational form by the three
steps in Section 2.3.

3.1 Structured Recursive Form for Loop Fusion

Now we are facing the problem of choosing a proper structured form for recursive
functions. There are two basic requirements for this form. First, it should be powerful
enough to describe computation that manipulates lists. Second, it should be suitable for
loop fusion, where the three cases of loop combination can be coped with. We would
like to show that list mutumorphism is a suitable form for this purpose.

Definition 1 ((List) Mutumorphism). A function f1 is said to be a list mutumorphism
with respect to other functions f2, . . . , fn if each fi (i = 1, 2, . . . , n) is defined in the
following form:

fi [] = ei

fi (a : x) = a ⊕i (f1 x, f2 x, . . . , fn x)

where ei (i = 1, 2, . . . , n) are given constants and ⊕i (i = 1, 2, . . . , n) are given binary
functions. We represent f1 as follows.

f1 = [[(e1, . . . , en), (⊕1, . . . , ⊕n)]]. �

154 Z. Hu, T. Yokoyama, and M. Takeichi

List mutumorphisms have strong expressive power, covering all primitive recursive
functions on lists. It should be noted that list homomorphisms are a special case of
list mutumorphisms:

([e, ⊕]) = [[(e), (⊕)]]

Recall the sumBiggers. We may redefine sum and biggers in terms of mutumorphisms
(or homomorphism) as below.

sumBiggers = ([0, +]) ◦ [[([], 0), (⊕1, ⊕2)]]
where a ⊕1 (r, s) = if a > s then a : r else r

a ⊕2 (r, s) = a + s

3.2 Calculational Rules for Loop Fusion

After formalizing loops by mutumorphisms, we turn to develop calculation rules (laws)
for fusing such loops. We will consider the three cases for loop combination.

First, we consider merging nested loops. Mutumorphism itself is actually a nested
loop, as seen in the definition of biggers. We may flatten this kind of nested loops by
the following flattening calculation rule [14].

Lemma 1 (Flattening).

[[(e1, e2, . . . , en), (⊕1, ⊕2, . . . , ⊕n)]] = fst ◦ ([(e1, e2, . . . , en), ⊕])
where a ⊕ r = (a ⊕1 r, a ⊕2 r, . . . , a ⊕n r)

Here, fst is a projection function returning the first element of a tuple. �

The flattening calculation rule, as its name suggests, flattens a nested loop represented
by a mutumorphism to a homomorphism. Consider, as an example, to apply the flatten-
ing rule to biggers to flatten the nested loop.

biggers
= { mutumorphism for biggers }

[[([], 0), (⊕1, ⊕2)]]
= { flattening rule }

fst ◦ ([([], 0), ⊕])
where a ⊕ (r, s) = (if a > s then a : r else r, a + s)

Inlining the homomorphism in the derived program gives the following readable recur-
sive program, which consists of a single loop.

biggers x = let (r, s) = hom x in r
where hom [] = ([], 0)

hom (a : x) = let (r, s) = hom x
in (if a > s then a : r else r, a + s)

Second, we try to merge two independent loops. Since mutumorphism can be trans-
formed into homomorphism, it is suffice to consider merging of two independent
homomorphisms that manipulate the same lists. This can be done by the tupling trans-
formation [23], whose calculation form is summarized as follows [14].

Program Optimizations and Transformations in Calculation Form 155

Lemma 2 (Tupling).

(([e1, ⊕1]) x, ([e2, ⊕2]) x) = ([(e1, e2), ⊕]) x
where a ⊕ (r1, r2) = (a ⊕1 r1, a ⊕2 r2) �

For example, the following program to compute the average of a list:

average x = sum x/length x

which has two loops can be merged into a single loop by applying the tupling rule.

average x = let (s, l) = tup x in s/l
where tup = ([(0, 0), λa (s, l). (a + s, 1 + l)])

Here, to save space we choose to use lambda expression to define the new binary oper-
ator, which accepts a and (s, l), and returns (a + s, 1 + l).

Finally, we consider fusion of two loops where the result of one loop is used by the
other. When the loops are formalized as homomorphisms, we can use the promotion rule
in Section 2.3 for this fusion, as seen in the example of fusing hd ◦ sort. The promotion
rule fuses function f to a homomorphism from left:

f ◦ ([e, ⊕])

and the following calculation rule [24, 25] shows how to fuse a function to a homomor-
phism from right.

Lemma 3 (Shortcut Fusion).

([e, ⊕]) ◦ build g = g (e, ⊕)

Here, the function build is a list production function defined by1

build g = g ([], (:)). �

The shortcut fusion rule indicates that if one can express a function in build, then it can
be cheaply fused into a homomorphism from its right. Compared with the promotion
rule, the shortcut fusion rule is much simpler and cheap to implement, because it is just
a simple expression substitution. On the other hand, it needs a preparation of deriving a
build form from a homomorphism. The following warm-up rule is for this purpose.

Lemma 4 (Warm-up).

([e, ⊕]) = build (λ(d, ⊗). ([d, ⊗]) ◦ ([e, ⊕])) �

Note that the warm-up rule may introduce an additional loop, but this loop is usually
easier to be fused with others. Recall that we have obtained the following definition for
biggers.

1 Strictly speaking, it requires parametricity on the type of g, as studied in [24].

156 Z. Hu, T. Yokoyama, and M. Takeichi

biggers = fst ◦ ([([], 0), ⊕])
where a ⊕ (r, s) = (if a > s then a : r else r, a + s)

We can obtain the following build form:

biggers = build (λ(d, ⊗). fst ◦ ([(d, 0), ⊕′]))
where a ⊕′ (r, s) = (if a > s then a ⊗ r else r, a + s)

Now applying the shortcut fusion rule to

sumBiggers = ([0, +]) ◦ bigger

soon yields the following single-loop program for sumBiggers:

sumBiggers = fst ◦ ([(0, 0), ⊗])
where a ⊗ (r, s) = (if a > s then a + r else r, a + s)

which is actually the same as that in the introduction.
Before finishing our development of calculation rules for loop fusion, we give an-

other calculation rule for fusing a function with a mutumorphism. This may not be nec-
essary as mutumorphism can be transformed into homomorphism, but it may provide
us with more flexibility in rule application.

Lemma 5 (Mutumorphism Promotion).

fi(a ⊕i (x1, . . . , xn)) = a ⊗i (f1 x1, . . . , fn xn) (i = 1, . . . , n)
f1 ◦ [[(e1, . . . , en), (⊕1, . . . , ⊕n)]] = [[(f1 e1, . . . , fn en), (⊗1, . . . , ⊗n)]] �

3.3 A Calculational Algorithm for Loop Fusion

This is the last step, where we should make it clear how to turn a program into our
specific form and how to apply the newly developed calculational laws in a systematic
way for loop fusion, as seen in [26, 14, 15]. Below we summarize our calculational
algorithm for loop fusion.

1. Represent as many recursive functions on lists by mutumorphisms as possible.
2. Apply the flattening rule to transform all mutumorphism to homomorphisms.
3. Apply the promotion rule and shortcut fusion rule as much as possible.
4. Apply the tupling rule to merge independent homomorphisms.
5. Inline homomorphism/mutumorphism to output transformed program in a friendly

manner.

We have indeed followed this algorithm in fusing the three loops in sumBiggers.
One remark should be made on the first step above. It would be unnecessary if pro-
grams are restricted to be strictly written in terms of mutumorphisms, but there are two
reasons to have it. First, it makes our system extensible; we may extend our system by
showing that a wider class of functions can be transformed to mutumorphisms by some
preprocessing. For example, the following recursive function

Program Optimizations and Transformations in Calculation Form 157

foo [] = 0
foo [a] = a
foo (a : b : x) = a + foo (b : x) + foo x

may not be target for loop fusion at the start. When we find a way to express functions
like foo in terms of a mutumorphism, we can empower our system by adding it as a pre-
processing. In fact, it has been shown that foo belongs to the class of tuplable functions
which can be automatically transformed to a function defined in terms of homomor-
phisms [14]. Second, we may want to apply our loop fusion to legacy programs. As a
matter of fact, it is possible to obtain mutumorphism automatically from many recursive
functions on lists.

4 Parallelization in Calculation Form

Our second example is about Parallelization [27, 15], a transformation for automatically
generating parallel code from high level sequential description. Parallelization is of key
importance to the wide spread use of high performance machine architectures, but it is
a big challenge to clarify what kind of sequential programs can be parallelized and how
they can be systematically parallelized.

Program calculation suggests a new way to face this challenge. We know from the
theory of Constructive Algorithmics that the control structure of the program should
be determined by the data structure the program is to manipulate. For lists, there are
two possible views. One view is known as cons lists, which is “sequential”: a list is
constructed by an empty list, or from an element and a list.

ConsList a = [] | a : ConsList a

Another view is known as join lists, which is “parallel”: a list is an empty list, or a
singleton list, or a list joining two shorter lists.

JoinList a = [] | [.] a | JoinList a ++ JoinList a

So given a list [1, 2, 3, 4, 5, 6, 7, 8], we may represent it in the following two ways:

1 : (2 : (3 : (4 : (5 : (6 : (7 : (8 : [])))))))
(([1] ++ [2]) ++ ([3] ++ [4])) ++ (([5] ++ [6]) ++ ([7] ++ [8]))

Programs defined on cons lists inherit sequentiality from cons lists, while programs
defined on join lists gain parallelism from join lists. The following are two such versions
for sum.

sumS (a : x) = a + sumS x
sumP (x ++ y) = sumP x + sumP y

With the above in mind, we may consider parallelization of functions on lists as
mapping a function on cons lists (e.g., sumS) to an equivalent one on join lists (e.g.,
sumP).

158 Z. Hu, T. Yokoyama, and M. Takeichi

4.1 J-Homomorphism: A Parallel Form for List Functions

As in loop fusion, we introduce a recursive form, J-homomorphism2, to capture parallel
computations on lists.

Definition 2 (J-Homomorphism). J-homomorphisms are those functions on finite lists
that promote through list concatenation — that is, function h for which there exists an
associative binary operator ⊕ such that, for all finite lists x and y, we have

h (x ++ y) = h x ⊕ h y

where ++ denotes list concatenation. �
In fact, it has been attracting wide attention to make use of J-homomorphisms in parallel
programming [28, 30, 31]. Intuitively, the definition of J-homomorphisms means that
the value of h on the larger list depends in a particular way (using binary operation ⊕)
on the values of h applied to the two pieces of the list. The computations of h x and
h y are independent of each other and can thus be carried out in parallel. This simple
equation can be viewed as expressing the well-known divide-and-conquer paradigm of
parallel programming.

As a running example, consider the maximum segment sum problem, which finds the
maximum of the sums of contiguous segments within a list of integers. For example,

mss [3, −4, 2, −1, 6, −3] = 7

where the result is contributed by the segment [2, −1, 6]. We may write the following
sequential function mss to solve the problem, where mis is to compute the maximum
initial-segment sum of a list.

mss [] = 0
mss (a : x) = a ↑ (a + mis x) ↑ mss x
mis [] = 0
mis (a : x) = a ↑ (a + mis x)

How can we find an equivalent parallel program in J-homomorphism?

4.2 A Parallelizing Rule

In Section 3, we have seen that list homomorphisms play a very important role in de-
scribing computations on lists. Our parallelization rule is to show how to map a list
homomorphism to a J-homomorphism. As a preparation, we define the composition-
closed3 property of a function.

Definition 3 (Composition-closed). Let x denote a sequence x1 x2 · · · xn, and y
denote a sequence y1 y2 · · · yn. A function f x is said to be composition-closed if
there exist n functions gi (i = 1, · · · , n), so that

f x (f y) = f (g1 x y) (g2 x y) · · · (gn x y) r �
2 It is usually called list homomorphism in many literatures [7, 28, 29]. We call it

J-homomorphism here because we have used the word list homomorphism in loop fusion.
3 This property is called context-preservation in [32].

Program Optimizations and Transformations in Calculation Form 159

For example, the function

f x1 x2 r = x1 ↑ (x2 + r)

is composition-closed, as seen in the following calculation.

f x1 x2 (f y1 y2 r)
= { definition of f }

x1 ↑ (x2 + (y1 ↑ (y2 + r)))
= { since a + (b ↑ c) = (a + b) ↑ (a + c) }

x1 ↑ ((x2 + y1) ↑ (x2 + (y2 + r)))
= { associativity of + and ↑ }

(x1 ↑ (x2 + y1)) ↑ ((x2 + y2) + r)
= { define g1 x1 x2 y1 y2 = (x1 ↑ (x2 + y1), g2 x1 x2 y1 y2 = x2 + y2 }

(g1 x1 x2 y1 y2) ↑ (g2 x1 x2 y1 y2 + r)

The following is our main calculation rule for parallelizing homomorphisms to
J-homomorphisms.

Lemma 6 (Parallelization of Homomorphism to J-Homomorphism). Given a ho-
momorphism ([e, ⊕]), if there exists a composition-closed function f with respect to
g1, g2, . . . , gn, such that

a ⊕ r = f e1 e2 · · · en r

where ei is an expression which may contain a but not r, then

([e, ⊕]) x = let (a1, a2, . . . , an) = h x in f a1 a2 · · · an e

where h is a J-homomorphism defined by

h [a] = (e1, e2, . . . , en)
h(x ++ y) = h x ⊗ h y

where x ⊗ y = (g1 x y) (g2 x y) · · · (gn x y) �

To see how this parallelization rule works, consider to parallelize the function mis,
which is actually a homomorphism:

mis = ([0, ⊕]) where a ⊕ r = a ↑ (a + r)

The difficulty is to find a composition-closed function from ⊕. In fact, such function
f is

f x1 x2 r = x1 ↑ (x2 + r)

whose composition-closed property has been shown. Now we have

a ⊕ r = f a a r.

Applying Lemma 6 to mis gives the following parallel program:

mis x = let (a1, a2) = h x in a1 ↑ (a2 + e)

160 Z. Hu, T. Yokoyama, and M. Takeichi

where

h [a] = (a, a)
h (x ++ y) = h x ⊗ h y

where (x1, x2) ⊗ (y1, y2) = (x1 ↑ (x2 + y1), x2 + y2).

4.3 A Parallelization Algorithm

After developing a general calculation rule for parallelizing general homomorphisms
to J-homomorphisms, we propose the following algorithm to systematically apply it
to parallelize sequential programs in practice. The input to the algorithm is a program
defined in terms of mutumorphisms, and the output is a new program where parallelism
is explicitly described by J-homomorphisms.

1. Apply the loop fusion calculation to the program to obtain a compact program
defined in terms of homomorphisms.

2. Apply the parallelizing rule to map homomorphisms to J-homomorphisms.

The first step has been explained in details in Section 3. The second step is the core
of the algorithm, where the key to applying the parallelizing rule is to find a suitable
composition-closed function from the definition of the binary operator in a homomor-
phism. It has been shown in [33] that a powerful normalization algorithm can be applied
to derive such composition-closed functions. The details of the normalization algorithm
is beyond the scope of this tutorial.

Return to the program of mss. First, we apply the loop fusion calculation to obtain

mss = fst ◦ mss mis

where mss mis is the homomorphism defined below:

mss mis = ([(0, 0), ⊕])
where a ⊕ (s, i) = (a ↑ (a + i) ↑ s, a ↑ (a + i)).

Then, we apply the parallelizing rule to map mss mis to a J-homomorphism to make
parallelism explicit. To this end, we define the following composition-closed function
by the algorithm in [33]:

f x1 x2 x3 x4 x5 (s, i) = (x1 ↑ (x2 + i) ↑ (x3 + s), x4 ↑ (x5 + i))

with respect to g1, g2, g3, g4, g5 defined by

g1 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x1 ↑ (x2 + y4) ↑ (x3 + y1)
g2 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = (x2 + y5) ↑ (x3 + y2)
g3 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x3 + y3
g4 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x4 ↑ (x5 + y4)
g5 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x5 + y5

Program Optimizations and Transformations in Calculation Form 161

And we have
a ⊕ (s, i) = f a a 0 a a (i, s).

By applying the parallelizing rule we soon obtain the following efficient parallel pro-
gram for mss mis:

mss mis x = let (a1, a2, a3, a4, a5) = h x in f a1 a2 a3 a4 a5 (0, 0)

where h is a J-homomorphism defined as follows.

h [a] = (a, a, 0, a, a)
h(x ++ y) = h x ⊗ h y

where (x1, x2.x3.x4.x5) ⊗ (y1, y2, y3, y4, y5)
= (x1 ↑ (x2 + y4) ↑ (x3 + y1),

(x2 + y5) ↑ (x3 + y2),
x3 + y3,
x4 ↑ (x5 + y4),
x5 + y5)

As an exercise, the readers are invited to parallelize the homomorphism for
sumBiggers in Section 3.

5 Yicho: An Environment for Implementing Transformations in
Calculational Forms

Program Calculation rules are short and concise, but their implementations are not as
easy as one may expect. Many attempts [20, 17] have been made to develop systems
for supporting direct and efficient implementation of calculation rules. Yicho is such a
system built upon Template Haskell [34] and designed for concise specification of pro-
gram calculations [35]. Its main feature lies in its expressive deterministic higher-order
patterns [17] together with an efficient deterministic higher-order matching algorithm.
This leads to a straightforward description of calculation rules.

In this section, we briefly review the Yicho system, before illustrating with some ex-
amples how calculation rules and calculation algorithms can be implemented efficiently.

5.1 Program Representation

We manipulate programs as values by meta-programming. Template Haskell [34] pro-
vides a mechanism to handle abstract syntax trees of Haskell in Haskell itself. Enclosing
a program in brackets [| |] yields its abstract syntax tree of type ExpQ, and the in-
verse operation is unquote described by a dollar $. For example, given a function to
calculate the sum of a given list, sum, which has type4 [Int] -> Int. Quotation
of this function [| sum |] has type ExpQ, whereas $([| sum |]) has the same
type as sum, i.e., [Int] -> Int.

4 Strictly speaking, the type of function sum is Num a ⇒ [a] → a in Haskell. Here, for
simplicity, we ignore type classes and polymorphism.

162 Z. Hu, T. Yokoyama, and M. Takeichi

The following gives the representation of the initial program of max.

def =
[d|

max = hd . sort

sort [] = []
sort (a:x) = insert a (sort x)

insert a [] = b
insert a (b:x) = if a >= b then a : (b : x)

else b : insert a x
|]

Here, quasi-quote bracket [d| _ |] is syntax of Template Haskell. It quotes a list
of declaration whose type is Q [Dec]. These definitions are spliced by unquote $ by
$(def).

5.2 Basic Combinators for Programming Calculations

Yicho is implemented as a monadic combinator library for program transformation in
Haskell. The combinator library uses deterministic higher-order patterns as first-class
values which can be passed as parameters, constructed by smaller ones in compositional
way, returned as values, etc. As a result, Yicho’s patterns provide more flexible binding
than first-order ones, and enables more abstract and modular descriptions of program
transformation.

We define the calculation monad Y, a combination of the state monad and the error
monad, to capture updating of transformation environments and to handle exceptions
that occur during transformation, and we use ExpY

ExpY = Y ExpQ

to denote an expression in the calculation environment. We use liftY to lift ExpQ
into ExpY, and use runY to go back to ExpQ from ExpY.

liftY :: ExpQ → ExpY
runY :: ExpY → ExpQ

There are five important combinators in our Yichi library, as listed below.

Match (<==) :: ExpQ -> ExpQ -> Y ()
Rule (==>) :: ExpQ -> ExpQ -> RuleY
Sequence (>>) :: Y () -> Y () -> Y ()
Choice (<+) :: ExpY -> ExpY -> ExpY
Case casem :: ExpQ -> [RuleY] -> ExpY

In the following, we explain them one by one with some examples.

Program Optimizations and Transformations in Calculation Form 163

Match

The most essential combinator is the match combinator, which is used to match a pattern
with a term and produce a substitution (embedded in monadic Y).

(<==) :: ExpQ -> ExpQ -> Y ()
pat <== term

As an example, consider that we want to express the expression

\a x -> if a >= sum x then a : biggers x
else biggers x

in the form of a ⊕ (biggers x, sum x) where ⊕ is a binary operator. We may code this
intention by

[| \a x -> $oplus a (biggers x, sum x) |]
<== [| \a x -> if a >= sum x then a : biggers x

else biggers x |]

which will yield the following match:

{ $oplus := \x (b,s) ->
if x > s then x : b else b }.

Note that Function $oplus is a second-order pattern variable and can be efficiently
obtained by the deterministic higher-order matching algorithm [17]. Note also that $
means unquote, so the above match is equivalent to

{ oplus := [| \x (b,s) ->
if x > s then x : b else b |] }.

Rule

The rule combinator is used to build a transformation rule mapping from one program
pattern to another. A rule is described in the form of

(==>) :: ExpQ -> ExpQ -> RuleY
lhs ==> rhs

where RuleY, which is defined by RuleY = ExpQ -> Y ExpQ, is to map a pro-
gram to another under the transformation environment Y. For instance, we may define
the shortcut fusion rule by

[| hom $e $oplus . build $g |] ==> [| g $e $oplus |]

where we represent a homomorphism ([e, ⊕]) by (hom e oplus). The semantics of a
rule may be clear from the following where we define a rule by the Match combinator.

(==>) :: ExpQ -> ExpQ -> RuleY
(pat ==> body) term = do pat <== term

ret body

Note that in the above, the function ret implicitly applies the match (i.e., substitution)
kept in the transformation monad to body.

164 Z. Hu, T. Yokoyama, and M. Takeichi

Sequence

Sequential updates of transformation environments can be realized by combining
matches with the sequence combinator (>>).

(>>) :: Y () -> Y () -> Y ()
(pat1 <== term1) >> (pat2 <== term2)

which can be written as sequence of matchings using do notation.

do pat1 <== term1
pat2 <== term2

Deterministic Choice and Case

The combinator (<+) is designed to express deterministic choice.

(<+) :: ExpY -> ExpY -> ExpY
transExp1 <+ transExp2

It returns the first argument if the transformation in it succeeds. Otherwise, it returns
the second argument as the result. For instance, we may write

(rule1 e) <+ (rule2 e)

to first apply rule1 to transform e, and if it succeeds, we return the result; otherwise
we try to apply rule2 to e.

Using the choice combinator, we can define a meta version of the case expression,
which tries to apply a list of rules one by one until one rule succeeds.

casem :: ExpQ -> [RuleY] -> ExpY
casem sel (r:rs) = r sel <+ casem sel rs

5.3 Code Calculation Rules in Yicho

To get a flavor of Yicho, we show how to use Yicho to code the promotion rule in
Section 2, and how it is used to optimize the program. Since the list homomorphism
([e, ⊕]) is in fact the standard Haskell function foldr (⊕) e, we rewrite the promotion
theorem as follows.

promotion:
f(a ⊕ x) = a ⊗ f x

f ◦ foldr (⊕) e = foldr (⊗) (f e)

This rule is defined in Yicho as follows.

promotion :: ExpQ -> Y ExpQ
promotion exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
[| $f . foldr $oplus $e |] <== exp
[| \a x -> $otimes a ($f x) |]

<== [| \a x -> $f ($oplus a x) |]
ret [| foldr $otimes ($f $z) |]

The promotion rule is defined as a function that takes code and returns code with its
environment. In the third line, f,oplus,e,otimes are declared to be variables; the

Program Optimizations and Transformations in Calculation Form 165

unquote $ is actually splicing the expression, but, intuitively we can regard expression
$x as meta variable with the name of $x. In the fourth line, exp is matched with the pat-
tern [| $f . foldr $oplus $e |], with the variables $f,$oplus,$e being
bound in the environment. The next two lines are a straightforward translation of the
original promotion rule. $f and $oplus are instantiated and the both sides of <== are
matched and the resulting match is added to the environment. The pattern instantiation
contributes to the modularity of patterns. It should be noted here that the higher-order
patterns such as

[| \a x -> $otimes a ($f x) |]

play an important role in this concise definition. Finally, the result expression with its
environment are returned by ret.

We can enhance the promotion rule with a rule (say for unfolding the definition or
simplification), and add it as an argument to the promotion function.

promotionWithRule :: RuleY -> ExpQ -> Y ExpQ
promotionWithRule rule exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
[| $f . foldr $oplus $e |] <== rule exp
[| \a x -> $otimes a ($f x) |]

<== rule [| \a x -> $f ($oplus a x) |]
ret [| foldr $otimes ($f $z) |]

To see how to apply the promotion rule, consider the following expression

oldExp = [| sum . foldr (\x y -> 2 * x : y) [] |]

and suppose that we hope to apply to this code the promotion rule together with some
other rule rule to obtain a new efficient expression, say newExp. We can define this
newExp as follows.

newExp = runY (promotionWithRule rule ex1)

We may confirm the result of newExp under the GHCi Environment:

GHCi> prettyExpQ newExp
foldr (\x_1 -> (+) (2 * x_1)) 0

where we use function prettyExpQ :: ExpQ -> IO () to print out an expression.
Now we can compare efficiency of the two expressions.

GHCi> $oldExp (take 100000 [1..])
10000100000
(0.33 secs, 21243136 bytes)

GHCi> $newExp (take 100000 [1..])
10000100000
(0.27 secs, 19581216 bytes)

It is worth noting that the promotion theorem is applied at compile time, and the func-
tion $newExp is actually improved both in the execution time and consumed heap
size.

166 Z. Hu, T. Yokoyama, and M. Takeichi

The other calculation rules in this tutorial can be specified similarly. The readers are
invited to visit the Yicho home page for more examples.

6 Concluding Remarks

In this tutorial, we explain the basic technique of formalizing and implementing pro-
gram transformations and optimization in calculational form based on the Constructive
Algorithmics theory. We illustrate the idea with two important transformations, loop
fusion and parallelization, and we show how the transformations in calculational form
can be efficiently implemented with Yicho.

We summarize the main advantages of program transformations in calculational form
as follows.

– Modularity. A program transformation in calculational form does not require any
global analysis as other transformation systems often need. Instead, it only uses
a local program analysis to obtain the specialized form, and it can check locally
the applicability of their calculational rules. Therefore, it can be implemented in a
modular way, and is guaranteed to terminate.

– Generality. In this tutorial, we focus on the transformation of programs on lists.
In fact, most of our calculational laws are polytypic, i.e., parameterized with data
types. They can be generalized to transformation of programs on any algebraic data
types.

– Cheap Implementation. Transformations in calculational form are more practical
than the well-known fold-unfold transformations [4]. Fold/unfold transformation
basically has to keep track of all occurring function calls and introduce function
definitions to be searched in the folding step. The process of keeping track of
function calls and controlling the steps cleverly to avoid infinite unfolding intro-
duces substantial cost and complexity, which often prevents it from being practi-
cally implemented. Though they may be less general than fold/unfold transforma-
tions, transformations in calculational form can be implemented in a cheap way
[24, 36, 25, 14] by means of a local program analysis and simple rule application.

– Compatibility. It is usually difficult to make several transformations coexist well in
a single system, but transformations in calculational form can solve this problem
well. For instance, fusion calculation can coexist well with tupling calculation [14].
There are two reasons. First, each transformation is based on the same theoretical
framework, Constructive Algorithmics. Second, local program analysis and local
application of laws make it easier to check compatibility of transformations.

It should be noted that program transformations in calculation forms can be applied
only to those programs that can be turned into the form a calculation rule is applicable.
To increase the power, as seen in Section 4.3, we may have to design a normaliza-
tion algorithms with global analysis in order to obtain the required form. We believe
that more optimizations and transformations can be formalized in calculational form to
gain the advantages discussed above, and we are looking forward to see more practical
applications.

Program Optimizations and Transformations in Calculation Form 167

References

1. Jones, S.P., et al., J.H., eds.: Haskell 98: A Non-strict, Purely Functional Language. Available
online: http://www.haskell.org (1999)

2. Bird, R.: Introduction to Functional Programming using Haskell. Prentice Hall (1998)
3. Hughes, J.: Lazy memo-functions. In: Proc. Conference on Functional Programming Lan-

guages and Computer Architecture (LNCS 201), Nancy, France, Springer-Verlag, Berlin
(1985) 129–149

4. Burstall, R., Darlington, J.: A transformation system for developing recursive programs.
Journal of the ACM 24 (1977) 44–67

5. Feather, M.: A survey and classification of some program transformation techniques. In: TC2
IFIP Working Conference on Program Specification and Transformation, Bad Tolz, Germany,
North Holland (1987) 165–195

6. Darlington, J.: An experimental program transformation system. Artificial Intelligence 16
(1981) 1–46

7. Bird, R.: An introduction to the theory of lists. In Broy, M., ed.: Logic of Programming and
Calculi of Discrete Design, Springer-Verlag (1987) 5–42

8. Backhouse, R.: An exploration of the Bird-Meertens formalism. In: STOP Summer School
on Constructive Algorithmics, Ameland. (1989)

9. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas, lenses, en-
velopes and barbed wire. In: Proc. Conference on Functional Programming Languages and
Computer Architecture (LNCS 523), Cambridge, Massachuetts (1991) 124–144

10. Fokkinga, M.: A gentle introduction to category theory — the calculational approach —.
Technical Report Lecture Notes, Dept. INF, University of Twente, The Netherlands (1992)

11. Jeuring, J.: Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science, Utrecht
University (1993)

12. Bird, R., de Moor, O.: Algebras of Programming. Prentice Hall (1996)
13. Hu, Z., Iwasaki, H., Takeichi, M.: Deriving structural hylomorphisms from recursive defini-

tions. In: ACM SIGPLAN International Conference on Functional Programming, Philadel-
phia, PA, ACM Press (1996) 73–82

14. Hu, Z., Iwasaki, H., Takeichi, M., Takano, A.: Tupling calculation eliminates multiple data
traversals. In: ACM SIGPLAN International Conference on Functional Programming, Am-
sterdam, The Netherlands, ACM Press (1997) 164–175

15. Hu, Z., Takeichi, M., Chin, W.: Parallelization in calculational forms. In: 25th ACM Sympo-
sium on Principles of Programming Languages, San Diego, California, USA (1998) 316–328

16. Hu, Z., Iwasaki, H., Takeichi, M.: Calculating accumulations. New Generation Computing
17 (1999) 153–173

17. Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns. Information Pro-
cessing Letters 89 (2004) 309–314

18. Malcolm, G.: Data structures and program transformation. Science of Computer Program-
ming (1990) 255–279

19. Pettorossi, A., Proiett, M.: Rules and strategies for transforming functional and logic pro-
grams. Computing Surveys 28 (1996) 360–414

20. de Moor, O., Sittampalam, G.: Higher-order matching for program transformation. Theor.
Comput. Sci. 269 (2001) 135–162

21. Goldberg, A., Paige, R.: Stream processing. In: LISP and Functional Programming. (1984)
53–62

22. Aho, A., Sethi, R., Ullman, J.: Compilers – Principles, Techniqies and Tools. Addison-
Wesley (1986)

168 Z. Hu, T. Yokoyama, and M. Takeichi

23. Chin, W.: Towards an automated tupling strategy. In: Proc. Conference on Partial Evaluation
and Program Manipulation, Copenhagen, ACM Press (1993) 119–132

24. Gill, A., Launchbury, J., Jones, S.P.: A short cut to deforestation. In: Proc. Conference on
Functional Programming Languages and Computer Architecture, Copenhagen (1993) 223–
232

25. Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Proc. Conference on
Functional Programming Languages and Computer Architecture, La Jolla, California (1995)
306–313

26. Onoue, Y., Hu, Z., Iwasaki, H., Takeichi, M.: A calculational fusion system HYLO. In: IFIP
TC 2 Working Conference on Algorithmic Languages and Calculi, Le Bischenberg, France,
Chapman&Hall (1997) 76–106

27. Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.A.: Automatic program parallelization.
Proceedings of the IEEE 81 (1993) 211–243

28. Cole, M.: Parallel programming, list homomorphisms and the maximum segment sum prob-
lems. Report CSR-25-93, Department of Computing Science, The University of Edinburgh
(1993)

29. Hu, Z., Iwasaki, H., Takeichi, M.: Formal derivation of efficient parallel programs by con-
struction of list homomorphisms. ACM Transactions on Programming Languages and Sys-
tems 19 (1997) 444–461

30. Skillicorn, D.: Foundations of Parallel Programming. Cambridge University Press (1994)
31. Gorlatch, S.: Constructing list homomorphisms. Technical Report MIP-9512, Fakultät für

Mathematik und Informatik, Universität Passau (1995)
32. Chin, W., Takano, A., Hu, Z.: Parallelization via context preservation. In: IEEE Com-

puter Society International Conference on Computer Languages, Loyola University Chicago,
Chicago, USA (1998)

33. Xu, D.N., Khoo, S.C., Hu, Z.: Ptype system : A featherweight parallelizability detector.
In: Second ASIAN Symposium on Programming Languages and Systems(APLAS 2004),
Taipei, Taiwan, Springer, LNCS 3302 (2004) 197–212

34. Sheard, T., Peyton Jones, S.L.: Template metaprogramming for Haskell. In: Haskell Work-
shop, Pittsburgh, Pennsylvania (2002) 1–16

35. Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns and its application
to program transformation. In: International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR 2003), Springer, LNCS 3018 (2003) 165–178

36. Sheard, T., Fegaras, L.: A fold for all seasons. In: Proc. Conference on Functional Program-
ming Languages and Computer Architecture, Copenhagen (1993) 233–242

	Introduction
	Program Calculation vs Fold/Unfold Transformations
	Notational Conventions
	The Fold/Unfold Approach to Program Transformation
	Program Transformations in Calculational Form

	Loop Fusion in Calculation Form
	Structured Recursive Form for Loop Fusion
	Calculational Rules for Loop Fusion
	A Calculational Algorithm for Loop Fusion

	Parallelization in Calculation Form
	J-Homomorphism: A Parallel Form for List Functions
	A Parallelizing Rule
	A Parallelization Algorithm

	Yicho: An Environment for Implementing Transformations in Calculational Forms
	Program Representation
	Basic Combinators for Programming Calculations
	Code Calculation Rules in Yicho

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

