

Lecture Notes in Computer Science 4143
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ralf Lämmel
João Saraiva
Joost Visser (Eds.)

Generative
and Transformational
Techniques
in Software Engineering

International Summer School, GTTSE 2005
Braga, Portugal, July 4-8, 2005
Revised Papers

13

Volume Editors

Ralf Lämmel
Microsoft Corp.
One Microsoft Way
98052 Redmond, WA, USA
E-mail: Ralf.Lammel@microsoft.com

João Saraiva
Joost Visser
Universidade do Minho
Escola de Engenharia
Departamento de Informática
Campus de Gualtar
4710-057 Braga, Portugal
E-mail: {jas,Joost.Visser}@di.uminho.pt

Library of Congress Control Number: 2006932840

CR Subject Classification (1998): D.2, D.1, D.3, F.3, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-45778-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-45778-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11877028 06/3142 5 4 3 2 1 0

Preface

The international summer school on Generative and Transformational Tech-
niques in Software Engineering (GTTSE 2005) was held in Braga, Portugal, on
July 4–8, 2005. In this volume, you will find an augmented selection of the ma-
terial presented at the school, including tutorials, technology presentations, and
contributions to the participants workshop.

The GTTSE summer school brings together PhD students, lecturers, technol-
ogy presenters, as well as other researchers and practitioners who are interested in
the generation and the transformation of programs, data, models, meta-models,
and documentation. This concerns many areas of software engineering: software
reverse and re-engineering, model-driven approaches, automated software engi-
neering, and generic language technology, to name a few. These areas differ with
regard to the specific sorts of meta-models (or grammars, schemas, formats etc.)
that underlie the artifacts involved, and with regard to the specific techniques
that are employed for the generation and the transformation of the artifacts.

The 2005 instance of GTTSE offered 8 tutorials, given by renowned repre-
sentatives of complementary approaches and problem domains. Each tutorial
combines foundations, methods, examples, and tool support. The program of
the summer school also featured 10 invited technology presentations, which pre-
sented concrete support for generative and transformational techniques. These
presentations complemented each other in terms of the chosen application do-
mains, case studies, and the underlying concepts. Furthermore, the program of
the school included a participants workshop to which all students of the summer
school were asked to submit an extended abstract beforehand. The Organization
Committee reviewed these extended abstracts and invited 14 students to present
their work at the workshop.

This volume contains extended and reviewed versions of the material pre-
sented at the summer school. Each of the 7 tutorials included here was reviewed
by 2 members of the Scientific Committee of GTTSE 2005. The 8 technology
presentations included were reviewed by 3 members each, as were the 6 selected
participant contributions. Review was selective and involved multiple rounds of
improvements.

We are grateful to all lecturers and participants of the school for their enthu-
siasm and hard work in preparing excellent material for the school itself and for
these proceedings. Due to their efforts the event was a great success, which we
trust the reader finds reflected in this volume.

May 2006 Ralf Lämmel, João Saraiva, and Joost Visser

Organization

GTTSE 2005 was hosted by the Departamento de Informática, Universidade do
Minho, Braga, Portugal.

Executive Committee

Program Co-chair: Ralf Lämmel (Microsoft, Redmond, USA)
Program Co-chair: João Saraiva (Universidade do Minho, Braga, Portugal)
Organizing Chair: Joost Visser (Universidade do Minho, Braga, Portugal)

Scientific Committee

Paulo Borba, Universidade Federal de Pernambuco, Brazil
Mark van den Brand, Technical University Eindhoven, The Netherlands
Jim Cordy, Queen’s University, Canada
Krzysztof Czarnecki, University of Waterloo, Canada
Andrea DeLucia, Università di Salerno, Italy
Jean-Luc Dekeyser, Université des Sciences et Technologies de Lille, France
José Fiadeiro, University of Leicester, UK
Stephen Freund, Williams College, UK
Jeff Gray, University of Alabama at Birmingham, USA
Reiko Heckel, University of Leicester, UK
Görel Hedin, Lund Institute of Technology, Sweden
Pedro Rangel Henriques, Universidade do Minho, Portugal
Y. Annie Liu, State University of New York at Stony Brook, USA
Cristina Lopes, University of California at Irvine, USA
Ralf Lämmel, Microsoft Corporation, USA
Marjan Mernik, University of Maribor, Slovenia
Oege de Moor, Oxford University, UK
Pierre-Etienne Moreau, INRIA Lorraine & LORIA, France
Peter Mosses, University of Wales Swansea, UK
José Nuno Oliveira, Universidade do Minho, Portugal
Jens Palsberg, UCLA, USA
João Saraiva, Universidade do Minho, Portugal
Andy Schürr, Technical University Darmstadt, Germany
Anthony Sloane, Macquarie University, Australia
Peter Thiemann, University of Freiburg, Germany
Simon Thompson, University of Kent, UK
Eelco Visser, Utrecht University, The Netherlands
Joost Visser, Universidade do Minho, Portugal
Eric Van Wyk, University of Minnesota, USA

VIII Organization

Organizing Committee

José Bacelar Almeida, Universidade do Minho, Braga, Portugal
Mark van den Brand, Technical University Eindhoven, The Netherlands
Maria João Frade, Universidade do Minho, Braga, Portugal
Pedro Rangel Henriques, Universidade do Minho, Braga, Portugal
Ralf Lämmel, Microsoft Corporation, Redmond, USA
Marjan Mernik, Maribor University, Maribor, Slovenia
João Saraiva, Universidade do Minho, Braga, Portugal
Joost Visser, Universidade do Minho, Braga, Portugal

Sponsoring Institutions

Centro de Ciências e Tecnologias de Computação Enabler
Fundação Oriente
Fundação para a Ciência e a Tecnologia
Luso-American Foundation
Microsoft
Software Improvement Group
Taylor’s Port

Table of Contents

I Tutorials

A Tutorial on Feature Oriented Programming and the AHEAD
Tool Suite . 3

Don Batory

Model Driven Engineering: An Emerging Technical Space 36
Jean Bézivin

Program Transformation with Reflection and Aspect-Oriented
Programming . 65

Shigeru Chiba

The Transformational Approach to Database Engineering 95
Jean-Luc Hainaut

Program Optimizations and Transformations in Calculation Form 144
Zhenjiang Hu, Tetsuo Yokoyama, Masato Takeichi

Mappings Make Data Processing Go ’Round . 169
Ralf Lämmel, Erik Meijer

On the Use of Graph Transformations for Model Refactoring 219
Tom Mens

II Technology Presentations

Forms2Net - Migrating Oracle Forms to Microsoft .NET 261
Luis Andrade, João Gouveia, Miguel Antunes,
Mohammad El-Ramly, Georgios Koutsoukos

Applications of the Asf+Sdf Meta-Environment . 278
M.G.J. van den Brand

MetaBorg in Action: Examples of Domain-Specific Language
Embedding and Assimilation Using Stratego/XT . 297

Martin Bravenboer, René de Groot, Eelco Visser

Agile Parsing to Transform Web Applications . 312
Thomas Dean, Mykyta Synytskyy

X Table of Contents

Data Cleaning and Transformation Using the AJAX Framework 327
Helena Galhardas

Developing Tools with Fujaba XProM . 344
Leif Geiger, Albert Zündorf

The COMPOST, COMPASS, Inject/J and RECODER Tool Suite for
Invasive Software Composition: Invasive Composition with COMPASS
Aspect-Oriented Connectors . 357

Dirk Heuzeroth, Uwe Aßmann, Mircea Trifu, Volker Kuttruff

Program Transformation Using HATS 1.84 . 378
Victor Winter, Jason Beranek

III Participants’ Contributions

Using Java CSP Solvers in the Automated Analyses of Feature
Models . 399

David Benavides, Sergio Segura, Pablo Trinidad,
Antonio Ruiz-Cortés

Co-transformations in Database Applications Evolution 409
Anthony Cleve, Jean-Luc Hainaut

Modular Name Analysis for Java Using JastAdd . 422
Torbjörn Ekman, Görel Hedin

Techniques for Lightweight Generator Refactoring . 437
Holger Krahn, Bernhard Rumpe

E-CARES Project: Reengineering of Telecommunication Systems 447
Christof Mosler

A Feature Composition Problem and a Solution Based on C++
Template Metaprogramming . 459

Zoltán Porkoláb, István Zólyomi

Author Index . 471

Part I

Tutorials

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 3 – 35, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Tutorial on Feature Oriented Programming
and the AHEAD Tool Suite

Don Batory

Department of Computer Sciences
University of Texas at Austin
Austin, Texas, 78712 U.S.A.
batory@cs.utexas.edu

Abstract. Feature oriented programming (FOP) is the study of feature mod-
ularity and its use in program synthesis. AHEAD is a theory of FOP that is
based on a fundamental concept of generative programming that functions map
programs. This enables the design of programs to be expressed compositionally
as algebraic expressions, which are suited for automated analysis, manipulation,
and program synthesis. This paper is a tutorial on FOP and AHEAD. We review
AHEAD’s theory and the tool set that implements it.

1 Introduction

Software engineering (SE) is in a perpetual crisis. Software products are increasing in
complexity, the cost to develop and maintain systems is skyrocketing, and our ability
to understand systems is decreasing. A basic goal of SE is to successfully manage and
control complexity; the “crisis” indicates that SE technologies are failing to achieve
this goal. There are many culprits. One surely is that today’s software design and
implementation techniques are simply too low-level, exposing far more detail than is
necessary to make a program’s design, construction, and ease of modification simple.
Future software design technologies will need to do better, and it should not be
surprising that they will be different from those of today.

Looking to the future, SE paradigms will likely embrace:

• generative programming (GP)
• domain-specific languages (DSLs)
• automatic programming (AP)

GP is about automating software development. Eliminating the task of writing
mundane and rote programs is a motherhood to improved programmer productivity
and program quality. Program synthesizers will transform input specifications into
target programs. These specifications will not be written in Java or C# — which are
too low-level — but rather in high-level notations called DSLs that are specific to a
particular domain. DSL programs are known to be both easier to write and maintain
than their low-level (e.g., Java) counterparts. Ideally, DSLs are declarative, allowing
their users to define what is needed and leave it up to the DSL compiler to produce an
efficient program automatically that does the how part. But placing the burden of
program synthesis on a DSL compiler should not be taken lightly. This involves the

4 D. Batory

problem of AP; it is a technical problem of great difficulty, as little progress has been
made in the last 25 years to produce demonstrably efficient programs from declarative
specs. Advancement on all three fronts (GP, DSLs, and AP) are needed before the
crisis in SE will noticeably diminish.

While it is wishful thinking that simultaneous advances on all three fronts is
possible, it is worth noting that a spectacular example of this futuristic SE paradigm
was realized over 25 years ago — ironically around the time when most people were
giving up on AP . Furthermore, this work had a fundamental impact on commercial
applications. The example is relational query optimization . SQL is a prototypical
DSL: it is a declarative language for retrieving data from tables. An SQL compiler
translates an SQL statement into a relational algebra expression. A query optimizer
accomplishes the goal of automatic programming by applying algebraic identities to
automatically rewrite — and hence optimize — relational algebra expressions. The
task of translating an optimized expression into an efficient program is an example of
generative programming.

Relational optimizers revolutionized databases: data retrieval programs that were
hard to write, hard to optimize, and hard to maintain are now produced automatically.
There is nothing special about data retrieval programs: all interesting programs are
hard to write, optimize, and maintain. Thus if ever there was a “grand challenge” for
SE, it would be to replicate the success of relational query optimization in other
domains.

AHEAD is a theory of feature oriented programming (FOP) that shows how the
concepts and framework of relational query optimization generalize to other domains.
ATS is a suite of tools that implement the AHEAD theory.

1.1 Background

How do you describe a program that you’ve written to a prospective customer? You
are unlikely to recite what packages you’re using — because the customer would
unlikely have any interest in such details. Instead, you would take a more promising
approach of explaining the features — increments in program functionality — that
your program offers its clients. This works because clients know their requirements
and can see how features satisfy requirements.

Programs come in different flavors, e.g., entry-level through deluxe. The
differences between these categories are the presence or absence of features (or more
commonly, sets of features). Entry-level versions have a minimal feature set; deluxe
advertises the most.

But if we describe programs by features or differentiate programs by features, why
can’t we build programs (or program families) from feature specifications? In fact, we
can. This is the area of research called product-lines. The ability to add and remove
features suggests that features can be modularized. While it is possible to construct
product-lines without modularizing features (e.g., through the extensive use of #if-
#endif preprocessor declarations), we focus on a particular sub-topic of product-line
research that deals with feature modularization. By making features first-class design
and implementation entities, it is easier to add and remove features from applications.
(In fact, this is a capability that most of us wish we had today — the ability to add and
remove features from our programs. We don’t have it now; the purpose of this paper
is to explain how it can be done in a general way). It happens that feature modularity

 Feature Oriented Programming and the AHEAD Tool Suite 5

goes far beyond conventional notions of code modularity. This, among other things,
makes it a very interesting topic.

Feature oriented programming (FOP) is the study of feature modularity and
programming models that support feature modularity. A powerful form of FOP is
based on a methodology called step-wise development (SWD). SWD is both simple
and ancient: it advocates that complex programs can be constructed from simple
programs by incrementally adding details. When incremental units of change are
features, FOP and SWD converge. This is the starting point of AHEAD and ATS. But
what is a feature? How is it represented? And how are features and their compositions
modeled?

1.2 A Clue

Consider any Java class C. A class member could be a data field or a method. Class C
below has four members m1—m4.

class C {
 member m1;
 member m2;
 member m3;
 member m4;
} (1)

Have you ever noticed that there is no unique definition for C? The members of C
could be defined in a single class as above, or distributed over an inheritance
hierarchy of arbitrary height. One possibility is to have class C1 encapsulate member
m1 and C23 encapsulate members m2 and m3:

class C1 { member m1; }
class C23 extends C1 {
 member m2;
 member m3;
}
class C4 extends C23 { member m4; }
class C extends C4 {} (2)

From a programmatic viewpoint, both definitions of C, namely (1) and (2), are indes-
tinguishable. In fact, we could further decompose C23 to be:

class C2 extends C1 { member m2; }
class C3 extends C2 { member m3; }
class C23 extends C3 {}

and the definition of C would not change; it would still have members m1—m4. More-
over, there’s nothing really special about the placement of member m1 (or m2 …) in this
hierarchy. If method m1 references other members, as long as these members are not
defined lower in the inheritance chain than m1, m1 can appear in any class of that chain.

If you recall your high school or college courses on algebra, you may recognize
these ideas. Consider sets and the union operation. We can define the sets:

C1 = { m1 }
C2 = { m2 }
C3 = { m3 }
C4 = { m4 }

C23 = C2 ∪ C3

C = C1 ∪ C23 ∪ C4 = C1 ∪ C2 ∪ C3 ∪ C4

6 D. Batory

Union is commutative, which means that the order in which the union of sets is taken
doesn’t matter. This is similar to, but not the same as, inheritance because as we saw,
a method can be added only as long as members it references are not defined in sub-
classes.

Something a bit closer to inheritance are vectors and the vector operations of addi-
tion(+) and movement(→). Suppose we define vectors in 4-space:

C1 = (m1,0,0,0)
C2 = (0,m2,0,0)
C3 = (0,0,m3,0)
C4 = (0,0,0,m4)

You know about vector addition; vector movement is the path that is followed when
laying vectors end-to-end. Vector addition is commutative; vector movement is not:

C = (m1,m2,m3,m4) = C1 + C2 + C3 + C4
C1 + C2 + C3 + C4 = C4 + C3 + C2 + C1
C1 → C2 → C3 → C4 ≠ C4 → C3 → C2 → C1

Inheritance has the flavor of both vector arithmetic and vector movement.
When you think about an operation for inheritance, what you are really defining is

an operation for class extension. A class extension can add new members and extend
existing methods of a class. Here’s an example. Suppose a program P has a single
class B that initially contains a single data member x:

class B { int x; } // program P

Suppose an extension R of program P adds data member y and method z to class B. Let
us write this extension as:

refines class B { // extension R
 int y;
 void z() {...}
} (3)

where “refines” is a keyword modifier to mean extension. The composition of R
with P defines a new program N with a single class B with three members:

class B { // program N
 int x;
 int y;
 void z() {...}
} (4)

In effect, this composition is expressed by the following inheritance chain, called an
extension chain:

class BP { int x; }

class BR extends BP {
 int y;
 void z() {...}
}

class BN extends BR {} (5)

where subscripts indicate the program or extension from which that fragment of B is
defined.

We can express these ideas algebraically by “values” and “functions”. Program P is
a value (or constant function) — it defines a base artifact. An extension is a function

 Feature Oriented Programming and the AHEAD Tool Suite 7

that maps programs, so R is a function. A composition is an expression. We can model
(5) as the equation N = R(P) or N = R•P, where • denotes function composition.

We can express our previous example about class C in this manner. Here is one
way: let C1 be a value and C2, C3, and C4 be the extensions:

class C { member m1; } // value C1
refines class C { member m2; } // function C2
refines class C { member m3; } // function C3
refines class C { member m4; } // function C4

Now, class C of can be synthesized by evaluating the expression C4•C3•C2•C1. The
expression — C4•C3•C2•C1 — is called the design of C. Taking this idea further, we
see that C23 has a representation as a composite function or composite extension:

C23 = C2•C3
which represents the code:

refines class C {
 member m2;
 member m3;
}

There are loose ends to tie up before a bigger picture emerges. First, there’s
scalability. The effects of a program extension need not be limited to a single Java
class. In fact, it is common for a “large-scale” extension to encapsulate multiple class
extensions as well as new classes. That is, such an extension would augment existing
classes of a program with new members and extend existing methods, but would also
introduce new classes that could be subsequently augmented.

Second, program extensions have meaning when they encapsulate the
implementation of a feature. Have you ever added a new feature to an existing
program? You discover that you often have to extend a number of classes, as well as
add new classes to a program. Well, a feature is a “large scale” program extension.

Third, in product-line design, features are stereo-typical units of application design
that can be composed with other features to produce customized programs. A model of
a product-line — called a domain model — is a set of values and functions each repre-
senting a particular feature, that can be composed to synthesize customized programs.

Fourth, recall that a key to the success of relational query optimizers is that they
use expressions to represent program designs. That is, a data retrieval program is
defined by a composition of relational algebra operations. To see the generalization, a
domain model is an algebra — a set of operations (“values” and “functions”) whose
compositions define the space of programs that can be synthesized. Given an algebra,
there will always be algebraic identities among operations. These identities can be
used to optimize algebraic expression definitions of programs, just like relational
algebra expressions can be optimized. (Some domains will have more interesting
optimizations than others).

Fifth, what is design? If you think about it, this is a really hard question to answer,
because it is asking for a clear articulation of a deeply intuitive idea. Our discussions
offer a simple answer: a program is a value. The design of a program is the expression
that produces its value. If multiple expressions produce the same value, then these
expressions represent equivalent designs of that program.

Now, let’s consider a more precise way to express these ideas.

8 D. Batory

2 A Model of FOP

Salient ideas of FOP as expressed by two models: GenVoca and its successor
AHEAD.

2.1 GenVoca

GenVoca is a design methodology for creating application families and
architecturally-extensible software, i.e., software that is customizable via feature
addition and removal . It follows traditional step-wise development with one major
difference: instead of composing thousands of microscopic program extensions (e.g.,
x+1⇒inc(x)) to yield admittedly small programs, GenVoca scales extensions so that
each adds a feature to a program, and composing few extensions yields an entire
program.

In GenVoca, programs are values and program extensions are functions. Consider
the following values that represent base programs with different features:

f // program with feature f
g // program with feature g

A program extension is a function that takes a program as input and produces a fea-
ture-augmented program as output:

i•x // adds feature i to program x

j•x // adds feature j to program x

A multi-featured application is an equation that is a named expression. Different
equations define a family of applications, such as:

app1 = i•f // app1 has features i and f

app2 = j•g // app2 has features j and g

app3 = i•j•f // app3 has features i, j, f

Thus, the features of an application can be determined by inspecting its equation.
Note that a function represents both a feature and its implementation — there can

be different functions with different implementations of the same feature:

k1•x // adds k with implementation1 to x

k2•x // adds k with implementation2 to x

When an application requires the use of feature k, it is a problem of expression
optimization to determine which implementation of k is best (e.g., provides the best
performance)1. It is possible to automatically design software (i.e., produce an
expression that optimizes some criteria) given a set of constraints for a target
application . This is automatic programming.

1 Different equations represent different programs and equation optimization is over the space

of semantically equivalent programs. This is identical to relational query optimization: a
query is represented by a relational algebra expression, and this expression is optimized.
Each expression represents a different, but semantically equivalent, query-evaluation
program.

 Feature Oriented Programming and the AHEAD Tool Suite 9

Although GenVoca values and functions seem untyped, constraints do exist.
Design rules are domain-specific constraints that capture syntactic and semantic
constraints that govern legal compositions. It is common that the selection of a feature
will disable or enable the selection of other features. More on design rules later.

2.2 AHEAD

AHEAD, or Algebraic Hierarchical Equations for Application Design, embodies four
key generalizations of GenVoca. First, a program has many representations besides
source code, including UML documents, makefiles, BNF grammars, documents, per-
formance models, etc. A model of FOP must deal with all these representations.

Second, each representation is written in its own language or DSL. The code
representation of a program may be represented in Java, a machine executable
representation may be bytecodes, a makefile representation could be an ant XML file,
a performance model may be a set of Mathematica equations, and so on. An FOP
model must support an open-ended spectrum of languages to express arbitrary
program representations.

Third, when a feature is added to a program, any or all of the program’s
representations may be updated. That is, the source code of a program changes (to
implement the feature), makefiles change (to build the feature), Mathematica
equations change (to profile the feature), etc. Thus, the concept of extension applies
not only to source code representations, but other representations as well.

Fourth, FOP models must deal with a general notion of modularity: a module is a
containment hierarchy of related artifacts. A class is a module (1-level hierarchy) that
contains a set of data members and methods. A package or JAR file is a module (2-
level hierarchy) that contains a set of classes. A J2EE EAR file is a module (3-level
hierarchy) that contains a set of packages, HTML files, and descriptor files. Going
further, a client-server program is also a module (a multi-level hierarchy) that
contains representations of both client and server programs.

Given the above, a generalization of GenVoca emerges. A “value” is a module that
defines a containment hierarchy of related artifacts of different types written in poten-
tially different languages. An “extension” is a function that maps containment hierar-
chies. Thus, whenever an extension is applied to a program (i.e., an AHEAD value),
any or all of the representations in this module (containment hierarchy) will be
updated and new artifacts added. Thus, as AHEAD extensions are applied, all of the
representations of the resulting program remain consistent. This is exactly what we
need.

The notations of AHEAD extend those of GenVoca. A model M is a set of features
that are “values” or “functions” called units:

M = { a, b, c, d, … }

Individual units may themselves be sets, recursively:

a = { x, y, z }
z = { r, q }
...

The nesting of sets models a containment hierarchy or module. The composition of
units is defined by the Law of Composition. That is, given units X and Y:

10 D. Batory

X = { ax, bx, cx }
Y = { ay, cy, dy }

The composition of Y and X, denoted Y•X, is formed by “aligning” the units of X
and Y that have the same name (ignoring subscripts) and composing:

Y•X = { ay•ax, bx, cy•cx, dy } // Law of Composition (6)

That is, artifact a of Y•X is the original artifact ax composed with the extension ay; arti-
fact b of Y•X remains unchanged from its original definition bx, etc. Composition is
recursive: if units represent sets, their compositions are expanded according to (6).

To see the connection with inheritance, consider the following inheritance
hierarchy which is a class representation of (6). Assume a and c are methods, where
ay and cy extend (or override) their super-methods ax and cx:

class X {
 member ax;
 member bx;
 member cx;
}

class Y extends X {
 member ay;
 member cy;
 member dy;
}

class Y•X extends Y {}

How the composition operator • is defined depends on the artifact type. • is polymor-
phic: it can be applied to all artifacts (i.e., all artifacts can be composed/extended) but
what composition/extension means is artifact type dependent (i.e., how makefile arti-
facts are extended will be analogous to but not the same as how code artifacts are
extended). This means that different tools implement • for code and makefiles.

AHEAD representations lead to simple tools and implementations. While there are
many ways in which containment hierarchies can be realized, the simplest way is to
map containment hierarchies to file system directories. Thus a feature might encapsu-
late many Java files, class files, HTML files, etc. Feature composition corresponds to
directory composition.

Recognize what AHEAD represents: it is a structural theory of information — it is
not just a theory of code synthesis. Its premise is that if a program can be understood
in terms of features, so too can all of its representations — code and otherwise. We
can choose to interpret individual terms of AHEAD expressions as code files or code
directories, but we are free to consider other representations as well. A familiarity
with relational query optimization bares this out: the optimizer reasons about a
program in terms of performance representations of relational operations (i.e., cost
functions), while the code generator produces a program from code representations of
these same operations . Reasoning about programs often relies on different
representations of programs. AHEAD provides a mathematical foundation for
expressing their inter-relationships.

We’ll explore examples of these ideas in the following sections.

 Feature Oriented Programming and the AHEAD Tool Suite 11

3 A Simple Example

Consider a family of elementary post-fix calculators that are modeled after Hewlett-
Packard calculators. Calculators in this family are differentiated on (a) the arithmetic
values BigInteger (an unlimited precision integer) or BigDecimal (an unlimited
precision, signed decimal number) that can be specified and (b) the set operations that
can be performed on them, which includes addition, division, and subtraction.

An AHEAD model that describes this family is C:
C = { Base, BigI, BigD, Iadd, Idiv, Isub, Dadd, Ddivd, Ddivu, Dsub }

The lone value in this model is Base, which defines an empty calc (short for “calcula-
tor”) class (Figure 1a). The extensions BigI and BigD introduce a 3-level stack of
BigInteger or BigDecimal objects, respectively (Figure 1b-c). BigI and BigD are
mutually exclusive as the stack variables introduced by both have the same name, but
are of different types. Thus, calculators either work on BigInteger or BigDecimal
numbers, but not both.

class calc { }

refines class calc {
 void divide() {
 e0 = e0.divide(e1);
 e1 = e2;
 }
}

import java.math.BigDecimal;

refines class calc {
 void divide() {
 e0 = e0.divide(e1,

BigDecimal.ROUND_DOWN);
e1 = e2;

 }
}

(a) Base/calc.jak

(d) Idiv/calc.jak

(f) Ddivd/calc.jak

refines class calc {
 void add() {
 e0 = e0.add(e1);
 e1 = e2;
 }
}

(e) Iadd/calc.jak
and Dadd/calc.jak

import java.math.BigDecimal;

refines class calc {
 static BigDecimal

zero = new BigDecimal("0");
 BigDecimal e0 = zero, e1 = zero,

e2 = zero;

 void enter(String val) {
 e2 = e1;
 e1 = e0;
 e0 = new BigDecimal(val);
 }

 void clear() {
 e0 = e1 = e2 = zero;
 }

 String top() { return e0.toString(); }
}

(c) BigD/calc.jak

import java.math.BigInteger;

refines class calc {
 static BigInteger zero = BigInteger.ZERO;
 BigInteger e0 = zero, e1 = zero, e2 = zero;

 void enter(String val) {
 e2 = e1;
 e1 = e0;
 e0 = new BigInteger(val);
 }

 void clear() {
 e0 = e1 = e2 = zero;
 }

 String top() { return e0.toString(); }
}

(b) BigI/calc.jak

Fig. 1. Files from the C model

12 D. Batory

The extensions Iadd, Idiv, and Isub respectively introduce the BigInteger
addition, division, and subtraction methods to the calc class (Figure 1d-e). The
extensions Dadd, Ddivd, Ddivu, and Dsub do the same for BigDecimal methods
(Figure 1f-g). Note that there are two mutually exclusive BigDecimal division
extensions: Ddivd and Ddivu. Ddivd rounds answers down, Ddivu rounds up.

As you may have already noticed, these files look like Java programs, but the
language that we are using is not Java but an extended Java language called Jak (short
for “Jakarta”). Jak files have .jak extensions, like Java files have .java extensions.

A calculator is defined by an equation. Here are a few calculator definitions:

i1 = Iadd•BigI•Base
i2 = Isub•Iadd•BigI•Base
i3 = Idiv•Iadd•BigI•Base

d1 = Dadd•BigD•Base
d2 = Dsub•Dadd•BigD•Base
d3 = Ddivd•Dadd•BigD•Base

Calculator i1 offers BigInteger addition. i2 also supports subtraction. i3 has BigIn-
teger addition and division. d1—d3 are the corresponding calculators for BigDecimal
numbers using rounded-down division. The code generated for the i3 calc class is
shown in Note the term “layer” in Figure 2 is used interchangeably with“feature” in
AHEAD.

layer i3;

import java.math.BigInteger;

class calc {
 static BigInteger zero = BigInteger.ZERO;
 BigInteger e0 = zero, e1 = zero, e2 = zero;

 void add() {
 e0 = e0.add(e1);
 e1 = e2;
 }

 void clear() {
 e0 = e1 = e2 = zero;
 }

 void divide() {
 e0 = e0.divide(e1);
 e1 = e2;
 }

 void enter(String val) {
 e2 = e1;
 e1 = e0;
 e0 = new BigInteger(val);
 }

 String top() { return e0.toString(); }
}

Fig. 2. i3/calc.jak

 Feature Oriented Programming and the AHEAD Tool Suite 13

Model Exercises
[1] What other calculator features could be added to C? What would be their Jak defi-

nitions? Look at the BigInteger and BigDecimal pages in the J2SDK
documentation for possibilities.

[2] Suppose the size of the stack was variable. How would this be expressed as an
extension? What modifications of existing extensions would be needed?

[3] Modify model C so that BigDecimal round-up and round-down are features,
which could parameterize operations like division.

[4] How would C be modified to permit the synthesis of a program that would invoke
the calculator from the command-line? From a GUI?

Tool Exercises
An AHEAD model C corresponds to a directory C, and each unit U in C corresponds to
a subdirectory of C, namely C/U. The contents of a unit in our example is merely a
calc.jak file. The AHEAD directory structure of C is:

C/Base/calc.jak // see Figure 1a
C/BigI/calc.jak // see Figure 1b
C/BigD/calc.jak // see Figure 1c
C/Iadd/calc.jak // see Figure 1d
C/Idiv/calc.jak // see Figure 1e
C/Isub/calc.jak
C/Dadd/calc.jak // see Figure 1d
C/Ddivd/calc.jak // see Figure 1f
C/Ddivu/calc.jak
C/Dsub/calc.jak

Although we provide no calc.jak files for Isub and Dsub, they are easy to write. In
fact, they are almost identical to the calc.jak files for Iadd and Dadd.2

The composer tool is used to evaluate equations and has many optional parameters.
For our tutorial, we need to reset one of these parameters. Create in the model direc-
tory a file called composer.properties. Its contents is a single line (which says when
composing Jak files, use the jampack tool):

unit.file.jak : JamPackFileUnit

To evaluate an equation, run composer in the model directory. The order in which
model units are listed on the composer command line are inside-to-outside order, and
the name of the composition is given by the target option. Thus, to evaluate i3 use:

> cd C
> composer --target=i3 Base BigI Idiv Iadd

The result of the composition is the directory C/i3, which contains a single file,
calc.jak, shown in Figure 2. Note that the order in which units are listed on the com-
poser command line is in reverse order in which they are listed in an equation —
base first, outermost extension last. (This is a legacy oddity of AHEAD tools that has
never been changed. Sigh.)
[5] Validate your Model Exercise solutions by implementing them using AHEAD

tools.

2 So why not just define one layer to represent both? This could be done with our current tools,

as they are preprocessors. In future tools, these files will be different, because the types of
variables for e1—e3 will need to be explicitly declared. When this occurs, the correspond-
ing files will indeed be different.

14 D. Batory

3.1 Translating to Java

The jak2java tool converts Jak files to their Java counterparts:

> cd i3
> jak2java *.jak

The above command-line translates all Jak files (in our case, there is only one file —
calc.jak) to their Java equivalents. Of course, these generated files can be compiled
in the usual way:

> javac *.java

Note there are Jak files (i.e., those that refine classes and interfaces) that cannot be
translated to Java, as they have no Java counterpart. jak2java translates only Jak
classes and interfaces.

3.2 Design Rules

New arithmetic operations could be added to C to enlarge the family of calculators. At
the same time, it becomes increasingly clear that not all compositions are meaningful.
In fact, it is quite easy to deliberately or unintentionally specify meaningless composi-
tions, but composer is usually quite happy to produce code for them. We need auto-
mated help to detect illegal compositions.

This is not a problem specific to calculators, but rather a fundamental problem in
FOP. The use of a feature in a program can enable or disable other features. Design
rules are domain-specific constraints that define composition correctness predicates
for features. Design rule checking (DRC) is the process by which design rules are
composed and their predicates validated. AHEAD offers two different tools for
defining and evaluating design rules: drc and guidsl. drc is a first-generation tool ;
guidsl is a next-generation tool that we will highlight here.

The theory behind both tools is the use of grammars to define legal sequences (i.e.,
compositions) of features. A grammar for model C is:

C : Type Base ;

Type : BigInt+ BigI
 | BigDec+ BigD ;

BigInt : Iadd | Idiv | Isub ;

 BigDec : Dadd | Ddivu | Ddivd | Dsub ; (7)

where tokens are units of C. A sentence of this grammar specifies a particular
sequence or composition of features. The set of all sentences defines the model’s
product-line, i.e., the set of all possible expressions or compositions of features.

Like any grammar, some sentences are semantically invalid. To weed out incorrect
sentences, a grammar is augmented with attributes. Conditions for correct sentences
(or correct compositions) are predicates defined over these attributes. That is, these
predicates filter out syntactically incorrect sentences. The core theory behind both
tools are attribute grammars, a well-understood technology.

In the case of our C model, syntactic correctness is almost all that is needed. The
only additional constraint — which is simple enough to have been expressed by an
additional grammar rule — is the mutually exclusive nature of Ddivu and Ddivd; at
most one of these features can appear in a decimal calculator.

 Feature Oriented Programming and the AHEAD Tool Suite 15

As an aside, product-line researchers are familiar with feature diagrams, i.e., trees
whose terminal nodes are primitive features and non-terminal nodes are compound
features. So what is the connection between grammars and feature diagrams?
Although feature diagrams were introduced by Kang, et al in the early 1990s and
“GenVoca” grammars, like (7), were introduced in 1992 , it was not until 2002 that
de Jonge and Visser noticed that feature diagrams are graphical representations of
grammars . In fact, grammars provide an added benefit beyond feature diagrams in
that they tell us the order in which features are composed, which is important to
AHEAD and step-wise development. So if you’re a fan of feature diagrams, you will
see that the tools and ideas we present here are directly applicable to your interests.

3.2.1 The guidsl Tool
guidsl is a next generation tool for design rule checking . The key idea is that a tree
grammar (i.e., a grammar where each token appears at most once in a sentence and
which itself can be depicted as a tree) can be represented as a propositional formula.
Moreover, any propositional constraints on the use of features can be added to this
formula. Amazingly, an FOP domain model reduces to a single propositional formula,
whose variables correspond to primitive and compound features!

Here’s why this is important. First, we have a compact representation of an
FOP domain model: it is a grammar (which encodes syntactic/ordering con-
straints) plus a set
of propositional
formulas that cons-
trains sentences to
legal compositions.
The entire guidsl
specification for
the C model is
shown in Figure 3.
The :: Name
phrase in a guidsl
specifica-tion is a
way to assign a
name to a pattern.

Second, one of the hallmarks of feature oriented designs is the ability to
declaratively specify programs in terms of the features that it offers. guidsl takes a
model specification (a .m file) and synthesizes a Java GUI. As a user selects features
in the GUI, guidsl uses a logic truth maintenance system to propagate constraints so
that users cannot specify incorrect programs. (guidsl is, in effect, a syntax-directed
editor that guarantees compilable programs). Further, because a domain model is a
propositional formula, satisfiability solvers (or SAT solvers) can be used to help
debug models. (A SAT solver is a tool that determines if there is a truth assignment to
boolean variables that will satisfy a propositional formula). We believe that SAT
solvers will be invaluable assets in future FOP tools.

To generate a declarative language for our calculator, run guidsl on the C model
file:

> guidsl c.m

C : Type Base :: Main ;

Type : BigInt+ BigI :: BigInteger
| BigDec+ BigD :: BigDecimal ;

BigInt : Iadd | Idiv | Isub ;

BigDec : Dadd | Ddivu | Ddivd | Dsub ;

%% // arbitrary propositional formulas below

Ddivu or Ddivd implies not (Ddivu and Ddivd);

Fig. 3. C.m -- the guidsl Model of C

16 D. Batory

The GUI that is synthesized is shown in Figure 4.

Model Exercises
[6] How would you change the guidsl file if

both Add and Subtract operations were
always included if either is selected? Simi-
larly for Divide and Multiply?

Tool Exercises
[7] Implement your solution to [6].

[8] To see an explanation (in the form of a proof)
why certain features have been automatically
selected or deselected, run guidsl, go to
Help, and select “Display reason for var-
iable selection”. Now drag your cursor
over a variable that has been greyed out (i.e.,
whose value was automatically selected). In
the text area at the bottom of the selection
panel, you’ll see the explanation/proof for
that variable’s value.

[9] Alter the C.m file of Figure 3 by eliminating
the propositional constraint and modifying
the grammar specification to account for the mutual exclusion of Ddivd and
Ddivu. Test your solution to see the impact of this change. (Hint: your GUI front-
end will change).

4 Other ATS Tools and Program Representations

So far, you have seen the composer, jampack (which is called by composer),
jak2java, and guidsl tools. Now let’s look at the mixin, unmixin, and reform tools.

4.1 mixin

mixin is another tool, besides jampack, that can compose Jak files. Edit the
unit.file.jak line in the composer.properties file to be:

unit.file.jak : MixinFileUnit

This is the default setting for unit.file.jak. If composer doesn’t see a com-
poser.properties file, it uses mixin to compose Jak files.

Let’s re-evaluate the i3 equation to see how mixin works:

> cd C
> composer --target=i3 Base BigI Idiv Iadd

This is the same command as before. However, the calc.jak file that is produced is
quite different and is shown in Figure 5.

Fig. 4. Declarative GUI for Model C

 Feature Oriented Programming and the AHEAD Tool Suite 17

layer i3;

import java.math.BigInteger;

SoUrCe RooT base "../base/calc.jak";
abstract class calc$$base {}

SoUrCe BigI "../BigI/calc.jak";
abstract class calc$$BigI extends calc$$base {
 static BigInteger zero = BigInteger.ZERO;
 BigInteger e0 = zero, e1 = zero, e2 = zero;

 void add() {
 e0 = e0.add(e1);
 e1 = e2;
 }

 void clear() {
 e0 = e1 = e2 = zero;
 }
 void divide() {
 e0 = e0.divide(e1);
 e1 = e2;
 }

 void enter(String val) {
 e2 = e1;
 e1 = e0;
 e0 = new BigInteger(val);
 }

 String top() {
 return e0.toString();
 }
}

SoUrCe Iadd "../Iadd/calc.jak";
abstract class calc$$Iadd extends calc$$BigI {
 // adds BigIntegers
 void add() {
 // adds BigIntegers
 e0 = e0.add(e1);
 e1 = e2;
 }
}

SoUrCe Idiv "../Idiv/calc.jak";
class calc extends calc$$Iadd {
 void divide() {
 e0 = e0.divide(e1);
 e1 = e2;
 }
}

Fig. 5. mixin-produced .jak file

The idea behind mixin is simple: each extension is mapped to a class in an
extension (inheritance) chain. Each class is prefaced by a SoUrCe statement which
indicates the name of the feature and the actual file from which the class was derived.
Thus, in Figure 5 four Jak files were composed to yield the calc class; this class is the
terminal class of a four-class extension chain. All other classes are abstract —
meaning that they can’t be instantiated and whose purpose is only to contribute

18 D. Batory

members to the final class in the chain. Note that class names are mangled (i.e., by
appending $$<featureName>) to make them unique.

The intent of mixin and jampack is that you can use either tool to compose Jak
files. As you’d expect, the programs of Figure 2 and Figure 5 are functionally
equivalent.

Both mixin and jampack can compose files that they themselves have produced.
That is, a jampack-produced Jak file can be composed with another jampack-produced
Jak file. The same holds for mixin. Because jampack-produced Jak files have the same
format as uncomposed Jak files, mixin can compose files produced by jampack. How-
ever, the reverse is not true: jampack cannot compose mixin-produced files.

4.2 unmixin

So why use mixin? Why not always use jampack? Consider a typical debugging
cycle: you compose files, use jak2java to translate Jak files to Java files, compile and
run the Java files to discover bugs. The composed Jak files are patched and the cycle
continues. Eventually, you’ll want to back-propagate the changes you made to the
composed files to their original feature definitions. Knowing what feature files to
update won’t always be easy — and the problem becomes worse as the number and
size of the Jak files increases. Back-propagation is a tedious and error-prone process.

Because mixin preserves feature boundaries, it is easy to know what features to
update. In fact, with SoUrCe statements, the propagation of changes can be done auto-
matically. That’s the purpose of unmixin. The idea is that you compose a bunch of
Jak files, edit the composed files, and run unmixin on the edited files to back-
propagate the changes to the original feature files. For example, suppose we add a
comment to the bottom-most class in the extension chain of Figure 5:

SoUrCe Idiv "../Idiv/calc.jak";
class calc extends calc$$Iadd {
 void divide() {
 // *new* divide and pop stack
 e0 = e0.divide(e1);
 e1 = e2;
 }
}

By running unmixin, this change is propagated back to the Idiv/calc.jak file:

> cd C
> unmixin calc.jak

See for yourself that the change was made. Here are things to remember about
unmixin:

• it can take any number of Jak files on its command line,

• the body of the class or interface in the command-line file will replace the
body of the class or interface in the original file,

• implements declarations are also propagated, and

• don’t change the contents of the SoUrCe statements!

unmixin updates the original uncomposed files only if changes to its composed coun-
terpart have been updated.

 Feature Oriented Programming and the AHEAD Tool Suite 19

4.3 reform

reform is a pretty-printing tool that formats unruly Jak files (and Java files!) and
makes them unbelievably beautiful. Consider the 1-line calc.jak file:

refines class calc { void divide() { e0 = e0.divide(e1); e1 = e2; } }

By running:

> reform calc.jak

reform copies the original file into calc.jak~ and updates calc.jak to be:

refines class calc {
 void divide() {
 e0 = e0.divide(e1);
 e1 = e2;
 }
}

4.4 Equation Files

As we said earlier, AHEAD is a theory for structuring and synthesizing documents of
all kinds by composing features. We introduced Jak file (i.e., code) representations
earlier, and now we introduce a second.

Typing in equations on the command line to composer can be tedious, particularly
if equations involve more than a few terms. composer takes an alternative
specification, called an equation file, which is a list of units. The order in which the
units are listed is from inside-out, and the name of the equation is the name of the
equation file.

For example, the equation A = B•C would be represented by the equation file
A.equation whose contents is:

base feature listed first!
C
B

Where any line beginning with # is a comment. Like other AHEAD artifacts, equation
files can be composed. File A.equation above is a “value”. An equation file that is an
extension has the special term super as one of its units. An extension of A.equation
that puts E before C and F after B is R.equation:

E
super
F

A composition of the above files is:

> composer --target=c.equation A.equation R.equation

and yields file c.equation with contents:

E
C
B
F

Intuitively, an equation file defines an architectural representation of a program as an
expression. As all program representations are extendable, we now have a means by

20 D. Batory

which to specify and manipulate program architectures. We will see how such repre-
sentations are useful later.

5 More Features of Jak Files

There are three additional features of the Jak language that you should know: Super()
references, extension of constructors, and local identifiers.

5.1 The Super Construct

To invoke a method m(int x, float y) of a superclass in Java, you write:

super.m(x,y);

In Jak files, use the Super construct instead:

Super(int,float).m(x,y);

Super(<argument types>) prefaces a Super call and lists the argument types of the
method to be called. Consider the class foo and an extension:

class foo {
 void dosomething() { /*code*/ }
}

refines class foo {
 void dosomething() {
 /* more before */
 Super().dosomething();
 /* more later */
}

In this example, the Super references the dosomething() method prior to its
extension. A jampack composition of these definitions is shown in Figure 6a. Observe
that the original dosomething() method is present in foo, except that it has been
renamed, along with its references. The corresponding mixin composition is shown in
Figure 6b. When jak2java translates Figure 6b, Super(...) references are replaced
by “super”. In general, always use the Super(...) construct to reference superclass
members; ATS tools do not recognize “super”.

class foo {
final void dosomething$$one()
{ /*code*/ }

void dosomething()
{ /* more before */

dosomething$$one();
/* more later */

}
}

SoUrCe ...;
abstract class foo$$one {

void dosomething()
{ /*code*/ }

}

SoUrCe ...;
class foo extends foo$$one {

void dosomething() {
/* more before */
Super().dosomething();
/* more later */

}
}

(a)

(b)

Fig. 6. jampack and Mixin compositions

 Feature Oriented Programming and the AHEAD Tool Suite 21

5.2 Extending Constructors

A constructor is a special method and to extend it requires a special declaration in Jak
files. Consider the following file that declares a constructor:

class test {
 int y;
 test() { y = -1; }
}

An extension of test and its constructor is:

refines class test {
 int x;
 refines test() { x = 2; }
}

where “refines <constructor>” is the Jak statement that extends a particular con-
structor. The jampack composition of these files is shown in Figure 7a. That is, the
actions of the original constructor are grouped into a block and are performed first,
then the actions of the constructor extension are grouped into a block and performed
next. The semantically equivalent mixin composition is shown in Figure 7b.

class test {
int y;
int x;
test() { { y = -1; } { x = 2; } }

}

SoUrCe ...;
abstract class test$$t1 {

int y;
test$$t1() { y = -1; }

}
SoUrCe ...;
class test extends test$$t1 {

int x;
refines test() { x = 2; }

}

(a)

(b)

Fig. 7. Another jampack and Mixin composition

5.3 Local Identifiers

Variables that are local to a feature are common. Such variables are used only by the
feature itself, and are not to be exported or referenced by other features.

Suppose a class bar declares a local variable x, and an extension of bar declares a
local variable, also named x:

class bar {
int x;

}

refines class bar {
float x;

}

jampack is smart enough to alert you that multiple definitions of x are present; mixin
isn’t that smart — and you will discover the error when you compile the translated
Java files and see there are multiple definitions of x.

The problem we just outlined isn’t specific to AHEAD. In fact, it is an example of
a classic problem in metaprogramming, and in particular, macro expansion. The prob-
lem is called inadvertent capture — i.e., multiple distinct variables are given the same
names as identifiers. A general solution is to make sure that distinct variables are
given unique names[16].

22 D. Batory

The way this is done in AHEAD is by using a Local_Id declaration. This
declaration lists the set of identifiers (i.e., variable names and method names) that are
local to a feature; ATS tools will mangle their names so that they will always be
unique. So a better way to define the above is:

Local_Id x;

class bar {
int x;

}

Local_Id x;

refines class bar {
float x;

}

The jampack and mixin composition of the above two files are:

class bar {
 int x$$one;
 float x$$two;
}

SoUrCe ...;
abstract class bar$$one {
 int x$$one;
}

SoUrCe ...;
class bar extends bar$$one {
 float x$$two;
}

where local names are replaced with their mangled counterparts so that their names no
longer conflict.

6 A More Complex Example

Consider model L, which defines a set of programs that implement linked lists:
L = { sgl, dbl, sgldel, dbldel }

The lone value is sgl which contains a pair of classes, list and node, that implement
a bare-bones singly-linked list (Figure 8a-b).

An extension of sgl is dbl, which converts the program of sgl into a doubly-
linked list. dbl is a crosscut that augments the node class with a prior pointer, adds a

refines class list {
 node last = null;

 void insert(node n) {
 if (last == null)

last = n;
 if (first != null)

first.prior = n;
 Super(node).insert(n);

n.prior = null;
 }
}

refines class node {
 node prior = null;
}

(c) L/dbl/list.jak

(d) L/dbl/node.jak

class list {
 node first = null;

 void insert(node n) {
 n.next = first;
 first = n;
 }
}

class node {
 node next = null;
}

(a) L/sgl/list.jak

(b) L/sgl/node.jak

Fig. 8. The sgl and dbl Layers

 Feature Oriented Programming and the AHEAD Tool Suite 23

last pointer to the list class, and extends the insert method so that the values
assigned to the last and prior pointers are consistent (Figure 8c-d).

The composition both = dbl•sgl yields the doubly-linked list program of Figure 9.
The code underlined originates from the dbl extension.

class list {
 node first = null;
 node last = null;

 final void insert$$sgl(node n) {
 n.next = first;
 first = n;
 }

 void insert(node n) {
 if (last == null)
 last = n;
 insert$$sgl(n);
 x.prior = null;
 }
}

class node {
 String constant;
 node next = null;

node prior = null;
}

(a) L/both/list.jak

(b) L/both/node.jak

Fig. 9. Composition dbl•sgl

Now suppose we want to enhance the design of our list programs by adding a
delete method. sgldel does exactly this for singly-linked lists: it adds a delete
method to the list class (Figure 10a). We can use sgldel in a composition slist
that defines a singly-linked list with both insert and delete methods:

slist = sgldel • sgl

To create a doubly-linked list that has both insert and delete methods requires an
extension dbldel (Figure 10b). dbldel converts the singly-linked list deletion algo-
rithm of sgldel to a doubly-linked list deletion algorithm by replacing (or overriding)
the findAndDelete method.

The following equations yield identical programs for inserting and deleting
elements from a doubly-linked list. The reason why they are equivalent is that the
extensions dbl and sgldel are independent of each other, and thus can be composed
in any order.

dlist = dbldel•dbl•sgldel•sgl (8)

 = dbldel•sgldel•dbl•sgl (9)

Model Exercises
[10] Suppose other operations for traversing the list are added. How would this

impact model L? What about the operation reverse(), which reverses the order
in which nodes are listed?

[11] Suppose an “ordering” feature is added to a list, meaning that nodes have keys
and are maintained in ascending key order. How would this feature impact L?

[12] Consider a “monitor” feature, which precludes more than one thread to access a
list at a time. How would this feature impact L? How would it be defined?

24 D. Batory

refines class list {

 void delete(node n) {
 if (n == first) {
 first = first.next;
 }
 else
 findAndDelete(n);
 }

 void findAndDelete(node n) {
 node prev = first;
 while (prev != n)
 prev = prev.next;
 prev.next = n.next;
 }
}

(a) L/sgldel/list.jak

refines class list {

 void findAndDelete(node n) {
 if(n== last)

last = last.prior;
if (n.prior != null)

 n.prior.next = n.next;
 if (n.next != null)
 n.next.prior = n.prior;
 }
}

(b) L/dbldel/list.jak

Fig. 10. The sgldel and dbldel Layers

Tool Exercises
The directory structure for L is:

L/sgl/list.jak // see Figure 8a
L/sgl/node.jak // see Figure 8b
L/dbl/list.jak // see Figure 8c
L/dbl/node.jak // see Figure 8d
L/sgldel/list.jak // see Figure 8a
L/dbldel/list.jak // see Figure 8b

The files of Figure 9 are the result of evaluating the equation both = dlb•sgl using
the composer tool:

> cd L
> composer --target=both sgl dbl

The generated directory structure is:

L/both/list.jak // see Figure 9a
L/both/node.jak // see Figure 9b

[13] What is a guidsl model of L?

6.1 Multi-dimensional Models and Origami

There remains a fundamental relationship among the features of L that we have not
yet captured. Consider the following incorrect compositions:

error1 = dbl•sgldel•sgl
error2 = dbldel•sgldel•sgl

Both define programs that are partially and thus incorrectly implemented. error1
is a program whose insert method works on a doubly-linked list, but whose delete
method works only on a singly-linked list. error2 is a program whose insert method
works on a singly-linked list, but whose delete method works for a doubly-linked
list.

 Feature Oriented Programming and the AHEAD Tool Suite 25

The problem is that if a data structure is extended (i.e., a singly-linked list becomes
doubly-linked), then all of its operations should be updated to maintain the
consistency of this extension, and not just some. That is, if a singly-linked list has
both insert and delete operations, when the structure becomes doubly-linked, both
operations must be updated to work on doubly-linked lists. Equivalently, if a feature
adds a new method to a data structure, then that method must work for that data
structure and not some other structure.

Although this is an elementary example, it is representative of a large class of
problems in FOP, namely that a model defines a group of features that are not truly
independent and this group must be applied in lock-step — all or nothing — manner.
Whenever you notice this phenomena, realize that these groups represent features of
multidimensional models, which we explain further and illustrate in the following
paragraphs.

Create a matrix, called an Origami matrix (which is a 2-dimensional model), where
rows represent operations (insert, delete), and columns represent structure variants
(singleLink, doubleLink). Entries of this matrix are the features of L (see Table 1).
This matrix can be extended to handle other operations (sort, find) and other structure
variants (ordered-lists, monitors, etc.).

Note: what we have done is to identify orthogonal feature sets as ‘data structure
operations’ and ‘data structure variants’; these feature sets define the units of different
dimensions of a 2-dimensional model or matrix.

Table 1. Origami Matrix for L

 doubleLink singleLink

insert dbl sgl

delete dbldel sgldel

Suppose the rows of this matrix are composed (or folded — hence the name
“Origami”), where the corresponding entries in each column are composed (Table 2):

Table 2. Row-Composed Origami Matrix

 doubleLink singleLink

delete•insert dbldel•dbl sgldel•sgl

Study the entries of Table 2. Consider the entry in the singleLink column:
sgldel•sgl defines a singly-linked program S that has both an insert and delete
method. The entry in the doubleLink column, dbldel•dbl, defines an extension of S
that converts its insert and delete methods to work on a doubly-linked list. Thus by
composing the delete row with the insert row of Table 1, we synthesize a data
structure that has multiple methods, and an extension of that data structure that
consistently updates these methods. This interpretation holds if more rows
(operations) or more list features (columns) are added.

26 D. Batory

The columns of Table 2 can be composed to yield a 1×1 matrix whose entry is an
expression that defines a doubly-linked list with insert and delete methods (Table 3).
This expression is identical to equation (8).

Table 3. A Completely Folded Matrix

 doubleLink•singleLink
delete•insert dbldel•dbl•sgldel•sgl

Now instead of composing rows of Table 1, let’s compose the columns, where
corresponding entries in each row are composed (Table 4):

Table 4. Column Composed Origami Matrix

 doubleLink•singleLink
insert dbl•sgl
delete dbldel•sgldel

The entry in the insert row, dbl•sgl, defines program D that implements a doubly-
linked list with an insert method. The entry in the delete row, dbldel•sgldel,
defines an extension of D that adds a delete method. By composing the columns of
Table 1, we have synthesized a data structure with a single (insert) method, and an
extension that adds a delete method to this structure. Again, this interpretation holds
if we add more rows (methods) or more columns (features) to Table 1. By folding the
rows of Table 4, a 1×1 matrix is produced whose lone entry is equation (9). As a gen-
eral rule, as long as the order in which rows and columns (that is, ‘data structure oper-
ation’ features or ‘data structure variant’ features) are composed is legal, the resulting
equations in a fully-folded matrix should be equivalent. (If they are not, then a dimen-
sion is missing in the design).

Origami matrices capture fundamental relationships among groups of features: to
build consistent and correct programs, it is often necessary to apply an entire group of
features at once [6]. A matrix representation of these relationships works because the
set of features along one dimension are orthogonal to those of another. In our
example, the set of methods that can be used with a data structure is orthogonal to the
set of data structure variants.

Although this is a simple example, Origami applies at much greater levels of
granularity. For example, ATS has five tools — including jampack, mixin, and
unmixin — each having over 30K LOC, and totalling over 150K LOC. These tools
are synthesized by folding a 3-dimensional (8×6×8) Origami matrix, where the
dimensions are: language features × tool features × language feature interactions [6].

 Feature Oriented Programming and the AHEAD Tool Suite 27

6.2 The Meaning of Origami

Why is Origami significant? There are several reasons, all of which capture important
generalizations of equational program specifications.

In earlier sections, we defined a program by a single equation. Origami generalizes
this idea, so that a program is defined by a set of k equations, one per dimension. This
has a significant impact on reducing the complexity of a program specification.
Suppose each of the k equations has n terms. Thus, a program specification in
Origami is of length O(nk). Yet, the matrix that is folded into a single expression
would have O(nk) terms! That is, Origami exponentially shortens specifications of
product-line programs [6]. Or stated another way, Origami enables very simple
specifications for very complex programs.

Here’s another interesting question: what is the algebraic meaning of matrix
folding? The answer is evident when we interpret the composition operator (•) as
addition [12].

Composition in AHEAD is similar to summation. Suppose to build program P, we
start with a base feature F0 and progressively add on features F1, F3, and F7. Instead of
using •, we use + to denote composition:

P = F7 + F3 + F1 + F0

 (10)

Here’s another way to represent P. Suppose F is the model that contains features F0, F1,
F3, and F7. In general Fi is the ith feature of model F. Let E be the sequence of sub-
scripts whose features we are to sum. For equation (10), E = (0,1,3,7). We could
equivalently write (10) as a summation:

P = i E Fi

Now suppose our model is two dimensional. Let M denote a two-dimensional Origami
matrix, where Mij is the element in the ith row and jth column. When the matrix is
folded first by rows then by columns, this corresponds to summing the matrix by col-
umns then by rows. When the matrix is folded by columns and then by rows, this cor-
responds to summing by rows and then columns. Let R be the sequence of subscripts
in which rows are folded; let C be the sequence of subscripts in which columns are
folded. Origami expresses the equivalence of the summation of elements of a matrix
in different orders:

P = i R j C Mi,j = j C i R Mi,j

That is, an Origami matrix is a k-dimensional “cube”, which when summed across
different dimensions yields a program in a product-line. Summation of matrix entries
and permuting the order in which entities are added, are familiar ideas in
mathematics. The name “Origami” is really a visual interpretation of matrix
summation.

Finally, it is worth noting that Origami and multi-dimensional models are
historically related to a fundamental problem in program design called the
“expression problem”, which has been widely studied within the context of
programming language design where the focus is achieving data type and operation
extensibility in a type-safe manner [22][18]. The FOP contribution to this is to show
how the idea scales to the synthesis of large programs [6].

28 D. Batory

6.3 Metamodels and Model Synthesis

How are Origami matrices represented in AHEAD? Before we can answer this ques-
tion, we need to introduce an important concept in modeling called metamodels. A
metamodel is a model whose instances are themselves models. Consider model M,
which has units a, b, and c:

M = { a, b, c }

Consider metamodel MM, which also has three units, each being a set with a single
unit:

MM = { AAA, BBB, CCC }
 = { {a}, {b}, {c} }

A model can be synthesized by composing metamodel units. The MM equation for
model M is:

M = AAA•BBB•CCC

In this particular case, because there are no units in common with AAA—CCC,
composition reduces to set-union. The interesting thing about metamodels is that they
are identical to models. That is, a model or metamodel is a set of units, where each
unit may be a set. Further, the composition operator for units of metamodels (•) is the
same operator for units of models (•).

An Origami matrix is a metamodel. Consider the example of an n×m matrix O
where Oij denotes the row i column j element of O. There are two ways to represent this
matrix as a tree, i.e., as a model of models. One way is to decompose the matrix first
into rows, and then each row into columns (Figure 11a). Another way is to organize
by columns first, and then rows (Figure 11b). This idea scales to arbitrary dimensional
matrices.

O

row1 rown

O1,1 O1,m On,1 On,m

O

col1 colm

O1,1 On,1 O1,m On,m

(a) (b)

Fig. 11. Matrix Embeddings in Trees

6.4 Representing Origami Matrices

Now lets consider how to represent Origami matrices. Consider a row-dominant
decomposition. Figure 12a shows our example matrix, where entries are equation files
that have the same name (eqn.equation). Entry subscripts denote (to us) their true
identity. Figure 12b is the corresponding row-oriented metamodel; Figure 12c is its
AHEAD directory structure. Figure 12d-g are the contents of the equation files.

 Feature Oriented Programming and the AHEAD Tool Suite 29

eqn.equationsgl

eqn.equationsgldel

eqn.equationdbl

eqn.equationdbldel

insert

delete

single double

Origami = { insert, delete }

insert = { singlei, doublei }

Origami/insert/single/eqn.equation // Figure 12d
Origami/insert/double/eqn.equation // Figure 12e
Origami/delete/single/eqn.equation // Figure 12f
Origami/delete/double/eqn.equation // Figure 12g

(a)

(b)

(c)

sgl super
dbl

super
sgldel

super
dbldel

(d) (e) (f) (g)

delete = { singled, doubled }

singlei = { eqnsgl }
doublei = { eqndbl }

singled = { eqnsgldel }
doubled = { eqndbldel }

Fig. 12. Row-Dominant Embedding of a Matrix

Why do we use this particular representation of a matrix? Why use equation files,
rather than embedding the actual feature directories themselves? The answer: conve-
nience. Try to create such a hierarchical directory yourself, where instead of equation
files, you have feature directories. It’s hard to navigate such a directory structure, let
alone maintain it. The simpler the representation the better. So it is common that we
have a flat model directory (where features are immediate subdirectories), and a sepa-
rate Origami directory which defines the multi-dimensional relationship among fea-
tures using equation files.

Model Exercises
[14] Expand the Origami matrix to handle more data structure operations and

variants, such as list element updates and key ordered lists.

Tool Exercises

To fold a 2-dimensional matrix, you need to invoke composer twice: once to compose
rows and a second time for columns. (For a k-dimensional matrix, we would invoke
composer k times). So to produce the AHEAD equivalent of Table 2, we compose the
rows of the Origami model to produce model Table2 = delete•insert:

> cd Origami
> composer --target=Table2 insert delete

The resulting model Table2 is depicted in Figure 13a, and its synthesized AHEAD
directory structure in Figure 13b, and the contents of the equation files in Figure
13c-d.

30 D. Batory

Table2 = { single, double }

single = { eqnsgldel eqnsgl }
double = { eqndbldel eqndbl }

(a)

Origami/Table2/single/eqn.equation // Figure 13c
Origami/Table2/double/eqn.equation // Figure 13d

(b)

sgl
sgldel

super
dbl
dbldel

(c) (d)

Fig. 13. AHEAD Origami Metamodel

To produce the 1×1 matrix of Table 3 or equation (8), we compose the columns
(named single and double) using the following command:

> cd Table2
> composer --target=both single double
> cd both
> jak2java *.jak

[15] Represent the matrix of Figure 12a by columns, and repeat the above folding.

Model Exercises
[16] Create two different GUIs for a calculator: one uses the standard 2D keypad, a

second uses text fields to enter values and operations. A calculator will use one
(but not both) of these GUIs. Operations on both GUIs are buttons. So when a
calculator is extended by a new operation, its GUI will be extended also. Express
this relationship between operations and GUIs as an Origami matrix.

[17] Generalize the model in [16] that permits multiple GUIs per calculator. One idea
would use tabs, one tab per different GUI. Implement your model.

7 What’s Next?

There are many interesting topics and capabilities that we have yet to explore (or
develop) for AHEAD. Here are just a few. If you are interested in learning more about
these topics, see [1][5].

7.1 Extensible Languages

There are all sorts of non-Java extensions to the Jak language that we haven’t talked
about, including:

• metaprogramming — the ability to assign code fragments to variables, the
ability to compose code fragments via escape substitutions, hygienic macros.

• state machines — an embedded DSL for supporting the definition and extension
of state machines [7].

 Feature Oriented Programming and the AHEAD Tool Suite 31

7.2 Compiler-Compiler Tools

ATS has a sophisticated set of compiler-compiler tools that are used to (a) define base
grammars, (b) define grammar extensions, and (c) to synthesize grammars by
composing base grammars with extensions. Grammars are yet another representation
of a program, in this case, a compiler, and ATS has tools for defining and composing
grammars and generating Java files from them [1].

7.3 Generating and Optimizing MakeFiles

The idea of modules as hierarchical collections of related artifacts is powerful. A
paradigm of AHEAD that we have explored so far is that of composition: that artifacts
of a program can be composed from previously defined artifacts. But there is another
way in which program artifacts can be produced: by derivation. For example, Java
files can be produced from Jak files by the jak2java tool; class files can be produced
from Java files by the javac compiler, and so on. A general paradigm is depicted in
Figure 14: an artifact can be produced by first composing it from more elementary
artifacts, followed by a derivation. Or equivalently, it can be produced by deriving a
set of artifacts from more elementary artifacts, and then composing the derived
representations3. This leads to the following fundamental distributive algebraic
relationship (11).

derive(artifacti • artifactj) =

derive(artifacti) • derive(artifactj) (11)

Ultimately, we want to specify an entire program — all of its composed and
derived representations — as a set of equations. Although ATS does not yet have such
a tool, one can imagine a specification like:

Using L;

i3 = javadoc(javac(jak2java(sgldel(sgl)))); (12)

where the Using clause tells this tool that sgldel and sgl are units in model L, and by
inference, composer should be used to compose them. The resulting module will have
.jak, .java, .class and .html files. The jak2java tool, when applied to the module
of sgldel(sgl), translates all Jak files to Java files and adds them to the module.
Similarly, the javac operation compiles all Java files and adds their .class files to
the module. The javadoc operation will generate JavaDoc .html files from the
generated Java files, and so on, progressively enlarging the contents of that
module/directory. In effect, (12) is really an equational representation of a makefile!
More on this shortly.

The lesson that we learned from relational query optimizers is that an expression
represents a program design and expressions (and hence designs) can be optimized. In
this particular example, there really isn’t anything to optimize. There is, though, a
particular sequencing of the application of the javadoc, javac, and jak2java

3 Figure 14 can be generalized further, so that multiple output artifacts can be derived from a

single input artifact, and vice versa.

32 D. Batory

operations that must be imposed. (In fact, this really is the only legal ordering of these
operations for this equation). So notions of design rules also apply to tool operations.
But as equations become more complicated, there is the possibility of optimization. In
some of our larger examples using Origami, generating common subexpressions
among different sets of tools arises. Evaluating common subexpressions once, and not
many times, is an important optimization that a tool should be able achieve
automatically [14].

artifacti

artifactj

Artifacti

Artifactj

composedij Composedij

derive

derive

derive

co
m
po
se

co
m
po
se

Fig. 14. Compose vs. Derive

The big picture is depicted below. Given an equational representation of a program
that specifies both the artifacts that are to be composed and those that are to be
derived, a tool will expand the equations and perform optimizations to synthesize the
resulting program in an efficient manner. The tool will then produce an optimized set
of equations, and a generator will translate these equations into a makefile — a
functional-like language that efficiently executes equational specifications [14].

unoptimized
equational
specification

optimizer
optimized
equational
specification

generator
efficient
makefile
representation

Fig. 15. Generation and Optimization of MakeFiles

7.4 Type Systems

As mentioned earlier, extensions are functions that appear untyped. In fact, function
inputs and outputs have definite constraints. Our tools assume that the correct types
are both being input and output. In general, this is bad assumption.

Question: how does one type a program? Should Java interfaces be used? How
does typing generalize to, say, grammar files or equation files? What is a general
mechanism for typing arbitrary artifacts and their extensions? At the present time,
there are no solutions to these problems.

 Feature Oriented Programming and the AHEAD Tool Suite 33

7.5 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is closely related to FOP. Both deal with mod-
ules that encapsulate crosscuts of classes, and both express program extensions. FOP
uses a subset of the “advising” capabilities of AOP, namely those that use execution
pointcuts. However, the primary difference between AOP and FOP is their composi-
tion models. FOP treats aspects as functions that map programs, and uses function
composition as the means to compose aspects. This leads to algebraic representations
of programs and a simple means to perform program reasoning with aspects.

In contrast, AOP uses a complex model of aspect composition (e.g., precedence
rules) that complicates program reasoning using aspects and makes step-wise
development difficult [19]. AOP and FOP are thus not directly comparable, but are
instances of a more general paradigm of automated software development — one that
composes aspects by FOP function composition and uses the full power of AOP
pointcuts.

8 Conclusions

Just as the structure of matter is fundamental to chemistry and physics, so too must
the structure of software be fundamental to computer science. Unfortunately, our
understanding of software structure is in its infancy. Today, software design is an art.
As long as it remains so, our ability to automate rote tasks of program design and
synthesis will be limited. And software engineering will be more of a craft than a
discipline.

Software designs can be given mathematical precision when expressed as a
composition of features. We have presented a simple and elegant theory of program
design, backed by years of implementation and experimentation, that brings
together key elements in the future of software development: generative
programming, domain-specific languages, automatic programming, and step-wise
development. Generative programming gives our theory its mathematical backbone:
functions can map programs. Domain-specific languages give programming
artifacts their form: these are the artifacts that functions transform. Automatic
programming underscores AHEAD as a simple model that relates automated
reasoning, compositional programming, and design optimization by algebraic
reasoning. And step-wise development is a practical way of controlling complexity.
AHEAD provides an algebraic foundation for understanding program development
on a larger scale.

This paper has explored basic concepts of FOP and a (small) subset of the tools of
the AHEAD tool suite. For the most recent results, see our web site [17] and consult
the AHEAD documentation [1].

Acknowledgements. This work is sponsored by NSF's Science of Design Project
#CCF-0438786. I thank the referees, Ralf Lämmel, João Saraiva, and Joost Visser for
their helpful comments.

34 D. Batory

Suggested Reading

[1] AHEAD Tool Suite, http://www.cs.utexas.edu/users/schwartz/
ATS.html ATS documentation.

[2] R. Balzer, “A Fifteen-Year Perspective on Automatic Programming”, IEEE Trans. Soft-
ware Engineering, November 1985, pp. 1257-1267. Mid-80’s state-of-art-
report on automatic programming.

[3] D. Batory and S. O'Malley. “The Design and Implementation of Hierarchical Software
Systems with Reusable Components”. ACM Trans. Software Engineering and Methodol-
ogy, October 1992, pp. 355-398. The GenVoca Model.

[4] D. Batory: “The Road to Utopia: A Future for Generative Programming”. Domain-
Specific Program Generation 2003, Lecture Notes in Computer Science #3016, pp. 1-18.
Relationship of query optimization to AHEAD.

[5] D. Batory, J.N. Sarvela, A. Rauschmayer, “Scaling Stepwise Refinement”, IEEE Trans.
Software Engineering, June 2004, 355-371. The AHEAD model.

[6] D. Batory, J. Liu, J.N. Sarvela, “Refinements and Multi-Dimensional Separation of Con-
cerns”, ACM SIGSOFT 2003, pp. 48 - 57. A sophisticated example of
Origami.

[7] D. Batory, C. Johnson, R. MacDonald, and D. von Heeder, “Achieving Extensibility
Through Product-Lines and Domain-Specific Languages: A Case Study”, ACM Transac-
tions on Software Engineering and Methodology, April 2002, 191-214. A product-
line that needs both extensions and embedded DSLs.

[8] D. Batory, G. Chen, E. Robertson, and T. Wang, Design Wizards and Visual
Programming Environments for GenVoca Generators, IEEE Transactions on Software
Engineering, May 2000, 441-452. Explains relationship between
automatic programming and GenVoca equation optimization.

[9] D. Batory and B.J. Geraci. Composition Validation and Subjectivity in GenVoca Genera-
tors, IEEE Transactions on Software Engineering, February 1997, pp. 67-82. Early
form of design rule checking.

[10] D. Batory, “Feature Models, Grammars, and Propositional Formulas”, Software Product-
Line Conference (SPLC) 2005, pp. 7-20. Generalizes results in .

[11] M. de Jong and J. Visser, “Grammars as Feature Diagrams”, 2002. Workshop on Genera-
tive Programming (GP2002), Austin Texas, USA. April 15, 2002. Relates feature
diagrams to grammars.

[12] E.J. Jung, “Feature Oriented Programming and Product Line Architectures for Open Ar-
chitecture Robot Software”, M.Sc. Thesis, Dept. Mechanical Engineering, University of
Texas at Austin, 2004. Application of FOP ideas to robotics,
Origami.

[13] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. “Feature-Oriented Domain
Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-90TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990.
First significant paper on features and product-lines.

[14] J. Liu and D. Batory, “Automatic Remodularization and Optimized Synthesis of Product-
Families”, Generative Programming and Component Engineering (GPCE), October
2004, pp. 379-395. Shows how sets of equations can be optimized.

[15] R. E. Lopez-Herrejon and D. Batory, “A Standard Problem for Evaluating Product-Line
Methodologies”, Generative and Component-Based Software Engineering (GCSE 2001),
Erfurt, Germany. pp. 10-24. A simple product-line defined using the
GenVoca model.

 Feature Oriented Programming and the AHEAD Tool Suite 35

[16] E. Kohlbecker, D.P. Friedman, M. Felleisen, and B. Duba, “Hygienic Macro Expansion”,
SIGPLAN ‘86 ACM Conference on Lisp and Functional Programming, pp. 151-161.
Classic paper on the inadvertent capture problem.

[17] Product-Line Architecture Research Group. http://www.cs.utexas.edu/
users/schwartz/

[18] R. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating Support for Features in Ad-
vanced Modularization Technologies”, European Conference on Object-Oriented Pro-
gramming (ECOOP), July 2005, pp. 169-194. Using the expression problem
to evaluate different modularization technologies.

[19] R. Lopez-Herrejon, D. Batory, and C. Lengauer, “A Disciplined Approach to Aspect
Composition”, Program Evaluation and Program Manipulation (PEPM) 2005, pp. 68-
77. Formalizes the AspectJ composition model.

[20] P. Selinger.P, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price, “Access
Path Selection in a Relational Database System”, ACM SIGMOD 1979, pp. 23-34.
Classic paper on relational query optimizers.

[21] T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: a Syntax-Directed Pro-
gramming Environment”, CACM, v.24 n.9, pp. 563-573, Sept. 1981. Classic paper
on syntax-directed editors.

[22] M. Torgersen, “The Expression Problem Revisited. Four New Solutions Using Generics”,
ECOOP 2004, pp. 123-146. A recent paper on the Expression problem.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 36 – 64, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model Driven Engineering: An Emerging
Technical Space

Jean Bézivin

Atlas Group: INRIA, and LINA
University of Nantes

2, rue de la Houssinière - BP92208
44322 Nantes Cedex 3, France

Jean.Bezivin@univ-nantes.fr

Abstract. As an emerging solution to the handling of complex and evolving
software systems, Model Driven Engineering (MDE) is still very much in
evolution. The industrial demand is quite high while the research answer for a
sound set of foundation principles is still far from being stabilized. Therefore it
is important to provide a current state of the art in MDE, describing what its
origins are, what its present state is, and where it seems to be presently leading.
One important question is how MDE relates to other contemporary
technologies. This tutorial proposes the "technical space" concept to this
purpose. The two main objectives are to present first the basic MDE principles
and second how these principles may be mapped onto modern platform support.
Other issues that will be discussed are the applicability of these ideas, concepts,
and tools to solve current practical problems. Various organizations and
companies (OMG, IBM, Microsoft, etc.) are currently proposing several
environments claiming to support MDE. Among these, the OMG MDA™
(Model Driven Architecture) has a special place since it was historically one of
the original proposals in this area. This work focuses on the identification of
basic MDE principles, practical characteristics of MDE (direct representation,
automation, and open standards), original MDE scenarios, and discussions of
suitable tools and methods.

Keywords: Model Driven Engineering; MDE; MDA; Metamodeling; Technical
Spaces;

1 Introduction

In November 2000 [32] the OMG proposed a new approach to interoperability named
MDA™ (Model-Driven Architecture). MDA is one example of the broader Model
Driven Engineering (MDE) vision, encompassing many popular current research
trends related to generative and transformational techniques in software engineering,
system engineering, or data engineering [6], [11]. Considering models as first class
entities and any software artifact as a model or as a model element is one of the basic
principles of MDE. The key ideas of MDE are germane to many other approaches

 Model Driven Engineering: An Emerging Technical Space 37

such as domain specific languages (DSLs), software factories, model-integrated
computing (MIC), model-driven software development (MDSD), model management,
language-oriented programming and much more. The OMG MDA initial proposal
may be defined as the realization of MDE principles around a set of OMG standards
like MOF, XMI, OCL, UML, CWM, and SPEM. Most of these acronyms will be
referenced later in the document. Their important number is due to the initial
normative aspect of the field. A list of some common ones is provided in an appendix.

Fig. 1. The three IBM manifesto tenets

The IBM manifesto [15] makes the claim that MDA-based approaches are founded
on three ideas: Direct representation, Automation and Standards. Direct representation
allows a more direct coupling of problems to solutions with the help of Domains
Specific Languages (DSLs). Automations means that the facets represented in these
DSLs are intended to be processed by computer-based tools to bridge the semantic
gap between domain concepts and implementation technologies and not only for mere
documentation. This should be complemented by the use of open standards that will
allow technical solutions to interoperate. These three complementary ideas are central
to the development of MDE approaches. Models should be exchangeable and for this
we need to agree on consensual standards. Many models would however need to be
written by human agents, very often non computer scientist agents. In this case, these
models (or programs) will be written in domain specific languages, restricted in size
and precisely defined. The mapping of these models written in precise DSLs onto
operational technology by using generative and transformational techniques is one
important aspect of MDE. Another major issue is to solve the fragmentation problem
resulting from the coexistence of a high number of small DSLs. The answer to this
problem is the existence of a global representation system (for example the MOF
OMG M3 level), and the support of libraries of various correspondences between
models (e.g. transformation or weavings). However this is not sufficient and we need
also to invent registries and global links between entities like models and metamodels
to escape fragmentation problems.

38 J. Bézivin

Historically in year 2000, the MDA had a specific goal: preserving the IT
investments of companies through the constant and rapid evolution of platforms. At
that time the middleware and the component solutions alone were no more in a
position to achieve this goal. The proposal was thus to capture in PIMs (Platform
Independent Models) the part of the investment that should not be affected by major
or minor changes in platforms. The idea was then that it should be possible, by some
means, to generate PSMs (Platform Specific Models) from these PIMs. How this
problem could be concretely solved was not completely clear at the time. The main
idea was that a PIM could be expressed in UML and that, through the supposedly
stability of UML versions in time, the corresponding assets could be preserved over
long periods. The concrete means to generate PSMs from PIMs were not precisely
stated at the time since the number of such target platforms was rather limited and
similar (mainly CORBA, J2EE/EJB and DotNet). The scope of these target platforms
was then broadened, the notion of models (including PIMs and PSMs) was extended
beyond mere UML models, and the generation of PSMs from PIMs was suggested to
be automated by model transformations using the newly defined QVT standard [29].

More than five years after, the situation has much evolved. Separating platform
dependent from platform independent aspects is no more seen as the unique goal. The
major problem is now the separation and combination of concerns in the construction
and maintenance of information systems. Among these concerns, platform dependent
and independent aspects remains important in the agenda, but these are more and
more considered as a special case of a general problem including for example
separation of functional and non-functional requirements. MDA and DSL solutions
are now more and more closely related. What MDA is bringing to DSLs is this idea of
using a collection of metamodels to capture the various facets of a system under
construction or under maintenance. What DSLs is bringing to MDA is that a unique
general purpose language, even a very large one like UML 2.0, is not able and will
never be able to capture all the needs of the designers, administrators, and users of a
given system.

The notion of direct representation [15] is very important. This means that instead
of performing themselves directly certain tasks in general purpose languages like
Java, computer scientists may instead concentrate on defining specialized languages
and handling these to final users that will be able to express precisely their
contributions in these languages in a non-ambiguous manner. The computer scientists
will be in charge of mapping these contributed expressions (often of a declarative
nature) into executable structures i.e. target platforms. We recognize here the
common objective of MDA and DSLs. But a DSL may address a lot of needs,
corporate or organizational for example. A typical DSL, that has been very successful
for a long time, is Excel that addressed in early stages, with products like VisiCalc,
the domain needs of basic accounting. Excel is now an example of a language defined
by computer specialists to solve the problems of non specialists. Using such tools,
many tasks may be solved now by non-specialists, without the help of specialists that
are becoming more and more language engineers. The form of these languages may
vary in their concrete appearance and they could be defined by conventional
grammars, by DTDs or XML schemas, by ontologies, by graphical representation or

 Model Driven Engineering: An Emerging Technical Space 39

by metamodels. One central contribution of MDE is about the possible expression of
DSLs by metamodels.

The three tenets mentioned in the IBM manifesto are essential to MDE. However,
to make it practical we need to extend this definition in two directions First we need
to build MDE on a sound set of principles. Next we need to implement MDE on
practical platforms of wide usage. We propose an initial set of kernel principles that
could serve as a proposal for a foundational set of principles. We also suggest an
architectural style that could be used as a guide to implement these principles on
current industrial platforms.

Fig. 2. Principles, Standards, and Tools

This text proposes some ideas on the present rapid evolution of the MDE scene.
The basic set of MDE principles is based on two concepts (system and model) and
two basic relations (conformance and representation). This allows giving a first
definition of what is a model in the MDE context. In another section we propose to
situate MDE with respect to other possible solutions. Our organization of the solution
space is based on the notion of "technical space". This will help us to give an
extended definition, more general and precise, of what is a model. In the rest of the
document we come back to the strict MDE technical space. We also propose an initial
inventory of possible operations on models. Model transformation will obviously be
one important example of an operation on models. The consequences of a
transformation being itself considered as a model will be much emphasized. We also
propose an architectural style for implementing an MDE platform respecting the basic
principles. This will be given in the form of an abstract architecture composed of four
complementary functional blocks addressing the issues of model transformation,
model weaving, global model management, and model projection onto other spaces.
As an illustration of this architectural style, we will present the AMMA prototype [1]
available in the Eclipse GMT project [19].

40 J. Bézivin

2 Basic MDE Principles

2.1 Prerequisites

In order to discuss the broad view of MDE, we need a suitable common notation.
Among many possibilities, we use the now conventional UML class diagrams and the
Object Constraint Language. UML and OCL do not bring new expressive power to
MDE, but they are standards (OMG standards) that may facilitate interoperability of
solutions and common understanding.

2.2 Introduction

A model is a complex structure that represents a design artifact such as a relational
schema, an interface definition (API), an XML schema, a semantic network, a UML
model or a hypermedia document [4]. In the present section we will give a more
limited definition of a model, in the context of MDE only, as a graph-based structure
representing some aspects of a given system and conforming to the definition of
another graph called a metamodel. As we shall see later there are several contextual
and complementary definitions of what a model is. We are not interested here by a
theoretical definition of a model, but by an engineering one, i.e. a definition that will
help users to implement and maintain systems. The parallel between object
technology and model engineering that was made in [7] may be relevant here. The
definition of an "object" that was given by pioneers like Dahl, Nygaard, Kay, Meyer
and others had nothing to do with philosophy but this was an engineering definition
that is still of high interest to the profession today. Similarly we are presently looking
for an operational engineering definition of a "model" that could play a similar role in
the coming period.

2.3 Basic Entities

The present trend in model engineering [7] is to consider that models are first class
citizens. This approach seems to be the only possibility to deal with ever-increasing
complexity in information and software systems. It will hopefully allow to separate
and to combine different aspects in a more regular way. Among these aspects we may
mention platform dependent and independent features. As a corollary of this principle
stating “that everything is a model”, we may infer for example that “a model
transformation should also be considered as a model”. The basic principle and its
corollaries build the foundation of third generation model transformation frameworks.
However there is still an important amount of work to be done before fully
understanding MDE environments and putting them to work.

In [31], Ed Seidewitz writes: “…In any case, without this well-grounded foundation,
our models are, in the end, just pictures that don’t really mean anything at all…”

Models are now commonly used to provide representation of real-world situations.
A model is said to represent a system. Fig. 3 provides an example of a relational model
that defines a possible representation for a set of books in a library. On the right side of
Fig. 3, we have a relational representation of part of the world (a library). Other
different representations of this same library are possible, e.g. an event-based
representation capturing book creation, lending, returning, destruction, etc.

 Model Driven Engineering: An Emerging Technical Space 41

repOf

System

Title PagesNbBookId AuthorId
… …… …
… …… …

Relational Model

Book

repOf

System

Title PagesNbBookId AuthorId
… …… …
… …… …

Relational Model

Title PagesNbBookId AuthorId
… …… …
… …… …

Title PagesNbBookId AuthorIdTitleTitle PagesNbPagesNbBookIdBookId AuthorIdAuthorId
… …… …… ……… ……
… …… …… ……… ……

Relational Model

Book

Fig. 3. The "representation" relation between a system and a model

Each model is defined in conformance to a metamodel. Metamodels define
languages enabling to express models. A metamodel describes the various kinds of
contained model elements, and the way they are arranged, related, and constrained. A
model is said to conform to its metamodel. Thus, our Book relational model conforms
to the relational metamodel (Fig. 4). Representation and conformance relations are
central to model engineering [7].

conformsTo

Relational Metamodel
Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

Title PagesNbBookId AuthorId

Relational Model

String IntString String
Book

conformsTo

Relational Metamodel
Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

Relational Metamodel
Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

Type

name: String

Type

name: String

Table

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

Column

name: String

Title PagesNbBookId AuthorId

Relational Model

String IntString String
Book

Title PagesNbBookId AuthorIdTitle PagesNbBookId AuthorId

Relational Model

String IntString StringString IntString String
Book

Fig. 4. The "conformance" relation between a model and its metamodel

As models, metamodels are also composed of elements. Metamodel elements
provide a typing scheme for models elements. This typing is expressed by the meta
relation between a model element and its metaelement (from the metamodel). We also

Relational Metamodel
Type

name: String

Column

name: String

Title PagesNbBookId AuthorId

Relational Model

String IntString String

Book

meta relations

Table

name: String

Relational Metamodel
Type

name: String

Type

name: String

Column

name: String

Column

name: String

Title PagesNbBookId AuthorIdTitle PagesNbBookId AuthorId

Relational Model

String IntString StringString IntString String

Book

meta relations

Table

name: String

Table

name: String

Fig. 5. The "meta" relation between model and metamodel elements

42 J. Bézivin

say that a model element is typed by its metaelement. A model conforms to a
metamodel if and only if each model element has its metaelement defined within the
metamodel. Fig. 5 makes explicit some of the meta relations between Book model
elements and relational metamodel elements: the Book element is typed by the Table
metaelement, BookId and Title are typed by the Column metaelement, and String is
typed by the Type metaelement.

The growing number of metamodels has emphasized the need for an integration
framework for all available metamodels by providing a new item, the
metametamodel, dedicated to the definition of metamodels. In the same way models
are defined in conformance with their metamodel, metamodels are defined by means
of the metametamodel language. A metamodel is said to conform to the
metametamodel. As an example, we can consider the MOF (Meta-Object Facility),
which is the OMG proposal for metamodels definition [28]. The relational metamodel
may conform to the MOF metametamodel.

Relational Metamodel

Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

MOF Metametamodel

ClassAssociation

source

destination

meta relations

Relational Metamodel

Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

Type

name: String

Type

name: String

Table

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*
{ordered}

Column

name: String

Column

name: String

MOF Metametamodel

ClassAssociation

source

destination ClassClassAssociationAssociation

source

destination

meta relations

Fig. 6. The "meta" relation between M2 and M3

As models and metamodels, the metametamodel is also composed of elements. A
metamodel conforms to the metametamodel if and only if each of its elements has its
metaelement defined in the metametamodel. Some meta relations between relational
metamodel elements and MOF elements are made explicit in Fig. 6. Thus, the Table,
Column, and Type elements are typed by the MOF Class element, whereas relational
links elements are associated with the MOF Association element.

2.4 Extensions

The previous characterization of MDE principles given above is minimal. It does not
cover all aspects necessary for a workable definition. Other relations between
metamodels like a clean and precise "extension" relation may be necessary. One
reason this has not been completely and consensually defined is that there are ways to
solve this problem when you use specific metamodels like UML. The notion of
profile for example allows some kind of extensibility in this context.

 Model Driven Engineering: An Emerging Technical Space 43

2.5 Structuring Metamodels

Before engaging in the following section about comparing technologies, we see here
that the strong concept in model engineering is the concept of a metamodel. As a
consequence a metamodel brings engineering facilities different from grammars, XML
schemas, ontologies, etc. Even if the notion of metamodel is still evolving in structure
and application, we can say that a metamodel helps defining a language (DSL). This
covers however a lot of different facets, some of them being described below.

Basically, as we have seen, a metamodel is a graph composed of concepts and
relationships between these concepts. From a usage perspective, a metamodel is a
concrete representation of a shared conceptualization. Some of these conceptualize-
tions may be normative (e.g. OMG) and some are not. A metamodel acts as a filter to
extract pertinent elements from a system in order to build a corresponding model.
Any feature (concept or relationship) not present in the metamodel will be ignored
when building the model representing the system.

Metamodels are used to define formalisms or languages (DSLs). To define a
formalism, we may need to provide different kind of information for example
structure knowledge, assertion knowledge, execution knowledge, display knowledge,
etc. The fact that these information are provided by separate parts of a metamodel
contribute to a clear separation of concerns. The fact that they are provided by
separate metamodel parts combined together goes one step beyond in the direction of
modularity and reusability.

Let us consider for example a classical PetriNet formalism. A Petri net is a
bipartite directed graph with two kinds of nodes: Places and Transitions. It is an edge-
labeled and node-labeled graph. A number of Tokens may be associated to each
Place. We may define a Petri Net in four steps:

- The structural knowledge may be captured by a class diagram with concepts of
Pnet (the global graph), Place, Transition, Token and relations basicRelation and
numberOfToken.

- The assertional knowledge may be captured by OCL descriptions stating that the
value attribute of Token may never be negative and that a basicRelation may link a
Place to a Transition or a Transition to a Place but never a Place to a Place or a
Transition to a Transition.

- The execution knowledge may be captured by the following description:
function fireable (t:Transition)

{return true if every directly incoming Place has at least one Token else false}
context Pnet action;

repeat
select from pNet one arbitrary Transition t such that fireable(t);
decrement the number of tokens for every incoming Place of t;
increment the number of tokens for every outcoming Place of t;

until no Transition t in pNet verifies fireable(t);
- The display knowledge may be captured by the following description:

• represent a Transition by a Rectangle
• represent a Place by a Circle
• represent an Edge by an Arrow

44 J. Bézivin

Now we may see in this description that any part is based on a separate metamodel
for example the OCL metamodel or the AS (Action Semantics) metamodel or a
drawing metamodel composed of concepts Arrow, Circle or a Rectangle. So the
formalism of Petri Nets is defined not by a single but by an aggregation of
metamodels. This way of “decorating” a model with another one based on a different
metamodel is quite powerful and goes beyond the classical distinction between
abstract and concrete syntaxes. It allows achieving separation of contents from
presentation. If we wish to define an extension to Petri nets, for example colored Petri
nets, then reusability may be achieved thanks to this clean separation.

We just mentioned in this example that a model may be decorated with assertions
to make it more precise, but that it may also be decorated with execution annotations
to provide it with some animation capabilities (e.g. simulation but not only). Models
are not naturally executable, but by using some available language with precisely
defined execution semantics, it is possible to animate them. In [5] the language to
write execution annotations was Smalltalk but variants of Java have also been used.
The OMG invest efforts in trying to standardize action semantics for UML or even for
MOF.

A more regular definition of a DSL may be given as a coordinated set of models.
Among these, a central domain metamodel would define the central concepts like
Place, Transition or Token in the example above. Most of the other models will be
correspondence or transformation models mapping the domain metamodel onto other
DSLs, in order to provide various concrete syntaxes, to define executability or other
properties. This external way to define executability by a mapping to another
executable language (like Java for example) is very general.

2.6 Summary

The basic assumption in MDE is the consideration of models as first class entities. A
model is an artifact that conforms to a metamodel and that represents a given aspect
of a system. These relations of conformance and representation are central to model
engineering [7]. A model is composed of model elements and conforms to a unique
metamodel. This metamodel describes the various kinds of contained model elements
and the way they are arranged, related, and constrained. A language intended to
define metamodels and models is called a metametamodel. Models may be decorated
in various ways in order to associate additional properties. The declaration itself is a
model, i.e. conforms to a metamodel. The precise mechanisms for composing the
various models are not yet completely understood.

3 Engineering: Structuring the Solution Space

Technical spaces were introduced in [24], in the discussion on problems of bridging
different technologies. A technical space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities. It is also a
model management framework usually based on some algebraic structures like trees,
graphs, hypergraphs, categories, etc. Although technical spaces may be difficult to
define formally, they can be easily recognized (e.g. XML, MDA). In the three-level

 Model Driven Engineering: An Emerging Technical Space 45

conjecture, each technical space can be seen as based on a metametamodel (explicit or
implicit) and a collection of metamodels. For the OMG/MDA the MOF and the
collection of standard metamodels and UML profiles play this role.

Fig. 7. Systems, models and technical spaces

As illustrated in Fig. 7, the basic notions that we consider are now Systems,
Models and Technical Spaces (abbreviated TSs). When we talk about a model, we
should say which kind of model we are referring to. For example we could say that an
XML-document is an XML-model or that a Java program is a Java-model. Proceeding
in that way saves a lot of time by solving a lot of endless discussions about a Java
program being or not being a model. The notion of model is a contextual one and to
be non-ambiguous we need to prefix the model by its context. A TS denotes such a
notion of a context. To take once again the object analogy, Smalltalk objects, Eiffel
objects and C++ objects were different kinds of objects, not even able to
communicate directly in the absence of some kind of Middleware support like
CORBA. However Smalltalk programmers were used to talk about objects in their
particular context. Similarly a MDA-model is a model that conforms to a metamodel
that conforms to the MOF. When the context is clear, we may talk about a model,
often meaning here MDA-model. Such a model will have specific properties, i.e.
being able to be serialized in the XMI 2.1 format. When we talk about a
Microsoft/DSL-model like in Fig. 8, this will be a different kind of model, not based
on the MOF or directly serializable in XMI [30]. We may generalize this prefixing
convention when we have to talk about models pertaining to different TSs. If we
consider TSs that are organized according to the three level conjecture, we may even
talk about a Java program as EBNF/Java/myProg or about an XML document as
XML/MusicML/myMusic as naturally as we could talk above ECORE/UML2.0/
myModel or about MOF2.0/CWM/MyData.

Several TSs may thus be considered as based on a three level organization like the
metametamodel, metamodel and model of the MDA. One example is grammarware
[23] with EBNF, grammars and programs but we could also consider XML
documents, RDF documents, Semantic Web, DBMS, ontology engineering, natural

46 J. Bézivin

Fig. 8. Two MDE Technical Spaces

language processing systems, etc. In order to get a synergy of different technical
spaces we should create conceptual and operational bridges between them, and some
of these bridges are bi-directional.

The main role of the M3-level in a TS is to define the representation structure and a
global typing system for underlying levels. The MOF for example is based on some
kind of non-directed graphs where nodes are classes and links are associations. The
notion of "association end" plays an important role in this representation system.
Within the grammarware space we have the specific representation of abstract syntax
trees while within the XML document space we also have trees, but with very
different set of constraints, for example with possibilities to have direct references
from one node to another node (REFs and IDREFs). In Fig. 9 we see how a simple
system may be represented as an XML document corresponding to a Petri Net XML
schema. We represent in this figure the conformsTo relation between the document,
the schema, and the schema definition. We also represent the fine grained meta
relations presented earlier (section 2) between elements and metaelements.

As we can see, there are a lot of similarities between the XML TS and the MDA
TS. To get even more convinced, we may compare this situation with a similar one
expressed in the MDE TS. Here, in Fig. 10, we have chosen another specific variant
of MDE called sNets based on typed, reflective, and partitioned semantic networks
[8], [9].

Associated to the basic representation system, there is a need to offer a navigation
language. For MDA the language that plays this role is OCL, based on the specific
nature of MDA models and metamodels. OCL for example know how to handle
association ends. For the XML document space, the corresponding navigation
notation is XPath that takes into account the specific nature of XML trees. As a matter
of fact OCL is more than a navigation language and also serves as an assertion
language as we have seen earlier and may be even used as a side-effect free

 Model Driven Engineering: An Emerging Technical Space 47

Fig. 9. Three level structure in an XML TS

programming language for making requests on models and metamodels. At the M3-
level when the representation system and corresponding navigation and assertion
notations are defined, there are also several other domain-independent facilities that
need to be provided. In MDA for example generic conversion bridges and protocols
are defined for communication with other technical spaces:

 XMI (XML Model Interchange) for bridging with the XML space
 JMI (Java Model Interchange) for bridging with the Java space
 CMI (CORBA Model Interchange) for bridging with the CORBA space

Obviously these facilities may evolve and provide more capabilities to the MDA
TS. We may even see many other domain-independent possibilities being available at
the M3-level like general repositories for storing and retrieving any kind of model or
metamodel, with different access modes and protocol (streamed, by element
navigation, event-based, transaction based, with versioning, etc.).

We see here the high potential impact of considering these technical spaces as
explicit and semi-formal entities. In most of these spaces we have internal
transformation tools (e.g. XSLT and XQuery for XML, QVT for MDA, etc.). Some of
these internal transformation tools are general and other are specialized (a compiler
can be seen as a specialized transformation tool of the EBNF/Grammarware space).
These transformation tools have evolved in their own context to fit with specific
objectives and main representation system of the corresponding space. There is no
reason to change that. Now we have to consider another kind of transformation:
across technical space boundaries. We call these transformations "projectors" in order
to distinguish them from other transformations internal to one technical space.

48 J. Bézivin

Fig. 10. Three level structure in the sNet MDE TS

The responsibility to build projectors lies in one space. The rationale to define
them is quite simple: when one facility is available in another space and that building
it in a given space is economically too costly, then the decision may be taken to build
a projector in that given space. There are two kinds of projectors according to the
direction: injectors and extractors. Very often we need a couple of injector/extractor
to solve a given problem.

In order to illustrate this situation, let us look at the MDA technical space. The
main entity there is a model (a metamodel may be considered as a kind of model). A
model contains very useful and focused information, but by itself it is very dull and
has no much capability. If we want MDA models to be really useful we have to give
them these capabilities. There are two ways to do this: either to build them in the
MDA space or to find them in another space. In the latter case what we will have to
provide is some set of projectors.

An MDA model is a graph (non directed graph with labeled edge ends). Since
there was no possibility to exchange MDA models, the OMG initiated a RFP called
SMIF (Stream-based Model Interchange Format). The objective of SMIF was to find
a serialization scheme so that any kind of MOF model could be exchanged by simple
means (by mail, or a USB key, etc.). After some months of study, the group leading
this initiative identified several solutions based on well known graph serialization
algorithms. The solution was then to select and standardize some of these algorithms
and to suggest building software extensions to handle these standards as part of the
major CASE tools. This was the time when some people realized the importance that
the XML TS was taking and the growing availability of XML tools in various
industrial environments. Many people then realized that it would be economically
much more interesting to define standard serialization in XML, i.e. that instead of

 Model Driven Engineering: An Emerging Technical Space 49

directly serializing graphs on text flow or binary streams, it was more interesting to
serialize graphs as trees and the let the remainder of the work being handled in the
XML TS. As a consequence a bidirectional projector was defined by the XMI
convention.

Each MDA projector has a specific goal, i.e. it consists in providing new facilities
to models that are available in other TSs. XMI brings the capability of global model
exchange to the MDA space and this capability is found in the XML space. Global
model exchange means only the possibility to have batch-style of communication
between tools. This is an interesting facility, but in many occasions it is not sufficient
because we have to provide a fine grain access to model elements. XMI is of no use to
do this. Here again the problem of adding new capabilities to models arose. Building
intra-MDA tools for doing this was considered very costly. So, as part of the Java
community process program, a standard projector with the Java technical space was
defined under the name JSR #40. The capability to access models elements in MDA
was given with the help of the Java TS. This projector is known today under the name
JMI (Java Metadata Interface Specification [33]).

As we may see, each projector has a specific purpose. In the UML standard, the
diagram interchange part deals partially with the separation of content and
presentation for MDA models. In order to help model presentation, specific tools
could have been added to the MDA space, but with a high implementation cost. Here
again a solution was found in the XML space, by using the SVG standard for scalable
vector graphics. Although the solution is limited to only certain kind of models, here
again we see the interest of using important investments of other TSs to bring
economically and rapidly functionalities to a given space (here the MDA) with the
help of projectors.

Many other examples could be found showing the need for a very precise
definition of the goal of any projector. For example, after the introduction of XMI, it
was rapidly found that this projector was not bringing the facility of easy textual
reading to the MDA space. Many solutions were possible, including applying XSLT
transformation to XMI-serialized models to make them more usable for human
operator (considering that XMI is sufficient for computer operators). Then the OMG
decided to address this problem separately and a solution involving the EBNF space
was defined under the name HUTN (Human Usable Textual Notation). HUTN offers
three main benefits: (1) It is a generic specification that can provide a concrete
language for any MOF model; (2) the HUTN languages can be fully automated for
both production and parsing; (3) the HUTN languages are designed to conform to
human-usability criteria. In the same spirit, OMG is today studying more general
kinds of projectors between the MDA and the textual technical space (Model to Text
RFP).

So we can see all the gain that could be reaped from the homogeneous
consideration of bridges between TSs with the help of generic projectors. There are
many activities presently going on in this area with TSs like data base (SQL
projectors, E/R diagram projectors), in the OS TS (Unix projectors), in the legacy
technical spaces (Cobol, ADA, PL/1 projectors to name only a few of them), in the
ontology TS, for example with Protégé, in the natural language processing TS for
requirement engineering applications, in the semantic Web TS, etc.

50 J. Bézivin

4 Some Examples of Technical Spaces

In this part, we give some rapid examples of TSs related to model engineering.

4.1 The OMG MDA Technical Space

We have already mentioned many of the characteristics of this MDA TS which was
one of the first to explicitly state its clear foundation on some notion of concrete
model. It should be noted that this TS borrowed much inspiration from the CDIF
achievements as well as from the Microsoft OIM framework. CDIF and OIM are two
examples of previous TSs, now extinct.

A typical presentation of the OMG/MDA organization is shown in Fig. 11. This
may be used to illustrate the various roles that UML is playing in the global picture.

Fig. 11. Typical illustration of OMG MDA Organization

There has been a lot of reorganization at OMG on the occasion of the move to
UML 2.0. The idea was to achieve some simplification by taking this opportunity to
align other standards as well (OCL 2.0, MOF. 2.0, XMI 2.0, etc.). The result may be
considered as mitigated. For various reasons there have always been two camps at
OMG, according to the role devoted to UML. For the MOF camp, UML is only one
ordinary metamodel among many (CWM, SPEM, etc.) while for others UML has a
special and central role in MDA; the latter view UML as a rather universal language
covering most of the software engineering needs, either directly or through its profile
extension mechanism. The two camps have made a working compromise stating that
1) the UML conforms to MOF but also that 2) MOF is aligned on UML. Keeping the
balance between these two political views has always been a complex exercise. The

 Model Driven Engineering: An Emerging Technical Space 51

fact that UML is separated in infrastructure and superstructure was a help in defining
the alignment, but is not sufficient. MOF itself is now composed of two parts, EMOF
(for essential MOF) and CMOF (for complete MOF).

One sub-area of the MDA work at OMG is called ADM (Architecture-Driven
Modernization) and deals with model-based reverse engineering and software
modernization. In this very active area, the notion of TS projector between legacy
spaces and the MDA space are of paramount importance. ADM mainly deals with the
utilization of metamodeling techniques for recovery PIMs from PSMs corresponding
to platform of the past.

4.2 The EMF Technical Space

In theory EMF (Eclipse Modeling Framework [17]) and OMG/MDA are aligned and
should be considered as only one TS. As suggested in Fig. 2, MDA may be viewed as
a set of standards while EMF should be an implementation based on these same
standards. In practice this is not completely true and the two may be somewhat
evolving independently. The M3 level in EMF is called ECORE (see Fig. 12), and
corresponds approximately to EMOF mentioned above. Another view is to consider
EMF as a sophisticated projection of MDA onto the Java TS, and to a lesser extent
onto the XML TS.

Fig. 12. The EMF ECore metametamodel

4.3 The Microsoft DSL Tools Technical Space

A general description of the concept of software factories has been presented in [20].
Starting from there, several sets of tools are being regularly released as beta-versions
since December 2004. This allows us to understand in which direction the modeling
activities are leading at Microsoft.

In order to define a DSL toolkit for a specific purpose (e.g. for a business of
deigning airports), one will proceed as follows:

52 J. Bézivin

 Define the 'object model' (abstract syntax or metamodel) of the language -- that
is, the concepts and relationships you want to handle in it.

 Define a graphical concrete syntax for the language -- the boxes, lines, etc that
represent the concepts on-screen.

 Create a graphical editor for the language that you will use to design a specific
airport.

 Develop code generators that will create software, configuration files, reports
and other artifacts from the graphical model.

The choice of Microsoft DSL Tools has been to map mainly to the XML technical
Space for handling models and metamodels. Executability is provided by mapping to
the Dot Net TS. The M3 level at Microsoft is left implicit, but could be reified
somewhat as illustrated in Fig. 13. An operational bridge between EMF and Microsoft
Software factories may be found in [12].

Fig. 13. A tentative to explicit the M3 level of Microsoft DSL Tools (simplified)

4.4 Other Technical Spaces

There are plenty of other technical spaces besides the three MDE ones that we have
just briefly introduced. A list of these spaces is obviously not realistic here. However
it is important to recognize them when they are involved in relation to MDE. The
major one is probably the XML Document space that has taken considerable
importance in the last decade. We have seen how the OMG has established links with
this space through standards like XMI. This is even more important in Microsoft DSL
Tools that are making more usage of XML mappings.

Another very important technical space is programming languages, e.g. Java. We
can even say that EMF is mainly concerned with the bridging of MDA and Java. This
had previously been achieved with JMI in other environments like MDR/NetBeans,
but to a much less ambitious scale.

An interesting reading about technical spaces in the domain of web services is [21].
Although not naming explicitly the concept of technical space, this paper considers
three complementary ones, namely objects, SQL and XML. The author notices that
each of these solutions has strengths and weaknesses when applied to the inside and

 Model Driven Engineering: An Emerging Technical Space 53

outside of web service boundary. He then concludes that the strength of each of these
solutions in one area is derived from essential characteristics underlying its weakness
in the other area. In other words, the multiplicity of technical space is not only a fact
of life but it has also many positive effects.

Bridging to another technical space is interesting if it has something interesting to
bring. We have already seen the advantage of using XML or Java instead of
reinventing the wheel.

Interesting bridges could also be built with ontology engineering and web
semantic. Some functionalities may be easier to provide in a TS with a M3 based on
OWL than on the MOF. For example name management seems superior in OWL
where a given object may be referred by several different names. Also in OWL the
possibility to infer from the properties of an individual that it is a member of a class
may be of interest. Through this example we understand more clearly the fundamental
relations between representation and reasoning. Reasoning on a model is usually
considered a more complex operation than just querying this model. It would be
unwise to try implementing in the MDA TS all the reasoning facilities available in the
ontology engineering or description logic TS for example. It seems much more
valuable to build specific projectors when needed.

Having surveyed the basic MDE principles and having placed them in the context
of multiple TSs, it remains now to prove that this approach may lead to real and
usable implementations. We will use the example of AMMA (ATLAS Model
Management Architecture), a platform built in our team to demonstrate the feasibility
of these model-centric approaches to software engineering, system engineering, and
data engineering.

5 Architectural Style for an MDE Platform

This section will describe an architectural style for MDE composed of four
functional blocks illustrated with prototypes running in the AMMA platform:

• Model transformation (ATL)
• Model weaving (AMW)
• General model management (AM3)
• Model projection to/from other technical spaces (ATP)

This architectural style and the feasibility of its implementation will be illustrated by
the description of the AMMA platform. The architecture of the current EMF-based
AMMA implementation is described in Fig. 14. The transformation tool of AMMA,
ATL, uses the basic features of EMF to handle both source and target models and
metamodels, as well as the transformation model and metamodel. An Integrated
Development Environment (IDE) has been developed for ATL on top of Eclipse.
Based on EMF, it makes use of many other features, such as the code editor and the
code debugging frameworks. AMW, the AMMA model weaving tool, uses more
advanced EMF features. Since it is built as a model editor, AMW can benefit from
editing domains facilities for complex model handlings (including undo-redo). It also
reuses some components of the Eclipse default views to display models.

54 J. Bézivin

Eclipse

EMF

ATL IDE

ATL engine ATP

AM3 AMW

Eclipse

EMF

ATL IDE

ATL engineATL engine ATPATP

AM3 AMW

Fig. 14. Architecture of the AMMA platform

Eclipse is mostly used as an IDE for software development. As such, it includes
facilities enabling to navigate the code, to keep track of the files that need rebuilding,
etc. The megamodel tool (AM3) is used as a model-oriented extension of these
abilities. As a matter of fact, using the relations between models (such as the source
and target relations between a transformation model and its source and target
metamodels), and between models and tools (such as those provided by ATP), AM3
makes it possible to easily carry on complex weaving, transformation and projection
tasks.

5.1 MMA: A Model Engineering Platform

AMMA has both local and distributed implementations and is based on four blocks
(Fig. 15) providing a large set of model processing facilities:

• the Atlas Transformation Language (ATL) defines model transformation
facilities;

• the Atlas ModelWeaver (AMW) makes it possible to establish links between the
elements of two (or more) different models;

• the Atlas MegaModel Management (AM3) defines the way the metadata is
managed in AMMA (registry on the models, metamodels, tools, etc.);

• the Atlas Technical Projectors (ATP) defines a set of injectors/extractors
enabling to import/export models from/to foreign technical spaces (Java classes,
relational models, etc.).

AMMA

ATL AMWAM3 ATP

AMMAAMMA

ATL AMWAM3 ATP

Fig. 15. The AMMA platform

 Model Driven Engineering: An Emerging Technical Space 55

5.2 ATL: Transforming Models

5.2.1 ATL Presentation
ATL is a model transformation language, having its abstract syntax defined using a
metamodel. This means that every ATL transformation is in fact a model, with all the
properties that are implied by this. Fig. 16 provides the scheme of the transformation
of a model Ma (conforming to MMa) into a model Mb (conforming to MMb) based on
the Mt transformation (which itself conforms to ATL transformation language).

MOF

ATL

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

MOFMOF

ATLATL

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

Fig. 16. An ATL transformation

What appears on Fig. 16 is the postulate of the existence of this common family of
model transformation languages. This is exactly what OMG is presently trying to
define through MOF/QVT. A given transformation operation is thus represented as
follows:

Mb f (MMa, MMb, Mt, Ma)

This means that a new target model Mb based on metamodel MMb is obtained
from the source model Ma based on metamodel MMa, by applying a transformation
Mt based on the standard transformation language.

5.2.2 The ATL Metamodel
The ATLAS transformation language is defined by the way of a metamodel (Fig. 16)
taking inspiration from the OCL 2.0, which may be considered here as an assertion
and as a navigation language at the same time.

ATL transformations are stored in QVTUnits. QVTUnits are composed of
QVTOperators, which are composed of TransformationDescription. A
TransformationDescription is an abstract class, which has two sub classes: Action and
Context.

Context: The context is used to store the variables and models manipulated by the
transformation.

56 J. Bézivin

Action: The Action class is the element of the language that will describe the
action needed to perform a transformation. The actions have to be executed in specific
order, which is defined in the position attribute. This notion of order is necessary. We
cannot for example set an attribute to a class if the class has not been created.

There are three types of Actions: CreateInstance, PropertyOperation,
AddTransientLink.

The rest of ATL metamodel is the description of Expression sub-classes. ATL
expression classes are a copy of a part of OCL Expression sub classes. An important
extension has been made: the QueryTransientLinkExp that is a sub-class of CallExp.
It is used to navigate through the transient links.

5.2.3 An Example of a Transformation in ATL
Several examples of model transformation in ATL are provided as an open source
contribution on the Eclipse/GMT Website. This is a tentative to build a first library of
reusable model transformations. Among the fifty examples currently available, we
chose one particular for illustrative purpose here: http://www.eclipse.org/gmt/atl/
atlTransformations/#Java2Table. The complete code and documentation is available
from the Web site. This example aims to compute a static call graph from a Java
program and to present it in a tabular way (in an Excel spreadsheet or in an HTML
Table). The following comments on this example are typical of ATL transformations.

a) Although a conventional transformation from UML 2.1 to UML 2.1 (e.g.
refactoring) with source models and metamodels in XMI, target models and
metamodels in XMI may be written in ATL without much difficulties, many
examples are usually more diverse and more specific.

b) Here we describe in the source metamodel only a small subset of Java
programs. More precisely we consider that a Java program is composed of class
definitions, each one being composed of methods definitions and each method
definition in turn being composed of a number of method calls. The other
characteristics of a Java program are not captured by this metamodel.

c) The process of practically getting this Java metamodel expressed in XMI is
rather complex, besides the fact that XMI exists in many non compatible
versions. As a standard procedure we should define a specific UML class
diagram with a standard tool like Poseidon, then get the corresponding XMI
output file and input it to a "model promotion" tool like UML2MOF available
in the MD/NetBeans tool suite. The resulting XMI output file could serve in the
transformation as the definition of the java metamodel. As we can see this
procedure is rather cumbersome. As an alternative we have defined a DSL for
specifying metamodels called KM3 (Kernel MetaMetaModel [2]). This is a
textual language with a Java-like syntax and basic support available in the
Eclipse/GMT project, for example XMI conversion tools. ATL accepts the
source and target metamodels in KM3.

d) As already noticed, the source metamodel does not cover much details of the
Java syntax and this is an advantage on using a Java metamodel corresponding
for example to the full Java grammar. We see here one additional
characteristics of model transformation: the metamodels should be tailored to
the transformation task at hand. Using an over-dimensioned source Java

 Model Driven Engineering: An Emerging Technical Space 57

metamodel would have made the transformation more complex and less secure.
The metamodels play the role of type and the models of variables. It is of high
importance to use the most accurate metamodel for reasons of clarity and
reliability of the transformation. A theoretical scheme would allow building a
transformation taking as input a metamodel Ms and a transformation and
producing as output a new metamodel Mt, reduction of Ms to the only exact
needs of transformation .

e) Now that we have discussed the source metamodel characteristics, we have to
face the real situation that Java programs are naturally and usually expressed as
plain source text programs and not as XMI representations. As a matter of fact,
there is a very restricted number of information naturally expressed in standard
XMI in the real world. So what we have to consider here is a bridge between
the Java and the MDA TS, i.e. a projection. We suppose that such a projection
exists in the ATL projection library (see ATP below). However if we look at
the actual Java2Table example, we realize that such projections have not been
realized directly but instead that the author found more convenient to cross
another TS (XML) to achieve the transformation. Among various reasons for
this decision, the existence of the JavaML DTD that allowed to consider all the
class definitions in one single file. This is an example of a possible
implementation choice.

f) Now that we have discussed the source model, metamodel and projector we
may turn our attention to the corresponding target items. The first work is to
define a metamodel for Excel, obviously not provided with the tool. Here again
we notice that we don't need a full metamodel but a very simplified one,
tailored to our transformation needs. Formulas are not needed but a Spreadsheet
could be considered as composed of Rows, each being composed of a Cell with
a contained value.

g) Once we have defined the target metamodel, we need to build the
corresponding projectors. This could be implemented with specific MS tools
like Visual Basic or more likely again through the XML import/export facilities
available in the MS Office suite. In the process of doing this we realize that the
target metamodel could as well correspond to HTML or XHTML tables. As a
consequence this is the final implementation choice in the provided example.
More precisely the target metamodel is an abstract definition of tabular
presentation. The result of this transformation could then be chained to another
transformation generating specific XHTML or Excel tables, with the
metamodels specific to these tools. Of course chains of transformations are
important in many practical situations.

5.3 AMW: Weaving Models

Model weaving operations are performed between either metamodels (two or more),
or models. They aim to specify the links, and their associated semantics, between
elements of source and target models. Concerning the set of links to be generated, the
following issues may be considered:

58 J. Bézivin

• this set of links cannot be automatically generated because it is often based on
human decisions. The generation can however be partially automated by means
of heuristics;

• it should be possible to record this set of links as a whole, in order to use it later
in various contexts;

• it should be possible to use this set of links as an input to automatic or semi-
automatic tools.

MOF

LeftM RightM

LeftMM

WM

RightMM

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

WeavingFirstName
LastName Name

Concatenation Weaving Link

WMM Stub

WMM

extends

MOFMOF

LeftM RightM

LeftMMLeftMM

WMWM

RightMMRightMM

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

WeavingFirstName
LastNameLastName NameName

Concatenation Weaving Link

WMM StubWMM Stub

WMMWMM

extends

Fig. 17. The model weaving scheme

As a consequence, we come to the conclusion that a model weaving operation
produces a precise model WM. Like other models, this should conform to a specific
metamodel WMM. The produced weaving model relates to the source and target
models LeftM and RightM, and thus remains linked to these models in a megamodel
registry.

Each link element of the produced weaving model WM has to be typed by an
element of a given WMM metamodel. There is no unique type of link. Link types
should provide weaving tools with useful information. Even if some links contain
textual descriptions, these are valuable for tools supporting documentation, manual
refinements or applying heuristics.

One may assume that there is no standard metamodel for weaving operations since
most developers define their own. However, we suppose there is a stub weaving
metamodel, and that this stub is extended by specific metamodel extensions. Thus, a
given weaving metamodel may be expressed as an extension of another weaving
metamodel. This allows building a general weaving tool able to generically deal with
weaving tasks. Fig. 17 describes a simple model weaving scheme in which an explicit
weaving link (of type Concatenation) associates two source elements (FirstName and
LastName) with an only target element (Name).

 Model Driven Engineering: An Emerging Technical Space 59

Mapping heterogeneous data from one representation to another is a central
problem in many data-intensive applications. Examples can be found in different
contexts such as schema integration in distributed databases, data transformation for
data warehousing, data integration in mediator systems [25], data migration from
legacy systems [14], ontology merging [18], schema mapping in P2P systems [22],
workflow integration [27], mapping between context and ontologies [16].

A typical data mapping specifies how data from one source representation (e.g. a
relational schema) can be translated to a target representation (e.g. a XML schema).
Although data mappings have been studied independently in different contexts, there
are two main issues involved. The first one is to discover the correspondences
between data elements that are semantically related in the source and target
representations. This is called schema matching in schema integration [3] and many
techniques have been proposed to (partially) automate this task, e.g. using neural
networks. After the correspondences have been established, the second issue is to
produce operational mappings that can be executed to perform the translation.
Operational mappings are typically declarative, e.g. view definitions or SQL-like
queries. Creating and managing data mappings can be very complex and time-
consuming if done manually. Recent work in schema integration has concentrated on
the efficient management of data mappings. For instance, Clio [26] provides
techniques for the automatic generation of operational mappings from correspond-
dences obtained from the user or a machine learning technique. ToMAS [34] also
provides techniques for the automatic generation of operational mappings as well as
their consistency management while schemas evolve. This work is significant as it
can be the basis to general purpose data integration tools.

5.4 AM3: Global Model Management

The Atlas MegaModel Management tool, AM3, is an environment for dealing with
models or metamodels, together with tools, services and other global entities, when
considered as a whole. For each platform, we suppose that there is an associated
megamodel defining the metadata associated to this platform. Within the content of a
given platform (local or global), the megamodel records all available resources. One
may also refer to these resources as "model components" [10]. The megamodel can be
viewed as a model which elements represent and refer to models and metamodels
[13]. Represented as models, available tools, services, and services parameters are
also managed by the megamodel. There are plenty of events that may change the
megamodel, like the creation or suppression of a model, or a metamodel, etc. A
megamodel is associated with a specific "scope" and conforms to a specific
metamodel.

5.5 ATP: Projection Between Technical Spaces

The Atlas Technical Projectors, ATP, define a set of injectors and extractors, which
can be seen as import and export facilities between the model engineering Technical
Space and other TSs (databases, flat files, XML, etc). Indeed, a very large amount of
pre-existing data that is not XMI compliant would greatly benefit from model
transformation. In order to be processed by a model engineering platform, this data

60 J. Bézivin

needs injection from its TS to the model engineering TS. The need for extraction is
also quite important: many existing tools do not read XMI. A simple example is the
Java compiler. What we need here is code generation, which may be seen as a specific
case of model extraction. Many other TSs require both injectors and extractors:
database systems provide another example in which database schemes have to be
generated from model definitions.

5.6 Conclusions

What appear in this presentation are the high complementarities between all four
presented functional blocks (ATL, AMW, AM3, and ATP). There are plenty of
applications that make use of these four kinds of functionalities at the same time.

6 Conclusions

We have presented in this paper our definition of MDE basic principles and our view
of an MDE implementation architectural style. The basic principle on which this work
is based (Models as first class entities) is common to many current research
communities (Model Management, Model Integrated Computing, etc.) and similar
goals and means may be found in other TSs. This is summarized in Fig. 18.

Fig. 18. Summarizing the Basic Principles

We have taken here a broad view of model engineering as encompassing not only
the MDA™ OMG proposal or the Microsoft SoftwareFactories/DSL view, but also
other approaches like Model Integrated Computing, Generative Programming, Model
Management and many more. We distinguished the three levels of principles,
standards, and tools to facilitate the discussion. We suggested the idea that there may
exist a common set of principles that could be mapped to different implementation
contexts through the help of common standards. We have illustrated our claim with
AMMA, an architectural organization that is currently mapped onto the EMF
extension of the Eclipse platform.

 Model Driven Engineering: An Emerging Technical Space 61

One contribution of this work has been to propose a precise and minimal definition
of a conceptual MDE technical space. This space may be considered as a general
graph where partitions are composed of model, metamodel and metametamodel
entities. We have not committed here to a particular kind of graphs. The OMG/MOF
graphs, the EMF/Ecore graphs or the Microsoft/SoftwareFactories/DSL graphs are
not completely identical but we believe these systems share one common set of
principles and definitions corresponding to the MDE abstract global typing system
presented here. As a consequence this work should be useful not only to relate
different technical spaces like XML, Grammarware, etc., but also to compare variants
of the MDE space.

One contribution of this work is the AMMA conceptual architecture, seen as an
intermediary level between model engineering basic principles and executable
systems running on operational platforms like EMF/Eclipse. The main advantage of
proceeding in this way is that we may more clearly evaluate the gap between
principles and implementation. From our initial experimentations, we came to the
conclusion that building a model engineering platform is much more demanding than
simply providing a RPC-like mechanism for allowing tools to exchange models in
serialized format (e.g. XMI-based), with the corresponding services and
protocols (e.g. Web Service-based). The present state of AMMA with the four
functional blocks is only one step in this direction and still needs many extensions.

There are many variants of model engineering. Our attitude has been to find the set
of basic principles common to all the dominant model engineering approaches and to
make them explicit. We are then in a position to clearly separate the principles, the
standards, and the tools levels.

One of the contributions of our approach is also to take explicitly into account the
notion of technical space. Instead of building a lot of different ad-hoc conversions
tools (modelToText, textToModel, ontologyToModel, modelToOntology,
XMLToText, textToXML, modelToSQL, SQLToModel, etc.), we have proposed,
with the notion of projectors (injectors or extractors), a general concept that may be
used in various situations. These projectors can be selected as either front-ends or
back-ends for classical transformations.

Acknowledgements

I would like to thank Freddy Allilaire, Marcos Didonet del Fabro, Frédéric Jouault,
Ivan Kurtev, David Touzet, Patrick Valduriez and all the members of the AMMA
group for their numerous contributions to this document. This work has been
supported in part by the IST European project "ModelWare" (contract 511731).

References

1. ATL, ATLAS Transformation Language Reference site http://www.sciences.univ-
nantes.fr/lina/atl/

2. ATLAS Group KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/
indextech.cgi/~checkout~/gmt-home/doc/atl/index.html

62 J. Bézivin

3. Batini, C., Lenzerini, M., and Navathe, S. B. 1986. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Computing Surveys 18, 4, 323–
364.

4. Bernstein, P.A., Levy, A.Y., Pottinger, R.A., A Vision for Management of Complex
Systems, MSR-TR-2000-53, Microsoft Research, Redmond, USA,
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-53.pdf.

5. Bézivin J., Lemesle R. The sBrowser: a Prototype Meta-Browser for Model Engineering.
Proceedings of OOPSLA’98, Vancouver, Canada, 18-22 October 1998.
(http://www.metamodel.com/oopsla98-cdif-workshop/bezivin2/)

6. Bézivin, J. From Object Composition to Model Transformation with the MDA
TOOLS'USA 2001, Santa Barbara, August 2001, Volume IEEE publications TOOLS'39.
http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf

7. Bézivin, J. In search of a Basic Principle for Model Driven Engineering,
Novatica/Upgrade, Vol. V, N°2, (April 2004), pp. 21-24, http://www.upgrade-
cepis.org/issues/2004/2/up5-2Presentation.pdf

8. Bézivin, J. Lemesle, R. Towards a true reflective modeling scheme LNCS, ISSN: 0302-
9743, Vol. 1826/2000, http://www.springerlink.com/media/3G267U4QVH5RRJ47VBFT/
Contributions/2/8/4/W/284W7VGQC302VR5W.pdf

9. Bézivin, J. sNets: A First Generation Model Engineering Platform. In: Springer-Verlag,
Lecture Notes in Computer Science, Volume 3844, Satellite Events at the MoDELS 2005
Conference, edited by Jean-Michel Bruel. Montego Bay, Jamaica, pages 169-181.

10. Bézivin, J., Gérard, S. Muller, P.A., Rioux, L. MDA Components: Challenges and
Opportunities, Metamodelling for MDA, First International Workshop, York, UK,
(November 2003), http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf

11. Bézivin, J., Gerbé, O. Towards a Precise Definition of the OMG/MDA Framework
ASE'01, San Diego, USA, November 26-29, 2001 http://www.sciences.univnantes.fr/
lina/atl/publications/ASE01.OG.JB.pdf

12. Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W. bridging the MS/DSL Tools and
the eclipse EMF Framework. OOPSLA Workshop on Software Factories, http://
softwarefactories.com/workshops/OOPSLA-2005/Papers/Bezivin.pdf

13. Bézivin, J., Jouault, F., Valduriez, P., On the Need for Megamodels, OOPSLA & GPCE,
Workshop on best MDSD practices, Vancouver, Canada, 2004.

14. Bisbal J., Lawless D., Wu B., Grimson, J. Legacy Information Systems: Issues and
Directions. IEEE Software, September/October 1999, pp. 103-111, Vol. 16, Issue 5. 1999.

15. Booch G., Brown A., Iyengar S., Rumbaugh J., Selic B. The IBM MDA Manifesto The
MDA Journal, May 2004, http://www.bptrends.com/publicationfiles/05-
04%20COL%20IBM%20Manifesto%20-%20Frankel%20-3.pdf

16. Bouquet P., Giunchiglia F., Van Harmelen F., Serafini L., Stuckenschmidt H.:
Contextualizing Ontologies. Journal of Web Semantics, 1(4):1-19, 2004

17. Eclipse Modeling Framework (http://www.eclipse.org/emf/)
18. Ehrig M., York Sure: Ontology Mapping - An Integrated Approach. ESWS 2004: 76-91
19. GMT, General Model Transformer Eclipse Project, http://www.eclipse.org/gmt/
20. Greenfield, J., Short, K., Cook, S., Kent, S., Software Factories, Wiley, ISBN 0-471-

20284-3, 2004.
21. Helland, P. Data on the outside versus data on the inside.2005 CIDR Conference.
22. Kementsietsidis A., Arenas M., Miller, R. J. Mapping Data in Peer-to-Peer Systems:

Semantics and Algorithmic Issues. In Proceedings of the SIGMOD International
Conference on Management of Data (SIGMOD'03), San Diego, USA, pages 325-336.
2003.

 Model Driven Engineering: An Emerging Technical Space 63

23. Klint, P., Lämmel, R. Kort, J., Klusener, S., Verhoef, C., Verhoeven, E.J. Engineering of
Grammarware. http://www.cs.vu.nl/grammarware/

24. Kurtev, I., Bézivin, J., Aksit, M. Technical Spaces: An Initial Appraisal. CoopIS,
DOA’2002 Federated Conferences, Industrial track, Irvine, 2002
http://www.sciences.univ-nantes.fr/lina/atl/publications/

25. Lenzerini M., Data integration: a theoretical perspective, Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, June
03-05, 2002, Madison, Wisconsin

26. Miller, R. J., Hernandez, M. A., Haas, L. M., Yan, L.-L., Ho, C. T. H., Fagin, R., and
Popa, L. 2001. The Clio Project: Managing Heterogeneity. SIGMOD Record 30, 1, 78–83.

27. Omelayenko B. RDFT: A Mapping Meta-Ontology for Business Integration, In:
Proceedings of the Workshop on Knowledge Transformation for the Semantic Web
(KTSW 2002) at the 15-th European Conference on Artificial Intelligence, 23 July, Lyon,
France, 2002, p. 76-83

28. OMG/MOF Meta Object Facility (MOF) Specification. OMG Document AD/97-08-14,
September 1997. Available from www.omg.org

29. OMG/RFP/QVT MOF 2.0 Query/Views/Transformations RFP, OMG document ad/2002-
04-10. Available from www.omg.org

30. OMG/XMI XML Model Interchange (XMI) OMG Document AD/98-10-05, October
1998. Available from www.omg.org

31. Seidewitz, E. What do models mean? IEEE Software, IEEE Software,September/October
2003 (Vol. 20, No. 5)

32. Soley, R., and the OMG staff, Model-Driven Architecture, OMG Document, November
2000, http://www.omg.org/mda

33. Sun Java Community Process JMI Java MetaData Interface Specification Available from
ftp://ftp.java.sun.com/pub/spec/jmi/asdjhfjghhg44/jmi-1_0-fr-spec.pdf

34. Velegrakis Y., Miller R. J., Popa L., Adapting Mappings in Frequently Changing
Environments, Int. Conf of Very Large Databases (VLDB), Sep 2003.

Appendix: Acronyms

Due to the initial normative aspect of the field, we have used an important number of
acronyms in this document. We provide below a list of more common ones with their
definitions.

ADM Architecture-Driven Modernization
AS Action Semantics
CDIF CASE Data Interchange format
CORBA Common Object Request Broker Architecture
CIM Computation Independent Model
CWM Common Warehouse Metadata
DTD Document Type Definition
EAI Enterprise Application Integration
EBNF Extended Backus-Naur Form

64 J. Bézivin

EDOC Enterprise Distributed Object Computing
EJB Enterprise Java Beans
HUTN Human Usable Textual Notation
IDL Interface Definition Language
JSR Java Specification Request
JMI Java MetaData Interface Specification
MDA Model Driven Architecture (OMG™)
MDE Model Driven Engineering
MDD Model Driven Development (OMG™)
MDSD Model Driven Software Development
MDSE Model Driven Software Engineering
MIC Model Integrated computing
MOF Meta-Object Facility
OCL Object Constraint Language
OIM Open Information Model
OMA Object Management Architecture
OMG Object Management Group
PIM Platform Independent Model
PSM Platform specific Model
RFP Request for Proposal
RAS Reusable Asset Specification
RUP Rational Unified Process
SMIF Stream-based Model Interchange Format
SPEM Software Process Engineering Metamodel
TS Technical Space
UML Unified Modeling Language (OMG™)
XMI XML Model Interchange
XML eXtensible Markup Language

Program Transformation with Reflection
and Aspect-Oriented Programming

Shigeru Chiba

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology, Japan

Abstract. A meta-programming technique known as reflection can be
regarded as a sophisticated programming interface for program trans-
formation. It allows software developers to implement various useful
program transformation without serious efforts. Although the range of
program transformation enabled by reflection is quite restricted, it cov-
ers a large number of interesting applications. In particular, several
non-functional concerns found in web-application software, such as dis-
tribution and persistence, can be implemented with program transforma-
tion by reflection. Furthermore, a recently emerging technology known
as aspect-oriented programming (AOP) provides better and easier pro-
gramming interface than program transformation does. One of the roots
of AOP is reflection and thus this technology can be regarded as an ad-
vanced version of reflection. In this tutorial, we will discuss basic concepts
of reflection, such as compile-time reflection and runtime reflection, and
its implementation techniques. The tutorial will also cover connection
between reflection and aspect-oriented programming.

1 Introduction

One of significant techniques of modern software development is to use an appli-
cation framework, which is a component library that provides basic functionality
for some particular application domain. If software developers use such an ap-
plication framework, they can build their applications by implementing only the
components intrinsic to the applications. However, this approach brings hid-
den costs; the developers must follow the protocol of the application framework
when they implement the components intrinsic to their applications. Learning
this framework protocol is often a serious burden of software developers. A richer
application framework provides a more complicated protocol. Learning the pro-
tocol is like learning a new domain-specific language since software developers
must understand the programming model or the underlying architecture.

A program translator has a potential ability to simplify such a framework
protocol. If framework developers use a program translator, they can provide a
simpler but not-real framework protocol for the users. The users can implement
their application-specific components with that simple protocol. Then they can
translate their components by the program translator into ones following a com-
plex but real protocol of the application framework. Their translated components

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 65–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 S. Chiba

can actually run with the application framework. A challenge of this idea is to
make it easy for framework developers to implement a program translator for
their framework. Since framework developers are normally experts of not com-
piler technology but the application domain of the framework, the easiness of
developing a program translator is a crucial issue in this scenario. Furthermore,
if the development cost of a program translator is extremely high, it would not
be paid off by the benefits of the simple protocol.

Reflection [35, 34, 24] can be regarded as one of the technology for making it
easy to implement such a program translator for simplifying a framework pro-
tocol. The power of meta programming by this technology allows framework
developers to implement a simple protocol without directly developing a pro-
gram translator for their framework. The framework developers can describe the
algorithm of program transformation with high-level abstraction and the actual
program transformation is implicitly executed by the underlying mechanism for
reflective computing. They do not have to consider source-code parsing, seman-
tic analysis, or other messy details of implementation of a program translator.
Although reflection used to be known as the mechanism involving serious perfor-
mance overheads, today there are several implementation techniques for efficient
reflective computing. Carefully designed reflective computing does imply zero or
only a small amount of overhead.

Aspect-oriented programming (AOP) [21] is relatively new technology; as well
as reflection, it is useful for simplifying a framework protocol. One of the roots of
AOP is the study of reflection and thus AOP is often regarded as a descendant of
the reflection technology. AOP is not another new name of reflective computing
or technology hype. AOP is new technology for reducing dependency among
software components. If components have strong dependency on each other, the
protocol of interaction among the components will be complicated and difficult to
learn. AOP reduces the dependency among components, in particular, between
components implemented by application developers and components provided
by an application framework. Reducing the dependency makes the framework
protocol simpler and easier to use. AOP does not directly help implementing a
program translator but it is a programming paradigm that provides language
constructs for simplifying a framework protocol. The ability of those constructs
are quite equivalent to what we want to achieve by using a program translator.

In the rest of this paper, we first discuss how program translators can simplify
the protocols of application frameworks. Then this paper presents overviews of
the reflection technology. It also describes AOP. We discuss what are benefits
of AOP and the unique functionality of AOP, which is not provided by the
reflection technology.

2 Program Translator

To illustrate our motivation, this section first presents the complexity of the
protocols of application frameworks. Then it mentions how a program translator
can simplify the protocols.

Program Transformation with Reflection and AOP 67

2.1 Simple Example: Graphical User Interface Library

Application frameworks are class libraries that can be a platform for building
application software in a particular application domain. Since they provide basic
building blocks in that domain, they significantly improve efficiency of software
development. However, to exploit the power of application frameworks, appli-
cation developers must learn the protocols of the frameworks. Unfortunately,
those protocols are often complicated and thus learning the protocols is often a
time consuming job. It is hidden cost of software development with application
frameworks.

The complications of a framework protocol mainly come from the limited
ability of programming languages to modularize software. For example, we below
show a (pseudo) Java program written with the standard GUI framework. It is
a program for showing a clock. If this program does not have GUI, then it would
be something like the following simple and straightforward one (for clarifying
the argument, the programs shown below are pseudo code):

class Clock {
static void main(String[] args) {
while (true) {
System.out.println(currentTime());
sleep(ONE_MINUTE);

}
}

}

This program only prints the current time on the console every one minute.
Now we use the standard GUI library as an application framework to extend

this program to have better look. To do that, however, we must read some
tutorial books of the GUI library and edit the program above to fit the protocol
that the books tell us. First, we would find that the Clock class must extend
Panel. Also, the Clock class must prepare a paint method for drawing a picture
of clock on the screen. Thus you would define the paint method and modify the
main method. The main method must call not the paint method but the repaint
method, which the tutorial book tells us to call when the picture is updated.
The following is the resulting program (again, it is pseudo code):

class Clock extends Panel {
void paint(Graphics g) {
// draw a clock on the screen.

}
static void main(String[] args) {
Clock c = new Clock();
while (true) {
c.repaint();
sleep(ONE_MINUTE);

}
}

}

Note that the structure of the program is far different from that of the original
program. It is never simple or straightforward. For example, why do we have to

68 S. Chiba

define the paint method, which dedicates only to drawing a picture? Why does
the main method have to call not the paint method but the repaint method,
which will indirectly call the paint method? To answer these questions, we have
to understand the programming model or the underlying architecture of the
framework provided by the GUI library. This is hidden cost that application
developers have to pay for exploiting the power of application frameworks.

2.2 Enterprise Java Beans

Enterprise Java Beans (EJB) [36] is a popular application framework for building
a web application in Java. This framework provides basic functionality such as
transaction, distribution, and security, for software components developed by
the users. Since the cost of implementing such functionality for each component
is never negligible, the use of EJB significantly reduces the development cost of
application software.

However, the benefits of EJB are not free. The developers must follow the
protocol of EJB when they develop their software components. This protocol
(at least, before EJB 3.0) is fairly complicated whereas the power of the EJB
framework is strong. Only the developers who spend their time on mastering
the framework protocol of EJB can enjoy the power of EJB. For example, to
implement a single EJB component, the developer must define three classes and
interfaces in Java. Suppose that we want to implement a component for dealing
with registration of summer school. Ideally, the definition of this component
would be something like this:
class Registration {
void register(String who) { ... }
void cancel(String who) { ... }

}

However, to make this component be EJB-compliant, we must define the
following class and interfaces (again, these are pseudo-code):
class RegistrationBean implements SessionBean {
void register(String who) { ... }
void cancel(String who) { ... }

}

interface RegistrationHome {
Registration create() throws .. ;

}

interface Registration extends EJBObject {
void register(String who) throws .. ;
void cancel(String who) throws .. ;

}

Note that Registration is now the name of the interface extending EJBObject
although it was the class name in the ideal version. The name of the class imple-
menting the component functionality is now RegistrationBean. The protocol is
not only the names; the reason why we must define extra interfaces is not clear
unless we know the underlying architecture of EJB.

Program Transformation with Reflection and AOP 69

2.3 Use of Program Translators

The complications of framework protocols we showed above can be simplified
if the application frameworks are distributed with custom program translators.
The framework designers can define a simple but not-real protocol, with which
the framework users implement their components. These components as is can-
not work with the application frameworks but they can be translated into the
components that follow the real protocols of the application frameworks. In fact,
this idea has been adopted by upcoming EJB 3.0. EJB 3.0 provides an extremely
simple protocol; it allows developers to implement EJB components as regular
Java objects. The developers do not have to follow any protocol when they im-
plement EJB components. So the developers can write the ideal code we have
seen above:

@Session class Registration {
void register(String who) { ... }
void cancel(String who) { ... }

}

The components described as above are translated by a sort of program transla-
tor into the components that follows the real but hidden protocol of the frame-
work so that they can work with the framework.

However, this approach using a program translator has not been widely used
yet. A main reason would be that implementing a program translator is not easy.
Only application frameworks that have a large user base can adopt this approach
since the cost of implementing a program translator is paid off by the benefits
that the users can receive. EJB is a typical example. To make this approach
widely used for simplifying a framework protocol, we have to study technologies
for easily implementing a program translator customized for each application
framework. One of such technologies is reflection and another is aspect-oriented
programming (AOP). In the following sections, we discuss these two technologies.

3 Reflection

Reflection, or reflective computing, is one of meta-programming technologies
originally proposed by Brian C. Smith in the early 1980’s [35, 34]. He presented
this idea by showing his Lisp language called 3-Lisp. This idea was extended and
applied to object-oriented languages by Pattie Maes, who proposed the 3-KRS
language [24], and others during the 1980’s. Smalltalk-80 [17] is also recognized
today as one of the early reflective languages [14] although it was not intended
to enable reflective computing when it was designed.

3.1 Reify and Reflect

Reflection allows a program to access the meta-level view of that program itself.
If an entity in that meta-level view is changed, the corresponding entity in the
original program is really changed. Therefore, reflection enables a program to

70 S. Chiba

transform (parts of) that program itself within the confines of the language.
Self-reflective languages, that is, programming languages that enable reflective
computing are like surgeons who can perform an operation on themselves for
cancer.

The primitive operations of reflective computing are reify and reflect. Reifying
is to construct a data structure representing some non-first-class entity in a
program. It is also called introspection. That data structure can be queried for
the structure of the represented entity. For example, the standard reflection API
of Java provides a Class object representing a class. Such an object as the Class
object is often called a metaobject since it is part of the meta-level view of a
program. The Class object can be queried for its super class, methods, and so
on. Constructing the Class object is a typical reifying operation since a class is a
non-first-class entity in Java. That is, the forName method in Class is the reifying
operation provided by the reflection API of Java. Here, the first-class entity
means a data value that a program can deal with. The non-first-class entities
are the rest of the entities included in a program. For example, an integer and
a String object are first-class entities. On the other hand, a class and a method
are non-first-class entities since variables cannot hold them or refer to them.

Reflecting is to alter the structure or the behavior of a program according to
the changes applied to the metaobjects (or some data structure representing the
meta-level view if the language is not object-oriented) obtained by the reifying
operation. Note that a metaobject is a regular object although it represents
part of the meta-level view of a program. It does not have to be identical to
a meta-level entity of the program; it can be a mirror image [3]. Therefore, it
is not obvious that changes in a metaobject are reflected on the structure or
the behavior of the program. To emphasize that the changes are reflected on
the program, a reflective language has causal connection between a program and
metaobjects (or data structures representing the meta-level view). The reflection
API of Java does not provide this type of reflecting operation. The metaobjects
such as Class, Method, and Field objects provide only getter methods but not
setter methods. Thus, any changes cannot be applied to the metaobjects.

Another type of reflecting is to execute base-level operations, such as ob-
ject creation and method invocation, through a metaobject. The reflection API
of Java provides this type of reflecting operation. The Class class includes the
newInstance method, which makes an instance of the class represented by the
Class object. The Method class includes the invoke method, which invokes the
method. The computation by these methods is also the reflecting operation since
it is reflected on the real program execution.

3.2 Metaobject Protocol

CLOS [1] is known as an object-oriented language that has strong ability with
respect to both reifying and reflecting operations. The reflection API of CLOS
is called the CLOS Metaobject Protocol (MOP) [20]. CLOS is an object system
built on top of Common Lisp and thus an object in CLOS is implemented by
using a data structure of Common Lisp, for example, an array. If a class is

Program Transformation with Reflection and AOP 71

defined in CLOS, an object representing a class is created at runtime. This
object contains the information of the class definition. Note that this fact does
not cause infinite regression. From the implementation viewpoint, this fact just
means that the runtime data structure representing a class is the same data
structure of Common Lisp that is used for representing an object. However, we
interpret this fact as that a class is an object in CLOS as we say that a class is
an object in Smalltalk-80.

The class definition in CLOS is expanded by a macro into an expression that
makes an object. Recall that Lisp macros are powerful programmable macros.
This architecture of CLOS is illustrated by the following pseudo Java code:1

public class Point {
int x, y;
void move(int newX, int newY) { ... }

}

This class definition is expanded by a macro into the following expression:

Class pointClass
= new Class("Point",

new Field[] { new Field("int", "x"),
new Field("int", "x") },

new Method[] { new Method("void", "move", ...) });

Here, pointClass is sort of a global variable. For each class definition, a Class
object is created at runtime and it contains the information about the class def-
inition. Note that there is no syntactical distinction among expressions, state-
ments, and declarations in Lisp. Thus transforming a class declaration into an
expression as shown above is valid macro expansion in Lisp.

An expression for making an instance of Point is also expanded by a macro.
For example, this expression:

Point p = new Point();

is transformed into this:

Point p = (Point)pointClass.newInstance();

newInstance declared in the Class class is a method for making an instance.
Furthermore, the following expression for calling a method in Point:

p.move(3, 4)

is transformed into something like this:

pointClass.getMethod("move").invoke(p, new Object[] { 3, 4 });

1 The object model of CLOS is quite different from that of Java. So the following
explanation is not exactly about the CLOS MOP. We try to show the basic idea of
the CLOS MOP with the context of Java since most of the readers would be familiar
to Java.

72 S. Chiba

The resulting expression first obtains a Method object representing move and
then invokes the method with arguments 3 and 4. In principle, since the resulting
expression consists of two method calls (getMethod and invoke), it would be
also expanded by the same macro. However, this macro expansion performs
different transformation; the expression is transformed into a Lisp expression
implementing the normal behavior of method call. It does not include a method
call or any other object-oriented operators. If the macro expansion were naively
applied, it would cause infinite regression.

As we showed above, all the operations related to objects in CLOS are always
transformed into method calls to Class objects, at least, in the programming
model of CLOS. Therefore, if we call a method on the Class objects and change
the states of those objects, the changes are immediately reflected on the behavior
of the operations related to objects.

For example, we can dynamically add a new method to the Point class by
explicitly calling a method on the Class object representing the Point class:

pointClass.addMethod(new Method("String", "toString", ...));

This expression first makes an instance of Method that represents a toString
method. Then it adds the method to the Point class by calling the addMethod
method.

If a subclass of Class is defined and some methods in Class is overridden,
the behavior of the operations such as object creation and method calls can
be altered. This alteration is called intercession. For example, let us define the
following subclass:

public class TracedClass extends Class {
public Object newInstance() {
System.out.println("instantiate " + getName());
return super.newInstance();

}
}

Then define a Point class as following:

public class Point is_instance_of TracedClass {
int x, y;
void move(int newX, int newY) { ... }

}

Here is instance of is a keyword for specifying the class of the class metaobject.
This class definition is expanded by the macro into the following statement:

Class pointClass = new TracedClass("Point", ...);

Now the class metaobject that pointClass refers to is an instance of TracedClass.
Hence, if an instance of Point is made, a trace message is printed out.

Program Transformation with Reflection and AOP 73

3.3 Operator Interception

Reflection enables developers to define a method that is executed when an op-
erator such as method call and field access is executed. If the thread of control
reaches such an operator, the program execution is intercepted and then that de-
fined method is invoked instead of the operator. The TracedClass example shown
above is an example of such an intercepting method. We defined a method in-
tercepting a new operator in the TracedClass class.

Although such an intercepting method has a large number of practical appli-
cations and it is provided by most of reflective languages, an intercepting method
is not a unique mechanism of the reflection technology. It is also provided by
other technologies such as aspect-oriented programming. A unique feature of
the reflection technology is that it enables an intercepting method to access
the contexts of the intercepted operator through a meta-level view so that the
intercepting method could be generic.2

For example, the newInstance method in the TracedClass example can intercept
the new expressions (object-creation expressions) of making an instance of any
class type. It can intercept a new expression for either Point or Rectangle. This
is because the newInstance method is at the meta level and hence the class
type of the created object is coerced to the Object type. Another example is
the invoke method in Method. This method receives arguments in the form of
array of Object independently of the types and the number of the arguments.
This enables a generic intercepting method, which can intercept different kinds
of method calls. The following example illustrates the invoke method overridden
in a subclass so that it will print a trace method:

public class TracedMethod extends Method {
public Object invoke(Object target, Object[] args) {
System.out.println("method call " + getName());
return super.invoke(target, args);

}
}

The invoke method is an intercepting method, which is executed when a method
represented by a TracedMethod metaobject is called. This invoke method can
intercept any method calls, no matter how many parameters or what type of
parameters the method receives. This is because the list of arguments is reified
by using an array of Object.

How the base-level entities such as the number and types of method argu-
ments are reified depends on the reflective language. For example, OpenC++
(version 1) [9] uses an instance of the ArgPac class for representing the method
arguments at the meta level since there is no root type of all the class types in
C++.

2 This feature is also provided by an aspect-oriented programming language AspectJ.
However, it is a reflection mechanism of AspectJ according to the documents of
AspectJ.

74 S. Chiba

3.4 Structural Reflection vs. Behavioral Reflection

Reflective programming is classified into two categories: structural reflection and
behavioral reflection. Structural reflection is to alter a program structure, that
is, a class definition in Java, through a metaobject, for example, defining a new
class, adding a new method to an existing class, removing an existing field, and
changing a super class. Structural reflection enables straightforward implemen-
tation of program transformation while keeping simple abstraction for describing
the transformation.

Behavioral reflection is to alter the behavior of operations in a program. Typ-
ical behavioral reflection is to define a subclass of Class or Method and override
methods for executing operations such as object creation, method calls, and field
accesses. For example, in Section 3.3, we defined a subclass of Method for altering
the behavior of method invocation to print a trace message:

public class TracedMethod extends Method {
public Object invoke(Object target, Object[] args) {
System.out.println("method call " + getName());
return super.invoke(target, args);

}
}

This is typical behavioral reflection since it alters the semantics of method invo-
cation through a metaobject instead of transforming a program to print a trace
message.

The main difference between structural reflection and behavioral reflection is
a programming model. The expressive power of the two kinds of reflection is,
in principle, equivalent to each other. For example, a program can be evolved
to print a trace message by either structural reflection or behavioral reflection.
If behavioral reflection is available, the tracing mechanism can be implemented
as we have already showed above. On the other hand, if structural reflection is
available, statements for printing a trace message can be embedded at appropri-
ate places in the method bodies included in the program. A method metaobject
would allow substituting the body of the method or instrumenting statements
included in that body. Suppose that a Method object provides an insertBefore
method, which inserts a given statement at the beginning of the method body.
Then the following statement transforms the move method in the Point class so
that it will print a trace message when it is called:

pointClass.getMethod("move")
.insertBefore("System.out.Println(\"method call\");");

Note that the variable pointClass refers to the Class object representing the Point
class.

This discussion is analogous to how to implement language extensions. If we
want to extend a programming language, we have two approaches for the imple-
mentation. The first one is to implement a source-to-source program translator
from the extended language to the original language. The other one is to extend
a compiler or interpreter of the original language so that it can deal with the

Program Transformation with Reflection and AOP 75

new features of the extended language. The structural reflection corresponds to
the former approach while the behavioral reflection corresponds to the latter
approach.

The programming model of structural reflection is easily derived from the
program structure of the target language. If the target language is Java, the
metaobjects are classes, methods, constructors, and fields. On the other hand,
the behavioral reflection has a variety of programming models. In one program-
ming model, the metaobjects are classes, methods, and so on. In another model,
each object is associated with a metaobject representing a virtual interpreter
that is responsible to the execution of the operations, such as method calls, on
that object. Developers can customize that metaobject to alter the behavior
of only the particular object instead of all the instances of a particular class.
There is also a programming model in which a garbage collector and a thread
scheduler are metaobjects. Developers can customize their behavior through the
metaobjects [39, 28]. Another model uses a metaobject representing a message
exchanged among objects [13] or communication channels [4].

3.5 Typical Applications

A typical application of reflective computing is to implementing a program trans-
lator. Structural reflection is obviously useful for that purpose. It allows develop-
ers to concentrate the procedure of program transformation at the source-code
level. They do not have to implement a program parser or to transform an ab-
stract syntax tree.

For example, structural reflection can be used to implement a program trans-
lator that automatically transforms a program written as a non-distributed pro-
gram so that it can run on multiple hosts as a distributed program. The essence
of such program transformation is to produce the class definitions for proxy ob-
jects and modify the program to substitute a reference to a proxy object for a
reference to a local object when the local reference is passed to a remote host.
To produce the class definitions for proxy objects, the class definitions for the
original objects that the proxy objects refer to must be investigated; the names
and the signatures of the methods declared in the class must be obtained. The
reifying capability of metaobjects helps this investigation. Structural reflection
allows developers to easily produce the class definitions for proxy objects by
constructing new class metaobjects. Substituting object references can be im-
plemented by modifying method bodies through method metaobjects.

Behavioral reflection provides a direct solution for program translators that
implement some language extensions such as distribution, persistence, and trans-
action. It is useful to transform a program so that those non-functional concerns
will be appended to classes in the program. For example, it can be used to imple-
ment the synchronized method of Java. Some languages like C++ do not provide
the language mechanism of the synchronized method but it can be implemented
by a customized method metaobject. If Java did not provide synchronized meth-
ods but supported behavioral reflection, the class for the customized method
metaobject would be as following:

76 S. Chiba

public class SynchronizedMethod extends Method {
public Object invoke(Object target, Object[] args) {
synchronized (target) {
return super.invoke(target, args);

}
}

}

The synchronized statement locks the target while the following block statement
is being executed.

If a language supporting behavioral reflection provides a metaobject represent-
ing a thread scheduler, the metaobject can be used to implement an application-
specific scheduler. In the area of scientific computing with parallel processing,
thread scheduling optimized for particular application software can often signif-
icantly improve the execution performance of that software [26]. Suppose that a
tree data structure must be recursively searched in parallel. For some applica-
tions, the depth-first search approach should be used while for other applications
the breadth-first search approach should be used. If the thread scheduler can be
customized through a metaobject, the application software can adopt the most
appropriate scheduling policy. In general, the maximum number of concurrent
threads should be decreased for the depth-first search whereas it should be in-
creased for the breadth-first search.

3.6 Implementation Techniques

Reflection was regarded as a mechanism that was useful but too inefficient to
use for practical purposes. The most significant problem was that a language
supporting reflection tended to imply a serious performance penalty even when
the reflection mechanism was not used at all. If a language fully provides the
reflection capability, any parts of the program structure and the behavior of any
operations must be changeable through metaobjects. A naive implementation of
the language processor for such a language is an interpreter and thus it cannot
run the program efficiently.

To avoid this performance problem, several implementation techniques have
been proposed so far. A simple technique is to restrict a kind of metaobjects
available. For example, if we know in advance that only a limited number of
classes are reified, the other classes that are not reified can be normally compiled
into efficient binary code. Otherwise, the language processor can first run a
program with the compiled binary code and then, when classes are reified, it can
stop using the compiled binary code and start executing those classes with an
interpreter [26].

If the reflection capability allows only intercession, efficient implementation is
relatively easy. The whole program can be normally compiled into efficient binary
except that hook code is inserted around the operators customized by metaob-
jects [9, 40, 18]. When the thread of control reaches one of those operators, the
hook code intercepts the execution and switches the control to the metaobject,

Program Transformation with Reflection and AOP 77

which executes extended behavior of the intercepted operator. Although the
execution of the operators customized through metaobjects imply performance
penalties, the execution of the rest of the operators does not involve an overhead
due to intercession.

Another technique is to partly recompile a program whenever the structure or
the behavior of the program is altered through a metaobject. For example, if a
class definition is changed, the runtime system of the language can recompile that
class definition on the fly so that the changes of the class will be reflected. Note
that this technique makes it difficult to perform global optimization. Suppose
that a method is inlined in other methods at compilation time. If the body of
that inlined method is changed through a metaobject at runtime, all the methods
where that method is being inlined must be also recompiled during runtime.

Curring and Memoizing. The CLOS MOP adopts the curring and mem-
oizing technique [20] for efficient implementation. This technique is similar to
the dynamic recompilation technique above. To illustrate the idea of the curring
and memoizing technique, first let us consider the following naive implementa-
tion of the newInstance method (written in Java for readability). Assume that
we implement an object as an array of Object:

public class Class {
public Object newInstance() {
int size = getSuperclass().computeFieldSize();
size += computeFieldSize();
return new Object[size];

}
:

}

Although newInstance in Java is a native method, that method is a regular
method in the CLOS MOP so that it can be customized by subclassing the Class
class.

Unfortunately, this implementation is too slow since it repeatedly computes
the object size whenever a new instance is created. To avoid this inefficiency,
the curring and memoizing technique uses a function closure. See the improved
version of newInstance below:

public class Class {
private Closure factory;
public Object newInstance() {
if (factory == null)
factory = getFactory();

return factory.newInstance();
}
public Closure getFactory() {
int s = getSuperclass().computeFieldSize();
final int size = s + computeFieldSize();
return new Closure() {
public Object newInstance() {

return new Object[size]; // size is constant

78 S. Chiba

}
};

}
:

}

The getFactory method is a sort of compiler since compilation is a process of
transforming a program to an efficient form by using statically available infor-
mation. Indeed, that method transfomrs a new expression and returns a func-
tion closure3 that efficiently makes an instance. Note that the computeFieldSize
method is called only once when the closure is created. The returned closure is
memoized in the factory field to avoid redundantly calling getFactory. From the
next time, the newInstance method creates an instance by calling this function
closure.

Now let us define a subclass of Class so that a trace message is always printed
out when a new object is created. We override the getFactory method:

public class TracedClass extends Class {
public Closure getFactory() {
final Closure c = super.getFactory();
final String name = getName();
return new Closure() {
public Object newInstance() {

System.out.println("instantiate " + name);
return c.newInstance();

}
};

}
}

Note that super.getFactory() and getName() are called only once when the closure
is created.

In the CLOS MOP, a subclass of Class does not directly specify how to create
an instance. Rather, it specifies how to construct an efficient function for creating
an instance. Hence the class metaobject of that subclass can be regarded as
a compiler. The runtime system of the CLOS MOP calls that metaobject to
obtain the “compiled code” and then continues to use it until another reflecting
operation is performed.

The CLOS MOP requires metaobject developers to describe how to construct
an efficient function for doing basic operations such as object creation. Hence
the programming style is not simple or straightforward although the runtime
overhead is low.

Partial Evaluation. A number of applications do not need full reflection capa-
bility. They need the reflecting operation only at the beginning of the program
execution. Once the reflecting operation is performed, they do not need to alter
program structure or behavior again during runtime. In fact, altering program
structure during runtime is not a simple job. For example, if a new field is added
3 In the CLOS MOP, getFactory really returns a closure.

Program Transformation with Reflection and AOP 79

to an existing class, we must also specify how the existing instances of that class
are dealt with. Is the new field also added to those existing instances? If so, what
is the initial value of that added field?

If a program does not need the full reflection capability and some reflecting
operations are statically determined, we can compile the program into efficient
code. A few researchers [25, 27] have proposed using the technique called partial
evaluation for compiling away metaobjects. Their idea is to apply partial eval-
uation [12, 16] to the class definitions for metaobjects. The static input for the
partial evaluation is the program running with the metaobjects.

From a pragmatic viewpoint, partial evaluation is a theoretical framework
for agressively performing constant propagation and code inlining. We below
illustrate the basic idea of partial evaluation from the pragmatic viewpoint. For
example, suppose we have the following simple class definition for metaobjects:

public class TracedClass extends Class {
public Object newInstance() {
System.out.println("instantiate " + getName());
return super.newInstance();

}
}

Then suppose that a program includes the following statement:

Point p = new Point();

This statement is first translated into the following statement calling a metaob-
ject as in the CLOS MOP:

Point p = (Point)pointClass.newInstance();

pointClass refers to the class metaobject representing the Point class. Then the
partial evaluator inlines the newInstance method in TracedClass:

System.out.println("instantiate " + pointClass.getName());
Point p = (Point)pointClass.super.newInstance();

Next, let us inline getName() and newInstance():

System.out.println("instantiate Point");
int size = pointClass.getSuperclass().computeFieldSize();
size += pointClass.computeFieldSize();
Point p = (Point)new Object[size];

Since the resulting values of getSuperclass() and computeFieldSize() are constant,
those method calls turn into constants. Let the value of size be 5. Thus the
resulting statement is as following:

System.out.println("instantiate Point");
Point p = (Point)new Object[5];

80 S. Chiba

This statement is the result of partial evaluation but it does not include any
calls to the metaobject.

Although partial evaluation is a powerful technique for efficiently implement-
ing the reflection mechanism, developing a partial evaluator is extremely difficult.
The articles [25, 27] reported that the authors succeeded in developing a partial
evaluator for their Lisp-based ABCL/R3 reflective language. Unfortunately, no
article has yet reported that a partial evaluator can be used to efficiently compile
reflective computing in C++ or Java as far as the author knows.

Compile-Time Reflection. If the reflection capability is necessary only at the
beginning of program execution and not necessary during runtime, we can use
another compilation approach, which is called compile-time reflection. It was
developed by the author’s group for reflective languages OpenC++ [5, 6] and
OpenJava [38]. The compile-time reflection allows reflective computing only at
compile time — therefore, a code block performing reflective computing must
be separated from the rest of the program, which performs normal base-level
computing. The meta program performing reflective computing is executed by a
compiler at an early stage of the compilation process as macro expansion is.

The meta program can directly describe program transformation. Suppose
that pointClass refers to the metaobject representing the Point class. If the meta
program includes the following statement:

pointClass.addField(new Field(intType, "z"));

this meta program is separately compiled in advance and then executed at the
compile time of the target (base-level) program. If executed, the meta program
appends a new int field named z to the Point class. After that, the resulting
target program is normally compiled into binary code.

An advantage of the compile-time reflection is that the overhead due to re-
flective computing is negligible or zero. To implement a program translator,
the compile-time reflection is an appropriate tool since it provides high-level
abstraction, such as class metaobjects and method metaobjects, with negligible
overheads. The developers do not have to directly manipulate an abstract syntax
tree for program transformation.

The meta program for the compile-time reflection can also include user-defined
classes for metaobjects. However, as the metaobject of the CLOS MOP returns
a function closure, the metaobject of the compile-time reflection returns trans-
formed source code. For example, see the following class:

public class TracedClass extends Class {
public String newInstance() {
return "(System.out.println(\"instantiate " + getName() + "\"),"

+ super.newInstance() + ")";
}

}

The compiler for the compile-time reflection first reads a target program and,
when it finds an expression for object creation, method call, or field access,

Program Transformation with Reflection and AOP 81

it queries the corresponding metaobject about how the expression should be
transformed. The compiler uses the static type of the expression for selecting
the metaobject. Then the compiler replaces the original code with the source
code returned from the metaobject. After finishing the replacement of all the
expressions, the compiler compiles the program into binary code.

For example, suppose that a target program includes the following statement:

Point p = new Point();

and the class metaobject for Point is an instance of TracedClass. When the com-
piler finds this object creation, it calls the newInstance method in TracedClass
and requests it to transform “new Point()”. Since the newInstance method in
Class returns ”new Point()” (i.e. no transformation), the newInstance method in
TracedClass returns the following code:

(System.out.println("instantiate Point"), new Point())

Note that we use for readability the comma (,) operator of C++. If an expression
“(expr1, expr2)” is evaluated, expr1 and expr2 are evaluated in this order and
the resulting value of exp2 becomes the resulting value of the whole expression.
The returned code above is substituted for the original expression “new Point()”.
After this substitution, the target program becomes:

Point p
= (System.out.println("instantiate Point"), new Point());

Finally, this program is normally compiled. The resulting binary code will not
include any metaobjects.

Load-Time Reflection. We have also developed a variant of the compile-time
reflection. It is load-time reflection and it was adopted for designing our Java
bytecode engineering toolkit named Javassist [7, 10].

The load-time reflection allows reflective computing only at load time whereas
the compile-time reflection allows at compile time. Both types of reflection do not
allow reflective computing during runtime. From the programming viewpoint,
there is no differences between the two types of reflection. However, from the
implementation viewpoint, there is a significant difference between them: the
target program of the compile-time reflection is source code but that of the
load-time reflection is compiled binary.

OpenC++, which is based on the compile-time reflection, reads source code
and constructs metaobjects. Changes to the metaobjects are reflected back to the
source code before compilation. On the other hand, Javassist reads a Java class
file (i.e. Java bytecode obtained after source code is compiled) and constructs
metaobjects. Changes to the metaobjects are reflected on the class files before
the JVM (Java Virtual Machine) loads them. This architecture is possible at
least in Java since Java class files contain rich symbol information.

Note that the users of Javassist does not have to learn the internal struc-
ture of Java class files or the instructions of Java bytecode. They can enjoy the

82 S. Chiba

source-level abstraction provided by metaobjects as they can in OpenC++. The
changes to the metaobjects are described with Java source code and, when they
are reflected on the class files, Javassist automatically translates them into the
changes described at bytecode level. For example, the following meta program
appends a new method toString to the Point class:4

Method m = new Method(
"public String toString() { return this.x + \",\" + this.y; }");

pointClass.addMethod(m);

pointClass refers to the class metaobject representing the Point class. Note that
the method body is given in the form of Java source code. This source code is
compiled by the internal compiler of Javassist and then embedded in a class file.
The users do not have to construct a sequence of Java bytecode for specifying
a method body. Providing source-level abstraction is an advantage of Javassist
against other naive bytecode engineering toolkits such as BCEL [11].

4 Aspect-Oriented Programming

Aspect-oriented programming (AOP) [21] is an emerging paradigm for modu-
larizing a crosscutting concern, which is strongly relevant to other concerns and
thus cannot be implemented as an independent component or module in a tra-
ditional language. The implementation of a crosscutting concern in a traditional
language, for example, an object-oriented language like Java, often consists of
not only a normal independent component but also code snippets spread over
the components implementing other concerns. Therefore, such an implementa-
tion of a crosscutting concern is difficult to append and remove to/from software
without editing the implementations of other concerns when the requirements of
the software are changed. The goal of aspect-oriented programming is to provide
language mechanisms to solve this problem.

From the viewpoint of program transformation, AOP languages such as As-
pectJ [22] provide several useful mechanisms for more simply achieving the goals
that we have been doing with typical program transformation tools or reflec-
tion mechanisms. In fact, one of the roots of AOP is the reflection technol-
ogy. Describing rules or algorithms for program transformation is never easy
but it is often error-prone. For example, one algorithm for program transfor-
mation might be not general enough to cover all possible programs and thus
it might not work if a particular program is given as the input. AOP lan-
guages like AspectJ provides mechanisms integrated into the language semantics
and thereby they let us avoid directly describing error-prone rules for program
transformation.

4.1 AspectJ

To illustrate the overview of AOP, we show a simple program written in AspectJ.
A famous example of AOP is logging, which is a typical crosscutting concern.
4 This is not a real program for Javassist.

Program Transformation with Reflection and AOP 83

Suppose that we want to print a logging message when the paint method is
called.

Example. The main body of the implementation of the logging concern can be
modularized into a single class, for example, in Java:

public class Logging {
private PrintStream output = System.out;
public static void setStream(PrintStream out) {
output = out;

}
public static void print(String m) {
output.println(m);

}
}

This component encapsulates which output device is used for printing a logging
message.

The rest of the work is to edit the paint method so that the print method in
Logging will be called:

public class Clock extends Panel {
public void paint(Graphics g) {
Logging.print("** call paint method"); // edit!
// draw a clock on the screen.

}
public static void main(String[] args) { .. }

}

Although this is a very typical Java program, the implementation of the log-
ging concern cuts across other components such as Clock. It is not an independent
component separated from other components. Some of the readers might think
that the implementation of the logging concern is separated into the Logging
class. However, that thought is wrong since the implementation of the logging
concern also include the expression for calling the print method. This caller-side
expression specifies when a logging message is printed out. The argument of
the call specifies the contents of the printed message. Although these issues are
part of the logging concern, that expression is not encapsulated in Logging but
embedded in the paint method in Clock.

Using an Aspect. An AspectJ, the logging concern can be implemented as a
single independent module called an aspect. See the following program:

aspect Logging {
private PrintStream output = System.out;
public void setStream(PrintStream out) {
output = out;

}
public void print(String m) {
output.println(m);

}

84 S. Chiba

// before advice
before(): call(void Clock.paint(Graphics)) {
print("** call paint method");

}
}

Note that Logging is now not a class but an aspect and it includes before advice:

before(): call(void Clock.paint(Graphics)) {
print("** call paint method");

}

This specifies that the print method is called just before the paint method in
Clock is called. An instance of the Logging aspect is a singleton and automatically
created. The AspectJ compiler automatically modifies the definition of the Clock
class to implement this behavior. Thus the developer can write the Clock class
without considering the logging concern:

public class Clock extends Panel {
public void paint(Graphics g) {
// draw a clock on the screen.

}
public static void main(String[] args) { .. }

}

The paint method does not include an expression for calling the print method
in Logging. Hence Logging and Clock are completely separated from each other.
They can be combined and disconnected on demand without editing the source
code of those components.

Joinpoints. The key concepts of AOP is joinpoints, pointcuts, and advice. In
this programming paradigm, program execution is modeled as a sequence of fine-
grained events, such as method calls, field accesses, object creation, and so on.
These events are called joinpoints. pointcuts are filters of joinpoints. They select
interesting joinpoints during program execution. Then, if a joinpoint selected by
some pointcut occurs, the advice associated to that pointcut is executed. In the
case of the example above,

call(void Clock.paint(Graphics))

is a pointcut. It specifies method calls to the paint method in Clock. call is one of
the primitive pointcut designators provided by AspectJ. There are various point-
cut designators for selecting different kinds of joinpoints. Pointcut designators
can select joinpoints that match a given pattern. The advice is the declaration
beginning with before and ending with a block {..}.

A crosscutting concern is implemented as a set of advice in an aspect. The
connection between the aspect and other classes is described by pointcuts. Join-
points can be regarded as execution points at which an aspect and a class are
connected to each other.

Program Transformation with Reflection and AOP 85

Intertype Declaration. An aspect of AspectJ may contain an intertype decla-
ration as well as regular methods and fields, pointcuts, and advice. The intertype
declaration declares a method or a field in another class. Developers can use in-
tertype declarations for appending methods and fields to existing classes. For
example, the following aspect appends the paintCount field to the Clock class:

aspect Counter {
int Clock.paintCount = 0;

}

An intertype declaration can be also used to modify inheritance hierarchy.
It can change the super class of an existing class and add an interface to an
existing class. For example, the following aspect adds SessionBean interface to
Registration class (remember the example in Section 2.2):

aspect EJBCompliant {
declare parents: Registration implements SessionBean;

}

The modification by declare parents is highly restricted. If a super class is
changed, the new super class must be a subclass of the old super class. Although
a new interface can be added to an existing class, removing an interface from an
existing class is not allowed.

4.2 Dependency Reduction

AOP is a technology for implementing a crosscutting concern as a separate
component. A component implementing such a concern in a traditional language
is tightly coupled with other components so that it cannot be treated as an
independent component. It cannot be disconnected from the other components
when it is not necessary any more during software life cycle, or it cannot be
connected to the existing software on demand. In other words, AOP languages
provides language mechanisms for loosing this dependency among components
so that the components can be treated as an independent one. Those components
independently described are connected to each other at compile time or runtime
to constitute complete software. This connecting process is called weaving.

Reducing inter-component dependency simplifies a framework protocol. De-
velopers can describe their components without considering that the components
are connected to other components provided by a framework. The connections
among components are separately described. This reduces the amount of pro-
tocol that developers have to consider when they implement a component since
the protocol is a rule for connecting components.

Dependency Injection. AOP is one of the latest approaches for loosing de-
pendency among components. It provides more powerful mechanisms than other
existing approaches such as dependency injection [15].

The dependency injection is a popular mechanism of recent component frame-
works for web applications. It is a simple helper mechanism for intensively using

86 S. Chiba

so-called factory method pattern to create a component. The use of dependency
injection improves the reusability of the components built on top of other lower-
level sub-components. Suppose that an component contains other components.
The idea of the dependency injection is that, when a factory object creates a
component, it also creates the sub components contained in that component and
automatically sets the fields of that component to those sub components. This
makes the source code of the component independent of the code for creating
the sub components. For example, a component implementing business logic may
contain a sub component for accessing a database:

class Registration {
DbAccessor da;

:
void setDbAccessor(DbAccessor obj) { da = obj; }
void register(String who) { ... da.commit(who); ... }
void cancel(String who) { ... da.commit(who); ... }

}

When the factory object creates an instance of Registration, it also creates an
appropriate sub component for that instance. Then it calls the setDbAccessor
method to set the da field to that sub component. Note that the definition of
Registration does not include the code for creating the sub component. The type
of the sub component is specified in a separate file, normally written in XML.

The dependency injection enables switching the sub component without edit-
ing the source code of the component for business logic. Sub components can
be switched by editing only a separate specification file in XML. This feature
allows the reuse of the components without the sub component. If the depen-
dency injection is not used, the source code of the component would include
the initialization code for creating the sub component for accessing a particular
type of database. It would heavily depend on that particular type of database
and thus the source code of the component must be edited to be reused with
another type of database. Otherwise, the component must be always reused with
the original sub component together. For example, the definition of Registration
would be changed into the following if the dependency injection is not used:

class Registration {
DbAccessor da;

:
Registration() { da = new MySQLAccessor(); }
void register(String who) { ... da.commit(who); ... }
void cancel(String who) { ... da.commit(who); ... }

}

The constructor must explicitly create a sub component. MySQLAccessor is a
class type implementing the DbAccessor interface. To change the type of the sub
component, the definition of Registration must be edited.

Sources of Dependency. Although the dependency injection addresses code
dependency with respect to the initialization of the links between a component

Program Transformation with Reflection and AOP 87

and its sub components, the code dependency is not limited to that. According to
our observation, the sources of the inter-component dependency are the following
three:

– Declaration of fields referring to sub-components,
– Creation of sub-components, and
– Method calls to sub-components.

The dependency injection addresses only the creation of sub-components. It
does not address the dependency due to a field declaration. For example, the
Registration class shown above includes a filed da of type DbAccessor. This field
declaration must be explicitly included even though the field will be unnecessary
if the Registration is reused without a DbAccess sub-component. Registration may
be always reused with a DbAccess sub-component but, if Registration contains a
Logger sub-component as well, then Registration will be sometime reused without
the Logger component.

Another source of the dependency is a method call. If a Registration compo-
nents calls a method on a DbAccess sub-component, the source code of Regis-
tration depends on the DbAccess. It must include an expression for the method
call. If a sub-component is modified and a new parameter is appended to the
called method, for example, for passing a hint on performance tuning, then the
method-call expression in Registration must be also modified. If Registration also
contains a Logger sub-component, developers might want to reuse it later with-
out Logger sub-component. In this case, the source code of Registration must be
modified; all occurrences of the method calls to Logger must be removed from
the source code so that Registration can be solely reused.

Aspect-Oriented Programming. Unlike the dependency injection and other
existing techniques, AOP addresses the three sources shown above. If we regard
an aspect as a sub component above, the dependency due to method calls can be
clearly separated from the source code of the component by the pointcut-advice
mechanism of AOP. Developers do not have to include a method-call expression
in the source code of the caller-side component. Moreover, developers do not
have to explicitly declare a field referring to a sub component or create the sub
component. Note that here a sub component is an aspect. AOP languages such
as AspectJ automatically deal with such declaration and creation. In AspectJ,
the field referring to an aspect instance is not visible but the value of that field
can be obtained by the aspectOf() operator.

However, the dependency reduction by AspectJ is limited since an aspect
in AspectJ is not equivalent to a regular class. An aspect instance cannot be
treated in the same way as a component constructed as an object. For example,
developers do not have full control of the creation of aspect instances. They must
choose one of the pre-defined options to specify how an aspect instance is created.
AspectJ provides issingleton (an aspect instance is a singleton), perthis (an aspect
instance is created per this object), pertarget (created per target object), and
so on. It does not enable some (but not all) components to share the same

88 S. Chiba

aspect instance. Furthermore, AspectJ does not provide a direct mechanism for
initializing the value of an existing field. Although an inter-type declaration of
AspectJ can declare a new field and define its initial value, it cannot define the
initial value of an existing field.

To overcome this limitation of AspectJ, several AOP systems such as Cae-
sar [29], JAsCo [37], The Aspect Markup Language [23], JBoss AOP [19], and
Classpects [31], have been developed. They divide the description of an aspect
into two parts: aspect implementation and aspect binding. This separation im-
proves the reusability of aspects. An aspect implementation defines a sub com-
ponent, which is connected by AOP to a target component, and an aspect bind-
ing defines at which joinpoints the sub component is connected to the target
components. Roughly to say, the aspect implementation corresponds to advice
of AspectJ and the aspect binding corresponds to pointcuts of AspectJ. Their
description of aspect implementations are quite indistinguishable from that of
regular components. For example, JBoss AOP lets developers use plain Java
for describing an aspect implementation while an aspect binding is in XML.
Classpects also let them use a regular class for describing an aspect implemen-
tation although an aspect binding is also defined in a class by extended syntax.
However, in these AOP systems, the creation of an aspect implementation, that
is, a sub component is implicitly executed by a runtime system. Developers do
not have full control of it.

Association aspects [32] gives developers better control of creation of an aspect
instance. Developers can use the new operator to explicitly create an aspect
instance and connects it to a set of components, that is, objects. However, an
association aspect must be connected to a fixed number of components, normally
two or three, since it was designed to model a relationship among components.

Caesar [29] is a dynamic AOP system and hence it allows developers to explic-
itly create an aspect instance and connect it to a target component. Developers
can activate an aspect binding only during a specified period and thereby an
aspect implementation explicitly created is connected to a target component
only during that period. However, the aspect implementation may be connected
to multiple target components that the aspect binding selects; the developers
cannot fully control those connections. Furthermore, the runtime systems of dy-
namic AOP imply not negligible performance overheads [30, 33] unless a custom
JVM is used[2].

GluonJ. GluonJ [8] is our prototype AOP system designed for separating the
three sources of inter-component dependency from the implementation of com-
ponents. The design goal of GluonJ is to develop an AOP system that provides
a flexible way to describe connections among components written in plain Java.
Unlike typical architecture description languages, GluonJ allows creation of new
components during runtime.

In GluonJ, an aspect is divided into an aspect binding and an aspect implemen-
tation. An aspect implementation, that is, a component is described in plain Java
while an aspect binding is described in XML. GluonJ gives developers full control
of creation of an aspect instance. Another unique feature is that GluonJ enables

Program Transformation with Reflection and AOP 89

an aspect binding to directly define how to initialize an existing field. Therefore,
it can be used as a substitute for the mechanism of dependency injection. GluonJ
is categorized into static AOP systems; it does not need a runtime weaver.

A basic idea of GluonJ is to open up how an aspect implementation is created
and connected to a target component. Although other AOP systems encapsulate
it in the implementation of the system, GluonJ lets developers directly describe
it in plain Java. Thereby, GluonJ gives greater flexibility to the developers. How
an aspect implementation is created and connected is described in an aspect
binding, which we also call glue code.

The Logging Concern in GluonJ. The aspect binding of GluonJ includes glue
code written in Java. It connects an instance of an aspect implementation to a
target component. The following XML code is an aspect binding of GluonJ for
Logging:

<glue>
<injection>
Logging Clock.aspect = new Logging();

</injection>
<advice>
<pointcut>
execution(void Clock.paint(Graphics))

</pointcut>
<before>
Logging.aspectOf(this).print();

</before>
</advice>

</glue>

The block surrounded by the injection tag specifies how an Logging object
is connected to a Clock object. It represents that a new instance of Logging is
created for each Clock object and it is assigned to an aspect field of Clock. The
aspect field is a special field, which is available without declaration. The value
of the aspect field can be obtained by aspectOf().

The pointcut block above selects as joinpoints method calls to the paint method
in Clock. When the thread of control reaches these joinpoints, the code sur-
rounded by the before is executed. Although this code block seems similar to
AspectJ’s before advice, it is not executed on an instance of Logging since it is
glue code. Rather, it is executed on an instance of Clock as part of the paint
method. Thus this represents the Clock object. The code block obtains a Logging
object connected to the Clock object and then calls the print method on the
Logging object. Logging.aspectOf(this) represents an Logging object assigned to
the aspect field of this object. The definition of the Logging is a regular class
definition as following:

public class Logging {
private PrintStream output = System.out;
public void setStream(PrintStream out) {
output = out;

}

90 S. Chiba

public void print(String m) {
output.println(m);

}
}

Note that the code blocks surrounded by injection and before are written in
plain Java. This fact provides the full control of creation of aspect implementa-
tions. The injection block may connects any instance of Logging to a Clock object;
it does not have to create a new instance of Logging for each Clock object. It can
connect an existing Logging object to a Clock object.

The injection block can assign a Logging object to an existing field of a Clock
object. For example,

<injection>
Logging Clock.logger = new Logging();

</injection>

A Logging object is assigned to a logger field of Clock. If there is no such a
field declared in Clock, the logger field is automatically declared as an intertype
declaration of AspectJ declares it.

The before block does not have to call a method on the object returned by
aspectOf(). It may call a method on the object pointed to by another field of
Clock.

GluonJ vs. AspectJ. Some readers might think that an aspect binding in
GluonJ could be easily translated into an equivalent aspect described in AspectJ.
For example, the aspect binding for the Logging concern could be translated into
the following aspect in AspectJ:

aspect LoggingGlue {
private Logging Clock.aspect = new Logging();
before(Clock c): execution(void Clock.paint(Graphics)) && this(c) {

c.aspect.print();
}

}

The second line is an intertype declaration, which declares an aspect field in the
Clock class. The initial value of the aspect field is a newly created instance of
Logging. We do not have to change the source code of the Logging class. The
third line is a before advice, which is executed before a call to paint in Clock. It
calls the print method on the Logging object that the aspect field of c refers to.
The variable c is bound to the Clock object that is going to execute the paint
method.

This AspectJ program also implements how an Logging object is created and
connected to a Clock object. Although the two programs are similar among Glu-
onJ and AspectJ, there are a few differences. First, in AspectJ, an instance of
the LoggingGlue aspect is created at runtime and it is placed between a Logging
object and a Clock object. This aspect is being used as an entity implementing
not a logging concern but a forwarder of method calls to a Logging object. On
the other hand, in GluonJ, any intermediate object for method forwarding does

Program Transformation with Reflection and AOP 91

not exist. The Java code surrounded by before is executed by a Clock object and
it directly calls the print method on a Logging object. Obviously, the semantics
of the AspectJ program is more complex since an aspect is used for implement-
ing an implementation-level meta concern — a method-call forwarder — and a
logging crosscutting concern is implemented by another class. This does not fit
the programming model of AspectJ, in which an aspect should be used for im-
plementing a crosscutting concern. Furthermore, from a performance viewpoint,
method forwarding by the LoggingGlue aspect will imply a performance penalty.

Another difference is between an injection block of GluonJ and an intertype
declaration of AspectJ. Both can declare a new field in an existing class but
only an injection block can assign a value to an existing field. Suppose that the
Clock class already includes a logger field and thus we want to use it for storing
a reference to a Logging object. In GluonJ, the injection tag will be changed into
the following:

<injection>
Logging Clock.logger = new Logging();

</injection>

No big change is required. On the other hand, the intertype declaration of the
AspectJ program will be replaced with the following advice:

before(Clock c): execution(Clock.new(..)) & this(c) {
c.logger = new Logging();

}

This advice is executed when a constructor of Clock is executed. A variable c is
bound to the Clock object being created. Thus, a newly created Logging object is
assigned to the logger field of c. Again, this advice represents an implementation-
level meta concern. It never directly represents what we want to do, which is that
a Logging object is connected to a Clock object through a logger field.

Module Mechanism or Binding Mechanism? Although AOP is known as
a new modularization mechanism, it is rather regarded as a new mechanism for
connecting components, modules, or objects. We have designed GluonJ so that it
will provide essential operators for representing connections among components.

Providing a right set of language mechanisms is important. An advantage of
AOP against reflective computing is that AOP provides mechanisms that are
less powerful but relatively safe and easy to use. A disadvantage of reflective
computing is that a program for reflective computing is often complicated and
difficult to maintain. The reflective computing is powerful enough to write a
program that lets you really shoot yourself in the foot, that is, break the program
itself. For example, it allows developers to wrongly remove a method that is
called by other methods. It allows them to change the super class of a class to
an irrelevant class.

If readers consider that an aspect of AspectJ corresponds to an aspect binding
(i.e. glue code) of GluonJ, GluonJ can be regarded as a restricted version of
AspectJ. They can consider that GluonJ is a language that enforces AspectJ

92 S. Chiba

developers to follow a particular type of programming style, in which an aspect
is used only for gluing objects. It is not used for implementing a crosscutting
concern; a plain Java class must be used for that. For example, the Logging aspect
shown in 4.1 directly implements a logging crosscutting concern. It cannot be
translated into a corresponding aspect binding in GluonJ. It must be translated
into a set of aspect binding written in XML and aspect implementation in plain
Java since an aspect binding does not define an entity that can be instantiated.

5 Summary

This tutorial first discussed that program translators will be able to simplify a
framework protocol, which is often complicated in compensation for its func-
tionality and reusability. Developing a program translator only for a particular
framework is too expensive, but the reflection technology provides a power-
ful platform for such a program translator. If an appropriate implementation
technique is used, the inefficiency of reflective computing can be reduced. This
tutorial also mentions aspect-oriented programming (AOP). It can be also used
for implementing a program translator and it provides a simpler programming
model than the reflection technology. Although the reflection and AOP tech-
nologies significantly improved our ability for simplifying a framework protocol,
the current states of those technologies are never perfect. For example, we need
further study for dealing with the example in Section 2.1.

References

1. Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G., Moon,
D.A.: Common lisp object system specification. Sigplan Notices (1988) (X3J13
Document 88-002R).

2. Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual machine support
for dynamic join points. In: Proc. of Int’l Conf. on Aspect-Oriented Software
Development (AOSD 2004). (2004) 83–92

3. Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-
oriented programming languages. In: Proc. of ACM Conf. on Object-Oriented
Programming Systems, Languages, and Applications, ACM (2004) 331–334

4. Cazzola, W.: mcharm: Reflective middleware with a global view of communications.
IEEE Distributed System On-Line 3 (2002)

5. Chiba, S.: A metaobject protocol for C++. In: Proc. of ACM Conf. on Object-
Oriented Programming Systems, Languages, and Applications. Number 10 in SIG-
PLAN Notices vol. 30, ACM (1995) 285–299

6. Chiba, S.: Macro processing in object-oriented languages. In: Proc. of Technology of
Object-Oriented Languages and Systems (TOOLS Pacific ’98), IEEE Press (1998)
113–126

7. Chiba, S.: Load-time structural reflection in Java. In: ECOOP 2000. LNCS 1850,
Springer-Verlag (2000) 313–336

8. Chiba, S., Ishikawa, R.: Aspect-oriented programming beyond dependency injec-
tion. In: ECOOP 2005. LNCS 3586, Springer-Verlag (2005) pp.121–143

Program Transformation with Reflection and AOP 93

9. Chiba, S., Masuda, T.: Designing an extensible distributed language with a meta-
level architecture. In: Proc. of the 7th European Conference on Object-Oriented
Programming. LNCS 707, Springer-Verlag (1993) 482–501

10. Chiba, S., Nishizawa, M.: An easy-to-use toolkit for efficient Java bytecode trans-
lators. In: Proc. of Generative Programming and Component Engineering (GPCE
’03). LNCS 2830, Springer-Verlag (2003) 364–376

11. Dahm, M.: Byte code engineering with the javaclass api. Techincal Report B-17-98,
Institut für Informatik, Freie Universität Berlin (1999)

12. Ershov, A.: On the essence of compilation. In Neuhold, E., ed.: Formal Description
of Programming Concepts, North-Holland (1978) 391–420

13. Ferber, J.: Computational reflection in class based object oriented languages. In:
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and
Applications. (1989) 317–326

14. Foote, B., Johnson, R.E.: Reflective facilities in Smalltalk-80. In: Proc. of ACM
Conf. on Object-Oriented Programming Systems, Languages, and Applications.
(1989) 327–335

15. Fowler, M.: Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html (2004)

16. Futamura, Y.: Partial computation of programs. In: Proc. of RIMS Symposia on
Software Science and Engineering. Number 147 in LNCS (1982) 1–35

17. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation.
Addison-Wesley (1983)

18. Golm, M., Kleinöder, J.: Jumping to the meta level, behavioral reflection can be
fast and flexible. In: Proc. of Reflection ’99. LNCS 1616, Springer (1999) 22–39

19. JBoss Inc.: JBoss AOP 1.0.0 final. http://www.jboss.org/ (2004)
20. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.

The MIT Press (1991)
21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,

Irwin, J.: Aspect-oriented programming. In: ECOOP’97 – Object-Oriented Pro-
gramming. LNCS 1241, Springer (1997) 220–242

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: ECOOP 2001 – Object-Oriented Programming. LNCS
2072, Springer (2001) 327–353

23. Lopes, C.V., Ngo, T.C.: The aspect markup language and its support of aspect
plugins. Isr technical report # uci-isr-04-8, University of California, Irvine (2004)

24. Maes, P.: Concepts and experiments in computational reflection. In: Proc. of ACM
Conf. on Object-Oriented Programming Systems, Languages, and Applications.
(1987) 147–155

25. Masuhara, H., Matsuoka, S., Asai, K., Yonezawa, A.: Compiling away the meta-
level in object-oriented concurrent reflective languages using partial evaluation. In:
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and
Applications. (1995) 300–315

26. Masuhara, H., Matsuoka, S., Watanabe, T., Yonezawa, A.: Object-oriented con-
current reflective languages can be implemented efficiently. In: Proc. of ACM Conf.
on Object-Oriented Programming Systems, Languages, and Applications. (1992)
127–144

27. Masuhara, H., Yonezawa, A.: Design and partial evaluation of meta-objects for a
concurrent reflective languages. In: ECOOP’98 - Object Oriented Programming.
LNCS 1445, Springer (1998) 418–439

94 S. Chiba

28. McAffer, J.: Meta-level programming with coda. In: Proc. of the 9th European
Conference on Object-Oriented Programming. LNCS 952, Springer-Verlag (1995)
190–214

29. Mezini, M., Ostermann, K.: Conquering aspects with caesar. In: Proc. of Int’l
Conf. on Aspect-Oriented Software Development (AOSD’03), ACM Press (2003)
90–99

30. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented pro-
gramming. In: Proc. of Int’l Conf. on Aspect-Oriented Software Development
(AOSD’02), ACM Press (2002) 141–147

31. Rajan, H., Sullivan, K.J.: Classpects: Unifying aspect- and object-oriented lan-
guage design. In: Proc. of the 27th International Conference on Software Engi-
neering (ICSE’05), ACM Press (2005) 59–68

32. Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., Kimoya, S.: Association
aspects. In: Aspect-Oriented Software Development. (2004) 16–25

33. Sato, Y., Chiba, S., Tatsubori, M.: A selective, just-in-time aspect weaver. In: Proc.
of Generative Programming and Component Engineering (GPCE ’03). LNCS 2830,
Springer-Verlag (2003) 189–208

34. Smith, B.C.: Reflection and semantics in Lisp. In: Proc. of ACM Symp. on Prin-
ciples of Programming Languages. (1984) 23–35

35. Smith, B.: Reflection and semantics in a procedural languages. Technical Report
MIT-TR-272, M.I.T. Laboratory for Computer Science (1982)

36. Sun Microsystems: Java 2 Platform, Enterprise Edition (J2EE).
(http://java.sun.com/j2ee/)

37. Suvée, D., Vanderperren, W., Jonckers, V.: Jasco: An aspect-oriented approach
tailored for component based software development. In: Proc. of Int’l Conf. on
Aspect-Oriented Software Development (AOSD’03), ACM Press (2003) 21–29

38. Tatsubori, M., Chiba, S., Killijian, M.O., Itano, K.: Openjava: A class-based macro
system for java. In Cazzola, W., Stroud, R.J., Tisato, F., eds.: Reflection and
Software Engineering. LNCS 1826, Springer Verlag (2000) 119–135

39. Watanabe, T., Yonezawa, A.: Reflection in an object-oriented concurrent language.
In: Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and
Applications. (1988) 306–315

40. Welch, I., Stroud, R.: From dalang to kava — the evolution of a reflective java
extension. In: Proc. of Reflection ’99. LNCS 1616, Springer (1999) 2–21

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 95 – 143, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Transformational Approach
to Database Engineering

Jean-Luc Hainaut

University of Namur, Institut d'Informatique Rue Grandgagnage,
21 B-5000 Namur, Belgium
jlh@info.fundp.ac.be

http://www.info.fundp.ac.be/libd

Abstract. In the database engineering realm, the merits of transformational ap-
proaches, that can produce in a systematic way correct, compilable and efficient
database structures from abstract models, has long be recognized. Transforma-
tions that are proved to preserve the correctness of the source specifications have
been proposed in virtually all the activities related to data structure engineering:
schema normalization, logical design, schema integration, view derivation,
schema equivalence, data conversion, reverse engineering, schema optimization,
wrapper generation and others. This paper addresses both fundamental and practi-
cal aspects of database transformation techniques. The concept of transformation
is developed, together with its properties of semantics-preservation (or reversibil-
ity). Major database engineering activities are redefined in terms of transformation
techniques, and the impact on CASE technology is discussed. These principles are
applied to database logical design and database reverse engineering. They are
illustrated by the use of DB-MAIN, a programmable CASE environment that
provides a large transformational toolkit.

1 Introduction

Data structure manipulation has long proved to be a fertile domain for transforma-
tional engineering process modelling. Several contributions have made this approach
a fruitful baseline to solve the complex mapping problems that are at the core of many
database engineering processes.

We can mention the normalization theory, which laid the basis for data- and con-
straint-preserving schema transformations [13], but also the now standard 3-schema
data modeling architecture [48] which clearly complied, more than 25 years ago, to
what the SE comzmunity currently calls Model-Driven Engineering (MDE). Gener-
ally built on these principles, most database design methodologies rely on four ex-
pressions of the database structure, namely the conceptual schema, the logical
schema, the physical schema and the DDL1 code (Fig. 17). According to these ap-
proaches, a schema at one level derives from a more abstract schema at the upper

1 Data Description Language. That part of the DBMS language dedicated to the creation of data

structures.

96 J.-L. Hainaut

level through some kind of translation rules that preserve its information contents,
which clearly are schema transformations. For instance, a logical relational schema
can be produced from the conceptual schema by applying to non SQL-compliant
conceptual structures rewriting rules that produce relational constructs such as tables,
columns and keys. If the rules are carefully selected, the relational schema has the
same information contents as its conceptual origin.

An increasing number of bodies (e.g., the OMG) and of authors recognize the
merits of transformational approaches, that can produce in a systematic way correct,
compilable and efficient database structures from abstract models.

Transformations that are proved to preserve the correctness of the source specifica-
tions have been proposed in virtually all the activities related to schema engineering:
schema normalization [39], logical design [4, 19, 41], schema integration [4, 34],
view derivation [35, 33], schema equivalence [11, 28, 29, 32], data conversion [36,
12, 46], reverse engineering [6, 8, 18, 19], database interoperability [34, 45], schema
optimization [19, 25], wrapper generation [45] and others.

Warning
In the database community, a general formalism in which database specifications
can be built is called a model. The specification of a definite database structure
expressed in such a model is called a schema. Example: the conceptuel schema of
the Customer database is expressed in the Entity-relationship model, while its logi-
cal schema, that is made up of table, column and key definitions, complies with the
relational model.

A First Illustration

Before discussing in deeper detail the concept of transformation and its properties, let
us have a look at a first practical application of the concept. The schemas of Fig. 1
show a popular example, namely the production of a relational schema (top right),
from a small conceptual schema (top left) that describes a set of books for which a
collection of copies are available. The graphical conventions will be described later,
but the essence of the schemas can be grasped without further explanation.

The main stream of the process is covered by the two top schemas. The translation
rules that have been applied can be identified easily:

1. each entity type is represented by a table,

2. each single-valued attribute is represented by a column,

3. each all-attribute identifier is represented by a primary or alternate key,

4. each one-to-many relationship type is represented by a foreign key,

5. each multivalued attribute is represented by a table, comprising the source at-
tribute that is declared a primary key, and by an additional table made up of a
foreign key to the table that represents the entity type of the attribute and an-
other foreign key to the new attribute table; both foreign keys form the primary
key of their table.

Of course, other, more or less sophisticated, sets of rules exist, but this one is
adequate for demonstration purpose.

 The Transformational Approach to Database Engineering 97

We can read this derivation process from another, transformational, point of view.
We do not produce another schema, but we progressively modify the source concep-
tual schema, until it complies with the structural patterns allowed by the relational
model.

This interpretation, which will prove much more powerful and flexible than the
translation rules approach, is illustrated in the alternate circuit (top → down → right
→ up) of Fig. 1.

1-1

0-N

of

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
Author[0-5]
DatePublished

id: ISBN

No more than 5 WRITE rows
per BOOK row.

WRITE
AuthorName
ISBN
id: ISBN

AuthorName
ref: ISBN
ref: AuthorName

COPY

ISBN
CopyNbr
DatePurchased
id: ISBN

CopyNbr
ref: ISBN

BOOK
ISBN
Title
DatePublished

id: ISBN

AUTHOR
AuthorName
id: AuthorName

0-N

1-1

of

1-N0-5 write

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished

id: ISBN

AUTHOR
AuthorName

id: AuthorName

1-1

0-N

of 1-1

1-N

aw

1-1

0-5

bw

WRITE

id: bw.BOOK
aw.AUTHORCOPY

CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished

id: ISBN

AUTHOR
AuthorName
id: AuthorName

Fig. 1. Two ways to describe the derivation of a relational schema from a conceptual schema

The first modified schema (bottom left) derives from the source conceptual schema
(top left) as follows: the multivalued attribute Author has been replaced with the
entity type AUTHOR comprising the identifying attribute AuthorName, and the many-
to-many relationship type write.

98 J.-L. Hainaut

Then (bottom right), the new many-to-many relationship type write is replaced
with entity type WRITE together with two one-to-many relationship types bw and aw.
The schema does not include multivalued attributes or complex relationship types
anymore.

Finally, each one-to-many relationship type is replaced with a foreign key. Hence
the final version, at the top right side.

The Structure of This Paper

This short illustration raises several questions and problems, to some of which this
paper will try to answer, at least partially. The paper is organized in two parts, that
allow two levels of reading.

The first part, that includes Sections 2 to 8, develops practical aspects of the
transformational paradigm. Section 2 positions the role of transformation in the data-
base realm. In Section 3, we show that dealing with multiple databases leads us to
introduce a generic pivot model, the GER, that is intended to represent a large variety
of operational models. Its graphical representation is sketched and a formal semantics
is suggested. In this section, we also show how specific operational models can be
defined in the GER. The concept of schema transformation is precisely defined in
Section 4, in which the property of semantics-preservation is defined and analyzed. In
Section 5, we describe some useful elementary and complex GER transformations,
that are then used in Section 6 to revisit the Database Design process, showing that it
is intrinsically a (complex) schema transformation. Similarly, Section 7 studies the
Reverse Engineering process as an application of the transformational paradigm.
Section 8 discusses the role of transformations in CASE tools, and illustrates this
point with the toolkit and the assistants of DB-MAIN.

The second part, comprising Sections 9 to 12, develops formal aspects of trans-
formations that were only sketched and suggested in Part 1. Section 9 describes the
ERM, an extended N1NF2 relational model the semantics of which is borrowed from
the relational theory. Section 10 maps the GER onto the ERM so that the former can
be given a precise formal semantics. Section 11 described a small set of ERM trans-
formations that can be proved to be semantics-preserving. Finally, Section 12 exploits
the GER-ERM mapping to prove the semantics-preservation property of selected
practical GER transformations.

Section 13 concludes the paper.

Part 1 Transformations for Database Engineering

2 Transformational Engineering

Producing efficient software by applying systematic transformations to abstract speci-
fications has been one of the most mythical goals of software engineering since the

2 Non 1st Normal Form. Qualifies a relational structure that uses non simple domains. Elements

of a non simple domain can be tuples and/or sets. In particular, a relation or the powerset of a
relation can be a valid domain. A N1NF relational model is a relational model in which non
simple domains are allowed.

 The Transformational Approach to Database Engineering 99

late seventies. For instance, [3] and [14] consider that the process of developing a
program [can be] formalized as a set of correctness-preserving transformations [...]
aimed to compilable and efficient program production. In this context, according to
[37], a transformation is a relation between two program schemes P and P' (a pro-
gram scheme is the [parameterized] representation of a class of related programs; a
program of this class is obtained by instantiating the scheme parameters). It is said to
be correct if a certain semantic relation holds between P and P'. The revival of this
dream has now got the name of Model-Driven Architecture [38], or, more generally,
Model-Driven Engineering (MDA/MDE).

It is not surprising that this view has been adopted and developed by the database
community since the seventies. Indeed, the data domain has relied on strong
theories that can cope with most of the essential aspects of database engineering,
from clean data structuring (including normalization) to operational data structures
generation.

In particular, producing a target schema from a source schema can be modeled
either by a set of translation rules, or by a chain of restructuring operators or
transformations. The latter has proved particularly attractive, notably in complex,
incremental, processes.

The question of how many operators are needed to cover the current needs in data-
base engineering is still open, though it has been posed for long: in the 80's, authors
suggested that four [15] [29] to six [11] were enough, but experience has shown that
there is no clear answer, except that surely more transformations are needed, as we
will show in the following.

One of the peculiarities of transformational approaches in the database realm is that
they must, in all generality, cope with three aspects of the application system, namely
the data structures, the data, and the programs. Let us consider a scenario in which a
database must be migrated from a technology to another one. Clearly, this database
must be transformed, whatever the meaning of this term, into another database. This
means that three components of the application must be modified.

1. The database schema, that must comply with the data model of the target tech-
nology, and, possibly, include additional requirements that have emerged since
the last schema modification.

2. The data themselves, that must be restructured according to the new schema,
possibly through some kind of ETL process.

3. The application programs, that must interface with the new schema and comply
with the new API. This generally involves rewriting some sections of the source
code.

Each of these modifications follows its own rules, but we should not be surprised
by the idea that the first one should strongly influence the others. This view currently
is emerging under the name co-transformation [30]. Indeed, it has been proved that it
is possible to automatically derive data transformations (ETL) directives, as a SQL
script for instance, from schema transformations [27]. Program transformation is
much more complex. Automating this conversion has been studied in [26] and [9],
and has been proved to be feasible.

100 J.-L. Hainaut

One of the arguments of this paper is that one can study all transformations, includ-
ing inter-model transformations, in the framework of a single model3. This raises the
question of the nature of this generic model. Two approaches have been proposed,
that distinguish themselves by the granularity of the model [24].

One approach, that can be called minimalistic, or bottom-up, relies on a very sim-
ple and abstract formalism, from which one can define more elaborated and richer
models. Such a model generally represents the schema constructs specific to a definite
model by abstract nodes and edges, together with assembly constraints. AutoMED
[7] is a typical representative of this approach.

Another approach, symmetrically called maximalistic or top-down, is based on a
large spectrum model, that includes, though in an abstract form, the main constructs
of the set of operational models that are used in the engineering processes. The GER
model follows this principle. It has been described in [21] and [24], and will be the
basis of this paper.

3 Modeling Data Structures

3.1 Dealing with Multiple Models

Some database engineering processes transform schemas from one model to itself,
involvin one model only. Such is the case of relational normalisation, and of XML
manipulation. These processes make use of intra-model transformations. Being dedi-
cated to this model, their form generally is quite specific (e.g., respectively relational
algebra and XSLT) and cannot be reused for other models.

Other processes, on the contrary, produce a result that is expressed into a model
that is different from that the source schema. The most obvious example is the so-
called database logical design, the goal of which is to transform an abstract
conceptual schema into an operational (say, relational) logical schema as will be
discussed in Section 6.2. In such cases one makes use of inter-model
transformations. Many comprehensive processes, such as database design, reverse
engineering and integration involve several abstraction levels and several
technologies (and therefore models).

To master this complexity, several approaches rely on some kind of pivot model.
The idea is quite simple, and has been adopted as an elegant way to solve the combi-
natorial explosion in situations in which mappings must be developed from any of M
formalisms to any of N formalisms. Theoretically, one would need N x M distinct
mappings. Thanks to the introduction of a intermediate or pivot formalism P, one
needs to define M + N formalisms only. Language translation and plateform-
independent components are two of the most common examples.

In the database engineering realm, dealing with a dozen models is not uncommon
in large organizations. Developing, migrating, integrating, reverse engineering
databases or publishing corporate data on the web all are processes that require inter-
model schema transformation and, accordingly, data conversion. Considering
N operational models, and admitting that the mappings among any pair of models
are potentially useful in some processes, we need to define N2 mappings, while

3 As illustrated in Fig. 1.

 The Transformational Approach to Database Engineering 101

the introduction of a pivot model allows us to reduce the number of mappings to
2 x N + 1. Fig. 2 identifies the mappings that will, sooner or later, be useful in an
organization in which the data are stored in CODASYL and relational databases, that
describes its information needs through Entity-relationship schemas, and that
produces XML documents. Sixteen inter-model mappings are necessary, while the
pivot model reduces the number of mapping to nine only. Moreover, all the mappings
but one serve the mere function of formalism conversion (Σm>m', with m ≠ m'), and
therefore are fairly simple, while the power needed to express complex data structure
transformation is the responsibility of one mapping only, namely Σp>p. Introducing
any new operational model M implies the development of two additional mappings
Σm>p and Σp>m.

An interesting consequence of approaches based on a pivot model is that inter-
model transformations reduce to intra-model ones.

Pivot Model

Σp>p

Relat. Model

CODASYL Model XML Model

Σrel>p

Σp>rel

Σp>cod

Σcod>p

Σer>p

Σp>er

Σp>xml

Σxml>p

ER Model

Fig. 2. Introducing a pivot model among N models reduces the number of inter/intra-model
mappings

The example of relational logical design, that is, producing a relational schema
from a conceptual schema, is illustrated in Fig. 3, which is just a subset of Fig. 2. It
reads as follows:

1. the source conceptual schema is transformed into the pivot model (Σer>p),

2. the resulting schema is transformed through a set of rules (Σp>p) such as those
that are largely described in the literature (see [4] for example4);

3. finally, the transformed schema obtained is expressed into the target relational
model (Σp>rel).

The next section describes in an informal way the main constructs of a pivot model
on which we will base our discussion, namely the GER model.

Remark. The interpretation of Fig. 2, 3 and some of those that follow, needs to be
precised a bit further. All schemas that can be expressed in model M are represented
by the M-labelled ellipse. The mapping Σm>m' states that any schema expressed in the
source model M is transformed through Σm>m' into a schema that complies with the
target model M'.

4 Not the most recent reference actually, but still one of the best.

102 J.-L. Hainaut

Pivot Model

Σp>p

Relat. ModelΣp>relΣer>pER Model

Fig. 3. Modeling relational logical design with a pivot model

Remark. The interpretation of Fig. 2, 3 and some of those that follow, needs to be
precised a bit further. All schemas that can be expressed in model M are represented
by the M-labelled ellipse. The mapping Σm>m' states that any schema expressed in the
source model M is transformed through Σm>m' into a schema that complies with the
target model M'.

3.2 The Generic Entity-Relationship Model (GER)

The GER model, GER for short, is an extended Entity-relationship model that inclu-
des, among others, the concepts of schema, entity type, domain, attribute, relationship
type, keys, as well as various constraints. In this model, a schema is a description of
data structures. It is made up of specification constructs which can be, for conve-
nience, classified into the usual three abstraction levels, namely conceptual, logical
and physical. We will enumerate some of the main constructs that can appear at each
level (Fig. 4).

• A conceptual schema comprises entity types (with/without attributes;
with/without identifiers), super/subtype hierarchies (single/multiple; total and
disjoint properties), relationship types (binary/N-ary; cyclic/acyclic; with/without
attributes; with/without identifiers), roles of relationship type (with min-max
cardinalities5; with/without explicit name; single/multi-entity-type), attributes (of
entity or relationship types; multi/single-valued; atomic/compound; with
cardinality6), identifiers (of entity type, relationship type, multivalued attribute;
comprising attributes and/or roles), constraints (inclusion, exclusion, coexistence,
at-least-one, etc.)

• A logical schema comprises record types, fields, arrays, single-/multi-valued
foreign keys, redundant constructs, etc.

• A physical schema comprises files, record types, fields, access keys (a generic
term for index, calc key, etc), physical data types, bag/list/array multivalued
attributes, and other implementation details.

3.3 Formal Semantics of the GER

In this paper, we develop transformational operators and discuss their properties.
Many approaches rely on some intuitive rewriting rules expressed graphically.
Though this is quite appropriate to allow readers to grasp the idea of the operators, a

5 The role cardinality constraint, denoted by i-j, specifies the range of the number of relation-

ships in which an entity can appear in a definite role. Value N of j denotes infinity.
6 Same as role cardinality applied to the number of attribute values per parent instance.

 The Transformational Approach to Database Engineering 103

1-1

0-N

of

T

PERSON
Name
Address

EMPLOYEE

Employe Nbr
Date Hired

id: Employe Nbr

ACCOUNT
Account NBR
Amount
id: of.CUSTOMER

Account NBR

CUSTOMER
Customer ID

id: Customer ID

ORDER
ORD-ID
DATE_RECEIVED
ORIGIN
DETAIL[1-5] array

REFERENCE
QTY-ORD

id: ORD-ID
ref: ORIGIN
ref: DETAIL[*].REFERENCE

PRODUCT
PRO_CODE
CATEGORY
DESCRIPTION
UNIT_PRICE
id: PRO_CODE

acc
acc: CATEGORY

PRODUCT.DAT

PRODUCT

Fig. 4. A typical hybrid schema made up of conceptual constructs (e.g., entity types PERSON,
CUSTOMER, EMPLOYEE and ACCOUNT, relationship type of, identifiers Customer ID of
CUSTOMER), logical constructs (e.g., record type ORDER, with various kinds of fields inclu-
ding an array, foreign keys ORIGIN and DETAIL.REFERENCE) and physical objects (e.g.,
table PRODUCT with primary key PRO_CODE and indexes PRO_CODE and CATEGORY,
table space PRODUCT.DAT). Note that the identifier of ACCOUNT, stating that the accounts
of a customer have distinct account numbers (Account NBR), makes it a dependent or weak
entity type.

more formal treatment is necessary. In particular, we must base the definition and
the evaluation of the properties of each operator on a rigorous basis, that is, a
formal semantics of the GER. This is important for at least two reasons. First,
formal semantics allows us to reason about transformations, and in particular to
state its main properties such as the preservation of the information capacity of the
source schemas. Secondly, implementing a set of transformations, for instance in a
CASE tool, must rely on a completely defined semantics of both the model and the
operators.

In Part 2, Sections 9 and 10, we will give the GER a precise semantics by stating
mapping rules between the constructs of the GER and constructs of a variant of the
N1NF relational formalism, called Extended Relational Model (ERM). Each GER
construct will be given an ERM interpretation, and, conversely, each construct of the
ERM will be given a GER interpretation. Basically, these mappings are the inter-
model transformations Σger>erm and Σerm>ger depicted in Fig. 5. The ERM is
described in Section 9 while mapping Σger>erm and its inverse are presented in
Section 10. The reader will find a complete formalization of the GER in [16].

[44] follows another approach. The author associates with HERM, a variant of the
ER model, a specific notation with a precise ad hoc semantics, that includes an
algebra and a calculus.

104 J.-L. Hainaut

Extended Rel.
Model

Σerm>ger

Σger>erm

GER Model

Fig. 5. Expressing the semantics of the GER model by a bidirectional mapping with the
Extended Relational Model (ERM)

Note. The interpretation of the inverse mapping Σerm>ger is a bit more complex than
suggested. Indeed, Σger>erm is not surjective, so that some ERM schemas have no
GER counterpart. To be quite precise, we should define the subset ERM* of ERM
that makes Σger>erm surjective. However, we will ignore this for simplicity sake.
This is no problem since ERM* is closed under the set of ERM transformations
Σerm>erm that we will use7. Proving this is fairly easy but would lead us beyond the
scope of this paper. In the rest of this paper, we will admit that the composition
Σerm>ger ° Σger>erm is the identity mapping without loss of generality.

3.4 Specifying Operational Models in the GER

Popular operational formalisms, that is, those which are in practical use among deve-
lopers, can be expressed as specializations of the GER. In general, deriving model M
from model M0 (here the GER) consists in,

1. selecting the constructs of M0 that are pertinent in M;
2. specifying the structural constraints on this subset so that only schemas valid in

M can be built;
3. renaming these constructs in order to make them compliant with the taxonomy

of M; this step will be ignored in this paper.

This process materializes the mapping ΣM>M0. We will briefly discuss this map-
ping for two models, namely Entity-relationship model and the SQL2 relational
model (Fig. 6). Similar mapping can be (and have been) developed for CODASYL
and IMS models, for standard files structures, and for XML DTDs and Schemas.

GER Model Relat. ModelΣrel>gerΣer>gerER Model

Fig. 6. Two mappings described in Sections 3.5 and 3.6

3.5 GER Expression of the Entity-Relationship Model

Let us first observe that there is no such thing as a standard ER model. At least a
dozen formalisms have been proposed, some of them being widely used in popular

7 Σerm>erm is the set of ERM-to-ERM transformations. Applying operators from the subset of

Σerm>erm that underlies Σger>ger (as discussed in Section 12) to any ERM* schema pro-
duces an ERM* schema.

 The Transformational Approach to Database Engineering 105

text books and in CASE tools. However, despite divergent details, they all share
essential constructs such as entity type, relationship types with roles, some kind of
role cardinality/multiplicity, attributes and unique keys. Due to the nature of the GER,
restricting it to a definite Entity-relationship model is fairly straighforward, so that we
do not propose to develop the Σer>ger mapping.

The increasing popularity of the UML class model8 (aka class diagrams) incites
some authors and practitioners to use them to specify database conceptual and logical
schemas. This was not the primary objective of the UML formalism, so that it exhibits
severe flaws and weaknesses in database modelling. However, mapping Σuml>ger can
be developed in the same way as for other models.

3.6 GER Expression of the Standard Relational Model (SQL2)

A relational schema mainly includes tables, domains, columns, primary keys, unique
constraints, not null constraints and foreign keys. The relational model can therefore
be defined as in Fig. 7.

relational constructs GER constructs assembly rules

database schema schema

table entity type an entity type includes at least one
attribute

domain simple domain

nullable column single-valued and atomic
attribute with cardinality [0-1]

not null column single-valued and atomic
attribute with cardinality [1-1]

primary key primary identifier a primary identifier comprises
attributes with cardinality [1-1]

unique constraint secondary identifier

foreign key reference group the composition of the reference
group must be the same as that of
the target identifier

SQL names GER names the GER names must follow the
SQL syntax

Fig. 7. Defining the standard relational (SQL2) model as a subset of the GER model (mapping
Σrel>ger)

A GER schema made up of constructs from the second column only, and that satis-
fies the assembly rules stated in the third column, can be called a relational GER
schema. As a consequence, a relational schema cannot comprise is-a relations, rela-
tionship types, multivalued attributes nor compound attributes.

8 The term UML model has a specific interpretation in UML, where it denotes what we call a

schema in this paper.

106 J.-L. Hainaut

4 Schema Transformation

Let us denote by M the unique model in which the source and target schemas are ex-
pressed, by S the schema on which the transformation is to be applied and by S' the
schema resulting from this application. Let us also consider sch(M), a function that
returns the set of all the valid schemas that can be expressed in model M, and inst(S), a
function that returns the set of all the instances that comply with schema S.

4.1 Specification of a Transformation

A transformation Σ consists of two mappings T and t (Fig. 8):

1. T is the structural mapping from sch(M) onto itself, that replaces source construct
C in schema S with construct C'. C' is the target of C through T, and is noted C' =
T(C). In fact, C and C' are classes of constructs that can be defined by structural
predicates. T is therefore defined by the weakest precondition P that any cons-
truct C must satisfy in order to be transformed by T, and the strongest postcondi-
tion Q that T(C) satisfies. T specifies the rewriting rule of Σ.

2. t is the instance mapping from inst(S) onto inst(S'), that states how to produce the
T(C) instance that corresponds to any instance of C. If c is an instance of C, then
c' = t(c) is the corresponding instance of T(C). t can be specified through any al-
gebraic, logical or procedural expression.

According to the context, Σ will be noted either <T,t> or <P,Q,t>.
The nature of the most suited formalism in which P, Q and t could be expressed9

will not be discussed here. In the following, we will use abstract schema fragments
following the graphical convention of the underlying model.

C' = T(C)

c' = t(c)c

C T

t

inst_ofinst_of

Fig. 8. The two mappings of schema transformation S ≡ <T,t>. The inst_of arrow from x to X
indicates that x is an instance of X.

4.2 Generic, Parametric and Instantiated Transformations

Let us consider relation R, the attributes of which are partitioned into non empty
subsets I, J and K. Considering Σ, a (lossy) variant of relational decomposition trans-
formation, predicates P and Q as well as instance transformation t can be written as
follows:

9 Description logic [2] could be a good candidate for P and Q.

 The Transformational Approach to Database Engineering 107

P R(U); {I,J,K} partition of U;
T Q R1(IJ);

 R2(IK);

t let r be the current instance of R; let r1, r2 be instances of R1, R2;
 r1 = r[IJ]; r2 = r[IK];

Σ is generic, since it gives an abstract pattern that must be applied to an actual
relation before being carried out. Let us apply Σ to relation CUST(C#, CNAME,
CADD, CACC) of a supposedly current schema. We observe that there are several
ways to instantiate Σ according to the values we assign to variables I, J and K, leading
to as many instantiated transformations. For this reason, we call Σ a parametric
transformation. For instance, with assignments I := {CNAME} and J := {C#, CADD},
we get the following fully instantiated transformation.

P CUST(C#, CNAME, CADD, CACC); I = {CNAME}; J = {C#, CADD} ;
T Q C1(CNAME, C#, CADD);

 C2(CNAME, CACC);

t let c be the current instance of CUST; let c1, c2 be instances of C1, C2;
 c1 = c[CNAME, C#, CADD]; c2 = c[CNAME, CACC];

A generic transformation can be partially instantiated if some, but not all, variables
of P have been instantiated.

Each transformation Σ is associated with an inverse transformation Σ' which can
undo the result of the former under certain conditions that will be detailed in the next
section.

4.3 Semantics Preservation Properties of Transformations

One of the most important properties of a transformation is the extent to which the
target schema can replace the source schema without loosing information. This prop-
erty is called semantics preservation or reversibility.

Some transformations appear to augment the semantics of the source schema (e.g.,
adding an attribute), some remove semantics (e.g., removing an entity type), while
others leave the semantics unchanged (e.g., replacing a relationship type with an
equivalent entity type). The latter are called reversible or semantics-preserving. If a
transformation is reversible, then the source and the target schemas have the same
descriptive power, and describe the same universe of discourse, although with a dif-
ferent presentation.

Similarly, in the pure software engineering domain, [3] introduces the concept of
correctness-preserving transformation aimed at compilable and efficient program
production.

108 J.-L. Hainaut

We must consider two different classes of transformations, namely reversible and
symmetrically reversible.

1. A transformation Σ1 = <T1,t1> = <P1,Q1,t1> is reversible, iff there exists a trans-
formation Σ2 = <T2,t2> = <P2,Q2,t2> such that, for any construct C, and any ins-
tance c of C: P1(C) ([T2(T1(C))=C] and [t2(t1(c))=c]). Σ2 is the inverse of Σ1,
but the converse is not true. For instance, an arbitrary instance c' of T(C) may not
satisfy the property c'=t1(t2(c')).

2. If Σ2 is reversible as well, then Σ1 and Σ2 are called symmetrically reversible.
In this case, Σ2 = <Q1,P1,t2>. Σ1 and Σ2 are called SR-transformations for
short.

Example

The so-called decomposition theorem of the 1NF relational theory [13] is an example
of reversible transformation that can be described as follows10.

P1 R(U); {I,J,K} partition of U; I →→ J|K;
T1

Q1 R1(IJ); R2(IK);

t1 let r be the current instance of R; let r1, r2 be instances of R1, R2;
 r1 = r[IJ]; r2 = r[IK];

However, there is no reason for any arbitrary couple of instances r1 of R1 and r2 of
R2 to enjoy the inverse property r = (r1*r2)[IJ]. We must refine this transformation in
order to make it symmetrically reversible. This transformation and its inverse are
summarized here below.

P1 R(U); {I,J,K} partition of U; I →→ J|K;
T1

Q1 R1(IJ); R2(IK); R1[I] = R2[I];

t1 let r be the current instance of R; let r1, r2 be instances of R1, R2;
 r1 = r[IJ]; r2 = r[IK];

t2 let r1, r2 be current instances of R1, R2; let r be an instance of R;
 r = r1*r2[IJK];

4.4 Generating and Studying GER Transformations

The complexity of high-level models, and that of the GER in particular, makes the
study of their transformations particularly complex. To begin with, experience shows
that several dozens of operators can be useful, if not necessary, to describe the most
important engineering processes. Then, identifying and proving the reversibility de-
gree of each of them can be a huge and complex task, notably since there is no agreed
upon algebra or calculus to express Entity-relationship queries.

10 Denotes a multivalued dependency, [] the projection operator and * the join operator.

 The Transformational Approach to Database Engineering 109

The key lies in the ERM formalism that expresses the semantics of the GER. In-
deed, the relational model, of which the ERM inherits, includes a strong and simple
body of properties and inference rules that can be used to built a relational transfor-
mational theory. We can reasonably expect the set of transformations defined for the
ERM to be far smaller and simpler than that of the GER.

If this idea proves to be correct, then we will be provided with a nice way to gener-
ate, explain, and reason on, GER transformations. Fig. 9 illustrates this approach.

Extended Rel.
Model

Σerm>erm

Σerm>ger

Σger>erm

GER Model

Σger>ger

Fig. 9. Generating and specifying GER transformations through their expression in the
Extended Relational Model

According to this view, each GER transformation can be modelled as the com-
pound mapping:

Σger>ger = Σerm>ger ° Σerm>erm ° Σger>erm

Since Σerm>ger and Σger>erm are symmetrically reversible, a transformation in
Σger>ger is semantics-preserving iff there exists a (possibly compound) transforma-
tion in Σerm>erm that is symmetrically reversible. Section 11 describes the main
transformations of Σerm>erm. Then, Section 12 interprets three popular GER trans-
formations as compound ERM transformations.

5 Typology of Practical Transformations

This section describes several families of GER transformations with which complex
engineering processes will be built.

5.1 Mutation Transformations

A mutation is an SR-transformation that changes the nature of an object. Considering
the three main natures of object, namely entity type, relationship type and attribute,
six families of mutation transformations can be defined. Fig. 10 shows the structural
mapping (T) of some representative operators (couples of operators Σ1 to Σ3) applied
to typical schema fragments. The transformations Σ4 are not primitive since they can
be defined by combining other mutations. However, they have been added due to their
usefulness.

110 J.-L. Hainaut

P = source schema Q = target schema

Σ1
i-j0-N r

BA

T1

⇐
T1'

1-1

 i-j

rB

1-1

0-N

rA

R

id: rA.A
rB.B

BA

Σ2

0-N i-jr

B
A

A1
id: A1

T2

⇐
T2'

B
A1[i-j]
ref: A1[*]

A
A1
id: A1

Σ3

A
A1
A2[i-j]
A3

T3

⇐
T3'

1-Ni-j ra2

EA2
A2
id: A2

A
A1
A3

Σ4

A
A1
A2[i-j]
A3

T4

⇐
T4'

i-j 1-1ra2

EA2
A2
id: ra2.A

A2

A
A1
A3

Fig. 10. Six representative mutation transformations Σ1 to Σ3. Transformations Σ1 generalized
to N-ary rel-types as will be shown in Fig. 26. Though not primitive, compound transforma-
tions Σ4 are shown as well. Cardinality constraints [i-j] are arbitrary values.

5.2 Other Elementary Transformations

The mutation transformations can solve many database engineering problems, but
other operators are needed to model special situations.

Expressing supertype/subtype hierarchies in DMS that do not support them
explicitly is a recurrent problem. The technique of Fig. 11 is one of the most
commonly used [4] [23]. It consists in representing each source entity type by an
independent entity type, then to link each subtype to its supertype through a one-to-
one relationship type. The latter can, if needed, be further transformed into foreign
keys by application of Σ2-direct.

 The Transformational Approach to Database Engineering 111

 P = source schema Q = target schema

Σ5 D
C

C1
C2

B
B1
B2

A
A1
A2

T5

⇐
T5'

1-1

0-1r

1-1

0-1 s

A
A1
A2
excl: s.C

r.B

C
C1
C2

B
B1
B2

Fig. 11. Transforming an is-a hierarchy into one-to-one relationship types and conversely. The
exclusion constraint (excl:s.C,r.B) states that an A entity cannot be simultaneously linked to a B
entity and a C entity. It derives from the disjoint property (D) of the subtypes.

Transformations Σ3 and Σ4 showed how to process standard multivalued attributes.
When the collection of values is no longer a set but a bag, a list or an array, operators
to transform them into standard multi-valued attributes are most useful. Transforma-
tions Σ6 in Fig. 12 are dedicated to arrays. Similar operators have been defined for the
other types of containers.

 P = source schema Q = target schema

Σ6

A
A1
A2[0-5] array
A3

T6

⇐
T6'

A
A1
A2[5-5]

Index
Value[0-1]

A3
id(A2):

Index

Fig. 12. Converting an array A2 into a set-multivalued attribute and conversely. The values are
distinct wrt component Index (id(A2):Index). The latter indicates the position of the cell that
contains the value (Value). The domain of Index is the range [1..5].

Attributes defined on the same domain and the name of which suggests a spatial or
temporal dimension (e.g., departments, countries, years or pure numbers) are called
homogeneous serial attributes. In many situations, they can be interpreted as the rep-
resentation of an indexed multivalued attributes (Fig. 13). The identification of these
attributes must be confirmed by the analyst.

112 J.-L. Hainaut

 P = source schema Q = target schema

Σ7

 A
A1
A2X
A2Y
A2Z
A3

T7

⇐
T7'

dom(A2.Dimension) = {'X','Y','Z'}

A
A1
A2[3-3]

Dimension
Value

A3
id(A2):

Dimension

Fig. 13. Transforming homogeneous serial attributes {A2X, A2Y, A2Z} into a multivalued
compound attribute A2 and conversely. The values (Value) are indexed with the distinctive
suffix of the source attribute names, interpreted as a dimension (sub-attribute Dimension).

5.3 Compound Transformations

A compound transformation is made up of a chain of more elementary operators in
which each transformation applies on the result of the previous one. The
transformation Σ8 in Fig. 14, illustrated by a concrete example, transforms a complex
relationship type R into a sort of bridge entity type comprising as many foreign keys
as there are roles in R. It is defined by the composition of Σ1-direct (generalized to
N-ary rel-types) and Σ2-direct. This operator is of frequent use in relational database
design.

 source schema target schema

Σ8

0-N

0-N

0-N

export

Volume

PRODUCT

Prod_ID

id: Prod_ID

COUNTRY
Ctry_Name

id: Ctry_Name

COMPANY
Cy_Name

id: Cy_Name

T8

⇐
T8'

PRODUCT
Prod_ID

id: Prod_ID

EXPORT
Prod_ID
Ctry_Name
Cy_Name
Volume

id: Ctry_Name
Prod_ID
Cy_Name

ref: Cy_Name
ref: Prod_ID
ref: Ctry_Name COUNTRY

Ctry_Name

id: Ctry_Name

COMPANY
Cy_Name

id: Cy_Name

Fig. 14. Transformation of a complex relationship type into relational structures

The transformation Σ9 is more complex (Fig. 15). It is composed of a chain of four
elementary operators. The first one transforms the serial attributes Expense-2000,
..., Expense-2004 into multivalued attribute Expense comprising subattributes
Year (the dimension) and Amount (transformation Σ7-direct). The second one

 The Transformational Approach to Database Engineering 113

extracts this attribute into entity type EXPENSE, with attributes Year and Amount
(transformation Σ4-direct). Then, the same operator is applied to attribute Year,
yielding entity type YEAR, with attribute Year. Finally, entity type EXPENSE is
transformed into relationship type expense (Σ1-inverse).

 source schema target schema

Σ9

Project
Dep#
InitialBudget
Expense-2000
Expense-2001
Expense-2002
Expense-2003
Expense-2004

T9

⇐
T9'

dom(Year) = [2000..2004]

1-N

5-5

expense

Amount

YEAR
Year
id: Year

Project
Dep#
InitialBudget

Fig. 15. Extracting a temporal dimension from homogeneous serial attributes

5.4 Predicate-Driven Transformations

A predicate-driven transformation Σp applies an operator Σ to all the schema objects
that meet a definite predicate p.

predicate-driven transformation interpretation

RT_into_ET(ROLE_per_RT(3 N))

transform each rel-type R into an entity type
(RT_into_ET), if the number of roles of R
(ROLE_per_RT) is in the range [3 N]; in short,
convert all N-ary rel-types into entity types.

RT_into_REF(ROLE_per_RT(2 2) and
 ONE_ROLE_per_RT(1 2))

transform each rel-type R into reference attributes
(RT_into_REF), if the number of roles of R is 2 and
if R has from 1 to 2 "one" role(s), i.e., R has at least
one role with max cardinality 1; in short, convert all
one-to-many rel- types into foreign keys.

INSTANTIATE(MAX_CARD_of_ATT(2 4))

transform each attribute A into a sequence of single-
value instances, if the max cardinality of A is
between 2 and 4; in short, convert multivalued
attributes with no more than 4 values into serial
attributes.

Fig. 16. Three examples of predicate-driven transformations. Rel-type is a short-hand for
Relationship type.

114 J.-L. Hainaut

It will be specified by Σ(p). p is a structural predicate that states the properties
through which a class of patterns can be identified. In general, the inverse of Σp can-
not be derived from the expression of Σ and p. Indeed, there is no means to derive the
predicate p' that identifies the constructs resulting from the application of Σp, and only
them.

We give in Fig. 16 some useful transformations that are expressed in the specific
language of the DB-MAIN tool (Section 8), which follows the Σ(p) notation. Most
predicates are parametric. For instance, the predicate ROLE_per_RT(n m), where n
and m are integers such that n ≤ m, states that the number of roles of the relationship
type falls in the range [n..m]. The symbol "N" stands for infinity.

5.5 Model-Driven Transformations

A model-driven transformation is a goal-oriented compound transformation made up
of predicate-driven operators. It is designed to transform any schema expressed in
model M into an equivalent schema in model M'.

As illustrated in the discussion of the relational model expressed as a specialization
of the GER (Fig. 7), identifying the components of a model also leads to identifying
the constructs of the GER that do not belong to it. Except when M is a subset of M',
an arbitrary schema S ∈ sch(M) may include constructs that violate M'. Each class of
constructs that can appear in a schema can be specified by a structural predicate. Let
PM denote the set of predicates that defines model M and PM' that of model M'. In the
same way, each potentially invalid construct can also be specified by a structural
predicate. Let PM/M' denote the set of predicates that identify the constructs of M that
are not valid in M'. In the DB-MAIN language used in Fig. 16, ROLE_per_RT(3 N) is
a predicate that identifies N-ary relationship types that are known to be invalid in
DBTG CODASYL schemas, while MAX_CARD_of_ATT(2 N) defines the family of
multivalued attributes, that is invalid in the SQL2 database model. Finally, we ob-
serve that a set such as PM can be rewritten as a single predicate formed by anding its
components.

Let us now consider predicate p ∈ PM/M', and let us choose a transformation Σ =
<P,Q,t> such that,

(p P) ∧ (PM' Q)

Clearly, the predicate-driven transformation Σ(p) solves the problem of the invalid
constructs defined by p. Proceeding in the same way for each component of PM/M'
provides us with a series of operators that can transform any schema in model M into
schemas in model M'. We call such a series a transformation plan, which is the
practical form of any model-driven transformation. In real situations, a plan can be
more complex than a mere sequence of operations, and may comprise loops to
process recursive constructs for instance. Transformation plans implement what some
authors call strategies, that is, deterministic or heuristic reasoning on how to apply
transformations to reach a definite goal. [1] propose strategies to convert VDM data
types in relational structures while [40] applies semi-procedural strategies to high-
level engineering processes.

 The Transformational Approach to Database Engineering 115

In addition, transformations such as those specified above may themselves be
compound, so that the set of required transformations can be quite large. In such
cases, it can be better to choose a transformation that produces constructs that are
not fully compliant with M', but that can be followed by other operators which
complete the job. For instance, transforming a multivalued attribute into relational
structures can be obtained by an ad hoc elementary transformation. However, it can
be thought more convenient to first transform the attribute into an entity type + a
one-to-many relationship type (Σ4-direct), which can then be transformed into a
foreign key (Σ2-direct). This approach produces transformation plans which are
more detailed and therefore less readable, but that rely on a smaller and more stable
set of elementary operators.

The transformation toolset of DB-MAIN includes about thirty operators that have
proved sufficient to process schemas in a dozen operational models. If the
transformations used to build the plan have the SR-property, then the model-driven
transformation that the plan implements is symmetrically reversible. When applied
to any source schema, it produces a target schema semantically equivalent to the
former.

6 Modeling Standard Database Engineering Processes as
Transformations

Complete database engineering processes, such as database development, database
reverse engineering, data warehouse design or database migration comprise several
steps, most of which can be viewed as chains of transformations, or, more
specifically, transformation plans. This section illustrates the issue by modeling one
of the major processes, namely database logical design, through the transformational
paradigm.

6.1 Database Design

The process of designing and implementing a database that is to meet definite users
requirements has been described extensively in the literature [4] and has been avail-
able for several decades in CASE tools. It comprises four main sub-processes, namely
(Fig. 17):

1. Conceptual design, the goal of which is to translate users requirements into a
conceptual schema, which is a technology-independent abstract specification11.

2. Logical design, which produces a logical schema that losslessly translates the
constructs of the conceptual schema according to a specific technology family12.

3. Physical design, which augments the logical schema with performance-oriented
constructs and parameters, such as indexes, buffer management policies or lock
management parameters.

11 Or Platform-Independent Model (PIM according to the MDA/MDE vocabulary.
12 The logical and physical schemas can be called Platform-Specific Model (PSM in the

MDA/MDE vocabulary).

116 J.-L. Hainaut

4. Coding, that translates the physical schema (and some other artefacts) into the
DDL code of the DBMS.

Calling the whole process DB-Design, and the four sub-processes respectively
ConcD, LogD, PhysD and Coding, we can describe them with the transformational
notation:

 DDL code = DB-design(Users requirements)

 DB-design = Coding ° PhysD ° LogD ° ConcD

These processes are model-driven transformations that can be described by
transformation plans. The level of formality of these processes depends on the
methodology, on the existence of CASE support and of non functional requirements
such as performance and robustness, that generally require human expertise. For
instance, conceptual design is a highly informal process based on human
interpretation of complex information sources, while logical design can be an
automated process completely described by a transformation plan. Anyway, these
processes can be decomposed into sub-processes that, in turn, can be modelled by
transformations and described by transformation plans, and so forth, until the latter
reduce to elementary operators such as those described in Sections 5.1 and 5.2.
Below, we examine the Logical design process in further detail.

Conceptual design

Logical design

Physical design

Coding

Logical schema

Physical schema

Users requirements Conceptual schema

DDL code

Fig. 17. The main processes of database design

6.2 Database Logical Design

We consider the most popular conceptual source model, namely the Entity-
relationship model, and the most popular logical target model, the SQL2 relational
model, to which Oracle, SQL Server, DB2, PostgreSQL, Firebird and many others are
compliant. The GER expression of the SQL2 model has been developed in Fig. 7. By
complementing this table, we identify the Entity-relationship constructs that do not
belong to the SQL2 model, the four most important of which being transformed as
follows.

 The Transformational Approach to Database Engineering 117

Transforming is-a relations
Transformation Σ5-direct eliminates this structure without semantics loss by introduc-
ing one-to-one (functional) rel-types. The latter can then be processed by the mutation
transformation Σ2-direct that generates foreign keys.

Transforming relationship types
Two cases must be considered. The easy case is that of functional rel-types, that can
be replaced by foreign keys through transformation Σ2-direct.

The complex patterns comprise non-functional rel-types, that is, those which are
many-to-many, or N-ary, or which have attributes. They are first transformed into
entity types with operator Σ1-direct. Then, the resulting functional rel-types are
transformed into foreign keys (Σ2-direct). Note that the whole process is a compound
transformation that has been described as Σ8-direct.

Transforming multivalued attributes
A multivalued attribute that directly depends on its parent entity type (level 1) is
transformed into an entity type, through the compound mutation operator Σ4-direct. If

transform
is-a relations (Σ5d)

transform complex
rel-types (Σ1d)

transform level-1 multi-
valued attributes (Σ4d)

disaggregate level-1
compound attributes (Σ10d)

still non simple attributes ?
no

yes

transform functional
rel-types (Σ2d)

any failure ?

Add technical Id
where needed (Σ11d)

yes

no

Process names

Fig. 18. A simple transformation plan for logical relational database design

118 J.-L. Hainaut

0-N 1-Nwritten

0-1

0-N

works on

0-N
responsible

0-1

responsible-for

0-N

0-N

reserved

Reservation date

1-1

0-N

of

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date

D

REPORT
Report Code
Version
id': Report Code

PROJECT
ProjCode
Title
ContractNo[0-1]
Company
id: ProjCode
id': ContractNo

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

COPY
Serial-No
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Serial-No

BORROWER
PID
Name
Address

Street
City

Phone[1-5]
id: PID

BOOK
ISBN
Publisher
id': ISBN

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

Fig. 19. A representative conceptual schema

the attribute is compound, it is suggested to incorporate its components in the new
entity type, and not the attribute itself. This generates a one-to-many rel-type, that is
further transformed into a foreign key.

Transforming single-valued compound attributes
The simplest way to transform a level 1 compound attribute is to replace it with its
components, a technique called disaggregation (transformation Σ10-direct, not
illustrated). Another technique consists in processing the attribute as if it was
multivalued as described here above (Σ4-direct). In this case, it is transformed into an
entity type and a functional rel-type, itself transformed into a foreign key.

Note on the transformation of a rel-type into a foreign key
This transformation requires the other entity type to have an identifier made up of
attributes. Otherwise, we have to give it a technical identifier (transformation Σ11-
direct, not illustrated).

 The Transformational Approach to Database Engineering 119

Grouping similar transformations and reorganizing the operations logically provides us
with a simple but fairly powerful transformation plan that transforms most conceptual
Entity-relationship schemas into pure relational schemas (Fig. 18). Since we have used
SR-transformations only, the whole process is semantics-preserving13. Actual plans are
more complex, but follow the same approach. Let us mention some extensions:
eliminating optional identifiers, other techniques to implement is-a relations (e.g., by
descending or ascending inheritance), instantiating multivalued attributes, concatenating
multivalued attributes, concatenating compound attributes, etc.

6.3 Case Study

The conceptual schema of Fig. 19 includes, in a small footprint, several interesting
constructs, such as complex rel-types, a cyclic rel-type, is-a relations, multivalued
attributes, compound attributes, an entity type without identifier, an optional identi-
fier, a mandatory many role (written.AUTHOR [1-N]) and a hybrid identifier.

The application of the transformation plan of Fig. 18, extended to the elimination
of optional identifiers14, produces the relational schema of Fig. 20.

7 Modeling Database Reverse Engineering Process as
Transformations

Many database engineering processes, such as maintenance, evolution, migration,
integration or federation require the availability of a complete and up to date
documentation, that is, for a database, its logical and conceptual schemas. Needless to
say that these essential documents most often are missing, specially for legacy
databases that can be more than 20 years old.

Database reverse engineering is the process through which one attempts to recover
or to rebuild these schemas when they are missing, obsolete or incomplete. We will
show that several important aspects of this process can be modelled by
transformtions. Intensive research in the last decade have shown that reverse
engineering generally is much more complex than initially thought.

We can put forward three major sources of difficulties, namely (1) the absence of
systematic design (empirical coding still is the most popular way to design a
database), (2) the weaknesses of the legacy (and, paradoxically modern as well)
DBMS, that force the developer to resort to various tricks to code the data structures
and the integrity constraints and (3) only the DDL code provides a reliable description
of the database physical constructs.

13 This assertion is not quite correct if we only use the transformations presented in this paper.

In particular, some constraints can be lost, or incompletely translated. Such is the case for
cardinality constraints [i-j] where 1 < j < N. A more comprehensive plan, making use of more
precise transformations, can preserve these constraints until the coding phase, e.g., in the
form of SQL triggers.

14 Several DBMS do not manage correctly candidate keys comprising a nullable column.

120 J.-L. Hainaut

written

Auth_ID
DocID

id: Auth_ID
DocID

ref: DocID
equ: Auth_ID

reserved

PID
DocID
Reservation date

id: DocID
PID

ref: DocID
ref: PID

REPORT

DocID
Report Code
Version

id: DocID
ref

id': Report Code

PROJECT

ProjCode
Title
Company

id: ProjCode

Phone

PID
Phone

id: PID
Phone

equ: PID

Keyword

DocID
Keyword

id: DocID
Keyword

ref: DocID

DOCUMENT

DocID
Title
Date-Published
REPORT[0-1]
BOOK[0-1]

id: DocID
excl: BOOK

REPORT

COPY

DocID
Serial-No
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row

id: DocID
Serial-No

ref: DocID

ContractNo

ContractNo
ProjCode

id: ContractNo
id': ProjCode

ref

borrowing

DocID
Serial-No
Borrow-Date
PID
ProjCode
Return-Date[0-1]

id: DocID
Serial-No
Borrow-Date

ref: DocID
Serial-No

ref: PID
ref: ProjCode

BORROWER

PID
Name
Add_Street
Add_City
ProjCode[0-1]
Responsible[0-1]

id: PID
ref: Responsible
ref: ProjCode

BOOK

DocID
ISBN
Publisher

id: DocID
ref

id': ISBN

AUTHOR

Auth_ID
Name
First-Name[0-1]
Origin[0-1]

id: Auth_ID

Fig. 20. The relational schema obtained by the application of the transformation plan of Fig. 18
on the conceptual schema of Fig. 19

7.1 Database Reverse Engineering

In complex projects, for instance when the database includes several hundreds or
thousands of tables15, the core of the process will be organized as described in Fig. 21.
It comprises four main sub-processes, namely:

1. Parsing, that rebuilds the raw physical schema by merely parsing the DDL code
(codeddl). Only the constructs that have been explicitly declared in the code can
be recovered.

2. Refinement, which enriches the raw physical schema with the undeclared
constructs and constraints that have been elicited through the analysis of program
code (codeprg), as well as other sources that we will ignore here. Sometimes
more than 50% of the specifications can be retrieved in this way.

15 An SAP database can comprise 30,000 tables and more than 200,000 columns.

 The Transformational Approach to Database Engineering 121

3. Cleaning, which removes the technical constructs, such as the indexes, and which
produces the logical schema.

4. Conceptualization, which derives a plausible conceptual schema from the logical
schema.

Cleaning

Parsing

Refinement

Logical schema

Physical schema

Conceptual schema

codeddl codeprg

Conceptualization

Raw physical schema

Fig. 21. The four main processes of database reverse engineeering

Calling the whole process DB-REng, and the four sub-processes Parse, Refine,
Clean and Concept respectively, we can write:

 Conceptual schema = DB-REng(codeddl, codeprg)

 DB-design = Concept ° Clean ° Refine ° Parse

An interesting, and not really surprising, aspect of database reverse engineering is that
all the processes we have mentioned appear to be the reverse of database design proc-
esses. Indeed, we have the following relations:

 Refine o Parse = Coding-1

 Clean = PhysD-1

 Concept = LogD-1

This observation has a deep influence on the specifications and the strategies of the
reverse processes. For instance, since the Conceptualization process is the inverse of
Logical design, it should be possible to derive a transformation plan for the former
just by reversing the plan of Logical design. Though this approach has proved
successful, the problem is a bit more complex due to the undisciplined way legacy
databases were designed. When the logical schema was built, it had to meet not only
functional requirements (that is, to express all the semantics of the conceptual
schema), but also non-functional requirements such as time-space optimization,

122 J.-L. Hainaut

security or privacy. The satisfaction of the latter requirements can deeply affect the
readability of the logical schema to such an extent that it has become quite difficult to
understand.

In the next section, we will very shortly describe the Conceptualization process as
a transformation process, and elaborate a representative transformation plan.

7.2 Logical Schema Conceptualization

Reversing a transformation plan is a new concept that would deserve some further
discussion [22]. Due to space limit, we will give a simplified definition that is valid
for linear plans only, that is, plans which do not include if-then-else or loop con-
structs:

 Considering a transformation Σ implemented by transformation plan T, T' is an
inverse of T if it implements the inverse of Σ.

 If T is a linear transformation plan, T' can be built as follows: each operator of T
is replaced with its inverse, then the resulting sequence is reversed.

Deriving a linear plan from the plan proposed for Logical design in Fig. 18 is not
too difficult, provided we target simpler schemas, that meet such realistic

transform
is-a relations (Σ5d)

transform complex
rel-types (Σ1d)

transform level-1 multi-
valued attributes (Σ4d)

disaggregate level-1
compound attributes (Σ10d)

transform functional
rel-types (Σ2d)

add technical Id
where needed (Σ11d)

Remove technical Id
(Σ11i)

Transform FK into functional
rel-types (Σ2i)

Aggregate heterogeneous
serial attributes (Σ10i)

transform attribute entity types
into multi-valued attributes (Σ4i)

transform relationship entity
types into rel-types (Σ1i)

transform one-to-one rel-types
into is-a relations (Σ5i)

transform functional
rel-types (Σ2d)

Transform FK into functional
rel-types (Σ2i)

Fig. 22. Building a linear transformation plan for the Conceptualization process

 The Transformational Approach to Database Engineering 123

restrictions as the following: a multivalued attribute can be compound, but no
compound attributes can have components that are themselves compound or
multivalued. Fig. 22 depicts the linearized plan for Logical design (left), and a
tentative transformation plan for Logical schema Conceptualization obtained by
inverting the former (right).

The resulting plan introduces new processes and terms that deserve some
explanation. Removing a technical Id is valid provided it does not represent any
application domain concept. A series of heterogeneous serial attributes is a pattern in
which a sequence of attributes, generally of different types, have names that present
strong similarities, and that suggest that these attributes form an implicit aggregate
(Example: Address-City, Address-Street, Address-Number). An attribute entity type
AE is an entity type the goal of which obviously is just to add an elementary
information to another entity type. It comprises one or a few attributes that are all part
of the identifier of AE, and is linked to another entity type only, through a mandatory
role. A relationship entity type is an entity type the role of which obviously is just to
link two or more entity types. Transforming one-to-one rel-types into is-a relations
must be carried out with caution, since it must be semantically pertinent. A one-to-one
rel-type between MANAGER and CAR does not mean that CAR is a subtype of
MANAGER!

Finally, let us observe that the second step of the resulting transformation plan
(right) is useless and can be discarded, though it does no harm16.

7.3 Case Study

The application of this transformation plan to the logical relational schema of Fig. 20
is left as an exercice to the reader, preferably with the help of the Transformation
assistant of the DB-MAIN CASE tool. Some observations:

1. identifying serial attributes forming attributes Location and Address is a manual
process,

2. deleting the technical id of AUTHOR is a manual process,
3. the conceptual names of most one-to-many rel-types cannot be recovered (default

names are suggested but they generally are not suitable), and must be assigned
manually.

8 Transformations in CASE Tools

Following the discussion of this paper, it is not surprising that the transformational
paradigm is particularly suited to build CASE tools. All CASE tools rely, often im-
plicitly, on some kind of schema transformations. Due to the popularity of the MDE
approaches, we can expect future CASE tools to include programmable transforma-
tion toolsets. In the past, some examples of transformation-based tools have been
described, e.g., in [42]. We can also mention Silverrun, a CASE tool that explicitly
makes use of transformations.

16 A desirable property of these plans is their idempotence. It is not guaranteed in general.

124 J.-L. Hainaut

Fig. 23. The elementary transformation assistant of DB-MAIN

We will describe briefly the transformation facilities of DB-MAIN17, a CASE tool
dedicated to the support of the main database engineering processes, including non
standard ones, such as database reverse engineering, interoperability, active and tem-
poral database design, wrapper generation and XML engineering. DB-MAIN is based
on the GER model and offers a toolset of about 30 elementary transformations.

DB-MAIN includes a collection of programmable assistants that are intended to
help the analysts in complex and tedious tasks. Two of them are of particular interest,
namely the Transformation assistant and the Advanced transformation assistant. Both
allow the analyst to apply predicate-driven transformations on the current schema and
to build transformation plans through a scripting facility.

Fig. 23 shows a typical screen of the first assistant. Its left part proposes a list of
labelled patterns (a user-friendly interface to built-in structural predicates), accompa-
nied by a set of possible actions that are performed on all the instances of the pattern
in the current schema. The right part allows the analyst to build linear transformation
plans that can be saved and reused later.

The second assistant is more powerful, and therefore more complex. It is based on
predicate-driven transformations following the syntax Σ(p) described in Section 5.4,
and illustrated in Fig. 16. It allows non-linear transformation plans to be developed.

Part 2 Formal Aspects of Database Transformations

These sections which follow provide the bases for building a formal system in which
GER transformations can be rigorously defined and such properties as semantics
preservation can be studied.

17 The free Education edition of DB-MAIN is available at the following address: http://www.

info.fundp.ac.be/libd, select "DB-MAIN CASE".

 The Transformational Approach to Database Engineering 125

9 The Extended Relational Model (ERM)

ERM is a variant of the N1NF relational model. It includes the concepts of domain,
relation (schema and instance), attribute and constraints.

9.1 Domain

A domain is a named set of elements. It is declared by its name and the specification
of the set of elements. A domain is dynamic if its set can change over time. Some
predefined basic domains are provided, such as number, string or date. The model
includes a special dynamic basic domain, called entities, whose structure is immate-
rial, but the goal of which could be to denote application domain entities. A user-
defined domain is defined by an element set which is a subset of that of another
domain. A relation is a valid domain. Any domain defined as a subset of the domain
entities is an entity domain, and so forth transitively.

Example of user-defined domains

birth_Date: date;
name: string;
PERSON: entities;
EMPLOYEE: PERSON;
CONTACT: address;

9.2 Relation and Attribute

According to the relational theory, a relation is a subset of the cartesian product of
domains. An element of a relation is a tuple. A relation is described by its schema,
that specifies the format and the constraints that its instances must satisfy. The current
instance of a relation is the current set of tuples.

The schema of a relation comprises its name, a set of attributes and a set of con-
straints. An attribute has a name and is defined on a domain. It represents a participation
of a domain in the relation. A domain can appear more than once, defining as many
distinct attributes. An attribute defined on an entity domain is an entity attribute.

In general, the value of an attribute of a tuple is a subset of its domain. To specify
the size of this subset, a cardinality property [i-j] is associated with each attribute A. It
states the minimum and maximum numbers of domain values that are assigned to A in
any tuple. If j = 1, A is single-valued otherwise it is multivalued. If i = 0, A is optional
otherwise it is mandatory. The default cardinality property is [1-1].

Examples

address (Street: name,
 City: name);

employee (PId: number,
 Name: name,
 1st-name[0-1]: name,
 Phone[1-5]: phone,
 Contact: address);

126 J.-L. Hainaut

Interpretation: an employee has one (default [1-1], that is, from 1 to 1) personal ID,
one name, from 0 to 1 first name, from 1 to 5 phone numbers, and one contact, which
is made up of one street and one city.

If the concept of address is not considered important (for instance, it is not referred
to elsewhere), the domain address could be specified in line as follows:

employee (…, Contact: (Street: name, City: Name));

In some situations, the specification of the domain will be ignored for simplicity.
Consequently, the following notation will be allowed.

employee (PId, Name, 1st-name[0-1], Phone[1-5], Contact: address);

In particular, specially in formal declarations, if an attribute is given the name of its
domain, we will use the following shorthand, where A is both the name of a domain
and an attribute defined on it:

R(A,B,C) ≡ R(A:A, B:B, C:C)

9.3 Non-set Attributes

By default, the value of an attribute is a set of domain values. Due to the generality of
the GER, that is intended, among others, to describe logical and physical schemas, we
need more poweful data structures, such as set, bag, list and array attributes:

R (A, B[0-5]set:number, C); also defined as: R (A, B[0-5]:number, C)
R (A, B[0-5]bag:number, C);
R (A, B[0-5]list:number, C);
R (A, B[0-5]array:number, C);

When the values in a list or in an array have to be unique, we write:

R (A, B[0-5]u-list:number, C);
R (A, B[0-5]u-array:number, C);

9.4 Constraints

ERM includes the uniqueness and inclusion constraints, as well as various depend-
encies, such as functional (FD) and multivalued (MV), of the standard relational
model18. Candidate key {A,B,C} of R will be declared by the clause id(R): A,B,C.
When possible, and where no ambiguity may arise, this specification can be replaced
by continuously underlining the components of the key. Inclusion constraints between
algebraic expressions are allowed.

18 These constraints have been defined on 1NF models, and their generalization to

N1NF models is far from trivial. Due to the limited scope of this paper, and without
loss of generality, we will ignore the complexity of the constraint patterns of N1NF
models.

 The Transformational Approach to Database Engineering 127

Examples

1. R (A, B, C, D); id(R): A,B; also defined as: R (A, B, C, D)19
2. S(E, G, H); S[G,H] ⊆ R[A,B];
3. T(A, B, C); T[A] = A;

Example 1 declares a candidate key in both alternative syntaxes. Example 2 declares a
foreign key through an inclusion constraint. Expression R[G,H] denotes the projection
of the current instance of R on attributes (A,B). Example 3 expresses a domain con-
straint. Every element of domain A must appear as the value of attribute A of at least
one tuple of the current instance of T.

In a N1NF structure, a local key can hold in a multivalued compound attribute. In
the following example, we declare that, for each product tuple, the candidate key
{Year} holds in each instance of Sales (no two sales the same year):

product (ProNbr: number,
 Description: name,
 Sales[0-N]: (Year: date, Volume: number));

The notation is extended as follows:

id(product.Sales): Year;

or by underlining the components:

product (ProNbr, Description, Sales[0-N]: (Year, Volume));

ERM includes a special form of cardinality constraint, through which we can state
how many tuples of the current instance of a relation must/can share a common do-
main value.

Considering the relation schema R(A,B,C) and an instance r of R,

card(R.A): [I-J],
is interpreted as20

∀a∈A, I ≤ ⏐r(A=a)⏐ ≤ J

Examples

1. R (A, B, C); card(R.A): [0-5];
2. R (A, B, C); card(R.(B,C)): [1-3];

Example 1 declares that any value of domain A may not appear in more than 5 tuples
of (any instance of) R. Example 2 shows a generalization of the constraint. It declares
that any couple of values of domains B and C must appear in 1 to 3 tuples of (any
instance of) R.

Note that candidate keys as well as the domain constraint T[A] = A are special cases
of cardinality constraint. Note also that cardinality properties and cardinality
constraints serve different purposes, and that none can replace the other one.

19 The graphical convention is as follows: the key of R(A,B,C) is {A,B} while R(A,B,C) has two

keys {A} and {B}.
20 Expression r(A=a) denotes the set of tuples of r where A=a.

128 J.-L. Hainaut

9.5 An ERM Schema Example

We are now able to propose a more comprehensive example of ERM schema.

• domains

CUSTOMER: entities;
VEHICLE: entities;
CAR, BOAT: VEHICLE;
Name: string;

• relations

cust (CUSTOMER, CId: number, Name: name, Phone[0-3]: string),
owns (owner: CUSTOMER, CAR);

• constraints

VEHICLE = CAR ∪ BOAT;
id(cust): CId;
card(owns.owner): [0-5];
owns(CAR) = CAR;

10 Formal Semantics of the GER

The mapping Σger>erm (Section 3.3) is fairly straighforward for most GER
constructs. The inverse mapping is easy to derive as well. The main rules are
presented in Fig. 24, and need little explanation, except for the representation of an
entity type, since it seems to differ from the usual way one translates a conceptual
schema into relational structures, as illustrated in Fig. 1 for example. First, let us
recall that the goal of this section is not to produce relational databases, as
discussed in Section. 6.2, but rather to give an operational model rigorous
semantics.

An entity type E is merely represented by an entity domain, with name E,
independently of any other feature, such as attributes, it may be concerned with.

When entity type E participates in relationship type (rel-type for short) R, with role
r, its representation also appears as the domain of ERM attribute r of the relation R
that expresses this rel-type (see rel-types of and export in Fig. 24).

Now, how to express the GER attributes of E? Through a special relation that
aggregates each entity with its GER attribute values. The relation is given the
conventional name desc-E, for description of E. This relation comprises an entity
attribute, with name E, and defined on entity domain E. This attribute is a key of the
relation. Then, for each GER attribute, it comprises an ERM attribute, with the same
name and the same domain. Later on, we will see that, in some circumstances, this
relation can include other entity domains.

In this way, we can easily describe, beyond plain GER structures, an entity type
without attributes, or without identifiers, or with complex constraint patterns.

 The Transformational Approach to Database Engineering 129

GER constructs ERM constructs

PERSON

PERSON: entities;

PERSON

EMPLOYEE CUSTOMER

PERSON: entities;

EMPLOYEE: PERSON;

CUSTOMER: PERSON;

D

PERSON

EMPLOYEE CUSTOMER

PERSON: entities;

EMPLOYEE: PERSON;

CUSTOMER: PERSON;

EMPLOYEE ∩ CUSTOMER = ∅

T

PERSON

EMPLOYEE CUSTOMER

PERSON: entities;

EMPLOYEE: PERSON;

CUSTOMER: PERSON;

EMPLOYEE ∪ CUSTOMER = PERSON

ORDER

Ord-ID
Date-Received
Origin

id: Ord-ID

ORDER: entities;
desc-ORDER(ORDER,
 Ord-ID: number,
 Date-received: date,
 Origin: string);

id(desc-ORDER): Ord-ID;

1-1
0-N

owner of

CUSTOMER ACCOUNT

of(owner: CUSTOMER, ACCOUNT);

of[ACCOUNT] = ACCOUNT;

0-N

1-N0-20

export

Vol

PRODUCT

COUNTRY

COMPANY export(COMPANY, PRODUCT, COUNTRY, Vol);

export[PRODUCT] = PRODUCT;

card(export.COMPANY): [0-20];

ORDER
Ord-ID
Date-Received
Origin
ref: Origin

CUSTOMER
Customer-ID

id: Customer-ID

desc-ORDER(ORDER, …, Origin: string);

desc-CUSTOMER(CUSTOMER, Customer-ID);

id(desc-CUSTOMER): Customer-ID;

desc-ORDER[Origin]
 ⊆ desc-CUSTOMER[Customer-ID];

Fig. 24. Main GER-to-ERM transformations (left to right) and their inverse (right to left)

130 J.-L. Hainaut

Note on the Representation of Functional Relationship Types

A rel-type is functional if it is binary, has no attributes and if at least one of its roles
has cardinality [i-1]. Let us consider the functional rel-type of, between ACCOUNT and
CUSTOMER, in Fig. 4, and recalled in Fig. 24. These three constructs translate in
ERM as follows (note that the identifier of ACCOUNT has not been translated yet):

CUSTOMER, ACCOUNT: entities;
desc-CUSTOMER(CUSTOMER, …);
desc-ACCOUNT(ACCOUNT, Account-Nbr, Amount);
of(CUSTOMER, ACCOUNT);
desc-CUSTOMER[CUSTOMER] = CUSTOMER;
desc-ACCOUNT[ACCOUNT] = ACCOUNT;
of[ACCOUNT] = ACCOUNT;

This schema happens to meet the preconditions of the semantics-preserving project-
join transformation that will be studied in Section 11.1. Its application yields the fol-
lowing equivalent, but simpler, schema, in which the relations desc-ACCOUNT and of
have been joined:

CUSTOMER, ACCOUNT: entities;
desc-CUSTOMER(CUSTOMER, …);
desc-ACCOUNT'(ACCOUNT, Account-Nbr, Amount, Customer: CUSTOMER);
desc-CUSTOMER'[CUSTOMER] = CUSTOMER;
desc-ACCOUNT'[ACCOUNT] = ACCOUNT;

This form is quite interesting. Indeed, it allows us to specify, in a particularly simple
and elegant way, complex constraints, such as hybrid identifiers, that is, identifiers
that combine attributes and/or remote roles. Such an identifier is associated with en-
tity type ACCOUNT in Fig. 4, the legend of which tells us that the accounts of a cus-
tomer have distinct Account numbers, which makes [ACCOUNT] a dependent or
weak entity type. Specifying this identifier is straightforward:

id(desc-ACCOUNT)': Customer, Account-Nbr

11 The ERM Transformations

In this section, we describe five important families of semantics-preserving paramet-
ric transformations that can be applied to ERM schemas. Basically, they are relational
transformation and could be applied to any N1NF schema as well.

For each family, after a description of the principles, we specify the structural
mapping T, through conditions P and Q (expressed in an intuitive way, through
abstract structural patterns), if available, the description of useful variants, the signa-
ture of direct and inverse transformation, a discussion of their properties and an
example. The t part will be ignored here. See [20] for a more detailed description of
these transformations.

In the following descriptions, U is the set of attributes of relation R, while I, J and
K denote subsets of U.

 The Transformational Approach to Database Engineering 131

11.1 Project-Join Transformations

Principle
A relation R in which a multivalued dependency (e.g., a FD) holds can be decom-
posed into smaller fragments according to this dependency [13].

Structural mapping

P R(U); {I,J,K} is a partition of U; I →→ J|K;
Q R1(I J); R2(I K); R1[I]=R2[I];

Variants
The project-join transformation can be particularized to relations in which I, J and/or
K are made up of one attribute only, in which K is optional, in which K is multivalued,
in which J is empty, and in which J and K are multivalued.

Signatures

direct : (R1,R2) ←⎯ PJ(R,I,J)
reverse : R ←⎯ PJ-1(R1,R2,I)

Discussion
This transformation is the variant of the relational decomposition theorem mentioned
in Section 4.3. It is therefore symmetrically reversible.

Example

Source schema works(who:EMP,in:PROJ,for:DEPART)
 works:who ⎯→ for

Transformation (works-in,works-for) ←⎯ PJ(works,{who},{in})

Target schema works-in(who:EMP,in:PROJ)
 works-for(who:EMP,for:DEPART)
 works-in[who] = works-for[who]

11.2 Denotation Transformation

Principle
The result of a query E defined by, say, an algebraic expression, and the schema of
which comprises attributes AE, is explicitly represented in schema S with a denota-
tional domain X. Bijective relation D acts as a dictionary for the elements of X. This
operator is mainly technical and is used as a basis for the next transformation. It is
trivially symmetrically reversible.

Structural mapping

P schema S; algebraic expression E with schema SE(A1,…,An)

Q schema S; domain X; D(X,A1,…,An); D[A1,…,An] = E[A1,…,An]; X appears

in D only

132 J.-L. Hainaut

Signatures

direct : (X,D,{A1,…,An}) ←⎯ den(S,)

reverse : () ←⎯ den-1(X,D)

11.3 Extension Transformations

Principle

The projection of a relation R on a subset {I1,…,In} of its attributes is explicitly

represented by surrogate domain X. Bijective relation D acts as a dictionary for the
elements of X. This domain replaces I in R, leading to relation T.

Structural mapping

P R(U); {I,J} is a partition of U

Q domain X; D(X,I); T(X,J); D[X] = T[X]; X appears in D and T only

Variants
When I = U, J is empty, so that the transformation degenerates into:

P R(U);

Q domain X; D(X,U); X appears in D only

If I comprises at least 2 attributes, it can be partitioned into subsets {I1,..,Im}.

Considering the FD D:X ⎯→ I, we can apply the project-join transformation to D
according to this partition. Expressing the lost FD D:I ⎯→ X on the join of the
fragments, we get the two extension-decomposition transformations (according to
whether J is not empty or empty):

P R(U); {I1,..,Im,J} is a partition of U; m > 1

Q Di(X,Ii); T(X,J); Di[X] = T[X]; i∈[1..m]

(*Di,i∈[1..m]): I1,..,Im ⎯→ X;

X appears in Di and T only; i∈[1..m]

P R(U); {I1,..,Im} is a partition of U; m > 1

Q Di(X,Ii); Di[X] = Dj[X]; i,j∈[1..m]

(*Di,i∈[1..m]): I1,..,Im ⎯→ X;

X appears in Di only; i∈[1..m]

Signatures

Extension

direct : (X,D,T) ←⎯ ext(R,I)
reverse : R ←⎯ ext-1(X,D,T)

 The Transformational Approach to Database Engineering 133

Extension decomposition

direct : (X,{D1,D2,..,Dm},T) ←⎯ ext-dec(R,{I1,I2,..,Im})

reverse : R ←⎯ ext-dec-1(X,{D1,D2,..,Dm},T)

For transformations where J is empty, parameter T is void.

Discussion
This family of operators is particularly powerful, since it allows us to generate most
entity-generating and entity-removing transformations [17]. Based on the den and PJ-1
transformations, it is symmetrically reversible. The role of the parameter I can be inter-
preted as follows: the subset I of attributes of R seems to represent an outstanding
concept which would deserve being described by a new surrogate domain X.

Example of the extension transformation

Source schema program(TEACHER,SUBJECT,DATE)

Transformation (LECTURE,defined-as,program) ←⎯
 ext(program,{TEACHER,SUBJECT})

Target schema domain LECTURE
 program(LECTURE,DATE)
 defined-as(LECTURE,TEACHER,SUBJECT)
 defined-as[LECTURE] = program[LECTURE]

11.4 Composition Transformations

Principle
A relation S is replaced by its composition T with another relation R.

Structural mapping

P R(I K); S(K L); S[K] ⊆ R[K]; I,K,L not empty;

Q R(I K); T(I L); T[I] ⊆ R[I]; R*T: K →→ L|I

Variants
The transformation simplifies when R is bijective:

P R(I K); S(K L); S[K] ⊆ R[K]; I,K,L not empty;

Q R(I K); T(I L); T[I] ⊆ R[I];

The latter form generalizes to N-ary relations:

P R(I K J); S(K L); S[K] ⊆ R[K]; I,J,K,L not empty;

Q R(I K J); T(I L); T[I] ⊆ R[I]

Signatures (simple form)

direct : T ←⎯ comp(R,S,K)
reverse : S ←⎯ comp-1(R,T,I)

134 J.-L. Hainaut

Signatures (N-ary form)

direct : T ←⎯ comp(R,S,K,I)
reverse : S ←⎯ comp-1(R,T,I,K)

Discussion
These operators derive from transformations PJ and PJ-1. Therefore they are symmet-
rically reversible. In the bijective variants, the transformation is symmetrical and can
be seen as substituting in S a key I of R for the key K.

Example

Source schema manages(MANAGER,DEPART)
 works-in(EMPLOYEE,DEPART)
 works-in[DEPART] ⊆ manages[DEPART]

Transformation works-for ←⎯
 comp(manages,works-in,{DEPART})

Target schema manages(MANAGER,DEPART)
 works-for(EMPLOYEE,MANAGER)
 works-for[MANAGER] ⊆ manages[MANAGER]

11.5 Nest-Unnest Transformations

Principle
A N1NF relation R that comprises a multivalued attribute B is replaced by S, its
equivalent 1NF version [43] [31].

Structural mapping

P R(I,B[1-N]);

Q S(I,B);

Variants
The cardinality of attribute B prohibits empty sets (otherwise values of I are lost),
which can be too strong a precondition. Hence the following variant, in which the
tuples of R with an empty B set can be rebuilt from the elements of the evaluation of
that do not appear in S:

P R(I,B[0-N]); R[I] = E; where E is any algebraic expression over the database
schema

Q S(I,B); S[I] ⊆ E;

If B is a compound but single-valued attribute, this operator degenerates into a dis-
aggregation transformation as follows, where K is a set of attributes:

P R(I,B(K));

Q S(I,K);

 The Transformational Approach to Database Engineering 135

Signatures

direct : S ←⎯ unnest(R,B)
reverse : R ←⎯ unnest-1(S,B)

Discussion
Unnest, together with its inverse nest, are the main algebraic operators specific to
N1NF relational models. This version of unnest is symmetrically reversible. Indeed,
R meets the following criterion of reversibility (see [10] for instance): considering the
relation R(A,B[0-N],C), the application of the unnest relational operator on B is (sym-
metrically) reversible iff:

• no tuple of R has an empty B value (as if the cardinality property of B actually
was [1-N]),

• B is functionally (possibly non minimally) dependent on the set of all the other
attributes of R.

Examples

Source schema contacts(EMPLOYEE,PHONE[1-N])

Transformation contact ←⎯ unnest(contacts,PHONE)

Target schema contact(EMPLOYEE,PHONE)

Source schema descr(EMPLOYEE,CHILD[0-N])
 descr[EMPLOYEE] = EMPLOYEE

Transformation children ←⎯ unnest(descr,CHILD)

Target schema children(EMPLOYEE,CHILD)

Note in this example the instance "descr[EMPLOYEE] = EMPLOYEE" of the pattern
"R[I] = E".

12 Analyzing and Generating GER Transformations

12.1 Analyzing GER Transformations

The issue is to prove that a known, but possibly ill-defined, practical transformation is
correct and complete as far as semantics preservation is concerned. In this context, we
will revisit the three transformations that we have informally used in the introductory
example of Fig. 1, and that also are the most popular, notably in database logical design.
Due to space limit, only the main patterns will be discussed. For any variant of the
source schema, such as those that are suggested below, the reader is invited to examine
the ERM expression and to infer the actual resulting schema. For example, in the trans-
formation of attribute A2 into an entity type, no hypothesis is made on the participation
of A2 in an identifier of A. If this is the case, the ERM expression clearly shows how to
deal with this pattern, based on the dependency theory21. This is left as an exercise.

21 More precisely the rules that govern the propagation of FD in the projection, the join and the

selection.

136 J.-L. Hainaut

12.2 Transforming an Attribute into an Entity Type

In Fig. 1, this transformation was applied to attribute Author of BOOK, leading to
entity type AUTHOR. Its abstract GER pattern is as follows.

P Q

A
A1
A2[0-N]
A3

⇔ 1-N0-N rA
A

A1
A3

EA2
A2
id: A2

Fig. 25. Transforming an attribute into an entity type

Variants. The reader is invited to examine the following extensions: A2 is single-
valued; A2 is an identifying attribute for A; A2 is a component of an identifier of A; A
is a compound attribute; the cardinality property is [0-5] or [1-5]; A2 is a set of attrib-
utes of A.

Signatures

direct : (EA2,rA) ←⎯ att-to-et(A,A2)
reverse : A2 ←⎯ att-to-et-1(EA2)

Analysis

We express the source schema (left) in ERM, then we extract and flatten the multival-
ued attribute:

A: entities;
desc-A(A,A1,A2[0-N],A3);
desc-A[A]=A;

⇔

(desc-A',R) ←⎯ PJ(desc-A,{A},{A2})

A: entities;
desc-A'(A,A1,A3);
R(A,A2[1-N]);
desc-A'[A]=A;

⇔

R' ←⎯ unnest(R,A2)

A: entities;
desc-A'(A,A1,A3);
R'(A,A2);
desc-A'[A]=A;

 The Transformational Approach to Database Engineering 137

Now, we define a new entity domain EA2 based on attribute A2 of R':
 ⇔

(EA2,{desc-EA2},rA) ←⎯ ext(R',{A2})

A,EA2: entities;
desc-A'(A,A1,A3);
desc-EA2(EA2,A2);
rA(A,EA2);
desc-A'[A]=A;
desc-EA2[EA2]=rA[EA2]=EA2;

Interpreting this schema in the GER gives the expected target schema (right). We

conclude that att-to-et is an SR-transformation.

12.3 Transforming a Relationship Type into an Entity Type

In the illustration of Fig. 1, we transformed relationship type write into entity type
WRITE. Here is a generalization of this operator for N-ary relationship types, that can
also have attributes (Fig. 26).

P Q

0-N

0-N

0-N
R

R1
R2

CBA

⇔

1-1

0-N

rC

1-1

0-N

rB

1-1

0-N

rA R

R1
R2
id: rA.A

rB.B
rC.C

CBA

Fig. 26. Transforming a relationship type into an entity type

Variants. The roles of R have cardinality constraints other than [0-N]; R is binary;
one (or more) of the roles of R has cardinality [0-1]; R has one (or more) explicit
identifier22.

Signatures

direct : (R,{(A,rA),(B,rB),(C,rC)}) ←⎯ rt-to-et(R)
reverse : R ←⎯ rt-to-et-1(R)

22 The default (not necessarily minimal) identifier of a relationship type is made up of the set of

its roles.

138 J.-L. Hainaut

Analysis
We express the source schema (left) in ERM, then we represent the set of roles by the
new entity domain R:

A,B,C: entities;
R(A,B,C,R1,R2);
desc-A[A]=A;

⇔

(R,{rA,rB,rC},desc-R) ←⎯ ext-dec(R,{{A},{B},{C}})

A,B,C,R: entities;
rA(R,A); rB(R,B); rC(R,C);
desc-R(R,R1,R2);
rA*rB*rC: A,B,C ⎯→ R;
rA[R]=rB[R]=rC[R]=desc-R[R]=R;

Interpreting this schema in the GER gives the expected target schema (right). We
conclude that rt-to-et is an SR-transformation.

12.4 Transforming a Binary Relationship Type into an Attribute

In Fig. 1, we transformed all the one-to-many relationship types into attributes, then
we declared them foreign keys.

P Q

0-N1-1 R

A
A1
A2
id: A1

B
B1
B2

⇔

A
A1
A2
id: A1

B
B1
B2
A1
ref: A1

Fig. 27. Transforming a relationship type into an attribute (foreign key)

Variants. R is optional for B ([1-1] replaced by [0-1]); R is many-to-many ([1-1]
replaced with [0-N]); the identifier of A is made up of more than one attribute; R is
functional from A to B ([0-N] replaced by [0-1]); R is bijective; R is mandatory for A
([0-N] replaced by [1-N]); R.A appears in an identifier of B.

Signatures

direct : {A1} ←⎯ rt-to-att(R.B)
reverse : R ←⎯ rt-to-att-1(B,{A1},A)

Analysis
We express the source schema (left) in ERM, then we apply the composition trans-
formation:

 The Transformational Approach to Database Engineering 139

A,B: entities;
desc-A(A,A1,A2); desc-B(B,B1,B2); R(A,B);
R[B]=B; desc-A[A]=A; desc-B[B]=B;

⇔

R' ←⎯ comp(desc-of-A,R,{A},{A1})

A,B: entities;
desc-A(A,A1,A2); desc-B(B,B1,B2); R'(A1,B);
desc-B[B]=R'[B]=B; desc-A[A]=A;
R'[A1] ⊆ desc-A[A1];

⇔

desc-B' ←⎯ PJ-1(desc-B,R',B)

A,B: entities;
desc-A(A,A1,A2); desc-B'(B,B1,B2,A1);
desc-A[A]=A; desc-B'[B]=B;
desc-B'[A1] ⊆ desc-A[A1];

Interpreting the latter schema in the GER gives the expected target schema (right).

We conclude that rt-to-att is an SR-transformation.

12.5 Generating GER Transformations

This process consists in exploiting the parametric nature of most ERM transforma-
tions to discover new practical GER transformations. This problem is open, but we
can illustrate it through a more in-depth examination of the extension-decomposition
transformation.

Let us consider the transformation depicted in the Fig. 26. Its analysis is based on
the ERM ext-dec transformation of the ERM relation R(A,B,C,R1,R2) that models the
relationship type R.

P Q

0-N

0-N

0-N
R

R1
R2

CBA

⇔

1-1

0-N

rA 1-1

0-N

rB

1-N

0-N

R

R1
R2AB

id: rA.A
rB.B

CBA

Fig. 28. An unusual transformation deriving from the ext-dec transformation

140 J.-L. Hainaut

The GER rt-to-et transformation we have developed was obtained by choosing, in
the ERM ext-dec transformation, the parameter I to be {A,B,C}. In fact, I is any non
empty subset of the attributes of relation R. For instance, I can be any of the following
subsets, that will generate 31 different equivalent target schemas:

{A}, {A,B}, {A,B,C}, {R1}, {R1,R2}, {A,R1}, {A,R1,R2}, {A,B,R1}, {A,B,R1,R2},
{A,B,C,R1}, {A,B,C,R1,R2}, and all the similar patterns obtained by permutation
within {A,B,C} and {R1,R2}.

The reader is invited to prove the correctness of the transformation of Fig. 28 follow-
ing the reasoning of Section 12.3.

13 Conclusions and Perspectives

Database engineering intrinsically has been model-driven for more than three dec-
ades. Designing, normalizing, merging, optimizing data structures can be performed
at an abstraction level that is, to a large extent, platform independent.

The transformational approach enriches this framework considerably, since it
opens the way to more structured and more reliable engineering processes. This paper
shows that such an approach brings several essential benefits.

 Being formal, it can be used to study rigorously basic properties such as semantics
preservation, that states how the operators preserve the information contents of the
schemas;

 To be fruitful, and to avoid combinatorial explosion, a pivot model, with which we
associate a relational semantics, has proved necessary;

 From the pedagogical view point, this approach provides a disciplined and reliable
way to conduct important processes such as logical design, which many students
too often tend to consider as some kind of magic;

 Developing CASE tools based on the transformational approach leads to more
reliable products, notably as far as generation completeness is concerned;

 A transformational approach based on a pivot model is by construction scalable;
introducing a new model M involves the development of components independent
of the existing models.

Several problems still are to be addressed, of which we mention a sample.

 How to integrate transformational database engineering into emerging MDE
framework(s)?

 How to cope with the other aspects of data structures, in particular how do integ-
rity constraints propagate?

 How can data structure transformations be propagated to the other components of
the information system, notably the data (data conversion), the human/computer
interfaces and the programs?

 The Transformational Approach to Database Engineering 141

References and Resources

1. Alves, T.L., Silva, P.F., Visser, J., Oliveira, J.N., Strategic Term Rewriting and Its Appli-
cation to a Vdm-SL to SQL Conversion, in Proc. FM 2005, LNCS, No 3582, Springer-
Verlag. (2005) 399-414

2. Baader, F., Horrocks, I., and Sattler, U. Description logics. In Staab, S. and Studer, R.
(Ed.), Handbook on Ontologies, International Handbooks on Information Systems, pages
3-28. Springer, (2004).

3. Balzer, R. Transformational implementation : An example. IEEE TSE, Vol. SE-7(1).
(1981)

4. Batini, C., Ceri, S., & Navathe, S., B. Conceptual Database Design, Benjamin/Cummings.
(1992)

5. Batini, C., Di Battista, G., Santucci, G. Structuring Primitives for a Dictionary of Entity
Relationship Data Schemas, IEEE TSE, Vol. 19, No. 4. (1993)

6. Bolois, G., & Robillard, P. Transformations in Reengineering Techniques. Proc. of the 4th
Reengineering Forum "Reengineering in Practice", Victoria, Canada. (1994)

7. Boyd, M., McBrien. Towards a Semi-Automated Approach to Intermodel Transformation,
In Proceedings of EMMSAD'04,Volume 1, CAiSE Workshop Proceedings, Riga Technical
University. (2004) 175-188

8. Casanova, M., A., Amaral De Sa. Mapping uninterpreted Schemes into Entity-Relationship
diagrams : two applications to conceptual schema design. IBM J. Res. & Develop., 28(1).
(1984)

9. Clève, A., Henrard, J., Hainaut, J-L. Co-transformations in Information System Reenginee-
ring, in Proc. of WCRE'04/ATEM-04, (2004)

10. Darwen, H., Date, C., J. Relation-valued Attributes, in Date, C., J., Darwen, H., Relational
Database Writings 1989-1991, Addison-Wesley (1993)

11. D'Atri, A., & Sacca, D. Equivalence and Mapping of Database Schemes, Proc. 10th VLDB
conf., Singapore. (1984)

12. Estiévenart, F., François, A., Henrard, J., Hainaut, J-L. Web Site Engineering. Proc. of the
5th International Workshop on Web Site Evolution, Amsterdam, Sept. 2003, IEEE CS
Press. (2003)

13. Fagin, R. Multivalued dependencies and a new normal form for relational databases, ACM
TODS, 2(3). (1977)

14. Fikas, S., F. Automating the transformational development of software, IEEE TSE, Vol.
SE-11. (1985)

15. Hainaut, J-L. Theoretical and practical tools for database design, in Proc. of the Very
Large Databases Conf., pp. 216-224, September, IEEE Computer Society Press. (1981)

16. Hainaut, J.-L. A Generic Entity-Relationship Model. Proc. of the IFIP WG 8.1 Conf. on
Information System Concepts: an in-depth analysis, North-Holland. (1989)

17. Hainaut, J-L. Entity-generating Schema Transformations for Entity-Relationship Models,
in Proc. of the 10th Entity-Relationship Approach, San Mateo (CA), 1991, North-Holland.
(1992)

18. Hainaut, J-L., Chandelon M., Tonneau C., & Joris M. (1993). Contribution to a Theory of
Database Reverse Engineering. Proc. of the IEEE Working Conf. on Reverse Engineering,
Baltimore, May 1993, IEEE Computer Society Press.

19. Hainaut, J-L, Chandelon M., Tonneau C., Joris M. Transformational techniques for data-
base reverse engineering. Proc. of the 12th Int. Conf. on ER Approach, Arlington-Dallas,
ER Institute (and LNCS Springer-Verlag in 1994). (1993)

142 J.-L. Hainaut

20. Hainaut, J-L. Transformation-based database engineering. Tutorial notes, VLDB'95, Zü-
rich, Switzerland, (1995) (available at http://www.info.fundp.ac.be/libd).

21. Hainaut, J-L. Specification preservation in schema transformations - application to seman-
tics and statistics, Data & Knowledge Engineering, 11(1). (1996)

22. Hainaut, J-L., Henrard, J., Hick, J-M., Roland, D., Englebert, V. Database Design Recove-
ry, in Proc. of the 8th Conf. on Advanced Information Systems Engineering (CAiSE•96),
Springer-Verlag (1996)

23. Hainaut, J.-L., Hick, J.-M., Englebert, V., Henrard, J., Roland, D. Understanding imple-
mentations of IS-A Relations, in Proc. of the conference on the ER Approach, Cottbus,
Oct. 1996, LNCS, Springer-Verlag (1996).

24. Hainaut, J-L. Transformation-based Database Engineering. In: [47]. (2005) 1–28
25. Halpin, T., A., & Proper, H., A. Database schema transformation and optimization. Proc.

of the 14th Int. Conf. on ER/OO Modelling (ERA). (1995)
26. Henrard, J., Hick, J-M. Thiran, Ph., Hainaut, J-L. Strategies for Data Reengineering, in

Proc. of WCRE'02, IEEE Computer Society Press. (2002)
27. Hick, J-M., Hainaut, J-L. Strategy for Database Application Evolution: the DB-MAIN Ap-

proach, in Proc. ER'2003 conference, Chicago, Oct. 2003, LNCS Springer-Verlag. (2003)
28. Jajodia, S., Ng, P., A., & Springsteel, F., N. The problem of Equivalence for Entity-

Relationship Diagrams, IEEE Trans. on Soft. Eng., SE-9(5). (1983)
29. Kobayashi, I. Losslessness and Semantic Correctness of Database Schema Transformation

: another look of Schema Equivalence, Information Systems, 11(1). (1986) 41-59
30. Lämmel, R. Coupled Software Transformations (Extended Abstract), In Proc. First Inter-

national Workshop on Software Evolution Transformations (SET 2004). (2004)
[http://banff.cs.queensu.ca/set2004/set2004_proceedings_acrobat4.pdf]

31. Levene, M. The Nested Universal Relation Database Model, LNCS 595, Springer-Verlag.
(1992)

32. Lien, Y., E. On the equivalence of database models, JACM, 29(2). (1982)
33. Ling, T., W. External schemas of Entity-Relationship based DBMS, in Proc. of Entity-

Relationship Approach : a Bridge to the User, North-Holland. (1989)
34. McBrien P., & Poulovassilis, A. Data integration by bi-directional schema transformation

rules, Proc 19th International Conference on Data Engineering (ICDE'03), IEEE Compu-
ter Society Press. (2003)

35. Motro, Superviews: Virtual integration of Multiple Databases, IEEE Trans. on Soft. Eng.
SE-13, 7, (1987)

36. Navathe, S., B. Schema Analysis for Database Restructuring, ACM TODS, 5(2), June
1980. (1980)

37. Partsch, H., & Steinbrüggen, R. Program Transformation Systems. Computing Surveys,
15(3). (1983)

38. Poole, J. Model-Driven Architecture : Vision, Standards And Emerging Technologies. in
Proc. of ECOOP 2001, Workshop on Metamodeling and Adaptive Object Models, (2001)

39. Rauh, O., & Stickel, E. Standard Transformations for the Normalization of ER Schemata.
Proc. of the CAiSE•95 Conf., Jyväskylä, Finland, LNCS, Springer-Verlag. (1995)

40. Roland, D. Database engineering process modelling, PHD Thesis, University of Namur.
http://www.info.fundp.ac.be/~dbm/publication/2003/these-dro.pdf (2003)

41. Rosenthal, A., & Reiner, D. Theoretically sound transformations for practical database de-
sign. Proc. of Entity-Relationship Approach. (1988)

42. Rosenthal, & A., Reiner, D. Tools and Transformations - Rigourous and Otherwise - for
Practical Database Design, ACM TODS, 19(2). (1994)

 The Transformational Approach to Database Engineering 143

43. Schek, H-J., Scholl, M., H. () The relational model with relation-valued attributes, Infor-
mation Systems, 11. (1986) 137-147

44. Thalheim, B. Entity-Relationship Modeling: Foundation of Database Technology.
Springer-Verlag, (2000)

45. Thiran, Ph., Hainaut, J-L. Wrapper Development for Legacy Data Reuse. Proc. of
WCRE'01, IEEE Computer Society Press. (2001)

46. Thiran, Ph., Estiévenart, F., Hainaut, J-L., Houben, G-J, A Generic Framework for Extrac-
ting XML Data from Legacy Databases, in Journal of Web Engineering, Rinton Press,
(2005)

47. van Bommel, P. (Ed.). Transformation of Knowledge, Information and Data: Theory and
Applications, Information Science Publ., Hershey. (2005)

48. van Griethuysen, J.J., (Ed.). Concepts and Terminology for the Conceptual Schema and the
Information Base. Publ. nr. ISO/TC97/SC5-N695. (1982)

Program Optimizations and Transformations
in Calculation Form

Zhenjiang Hu, Tetsuo Yokoyama, and Masato Takeichi

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo 113-8656, Tokyo, JAPAN

{hu, takeichi}@mist.i.u-tokyo.ac.jp
yokoyama@ipl.t.u-tokyo.ac.jp

Abstract. The world of program optimization and transformation takes on a new
fascination when viewed through the lens of program calculation. Unlike the tra-
ditional fold/unfold approach to program transformation on arbitrary programs,
the calculational approach imposes restrictions on program structures, resulting in
some suitable calculational forms such as homomorphisms and mutumorphisms
that enjoy a collection of generic algebraic laws for program manipulation. In
this tutorial, we will explain the basic idea of program calculation, demonstrate
that many program optimizations and transformations, such as the optimization
technique known as loop fusion and the parallelization transformation, can be
concisely reformalized in calculational form, and show that program transforma-
tion in calculational forms is of higher modularity and more suitable for efficient
implementation.

Keywords: Program Transformation, Program Calculation, Program Optimiza-
tion, Meta Programming, Functional Programming.

1 Introduction

There is a well-known Chinese proverb: aFs (one cannot have both fishes and bear
palms at the same time), implying that one can hardly obtain two treasures simultane-
ously. The same thing happens in our programming: clarity is and is not next to good-
ness. Clearly written programs have the desirable properties of being easy to under-
stand, show correct, and modify, but they can also be extremely inefficient. In software
engineering, one major design technique for achieving clarity is modularity: breaking a
problem into independent components. But modularity can lead to inefficiency, because
of the overhead of communication between components, and because it may preclude
potential optimizations across component boundaries.

However, it is possible to have both fishes and bear palms at different times: we
start by writing clean and correct (but probably inefficient) programs, and then use
program calculation techniques to transform them to more efficient equivalents. To see
this, consider the problem of summing up all bigger elements in an array. An element is
bigger if it is greater than the sum of the elements that follow it till the end of the array.
We may start with the following C program, which clearly solves the problem.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 144–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Program Optimizations and Transformations in Calculation Form 145

/* copy all bigger elements from A[0..n-1] into B[] */
count = 0;
for (i=0; i<n; i++) {

sumAfter = 0;
for (j=i+1; j<n; j++) {

sumAfter += A[j];
}
if (A[i] > sumAfter)

B[count++] = A[i];
}

/* compute the sum of all elements in B[] */
sumBiggers = 0;
for (i=0; i<count; i++) {

sumBiggers += B[i];
}
return sumBiggers;

This program, though being straightforward, is inefficient due to (1) some unnecessary
repeated computations of sumAfter and (2) the use of additional array B[] pass-
ing from the upper for-loop to the lower for-loop. We may expect that an automatic
transformation can produce the following efficient linear-time program.

sumBiggers = 0;
sumAfter = 0;
for (i=n-1; i>=0; i--) {

if (A[i] > sumAfter)
sumBiggers += A[i];

sumAfter += A[i];
}
return sumBiggers;

In this paper, rather than writing programs using C or Java, we use the functional
language Haskell [1, 2]. The special characteristics and advantages of functional pro-
gramming are two-fold. First, it is good for writing clear and modular programs because
it supports a powerful and elegant programming style. As pointed by Hughes [3], func-
tional programming offers important advantages for software development. Second, it
is good for performing transformation because of its nice mathematical properties.

We can express the above two C programs, inefficient and efficient, in Haskell, where
loops are represented by recursions.

sumBiggers = sum ◦ biggers
where

biggers [] = []
biggers (a : x) = if a > sum x then a : biggers x else biggers x
sum [] = 0
sum (a : x) = a + sum x

146 Z. Hu, T. Yokoyama, and M. Takeichi

sumBiggers x = let (b, c) = sumBiggers’ x in b
where

sumBiggers’ [] = (0, 0)
sumBiggers’ (a : x) = let (b, c) = sumBiggers’ x

in if a > c then (a + b, a + c) else (b, a + c)

One methodology that offers some scope for making the construction of efficient
programs more mathematical is transformational programming [4, 5, 6]. Program cal-
culation is a kind of program transformation based on the theory of Constructive
Algorithmics [7, 8, 9, 10, 11, 12]. It is a kind of transformational programming that
derives an efficient program in a step-by-step way through a series of ”transformations”
that preserve the meaning and hence the correctness. A significant practical problem
in traditional transformational programming is that a very large number of steps seem
needed: the individual steps are too small, while in program calculation, formalisms
and theories are developed with which a whole series of small steps can be combined
into one single step at a higher level.

Program calculation proceeds by means of manipulation of programs based on a
rich collection of identities and transformation laws. It resembles the manipulation of
formulas as in high school algebra: a formula F is broken up into its semantic relevant
constituents and the pieces are assembled together into a different but semantically
equivalent formula F ′, thus yielding the equality F ≡ F ′. The following example
shows a calculation of the solution of x for the equation x2 − c2 = 0.

x2 − c2 = 0
≡ { by identity: a2 − b2 = (a − b)(a + b) }

(x − c)(x + c) = 0
≡ { by law: ab = 0 ⇔ a = 0 or b = 0 }

x − c = 0 or x + c = 0
≡ { by law: a = b ⇔ a ± d = b ± d }

x = c or x = −c

Here we calculate x rather than guess or just invent, based on some identities and laws
(rules). Particularly, we make use of the transformation law that a higher order equation
should be factored into several first order ones whose solution can be easily obtained.

In this tutorial, we will see that program calculation provides a powerful tool to for-
malize various kinds of program transformations [13, 14, 15, 16], besides its usefulness
in guiding people to derive efficient algorithms. We will explain the basic idea of pro-
gram calculation from the practical point of view, demonstrate that a lot of program
optimizations and transformations, including the well-known loop fusion and paral-
lelization, can be concisely reformalized in calculational forms, and show that program
transformation in calculational forms is of higher modularity and more suitable for ef-
ficient implementation.

It is worth noting that all transformations in this tutorial have been tested with the
Yicho system [17], a transformation system developed at the University of Tokyo. We
encourage the reader to play with the Yicho system when reading this material. The
Yicho system is available at the following site.

http://www.ipl.t.u-tokyo.ac.jp/yicho/

Program Optimizations and Transformations in Calculation Form 147

The rest of this tutorial is organized as follows. We start with a simple example to
illustrate the basic concepts of program calculation, and clarify its difference from the
traditional fold/unfold transformations in Section 2. Then, we demonstrate how to for-
malize two nontrivial transformations, namely loop fusion and parallelization, in calcu-
lational forms in Sections 3 and 4 respectively. And we show that program calculations
can be efficiently implemented by the Yicho system in Section 5. Finally, we conclude
the paper with a summary of the advantages of formalizing program transformations in
calculational forms in Section 6.

2 Program Calculation vs Fold/Unfold Transformations

In this section, we illustrate with a simple example the basic concepts of program cal-
culation, show the main idea of calculational approach to program transformation, and
clarify its difference from the traditional fold/unfold approach to program transforma-
tions and program optimizations.

2.1 Notational Conventions

First of all, we briefly review the notational conventions known as Bird-Meertens For-
malisms [7]. The notations are similar to those in Haskell [2].

Functions. Programs are defined as functions. Function application is denoted by jux-
taposition of function and argument. Thus f a means f (a). Functions are curried, and
application associates to the left. Thus f a b means (f a) b. Function application is re-
garded as more binding than any other operator, so f a ⊕ b means (f a) ⊕ b, but not
f (a ⊕ b). Function composition is denoted by a centralized circle ◦. By definition,
(f ◦ g) a = f (g a). Function composition is an associative operator, and the identity
function is denoted by id.

Lambda expressions are sometimes used to define a function without giving it a
name. So λx. e denotes a function, accepting an input x, computing e, and returning its
value as result. For example, λx.2 ∗ x simply denotes a function doubling the input.

Infix binary operators will often be denoted by ⊕, ⊗ and can be sectioned; an infix
binary operator like ⊕ can be turned into unary functions as follows.

(a⊕) b = a ⊕ b = (⊕ b) a

Lists. Lists are finite sequences of values of the same type. The type of the cons lists
with elements of type a is defined as follows.

data [a] = [] | a : [a]

A list is either empty or a list constructed by inserting a new element to a list. We write
[] for the empty list, [a] for the singleton list with element a (and [·] for the function
taking a to [a]), and x ++ y for the concatenation of two lists x and y. Concatenation is
associative, and [] is its unit. For example, the term [1] ++ [2] ++ [3] denotes a list with

148 Z. Hu, T. Yokoyama, and M. Takeichi

three elements, often abbreviated to [1, 2, 3]. As seen above, we usually use a, b, c to
denote list elements, and x, y, z to denote lists.

Recursive Functions. Functions may be defined recursively. The following are two
recursive functions for sorting a list.

sort [] = []
sort (a : x) = insert a (sort x)
insert a [] = [a]
insert a (b : x) = if a ≥ b then a : (b : x)

else b : insert a x

Here sort is recursively called in its definition body, and so does insert.

Higher Order Functions. Higher order functions are functions which can take other
functions as arguments, and may also return functions as results. A simple but useful
higher order function is map, which applies a function to each element of a list. For
instance, we may write map (1+) to increase each element of a list by 1.

map (1+) [1, 2, 3, 4, 5] = [2, 3, 4, 5, 6]

2.2 The Fold/Unfold Approach to Program Transformation

Before explaining the calculational approach [7, 18, 9, 12] to program transformation,
the topic of this tutorial, let us take a look at the traditional unfold/fold approach
[4, 5, 6, 19] and explain its problems.

To be concrete, consider the problem of finding a maximum in a list. Suppose that
we already have sort (as defined above) in hand. Then, a direct solution is to sort the
input and to return the first element:

max x = hd (sort x)

where hd is a function to return the first element from a list if the list is not empty, and
to return −∞ otherwise:

hd [] = −∞
hd (a : x) = a.

This solution is obviously inefficient; it is a quadratic algorithm.
Let us demonstrate how to apply the fold/unfold transformations to obtain a new

efficient recursive definition for max. For the base case, we unfold the definition step by
step.

max []
= { unfold max }

hd (sort [])
= { unfold sort }

hd []
= { unfold hd }

−∞

Program Optimizations and Transformations in Calculation Form 149

Then for the recursive case, we do unfolding similarly.

max (a : x)
= { unfold max }

hd (sort (a : x))
= { unfold sort }

hd (insert a (sort x))

We get stuck here; we cannot perform folding to get a recursive definition unless more
information is exposed. To expose more information, we unfold insert, by assuming
b : x′ = sort x, that is

b = hd (sort x)
x′ = tail (sort x)

and continue our transformation.

hd (insert a (b : x′))
= { unfold insert }

hd (if a ≥ b then a : (b : x′) else b : insert a x′)
= { law: f (if b then e1 else e2) = if b then f e1 else f e2 }

if a ≥ b then hd (a : (b : x′)) else hd (b : insert a x′)
= { unfold hd }

if a ≥ b then a else b
= { unfold b }

if a ≥ hd (sort x) then a else hd (sort x)
= { fold max }

if a ≥ max x then a else max x

The last folding step is the key to the success of the derivation of the following efficient
program.

max [] = −∞
max (a : x) = if a ≥ max x then a else max x

The fold/unfold approach to program transformation is general and powerful, but it
suffers from several problems which often prevent it from being used in practice.

– It is difficult to decide when unfolding steps should stop while guaranteeing expo-
sition of enough information for later folding steps.

– It is expensive to implement, because it requires keeping records of all possible
folding patterns and have them checked upon any new subexpressions produced
during transformation.

– Each transformation step is very small, but an effective way is lacking to group
and/or structure them into bigger steps.

2.3 Program Transformations in Calculational Form

A distinguished feature of the calculational approach to program transformation is no
use of folding during transformation, which solves the first two problems the fold/unfold

150 Z. Hu, T. Yokoyama, and M. Takeichi

approach has, and the challenge is how to formalize necessary folding steps by means
of calculation laws (rules). Transformations that are based on a set of calculation laws
but exclude the use of folding steps will be called transformation in calculation form
in this paper. The calculational approach to program transformation advocates more
structured programming, where the inner structure of a loop (recursion) is taken into
account.

Procedure to Formalize Transformations in Calculational Form

The procedure to formalize a program transformation in calculational form consists of
the following three major steps.

1. Define a specific form of programs that are best suitable for the transformation and
can be used to describe a class of interesting computations.

2. Develop calculational rules (laws) for implementing the transformation on pro-
grams in the specific form.

3. Show how to turn more general programs into those in the specific form and how
to apply the newly developed calculational rules systematically.

The first step plays a very important role in this formalization. The specific form de-
fined in the first step should meet two requirements. First, it should be powerful enough
to describe computations of our interest. Second, it should be manipulable and suitable
for later development of calculational laws. In fact, the Constructive Algorithmics the-
ory [7, 18, 9, 10] provides us a nice theoretical framework to define such specific forms
and to develop calculational rules.

In Constructive Algorithmics, the calculations are based on calculation rules that are
built upon the algebra of programs, a collection of identities. These identities can be
provided by exploiting the algebraic structure of the algebraic data concerned, such
as lists or trees. In particular, there is a close correspondence between data structures
(terms in an algebra) and control structures (homomorphisms mapping from that alge-
bra to another). This correspondence is well captured by categorical functors, which are
very theoretical and fall outside the scope of this tutorial.

Homomorphisms: General Structured Recursive Functions

Recall the structured programming methodology for imperative language, where the
use of arbitrary goto’s is abandoned in favor of structured control flow primitives such
as conditionals and while-loop so that program transformation becomes easier and el-
egant. For high level algorithmic programming like functional programming, recursive
definitions provide a powerful control mechanism for specifying programs. Consider
the following recursive definition on lists:

f (a : x) = · · · f x · · · f (g x) · · · f (f x) · · ·

There is usually no specific restriction on the right hand side; it can be any expression
where recursive calls to f may be of any form and appear anywhere. This somehow
resembles the arbitrary use of goto’s in imperative programs, which makes recursive

Program Optimizations and Transformations in Calculation Form 151

definitions hard to manipulate. In contrast, the calculational approach imposes suitable
restrictions on the right hand side resulting in a suitable calculation form. Homomor-
phisms are one of the most general and important calculational forms.

Homomorphisms are functions that manipulate algebraic data structures such as lists
and trees. They are derivable from the concerned structure of the algebraic data. Recall
the list data structure [α]. It can be considered as the algebra of

([α], [] :: [α], (:) :: a → [α] → [α])

in which the carrier [α] denotes all lists whose elements are of type α, and two opera-
tions, namely [] with type [α] and (:) with type a → [α] → [α], are the data constructors
for building up lists. An important recursive form known as list homomorphism homl,
capturing a basic recursive form of recursive functions over lists, maps from this algebra
to another similar one, say (R, e :: R, (⊕) :: a → R → R), and is defined by

homl :: [α] → R
homl [] = e
homl (a : x) = a ⊕ homl x.

In essence, homl is a relabeling: it replaces every occurrence of [] with e and every
occurrence of : with ⊕ in the cons list. Since such a list homomorphism is uniquely
determined by e and ⊕, we usually describe it by

homl = ([e, ⊕])l

and when it is clear from the context, we may omit the subscript l which is used to
denote homomorphism on lists.

List homomorphisms are important in defining functions to manipulate lists. The fol-
lowing lists several useful functions: sum sums up all elements of a list, prod multiples
all elements of a list, maxlist returns the maximum element of a list, reverse reverses a
list, inits computes all initial prefix lists of a list, and map f applies function f to every
element of a list.

sum = ([0, +])
prod = ([1, ×])
maxlist = ([−∞, ↑]) where a ↑ r = if a ≥ r then a else r
reverse = ([[], ⊕]) where a ⊕ r = r ++ [a]
inits = ([[[]], ⊕]) where a ⊕ r = [] : map (a :) r
map f = ([[], ⊕]) where a ⊕ r = f a : r

For a complicated computation on lists, it may be difficult to define it by a single
homomorphism, but it should be easy to define it by composition (combination) of sim-
pler homomorphisms. For example, the following gives a clear program for computing
the maximum sum of all initial segments of a list:

mis = maxlist ◦ (map sum) ◦ inits

which is defined by composition of several list homomorphisms.
Similar studies can be addressed on trees or other algebraic data structures. In this

tutorial, we shall focus ourselves on lists.

152 Z. Hu, T. Yokoyama, and M. Takeichi

Promotion Rule

Homomorphisms enjoy many calculation properties. Among them, the following pro-
motion rule is of great importance, saying that a composition of a function with a ho-
momorphism can be merged into a single homomorphism under a certain condition.

promotion:
f (a ⊕ x) = a ⊗ f x

f ◦ ([e, ⊕]) = ([f e,⊗])

If functions are defined only by homomorphisms rather than by arbitrary recursive
definitions, we can use the promotion rule to manipulate them. Recall the example of
computing the maximum from a list early this section:

max = hd ◦ sort

Inefficiency of this program lies in that sort x computes a result that contains too much
useless information for the later computation by hd. The standard way is to fuse the two
functions hd and sort into a single one which does not include unnecessary computation.
Fusion based on the fold/unfold transformations has been explained before. Let us see
how to calculate an efficient max with the promotion calculation rule. Notice that sort =
([[], insert]). The promotion rule tells us that if we can derive ⊗ such that

∀a, x. hd (insert a x) = a ⊗ hd x

then we can transform hd◦sort to ([−∞, ⊗]). This ⊗ may be obtained via a higher order
matching algorithm [20]. Here, we show another concise calculation.

a ⊗ b = { let x be any list }
a ⊗ hd (b : x)

= { the condition in the promotion rule }
hd (insert a (b : x))

= { definition of insert }
hd (if a ≥ b then a : (b : x) else b : insert a x)

= { if property }
if a ≥ b then hd (a : (b : x)) else hd (b : insert a x)

= { definition of hd }
if a ≥ b then a else b

In summary, we have derived the following definition for max.

max = ([−∞, ⊗])
where a ⊗ b = if a ≥ b then a else b

And it is equivalent to

max [] = −∞
max (a : x) = if a ≥ max x then a else max x

which is the same as the result obtained by the fold/unfold program transformation
before. It is worth noting that the transformation here does not need any folding step,
rather we focus on deriving a new operator from the condition of the promotion rule.

Program Optimizations and Transformations in Calculation Form 153

3 Loop Fusion in Calculation Form

In this section, we demonstrate how to formalize loop fusion in calculational form.
Loop fusion, a well-known optimization technique in compiler construction [21, 22], is
to fuse some adjacent loops into one loop to reduce loop overhead and improve run-time
performance. In the introduction, we have seen an inefficient program for sumBiggers
which consists of three loops, and an equivalent efficient one which uses only a single
loop.

In our framework, loops are specified by recursive definitions. There are basically
three cases for two adjacent loops: (1) one loop is put after another and the result com-
puted by the first is used by the second; (2) one loop is put after another and the result
computed by the first is not used by the second; and (3) one loop is used inside another.
The second case is much simpler. We have seen the first and the third cases in the defi-
nition of sumBiggers in the introduction. Recall the following definition of sumBiggers:

sumBiggers = sum ◦ biggers
biggers [] = []
biggers (a : x) = if a > sum x then a : biggers x else biggers x
sum [] = 0
sum (a : x) = a + sum x

The use of one loop after another is specified by a composition of two recursive func-
tions (sum ◦ biggers), and a nested loop is specified by other function calls applying
to the same input data in the definition body (sum x appears in the definition body of
biggers).

We shall illustrate how to formalize the loop fusion in calculational form by the three
steps in Section 2.3.

3.1 Structured Recursive Form for Loop Fusion

Now we are facing the problem of choosing a proper structured form for recursive
functions. There are two basic requirements for this form. First, it should be powerful
enough to describe computation that manipulates lists. Second, it should be suitable for
loop fusion, where the three cases of loop combination can be coped with. We would
like to show that list mutumorphism is a suitable form for this purpose.

Definition 1 ((List) Mutumorphism). A function f1 is said to be a list mutumorphism
with respect to other functions f2, . . . , fn if each fi (i = 1, 2, . . . , n) is defined in the
following form:

fi [] = ei

fi (a : x) = a ⊕i (f1 x, f2 x, . . . , fn x)

where ei (i = 1, 2, . . . , n) are given constants and ⊕i (i = 1, 2, . . . , n) are given binary
functions. We represent f1 as follows.

f1 = [[(e1, . . . , en), (⊕1, . . . ,⊕n)]]. �

154 Z. Hu, T. Yokoyama, and M. Takeichi

List mutumorphisms have strong expressive power, covering all primitive recursive
functions on lists. It should be noted that list homomorphisms are a special case of
list mutumorphisms:

([e, ⊕]) = [[(e), (⊕)]]

Recall the sumBiggers. We may redefine sum and biggers in terms of mutumorphisms
(or homomorphism) as below.

sumBiggers = ([0, +]) ◦ [[([], 0), (⊕1, ⊕2)]]
where a ⊕1 (r, s) = if a > s then a : r else r

a ⊕2 (r, s) = a + s

3.2 Calculational Rules for Loop Fusion

After formalizing loops by mutumorphisms, we turn to develop calculation rules (laws)
for fusing such loops. We will consider the three cases for loop combination.

First, we consider merging nested loops. Mutumorphism itself is actually a nested
loop, as seen in the definition of biggers. We may flatten this kind of nested loops by
the following flattening calculation rule [14].

Lemma 1 (Flattening).

[[(e1, e2, . . . , en), (⊕1, ⊕2, . . . ,⊕n)]] = fst ◦ ([(e1, e2, . . . , en), ⊕])
where a ⊕ r = (a ⊕1 r, a ⊕2 r, . . . , a ⊕n r)

Here, fst is a projection function returning the first element of a tuple. �

The flattening calculation rule, as its name suggests, flattens a nested loop represented
by a mutumorphism to a homomorphism. Consider, as an example, to apply the flatten-
ing rule to biggers to flatten the nested loop.

biggers
= { mutumorphism for biggers }

[[([], 0), (⊕1, ⊕2)]]
= { flattening rule }

fst ◦ ([([], 0), ⊕])
where a ⊕ (r, s) = (if a > s then a : r else r, a + s)

Inlining the homomorphism in the derived program gives the following readable recur-
sive program, which consists of a single loop.

biggers x = let (r, s) = hom x in r
where hom [] = ([], 0)

hom (a : x) = let (r, s) = hom x
in (if a > s then a : r else r, a + s)

Second, we try to merge two independent loops. Since mutumorphism can be trans-
formed into homomorphism, it is suffice to consider merging of two independent
homomorphisms that manipulate the same lists. This can be done by the tupling trans-
formation [23], whose calculation form is summarized as follows [14].

Program Optimizations and Transformations in Calculation Form 155

Lemma 2 (Tupling).

(([e1, ⊕1]) x, ([e2, ⊕2]) x) = ([(e1, e2), ⊕]) x
where a ⊕ (r1, r2) = (a ⊕1 r1, a ⊕2 r2) �

For example, the following program to compute the average of a list:

average x = sum x/length x

which has two loops can be merged into a single loop by applying the tupling rule.

average x = let (s, l) = tup x in s/l
where tup = ([(0, 0), λa (s, l). (a + s, 1 + l)])

Here, to save space we choose to use lambda expression to define the new binary oper-
ator, which accepts a and (s, l), and returns (a + s, 1 + l).

Finally, we consider fusion of two loops where the result of one loop is used by the
other. When the loops are formalized as homomorphisms, we can use the promotion rule
in Section 2.3 for this fusion, as seen in the example of fusing hd ◦ sort. The promotion
rule fuses function f to a homomorphism from left:

f ◦ ([e, ⊕])

and the following calculation rule [24, 25] shows how to fuse a function to a homomor-
phism from right.

Lemma 3 (Shortcut Fusion).

([e, ⊕]) ◦ build g = g (e, ⊕)

Here, the function build is a list production function defined by1

build g = g ([], (:)). �

The shortcut fusion rule indicates that if one can express a function in build, then it can
be cheaply fused into a homomorphism from its right. Compared with the promotion
rule, the shortcut fusion rule is much simpler and cheap to implement, because it is just
a simple expression substitution. On the other hand, it needs a preparation of deriving a
build form from a homomorphism. The following warm-up rule is for this purpose.

Lemma 4 (Warm-up).

([e, ⊕]) = build (λ(d, ⊗). ([d, ⊗]) ◦ ([e, ⊕])) �

Note that the warm-up rule may introduce an additional loop, but this loop is usually
easier to be fused with others. Recall that we have obtained the following definition for
biggers.

1 Strictly speaking, it requires parametricity on the type of g, as studied in [24].

156 Z. Hu, T. Yokoyama, and M. Takeichi

biggers = fst ◦ ([([], 0), ⊕])
where a ⊕ (r, s) = (if a > s then a : r else r, a + s)

We can obtain the following build form:

biggers = build (λ(d, ⊗). fst ◦ ([(d, 0), ⊕′]))
where a ⊕′ (r, s) = (if a > s then a ⊗ r else r, a + s)

Now applying the shortcut fusion rule to

sumBiggers = ([0, +]) ◦ bigger

soon yields the following single-loop program for sumBiggers:

sumBiggers = fst ◦ ([(0, 0), ⊗])
where a ⊗ (r, s) = (if a > s then a + r else r, a + s)

which is actually the same as that in the introduction.
Before finishing our development of calculation rules for loop fusion, we give an-

other calculation rule for fusing a function with a mutumorphism. This may not be nec-
essary as mutumorphism can be transformed into homomorphism, but it may provide
us with more flexibility in rule application.

Lemma 5 (Mutumorphism Promotion).

fi(a ⊕i (x1, . . . , xn)) = a ⊗i (f1 x1, . . . , fn xn) (i = 1, . . . , n)
f1 ◦ [[(e1, . . . , en), (⊕1, . . . ,⊕n)]] = [[(f1 e1, . . . , fn en), (⊗1, . . . ,⊗n)]] �

3.3 A Calculational Algorithm for Loop Fusion

This is the last step, where we should make it clear how to turn a program into our
specific form and how to apply the newly developed calculational laws in a systematic
way for loop fusion, as seen in [26, 14, 15]. Below we summarize our calculational
algorithm for loop fusion.

1. Represent as many recursive functions on lists by mutumorphisms as possible.
2. Apply the flattening rule to transform all mutumorphism to homomorphisms.
3. Apply the promotion rule and shortcut fusion rule as much as possible.
4. Apply the tupling rule to merge independent homomorphisms.
5. Inline homomorphism/mutumorphism to output transformed program in a friendly

manner.

We have indeed followed this algorithm in fusing the three loops in sumBiggers.
One remark should be made on the first step above. It would be unnecessary if pro-
grams are restricted to be strictly written in terms of mutumorphisms, but there are two
reasons to have it. First, it makes our system extensible; we may extend our system by
showing that a wider class of functions can be transformed to mutumorphisms by some
preprocessing. For example, the following recursive function

Program Optimizations and Transformations in Calculation Form 157

foo [] = 0
foo [a] = a
foo (a : b : x) = a + foo (b : x) + foo x

may not be target for loop fusion at the start. When we find a way to express functions
like foo in terms of a mutumorphism, we can empower our system by adding it as a pre-
processing. In fact, it has been shown that foo belongs to the class of tuplable functions
which can be automatically transformed to a function defined in terms of homomor-
phisms [14]. Second, we may want to apply our loop fusion to legacy programs. As a
matter of fact, it is possible to obtain mutumorphism automatically from many recursive
functions on lists.

4 Parallelization in Calculation Form

Our second example is about Parallelization [27, 15], a transformation for automatically
generating parallel code from high level sequential description. Parallelization is of key
importance to the wide spread use of high performance machine architectures, but it is
a big challenge to clarify what kind of sequential programs can be parallelized and how
they can be systematically parallelized.

Program calculation suggests a new way to face this challenge. We know from the
theory of Constructive Algorithmics that the control structure of the program should
be determined by the data structure the program is to manipulate. For lists, there are
two possible views. One view is known as cons lists, which is “sequential”: a list is
constructed by an empty list, or from an element and a list.

ConsList a = [] | a : ConsList a

Another view is known as join lists, which is “parallel”: a list is an empty list, or a
singleton list, or a list joining two shorter lists.

JoinList a = [] | [.] a | JoinList a ++ JoinList a

So given a list [1, 2, 3, 4, 5, 6, 7, 8], we may represent it in the following two ways:

1 : (2 : (3 : (4 : (5 : (6 : (7 : (8 : [])))))))
(([1] ++ [2]) ++ ([3] ++ [4])) ++ (([5] ++ [6]) ++ ([7] ++ [8]))

Programs defined on cons lists inherit sequentiality from cons lists, while programs
defined on join lists gain parallelism from join lists. The following are two such versions
for sum.

sumS (a : x) = a + sumS x
sumP (x ++ y) = sumP x + sumP y

With the above in mind, we may consider parallelization of functions on lists as
mapping a function on cons lists (e.g., sumS) to an equivalent one on join lists (e.g.,
sumP).

158 Z. Hu, T. Yokoyama, and M. Takeichi

4.1 J-Homomorphism: A Parallel Form for List Functions

As in loop fusion, we introduce a recursive form, J-homomorphism2, to capture parallel
computations on lists.

Definition 2 (J-Homomorphism). J-homomorphisms are those functions on finite lists
that promote through list concatenation — that is, function h for which there exists an
associative binary operator ⊕ such that, for all finite lists x and y, we have

h (x ++ y) = h x ⊕ h y

where ++ denotes list concatenation. �
In fact, it has been attracting wide attention to make use of J-homomorphisms in parallel
programming [28, 30, 31]. Intuitively, the definition of J-homomorphisms means that
the value of h on the larger list depends in a particular way (using binary operation ⊕)
on the values of h applied to the two pieces of the list. The computations of h x and
h y are independent of each other and can thus be carried out in parallel. This simple
equation can be viewed as expressing the well-known divide-and-conquer paradigm of
parallel programming.

As a running example, consider the maximum segment sum problem, which finds the
maximum of the sums of contiguous segments within a list of integers. For example,

mss [3, −4, 2, −1, 6, −3] = 7

where the result is contributed by the segment [2, −1, 6]. We may write the following
sequential function mss to solve the problem, where mis is to compute the maximum
initial-segment sum of a list.

mss [] = 0
mss (a : x) = a ↑ (a + mis x) ↑ mss x
mis [] = 0
mis (a : x) = a ↑ (a + mis x)

How can we find an equivalent parallel program in J-homomorphism?

4.2 A Parallelizing Rule

In Section 3, we have seen that list homomorphisms play a very important role in de-
scribing computations on lists. Our parallelization rule is to show how to map a list
homomorphism to a J-homomorphism. As a preparation, we define the composition-
closed3 property of a function.

Definition 3 (Composition-closed). Let x denote a sequence x1 x2 · · · xn, and y
denote a sequence y1 y2 · · · yn. A function f x is said to be composition-closed if
there exist n functions gi (i = 1, · · · , n), so that

f x (f y) = f (g1 x y) (g2 x y) · · · (gn x y) r �
2 It is usually called list homomorphism in many literatures [7, 28, 29]. We call it

J-homomorphism here because we have used the word list homomorphism in loop fusion.
3 This property is called context-preservation in [32].

Program Optimizations and Transformations in Calculation Form 159

For example, the function

f x1 x2 r = x1 ↑ (x2 + r)

is composition-closed, as seen in the following calculation.

f x1 x2 (f y1 y2 r)
= { definition of f }

x1 ↑ (x2 + (y1 ↑ (y2 + r)))
= { since a + (b ↑ c) = (a + b) ↑ (a + c) }

x1 ↑ ((x2 + y1) ↑ (x2 + (y2 + r)))
= { associativity of + and ↑ }

(x1 ↑ (x2 + y1)) ↑ ((x2 + y2) + r)
= { define g1 x1 x2 y1 y2 = (x1 ↑ (x2 + y1), g2 x1 x2 y1 y2 = x2 + y2 }

(g1 x1 x2 y1 y2) ↑ (g2 x1 x2 y1 y2 + r)

The following is our main calculation rule for parallelizing homomorphisms to
J-homomorphisms.

Lemma 6 (Parallelization of Homomorphism to J-Homomorphism). Given a ho-
momorphism ([e, ⊕]), if there exists a composition-closed function f with respect to
g1, g2, . . . , gn, such that

a ⊕ r = f e1 e2 · · · en r

where ei is an expression which may contain a but not r, then

([e, ⊕]) x = let (a1, a2, . . . , an) = h x in f a1 a2 · · · an e

where h is a J-homomorphism defined by

h [a] = (e1, e2, . . . , en)
h(x ++ y) = h x ⊗ h y

where x ⊗ y = (g1 x y) (g2 x y) · · · (gn x y) �

To see how this parallelization rule works, consider to parallelize the function mis,
which is actually a homomorphism:

mis = ([0, ⊕]) where a ⊕ r = a ↑ (a + r)

The difficulty is to find a composition-closed function from ⊕. In fact, such function
f is

f x1 x2 r = x1 ↑ (x2 + r)

whose composition-closed property has been shown. Now we have

a ⊕ r = f a a r.

Applying Lemma 6 to mis gives the following parallel program:

mis x = let (a1, a2) = h x in a1 ↑ (a2 + e)

160 Z. Hu, T. Yokoyama, and M. Takeichi

where

h [a] = (a, a)
h (x ++ y) = h x ⊗ h y

where (x1, x2) ⊗ (y1, y2) = (x1 ↑ (x2 + y1), x2 + y2).

4.3 A Parallelization Algorithm

After developing a general calculation rule for parallelizing general homomorphisms
to J-homomorphisms, we propose the following algorithm to systematically apply it
to parallelize sequential programs in practice. The input to the algorithm is a program
defined in terms of mutumorphisms, and the output is a new program where parallelism
is explicitly described by J-homomorphisms.

1. Apply the loop fusion calculation to the program to obtain a compact program
defined in terms of homomorphisms.

2. Apply the parallelizing rule to map homomorphisms to J-homomorphisms.

The first step has been explained in details in Section 3. The second step is the core
of the algorithm, where the key to applying the parallelizing rule is to find a suitable
composition-closed function from the definition of the binary operator in a homomor-
phism. It has been shown in [33] that a powerful normalization algorithm can be applied
to derive such composition-closed functions. The details of the normalization algorithm
is beyond the scope of this tutorial.

Return to the program of mss. First, we apply the loop fusion calculation to obtain

mss = fst ◦ mss mis

where mss mis is the homomorphism defined below:

mss mis = ([(0, 0), ⊕])
where a ⊕ (s, i) = (a ↑ (a + i) ↑ s, a ↑ (a + i)).

Then, we apply the parallelizing rule to map mss mis to a J-homomorphism to make
parallelism explicit. To this end, we define the following composition-closed function
by the algorithm in [33]:

f x1 x2 x3 x4 x5 (s, i) = (x1 ↑ (x2 + i) ↑ (x3 + s), x4 ↑ (x5 + i))

with respect to g1, g2, g3, g4, g5 defined by

g1 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x1 ↑ (x2 + y4) ↑ (x3 + y1)
g2 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = (x2 + y5) ↑ (x3 + y2)
g3 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x3 + y3
g4 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x4 ↑ (x5 + y4)
g5 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x5 + y5

Program Optimizations and Transformations in Calculation Form 161

And we have
a ⊕ (s, i) = f a a 0 a a (i, s).

By applying the parallelizing rule we soon obtain the following efficient parallel pro-
gram for mss mis:

mss mis x = let (a1, a2, a3, a4, a5) = h x in f a1 a2 a3 a4 a5 (0, 0)

where h is a J-homomorphism defined as follows.

h [a] = (a, a, 0, a, a)
h(x ++ y) = h x ⊗ h y

where (x1, x2.x3.x4.x5) ⊗ (y1, y2, y3, y4, y5)
= (x1 ↑ (x2 + y4) ↑ (x3 + y1),

(x2 + y5) ↑ (x3 + y2),
x3 + y3,
x4 ↑ (x5 + y4),
x5 + y5)

As an exercise, the readers are invited to parallelize the homomorphism for
sumBiggers in Section 3.

5 Yicho: An Environment for Implementing Transformations in
Calculational Forms

Program Calculation rules are short and concise, but their implementations are not as
easy as one may expect. Many attempts [20, 17] have been made to develop systems
for supporting direct and efficient implementation of calculation rules. Yicho is such a
system built upon Template Haskell [34] and designed for concise specification of pro-
gram calculations [35]. Its main feature lies in its expressive deterministic higher-order
patterns [17] together with an efficient deterministic higher-order matching algorithm.
This leads to a straightforward description of calculation rules.

In this section, we briefly review the Yicho system, before illustrating with some ex-
amples how calculation rules and calculation algorithms can be implemented efficiently.

5.1 Program Representation

We manipulate programs as values by meta-programming. Template Haskell [34] pro-
vides a mechanism to handle abstract syntax trees of Haskell in Haskell itself. Enclosing
a program in brackets [| |] yields its abstract syntax tree of type ExpQ, and the in-
verse operation is unquote described by a dollar $. For example, given a function to
calculate the sum of a given list, sum, which has type4 [Int] -> Int. Quotation
of this function [| sum |] has type ExpQ, whereas $([| sum |]) has the same
type as sum, i.e., [Int] -> Int.

4 Strictly speaking, the type of function sum is Num a ⇒ [a] → a in Haskell. Here, for
simplicity, we ignore type classes and polymorphism.

162 Z. Hu, T. Yokoyama, and M. Takeichi

The following gives the representation of the initial program of max.

def =
[d|

max = hd . sort

sort [] = []
sort (a:x) = insert a (sort x)

insert a [] = b
insert a (b:x) = if a >= b then a : (b : x)

else b : insert a x
|]

Here, quasi-quote bracket [d| _ |] is syntax of Template Haskell. It quotes a list
of declaration whose type is Q [Dec]. These definitions are spliced by unquote $ by
$(def).

5.2 Basic Combinators for Programming Calculations

Yicho is implemented as a monadic combinator library for program transformation in
Haskell. The combinator library uses deterministic higher-order patterns as first-class
values which can be passed as parameters, constructed by smaller ones in compositional
way, returned as values, etc. As a result, Yicho’s patterns provide more flexible binding
than first-order ones, and enables more abstract and modular descriptions of program
transformation.

We define the calculation monad Y, a combination of the state monad and the error
monad, to capture updating of transformation environments and to handle exceptions
that occur during transformation, and we use ExpY

ExpY = Y ExpQ

to denote an expression in the calculation environment. We use liftY to lift ExpQ
into ExpY, and use runY to go back to ExpQ from ExpY.

liftY :: ExpQ → ExpY
runY :: ExpY → ExpQ

There are five important combinators in our Yichi library, as listed below.

Match (<==) :: ExpQ -> ExpQ -> Y ()
Rule (==>) :: ExpQ -> ExpQ -> RuleY
Sequence (>>) :: Y () -> Y () -> Y ()
Choice (<+) :: ExpY -> ExpY -> ExpY
Case casem :: ExpQ -> [RuleY] -> ExpY

In the following, we explain them one by one with some examples.

Program Optimizations and Transformations in Calculation Form 163

Match

The most essential combinator is the match combinator, which is used to match a pattern
with a term and produce a substitution (embedded in monadic Y).

(<==) :: ExpQ -> ExpQ -> Y ()
pat <== term

As an example, consider that we want to express the expression

\a x -> if a >= sum x then a : biggers x
else biggers x

in the form of a ⊕ (biggers x, sum x) where ⊕ is a binary operator. We may code this
intention by

[| \a x -> $oplus a (biggers x, sum x) |]
<== [| \a x -> if a >= sum x then a : biggers x

else biggers x |]

which will yield the following match:

{ $oplus := \x (b,s) ->
if x > s then x : b else b }.

Note that Function $oplus is a second-order pattern variable and can be efficiently
obtained by the deterministic higher-order matching algorithm [17]. Note also that $
means unquote, so the above match is equivalent to

{ oplus := [| \x (b,s) ->
if x > s then x : b else b |] }.

Rule

The rule combinator is used to build a transformation rule mapping from one program
pattern to another. A rule is described in the form of

(==>) :: ExpQ -> ExpQ -> RuleY
lhs ==> rhs

where RuleY, which is defined by RuleY = ExpQ -> Y ExpQ, is to map a pro-
gram to another under the transformation environment Y. For instance, we may define
the shortcut fusion rule by

[| hom $e $oplus . build $g |] ==> [| g $e $oplus |]

where we represent a homomorphism ([e, ⊕]) by (hom e oplus). The semantics of a
rule may be clear from the following where we define a rule by the Match combinator.

(==>) :: ExpQ -> ExpQ -> RuleY
(pat ==> body) term = do pat <== term

ret body

Note that in the above, the function ret implicitly applies the match (i.e., substitution)
kept in the transformation monad to body.

164 Z. Hu, T. Yokoyama, and M. Takeichi

Sequence

Sequential updates of transformation environments can be realized by combining
matches with the sequence combinator (>>).

(>>) :: Y () -> Y () -> Y ()
(pat1 <== term1) >> (pat2 <== term2)

which can be written as sequence of matchings using do notation.

do pat1 <== term1
pat2 <== term2

Deterministic Choice and Case

The combinator (<+) is designed to express deterministic choice.

(<+) :: ExpY -> ExpY -> ExpY
transExp1 <+ transExp2

It returns the first argument if the transformation in it succeeds. Otherwise, it returns
the second argument as the result. For instance, we may write

(rule1 e) <+ (rule2 e)

to first apply rule1 to transform e, and if it succeeds, we return the result; otherwise
we try to apply rule2 to e.

Using the choice combinator, we can define a meta version of the case expression,
which tries to apply a list of rules one by one until one rule succeeds.

casem :: ExpQ -> [RuleY] -> ExpY
casem sel (r:rs) = r sel <+ casem sel rs

5.3 Code Calculation Rules in Yicho

To get a flavor of Yicho, we show how to use Yicho to code the promotion rule in
Section 2, and how it is used to optimize the program. Since the list homomorphism
([e, ⊕]) is in fact the standard Haskell function foldr (⊕) e, we rewrite the promotion
theorem as follows.

promotion:
f(a ⊕ x) = a ⊗ f x

f ◦ foldr (⊕) e = foldr (⊗) (f e)

This rule is defined in Yicho as follows.

promotion :: ExpQ -> Y ExpQ
promotion exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
[| $f . foldr $oplus $e |] <== exp
[| \a x -> $otimes a ($f x) |]

<== [| \a x -> $f ($oplus a x) |]
ret [| foldr $otimes ($f $z) |]

The promotion rule is defined as a function that takes code and returns code with its
environment. In the third line, f,oplus,e,otimes are declared to be variables; the

Program Optimizations and Transformations in Calculation Form 165

unquote $ is actually splicing the expression, but, intuitively we can regard expression
$x as meta variable with the name of $x. In the fourth line, exp is matched with the pat-
tern [| $f . foldr $oplus $e |], with the variables $f,$oplus,$e being
bound in the environment. The next two lines are a straightforward translation of the
original promotion rule. $f and $oplus are instantiated and the both sides of <== are
matched and the resulting match is added to the environment. The pattern instantiation
contributes to the modularity of patterns. It should be noted here that the higher-order
patterns such as

[| \a x -> $otimes a ($f x) |]

play an important role in this concise definition. Finally, the result expression with its
environment are returned by ret.

We can enhance the promotion rule with a rule (say for unfolding the definition or
simplification), and add it as an argument to the promotion function.

promotionWithRule :: RuleY -> ExpQ -> Y ExpQ
promotionWithRule rule exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
[| $f . foldr $oplus $e |] <== rule exp
[| \a x -> $otimes a ($f x) |]

<== rule [| \a x -> $f ($oplus a x) |]
ret [| foldr $otimes ($f $z) |]

To see how to apply the promotion rule, consider the following expression

oldExp = [| sum . foldr (\x y -> 2 * x : y) [] |]

and suppose that we hope to apply to this code the promotion rule together with some
other rule rule to obtain a new efficient expression, say newExp. We can define this
newExp as follows.

newExp = runY (promotionWithRule rule ex1)

We may confirm the result of newExp under the GHCi Environment:

GHCi> prettyExpQ newExp
foldr (\x_1 -> (+) (2 * x_1)) 0

where we use function prettyExpQ :: ExpQ -> IO () to print out an expression.
Now we can compare efficiency of the two expressions.

GHCi> $oldExp (take 100000 [1..])
10000100000
(0.33 secs, 21243136 bytes)

GHCi> $newExp (take 100000 [1..])
10000100000
(0.27 secs, 19581216 bytes)

It is worth noting that the promotion theorem is applied at compile time, and the func-
tion $newExp is actually improved both in the execution time and consumed heap
size.

166 Z. Hu, T. Yokoyama, and M. Takeichi

The other calculation rules in this tutorial can be specified similarly. The readers are
invited to visit the Yicho home page for more examples.

6 Concluding Remarks

In this tutorial, we explain the basic technique of formalizing and implementing pro-
gram transformations and optimization in calculational form based on the Constructive
Algorithmics theory. We illustrate the idea with two important transformations, loop
fusion and parallelization, and we show how the transformations in calculational form
can be efficiently implemented with Yicho.

We summarize the main advantages of program transformations in calculational form
as follows.

– Modularity. A program transformation in calculational form does not require any
global analysis as other transformation systems often need. Instead, it only uses
a local program analysis to obtain the specialized form, and it can check locally
the applicability of their calculational rules. Therefore, it can be implemented in a
modular way, and is guaranteed to terminate.

– Generality. In this tutorial, we focus on the transformation of programs on lists.
In fact, most of our calculational laws are polytypic, i.e., parameterized with data
types. They can be generalized to transformation of programs on any algebraic data
types.

– Cheap Implementation. Transformations in calculational form are more practical
than the well-known fold-unfold transformations [4]. Fold/unfold transformation
basically has to keep track of all occurring function calls and introduce function
definitions to be searched in the folding step. The process of keeping track of
function calls and controlling the steps cleverly to avoid infinite unfolding intro-
duces substantial cost and complexity, which often prevents it from being practi-
cally implemented. Though they may be less general than fold/unfold transforma-
tions, transformations in calculational form can be implemented in a cheap way
[24, 36, 25, 14] by means of a local program analysis and simple rule application.

– Compatibility. It is usually difficult to make several transformations coexist well in
a single system, but transformations in calculational form can solve this problem
well. For instance, fusion calculation can coexist well with tupling calculation [14].
There are two reasons. First, each transformation is based on the same theoretical
framework, Constructive Algorithmics. Second, local program analysis and local
application of laws make it easier to check compatibility of transformations.

It should be noted that program transformations in calculation forms can be applied
only to those programs that can be turned into the form a calculation rule is applicable.
To increase the power, as seen in Section 4.3, we may have to design a normaliza-
tion algorithms with global analysis in order to obtain the required form. We believe
that more optimizations and transformations can be formalized in calculational form to
gain the advantages discussed above, and we are looking forward to see more practical
applications.

Program Optimizations and Transformations in Calculation Form 167

References

1. Jones, S.P., et al., J.H., eds.: Haskell 98: A Non-strict, Purely Functional Language. Available
online: http://www.haskell.org (1999)

2. Bird, R.: Introduction to Functional Programming using Haskell. Prentice Hall (1998)
3. Hughes, J.: Lazy memo-functions. In: Proc. Conference on Functional Programming Lan-

guages and Computer Architecture (LNCS 201), Nancy, France, Springer-Verlag, Berlin
(1985) 129–149

4. Burstall, R., Darlington, J.: A transformation system for developing recursive programs.
Journal of the ACM 24 (1977) 44–67

5. Feather, M.: A survey and classification of some program transformation techniques. In: TC2
IFIP Working Conference on Program Specification and Transformation, Bad Tolz, Germany,
North Holland (1987) 165–195

6. Darlington, J.: An experimental program transformation system. Artificial Intelligence 16
(1981) 1–46

7. Bird, R.: An introduction to the theory of lists. In Broy, M., ed.: Logic of Programming and
Calculi of Discrete Design, Springer-Verlag (1987) 5–42

8. Backhouse, R.: An exploration of the Bird-Meertens formalism. In: STOP Summer School
on Constructive Algorithmics, Ameland. (1989)

9. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas, lenses, en-
velopes and barbed wire. In: Proc. Conference on Functional Programming Languages and
Computer Architecture (LNCS 523), Cambridge, Massachuetts (1991) 124–144

10. Fokkinga, M.: A gentle introduction to category theory — the calculational approach —.
Technical Report Lecture Notes, Dept. INF, University of Twente, The Netherlands (1992)

11. Jeuring, J.: Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science, Utrecht
University (1993)

12. Bird, R., de Moor, O.: Algebras of Programming. Prentice Hall (1996)
13. Hu, Z., Iwasaki, H., Takeichi, M.: Deriving structural hylomorphisms from recursive defini-

tions. In: ACM SIGPLAN International Conference on Functional Programming, Philadel-
phia, PA, ACM Press (1996) 73–82

14. Hu, Z., Iwasaki, H., Takeichi, M., Takano, A.: Tupling calculation eliminates multiple data
traversals. In: ACM SIGPLAN International Conference on Functional Programming, Am-
sterdam, The Netherlands, ACM Press (1997) 164–175

15. Hu, Z., Takeichi, M., Chin, W.: Parallelization in calculational forms. In: 25th ACM Sympo-
sium on Principles of Programming Languages, San Diego, California, USA (1998) 316–328

16. Hu, Z., Iwasaki, H., Takeichi, M.: Calculating accumulations. New Generation Computing
17 (1999) 153–173

17. Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns. Information Pro-
cessing Letters 89 (2004) 309–314

18. Malcolm, G.: Data structures and program transformation. Science of Computer Program-
ming (1990) 255–279

19. Pettorossi, A., Proiett, M.: Rules and strategies for transforming functional and logic pro-
grams. Computing Surveys 28 (1996) 360–414

20. de Moor, O., Sittampalam, G.: Higher-order matching for program transformation. Theor.
Comput. Sci. 269 (2001) 135–162

21. Goldberg, A., Paige, R.: Stream processing. In: LISP and Functional Programming. (1984)
53–62

22. Aho, A., Sethi, R., Ullman, J.: Compilers – Principles, Techniqies and Tools. Addison-
Wesley (1986)

168 Z. Hu, T. Yokoyama, and M. Takeichi

23. Chin, W.: Towards an automated tupling strategy. In: Proc. Conference on Partial Evaluation
and Program Manipulation, Copenhagen, ACM Press (1993) 119–132

24. Gill, A., Launchbury, J., Jones, S.P.: A short cut to deforestation. In: Proc. Conference on
Functional Programming Languages and Computer Architecture, Copenhagen (1993) 223–
232

25. Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Proc. Conference on
Functional Programming Languages and Computer Architecture, La Jolla, California (1995)
306–313

26. Onoue, Y., Hu, Z., Iwasaki, H., Takeichi, M.: A calculational fusion system HYLO. In: IFIP
TC 2 Working Conference on Algorithmic Languages and Calculi, Le Bischenberg, France,
Chapman&Hall (1997) 76–106

27. Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.A.: Automatic program parallelization.
Proceedings of the IEEE 81 (1993) 211–243

28. Cole, M.: Parallel programming, list homomorphisms and the maximum segment sum prob-
lems. Report CSR-25-93, Department of Computing Science, The University of Edinburgh
(1993)

29. Hu, Z., Iwasaki, H., Takeichi, M.: Formal derivation of efficient parallel programs by con-
struction of list homomorphisms. ACM Transactions on Programming Languages and Sys-
tems 19 (1997) 444–461

30. Skillicorn, D.: Foundations of Parallel Programming. Cambridge University Press (1994)
31. Gorlatch, S.: Constructing list homomorphisms. Technical Report MIP-9512, Fakultät für

Mathematik und Informatik, Universität Passau (1995)
32. Chin, W., Takano, A., Hu, Z.: Parallelization via context preservation. In: IEEE Com-

puter Society International Conference on Computer Languages, Loyola University Chicago,
Chicago, USA (1998)

33. Xu, D.N., Khoo, S.C., Hu, Z.: Ptype system : A featherweight parallelizability detector.
In: Second ASIAN Symposium on Programming Languages and Systems(APLAS 2004),
Taipei, Taiwan, Springer, LNCS 3302 (2004) 197–212

34. Sheard, T., Peyton Jones, S.L.: Template metaprogramming for Haskell. In: Haskell Work-
shop, Pittsburgh, Pennsylvania (2002) 1–16

35. Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns and its application
to program transformation. In: International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR 2003), Springer, LNCS 3018 (2003) 165–178

36. Sheard, T., Fegaras, L.: A fold for all seasons. In: Proc. Conference on Functional Program-
ming Languages and Computer Architecture, Copenhagen (1993) 233–242

Mappings Make Data Processing Go ’Round
An Inter-paradigmatic Mapping Tutorial

Ralf Lämmel and Erik Meijer

Microsoft Corp., Data Programmability Team, Redmond, USA

Abstract. Whatever programming paradigm for data processing we choose, data
has the tendency to live on the other side or to eventually end up there. The ma-
jor paradigms for data processing are Cobol, object, relational and XML; each
paradigm offers many facets and many versions; each paradigm provides specific
forms of data models (object models, relational schemas, XML schemas, etc.).
Each data-processing application depends on a horde of interrelated data models
and artifacts that are derived from data models (such as data-access layers). Such
conglomerations of data models are challenging due to paradigmatic impedance
mismatches, performance requirements, loose-coupling requirements, and others.
This ubiquitous problem calls for a good understanding of techniques for map-
pings between data models, actual data, and operations on data. This tutorial lists
and discusses mapping scenarios, mapping techniques, impedance mismatches
and research challenges regarding mappings.

Keywords: Data processing, Mapping, XML data binding, Object-XML map-
ping, Object-relational mapping, Cross-paradigm impedance mismatch, Data
modeling, Data access, Loose coupling, Software evolution.

1 Introduction

We steal the beginning of our tutorial from elsewhere: “Once upon a time it was pos-
sible for every new programmer to quickly learn how to write readable programs to
Create, Read, Update and Delete business information. These so-called CRUD appli-
cations, along with reporting, were pervasive throughout business and essentially de-
fined IT or MIS as it was called in those days.” [92] (Dave Thomas: “The Impedance
Imperative Tuples + Objects + Infosets = Too Much Stuff!”).

Instead, today we face the following diversity:

– Cobol applications with keyed files are still developed and they make sense.
– Relational databases have fully matured and they are unarguably omnipresent.
– OO databases innovate, perhaps at a slow pace, but they must be taken seriously.
– The XML hype is over. XML types and XML documents are everywhere now.
– All these paradigms have triggered a myriad of query languages and 4GL tools.
– Much current CRUD development is done with OO languages with various APIs.

This tutorial is about the challenges implied by such diversity in data modeling and
data processing. Either there are respectable, perhaps fundamental reasons for all this
diversity, or it is just plain IT reality. No matter what, we need to map amongst these

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 169–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 R. Lämmel and E. Meijer

Target types

Transcription
Target operations

Source data Target data

mapping

Type−level

map backward

map forward

Source operations

Source types

Fig. 1. Levels in mapping

paradigms, and everyone is trying to do that anyhow. According to a designated online
resource1, there are roughly 60 established products for X/O mapping, also known as
XML data binding, i.e., XML schemas or DTDs are mapped to object models. We
reckon that practice is ahead of foundations in this area, but this surely implies ad-
hoc approaches with unnecessary limits and complexities. We need basic and applied
research on inter- and intra-paradigm mappings.

What Is a Mapping Anyway?

We should make more precise what we mean by ‘mapping’. We have to disappoint those
readers looking for a detailed or even formal definition. Instead we offer the following
explanation and the illustration in Fig. 1.

– Mapping is essentially about the transformation of values between data models.2

– The data models typically involve different paradigms (Cobol, OO, relational,
XML).

– Fig. 1 opts for a type-based mapping (described at the type level).
– By contrast, instance-based mappings directly define value transformations.
– Other mappings may implicitly define data models for source and target.
– CRUD operations may need transcription from the source to the target or vice versa.
– There may be more levels than those in the figure, e.g., the level of protocols.

Road-Map for the Tutorial

– Sec. 2 presents diverse illustrative mapping examples.
– Sec. 3 is an attempt to collect (some) mapping concepts.

1 http://www.rpbourret.com/xml/XMLDataBinding.htm
2 The term ‘data model’ is ambiguous as it may refer to both the general data

model of a paradigm such as the ‘relational model’; it may also refer to domain-
/application-specific data models such as a particular ‘relational schema’ or ‘object model’;
http://en.wikipedia.org/wiki/Data model. In this tutorial, we favor the latter
meaning.

Mappings Make Data Processing Go ’Round 171

– Sec. 4 reveals impedance mismatches for inter-paradigmatic mappings.
– Sec. 5 calls to arms regarding engineering and research challenges.
– Sec. 6 concludes the article.
– The appendix collects a good number of exercises.

2 Mapping Examples

We will walk through a few data-processing scenarios that involve mappings. We strive
for diversity so that we show the ubiquitousness of the mapping notion in program-
ming and software development. As we go, we hint at established techniques, typical
requirements and recurring problems.

2.1 From Concrete to Abstract Syntax

Language processing, including compiler construction, involves mappings in abun-
dance. Most notably, a parser needs to map concrete syntax to reasonable parse trees
or proper ASTs (i.e., abstract syntax trees). In fact, a non-trivial, well-organized lan-
guage processor may involve several abstract syntaxes related to different components
in front- and middle-ends. Yet other mappings in language processors can be concerned
with immediate representations such as PDG and SSA [28, 20]. We will discuss some
forms of mapping concrete syntax to parse trees or ASTs.

Concrete Syntax as Mapping Source. Consider the following ANTLR3 grammar for
the concrete syntax of arithmetic expressions.4 The actual encoding represents operator
priorities by ‘grammatical layers’ — as it is common for top-down parsing. That is,
expression forms are grouped per operator priority using an auxiliary nonterminal for
all groups — except the top-most one:5

// ANTLR grammar
expr : mul expr (addOP mul expr)∗ ;
mul expr : sign expr (mulOP sign expr)∗ ;
sign expr : (MINUS)? primary expr ;
primary expr : IDENT

| constant
| (LPAREN! expr RPAREN!) ;

Option: Untyped, Canonical Mapping. ANTLR offers the option to construct parse
trees in a canonical manner using a language-independent format (which is a sort of
universal representation type). The problem with such a generic approach is that no
abstraction is carried out (in the sense of ASTs), and no typing discipline for parse trees
is enforced. So we are seeking different mapping options.

3 ANTLR web site: http://www.antlr.org/
4 Source: http://www.bearcave.com/software/antlr/antlr examples.html
5 We will start code fragments with a comment that identifies the used programming language.

172 R. Lämmel and E. Meijer

Option: Mapping in ‘All Detail’. The attribute grammar paradigm [55, 81] can be
used for a mode of parse-tree construction that improves on the above-mentioned prob-
lems. All parser generator tools like ANTLR (and Yacc, PRECC, BTYACC, etc.)
support this technique (with more or less strong typing). ANTLR presupposes type
declarations for the intended parse-tree format. The actual mapping has to be described
in the parser specification: semantic actions synthesize parse-tree fragments.

The following ANTLR snippet is a refinement of the last context-free production in
the earlier grammar for expressions. The added semantic actions build a binary expres-
sion from two operands and an operator.

// ANTLR production with in−lined C++ code
expr returns [binaryNode a expr]

{ exprNode m1 = NULL;
exprNode m2 = NULL;
opNode op = NULL;

}
: m1 = mul expr { a expr = m1; }

(op = addOP m2 = mul expr
{ a expr = new binaryNode(op, a expr, m2); })∗

;

We omit the declarations for the referenced C++ classes: exprNode (the abstract base
class for expressions), binaryNode, opNode. A problem with this approach is that it is
‘a lot of work’. First, the abstract syntax has to be worked out in all tedious details, even
though it may be ‘intentionally’ similar to the concrete syntax. Second, the mapping has
to be ‘coded’ in all detail, again without leveraging any similarities between concrete
and abstract syntax. Furthermore, we end up with a poor separation of concerns in so
far that the original context-free productions get invaded by declarations and semantic
actions for parse-tree construction.

Option: Generative Mapping. One can improve on these problems by means of gen-
erative programming [23], namely a grammar-oriented form of it; cf. [50, 57, 9, 40] for
related work. (We need meta-grammarware according to [54].) We briefly summarize
an approach actually offered by an existing technology: GDK (the Grammar Deploy-
ment Kit [57]). That is, GDK processes pure grammars (without any semantic actions)
and generates a typed parse-tree format as well as the bloated parser specification that
comprises the tedious mapping. The type declarations for parse-tree formats are also
valuable for consumers of the constructed parse trees. The generated parser specifi-
cation can be processed by a conventional parser generator. Various programming lan-
guages and parser generators are supported. Here is an example of a generated Yacc [49]
production for parenthesized expressions.

// Generated Yacc production with embedded C code
expr in parens
: T QPOPEN

expr
T QPCLOSE
{ $$ = build expr in parens($1, $2, $3); }

;

Mappings Make Data Processing Go ’Round 173

The function symbol build expr in parens is one of the term constructors that is gener-
ated from the pure grammar. Consumers of the parse trees can use accordingly
generated matching functions. This approach still does not solve the problem of ab-
straction in the sense that the constructed parse trees mirror (too) precisely the concrete
syntax.

Option: Simplify Concrete into Abstract Syntax. There exist declarative mapping
approaches such that the abstract syntax and the mapping from concrete to abstract syn-
tax can be controlled more explicitly without switching to the other extreme of defining
the mapping in all detail — as it was the case for the attribute-grammar approach, un-
fortunately. We will discuss a particularly advanced approach that is supported by the
compiler generator Eli [35]. That is, Eli provides designated tool support, Maptool [51],
for concrete-to-abstract syntax mappings.

Consider the following context-free syntax using Eli’s grammar notation:6

// Eli ’s grammar notation
Program ::= Statement + .
Statement ::= Computation ’;’ .
Computation ::= Expr/LetExpr/WhereExpr .
LetExpr ::= ’ let ’ Definitions ’ in ’ Expr .
WhereExpr ::= Expr ’where’ Definitions .
Definitions ::= Definition // ’,’ .
Definition ::= Identifier ’=’ Expr .
Expr ::= Expr ’+’ Term / Expr ’−’ Term / Term .
Term ::= Term ’∗’ Factor / Term ’/’ Factor / Factor .
Factor ::= ’−’ Factor / Primary .
Primary ::= Integer / Identifier / ’(’ Computation’)’ .

As in the earlier example, there are several layers of expressions: Computation, Expr,
Term, Factor, Primary. These layers are biased towards parsing concrete syntax while
only adding irrelevant complexity to subsequent phases. Hence, we would prefer to
unite these layers in the abstract syntax. This is accomplished by the following fragment
of a Maptool mapping specification:

// Eli ’s Maptool notation
MAPSYM
Expr ::= Computation Term Factor Primary .

That is, the various nonterminals on the right-hand side of the MAPSYM declaration
are placed in an equivalence class, which effectively implies an abstract syntax as if
Expr were defined by a flat list of alternatives. This simplification enables more concise
language processing code. For instance, expression evaluation does not need to handle
all the concrete syntactical variations implied by the different nonterminals.

6 Eli uses an EBNF-like notation. That is, ‘+’ is for repetition (i.e., lists), and ‘/’ is for alternatives
(elsewhere denoted as ‘|’). There is notation for separator lists: ‘e//c’, where e is the phrase
to be repeated and c is the character for separation.

174 R. Lämmel and E. Meijer

Option: Refine Abstract into Concrete Syntax. Rather than simplifying the concrete
syntax such that a suitable abstract syntax is derived, we can also start from a simple
abstract syntax and refine it into the existing concrete syntax — thereby defining a
mapping. Let us design an abstract syntax that is as abstract and suggestive as it could
be for the purpose of, say, name analysis. (In compiler construction, name analysis
tends to refer to the concept of resolving (or better: establishing) the links between
using (referring) occurrences and defining (declaring) occurrences.)

// Eli ’s (abstract) grammar notation
Program LISTOF Statement
BoundExpr ::= Definitions Expr
Definitions LISTOF Definition
Definition ::= IdDef ’=’ Expr
Primary ::= IdUse
IdDef ::= Identifier
IdUse ::= Identifier

It happens that several of the nonterminals in the abstract syntax correspond to non-
terminals in the concrete syntax. Hence, they are automatically mapped by ‘name co-
incidence’. However, there are major idioms for completing name coincidence into a
concrete-to-abstract syntax mapping, which we will discuss in the sequel.

The abstract sort BoundExpr does not have an immediate counterpart in the con-
crete syntax. We use it as a general form of a binding group (say definitions). In fact,
BoundExpr is meant as an abstraction for let and where expressions. This intent can be
expressed by the following bits of mapping specification:

// Eli ’s Maptool notation
MAPSYM
BoundExpr ::= LetExpr WhereExpr .

MAPRULE
LetExpr ::= ’ let ’ Definitions ’ in ’ Expr <$1$2> .
WhereExpr ::= Expr ’where’ Definitions <$2$1> .

That is, the nonterminals LetExpr and WhereExpr are placed in an equivalence class with
BoundExpr. The productions for LetExpr and WhereExpr are associated with directions
for AST construction. (The phrases <$1$2> and <$2$1> express the subtrees of the
AST in terms of indexes of the subtrees of the concrete parse tree.)

The abstract sorts IdDef and IdUse partition the nonterminal Identifier from the
concrete syntax. The distinct nonterminals are used for defining vs. using occurrences
of Identifier . The nonterminal Definition is defined in both grammars, while the ab-
stract syntax points out that the occurring identifier is actually a defining occurrence.
This mapping leads to a useful abstract syntax design because it enables a language-
independent name analysis. That is, the name analysis can identify the defining vs.
using role of an identifier solely by means of the nonterminal symbols IdDef and IdUse.
Without this distinction, the name analysis would need to have intimate knowledge
about grammar productions and positions in which identifiers occur in this or that role.

Mappings Make Data Processing Go ’Round 175

Source: http://www.15seconds.com/issue/040908.htm

Fig. 2. Data to be bound in a GUI

2.2 Data Binding in User Interfaces

Interactive applications require mappings of the kind that application data is bound to
user-interface elements.7 In the small, an archetypal example would be about associat-
ing a field, such as the first name of an employee object, to the text property of a text
box in a form. The term (GUI) ‘data binding’ is nowadays used for this problem, but the
overall issue is not tied to modern platforms such as Java and .NET. For instance, forms-
based Cobol applications have dealt with the same problem for ages: application data
must be mapped to user-interface elements of screens (or forms), user-input validation
has to be carried out, and a protocol for change notification must be provided.

Option: Point-to-Point Programmatic Mapping. Let us consider an example of GUI
data binding. In Fig. 2, on the left-hand side, we see the class structure of an employee
object; on the right-hand side, we see a GUI form for operating on an employee object.
Let us also assume controls for the various fields and buttons:

// C# 1.0 code (using System.Windows.Forms)
public class myForm : Form
{

private TextBox txtFirstName;
private TextBox txtLastName;
private TextBox txtHireDate;
private TextBox txtSalary;
private CheckBox chkIsActive;
private Button btnLoadNewValues;
private Button btnSave;
// to be cont ’d

}
7 A comment on terminology: ‘data binding’ is often implicitly taken to mean ‘binding data to

a GUI’. For an unambiguous terminology, we say ‘GUI data binding’.

176 R. Lämmel and E. Meijer

Our application data is stored in a field like this:

private Employee oEmployee = null;

A simple approach (‘brute force’) to data binding commences as follows, the binding
(or mapping) code boils down to two explicit move routines; one to fill the form with
application data (i.e., the content of the employee field); another to save the content of
the form. In both directions, we define a kind of point-to-point mapping:

// Exception−handling code omitted
private void DataToForm()
{

this .txtFirstName.Text = oEmployee.firstName;
this .txtLastName.Text = oEmployee.lastName;
this . txtSalary .Text = oEmployee.salary.ToString();
this .txtHireDate.Text = oEmployee.hireDate.ToShortDateString();
this .chkIsActive.Checked = oEmployee.isActive;

}

private void FormToData()
{

oEmployee.firstName = txtFirstName.Text;
oEmployee.lastName = txtLastName.Text;
oEmployee.salary = Convert.ToDecimal(txtSalary.Text);
oEmployee.hireDate = Convert.ToDateTime(txtHireDate.Text);
oEmployee.isActive = chkIsActive.Checked;

}

This coding style is well in line with common practice. There is one striking weakness
of this approach: we end up coding the mapping twice. Another weakness is that we
code conversions allover the place and thereby bypass static type checking; cf. the use
of Convert.ToDecimal.

Option: Point-to-Point Mapping Declarations. We can improve on this brute-force
approach by exploiting the designated data-binding interface of GUI controls. That is,
we can actually inform each and every control about the associated application data:

private void MyBind()
{

txtFirstName.DataBindings.Add(”Text”, oEmployee, ”firstName”);
txtLastName.DataBindings.Add(”Text”, oEmployee, ”lastName”);
txtSalary .DataBindings.Add(”Text”, oEmployee, ”salary”);
Binding bindHireDateText = new Binding(”Text”, oEmployee, ”hireDate”);
bindHireDateText.Format +=

new ConvertEventHandler(DateTimeToShortDateString);
txtHireDate.DataBindings.Add(bindHireDateText);
chkIsActive.DataBindings.Add(”Checked”, oEmployee, ”isActive”);

}

Mappings Make Data Processing Go ’Round 177

As a result, the mapping is specified only once, and the amount of conversion code is
restricted to cases in which defaults are not sensible; cf. DateTimeToShortDateString.
Unfortunately, we have to pay a considerable price for the improvement of conciseness.
The mapping description is largely string-based:

– ”Text” vs. this .txtFirstName.Text,
– ”firstName” vs. oEmployee.firstName.

Hence, one dimension of subsequent improvement is to provide static typing for such
mappings, but we will first consider a more operational issue. The trouble is that the
form is filled only initially when the binding is issued, but subsequent changes of the
application data are not passed on to the form. Updating only works one way: changes
in the form are mapped back to the bound setters, but not vice versa.

Two-Way Updates. More generally, a mapping approach might need to maintain some
degree of bi-directional tracking between source and target. In this example of GUI
data binding, change propagation can be arranged as follows. The data bindings of
Windows.Forms can be made to listen to changes in the application data. The relevant
idiom is that a setter on application data should trigger a change event:

public class Employee
{

// The private field for application data
private string firstName;

// An event for changes on firstName
public event EventHandler firstNameChanged;

// The firstName property ; note the setter
public string firstName
{

get { return firstName; }
set {

firstName = value;
firstNameChanged(this, new EventArgs());

}}

// ... likewise for other data ...
}

Change tracking is name-based: the name of a bound property + ‘Changed’ is the name
of the event (if defined by the programmer) observed by the GUI data binding frame-
work so as to learn about state changes; cf. the couple firstName and firstNameChanged
in the code snippet. Various GUI frameworks leverage similar idioms. It is also common
to leverage design patterns that help modeling some aspects of update protocols and
consistency checking; e.g., the observer design pattern [33], the model-view-controller
architecture [59], and friends.

178 R. Lämmel and E. Meijer

Initial state State after user interaction

Fig. 3. GUI states with different trees (adopted from [2])

Typed and Canonical and Customizable and Live Mapping. Regarding the remain-
ing typing weakness, we would like to contrast Windows.Forms with a strongly typed
approach that uses the modern functional language Clean [2, 1]. At the same time, this
approach also illustrates a callback-based technique for two-way change tracking. So
the bound GUI is always in sync with the data layer.

The ambition of the Clean-based approach is to allow for editing data in a highly sys-
tematic manner. To this end, a generic programming approach (in the sense of induction
on type structure) is employed. The generated GUI controls are called GECs — Graph-
ical Editor Components. The overall assumption is that a reasonable GEC for a specific
value v can be constructed just by observing the structure of v’s type. In Fig. 3, the
GECs for two values are shown. The left GEC represents a binary, node-labeled tree of
the form Node Leaf 1 Leaf. When the user changes the upper Leaf to Node, through the
pull-down menu, the GEC evolves as shown on the right-hand side of the figure. Any
GEC is constructed via the following Clean function mkGEC.

−− A generic Clean function (looks like Haskell , almost)
generic mkGEC t :: [GECAttribute] −− Control appearance

t −− The initial value
(CallBackFunction t ps) −− Call back for changes
(PSt ps) −− Program state

−> (GEC t (PSt ps),PSt ps) −− Constructed GEC + state

The type of the function hints at the status of the mapping to be canonical and cus-
tomizable and live. The canonical mapping status is implied by the fact that mkGEC is
a generic (polytypic) function with the type parameter t . The customization capability
is modeled by the first argument that anticipates a list of attributes that control the ap-
pearance of the GEC. The live status of a GEC is implied by the fact that its creation
must define an initial value (cf. second argument) and a CallBackFunction to be invoked
when the edited value is changed (no matter whether the change is caused by editing
or by programmatic access). The constructed GEC also provides read and write access
to the bound value. (The rest of the function’s signature deals with the fact that GEC
construction and GEC usage involves state transformation. In Haskell terms, we would
expect some use of the IO or state monad.)

Mappings Make Data Processing Go ’Round 179

2.3 XML Data Binding

The term ‘XML data binding’ [70, 15] refers to the problem of providing an object
model that is meant to represent an XML schema (an XSD description) in the object
world (or vice versa). This is a modern mapping scenario in which either an XML
schema or an object model is given, and the counterpart (i.e., the object model or the
XML schema) is to be derived. In the subsequent illustrations, we are going to use an
XML schema sample for widgets (rectangle, squares, circles), as they may occur in a
drawing application:8

<!−− XML schema −−>
<xs:element name=”Widgets”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Rectangle” type=”Rectangle”/>
<xs:element name=”Square” type=”Square”/>
<xs:element name=”Circle” type=”Circle”/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:complexType name=”Rectangle”>
<xs:sequence>
<xs:element name=”XPos” type=”xs:int”/>
<xs:element name=”YPos” type=”xs:int”/>
<xs:element name=”Width” type=”xs:int”/>
<xs:element name=”Height” type=”xs:int”/>

</xs:sequence>
</xs:complexType>

<!−− ... Square elided ... −−>
<!−− ... Circle elided ... −−>

While this a perfectly reasonable XML schema, we may encounter challenges when
mapping this schema to objects. There exist many different XML-data binding tech-
nologies; each technology defines its own canonical mapping (and one may argue at
times which one is better).

Schema-Derived Classes. The following class has been generated by the .NET 2.0
technology xsd.exe. The fields of class Rectangle resemble the structure of the cor-
responding complex type definition. The XSD simple type xs: int is mapped to the
VB.NET type Integer.

8 This example explores the XSD variation on the ingenious ‘shapes example’ — an OO bench-
mark that has been designed by Jim Weirich and deeply explored by him and Chris Rath-
man. See the code collections http://onestepback.org/articles/poly/ and
http://www.angelfire.com/tx4/cus/shapes/.

180 R. Lämmel and E. Meijer

’ VB.NET 8.0 code
’ Note: all generated custom attributes omitted
Partial Public Class Rectangle
Private xPosField As Integer
Private yPosField As Integer
Private widthField As Integer
Private heightField As Integer
Public Property XPos() As Integer
Get
Return Me.xPosField

End Get
Set
Me.xPosField = value

End Set
End Property
’ ... other properties elided ...

End Class

Adaptation of Mapping Results. xsd.exe’s XML-to-object mapping is fully canoni-
cal; there are no means of influencing the mapping. However, one may adapt the map-
ping result, as we will discuss. Suppose we want to process collections of shapes by
exploiting subtype polymorphism such that the executed functionality (e.g., for draw-
ing) is specific to the kind of shape. So we want the classes Rectangle, Square and
Circle to engage in a subtype hierarchy rooted by a new class, say Shape:

’ A base class for all shapes
Public MustInherit Class Shape ’ Abstract class

Public MustOverride Sub draw() ’ Abstract method
End Class

How can we make it so that Rectangle etc. inherit from Shape and implement draw?
A naive and problematic approach would be to manually adapt the generated classes.
Adapting generated code is almost universally a bad idea for obvious reasons. It turns
out that we can employ linguistic means to adapt the mapping result. That is, we can
use VB.NET 8.0’s partial classes, which admit compile-time extension of classes. In
particular, we can resolve the aforementioned problem without touching the generated
code at all. We provide another slice of the (partial) class Rectangle; the idea is that
both ‘slices’ are merged by the compiler.

Partial Public Class Rectangle
Inherits Shape
Public Overrides Sub draw()

WriteLine(”Drawing a rectangle.”)
End Sub

End Class

Mappings Make Data Processing Go ’Round 181

Dead Ends in Mapping. Here is the generated code for Widgets:

’ The class that corresponds to the Widgets element declaration
Partial Public Class Widgets
Private itemsField() As Object
Public Property Items() As Object()

’ ... trivial implementation elided ...
End Property
’ ... rest of class elided ...

End Class

The use of normal arrays for collecting widgets is reasonable as long as we observe
de-serialized XML content. However, should we want to add widgets, we may prefer a
more ‘dynamic’ collection type such as List . Also, the widgets are exposed in a rather
untyped manner (cf. Object). We may want to use a strongly typed, generic collection
whose item type is Shape. The partial-class mechanism and other available program-
ming idioms do not help in these cases.

One may argue that the canonical mapping at hand is simply suboptimal and needs
to be improved, no matter what. However, any mapping technology must eventually
adopt some mapping rules and options. There is always a chance that someone ends up
wanting a different rule or another option later. Ideally, there would be a fundamental
way of defending the quality and the completeness of a mapping.

3 Mapping Concepts

Let us raise the level of abstraction and focus on concepts. Throughout the section,
we continue discussing examples so that we can illustrate the identified concepts and
collect more data points. Ideally, we would like to deliver the perfect, comprehensive,
formal and meaningful framework for the categorization and assessment of existing
and new mapping approaches. We are unable to complete such a task at this point in
time. Incidentally, the purpose of this tutorial is to motivate research that may enable
the completion of the envisaged framework.

3.1 Universal Representations

Many mapping scenarios regularly call for (or take advantage of) universal representa-
tions. This concept is based on a relationship between types in a given type language
(CLR classes, Haskell data types, etc.) and a universal (fixed) representation type for
that type language (‘the universe’). Here are applications of universal representations:

– Serialization of data (to text or XML) for persistence.
– Serialization for interoperability using XML again.
– Type erasure for foreign-language interfacing.
– Type erasure to escape to a dynamically typed or untyped coding style.

A good example for the last item is the need to escape from strong typing in cases where
a given mapping problem can be more easily addressed using the simple structure of the

182 R. Lämmel and E. Meijer

universal representation type. We will illustrate this scenario in a Haskell context, but
similar examples could be provided in an OO context (using reflective programming).
We face the following mapping pipeline:

−− Haskell 98 code
myMapping = tree2data −− Step 3: get back into typed world

. trickyMapping −− Step 2: untyped but powerful mapping

. data2tree −− Step 1: get out of typed world

In this pipeline, typed data (i.e., Haskell terms) is first exposed in an untyped tree for-
mat (cf. data2tree); then a ‘tricky’ mapping can be defined without running into the
limitations imposed by the type system; finally the universal representation is mapped
back into strongly typed data. The last step may fail of course.

A good example of a tricky mapping is a data conversion due to type evolution (i.e.,
evolution of the data model). In this case, there are two versions of the same system
of data types which only differ in some details. Strongly typed programming fails to
provide a concise way of mapping version A to version B; the verbose way would be
to exhaustively cover all types and their cases in equations of functions that define a
mapping. Untyped programming makes it easy to generically process the input data
and to focus on the differences between the two versions.

For clarity, these are the types of the functions involved in myMapping:

data2tree :: Data a => a −> Tree String
trickyMapping :: Tree String −> Tree String
tree2data :: Data a => Tree String −> Maybe a

We use n-ary, labeled trees as the universal representation type. Haskell’s standard li-
braries readily provide the following algebraic data type; the type parameter of Tree
denotes the label type, which is String in the example at hand:

data Tree a = Node a [Tree a]

3.2 Canonical Mappings

The above mappings from and to the universal representation type are canonical map-
pings. These are mappings that can be defined once and for all for a given class of
data models (namely for all arbitrary (algebraic) data types in the example at hand). So
let us define the mappings data2tree and tree2data. We employ Haskell’s ‘Scrap your
boilerplate’ style of generic programming [62, 63]. The mapping from data to trees is
concisely defined as follows:

−− Haskell 98 + common extensions
−− Tree−alize data
data2tree :: Data a => a −> Tree String
data2tree x = Node

(showConstr (toConstr x)) −− label
(gmapQ data2tree x) −− subtrees

Mappings Make Data Processing Go ’Round 183

As the type clarifies, the function data2tree is a generic function: it is polymorphic in
the type to be mapped to the representation type. The definition of the mapping reads
as follows. Using the primitive access function toConstr, we retrieve the constructor
of the datum, which we turn into the string label of the tree using showConstr. Using
the primitive traversal combinator gmapQ, we apply data2tree recursively to all the
immediate subterms of the datum at hand, resulting in a list of untyped subtrees.

Here is also the inverse mapping — trees to data:

−− De−tree−alize tree
tree2data :: Data a => Tree String −> Maybe a
tree2data (Node l ts) = result
where result = do

con <− readConstr resultType l
fromConstrL tree2data con ts

resultType = (dataTypeOf (fromJust result))

The application of readConstr maps the string label into an actual constructor of the
type to be populated. To this end, we use reflective information about the data type
in question; cf. dataTypeOf. We construct a datum from the constructor by applying
tree2data recursively on subtrees. The builder primitive fromConstrL takes a function to
recursively build subterms, it also takes a constructor from which to build a term, and it
takes the list of subterms in the universal representation.

3.3 Mapping Customization

The idea is that a canonical mapping is defined by a sort of generic procedure. Hence,
we face an extreme form of a non-canonical mapping when the mapping is defined ‘in
all detail’. For instance, recall the point-to-point mappings in GUI data binding. How-
ever, we may also leave the grounds of canonical mappings due to customization. That
is, a canonical default may exist, while the mapping setup is prepared to accommodate
‘special cases’.

Let us look into object de-/serialization as a scenario that typically involves cus-
tomization. A serialized default representation is available for each and every object
type; the default can be overridden though by the OO programmer on a per-object-type
basis. The following VB.NET fragment illustrates plain OO serialization; an object of
type BinaryNode is serialized to an XML file (using a SOAP formatter):

’ VB.NET 7.0 code
Dim myExp = New BinaryNode(””)
’ ... further object instantiation omitted ...
Dim s = File.Open(”foo.xml”, ...)
Dim f = New SoapFormatter
f . Serialize (s,myExp)
s.Close()

This direction corresponds to the data2tree function given above, except that we seri-
alize (or tree-alize) to XML this time. An OO class is made fit for (de-)serialization by
attaching a custom-attribute Serializable to the class:

184 R. Lämmel and E. Meijer

<Serializable()> Public Class BinaryNode
’ ... elided ...
End Class

The Serializable attribute tells the serialization library that it is ‘allowed’ to leverage re-
flective programming to carry out the mapping from objects to XML (and vice versa) in
a canonical fashion. Customization of the canonical default is enabled by the following
provisions. One can implement a designated ISerializable interface, and in particular, a
GetObjectData method to override the generic reflection-based behavior for the serial-
ization of the object’s content:

Sub GetObjectData(ByVal info As SerializationInfo,
ByVal context As StreamingContext)

Implements ISerializable.GetObjectData
’ Identify data for serialization
info .AddValue(”field1”, field1);
info .AddValue(”field2”, field2);

End Sub

3.4 Type- vs. Instance-Based

A type-based mapping is defined as a relationship between the two involved data
models, while it is assumed that this type correspondence (more or less) directly im-
plies the actual value transformation for the two data models. By contrast, an instance-
based mapping expresses value transformations directly. Type-based mappings are less
expressive because they are also more abstract and canonical. In return, they make
it easier to provide updateability (i.e., pushing back target-side value modifications
to the source) and composability (i.e., performing target queries directly on the
source).

A clear-cut example of a type-based mapping is canonical XML data binding where
any given XML schema is mapped to a corresponding object model based on fixed rules
that only refer to type patterns in XML schemas and object models; cf. Sec. 2.3. For
instance, a specific mapping for XML-data binding could involve the following type-
based mapping rule:

Any global element declaration without attribute declarations, with a sequence
group for its content model such that the children of the sequence are local
element declarations with distinct element names and nominally specified (as
opposed to anonymous) content types is mapped to an object type with the
global element name as class name (after name mapping), with fields for the
local element declarations such that the local element names serve as field
names (after name mapping) and the content types of the elements serve as
field types (after type mapping).

We leave it as an exercise to the reader to attempt a classification with regard to the
‘type- vs. instance-based mapping’ dichotomy for each of the examples of Sec. 2. (As
we will argue shortly, such a classification may be difficult at times.) Let us consider
a non-trivial but clear-cut example of an instance-based mapping. Suppose we want to

Mappings Make Data Processing Go ’Round 185

extract a problem-specific XML view on some tables in a relational database. There are
these tables: Orders, Employee and Customer; the XML view should look as follows:9

<Customer CustomerID=”ALFKI”>
<Order OrderID=”10643” />
<Order OrderID=”10952” />
<Order OrderID=”11011” />
<Employee LastName=”Davolio” />
<Employee LastName=”Leverling” />

</Customer>
...

The XML view can be derived through a nested SELECT statement on the database.
Some annotations like FOR XML AUTO, TYPE clarify that the result indeed should be
‘rendered’ as XML data rather than a list of queried rows:

// SQL with XML extensions of SQL Server 2005
SELECT CustomerID AS ”CustomerID”,

(SELECT OrderID AS ”OrderID”
FROM Orders ”Order”
WHERE ”Order”.CustomerID = Customer.CustomerID
FOR XML AUTO, TYPE),

(SELECT DISTINCT LastName AS ”LastName”
FROM Employees Employee
JOIN Orders ”Order” ON ”Order”.EmployeeID = Employee.EmployeeID
WHERE Customer.CustomerID = ”Order”.CustomerID
FOR XML AUTO, TYPE)

FROM Customers Customer
FOR XML AUTO, TYPE

Let us also look at a less clear-cut example — the generic function for mapping Haskell
terms of arbitrary types to trees according to a universal representation type. Do we face
an example of a type-based or an instance-based mapping, or is it neither of these?

−− Tree−alize data
data2tree :: Data a => a −> Tree String
data2tree x = Node

(showConstr (toConstr x)) −− label
(gmapQ data2tree x) −− subtrees

The mapping is type-based because it is fully generic. Likewise, any reflection-based
mapping (such as object serialization) counts as type-based. Once customization en-
ters the scene, the mapping may become partially instance-based. Here we assume that
customization is regarded as a means of providing type-specific value transformations.
The XML view example, given above, is clear-cut instance-based since it defines a
query that is fully specific to certain tables, columns thereof and key-value relationships.
One could impose a certain XML schema (‘type’) on the result of the instance-based

9 Source: http://msdn.microsoft.com/library/en-us/dnsql90/html/
forxml2k5.asp

186 R. Lämmel and E. Meijer

mapping, or one could even attempt to infer such a schema (‘type’), but the mapping is
nevertheless defined as a value transformation.

3.5 The Programmatic-to-Declarative Scale

It is common to say about mappings that they are defined programmatically or declar-
atively. These are not absolute concepts, but we attempt to justify these terms anyway
since they are in common use and they may eventually turn out to be useful — once we
better understand the scale; once we are in possession of proper definitions. (This is a
future-work item.)

Programmatic Mapping. We use this term to refer to a mapping that is defined
through program code such as in a general purpose programming language or a (typ-
ically Turing-complete) data processing language such as SQL, XSLT, XQuery, C#,
Haskell, Java or VB. Hence, the FOR XML AUTO example from the previous section
would count as programmatic. Let us review another programmatic mapping example.
That is, let us map a business-object type, Order, to an XML type, Invoice. The follow-
ing programmatic mapping code ‘dots’ into the business object, it eventually reaches
sub-objects for customers and addresses, and it assembles new XML objects (using
XML data binding) for invoices and items thereof; the encoding uses LINQ’s SQL-like
query syntax to iterate over object collections [73]:

// C# 3.0 / LINQ code (as of May 2006)
public static XmlTypes.Invoice Map(ObjectTypes.Order ord)
{

return new XmlTypes.Invoice {
name = ord.cust.name,
street = ord.cust.addr.street ,
city = ord.cust.addr. city ,
zip = ord.cust.addr.zip,
state = ord.cust.addr.state ,
items = (from i in ord.items

select new XmlTypes.Item {
prodid = i .prod.prodid,
price = i .price,
quantity = i . quantity }). ToList (),

total = ord.computeTotal()
};

}

Declarative Mapping. We use this term to refer to a mapping that is not defined as
an immediately executable program with an intrinsic operational semantics by itself;
instead the mapping (description) is associated with an operational semantics by means
of a separate interpretation, translation or code generation. For instance, the MAPSYM
and MAPRULE constructs of Sec. 2.1 suggest that Maptool descriptions amount to
declarative mappings. The implicit assumption is that a declarative mapping lends itself
‘more easily’ to different analyses and interpretations. For instance, one should expect

Mappings Make Data Processing Go ’Round 187

that declarative mappings are amenable to updateability (or reversibility, two-way up-
dates) ‘more easily’.

Let us review another declarative mapping example. That is, let us look at object-
relational mapping as it is done in HIBERNATE — an approach for relational per-
sistence for ‘idiomatic Java’.10 The following fragment of a class-centric mapping
specification defines the structure of a class Cat in terms of a table CATS. Class prop-
erties are associated with table columns; a generator class is associated with the id
column:

<class name=”Cat” table=”CATS”>
<id name=”id” column=”uid” type=”long”>

<generator class=”hilo”/>
</id>
<property name=”birthdate” type=”date”/>
<property name=”color” not−null=”true”/>
<property name=”sex” not−null=”true” update=”false”/>
<property name=”weight”/>
<many−to−one name=”mate” column=”mate id”/>
<set name=”kittens”>

<key column=”mother id”/>
<one−to−many class=”Cat”/>

</set>
</class>

This declarative mapping admits the derivation of an actual Java class and a relational
schema such that the derived class facilitates the population of objects from relational
data and the persistence of objects as relational data.

3.6 Annotations vs. References

The Hibernate mapping of the previous section essentially prescribed both the ultimate
Java class and the associated relational schema. In many mapping scenarios, the actual
source and/or target types of a mapping predate the mapping effort, in which case the
purpose of a (declarative) mapping specification is really just to associate two existing
data model(s) with mapping rules or to define a new data model in terms of a given one.
In these cases, there exist two major options:

– Annotations: A data model is physically annotated with mapping rules.
– References: The mapping specification refers to components of the data model(s).

We illustrate this variation point in the context of XML data binding using the JAXB
technology for Java [91]. JAXB admits mapping customization using both inline
schema annotations and a standalone mapping specification with schema references.
Let us pick up the ‘shapes example’ again, which we started in Sec. 2.3, when we
discussed some drawbacks of xsd.exe’s canonical mapping. The mapping of JAXB is
largely different from xsd.exe’s mapping, and so we encounter different issues:

10 Source: http://www.hibernate.org/hib docs/reference/en/html/
mapping.html

188 R. Lämmel and E. Meijer

– Recall the choice group of the Widgets element:

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Rectangle” type=”Rectangle”/>
<xs:element name=”Square” type=”Square”/>
<xs:element name=”Circle” type=”Circle”/>

</xs:choice>

The canonical default mapping results in the following field:

protected List<Object> rectangleOrSquareOrCircle;

This mapping mostly illustrates Java’s (as much as .NET’s) weak story regarding
‘old-style’ discriminated unions. Still, there is room for improving the mapping
result. In particular, we would like to use customization to replace the generated
‘ugly’ name rectangleOrSquareOrCircle by a more reasonable name, say Shapes.

– As we discussed for the xsd.exe technology, it is limiting that Rectangle, Square,
Circle are unrelated base classes. Again, we would like to enable polymorphism
by establishing a common base class using customization. As an aside, the .NET
technique of using partial classes (cf. Sec. 2.3) cannot be adopted here because
Java (1.5) does not offer an equivalent mechanism. (We could use aspect-oriented
language extensions though [53].)

We will address both issues by using JAXB’s customization mechanisms.11

Annotation-Based Mapping. We start the XML schema for shapes all over again.
The annotation-based approach requires that we use JAXB-specific annotations in our
schema. Hence, we need to bring all namespaces for JAXB into the scope:

<!−− XML schema −−>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:jaxb=”http:// java.sun.com/xml/ns/jaxb”
xmlns:xjc=”http :// java.sun.com/xml/ns/jaxb/xjc”
jaxb:version=”2.0” jaxb:extensionBindingPrefixes=”xjc”>

<!−− Cont’d below −−>

Right at the top level of the schema, we attach a new default base class, where we
follow the rules of JAXB’s schema for such binding declarations, and we also adhere to
the rules for placing annotations in an XML schema. That is:

<!−− Cont’d from above −−>
<xs:annotation>

<xs:appinfo>
<jaxb:globalBindings>

<xjc:superClass name=”drawApp.Shape”/>
</jaxb:globalBindings>

</xs:appinfo>
</xs:annotation>
<!−− Cont’d below −−>

11 Source: http://www.onjava.com/pub/a/onjava/2003/12/10/jaxb.html

Mappings Make Data Processing Go ’Round 189

We should note that this is a poor man’s solution because Shape will now serve as the
base class for all classes that are derived from the schema at hand. This is acceptable
for the particular shapes schema. We also note that subclassing of the generated classes
Rectangle etc. will be necessary once implementations of the draw method are to be
added. (In the VB.NET version we were able to add the subclass-specific implemen-
tations of the draw method retroactively to the generated classes Rectangle etc. with
the help of the partial-class technique. Again, we could use Java extensions, such as
open-class mechanisms of aspect-oriented programming in similar ways [53].)

The other issue — provision of a reasonable name for the widgets collection — is
resolved as follows. We add an annotation to the Widgets element such that the name
of the generated Java property is defined as Shapes:

<!−− Cont’d from above −−>
<xs:element name=”Widgets”>

<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:annotation>
<xs:appinfo>

<jaxb:property name=”Shapes”/>
</xs:appinfo>

</xs:annotation>
<xs:element name=”Rectangle” type=”Rectangle”/>
<xs:element name=”Square” type=”Square”/>
<xs:element name=”Circle” type=”Circle”/>

</xs:choice>
</xs:complexType>

</xs:element>

We elide the rest of the schema because it does not contain further annotations.

Reference-Based Mapping. JAXB offers a reference-based technique for customiza-
tion that simply exploits the following facts. First, XML schemas are XML documents.
Second, fragments in XML document can be addressed precisely through XPath ex-
pressions. It is indeed straightforward to transcribe the earlier annotation-based map-
ping description such that all binding declarations are gathered separately, and they are
attached to schema parts through XPath references. So we reuse the earlier annotations,
as is, but we collect them in designated JAXB bindings elements. For brevity, we only
show the customization of the choice group:

<jxb:bindings node=”//xs:element[@name=’Widgets’]//xs:complexType//xs:choice”>
<jxb:property name=”Shapes”/>

</jxb:bindings>

We can see that the XPath expression under node descends into the element declaration
of @name=’Widgets’, then into the complexType component underneath, until it hits on
the subtree for the choice. One may argue whether or not the use of a low-level (schema-
unaware, very syntactical) selector technique like XPath provides a sufficient level of
abstraction. One alternative is offered by XML schema component designators [97] —
an XML language for identifying XML Schema components.

190 R. Lämmel and E. Meijer

3.7 Updateability

Various mapping scenarios require updateability in the sense that target-side value mod-
ifications must be pushed back to the source. We have discussed this issue already in
the specific context of GUI data binding. Object-relational mappings constitute another
general class of mappings with an updateability requirement. That is, the database in-
stance and its manifestation as an object graph are supposed to stay in sync. In the
source-to-target direction, syncing is potentially just seen as a ‘refresh’ issue. In the
target-to-source direction, syncing may require building the converse of a mapping (a
‘view’) that was originally thought of as being directed from source to target. For in-
stance, an SQL-like view seems to be directed in that sense. Indeed, the view-update
translation problem for databases [10, 34] is the classic form (and challenge) of an
updateable mapping. The subsequent discussion is meant to provide an account on sce-
narios for updateability, overall attacks, practical challenges and available foundations
such as data refinement and bi-directional transformations.

Alleviated or Missing Updateability Requirement. Updateability (or reversibility)
is not a universal requirement for mappings. For instance, concrete-to-abstract syntax
mappings are mostly not expected to be invertible. However, some degenerated form of
updateability (such as origin tracking [22]) may still be required. Consider a language
implementation with a type checker that consumes abstract syntax; when type errors are
found, the type checker must be able to refer back to the original part of the input — for
the programmer’s convenience who needs to understand the error message.

‘Near-to’ Bijections. Let us consider a basic (restricted) form of updateability:

M

a : A b : B
m

b’ : Ba’ : A

f

mr

In this figure, we face types (data models) A and B and instances (elements) a and
b. We also indicate the possibility of a type-level mapping M from A to B, but M is
not essential. It is essential though that there an instance-level mapping m that maps a
to b. Updateability of the mapping means that there is instance-level mapping mr with
which a changed target value, b′, can be mapped back to an accordingly changed a′.

It is clear that mr should be the converse of m. For a bijective m, updateability is
trivially implied. However, this assumption is quite restrictive. For instance, a mapping
that provides a view on a source (just as an SQL view) will be non-injective. In other
scenarios, injectivity may be feasible but surjectivity cannot be delivered. For instance,
the target types of a mapping may be intrinsically richer (say, more liberal). In the
sequel, we identify deviations from bijectivity.

Mappings Make Data Processing Go ’Round 191

For a non-injective m, we have to come up with a heuristic to resolve the choice
points when mapping back b′ to a′. Suppose m projects away data (such as in a general
SQL SELECT statement), we would have to expect that mr somehow puts back the
eliminated data. This is mathematically impossible for the shown diagram. We really
need to have access to more information such as the original value a. We get to this
different scheme in a second.

For an injective but non-surjective m, there are essentially two major cases. The first
one is that B is representationally richer, but m and modifications on B do not (or are
not supposed to) exploit this generality. In this case, we are still able to define a suitable
mr such that the composition of m and mr is the identity. This case is nicely backed up
by research on data refinement [42, 74, 78, 79, 6]. (The functions m and mr are called
the ‘representation’ and ‘abstraction’ mappings in standard data refinement terminol-
ogy.) For instance, one can easily see that the following types are in refinement order:

X ⊂ X + 1
X → (Y + Z) ⊂ (X → Y) × (X → Z)

The first inequality is the abstract version of mapping a non-nullable type to a nullable
type such as mapping a NOT NULL column of a ‘value type’ to an object type (which
is ‘nullable’ because it is reference type). The second inequality demonstrates the elim-
ination of sums through refinement. Again, the right-hand side admits more values such
as a y ∈ Y and a z ∈ Z both being associated with the same x ∈ X . However, if the
contract is such that the richer representation must not (cannot) be explored, then the
mapping is still updateable.

For an injective but non-surjective m, we could also face the case that B is designed
to maintain extra data along the life cycle of the mapped data on the target side. In this
case, we assume that any b′ can be narrowed down to the range of m in a meaning-
preserving manner. Here is a simple example: change flags on the target side. These
change flags may be essential for the optimized propagation of updates from the target
to the source, but they are semantically irrelevant because we could (in theory) assume
that all rows were changed.

Facilitation of Original Value. There are several ways to improve on the discussed
notion of ‘near-to’ bijections. Perhaps the must general and fundamental improvement
is to take the original value, a, into account when mapping b′ to a′:

M

a : A b : B
m

b’ : Ba’ : A

f

mr

192 R. Lämmel and E. Meijer

That is, when mapping back a piece of target data, b′, we may also observe the asso-
ciated piece of source data, a. Therefore, mr can now compensate for a non-injective
facet of m. (We may want to pass b to mr too, or we may assume that mr ‘re-evaluates’
m(a) in case it needs b.)

The data sets of Microsoft’s ADO.NET technology for object-relational mapping
instantiate this idea.12 In-memory rows from the database carry identities (based on
real or made-up primary keys). Hence, client-side changes can be pushed back to the
database using ‘keyed’ UPDATE statements.

Bi-directional Transformations. Pierce, Hu and others have recently developed a
formal notion of bi-directional transformations [36, 45, 13] that provide updateabil-
ity for mappings on data. This approach facilitates the original value, but its real
insight is centered around the discipline of transformation. What they call ‘transfor-
mation’ is (intuitively) a source-to-target instance-level mapping function which how-
ever comes with two ‘interpretations’ get and put for performing the mapping both
ways. The bi-directional transformation literature studies the various primitive transfor-
mations and composition operators that can be fitted into this conceptual framework.
Initially, this line of work applied to tree data only, but very recent developments also
cover relational data. In fact, it had been observed from the very beginnings that bi-
directional transformations are quite related to view-update translation for databases
[10, 34].

It will be interesting to apply such theory to actual mapping problems such as object-
XML mapping or object-relational mapping. We think that it is necessary to study up-
dateability (say, bi-directional transformations) in a context that pays attention to all
relevant concerns including these: remoting queries and DML operations, dealing with
transient state, making scalar types vs. structured types updateable, making mapping
lazy, and so on.

3.8 Usage Protocols

A very complex topic that we can only touch upon here is the provision of protocols
as a complement of the mere data-modeling aspects of mapping. When talking about
mappings, one may easily focus on typing issues and neglect the protocol that goes
with the mapped data. An intuitive definition of the term ‘usage protocol’ is this: a
usage protocol describes order and conditions for the invocation of methods in a (data
access) API.

Protocols in XML Data Binding. For instance, let us consider the protocol for using
a schema-derived object model in the context of XML data binding (i.e., object-XML
mapping). The simple version of the protocol goes as follows:

1. De-serialize XML document into objects.
2. Operate on bound object structure using plain OO programming.
3. Serialize objects back to XML document.

12 Source: http://msdn2.microsoft.com/en-us/library/y2ad8t9c(VS.80).
aspx

Mappings Make Data Processing Go ’Round 193

This list is superficial. Here are some neglected protocol issues:

– Construction of structured content follows a certain protocol.
– Mixed content observation and injection requires special protocols.
– On-demand validation of global or other constraints may be provided.
– The tree semantics of XML imposes a certain contract on DML operations.
– Access to low-level XML views may require on-the fly (de-) serialization.
– There may be a protocol to handle transiently invalid content.

The Data-Sets Protocol. Let us consider the usage protocol for multiple-tier architec-
tures using ADO.NET, in particular the ability of changing disconnected data sets that
need to be committed later to the database.13 The protocol identifies the following steps
for creating and refreshing a data set, and in turn, updating the original data:

1. Build DataSet.
2. Fill DataSet with data from a data source using a DataAdapter.
3. Change DataSet by adding, updating or deleting DataRow objects.
4. For 2-tier apps:

(a) Invoke Update on DataAdapter with the above DataSet as an argument.
(b) Invoke AcceptChanges on DataSet.

5. For n-tier apps:
(a) Invoke GetChanges to create a 2nd DataSet that features only the changes.
(b) Send the second DataSet to the middle-tier via WebServices.
(c) On the middle-tier,

invoke Update on DataAdapter, with the 2nd DataSet instance as an argument.
(d) From the middle-tier,

send the updated DataSet back to the client via WebServices.
(This DataSet may have server generated columns set to the latest value).

(e) On the client-side,
invoke Merge on original DataSet to merge the received DataSet, and then
invoke AcceptChanges on the original DataSet.

6. Alternatively, invoke RejectChanges to cancel the changes.

The general observation is that the definition of a mapping is only complete when pro-
tocol issues are clearly defined, too. Unfortunately, in practice, mappings are not rigor-
ously defined in this respect.

3.9 Further Reading

There are several fields in software engineering and programming language theory that
involve notions of mapping with similarities to mappings in data processing. We do not
dive into those fields here, but we document them as related work:

– As mentioned before: data refinement [42, 74, 78, 79, 6].
– As mentioned before: bi-directional transformations [36, 45, 13].

13 Source: http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpref/html/frlrfSystemDataDataSetClassTopic.asp

194 R. Lämmel and E. Meijer

– Consistency maintenance in software modeling [60, 46].
– Consistency maintenance in cooperative editing [24, 90].
– Data views in functional programming (patterns for ADTs) [98, 16, 77].
– Program views in intentional programming and fluid AOP [88, 5, 52].
– Reconcilable model transformation in model-driven development [85, 26].
– Source-code modeling in re-/reverse engineering [83, 58, 69, 44, 56].
– The general notion of coupled transformations [61].

4 Cross-Paradigm Impedance Mismatches

Having discussed mapping examples and concepts, we still need to get a better handle
on the following question: ‘Why is it that inter-paradigmatic mappings are so difficult?’.
The present section identifies and illustrates the impedance mismatches amongst the
major paradigms for data modeling and processing: Cobol, object, relational and XML.
We focus on the technical dimension; we attempt to circumvent the ‘cultural’ dimension
of impedance mismatches [7]. (This separation is not always easy to mark off though.)

4.1 Characteristics of Major Paradigms

The impedance mismatches are rooted in the different characteristics of the paradigms.
So we recall these characteristics here — as a means of preparation.

Object-Oriented Programming

For simplicity, we focus on mainstream, class-based, imperative, typed, object-oriented
programming languages like C++, C#, Java, and VB.

– Reference semantics. Object structures are graphs that are basically assembled by
storing references to objects in data fields of objects. An OO language may prefer
not to surface the distinction between objects and object references (say pointers),
but the semantics of objects is reference-based anyhow. Object construction returns
a reference to the newly constructed object. Objects are passed by reference to
methods. Objects can be compared for equality in the sense of object identity (i.e.,
object reference equality).

– Encapsulation. The data part of object structures does not exist in isolation. Instead,
an object is a capsule of data and behavior (i.e., methods). The interface of an object
typically provides restricted access to the data fields (i.e., to the low-level state) of
an object. Consistent changes of an object’s state (as well as conglomerations of
objects) are to be achieved through the behavioral interface of an object. (In object-
based languages and advanced frameworks, methods may be part of an object’s
state, too.)

– Properties. Data fields are often not directly exposed through an object’s interface,
but the object’s state is instead published through properties adding a level of indi-
rection. This idiom allows one to hide representation details while still providing a
structural view on the object’s state.

Mappings Make Data Processing Go ’Round 195

– Abstract classes and interfaces. An object model defines its data model potentially
also through types that cannot be directly instantiated. That is, OO languages allow
for abstract classes, and most typed OO languages support interfaces by now.

– Subtype polymorphism. Classes and interfaces are arranged in subtype hierarchies.
Each variable is declared with a static type that serves as a bound for the type of
objects that may be assigned to the variable. A subtype may add components to
the state, and it may enrich the interface. Ideally, subtypes preserve the observable
behavior of the supertype; cf. the substitution principle [66].

– Generics. Most typed OO languages support generics (parametric polymorphism)
by now. That is, classes, interfaces and method types can be parameterized in types.

Relational Databases

We restrict ourselves to SQL databases in the sequel.

– Relational algebra. Conceptually, database tables are mathematical relations in the
sense of sets of tuples over scalar data [19, 21]. One can process these relations in
terms of set-theoretic operations (such as union, difference and intersection) as well
as relational algebra operations (such as projection, selection, Cartesian product and
join). In practice, we deviate from this mathematical ideal a bit, e.g., order of rows
does matter in tables; SQL’s SELECT statement combines several operations.

– Keys. Both at a fundamental level (i.e., relational algebra) and in practice, table
columns may specifically serve for the global identification of table rows (cf. pri-
mary key) such that other tables may refer to the identified rows (cf. foreign key). It
is a crucial ingredient of relational schema design to identify such primary and for-
eign keys as they will be used in queries (for joins) and in ensuring the referential
integrity of the database as a whole.

– Data integrity. More generally, a database schema makes contributions to the effec-
tive maintenance of data integrity. To this end, integrity constraints (such as foreign
key constraints), cascading operations and triggers can be used.

– Transactions. DML operations on a database are scoped in groups that are called
transactions. Only the successful completion of such groups leads to an observable
state change of the database. Transactions facilitate consistency in databases. For
instance, the insertion or deletion of a row in one table may only be valid in combi-
nation with updating rows in other tables. Transactions may be expressed as stored
SQL procedures that consist of SQL DML statements.

– Schema evolution. Within limits, a database schema can be adapted, perhaps even
while the database is on-line. The schema may evolve in such a way that all or most
previously valid queries continue to be valid.

– Views. In addition to physical tables, there can be views, which are defined by SQL
queries. Views are never materialized; the defining queries are executed once the
view itself is queried. Updates on views are relatively restricted.

XML Document Processing

We have in mind XML processing using XPath, XSLT, DOM, XQuery and friends. We
also include uses such that XPath or other XML languages are embedded into general-
purpose languages such as Java or C#.

196 R. Lämmel and E. Meijer

– Tree structure. XML elements are normally organized as trees — as opposed to flat
tuples or arbitrary graphs. One may use IDREFs to refer to remote elements, but this
idiom is only occasionally used in practice. Also, XML types may be recursive, but
the prevailing concept in XML is hierarchical, tree-like organization of data.

– Element vs. attribute dichotomy. “A perennial question arising in the mind [... of
XML designers ...] is whether to model and encode certain information using an el-
ement, or alternatively, using an attribute. ... Experienced markup-language experts
offer different opinions ...”14

– Mixed content. One may mix structured content (elements) and text. Processing in-
structions (PIs) and comments may occur, too. Some XML use cases require high
fidelity: all details of text, PIs and comments are to be preserved. This issue is very
similar to layout and comment preservation for programming language process-
ing [93, 56] (also known as syntax retention).

– Order matters. Element tags are not meant to be (unambiguous) selectors or labels.
Multiple element particles with the same element name may occur in a content
model. XML processing functionality may care about the order of elements. Order
also matters with regard to querying. That is, queries (based on XPath and friends)
are normally supposed to return elements in document order.

– The XML infoset. The representation-biased view on XML is complemented by
a more abstract interpretation of XML documents: the infoset [95]. This seman-
tic domain regulates what sort of information is associated with each node in a
well-formed (and not necessarily valid) XML document. The infoset hints at the
axis-based navigation style for XML. That is, one can navigate to the children, to
the parent, and to the siblings. In fact, the document object model (DOM [94]) al-
most directly implements the infoset semantics. In reality, there is not just a simple
data model for XML. Most notably, each XML API implements a slightly different
variation on the infoset. Also, the data model of XPath is yet again slightly different
from plain infoset.

Cobol

Cobol is not just the most widely used programming language for data-processing ap-
plications; it is in fact a language that has been designed to specifically serve this role.
More than that, Cobol continuously evolves to co-exist with other paradigms. (For in-
stance, Cobol has been turned into a proper OO language over the last decade or so [48].
Admittedly, OO Cobol sees limited adoption.) Here are Cobol’s characteristics:

– Files as a language concept. Unlike development platforms of the last 10 years or
so, persistent data processing is not viewed as an ‘API issue’ in Cobol. Instead,
statically typed language constructs for keyed and sequential file access amount
to an intrinsic component of the language since the 1960s. (“No strings”.) The
concept of keyed files is similar to the relational model except that file access is
record-based and general joins need to be rolled out as nested loops.

– Database support. Embedded SQL (optionally combined with transaction monitors
like CICS) allows for processing relational data in Cobol code. Embedded SQL can

14 Source: http://xml.coverpages.org/elementsAndAttrs.html

Mappings Make Data Processing Go ’Round 197

be pre-compiled (including compile-time data dictionary access), which implies
static typing and enables optimizations. SQL queries are executed using a cursor
model, and result rows are stored in accordingly structured (potentially generated)
group fields, based on a simple mapping of SQL data types to Cobol types.

– XML support. Conceptually, records (and Cobol data in general) are described
through arbitrarily nested group fields. This is already a good fit with the tree-like
organization in XML except for the issue of unbounded occurrence constraints and
choice types. Also, Cobol readily offers ‘representation-oriented’ data types, just as
XML schema. Additional native XML support is being added to the standard [8].
This addition allows file processing on XML data and validation. Content mod-
els can be described more or less like normal file records. A cursor-based model
resolves the issue of unbounded occurrence constraints. Choices may be treated
procedurally by tag inspection.

4.2 An Open-Ended List of Mapping Issues

We attempt to pinpoint ‘issues’ that witness impedance mismatches for inter-paradigm
mappings. The issues are phrased as questions. We reckon that each such question does
not lend itself to a trivial, unambiguous and non-debated answer.

Map a Relational Schema to an Object Model

Such a mapping is needed when an OO application requires access to business data that
happens to reside in a relational database. This is perhaps the most common mapping
scenario in IT today up to a point that experts have labeled this problem as the ‘Vietnam
of Computer Science’. There are various more or less complex technologies in existence
that attempt to address this problem, e.g., EJB and Hibernate, and some technologies
were never completed. We phrase some issues as questions:

– How to map database schemas to class hierarchies?
(What data is going to be private if any? What to use inheritance for, if at all?)

– How to perform queries on objects (that represent relations)?
(Should we mimic SQL? Should we use OOQL, XPath or XQuery?)

– How do foreign key constraints show up in the behavior of objects?
(How to map foreign key constraints to an OO design?)

– How would we possibly carry out schema evolution on the OO program?
(Also, can we achieve independent evolution of database schema and object
model?)

– How to map SQL views and stored SQL procedures to objects?
– How to enable transactions in the object-life cycle?
– Can we make any use of interface polymorphism?
– How to map object access to SQL queries?

Map an Object Model to a Relational Schema

Such a mapping is needed in the following situations: (i) the database is meant to serve
for plain object persistence; (ii) the architecture of an OO application is constrained to

198 R. Lämmel and E. Meijer

expose its object model as a relational schema, which may be considered as a strong
version of (i). In both cases, the mere mapping problem might couple up with a migra-
tion problem. That is, we may need to re-engineer the OO application that pre-dated
the mapping requirement. ‘Normal objects’ are to be replaced or complemented by
database-access objects.

– What classes, fields and properties are mapped to relations?
(In particular, what private fields have to be persisted if any?)

– How do we map single/multiple OO inheritance to relations?
(How does this affect querying tables that correspond to subclasses?)

– How to extract foreign key constraints from OO designs?
– How to extract NOT NULL constraints from OO designs?
– How to map Eiffel’s, Java’s or .NET’s generics to the database?
– What to do about interface polymorphism, if anything?

Map an Object Model to an XML Schema

Such a mapping is needed in the following situations: (i) data import and export for
the sake of open, interoperable software applications; (ii) XML-based persistence; (iii)
remote-method invocation and web services. Object models seem to lend themselves to
reasonably restricted XML schemas. However:

– What classes, fields and properties need to be mapped anyhow?
(In particular, what private fields are part of the intrinsic object state?)

– How do we draft the hierarchical organization of the XML data?
(What associations to represent through hierarchy? Should we use IDREFs?)

– What to do about sharing or cycles in the object graph?
(How do we even know for sure where sharing and cycles may occur?)

– How to enable platform interoperability (cf. Java vs. .NET)?
– What to do about interface polymorphism, if anything?
– Which XSD organization style to use when?
– How to map generics to XML schema?

Map an XML Schema to an Object Model

That is, the XML schema serves the role of a ‘first-contract’ data model in this case. The
overall scenarios for this mapping direction are more or less the same as for the other
direction: objects to XML, but this time we face the full generality of XML schemas as
opposed to the subset that is targeted by a given ‘objects to XML’ approach.

– How to group tree elements in objects?
– How to provide fidelity for mixed content?
– How to map ID literals into object references?
– Do simple XSD types constitute wrapper classes?
– How to map identity constraints to OO behavior?
– How to map facets (maxInclusive etc.) to OO methods?

Mappings Make Data Processing Go ’Round 199

– How to represent order constraints in OO code if at all?
– How to map type derivation by restriction to OO mechanisms?
– How do we cope with XML data that does not comply to the schema?
– Do we need to distinguish elements from complex types in OO types?
– How to map anonymous model groups to fields/properties in OO code?
– Can we enable independent evolution of XML schema and object model?

Map an XML Schema to a Relational Schema

Such a mapping is needed when we want to use a relational database as an XML store.
(In practice, we even may want to store untyped XML data or to neglect the XML
schema for the purpose of storing XML data.) Another scenario for XML-to-relational
is that we actually aim at a faithful relational schema so that we can operate on the data
in two worlds: XML and SQL.

– How to ‘normalize’ the XML schema?
– How to map XSD’s built-in simple types to SQL data types?
– How to avoid clashes of XML IDs from different documents in the database?
– How to (efficiently) support XPath et al. on the relational image?

Map a Relational Schema to an XML Schema

Such a mapping is needed for the provision of an XML view on relational data. As in
the case of several previous mapping couples, we may have a choice between canonical
mappings (that take any relational schema and expose it as XML without any contri-
bution from a programmer) or custom mappings, where the programmer specifically
describes the shape and the content of the desired XML view relative to the relational
schema. (These two options are sometimes also referred to as prescriptive vs. descrip-
tive mappings.)

– When to use IDs/IDREFs and when to use nesting?
– How to deal with circular reference chains in tables?
– How to map SQL data types to XSD’s built-in simple types?
– Exercise to the reader: find some more variation points.

4.3 Exemplar Frictions

We increase the level of detail by discussing exemplar frictions.

OO Lacks Foreign Key Constraints

Foreign key constraints in relational databases serve foremost for referential integrity
in a database. One cannot accidentally delete a master row if there are still references
to this row from elsewhere through foreign keys. Modern databases (such as SQL 92
variants) provide support for cascading deletes and updates such that update or delete
operations are distributed automatically from the table with the primary key to tables

200 R. Lämmel and E. Meijer

with corresponding foreign keys. (In addition, there is also the trigger technique to
achieve this behavior with slightly more effort.)

An example follows. Let us assume a stock table that contains a list of items that a
shop stocks and sells, as well as a stock transaction table that contains a list of purchases
and sales for each stock item. We can only delete a stock item if there are no transactions
left that refer to the stock item. However, a cascading delete makes sense here: the
deletion of the stock item should imply the deletion of the transactions for this stock
item. This is expressed by the ON DELETE CASCADE phrase as part of the foreign key
constraint.

// SQL Server 2000 code
CREATE TABLE stock trans
(
trans id int NOT NULL IDENTITY PRIMARY KEY,
stock id int NOT NULL REFERENCES stock(stock id) ON DELETE CASCADE,
// ... further columns elided ...
)

Cascading operations are not readily available in the OO paradigm. Let us assume that
there are classes for stock items and transactions. Each transaction object holds a refer-
ence to the corresponding stock-item object. Also, let us assume that we maintain a col-
lection of stock items. The trouble is that there is no primitive OO operation for the ef-
fective eradication of a stock item including all objects that refer to it. One may employ
a range of techniques for the encoding of cascading deletes: weak references, explicit
memory management with bi-directional references, the publish-subscriber design pat-
tern, designated design patterns [76, 75], and ownership types [18, 14, 17] (which would
call for language extensions).

Cobol’s REDEFINES

We are asked to migrate the file-based data management layer of an existing Cobol ap-
plication to database technology. Such a migration consists of three parts: (i) reverse
engineering of the file-based data model with the goal to derive a reasonable relational
schema; (ii) data conversion to populate the database; (iii) re-engineering of the Cobol
code to perform database access in place of file access. We will focus on (i) because
we want to illustrate an impedance mismatch between keyed or sequential Cobol files
and the relational model. Once we understand the data-model mapping, the actual data
conversion (i.e., ii) is relatively straightforward. (iii) is rather involved. Clearly, migra-
tion is not the only option. There are cases in which a Cobol system reaches the end of
its conceded life, and we are requested to convert the legacy data to a database. In this
case, we can ignore (iii).

Cobol offers (unsafe) variants through its REDEFINES clause: a given record can
assume different types. The reverse engineering part needs to identify such records
and eradicate them in some way. (The relational model does not comprise designated
expressiveness for variant records.) Let us consider an example. The following record
description for orders distinguishes header records vs. position records, which both
start with a common structure for key data:

Mappings Make Data Processing Go ’Round 201

∗ Cobol ’85 code
FILE SECTION.
FD ORDER−FILE.
01 ORDER−RECORD.

∗ The level 05 group item holds common key data.
05 ORDER−KEY−DATA.
10 ORDER−NUMBER PIC 9(8).
10 ORDER−ACCOUNT PIC 9(10).
10 ORDER−PRODUCT PIC 9(8).
10 ORDER−POSNR PIC 9(4).

∗ Note:
∗ − ORDER−HEADER−DATA is redefined by ORDER−POSITION−DATA
∗ − If ORDER−POSNR <= 9, then we face a HEADER.
∗ − If ORDER−POSNR > 9, then we face a POSITION.

05 ORDER−HEADER−DATA.
10 ... details of header elided ...

05 ORDER−POSITION−DATA
REDEFINES ORDER−HEADER−DATA.

10 ... details of position elided ...

The comment reveals that the condition ORDER−POSNR > 9 is supposed to hold for
position records. Here, ORDER−POSNR is a data item that contributes to the key of
any ORDER record. We may not always find such a helpful comment, neither do we
necessarily trust such documentation. Ultimately, we need to engage in reverse engi-
neering indeed. The following code pattern supports the claim in the comment; it aims
to read position records while it initializes ORDER−POSNR with 10:

∗ MOVE ALL POSITION RECORDS TO FORM FOR DISPLAY
INITIALIZE ORDER−RECORD.
MOVE FORM−ORDER TO ORDER−NUMBER.
MOVE FORM−ACCOUNT TO ORDER−ACCOUNT.
MOVE FORM−PRODUCT TO ORDER−PRODUCT.
MOVE 10 TO ORDER−POSNR.
START ORDER−FILE KEY IS >= ORDER−KEY−1.
READ ORDER−FILE NEXT RECORD.
PERFORM WITH TEST BEFORE UNTIL NOT FILE−STATUS−OK

MOVE CORRESPONDING
ORDER−POSITION−DATA TO FORM−FOR−ORDER

READ ORDER−FILE NEXT RECORD
END−PERFORM.

Based on such evidence, we define two database tables corresponding to the variants:

// SQL Server 2000 code
CREATE TABLE Order Header
(

Order Number int NOT NULL IDENTITY PRIMARY KEY,
Order Account int NOT NULL,

202 R. Lämmel and E. Meijer

Order Product int,
// ... other data items elided ...

)
CREATE TABLE Order Position
(

Order Number int NOT NULL
REFERENCES Order Header(Order Number),

Order Posnr int NOT NULL,
// ... other data items elided ...

)

That is, the order number is designed to be the primary key of the table for header
records, while it is a foreign key in the table for position records. The position number
only shows up in the table for position records. All general key data (account, product,
...) is centralized in the table for header records. The illustrated mapping requires rela-
tively deep insight, when done manually, or very much advanced program analyses, if
the mapping should be automated.

5 Call to Arms

For some of the above mapping couples, substantial research work has been delivered.
For instance, the couple ‘map a relational schema to an XML schema’ has received
ample interest [86, 32, 27]. For all of the above mapping couples, actual technologies
do exist and serve business-critical roles everywhere in IT. For most of the above map-
ping couples, the scientific understanding is largely unsatisfactory. Progress is mainly
achieved through industrial drive. No integrated foundation of mapping is available.
When we compare the situation in mapping with the one in compiler construction, we
are clearly in need of a ‘Dragon Book’ [3] for mapping. However, before someone can
write this book, more research is needed. Also, previous and current mapping projects
should be carefully analyzed so that the observations (often failures) can be effectively
used in new mapping projects and as driving forces for mapping research.

5.1 Overall Goals

Foundations — we are in need of general and scalable foundations across paradigms;
Robustness — data access in data processing must not ‘go wrong’;
Evolvability — data models, APIs and code must not resist change;
Productivity — we need a simpler way of developing data-access layers.

5.2 A List of Challenges

Here is a list of challenges that we see ahead of us. We reckon that progress in the
area of data-processing application development boils down to progress regarding these
challenges.

– Data models as contracts. While data-modeling languages such as OCL (UML) and
Schematron provide rich constraint mechanisms, the transcription of such models

Mappings Make Data Processing Go ’Round 203

to program types may not transport all constraints to the static type system of the
programming language at hand. Extending the (static) type system of languages is
one direction [72, 71, 12]. Delivering a language design with support for general
pre- and post-conditions is another direction. In fact, a blend of verification, static
typing, soft typing [25, 101] and dynamic typing seems to be most promising. We
quote from [29]:

“We believe that the development of an assertion system [...] serves two
purposes. On one hand, the system has strong practical potential because
existing type systems simply cannot express many assertions that program-
mers would like to state. On the other hand, an inspection of a large base
of invariants may provide inspiration for the direction of practical future
type system research.”

Further work on the tension between conservative (static) type-system extensions
vs. more flexible language support for typing and verification should also benefit
from the body of work on OO specification languages such as VDM++; cf. [30].

– Data-model evolution. Research on database schema evolution has a history of
about 20 years [11, 65]. In practice, simple forms of relational schema evolution
are established; think of ALTER TABLE in SQL. Related foundations and tech-
niques have been contributed by the field of data re-engineering and reverse engi-
neering [37, 67, 39] with focus on relational schemas and ER models in information
systems. The problem of XML schema evolution may just gain momentum. In OO
programming and design, several refactorings address object-model evolution — in
particular class refactorings [80, 31]. In reality, data-model evolution is a complex
topic, and existing methods are difficult to apply (because of restrictions and engi-
neering reasons).

– Co-evolution of programs. Assuming that we master the evolution problem for data
models themselves, we get to the next hurdle: co-evolution of data-processing pro-
grams. This is a particularly challenging (and potentially beneficial) mode of evo-
lution. We need cross-paradigm transformations to push changes of relational and
XML schemas into application programs, 4GL code, and others.

– Loose coupling of data models. Rather than thinking in terms of the propagation
of transformations from the data model to the data-model-dependent code, we may
also anticipate the problem up-front, and employ an architecture with loose cou-
pling. That is, most business logic would be coded against a more stable object
model, which is intelligently mapped to a less stable ‘external’ data model. Loose
coupling would not just help with localizing impact of evolution, it would also
allow us to use the preferred internal object model, which may differ from a po-
tentially suboptimal, external data model. Unfortunately, we lack comprehensive
foundations of loose coupling.

– Data model reverse engineering When we talked about mapping so far, we mostly
focused on the technical provision of the mapping assuming that we have a reason-
able understanding of the data source and its conceptual, logical as well as physical
data model. In practice, we also need to address the problems of ‘data-model rot’
or ‘data-model legacy’. To this end, we need to engage in data-model reverse engi-
neering and re-engineering. These activities may concern both external data models
(such as relational schemas) and object models.

204 R. Lämmel and E. Meijer

5.3 Challenges in Detail

We pick out two of the above items for a detailed discussion.

Re-/reverse Engineering of Data Models

Defining mappings on existing data (or object) models in a concise and robust manner
is one issue, knowing the concepts to map from and to is another issue that easily dom-
inates the picture whenever we face complex data models, whenever we specifically
want to provide a simple-to-digest view.

Let us consider an example. The emerging Mendocino project (an effort in which
SAP and Microsoft Corp. participate) is aimed at the integration of SAP processes (such
as time management, budget monitoring, organizational management and travel and
expense management) directly into Microsoft Office.15 We may ask how difficult it is
to provide such interoperability. One thing to notice is that interoperability is more than
a technical term. For Mendocino to be useful in the context of office-ware integration,
the business processes need to be exposed through lean data models and APIs.

In [89], the implementation of SAP R/3 is analyzed in several respects. The pub-
lished data points lead us to the conclusion that a useful interoperation of SAP with
Office is very challenging. We quote some details. For the record, SAP R/3 is imple-
mented in the 4th generation language ABAP/4 (short for Advanced Business Applica-
tion Programming). According to the results of the study, SAP R/3 consists of 40,000
programs, 34,000 functional modules, 11,500 tables. Regarding the internal data model,
it was found that 69% of all data type declarations were not reused (i.e., they were just
declared and used once); 6.2% were not used at all. For most of the remaining declara-
tions, the number of reuses (in this huge system) is surprisingly small. For four fifths of
the reused declarations, reuse was restricted to 2–5 times.

These figures indicate that any reasonable SAP API or any data model for SAP in-
tegration would need to make a major effort in order to hide the complexity of the
‘as-implemented’ data model and to furnish a concise and clear data model that can
actually be used by programmers. (The Mendocino project does not start from zero
because it can leverage previous interoperability efforts that have gone into the SAP
software.)

In the context of software re-/reverse engineering, effective and well-founded meth-
ods for data re-/reverse engineering [37, 4, 43, 39] have been developed. We wonder
whether these methods can also be adopted in a mapping context that aims at the de-
livery of programming APIs. In this context, we are not interested in the extraction of
relational schemas or ER models for the sake of understanding, system modification or
new development; instead we are interested in the provision of programming-enabled
views on as-implemented data models.

Loose Coupling for Data and Object Models

In Fig. 4, we illustrate the not so obvious point that a given data model could correspond
to quite different object models in an application. The first object model is ‘flat’ — just

15 http://www.sap.com/company/press/press.epx?pressID=4520

Mappings Make Data Processing Go ’Round 205

(Source: http://www.agiledata.org/essays/drivingForces.html)

Fig. 4. Different object models for the same physical model

INTERNAL

given adapted

EXTERNAL

Canonical
binding

facadesDAO

Data

Object

Model
Object

Model
Object

Model
Data

Model
Data

Model

Model

Fig. 5. A mapping web for data-processing applications

like the physical model. The second object model separates out zip-code objects and
extra information about them. Both the first and the second model only deal with US
addresses; they omit the country code. The third model defines a flat address structure,
but it uses subclassing (in a somewhat pragmatic way) to enable the representation of
international addresses.

206 R. Lämmel and E. Meijer

Differences between external and internal models may arise for various reasons:

– We changed the external data model, but did not change the object model.
– We want to bind to the external data model but favor a different object model.
– We face a legacy object model to be bound to a new external data model.

Mapping techniques should help us to realize different internal (and even external) mod-
els at a high level of abstraction. Unfortunately, in practice, the various models in an
application are typically hand-crafted and laborious low-level mapping code is needed
to move data back and forth.

In Fig. 5, we sketch the idea of a flexible architecture for data-processing applica-
tions. One assumption is that external data models can be combined and transformed
before entering the software application as canonically derived object models for data-
access objects (DAO).16 (The intent of DAOs is the provision of a data-access layer that
does not expose implementation details of the underlying data management; see Fig. 6
for an example.) Another assumption is that any number of canonical object models, in
turn, can be combined and transformed into ‘facades’ — these are the object models that
are considered useful for implementing the business logic. We may want to assume that
the architecture makes it unnecessary to materialize data in interim data-model layers.

For mappings on external models, one can readily use techniques that are specific to
the underlying data-modeling paradigm, e.g., XQuery or XSLT for XML, or SQL views
for relational databases. (Creating new data models with contributions from different
paradigms is more involved.) In Fig. 7, we illustrate tool support for XML schema
mapping. (The actual example encounters schema composition by instance-level join.)
The tool at hand generates XSLT scripts from the visually designed mapping. Under
certain preconditions, one obtains scripts that map both ways.

The situation for mappings on internal models is in flux. There are various design
patterns that could be said to help (somewhat) with the design and implementation of
mappings: composite, facade, bridge, factory, model-view controller, and most notably,
mediator [59, 33]. The mediator pattern directly allows for the systematic translation
of an API into another API (APIs) using connectors as the primary concept. (Notice
how well this corresponds to the XML schema mapping exercise in Fig. 7.) The overall
notion of mediator is of profound use in the related field of data integration [82, 84],
but the design pattern is still too weak to do the heavy lifting for mappings in data-
processing applications. The mediator pattern does not (nor does any other pattern we
know of) provide higher-level operations on data or object models. We can describe the
sought-after improvement:

The design and the implementation of programmatic object-model-to-object-
model mappings is normally carried out at a low level of abstraction, in terms
of free-wheeling, basic OO code. We need higher-level language concepts and
programming techniques and APIs that enable these mappings more directly.

Language-integrated query mechanisms (such as LINQ [73]) may serve this agenda.

16 http://java.sun.com/blueprints/corej2eepatterns/Patterns/Data-
AccessObject.html http://java.sun.com/blueprints/patterns/DAO.
html

Mappings Make Data Processing Go ’Round 207

(Source: http://java.sun.com/blueprints/patterns/DAO.html)

Fig. 6. The design pattern for ‘data-access objects’ — instantiated for the case of a XML-based
data for screen definitions. The business object accesses screen definitions through the data-access
object without commitment to the general or particular XML format used underneath.

(Source: http://geekswithblogs.net/synboogaloo/archive/2005/04/22/37335.aspx)

Fig. 7. Join two XML schemas (based on the Biztalk technology)

6 Concluding Remarks

We have compiled a survey on mapping practices and mapping issues for data modeling
and data-processing with Cobol, object, relational and XML. We have provided rich lit-
erature and on-line references. However, the problem is that the intricacies of intra- and
inter-paradigm mappings are not fully appreciated by the archetypal research agenda
on programming languages and software engineering. As a result, this important field
of computer science ends up being driven by industry — not surprisingly more or less
in an ad-hoc fashion.

208 R. Lämmel and E. Meijer

We too adopt an ad-hoc method here to make our point — ‘Google’ science:

– http://www.google.com/search?q=object-relational+mapping
– http://www.google.com/search?q=XML+data+binding
– http://www.google.com/search?q=model-driven+transformation
– http://www.google.com/search?q=aspect-oriented+programming

At the time of writing this conclusion, we observe the following situation. The Google
results for the first two links on object-relational mapping and XML data binding do
not lead to any research content on the first two pages. (We didn’t continue beyond
that.) The Google results for the last two links on model-driven transformation and
aspect-oriented programming readily list several research papers and research projects
on the first page. We reckon that, in principle, mappings are worth the same scale of
attention in research. Given the fact that IT industry is fighting with various impedance
mismatches and data-model evolution problems for decades, it seems to be safe to start
a research career that specifically addresses these problems.

One could perhaps think that the bulk of impedance mismatches will be resolved by
language extensions soon. (Why not earlier?) The fix-point of this argument is that we
end up with a language in which all mainstream data-modeling paradigms and program-
ming paradigms are ‘happily’ united. We may need to try indeed, just to see whether the
resulting paradigm soup is still digestible. However, the fix-point may be hard to reach
anyway. New data modeling and data processing ideas come up all the time. Also, plat-
form providers as much as compiler, IDE, API and tool vendors use differentiation as
an intrinsic element of their business strategies. The increasing use of standards in IT
(think of reference schemas etc.) is a good thing, but the increasing number of standards
(and their size) challenges fix-point iteration, too. So it is essential to continuously cope
with diversity. It is therefore a good idea to intensify research efforts on mapping prob-
lems that concern Create-Read-Update-Delete applications.

Acknowledgments. We are grateful for the insightful proposals by the GTTSE refer-
ees and for the mapping discussions with members of the Data Programmability Team
at Microsoft. In particular we want to acknowledge contributions by Avner Aharoni,
Brian Beckmann, Kawarjit Bedi, Dan Doris, Sergey Dubinets, Charlie Heinemann, Priya
Lakshminarayanan, Chris Lovett, Michael Rys, Soumitra Sengupta, Dave Remy and
Adam Wiener.

References

1. P. Achten, M. C. J. D. van Eekelen, and M. J. Plasmeijer. Compositional Model-Views with
Generic Graphical User Interfaces. In B. Jayaraman, editor, Practical Aspects of Declara-
tive Languages, 6th International Symposium, PADL 2004, Dallas, TX, USA, June 18-19,
2004, Proceedings, volume 3057 of LNCS, pages 39–55. Springer, 2004.

2. P. Achten, M. C. J. D. van Eekelen, and M. J. Plasmeijer. Generic Graphical User Inter-
faces. In P. W. Trinder, G. Michaelson, and R. Pena, editors, Implementation of Functional
Languages, 15th International Workshop, IFL 2003, Edinburgh, UK, September 8-11, 2003,
Revised Papers, volume 3145 of LNCS, pages 152–167. Springer, 2004.

3. A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques and Tools. Addison-
Wesley, 1986.

Mappings Make Data Processing Go ’Round 209

4. P. Aiken, A. H. Muntz, and R. Richards. Dod legacy systems: Reverse engineering data
requirements. Communications of the ACM, 37(5):26–41, 1994.

5. W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor, D. Richter, and C. Simonyi. Trans-
formation in intentional programming. In P. Devanbu and J. Poulin, editors, Proceedings,
Fifth International Conference on Software Reuse, pages 114–123. IEEE Computer Society
Press, 1998.

6. T. L. Alves, P. F. Silva, J. Visser, and J. N. Oliveira. Strategic Term Rewriting and Its
Application to a VDMSL to SQL Conversion. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki,
editors, FM 2005: Formal Methods, International Symposium of Formal Methods Europe,
Newcastle, UK, July 18-22, 2005, Proceedings, volume 3582 of LNCS, pages 399–414.
Springer, 2005.

7. S. W. Ambler. The Object-Relational Impedance Mismatch, 2002–2005. Amysoft Inc.;
online article
http://www.agiledata.org/essays/impedanceMismatch.html.

8. ANSI. Information Technology — Programming languages, their environments and system
software interfaces — Native COBOL Syntax for XML Support, Feb. 2005. J4/05-0049,
WG4n0229, ISO/IEC JTC 1/SC 22/WG4, ISO/IEC TR 24716:200x(E).

9. J. Aycock. Extending Old Compiler Tools with Meta-Tools. In H. R. Arabnia and H. Reza,
editors, Proceedings of the International Conference on Software Engineering Research and
Practice, SERP ’04, June 21-24, 2004, Las Vegas, Nevada, USA, Volume 2, pages 841–845.
CSREA Press, 2004.

10. F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions on
Database Systems, 6(4):557–575, 1981.

11. J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and implementation of schema
evolution in object-oriented databases. In SIGMOD ’87: Proceedings of the 1987 ACM
SIGMOD International conference on management of data, pages 311–322, New York,
NY, USA, 1987. ACM Press.

12. G. M. Bierman, E. Meijer, and W. Schulte. The Essence of Data Access in Cω. In A. P.
Black, editor, ECOOP, volume 3586 of LNCS, pages 287–311. Springer, 2005.

13. A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relational Lenses: A Language for Update-
able Views. In Principles of Database Systems (PODS), 2006. Extended version available
as University of Pennsylvania technical report MS-CIS-05-27.

14. C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy modular upgrades
in persistent object stores. In OOPSLA ’03: Proceedings of the 18th annual ACM SIG-
PLAN conference on object-oriented programing, systems, languages, and applications,
pages 403–417, New York, NY, USA, 2003. ACM Press.

15. A. Brookes. XML data binding. Dr. Dobb’s Journal of Software Tools, 28(3):26, 28, 30,
32, 35–36, Mar. 2003.

16. F. Burton and R. Cameron. Pattern Matching with Abstract Data Types. Journal of Func-
tional Programming, 3(2):171–190, 1993.

17. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications, pages 292–310, New York,
NY, USA, 2002. ACM Press.

18. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection.
In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference on object-oriented
programming, systems, languages, and applications, pages 48–64, New York, NY, USA,
1998. ACM Press.

19. E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM, 13(6):377–387, June 1970. Also published in/as: ‘Readings in Database Sys-
tems’, M. Stonebraker, Morgan-Kaufmann, 1988, pp. 5–15.

210 R. Lämmel and E. Meijer

20. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on Program-
ming Languages and Systems, 13(4):451–490, Oct. 1991.

21. C. J. Date. A formal definition of the relational model. SIGMOD Rec., 13(1):18–29, 1982.
22. A. van Deursen, P. Klint, and F. Tip. Origin Tracking. Journal of Symbolic Computation,

15:523–545, 1993.
23. U. Eisenecker and K. Czarnecki. Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley, 2000.
24. C. Ellis, S. Gibbs, and G. Rein. Groupware: some issues and experiences. Communications

of the ACM, 34(1):39–58, 1991.
25. M. Fagan. Soft typing: an approach to type checking for dynamically typed languages. PhD

thesis, Rice University, 1991.
26. J.-M. Favre. Meta-models and Models Co-Evolution in the 3D Software Space. In Pro-

ceedings of International Workshop on Evolution of Large-scale Industrial Software Appli-
cations (ELISA 2003), 2003.

27. M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W.-C. Tan. Silkroute: A frame-
work for publishing relational data in xml. ACM Transactions on Database Systems,
27(4):438–493, 2002.

28. J. Ferrante, K. Ottenstein, and J. Warren. The Program Dependence Graph and Its Use in
Optimization. ACM Transactions on Programming Languages and Systems, 9(3):319–349,
July 1987.

29. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP ’02: Proceed-
ings of the seventh ACM SIGPLAN international conference on Functional programming,
pages 48–59, New York, NY, USA, 2002. ACM Press.

30. J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated Designs for
Object-Oriented Systems. Springer, 2005.

31. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.
32. J. E. Funderburk, S. Malaika, and B. Reinwald. XML programming with SQL/XML and

XQuery. IBM Systems Journal, 41(4):642–665, 2002.
33. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.
34. G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views.

ACM Transactions on Database Systems, 13(4):486–524, 1988.
35. R. Gray, V. Heuring, S. Levi, A. Sloane, and W. Waite. Eli: A complete, flexible compiler

construction system. Communications of the ACM, 35(2):121–130, Feb. 1992.
36. M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. A language for bi-directional

tree transformations. Technical Report MS-CIS-03-08, University of Pennsylvania, 2003.
Revised April 2004.

37. J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Schema Transformation Tech-
niques for Database Reverse Engineering. In Proceedings, 12th Int. Conf. on ER Approach,
Arlington-Dallas, 1993. E/R Institute.

38. J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In
C. Norris and J. J. B. Fenwick, editors, Proceedings of the 17th ACM conference on object-
oriented programming, systems, languages, and applications, OOPSLA’02, volume 37, 11
of ACM SIGPLAN Notices, pages 161–173, New York, Nov. 4–8 2002. ACM Press.

39. J. Henrad, J.-M. Hick, P. Thiran, and J.-L. Hainaut. Strategies for Data Reengineering.
In Proceedings, Working Conference on Reverse Engineering (WCRE’02), pages 211–220.
IEEE Computer Society Press, Nov. 2002.

40. A. Herranz and P. Nogueira. More Than Parsing. In F. J. L. Fraguas, editor, Spanish V
Conference on Programming and Languages (PROLE 2005), pages 193–202. Thomson-
Paraninfo, 14–16 September 2005.

Mappings Make Data Processing Go ’Round 211

41. R. Hirschfeld and R. Lämmel. Reflective Designs. IEE Proceedings Software, 152(1):
38–51, Feb. 2005. Special Issue on Reusable Software Libraries.

42. C. A. R. Hoare. Proof of Correctness of Data Representations. Acta Informatic, 1:271–281,
1972.

43. K. Hogshead Davis and P. Aiken. Data Reverse Engineering: A Historical Survey. In
Working Conference on Reverse Engineering, WCRE 2000, pages 70–78. IEEE Computer
Society Press, 2000.

44. R. Holt, A. Winter, and A. Schürr. GXL: Toward a Standard Exchange Format. In Pro-
ceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00), pages
162–171. IEEE Computer Society Press, Nov. 2000.

45. Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured doc-
uments based on bidirectional transformations. In Proceedings of ACM SIGPLAN sym-
posium on Partial evaluation and semantics-based program manipulation, pages 178–189.
ACM Press, 2004.

46. Z. Huzar, L. Kuzniarz, G. Reggio, J. Sourrouille, and M. Staron. Consistency Problems
in UML-based Software Development II, 2003. Workshop proceedings; Research Report
2003:06.

47. ISO. ISO/IEC 14977:1996(E), Information technology — Syntactic metalanguage — Ex-
tended BNF, 1996. International Organization for Standardization.

48. ISO/IEC. Information technology — Programming languages — COBOL, 2002. Reference
number ISO/IEC 1989:2002(E).

49. S. Johnson. YACC - Yet Another Compiler-Compiler. Technical Report Computer Science
No. 32, Bell Laboratories, Murray Hill, New Jersey, 1975.

50. M. de Jonge and J. Visser. Grammars as Contracts. In Proceedings, Generative and
Component-based Software Engineering (GCSE’00), volume 2177 of LNCS, pages 85–99,
Erfurt, Germany, Oct. 2000. Springer.

51. B. Kadhim and W. Waite. Maptool—supporting modular syntax development. In T. Gyi-
mothy, editor, Proceedings, Compiler Construction (CC’96), volume 1060 of LNCS, pages
268–280. Springer, Apr. 1996.

52. G. Kiczales. The Fun has Just Begun. AOSD’03 Keynote Address, available from
http://www.cs.ubc.ca/∼gregor, 2003.

53. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of AspectJ. In Proceedings European Conference on Object-Oriented Program-
ming (ECOOP’901), pages 327–353, 2001.

54. P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering discipline for grammarware.
ACM Transactions on Software Engineering and Methodology, 14(3):331–380, 2005.

55. D. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2:127–145,
1968. Corrections in 5:95-96, 1971.

56. J. Kort and R. Lämmel. Parse-Tree Annotations Meet Re-Engineering Concerns. In Pro-
ceedings, Source Code Analysis and Manipulation (SCAM’03), pages 161–172, Amster-
dam, Sept. 2003. IEEE Computer Society Press.

57. J. Kort, R. Lämmel, and C. Verhoef. The Grammar Deployment Kit. In M. van den
Brand and R. Lämmel, editors, Proceedings, Language Descriptions, Tools, and Applica-
tions (LDTA’02), volume 65 of ENTCS. Elsevier Science, Apr. 2002. 7 pages.

58. R. Koschke and J.-F. Girard. An intermediate representation for reverse engineering anal-
yses. In Proceedings, Working Conference on Reverse Engineering (WCRE’98), pages
241–250. IEEE Computer Society Press, Oct. 1998.

59. G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller user in-
terface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26–49,
Aug. 1988.

212 R. Lämmel and E. Meijer

60. L. Kuzniarz, G. Reggio, J. Sourrouille, and Z. Huzar. Consistency Problems in UML-based
Software Development, 2002. Workshop proceedings; Research Report 2002:06.

61. R. Lämmel. Coupled Software Transformations (Extended Abstract). In Proceedings of the
First International Workshop on Software Evolution Transformations, Nov. 2004. 5 pages;
Online proceedings available at http://banff.cs.queensu.ca/set2004/.

62. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. ACM SIGPLAN Notices, 38(3):26–37, Mar. 2003. Proceedings of the
ACM SIGPLAN Workshop on Types in Language Design and Implementation, TLDI’03.

63. R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection, zips, and generalised
casts. In ACM SIGPLAN International Conference on Functional Programming (ICFP’04),
pages 244–255, Snowbird, Utah, Sept. 2004. ACM Press.

64. R. Lämmel and G. Wachsmuth. Transformation of SDF syntax definitions in the ASF+SDF
Meta-Environment. In M. van den Brand and D. Parigot, editors, Proceedings, Language
Descriptions, Tools and Applications (LDTA’01), volume 44 of ENTCS. Elsevier Science,
Apr. 2001.

65. B. S. Lerner. A model for compound type changes encountered in schema evolution. ACM
Transactions on Database Systems, 25(1):83–127, 2000.

66. B. Liskov. Keynote address - data abstraction and hierarchy. In OOPSLA ’87: Addendum
to the proceedings on object-oriented programming systems, languages and applications
(Addendum), pages 17–34, New York, NY, USA, 1987. ACM Press.

67. C.-T. Liu, P. K. Chrysanthis, and S.-K. Chang. Database Schema Evolution through the
Specification and Maintenance of Changes on Entities and Relationships. In P. Loucopou-
los, editor, Entity-Relationship Approach - ER’94, Business Modelling and Re-Engineering,
13th International Conference on the Entity-Relationship Approach, Manchester, U.K., De-
cember 13-16, 1994, Proceedings, volume 881 of LNCS, pages 132–151. Springer, 1994.

68. W. Lohmann, G. Riedewald, and M. Stoy. Semantics-preserving migration of semantic
rules after left recursion removal in attribute grammars. In Proceedings of 4th Workshop
on Language Descriptions, Tools and Applications (LDTA 2004), volume 110 of ENTCS,
pages 133–148. Elsevier Science, 2004.

69. E. Mamas and K. Kontogiannis. Towards portable source code representations using XML.
In Proceedings, Working Conference on Reverse Engineering (WCRE’00), pages 172–182.
IEEE Computer Society Press, Nov. 2000.

70. B. McLaughlin. Java and XML data binding. Nutshell handbook. O’Reilly & Associates,
Inc., 2002.

71. E. Meijer and W. Schulte. Unifying tables, objects and documents. In Proceedings of
Declarative Programming in the Context of OO Languages (DP-COOL), Sept. 2003.

72. E. Meijer, W. Schulte, and G. Bierman. Programming with circles, triangles and rectangles.
In XML Conference and Exposition, Dec. 2003.

73. Microsoft Corp. http://msdn.microsoft.com/netframework/future/
linq/.

74. C. Morgan. Programming from Specifications. Prentice Hall International, 1990.
75. J. Noble. Basic relationship patterns. In Second European Conference on Pattern Lan-

guages of Programming, 1997. Siemens Technical Report.
76. J. Noble and J. Grundy. Explicit Relationships in Object Oriented Development. In C. Min-

gins, R. Duke, and B. Meyer, editors, Proceedings of TOOLS 18: Technology of Object-
Oriented Languages and Systems Conference, pages 211–225. Prentice Hall, Sept. 1995.

77. G. S. Novak Jr. Creation of views for reuse of software with different data representations.
IEEE Transactions on Software Engineering, 21(12):993–1005, 1995.

78. J. Oliveira. Software Reification using the SETS Calculus. In Proceedings of the BCS FACS
5th Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140–171. Springer, 8–10 January 1992.

Mappings Make Data Processing Go ’Round 213

79. J. Oliveira. Calculate databases with ‘simplicity’, Sept. 2004. Presentation at the IFIP WG
2.1 #59 Meeting, Nottingham, UK.

80. W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign, 1992.

81. J. Paakki. Attribute Grammar Paradigms — A High-Level Methodology in Language Im-
plementation. ACM Computing Surveys, 27(2):196–255, June 1995.

82. J. Park and S. Ram. Information systems interoperability: What lies beneath? ACM Trans-
actions on Information Systems, 22(4):595–632, 2004.

83. J. Purtilo and J. Callahan. Parse tree annotations. Communications of the ACM,
32(12):1467–1477, 1989.

84. K.-U. Sattler, I. Geist, and E. Schallehn. Concept-based querying in mediator systems. The
VLDB Journal, 14(1):97–111, 2005.

85. B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, pages 19–25,
Sept./Oct. 2003. Special Issue on Model-Driven Development.

86. J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lindsay, H. Pirahesh, and
B. Reinwald. Efficiently Publishing Relational Data as XML Documents. In VLDB ’00:
Proceedings of the 26th International Conference on Very Large Data Bases, pages 65–76,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

87. T. Sheard. Generic unification via two-level types and parameterized modules. In ICFP
’01: Proceedings of the sixth ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 86–97, New York, NY, USA, 2001. ACM Press.

88. C. Simonyi. The death of programming languages, the birth of intentional program-
ming. Technical report, Microsoft, Inc., Sept. 1995. Available from http://
citeseer.nj.nec.com/simonyi95death.html.

89. T. Spitta and F. Werner. Die Wiederverwendung von Daten in SAP R/3. Information
Management & Consulting (IM), 15:51–56, 2000. In German.

90. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality preserva-
tion, and intention preservation in real-time cooperative editing systems. ACM Transactions
on Computer-Human Interaction, 5(1):63–108, 1998.

91. Sun Microsystems. The Java architecture for XML binding (JAXB). http://
java.sun.com/xml/jaxb, 2001.

92. D. Thomas. The Impedance Imperative Tuples + Objects + Infosets = Too Much
Stuff! Journal of Object Technology, 2(5):7–12, Sept.–Oct. 2003. Online available at
http://www.jot.fm/jot/issues/issue 2003 09/column1/.

93. M. Van De Vanter. Preserving the documentary structure of source code in language-based
transformation tools. In Proceedings, Source Code Analysis and Manipulation (SCAM’01).
IEEE Computer Society Press, 2001.

94. W3C. Document Object Model (DOM), 1997–2003. http://www.w3.org/DOM/.
95. W3C. XML Information Set (Second Edition), 1999–2004. http://www.w3.org/TR/

xml-infoset/.
96. W3C. Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation,

Feb. 2004. http://www.w3.org/TR/2004/REC-xml-20040204/.
97. W3C. XML Schema: Component Designators, W3C Working Draft, 29 Mar. 2005.

http://www.w3.org/TR/xmlschema-ref/.
98. P. Wadler. Views: a way for pattern matching to cohabit with data abstraction. In POPL ’87:

Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 307–313, New York, NY, USA, 1987. ACM Press.

99. P. Wadler. Deforestation: transforming programs to eliminate trees. Theor. Comput. Sci.,
73(2):231–248, 1990.

214 R. Lämmel and E. Meijer

100. P. Walmsley. Definitive XML Schema. Prentice Hall, 2001. 556 pages, 1st edition.
101. A. K. Wright and R. Cartwright. A practical soft type system for Scheme. ACM Transac-

tions on Programming Languages and Systems, 19(1):87–152, Jan. 1997.

A Exercises and Riddles

We list exercises on a scale of ‘*’ to ‘***’. Excellent, generalized solutions to the exer-
cises in the three-stars category have the potential to lead to a workshop or conference
paper. We also annotate exercises by ‘G’ to admit that googling might help, and we use
‘P’ for an indication that advanced programming skills are to be leveraged.

A.1 Mappings in Parsing and Un-parsing

We start with some old-fashioned mapping problems that work fine as warm-up. Parsers
and un-parsers, at some level of abstraction, describe highly systematic mappings. How-
ever, occasionally, these mappings need to work hard to bypass a kind of ‘impedance
mismatch’ between concrete and abstract syntax representations, or they need to ac-
count for implementational restrictions.

Exercise 1 (*, G). Given is a set of binary operators with associated priorities. Using
your programming language of choice, give a concise description of a mapping that
parses a list of operators and operands into the correctly parenthesized term. (Note that
the actual operators and their priorities are a parameter of the mapping.) For instance,
the list [1,+,2,*,3] should be parsed into the term ’+’(1,’*’(2,3)) assuming
common priorities for ’+’ and ’*’.

Exercise 2 (*, G). Continue Ex. 1 to include explicitly parenthesized expressions.

Exercise 3 (**, G?). Continue Ex. 2 as follows. Given is a term. Describe an ‘un-
parsing’ mapping that generates the concrete representation (a list of operators and
operands) with the minimum number of necessary parentheses.

Exercise 4 (**, G?). Continue Ex. 3 so that it will definitely preserve all parentheses
that were explicit in the original input. That is, the composition of parsing and un-
parsing should be the identity function on the set of all parseable strings. (Hint: the
term representation needs to be refined.)

Exercise 5 (**,G,P). Here is a definite clause grammar (DCG) for the language (a|b)∗

% Prolog/DCG code
aorbs(snoc(Xs,X)) −−> aorbs(Xs), aorb(X).
aorbs(lin) −−> [].
aorb(a) −−> [a].
aorb(b) −−> [b].

The grammar also describes the synthesis of a left-associative list (cf. snoc rather than
cons and lin rather than nil). Such left-associativity suggests a left-recursive grammar,

Mappings Make Data Processing Go ’Round 215

as shown indeed. However, Prolog’s normal left-to-right computation rule implies non-
termination for left recursion. Hence, we need a right-recursive grammar. Assignment:
develop the corresponding DCG.

We could build an intermediate cons list, and rephrase it eventually:

aorbs(SL) −−> aorbsCons(CL), { rephrase(CL,SL) }.
aorbsCons(cons(X,Xs)) −−> aorb(X), aorbsCons(Xs).
aorbsCons(nil) −−> [].

rephrase(CL,SL) :− rephrase(CL,lin,SL).
rephrase(nil ,SL,SL).
rephrase(cons(X,Xs),SL1,SL2) :− rephrase(Xs,snoc(SL1,X),SL2).

This solution involves an unnecessary traversal. We ask for a solution that avoids such
an inefficiency. As an aside, general descriptions of left-recursion removal are avail-
able [3, 68]. Also, one may consider techniques for deforestation [99], which could even
be useful to automatically derive an efficient solution from the inefficient encoding that
we have shown.

A.2 Mappings for XML Grammars

When programming language folks first looked at DTD [96], some might have said
“This is just a verbose variation on EBNF [47].” — leaving implicit that there are a
few issues that go beyond context-free grammars, e.g., IDREFs. This proposition does
not so easily generalize to the XML schema language (XSD), which is a relatively
rich XML grammar formalism. In general, the differences between grammar notations
(XML schema, DTD, Relax NG, Schematron, EBNF, BNF, SDF, ASDL, ASN.1, . . .)
invite insightful mapping exercises. Some XSD-based riddles follow.

Exercise 6 (*,G?). The EBNF formalism is orthogonal in itself in the sense that it offers
regular operators that can be applied to other grammar phrases in arbitrary ways. In what
sense does XML schema deviate here? (Hint: think of occurrence constraints.) Argue
regarding the pros (if any) and cons of this deviation.

Exercise 7 (**). The content model <choice/> (i.e., the empty choice) is invalid ac-
cording to the XML Schema recommendation by the W3C. Why is that a sensible
restriction, and how does the notion of empty choice transcribe to context-free gram-
mars? Suppose <choice/> was not forbidden, how does it compare to <sequence/>,
and again, what does this comparison mean in context-free grammar terms? Give a few
more algebraic equations on content models. For instance, give equations that involve
occurrence constraints.

Exercise 8 (**). Consider the following schema:

<!−− XML schema −−>
<xs:schema ... elided for brevity ...>

<xs:element name=”foo”>
<xs:complexType>

216 R. Lämmel and E. Meijer

<xs:sequence>
<xs:element name=”bar” type=”xs:string”/>
<xs:element ref=”foo”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

According to the WC3 recommendation, this schema is valid. When considered as a
context-free grammar, what basic property is violated by this schema? (Hint: it is the
same property that is violated by <choice/>.) Argue that this property is valuable from
an XML-centric point of view. Also explain the formal means to enforce such a restric-
tion by adopting context-free grammar techniques.

Exercise 9 (***). Provide a detailed mapping for, what you might call, ‘DTDification’
of XML schemas. (We choose this name to hint at the similar process of YACCifica-
tion, where EBNF-like expressiveness is normalized to BNF-like notation [64].) That
is, how can you compile away the extra expressiveness of XSD such that the resulting
schemas can be mapped to DTDs rather directly. Argue that the resulting DTD accepts
a ‘reasonable’ superset of the XML instances that are accepted by the initial schema.

A.3 Compensation of Semantical Impedance Mismatches

Mapping operations on data models may lead us to semantical challenges (as opposed
to merely typing mismatch challenges). The following exercises focus entirely on fun-
damental properties of language semantics in the context of data processing.

Exercise 10 (**,G,P). We will be concerned with the simulation of a lazy semantics.
This is clearly necessary when we want to transcribe data-processing problems from a
lazy encoding to a non-lazy encoding (i.e., perhaps to an eager language). Consider the
following Haskell session that demonstrates lazy list processing:

haskell> take 10 [0..]
[0,1,2,3,4,5,6,7,8,9]

For the record, the function take is defined in the Haskell Prelude as follows:

−− Haskell 98 code
take n | n <= 0 = []
take [] = []
take n (x:xs) = x : take (n−1) xs

Also, the notation [0..] is a shortcut for incForever 0, where:

incForever n = n : (incForever (n+1))

Detailed assignments:

– Redefine lists, take and incForever such that an eager semantics would be sufficient.
– Transcribe the eager Haskell solution to an OO language as verbatim as possible.

Mappings Make Data Processing Go ’Round 217

– Use streams (as of C# 2.0 etc.), i.e., lazy lists, instead.
– Describe a data-processing scenario that calls for lazy structures other than lists.

Exercise 11 (***,P). We want to do data processing in Haskell with an OO-like refer-
ence semantics. Consider the following algebraic data types, given in Haskell syntax;
they describe a fragment of an abstract syntax for an imperative, statement-oriented
language with nested scopes for declarations of variables and procedures:

type Block = ([Dec],[Stm])
data Dec = VarDec Id Type | ... −− procedures etc.
data Id = Id String
data Type = IntType | StringType
data Stm = Assign Id Exp | BlockStm Block | ... −− other statements
data Exp = Var Id | ...

Hence, blocks in this language are lists of statements combined with the new declara-
tions for this block. Each block opens a nested lexical scope. Now let us assume that
we are interested in a richer AST format, which faithfully models ref/dec relationships.
That is, whenever a variable is referenced in an expression or a statement, we want to
be able to navigate from such a ‘ref’ side to the corresponding ‘dec’ side, i.e., to the
binding block that holds the visible declaration.

Detailed assignments:

1. Extend the algebraic data types, given above, to include constructor components
for ref/dec relationships. Take into account that these relationships may not be rep-
resented in terms initially, as they might be computed separately. Employ lazy, pure
functional programming (rather than explicit references of the IO or the ST monad)
to navigate from ref to dec sides.

2. Refactor the data types to use Haskell’s IORefs. Illustrate the use of ‘smart’ con-
structors so that user code is not blurred by the allocation of references and assign-
ments to references. A useful literature reference: [87].

3. How can we avoid cycles of generic algorithms that walk over the Haskell graphs?
For instance, an algorithm for showing a Haskell term must not run into a cycle
when hitting on a ref/dec relationship? Describe a technique that does not require
intimate knowledge of the problem-specific data types.

A.4 XML, Object, Relational Mapping

These exercises illustrate cross-paradigm impedance mismatches as discussed in Sec. 4.

Exercise 12 (*). Suppose we store XML documents with IDs and IDREFs in a relational
database. What extra measures are necessary in case we want to (i) store multiple docu-
ments in the database, or (ii) extract new XML views from the database that potentially
involve multiple documents?

218 R. Lämmel and E. Meijer

Exercise 13 (**). Consider the following XSD identity constraints:

<!−− XML schema −−>
<xs:element name=”order” type=”OrderType”>

<xs:keyref name=”prodNumKeyRef” refer=”prodNumKey”>
<xs:selector xpath=”items/∗”/>
<xs:field xpath=”@number”/>

</xs:keyref>
<xs:key name=”prodNumKey”>

<xs:selector xpath=” .// product”/>
<xs:field xpath=”number”/>

</xs:key>
</xs:element>

These constraints read as follows: “Each child of items must have a number attribute
whose value is unique within the order. All product descendants of order must have a
number child whose value matches one of these unique product numbers.” [100]. Let us
assume that the schema with those constraints is bound to objects. How can we enforce
the identity constraints within the object model?

Exercise 14 (**). We recall the discussion of cascading deletes in Sec. 4.3. A deletion
of a stock item was supposed to lead to the deletion of all relevant transaction items.
We seek the object-oriented counterpart for this cascading delete. Here, we assume that
stock items and transactions reside in OO collections whose implementation has to be
made aware of cascading.

To hint at the solution, we provide an SQL-based encoding that does not use the
cascading annotations that we facilitated in Sec. 4.3. Instead, we create a trigger to kick
in when a delete operation is about to affect the stock table:

// SQL Server 2000 code
CREATE TRIGGER stock cascade delete ON stock FOR DELETE AS

DELETE FROM stock trans
WHERE stock id IN

(SELECT stock id FROM deleted)

Provide an OO encoding of the cascading behavior.

Exercise 15 (***). Continue Ex. 14 as follows. We seek a general, aspect-oriented so-
lution that can be reused for cascading deletion. To this end, we note that the overall
problem is similar to design patterns like ‘observer’ for which indeed modular, AOP-
based solutions have been proposed [38, 41]. Such an AOP-based solution may illustrate
whether AOP can be useful for mastering cross-paradigm impedance mismatches.

On the Use of Graph Transformations
for Model Refactoring

Tom Mens

Service de Génie Logiciel
Université de Mons-Hainaut, Belgium

tom.mens@umh.ac.be
http://w3.umh.ac.be/genlog

Abstract. Model-driven software engineering promotes the use of mod-
els and transformations as primary artifacts. Several formalisms can be
used for the specification of model transformations. We propose to rep-
resent models as graphs, and model transformations as graph transfor-
mations. In particular, we focus on the activity of model refactoring,
and show how graph transformation theory can provide formal support
for this activity. We also show how such support can be implemented in
state-of-the-art graph transformation tools such as AGG and Fujaba, and
provide two concrete experiments. Critical pair analysis in AGG enables
the analysis of dependencies between model refactorings. The round-trip
engineering facility of Fujaba enables the automatic generation of code
for model refactorings.

1 Introduction

Model-driven engineering is a software engineering approach that promotes the
use of models and transformations as primary artifacts. Its goal is to tackle the
problem of developing, maintaining and evolving complex software systems by
raising the level of abstraction from source code to models. As such, model-driven
engineering promises reuse at the domain level, increasing the overall software
quality. Model transformation is the heart and soul of this approach [1].

Graph transformation seems to be a suitable technology and associated for-
malism to specify and apply model transformations for the following reasons:

– Graphs are a natural representation of models that are intrinsically graph-
based in nature (e.g., statecharts, activity diagrams, collaboration diagrams,
class diagrams, Petri nets), as opposed to source code for which a tree-based
approach is likely to be more appropriate. In Bézivin’s tutorial on model-
driven engineering [2], this link between models and graphs is explained as
follows: “... we will give a more limited definition of a model, in the context
of MDE only, as a graph-based structure representing some aspects of a
given system and conforming to the definition of another graph called a
metamodel.”

– Graph transformation theory provides a formal foundation for the analysis
and automatic application of model transformations. As such, one can reason

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 219–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

220 T. Mens

about many interesting formal properties such as confluence, sequential and
parallel dependence, and so on.

– Tool support for model-driven development based on graph transformation
engines is starting to emerge (e.g., GReAT [3], MOLA [4] and VIATRA [5]).

An important activity within the domain of model transformation is model
refactoring. The term refactoring was originally introduced by Opdyke in his
seminal PhD dissertation [6] in the context of object-oriented programming.
Martin Fowler [7] defines this activity as “the process of changing a software
system in such a way that it does not alter the external behavior of the code,
yet improves its internal structure”. Recently, research interest has shifted from
program refactoring to model refactoring [8, 9, 10, 11, 12, 13, 14], which aims to
apply refactoring techniques at model level as opposed to source code.

The objectives of this tutorial are manifold:

– To raise the technique of refactoring from the level of programs to the level
of models;

– To introduce the notion of model refactoring as a special kind of model
transformation activity, and to motivate the importance of this activity in
the MDE process;

– To introduce graph transformation as a promising technique (covering both
theoretical foundations and tool support) for model transformation;

– To show how graph transformation can provide formal support to automate
the activity of model refactoring, and to compare graph transformation to
related approaches.

The remainder of this article will be structured as follows. Section 2 provides
a high-level overview of model transformation and model refactoring, and in-
troduces the necessary terminology. In Section 3 we provide a formal definition
of typed graphs, and illustrate how they can be used as an underlying repre-
sentation of different kinds of design models. Section 4 formally defines graph
transformations and illustrates how they can be used to specify model refac-
torings. Both sections make use of the notation used by AGG and Fujaba, two
general-purpose graph transformation tools. Sections 5 and 6 continue with two
concrete experiments we have performed with AGG and Fujaba for model refac-
toring. Section 7 discusses the benefits and drawbacks of graph transformation
for the purpose of model refactoring. Finally, section 8 concludes.

2 Model Transformation

The aim of this section is to give a general high-level overview of model trans-
formation, and to show where model refactoring fits in. In order to do this, it
is important to be aware of the fact that model refactoring represents only a
very specific kind of model transformation. To illustrate this, we briefly discuss
a taxonomy of model transformation in the first subsection.

On the Use of Graph Transformations for Model Refactoring 221

2.1 Taxonomy

In earlier work [15, 16] we presented a detailed taxonomy of model transformation
and showed how it could be applied to graph transformation. We will summarise
some important ideas of the model transformation taxonomy here. Applying
graph transformations to model transformation in general, however, is outside
the scope of this paper.

In order to transform models, these models need to be expressed in some
modeling language, the syntax of which is expressed by a metamodel. Based
on the metamodels that are used for expressing the source and target models
of a transformation, a distinction can be made between endogenous and exoge-
nous transformations. Endogenous transformations are transformations between
models expressed in the same metamodel. Exogenous transformations are trans-
formations between models expressed in different metamodels. A typical example
of an exogenous transformation is migration of a model a program written in one
particular (programming or modelling) language to another one. A typical exam-
ple of an endogenous transformation is refactoring, where the internal structure
of a model is improved (with respect to a certain software quality characteristic)
without changing its observable behaviour [7]. The pull up method transforma-
tion that will be introduced later is an example of such a refactoring.

Other examples are:

– Optimization, a transformation aimed to improve certain operational quali-
ties (e.g., performance), while preserving the semantics of the software

– Simplification and normalization, used to decrease the syntactic complexity,
e.g., by translating syntactic sugar into more primitive language constructs.
The statechart flattening transformation that will be introduced later is an
example of such a simplification.

Besides this distinction between endogenous and exogenous model transfor-
mations, we can also distinguish horizontal and vertical model transformations.
A horizontal transformation is a transformation where the source and target
models reside at the same abstraction level. A typical example is again refactor-
ing (an endogenous transformation). A vertical transformation is a transforma-
tion where the source and target models reside at different abstraction levels.
A typical example of a vertical transformation is synthesis of a higher-level,
more abstract, specification (e.g., a UML design model) into a lower-level, more
concrete, one (e.g, a Java program). A concrete application of synthesis is code
generation, where the source code is translated into bytecode (that runs on a
virtual machine) or executable code, or where the design models are translated
into source code.

Table 1 illustrates that the dimensions horizontal versus vertical and endoge-
nous versus exogenous are truly orthogonal, by giving a concrete example of all
possible combinations. As a clarification for the Formal refinement mentioned
in the table, a specification in first-order predicate logic or set theory can be
gradually refined such that the end result uses exactly the same language as the
original specification (e.g., by adding more axioms).

222 T. Mens

Table 1. Orthogonal dimensions of model transformations

horizontal vertical
endogenous refactoring; formal refinement

optimization
exogenous language migration synthesis (e.g., code generation);

reverse engineering

2.2 Model Refactoring

An emerging research trend is to port the idea of refactoring to the modeling
level, for example by applying refactoring techniques to UML models. Boger
et al. developed a refactoring browser integrated with a UML modeling tool
[9]. It supports refactoring of class diagrams, statechart diagrams, and activity
diagrams. For each of these diagrams, the user can apply refactorings that cannot
easily or naturally be expressed in other diagrams or in the source code.

Statechart diagrams are particularly interesting in the context of refactor-
ing, as these diagrams represent the dynamic behaviour of a model. Geiger and
Zündorf [17] illustrated an example of statechart refactoring by flattening com-
plex (i.e., nested) statecharts into plain statemachines, thereby illustrating how
to use the Fujaba CASE tool for model refactoring. Van Kempen et al. addressed
the behaviour preservation aspect of statechart refactoring, by mapping state-
charts on CSP processes as a formal representation of the behaviour, and proving
equivalence of these CSP processes before and after the refactoring using a model
checker [14]. Sunyé et al. defined some statechart refactorings using OCL pre-
and postconditions [8].

OCL was also used by Van Gorp et al. in a UML extension that allows to
express the pre- and postconditions of source code refactorings in OCL [10]. The
proposed extension allows an OCL empowered CASE tool to verify nontrivial
pre and postconditions, to compose sequences of refactorings, and to use the
OCL query engine to detect bad code smells. Such an approach is desirable as
a way to refactor designs independent of the underlying programming language.
Correa and Werner built further on these ideas, and implemented the refac-
torings in OCL-script, an extension of OCL [18]. Markovic and Baar defined a
graph-grammar based formalism to preserve the syntactical correctness of OCL
constraints expressed on UML class diagrams [12] .

An alternative approach is followed by Porres [19], who implements model
refactorings as rule-based update transformations in SMW, a scripting language
based on Python. Last but not least, Zhang et al. developed a model transforma-
tion engine that integrates a model refactoring browser that automates and cus-
tomises various refactoring methods for either generic models or domain-specific
models [13].

In the remainder of this tutorial, we will only provide examples of model
refactoring for UML class diagrams and statecharts. Obviously, most of the ideas
that will be explained are directly applicable to refactorings of other kinds of
models as well. Even domain-specific models and non-UML-compliant models

On the Use of Graph Transformations for Model Refactoring 223

(e.g. database schemas in ER notation) can be targeted. The primary restriction
is that the models have to be expressible in a diagrammatic, graph-like notation.

2.3 Model Consistency

Another crucial aspect of model transformation, and model refactoring in par-
ticular, is model consistency. It will not be treated in this paper, but we briefly
mention some relevant related work here.

Spanoudakis and Zisman [20] provided an excellent survey on inconsistency
management in software engineering. According to them, an inconsistency is “a
state in which two or more overlapping elements of different software models
make assertions about aspects of the system they describe which are not jointly
satisfiable”. They claim that the following activities are essential for inconsis-
tency management: detection of overlaps, detection of inconsistencies, diagnosis
of inconsistencies, handling of inconsistencies, tracking, specification and appli-
cation of an inconsistency management policy.

Since a UML model is typically composed of many different diagrams, the
consistency between all these diagrams needs to be maintained when any of them
evolves. Sunyé et al. explored how the integrity of class diagrams and statecharts
could be maintained after refactorings [8]. Van Der Straeten et al. explored the
use of description logics as a way to specify and implement consistency rules and
behaviour preservation rules [21, 11].

As a simple example of an inconsistency that can arise in a UML model,
consider a design consisting of a class diagram expressing the static structure,
together with a collection of statecharts expressing the dynamic behaviour of
each class. For the sake of the argument, let’s make the oversimplification that
each class has an associated statechart, and that all transitions in each statechart
are labelled by messages that correspond to operations (methods) understood by
the class. Suppose now that we change the location of operations specified in the
class diagram, for example by performing a Move Method, Pull Up Method or
Push Down Method refactoring. It is possible that the statecharts of the classes
that have been modified become inconsistent, because they now use messages
on the transitions that may no longer correspond to operations defined in, or
understood by, the class.

The problem of consistency maintenance becomes even more problematic
when we acknowledge the obvious fact that models are only an intermediate
step in the software development life-cycle, where the actual executable pro-
gram is the most important deliverable. In this context, consistency should be
maintained between the modeling level and the implementation level. Modifica-
tions to the models should be automatically reflected in the source code and vice
versa. To a certain extent, automatic generation of code from the design, and
reverse engineering design from the code can offer a great deal of help. But even
in those cases, inconsistency problems may arise when the generated code or the
reverse engineered design is being edited manually. It is outside the scope of this
paper to treat this problem of co-evolution between design and implementation
in detail. Some interesting work on this topic can be found in [22, 23].

224 T. Mens

3 Models Are Graphs

In order to specify model refactorings by means of graph transformations, one
first needs to agree upon a way to specify the models that need to be trans-
formed. This requires the definition of a metamodel that specifies what it means
to be a valid (i.e., well-formed) model. We will use type graphs to represent
metamodels, and graphs to represent models. A model will be well-formed
if its graph representation conforms to the type graph. This is visualised in
Figure 1.

model

metamodel

graph

type graph

conforms tois typed by

represents

represents

Fig. 1. Relationship between models and their graph representation

3.1 Typed Graphs

According to Bézivin and many others, a model can naturally be represented as
a graph-based structure. In this subsection, we will formally define the notions
of graph and type graph, as well as how they are related.

Definition 1. Directed labelled graphs.
A (directed, labelled) graph G = (VG, EG, sG, tG, lG) has a set of vertices VG

and a set of edges EG such that VG ∩ EG = ∅, functions sG : EG → VG and
tG : EG → VG to associate to each edge a source and target vertex, and a labelling
function lG : VG ∪ EG → L to assign a label to each vertex and edge.

A direct and useful extension of the above definition would be to attach addi-
tional information to vertices and edges by attributing them. In that case, we
talk about attributed graphs. Each vertex or edge can contain zero or more at-
tributes. Such an attribute is typically a name-value pair, that allows to attach
a specific value to each attribute name. These values can be very simple (e.g.,
a number or a string) or more complex (e.g., a Java expression). Examples of
both will be shown later.

Definition 2. Graph morphism.
Let G and H be two graphs. A (partial) graph morphism m : G → H consists
of a pair of partial functions mV : VG → VH and mE : EG → EH that preserve
sources and targets of edges, i.e., sH ◦mE = mV ◦ sG and tH ◦mE = mV ◦ tG. It
also preserves vertex labels and edge labels, i.e., lH ◦mV = lG and lH ◦mE = lG.

A (partial) graph morphism m : G → H is injective (surjective) if both mV

and mE are injective (surjective). It is isomorphic if m is injective and surjective.
In that case, we write G ∼= H.

On the Use of Graph Transformations for Model Refactoring 225

Note that the functions mV and mE are required to be partial in order to allow
for vertex deletions and edge deletions. All vertices in VG \ dom(mV) and all
edges in EG \ dom(mE) are considered to be deleted by m.

In order for a graph to serve as the representation of a model, we need to
determine its well-formedness, by checking whether it conforms to a so-called
type graph. The formal definition of typed graphs is taken from [24]. Basically
this boils down to the same idea as the one that is taken in model-driven en-
gineering, where each model (e.g. a UML design model) needs to conform to a
metamodel (e.g., the UML metamodel) [2]. The correspondence between both
ideas is depicted in Figure 1.

Definition 3. Typed graph.
Let TG be a graph (called the type graph). A typed graph (over TG) is a pair
(G, t) such that G is a graph and t : G → TG is a total graph morphism. A typed
graph morphism (G, tG) → (H, tH) is a (partial) graph morphism m : G → H
that also preserves typing, i.e., tH ◦ m = tG.

The above definition of typed graph requires a total graph morphism t : G → TG
in order to ensure that each node and edge in the graph G has a correspond-
ing type in TG. The definition can be extended in many different ways to put
additional constraints on concrete typed graphs that are instances of the type
graph:

– the type graph can be attributed to constrain the names and types of at-
tributes of vertices and edges in concrete typed graphs;

– the type graph can contain cardinalities on nodes and edges to provide a
lower and upper bound on the number of vertices and edges of a certain
type that are allowed in concrete typed graphs;

– the type graph can contain inheritance relationships between vertices to
express the fact that all attributes, cardinalities, and adjacent edge types of
the supertype are inherited by the subtype. This is similar to the use of the
generalization relationship in the UML metamodel.

In the remainder of the paper, when we use the term graph, we will always
refer to an attributed, typed, directed labelled graph, unless indicated otherwise.
Obviously, other variants of graphs exist but they will not be treated here, as they
are not used by the graph refactoring tools we will employ for our experiments
in the following subsections.

3.2 Graph Representation of Class Diagrams

As a first concrete example, let us see how we can provide a graph representation
for class diagrams. The notation that we will use in this subsection to represent
graphs and type graphs is the one that is used by the AGG1 graph transformation
tool [25, 26].

The example that we want to model is the class structure of a local area
network simulation (LAN). This particular example has been used at different
1 http://tfs.cs.tu-berlin.de/agg/

226 T. Mens

Fig. 2. Visualisation of the behaviour of a Local Area Network (LAN)

universities to teach object-oriented design and programming concepts, as well
as to teach refactoring principles [27, 28].

The behaviour of this LAN is visually represented in Figure 2. The class
diagram representing the static structure of the LAN is shown in Figure 3.

Fig. 3. UML class diagram of the LAN simulation

Now the question arises how we can model such a class diagram using a graph
representation. One such representation is proposed in Figure 4. In a certain
sense, this graph can be considered as an abstract syntax representation of the
class diagram. We have used an attributed graph to attach specific information
to vertices such as their name, visibility and so on. Similarly, some edges are
attributed with name order (to reflect the order of parameters in a method
signature).

On the Use of Graph Transformations for Model Refactoring 227

Fig. 4. Graph representing the abstract syntax of a UML class diagram for the LAN
simulation modeled in Figure 3

In order to specify which concrete graphs represent well-formed class dia-
grams, we need to specify a type graph, representing a simplified object-oriented
metamodel for class diagrams. All graphs that conform to this type graph will
be considered as well-formed graphs.

The attributed type graph that we will use is shown in Figure 5. The graph
of Figure 4 is a concrete instance graph of this type graph. The type graph
expresses the following constraints on concrete graphs:

Constraints between nodes and edges: Classes can be related by general-
ization (gen-edges, or their transitive variant tgen). Classes contain Methods
and Variables. Methods send Messages to each other and have a number of
Parameters. Methods access or update Variables. Variables and Parameters
are typed by Classes. The return type of a Method is also a Class.

Multiplicity constraints on edges: For example, each Variable or Method is
contained in exactly one Class. A Class contains zero or more Variables and
Methods. A Method contains zero (in the case of void) or one return type.

Multiplicity constraints on nodes: In the considered type graph, there are
no multiplicity constraints on nodes. We could easily have decided to only
allow graphs that contain at least one vertex of type Class (by attaching the
cardinality 1..* to Class).

Attribute contraints: The number of Parameters of a Method, as well as
the name and visibility of Methods and Variables, is represented by vertex
attributes. The order of a Parameter in a Method declaration is represented
by an edge attribute.

228 T. Mens

Fig. 5. Type graph representing a simplified object-oriented metamodel for class
diagrams

Note that not all possible well-formedness constraints can be expressed in the
above type graph. In AGG, this problem can be resolved by adding additional
global graph constraints. We used this mechanism to express the following well-
formedness constraints:

– no two classes should have the same name
– no two methods contained in the same class should have the same name
– no two variables contained in the same class should have the same name
– If there are multiple methods with the same name in the same class hierarchy,

any message sent to one of these methods should also be sent to all other
methods with the same name in the hierarchy (since it is impossible to
determine the actual receiver method statically due to the mechanism of
dynamic method binding)

3.3 Graph Representation of Statecharts

As a second illustrative example, we provide a graph representation for UML
statechart models. A simple example of a statechart simulating part of the be-
haviour of a telephone is shown in Figure 6. This example is borrowed from
Figure 3-71 of the UML specification version 1.5 [29]. It contains two top-level
states Idle and Active with a transition between them in both directions. By
lifting the receiver one can reach the Active state, and by hanging up the re-
ceiver, the state becomes Idle again. The Active state is a so-called OrState,
i.e., a composite state that contains a large number of mutually exclusive sub-
states.2

In order to model the abstract syntax of statecharts, we will use the notation
used by the Fujaba3 CASE tool to represent graphs and type graphs [30]. Figure 7

2 So-called AndStates are composite states that contain concurrent substates, but they
are not needed to model this example.

3 http://www.fujaba.de/

On the Use of Graph Transformations for Model Refactoring 229

Fig. 6. Example of a statechart simulating part of the behaviour of a telephone

shows the part of the type graph for a simplified version of statecharts. As can
be seen, the notation for specifying type graphs in Fujaba is quite different from
the one in AGG. In fact, because Fujaba is a UML CASE tool, type graphs
are represented as class diagrams, in exactly the same way as the specification
of the UML metamodel. Classes in the diagram represent vertices of the type
graph (e.g., State, Transition, OrState), and associations represent edges of the
type graph (e.g., source and target edges between Transition and State, and
superState edges between a State and its containing OrState.

Class attributes are used to represent attributes of vertices. For example, a
State has a name, a boolean value init denoting whether or not it is an initial
state, and a doAction value representing the action to be performed. AGG’s
ability to specify edge attributes in the type graph is not allowed in Fujaba. The
practical reason for this is that dangling edges are treated in a different way in
AGG and Fujaba, but a detailed explanation of this falls outside the scope of
the current paper.

On the other hand, Fujaba does include a feature that is not provided by
the version of AGG that we used (version 1.2.6), namely the ability to use the
generalization notation of class diagrams to represent inheritance between nodes.
For example, a statechart can contain two kinds of SCElements: Transitions and
States, and an OrState is a special kind of State. This implies that all attributes,
incoming edges and outgoing edges of State will be inherited by OrState. Note
that, from a theoretical point of view, it would not pose a problem to introduce
this feature in a new version of AGG [31].

230 T. Mens

Fig. 7. Fujaba type graph representing a simplified object-oriented metamodel for stat-
echarts

Fig. 8. Graph representing the abstract syntax of part of the statechart modeled in
Figure 6. It is shown in Fujaba’s graph-based object browser DOBS.

On the Use of Graph Transformations for Model Refactoring 231

An example of a well-formed statechart graph corresponding to the type graph
of Figure 7 is shown in Figure 8. As can be seen, a graph is represented in Fujaba’s
dynamic object browser DOBS as an object diagram. Objects correspond to
vertices, and links between them to edges.

4 Model Refactorings Are Graph Transformations

4.1 Introduction

Graph transformation theory has been developed over the last three decades as a
suite of techniques and tools for formal modeling and visual programming. Graph
transformation systems can typically be found in two flavours: graph grammars
and graph rewriting. AGG is an instance of the former category of tools, whereas
Fujaba is an instance of the latter.

Graph grammars are the natural extension of Chomsky’s generative string
grammars into the domain of graphs. Production rules for (string-) grammars
are generalized into production rules on graphs, which generatively enumerate all
the sentences (i.e., the “graphs”) of a graph grammar. Similarly, string rewriting
can be generalized into graph rewriting. A string rewriting consists of a pattern
and a replacement string. The pattern is matched against an input string, and
the matched substring is replaced with the replacement string of the rule. In
analogy, a graph rewriting consists of a pattern graph and a replacement graph.
The application of a graph rewriting rule matches the pattern graph in an input
graph, and replaces the matched subgraph with the replacement graph.

Many tools, even full-fledged programming environments, have been devel-
oped that illustrate the practical applicability of the graph transformation ap-
proach. These environments have demonstrated that:

1. complex transformations can be expressed in the form of rewriting rules, and
2. graph rewriting rules can be compiled into efficient code.

In recent years, a number of model transformation tools have emerged that
use graph transformation as an underlying transformation engine. Concrete ex-
amples are GReAT [3], MOLA [4] and VIATRA [5]).

4.2 Formal Definitions

Now that we have introduced an example of how two different kinds of UML
models (class diagrams and statecharts, respectively) can be represented as typed
graph, let us see how we can formally specify graph transformations as an internal
representation of model refactorings.

Definition 4. Production rule and graph transformation.
Let L and R be two graphs. A production rule is a partial graph morphism
p : L → R. A graph transformation G ⇒t H is a pair t = (p, m) consisting of a
production rule p : L → R and a total injective graph morphism (called match)
m : L → G.

232 T. Mens

Using a category-theoretical construct called pushout, one can automatically
compute the morphisms m′ : R → H and p′ : G → H that make the diagram
(p, m) commute. The graph H obtained through this process is the result of ap-
plying the graph transformation t to G.

The above formal definition corresponds to the algebraic single-pushout ap-
proach with injective graph morphisms [32]. It is visualised in Figure 9. Be-
cause many readers may not be acquainted with category theory, we provide a
more informal definition below. Essentially, the application of a production rule
p : L → R in the context of a concrete graph G can be performed by carrying
out the following steps:

1. finding a match m of the left-hand side L of the production rule in the graph
G;

2. creating a context graph by removing the part of the graph G that is mapped
to L but not to R;

3. gluing the context graph with those vertices and edges of R that do not have
a counterpart in L.

L R

G H

p

t

m

Fig. 9. Graph transformation G ⇒t H consisting of a production rule p : L → R and
match m : L → G

In graph transformation systems with a large number of production rules it is
often necessary to restrict the application of productions. We can use the notion
of negative application conditions (NAC) for this purpose [33, 34]. It makes graph
transformation considerably more expressive. Intuitively, a NAC is a graph that
defines a forbidden graph structure (e.g., the absence of some vertices or edges).
The mechanism of graph transformation can be extended easily to deal with
application conditions, by checking all NACs associated to the production rule
in the context of the concrete input graph G.

Definition 5. Negative application condition.
Let p : L → R be a production rule. A negative application condition for p is
a total graph morphism nac : L → L̂. A graph transformation G ⇒(p,m) H

satisfies a negative application condition nac if no graph morphism m̂ : L̂ → G
exists such that m̂ ◦ nac = m.

In practice, several NACs can be attached to a single production rule, i.e., each
production rule p has an associated set N of NACs.

On the Use of Graph Transformations for Model Refactoring 233

Definition 6. Applicability of a graph transformation.
Let p̂ = (p, N) be a production rule p : L → R together with a set N of nega-
tive application conditions. A graph transformation G ⇒(p̂,m) H is applicable if
G ⇒(p,m) H satisfies each negative application condition in N .

4.3 Specifying Model Refactorings in AGG

Model refactorings can be implemented in a straightforward way as AGG pro-
duction rules. Obviously, these productions have to respect the constraints im-
posed by the type graph.

Coming back to our example of class diagrams, a Pull Up Method refactoring
can be specified as a production rule, as shown in Figure 10 (using AGG nota-
tion). Informally, the refactoring moves a given method one or more levels up in
the class hierarchy. (We use the edge tgen to denote transitive generalization of
a class, i.e., any direct or indirect superclass or the class itself.)

The left-hand side L of the production rule is shown on the left of Figure 10,
the right-hand side R is shown on the right of the figure. Vertices and edges that
are preserved have the same number in L and R. In this example, one edge of
type contains is removed in L, and another edge of the same type is added in
R. All other vertices and edges are preserved.

Fig. 10. A graph production rule representing part of the Pull Up Method refactoring

This production rule can be applied in the context of the graph G of Figure 4
by matching the nodes and edges (numbered from 1 to 5) in the left-hand side L
of Figure 10 to the nodes and edges with corresponding numbers in G. (For ease
of reference, the nodes belonging to the match m are highlighted in Figure 4.)
The result of applying this graph transformation is depicted in Figure 11.

The Pull Up Method production rule can be made more precise by adding
additional constraints that specify when it is allowed to apply the refactoring.
In Figure 12, two such constraints are shown. The first constraint, shown in the
upper left pane of Figure 12, is a negative application condition (NAC) called
MethodAbsentInAncestors. It specifies that the method cannot be pulled up if
a method with the same name (referred to by variable x) already exists in an
ancestor class belonging to the inheritance chain between the source class and

234 T. Mens

Fig. 11. Result of applying the Pull Up Method production rule to the graph of Figure 4

Fig. 12. The Pull Up Method production rule with negative application condition
(NAC) in the upper left pane. The upper middle pane specifies the production’s left-
hand side, the upper right pane the production’s right-hand side. The bottom left pane
shows all parameters and variables used by the production rule. The bottom right pane
shows additional constraints, that cannot be expressed graphically as NACs, but have
to be implemented as Java expressions.

destination class of the method to be pulled up. In a similar way, many other
NACs can be expressed for the production rule, but they are not shown here for
the sake of brevity.

On the Use of Graph Transformations for Model Refactoring 235

Figure 12 also shows a second constraint on the production rule that can-
not be expressed graphically as a NAC because it has to do with the value
of one of the vertex attributes, namely the visibility vis of the method to be
pulled up. More specifically, we want to express that only methods with a non-
private visibility can be pulled up. This can be achieved by adding the condition
!vis.equals("private"), shown as a Java expression in the bottom right pane.

The AGG tool implements the graph grammar variant of graph transfor-
mations. This implies that no control structure is imposed on the production
rules to be applied. Instead all applicable production rules are applied in a non-
deterministic fashion until no more production rule is applicable. As such, a given
initial graph G can give rise to a whole range of possible result graphs, which is
referred to as L(G), the language generated by the graph grammar. Each word
in this language corresponds to a possible sequence of graph transformations
that can be applied to G.

For the purpose of model refactoring, the mechanism of graph grammars is
more a limitation than an advantage. In many practical situations, we would like
to be able to control the order in which production rules have to be applied.

For instance, in the case of the Pull Up Method production rule introduced
above, we actually need a second production rule to make the refactoring com-
plete. The first production, P1 (shown in Figure 12), takes a method in a class
C and moves it to its parent class. A second production P2 is needed to look for
the same method signature in a sibling of C (i.e., a class with the same parent
as C) and to delete this method. This production should be repeated as long
as possible, i.e., for each occurrence of a sibling of C where the same method
signature can be found.

P1
[success]

[failure] [end]

P2

[as long as possible]

truefalse

Fig. 13. An example of a programmed graph production rule composed of two pro-
ductions rules P1 and P2. First P1 is applied, and if it succeeds, P2 is aplied as long as
possible.

In order to be able to specify such a composition of production rules, we need
an additional control structure that specifies how to combine production rules
using sequencing, branching and loop constructs to control their order of ap-
plication. Figure 13 shows what this could look like, using an activity diagram
notation for combining the two parts P1 and P2 of the Pull Up Method refactor-
ing. Because AGG does not support such control structures for specifying the
composition of production rules, we will use the Fujaba tool to illustrate it in
the next subsection.

236 T. Mens

4.4 Specifying Model Refactorings in Fujaba

While the AGG tool implements graph grammars, Fujaba implements pro-
grammed (or controlled) graph transformation. As such, Fujaba does provide
a structuring mechanism to control the order in which production rules can be
applied.4

Fujaba provides an intuitive and compact notation, called story diagrams, to
represent both the production rules as well as their order of application. As a
concrete example of how this works, we will revisit the example of a statechart
flattening, and show how it can be expressed as a combination of production
rules in Fujaba using the story diagram notation.

Fig. 14. Graph production rule representing the main control flow of a statechart
flattening in Fujaba

Figure 14 shows a first story diagram, called flattenStatechart that expresses
the main control flow of the production rules to be applied. One can see that
the flattening of a statechart consists of three more primitive production steps
(transitionFromInner, transitionToInner and removeOuter) that have to be re-
peated as long as possible. The order in which these three steps are applied is
irrelevant, since they are parallel independent.

The transitionFromInner production rule, shown in Figure 15, replaces a tran-
sition originating from a composite OrState by a transition with the same at-
tribute values from each of its substates. This can be specified by a story diagram
containing three activities:

1. finding a transition originating from a composite OrState or to another state
a and deleting it (while keeping the source and target states intact);

4 Another well-known graph transformation tool that supports programmed graph
transformation is PROGRES [35]. In some way, PROGRES can even be seen as the
predecessor of Fujaba.

On the Use of Graph Transformations for Model Refactoring 237

Fig. 15. Production rule transitionFromInner

2. looping over all substates inner of the composite state or that do not have
an outgoing transition with the same label as the one that was deleted in
the first step;

3. adding a transition from each of these inner substates to the state a.

Each activity box in the story diagram of Figure 15 can be considered as a
separate production rule. Observe that the left-hand and right-hand sides of each
production rule are compactly represented in a single graph structure. Vertices
and edges to be removed by the production rule are denoted in red, with the
stereotype � destroy �. Vertices and edges to be added by the production
rule are denoted in green, with the stereotype � create �. Finally, negative
application conditions specifying the absence of a vertex are denoted by crossing
out this vertex.

The transitionToInner production rule, shown in Figure 16 is considerably
more simple. There is only one activity, which consists of finding a composite
OrState or and a substate inner, finding a transition whose target is the com-
posite state, and moving the target edge of this transition to the inner state.

The removeOuter production rule, shown in Figure 17, checks whether there
are no incoming or outgoing transitions of the composite OrState, and removes
it if these conditions hold. As a side effect, all edges linking the substates with
the composite state will be removed as well.

4.5 Comparing AGG and Fujaba

In this section we introduced the basic notions of graph transformation, and
exemplified how to use them for model refactoring. Motivating examples

238 T. Mens

Fig. 16. Production rule transitionToInner

where provided for class diagrams and statecharts using two concrete tools,
AGG and Fujaba.

AGG is a rule-based visual programming environment supporting graph trans-
formation. A screenshot of AGG (version 1.2.6) in action is shown in Figure 18.
AGG aims at the specification and prototypical implementation of applications
with complex graph-structured data. It contains a general-purpose graph trans-
formation engine that is implemented in Java. In AGG, production rules are
stored as part of an attributed graph grammar. Given a start graph, the graph
grammar can be applied by selecting rules that are applicable. AGG supports
the specification of type graphs with multiplicities and attributes, such as the
one shown in Figure 5. In AGG, vertex and edge attributes act like ordinary
Java variables to which a value can be assigned. By means of Java expressions,
the production rules can specify how attribute values need to be updated by
the transformation. The production rules can also contain NACs and extra con-
straints (context conditions) that need to be satisfied when the production rule
is applied in the context of an input graph. This is quite useful in practice, since
the type graph and NACs are not always sufficiently expressive.

The Fujaba graph transformation tool is implemented in Java and uses the
UML notation for design and realisation of software projects. A screenshot of
Fujaba (version 4.3.1) in action is shown in Figure 19. It uses a combination of
activity diagrams and a specific variant of collaboration diagrams (called story
diagrams) for the specification of operational behaviour. The semantics of these

On the Use of Graph Transformations for Model Refactoring 239

Fig. 17. Production rule removeOuter

story diagrams are based on programmed graph transformations. Story diagrams
offer many powerful constructs of graph transformation such as multiobjects,
non-injective matching, negative application conditions, and many more. This
makes it a powerful language that allows to model even complex problems in
an elegant way. The operational behaviour modeled with such story diagrams
can then be tested using Fujaba’s graph-based object browser DOBS. Fujaba
generates standard Java code that is easily integrated with other Java programs
and that runs in a common Java runtime environment. This enables the use of
graph transformation concepts in all kinds of Java applications.

If we perform a more detailed comparison of the functionality of the
graph transformation tools AGG and Fujaba we observe that there are many
similarities:

– They both make use of attributed type graphs with multiplicities
– They both make use of some variant of graph transformation
– They are both implemented in Java
– They both provide mechanism to specify negative application conditions and

additional graph constraints

On the other hand, there are also a number of notable differences between
both tools:

– AGG belongs to the Berlin school, which adheres to the algebraic double-
pushout (DPO) approach to graph transformation, whereas Fujaba belongs

240 T. Mens

Fig. 18. Screenshot of the AGG version 1.2.6, after opening the Refactorings graph
grammar

to the Aachen school, which adopts the algebraic single-pushout (SPO) ap-
proach to graph transformation. This distinction has a concrete impact at a
number of places. First, the way in which dangling edges are dealt with in
Fujaba is different from the one in AGG. In Fujaba, when a node is deleted,
all dangling edges after deletion of this node will be removed as well. In
AGG, if the deletion of a node would result in a dangling edge, then the pro-
duction rule is simply not applicable. Second, the fact that edge attributes
are not allowed in Fujaba is also a side-effect of the decision to use the
SPO approach. If an edge would carry a certain attribute, then the edge
has its own value and may survive in case of the deletion of an adjacent
node.

– The Fujaba tool is actually a UML CASE tool. As a result, its notation is
very close to UML notation. First of all, a type graph can be expressed as
a simple UML class diagram. As a side-effect, on gets type inheritance for
free. Second, Fujaba’s story diagrams are actually a mixture of UML activity
diagrams and object diagrams. Production rules are specified using a very
compact notation (using the � destroy � and � create � stereotypes).
An advantage of this adherence to the UML standard is that the tool tends
to be more intuitive to users already acquainted with UML.

On the Use of Graph Transformations for Model Refactoring 241

Fig. 19. Screenshot of the Fujaba Tool Suite version 4.3.1, after opening the Refactor-
ing project

– A striking difference between both tools is the way in which the application
of production rules is controlled. AGG relies on a graph grammar approach.
This means that the control structure is implicit and non-deterministic:
whenever a production rule is found that is applicable in the context of the
host graph, it is applied, and this process continues with the result graph
as the new host graph. The only mechanism that can control the order or
production rules somewhat is the notion of layered graph grammars, but this
is not sufficiently expressive in general. Fujaba, on the other hand, relies on
programmed graph transformation. As such, the control structure is explicit
and deterministic: the programmer can provide explicit sequencing, branch-
ing and loop constructs to control the order of application of production
rules. More specifally, the story diagram notation is used for this purpose.

– A very useful feature of AGG, that is absent in other graph transformation
tools, is that graph grammars may be validated using the techniques of
critical pair analysis and consistency checking. These will be explained in
detail in the experiment of section 5.

– A very useful feature of Fujaba that is absent in AGG is its ability to generate
Java code from the story diagrams. This ability will be explored in detail in
the experiment of section 6.

To shed some more light on the commonalities and differences between AGG
and Fujaba, let us try to express the same model refactoring in both tools. The
refactoring that we have chosen for this purpose is Encapsulate Field. Its goal is
to change the visibility of a class attribute (called a field in Java) from public to
private, and to redirect all direct accesses to this attribute by calls to a newly
introduced getter and setter method for this attribute.

242 T. Mens

Fig. 20. Encapsulate Variable refactoring expressed as a production rule in AGG. The
NAC in the left pane specifies that the name of the newly created setter method for
the encapsulated variable should not exist in one of the ancestor classes. Note that
this NAC also requires an extra context condition stating a relation between the value
v of the name attribute of the variable and the value s of the name attribute of the
method: s.equals("set"+v).

The specification of this production rule in AGG is given in Figure 20. The
production rule is parameterised by the class and its attribute that needs to
be encapsulated. The name of the setter and getter methods depends on the
name of the variable. This constraint can be expressed by means of the Java
expressions s.equals("set"+v) and g.equals("get"+v) where v is the name
of the variable, s the name of the setter method, and g the name of the getter
method. The production rule also contains NACs, stating that the setter and
getter methods introduced by the refactoring should not exist yet in the inheri-
tance chain. One such NAC, called “noSetterInAncestors” is shown in the upper
left pane of Figure 20.

Note that the specification of the refactoring Encapsulate Field shown in
Figure 20 is not complete. It does not express the fact that all direct accesses to
the public variable still need to be redirected by a call to its new setter method,
and all direct updates to the public variable by a call to its new getter method.
While it is fairly straightforward to express such a production rule in AGG, we
cannot specify how this production should be related with the former one, since
this would require some additional fine-grained control structure, which is absent
in AGG.

The specification of the Encapsulate Field refactoring in Fujaba is shown
in Figure 21 and Figure 22, respectively. It is implemented by means of two
methods checkPreconditions and execute. This separation allows us to check
the precondition of a refactoring separately from its actual execution. As usual
both methods are specified in Fujaba using the story diagram notation. Note

On the Use of Graph Transformations for Model Refactoring 243

Fig. 21. Encapsulate Variable refactoring in Fujaba - Preconditions check

Fig. 22. Encapsulate Variable refactoring in Fujaba - Execution

that, to be consistent with the specification of the same refactoring in AGG, we
did not specify that, after creating the setter and getter methods, all direct
accesses or updates to the (previously public) attribute attr should be replaced

244 T. Mens

by a method call to the getter and setter method, respectively. We leave this
as an exercise to the reader.

5 First Experiment: Detecting and Analysing Conflicts
Between Refactorings with AGG

Having introduced the basic graph transformation notation in AGG and Fujaba
in the preceding sections, we will now conduct two concrete experiments that
will allow us to exploit particular features of each tool. In this section, we will
explore AGG’s ability to analyse and verify interesting properties about graph
grammars. In section 6, we will explore Fujaba’s ability to generate code from
model refactorings specified using story diagram notation.

The goal of our first experiment consists in finding out to which extent graph
transformation theory can help us with identifying dependencies between model
refactorings, as well as detecting conflicts between model refactorings applied in
parallel. To this extent, we make use of the mechanism of critical pair analysis,
that has been implemented in AGG. Before we can do this, however, we need to
introduce some additional theory.

5.1 Confluence and Critical Pairs

Confluence is well-known in term rewriting, and is used to check whether a term
rewriting systems (i.e., a term grammar) has a functional behaviour. Irrespective
of the order in which the term rewritings are applied the end result should always
remain the same. These confluence results can also be shown for the more general
notion of graph grammars [36].

Definition 7 (Confluence). A relation R ⊆ A × A is called confluent if
∀a, b, c ∈ A: if aRb and aRc then ∃d ∈ A: bRd and cRd

Given a term grammar (or a graph grammar), it is crucial to know whether this
grammar has the confluence property. To determine this, the notion of critical
pair analysis has been introduced for term rewriting, and has been generalised
later for graph rewriting [36]. Critical pairs formalize the idea of a minimal
example of a conflicting situation. From the set of all critical pairs we can extract
the vertices and edges which cause conflicts or dependencies.

To find all conflicting productions in a graph grammar, minimal critical graphs
are computed to which productions can be applied in a conflicting way. Basi-
cally, one has to consider all overlapping graphs of the left-hand sides of two
productions with the obvious matches and analyze these rule applications. All
conflicting rule applications are called critical pairs. If one of the rules contains
NACs, the overlapping graphs of one left-hand side with a part of the NAC have
to be considered in addition.

Definition 8 (Conflict). Two graph transformations G1 ⇒(p1,m1) H1 and
G2 ⇒(p2,m2) H2 are in conflict if p1 may disable p2, or, vice versa, p2 may
disable p1.

On the Use of Graph Transformations for Model Refactoring 245

There is a conflict if at least one of the following three conditions are fulfilled.
The first two are related to the graph structure while the last one concerns the
attributes of vertices or edges:

1. delete/use conflict: One graph transformation deletes a vertex or edge which
is in the match of another graph transformation;

2. produce/forbid conflict: One graph transformation generates vertices or edges
in a way that a graph structure would occur which is prohibited by a NAC
of another graph transformation;

3. change-attibute conflict: One graph transformation changes attributes being
in the match of another graph transformation.

Definition 9 (Critical pair). A critical pair is a pair of graph transformations
G ⇒(p1,m1) H1 and G ⇒(p2,m2) H2 which are in conflict, such that m1 and
m2 are jointly surjective graph morphisms.

The above definition is visualised in Figure 23. G is called the glue graph of p1
and p2. It is minimal by construction. In other words, it is impossible to find
a subgraph of G that yields a critical pair between p1 and p2. For more details
about critical pairs, and how to use them to achieve efficient conflict detection
in graph-based model transformation, we refer to [37].

L2 R2

G H2

p2

m2

L1R1

p1

m1

H1

Fig. 23. Critical pair of graph transformations with glue graph G

The set of all critical pairs represents precisely all potential conflicts between
a given pair of production rules (p1, p2). Therefore, we can apply critical pair
analysis to a set of production rules, by performing a pairwise comparison of all
rules. After computation of all critical pairs, the production set will be divided
into conflict-free pairs and conflicting pairs.

As a concrete illustration of a critical pair, let us reconsider the Pull Up
Method production rule of Figure 12 in combination with the Move Method
production rule of Figure 24. Move Method is similar to Pull Up Method, except
that a method is moved to a target class that does not belong to the inheritance
chain of the source class. Trying to apply both production rules to the same
host graph may give rise to a critical pair situation, as depicted in Figure 25.
The same method m is pulled up and moved by different production rules. This
clearly leads to a conflict, since both productions cannot be applied in sequence.
Once the method m is pulled up, it can no longer be moved from its original
location c, since it is no longer present there. The part of the glue graph that
identifies this particular critical pair is shown as a gray ellipse in the figure.

246 T. Mens

Fig. 24. A Move Method production rule with negative application condition. The
three panes indicate, from left to right: a negative application condition, the left-hand
side of the production rule, the right-hand side of the production rule.

Pull Up
Method
(m,c,p)

Move
Method
(m,c,d)

Class

name=p

Class

name=c

Class

name=d

Method

name=m
contains

gen

Move
Method
(m,c,d)

Pull Up
Method
(m,c,p)

Class

name=p

Class

name=c

Class

name=d

Method

name=m

containsgen

Class

name=p

Class

name=c

Class

name=d

Method

name=m

contains
gen

Fig. 25. Concrete example of a critical pair situation between the production rules
Move Method and PullUpMethod

5.2 Detecting Refactorings Conflicts in AGG

We already saw Pull Up Method, Encapsulate Field and Move Method as concrete
examples of production rules for class diagram refactorings in Figures 12, 20 and
24. In a similar way, other class diagram refactorings can be specified. For all
these refactoring specifications, the preconditions are specified as NACs. For
some refactorings, such as Pull Up Method and Encapsulate Variable, additional
context conditions are needed for those constraints that cannot be expressed in
terms of the type graph. These context conditions are specified as ordinary Java
expressions.

In Definition 9 of Section 5.1, we explained the notion of critical pairs and how
it can be used to detect conflicts between production rules. A concrete example
of such a conflict was shown in Figure 25. AGG supports critical pair analysis

On the Use of Graph Transformations for Model Refactoring 247

Fig. 26. Critical pair analysis

for typed attributed graph transformations. Given a graph grammar, AGG can
compute a table showing the number of conflicting situations for each critical
pair of productions.

We applied AGG’s critical pair analysis algorithm to a representative selection
of refactorings. The results are shown in the table of Figure 26. Among others,
this table shows that four critical pairs are reported between Pull Up Method and
Move Method. Two of the critical graphs computed by AGG for this situation are
shown in Figure 27. Both critical graphs report similar conflict situations in the
glue graph that correspond to the conflict illustrated in Figure 25. The additional
two conflicts not depicted are less interesting, since they report possible conflicts
that cannot occur in our setting. This is due to the fact that AGG’s critical pair
algorithm abstracts away from concrete attribute interrelations. Since arbitrary

Fig. 27. Posible conflicts of Move Method and Pull Up Method

248 T. Mens

Fig. 28. Verifying applicability of refactoring productions in AGG. Those that are
applicable in the context of the given input graph are shown in black, the others are
shown in gray.

Fig. 29. Critical pairs reported by AGG in the context of a given host graph

Java expressions can be used for attribute conditions and computations, AGG
just reports general conflicts on attribute usage, i.e., one rule application changes
an attribute that another rule application uses. Acting in this way, it happens
that some of the possible conflicts reported can never become real conflicts.

In AGG it is also possible to check which of the refactorings are applicable to a
concrete host graph: A refactoring is applicable if there exists at least one match
of its left-hand side (taking into account the NACs). Figure 28 gives an example
that shows that certain refactorings are not applicable in a particular situation.

On the Use of Graph Transformations for Model Refactoring 249

It is obtained by using AGG’s menu item “Check Rule Applicability”. Pull Up
Variable and Remove Parameter are reported as non-applicable because, in the
considered host graph, none of the subclasses had variables, and because all
methods having parameters are called by others, thus prohibiting their removal.

While the critical pair table of Figure 26 shows all potential conflicting situa-
tions that can occur between any pair of refactoring productions, the number of
“real” conflicts in the context of a concrete host graph is of course much lower,
since not all refactorings may be applicable to this host graph. Therefore, AGG
can also show the conflicts in the host graph by selecting only the relevant criti-
cal pairs and showing how the corresponding conflict graphs are matched to the
host graph. An example is given in Figure 29. All previously computed critical
pairs that are not relevant in the host graph are “grayed out”.

For a more detailed discussion of the analysis we performed on the critical
pairs of refactoring productions, we refer to [38].

6 Second Experiment: Generating Refactoring Code with
Fujaba

In Fujaba, there is a seamless integration between UML modeling and Java pro-
gramming.5 As a result, the user of the tool can simply express his design as
a UML class diagram, or directly write Java code and perform a reverse engi-
neering step to automatically generate the class diagrams. The only place where
graph transformation comes in is at the level of method implementations. In Fu-
jaba, a method can be implemented as a production rule using a story diagram.
An example of this was shown in Figure 21, which represents the implemen-
tation of the checkPrecondition method of the EncapsulateField class, and
Figure 22, which represents the implementation of the execute method of the
EncapsulateField class.

An important feature of Fujaba is its very flexible plug-in mechanism. One
such plug-in has been developed by the University of Kassel to provide support
for some simple refactorings. When a refactoring is selected via the refactor-
ing plug-in, the corresponding refactoring will be executed. In version 4.3.2, the
following list of refactorings has been implemented: Extract Method, Override
Method, Implement Method, and Change Method Signature. However, the imple-
mentation of these refactorings was hard-coded in Java. Hence, this cannot be
used as a proof of concept that graph transformation can effectively be used to
implement model refactorings in the way suggested above.

Therefore, Pieter Van Gorp and Niels Van Eetvelde from the University of
Antwerp (Belgium) conducted an experiment to specify class diagram refactor-
ings, such as the Pull Up Method refactoring, in Fujaba using the story diagram
notation, and to generate Java code from this graphical specification in an au-
tomatic way [39]. This has the advantage that the refactoring designer can stick
to the graphical notation, and only needs to write a very limited amount of Java
code.
5 FUJABA is an acronym for ”From Uml to Java And Back Again”.

250 T. Mens

Fig. 30. Refactoring plugin for Fujaba

It is possible to go even one step further, and link the executable refactoring
code into a refactoring plugin that can be used by the Fujaba tool. As such, after
having specified and generated the refactoring code, it immediately becomes
available for use. Figure 30 shows how the Pull Up Method refactoring, whose
specification has been given as a story diagram, can be selected from a context-
sensitive menu in Fujaba, once its corresponding Java code has been generated.

In this initial experiment, a number of important limitations were identified
that were overcome in later experiments [40, 41]:

– The refactoring specifications (represented as story diagrams) could not be
exchanged with other tools because story diagrams are not part of the UML
standard. This problem was overcome by designing a UML profile for Fu-
jaba’s graph transformation language.

– The code generated by Fujaba could only be executed on repositories conform-
ing to Fujaba’s API conventions. This limitation was resolved by building a
tool that generates MOF compliant code from transformation models con-
forming to Fujaba’s UML profile. This allowed us to repeat the class diagram
refactoring experiment with general purpose UML tools such as MagicDraw
and Poseidon. See Figure 31 for a screenshot illustrating the use of Poseidon
(or rather, an extension of it supporting the story diagram UML profile) for
specifying model refactorings and generating the associated Java code.

On the Use of Graph Transformations for Model Refactoring 251

Fig. 31. Screenshot of part of the specification of the PullUpMethod refactoring using
story diagram notation in Poseidon

7 Benefits and Drawbacks of Graph Transformation

Until now we have illustrated how and why graph transformations can be used
to represent model refactorings. Table 2 provides a summary of the various
notions of graph transformation, and how they represent related notions in model
refactoring.

In this section we present some additional arguments why graph transforma-
tion is a good underlying foundation for refactoring technology, and point out
some references to relevant literature for the interested reader.

7.1 Guaranteeing Behaviour Preservation

We can rely on graph transformation theory to determine whether a refactoring
preserves the correctness or the behaviour. Mens et al. [42, 43] showed that graph
transformation is a promising formalism to do this, but also indicated a number
of limitations with respect to the expressiveness of existing graph transformation
formalisms. Therefore, Van Eetvelde and Janssens [44] proposed to extend graph
transformations with new mechanisms to enhance their expressive power.

Obviously, graph transformation theory is not the only formalism that may be
used to check behaviour preservation. For proving the preservation of statechart

252 T. Mens

Table 2. Representing model refactoring by graph transformation

Graph transformation Refactoring
type graph and global graph constraints well-formedness constraints
negative application conditions refactoring preconditions
parameterised production rules with NACs and context
conditions

refactoring transformation

programmed graph transformations, story diagrams composite refactorings
critical pair analysis detecting refactoring conflicts
confluence analysis detecting sequential dependencies
code generation from story diagrams refactoring plug-in facility

refactorings, Van Kempen et al. use a model checking approach, by comparing
the behavioural equivalence of CSP processes using refinement in the failures-
divergences model [14].

Various authors have tried to deal with refactorings in presence of OCL con-
straints [10, 18, 12]. In particular, Markovic and Baar [12] formally describe how
the OCL constraints expressed on UML class diagrams have to be refactored
to preserve their syntactical correctness. To this extent, they make use of a
graph-grammar based formalism.

7.2 Composition of Refactorings

Another very important question in refactoring research is how to compose prim-
itive refactorings into more complex, composite refactorings [45, 46, 47]. An es-
sential question in this context is how, given a sequence of refactorings, one can
compute the preconditions of the composite refactoring without needing to ap-
ply each refactoring in the sequence. As a partial answer to this question, in
his masters thesis, Reiko Heckel theoretically showed how a sequence of graph
transformations with application pre- and postconditions could be transformed
into an equivalent composite graph transformation with pre- and postconditions
[48]. Kniesel and Koch [47] explored this idea in the context of refactoring, and
showed how it can be used to build tools that facilitate the static composition of
refactoring transformations. They implemented such a tool in Prolog using the
notation of conditional transformations.

7.3 Co-evolution and Consistency Maintenance

To be able to focus on different aspects of a program, software engineers usually
employ different views on the software. For example, a UML model usually
consists of a class diagram to describe the static structure, a set of use case
diagrams to specify the user interaction, and a set of interaction diagrams and
statecharts to specify the dynamic behaviour. All these diagrams represent a
different view that is represented using a different modeling notation. Hence
techniques are required to maintain the consistency between all these different
views when one of them evolves (e.g., by means of a refactoring).

On the Use of Graph Transformations for Model Refactoring 253

When we also take the source code into account, we even need to maintain the
consistency between the models and the corresponding program. To ensure that
both views remain consistent when applying refactorings, Bottoni et al. [49] pro-
posed a framework based on distributed graphs to maintain consistency between
the code (represented as a flow graph) and the model (given by several UML
diagrams of different kinds). Each refactoring is specified as a set of distributed
graph transformations, structured and organized into transformation units.

Other formal approaches based on graph transformations that seem promising
to address the consistency problem are pair grammars and triple graph grammars
[50].

7.4 Graph Rewriting Versus Tree Rewriting

During our experiments in AGG as well as Fujaba we encountered an issue that
has to do with the expressiveness of graphs and graph transformations. When
trying to specify certain class diagram refactorings, in particular those that have
to perform non-trivial manipulations of method bodies (e.g., Extract Method,
Move Method and Push Down Method), the graph transformations quickly be-
come very complex. This issue has already been acknowledged in [42, 44].

Because a method body is essentially an abstract syntax tree, an alternative
approach would be to make use of tree rewriting techniques [51, 52], as they may
be better suited for these kinds of manipulations. In practice, this implies that the
ideal refactoring specification language may need to incorporate the best of both
worlds: graph transformation for those parts of the model that are essentially
graphical in nature (e.g., the class structure of a class diagram, including all
inheritance, typing and association relationships), and tree transformation for
those parts of the model that are essentially tree-based in nature (e.g., method
parse trees).

8 Conclusion

In this article we explored the idea of model refactoring and we suggested to use
the formalism of graph transformation as an underlying foundation. We provided
concrete examples using a simplified version of both UML class diagrams and
statecharts as our metamodel.

In addition, we conducted some concrete experiments to show how graph
transformation technology can be used to support model refactoring. Using the
graph transformation tool Fujaba, we explained how a refactoring plug-in can be
developed to refactor UML class diagrams, where each refactoring is expressed as
a graph production rule in Fujaba’s story diagram notation, and the correspond-
ing Java code is generated automatically. Using the graph transformation tool
AGG, we explained how to use the built-in technique of critical pair analysis to
detect potential conflicts between refactorings, and to help the developer decide
which refactoring should be selected when different choices are applicable.

254 T. Mens

Acknowledgements

I express my gratitude to many persons. Ralf Lämmel, João Saraiva and Joost
Visser, for organising a very successful summer school, and for inviting me to
give a tutorial on the topic of the current article. Pieter Van Gorp, for carrying
out the experiment on generating Java code from model refactorings in Fujaba.
Gabriele Taentzer and Olga Runge, for collaborating on the experiment with
critical pair analysis in AGG. Albert Zuendorf and Ralf Geiger, for granting me
permission to reuse their statechart flattening example.

This research has been carried out in the context of several research projects
and networks. The FWO project on “A formal foundation for software refactor-
ing”, the FNRS/FRFC “Research Center on Structural Software Improvement”,
and the ESF scientific network RELEASE.

References

1. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20(5) (2003) 42–45 Special Issue on
Model-Driven Software Development.

2. Bézivin, J.: Model driven engineering: Principles, scope, deployment and applica-
bility. In: Proc. Summer School on Generative and Transformation Techniques in
Software Engineering (GTTSE 2005), Springer (2006)

3. Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Karsai, G.: Domain model
translation using graph transformations. In: Proc. Int’l Conf. Engineering of
Computer-Based Systems, IEEE Computer Society (2003) 159–168

4. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA.
In: Proc. Model-Driven Architecture: Foundations and Applications. (2004)
14–28

5. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA
- visual automated transformations for formal verification and validation of UML
models. In: Proc. Int’l Conf. Automated Software Engineering, IEEE Computer
Society (2002) 267–270

6. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks. PhD thesis, University of Illinois at Urbana-
Champaign (1992)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

8. G. Sunyé, Pollet, D., LeTraon, Y., J.-M. Jézéquel: Refactoring UML models. In:
Proc. UML 2001. Volume 2185 of Lecture Notes in Computer Science., Springer-
Verlag (2001) 134–138

9. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for UML. In: Proc. Int’l
Conf. on eXtreme Programming and Flexible Processes in Software Engineering.
(2002) 77–81

10. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-
consistent UML refactorings. In Stevens, P., Whittle, J., Booch, G., eds.: UML
2003 - The Unified Modeling Language. Volume 2863 of Lecture Notes in Computer
Science., Springer-Verlag (2003) 144–158

On the Use of Graph Transformations for Model Refactoring 255

11. Van Der Straeten, R., Jonckers, V., Mens, T.: Supporting model refactorings
through behaviour inheritance consistencies. In Thomas Baar, Alfred Strohmeier,
A.M., ed.: UML 2004 - The Unified Modeling Language. Volume 3273 of Lecture
Notes in Computer Science., Springer-Verlag (2004) 305–319

12. Markovic, S., Baar, T.: Refactoring ocl annotated uml class diagrams. In: Proc.
Int’l Conf. Model Driven Engineering Languages and Systems (MoDELS 2005).
Volume 3713 of Lecture Notes in Computer Science., Springer (2005) 280–294

13. Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using a
model transformation engine. In: Model-driven Software Development - Research
and Practice in Software Engineering. Springer Verlag (2005)

14. Van Kempen, M., Chaudron, M., Koudrie, D., Boake, A.: Towards proving preser-
vation of behaviour of refactoring of UML models. In: Proc. SAICSIT 2005. (2005)
111–118

15. Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: Proc. Int’l
Workshop on Graph and Model Transformation (GraMoT 2005). Electronic Notes
in Theoretical Computer Science, Elsevier (2006)

16. Mens, T., Van Gorp, P., Varró, D., Karsai, G.: Applying a model transforma-
tion taxonomy to graph transformation technology. In: Proc. Int’l Workshop on
Graph and Model Transformation (GraMoT 2005). Electronic Notes in Theoretical
Computer Science, Elsevier (2006)

17. Geiger, L., Zündorf, A.: Statechart modeling with Fujaba. In: Proc. Int’l Workshop
Graph-Based Tools (GraBaTs). Electronic Notes in Theoretical Computer Science,
Elsevier (2004)

18. Alexandre Correa, C.W.: Applying refactoring techniques to UML/OCL models.
In Thomas Baar, Alfred Strohmeier, A.M., ed.: UML 2004 - The Unified Modeling
Language. Volume 3273 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 173–187

19. Porres, I.: Model refactorings as rule-based update transformations. In Stevens, P.,
Whittle, J., Booch, G., eds.: UML 2003 - The Unified Modeling Language. Volume
2863 of Lecture Notes in Computer Science., Springer-Verlag (2003) 159–174

20. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineer-
ing: Survey and open research issues. In: Handbook of Software Engineering and
Knowledge Engineering. World scientific (2001) 329–380

21. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logics to maintain consistency between UML models. In Stevens, P., Whittle, J.,
Booch, G., eds.: UML 2003 - The Unified Modeling Language. Volume 2863 of
Lecture Notes in Computer Science., Springer-Verlag (2003) 326–340

22. D’Hondt, T., De Volder, K., Mens, K., Wuyts, R.: Co-evolution of object-oriented
design and implementation. In: Proc. Int’l Symp. Software Architectures and Com-
ponent Technology: The State of the Art in Research and Practice, Enschede, The
Netherlands, Kluwer Academic Publishers (2000)

23. Wuyts, R.: A Logic Meta-Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Department of Com-
puter Science, Vrije Universiteit Brussel (2001)

24. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26(3 and 4) (1996) 241–265

25. Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In:
Proc. AGTIVE 99. Volume 1779 of Lecture Notes in Computer Science., Springer-
Verlag (1999) 481–488

256 T. Mens

26. Taentzer, G.: AGG: A graph transformation environment for modeling and val-
idation of software. In: Proc. AGTIVE 2003. Volume 3062 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 446–453

27. Demeyer, S., Janssens, D., Mens, T.: Simulation of a LAN. Electronic Notes in
Theoretical Computer Science 72(4) (2002)

28. Demeyer, S., Van Rysselberghe, F., Ĝırba, T., Ratzinger, J., Marinescu, R., Mens,
T., Du Bois, B., Janssens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H., El-
Ramly, M.: The LAN simulation: A refactoring teaching example. In: Proc. Int’l
Workshop on Principles of Software Evolution (IWPSE 2005). (2005)

29. Object Management Group: Unified Modeling Language specification version 1.5.
formal/2003-03-01 (2003)

30. Niere, J., Zündorf, A.: Using Fujaba for the development of production control
systems. In Nagl, M., Schürr, A., Münch, M., eds.: Proc. Int. Workshop Agtive
99. Volume 1779 of Lecture Notes in Computer Science. Springer-Verlag (2000)
181–191

31. Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models
with type inheritance. In: Proc. Int’l Conf. Fundamental Approaches to Software
Engineering. Volume 3442 of Lecture Notes in Computer Science., Springer-Verlag
(2005) 64–79

32. Ehrig, H., Löwe, M.: Parallel and distributed derivations in the single-pushout
approach. Theoretical Computer Science 109 (1993) 123–143

33. Ehrig, H., Habel, A.: Graph grammars with application conditions. In Rozenberg,
G., Salomaa, A., eds.: The Book of L, Springer-Verlag (1986) 87–100

34. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4) (1996) 287–313

35. Schürr, A., Winter, A., Zündorf, A.: PROGRES: Language and Environment. In:
Handbook of Graph Grammars and Graph Transformation. World scientific (1999)
487–550

36. Heckel, R., Jochen Malte Küster, Taentzer, G.: Confluence of typed attributed
graph transformation systems. In: Proc. 1st Int’l Conf. Graph Transforma-
tion. Volume 2505 of Lecture Notes in Computer Science., Springer-Verlag (2002)
161–176

37. Lambers, L., Ehrig, H., Orejas, F.: Efficient detection of conflicts in graph-based
model transformation. In: Proc. Int’l Workshop on Graph and Model Transforma-
tion (GraMoT 2005). Electronic Notes in Theoretical Computer Science, Elsevier
(2006)

38. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph
transformation. Software and System Modeling (2006) To appear.

39. Van Gorp, P., Van Eetvelde, N., Janssens, D.: Implementing refactorings as graph
rewrite rules on a platform independent metamodel. In: Proc. Fujaba Days. (2003)

40. Schippers, H., Van Gorp, P., Janssens, D.: Leveraging UML profiles to generate
plugins from visual model transformations. In: Proc. Int’l Workshop Software
Evolution through Transformations (SETra). Volume 127 of Electronic Notes in
Theoretical Computer Science., Elsevier (2005) 5–16

41. Schippers, H., Van Gorp, P.: Standardizing story-driven modeling for model trans-
formations. In: Proc. Int’l Fujaba Days. (2004)

42. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Proc. 1st Int’l Conf. Graph Transformation. Volume 2505 of
Lecture Notes in Computer Science., Springer-Verlag (2002) 286–301

On the Use of Graph Transformations for Model Refactoring 257

43. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings
with graph transformations. Int’l Journal on Software Maintenance and Evolution
17(4) (2005) 247–276

44. Van Eetvelde, N., Janssens, D.: Extending graph rewriting for refactoring. In: Proc.
Int’l Conf. Graph Transformation. Volume 3526 of Lecture Notes in Computer
Science., Springer-Verlag (2004) 399–415

45. Roberts, D.B.: Practical Analysis for Refactoring. PhD thesis, University of Illinois
at Urbana-Champaign (1999)

46. Ó Cinnéide, M., Nixon, P.: Composite refactorings for java programs. Technical
report, Department of Computer Science, University College Dublin (2000)

47. Kniesel, G., Koch, H.: Static composition of refactorings. Science of Computer
Programming 52(1-3) (2004) 9–51

48. Heckel, R.: Algebraic graph transformations with application conditions. Master’s
thesis, Technische Universität Berlin (1995)

49. Bottoni, P., Parisi Presicce, F., Taentzer, G.: Specifying integrated refactoring
with distributed graph transformations. Lecture Notes in Computer Science 3062
(2003) 220–235

50. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey.
Electronic Notes in Theoretical Computer Science (2005)

51. Visser, E.: A language for program transformation based on rewriting strategies.
In Middeldorp, A., ed.: Rewriting Techniques and Applications. Volume 2051 of
Lecture Notes in Computer Science., Springer-Verlag (2001) 357–

52. van den Brand, M., Klint, P., Vinju, J.: Term rewriting with traversal functions.
Transactions on Software Engineering and Methodology 12 (2003) 152–190

Part II

Technology Presentations

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 261 – 277, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Forms2Net - Migrating Oracle Forms to Microsoft .NET

Luis Andrade1, João Gouveia1, Miguel Antunes1,
Mohammad El-Ramly2, and Georgios Koutsoukos1

1 ATX Software S.A, Rua Saraiva de Carvalho, 207C, 1350-300 Lisbon, Portugal
{luis.andrade, joao.gouveia, miguel.antunes,

georgios.koutsoukos}@atxsoftware.com
2 Department of Computer Science, University of Leicester,

University Road, Leicester, LE1 7RH, UK
mer14@le.ac.uk

http://www.cs.le.ac.uk/~mer14

Abstract. Forms2Net is an ATX Software commercial reengineering tool that
automatically converts Oracle Forms applications to the equivalent .NET (C#)
ones, with approximately 75% rate of automatic conversion. From the reengineer-
ing and transformation theoretical viewpoint, Forms2Net falls in the general cate-
gory of language-platform conversion tools. As theory and practice indicate, for
such tools to be effective, there are two major issues that must be handled: (a) the
resolution of the semantic gap between the pair of source-target languages and (b)
the resolution of the dependencies (e.g., API dependencies) on functionalities
provided by default by the source platform or on programming idiosyncrasies of
the source platform (in this case Oracle Forms). This paper presents the important
practical aspects of Forms2Net and the underlying technology. We discuss the
semantic gap between Oracle Forms and .NET forms and the design principles
and solution strategies used to bridge this gap.

1 Introduction

Software application transformation is an active area in research and practice [10,12].
For many reasons organizations decide to migrate from one language to another, from
a platform to another, from an operating system to another or a combination of these.
The reasons for such migration are diverse ranging from moving away from an obso-
lete technology, to creating an integrated corporate information system, to moving
from client-server architecture to a multi-tier or three-tier architecture. A few exam-
ples of such migration are [6, 7, 11]:

• Converting to a newer version of a language (COBOL 68 to COBOL 85),
• Converting from a language to another (COBOL to C or Java)
• Migrating an application to a different system that supports a different dialect

of the same language (Cobol on IBM Mainframe to AS/400 Cobol)
• Migrating from a file system storage or a hierarchal database to a relational

database (from VSAM files to DB2)
• Converting from an application framework to another (Oracle Forms applica-

tions to .NET applications in VB or C# or to Java applications for J2EE).

262 L. Andrade et al.

The width of the semantic gap between the source and target languages and/or plat-
forms decides the feasibility and complexity of the conversion. The wider the gap, the
less feasible, more complex and less automated the conversion is. This paper presents
the challenges faced, design decisions made and solution strategies implemented in
Forms2Net [1], a commercial tool for transforming Oracle Forms applications to C#
applications for .NET. It gives an overview of Oracle Forms platform and discusses
the reasons for converting Oracle Forms applications to .NET ones, the challenges in
this conversion and the semantic gap between both frameworks (Sections 2 to 4).
Then, it explains the strategies and design principles followed in designing
Forms2Net (Section 5) and the conversion approach implemented in Forms2Net (Sec-
tion 6). Next, the related work is discussed (Section 7). Finally, some conclusions are
drawn (Section 8). Oracle Forms might be referred to as Forms only in the rest of the
paper.

2 An Overview of Oracle Forms Applications

Oracle Forms is a 4GL rapid database application development environment plus a
runtime environment where these database applications run [13]. Table 1 summarizes
the elements of a Forms application. [9]

Figure 1 shows the structure of an Oracle Forms application from a developer’s
viewpoint and the relationships between its main components. The arrows represent a
general relation that can be association or aggregation.

 Application

Form

Block
Item

Triggers

 Menu
 PL/SQL Library

 Object Library

Package

 Program
Unit

 Program
Unit

Oracle
Database

Triggers
Packages
Procedures
...
...

 Package

 Procedure

Fig. 1. The Structure of an Oracle Forms Application from a Developer’s Viewpoint

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 263

Table 1. The Elements of an Oracle Forms Application

Oracle Concept Description

Form A Form is a collection of objects and code, including windows, items, triggers
and program units. A form can include any number of separate windows.

Window The usual window concept. A form may have several windows that are closely
related.

Canvas A canvas is a content area placed inside a window. A window may display sev-
eral canvases.

Block Represents a logical container for grouping related items into a function unit for
storing, displaying, and manipulating records. Only item objects contained in a
block are visible in the application interface.

Item Items display information to users and enable them to interact with the applica-
tion. Item objects include the following types: button, check box, display item,
image, list item, radio group, text item and/or user area, among others.

Trigger Represents a block of code that adds functionality to an application by one or
more PL/SQL statements. A trigger object is associated with an event.

Program
unit

Represents a named PL/SQL function or procedure that is written in a form,
menu, or library module. It allows the reusability of code across different trigger
behaviors.

Package A package is a PL/SQL construct that groups logically related types, objects,
procedures, and functions. Packages usually have two parts, a specification and
a body, although sometimes the body is unnecessary.

Record
Group

Represents a set of column/row values similar to a database table. However,
unlike database tables, record groups are separate objects that belong to the form
module in which they are defined.

LOV
(list of
values)

A LOV object is a scrollable popup window that provides the end user with
either a single or multi-column selection list. It represents a set of column/row
values similar to a database table.

Alert An alert is a modal dialog box that displays a message notifying the operator of
some application condition.

Visual
Attrib-
ute

Represents a named visual attribute that should be applied to an object at run-
time. A visual attribute defines a collection of font, color, and pattern attributes
that determine the appearance of an object.

Menu A collection of menus (a main menu object and any number of submenu objects)
and menu item commands that together make up an application menu.

Library A collection of user-named procedures, functions, and packages that can be
called from other modules in the application.

Note in Figure 1 that the database may have some elements beside data, which are
triggers and packages of procedures that are left untouched by the Oracle Forms ap-
plication migration process. From the presentation or user interface viewpoint, an
Oracle Forms application looks like Figure 2 [6]. Frames in Oracle Forms are visual
containers similar to Group Box Controls in Windows Forms.

264 L. Andrade et al.

 Window

Canvas

Frame

 Item

Fig. 2. The Organization of an Oracle Forms Application from a Presentation Viewpoint

3 Why Convert Oracle Forms Applications to .NET?

A .NET Windows Forms application in its essence is based on similar concepts for
the presentation elements (Forms, Panels, Controls, Event handlers) and the code
elements (class libraries). These are the building blocks of a .NET application and
there are different ways to use them and organize them to make an application – this
is the role of the application architecture. Microsoft makes available several applica-
tion blocks based on the .NET Framework, but they are still low-level isolated blocks
targeting a specific task/feature (logging, cache, exceptions, data access, etc.) [5].

Oracle Forms is already a legacy environment for Forms applications. J2EE and
.NET are the major platforms to develop this kind of applications nowadays. They
both have their own strengths. Forms2Net targets only the migration to .NET Frame-
work. Although Oracle Forms was considered a powerful and productive environment
for application development, the resulting applications lack the flexibility and the
interface features available in modern applications. Several other factors may influ-
ence the decision to move from Oracle Forms to .NET:

• Easy to find and cheaper workforce
• Cost savings (database costs)
• Increased development productivity
• Platform harmonization / migration.
• Customer/partner alignment;

The conversion of legacy Forms applications is also an opportunity to integrate ex-
isting legacy applications into a service-oriented architecture if one is being con-
structed as the backbone of the company’s information system. Applications may
provide new (migrated) services to other applications or reuse already built services to
replace or add functionality.

Forms2Net provides options to adapt the converted applications to multi-tier envi-
ronments, enabling an easy path to an integrated service environment. Currently,
Forms2Net supports Oracle Forms version 4.5 to 6i.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 265

4 The Semantic Gap

As mentioned above there are several similarities between Oracle Forms and .NET
Windows Forms, as well as some important and relevant differences that make an
automated migration a complex process. For better understanding of the gap between
the two approaches we present here the main differences.

4.1 Interface Elements

The most common interface elements are present in both platforms (windows, panels,
labels, text boxes, combo-boxes, check-boxes, etc.). Nevertheless some differences
also exist; an example is the radio group. In .NET Windows Forms, a radio group is
created by a set of System.Window.Forms.RadioButton instances belonging
to the same visual container. However, in Forms migration it is also necessary to
allow the creation of radio groups that have no visual relation, i.e., they can be chil-
dren of different containers and still act as a group of mutual exclusive radio buttons.
In general, .NET framework provides richer pre-defined controls for better user inter-
action, e.g.:

• Data grids with scrolling/column sorting
• Calendar date pickers

The major semantic gap to be solved is to correctly map Oracle Forms multi-record
display to a data grid preserving the associated interaction behaviour (validations,
triggers, etc.). For instance, .NET data grids need to be extended with new column
types (e.g., Combo Boxes) and corresponding event validation (the validate
event) on data grid cells. Also, there is no direct mapping between Oracle Forms
REQUIRED property and .NET control validation mechanisms. Hence, suitable ex-
tensions to the .NET control classes should also be provided for such Oracle Forms
properties.

4.2 Data Organization

Oracle uses the data block concept to represent simple data (items) or data collec-
tions (table rows) that may be mapped to database entities. By using this concept, a
lot of database read/write/commit behaviour is pre-defined in Oracle Forms without
writing too many lines of code. This was one of the basics of 4GL applications,
which results in minimum coding effort when following the typical patterns of
Forms applications.

The major semantic gap to be solved is to ensure that access and management of
data is done in a simple and uniform way, consistent with the original semantics and
allowing an easy mapping of PL/SQL instructions (PL/SQL is Oracle’s SQL lan-
guage, with additional language constructs). For example, in Forms applications di-
rect calls to database stored procedures are allowed (Listing 1) and, in fact, are a
common practice. In .NET this is not possible and therefore a suitable mechanism
must be devised (e.g., wrapping as in Listing 2) for accommodating this. The same
applies to the Oracle cursors that are not present in .NET.

266 L. Andrade et al.

Listing 1. PL/SQL Call to a Stored Procedure

Listing 2. A Wrapper for the Stored Procedure and the Respective Invocation in .NET

4.3 Events

Oracle provides the Trigger concept. Triggers are events that are propagated up the
object hierarchy as a chain of responsibility. In .NET the event concept is also pro-
vided but event propagation is flat, i.e., all event handlers of an event are fired and
there is no event propagation from a child component to its parent component. The
existing ‘alphabet’ of events used in Oracle is significantly different from the ones
available in .NET, although some similarities may be found.

The semantic gap to bridge here is to define a correct mapping between both sets
of available events, in a way that preserves most of the original semantics. By se-
mantics here we mean ‘when’ the event happens, and its ‘purpose’. For instance,
Oracle Forms triggers can be organized in two categories: Model Triggers, fired by
operations made on data or by data manipulation operations (ON-POPULATE-
DETAILS, ON-COMMIT, ON-INSERT, ON-DELETE) and View Triggers, fired
by user interaction at the UI level (WHEN-BUTTON-PRESSED, WHEN-NEW-
BLOCK-INSTANCE, WHEN-NEW-ITEM-INSTANCE). Adequate mappings for
.NET, such as the definition of such events, the event handlers and the event regis-
tration code together with the corresponding method signatures, must therefore be
devised.

public class StoredProcedures {
public static NullableDecimal GetNewEmployeeId() {

IDataCommand cmd =
DbManager.DataAccessFactory.CreateDataCommand
("GET_NEW_EMPLOYEE_ID", DbManager.DataBaseFactory);

cmd.AddReturnParameter(typeof(NullableDecimal));

cmd.Execute();

object _retVal = cmd.GetReturnValue();
return _retVal == DBNull.Value ? NullableDecimal.Null
: Convert.ToDecimal(_retVal);
}

}

//.NET invocation for previous stored procedure wrapper
 Model.EmpCreate.Empno = StoredProcedures.GetNewEmployeeId();

:EMP_CREATE.EMPNO := GET_NEW_EMPLOYEE_ID;

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 267

The mapping should be complete when semantic preservation is guaranteed, and
partial when semantics are not the same. Partial here means that the mapping is
provided as a possibility that should be completed during the manual ‘completion’
phase by a Forms2Net user. As an example consider the navigation between the
several components of a Form (Next-Block, Previous-Block, Next-Item, etc.). It is
common to have handlers for these operation triggers that just prevent the operation
from execution or display an error message (e.g., forbid the navigation from block B1
to block B2).

.NET applications don’t use this kind of navigation restrictions. If such behaviour
is required, the conditions to enable/disable the relevant controls, must be performed
in the code completion phase. Finally, some events are also discarded during the
process. This aspect is closely related to the following one.

4.4 Behaviour

Oracle Forms runtime has a huge set of runtime features and implicit behaviour. An
example of this is the behaviour associated with Execute and Commit actions that
loads / saves the data being edited in the forms according to the form block types and
definitions. Only some of these features are present by default in .NET framework.
Some others are not relevant because .NET applications have different patterns of
behaviour. For instance, validation of data in Oracle Forms is done in a complex way,
with several levels of validation (item, block, form) that occur when some actions are
taken. Standard validations in .NET applications are simpler, performed on single
controls, when editing is finished.

Furthermore, in some cases, a Forms application may have a lot of code that over-
rides, controls and disables Oracle Forms implicit behaviour.

Mapping the behaviour correctly between the two approaches is the most challeng-
ing semantic gap to solve. This is typically where some rules and conversion tables
may be used, but human effort is required in the migration process to check or com-
plete the automated conversion.

4.5 Language

PL/SQL control constructs are not so different from C# constructs. The SQL part is
what makes the difference, including embedded database operations (queries, cursors,
etc). One of the gaps to be solved is correctly migrating all the SQL code instructions
into corresponding ones using the .NET databases access infrastructure. However, the
major semantic gap to be solved is the ability to work with null values on every
PL/SQL data type (numbers, dates, booleans, etc.), that has no counterpart in .NET
Framework 1.1. In .NET 1.1, data types (decimal, boolean, integer, etc.) do not accept
null values. The only type that has this ability is string. Oracle Forms code is written
with the implicit existence of null, and a straightforward transformation for C# code
will not have the same behaviour, without adding lots of constraints and different
rules. Therefore, the concept of Nullable type should be introduced to cope with this
semantic gap. However, .NET Framework 2.0 has support for Nullable types through
the System.Nullable<T> generic. For migration tools, such as Forms2Net, this

268 L. Andrade et al.

implies a strategic decision: either change the current code generation to incorporate
such a feature or just alter the current implementation of the Nullable types support
library (for instance, via inheriting from the .NET Nullbale generics). In other words,
a decision has to be made on whether to abandon a support library and hence the
corresponding support for Visual Studio 2003 or continue with the support library and
support for VS 2003.

Another gap is that Oracle Forms has support for object inheritance. Objects can
inherit from other objects defined in the same module or from objects defined in a
different module. However, .NET does not support multiple inheritance. One solution
is to deal with inheritance at the module level and only support one base module for
each module being converted. The conversion tool user can then configure the base
modules for the modules being converted. Then, during the module conversion, an
object is considered as inherited if it was inherited from the module’s base module.
This implies that any objects inherited from a different module will not be considered
as inherited.

5 Forms2Net Design Principles and Strategies

Before describing how Forms2Net deals with the semantic gap between the two plat-
forms in the next section, it is necessary to describe the design principles enforced
throughout Forms2Net and the solution strategies adopted. Three design principles
were adopted:

• 100% Pure .NET Code. The generated code should be pure .NET code fol-
lowing Microsoft’s Best Practices. It should only bridge the semantic gap
problems with solutions that are 100% based on .NET Framework.

• Preserve the code structure as much as possible. Although the converted
application architecture has significant differences, the structure of the origi-
nal code units should be preserved as much as possible to keep the functional
model of the original application and to ease comprehending the converted
code.

• Do not impose key conversion decisions upon the user. Keep it simple. If
there are several possible alternatives to a particular semantic gap problem,
the program maintainers should decide what to do. This is very important be-
cause some semantic gap problems may require minor changes to be made
and it is important to allow the future developers to choose how to perform
them so that the final result is the desired one.

The semantic gap problems were generally addressed by the following four differ-
ent but related strategies:

• Well Defined Target Architecture.
• Semantic Oriented Migration.
• Well Documented Migration Process
• Lightweight Support Libraries.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 269

5.1 Well Defined Target Architecture

Having a well-defined target architecture simplifies the code conversion process as it
allows having well-defined conversion rules for certain objects, code patterns, and
semantic gap problems. Although being different from the original, the target archi-
tecture adopted by Forms2Net was defined so that most of the concepts existing in the
original application could be represented. The main objective was to build a semantic
map or bridge between the original application architecture and the target architec-
ture. However, this does not mean that there are one-to-one mappings between the
artefacts of the original and target architectures. On the contrary, most mappings are
one-to-many which means that an artefact in the original architecture is represented in
the target architecture by two or more artefacts, their relations and their behaviour.
Forms2Net adopts a target architecture based on the Model-View-Controller pattern
[3], with some additional concepts that are particular to Forms applications.

5.2 Semantic-Oriented Migration

Semantic-oriented migration means that Forms2Net does not focus only on the con-
version of PL/SQL code into .NET. It works on a semantic level by taking into ac-
count the target architecture. Also, Forms2Net was designed so that specific plug-ins
can be developed to convert specific code constructs. The following further illustrates
these points:

• Original artefacts are converted and rearranged in order to fit in the
target architecture. The conversion process works from a model of the tar-
get architecture created from the original application, i.e., the first conversion
step is to map the original architecture model into the target one.

• Certain code patterns are recognized and transformed into more
adequate code patterns. For instance, PL/SQL code routines are analysed
and depending on the manipulated blocks and Oracle Forms built-ins, the
converted routines are parameterized in order to reduce the dependencies
between the code and the model, allowing the business logic to be easily
identified and isolated.

• Conversion of Oracle Forms runtime built-in calls can be performed on
one-by-one basis. By using the extensible architecture of .NET, it is possible
to develop new plug-ins to convert a particular usage of a particular Oracle
Forms built-in. Since the number of Oracle Forms built-ins is very high, the
extensible architecture of Forms2Net allows built-ins conversions to be dealt
with in an incremental way, starting with the most used built-ins and adding
new conversions when necessary.

5.3 Well Documented Migration Process

Every time the semantic gap cannot be solved or when there are several alternatives to
solve a particular problem, comments are generated in the code that point out to the
user the possible directions to be taken. These comments have links to a generated

270 L. Andrade et al.

migration guide specific for each form. This generated migration guide is customized
for the converted forms and the specific issues encountered in the original code, and
refers to the more generic documentation that is distributed with the tool.

By promoting a well-documented migration process, Forms2Net avoids imposing
sensitive migration decisions on the user, and at the same time eases the code comple-
tion process by supplying code comments and a migration guide that help the user
perform the necessary code changes.

5.4 Lightweight Support Libraries

Forms2Net supplies two lightweight support libraries that the converted code uses to
help reduce the semantic gap and preserve the original code structure:

• Application Data Layer Library. ADO.NET is a set of .NET Framework
classes containing the data access technologies used to manipulate databases
through specific ADO.NET providers. This library is built on top of
ADO.NET to allow code to be independent of the provider. It provides sev-
eral other features like:

o Simple classes to perform database operations: select/update/delete
commands, cursor operations, etc.

o Alternative interfaces to make the converted database manipulation code
simpler (less verbose) while maintaining its original structure;

o Manipulation of database null values in a transparent way

• Application Support Library is a set of utility classes that help reduce the
semantic gap when there is not an alternative in the .NET Framework and
when the solution to the problem is straightforward. It is composed mostly of
user interface components that extend .NET Windows Forms Framework;
and most of them are components that any user of .NET Windows Forms
will eventually need. It is possible to find different flavours and implementa-
tions on the World Wide Web for these components, supplied by third party
vendors or even as open-source code. The library uses .NET Windows Forms
extension mechanisms (class inheritance or IExtenderProviders im-
plementations) to extend .NET Windows Forms native controls.

6 Architectural Centric Conversion in Forms2Net

Forms2Net follows a 4-phases architectural centric conversion approach:

• Target Architecture Definition. This phase defines the architectural ele-
ments, their characteristics and relations.

• Architectural Mapping. In this phase, an architectural mapping of the
source application elements into the target architecture is performed.
Original application elements are rearranged and mapped into the target
architecture according to specific rules.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 271

• Artefacts Generation. In this phase, all the static architectural elements like
models and views and all their components are generated into the target plat-
form (Windows Forms).

• PL/SQL code conversion. In this phase all PL/SQL code existing in Forms’
triggers and program units is converted into .NET taking into account their
localization in the target architecture.

6.1 Target Architecture Definition

Forms2Net provides an architecture based on the well-known MVC (Model-View-
Controller) pattern [3]. Forms2Net MVC architecture for migrated Oracle Forms
applications decouples data access, business logic, and data presentation in a well-
organized and scalable structure, mapping Oracle Forms concepts into core .NET
framework concepts, using Microsoft’s best practices.

Fig. 3. MVC Architecture Targeted by Forms2Net

Using the MVC model as in Figure 3, the resulting application’s design minimizes
the interdependencies among the different parts. The role of each element in the MVC
model architecture adopted by Forms2Net is described below.

• The Model component maintains and manages the information manipulated
by the form. It manages the communication with the database, using Data-
sets1 to store the data.

• The View component’s role is visualizing the model state. It is responsible
for handling user interaction.

1 The DataSet is a component of the ADO.NET architecture, which is an in-memory cache of

data retrieved from a data source. It consists of a collection of DataTable objects that you can
relate to each other with DataRelation objects.

272 L. Andrade et al.

• The Controller is responsible for the relation and coordination between the
other two components, as well as for the form’s functional interface:
o It manages user interactions by mapping user actions and events into ap-

plication responses.
o It translates the actions within the view to actions performed on the

model.

Note that although the MVC architecture is the only target architecture currently
supported by Forms2Net as an architectural centric migration tool, other architectures
could be supported as well.

6.2 Architectural Mapping

In this phase, Oracle Forms objects of the source application are mapped into the
target architecture. Table 2 shows some examples of how Oracle Forms objects are
mapped into the target MVC architecture. Note that some of the mappings are one-to-
many. For instance, each Oracle Forms Block is mapped into one model and one
controller. The model maintains the block’s state, whereas the converted code for the
block’s triggers and all of its items’ triggers resides in the controller.

6.3 Artefacts Generation

In this phase architectural artefacts are generated into the target platform. Table 2
shows some of the mapping into .NET Windows Forms platform. Forms2Net
is designed to be independent of the target platform. For each artefact there is a
configured generator. Different platforms are supported by configuring different
sets of generators. At the present moment generators exist for both Windows
Forms and Web Forms platforms although only Windows Forms generators
are available commercially. Also, Forms2Net design allows using different genera-
tors for the same kind of artefacts. For instance, this allows having generators
for Microsoft .NET Windows Forms controls or generators for third-party .NET
Controls suites.

6.4 PL/SQL Code Conversion

At this phase, all PL/SQL code is converted into .NET code. This conversion is not
limited to language translation; it also applies some reengineering techniques in order
to obtain better quality and higher conversion rate2:

• Code routines Parameterization. In Oracle Forms, a block item can be ref-
erenced anywhere in PL/SQL code (trigger, program unit, etc.). To reduce as

2 In order to associate as much as possible the percentage of conversion with the effort needed

to manually complete the application, the conversion rate measure adopted by Forms2Net is
the percentage of the number of Oracle objects (e.g., interface items, Forms, triggers, proper-
ties, built-ins etc) that are supported for a given application and not the lines of code or num-
ber of Forms converted.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 273

much as possible references to the Model objects, Forms2Net uses control
flow analysis to parameterize the generated services methods and controller
methods.

• Code pattern recognition and transformation. Certain code patterns are
recognized in the original code and transformed into code patterns that are
more suitable for .NET. Listings 3 and 4 illustrate a transformation of a
block iteration pattern.

Table 2. The Architectural Mapping of Oracle Forms Objects into The Target MVC Architec-
ture and The Native Target Objects of .NET Windows Forms Platform

.NET Code Replacement Oracle
Forms
Object Model View Controller

Window System.Windows.Forms
.Form subclass

Windows Controller
class

Canvas System.Windows.Form.
UserControl subclass

UserControl
Controller class

Block .NET Model class If the block has multiple
records, a Data grid will be
generated.

Controller class with
all the block’s and
item’s triggers

Item Properties of the Model
class (columns of DataSet
table if the block is data-
based)

Instances of .NET Framework
System.Windows.Forms
.Control class

Form
Module

A .NET Model class that
aggregates all the block
models.
ADO .NET typed DataSet
with all the DataTables,
relations for all database
blocks defined in the
converted Form module.

 Controller with all
the form triggers.
This is the base class
for all the Window’s
Controllers

Relation DataRelation in the
DataSet

 Master detail
coordination logic

Program
Units

Methods in a service class

Triggers Event registration and event
handlers that call the
correspondent Controller
methods

A method for each
trigger to be called
by event handlers
from view classes.

LOV IExtenderProvider component
that associates a ChooseValue
form to each control (item)
that has a LOV property

...

274 L. Andrade et al.

FUNCTION CALCULATE_REVENUES RETURN NUMBER IS
 total number;
BEGIN
 if :system.current_block != 'ord' then
 go_block('ord');
 end if;
 FIRST_RECORD;
 LOOP
 EXIT WHEN (:SYSTEM.LAST_RECORD = 'TRUE');
 total := total + GET_ORDER_COST(:ord.ordid);
 NEXT_RECORD;
 END LOOP;
 return total;
END;

Listing 3. Original PL/SQL Code for Iterating over The Records of a Block

FUNCTION CALCULATE_REVENUES RETURN NUMBER IS
 total number;
BEGIN
 if :system.current_block != 'ord' then
 go_block('ord');
 end if;
 FIRST_RECORD;
 LOOP
 EXIT WHEN (:SYSTEM.LAST_RECORD = 'TRUE');
 total := total + GET_ORDER_COST(:ord.ordid);
 NEXT_RECORD;
 END LOOP;
 return total;
END;

Listing 4. The Equivalent Converted C# .NET Code of a Block

7 Related Work

Software transformation is a multifaceted problem, with many applications and also
many challenges, not just on the technical side but also on planning, management and
risk-control side [12]. The specific version addressed here is language and architec-
ture transformation, where not only the application will move to a different language
and platform, but also its architecture has to significantly change to adapt to the archi-
tectural model of the target platform. Architecture transformation is a challenging
problem, especially when the gap between the source and target architectures is wide.
In this case, as Klusener et al. [4] explain is their discussion of architectural modifica-
tions to deployed software, the changes (transformations in our case) need to happen
at system-wide level rather than on a per-function or per-module basis. This makes
the problem harder and requires creating and possibly integrating advanced

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 275

and sophisticated transformation tools. Realizing this need, The Object Management
Group (OMG) created and Architecture-Driven Modernization (ADM) Task Force
(ADMTF) to create a set of standards to facilitate the interoperability of moderniza-
tion tools. These interoperability standards are being established in a series of
meta-models that facilitate the collection, analysis, refactoring and transformation of
existing systems [8].

Having decided on the need for a certain type of transformation, one faces the issue
of automated versus manual transformation. Or in more the precise words, the issues
of availability of transformation tools, the cost of building such tools, the cost of
transformation and the quality of the produced code. Klusener et al. [4] discuss and
compare automated vs. manual transformations. They conclude that for any non-
trivial transformation project, automation is vital to success, but the issue is how
much automation is needed and at what cost. Baxter et al. [2] discuss the requirements
of building robust automated tools for “practical scalable software evolution”, as they
describe it. They present their effort and approach in building DMS, a generic trans-
formation environment and tool generator.

8 Conclusions

This paper presented Forms2Net, a tool for transforming Oracle Forms applications to
.NET applications that use Windows Forms. The paper gave an overview of Oracle
Forms platform, the motivations for transformation, the semantic gap between both
platforms, the design principles and solution strategies adopted, and finally a general
overview of Forms2Net implementation. It is important to draw some useful lessons
from this experience.

First, despite the similarities of the two platforms, significant semantic differences
exist. This makes transformation complex in the sense that there is a considerable
effort involved in building an automated conversion tool. Moreover, it is important
for similar transformation problems to focus on bridging the semantic gap using se-
mantic transformations rather than trying to just find syntactic mappings between
elements of both platforms. It is expected that some manual transformation will still
be needed. Our experience advocates the Klusener et al. [4] view that:

"A fully automatic solution is not always feasible, and it is sometimes not cost-
effective. For instance, a modification problem that involves heuristics to determine
affected parts of the system often necessitates interactive steps for approval by main-
tenance programmers. In an extreme case, the automation could be restricted to the
generation of a report, which is then applied by maintenance staff in a manual man-
ner. To this end, special interactive tool support can be provided such that program-
mers basically walk through the generated report and navigate to the affected code
locations without ado. Similarly, there is a tension between handling less frequent or
highly complex idioms by specific, manual changes per occurrence rather than pro-
viding a general rule for the underlying code pattern(s). The decision how much
automation is necessary and whether generic modification rules are required has to
be made while relating to the technical analysis of the problem at hand, and to the
drivers for the project."

276 L. Andrade et al.

Second, several code generation techniques and technologies are available in the
market or in the open-source community. In a complex process like Forms2Net mi-
grations, one should not rely only on one technique. One should have a master driver
for the generation, but then use the most appropriate technique in each situation. Ex-
ternal generation configuration and a plug-in architecture for generators are also ad-
visable solutions.

Third, one should give great attention to designing the target architectural model.
On a process like this, the architecture model of a generated application is one of the
most important issues, not only because it is the centre of the process, but also be-
cause it is the base or stable component of the final solution.

Fourth, invest in pattern recognition facilities. A migrated application has a much
higher level of quality and satisfaction to the clients when the final result looks like it
was ‘written’ in the target language and is able to use the language constructs in a
‘natural’ way. This can be highly improved using pattern detection and influencing
the generation process according to those patterns.

Lastly, developers like to have control over the code that they will be in charge of.
Whenever transformation rules are not clear, i.e., there is no solution or there are
multiple-solutions, Forms2Net reports the case in the generated code and gives its
user the choice of deciding what to do.

Acknowledgements

The authors like to thank the reviewers for their thorough reviews, detailed feedback
and invaluable advice and comments. We also like to thank the editors for the great
effort they put in editing and producing this volume.

References

1. ATX Software, Forms2Net. Available at http://forms2net.atxsoftware.com/
2. Baxter, I., Pidgeon, P., Mehlich, M.: DMS: Program Transformations for Practical Scal-

able Software Evolution. Proceedings of the International Conference on Software Engi-
neering. IEEE Press (2004)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Software Ar-
chitecture, Vol. 1: A System of Patterns. John Wiley & Sons (1996)

4. Klusener, A., Lämmel R., Verhoef, C.: Architectural Modifications to Deployed Software.
Science of Computer Programming, Vol. 54, Issue 2-3 (2005) 143-211

5. Microsoft Patterns and Practices Center: Application Blocks and Libraries. Available at
http://msdn.microsoft.com/practices/AppBlocks/default.aspx

6. Microsoft: Solution Guide for Migrating Oracle on UNIX to SQL Server on Windows,
Chapter 17 - Developing: Applications - Migrating Oracle Forms. Microsoft TechNet
(2005)

7. Mossienko, M.: Automated Cobol to Java recycling. Proceedings of the 7th European Con-
ference on Software Maintenance and Reengineering (CSMR), IEEE Computer Society
(2003) 40-50

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 277

8. Object Management Group (OMG): Architecture-Driven Modernization Scenarios (2006).
Available at http://adm.omg.org/adm_info.htm.

9. Oracle: Oracle Forms Developer's Guide, Release 4.5. Oracle Corporation (1994)
10. Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software Technolo-

gies, Engineering Processes, and Business Practices. Addison Wesley (2003)
11. Sneed, H.: Risks Involved in Reengineering Projects. Proceedings of the 6th Working

Conference on Reverse Engineering (WCRE), IEEE Computer Society (1999) 204-211
12. Ulrich, W.: Legacy Systems: Transformation Strategies. Prentice Hall (2002)
13. Zoufaly, F., Dermody, P.: Issues & Challenges Facing Oracle Forms to J2EE Evolution.

Available at SearchWebServices.com (2003)

Applications of the Asf+Sdf Meta-Environment

M.G.J. van den Brand

Technical University Eindhoven,
Department of Mathematics and Computer Science,

Den Dolech 2, NL-5612 AZ Eindhoven, The Netherlands
m.g.j.v.d.brand@tue.nl

Abstract. Generic language technology research focuses on the develop-
ment of fundamental techniques for language processing. The Asf+Sdf
Meta-Environment, an interactive development environment for the au-
tomatic generation of interactive systems, is an example of research in
this field. The Meta-Environment has been applied in various projects
in order to enable the development of high quality tools for the analysis
and transformation of large software systems written in languages such
as C, Java, Cobol, and PL/I. The Meta-Environment offers the inter-
active construction of language definitions and the generation of tools
given these definitions. Over the years, this system has been used in a
variety of academic and industrial projects ranging from formal program
manipulation to conversion of industrial Cobol systems.

1 Introduction

The focus of research in the field of generic language technology is on the devel-
opment of fundamental techniques for (programming) language processing: anal-
ysis, transformation, and compilation. The results of this research are formalisms
for describing the syntax and semantics of programming languages and tools for
processing languages and programs. The formalism Asf+Sdf [4, 22] and the
corresponding integrated development environment, the Asf+Sdf Meta-Envir-
onment [29, 7] are excellent examples of results obtained in this field of research.
The scope of research with respect to Asf+Sdf and the Meta-Environment is
on exploring new fundamental concepts, such as declarative description of (pro-
gramming) languages, incremental generation techniques, efficient term rewriting
engines, advanced parsing technology, and new analysis techniques.

There exists a broad range of formalisms to describe the syntax and semantics
of (programming) languages, for example (E)BNF, Lex+Yacc [32, 27], a wide
variety of attribute grammar based formalisms [1] and Action Semantics [34].
The Asf+Sdf formalism [4, 22] is yet another formalism for the definition of
syntactic and semantic features of (programming) languages. In addition it can
be used for the formal specification of a wide variety of software engineering
problems. The software coordination architecture, ToolBus [5] for instance has
been prototyped using Asf+Sdf.

Several (industrial) applications of ASF+SDF are discussed in [8]. However,
all those case studies used an older version of the Meta-Environment [29]. This

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 278–296, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Applications of the Asf+Sdf Meta-Environment 279

paper discusses applications that use the current version of Asf+Sdf and the
Meta-Environment [7]. We give a detailed introduction to Asf+Sdf and discuss
some of the engineering characteristics of the Meta-Environment. Then we briefly
discuss the relation between our work and other similar systems and draw some
conclusions on the applicability of Asf+Sdf with respect to certain applications.

2 Asf+Sdf

Asf+Sdf is a general-purpose, executable, algebraic specification formalism. Its
main application areas are the definition of the syntax and the static semantics of
(programming) languages, program transformations and analysis, and for defin-
ing translations between languages. Asf+Sdf provides the following features:

– General-purpose algebraic specification formalism based on (conditional)
term rewriting.

– Modular structuring of specifications.
– Integrated definition of lexical, context-free, and abstract syntax.
– User-defined syntax, allowing you to write specifications using your own

notation.
– Traversal functions (for writing very concise program transformations),

memo functions (for caching repeated computations), list matching, and
more.

The Asf+Sdf formalism is a combination of two formalisms: Asf (the Al-
gebraic Specification Formalism [4, 22]) and Sdf (the Syntax Definition Formal-
ism [25]). Sdf is used to define the concrete syntax of a language, whereas Asf
is used to define conditional rewrite rules; the combination Asf+Sdf allows the
syntax defined in the Sdf part of a specification to be used in the Asf part, thus
supporting the use of user-defined syntax when writing Asf equations. Asf+Sdf
also allows specifications to be split up into named modules, enabling reuse.

2.1 Syntax Definition Formalism

Sdf is a declarative formalism used to define the concrete syntax of languages:
programming languages, for example Java and Cobol, and specification lan-
guages, such as Chi, Elan, and Action Semantics. Sdf does not impose any re-
strictions on the class of grammars used, it accepts arbitrary, cycle-free, context-
free grammars, which may even be ambiguous. Since the class of all context-free
grammars is closed under union, a modular definition of grammars is possible in
Sdf, unlike other (E)BNF formalisms.

Although the full power of arbitrary context-free grammars is hardly necessary
when defining the syntax of a programming language (except for languages like
Cobol and PL/I), modularity is essential for reuse of specific language constructs
in various language definitions.

The downside of the use of arbitrary context-free grammars is the possibility
to have ambiguous grammars. The underlying parsing technology must be able

280 M.G.J. van den Brand

to cope with these ambiguities and it is necessary to have disambiguation filters
in the parser [16]. Even given these filters, there is no guarantee that all ambi-
guities will be resolved. Tools/formalisms like Lex+Yacc guarantee the absence
of ambiguities if no conflicts are detected during the construction of the table. If
a conflict is detected, a shift/reduce or reduce/reduce conflict, the Yacc engine
uses a fixed strategy to resolve the conflict.

See Figure 1 for an example of an Sdf module. This module defines the
concrete syntax of the language of Boolean expressions. The constructors true
and false are defined in a separate module basic/BoolCon which is imported
in this module. The variable Bool is defined in order to write the Asf equations
in Figure 2.

module basic/Booleans

imports basic/BoolCon
exports

sorts Boolean

context-free syntax
BoolCon -> Boolean
Boolean "|" Boolean -> Boolean {left}
Boolean "&" Boolean -> Boolean {left}
"not" "(" Boolean ")" -> Boolean
"(" Boolean ")" -> Boolean {bracket}

context-free priorities
Boolean "&" Boolean -> Boolean >
Boolean "|" Boolean -> Boolean

hiddens
context-free start-symbols Boolean

variables
"Bool" -> Boolean

Fig. 1. The Sdf module of the Boolean language

2.2 Algebraic Specification Formalism

Asf is a declarative formalism used to define the semantics of (programming)
languages, for instance the static semantics of Pascal [37] was specified using
Asf+Sdf. It provides conditional equations, also allowing negative conditions.
The concrete syntax defined in the corresponding Sdf module and in the tran-
sitive closure of any imported modules (only the exported sections, of course)
can be used when writing the conditional equations of an Asf module. Traversal
functions [12] provide a concise way of defining an Asf function which traverse

Applications of the Asf+Sdf Meta-Environment 281

the term and perform transformation and/or accumulation operations on specific
nodes in the underlying term without providing all intermediate rewrite steps.

See Figure 2 for an example of an Asf module. The equations defined in this
figure are unconditional and define the operational semantics of the Boolean
language. The equation will be interpreted as rewrite rules and if a term is
matched with one of the left hand sides, it will be reduced to the corresponding
right hand side. The term Bool in some of equations represents a variable and
matches any boolean expression.

equations

[B1] true | Bool = true
[B2] false | Bool = Bool

[B3] true & Bool = Bool
[B4] false & Bool = false

[B5] not (false) = true
[B6] not (true) = false

Fig. 2. The Asf module of the Boolean language

3 ASF+SDF Meta-Environment

The development of Asf+Sdf specifications is supported by an interactive inte-
grated programming environment, the Meta-Environment [29, 7]. This program-
ming environment provides syntax directed editing facilities for both the Sdf and
Asf parts of modules as well as for terms, well-formedness checking of modules,
interactive debugging of Asf equations, and visualisation facilities of the import
graph and parse trees. The Meta-Environment provides the following features:

– Interactive support for writing a formal specification of a problem.
– An interactive environment for a new (application) language.
– Support for analyzing or transforming programs in existing languages.

The Meta-Environment offers the following basic functionality:

– Syntax directed editing in combination with text editors such as gvim and
gnu-emacs.

– Visualization of the module graph and parse trees.
– Rewriting and debugging facilities.
– Well-formedness checkers for both Sdf and Asf.
– refactoring operations at the specification level, such as renaming, copying

of modules.

Furthermore, the Meta-Environment offers the specification writer integrated
access to predefined modules containing the following:

282 M.G.J. van den Brand

Fig. 3. The user-interface of the Meta-Environment is a browser that provides a graph-
ical and a textual view of the modules

– A collection of grammars of programming and specification languages, such
as Java, C, Box, and Sdf itself.

– Basic data types such as Booleans, Naturals, and Strings.
– Basic data structures, such as Sets, Tables, the basic data structures are

parameterized.
– Box operators to guide the formatting of text in a declarative manner.
– A data structure to manipulate warnings and error messages.
– Functionality to access the underlying position information of subterms.

The user interface of the Meta-Environment is shown in Figure 3. The figure
shows the modules of a Cobol grammar. The left pane shows a tree-structured
view of the modules, and the right pane shows the graph module with import
relations.

4 Applications

The obvious application areas for Asf+Sdf and the Meta-Environment tech-
nology are the design and implementation of domain specific languages, software
renovation, and advanced code generators. This section discusses several recent

Applications of the Asf+Sdf Meta-Environment 283

applications. In Section 4.1 we discuss a few of the most important academic ap-
plications and in Section 4.2 we will discuss a number of industrial applications.
We conclude with a discussion of the use of Asf+Sdf within the Meta-Envir-
onment itself in Section 4.3.

4.1 Academic Applications

The academic applications of Asf+Sdf are mainly in the field of programming
language prototyping, transformation, and compilation. In this section we con-
sider applications which are not related to Asf+Sdf itself. There are three
projects in the area of language prototyping:

– The prototyping of the syntax of the algebraic specification language Casl
[15]. The project consisted of prototyping the concrete syntax of Casl and
defining the mapping from the concrete syntax to the abstract Casl syntax.

– The prototyping of the next generation of the action semantic formalism
[23, 26]. Besides the prototyping of this formalism an environment for this
formalism is developed [10].

– The prototyping of RScript formalism and tooling. RScript provides a
relational approach to software analysis [30].

Projects in the area of program transformation and compilation are as follows:

– The validation of distributed algorithms with a rewriting kernel dedicated
to TLA+ specifications [31] at IRIT (University of Toulouse). This project
mainly uses traversal functions in order to describe the transformations in a
very concise way. Furthermore our Box pretty printing technology is used
to regenerate parseable TLA+ specifications again.

– The implementation of a compiler for the formalism Chi [3] at the Mechanical
Engineering Group at the Technical University of Eindhoven. The goal of
Chi formalism is the specification of the dynamics and control of production
plants and mechanical modeling.

– The migration of legacy databases to relational databases together with the
adaptation of the corresponding program code [19].

4.2 Industrial Applications

There are three main industrial applications areas of Asf+Sdf which are very
similar to the academic application areas: prototyping of domain specific lan-
guages (DSLs), software renovation, and code generation. In this section we dis-
cuss the software renovation activities in more detail. The prototyping of DSLs
and code generation is discussed in [8].

Various projects in the field of software renovation, such as reverse engineering
and re-engineering have been carried out in cooperation with industrial partners
since 1998. The powerful generalized parsing technology allowed us to tackle
both the problem of handling various dialects of Cobol as well as the problem
of embedded languages in Cobol, such as SQL, assembler, and CICS.

284 M.G.J. van den Brand

In various software renovation projects Asf+Sdf has been applied to define
the restructuring of Cobol programs, see [17, 38]. We will elaborate on the re-
structuring of Cobol code as described in [38]. The main goal of this work was
to restructure Cobol code in order to improve maintenance of the code. The
restructuring consisted of quite a number of steps, for example:

– The introduction of scope terminators, such as END-IF.
– The removal of as many GOTOs as possible.
– The introduction of subroutines by means of PERFORM statements.
– The introduction of loops by means of inline PERFORM statements.
– The prettyprinting of the resulting Cobol program.

Figure 4 shows a Cobol program with a messy flow of control, this flow of control
is visualized in Figure 7. The arrows without numbers in Figure 7 represent the
so-called fall-through control flow. If the end of paragraph 7201 is reached the
execution continues with paragraph 7203, unless paragraph 7201 was entered
via a subroutine call. The numbers on the arrows correspond to the GOTOs in
the corresponding paragraph, so 1 corresponds to the first GOTO, 2 corresponds
to the second GOTO, and so on. The combination of fall-through semantics with
gotos makes Cobol programs hard to maintain.

The goal of the restructuring operations as described in [38] is to improve
maintainability. This is achieved via reducing the number of fall-throughs and
gotos by introducing subroutines (procedures in modern languages) and subrou-
tine calls, and loops via PERFORM statements. Figure 6 shows an Asf equation
to remove a goto pattern which in fact implements a loop. Loops in Cobol are
implemented via PERFORM statements. Perform statements are relative new in
the Cobol language.

The result of applying restructuring rules such as the one presented in Figure 6
is shown in Figure 5. The paragraphs in Figure 7 are transformed into subrou-
tines, if the execution of such a subroutine is finished the control is transferred
back to the caller instead of continuing with the next paragraph. Goto based
loops are replaced by PERFORM statements as well. The flow of control of the
transformed program is visualized in Figure 8. An important observation with
respect to these restructurings is that one of the requirements was that no code
duplication was allowed. One of the consequences of this requirement is that not
all GOTOs can be removed.

4.3 ASF+SDF Specific Applications

The core business of the Meta-Environment is language processing. Asf+Sdf is
suited to be used as an algebraic specification formalism for specifying language
processing tools. So, it is logical to use Asf+Sdf to implement the components
of the Meta-Environment. Asf+Sdf has been used to implement:

– The Asf2C compiler [9].
– Box toolset [18, 13]R.
– Sdf normalizer as part of the parsetable generator for Sdf [39].
– Sdf well-formedness checker.

Applications of the Asf+Sdf Meta-Environment 285

Fig. 4. A Cobol program with a messy flow of control

For other components, such as the ToolBus [5], an Asf+Sdf specification
was made for prototyping use only. That specification formed the basis of an
optimized, handcrafted implementation in C. The underlying socket programming
made it impossible to use the Asf2C compiler [9] to compile this specification.

The Asf2C compiler [9] compiles Asf+Sdf specifications to efficient C code.
Every Sdf function (with Asf equations) is translated to a C function that con-
tains an optimized matching automaton for the left-hand sides of the equations
and conditions. The Asf+Sdf functions in conditions and the right-hand side
of a matched equation are translated to direct function calls.

The Box toolset [18, 13] provides a fully integrated way of defining the unpars-
ing of terms manipulated via Asf+Sdf. It consists of the Box formalism and a
Box interpreter (Pandora) for translating Box expressions to either Ascii text,

286 M.G.J. van den Brand

Fig. 5. The Cobol program after restructuring

HTML code, or LATEX. The unparsing of language constructs is defined using
plain Asf equations.

The Sdf normalizer is described in Visser’s PhD thesis [39], see Chapters 6
through 10. The Sdf well-formedness checker is very specific to Asf+Sdf and
is not yet described in an accessible publication. In the rest of this section will
be devoted to a detailed discussion of the well-formedness checker, in order to
understand the behaviour of the well-formedness checker it is necessary to give
some internal details of Sdf and the normalizer.

Sdf Normalizer. One of the characteristics of Sdf is the integrated definition
of lexical and context-free syntax. This, in combination with modularity, provides

Applications of the Asf+Sdf Meta-Environment 287

[] complex-stats(#Statement*1) == false
===>
elim-go-trav-paragraph(
#Label-name.
#Statement*1
IF #Condition

#Statement*2
GO #Label-name

ELSE
#Statement*3

END-IF
#Statement*4.) =

elim-go-trav-paragraph(
#Label-name.
#Statement*1
PERFORM TEST BEFORE UNTIL NOT (#Condition)

#Statement*2
#Statement*1

END-PERFORM
#Statement*3
#Statement*4.)

Fig. 6. An Asf equation for eliminating GOTO’s

72-PT-MS

7201

7203 4

7205

1 - 3

2

7207

1

7209

7299

1

Fig. 7. Control flow
before

72-PT-MS

RESTRUCTURE-PAR

72997201

1

7203

2

7205

3

7207

4BAR-PARAGRAPH

7209

1

BAR

72-PT-MS-SUBROUTINES

Fig. 8. Control flow after

a powerful way of defining the concrete syntax of a large class of (programming)
languages in a declarative way.

288 M.G.J. van den Brand

Sdf is in fact a collection of syntax definition formalisms. The core of Sdf
is formed by kernel-Sdf, which provides normalized syntax rules. On the kernel
level there is, for instance, no distinction between lexical and context-free syntax
and the modular structure has been resolved. Kernel-Sdf is very similar to
plain BNF, except for the direction of the syntax rules. An Sdf specification
is normalized to this kernel-Sdf, by performing grammar transformations. The
main operations are as follows:

– Renaming nonterminals to reflect their origin, if the ID is used in a lexical
syntax section it is renamed <ID-LEX>. If ID is used in a context-free syntax
section it is renamed to <ID-CF>. In order to bridge the gap a new production
rule <ID-LEX> -> <ID-CF> is added.

– Resolution of the modular dependencies, renamings and parametrization in
order to obtain one flat syntax definition.

This normalized definition in kernel Sdf is input for the actual parsetable gen-
erator, a C program which was initially specified in Asf+Sdf as well. The
Asf+Sdf specification of the normalizer strongly reflects the modular structure
of Sdf itself. The specification consists of about 70 small modules, where each
module takes care of a specific operation (for example renaming) for a specific
part of Sdf (for example sorts).

Sdf Well-Formedness Checker. An Sdf definition used in combination with
Asf may not contain kernel syntax constructions. Furthermore, in order to parse
the Asf equations, the Sdf specification is “extended” with a module containing
the syntax rules for the equations. In order to prevent “clashes” the nonterminals
used in this Asf module are not allowed in an arbitrary Sdf definition. Some
other restrictions are imposed on Sdf constructs in order to able to rewrite
the parsed terms via Asf, for example, the separator in lists should always be
a literal ({Statement ","}* is a legal list, but {Bool Bool}+ is not). These
requirements are not checked during normalization nor parsetable generation.
The reason for this is that the normalization and parsetable generation support
the broadest class of Sdf. Therefore, a separate Sdf well-formedness checker has
been developed. The most important checks performed by the well-formedness
checker are as follows:

– No kernel syntax constructions are used.
– No nonterminals are used which are part of the “Asf language”.
– All nonterminals (sorts in Sdf terminology) used in the left-hand side of a

production rule or as start symbol are defined in some right-hand side of a
production rule.

– All production rules used in the priority section are defined somewhere.
– At least one visible start symbol is defined.
– The traversal functions have the correct combination of attributes.

The result of running the well-formedness checker is a list of warnings and
errors. The generated messages contain position information to connect the error

Applications of the Asf+Sdf Meta-Environment 289

to the exact location in a module where the error occurred. This specification
uses traversal functions in order to collect information from all parts of an Sdf
definition.

Figure 9 shows a rule for finding nonterminals which are in fact used within the
Asf syntax. The function check-asf-sorts traverses the parse tree of an Sdf
module. The operational details of the traversal mechanism in Asf are described
in [12]. If the function encounters a node of sort Sort the equation cas will be
activated. This means that the corresponding conditions are checked. The first
condition of cas checks explicitly whether the Sort is an Asf-specific sort. In the
second condition the get-location($Sort) obtains the position information for
the sort $Sort. This get-location function is a function defined in the module
utilities/PosInfo. The function symbol2str($Sort) converts the internal
representation of a symbol to a human readable string. In the right hand side
of this equation a new error message, created via the function make-error, is
added to the accumulated list of errors. The signature of the warnings and errors
is defined in a predefined library module.

...
imports

utilities/PosInfo[Sort]
basic/Errors

...
exports

context-free syntax
check-asf-sorts(Sort, {Error ","}*) -> {Error ","}* {traversal(accu,break,top-down)}

...
hiddens

variables
"$Msgs"[0-9]* -> {Error ","}*
"$Sort"[0-9]* -> Sort
"$String"[0-9]* -> StrCon
"$Location"[0-9]* -> Location

equations
...
[cas] is-asf-sort($Sort) == true,

$Location := get-location($Sort),
$String := symbol2str($Sort)
====>
check-asf-sorts($Sort, $Msgs) =

$Msgs, make-error("Usage of asf equation sort is not allowed ",
$String, $Location)

...

Fig. 9. The Sdf function and Asf equation for finding Asf nonterminals in Sdf

5 Re-usability of Asf+Sdf Meta-Environment
Components

The implementation of Meta-Environment consists of a number of components
which communicate with each other via a software bus, the ToolBus [5]. The

290 M.G.J. van den Brand

architecture of the Meta-Environment is shown in Figure 10. The components
connected with the ToolBus are either homemade or third-party, for example
graphviz1 and GNU Emacs2. The homemade components are implemented in
various languages, such as Asf+Sdf, C, and Java. The Meta-Environment con-
sists of three layers:

1. The kernel layer containing all language independent functionality, such text
editor, structure editors, and a database to store information.

2. The Sdf layer containing all Sdf specific functionality.
3. The Asf layer containing all Asf specific functionality.

The principle design goal of the Meta-Environment was the development of a
system which offers openness, reuse, and extensibility. The generation of stand-
alone environments was another important goal. A first step was to develop re-
usable components which can be used by others (independent of both ToolBus
and Meta-Environment). This can be one single software artifact, such as the
ATerm library [11], or a collection of components. The components related
to parsing, such as the parser (SGLR [39]) and the parsetable generator, are
distributed in one software package along with the Sdf formalism.

The development of re-usable software components poses a number of chal-
lenging problems. First, it is necessary to develop both a ToolBus interface as
well as a command-line interface for such a component. Second, if it is a collec-
tion of components instead of a single component, for instance the Sdf package,
scripts should be included to take care of the proper activation of the separate
components. Third, the component or package needs to be distributed indepen-
dently of the Meta-Environment. Fourth, components and packages should be
well documented so that they are easily usable and/or can be easily integrated
in other software.

The implementation of the Meta-Environment is based on a number of these
re-usable software artifacts. We briefly discuss the most important ones:

ToolBus is a lightweight programmable software coordination architecture
based on process algebra [5]. The main purpose of this software bus is to
separate coordination from computation. It allows the components to be
written in any programming language.

ATerms is a library to manipulate and exchange tree-like data structures in a
very efficient way [11]. The ATerm library is implemented in both C and
Java. Its main characteristics are maximal subterm sharing and automatic
garbage collection.

ApiGen is a software generator which generates application programming in-
terfaces (APIs), in C and Java, from both annotated datatype descriptions
(ADTs) and Sdf definitions [14, 28]. The generated APIs provide a type-safe
interface to manipulate ATerms.

Sdf is the combination of the formalism Sdf, parsetable generator, well-
formedness checker, and SGLR. It provides the minimal set of tools needed
to parse strings given an Sdf definition.

1 http://www.graphviz.org
2 http://www.gnu.org/software/emacs/emacs.html

Applications of the Asf+Sdf Meta-Environment 291

Interpreter
Button

SDF

Parsetable
Generator

Relation
Calculator

ASF

Parsetable
SDF

Operations
SDF ASF

Interpreter
ASF
Compiler

Checker
ASF+SDF

Checker
ASF

Text
Editor

Structure
Editor

Parser Term
Store

GUI

Kernel Meta−Environment

Fig. 10. The layered implementation of the Meta-Environment

Asf is the combination of the formalism Asf, well-formedness checker, inter-
preter, and compiler. It provides the minimal set of tools needed to reduce
terms given an Asf specification.

Meta is the collection of tools which allows the user to actually develop a spec-
ification. It consists of the graphical user interface, (syntax directed) editors,
term database, etc.

Box is the combination of the formalism Box and the Box interpreter. This
is the set of tools needed to construct Box terms and translate them into
Ascii text.

Components of the Meta-Environment are used as stand-alone tools in a va-
riety of applications. Table 1 gives an overview of which components are used
in other applications. The first column contains the name of the application,
tool, language, project, or company. The second column contains an indication
of the type of application. We distinguish between different (language) spec-
ification, transformations, analysis, modeling, and proving. The third column
contains references describing this application. The fourth upto tenth column
specifies whether this Meta-Environment specific component has been used.
The last column indicates whether Asf+Sdf has been used as implementation
language.

Table 1. Asf+Sdf technology transfer

Application Type Refs ATerms Sdf Asf Meta ToolBus Box ApiGen Asf+Sdf
Meta-Environment Specification x x x x x x x x
Stratego/XT Transformation [41, 21] x x x
Action Notation Specification [23, 26] x x x x x x
Chi Modeling [3] x x x
Elan Modeling,proving [6] x x x x x x
μCRL Modeling [24] x
Lucent Transformation [42] x x
TLA+ Modeling [31] x
TOM Transformation [33] x x

292 M.G.J. van den Brand

6 Related Work

Research in the field of programming environment generators started in the
1980’s. One of the most influential systems was the Synthesizer Generator [36].
This system was based on attribute grammars and explored incremental at-
tribute evaluation in combination with generic language technology.

A lot of systems developed at that time disappeared and new systems came
into existence. Software renovation and in particular the Y2K problem gave rise
to a revival of research in the field programming environment generators. Systems
like TXL [20] and REFINE3 were used to tackle the Y2K problem. Generic
language technology proved to be a valid technique to deal with Cobol dialects
and embedded languages, like CICS and SQL. Recent developments, such as
Eclipse4, has motivated people to investigate in (generic) language technology
as well.

It is possible to make a selection of comparable systems on various criteria
and in this paper the main selection criterium is applicability in the field of
software transformation. Given this selection criterium we will discuss the fol-
lowing systems: Stratego/XT [40, 21], TXL [20], TOM [33], and DMS [2].
The list of aforementioned systems is not exhaustive, we selected these sys-
tems because they are very close with respect to concepts of the Meta-Envir-
onment. The following aspects play an important role when comparing these
systems:

– The expressiveness of the formalism.
– The parsing technology used to parse the terms to be transformed.
– The evaluation engine to implement the transformations.
– The environment to support user-interaction.

Table 2 gives a concise overview of the most important characteristics between
the various systems. The application area is comparable for all the systems.
There are a number of observations that can be made. First, all systems, except
TOM, use some kind of generalized parsing technology. Second, only TOM and
the Meta-Environment have an interactive interface to develop specifications.
Third, the evaluation engines are for all systems completely distinct.

Table 2. System overview

System/Formalism Parsing Evaluation Environment Availability
DMS GLR Attribute grammars Command-line Commercial
Stratego/XT SGLR Strategic rewriting Command-line Free
TOM None Java with matching Eclipse plug-in Free
TXL Backtracking Functional Command-line Free
Meta-Environment SGLR Conditional rewriting Interactive Free

3 http://www.reasoning.com
4 http://www.eclipse.org

Applications of the Asf+Sdf Meta-Environment 293

Each of these five systems has its weak and strong points. DMS [2] is used
in industrial projects. It is a commercial tool. The use of a generalized parsing
technology indicates an easy specification of a broad range of (programming)
languages.

TOM [33] adds matching primitives to Java, via these matching primitives
it is possible to perform complex transformations on abstract syntax trees and
XML documents. TOM is often used in combination with ApiGen [14] in order
to have type-safe access to these abstract syntax trees. The TOM compiler is
implemented using TOM itself. There are only a few other projects that have
used TOM. The fact that TOM is available as an Eclipse plug-in makes it easier
for other people to use it.

TXL [20] is a well-known system with a lot of users. The use of backtracking
as parsing technology ensures a broad range of (programming) languages that
can be processed via TXL. However, TXL chooses in case of an ambiguity the
first parse, instead of reporting all possible derivations. There is no guarantee
that the backtrack parser makes a correct choice in such a situation.

Stratego/XT [40, 21] is a very powerful system with a lot of users. The com-
bination of rewriting with strategies provides a powerful engine for performing
transformations. Stratego/XT has been extended with a number of features
to deal with concrete syntax and dynamic scoping [35]. The specifications are
very concise and not very easy to read.

Asf+Sdf is on one hand a complex formalism, it is not easy to write a good
grammar definition in Sdf, on the other hand a simple formalism, the definition
of operations in Asf is rather straightforward. The Meta-Environment supports
writing specifications and offers a range of facilities, such as predefined modules,
well-formedness checkers, and debuggers.

7 Conclusions

The application areas of Asf+Sdf and Meta-Environment are very diverse.
However the unifying factor is language processing. The shift from prototyp-
ing small languages, DSLs, to software renovation has had a tremendous effect
on the underlying technology. It triggered the development of scalable language
processing technology. The Meta-Environment was completely redesigned us-
ing component-based software development technology. The focus shifted from
incremental techniques to scalability, flexibility, re-usability and efficiency of
tools. This development not only opened new application areas, but also en-
abled us to promote and distribute the underlying technology to other research
groups.

Obtaining the Asf+Sdf Meta-Environment

The Meta-Environment can be downloaded from: http : //www.asfsdf.org/.

294 M.G.J. van den Brand

Acknowledgements

I would like to thank all current and former members of the Generic Language
Technology group at CWI for making the Meta-Environment work. Further-
more I would like to thank all people who have used and still use Asf+Sdf
and the Meta-Environment, either to do research or to apply it to solve (com-
plex) problems. I like to thank Niels Veerman who provided me with the Cobol
restructuring examples.

References

1. H. Alblas. Introduction to attribute grammars. In H. Alblas and B. Melichar,
editors, International Summer School on Attribute Grammars, Applications and
Systems, volume 545 of Lecture Notes in Computer Science, pages 1–15, Berlin
Heidelberg New York, 1991. Springer Verlag.

2. I.D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program transformations for prac-
tical scalable software evolution. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 625–634, Washington, DC, USA, 2004.
IEEE Computer Society.

3. D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers. Syn-
tax and consistent equation semantics of hybrid Chi. Journal of Logic and Algebraic
Programming, 2005. To appear.

4. J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press/Addison-Wesley, 1989.

5. J.A. Bergstra and P. Klint. The discrete time ToolBus – a software coordination
architecture. Science of Computer Programming, 31(2-3):205–229, July 1998.

6. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An
overview of ELAN. In C. Kirchner and H. Kirchner, editors, WRLA, volume 15 of
ENTCS. Elsevier Sciences, 1998.

7. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a component-based language
development environment. In R. Wilhelm, editor, CC’01, volume 2027 of LNCS,
pages 365–370. Springer-Verlag, 2001.

8. M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E.A, van den
Meulen. Industrial applications of ASF+SDF. In M. Wirsing and M. Nivat, editors,
Algebraic Methodology and Software Technology (AMAST ’96), volume 1101 of
LNCS. Springer-Verlag, 1996.

9. M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling lan-
guage definitions: The ASF+SDF compiler. ACM Transactions on Programming
Languages and Systems, 24(4):334–368, 2002.

10. M.G.J. van den Brand, J. Iversen, and P.D. Mosses. An action environment. Sci-
ence of Computer Programming, 2005. to appear.

11. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Efficient annotated
terms. Software, Practice & Experience, 30:259–291, 2000.

12. M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term rewriting with traversal func-
tions. ACM Transactions on Software Engineering and Methodology, 12(2):152–
190, 2003.

Applications of the Asf+Sdf Meta-Environment 295

13. M.G.J. van den Brand, A.T. Kooiker, N.P. Veerman, and J.J. Vinju. An industrial
application of context-sensitive formatting. Technical Report SEN-R0510, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, 2005.

14. M.G.J. van den Brand, P.-E. Moreau, and J.J. Vinju. A generator of effi-
cient strongly typed abstract syntax trees in java. IEE Proceedings — Software,
152(2):70–79, 2005.

15. M.G.J. van den Brand and J. Scheerder. Development of parsing tools for CASL
using generic language technology. In D. Bert, C. Choppy, and P. Mosses, edi-
tors, Workshop on Algebraic Development Techniques (WADT’99), volume 1827
of LNCS. Springer-Verlag, 2000.

16. M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In R. Nigel Horspool, editor, Com-
piler Construction (CC’02), volume 2304 of LNCS, pages 143–158. Springer-Verlag,
2002.

17. M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation of components
for software renovation factories from context-free grammars. Science of Computer
Programming, 36:209–266, 2000.

18. M.G.J. van den Brand and E. Visser. Generation of formatters for context-free
languages. ACM Transactions on Software Engineering and Methodology, 5:1–41,
1996.

19. A. Cleve, J. Henrard, and J-L. Hainaut. Co-transformations in information system
reengineering. In Second International Workshop on Meta-Models, Schemas and
Grammars for Reverse Engineering (ATEM’04), volume 137-3 of ENTCS, pages
5–15, 2004.

20. J.R. Cordy. TXL — a language for programming language tools and applications.
In G. Hedin and E. van Wyk, editors, 4th International Workshop on Language
Descriptions, Tools and Applications (LDTA’2004), Electronic Notes in Theoretical
Computer Science, pages 1–27. Elsevier, 2004.

21. M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transformation
tools. In M. G. J. van den Brand and D. Parigot, editors, Workshop on Language
Descriptions, Tools and Applications (LDTA’01), volume 44 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2001.

22. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An Al-
gebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific, 1996.

23. K.-G. Doh and P.D. Mosses. Composing programming languages by combining
action-semantics modules. Science of Computer Programming, 47:3–36, 2003.

24. J.F. Groote and A. Ponse. The syntax and semantics of μCRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes
’94, Workshops in Computing Series, pages 26–62. Springer-Verlag, 1995.

25. J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition for-
malism SDF: Reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

26. J. Iversen and P.D. Mosses. Constructive action semantics for Core ML. IEE
Proceedings — Software, 152(2):79–98, 2005.

27. S.C. Johnson. YACC—yet another compiler-compiler. Technical Report CS-32,
AT&T Bell Laboratories, Murray Hill, N.J., 1975.

28. H.A. de Jong and P.A Olivier. Generation of abstract programming interfaces from
syntax definitions. Journal of Logic and Algebraic Programming, 59, April 2004.

29. P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2:176–201, 1993.

296 M.G.J. van den Brand

30. P. Klint. A Tutorial Introduction to RScript — a Relational Approach to Software
Analysis, 2005.
http://homepages.cwi.nl/∼paulk/publications/rscript-tutorial.pdf.

31. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

32. M.E. Lesk and E. Schmidt. LEX — A lexical analyzer generator. Technical Report
CS-39, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

33. P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for
multiple target languages. In G. Hedin, editor, 12th Conference on Compiler Con-
struction, Warsaw (Poland), volume 2622 of LNCS, pages 61–76. Springer-Verlag,
May 2003.

34. P.D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Computer Sci-
ence 26. Cambridge University Press, 1992.

35. K. Olmos and E. Visser. Composing source-to-source data-flow transformations
with rewriting strategies and dependent dynamic rewrite rules. In Rastislav Bodik,
editor, 14th International Conference on Compiler Construction (CC’05), volume
3443 of Lecture Notes in Computer Science, pages 204–220. Springer-Verlag, 2005.

36. T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, third edition, 1989.

37. A. van Deursen. An Algebraic Specification of the Static Semantics of Pascal. In
J. van Leeuwen, editor, Conference Proceedings Computing Science in the Nether-
lands (CSN’91), pages 150–164, 1991.

38. N. Veerman. Revitalizing modifiability of legacy assets. Software Maintenance and
Evolution: Research and Practice, Special issue on CSMR 2003, 16(4–5):219–254,
2004.

39. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997. http://www.cs.uu.nl/people/visser/ftp/Vis97.ps.gz.

40. E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In A. Middeldorp, editor, RTA’01,
volume 2051 of LNCS, pages 357–361. Springer-Verlag, 2001.

41. E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers with rewriting
strategies. In International Conference on Functional Programming (ICFP’98),
pages 13–26, 1998.

42. D.G. Waddington and B. Yao. High-fidelity C/C++ code transformation. In
J. Boyland and G. Hedin, editors, Fifth Workshop on Language Descriptions, Tools
and Applications, pages 6–26, 2005.

MetaBorg in Action: Examples of Domain-Specific
Language Embedding and Assimilation Using

Stratego/XT

Martin Bravenboer, René de Groot, and Eelco Visser

Department of Information and Computing Sciences,
Universiteit Utrecht, P.O. Box 80089 3508 TB, Utrecht, The Netherlands

{martin, rcgroot, visser}@cs.uu.nl

Abstract. General-purpose programming languages provide limited facilities
for expressing domain-specific concepts in a natural manner. All domain concepts
need to be captured using the same generic syntactic and semantic constructs.
Generative programming methods and program transformation techniques can
be used to overcome this lack of abstraction in general-purpose languages.

In this tutorial we describe the METABORG method for embedding domain-
specific languages, tailored syntactically and semantically to the application
domain at hand, in a general-purpose language. METABORG is based on Strat-
ego/XT, a language and toolset for the implementation of program transformation
systems, which is used for the definition of syntactic embeddings and assimilation
of the embedded constructs into the surrounding code.

We illustrate METABORG with three examples. JavaSwul is a custom
designed language for implementing graphical user-interfaces, which provides
high-level abstractions for component composition and event-handling. JavaRegex
is a new embedding of regular expression matching and string rewriting. JavaJava
is an embedding of Java in Java for generating Java code. For these cases we show
how Java programs in these domains become dramatically more readable, and we
give an impression of the implementation of the language embeddings.

1 Introduction

Class libraries are reusable implementations of tasks in a certain domain. The library
is used via some API, which constitutes a ‘language’ for using the library implemen-
tation. The syntax of this language provided by the API is based on the syntax of the
general-purpose language in which the API is used. Unfortunately, general-purpose pro-
gramming languages provide limited facilities for expressing domain-specific concepts
in a natural manner. This syntax of the general-purpose language does not always allow
the appropriate notation and composition of domain concepts.

Examples of this issue are available everywhere. For example, user-interface code is
typically a tangled list of statements that constructs a hierarchical structure. XML docu-
ment construction is verbose or unsafe. Java libraries often return this only for making
sequential composition of calls possible, thereby confusing users, compilers, and other
meta-programs. Regular expressions need to be escaped heavily since they have to be

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 297–311, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

298 M. Bravenboer, R. de Groot, and E. Visser

encoded in strings. Not to mention the run-time errors or security risks involved in com-
posing SQL, XPath or XQuery queries by concatenating strings [7, 9]. Clearly, this is a
serious issue.

Generative programming methods and program transformation techniques can be
used to overcome this lack of abstraction in general-purpose languages. To this end, we
proposed the METABORG1 [6] method, which is a general way of providing domain-
specific notation for domain abstractions to application programmers. METABORG is a
way of implementing an embedding of a domain-specific language in a general-purpose
language. METABORG starts off with the idea that there should be no restrictions (1)
on the syntactic extension, (2) on the interaction with the host language, and (3) on the
translation to the general-purpose code (a process we call assimilation).

In [6] several METABORG examples have been presented, but the implementation of
these examples could not be discussed in detail. In this paper, we give a more extensive
account of the implementation of three METABORG examples, thus providing more
insight in the METABORG method for embedding domain-specific languages. We focus
on the METABORG examples and experience we gained from this. For an extensive
account of alternative approaches and related work, we refer to [6].

METABORG is based on modular syntax definition in SDF, which is implemented
by scannerless generalized-LR parsing [4, 11] and source to source transformation in
the high-level language for program transformation Stratego [13]. Stratego is a general-
purpose language for the implementation of program transformation systems. On top of
a small core language for pattern matching, abstract syntax tree construction, and term
traversal, Stratego provides abstractions such as rewrite rules whose application can be
controlled by a rewrite strategy. Context-sensitive rewritings are handled by defining
rewrite rules dynamically at the location where the context information is available.
Stratego is distributed as part of Stratego/XT, which is the combination of the Strat-
ego program transformation language and an extensive set of transformation tools for
parsing, pretty-printing, and so on.

In this paper, we present three examples of METABORG applications. These exam-
ples illustrate the capabilities of the METABORG method and provide an introduction to
the implementation of such embeddings. In Section 2 we given an extensive overview
of the implementation of JavaSwul, the embedding of a custom designed language for
implementing graphical user-interfaces. In Section 3 we give a short overview of Java-
Regex, which is an embedding of regular expression matching and string rewriting, and
JavaJava, which is an embedding of Java in Java, intended for Java code generation.

2 Embedding Swul in Java

Swul is a domain-specific language for writing user-interfaces based on the Swing li-
brary. In this section, we will discuss in more detail why and how we implemented an
embedding of Swul in Java. The Swul implementation described in this section is a
major extension of the first sketch of Swul presented in [6].

1 METABORG provides generic technology for allowing a host language (collective) to incor-
porate and assimilate external domains (cultures) in order to strengthen itself. The ease of
implementing embeddings makes resistance futile.

MetaBorg in Action 299

JMenuBar menubar = new JMenuBar();
JMenu filemenu = new JMenu("File");
JMenuItem newfile = new JMenuItem("New");
JMenuItem savefile = new JMenuItem("Save");
newfile.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_N, 2));
savefile.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_S, 2));
filemenu.add(newfile);
filemenu.add(savefile);
menubar.add(filemenu);

JPanel buttons = new JPanel(new GridLayout(1, 2));
JPanel south = new JPanel(new BorderLayout());
buttons.add(new JButton("Ok"));
buttons.add(new JButton("Cancel"));
south.add(BorderLayout.EAST, buttons);

JPanel panel = new JPanel(new BorderLayout());
panel.add(BorderLayout.CENTER, new JScrollPane(new JTextArea(20, 40)));
panel.add(BorderLayout.SOUTH, south);

Fig. 1. Simple user-interface implemented in plain Java

First of all, why did we develop a domain-specific language for implementing user-
interfaces? Despite all the advances in user-interface libraries, typical user-interface
code is still difficult to read. The composition of a complete user-interface from its basic
components is a tangled list of statements, that makes it difficult to see how the user-
interface is structured. A typical implementation of a simple graphical user-interface is
shown in Figure 1. The composition of the user-interface components and panels in sep-
arate statements results in spaghetti-like code: the connections between the definitions
and uses of components are unclear. In plain Java, the implementation of a graphical
user-interface is not close enough to the domain of graphical user-interfaces. That is, it
is very hard to understand the structure of the user-interface by studying the code. This
makes user-interface code hard to maintain.

Swul sets out to solve this problem by using a syntax that is closer to the concep-
tual idea of the Swing library. The central idea of Swul is that the implementation of
a user-interface should reflect its hierarchical structure, i.e. subcomponents are subex-
pressions of their containers. They are not added afterwards in separate statements,
which inevitably leads to tangling. Properties of components, such as widgets, contain-
ers, and layouts, can be set immediately on the component as well, thus defining all the
aspects of a user-interface component at a single location.

However, the disadvantage of a separate DSL is that the integration with the rest
of the program, written in a general-purpose language is cumbersome. Usually, escap-
ing to the general-purpose language is restricted to certain places in the DSL and the
connections between the domain-specific code and the general-purpose code are not
verified by the compiler. For example, event handlers are often invoked by reflection if
there is a separate user-interface specification.

300 M. Bravenboer, R. de Groot, and E. Visser

menubar = {
menu {
text = "File"
items = {

menu item { text = "New" accelerator = ctrl-N }
menu item { text = "Save" accelerator = ctrl-S }

}}}

content = panel of border layout {
center = scrollpane of textarea { rows = 20 columns = 40 }

south = panel of border layout {
east = panel of grid layout {

row = {
button of "Accept"
button of "Cancel"

}}}}

Fig. 2. Simple user-interface implemented in Java and Swul

Fig. 3. Pipeline for the processing of Swul in Java

To integrate the user-interface, implemented in Swul, seamlessly with the rest of
the program, we have embedded Swul in Java (JavaSwul). Swul components can be
used as Java expressions (embed) and Java expressions can be used in place of Swul
expressions (escape). For example, a custom border or component can be used in a
Swul specification of a user-interface and event-handling code can be written in plain
Java inside Swul. Figure 2 shows the implementation of the user-interface encoded
in Figure 1 in Swul 2. Here it is much easier to understand the structure of the user-
interface, since this is directly reflected in the code. We will discuss the various aspects
of Swul in more detail later.

Implementation Overview. A JavaSwul source file is processed by a series of compo-
nents, which are of course available as a single tool to users of JavaSwul. The pipeline
through which a source file is processed, is shown in Figure 3. The components will be
discussed in the next few sections.

Note that the implementation, although it acts as a pre-processor to the Java com-
piler, is more solid than most pre-processors for several reasons. First, it operates on

2 More examples are available at http://www.strategoxt.org/JavaSwulExamples

MetaBorg in Action 301

context-free syntax
ComponentType Props? -> Component {cons("Component")}
"{" Prop* "}" -> Props {cons("Props")}
PropType "=" PropValues -> Prop {cons("Prop")}

"{" Component* "}" -> PropValues {cons("PropMultiValue")}
Component -> PropValues {cons("PropSingleValue")}

context-free syntax
"panel" -> ComponentType {cons("JPanel")}
"border" "layout" -> ComponentType {cons("BorderLayout")}
"grid" "layout" -> ComponentType {cons("GridLayout")}

"content" -> PropType {cons("Content")}
"layout" -> PropType {cons("Layout")}
"title" -> PropType {cons("Title")}

Fig. 4. General productions of the Swul syntax definition

a complete abstract syntax tree, i.e. it is not based on lexical processing. Second, the
pre-processor performs semantic analysis and type checking on the mixed AST. Hence,
it is able to report semantic errors in terms of the original program. Most pre-processors
only have knowledge of the lexical syntax and leave error reporting to the compiler.
More advanced macro systems, such as [1, 3, 8], avoid lexical processing as well. For a
discussion of the relation to macro systems see [6].

2.1 Syntax and Parsing

The syntactical part of the implementation of JavaSwul consists of a syntax definition
for Swul itself and the embedding of Swul in Java. In all our embeddings we reuse an
existing, modular syntax definition for Java 5.0.

Swul Syntax Definition. The syntax of Swul is defined in SDF, a modular language for
syntax definition that integrates context-free and lexical syntax in a single formalism.
Swul uses a combination of a general syntax and some sugar for specific circumstances.
The most relevant productions from the syntax of the general syntax are shown in the
first context-free syntax section of Figure 4. The general syntax is based on compo-
nent types with the values of properties set between curly braces after the component
type. Component types are for example panel, button etc. Examples of properties are
layout, text, horizontal gap, and border. Some examples of component specific
production rules of the syntax definition are shown in the second context-free syntax
section of Figure 4.

In contrast to the general syntax of Swul presented here, the first edition of Swul [6]
used component specific production rules and non-terminals. While extending the Swul
language to cover more of the Swing library it became clear that this approach leads to
a lot of duplication in the syntax definition, lots of non-terminals and, worse, poor error
reports in case of syntactical errors in a JavaSwul source file. Therefore, we adopted this

302 M. Bravenboer, R. de Groot, and E. Visser

context-free syntax
(Modifier "-")* KeyEvent -> Prop {cons("Accelerator")}
"ctrl" -> Modifier {cons("CtrlModifier")}
"alt" -> Modifier {cons("AltModifier")}
"shift" -> Modifier {cons("ShiftModifier")}
"meta" -> Modifier {cons("MetaModifier")}

Fig. 5. More domain-specific syntax in Swul

context-free syntax
SwulComponent -> JavaExpr {avoid, cons("ToExpr")}
JavaExpr -> SwulComponent {avoid, cons("FromExpr")}

Fig. 6. Syntactical Embedding of Swul in Java

general syntax and introduced a separate analysis phase that checks if the component
types and properties are used in the right way.

Swul also supports user-friendly syntax for some domain-specific concepts that are
hard to construct using the Swing API. For example, Swul introduces a concise notation
for accelerator keys (key combinations to access a user-interface component with the
keyboard). Figure 5 shows the SDF production rules for accelerators.

Keywords. The keywords used in the Swul production rules, such as panel and
border, are not automatically reserved keywords. In general, reserved keywords are
only necessary if ambiguities arise, for example between the keyword null and the
identifier null. Moreover, if a separate scanner is used, then the scanner-parser com-
bination cannot handle tokens that have different meanings in different contexts, i.e.
if there is not interaction between the scanner and the parser. However, the META-
BORG method is based on scannerless generalized-LR parsing, which can determine
the meaning of a token based on the context in which it occurs, since there is no sepa-
rate scanner. Thus, reserving these keywords (i.e. disallowing them as identifiers) is not
required. However, they can still be declared as reserved keywords if this is desirable.

Embedding. The syntactic embedding of Swul in Java is defined in an SDF module
that imports the Swul and Java syntax and defines where Swul components can be used
in Java and vice versa. This embedding is defined by two productions, which are shown
in Figure 6. The two production rules of this embedding define that a Swul component
can be used as a Java expression (also known as a quotation) and that a Java expression
can be used in Swul as a component (also known as escape or anti-quotation). Note that
the embedding is a strictly modular combination of Java and Swul: we do not have to
modify the Java or Swul syntax definition, thus we do not need to know the details of
these syntax definitions either.

Renaming. To avoid unintended mixing of Swul and Java code, the non-terminals of
the two languages have to be unique. Therefore, the embedding module imports SDF
modules that prefixes all the Java and Swul non-terminals with the prefixes Swul and

MetaBorg in Action 303

module Java-15-Prefixed
imports Java-15

[CompilationUnit => JavaCompilationUnit
TypeDec => JavaTypeDec
PackageDec => JavaPackageDec
...
Expr => JavaExpr]

Fig. 7. Prefixing all non-terminals of Java

Java respectively. These renaming modules are generated from the syntax definitions
of Java and Swul. Figure 7 illustrates such a generated renaming module for Java. This
renaming module imports the Java syntax definition (Java-15) and renames all non-
terminals in this syntax definition by prefixing them with Java.

Cyclic Derivations. The METABORG method does not require the use of quotation and
anti-quotation symbols to separate the embedded domain-specific language from the
code written in the host language. Indeed, we do not use a quotation and anti-quotation
symbol in the embedding of Swul in Java. Nevertheless, a problem with the two pro-
duction rules for embedding Swul in Java is that they lead to cyclic derivations: a Swul
component can be an expression, an expression can be a Swul component, which can be
an expression, and so on. Scannerless generalized-LR cannot handle cycle derivations,
so we have to disallow a cyclic derivation in some way. In [10] a trick was presented to
cut off such cyclic derivations by using an existing language construct for disambigua-
tion: priorities [4]. Priorities allow a concise specification of derivations that should
be removed from the parse table by the parser generator. Usually, priorities are used
for declaring the priority and associativity of operators, but in fact they can be used to
disallow any production as the child of another production.

The following priority declares that the production for the escape from Swul to Java
can never be applied immediately below the production that allows Swul to be used as
a Java expression. This effectively cuts off the cycle in the derivations, and does not
reject any useful interaction of Swul and Java.

context-free priorities
JavaExpr -> SwulComponent > SwulComponent -> JavaExpr

2.2 Semantic Analysis

In the previous section we described how the Swul language is syntactically embedded
in Java using the modular syntax definition formalism SDF. From this embedding we
can generate a parser. Parsing a JavaSwul program results in an abstract syntax tree
that is a mixture of Java and Swul language constructs. Before the Swul constructs are
translated to plain Java code, we need to make sure that the source file does not contain
semantic errors. If these errors will not be detected until compilation of the plain Java
code, then the user of JavaSwul will have to map this error report to the original source
file, which is undesirable.

304 M. Bravenboer, R. de Groot, and E. Visser

dryad-type-of :
Component(ct , _, Some(ComponentProps(ps))) -> <swul-to-swing> ct
where <map(type-attr; check-property(|ct))> ps

properties-of :
BorderLayout() -> [North(), South(), East(), West(), Center() | xs]
where <properties-of> Layout() => xs

Fig. 8. Type checking of embedded Swul

Therefore, we need to perform semantic analysis of the source file. To this end, we
extend a type checker for Java, which is written in Stratego, with support for typing
Swul code and the connections between Java and Swul. For example, we have to check
that the Swul components are used correctly in the surrounding Java code and that
the used Swul properties exist for the subject components. The code for this property
check is sketched in Figure 8. Here, the type checker is extended with a new type rule
dryad-type-of 3 that checks if a Swul component is used correctly. In this case, the
properties of the component are checked, where the properties-of strategy is used by
check-property to retrieve the available properties of a component. Thus, the existing
type checker for Java, which invokes dryad-type-of to type expressions, is extended
with a new type rule for the domain-specific Swul extension. If the Swul expression
cannot be typed, then this will be reported.

2.3 Assimilation

Assimilation transforms a program with embedded domain-specific code to a program
in the plain host language, in this case Java. So, the assimilation of Swul transforms
the embedded Swul code to the corresponding invocations of the Swing API. A typical
assimilation implemented in Stratego consists of a set of rewrite rules and a traversal
strategy that controls the application of these rewrite rules. For most of the Swul lan-
guage constructs, the rewrite rules are straightforward mappings of the convenient Swul
syntax to more involved Swing library calls. However, some Swul constructs, such as
event handling, require a more advanced treatment in the assimilation, since the gener-
ated Java code in these cases is not just locally inserted, as we will explain later.

Traversal. The traversal used in the assimilation is shown in Figure 9. The strategy is
a generic top-down traversal where some Java and Swul language constructs are given
a special treatment. A generic traversal is very useful for implementing assimilations of
languages embedded in Java, since Java contains many different constructs. Implement-
ing a specific traversal for Java and the domain-specific language by hand would take
a lot of code and time. In all of the Stratego code fragments of this paper, the italic
identifiers indicate meta-level (Stratego) variables. The Stratego code also uses concrete
object syntax for Java and Swul (between |[and]|).

In the main traversal strategy (swul-assimilate), the special cases are preferred
over the generic traversal combinator all(s), which applies the argument s to all the

3 Dryad is the name of the package that contains the Java type checker.

MetaBorg in Action 305

swul-assimilate =
class-declaration

<+ class-initializer
<+ class-method
<+ swul-expression
<+ all(swul-assimilate)

class-initializer :
|[static { bstm1* }]| -> |[static { bstm2* }]|
where {| FieldModifier

: rules(FieldModifier :+ _ -> |[static]|)
; <swul-assimilate> bstm1* => bstm2*
|}

swul-expression = ?ToExpr(<SwulAs-Component>)

Fig. 9. Traversal strategy for Swul assimilation

subterms of the current term. The preferred alternatives (e.g. class-declaration)
implement a more specific traversal for the cases where a generic traversal is not suf-
ficient. One of the specific cases is class-initializer, which is shown in Figure 9.
This special case keeps track of the context in which the assimilation traversal currently
is: non-static (instance method) or static (class method). In a static context, fields that
are generated by the assimilation, for example for event-handling, have to use a static
modifier and therefore we have to keep track of this context. The assimilation of Swul
uses a dynamic rule FieldModifier for this purpose. In the static context of a class
initializer, the set of FieldModifier rules is dynamically extended with a new rule that
produces the static modifier. If the dynamic rule strategy bagof-FieldModifier,
which applies all FieldModifier rules, is invoked, then all current modifiers will be pro-
duced and these can be used in a fresh field declaration.

Another special case, illustrated in Figure 9, is the strategy swul-expression,
which handles the transition from Java to Swul. This strategy is applicable to a ToExpr
term, which is the constructor attached to the embedding production in Figure 6. For this
term, the swul-expression strategy switches the traversal to Swul mode by invoking
the SwulAs-Component rewrite rule.

Assimilation Rules. Figure 10 illustrates a number of Swul assimilation rules. In the
assimilation of Swul we use a small extension of Java, called an eblock, that allows the
inclusion of block statements in expressions. The syntax for eblocks is {| statements
| expression |}. The value of an eblock is the expression. The statements are lifted
by a separate tool to the statement before the statement in which the eblock occurs.
There are also alternative eblocks for lifting statement the context after and before and
after the context of the current expression. This small extension of Java has proven to be
very effective for introducing new variables or performing side-effects in pure rewrite
rules that need to transform an expression-level construct to a Java expression.

We now return to the rewrite rules of Figure 10. The first rule shows a typical rewrit-
ing for a Swing widget. The rewrite rule is a simple translation of the Swul construct to

306 M. Bravenboer, R. de Groot, and E. Visser

SwulAs-JButton :
|[button { ps* }]|{x } -> |[{| x = new JButton(); bstm* |x |}]|
where <map(SwulAs-JButtonProp(|x))> ps* => bstm*

SwulAs-JPanel :
|[panel of c]|{x } -> |[{| x = new JPanel(); x .setLayout(e); |x |}]|
where <SwulAs-LayoutManager(|x)> c => e

SwulAs-GridLayout(|x) :
|[grid layout {ps* }]|{y } -> |[{| y=new GridLayout(i,j); |y |bstm* |}]|
where <nr-of-rows> ps* => i

; <nr-of-columns> ps* => j
; <map(SwulAs-LayoutProp(|x ,y))> ps* => bstm*

SwulAs-LayoutProp(|x ,y) :
|[horizontal gap = c]| -> |[y .setHgap(e);]|
where <SwulAs-Component> c => e

Fig. 10. Some rewrite rules for assimilating Swul to Java

invocations of the Swing library. Note that a pre-eblock is used to create the JButton
and set the properties of it. The second and third rule illustrate the rewriting of panels
with a specified layout and the handling of the grid layout. Note that Swul does not
require a specification of the number of rows and columns in a grid layout, since this
can be calculated by the assimilator from the number of components in the columns
and rows. The fourth rule assimilates the setting of the horizontal gap between compo-
nents of a layout manager. The identifier of the subject layout manager is passed a term
argument to the rewrite rule.

However, not all assimilation rules are that straightforward. For example, consider
the event handling support of Swul. An example menu bar defined in Swul is shown
in Figure 11. The action event properties of the menu item can contain a list of
arbitrary statements that have the scope of the class declaration in which the menu bar
is defined. A sketch of the code after assimilation is shown in Figure 12. The event han-
dling code has been moved to a fresh inner class and the standard EventHandler class
of Java is used to invoked the method declared in this inner class. A single instance of
the fresh inner class is created and declared as a field of the class MenuEvent. This non-
local assimilation of embedded Swul code is beyond simple rewriting (and also beyond
typical macro expansion). The non-local assimilation is implemented by collecting the
non-locally generated code in dynamic rules and inserting it in the right place on the
way back in the traversal.

Producing Java. After assimilation, the abstract syntax tree is a plain Java abstract
syntax tree, except for the expression block extension. These can be removed by invok-
ing a tool in the Java support package for Stratego/XT. After this, we have a pure Java
abstract syntax tree that can be pretty-printed using a standard pretty-printer for Java.
The resulting source file can now be compiled with an ordinary Java compiler. Ideally,
this should not result in additional semantic errors, since the semantic analysis phase

MetaBorg in Action 307

class MenuEvent {
static void newFileEvent() { ... }
static void main(String[] ps) { ...
menubar = {
menu {

text = "File"
items = {
menu item {

text = "New"
action event = { newFileEvent(); }

}
menu item {

text = "Exit"
action event = { System.exit(0); }

} ...

Fig. 11. Swul event handling

class MenuEvent {
private static ClassHandler_0 classHandler_0 = new ClassHandler_0();
public static void newFileEvent() { ... }

public static void main(String[] ps) { ...
JMenuItem_0 = new JMenuItem();
JMenuItem_0.setText("New");
JMenuItem_0.addActionListener(
EventHandler.create(..., ClassHandler_0, "ActionListener_0", ""));

... }

public static class ClassHandler_0 {
public void ActionListener_0(ActionEvent event) { newFileEvent(); }
public void ActionListener_1(ActionEvent event) { System.exit(0); }

}}

Fig. 12. Swul event handling after assimilation

has already performed a full type check of the source file. However, the Java Language
Specification defines many semantic rules, of which many are not related to type check-
ing. Some of these are not yet implemented, so there is no absolute guarantee that errors
will not occur after pre-processing until we have a fully compliant front-end for Java.

3 Other Examples

We have implemented several large embeddings to gain experience with the META-
BORG method. For example, we have embedded Java, AspectJ, XML, ATerms, XPath,
and regular expressions in Java. In this section we will give a brief overview of two of
these embeddings: regular expressions in Java and Java in Java.

308 M. Bravenboer, R. de Groot, and E. Visser

regex ipline = [/
(([0-1]?\d{1,2} \.) | (2[0-4]\d \.) | (25[0-5] \.)){3}
(([0-1]?\d{1,2}) | (2[0-4]\d) | (25[0-5]))

/] ;

if(input ~? ipline)
System.out.println("Input is an ip-number.");

else
System.out.println("Input is NOT an ip-number.");

Fig. 13. Regular expression syntax embedded in Java

JavaRegex. We have designed an extension of Java, called JavaRegex, for string match-
ing and rewriting using regular expressions. The purpose of JavaRegex is to provide
compile-time checking of the syntax of regular expressions and to introduce new, high-
level operators specific to regular expressions and string processing. This extension
makes regular expressions much easier to use in Java. Compared to Perl, which has
such facilities built in the language, writing regular expressions in plain Java is cumber-
some, since they have to be encoded in string literals. The regular expressions are first
interpreted as strings and secondly as regular expressions, meaning that the programmer
needs to deal with special characters in the first and in the second interpretation at the
same time. This results in an escaping-hell, where even experienced regular expression
users carefully have to count the number of escapes that are used. Furthermore, basic
operations in string processing are often compositions of several method invocations
of the standard Java regular expression library, which makes the library harder to use.
Nevertheless, the basic functionality of the library is quite well designed, so we would
only like to provide a different syntax to the operations provided by this library.

Figure 13 shows a basic application of JavaRegex. In this example, the basic fea-
tures of JavaRegex are used: regular expression syntax ([/ /]), regular expression
types (regex), and testing if a string matches a regular expression (~?). In the quotes
of a regular expression there is no need to escape the special characters of Java, hence
solving the escaping-hell by providing a literal regex context. Note that the regular
expression syntax is easy to implement due to the use of scannerless parsing, since
context-sensitive analysis of lexical syntax is supported by design. JavaRegex also sup-
ports named capture groups in a regular expression, where the names immediately refer
to Java variables. Furthermore, JavaRegex provides rewrites as a more abstract operator
for string processing. Rewritings can be composed using sequential and choice opera-
tors and can be used in string traversals.

The assimilation of JavaRegex translates the regular expressions to Java string literals
and the operators to invocations of the standard Java library for regular expressions.
The assimilation not only translates the JavaRegex extensions to straightforward API
invocations, but also generates control-flow to deal with the rewriting extensions of
JavaRegex. The assimilation acts as a pre-processor of the Java compiler, but, we would
like to avoid that the user of JavaRegex gets compiler errors in terms of the generated
Java code, which would be hard to track down in the original source file.

MetaBorg in Action 309

dryad-type-of :
ToBooleanExpr(x,y) -> Boolean()
where <type-attr> x => TypeString()

; <type-attr> y => Regex()

dryad-type-of :
Assign(x, y) -> Regex()
where <type-attr> x => Regex()

; <type-attr> y => Regex()

Fig. 14. Regular expression syntax embedded in Java

Therefore, the assimilation phase performs semantic analysis of the source file. For
this, we have have extended a type checker for Java with type checking rules for the
JavaRegex extensions. The type checker is based on abstract interpretation, where each
expression rewrites to its type. Thus, rewrite rules are added that rewrite the JavaRegex
extensions to their types and check the types of the arguments. Figure 14 shows the rules
for matching ~? (ToBooleanExpr) and regex assignments (Assign). This last rule ex-
tends the existing type checking rule for assignments. This shows that the type checking
of existing language constructs can be extended in a modular way using rewrite rules.

JavaJava. A common problem in the embedding of domain-specific languages are am-
biguities. The ambiguities can arise between different constructs of the domain-specific
language or between the host language and the domain-specific language. In particular,
this is a problem in meta-programming with concrete object syntax [12], where quo-
tations and anti-quotations usually have to be disambiguated explicitly by indicating
the non-terminal of the quotation (e.g. Jak, which is part of of the JTS/AHEAD Tool
Suite [2]). In a meta-language with a manifest type system this explicit disambiguation
is redundant.

In [5] we present a meta and object language independent method for solving the
ambiguity problem in meta-programming with concrete object syntax. The method uses
scannerless generalized-LR parsing to parse meta-programs that use concrete object
syntax. This produces a forest of all possible parses. An extension of a type-checker
for the host language disambiguates the forest to a single tree by removing alternatives
that cannot be typed. If more than one alternative can be typed, then an ambiguity is
reported. This method of disambiguation extends the METABORG method by providing
a reusable tool for disambiguating programs that use an embedded domain-specific
language. Indeed, this tool is also useful for the disambiguation of the embedding of
Swul in Java. This method of disambiguation generalizes the language-specific and not
reusable approach of, for example, Meta-AspectJ [14], where explicit disambiguation
is not necessary either.

We have used this method to embed AspectJ (similar to [14]) and Java in Java for
generative programming without requiring explicit disambiguation. The implementa-
tion of the embedding of Java in Java consists of assimilation rules that translate embed-
ded Java 5.0 abstract syntax to the Eclipse JDT Core DOM. Figure 15 shows an example
of a JavaJava program. The quotation in this program (between |[and]|) is ambiguous.

310 M. Bravenboer, R. de Groot, and E. Visser

CompilationUnit dec ;
String x = "y";
dec = |[public class Foo {

public int bar() {
return #[x] * x ;

}}]|;

Fig. 15. Java embedded in Java witout explicit disambiguation

For example, the code in the quotation can represent a full compilation unit, a single
type declaration, or a list of type declarations. The scannerless generalized-LR parser
will produce all these possible parses. Next, the type checker will eliminate the alter-
natives that cannot be typed, leaving only the compilation unit alternative, since dec is
declared as a compilation unit in this program. JavaJava also supports anti-quotations
(#[]), which are disambiguated in a similar way. The second x in the quotation repre-
sents a meta-variable (a variable in the meta program) and is inserted in the resulting
abstract syntax tree without requiring an explicit anti-quotation.

Note that the implementation of disambiguation is independent of the embedding
of Java in Java and can therefore be used for the disambiguation of other ambiguous
embeddings of domain-specific languages.

4 Conclusion

We have presented examples and an overview of the METABORG method for introduc-
ing embedded domain-specific syntax to overcome the lack of abstraction in general-
purpose languages. We have presented three different examples of the embedding of a
domain-specific language, designed syntactically and semantically for three different
application domains: user-interfaces (JavaSwul), string processing (JavaRegex), and
code generation (JavaJava). These examples illustrate that modular syntax definition
and scannerless generalized-LR parsing are excellent tools for syntactically embedding
a domain-specific language in a general-purpose host language. Furthermore, we have
shown how Stratego’s rewrite rules, traversal strategies, and dynamic rules can be ap-
plied to concisely assimilate the embedded code to the host language. Also, we have
sketched how a type checker for the host language can be extended to support semantic
analysis of the combination of the host language and the domain-specific language.

Availability. Stratego/XT and the Java support packages are Free Software (LGPL) and
available from www.strategoxt.org. More information on METABORG is available
at www.metaborg.org, where you can find references to related publications and ap-
plications (including JavaBorg, JavaSwul and JavaJava).

Acknowledgments. We want to thank Rob Vermaas for his extensive contribution to the
development of JavaJava. We thank the reviewers for their detailed feedback.

MetaBorg in Action 311

References

1. J. Baker and W. Hsieh. Maya: multiple-dispatch syntax extension in java. In PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 270–281. ACM Press, 2002.

2. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-specific
languages. In Proceedings Fifth International Conference on Software Reuse (ICSR’98),
pages 143–153. IEEE Computer Society, June 1998.

3. C. Brabrand and M. I. Schwartzbach. Growing languages with metamorphic syntax macros.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation (PEPM’02), pages 31–40. ACM Press, 2002.

4. M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation filters for
scannerless generalized LR parsers. In N. Horspool, editor, Compiler Construction (CC’02),
volume 2304 of LNCS, pages 143–158, Grenoble, France, April 2002. Springer-Verlag.

5. M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based disambigua-
tion of meta programs with concrete object syntax. In R. Glück and M. Lowry, editors,
Proceedings of the Fourth International Conference on Generative Programming and Com-
ponent Engineering (GPCE’05), volume 3676 of LNCS, pages 157–172, Tallinn, Estonia,
September 2005. Springer.

6. M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific language em-
bedding and assimilation without restrictions. In D. C. Schmidt, editor, Proceedings of the
19th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA’04), pages 365–383, Vancouver, Canada, October 2004. ACM Press.

7. C. Gould, Z. Su, and P. Devanbu. JDBC checker: A static analysis tool for SQL/JDBC
applications. In ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering, pages 697–698, Washington, DC, USA, 2004. IEEE Computer Society.

8. B. M. Leavenworth. Syntax macros and extended translation. Communications of the ACM,
9(11):790–793, November 1966.

9. Z. Su and G. Wassermann. The essence of command injection attacks in web applications. In
POPL’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 372–382, New York, NY, USA, 2006. ACM Press.

10. J. J. Vinju. Analysis and Transformation of Source Code by Parsing and Rewriting. PhD
thesis, University of Amsterdam, November 2005.

11. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

12. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Consel, and
W. Taha, editors, Generative Programming and Component Engineering (GPCE’02), volume
2487 of LNCS, pages 299–315, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

13. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program Generation, volume
3016 of LNCS, pages 216–238. Spinger-Verlag, June 2004.

14. D. Zook, S. S. Huang, and Y. Smaragdakis. Generating AspectJ programs with Meta-
AspectJ. In G. Karsai and E. Visser, editors, Generative Programming and Component
Engineering: Third International Conference, GPCE 2004, volume 3286 of LNCS, pages
1–19, Vancouver, Canada, October 2004. Springer.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 312 – 326, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agile Parsing to Transform Web Applications

Thomas Dean1 and Mykyta Synytskyy2

1 Electrical and Computer Engineering, Queen’s University
dean@cs.queensu.ca

2 Amazon.com
nikita@mondenet.com

Abstract. Syntactic analysis lies at the heart of many transformation tools.
Grammars are used to provide a structure to guide the application of
transformations. Agile parsing is a technique in which grammars are adapted on
a transformation by transformation basis to simplify transformation tasks. This
paper gives an overview of agile parsing techniques, and how they may be
applied to Web Applications. We give examples from several transformations
that have been used in the Web application domain.

1 Introduction

Many program transformation tools [3,4,6,7,8,21,25] are syntactic in nature. That
is, they parse the input into an abstract syntax tree (AST) or graph (ASG) as part of
the transformation process. There is good reason for this: syntax is the framework
on which the semantics of most modern languages is defined. One example is
denotational semantics [24], which maps the syntax to a formal mathematical
domain.

The syntax of the language, and thus the structure of the tree or graph used by
these tools is determined by a grammar. The grammar is typically some form of
context free grammar, although it might be augmented with other information [1,2].
In most cases, the transformation rules that may be applied to the input are
constrained by the resulting data structure. Grammars are used by transformation
languages to impose a structure on the input that can be used by the rules.

These grammars are general grammars and represent the compromise of authoring
the best grammars that are suitable for a wide variety of tasks. However, for some
tasks, minor changes to the grammar can make significant differences in the
performance of the transformations. We call changing the grammar on a transfor-
mation by transformation basis agile parsing [13]. One particular area of analysis that
agile parsing is useful for is web applications. Web applications are written in a
variety of languages, and are the subject of a variety of analysis and transformation
tasks. We have used agile parsing techniques on several web application
transformation projects [11,14,16,22,23,26,27]. We do not discuss the details of the
transformations as they are covered elsewhere. Instead we focus on how grammars
can be crafted for the web applications and how they are customized for each of the
particular transformation tasks.

 Agile Parsing to Transform Web Applications 313

2 Agile Parsing

Agile parsing means customizing the grammar to the task. It is a collection of
techniques from a variety of sources that we have found useful for transformation
tasks. In this section, we give an introduction to agile parsing, how it is accomplished
in the TXL programming language and a quick overview of some of the techniques.

The parsing techniques generally serve several needs. One is to change the way
the input is parsed. One example is that in the C reference grammar the keyword
typedef is simply given in the grammar as a storage specifier, eliminating any
syntactic difference between variable and type declarations. That is, there is a single
non-terminal declaration, that consists of a sequence of declaration specifiers
followed by the declarator list. A declaration of a global variable and a type
definition using typedef are parsed as the same non-terminal. For many
transformations, this is a reasonable choice. However a transformation that targets
only type definitions must include conditions in the rule to match only those
declarations that include the typedef keyword. Splitting the declaration productions
into two non-terminals, one which requires a typedef keyword, and one that does not,
lets the parser make the distinction. Those rule sets that depend on the distinction
become much simpler since they no longer have to code the distinction directly as
conditions in the rule. They can simply target the appropriate non-terminal. The
change to the grammar is local and only applies for the given transformation task.

The second need is to modify the grammar to allow information to be stored
within the tree. An example is to modify the grammar to allow us to add XML style
markup to various non-terminals in the grammar. While some transformation systems
permit metadata to be added to the parse tree, sometimes data more complex than can
be handled in the metadata is more appropriate for the problem. Thus the markup can
be used to store temporary information part way through the transformation. Markup
can also be used as a vehicle for communicating the results of an analysis to the user.
The third need is to robustly parse a mixture of languages such as embedded SQL in
COBOL[18] or in this case, dynamic scripting languages in HTML. The last need is
to unify input and output grammars so that the rules may translate from one to the
other while maintaining a consistent and well typed parse tree.

2.1 Agile Parsing in TXL

TXL is a pure functional programming language particularly designed to support rule-
based source-to-source transformation [7,8,10]. Each TXL program has two parts: a
structure specification of the input to be transformed, which is expressed as an
unrestricted context-free grammar; and a set of one or more transformation rules,
which are specified as pattern/replacement pairs to define what actions will be
performed on the input. Each pattern/replacement pair in a transformation rule is
specified by example, and may be arbitrarily parameterized for more rule flexibility.

Figure 1 shows a simple TXL grammar for expressions. Square brackets denote the
use of a non-terminal. Prefixing a non-terminal symbol with the keyword repeat
denotes a sequence of the non-terminal and the vertical bar is used to indicate
alternate productions. The terminal symbols in the grammar are either literal values,
such as the operator symbols in Fig. 1, or general token classes which are also
referenced using square brackets ([id] for identifier in Fig 1).

314 T. Dean and M. Synytskyy

define expression
 [term] [repeat addop_term]
end define

define addop_term
 [add_op] [term]
end define

define add_op
+ | -

end define

define term
 [factor] [repeat mulop_factor]
end define

define mulop_factor
 [mul_op] [factor]
end define

define factor
 [id]
end define

Fig. 1. Simple Expression Grammar in TXL

Agile parsing is supported in TXL through the use of the redefine keyword. The
redefine keyword is used to change a grammar. Figure 2 shows an example. In this
example, the factor grammar production is changed to include XML markup on the
identifier. The ellipses (‘...’) in the factor redefinition indicate the previous
productions for the factor non-terminal. Thus a factor is whatever it was before, or it
may be an identifier annotated by XML markup. Subsequent transformation
programs may choose to insist that all such identifiers be marked up when parsing the
input by removing the first line and the vertical bar from the factor redefinition.

The TXL processor first tokenizes the input using a standard set of tokens which
may be extended by the grammar definition, parses the input using the grammar and
then applies the rules. In TXL, the rules are constrained by the grammar to keep the
tree well formed. Thus the grammar includes not only the productions for parsing the
input, but also the productions for the output and intermediate results. This may lead
to ambiguities which are resolved through the use of an ordered parse. That is, the
order of the rules in the grammar is used to determine the form of the input.

3 Agile Parsing in Web Applications

Web applications deliver services over the HTTP protocol, usually to a browser of
some sort. Early web applications provided dynamic content to standard web
browsers using server side scripting such as CGI scripts, servlets, JSP and ASP.
Recent innovations include Real Simple Syndication (RSS), SOAP and AJAX.

redefine factor
 ...
 | [XmlStart][id][XMLEnd]
end redefine
define XmlStart
 <[id] [repeat XMLParm]>
end define

define XMLEnd
 </[id]>
end define

define XMLParm
 [id] = [stringlit]
end define

Fig. 2. Adding XML Markup to Identifiers in Expressions

 Agile Parsing to Transform Web Applications 315

Web applications present a particular challenge for parsing and for transformation.
While some of the files in the web application contain conventional languages such as
Java, the core files of the web application (the web pages) are typically comprised of
a mixture of several languages. The web pages typically contain HTML, augmented
with JavaScript, and server side languages such as Java, Visual Basic, or PHP. Other
components of the application may be in XML such as various configuration files, or
the XML transfer schema such as that used in SOAP.

For some web transformation tasks, it may be possible to convert to a single
language [12], but if it is desired to translate between client and server side
technologies, we must be able to represent all of the languages in a single parse. A
grammar for web applications must also be robust. Most browsers accept malformed
HTML and our approach must also accept and deal with the malformed HTML.

3.1 Island Grammars and Robust Parsing

The first agile parsing technique is island grammars [5,16,18,19,23]. Island
grammars, originally introduced by van Deursen et al. [5], are a technique where the
input is divided into interesting sequences of tokens, called islands and uninteresting
tokens called water. Grammar productions that recognize the islands are given
precedence over the water grammar productions which typically match any token or
keyword. The productions can be nested, with islands containing lakes (sequences of
tokens within the island that are uninteresting), which may in turn contain nested
islands. Island grammars provide a natural way to handle mixed languages and to
handle unexpected input in a robust way [18]. It can also be used to identify
interesting sequences of tokens without performing a detailed parse of the entire input
[19]. Island grammars must be crafted with care since errors in the grammar may
cause interesting token sequences to be parsed as water.

In the context of web applications, we use island grammars to find and parse
application elements within the natural language on the web page and to handle
erroneous input in a reasonable way. Island grammars provide us with a mechanism
to identify the interesting elements. However, what constitutes an interesting element
depends on the task. In some contexts we are only interested in the Java or Visual
Basic code that is embedded within the web page and the links from that code to other
components such as other code modules or databases. In other contexts we may be
interested in some of the structural components of the web pages such as tables,
forms, anchors and links. Agile parsing permits us to change what sequences of
tokens are considered islands based on the task.

Island grammars provide robustness. The general access by almost anyone to web
publishing means that browsers have to deal with errors in the HTML markup in the
pages. Two common errors are that style markup tags in web documents be
improperly nested and that closing tags for some constructs may be missing. The
following, although technically illegal, is accepted: “<I>bold italic text
</I>”. An example of the second is the closing tags for tables, table elements
and forms. In some cases, the tags are implicitly closed when a surrounding markup is
closed (table rows closed by the table, nested tables closed by surrounding tables,
tables closed by the end of the document.

316 T. Dean and M. Synytskyy

define program
 [repeat html_document_element]
end define

define html_document_element
 [interesting_element]
 | [uninteresting_element]
end define

define interesting_element
 [html_interesting_element]
end define

define uninteresting_element
 [html_uninteresting_element]
 |[token_or_key]
end define

Fig. 3. Core HTML Grammar in TXL

Since browsers allow these errors, any analysis or transformation must also allow
these errors and more importantly, interpret them in the same way as browsers do.
We have developed an HTML island grammar that is the basis of our approach to
analyzing and transforming web applications. Figure 3 shows the core of our HTML
grammar. The predefined non-terminal program is the goal symbol of the grammar.
In this case, it is a sequence (i.e. repeat) of document elements (html_docu-
ment_element). Each document element is either an interesting element or an
uninteresting element. Since TXL uses an ordered parse, only input that cannot be
parsed as interesting elements can be parsed as uninteresting elements.

The base grammar defines interesting elements as interesting html elements (the
non-terminal html_interesting_element). In our case interesting elements
include anchors (including links), tables and forms. The main purpose of the
interesting_element non-terminal is to act as a extension point when adding
other languages to the grammar. Uninteresting elements use the grammar production
token_or_key which is defined as any token or keyword.

The html_uninteresting_element production called from uninteresting
element is used to handle formatting issues. TXL uses a generalized unparser to write
out the results of the transformation. Each token is written out separated from the
previous by a space. This formatting is occasionally inappropriate for HTML text.
The html_uninteresting_element production allows the parser to recognize
those cases and provide formatting cues in the grammar to handle them.

Figure 4 shows the grammar productions used to recognize the form elements (one of
the interesting elements). The production html_form_tag (which is one of the
alternatives of html_interesting_element) is rather straightforward. It is a
form tag with parameters (html_any_tag_param) followed by form content and an
optional end element. The end element must be optional since non-terminated forms are
accepted by most browsers. The SPOFF, SP, SPON, and NL symbols are formatting
cues. The SPOFF cue turns off spacing between the tokens as they are written to the
output until the SPON cue is encountered. The SP cue inserts a space and the NL cue
inserts a newline into the output. These elements exist in the grammar only, they are not
included in the parse tree, and are only used when the parse tree is written out. They
have no effect on the construction of the parse tree from the input.

The content is either legitimate form content which includes form elements or
other content which are html_document_elements such as arbitrary text and
other islands such as tables. The TXL not modifier is used to guard the other content

 Agile Parsing to Transform Web Applications 317

define html_form_tag
 [SPOFF] <form [SP]
 [repeat html_any_tag_parm>
[SPON][NL]

 [repeat html_form_content]
 [opt html_form_tag_closing]
end define

define html_form_tag_closing
[SPOFF]</form>[SPON][NL]

end define

define html_form_content
 [html_legitimate_form_content]
 |[html_form_other_content]
end define

define html_form_other_content
 [not html_form_tag_stop]
 [html_document_element]
end define

define html_form_tag_stop
</form | <form | </table
end define

Fig. 4. Grammar for Form Elements

and make the grammar more robust. As menioned earlier one common error is to
omit some of the closing tags of tables and forms. Before attempting to parse
html_document_element as part of html_form_other_content, the
parser must first attempt to parse html_form_tag_stop. If it succeeds in parsing
html_form_tag_stop, then the parse of html_form_other_content
fails, and no tokens are consumed. Thus other content is guarded by
html_form_tag_stop which prevents any of the form or table close tags from
being parsed as other content. It prevents nested forms, so another form tag causes the
previous form to be closed (i.e. a missing form close tag). This shows the advantage of
island grammars over a conventional grammar using an simple optional close tag. The
island grammars allow us to consume the text within the form in the same manner as the
browser does. Similar approaches are used to parse tables and anchor elements as
interesting elements of the grammar.

Extending the grammar to handle scripting languages (server or client side) is done
by extending the interesting_element non-terminal from Figure 3. Figure 5
shows how the grammar can be extended to handle Java server pages. As mentioned

redefine interesting_element
 ...
 |[jsp_interesting_element]
end redefine

define jsp_delimiter
 [jsp_start] | [jsp_end]
end define

define jsp_interesting_element
 [jsp_start]
 [jsp_expression]
 [jsp_end]
 |[jsp_start]
 [repeat jsp_scriptlet]
 [jsp_end]
 |[jsp_useBean]
 |[jsp_formal_declaration]
 |[jsp_include_directive]
 |[jsp_include_action]
 |[jsp_forward]
end define

Fig. 5. Grammar for JSP Elements

318 T. Dean and M. Synytskyy

before, the interesting_element production is extended to include the JSP
elements. The tokens jsp_start and jsp_end represent the “<%” and “%>”
tokens respectively. So interesting elements are java expressions and scriptlets that
are enclosed between jsp_start and jsp_end elements, jsp bean declaratives,
declarations include directives, include actions and forward directives.

The other side of the extension is the ability of java statements to include HTML.
For example:

<table><%
for(i = 0; i < 10; i++){
 %> <TR><TD><%=i%></TD></TR><%
}
%></table>

In this case we have a Java for loop that generates the first 10 integers in a table.
With the grammar additions shown in Figure 6, the end of the first scriptlet
(containing the start of the for statement, will be treated as if it was a Java statement.
The statement consists of HTML elements which in turn contain a nested java
expression. The jsp_html_segment, is the reverse of a
jsp_interesting_element. It starts with a jsp_end token and ends with a
jsp_start token. The content is similar to the regular html content, but does not
include scriptlets. Opening another scriplet thus results in a statement at the same
scope level as the html text.

One final wrinkle is that Java code may also be invoked within the attribute values
of tags. They are usually enclosed in double quotes. This causes some difficulty in
TXL since string literals are primitive tokens in TXL. We handle this with a simple
lexical preprocessor that translates double quotes containing java scriptlets into
double square brackets. The grammar for attributes in html tags is then extended to
permit double square brackets as well as identifiers and string literals.

3.2 Markup Grammars

Another agile parsing technique we use for analyzing and transforming web
applications is markup grammars. Markup grammars extend the original grammar for
some language to recognize a markup that has been applied to the input. Sometimes

define jsp_element_or_html_seg
 [jsp_declaration_or_statement]
 |[jsp_expression]
 |[jsp_html_segment]
end define

define jsp_html_segment
 [jsp_end]
 [repeat jsp_html_segment_content]
 [jsp_start]
end define

define jsp_html_segment_content
 |[jsp_useBean]
 |[jsp_formal_declaration]
 |[jsp_include_directive]
 |[jsp_include_action]
 |[jsp_forward]
 |[html_only_interesting_element]
 |[not jsp_delimiter]
 [html_element]
end define

Fig. 6. Grammar for JSP Islands

 Agile Parsing to Transform Web Applications 319

<varset set=”rs, con, userName”>
<backslice distance=2>if(! rs.next())</backslice></varset>{
 <varset set=”con, userName”><backslice distance=1>

Preparedstatement stm = con.preparedstatement(“INSERT INTO Employee”
+ “(Username,Password,FirstName,LastName) VALUES(?,?,?,?)”);</uid>

</backslice></varset>
<varset set=”username, stm”><slice>

 stm.setstring(1,request.getparameter(“userName”));
</slice></varset>

Fig. 7. Implementing Slicing in Web Applications Using Markup

the markup is used as part of a transformation. For example, the use of a variable may
be marked up with unique identifier linking the declaration and all uses of the
variable[14]. Markup can be used to store details about a transformation. Some
transformations can be complex to identify, but rather simple to carry out once they
have been completed. The complex identification problem can be broken down into
multiple simple transformations, each of which analyses some part of the application
and adds markup to encode the information that has been deduced. Subsequent
transformations can combine markup to produce more sophisticated markup
[9,12,17]. Once the information has been identified and the appropriate elements
annotated, then the final transformation is straightforward.

Markup can also be used to convey information to further transformations or back
to the user. For example, a slice is the minimal subset of a program that can affect the
slicing criteria[16]. The slicing criteria is the value of one or more variables at a
particular point in the program. Markup can be used to show both the slice and how
the slice was computed in the context of the larger program. Figure 7 shows an small
example of a slice in the Java portion of a JSP application using markup. The slicing
criteria is identified using the slice tag which annotates the stm.setstring
method call near the end of the code sequence. The set of variables active at each
statement is calculated by a transformation and stored using the varset tag, and
finally the elements of the slice are identified using backslice tag. This markup is
intended for further transformations and is not very readable. One of the
transformations[16] used to present the result for human consumption wraps the entire
JSP page in <pre>…</pre> tags, translates all of the angle brackets of the HTML
tags to ampersand notation (i.e. < >) and translates all of the slicing markup to
font tags with color (i.e.). This allows the code to be
viewed in a standard web browser.

4 Tasks

We have used the island based web application grammar as a core for several tasks.
These include identical and near miss clone detection and conversion of classic Java
Server Pages (JSP) to JSP with custom tags. For each task, we make small
modifications to the grammar using TXL’s grammar redefinition mechanism.

320 T. Dean and M. Synytskyy

include “HTML.Grm”
include “ASP.Grm”

function main
export Seq [number]

1
replace [program]

P [program]
by

P [exportEachIsland]
end function

rule exportEachIsland
replace $ [interestingElement]

I [interesting_elemnet]
import Seq [number]
construct FileName

CloneCandidate_ [+ Seq]
export Seq

Seq [+ 1]
by

I [write FileName]
end define

Fig. 8. Island Extraction Transform

4.1 Clone Detection

The first task is clone detection. One may wish to limit clone detection to significant
syntactic units. This is particularly important if you are looking for structural clones
in web sites. Cloned text in the body of the page is not as interesting, except to the
extent that participates in the cloned structure. An example is a menu bar on the top
or side of a web page that was implemented directly within HTML. Such a menu bar
might be implemented using tables. Since islands represent the significant structural
elements, then they form an ideal basis for clone detection and resolution.

Our approach [11,22] to clone detection is to write each island out to a separate
file. This is accomplished with a very simple transformation, shown in Figure 8. As
explained previously, TXL grammars contain standard formatting cues, so each island
is written in a standard format. The detection of identical clones is accomplished by
comparing the files. This essentially turns a structural comparison into a lexical
comparison. Figure 9 shows an example table clone candidate. Since we are dealing
with identical clones, we only show a single instance of the clone. While this is
essentially the same as using a pretty printer to print the code and use lexical analysis
to find the clones, the difference is that the use of the island grammars limits the
output to individual islands. Thus the clone candidates are limited to the structural
elements of the page identified by the islands.

File CloneCandidate_3:
 <table border-1>
 <tr>
 <td colspan = 2>foo bar </td>
 </tr>
 <tr>
 <td> abc</td>
 <td>xyz</td>
 </tr>
 </table>

Fig. 9. Formatted Table Island

 Agile Parsing to Transform Web Applications 321

define html_div_content
 [not div_table_tag_close]
 [html_document_element]
end define

redefine interesting_element
 [div_table_tag]
| ...

end redefine

define div_table_tag
 [SPOFF]<div [SP]

[repeat
html_table_tag_param]>

[SPON][NL]
 [repeat html_div_content]
 [opt div_table_tag_close]
end define

define div_table_tag_close
[SPOFF]</div>[SPON][NL]

end define

Fig. 10. Adding Div Islands

To change the structural elements that are considered for the clone analysis, you
need only change the grammar to identify what elements are possible clones. This is
analogous to our typedef example earlier where we changed the grammar to simplify
the rules. In our system, islands were tables, forms and links, thus only tables forms
and links are potential clones. One of the latest trends in web sites is to use the HTML
div tag to build the navigation menus rather than HTML tables. Adding the
definitions from Figure 10 to the program in Figure 8 adds the div tag island to the
grammar (by redefining interesting_element to include div_table_tag)
and thus makes them clone candidates. Once identified, clones in web applications
can be resolved using a variety of techniques[22]. The multilingual island grammar
provides a framework for such transformations.

A similar approach can be used for locating identical clones in conventional
programming languages. Rather than parse the entire language, the elements that you
wish to consider as clones can be isolated using an island grammar. For example, one
might construct an island grammar which selects java method headers and a water
grammar that balances braces (i.e. ‘{‘ and ‘}’) inserting newlines at all semicolons
(‘;’). This would permit the identification of identical method clones. One could also
add control statements as islands. Since islands nest, it would both make control
statements candidates for clones as well as change the formatting of control
statements within method islands. The change of formatting would change the way in
which control statements contribute to the identification of identical method clones.

This method can also be easily extended to handle near miss clones. Near miss
clones are clones that differ only by a small amount. A web application example is the
same menubar, but one in which the current page is highlighted. So the menubar on
the home page will have the home entry shown in a different color, while the contact
page will have the contact entry on the menu shown.

We extend our approach to handle near miss clones by modifying the grammar to
include different formatting cues. Figure 11 shows the redefinitions to the table
grammar to handle near-miss clone detection. The only difference is the addition of
the [NL] tokens in the appropriate places. In this case, we add newlines after the tag
identifiers table, tr and td, after each attribute, and after the closing angle bracket.
Figure 12 shows two near miss table clone islands formatted by this grammar. The
arrows identify the different lines. One line is an attribute of the table, the other is the

322 T. Dean and M. Synytskyy

redefine html_table_tag
<table [NL]
[repeat html_tag_param]

 > [NL]
[repeat html_table_content]
[opt html_table_tag_closing]
end redefine

redefine html_tag_param
 [id]=[stringlit_or_id] [NL]
end redefine

redefine html_table_tag_closing
 </table> [NL]
end redfine

redefine html_table_row
<tr [NL]
[repeat html_tag_param]
 > [NL]
[repeat html_th_or_td]
 </tr> [NL]
end redefine

redefine td
<td [NL]
[repeat html_tag_param]

 > [NL]
[repeat html_document_lement]
 </td> [NL]
end redefine

Fig. 11. Near Miss Clone Islands

contents of one of the table cells. Near miss clones are then identified using a
threshold on the ratio of the number of changed lines to the number of identical lines.

The formatting control allows us to control the balance between the structural and
the water elements of the islands. Most islands have some water in them. Tables
usually have some content in each of the cells. By formatting the tag and HTML
attributes on separate lines and leaving the water on a single line, we control the
balance between the weight of structural elements and the water elements. A single
difference in a tag (e.g. TH instead of TD) or attribute produces an additional line
difference, while multiple changes the same section of water will only produce a
single line change.

<table
border=1
>
<tr>
<td
colspan=2
>
foo bar
</td>
</tr>
<tr>
<td>
abc
</td>
<td>
xyz
</td>
…

<table
border=2
>
<tr>
<td
colspan=2
>
foo bar
</td>
</tr>
<tr>
<td>
abc
</td>
<td>
xyzzy
</td>
…

Fig. 12. Near Miss Clone Islands

 Agile Parsing to Transform Web Applications 323

define ctag_start
 <[tag_name]

[repeat tag_attr]>
end define

define ctag_end
</[tag_name]>

end define

define custom_tag
 [ctag_start]
 [repeat ctag_element]
 [ctag_end]
end define

define tag_name
 [id] : [id]
end define

define ctag_element
[not ctag_end]

 [html_document_element]
end define

redefine interesting_element
... | [custom_tag]

end redefine

Fig. 13. CustomTag Grammar Module

4.2 JSP Custom Tag Translation

JavaServer Pages (JSP) is one of the popular technologies for building web
applications that serve dynamic contents [1]. As indicated by the name, the scripting
language in JSP is, by default, Java. In particular, scriptlets, which take the form of
“<% Java code %>”, are used to embed Java code within HTML. The explicit use of
scriptlets facilitates rapid prototyping but introduces complexity into the
implementation. The mixture of HTML and Java blurs this distinction between the
presentation and business logic which is needed in larger applications. Such
separation can not only make a web application easier to maintain and evolve, but
also allow individual developers with different skills to cooperate more efficiently.

The transformations of our approach to the migration from embedded Java to
custom tags [26,11] require support from the grammar. This support takes several
forms. We extend the HTML island grammar to handle custom tags (as well as Java).
Figure 13 shows the grammar for the custom tags. It is very similar to the other
markup grammars. The major addition, is that tag names are now two identifiers
separated by a colon.

We also require unique naming markup for Java code to keep track of variables
during control and data flow analysis. Each of the scriplets and each java variable is
identified with a unique identifier. For example:

 <tag id="Block2_Block1_Else">
 String[] <uid id="items ex.jsp Block2_Block1_Else">items</uid>
 = <uid id="cart ex.jsp Block0">cart</uid>.getItems ();
 </tag>

This information is supplemented with information in the tags to which each

statement will belong. The markup is used by the transformation that removes the
scriplets from the JSP pages, replaces them with custom markup and generates the
java classes that implements the custom tags. Since the variables may end up in

324 T. Dean and M. Synytskyy

different classes (for different custom tags), the unique naming is also used to do
dependency analysis to ensure that all variables accessed between different custom
tags have appropriate get and set methods.

5 Conclusions

This paper has presented some of the ways agile parsing can be used as a basis for
analyzing and transforming web applications. Web applications provide a particular
challenge to transformation since they often contain multiple languages, some of
which are executed on the server side, while others are executed on the client side.
We have examined two techniques in particular: the use of robust island grammars to
uniformly represent all of the languages in a single parse and markup grammars
which allow us to add annotations to web applications as part of various analysis and
transformation tasks.

We have also examined how agile parsing has been used in several transformations
tasks for web applications: structural clone detection and JSP migration. In both cases
the general island grammar used to parse and transform the complex HTML pages
was modified as part of the transformation task. In the clone identification task, the
island grammar was used to identify clone candidates based on the syntactic structure
provided by the islands. Changing which features are parsed as islands changes what
may be considered clones. The JSP migration task needed two changes to the
grammar. The first change is a markup that associated uses of java variables with the
declaration of those variables. The other is the addition of the custom tag grammar
productions for the result of the transformation.

References

1. Badros, G.: “JavaML: a Markup Language for Java source code”, Computer Networks Vol
33, No. 6 (June 2000), pp. 159-177.

2. Bell Canada, Datrix Abstract Semantic Graph: Reference Manual, version 1.4, Bell
Canada Inc., Montreal Canada, May 01, 2000.

3. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M., Kuipers, T.,
Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, C., and Visser, J., “The
ASF+SDF Meta-Environment: a component-based language development environment”,
Compiler Construction 2001 (CC 2001), Lecture Notes in Computer Science, R. Wilhelm,
ed., Vol 1827, Springer Verlag,, 2001, pp. 365–370.

4. van den Brand, M., Heering, J., Klint, P., and Olivier, P., “Compiling Rewrite Systems:
The ASF+SDF Compiler”, ACM Transactions on Programming Languages and Systems,
Vol 24, No 4, July 2002, pp. 334–368.

5. van Deursen, A., and Kuipers, T., “Building Documentation Generators”, Proc.
International Conference on Software Maintenance (ICSM 99), Oxford, England, 1999,
pp. 40–49.

6. Baxter, I.D., and Pidgeon, C.W., “Software Change Through Design Maintenance”, Proc.
1997 International Conference on Software Maintenance. Bari, Italy, 1997, pp. 250–259.

 Agile Parsing to Transform Web Applications 325

7. Cordy, J.R., Halpern, and C.D., and Promislow, E., “TXL: A Rapid Prototyping System
for Programming Language Dialects”, Computer Languages, Vol 16, No 1, 1991, pp.
97-107.

8. Cordy, J.R., “TXL - A Language for Programming Language Tools and Applications”,
Proc. LDTA 2004, ACM 4th International Workshop on Language Descriptions, Tools
and Applications, Edinburg, Scotland, January 2005, pp. 3-31.

9. Cordy, J.R., Schneider, K., Dean, T., and Malton, A., “HSML: Design Directed Source
Code Hot Spots”, Proc. 9th International Workshop on Program Comprehension(IWPC
01), Toronto, Canada, 2001, pp. 145–154.

10. Cordy, J., Dean, T., Malton, A., and Schneider, K., “Source Transformation in Software
Engineering using the TXL Transformation System”, Special Issue on Source Code
Analysis and Manipulation, Journal of Information and Software Technology, Vol. 44,
No. 13, 2002, pp. 827-837.

11. Cordy, J.R., Dean, T., Synytskyy, N., “Practical Language-Independent Detection of Near-
Miss Clones” Proc 14th IBM Center for Advanced Studies Conference, Toronto, Canada,
Oct 2004, 29-40.

12. Dean, T., Cordy, J., Schneider, K., and Malton, A. “Experience Using Design Recovery
Techniques to Transform Legacy Systems”, Proc. International Conference on Software
Maintenance (ICSM 2001), Florence, Italy, 2001, pp. 622-631.

13. Dean, T.R., Cordy, J.R., Malton, A.J. and Schneider, K.A., "Agile Parsing in
TXL", Journal of Automated Software Engineering Vol. 10, No. 4, October 2003, pp.
311-336.

14. Guo, X., Cordy, J., and Dean, T., “Unique Renaming in Java”, 3rd International Workshop
on Source Code Analysis and Manipulation, Amsterdam, Netherlands, September 2003.

15. Hassan, A.E., and Holt, R.C., “Migrating Web Frameworks Using Water
Transformations”, Proceedings of COMPSAC 2003: International Computer Software and
Application Conference, Dallas, Texas, USA, November 2003, p296-303,

16. Li, X., Defining and Visualizing Web Application Slices, M.Sc. Thesis, School of
Computing, Queen’s University, 2004.

17. Malton, A.J., Schneider, K.A., Cordy, J.R., Dean, T.R., Cousineau, D., and Reynolds, J.
“Processing Software Source Text in Automated Design Recovery and Transformation”,
Proc. 9th International Workshop on Program Comprehension (IWPC 2001), Toronto,
Canada, 2001, pp. 127-134.

18. Moonen, L.,“Generating Robust Parsers using Island Grammars”, Proc. 8th Working
Conference on Reverse Engineering (WCRE 01), Stuttgart, Germany, 2001, pp 13-22.

19. Moonen, L., “Lightweight Impact using Island Grammars”, Proceedings 10th
International Workshop on Program Comprehension (IWPC 02), Paris France, 2002,
pp 343-352.

20. Neighbors, J., “The Draco Approach to Constructing Software from Reusable
Components”, IEEE Transactions on Software Engineering, Vol 10. No. 5, 1984,564-574.

21. Reasoning Systems, Refine User’s Manual, Palo Alto, California, 1992.
22. Synytskyy, N., Cordy, J.R., Dean, T., “Resolution of Static Clones in Dynamic Web

Pages”, Proc IEEE 5th International Workshop on Web Site Evolution, Amsterdam,
September 2003, pp. 49-58.

23. Synytskyy, Mykyta, Cordy, J., Dean., T, “Robust Multilingual Parsing Using Island
Grammars”, Proc. IBM Center for Advanced Studies Conference, Toronto, Canada, Nov
2003.

24. Tennent, A., Semantics of Programming Langauges, Prentice Hall, 1990.

326 T. Dean and M. Synytskyy

25. Visser, E. “Stratego: A Language for Program Transformation Based on Rewriting
Strategies. System description of Stratego 0.5.” Rewriting techniques and Applications
(RTA ‘01), Lecture Notes in Computer Science, A Middeldorp, ed. SpringerVerlag, 2001,
pp. 357–361.

26. Xu, Shannon, Dean, T., “Transforming Embedded Java Code into Custom Tags”, Proc 5th
International Worshop on Source Code Analysis and Manipulation, Budapest, Hungary,
Oct 2005, 173-182.

27. Xu, Shannon,Modernizing Java ServerPages by Transformation, M.Sc. Thesis, School of
Computing, Queen’s Univeristy, 2005.

Data Cleaning and Transformation Using the
AJAX Framework

Helena Galhardas

INESC-ID and Instituto Superior Técnico, Avenida Prof. Cavaco Silva, Tagus Park,
2780-990 Porto Salvo, Portugal

hig@inesc-id.pt

Abstract. Data quality problems arise in different application contexts
and require appropriate handling so that information becomes reliable.
Examples of data anomalies are: missing values, the existence of dupli-
cates, misspellings, data inconsistencies and wrong data formats. Current
technologies handle data quality problems through: (i) software programs
written in a programming language (e.g., C or Java) or an RDBMS pro-
gramming language, (ii) the integrity constraints mechanisms offered by
relational database management systems; or (iii) using a commercial
data quality tool. None of these approaches is appropriate when han-
dling non-conventional data applications dealing with large amounts of
information. In fact, the existing technology is not able to support the
design of a data flow graph that effectively and efficiently produce clean
data.

AJAX is a data cleaning and transformation tool that overcomes these
aspects. In this paper, we present an overview of the entire set of func-
tionalities supported by the AJAX system. First, we explain the logical
and physical levels of the AJAX framework, and the advantages brought
in terms of specification and optimization of data cleaning programs.
Second, the set of logical data cleaning and transformation operators
is described and exemplified, using the declarative language proposed.
Third, we illustrate the purpose of the debugging facility and how it is
supported by the exception mechanism offered by logical operators. Fi-
nally, the architecture of the AJAX system is presented and experimental
validation of the prototype is briefly referred.

1 Introduction

Data cleaning aims at removing errors and inconsistencies from data sets in order
to produce high quality data. Data quality concerns arise in three different con-
texts: (i) when one wants to correct data anomalies within a single data source
(e.g., duplicate elimination in a file); (ii) when poorly structured or unstructured
data is migrated into structured data (e.g., when fusing data obtained from the
Web); or (iii) when one wants to integrate data coming from multiple sources
into a single new data source (e.g., in the context of data warehouse construc-
tion). In these contexts, the following data quality problems, also called as dirty
data, are typically encountered:

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 327–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

328 H. Galhardas

– Data coming from different origins may have been created at different times,
by different people using different conventions to map real world entities into
data. For instance, the same customer may be referred to in different tables
by slightly different but correct names, say “John Smith”, “Smith John”
or “J. Smith”. This problem is called the object or instance identification
problem, duplicate elimination or record linkage problem in the case of a
single source.

– The fact that fused data is produced and used by different entities also
enables the existence of missing values. To be aware of a client’s age, for
instance, is important for a marketing department but not relevant at all for
the accounting one.

– Data may be written in different formats. Since no standard notation is gen-
erally imposed, data fields may embed data of different natures (the so called
free-form fields). An example is a street field that incorrectly contains the
zip code and the country name. Moreover, abbreviations as well as synonyms
may be used to refer to an object that is represented by their full names in
another record.

– Data can contain errors, usually due to mistyping, such as “Joh Smith”, even
when the same naming conventions are used in different databases.

– Data can have inconsistencies: for instance, two records corresponding to the
same person may carry two different birth dates.

Current technologies try to solve these data quality problems in three different
ways [1]: (i) ad-hoc programs written in a programming language like C or Java,
or in an RDBMS (Relational Database Management System) proprietary lan-
guage; (ii) RDBMS mechanisms for guaranteeing integrity constraints; or (iii)
data transformation scripts using a data quality tool. The use of a general pur-
pose or an RDBMS proprietary language makes data quality programs difficult
to maintain and optimize. The mechanisms supported by an RDBMS to enforce
integrity constraints do not address the major part of data instance problems.
Finally, there is an extensive market of tools to support the transformation of
data to be loaded in a data warehouse, the ETL (Extraction, Transformation
and Loading) tools, that enclose some data cleaning functionalities. Other data
quality tools have been developed from scratch to address specific data quality
problems as address standardization and name matching1.

When an application domain is well understood (e.g., cleaning U.S. names
and addresses in a file of customers), there exists enough accumulated know-
how to guide the design and implementation of a data cleaning program [9].
Thus, designers can easily figure out which data transformation steps to follow,
the operators to use and how to use them (e.g., adjusting parameters). However,
for non-conventional applications, such as the migration of largely unstructured
data into structured data, or the integration of heterogeneous scientific data sets
in cross disciplinary areas (e.g., environmental science), existing data quality
tools are insufficient for writing data cleaning programs. The main challenge
1 The reader can find a recent classification of the existing commercial and research

data quality tools in [1].

Data Cleaning and Transformation Using the AJAX Framework 329

with these tools is the design of a data flow graph that effectively generates clean
data, and can perform efficiently on large sets of input data. This two-fold task
can be difficult to achieve, because: (i) there is no clear separation between the
logical specification of data transformations and their physical implementation,
and (ii) there is no support for debugging the reasoning behind cleaning results
nor interactive facilities to tune a data cleaning program.

We have proposed the AJAX tool2[10] to overcome these two aspects. The
main contributions of AJAX with respect to existing data cleaning technology
are the following:

– A data cleaning framework that attempts to separate the logical and physical
levels of a data cleaning process. The logical level supports the design of a
data flow graph that specifies the data transformations needed to clean the
data, while the physical level supports the implementation of the data trans-
formations and their optimization. An analogy can be drawn with database
application programming where database queries can be specified at a log-
ical level and their implementation can be optimized afterwards without
changing the queries.

We propose five logical data transformation operators encapsulating dis-
tinct semantics that are orthogonal and complete. These operators derive
from an analysis of the types of mappings with respect to input and output
tuples that are expressed by intuitive and conceptual data transformations.
This approach is original when compared to commercial data cleaning tools
in the sense that it prevents from having a large number of operators that
are sometimes redundant. Our operators were proposed to extend SQL in
order to specify those mappings.

– A declarative language for specifying these data cleaning logical operators. A
mechanism of exceptions is associated to each logical operator and provides
the foundation for explicit user interaction.

– A debugger (or explainer mechanism) that helps the user in debugging and
tuning a data cleaning application program. Such a debugger facility, com-
monly used in programming environments, is new in the domain of data
cleaning applications. An audit trail mechanism allows the user to navigate
through the results of data transformations in order to discover why some
records are not automatically treated. To solve those cases, the user may
refine some cleaning criteria or manually correct data items.

AJAX does not provide any method to discover data problems that need to
be cleaned. Before specifying a data cleaning and transformation program using
AJAX, the user must be aware of the data anomalies that need to be solved.
An interesting direction for future work would be to enrich the set of operators
already provided by AJAX with new operators that are able to analyze data
and automatically (by applying statistical techniques or data mining algorithms)
detect the data quality problems that need to be solved. However, this issue is
not addressed in the current version of the system.
2 The first prototype of AJAX was designed and implemented at Inria Rocquencourt.

330 H. Galhardas

This paper presents an overview of the entire set of functionalities supported
by the AJAX system. First, we explain the logical and physical levels of the
AJAX framework, and the advantages brought in terms of specification and
optimization of data cleaning programs. Second, the set of logical data cleaning
and transformation operators is described and exemplified, using the declarative
language proposed. We also illustrate the SQL equivalent of two of the AJAX
operators. Third, we illustrate the purpose of the debugging facility and how it
is supported by the exception mechanism offered by logical operators. Finally,
the architecture of the AJAX system is presented and experimental validation
of the prototype is briefly referred.

Most of these aspects have been published separately elsewhere [10], [11], but
none of the previous publications concerning AJAX provided a broad description
that covers all details.

The rest of this paper is organized as follows. In Section 2, we present our
motivating example. Then, Section 3 details the principles of the AJAX frame-
work. Section 4 explains the debugger mechanism. The architecture of the AJAX
system and experimental validation are presented in Section 5. Related work is
summarized in Section 6 and we conclude in Section 7.

2 Motivating Example

We illustrate the functionalities of AJAX using a case study. The application
consists of cleaning and migrating a set of textual bibliographic references, ex-
tracted from postscript or pdf files that were obtained by a Web crawler3, into
a set of structured and duplicate-free relations.

Suppose we wish to migrate the original Citeseer dirty set of strings that
correspond to textual bibliographic references, into four sets of structured and
clean data, modeled as database relations: Authors, identified by a key and a
name; Events, identified by a key and a name; Publications, identified by a
key, a title, a year, an event key, a volume, etc; and the correspondence be-
tween publications and authors, Publications-Authors, identified by a publica-
tion key and an author key. The purpose of the underlying input-output schema
mapping is to derive structured and clean textual records so that meaningful
queries can be performed (e.g., how many papers a given author has published
in 2005).

Figure 1 presents an example for two dirty citations that represent the same
bibliographic reference. The corresponding cleaned instances are produced by
the data cleaning process and stored in the four resulting relations. In the fig-
ure, the Publications table contains a single tuple that stores the correct and
duplicate-free information represented by the two dirty citations. The title in
this tuple, “Making Views Self-Maintainable for Data Warehousing”, is the cor-
rect one among the two dirty titles, and the event key value (“PDIS”) references
the standardized event name (“Parallel and Distributed Information Systems”)
stored into the Events table. The fields concerning the location (”Miami Beach”
3 This information was used to construct the Citeseer Web site [17].

Data Cleaning and Transformation Using the AJAX Framework 331

PDIS | Parallel and Distributed
Information Systems

Events
...

QuGuMuWi96 | DQuass

QuGuMuWi96 | AGupta

Publications-Authors

DirtyData

Making Views Self-Maintainable for Data Warehousing. In Proceedings of the Conference
on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, 1996.
Available via WWW at www-db.stanford.edu as pub/papers/self-maint.ps.

[QGMW96] Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom.

PDIS’95

DATA CLEANING

QuGuMuWi96 | Making Views Self-Maintainable for Data
Warehousing | PDIS | null | Miami Beach | USA | 1996 | null |
null | www-db.stanford.edu/pub/papers/self-maint.ps

Publications

D. Quass, A. Gupta, I. Mumick, J. Widom,

JWid | Jennifer Widom

AGup | Ashish Gupta
DQua | Dallan Quass

Authors

IMum | Inderphal S. Mumick

Making views self-maintianable for data,

Fig. 1. Cleaning textual bibliographic references - an example

and “USA”) and the url where the paper is available, have been correctly ex-
tracted by the cleaning process and associated to the cleaned publication in-
stance. Finally, “1996” was identified as the correct year of publication. The
Authors table stores one row for each real author. The data cleaning process
recognizes the two distinct forms of writing the same author name and chooses
the longest one. The Publications-Authors table keeps the references for cleaned
authors and cleaned publications.

3 AJAX Framework

The development of a data cleaning program able to solve problems as the ones
described in Section 2 actually involves two activities. One is the design of the
graph of data transformations that should be applied to the input dirty data and
whose main focus is the definition of “quality” heuristics that can achieve the
best accuracy of the results. A second activity is the design of “performance”
heuristics that can improve the execution speed of data transformations without
sacrificing accuracy. AJAX separates these two activities by providing a logi-
cal level where a graph of data transformations is specified using a declarative
language, and a physical level where specific optimized algorithms with distinct
tradeoffs can be selected to implement the transformations.

3.1 Logical Level

A partial and high-level view of a possible data cleaning strategy for handling
the set of bibliographic references introduced in Section 2 is the following:

1. Add a key to every input record.
2. Extract from each input record, and output into four different flows the infor-

mation relative to: names of authors, titles of publications, names of events
and the association between titles and authors.

332 H. Galhardas

3. Extract from each input record, and output into a publication data flow
the information relative to the volume, number, country, city, pages, year
and url of each publication. Use auxiliary dictionaries for extracting city
and country from each bibliographic reference. These dictionaries store the
correspondences between standard city/country names and their synonyms
that can be recognized.

4. Eliminate duplicates from the flows of author names, titles and events.
5. Aggregate the duplicate-free flow of titles with the flow of publications.

At the logical level, the main constituent of a data cleaning program is the
specification of a data flow graph where nodes are data cleaning operators, and
the input and output data flows of operators are logically modeled as database
relations. The design of our logical operators was based on the semantics of SQL
primitives extended to support a larger range of data cleaning transformations.

Each operator can make use of externally defined functions or algorithms that
implement domain-specific treatments such as the normalization of strings, the
extraction of substrings from a string, etc. External functions are written in a
3GL programming language and then registered within the library of functions
and algorithms of AJAX.

The semantics of each operator includes the automatic generation of a variety
of exceptions that mark input tuples which cannot be automatically handled
by an operator. This feature is particularly required when dealing with large
amounts of dirty data which is usually the case of data cleaning applications.
Exceptions may be generated by the external functions called within each opera-
tor. At any stage of execution of a data cleaning program, a debugger mechanism
enables users to inspect exceptions, analyze their provenance in the data flow
graph and interactively correct the data items that contributed to its generation.
Corrected data can then be re-integrated into the data flow graph.

3.2 Logical Operators

We now present our logical operators based on a classification of data transfor-
mations where we consider the type of mapping that they express with respect
to their input and output tuples. The proposed operators are parametric in the
sense that they may enclose the invocation of generic external functions. A nat-
ural choice is to use SQL queries to express these mappings. This led us to
introduce a logical operator, called view, that corresponds to an arbitrary SQL
query. There are several obvious advantages of doing this: SQL is a widespread
used language, and existing RDBMSs include many optimization techniques for
SQL queries. However, the relational algebra is not expressive enough to capture
the new requirements introduced by data transformation and cleaning applica-
tions as stated in [3]. Our next operator, called map, captures all iterator-based
mappings that take a single relation as input and produces several relations as
output (and therefore, several tuples for each input tuple). The map operator
is proposed to enable the application of any kind of user-defined function to
each input tuple. A map has the general form of an iterator-based one-to-many

Data Cleaning and Transformation Using the AJAX Framework 333

mapping. In the Citeseer example, formatting, standardization and extraction
are implemented through a map operator.

The third operator, called match, captures a specific sub-class of iterator-
based many-to-one mappings that consists of associating a similarity value to
any two input records using an arbitrary similarity metric. The match takes two
relations as input and produces one output relation. This operation is obviously
expressible using a view operator but having it as a distinct first-class opera-
tor considerably facilitates its optimization. The fourth operator, called cluster,
captures a subclass of non iterator-based many-to-many mappings that consists
of transforming an input relation into a nested relation where each nested set
is a cluster of records from the input relation, and the clustering of records is
arbitrary. One example of the cluster operator is the application of a transitive
closure method to assemble similar event records. We decided to define this op-
erator for two reasons. The first reason is the fact that it accepts a particular
signature, i.e., pairs of tuples equipped with a distance. The second reason for
considering it as a first-class operator is due to the possibility of optimizing
the match and cluster operators. The next operator, called merge, captures an-
other subclass of non iterator-based many-to-many mappings that corresponds
to grouping input elements according to a given criterion, and then applying an
arbitrary aggregate data mapping to the elements of each group. This operator is
an extension of the SQL group-by aggregate query where user-defined aggregate
functions can be used.

To illustrate the use of these operators, we show in Figure 2 the simplified
graph of data transformations, that corresponds to the cleaning strategy intro-
duced earlier in this section, in terms of our logical operators. The numbering
beside each data cleaning operation corresponds to an intuitive transformation
in the strategy. For each output relation of Step 2, we have to identify and
eliminate duplicate records. In the figure, duplicate eliminations corresponding
to Step 5 are mapped into sequences of one match, one cluster, and one merge
operator. Every other transformation is mapped into a single logical operator.

3.3 Declarative Language

AJAX provides an expressive and declarative language for specifying data clean-
ing programs, which consists of SQL statements enriched with a set of spe-
cific primitives to express map, match, cluster, merge and view transformations.
Each one of these primitives corresponds to a transformation whose physical im-
plementation takes advantage of existing RDBMS technology. The declarative
nature of the language provides opportunities for automatic optimization and
facilitates the maintenance of a data cleaning program.

Syntactically, each operator specification has a FROM clause that indicates
the input data flow, a CREATE clause, which names the output data flow (for
further reference), a SELECT clause specifying the format of the output data
and a WHERE clause to filter out non interesting tuples from the input. An
optional LET clause describes the transformation logics that has to be applied
to each input item (tuple or group of tuples) in order to produce output items.

334 H. Galhardas

NL = Nested Loop

NJ = Neighborhood Join

TC = Transitive Closure

DirtyAuthors

Authors

...

level
Logical

Physical
level

...

...3

......

DirtyAuthors

DirtyData

DirtyData

1

2

Authors

...

TC

...

...

KeyDirtyData

KeyDirtyData

Scan

Scan

NLNJ

4
DirtyTitles DirtyEvents

Publications

Events
...

DirtyEvents

Events

5

Scan
SQL

Merge Merge

Map

Map

Match

View

Map

Cluster

Match

ClusterCluster

Match

Merge

Fig. 2. Graph of logical and physical data transformations for the bibliographic refer-
ences

This clause contains limited imperative primitives: the possibility to define local
variables, to call external functions or to control their execution via if/then/else
constructs. Finally, the cluster operator includes a BY clause which specifies the
grouping algorithm to be applied, among the ones existing in the AJAX library
of algorithms.

To illustrate the semantics and syntax of the AJAX operators, we exemplify
the map operator that corresponds to the data transformation 1 and the match
operator represented by 5 in Figure 2, in Examples 1 and 2 respectively.

Example 1. The following map operator transforms the relation DirtyData{paper}
into a “target” relation KeyDirtyData{paperkey, paper} by adding a serial number
to it. The LET clause contains a statement that constructs a predicate Key us-
ing an external (atomic) function generateKey that takes as argument a variable
DirtyData.paper ranging over attribute paper of DirtyData. Relation Key is con-
structed as follows. For every fact DirtyData(a) in the instance of DirtyData4, if
generateKey(a) does not return an exception value exc, then a fact Key(a, gen-
erateKey(a)) is added to the instance of Key. Otherwise, a fact DirtyDataexc(a)
is added to the instance of DirtyDataexc (which is the map output relation that
stores exception tuples). We shall say that this statement “defines” a relation
Key{paper, generateKey}5. The schema of the target relation is specified by the
“{SELECT key.generateKey AS ...}” clause. It indicates that the schema of Key-

4 Where a is a string representing a paper.
5 For convenience, we shall assume that the name of the attribute holding the result

of the function is the same as the name of the function.

Data Cleaning and Transformation Using the AJAX Framework 335

DirtyData is built using the attributes of Key and DirtyData. Finally, the con-
straint stipulates that a paper attribute value must never be null.

�
A map operator that produces a single output relation and whose let-clause
encloses only atomic assignment statements as the example above may be im-
plemented by one insert into ... select from clause and one create table clause
(as illustrated in Example 2). However, in a general case, a map operator may
produce one or more tuples (belonging to a single or several output relations)
for each input tuple. In such situation, it may not be possible to write SQL
statements that represent the same semantics.

Example 2. The SQL equivalent of the map defined in Example 1 is as follows:

CREATE TABLE KeyDirtyData(paperKey varchar2(100),
paper varchar2(1024) NOT NULL);

INSERT INTO KeyDirtyData
SELECT generateKey() paperKey, dd.paper paper
FROM DirtyData dd �

Example 3 illustrates a match operation. The let-clause has the same meaning
as in a map operation with the additional constraint that it must define a re-
lation, named distance, within an atomic assignment statement. Here, distance
is defined using an atomic function editDistanceAuthors computing an integer
distance value between two author names. The let-clause produces a relation
distance{authorKey1, name1, authorKey2, name2, editDistanceAuthors} whose in-
stance has one tuple for every possible pair of tuples taken from the instance of
DirtyAuthors. The where-clause filters out the tuples of distance for which edit-
DistanceAuthors returned a value greater than a constant value given by maxDist.
Finally, the into clause specifies the name of the output relation (here, MatchAu-
thors) whose schema is the same as distance.

Example 3. This (self-)match operator takes as input the relation
DirtyAuthors{authorKey, name} twice. Its intention is to find possible duplicates
within DirtyAuthors.

CREATE MATCH MatchDirtyAuthors
FROM DirtyAuthors a1, DirtyAuthors a2
LET distance = editDistanceAuthors(a1.name, a2.name)
WHERE distance < maxDist
INTO MatchAuthors �

A simple match operator is mapped onto a create table clause and an insert into
clause that encloses a nested query. The inner query computes the distance values

336 H. Galhardas

and the outer query imposes a condition on the distance obtained, according to
a given maximum allowed distance. Example 3 is mapped into the following SQL
statements.

Example 4.
CREATE TABLE MatchAuthors(authorKey1 varchar2(100),

authorKey2 varchar2(100), distance number);
INSERT INTO MatchAuthors

SELECT authorKey1, authorKey2, distance
FROM (SELECT a1.authorKey authorKey1, a2.authorKey authorKey2,

editDistanceAuthors(a1.name, a2.name) distance
FROM DirtyAuthors a1, DirtyAuthors a2)

WHERE distance < maxDist; �

3.4 Physical Level

At the physical level, certain decisions can be made to speed up the execution
of data cleaning programs. First, the implementation of the externally defined
functions can be optimized. Second, an efficient algorithm can be selected, among
a set of alternative algorithms, to implement each logical operator. A very sen-
sitive operator to the choice of execution algorithm is matching. An original
contribution of our data cleaning system is the possibility to associate with each
optimized matching algorithm, the mathematical properties that the similarity
function used in the match operator must have in order to enable the optimiza-
tion, and the parameters that are necessary to run the optimized algorithm.
Then, our system enables the user to specify, within the logical specification of a
given matching operator, the properties of the distance function, together with
the required parameters for optimization. The system can consume this informa-
tion to choose the best algorithm to implement a match. The important point
here is that users control the proper usage of optimization algorithms. They
first determine (in the logical specification) the matching criteria that would
provide accurate results, and then provide the necessary information to enable
optimized executions. Figure 2 shows the algorithms selected to implement each
logical operation.

3.5 Optimization of the Match Operator

The match operator computes an approximate join between two relations. The
semantics of this operation involves the computation of a Cartesian product
between two input relations using an arbitrary distance function. Such semantics
guarantees that all possible matches are captured under the assumption that
correct record matching criteria are used. However, while doing so, a performance
penalty is incurred since the Cartesian product based semantics with external
function calls is usually evaluated (e.g. within an RDBMS) through a nested
loop join algorithm with external function calls. The match operator is thus one
of the most expensive operators in our framework once a considerable amount
of data is involved.

Data Cleaning and Transformation Using the AJAX Framework 337

For this reason, we dedicate particular attention to the match optimization
opportunities. A match operator with an acceptance distance of ε computes
a distance value for every pair of tuples taken from two input relations, and
returns those pairs of tuples (henceforth, called candidate matches) that are at
a maximum distance of ε from each other. In fact, since the distance function is
an approximation of the actual closeness of two records, a subsequent step must
determine which of the candidate matches are the correct matches (i.e., the pairs
of records that really correspond to the same individual).

For very large data sets, the dominant factor in the cost of a match is the
Cartesian product between the two input relations. One possible optimization
is to pre-select the elements of the Cartesian product for which the distance
function must be computed, using a distance filter that allows some false matches
(i.e., pairs of records that are falsely declared to be within an ε distance), but no
false dismissals (i.e., pairs of records falsely declared to be out of an ε distance).
This pre-selection of elements is expected to be cheap to compute.

Distance-Filtering Optimization. This type of optimization has been suc-
cessfully used for image retrieval [7] and matching of textual fields [13]. Formally,
the result of a match between two input relations S1 and S2 in which the dis-
tance, dist, between two elements of S1 and S2 is required to be less than some
ε, is a set:

{(x, y, dist(x, y)) | x ∈ S1 ∧ y ∈ S2 ∧ dist(x, y) ≤ ε} (1)

The distance filtering optimization requires finding a mapping f (e.g., get the
length of a string) over sets S1 and S2 , with a distance function dist′ much
cheaper than dist, such that:

∀x, ∀y, dist′(f(x), f(y)) ≤ dist(x, y) (2)

Having determined f and dist′, the optimization consists of computing the set
of pairs (x, y) such that dist′(f(x), f(y)) ≤ ε, which is a superset of the desired
result:

Dist F ilter = {(x, y) | x ∈ S1 ∧ y ∈ S2 ∧ dist′((f(x), f(y)) ≤ ε}
Given this, the set defined by (1) is equivalent to:

{(x, y, dist(x, y)) | (x, y) ∈ Dist F ilter ∧ dist(x, y) ≤ ε} (3)

A generic algorithm that implements this optimization is shown in Figure 3.
This algorithm, called Neighborhood Join or NJ for short, is effective when both
the number of partitions generated by the mapping f , and the number of el-
ements in the partitions selected by the condition on dist′ wrt ε, are much
smaller than the size of the original input data set. The filter used in Figure 3,
map = f , serves to partition the input data sets and order the partitions accord-
ingly. After applying this partitioning, only the pairs of tuples that belong to

338 H. Galhardas

Input:S1, S2, dist, ε, dist′, f
{

P1 = set of partitions of S1 according to f
P2 = set of partitions of S2 according to f
∀s1 ∈ p1, p1 ∈ P1 : f(s1) = cte
∀s2 ∈ p2, p2 ∈ P2 : f(s2) = cte
for each partition p1 ∈ P1 do {

for each partition p2 ∈ P2 such that dist′(f(p1), f(p2)) ≤ ε do {
for each element s1 ∈ p1 do {

for each element s2 ∈ p2 do {
if dist(s1, s2) ≤ ε then

Output = Output ∪ (s1, s2) }}}}
}

Fig. 3. Neighborhood Join algorithm

partitions satisfying dist′(f(p1), f(p2)) ≤ ε are compared through the distance
function dist. This condition is imposed through the first two for cycles of the
algorithm.

This optimization is illustrated below on a match operation of the Citeseer
data cleaning program that takes as input the relation DirtyTitles{pubKey, title,
eventKey} twice. The line between the %’s is an annotation that indicates the
type of optimization and the distance filtering property of the distance function.6

Annotations can then be used by AJAX to guide the optimizer on choosing
the appropriate physical execution algorithm for the match operator. We as-
sume that maxDist is an integer. The editDistanceTitles function is based on the
Damerau-Levenshtein metric [16] that returns the number of insertions, deletions
and substitutions needed to transform one string into the other.

Example 5.
CREATE MATCH MatchDirtyTitles
FROM DirtyTitles p1, DirtyTitles p2
LET distance = editDistanceTitles(p1.title, p2.title)
WHERE distance < maxDist
%distance-filtering: map=length; dist=abs %
INTO MatchTitles

The Damerau-Levenshtein edit-distance function has the property of always re-
turning a distance value bounded by the difference of lengths l of the strings
compared. Thus, if l exceeds the maximum allowed distance maxDist, there is
no need to compute the edit distance because the two strings are undoubtedly
dissimilar. This property suggests using as mapping f , the function computing
the length of a string, and as dist′ a function abs such that abs(x, y) = |x − y|.
6 In the Citeseer application, the distance filtering optimization was also applicable

for matching author and event names.

Data Cleaning and Transformation Using the AJAX Framework 339

4 Debugging Data Cleaning Programs

The goal of a data cleaning process is to produce clean data of high quality, i.e.,
consistent and error-free. When handling large amounts of data with a consider-
able level of dirtiness, automatic cleaning criteria are not able to cover the entire
data set. There are two main reasons for this: cleaning criteria may need to be
refined, and some cleaning decisions cannot be automatically disambiguated and
thus user interaction is needed. In current technology, tuples that are rejected
by the data transformations are inserted into a log file to be later analyzed by
users. When the number of rejected tuples is large, which is usually the case
when treating large data sets, it is fundamental to provide a user-friendly envi-
ronment for discovering why some dirty records are not handled by the cleaning
process. Our framework offers a facility to assist the user on this task. First,
we provide a mechanism of exceptions that marks tuples that cannot be han-
dled automatically as mentioned in Section 3. Second, a debugger mechanism is
provided to allow the user to interactively inspect exceptions.

To better illustrate the problem, consider the standardization of citations
and the extraction of author names, title and event names that correspond to
transformation 2 in Figure 2. We may consider that the separation between
the author list and the title is done by one of the two punctuation marks:
{“;.“}. However, some citations, as the second dirty one in Figure 1 (i.e., “
D. Quass, A. Gupta, I. Mumick, and J. Widom, Making views self-maintanable
for data, PDIS’95”), use a comma between these two kinds of informations, so
it is not easy to automatically detect where does the author list finish and the
title starts. Therefore, the user may need to refine the corresponding extraction
criteria so that this situation becomes automatically treated. Another example
concerns the duplicate elimination applied to dirty publication records (trans-
formation 5 in Figure 2). The two titles presented in the motivating example
(starting by “Making Views...”) are considered duplicates and need to be con-
solidated into a single title (the correctly written instance in this case). If the
consolidation phase uses an automatic criterion that chooses the longest title
among duplicates, then it cannot decide which is the correct one among these
two titles, since they have the same length. Here again, manual intervention is
required.

In order to mark input tuples that cannot be transformed automatically, a
logical operator generates one exceptional output relation per input to store such
tuples. The other output relations of an operator, called regular output relations,
contain transformed tuples. An exceptional tuple corresponds to an input tuple
that does not satisfy the cleaning criteria associated to the transformation. Given
this, during the execution of a data cleaning program, a debugger or explainer
facility offers the following functionality to the user: (i) inspection of exceptional
tuples using data derivation mechanisms; (ii) navigation through the data flow
graph to discover how exceptional tuples were generated, and (iii) support for
refining cleaning criteria and modifying tuples to remedy exceptions. This func-
tionality allows the user to tune a data cleaning application and, consequently
to improve the accuracy of the cleaned data.

340 H. Galhardas

5 Architecture

The architecture of the AJAX system is represented in Figure 4. There are two
types of components in the system: repositories that manage data or fragments
of code; and operational units that constitute the execution core. AJAX encloses
the following three repositories:

– The data repository stores data in a relational database management system
or in a set of text files and offers a JDBC-like interface. In both cases, data
include all input data of a data cleaning application (including dictionaries),
the cleaned output data and the intermediate relations generated by logical
operators, including exceptional output relations.

– The library of functions encloses the code of the external functions that are
called within each logical operator. Examples of such functions are specific
string matching functions (e.g., edit-distance [13]). This library contains a
set of default functions and can be extended to include new user-defined
functions.

– The library of algorithms encloses the clustering algorithms (e.g., by transi-
tive closure) that can be invoked within a cluster operator and the physical
algorithms that implement the logical operators. Analogously to the library
of functions, users can add new algorithms to the set of existing ones.

The core of the AJAX system is implemented by the following operational
units:

– The analyzer, which parses a data cleaning program and generates an equiv-
alent internal representation;

– The optimizer7, that assigns efficient physical execution algorithms to the
logical operators specified and returns an optimal execution plan for a given
data cleaning specification;

– The code generator, that generates executable code to implement each logical
operator in the execution plan;

– The execution engine, which executes operators according to the order de-
termined by the specification and the optimizer;

– The debugger or explainer, that triggers an audit trail mechanism allowing
the user to discover why exceptional tuples are generated and supporting
interactive data modification to correct exceptions.

5.1 Using AJAX

In [9], we present the performance results obtained when using the AJAX system
to clean subsets of Citeseer bibliographic references. These results show two kinds
of evidence. First, we report the execution times obtained for cleaning three
subsets of the Citeseer data set with distinct sizes. We also show the percentage
7 In the current version of the AJAX prototype, the optimization decisions are man-

ually taken.

Data Cleaning and Transformation Using the AJAX Framework 341

Repositories

Operational units

RDBMSFILES

program
cleaning

Analyzer

Optimizer

Specification
Program

Code
generator

Program internal
representation

invocation
algorithm

engine
Execution

SPEC
GUI

Library

functions
of

algorithms
of

Library

Library
Specification

Execution & Debugging

Explainer

GUI

DEBUG
GUI

EXEC
execute/show summary

Optimization & Code Generation

JDBC

data
inspection

data
modification

function
calls

execute

calls
function

Fig. 4. Architecture of the system

of the execution time devoted to the match operations for each subset. Second,
we illustrate the advantage of providing distinct physical execution algorithms
for the match operator. We use different execution algorithms for the same logical
semantics and we report the execution times and data quality obtained.

More recently, we applied AJAX for specifying and executing a data migra-
tion process concerning dam safety information. The main goal here was to map
data that obeyed to a given schema into a distinct target data schema. In this
real-world application, the exception mechanism was extensively used for detect-
ing input data which was not automatically transformed by the specified data
transformation criteria [8].

6 Related Work

The first problem with commercial tools is the existence of data transforma-
tions whose semantics is defined in terms of their implementation algorithms.
To avoid this issue, a data cleaning model must be envisaged to separate log-
ical operations from their physical implementations. There are two important
results in the research literature which are concerned with the model and exe-
cution of data cleaning transformations. The main goal of the Potter’s Wheel
prototype [14] developed at the University of California at Berkeley, is to in-
terleave the application of simple logical data transformations to data samples
with the detection of data problems. IntelliClean [12] is another data cleaning
prototype that offers a way of expressing data transformation rules through an
expert system shell. None of these systems is concerned with the independence
between logical and physical data cleaning operations. Recently, [15] has pro-

342 H. Galhardas

posed a rigorous approach to the problem of optimizing an ETL process defined
as a workflow of data transformation activities. The authors model the ETL
optimization problem as a global state-space search problem. In our approach,
we use local optimization, since an ETL transformation program must be repre-
sented by a set of extended relational algebra expressions to be optimized one at
a time. Several RDBMSs, like Microsoft SQL Server, already include additional
software packages specific for ETL tasks. However, to the best of our knowl-
edge, the capabilities of relational engines, for example, in terms of optimization
opportunities are not fully exploited for ETL tasks.

The second open problem in commercial data cleaning tools is the lack of
support for user interaction during the execution of a data cleaning application.
In fact, the user interaction may be required to debug the results of data trans-
formations, refine the cleaning criteria enclosed, and manually correct data not
automatically transformed. There are two important research areas that permit
to fulfill this gap. First, the field of data lineage as studied in [4, 5, 2, 18] offers
useful notions for browsing the results of data cleaning transformations. Second,
the incremental propagation of changes in the context of view maintenance as
studied in [6] supplies the basic notions for efficiently integrating data items
manually corrected in the flow of data cleaning transformations.

7 Conclusions

In this paper, we provided a global overview of the AJAX system. The descrip-
tion intends to survey all the design and technical aspects of the system and show
in which way they constitute a novelty with respect to the existing technology.

The prototype is currently being used in real-world data migration, transfor-
mation and cleaning applications so that exhaustive experimental validation can
be produced. Moreover, we plan to improve AJAX functionalities according to
the requirements of the application scenarios being tested. More concretely, the
specification language is being extended, the mechanism of exceptions for the
view operator needs to be reformulated, the debugger mechanism needs to be
re-designed in order to handle a large amount of exceptions. Finally, some effort
has to be put in the design and implementation of a cost-based optimizer and a
graphical interface must be constructed to make it easier to specify the cleaning
criteria and visualize the results.

References

1. J. Barateiro and H. Galhardas. A survey of data quality tools. Datenbank Spektrum,
(14):15–21, August 2005. invited paper.

2. Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A
Characterization of Data Provenance. In Proc. of the International Conference on
Database Theory (ICDT), 2001.

3. P. Carreira, H. Galhardas, J. Pereira, and A. Lopes. Data mapper: An operator
for expressing one-to-many data transformations. In Proc. of the International
Conference on Data Warehousing and Knowledge Discovery (DAWAK), 2005.

Data Cleaning and Transformation Using the AJAX Framework 343

4. Yingwei Cui and Jennifer Widom. Practical Lineage Tracing in Data Warehouses.
In Proc. of the International Conference on Data Engineering (ICDE), 2000.

5. Yingwei Cui and Jennifer Widom. Lineage Tracing for General Data Warehouse
Transformations. In Proc. of the International Conference on Very Large Databases
(VLDB), 2001.

6. Françoise Fabret. Optimisation du Calcul Incrémentiel dans les Langages de Règles
pour Bases de Données. PhD thesis, Université de Versailles Saint-Quentin, 1994.

7. Christos Faloutsos, Ron Barber, Myron Flickner, Jim Hafner, Wayne Niblack,
Dragutin Petkovic, and William Equit. Efficient and effective querying by image
content. JIIS, 3(3/4), 1994.

8. H. Galhardas and J. Barateiro. InfoLegada2gB: an application for migrating dam
safety information. unpublished.

9. Helena Galhardas. Nettoyage de Données: Modèle, Langage Déclaratif, et Algo-
rithmes. PhD thesis, Université de Versailles Saint-Quentin, 2001.

10. Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. AJAX: An
Extensible Data Cleaning Tool. In W. Chen, J. F. Naughton, and P. A. Bernstein,
editors, Proc. of the ACM SIGMOD International Conference on Management of
Data, volume 2. ACM, 2000. (demonstration paper).

11. Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-
Augustin Saita. Declarative Data Cleaning: Language, Model, and Algorithms. In
Proc. of the International Conference on Very Large Databases (VLDB), Rome,
Italy, September 2001.

12. Mong Li Lee, Tok Wang Ling, and Wai Lup Low. A Knowledge-Based Framework
for Intelligent Data Cleaning. Information Systems Journal - Special Issue on Data
Extraction and Cleaning, 2001.

13. Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Com-
puting Surveys, 33(1):31–88, March 2001.

14. Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel: An Interactive
Data Cleaning System. In Proc. of the International Conference on Very Large
Databases (VLDB), Rome, 2001.

15. A. Simitsis, P. Vassiliadis, and T. K. Sellis. Optimizing ETL processes in data
warehouses. In Proc. of the International Conference on Data Engineering (ICDE),
2005.

16. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Theory, 147:195–197, 1981.

17. Microsoft Research (Sponsored by) NSF, NASA. CiteSeer.IST.
http://citeseer.ist.psu.edu/.

18. Allison Woodruff and Michael Stonebraker. Supporting Fine-Grained Data Lineage
in a Database Visualization Environment. In Proc. of the International Conference
on Data Engineering (ICDE), 1997.

Developing Tools with Fujaba XProM

Leif Geiger and Albert Zündorf

University of Kassel, Germany
{leif.geiger, albert.zuendorf}@uni-kassel.de

http://www.se.eecs.uni-kassel.de/se/

Abstract. Fujaba is an UML [21] based CASE tool with an emphasis
on code generation from graphical behavior specifications. The Fujaba
tool is accompanied by the Fujaba process, a systematic approach to use
Fujaba for system development [5]. To improve the tool support for the
Fujaba process, we have developed the XProM plug-in. This paper exem-
plifies how the XProM plug-in supports the tool developer in following
the Fujaba Process. Main parts of this paper are a tutorial to XProM
users. However, the paper is also useful for other CASE tool developers as
a guide how developers could be supported. Therefore, we also give some
hints, how such a support may be realized. As a running example we use
the development of model transformations for a simple statechart editor.

1 Introduction

This paper is an extension of the position paper [8] which first introduced the
concepts of the XProM plug-in. This paper elaborates those ideas and applies
them to the area of Model Driven Architecture [17]. Especially, we reuse the
example of developing a simple statechart editor [9].

This paper has two main targets: First, it is some kind of tutorial showing
how the XProM support may be used by potential tool developers. Second, it
may serve as some guideline for other CASE tools, which sophisticated process
support they could offer. For the latter purpose, we also give some hints on the
realization of such a tool support.

The Fujaba Process (FUP) [10] is a modern, iterative, use case driven process
employing the test first principle:

– At the start of an iteration, we collect (new) functional requirements within
use case diagrams.

– Then each use case is elaborated with the help of text scenarios.
– In the object oriented analysis phase, the steps of the text scenarios are

modelled using (extended) object diagrams diagrams. This results in so-
called story boards that model the execution of example scenarios.

– During the development of (extended object diagrams, we automatically
collect declarations of classes, attributes, methods and associations within
a first conceptual class diagram. Usually, this class diagram needs to be
revisited in order to adjust e.g. association cardinalities.

– From the conceptual class diagram, Java code frames for the implementation
are generated.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 344–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Developing Tools with Fujaba XProM 345

– Next, the story boards are automatically turned into JUnit tests.
– Now, the behavior of our application has to be specified. This may be done by

coding Java directly. Alternatively, [4] shows how the behavior specification
may be derived from the story boards, systematically.

– Once the implementation is done, all generated tests should be passed. Story
board tests that are not yet passed give hints on missing functionality. Code
coverage analysis may be used to identify implemented functionality that is
not yet used within the example scenarios, cf. [10].

The next section outlines how the XProM plug-in extends the Fujaba tool
with dedicated support for the Fujaba Process.

2 The XProM Project Handbook

The XProM plug-in extends Fujaba by a so-called project handbook view. The
project handbook view is an HTML based text document with a predefined

Fig. 1. Use cases and text scenarios

346 L. Geiger and A. Zündorf

Fig. 2. Story Board First Part

overall structure and with templates for e.g. team members and text scenarios,
cf. Fig. 1.

The project handbook allows embedding UML diagrams within the text. The
predefined project handbook template embeds use case diagrams in section 4 of
the overall handbook. The first use case diagram is found in section 4.1, cf. Fig. 1.
The UML diagrams may be edited in-place within the project handbook. The
XProM plug-in subscribes itself as listener to structural changes of embedded
UML diagrams. Using a template based mechanism, for certain elements of em-
bedded UML Diagrams the XProM plug-in automatically creates corresponding
sections within the project handbook. Such sections are filled with documenta-

Developing Tools with Fujaba XProM 347

Fig. 3. Story Board Second Part

tion for the corresponding diagram elements or with additional UML diagrams
refining the referred element. In Fig. 1, for the use case Flattening the XProM
plug-in has automatically created section 4.1.1 containing a template for textual
scenario descriptions. In Fig. 1 we have already filled the scenario template with
a meaningful scenario description.

For the next step of the Fujaba process, the XProM plug-in provides a com-
mand to turn a textual scenario into an initial story board. Figures 2 and 3 show
the already completed story board.

Initially, the storyboard consists of an activity diagram with one activity for
each scenario step. These activities contain the textual description of the textual

348 L. Geiger and A. Zündorf

scenario step as a comment. Now the developer looks at one step after the other
and decides how to model this step using an object structure. To show dynamics,
this object structure may include collaboration messages, attribute modifications
and creation and destroying of objects and links.

We frequently use story boards to discuss requirements and functionality de-
tails with customers and domain experts. For these people scenarios are usually
much easier to understand than the implementation of a method.

During editing of the story board, the Fujaba tool asks the developer to pro-
vide types for the objects, attributes and links he or she deploys. The developer
may either use an existing declaration or he or she may add a new declaration
on the fly. These declarations are collected in a conceptual class diagram which
is located in section 5.1 of the project handbook, cf. Figure 4.

Fig. 4. Derived conceptual class diagram

For each class within a class diagram, the XProM plug-in automatically pro-
vides a subsection in the project handbook, e.g. subsection 5.1.1 in Figure 4.
This subsection in turn contains subsubsections for each method of that class.
If the method behavior is also modeled with Fujaba, this method subsubsection
contains the Fujaba rule diagram specifying the method, cf. Figure 5. From class
diagrams and method specifications, the Fujaba code generator generates a fully
functional implementation of the desired application.

In order to test the implementation, the XProM plug-in provides a command
that turns story boards into automatic JUnit tests, cf. [10]. These tests create
the object structure modeled as the start situation of the story board. Then they

Developing Tools with Fujaba XProM 349

Fig. 5. Behavior Specification for method TransitionToInner

execute the operations of the invocation step and afterwards they compare the
resulting runtime object structure with the result situation of the story board.
Figure 6 shows a successful run of the test derived from the story board for
statechart flattening.

Fig. 6. JUnit test for statechart flattening

350 L. Geiger and A. Zündorf

During the implementation of the method behavior, developers frequently
handle additional cases that are not part of the provided scenarios. Due to our
experience, it is a good idea to discuss such additional cases with customers and
domain experts, too. Thus the developers should provide additional scenarios and
story boards that exemplify these cases. In order to find behavior implementation
or specification that is not yet triggered by an scenario, we employ a coverage
tool which analyzes the execution of the generated JUnit tests.

As a prototyping environment and as a debugging aid, the Fujaba environ-
ment provides the Dynamic Object Browser DOBS. In case of a JUnit test
failure, we automatically open DOBS and let it depict the actual runtime object
structure as a UML object diagram. This runtime object diagram is then eas-
ily compared with the result situation of the corresponding story board which
usually facilitates to identify the problem, very easily.

Fig. 7. Dobs depicting the start situation for a JUnit test

3 Technical Realization

As stated in section 2, the developer is guided through the Fujaba Process by
the project handbook. Therefore, one needs a configurable, structured handbook.
The handbook should evolve during project progress, e.g. new chapters for use
case scenarios have to be added for new use cases. To achieve these goals, our
project handbook is represented by an in-memory object structure as shown in
Figure 8. Our document structure is build by chapters, paragraphs, and diagrams
etc. This structure is designed using the well known composite design pattern.
This allows arbitrary nesting of chapters and paragraphs. For the embedding of
UML diagrams we use adapter objects of type FDiagram.

Developing Tools with Fujaba XProM 351

Fig. 8. XProM document structure

For the graphical user interface we use a standard HTML editor coming with
the build-in java swing libraries, cf. Figure 9. This editor allows to compose an
HTML document out of editable and frozen blocks. Usual HTML links may be
used for cross referencing. In case of changes to the object structure, individual
blocks of the HTML documents may be modified, added, or removed. In addition,
block ids and a listener concept allow to propagate textual changes back to our
object structure.

The XProM project handbook exploits the relationships between different
parts and diagrams of the overall project handbook in two ways. First, we gen-
erate HTML links that allow to use these relationships for navigation. Second,
the creation of a new item in one diagram may cause the creation of a new
document chapter for the description of that diagram element.

In the example of Figure 9 the design chapter 5 contains a package diagram
giving an overview of contained class diagrams. In the example, only one entry
for the class diagram main is contained.

Now we want that the addition of an element to e.g. the package diagram
causes the insertion of a describing chapter with a certain structure in the hand-
book. Therefore, we employ objects of type FAnchor, cf. Figure 8. FAnchor ob-
jects subscribe as listeners to UML diagrams. As soon as a new element is added
to that diagram, the FAnchor retrieves an appropriate template for that type of
element. The FAnchor has a target chapter where the template is appended to
the content.

352 L. Geiger and A. Zündorf

Fig. 9. XProM GUI with HTML based editor

The templates are of course modeled using the same object structures as
the final document. This allows the editing of templates using the same HTML
editor as used for the actual document. The composite structure provides a clone
mechanism to facilitate template copying. In the example of Figure 8 the objects
mainDescription, intro, cdInsert and mainDiag are clones from a template
for DiagramRef elements. The cdmain object belongs to the logical structure
of the UML model. The template contains a dummy diagram as a placeholder.
During template instantiation, this dummy diagram has been replaced by the
already existing cdmain diagram. The cdmain diagram has been identified via the
predefined refersTo edge of the ref2main object. refersTo edges are generally
used for cross referencing in our approach. Although this template mechanism
is quite limited, it worked quite well for our purpose so far.

Concerning scaling one has to discuss two aspects: scaling of the project and
scaling of the project team. For larger projects, the XProM project is easily split
into multiple documents for different (sub)chapters. The template mechanism is
working with multiple documents, too. However, currently all these documents
need to be in main memory. Therefore, we are developing support for on-demand
loading of subdocuments. This would allow to have one common document con-
taining e.g. the class diagram and many separated documents e.g. for different
use cases. Ideally, only one use case document and the common document would
be needed simultaneously. This will allow to deal with very large projects.

Developing Tools with Fujaba XProM 353

In addition, Fujaba and XProM already provide multi user support based on
versioning with optimistic locking and automatic merging, cf. [18]. This enables
concurrent work of multiple team members on the same (sub)documents. This
has been tested with large success in numerous student projects and in our own
research projects.

4 Related Work

To some extend, the Rational Unified Process RUP [12] summarizes the state-
of-the-art in modern software development processes. However, the RUP focuses
on project organization aspects. It gives only little technical guidance how a
certain use case is related to certain scenario descriptions and how such scenario
descriptions are turned into interaction diagrams. The RUP does not explain
how interaction diagrams are turned into automatic JUnit tests. It gives only
little guidance how a class diagram and actual behavior specifications are derived
and how these elements are related to each other.

Our process defines fine-grained relationships e.g. between the steps of a tex-
tual scenario description and the corresponding parts of a UML interaction
diagram, i.e story boards. This idea stems from the IPSEN project, cf. [16].
Similarly, we provide fine grained relationships between story boards and JUnit
tests and the methods that implement the outlined functionalities. In order to
make these relationships visible for the developers, the XProM plug-in embeds
the various diagrams in the pre-defined structure of a project handbook and it
provides the corresponding cross referencing functionality. This embedding and
cross linking of system description parts in a textual document is related to the
ideas of literate programming, cf. [13, 14]. Accordingly, the template based pro-
cess support that is provided by the XProM plug-in may be considered as an
extension of the idea of literate programming. It would be interesting to try to
establish similar project support for purely textual project specifications.

The support provided by XProM is based on the fine grained relationships
between the different UML diagrams and diagram elements. In our approach,
we define quite rigorous relationships between the different parts of the different
UML diagrams. This goes far beyond the usual UML definitions [2] and beyond
the relationships provided by the rational unified process. Since the usual UML
standards do not contain such fine grained cross diagram relationships, most cur-
rent UML tools do not provide such a support, either, cf. e.g. Poseidon, Rational
Rose, Rhapsody, MagicDraw. Notable exceptions are the areas of requirements
traceability as provided e.g. by the DOORS tool, cf. [6]. Tool chains that employ
the requirements tool DOORS, frequently use the requirements ids provided by
DOORS as tags in subsequent project documents. This provides fine-grained
links between subsequent project artifacts and the requirements documents. In
addition, most UML tools do provide fine-grained connections between the class
diagrams and the various kinds of interaction diagrams. These relationships are
used for consistency checking. Another frequently provided, fine-grained inter
diagram relation connects statecharts to their place of use. For example, state-

354 L. Geiger and A. Zündorf

charts may be connected to active classes that will contain the generated code
for that statechart. Or in ROOM diagrams, component ports may be connected
to a statechart defining the protocol for the usage of that port, cf. [19].

Our exploitation of story boards for the generation of automatic JUnit tests
has been inspired by different ideas from the area of statechart synthesis from
scenarios. There exists some body of work trying to analyse e.g. sequence dia-
grams and to derive statecharts for the participating objects that realize at least
the example behavior, cf. [20, 7, 11, 3]. These approaches employ fine-grained re-
lationships between diagram elements of scenarios and of generated statecharts,
too. Actually, we have also done some work in this area [15]. However, based
on our experiences, very elaborated scenarios are required in order to generate
meaningful behavior specifications, automatically. Frequently, these scenarios
become somewhat artificial in order to serve the synthesis algorithms. Thus, in
this work, we decided to exploit the scenarios only for the generation of JUnit
tests.

5 Summary

This paper outlines the tool support provided by the Fujaba XProM plug-in
for the Fujaba Process. XProM provides an editable view for a template based
project handbook. The UML diagrams of the corresponding project are em-
bedded in dedicated sections of the project handbook. Adding elements to the
diagrams automatically adds corresponding description sections to the project
handbook. Initially such sections may contain ToDo items. Thereby, the project
handbook drives the development process and depicts the overall project state
throughout the whole project life cycle. In addition, the interconnection between
the different project handbook sections from earlier and later phases handles the
consistency of all project artifacts.

For 3 years, we have used Fujaba and XProM in our UML courses with roughly
100 students per course. The courses are mandatory in the students second year.
In these courses, we have observed that the XProM plug-in does an excellent
job in guiding the students through the development process. We use an initial
training round to give the students an idea of the overall process and of the
role of the different project handbook sections. After that, the students quickly
adapt the process and develop extended textual scenarios and story boards.
They actually invest a lot of work in this phase since the story boards are
simultaneously analysis aids and test specifications. These tests then drive the
implementation work.

Since one and a half year, we employ the Fujaba process also with great success
in an industrial project. In that project, object diagrams and story boards have
proven to be extremely valuable for discussions with domain experts in this case
electrical engineers. After a very short learning curve, the electrical engineers
came up with their own object scenarios in order to point us to special cases
and problems that we had not yet considered. With the help of the DOBS tool,
these electrical engineers where even able to analyze test failures and to point
us to failure causes. Overall, in that project the usage of object diagrams and

Developing Tools with Fujaba XProM 355

story boards for analysis and test specification and the Fujaba tool support was
the key to success.

With the help of the CoObRA plug-in, Fujaba XProM allows versioning of
projects and provides support for concurrent development in developer teams,
cf. [18]. CoObRA also protocols time and amount of contributions of different
team members. Since the different sections of the project handbook contain
work belonging to different phases of the Fujaba process, it should be possible
to identify which developer worked how long on which use case in which process
phase and how large his contribution was. Such statistical data may provide a
basis for size and cost estimations for new functionalities based on the size and
complexity of the corresponding scenarios and story boards. This would allow
to estimate the time required to complete remaining development tasks and to
compare estimated and actual efforts. Thereby the XProM plug-in may provide
sophisticated support for Xtreme Project Management.

References

1. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Publishing Company, 1999.

2. Grady Booch, James E. Rumbaugh, Ivar Jacobson: The Unified Modeling Language
User Guide. Addison-Wesley, ISBN 0-201-57168-4, 1999

3. Yves Bontemps and Alexander Egyed (eds): proc. 4th International Workshop on
Scenarios and State Machines: models, algorithms and tools; ICSE 2005

4. I. Diethelm, L. Geiger, A. Zündorf: Systematic Story Driven Modeling, a case
study; Workshop on Scenarios and state machines: models, algorithms, and tools;
ICSE 2004, Edinburgh, Scottland, May 24 28 (2004).

5. I. Diethelm, L. Geiger, and A. Zündorf: Applying Story Driven Modeling to
the Paderborn Shuttle System Case Study; book chapter in S. Leue and T.J.
Syst (Eds.): Scenarios, LNCS 3466, pp. 109133, Springer-Verlag Berlin Heidelberg
(2005).

6. http://www.telelogic.com/corp/products/doors/doors/
7. Alexander Egyed, Martin Glinz, Ingolf Krger, Tarja Syst, Sebastin Uchitel, Albert

Zndorf (eds.): proc. Second Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools; ICSE 2003

8. Leif Geiger and Christian Schneider and Albert Zündorf: Integrated, Document
Centered Modelling in Fujaba; in 1st International Fujaba Days, Kassel, Germany,
October 13-14 (2003)

9. L. Geiger, A. Zündorf: Statechart Modeling with Fujaba; 2nd International Work-
shop on Graph-Based Tools (GraBaTs); ICGT 2004, Rom, Italy, September 28
October 2 (2004).

10. Leif Geiger, Albert Zündorf: Story Driven Testing; in proc. 4th International Work-
shop on Scenarios and State Machines: Models, Algorithms and Tools (SCESM’05)
ICSE 2005 Workshop

11. Holger Giese and Ingolf Krger (eds): proc. Third Workshop on Scenarios and State
Machines: Models, Algorithms, and Tools; ICSE 2004

12. I. Jacobson, G. Booch, and J. Rumbaugh: The Unified Software Development Pro-
cess; Addison-Wesley Publishing Company, 1999.

13. Donald E. Knuth: Literate Programming; Comput. J. 27(2): 97-111 (1984)

356 L. Geiger and A. Zündorf

14. http://www.literateprogramming.com/
15. T.Maier, A. Zndorf: The Fujaba Statechart Synthesis Approach. in proc. Workshop

on Scenarios and State Machines; ICSE 2003, Portland, Oregon, USA, May 2003
16. M. Nagl (ed.): Building Thightly-Integrated (Software) Development Environ-

ments: The IPSEN Approach, LNCS 1170, Berlin: Springer Verlag (1996)
17. The Object Management Group; http://www.omg.org/
18. C. Schneider, A. Zündorf, J. Niere: CoObRA - a small step for development tools

to collaborative environments; Workshop on Directions in Software Engineering
Environments; 26th international conference on software engineering, Scotland,
UK 2004

19. Bran Selic, Garth Gullekson, Paul T. Ward: Real-Time Object-Oriented Modeling;
Wiley, ISBN: 0471599174, 1994

20. Sebastin Uchitel, Tarja Syst, Albert Zndorf (eds.): proc. Workshop Scenarios and
state machines: models, algorithms, and tools; ICSE, (2002)

21. The Unified Modeling Language; http://www.uml.org/

The COMPOST, COMPASS, Inject/J and
RECODER Tool Suite for Invasive Software

Composition: Invasive Composition with
COMPASS Aspect-Oriented Connectors

Dirk Heuzeroth1, Uwe Aßmann2, Mircea Trifu3, and Volker Kuttruff3

1 www.dirk-heuzeroth.de
2 TU Dresden, Germany

3 FZI Karlsruhe, Germany

Abstract. Program analyses and transformations are means to support
program evolution and bridge architectural mismatches in component
composition. The Program Structures Group at the University of Karl-
sruhe und the FZI Karlsruhe, that we are or have been members of, have
developed a suite of program analysis and transformation tools to attack
these problems.

The basic tool Recoder offers sophisticated source code analyses and a
library of common transformations in the form of Java meta programs to
perform necessary component and interaction adapations. This library
can be extended by the Recoder framework that offers means for imple-
menting custom transformations. A transformation can also be a gener-
ator to produce glue code, for example.

Inject/J uses Recoder and offers a comfortable scripting language for
implementing transformations. The scripting language combines declar-
ative specifications of the program points, where the transformation
should be applied, with imperative specifications of the transformation
itself.

COMPASS is focused on bridging interaction mismatches among soft-
ware components. It introduces architectural elements like components,
ports and aspect-oriented connectors as source code transformations
based on the Recoder framework.

COMPOST defines the general model of invasive software composition,
where the ports of the COMPASS model are just one kind of hooks.
Hooks are join points, i.e. part of a component that may be extended or
replaced.

1 Introduction

Software systems evolve due to changing requirements. This evolution mostly
comprises changing the programs’ source code, because the new requirements
have not been anticipated. Examples are performance tuning and deployment
of the system in a new infrastructure requiring other interaction mechanisms.
Source code adaptations are also often necessary when composing independently

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 357–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

358 D. Heuzeroth et al.

developed components that do not completely fit each other, because of archi-
tectural mismatches [7], i. e., the components make different assumptions on how
to interact with each other.

Indeed, program evolution very often concerns adapting component interac-
tions. In this paper we therefore focus on source code transformations to perform
the necessary interaction adaptations automatically. The underlying concept of
our program adaptation approach is called invasive software composition [2].
It is implemented as the COMPOST (COMPOsition SysTem) framework [3].
Section 4 describes the details. As a basic infrastructure to perform automated
program transformations serves our Recoder framework [24, 23]. It offers sophis-
ticated source code analyses, a library of program transformations and means
to implement custom program transformations. Section 3 introduces the con-
cepts, design and features of Recoder. Recoder does not provide comfortable
means to realize interactive transformations as well as to declaratively spec-
ify the program points where to apply transformations. These tasks are facili-
tated by the scripting language Inject/J [9], introduced in Section 5. All three
tools Recoder, Inject/J and COMPOST are quite general program transforma-
tion tools none of which is tailored to perform interaction adaptations. This is
why we have developed the COMPASS tool [12, 14, 13]. COMPASS offers means
to bridge interaction mismatches among software components. It defines ar-
chitectural elements like components, ports and aspect-oriented connectors as
source code transformations based on the Recoder framework and as specializa-
tion of the COMPOST framework. Section 6 presents the concepts and features
of COMPASS.

To enable reuse of transformations all our tools offer extensible libraries to
collect the transformations implemented in the respective tool frameworks.

Figure 1 illustrates the relations among the four tools Recoder, Inject/J, COM-
POST and COMPASS. COMPASS directly builds on Recoder to perform trans-
formations, instead of using Inject/J, since COMPASS needs the comprehensive
program model and Inject/J only offers an abstracted program model.

Before we start explaining the tools, we first introduce a running example
(cf. Section 2 that we will use to demonstrate the concepts and features of the
program transformation tools.

2 Running Example: Interaction Adaptation

In the remainder of the paper we use the adaptation of the communication
in a very simple producer-consumer-system as example. We will transform the
producer-consumer-system such that the direct communication of the product
from the producer component to the consumer component by a method call is
replaced by transferring the product via a buffer component. Such a change may
arise from the requirement of increasing the concurrency in the system. Since
turning the producer and consumer components into active ones is very easy
to achieve in Java just letting both of them inherit from the Thread class and

Invasive Software Composition with COMPASS 359

RECODER
(Fundamental Program Analyses and Transformations, Framework)

COMPOST
(Invasive Composition Framework)

InjectJ
(Declarative Transformation

Specifications)

COMPASS
(Architectural Transformations)

uses
and

controls

uses
and
abstractsuses

specializes

uses and abstracts

Fig. 1. The relations among the Recoder, Inject/J, COMPOST and COMPASS tools

adding a run method to both of them, we dispense with discussing this step
and focus on exchanging the interaction mechanism replacing the direct call by
interaction via a buffer.

Given is the following Java source code of a very simple producer-consumer-
system:

class Trader {
public static void main(String [] args) {

Consumer c = new Consumer() ;
Producer p = new Producer(c) ;
p .produce() ;

}
}

class Producer {
private Consumer consumer ;

public Producer(Consumer c) {
consumer = c ;

}
public void produce() {

Product p = new Product () ;
System. out . pr intln (p+"�produced.") ;
consumer .consume(p) ;

}
}

class Consumer {
public void consume(Product prod) {

System. out . pr intln (prod + "�consumed.") ;
}

}

The Trader component represents the main program that makes the Cons-
umer component instance known to the Producer component instance such that
the latter can invoke the consume service of the Consumer component instance.
The Trader drives the system by calling the produce method of the Producer
object. The communication of the product from the producer to the consumer
is initiated by the producer. The producer thus drives the interaction with the
consumer.

The target system we aim to achieve as a result is represented by the following
source code:

360 D. Heuzeroth et al.

class Trader {
public static void main(String [] args) {

Buffer b = new Buffer () ;
Consumer c = new Consumer() ;
Producer p = new Producer () ;

p . setProductBuffer (b) ;
c . setProductBuffer (b) ;

p .produce() ;
}

}

class Producer {
private ProductBuffer productBuffer ;

public Producer() { }

public void setProductBuffer (
ProductBuffer productBuffer) {

this . productBuffer = productBuffer ;
}

public void produce() {
Product p = new Product () ;
System. out . pr intln (p+"�produced.") ;
productBuffer . put(p) ;

}
}

class Consumer {
private ProductBuffer productBuffer ;

public Consumer() { }

public void setProductBuffer (
ProductBuffer productBuffer) {

this . productBuffer = productBuffer ;
}

public void consume() {
Product prod = productBuffer . get () ;
System. out . pr intln (prod + "�consumed.") ;

}
}

class ProductBuffer {
Vector contents = new Vector () ;

public BufferProduct() {}

public Product get () {
Object p = contents . firstElement () ;
contents . removeElementAt (0);
return (Product)p ;

}

public void put(Product p) {
contents .add(p) ;

}
}

Obviously, we have to perform many invasive modifications to replace the
interaction mechanism. The remaining sections discuss these modifications in
detail and show how we support them by a tool. In this special case, the tool
can perform the changes fully automatically.

3 The Recoder Tool and Framework

Recoder is a Java framework for source code meta-programming aimed to deliver
a sophisticated infrastructure for many kinds of Java analysis and transforma-
tion tools, especially our tools Inject/J, COMPOST and COMPASS. The Recoder
system allows to parse and analyze Java programs, transform the sources and
write the results back into source code form. Figure 2 a) illustrates this cycle.

Fig. 2 a). The Recoder meta program-
ming cycle

Fig. 2 b). The Recoder model for prop-
erties of a syntactic element.

Invasive Software Composition with COMPASS 361

3.1 The Recoder Program Model

To enable meta programming, Recoder derives a meta model from the entities
encountered in Java source code and class files. This model contains a detailed
syntactic program model (including comments) that can be unparsed with only
minimal losses. The syntactic model is an attributed syntax tree (in fact a graph),
where each element has links to its children as well as to its parent, in order
to support efficient upward navigation. All properties of a syntactic element
are modeled by corresponding types, i.e., the element has to implement the
corresponding interfaces. Figure 2 b) shows this for a method declaration as an
example.

The core part of the Recoder meta model is located in recoder.abstraction
and primarily consists of entities that occur in an API documentation: Types,
Variables, Methods, Packages, with some additional abstractions such as Member
or ClassTypeContainer. These entities inherit from ProgramModelElement.

While many ProgramModelElements have a syntactic representation, the
recoder.abstraction package also contains entities that have no syntactic rep-
resentation at all, but are implicitly defined. Examples are ArrayType, Default-
Constructor, or the aforementioned Package. Figure 3 shows the elements of this
abstract model and their associations.

Fig. 3. The elements of the Recoder abstract model

While the syntactic model provides only the containment relation between
elements, the complete model adds further relations, such as type-of, or refers-
to, as well as some implicitly defined elements, such as packages or primitive
types.

In order to derive this semantic information, Recoder runs a type and name
analysis which resolves references to logical entities. The refers-to relation can

362 D. Heuzeroth et al.

be made bidirectional for full cross referencing which is necessary for efficient
global transformations.

To construct the refers-to relation completely, Recoder was designed to be
able to parse both source code as well as bytecode — when parsing bytecode,
only declarations are read. Recoder does not perform a complete decompila-
tion. In order to differentiate between model elements from source code and
model elements from bytecode, Recoder maintains two class sub-hierarchies im-
plementing interfaces from recoder.abstraction, one for source elements and
one for bytecode elements. The topmost type for syntactic Java source elements
is recoder.java.SourceElement, while the root of the bytecode elements sub-
hierarchy is recoder.bytecode.ByteCodeElement.

Recoder was originally developed for Java 1.2 and constantly updated to the
latest versions of the language. The currently available Recoder release is fully
compatible with Java 1.4, but a sustained effort to include the Java 5 features
autoboxing, methods with variable arity, static imports, enhanced for loops,
enumeration types, annotations and generics is already underway.

A common trait of the new Java language features is that they define short-
hands (implicit code) translated by the compiler into Java 1.4 style code. The
challenge here is to find a balance between modeling this implicit code explicitly,
thus adhering to the Recoder philosophy, or to preserve its original syntactical
representation.

3.2 Recoder Program Transformations

Recoder program transformations operate on syntax trees. Basic transforma-
tions are attach that attaches a node or subtree to an existing node or tree,
and detach that detaches a node or subtree from an existing tree. The central
ChangeHistory service collects all change objects (performed attach and detach
operations) and notifies the registered services that are responsible for keep-
ing the program model consistent. The model is not rebuilt for every change
operation, instead the services only update the model when a new model query
arrives. This minimizes the number of costly model updates. Unless committed a
transformation can also be rolled back. Figure 4 illustrates the interconnection of
change reporting services (SourceFileRepository service and Transformation
class) and model maintaining services (SourceFileRepository, NameInfo,
SourceInfo, CrossReferencer) with the change history service.

Before a transformation is performed, its applicability has to be checked.
This is done during an analysis phase that also collects the information nec-
essary to perform the transformation. If the analysis phase indicates that the
transformation can be performed without problems, the consecutive transforma-
tion phase performs the changes. This two pass transformation protocol ensures
that a transformation is always based on valid information. This is especially
required for composed transformations. Otherwise, results obtained by a model
query may have been invalidated by a transformation step as a side effect, so
that another transformation step of the composed transformation uses invalid
information and will therefore corrupt the program.

Invasive Software Composition with COMPASS 363

Fig. 4. Connection of Recoder services to ensure model consistency

3.3 Using Recoder

Recoder meta programs are written as follows, using our running example.
// Create a service configuration, first :
ServiceConfiguration serviceConfig = new CrossReferenceServiceConfiguration() ;

// Get the file management service:
SourceFileRepository s f r = serviceConfig . getSourceFileRepository () ;

// Get the program factory service:
ProgramFactory pf = serviceConfig . getProgramFactory() ;

try { // parse file
CompilationUnit cu = s f r . getCompilationUnitFromFile("ProducerConsumer.java") ;

} catch (ParserException pe) {
// do something

}

// Create a new syntax tree for the ProductBuffer class :
TypeDeclaration td = pf . parseTypeDeclaration("class�ProductBuffer�{�...�}") ;

// Create a custom transformation object:
Transformation t = new Transformation (serviceConfig) { };

// Add the declaration of the ProductBuffer class to the compilation unit:
t . attach(td , cu) ;

// Similar actions for the remaining adaptation steps ...

// Write the changes back to file :
PrettyPrinter pp =

pf . getPrettyPrinter (new PrintWriter(
new FileWriter("ProducerConsumerTransformed.java"))) ;

cu . accept(pp) ;

3.4 Conclusion

A pure Recoder meta program to perform the transformation task of our run-
ning example is quite too complex to demonstrate here. Instead, we use the

364 D. Heuzeroth et al.

Recoder infrastructure to construct special complex transformations to solve
this task. These transformations are part of the COMPASS tool and framework
(cf. Section 6). The conceptual framework is defined by invasive composition
implemented as the COMPOST framework introduced in Section 4. COMPASS
specializes this framework.

4 Invasive Composition and COMPOST

The idea of invasive composition is to compose software components by inva-
sively modifying them using automated program transformations. The underly-
ing model consists of the following three general elements:

box components: Represent program units to be composed. A box is a col-
lection of program elements like a package, some compilation units, a single
compilation unit, several classes or a single class. A box component maintains
a set of hooks as composition interface.

hooks: Technically, a hook is a set of program elements, too. In contrast to a
box, a hook always refers to a containing box. The hook’s program elements
are a subset of the program elements of this box. Conceptually, a hook is a
join point, that identifies a part of a component that may be extended or
replaced.

composers: A composer is a program transformer which transforms compos-
ables, either boxes or hooks.

Thus, invasive composition adapts or extends components at their hooks by
program transformations.

4.1 Boxes

Boxes are organized in form of the composite pattern, i.e. they constitute a
hierarchy of components. Each composition system (i.e. each project) has one
root box. There are

– composite boxes which contain composition programs and other subboxes
– atomic boxes which consist of hand-written Java code.

Each composite box in the box hierarchy carries a composition program by
which all subboxes are composed and configured. Atomic boxes do not carry
composition programs.

4.2 Hooks

Box components can be configured in complex ways by program transformations.
Box writers can indicate where such transformations can be applied, using the
concept of hooks. A hook is a set of program elements that constitute a join
point, identifying a part of a component that may be extended or replaced.

Invasive Software Composition with COMPASS 365

Hooks can be described by

– context-free or context-sensitive patterns which can be matched in the ab-
stract syntax of a box and be replaced. The patterns may be term patterns
or graph patterns. Then the hook is a reducible expression (redex) of the
pattern in the program’s representation.

– selection queries on the program’s representations. The query language may
be any language that can query graphs, such as Datalog, Prolog, OQL, or a
graph database query language. Then the hook is a query result, typically a
set of program elements.

– names. A rather simple kind of hooks are named program elements. The
appropriate query would just look for a name and result in one program
element.

Hooks are further classified into declared and implicit hooks.

Declared (Explicit) hooks denote a certain code position with a name.
Implicit hooks are hooks that are given by the programming language im-

plicitly (here Java). Implicit hooks refer to a syntax element which can be
qualified (a compilation unit, a class, a method). Each hook carries its name,
and also a qualifier which determines its position in the component. Since
implicit hooks need not be declared, the hook name is not a naming scheme,
but the name of the hook itself; the hook qualifier plays the role of the
naming scheme.

4.3 Composers

A composer is a program transformer which transforms composables, either
boxes or hooks. Figure 5 illustrates the effect of a composer.

Fig. 5. The effect of a COMPOST composer

General classification criteria for composers are

– taking composables, i.e. hooks or boxes, as arguments (hook-based or box-
based)

– unary, binary, n-ary
– elementary or composed

366 D. Heuzeroth et al.

Composers for Hooks. The most important unary composer on hooks is the
bind composer : It overwrites the hook. If it was a declared hook the hook is elim-
inated, i.e. cannot be rewritten anymore. Implicit hooks cannot be eliminated
from the boxes since they are defined by the programming language semantics.

Composers for list hooks are:

extend: Extends a box or a hook with a mixin box or a value.
append: Appends a value to the hook and retains the hook. (Also for point

hooks in list hooks)
prepend: Prepends a value to the hook and retains the hook. (Also for point

hooks in list hooks)
wrap: List hooks can be wrapped with two values. The first is prepended, the

second appended.
extract: Delete an element of a list hook or a point hook completely.

Composers on Boxes (Box-Based Composers). Boxes can be composed
themselves without referring to their hooks. Such composers refer to the boxes’
hooks implicitly; not all hook operations are applicable.

Composition Programs and Composition Terms. COMPOST is a Java
library. When composers of this library are applied on boxes and hooks, compo-
sition programs in Java result. These composition programs create composition
terms from composers and their arguments, as well as forests of composition
terms, i.e. composition forests.

Composition terms are one of the central data structures of COMPOST since
they describe compositions abstractly. Each object in a composition forest repre-
sents a composition operation, i.e. an application of a composer, and represents
a Command object in terms of the design pattern Command [6].

4.4 Implementation of COMPOST

Boxes, hooks and composers are implemented as Java objects. The program
elements that boxes and hooks represent are the program element objects offered
by Recoder. Composers are Recoder transformations.

4.5 Using COMPOST

Composition programs which use the library should be written as in the follow-
ing. Composition operations have the calling schema

Unary hooks: <box>.findHook(HookName).<composer>(Code)
Binary composers: <composer>(HookName1, HookName2)

Currently, only named hooks can be replaced by COMPOST composers. To
find a hook, the hook name has to be handed over to the hook finder
(box.findHook(String)). The hook’s name is qualified with the scopes of the
program in which it is contained. Qualification is by dot (.).

Invasive Software Composition with COMPASS 367

For our running example the composition program looks like the following.

// Prepare the composition by allocating a composition system with
// im− and exporter and all necessary services .
CompositionSystem project = new CompositionSystem(basepath) ;

// Load the box ProducerConsumer from file ProducerConsumer.coc
CompilationUnitBox pc = new CompilationUnitBox(project ,"ProducerConsumer") ;

// This sets lazy mode with composers as command objects and
// deferred transformations
project . setLazyMode () ;

// Re−compose the Producer and Consumer classes.
try {

// Add ”set” method for reference to ProductBuffer to Consumer
pc . findHook("Consumer.members") .prepend("public�void�setProductBuffer(

������ProductBuffer�productBuffer)�{
��������this.productBuffer�=�productBuffer;
������}") ;

// Add default constructor to Consumer class
pc . findHook("Consumer.members") .prepend("public�Consumer()�{�}") ;

// Add private attribute to refer to ProductBuffer to Consumer class
pc . findHook("Consumer.members") .prepend("private�ProductBuffer�productBuffer;") ;

// Remove parameter from Consumer’s consume method
pc . findHook("Consumer.consume.parameters") . extract ("prod") ;

// Add call to get method of buffer component
pc . findHook("Consumer.consume.statements") . prepend("Product�prod�=�productBuffer.get();") ;

// similar actions to adapt the Trader and Producer classes as well as to
// insert the ProductBuffer class .

// In lazy mode, this executes the transformations
pc . execute () ;

// Export the Producer−Consumer Box again
// (Default is to ProducerConsumer.java)
project . getBoxInfo() . default . Export () ;

} catch (Exception e) {
System .out . pr intln ("error:�composition�failed.�") ;

}

In our example, project.setLazyMode() sets lazy mode. By default, all com-
positions are directly executed on the abstract syntax tree of the box components
(eager mode). In lazy mode, only composer command objects are built. When
the method pc.execute() is called, the composer command objects are exe-
cuted, and the transformations are committed in the abstract syntax tree.

4.6 Conclusion

Although we have omitted some composition operations, our composition pro-
gram has still become quite complex. Before we elaborate on the complex trans-
formations to simplify the task of replacing the direct method call by communi-
cation via a buffer (Section 6), we first introduce the scripting language Inject/J
that offers means to control Recoder analyses and transformations (Section 5).
Inject/J is introduced at this place, because it is also built on top of the Recoder

368 D. Heuzeroth et al.

infrastructure but only uses the conceptual framework of invasive composition,
opposed to COMPASS that specializes the boxes, hooks and composers of COM-
POST.

5 The Inject/J Tool

Inject/J is an operational, dynamically typed scripting language and a tool for
invasive composition. It is indented to support arbitrary adaptations of Java
programs. It offers means to control the analyses and transformations of Recoder
and therefore provides the following operations:

Navigation with detection patterns and name patterns over the Inject/J adap-
tation model, which is a simplified structure graph (simplified with respect to
the program model of Recoder). Detection patterns are arbitrary graph pat-
terns selecting different program model elements based on structural and
quantitative (e.g. metrics) constraints. Name patterns are used to select
named program elements using regular expressions.
Example: classes(’mypackage.*’) selects all classes within package
mypackage, while method(’**.*(int)’) selects all methods with a param-
eter of type int.

Transformations are used to manipulate the Inject/J model. Inject/J offers
complex transformations, i.e. transformations which group semantically con-
nected syntactic operations and hides them behind an interface. If necessary,
additional transformations like expression flattening are performed automat-
ically. These complex transformations are generally guarded by pre- and
postconditions. Inject/J comes with an extensive library of these transfor-
mations which range from refactorings (e.g. rename) to operations known
from AOP (e.g. beforeAccess, afterFailure).

Control structures like loops and if-statements are used to control the trans-
formation. Conditions in control structures can access model queries (anal-
yses), which are side effect free predicates and functions over the Inject/J
adaptation model.

User interaction can be used to interactively parameterize transformations,
e.g. to ask for the name of a new class or a temporary variable:
ask("Please�choose�a�name�for�a�temporary�variable", name);

Inject/J provides an extension mechanism which can be used to seamlessly
integrate new transformations and model queries in addition to the predefined
ones. These new transformations and model queries can either be implemented
using the Inject/J script language or by a Java implementation which has direct
access to the Recoder framework.

For a more detailed description of Inject/J, please consult [10].

5.1 Using Inject/J

Inject/J scripts are written as follows, using our running example.

Invasive Software Composition with COMPASS 369

scr ipt IntroduceBuffer {

// search Producer/Consumer classes
producerClass = class (’Producer’) . get (0);
consumerClass = class (’Consumer’) . get (0);
// search produce/consume methods
produceMethod = producerClass .getMethod("produce()") ;
consumeMethod = consumerClass .getMethod("consume(java.lang.Object)") ;

// Introduce new members to Producer class , e.g. reference to the
// new buffer
producerClass .addToMembers (${

ProductBuffer productBuffer ;

public void setProductBuffer (ProductBuffer productBuffer) {
this . productBuffer = productBuffer ;

}
}$) ;

// remove references to Consumer class
foreach att in producerClass . attr ibutes do {

i f (att . staticType==consumerClass){
// remove the assignment in the constructor and
// the call to the consume method
foreach ref in att . references do { ref . delete ; }
att . delete ;

}
}
foreach par in produceMethod . parameters do {

i f (par . staticType==consumerClass) { par . delete ; }
}

// add call to buffer to body of produce method:
produceMethod . beforeExit (${productBuffer . put(p);}$) ;

// introduce new members to Consumer Class
consumerClass .addToMembers(${

ProductBuffer productBuffer ;

public void setProductBuffer (ProductBuffer productBuffer) {
this . productBuffer = productBuffer ;

}
}$) ;

// remove parameter from consume method:
productClass = class (’Product’) . get (0);
foreach par in consumeMethod. parameters do {

i f (par . staticType==productClass) { par . delete ; }
}

// add call to buffer to body of consume method:
consumeMethod. beforeEntry (${"Product�p�=�productBuffer.get(p);"}$) ;

} // end of script

5.2 Conclusion

Using the Inject/J script language, the transformation to replace the direct
method call by communication via a buffer is much simpler (only 53 lines of
code including comments and blank lines) than implementing the transformation
directly using the underlying Recoder infrastructure. Like the Recoder transfor-
mation, the Inject/J transformation can also be reused and applied to other Java
classed than the ones of the running example. To do this, one has just to change
the search for classes and methods at the beginning of the script or provide

370 D. Heuzeroth et al.

this information via parameters. This way the script can be used to perform
the transformation multiple times on arbitrary Java source code, even very large
source code.

Since Inject/J has been designed as a general purpose transformation language,
it does not model complex component interactions as first class entities as needed
to consistently adapt interactions. In the next section we therefore present the
COMPASS tool tailored to perform such types of program transformations.

6 The COMPASS Tool and Framework

COMPASS (COMPosition with AspectS) [12, 14, 13] is designed to consistently
exchange and adapt interactions among software units. It is based on an archi-
tectural model consisting of the three levels depicted in Figure 6 a).

Fig. 6 a). Interaction Configuration
Levels

Fig. 6 b). Configuration Level Ele-
ments, their Structure and their Links
to Source Code

– The programming language level contains the concrete program to adapt.
So the first step of COMPASS transformations is the detection phase (model
construction) that analyzes the source code to identify components, their
interactions and interaction patterns. Interaction patterns (especially design
patterns [6]) are identified combining static and dynamic analyses as de-
scribed in our earlier papers [17, 16, 18, 19].

– The configuration level results from the detection phase. It is a program rep-
resentation suited to manually specify interaction configurations. This level
abstracts from the concrete programming language and represents all inter-
actions explicitly as first-class entities combining the ideas of architecture
systems [8] and aspect-oriented programming [21] as well as hyperdimen-
sional separation of concerns [26]. Figure 6 b) illustrates the elements of the
configuration level and their links to corresponding source code elements.
The elements of the configuration level are:

• components that are the basic building blocks of every system. A COM-
PASS component is a box in the sense of COMPOST. Table 1 shows
the mapping of Java syntax elements to COMPASS component model
elements. Whenever the iterator of the detection and model construc-
tion phase encounters such a syntax node, it creates an instance of the

Invasive Software Composition with COMPASS 371

Table 1. Mapping of Java Syntax Elements to COMPASS Component Model Elements

Java element COMPASS element
compilation unit ModuleComponent
class declaration ModuleComponent
method declaration ProcedureComponent
field FieldComponent
variable VariableComponent

corresponding COMPASS component model element. Of course, compo-
nents may be hierarchically composed of further components including
subsystems.

• aspect-oriented ports that encapsulate the interaction points of compo-
nents in an aspect- or hyperslice-like fashion and represent the interac-
tion properties at these points. Interaction properties are for example
the direction of the interaction (in or out), the type of the interaction
(control or data), synchronization, drive (initiation of control flow), and
interaction mechanism. A COMPASS port is a hook in the sense of COM-
POST.

The model construction phase constructs a COMPASS port model
element instance for every syntax node denoting data or control flow,
like a method call for example.

Some ports of components are implicitly defined by the language se-
mantics without an explicit syntactical representation in the program-
ming language. Since our model aims at making all interactions explicit,
we also create explicit port model element instances for those and as-
sociate them with their owning components. An example is the implicit
first parameter (this) of a Java method, identifying the object to which
the method belongs, i. e., the object which state has to be considered
when referring to fields.

• aspect-oriented connectors that represent interactions by connecting
ports. A connector also is a representation of a program transformation.
Via the ports it connects, a connector has access to the interaction points
buried in the components’ code. It can thus substantiate or replace this
code by the configured interaction code. Even connections established
by private fields are considered, but the corresponding ports are marked
as internal component ports. A COMPASS connector is a composer in
the sense of COMPOST.

These component, port and connector entities constitute an architectural
model.

In the (re-)configuration phase, the developer reconfigures and adapts in-
teractions by exchanging the port and connector entities on the configuration
level. This triggers corresponding source code transformations (transforma-
tion phase) implemented as meta programs using the Recoder framework.
Since connectors are architecture and design level instances by nature, our

372 D. Heuzeroth et al.

source code transformations eliminate them in the final code by mapping
them to potentially several constructs of the target language. Nevertheless,
we retain the configuration level representation of the system as an architec-
tural representation.

A program transformation consists of the two passes analysis and transfor-
mation. The analysis pass first collects the information necessary to perform
the transformation by transitively identifying the ports and connectors af-
fected by the transformation. These provide the relevant information already
collected during the model construction phase. This especially comprises the
source code elements to modify. Second, the analysis pass checks if the trans-
formation can be executed, i. e., if the required information are available and
the transformation is applicable in the given context. It might happen for
example that a Java class is only available as byte code, so that we cannot
transform its source code. Moreover, the configuration may define to connect
incompatible ports using the wrong type of connector. The transformation
pass carries out the transformation without performing any further analyses.
This is important, since a sub-transformation may have changed the underly-
ing system already, so that the analysis now produces different or misleading
results, although the whole complex transformation should be regarded as
atomic. The whole transformation is encoded as a Java program, that mod-
ifies the abstract syntax forest of the sample program. The final target code
is then produced using Recoder to pretty print the modified syntax forest.

Base transformations of COMPASS are to append or remove ports and/or
components, as well as to insert or remove connectors.

– The abstract level abstracts from the concrete interaction properties rep-
resented on the configuration level. On the abstract level interaction con-
sists of input and output actions on typed channels. This allows to bridge
architectural mismatches or mismatches caused by certain implementation
techniques.

An abstraction phase maps configuration level elements to abstract model
elements, a substantiation phase conversely maps abstract model elements
to configuration level elements by adding implementation specific interaction
properties like synchronization, drive and mechanism.

The semantics of these levels is defined formally using the π-calculus, i. e., every
interaction is resolved to one or more input (c(v)) or output actions (c̄v) on
channels (c). We have presented the details of this model in [15].

6.1 Using COMPASS

The transformation task of our running example amounts to exchanging the
procedure call connector by a buffered data transfer connector as depicted in
Figure 7.

The developer performs this reconfiguration on the configuration level which
results in invoking the fundamental ReplaceProcedureCallConnectorByBuffer
transformation as follows:

Invasive Software Composition with COMPASS 373

Fig. 7. Reconfiguration of Producer-Consumer-System Method Call

ProblemReport pr = new ReplaceProcedureCallConnectorByBuffer (config , pc) . execute () ;

where

– config is a concrete COMPASS configuration that consistently bundles the
source code parser, the mapping to model elements and the source code
transformations including the pretty printer for a concrete programming
language (Java in the current implementation of COMPASS), and

– pc is the instance of the procedure call connector to replace by a buffered
communication connector.

This reconfiguration is implemented as the following single COMPASS trans-
formation.
public class ReplaceProcedureCallConnectorByBuffer

extends CompassTransformation {

public ReplaceProcedureCallConnectorByBuffer (CompassConfiguration config ,
ProcedureCallConnector procCallConnector) {

. . .
}
. . .

}

To be generally applicable to exchanging a procedure call connector by buffered
communication this transformation comprises several steps. As already men-
tioned, complex COMPASS transformations are two pass transformations like in
Recoder consisting of an analysis and a transformation pass.

Figure 8 shows the producer-consumer-system as well as the procedure call
connector COMPASS model element and its relation to the source code. The fig-
ure also shows the data and control flow that is relevant to replace the procedure
call connector and thus illustrates the aspect-orientedness of interaction, espe-
cially the COMPASS port and connector model elements. There is no first-level
encapsulation of the interaction in Java, the code dealing with this interaction
is scattered over all the three classes involved.

Analysis Pass. The analysis pass starts from the method call connector to
exchange and follows the links depicted in Figure 8 to identify the elements to

374 D. Heuzeroth et al.

public class Trader {
 public static void main(String[] args) {
 Consumer c = new Consumer();
 Producer p = new Producer(c);
 p.produce();
 }
}

public class Consumer {
 public void consume(Product p) {
 System.out.println(p + " consumed.");
 }
}

TOP

AOP

TIP

PIP

PCOP = ProcedureCallOutPort
PCIP = ProcedureCallInPort
AOP = ArgumentOutPort
PIP = ParameterInPort
TOP = TargetObjectOutPort
TIP = TargetObjectInPort

PCOP PCIP

ProcedurCallConnector

public class Producer {
 private Consumer consumer = null;
 private int pNum = 0;

 public Producer(Consumer c) {

 }

 public void produce() {

 System.out.println(p+" produced.");
 consumer.consume(p);
 }
}

 consumer = c;

 Product p = new Product(pNum++);

control flow

data flow

binding of ports

Fig. 8. Dependences in Example System

transform. These elements are stored to be accessed by the subsequent transfor-
mation pass. In particular these elements are:

1. The ProcedureCallOutPort to redirect to the ProcedureCallInPort of the
put procedure component of the ProductBuffer module component to in-
troduce into the system:

srcProcOutPort = procCallConnector . getProcedureCallSource () ;

2. The field component of the Producer module component that holds a ref-
erence to the Consumer module component instance, because we want to
exchange this field component by a field component referring to an instance
of the ProductBuffer component to introduce.

3. The ParameterInPort of the Consumer module component to be turned
into a CallResultInPort of a newly created ProcedureCallOutPort to
connect to the ProcedureCallInPort of the get procedure component of
the ProductBuffer module component.

4. The places where a reference to the Consumer component instance is pro-
vided to the Producer component instance — this is necessary, because in
the transformed system these are the places where we need to provide the
instance of the ProductBuffer component to the Producer component in-
stance as well as to the Consumer component instance.

5. The places from where the produce method is called, i. e., from where the
interaction between the producer and the consumer is (originally) initiated
— this is necessary, because we need to add a call to the consume method
of the consumer here as well, since the producer does not call the consumer
directly in the transformed system:

Invasive Software Composition with COMPASS 375

Transformation Pass. In the description of the analysis pass, we have already
explained for which transformation step the retrieved information are needed.
The transformation pass simply performs these transformations, i.e.: introduces
the buffer, replaces the parameter connector by communication via the intro-
duces buffer and moves the call to consume from Producer to Trader.

6.2 Conclusion

COMPASS offers transformations tailored to reconfigure component interactions.
To perform the transformation task in our running example we therefore just
need to reconfigure the system by calling the corresponding transformation just
writing one line of COMPASS code. So this is the easiest way to solve the given
transformation task compared to 53 lines of Inject/J code or many more lines
of Recoder code. So the advantages of COMPASS are, that it offers sophisti-
cated analyses to detect interaction patterns, an aspect-oriented architectural
model and a library of reusable transformations tailored to perform interaction
adaptations.

7 Related Work

Most of the work in this area is concerned with general approaches to software de-
sign, decomposition, composition and evolution [21, 26, 2], program understand-
ing and refactoring. Only few works specifically deal with adapting interactions.

Architecture systems [8] like Darwin [5], UniCon [29], Rapide [22] and Wright [1]
also introduce port entities to represent interaction interfaces of components
and connector entities to represent interactions among components. But these
architecture systems are unable to adapt the interactions of already existing
code, because they do not implement architecture reconstruction algorithms.

Carriere et al. [4] generate program transformations to exchange communica-
tion primitives in C source code. First, they identify communication primitives
using regular expressions and naming conventions. Then, they use the mapping
defined in [20] to specify pre- and post-conditions to generate corresponding
program transformations to be performed by the tool Refine/C [28, 11]. These
transformations then transform the abstract syntax tree of the program under
consideration, automatically. This approach has the following shortcomings: the
mapping of communication mechanisms is neither unique nor 1:1, thus leading
to dead or superfluous code in the target system. Moreover, this includes the
problem of deciding which target mechanism to use. In COMPASS this is done
interactively or by providing a transformation strategy. Carriere et al. do not
solve this problem. Furthermore, their approach does not detect complex inter-
action patterns. This is due to the fact that their analysis is based on naming
conventions and regular expressions that are not powerful enough.

Pulvermüller et al. [27] encapsulate CORBA-specific communication code in
aspects implemented using AspectJ and present a few highly specialized trans-
formations. But they do not define an interaction model, do neither provide gen-
eral support to adapt interactions nor to adapt interaction patterns. An analysis

376 D. Heuzeroth et al.

phase to detect interactions and provide a representation suitable to adapt them
is completely missing.

Altogether, we do not know any approach that deals with the complete proce-
dure of adapting interactions, as we did. The stepwise refinement of architectures
defined by the COMPASS model has now become popular using the term model
driven architecture (MDA) [25].

8 Conclusion

We have presented a suite of program transformation tools for invasive software
composition and applied them to a representative interaction adaptation task.
The COMPASS tool is tailored to tackle this kind of tasks. It combines the ideas
of architecture systems, aspect-oriented programming and hyperdimensional-
separation of concerns to define ports that provide invasive access to interaction
points of components, and aspect-oriented connectors as program transforma-
tions to consistently adapt interactions according to specified configurations.

All the transformations are type-safe respecting the syntactic and semantic
obligations of the Java language in which the programs to be transformed are
implemented. Our tools are therefore preferable to text patching approaches
which inherently suffer from damaging the code to be transformed.

Our future work comprises to implement further transformations thus expand-
ing our transformation library. Moreover, we need to deal with the problem of
how to find the interactions to adapt when a problem specification or a catalog
of known problems is given. The detection of anti-patterns and the application
of metrics to apply refactorings are promising in this domain, but need to be
extended to non-meaning-preserving transformations, in the sense that desired
new observable properties can be added to the target system.

References

1. Robert Allen and David Garlan. Beyond definition/use: Architectural interconnec-
tion. In ACM IDL Workshop, volume 29(8). SIGPLAN Notices, 1994.

2. Uwe Aßmann. Invasive Software Composition. Springer, 2002.
3. Uwe Aßmann, Andreas Ludwig, Rainer Neumann, and Dirk Heuzeroth. The COM-

POST project main page. http://www.the-compost-system.org, 1999 – 2005.
4. S. J. Carriere, S. G. Woods, and R. Kazman. Software Architectural Transforma-

tion. In WCRE 99, October 1999.
5. Darwin. http://www.doc.ac.ic.uk, 2000.
6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

Addison-Wesley, 1994.
7. David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch: Why

Reuse Is So Hard. IEEE Software, 1995.
8. David Garlan and Mary Shaw. An Introduction to Software Architecture. In

Advances in Software Engineering and Knowledge Engineering. World Scientific
Publishing, 1993.

9. Thomas Genßler and Volker Kuttruff. The inject/J project main page.
http://injectj.sj.net, 1999 – 2005.

Invasive Software Composition with COMPASS 377

10. Thomas Genssler and Volker Kuttruff. Source-to-Source Transformation In The
Large. In Proceedings of the Joint Modular Language Conference, pages 254–265.
Springer LNCS, August 2003.

11. David R. Harris, Alexander S. Yeh, and Howard B. Reubenstein. Extracting Ar-
chitectural Features From Source Code. ASE, 3:109–138, 1996.

12. Dirk Heuzeroth. The COMPASS project main page.
http://www.info.uni-karlsruhe.de/∼heuzer/projects/compass, 2003.

13. Dirk Heuzeroth. Aspektorientierte Konfiguration und Adaption von Komponenten-
interaktionen. PhD thesis, University of Karlsruhe, 2004.

14. Dirk Heuzeroth. COMPASS: Tool-supported Adaptation of Interactions. In Au-
tomated Software Engineering 2004. IEEE, 2004.

15. Dirk Heuzeroth. A Model for an Executable Software Architecture to deal with
Evolution and Architectural Mismatches. Technical report, Universität Karlsruhe,
2004.

16. Dirk Heuzeroth, Gustav Högström, Thomas Holl, and Welf Löwe. Automatic De-
sign Pattern Detection. In IWPC, May 2003.

17. Dirk Heuzeroth, Thomas Holl, and Welf Löwe. Combining Static and Dynamic
Analyses to Detect Interaction Patterns. In IDPT, June 2002.

18. Dirk Heuzeroth and Welf Löwe. Software-Visualization - From Theory to Practice,
Edited by Kang Zhang, chapter Understanding Architecture Through Structure
and Behavior Visualization. Kluwer, 2003.

19. Dirk Heuzeroth, Welf Löwe, and Stefan Mandel. Generating Design Pattern De-
tectors from Pattern Specifications. In 18th ASE. IEEE, 2003.

20. Rick Kazman, Paul Clements, and Len Bass. Classifying Architectural Elements
as a Foundation for Mechanism Matching. In COMPSAC 97, August 1997.

21. Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Videira
Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-oriented Programming. In
ECOOP’97, pages 220–242. Springer, 1997.

22. David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan,
and Walter Mann. Specification and Analysis of System Architecture Using Rapide.
IEEE ToSE, 21(4), 1995.

23. Andreas Ludwig and Dirk Heuzeroth. Metaprogramming in the Large. In GCSE,
LNCS 2177, pages 443–452, October 2000.

24. Andreas Ludwig, Rainer Neumann, Dirk Heuzeroth, and Mircea Trifu. The RE-
CODER project main page. http://recoder.sourceforge.net, 1999 – 2005.

25. OMG. MDA Guide Version 1.0.1. Technical report, OMG, 2003.
26. Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns in Hy-

perspace. Technical report, IBM T. J. Watson Research Center, April 1999.
27. E. Pulvermüller, H. Klaeren, and A. Speck. Aspects in distributed environments.

In GCSE’99, September 1999.
28. http://www.reasoning.com, 2003.
29. Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,

and Gregory Zelesnik. Abstractions for Software Architecture and Tools to Support
Them. IEEE ToSE, 21(4), 1995.

Program Transformation Using HATS 1.84

Victor Winter and Jason Beranek

Department of Computer Science, University of Nebraska at Omaha

Abstract. This article gives an overview of a transformation system
called HATS – a freely available platform independent IDE facilitating
experimentation in transformation-oriented software development. Ex-
amples are discussed highlighting how the transformational abstractions
provided by HATS can be used to solve various problems.

1 Introduction

Interest in program transformation is driven by the idea that, through their
repeated application, a set of simple rewrite rules can affect a major change in
a software artifact. From the perspective of dependability, the explicit nature
of transformation exposes the software development process to various forms of
analysis that would otherwise not be possible.

Within the scope of this article we will use the term program transformation
(or transformation) in a general sense to refer to software manipulation processes
that are restricted to the fully automatic application of rewrite rules. We will
also predominantly refer to the objects that are the subject of transformation
as terms or trees rather than specifications, programs, code fragments, or the
variety of other artifacts over which transformation is possible.

This article gives an overview of a transformation system called HATS. HATS
is freely available and provides a platform independent IDE facilitating exper-
imentation in transformation-oriented software development [24, 23]. HATS, an
acronym for High Assurance Transformation System, is a program transforma-
tion system whose continuing development is inspired by the potential benefits
that transformation-oriented programming can offer software assurance efforts.
As a result, the primitives and abstractions in HATS have been designed with
thought given to verification. From a more technical perspective, HATS can be
viewed as a higher-order transformation system for manipulating parse trees.
Tree structures are defined using an extended-BNF notation supporting prece-
dence and associativity. Transformations are written in TL, a language that sup-
ports first-order as well as higher-order transformation. TL also supports stan-
dard one-layer traversal constructs together with recursive definition of traversals
allowing a variety of generic traversals, both first-order as well as higher-order,
to be defined by the user. HATS supports several feedback mechanisms includ-
ing pretty-printed text, graphical display of parse trees, and a rudimentary trace
facility1 for debugging.
1 The trace facility is presently under development and is in a somewhat experimental

stage.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 378–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Program Transformation Using HATS 1.84 379

The rest of this article is structured as follows: Section 2 gives an overview of
HATS. Section 3 gives an overview of the HATS parser generator. Section 4 gives
an overview of the transformation language TL. Section 5 presents an example
showing how three algebraic laws forming part of a Verilog synthesis system can
be effectively implemented in TL. Section 6 presents an example showing how
the hide combinator has been effectively used to realize a transformational step
in a class loader for an instance of the JVM. Section 7 discusses related work,
and section 8 concludes.

2 An Overview of HATS (Version 1.84)

HATS is a transformation system whose development has been underway for
a number of years. During this time, the design of HATS has gone through a
number of changes. The earliest version of HATS [25] was influenced primarily
by the TAMPR transformation system [5, 4]. In this early version of HATS,
transformation was accomplished by applying collections of first-order rewrite
rules to terms using a small library of traversals provided by the HATS system.
Later versions of HATS drew inspiration from systems like ELAN [3], Stratego
[21], ASF+SDF [2], and Strafunski [13].

In its present form, HATS (version 1.84) is a system in which transforma-
tion is realized through the execution of special purpose programs written in a
language called TL [24]. The language TL provides a computational framework
where transformational ideas are expressed in terms of conditional rewrite rules
whose application is controlled by a variety of standard strategic combinators
and traversals [12] (e.g., sequential composition, biased choice, top-down and
bottom-up traversals, etc.). Distinguishing features of TL include: (1) the abil-
ity to express transformational ideas in terms of higher-order conditional rewrite
rules, (2) the ability to control rule application through a variety of unique com-
binators including the transient combinator and the hide combinator, and (3) a
semantic foundation where the failure of rule application behaves like the iden-
tity transformation (in contrast to strategic systems in which rule failure yields
the strategic constant FAIL).

2.1 The Taxonomy of a Domain

In HATS, the term domain is used to refer to the collection of files that sup-
port the transformation of parse trees belonging to a given language. Example
domains can be downloaded from the HATS homepage [9]. Figure 1 shows an
example of what a user would see in a typical HATS session. The pane on the
upper-left partitions the files in the domain into a variety of file types: (1) gram-
mar files, (2) lexer files, (3) target files, (4) transformation files, (5) user-defined
function files, (6) style files, (7) pretty-printed text files, and (8) parse tree files.
The pane on the upper-right serves a variety of purposes including (1) a spe-
cial purpose text editor, (2) a graphical tree display, and (3) an execution trace
display. The pane on the bottom provides error feedback as well as a variety of
execution metrics.

380 V. Winter and J. Beranek

Fig. 1. Using the HATS GUI to View a Domain

2.2 Running HATS

Perhaps the most natural way to think of HATS is in terms of a collection of
functions whose execution can be orchestrated from the HATS GUI. Functions
that are of central importance to transformation include: (1) a parser generator,
(2) a transformation engine, (3) a pretty printer, (4) a tree viewer, and (5) a trace
viewer. Figure 2 gives an overview of HATS from the perspective of dataflow. In
the figure, icons2 are used to denote various functions that are available to the
user, source nodes represent user input files, and sink nodes represent system
feedback.

In thediscussion that follows,weassumeadomainwhosegrammar, lexer, source,
transformation program, and style files are respectively named grammar.bnf,
lexer.spec, source.tgt, transform.tlp, UserDefinedFunctions.sml, and
style.sty.

In HATS, the transformation process is decomposed into the following phases:

1. Parsing Phase – The goal of this phase is to produce suitable input files
for the transformation phase.

(a) The parser generator is invoked to produce a source parser for the

language defined by grammar.bnf and lexer.spec. The source parser
is also used by the TL parser, the parser for transformation programs,
when parsing the portions of rewrite rules containing code fragments
belonging to the source language. Thus, invoking the parser generator
will in fact produce two parsers – a parser for the source language and
a parser for the transformation language.

2 The icons used in the figure are taken directly from the icons that are used by the
HATS GUI.

Program Transformation Using HATS 1.84 381

Parser
Generator Source Parser

TL Parser

Transformation
Engine PrettyPrinter

.bnf

.spec

.tgt

.tlp

.parsed

rules.xml
trace.xml

.parsed

.transformed

Tree Viewer

Text

Tree

Various
trace-related
information

Feedback

output.stat

Metrics

Trace Viewer

.sty

UserDefinedFunctions.sml

Legend

Dataflow Graph
Parsing Phase

Fig. 2. The Architecture of HATS from a Dataflow Perspective

(b) Creation of .parsed files

i. The source parser can be invoked to parse the file source.tgt.

Any errors that arise during parsing will be displayed in the bot-
tom pane of the HATS GUI under the Standard Error tab. A suc-
cessful parse of source.tgt will result in the creation of the file
source.tgt.parsed.

ii. The TL parser can be invoked to parse the file transform.tlp.

Any errors that arise during parsing will be displayed in the bottom
pane of the HATS GUI under the Standard Error tab. A success-
ful parse of transform.tlp will result in the creation of the file
transform.tlp.parsed.

2. Transformation Phase – After completion of the parsing phase transfor-

mation is accomplished by invoking the transformation engine . The

transformation engine accepts as input the files source.tgt.parsed,
transform.tlp.parsed, and UserDefinedFunctions.sml. Invocation will
cause transform.tlp.parsed to be applied to source.tgt.parsed using
the additional functionality defined in UserDefinedFunctions.sml. Run-
time errors resulting from semantically ill-formed transformation programs

382 V. Winter and J. Beranek

are displayed in the bottom pane of the HATS GUI. A successful trans-
formation of source.tgt will produce the files: output.stat, rules.xml,
trace.xml, and source.tgt.parsed.transformed. We would like to point
out that transformation in HATS is accomplished in an interpretive fashion.
Specifically, a denotational semantics for TL has been implemented in ML,
and it is this semantics that is used to interpret the transform.tlp.parsed
tree.

3. Feedback Phase – In the feedback phase, various kinds of information can
be displayed relating to the computation that has been performed in the
transformation phase.

(a) Invoking the pretty-printer will produce the file

source.tgt.transformed.pp. The contents of this file is formatted text
and can be displayed in the upper-right pane of the GUI. The pretty-
printer for HATS is essentially an abstract pretty-printer in which for-
matting is essentially inserted into BNF-style grammar productions and
some control over formatting rule selection is provided. Other transfor-
mation systems also provide this kind of functionality. For example, the
XT bundle includes a generic pretty-printing tool (GPP) in which a lan-
guage called Box is used to describe the intended layout of text [8].

(b) Invoking the tree viewer will display the parse tree of the se-

lected file (e.g., source.tgt.parsed.transformed) in graphical form
in the upper-right pane of the GUI. Portions of the parse tree can be
collapsed, expanded, and selected. Simultaneously, the leaves of the ex-
panded portion of the tree are displayed in textual form with highlighted
text denoting selected portions of the tree.

(c) Invoking the trace viewer enables the user to step through the

execution of transformations that have been designated to be traced.
The designation of which rules to trace can be specified within a TL
program.

3 The HATS Parser Generator

HATS provides users with a GLR-style parser generator. From a technical stand-
point, the HATS parser generator is not a true GLR parser because it cannot
detect (and handle) nonterminating derivation sequences. Section 7.1 gives a
more detailed discussion of parsing technology and its role in support of trans-
formation.

The HATS parser generator allows users to describe context-free grammars
using an extended-BNF notation. The extended-BNF notation supported can
be thought of as a merging of BNF notation with regular expression notation.
Figure 3 gives an overview of the meta-symbols supported by the HATS parser
generator.

Program Transformation Using HATS 1.84 383

Symbol Description
::= The nonterminal definition operator.
. The production terminator.
<id> Nonterminal symbols should be enclosed in pointy-brackets.
“token” Tokens should be decorated with (i.e., enclosed in) double quotes.
domain vars Terminals denoting domain variables (e.g., id) are not decorated.
| The alternate choice operator.
[] Portions of a production enclosed in square brackets are optional.
() The constant epsilon.
() Used only for grouping just like in regular expression notation.
()∗ The Kleene-closure of the portion enclosed in parens. Note that this

will create trees of varying degree and is not particularly useful
when using first-order matching.

{ } Equivalent to (...)∗.
(* *) Comments are similar to ML and may span multiple lines. However,

comments may not be nested.

Fig. 3. Meta-symbols of the extended-BNF syntax supported by the HATS parser

3.1 Precedence and Associativity

The HATS parser generator also supports precedence and associativity rules as
a mechanism for disambiguating two or more productions. The dangling else3

problem is a classic example of a situation that is typically resolved using prece-
dence rules.

There are two types of associativity: LEFT ASSOC and RIGHT ASSOC.
LEFT ASSOC indicates that the operator is left-associative. RIGHT ASSOC
indicates that the operator is right-associative. A BNF grammar can begin with
zero or more associativity rules. An associativity rule is of the form:

%assoc typequoted token list. (1)

where assoc type is one of the associativity types mentioned in the previous para-
graph, and quoted token list is a list of one or more tokens separated by blanks.
In this context, a token is a string enclosed in quotes. Within an associativity
rule all tokens have the same precedence.

Given two associative rule declarations r1 and r2, if r1 lexically occurs before
r2, then the tokens in r1 will have a lower precedence than the tokens in r2. All
tokens within a given rule have the same precedence.

%LEFT ASSOC “+” “-” “L1” . Lower precedence
%LEFT ASSOC “*” “/” “L2” . Higher precedence

Each grammar production can have an optional precedence attribute as a
suffix. The general form is as follows:
3 The dangling else problem concerns itself with determining with which if construct

an else fragment should associated.

384 V. Winter and J. Beranek

nonterm ::= alpha[%PRECtoken]. (2)

where token belongs to the quoted token list of some associative rule declara-
tion. For a detailed example of how to construct grammars having associativity
and precedence rules download the type checking demo domain from the HATS
homepage [9].

4 TL: The Basics

This section gives a brief overview of TL, a labelled conditional (higher-order)
rewriting language supporting a variety of strategic operators and generic traver-
sals. For a more detailed discussion of TL see [24]. In TL, parse trees are the
“objects” that TL programs transform. Rewrite rules have the following form:

r : lhs → sn [if condition] (3)

In this example, r denotes the label of the rule, lhs denotes a pattern describ-
ing a tree structure, sn denotes a strategic expression whose evaluation yields
a strategy of order n, and if condition denotes an optional Boolean-valued con-
dition consisting of one or more match expressions constructed using Boolean
connectives.

A pattern is a notation for describing the parse tree structures that are being
manipulated. This notation includes typed variables that are quantified over
specific tree structure domains, e.g., stmt� id1 = 5 � is a tree with root stmt
and leaves id1, =, and 5. In this context, the subscripted variable id1 denotes
a typed variable quantified over the domain of all trees having id as their root
node. In general, a pattern of the form A�α′� is structurally valid if and only if
the derivation A

+⇒ α is possible according to the grammar and α′ is obtained
from α by subscripting all nonterminals occurring in α.

A strategic expression is an expression whose evaluation yields a strategy hav-
ing a particular order. In the framework of TL, a pattern is considered to be a
strategy of order 0. A rewrite rule that transforms its input tree into another tree
is considered to be a strategy of order 1 (i.e., a first-order rule). Let s1 denote
a first-order strategy. Then the rule lhs → s1 denotes a second-order strategy
(e.g., s2), and so on.

A match expression is a first-order match between two patterns. Let t1 de-
note a pattern, possibly non-ground, and let t2 denote a ground pattern. The
expression t1 � t2 denotes a match expression and evaluates to true if and only
if a substitution σ can be constructed so that σ(t1) = t2. One or more match
expressions can be combined using the Boolean connectives { and, or, not } to
form the condition of a rewrite rule.

4.1 Combinators

In TL, a variety of combinators can be used to compose conditional rewrite rules
into strategies. First-order strategies define controlled sequences of rewrites and

Program Transformation Using HATS 1.84 385

can be applied to tree structures to produce other tree structures. Thus, a first-
order strategy can be viewed as a function that rewrites or transforms one tree
into another. Because of the important role played by strategies, transformation
languages of this kind are also referred to as strategic programming languages. In
this article we will use the terms strategy and transformation interchangeably.
Figure 4 gives an overview of some of the combinator primitives provided by TL.

There are a number of combinators that have been identified as being generally
useful in strategic programming [12]. Two widely used combinators are: (1) left-
to-right sequential composition (<;), and (2) left-biased conditional composition
(<+). Let s1 and s2 denote two strategies. The expression s1 <; s2 denotes the
left-to-right sequential composition of s1 and s2. When applied to a tree t, this
strategy will first apply s1 to t and then apply s2 to the result. In contrast, the
expression s1 <+ s2 denotes the left-biased conditional composition of s1 and
s2. When applied to a tree t, the application of s1 to t is attempted, and if that
succeeds, the result is returned; otherwise, the result of the application of s2 to
t is returned. In TL, if neither s1 or s2 apply then t is returned unchanged.

sn
1 <; sn

2 Left-to-right sequential composition.
sn
1 ;> sn

2 Right-to-left sequential composition.
sn
1 <+ sn

2 Left-biased conditional composition.
sn
1 +> s2 Right-biased conditional composition.

transient(sn) A unary combinator restricting the
application of sn.

hide(sn) A unary combinator that hides the
application of sn from an enclosing
conditional composition combinator.

Precedence Associativity
(lowest) +> right

<+ left
;> right

(highest) <; left

Fig. 4. The basic combinators of TL

The transient Combinator. The transient combinator is a very special com-
binator in TL. This combinator restricts a strategy so that it may be applied
at most once. The “at most once” property is the hallmark of the transient
combinator.

Transients open the door to self-modifying strategies. When using a traversal
to apply a self-modifying strategy to a term, a different strategy may be applied
to every term encountered during a traversal. For example, let int1 → int�2�
denote a rule that rewrites an arbitrary integer to the value 2. If such a rule is
applied to a term in a top-down fashion all of the integers in the term will be
rewritten to 2. Now consider the following self-modifying transient strategy:

transient(int1 → int�1�) <+
transient(int1 → int�2�) <+
transient(int1 → int�3�)

When applied to a term in a top-down fashion, this strategy will rewrite the
first integer encountered to 1, the second integer encountered to 2, and the third
integer encountered to 3. All other integers will remain unchanged.

386 V. Winter and J. Beranek

The hide Combinator. The notion of choosing the application of one rule over
another is central to strategic programming. An essential component of both the
left-biased and right-biased conditional composition combinators is the ability
to “observe” the behavior of strategy application (i.e., whether the application
of a strategy to a term has succeeded or failed). Let us consider the introduction
of a unary combinator called hide into a strategic framework supporting left-
biased and right-biased conditional composition combinators. In this context, the
purpose of hide is to prevent the application of a strategy from being observed.
As a consequence a strategy of the form hide(s1) <+ s2 will always attempt
to apply s1 followed by s2, in effect undoing the discriminatory nature of the
conditional composition combinator.

The strategic combinator hide provides an interesting extension to the frame-
work of TL. This unary combinator restricts the observability of strategy ap-
plication from the perspective of the conditional composition combinators. In
particular, the hide combinator satisfies the following properties:

hide(s1) <+ s2 ≡ s1 <; s2
s1 +> hide(s2) ≡ s1 ;> s2

At first glance, it appears as if the hide combinator does not add anything new
to the standard combinator set. However, section 6 gives an example showing
how hide can be effectively utilized. We would like to point out that, although it
is not shown in the example given in Section 6, the hide combinator is also very
useful in conjunction with the transient combinator and higher-order strategies.

4.2 Traversals

Combinators are a control mechanism that define how a collection of rules should
be applied to a given tree. They do not define where (i.e., to which trees) a
collection of rules should be applied. This dimension of transformation can be
defined by traversal mechanisms.

A generic traversal can be thought of as a curried function parameterized on
a strategy s and a tree t. As the name suggests, a generic traversal will traverse
its input tree structure t and apply its input strategy s at one or more points
along the traversal. Two common traversals are a top-down left-to-right traversal
which TL denotes by the symbol TDL, and a bottom-up left-to-right traversal
which TL denotes by the symbol BUL. From a computational perspective, a TDL
traversal can be understood as corresponding roughly to non-strict (outside-in)
evaluation while the traversal BUL corresponds roughly to strict (inside-out)
evaluation.

The generic tree traversal is an abstraction that is virtually essential in order
for transformational ideas to scale to real-world problems (i.e., the transforma-
tion of trees whose structures are derived from large grammars). TL provides a
rich mechanism (not discussed in this paper) for defining generic and pseudo-
generic tree traversals. TL also supports the definition and use of higher-order
generic traversals. Informally, one can think of a higher-order traversal as mech-
anism for dynamically collecting a number of strategies and combining them to

Program Transformation Using HATS 1.84 387

form a new strategy. A common higher-order traversal is one that traverses a tree
in a BUL fashion, applies a higher-order strategy sn+1, and composes the result-
ing order-n strategies using the <; combinator. In TL, this traversal is denoted
by the identifer lseq bul. In contrast, rcond tdl denotes a higher-order generic
traversal that traverses a tree in a TDL fashion, applies a higher-order strategy
sn+1 and composes the resulting order-n strategies using the +> combinator.

5 Example I: A Verilog Synthesis Fragment

In this example, we look at how transformation can be used to realize a fragment
of a logic synthesis system for a hardware description language called Verilog,
whose syntax has a C-like flavor. We will look at how the three algebraic laws
shown in Figure 5 can be effectively implemented in TL. These algebraic laws
were initially presented in [10] and have been used by Iyoda et al [11] in the
abstract design of a synthesis system for a small subset of Verilog.

Law 1 (completion). (x, y, ... := e, f, ...) = (x, y, ..., z := e, f, ..., z)

Law 2 (reordering). (...y, z... := ...f, g...) = (...z, y... := ...g, f...)

Law 3 (propagation). (
→
v := g;

→
v := h(

→
v)) = (

→
v := h(g))

Fig. 5. Three Laws of Synthesis

An important thing to note about Laws 2 and 3 is that they cannot be di-
rectly implemented as transformations. Law 2 requires that ellipsis be matched
so that the number of variables matched by ellipsis on the left-hand side of an
assignment is equal to the number of expressions matched by the correspond-
ing ellipsis on the right-hand side of the assignment. Such matching constraints
lie beyond traditional associative matching. Law 3 describes constant propaga-
tion over sequentially composed assignment statements. Though its intention is
clear, in the form stated, Law 3 does not directly map onto the syntax of paral-
lel assignment statements since the right-hand side of a parallel assignment is a
comma-separated list of expressions and not a function (e.g., h) as is suggested
in Law 3. In spite of these issues, we will show that in the higher-order frame-
work of TL it is possible to express the intent of Laws 2 and 3 using just two
rewrite rules!

The approach to logic synthesis described here consists of passing Verilog
modules, which are roughly the equivalent of C functions, through two canonical
forms. The first canonical form is achieved when all assignments in a module are
total. Let m denote a Verilog module and let

→
v denote a vector consisting of all

variables that occur on the left-hand side of an assignment in m. An assignment
is total if it well-formed and has the form:

→
v =

→
e . A Verilog module is said to be

in Total Form if all its assignment statements are total.

388 V. Winter and J. Beranek

The second canonical form consists of propagating the bindings resulting from
assignments over assignment sequences. This transformation is justified by Law
2 and Law 3. The following example shows how a simple sequence of Verilog
assignments can be transformed into parallel normal form.

Canonical Forms
Input Total Form Parallel Normal Form

x = e1;
=⇒

Law 1 x,y,z = e1,y,z;
=⇒

Laws 2&3 x,y,z = e1, e2, e3
y = e2; y,x,z = e2,x,z;
z = e3; z,x,y = e3,x,y;

5.1 Implementation

The rules and strategies needed to place the modules in a Verilog program into
parallel normal form (PNF) are shown in Figure 7 and the relevant portion of
the Verilog syntax is shown in Figure 6. The strategy that achieves the trans-
formation to parallel normal form is labelled PNF and is defined as follows:

PNF: BUL{Prep} <; BUL{Law1} <; BUL{Law3} (4)

When applied to a Verilog program pin the strategy PNF will first traverse
pin using a BUL traversal and apply the strategy Prep. Prep rewrites blocking
assignments to fork/join blocks, which is what we use to model parallel assign-
ments. For the remainder of this discussion, we will refer to such fork/join blocks
as multi-assignments to emphasize how they are being used in this context.

Law1 makes all multi-assignments in a module total. Thus, the result of the
traversal BUL{Law1} is a program ptotal that is in Total Form. Next ptotal is
traversed, again using a BUL traversal, and the strategy Law3 is applied. The
result is a program ppnf that is in parallel normal form.

In Law1, the strategic expression lseq bul{make total}[modulee0] will traverse
the object tree modulee0, apply the higher-order rule make total to all subtrees
and compose the results using the <; combinator. The rule make total is a higher-
order rule that produces an instance of the strategy transient(check[id1] <+
add[id1]) for each (blocking) assignment encountered in a given module. What
distinguishes one instance from another is the value bound to id1. For example,
if id1 is instantiated with the variable x then the following strategy is created:

transient (
stmtS� x = E2; stmtS3 � → stmtS� x = E2; stmtS3 �
<+
stmtS� � → stmtS� x = x; �

)

The semantics of an instance of the strategy transient(check[id1] <+ add[id1])
can be best understood in the context of its application (via a traversal) to the
sequence of statements contained within a multi-assignment. When applied to

Program Transformation Using HATS 1.84 389

modulee ::= module module id “;” module item 0orMore endmodule
module item 0orMore ::= module item module item 0orMore | ()
module item ::= continuous assign | always stmt | ...
continuous assign ::= “assign” lvalue “=” E “;”
always stmt ::= “always” stmt
stmtS ::= stmt stmtS | ()
stmt or null ::= stmt | “;”
stmt ::= blocking assignment “;” | seq block | par block | ...
seq block ::= “begin” stmtS “end”
par block ::= “fork” stmtS “join”
blocking assignment ::= lvalue “=” E
...

Fig. 6. A wide-spectrum language fragment containing a small subset of Verilog

PNF: BUL{Prep} <; BUL{Law1} <; BUL{Law3 }

Prep: stmt� blocking assignment1; � → stmt� fork blocking assignment1; join �

Law1: modulee0 → Special TD{ lseq bul{ make total }[modulee0] }(modulee0)

make total: blocking assignment� id1 = E1 � → transient(check[id1] <+ add[id1])
check: id1 → stmtS� id1 = E2; stmtS3 � → stmtS� id1 = E2; stmtS3 �
add: id1 → stmtS� � → stmtS� id1 = id1; �

Law3: stmtS� par block1 par block2 �
→
BUL{lseq tdl{propagate}[par block1]}(stmtS� par block2 �)

propagate: blocking assignment� id1 = expr1 � → expr� id1 � → expr1

Fig. 7. Transformations implementing Parallel Normal Form(PNF)

the assignments in a multi-assignment, the rewrite rule derived from check[id1]
will apply if id1 occurs on the left-hand side of an assignment within the multi-
assignment block. If this happens, the rule will fire and the transient combinator
will remove the instance of check[id1] <+ add[id1]. However, if check[id1] never
applies, the traversal will proceed to the end of the multi-assignment at which
point add[id1] will cause the identity assignment id1 = id1 to be added. This
application will again cause the transient combinator to remove the instance of
check[id1] <+ add[id1]. Summarizing then, an instance of transient(check[id1]
<+ add[id1]) will leave a multi-assignment unchanged if the multi-assignment
contains an assignment to id1; otherwise transient(check[id1] <+ add[id1]) will
add the assignment id1 = id1 to the multi-assignment.

In this first transformational phase, what remains is to process each multi-
assignment statement within a module in the manner just described. This can

390 V. Winter and J. Beranek

be accomplished with the help of a special purpose traversal called Special TD
that has been written especially for this problem domain. What makes the
traversal special is that it enables each multi-assignment in a module to re-
ceive its own individual copy of the strategy resulting from the evaluation of
lseq bul{ make total}[modulee0]. This is important because, transient(check[id1]
<+ add[id1]) can only be applied once. However, we want it to be applied once
to every multi-assignment occurring in a module. The Special TD traversal ac-
complishes this and, though not shown, can be defined in one line of code using
standard TL primitives.

Law3 takes two multi-assignment statements, par block1 and par block2, and
propagates the assignments from the first multi-assignment to the second. This
is accomplished with the help of the higher-order rewrite rule propagate. When
applied to a blocking assignment of the form id1 = expr1, propagate will pro-
duce the first-order rule expr�id1� → expr1 that rewrites occurrences of id1 in
expressions to expr1. The strategic expression lseq bul{propagate}[par block1]
creates and collects propagating rules for all assignments in par block1 which
are then applied to par block2 using the traversal BUL. We would like to con-
clude this example with the following remarks: (1) the fact that Law3 is applied
in a bottom-up fashion in PNF assures that all sequences of multi-assignments
will be collapsed into a single multi-assignment statement, and (2) Law 2 is never
needed to transform a Verilog program into parallel normal form.

6 Example II: A Java Class Loader Fragment

In this section, we take a look at how the hide combinator can be effectively
used to solve a problem encountered in Java class loading. In particular, we will
take a closer look at class loading as it relates to the Sandia Secure Processor
(SSP) [22]. The SSP is a hardware implementation of a significant subset of
the Java Virtual Machine whose application domain extends to embedded high
consequence systems. Class loading for the SSP is performed statically (prior
to runtime) and preserves the conceptual structure of class files. These proper-
ties make the SSP class loading problem well-suited to a transformation-based
solution.

To date, several full class loader designs have been implemented for the San-
dia Secure Processor (SSP) [26] using the HATS system. In the discussion that
follows, we join the transformation process of one such design at a time when
a significant portion of the class loading transformation has already been com-
pleted. In particular, we assume that symbolic resolution has taken place, and
the list of Java class files comprising the application has been partially ordered
by subtype as follows: Let c1 c2 ... cn denote the partially ordered list of class
files. Let ≺ denote the subtype relation on classes, and let ⇒ denote logical
implication4. The partial order of class files satisfies the following property:

cj ≺ ci ⇒ i < j (5)

4 We do not wish to overload the → symbol, whose use we reserve for rewriting.

Program Transformation Using HATS 1.84 391

This implies that, when inspecting the class list from left-to-right (e.g., via a top-
down left-to-right traversal), a parent class will always be encountered before any
of its children.

The transformational goal at this stage is to further resolve symbolic references
to fields so that all symbolic field references satisfy the following property.

Static Binding Property: The class component in a symbolic field
reference corresponds to the class in which the field has been declared.

The reason why the static binding property is not universally true already
is that Java makes one exception to its essentially static binding of fields. This
exception arises when a reference is made to an inherited field. For example,
suppose we have situation where (1) an integer field x is declared in class A, (2)
the class B extends A, i.e., B ≺ A, (3) myB is an instance of B, and (4) C is
the class containing a reference to myB.x. In this case, the Java compiler will
produce a class file for C whose constant pool will have a constant fieldref info
entry corresponding to the reference myB.x. Standard symbolic resolution of
this entry will yield:

constant fieldref info�B x I� (6)

This term represents a symbolic reference to the integer variable x belonging
to the class B (even though x is not declared in B) which violates the static
binding property. In this example, we would like the symbolic resolution of the
constant pool entry corresponding to myB.x to yield:

constant fieldref info�A x I� (7)

For a typical JVM, this extended-resolution step is performed at runtime by a
dynamic search up the inheritance chain. However, the operating assumptions
of the SSP enables this runtime search to be avoided by an extension to the
symbolic resolution algorithm. The strategy shown in Figure 8 implements this
extended-resolution step and produces a class file list in which all symbolic ref-
erences to fields satisfy the static binding property.

When applied to a Java application hierarchy (app0) the strategy x res first
evaluates the strategic expression rcond tdl{sbind}[app0]. This evaluation results
in a first-order strategy that is then applied to app0, using the traversal TDL,
to achieve the static binding property. The workhorse of the extended-resolution
transformation is the second-order strategy sbind that, for every class it is ap-
plied to, will output a strategy that abstractly has the form:

hide(lift-class-associated-with-field) +> check-for-declaration (8)

Note that the control idea in the above strategy is somewhat similar to the
transient-check-add strategy used in the Verilog synthesis example.

Within x res, the evaluation of the strategic expression rcond tdl{sbind}[app0]
will visit classes in the partially ordered class list in a top-down left-to-right
(tdl) fashion, apply the sbind strategy to each class encountered, and compose

392 V. Winter and J. Beranek

x res : app0 → TDL{ rcond tdl{sbind}[app0] }(app0)

sbind: classfile� cp1 classthis classsuper fields1 mt1 methods1�
→

(hide(lift[classthis][classsuper]) +> rcond tdl{collect decs[classthis]}[fields1])

lift: classthis →
classsuper →

constant fieldref info� classthis name1 descriptor1�
→
constant fieldref info� classsuper name1 descriptor1�)

collect decs: classthis →
field info� access flags1 name1 descriptor1 � →

constant fieldref info� classthis name1 descriptor1�
→
constant fieldref info� classthis name1 descriptor1�

Fig. 8. An extended-resolution step ensuring the static binding property

the resulting strategy instances using the +> combinator. The top-down left-
to-right nature of the rcond tdl traversal assures that in the resulting strategy,
superclass strategies will be placed to the left of subclass strategies. The +>
combinator used by rcond tdl will compose (sub)strategies in such a fashion
that an overall strategy will be created whose application will proceed from
right-to-left, meaning that strategies associated with subclasses will be applied
before the strategies of their corresponding superclasses.

In the strategy produced by sbind, the portion of the strategy abstractly de-
noted in (8) by check-for-declaration results from the evaluation of the strategic
expression:

rcond tdl{collect decs[classthis]}[fields1] (9)

In this expression, the strategy collect decs is applied to the term classthis, which
is the symbolic reference of the class that is currently being processed. The strat-
egy resulting from this application is then applied to the fields section (fields1)
of the current class file using the traversal rcond tdl. At this stage, terms in
the fields section have the form field info� access flags1 name1 descriptor1 �.
The result is a strategy that applies an identity transformation to constant
pool entries that satisfy the static binding property. Notice that, once such an
identity transformation is applied, the application of the strategy to this entry
is completed (since the strategy is constructed entirely using the conditional
composition combinator +>). For entries that do not satisfy the static binding
property none of the identity transformations associated with the current class
apply an so application continues until an appropriate instance of the strategy

Program Transformation Using HATS 1.84 393

hide(lift [classthis][classsuper]) is encountered. This strategy rewrites the class
of the symbolic field reference to its superclass. Since the strategy is enclosed
in a hide combinator its application does not trigger completion of the overall
strategy and application continues. At this time, the symbolic reference may
satisfy the static binding property. If this is the case, then an identity transfor-
mation (derived from one of the field declarations of the superclass) will apply
after which the application terminates. Otherwise another lift is applied and the
process repeats.

7 Related Work

This section gives a brief overview of parsing technology and briefly discusses
some other approaches to transformation.

7.1 Parsing: From Strings to Terms

Parsing technology is a key enabler of transformation. In this context, a parser
is seen as a function that is given a flat (i.e., one dimensional) string as its input
and returns a (two dimensional) structure called a term or tree as its output.
The structural elements in a term provide crucial information against which
transformations are written. Without this structure, transformation degenerates
to little more than an automated version of the “cut and paste” capability found
in text editors.

A parser generator is able to automatically generate a parser for given gram-
mar. This capability enables the development of language independent transfor-
mation systems. The ability to deal with ambiguity represents a limiting aspect
of parsers and parser generators. Typical LALR(1) parser technology is effective
for parsing languages provided all derivations can be disambiguated by looking
ahead one token in the input. LALR(1) parsers are widely used because of their
efficiency and are produced by the YACC and GNU Bison compiler-compilers.

A drawback of LALR(1) parsers [17] is that they can only effectively han-
dle a subset of the set of unambiguous context-free grammars (i.e., not every
context-free language has an LALR(1) grammar). It turns out that this restric-
tion is significant in the realm of language independent transformation. As a
result, more powerful parsing algorithms are typically employed by transforma-
tion systems. At the present time, the generalized LR (GLR) parsing algorithm
is almost universally agreed upon as being necessary in order to seriously con-
sider language independent transformation. A number of GLR parser generators
are freely available. Elkhound [16] and Harmonia [1] are two systems that pro-
vide GLR parsing capabilities. In both of these systems, a grammar is defined
using an EBNF syntax. In the realm of transformation, perhaps the most widely
known and freely available GLR-based parser generator is that provided by the
Syntax Definition Formalism (SDF) [20] [19]. SDF is a realization of a scanner-
less generalized LR parser (SGLR) supporting declarative disambiguation rules.
Examples of disambiguation rules include rules the resolve ambiguities resulting
from associativity and precedence of mathematical operators. SDF also supports

394 V. Winter and J. Beranek

modularization of grammars that enable grammars to be factored. Grammar
modules can also be composed and thus reused.

7.2 Other Approaches to Transformation

In a classical setting, a strategic programming system can be viewed as a rewrit-
ing system in which constructs controlling rule application have first-class status.
From a practical perspective, explicit control over rule application is essential
when dealing with rule sets that are neither confluent nor terminating. Typically,
it is the presence of explicit control constructs (e.g., sequential composition of
rules, generic term traversals, etc.) that distinguishes a transformation system
from a pure rewriting system.

ELAN [3] is a first-order strategic programming system in which rules can
be grouped into labelled rule bases. An efficient AC-matching algorithm is used
to control the application of such rule bases to terms. The consequence of AC
matching and labelled rule bases is that the application of a rule to a specific
term may yield multiple results. This form of non-determinism surrounding rule
base application is central to ELAN and gives the system a deductive/declarative
flavor. The ρ-calculus [7] provides the semantic foundation for ELAN [6].

Stratego [21] is a first-order strategic programming system whose control
constructs include a wide range of combinators and one-layer traversals. Stratego
further extends this control framework with scoped dynamic rewrite rules [15].
Though their semantics are slightly different, scoped dynamic rewrite rules can
be seen as a first-order cousin of the higher-order rules of TL discussed in this
article. Stratego also provides access to a number of low-level abstractions (e.g.,
match and build) which can be composed to define a variety of transformational
ideas. As such, it provides a foundation upon which other kinds of transformation
systems can be built.

ASF+SDF [2] is a first-order rewriting framework in which an extended
form of matching provides the ability to perform associative matching on list
structures. Recently, the ASF+SDF has been extended so that one can combine
parameterized rewrite rules with a fixed set of generic traversals [18].

Strafunski is a Haskell-based system in which transformation is approached
from a functional perspective. Monads are used to propagate information and
traversals are described in terms of catamorphisms such as fold b ⊕. This connec-
tion between catamorphisms and strategic driven term traversal was first made
in [14].

8 Conclusion

The ever increasing complexity of software systems has presented transformation-
based approaches to software manipulation with unique challenges. Significant
progress remains to be made with respect to problems relating to scale and reuse.
Orthogonal to these issues, a ubiquitous theme in transformation concerns itself
with bringing together data from unrelated portions of a term. Higher-order
transformations provide an abstraction capable of distributing data throughout a

Program Transformation Using HATS 1.84 395

term structure. However, we believe the story is far from over. HATS represents a
environment in which transformational ideas can be explored. HATS gives plenty
of feedback to users and the interpreted nature of the HATS transformation
engine lends itself to modification allowing new transformational constructs and
abstractions to be added to HATS with relatively reasonable effort. The hope is
that this will encourage continued exploration and experimentation in the area
of transformation-based design and development.

References

1. A. Begel, M. Boshernitsan, and S. L. Graham. Transformational generation of
language plug-ins in the harmonia framework. Technical Report CSD-05-1370,
University of California, Berkeley, California, January 2005.

2. J. A. Bergstra. Algebraic specification. ACM Press, New York, NY, USA, 1989.
3. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An

overview of elan. Electr. Notes Theor. Comput. Sci., 15, 1998.
4. J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR Program Transfor-

mation System: Simplifying the Development of Numerical Software. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools for Scientific
Computing, pages 353–372. Birkhäuser Boston, Inc., 1997.

5. J. M. Boyle and M. N. Muralidharan. Program Reusability through Program
Transformation. In IEEE Transactions on Software Engineering, volume 10:5,
pages 574–588, September 1984.

6. Cirstea, Horatiu and Kirchner, Claude. The rewriting calculus as a semantics of
ELAN. In J. Hsiang and A. Ohori, editors, 4th Asian Computing Science Confer-
ence, volume 1538 of Lecture Notes in Computer Science, pages 8–10, Manila, The
Philippines, Dec. 1998. Springer-Verlag.

7. Cirstea, Horatiu and Kirchner, Claude. An introduction to the rewriting calculus.
Research Report RR-3818, INRIA, Dec. 1999.

8. M. de Jonge. A pretty-printer for every occasion, 2000.
9. HATS. http://faculty.ist.unomaha.edu/winter/hats-uno/hatsweb/index.html.

10. J. He and C. A. R. Hoare. Unifying theories of programming. Prentice Hall Inter-
national Series in Comptuer Science, 1998.

11. J. Kyoda and H. Jifeng. Towards an Algebraic Synthesis of Verilog. Technical
Report UNU/IIST Report No. 218, The United Nations University, July 2001.

12. R. Lämmel, E. Visser, and J. Visser. The Essence of Strategic Programming. 18
p.; Draft; Available at http://www.cwi.nl/∼ralf, Oct.15 2002.

13. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl
and P. Wadler, editors, Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 of LNCS, pages 357–375. Springer-Verlag, Jan. 2003.

14. R. Lämmel, J. Visser, and J. Kort. Dealing with Large Bananas. In J. Jeuring,
editor, Proceedings of WGP’2000, Technical Report, Universiteit Utrecht, pages
46–59, July 2000.

15. K. O. M. Bravenboer, A. van Dam and E. Visser. Program transformation with
scoped dynamic rewrite rules. Technical Report UU-CS-2005-005, Institute of In-
formation and Computing Sciences, Utrecht University, 2005.

16. S. McPeak. Elkhound: A fast, practial glr parser generator. Technical Report
UCB/CSD-2-1214, University of California, Berkeley, California, December 2002.

396 V. Winter and J. Beranek

17. M. van den Brand, M. Sellink, and C. Verhoef. Current parsing techniques in
software renovation considered harmful. In In Proceedings of the 6th Interna-
tional Workshop on Program Comprehension, IWPC’98, pages 108–117, Ischia,
Italy, 1998.

18. M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with traversal
functions. ACM Trans. Softw. Eng. Methodol., 12(2):152–190, 2003.

19. M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In N. Horspool, editor, Compiler
Construction (CC’02), volume 2304 of Lecture Notes in Computer Science, pages
143–158, Grenoble, France, April 2002. Springer-Verlag.

20. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

21. E. Visser, Z. el Abidine Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. In ICFP ’98: Proc. of the third ACM SIGPLAN inter-
national conference on Functional programming, pages 13–26. ACM Press, 1998.

22. G. L. Wickstrom, J. Davis, S. E. Morrison, S. Roach, and V. L. Winter. The SSP:
An example of high-assurance system engineering. In HASE 2004: The 8th IEEE
International Symposium on High Assurance Systems Engineering, 2004.

23. V. Winter. Strategy Construction in the Higher-Order Framework of TL. Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 124, 2004.

24. V. Winter and M. Subramaniam. Dynamic Strategies, Transient Strategies, and
the Distributed Data Problem. Science of Computer Programming (Special Issue
on Program Transformation), 52:165–212, 2004.

25. V. L. Winter. An overview of hats: a language independent high assurance trans-
formation system. In In Proc. of IEEE Symposium on Application-Specific Systems
and Software Engineering and Technology (ASSET)., pages 222 – 229, March 1999.

26. V. L. Winter, J. Beranek, A. Mametjanov, F. Fraij, S. Roach, and G. Wickstrom. A
Transformational Overview of the Core Functionality of an Abstract Class Loader
for the SSP. In Tenth IEEE International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2005), 2005.

Part III

Participants’ Contributions

Using Java CSP Solvers in the Automated Analyses of
Feature Models�

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos
University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain
{benavides, sergio, trinidad, aruiz}@tdg.lsi.us.es

Abstract. Feature Models are used in different stages of software development
and are recognized to be an important asset in model transformation techniques
and software product line development. The automated analysis of feature mod-
els is being recognized as one of the key challenges for automated software de-
velopment in the context of Software Product Lines. In our previous work we
explained how a feature model can be transformed into a constraint satisfaction
problem. However cardinalities were not considered. In this paper we present
how a cardinality-based feature model can be also translated into a constraint
satisfaction problem. In that connection, it is possible to use off-the-shelf tools to
automatically accomplish several tasks such as calculating the number of possible
feature configurations and detecting possible conflicts. In addition, we present a
performance test between two off-the-shelf Java constraint solvers. To the best of
our knowledge, this is the first time a performance test is presented using solvers
for feature modelling proposes

1 Introduction

Throughout the years, software reuse and quality have been two constants aims in soft-
ware development. Although significant progress has been made in programming lan-
guages, methodologies and so forth, the problem seems to remain. Software Product
Line (SPL) development [8] is an approach to develop software systems in a system-
atic way that intends to solve these problems. Roughly speaking, an SPL can be de-
fined as a set of software products that share a common set of features. Therefore, an
SPL approach could be useful for organizations that are product–oriented rather than
project–oriented [7]. That is, organizations that operate in a particular market segment.

SPL engineering consists of two main activities: domain engineering (also called
core asset development) and application engineering (also called product development).
These two activities are complementary and provide feedback to each other. Domain
engineering deals with core assets production, that is, the pieces of the products to
be shared by all SPL products. On the other hand, application engineering deals with
individual system production.

� This work was partially supported by the Spanish Science and Education Ministry (MEC)
under contracts TIC2003-02737-C02-01 (AgilWeb).

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 399–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 D. Benavides et al.

Feature Analysis [17] is an important task of domain engineering and is expected to
produce a Feature Model (FM) as its main output. A FM can be defined as a compact
representation of all possible products of an SPL. Furthermore, it is commonly accepted
that FMs can be used in different stages of an SPL effort in order to produce other assets
such as requirements documents [15, 16], portlets–based applications [11, 12] or even
pieces of code [3, 9, 20]. Hence, FM becomes an important focus of research in the field
of model transformation.

Automated analyses of FMs are an important challenge in SPL [1, 2]. In a previous
work [4, 5] we presented how to transform a FM (without considering cardinalities)
into a Constraint Satisfaction Problem (CSP). In that way, it is possible to use off–the–
shelf constraint satisfaction solvers to automatically accomplish several tasks such as
calculating the number of possible configurations and detecting possible conflicts. The
contribution of this paper is twofold: i) to explain how a FM with cardinalities can be
translated into a CSP and ii) to show the result of a performance test between two off
the shelf Java constraint solvers: JaCoP and Choco. To the best of our knowledge, this
is the first test that measures the performance of constraint solvers in the context of
feature analyses.

The remainder of the paper is structured as follows: in Section 2 we introduce feature
models. In Section 3 constraint programming is outlined and details on how to translate
a FM into a CSP are presented. Section 4 focuses on the results of the experiment.
Finally we summarize our conclusions and describe our future work in Section 5.

2 Feature Models

A Feature Model (FM) is a compact representation of all possible products of an SPL.
FMs are used to model a set of software systems in terms of features and relations
among them. Designing a software system in terms of features is more natural than do-
ing it in terms of objects or classes. Consequently, a software system will be composed
of a set of features.

Since FMs were first presented in 1990 [17] there have been many publications and
proposals to extend, improve and modify the original FM diagram. However, despite
years of research, there is no consensus on a FM notation. Although it would be desir-
able to have a common notation, it is out of the scope of this paper to give yet another
FM notation. Therefore, we use the one proposed by Czarnecki [10] that was formalized
as a context free grammar and integrates some previous extensions.

A FM is basically a tree structure with dependencies between features. Figure 1
represents the general metamodel of a FM (this metamodel was presented in [6]). Like-
wise, Figure 2 represents a FM of the James Project [13]. James is a collaborative
web based system that we modeled in terms of features and can be a clear example
of an SPL. Some products can be derived from the FM on Figure 2. Having a web
service interface (WSInterface) is optional while it is mandatory to have user manage-
ment (UserManagement), at least one module (Modules) and the core of the system
(Core).

Using CSP Solvers for Analysing Feature Models 401

FeatureModel

GroupedSolitarySetBinary

Relations

Root
1

0.
.*

Feature0..*

1 2..*

Cardinality 1..*1..*

ExcludesDepends

Constraint
0..*

Fig. 1. CFM meta model

A FM is composed of a root (JAMES in Figure 2) and an optional set of
constraints (they refer to global constraints: depends and excludes; R9 and R10 in
Figure 2).

A root is composed of an optional set of relations. Relations can be of two different
types: binary relations which include mandatory (e.g. R1), optional (e.g. R2) and
cardinality–based relations (e.g. R4) or set relations (e.g.R7).

A feature can be of two different types and is composed of zero or more rela-
tions. A binary relation is composed of one and only one solitary feature which is
the child feature since the parent feature is the one that has this relation (Core or
UserManagement are examples of solitary features); A set relation is composed of
at least two grouped features (Calendar,DB or PDA are examples of grouped fea-
tures). In addition, a solitary feature and set relations comprise one or more cardinali-
ties. Note that in the graphical representation it is possible not to represent a cardinality
in set relations although in fact that means that the cardinality is 〈1-1〉. Likewise, there
are graphical representations for commonly used cardinalities of solitary features like
[1..1] and [0..1] (see Figure 2 notes).

3 Constraint Programming

Constraint programming is a well established field of research and has been success-
fully applied in many engineering areas such as electronics or operational engineering.
In the words of Prof. Freuder ”Constraint programming represents one of the closest
approaches computer science has yet made to the Holy Grail of programming: the user
states the problem, the computer solves it.” [14].

Constraint Programming can be defined as the set of techniques such as algorithms
or heuristics that deal with Constraint Satisfaction Problems (CSP) to such an extent
that to solve a given problem by means of constraint programming, first the problem
has to be formulated as a CSP.

402 D. Benavides et al.

JAMES

Core Modules
WSInterface

Calendar

Forum Congress
Management

Repository

GUI

PC PDA

UserManagement

DB LDAP

R1
R2 R3 R4

R5

R6 R7 R8

R9
R10

Solitary Feature with
cardinality [1..1]
Solitary Feature with
cardinality [0..1]

Feature Group
with group
Cardinality <n-n’>
(or <1-1> when
not cardinality)
Requires

Excludes

<1..2> <1..4>

Solitary Feature with
cardinality [n..n’]

[n..n’]

<n..n’>

[1..4]

Fig. 2. James System

A CSP consist of a set of variables, domains for those variables and a set of con-
straints restricting the values of the variables.

Definition 1 (CSP). A CSP is a three–tuple of the form (V, D, C) where V �= ∅ is a
finite set of variables, D �= ∅ is a finite set of domains (one for each variable) and C is
a constraint defined on V .

Once the problem is stated as a CSP, it is possible to use off–the-shelf CSP solvers that
are able to provide the solutions to the problem. Internally the solvers will be imple-
mented by using algorithms and heuristics that have been and are being investigated
during several decades.

3.1 Mapping a FM into a CSP

We presented in [4, 5] how a FM with dependencies was translated into a CSP. However
we did not provide a way to do the same with cardinality–based FMs [10]. In this
Section we give details on how to transform a FM with cardinalities into a CSP which
is a novel contribution.

Rules for translating FMs to constraints are listed in Figure 3. First, there is a variable
for each feature in the CSP. The domain of each variable depends on the cardinality
associated to each variable. By default the domain is {0,1} and if a feature is part of
a cardinality relation, then the domain of the variable is added (e.g. Core ∈ {0, 4} in
Figure 2). Then, a constraint selecting the root feature is added because all products
have the root feature (e.g. root = 1). The final CSP for a FM is the conjunction of the
constraints following the rules of Figure 3.

4 Experimental Results

Using CSP solvers, it is possible to automatically perform some operations on a FM
such as calculating the number of possible combinations of features, retrieving configu-
rations following a criteria, calculating the number of features in a given configuration,
validating a given FM to detect possible inconsistences, finding an optimum product
on the basis of a given criteria (the cheapest, the one with fewest features and so forth)
or calculating the commonality factor for a given feature and the variability factor of a
given FM.

Using CSP Solvers for Analysing Feature Models 403

Relation Diagram notation Constraint

Mandatory

A

B

B = A

Optional

A

B

ifThen(A=0;B=0)

Cardinality [n..m]

A

B

ifThenElse(A=0;B=0;B in {n,m})

Set

<n..m>

A

CB

ifThenElse(A>0;sum(B,C) in {n,m};B=0,C=0)

Depends

A B

ifThen(A>0,B>0)

Excludes

A B

ifThen(A>0,B=0)

Fig. 3. Feature Models and Related Constraints

The main ideas concerning the use of constraint programming on FM analyses were
stated in [4, 5] but some experimental results were left for our future work. In this
Section we present an experimental comparison of two Java CSP solvers that were used
to automatically analyse FMs.

4.1 The JaCoP and Choco Solvers

There are several commercial tools to work with CSPs. One of the major commercial
vendors is ILOG that has two versions of CSP Solvers in C++ and Java. Because it
is a commercial solution, we declined to use ILOG solvers’ licenses in our empirical
comparison.

To the best of our knowledge there is only one reliable and stable open source Java
CSP Solver : Choco Constraint System [19]. We selected this solver because it seems
to be one of the most popular within the research community and because it is the only
one we know of that is available for free directly from the Internet. We selected JaCoP
solver [18] because it offers a free license for academic purposes. Both solvers have
similar characteristic in terms of the variables and constraints allowed, therefore the
implementation of our mapping was done in a straightforward manner. For JaCoP we
used FDV variables (FDV stands for Finite Domain Variables) to represent the features
while IntVar variables were used in the Choco implementation.

404 D. Benavides et al.

4.2 The Experiments

With the following experiments we intend to demonstrate which solver provides the
best performance in the automated analyses of FMs. In addition, we studied the robust-
ness and the areas of vulnerability of each solver. In order to evaluate both solvers we
used five FMs. Three of them represent small and medium size real systems, meanwhile
the larger two were generated randomly for this experiment. After formulating each one
as a CSP in both platforms, we proceeded with the execution. Table 1 summarizes the
characteristics of the experiments. Experiment 1 is the FM that was presented in [4].
It is a simple FM representing a Home Integration System. Experiment 2 is the FM of
Figure 2 which represents a collaborative web based system. Experiment 3 is a medium
size FM of a flight booking system based on the work done by [11, 12]. Finally, we gen-
erated two larger FMs randomly (Experiments 4 and 5) with a double aim: representing
more complex systems with a greater number of features and dependencies, and eval-
uating the solvers’ performance in limit situations. We considered it was necessary to
compare the performance with small, medium and large FMs in order to evaluate solver
performance results in different situations.

Table 1. Experiments

Experiment N. of Features N. of Dep
1 15 0
2 14 2
3 26 0
4 40 14
5 52 28

The process to generate a FM randomly is based on a recursive method that has five
input parameters: height levels, maximum number of children relations for a node, max-
imum cardinality number, maximum number of elements in a set relation and number
of dependencies. Firstly, features and their relations are generated using random values.
Secondly, the dependencies are created by taking pairs of features randomly and estab-
lishing a random dependency (includes or excludes) between them. We took care not to
generate misconceptions (e.g. a child depends on a parent).

As exposed in [5], there are some operations that can be performed. For our experi-
ments we performed two operations: i) finding one configuration that would satisfy all
the constraints, that is, a product and ii) finding the total number of configurations of a
given FM. The first is the simplest operation while the second is the most difficult one
in terms of performance because it is necessary to retrieve all possible combinations.

The comparison focused on the data obtained from several executions in order to
avoid as much exogenous interferences as possible. The total number of executions to
calculate the average time was ten. The data extracted from the tests was:

– Number of features in the first solution obtained by solver.
– Average execution time to obtain one solution (measured in milliseconds).

Using CSP Solvers for Analysing Feature Models 405

– Total number of solutions, that is, the potential number of products represented in
the FM.

– Average execution time to obtain the number of solutions (measured in millisec-
onds).

In order to evaluate the implementation, we measured its performance and effec-
tiveness. We implemented the solution using Java 1.5.0 04. We ran our tests on a
WINDOWS XP PROFESSIONAL machine equipped with a 3.2Ghz Intel Pentium IV
microprocessor and 1024 MB of DDR 166Mhz RAM memory.

4.3 The Results

The experimental comparison revealed some interesting results (see Figures 4, 5 and 6).
The first evidence we should mention is that JaCoP is on average 54% faster than Choco
in finding a solution. It is important to observe that our approach is feasible because the
necessary time to obtain a response is really low (35 milliseconds in the worst case).

However, while JaCoP is much faster than Choco in finding the total number of so-
lutions in small CSPs, JaCoP seems to be noticeably slower than Choco in the big ones
(see Figure 6). This curious result probably depends on how each solver is used to obtain
the number of solutions. Choco has a simple method to know the number of solutions
of a concrete problem (Solver.getNbSolutions()), while JaCoP implementation needs to
find all the solutions first and count them afterwards. This simple variation implies a
very important difference in performance. For instance, in test 5 JaCoP needs to create
61440 ArrayLists and fill all of them with all the solutions which produces a great time
loss. On the other hand, Choco does not have this weakness as its method to find the
number of solutions only returns five solutions to avoid memory deficit problems. If
the user wants to obtain the other solutions he only has to make a simple iteration and
take them one by one. In the three smaller experiments, JaCoP is faster than Choco so
we presume that this trend would continue if JaCoP optimized this aspect. In test 5,
we performed an experiment to find and return all the solutions in both solvers, that is,
not only to find the number of solutions but the solutions themselves. The result was
decisive: Choco required over a minute to perform this task, proving to be slower than
JaCoP in this situation.

JACOP CHOCO JACOP CHOCO
1 7 9,9 18,8 32 37,5 45,5
2 8 9,4 22,7 68 64,4 81,3
3 13 12 24 512 225,6 265,3
4 19 20,2 34,9 34560 5619 2203,3
5 19 24,4 35,8 61440 15390,8 4817,6

JACOP / CHOCO
Time one Sol. Time all Sol.Experiment Features in

Sol.
Nº Solutions

Fig. 4. Experimental Results of JaCoP and Choco Solvers

406 D. Benavides et al.

Time to get one solution

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Test

T
im

e
(m

s)

Choco

Jacop

Fig. 5. Comparing JaCoP and Choco getting one solution

Time to get the number of solutions

0
2
4

6
8

10
12

14
16
18

1 2 3 4 5

Test

T
im

e
(s

)

Choco

JaCoP

Fig. 6. Comparing JaCoP and Choco getting the number of solutions

Although memory usage was not a relevant data in our experiments we noticed that
in general Choco uses more memory than JaCoP; however there is not a remarkable
difference between both solvers.

Finally, we identified some interesting characteristic in both solvers. Firstly, JaCoP
allows the user to obtain easily from executions more interesting information than
Choco such as the number of backtracks of a search or the number of decisions taken
to find a solution. In second place, we found a worrying bug when working with big

Using CSP Solvers for Analysing Feature Models 407

problems in Choco. In most cases, executions of CSPs representing big FMs generated
an exception (choco.bool.BinConjunction) which imposes an important limitation to
Choco.

5 Conclusion and Future Work

In this paper we presented how to translate a cardinality-based feature model into a
constraint satisfaction problem. We performed a comparative test between two off–the–
shelf CSP Java solvers and offered some interesting performance conclusions. The test
showed that JaCoP is faster than Choco except in finding the number of solutions. JaCoP
gives more details about executions than Choco such as the number of backtracks or the
number of decisions. Choco has an important bug when working with big FMs while
it is a good open source alternative especially for small and medium size problems.
Both solvers have a similar memory usage. Nevertheless, both JaCoP and Choco are
useful for the experiments presented in the paper as executions times are really low
(milliseconds).

Several challenges remain for our future work. We plan to extend the experiments
in order to scale our proposal and compare the results. Bigger experiments with more
features and more dependencies are needed and we plan to perform those experiments
in the future. Furthermore, we think that we should compare our proposal with others
using different representations like SAT or BDDs to complement our results.

References

1. D. Batory. Feature models, grammars, and propositional formulas. In Software Product Lines
Conference, LNCS 3714, pages 7–20, 2005.

2. D. Batory. A tutorial on feature oriented programming and the ahead tool suite. In Summer
school on Generative and Transformation Techniques in Software Engineering, 2005.

3. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE Trans.
Software Eng., 30(6):355–371, 2004.

4. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature models.
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, 3520:491–503, 2005.

5. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint programming to reason on
feature models. In The Seventeenth International Conference on Software Engineering and
Knowledge Engineering (SEKE’05), July 2005.

6. D. Benavides, S. Trujillo, and P. Trinidad. On the modularization of feature models. In First
European Workshop on Model Transformation, September 2005.

7. J. Bosch. Design and Use of Software Architectures. Addison-Wesley, 1th edition, 2000.
8. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series in

Software Engineering. Addison–Wesley, August 2001.
9. K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Techniques, and

Applications. Addison–Wesley, may 2000. ISBN 0–201–30977–7.
10. K. Czarnecki, S. Helsen, and U.W. Eisenecker. Formalizing cardinality-based feature models

and their specialization. Software Process: Improvement and Practice, 10(1):7–29, 2005.
11. O. Dı́az, S. Trujillo, and F.I. Anfurrutia. Supporting production strategies as refinements of

the production process. In to be published at Sofware Product Line Conference (SPLC 2005),
2005.

408 D. Benavides et al.

12. O. Dı́az, S. Trujillo, and I. Azpeitia. User-Facing Web Service Development: A Case for a
Product-Line Approach. In Boualem Benatallah and Ming-Chien Shan, editors, Technologies
for E-Services, 4th VLDB International Workshop (VLDB-TES 2003), volume 2819 of LNCS,
pages 66–77. Springer-Verlag, 2003.

13. P. Fernandez and M. Resinas. James project. Available at
http://jamesproject.sourceforge.net/, 2002-2005.

14. E. C. Freuder. In pursuit of the holy grail. Constraints, 2(1):57–61, April 1997.
15. G. Halmans and K. Pohl. Communicating the variability of a software–product family to

customers. Journal on Software and Systems Modeling, 2(1):15–36, 2003.
16. S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling variant requirements in domain

modeling. The Journal of Systems and Software, 68(3):171–182, 2003.
17. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

18. K. Kuchcinski. Constraints-driven scheduling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 8(3):355–383, July 2003.

19. F. Laburthe and N. Jussien. Choco constraint programming system. Available at
http://choco.sourceforge.net/, 2003-2005.

20. C. Prehofer. Feature-oriented programming: A new way of object composition. Concurrency
and Computation: Practice and Experience, 13(6):465–501, 2001.

Co-transformations in Database Applications
Evolution

Anthony Cleve and Jean-Luc Hainaut

Laboratory of Database Applications Engineering
University of Namur, Belgium

21 rue Grandgagnage 5000 Namur
{acl, jlh}@info.fundp.ac.be

Abstract. The paper adresses the problem of consistency preservation
in data intensive applications evolution. When the database structure
evolves, the application programs must be changed to interface with
the new schema. The latter modification can prove very complex, error
prone and time consuming. We describe a comprehensive transforma-
tion/generative approach according to which automated program trans-
formation can be derived from schema transformation. The proposal is
illustrated in the particular context of database reengineering, for which
a specific methodology and a prototype tool are presented. Some results
of two case studies are described.

1 Introduction

Software evolution consists in keeping a software system up-to-date and re-
sponsive to ever changing business and technological requirements. This
paper focuses on the evolution of complex database applications, that is, data in-
tensive software systems comprising a database. Database migration, database
merging and database restructuring are popular evolution scenarios that in-
volve not only changing the data components of applications, but also rewrit-
ing some parts of the programs themselves, even when no functional change
occurs. In general, such evolution patterns induce the modification of three
mutually dependent system components, namely the data structures (i.e., the
schema), the data instances and the application programs [11]. When the sys-
tem evolves, the consistency that exists between these three artifacts must be
preserved.

In this paper, we focus on the consistency relationship that holds between
the application programs and their database schema. We assume that the evo-
lution process starts with a schema modification, potentially challenging this
consistency. Our main question is the following: how can a change in a database
schema be propagated to the application programs manipulating its data in-
stances? Considering that any schema change can be modelled by a transfor-
mation (a rewriting rule that replaces a data structure with another one), we
can formulate our question more precisely. The question can now be expressed

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 409–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

410 A. Cleve and J.-L. Hainaut

as follows: how can a schema transformation be propagated to the application
programs that manipulate the data stored in the database? Through this trans-
formational approach, database applications evolution will be modelled by the
derivation of program transformations from schema transformations, that is,
co-transformations.

The paper is structured as follows. Section 2 defines the concept of schema
transformation. The way program transformations are derived from schema
transformations is discussed in Section 3. In Section 4, we illustrate this general
approach in a particular evolution context, i.e., data reengineering. Section 5
gives an overview of a tool architecture that support the whole process. In Sec-
tion 6 first experiments are presented. We discuss related work in Section 7,
while Section 8 concludes the paper.

2 Schema Tranformations

2.1 Definition

A schema transformation consists in deriving a target schema S′ from a source
schema S by replacing construct C (possibly empty) in S with a new construct
C′ (possibly empty) [7]. C (resp. C′) is empty when the transformation consists
in adding (resp. removing) a construct. More formally, a transformation Σ is
defined as a couple of mappings <T, t> such that : C′ = T (C) and c′ = t(c),
where c is any instance of C and c′ the corresponding instance of C′. Structural
mapping T explains how to modify the schema while instance mapping t states
how to compute the instance set of C′ from instances of C.

2.2 Semantics Preservation

The notion of semantics of a schema has no generally agreed upon definition.
We assume that the semantics of a schema S1 includes the semantics of another
schema S2 iff the application domain described by S2 is a part of the domain
represented by S1. We can distinguish three schema transformation categories:

– T + collects the transformations that augment the semantics of the schema
(e.g., adding an entity type).

– T− includes the transformations that decrease the semantics of the schema
(e.g., removing an attribute).

– T = is the category of transformations that leave the semantics of the schema
unchanged (e.g., transforming a relationship type into a foreign key).

The transformations of category T = are called reversible or semantics-preserving.
If a transformation is reversible, then the source schema can be replaced with
the target one without loss of information. We refer to [6] for a more detailled
analysis of semantics preservation in schema transformations.

Co-transformations in Database Applications Evolution 411

2.3 Examples

Fig. 11 graphically illustrates the structural mapping T1 of the transformation of
a multivalued, compound attribute into an entity type and a relationship type R.
Fig. 2 depicts the structural mapping T2 of the transformation of a one-to-many
relationship type R into a foreign key. Both transformations can be proved to
be semantics-preserving.

1-10-N R

EA

B1
...
Bn

id: R.E
B1
...
Bn

E
A1
A2

id: A1

E
A1
A2
A[0-N]

B1
...
Bn

id: A1

⇒

T

Fig. 1. Structural mapping T1 of a semantics-preserving schema transformation that
transforms a complex attribute A into entity type EA and relationship type R

⇒

T

⇒

T

E2
B1
B2
RId1
...
RIdn
ref: RId1

...
RIdn

E

Id1
...
Idn
A2
A3
id: Id1

...
Idn

1-10-N R
E2

B1
B2

E
Id1
...
Idn
A2
A3
id: Id1

...
Idn

Fig. 2. Structural mapping T2 of a semantics-preserving schema transformation that
transforms a one-to-many relationship type R into a foreign key RId1 · · · RIdn

3 Deriving Program Transformations

The feasibility of automatically deriving program transformations from a schema
transformation depends on the nature of the latter. In the general case, the trans-
formations of T + and T− categories do not allow automatic program modifica-
tions. The task remains under the responsibility of the programmer. However, it
is generally possible to help him modify the code by automatically locating the
program sections where occurrences of modified object types are processed. Pro-
gram understanding techniques such as pattern searching, dependency graphs and
program slicing allow to locate with a good precision the code to be modified [8].

1 In Fig. 1 and 2, a box represents an entity type (record type or table). The first
compartment specifies its names, the second one specifies its attributes (fields or
columns) and the third one specifies the keys and other constraints: id stands for
primary identifier/key; acc stands for access key or index; ref stands for foreign key.
Relationship types between entity types are represented by diamonds.

412 A. Cleve and J.-L. Hainaut

Semantics-preserving schema transformations (T =) can be propagated to the
program level. Indeed, they allow the programming logic to be left unchanged,
since the application programs still manipulate the same informational content.
Program conversion mainly consists in adapting the related DMS2 statements to
the modified data structure. In order to define DMS-independent transformation
rules, we will reason about the following abstract data modification primitives:

– create var := rec-name condition: creates a record of type rec-name satis-
fying condition. The variable var contains or references the created record
for further manipulation.

– delete var condition: deletes the record var if it satisfies condition, accord-
ing to the chosen delete mode.

– update var condition: updates the record var in such a way that it satisfies
condition.

Fig. 3 presents the correspondences between the above abstract primitives and
concrete statements (COBOL, CODASYL and SQL). Access (reading) prim-
itives are both more simple and more complex than modification primitives.
In the one hand, the instance mapping states how instances can be extracted
from the database according to the new schema. On the other hand, the way
currency registers are implemented in various DMS can be quite different. Ab-
stracting them in a DMS-independent manner is too complex to be adressed in
this paper. Therefore, we assume, without loss of generality, that propagating
schema transformations to reading primitives requires DMS-specific rules.

Abstract COBOL CODASYL SQL
create WRITE STORE INSERT
delete DELETE ERASE DELETE
update REWRITE MODIFY UPDATE

Fig. 3. Correspondences between data modification primitives

The problem translates as follows: given a schema transformation Σ applicable
to data construct C, how can it be propagated to the abstract primitives that
create, delete and update instances of construct C. Our approach consists in
associating with structural mapping T of Σ, in addition to instance mapping t,
three modification primitive mappings: tc (create), td (delete) and tu (update).
These three mappings specify how to modify the corresponding primitives when
T is applied to the database schema.

Fig. 4 shows mapping t1c we associate with structural mapping T1 of Fig. 1.
Since attribute A of entity type E has become entity type EA, the way an
instance of E is created must be changed. It now involves the creation of EA
instances corresponding to the old A instances (in a new loop). The created EA
instances must be linked with the instance (e) of E through the relationship

2 Data Management System.

Co-transformations in Database Applications Evolution 413

type R. Fig. 5 illustrates the mapping t2c associated with structural mapping
T2 of Fig. 2. The condition R : e is replaced with a condition on the foreign key
value.

create e := E((: A1 = a1) create e := E((: A1 = a1)
and (: A2 = a2) and (: A2 = a2));
and (: A[1].B1 = b11)

· · · t1c for i in 1..N do
and (: A[1].Bn = b1n) ⇒ create ea := EA((: B1 = bi1)

· · · · · ·
and (: A[N].B1 = bN1) and (: Bn = bin)

· · · and (R : e))
and (: A[N].Bn = bNn)) endfor

Fig. 4. Mapping t1c associated with structural mapping T1 of Fig. 1

create e2 := E2((: B1 = b1) create e2 := E2((: B1 = b1)
and (: B2 = b2) t2c and (: B2 = b2)
and (R : e)) ⇒ and (: RId1 = e.Id1)

· · ·
and (: RIdn = e.Idn)

Fig. 5. Mapping t2c associated with structural mapping T2 of Fig. 2

4 A Particular Evolution Context: Data Reengineering

4.1 Definition

Data reengineering consists in deriving a new database from a legacy database
and adapting the software components accordingly. Substituting a modern data
management system (relational DBMS for instance) for an outdated data man-
ager (typically standard file manager), or improving the database schema to
gain better performance are popular scenarios. Typically, this migration process
comprises the following three main steps [10]:

1. Schema conversion: the legacy database schema is translated into an equiv-
alent schema expressed in the target technology.

2. Data conversion: the database contents are migrated from the legacy database
to the new one. This step consists of a schema-driven extract-transform-load
process.

3. Program conversion: the legacy programs are modified so that they access
the new database instead of the legacy data. In the scenario studied, the
functionalities, the programming language and the user interface are kept
unchanged. This conversion step is generally a complex process that relies
on the schema conversion step.

414 A. Cleve and J.-L. Hainaut

Data reengineering can be seen as a particular case of database applications
evolution, in the sense that it typically involves compound, semantics-preserving
schema transformations and related program transformations [4]. However, these
program transformations do not only propagate schema transformations. In ad-
dition, they must translate the legacy DML3 primitives into equivalent code
fragments using the target DML.

4.2 Semantics-Based Schema Conversion

There are different approaches to convert the source schema into the target
schema. Our approach consists of two steps:

1. Recovering the conceptual schema (i.e., the semantics) of the source database
through a database reverse engineering phase [8].

2. Designing the target database from the CS obtained so far, through classical
database engineering techniques.

This schema conversion approach has the merit of producing a well-designed,
fully-documented database rid of the flaws of the legacy data, that forms a
sound basis for both existing and future applications.

4.3 Wrapper-Based Program Conversion

In migration and interoperability architectures, wrappers are popular compo-
nents that convert legacy interfaces into modern ones. In this context, a wrapper
is a data model conversion component that is called by the client application
programs to carry out operation on the database. For instance, a set of standard
files is given an object-oriented API suited to modern distributed architectures.

In the data reengineering context we suggest the opposite approach, i.e., the
use of inverse wrappers [9]. An inverse wrapper encapsulates the new database
and provide access to the migrated data through a legacy API. It converts all
legacy DMS requests issued by the legacy programs into requests compliant with
the new DMS. Conversely, it captures the results from the new DMS, converts
them according to the legacy format, and delivers them to the calling programs.

Our program conversion approach is a three-step method:

1. From all the schema transformations that are successively applied during the
schema conversion phase (described in Section 4.2), we derive the mapping
between the legacy DB schema (LDS) and the target DB schema (TDS).

2. From the LDS-to-TDS mapping, inverse wrappers are automatically gener-
ated. In practice, we generate one wrapper for each migrated record type.

3. The wrappers obtained so far are interfaced with the legacy application
programs. This step mainly consists in replacing the legacy DML statements
with corresponding wrapper invocations.

This program conversion approach allows the legacy applications to work on the
new database with minimal alteration, and therefore at low cost.
3 Data Manipulation Language.

Co-transformations in Database Applications Evolution 415

4.4 Illustration

Let us consider COBOL record type ORD (Fig. 6−left) that is converted into two
equivalent relational tables ORDERS and DETAILS (Fig. 6−right). This conversion
is the result of the combination of several schema transformations:

1. T1 ≡ transforming the compound, multivalued attribute ORD-DETAIL into an
entity type and a relationship type R;

2. T2 ≡ transforming the relationship type R into foreign key ORD CODE;
3. Tn ◦ · · · ◦ T3 ≡ renaming some data constructs to improve expressivity and

comply with SQL syntax.

ORD

ORD-CODE
ORD-DATE
ORD-CUST
ORD-DETAIL[1-20]

DET-PROD
DET-QTY

id: ORD-CODE
id(ORD-DETAIL):

DET-PROD

⇒

T ◦L◦T

ORDERS
CODE
DATE
CUSTOMER
id: CODE

DETAILS
PRODUCT
ORD_CODE
QUANTITY
id: PRODUCT

ORD_CODE
ref: ORD_CODE

Fig. 6. Conversion of a COBOL record type into two relational tables

Each COBOL primitive that manipulate ORD records must be replaced with an
equivalent procedural fragment on the relational data structures. Then let us
examine the translation of the following COBOL statement:

WRITE ORD

This statement is first expressed as an abstract primitive:

create o := ORD((:ORD-CODE = ORD-CODE OF ORD)
and (:ORD-DATE = ORD-DATE OF ORD)
and (:ORD-CUST = ORD-CUST OF ORD)
and (:ORD-DETAIL[1].DET-PROD = DET-PROD OF ORD-DETAIL ORD ORD(1))
and (:ORD-DETAIL[1].DET-QTY = DET-QTY OF ORD-DETAIL OF ORD(1))

...
and (:ORD-DETAIL[20].DET-PROD = DET-PROD OF ORD-DETAIL OF ORD(20))
and (:ORD-DETAIL[20].DET-QTY = DET-QTY OF ORD-DETAIL OF ORD(20)))

By applying mapping t1c associated with T1 we obtain:

create o := ORD((:ORD-CODE = ORD-CODE OF ORD)
and (:ORD-DATE = ORD-DATE OF ORD)
and (:ORD-CUST = ORD-CUST OF ORD));

for i in 1..20 do
create det := DETAILS((:DET-PROD = DET-PROD OF ORD-DETAIL OF ORD(i))

and (:DET-QTY = DET-QTY OF ORD-DETAIL OF ORD(i))
and (R : o))

endfor

416 A. Cleve and J.-L. Hainaut

By applying mapping t2c associated with T2 we refine this code fragment:

create o := ORD((:ORD-CODE = ORD-CODE OF ORD)
and (:ORD-DATE = ORD-DATE OF ORD)
and (:ORD-CUST = ORD-CUST OF ORD));

for i in 1..20 do
create det := DETAILS((:DET-PROD = DET-PROD OF ORD-DETAIL OF ORD(i))

and (:DET-QTY = DET-QTY OF ORD-DETAIL OF ORD(i))
and (:DET-CODE = o.ORD-CODE))

endfor

Finally, the propagation of the renaming transformation T3 · · ·Tn provides us
with an abstract code which is fully compliant with the structure of the SQL
statements:

create o := ORDERS((:CODE = ORD-CODE OF ORD)
and (:DATE = ORD-DATE OF ORD)
and (:CUSTOMER = ORD-CUST OF ORD));

for i in 1..20 do
create det := DETAILS((:PRODUCT = DET-PROD OF ORD-DETAIL OF ORD(i))

and (:QUANTITY = DET-QTY OF ORD-DETAIL OF ORD(i))
and (:ORD_CODE = o.CODE))

endfor

Generating the COBOL/SQL code is then straighforward:

WRITE-ORD.
MOVE ORD-CODE OF ORD TO WR-CODE.
MOVE ORD-DATE OF ORD TO WR-DATE.
MOVE ORD-CUST OF ORD TO WR-CUSTOMER.
EXEC SQL

INSERT INTO ORDERS (CODE, DATE, CUSTOMER)
VALUES (:WR-CODE, :WR-DATE, :WR-CUSTOMER)

END-EXEC.
MOVE 1 TO IND.
PERFORM INSERT-DETAILS UNTIL IND >= 20 OR SQLCODE NOT= ZERO.

INSERT-DETAILS.
MOVE DET-PROD OF ORD-DETAIL OF ORD(IND) TO WR-PRODUCT.
MOVE DET-QTY OF ORD-DETAIL OF ORD(IND) TO WR-QUANTITY.
MOVE ORD-CODE OF ORD TO WR-ORD-CODE
EXEC SQL

INSERT INTO DETAILS (PRODUCT, QUANTITY, ORD_CODE)
VALUES (:WR-PRODUCT, :WR-QUANTITY, :WR-ORD-CODE)

END-EXEC.
ADD 1 TO IND.

Note that the resulting COBOL code can be equivalently generated in-line or
encapsulated into an inverse wrapper. In our research, we favor the latter archi-
tecture. Therefore the initial COBOL WRITE statement is simply replaced with
a corresponding wrapper invocation.

Co-transformations in Database Applications Evolution 417

5 Tool Support

We have developped a prototype tool to support our data reengineering method-
ology, and particularly the program conversion phase. The architecture of this
tool combines two complementary transformational technologies, namely the
DB-MAIN [19] CASE tool and the ASF+SDF Meta-Environment [3].

5.1 Mapping Definition

We use the transformation toolkit of DB-MAIN to carry out the chain of schema
transformations needed during the schema conversion phase. DB-MAIN auto-
matically generates and maintains a history log of all the transformations that
are applied to the legacy DB schema (LDS) to obtain the target DB schema
(TDS). This history log is formalized in such a way that it can be analyzed and
transformed. Particularly, it can be used to derive both the mappings between
the LDS and the TDS.

5.2 Wrapper Generation

So far, wrapper generators for COBOL-to-SQL and IDS/II4-to-SQL have been
developed. These generators are implemented through a plug-in of DB-MAIN.
They take the LDS-to-TDS mapping as an input and generate the code that
provides the application programs with a legacy interface to the new database.
Each generated wrapper is a COBOL program with embedded SQL primitives.

The inverse wrapper generation involves two kinds of conversion rules. The
first one involves API translation and is independent of the schema transforma-
tion. The legacy DMS primitives are simulated using target DMS primitives. For
instance, a COBOL READ statement may require a complex procedure based on
SQL cursors. This mapping layer is specific to each couple source/target models
couple. The second conversion rules derives from schema transformations and
are independent of API translation. The primitives initially expressed on the
source schema are expanded into procedural fragments comprising primitives
expressed on the target schema through rewriting rules such as those shown in
Fig. 4 and 5.

5.3 Legacy Code Adaptation

The legacy application programs transformation relies on the ASF+SDF Meta-
Environment. We use an SDF version of the IBM VS COBOL II grammar, which
was obtained by Lämmel and Verhoef [12]. We specify a set of rewrite rules (ASF
equations) on top of this grammar to obtain two similar program transformation
tools. The first tool is used in the context of COBOL-to-SQL migration, while
the second one supports IDS/II-to-SQL conversion.

Both program transformation tools are suitable in the context of partial mi-
gration, i.e., when only some legacy record types are actually migrated to the
4 IDS/II is the BULL implementation of CODASYL.

418 A. Cleve and J.-L. Hainaut

new database platform. In this case, only the DML instructions manipulating
migrated data are replaced with corresponding wrapper invocations. The other
DML instructions, which still access the legacy data, are left unchanged.

We emphasize that the transformed legacy programs still manipulate the data
through the legacy schema. In practice, this requires reorganizing the data dec-
laration parts of the programs. For instance, in the case of COBOL-to-SQL
reengineering, the following modifications are performed:

– the migrated files declarations are removed from the INPUT-OUTPUT section
of the ENVIRONMENT division;

– the migrated record types declarations are moved from the FILE section
of the ENVIRONMENT division to the WORKING-STORAGE section of the DATA
division. Thus, the COBOL records become COBOL variables which are
used as an argument of the wrapper calls.

6 Case Studies

Two small but realistic different legacy systems have been reengineered. Fig. 7
gives an overview of both case studies. As a first experiment, we converted an
academic COBOL application managing data about students, registrations, re-
sults of exams, etc. The legacy database, consisting of 8 large COBOL files,
was migrated to a relational database. The 15 legacy programs were successfully
interfaced with 8 generated wrappers. A second case study was performed in
collaboration with the company REVER, Belgium, devoted to system reengi-
neering. The goal of this project was to reengineer a COBOL system from a
city administration. This legacy system uses the IDS/II database manager and
is made of 60 programs, totaling 35 KLOC. The resulting application consists
of 57 KLOC, including 24 generated wrappers.

For both case studies the program conversion phase (i.e., wrapper generation
and legacy code transformation) was fully automated. Our tools have proved to
be quite efficient: generating the 24 IDS-to-SQL wrappers took 4 seconds while
transforming the legacy programs required a bit less than 8 minutes.

Case Study 1 Case Study 2
Source Target Source Target

Host Language COBOL COBOL COBOL COBOL
DML COBOL SQL IDS/II SQL
Entity types 8 records 18 tables 24 records 24 tables
Attributes 291 fields 276 columns 257 fields 151 columns
Rel. types 0 15 foreign keys 13 sets 21 foreign keys
Legacy Programs 15 15 60 60
Wrappers 0 8 0 24
Wrappers calls 0 365 0 936
Legacy Code Size 7 KLOC 8.2 KLOC 35 KLOC 39 KLOC
Wrapper Code Size 0 6 KLOC 0 18 KLOC

Fig. 7. Case studies overview

Co-transformations in Database Applications Evolution 419

7 Related Work

The concept of co-transformation (or coupled transformation) has been defined
by Lämmel [14] as follows: ”A co-transformation transforms mutually dependent
software artifacts of different kinds simultaneously, while the transformation is
centred around a grammar (or schema, API, or a similar structure) that is shared
among the artifacts.”. In [13] the same author identifies the category of coupled
software transformations, describes their essence and lists typical application
domains for co-transformations problems. For another example, we refer to the
work by Lohmann and Riedewald [15] who present an elegant approach to au-
tomatically adapting transformation rules after a change in a grammar.

The concept of transformational engineering applied to data structures has
been studied for more than two decades [16], first for schema engineering, then,
later on, for data conversion. A fairly comprehensive approach has been de-
scribed in [2]. However, as far as the authors know, propagating data structure
transformations to procedural code has not been studied yet.

The use of wrapping techniques for reusing legacy software components is
discussed in [18]. Papakonstantinou et al. [17] present a query translation scheme
that facilitates rapid development of wrappers.

An iterative process model for legacy systems reengineering is proposed in
[1]. One important phase of this method aims at making the legacy programs
compatible with the migrated data, by replacing the data access instructions
with calls to a data banker.

The purpose of [20] is to apply automatic restructuring transformations to
large industrial Cobol systems in order to improve their modifiability. This work
shows the suitability of ASF+SDF and the IBM VS COBOL II grammar for
large-scale legacy code renovation.

Defining data mappings is an important issue in our work. The MDE-based
approach proposed by Didonet et al. [5] considers data mappings as models.
From this starting point, the authors suggest the use of model weaving as the
base to solve various data mapping problems.

8 Conclusions

We have presented a general co-transformational approach for database appli-
cations evolution. This approach consists in formally defining an evolution as
the application of coupled transformations, that modify the database schema,
the data instances and the application programs. A methodology and a proto-
type tool have been proposed for a particular scenario of evolution, namely data
reengineering.

Coupling generative and transformational techniques provides us with a
promising tool support for data reengineering. First experiments have shown the
validity of the approach, at least for small to medium size programs. However,
our methodology and tools still have to be consolidated and validated for large
information systems migration. In particular, the performance impact of our
wrapper-based architecture should be evaluated through industrial case studies.

420 A. Cleve and J.-L. Hainaut

Acknowledgements. Many thanks to Ralf Lämmel, João Saraiva and Joost
Visser for the organization of the GTTSE 2005 Summer School and for their
patient editing work. Thanks too to the anonymous reviewers for their precise
and pertinent advices. This research has been carried out within the context of
the RISTART project, supported by the Belgian Région Wallonne and the Eu-
ropean Social Fund. We thank the SEN1 group (CWI, Amsterdam) and REVER
s.a. for their fruitful collaboration in this project.

References

1. Alessandro Bianchi, Danilo Caivano, Vittorio Marengo, and Giuseppe Visaggio.
Iterative reengineering of legacy systems. IEEE Trans. Softw. Eng., 29(3):225–
241, 2003.

2. M. Boyd and P. McBrien. Towards a semi-automated approach to intermodel
transformation. In CAiSE Workshops Proceedings, volume 1, pages 175–188. Riga
Technical University, 2004.

3. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: A component-based language
development environment. In R. Wilhelm, editor, Compiler Construction (CC
’01), volume 2027 of Lecture Notes in Computer Science, pages 365–370. Springer-
Verlag, 2001.

4. Anthony Cleve, Jean Henrard, and Jean-Luc Hainaut. Co-transformations in in-
formation system reengineering. In Proc. of the 2nd International Workshop on
Meta-Models, Schemas and Grammars for Reverse Engineering, volume 137(3) of
ENTCS, pages 5–15. Springer Verlag, 2005.

5. M Didonet Del Fabro, J Bézivin, F Jouault, and P Valduriez. Applying generic
model management to data mapping. In Proc. of the Journées Bases de Donnes
Avancées (BDA05), 2005.

6. J.-L. Hainaut. Specification preservation in schema transformations - application
to semantics and statistics. Data & Knowledge Engineering, 16(1), 1996.

7. Jean-Luc Hainaut. Transformation-based database engineering. In P. van Bommel,
editor, Transformation of Knowledge, Information and Data: Theory and Applica-
tions, chapter 1. IDEA Group, 2005.

8. Jean Henrard. Program Understanding in Database Reverse Engineering. PhD
thesis, University of Namur, 2003.

9. Jean Henrard, Anthony Cleve, and Jean-Luc Hainaut. Inverse wrappers for legacy
information systems migration. In WRAP 2004 Workshop Proceedings, volume
04–34 of CS Reports, pages 30–43. Technische Universiteit Eindhoven, 2004.

10. Jean Henrard, Jean-Marc Hick, Philippe Thiran, and Jean-Luc Hainaut. Strate-
gies for data reengineering. In Proc. of the 9th Working Conference on Reverse
Engineering (WCRE’02), pages 211–220. IEEE Computer Society Press, 2002.

11. Jean-Marc Hick and Jean-Luc Hainaut. Database application evolution: a trans-
formational approach. Data and Knowledge Engineering, 2006. to appear.

12. R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001.

13. Ralf Lämmel. Coupled Software Transformations (Ext. Abstract). In Proc. of the
First International Workshop on Software Evolution Transformations, Nov. 2004.

Co-transformations in Database Applications Evolution 421

14. Ralf Lämmel. Transformations everywhere. Science of Computer Programming,
2004. The guest editor’s introduction to the SCP special issue on program trans-
formation.

15. Wolfgang Lohmann and Günter Riedewald. Towards automatical migration of
transformation rules after grammar extension. In Proc. of 7th European Confer-
ence on Software Maintenance and Reengineering (CSMR’03), pages 30–39. IEEE
Computer Society Press, 2003.

16. S. B. Navathe. Schema analysis for database restructuring. ACM Transactions on
Database Systems, 5(2):157–184, June 1980.

17. Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A query trans-
lation scheme for rapid implementation of wrappers. In Proc. of the International
Conference on Declarative and Object-oriented Databases, 1995.

18. Harry M. Sneed. Encapsulation of legacy software: A technique for reusing legacy
software components. Annals of Software Engineering, 9:293–313, 2000.

19. The DB-MAIN official website. http://www.db-main.be.
20. N. Veerman. Revitalizing modifiability of legacy assets. Software Maintenance

and Evolution: Research and Practice, Special issue on CSMR 2003, 16(4–5):
219–254, 2004.

Modular Name Analysis for Java Using JastAdd

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn, gorel)@cs.lth.se

Abstract. Name analysis for Java is challenging with its complex visibility rules
involving nested scopes, inheritance, qualified access, and syntactic ambiguities.
We show how Java name analysis including ambiguities related to names of vari-
ables, fields, and packages, can be implemented in a declarative and modular
manner using the JastAdd compiler construction system.

Declarative attributes and context-dependent rewrites enable the implementa-
tion to be modularized in the same way as the informal Java language specifica-
tion. The individual rules in the specification transfer directly to equations in the
implementation. Rewrites are used to define new concepts in terms of existing
concepts in an iterative manner in the same way as the informal language spec-
ification. This enables equations to use both context-free and context-dependent
concepts and leads to improved separation of concerns. A full Java 1.4 compiler
has been implemented to validate the technique.

1 Introduction

The computations done on abstract syntax trees in compilers and related tools are often
highly context sensitive. E.g., there are often symbolic names that have different mean-
ings depending on their context. The purpose of name analysis is to bind each name to
a declaration and hence resolve the meaning of that name. Name analysis for the Java
programming language is challenging with its complex visibility rules involving nested
scopes, inheritance, qualified access, and syntactic ambiguities. The purpose of this pa-
per is to show how ambiguities related to names of variables, types, and packages, can
be solved in a declarative and modular manner, using the JastAdd compiler construction
system.

Consider the qualified name A.B.C and the task of binding each individual sim-
ple name to its declaration. The meaning depends on the syntactic context, e.g., C

is expected to be a TypeName in the extends clause of a class declaration, and an
ExpressionName when being the right hand side of an assignment. There are also contex-
tually ambiguous names where the set of visible declarations are required to resolve the
name. For example, A.B can be the PackageName of the top level class C, or A, B, and C

can all be nested TypeNames. Such ambiguities should be resolved by reclassification
to TypeNames if there are visible type declarations and otherwise to PackageNames. The
Java Language Specification [3] defines the specific rules for visible declarations at
each point in a program and how to first classify context-free names according to
their syntactic context and then refine them by reclassifying contextually ambiguous
names.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 422–436, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modular Name Analysis for Java Using JastAdd 423

JastAdd supports declarative attributes and context-dependent rewrites that enable
the implementation to be modularized in the same way as the informal language spec-
ification. The individual rules in the specification transfer directly to equations in the
implementation. The language specification contains a set of basic language concepts
captured by a context-free grammar. There are, however, additional concepts that are
context-dependent, e.g., TypeNames. Rewrites are used to refine the tree to use not only
the basic concepts but also the context-dependent ones. We present a transformational
technique to gradually define new concepts in terms of existing concepts, in the same
way that they are defined in the informal language specification. This allows for decom-
position of complex problems into simpler ones, and it also better supports separation
of concerns.

We define a tiny subset of Java named DemoJavaNames which captures all the char-
acteristic problems in resolving contextually ambiguous names that occur in full Java.
A complete name analysis implementation for DemoJavaNames is presented and in-
cluded in this paper. We have implemented a full Java 1.4 compiler based on the same
technique to verify that the techniques scale to full languages. The system has been
validated against the Jacks test-suite and passes more tests than the production quality
compilers javac and jikes [1]. While not claiming superiority over either compiler we
claim that our implementation is complete while being less then half the size of the
handwritten javac compiler.

The rest of this paper is structured as follows. Section 2 introduces the features of
JastAdd that are used in the implementation of DemoJavaNames. Section 3 describes
the implementation of name lookup, syntactic classification, and reclassification of con-
textually ambiguous names. Section 4 compares our work to related work and Section 5
concludes the paper.

2 JastAdd Background

The JastAdd compiler construction system combines object-orientation and static
aspect-oriented programming with declarative attributes and context-dependent rewrites
to allow highly modular specifications. This section gives an introduction to the JastAdd
system, needed to understand the source code listings in Section 3. The evaluation al-
gorithm is described in [7, 2] and the system is publically available [1].

2.1 Abstract Grammar

The abstract grammar models an object-oriented class hierarchy from which classes are
generated that are used as node types in the abstract syntax tree (AST). Consider the
grammar in Listing 1.1. A class is generated for each production in the grammar, e.g.,
Prog, CompUnit, ClassDecl, and may inherit another production by adding a colon
followed by the super production, e.g., LocalVariableDecl : Stmt.

The right hand side of a production is a list of elements. The default name of an
element is the same as its type unless it is explicitly named by prefixing the element
with a name and a colon, e.g., the FieldDecl has an element named Type which is
of type Name. Elements enclosed in angle brackets are values, e.g., <name:String> in

424 T. Ekman and G. Hedin

FieldDecl, while other elements are tree nodes, e.g., Type:Name and Expr in Field-
Decl. The tree node element may be suffixed by a star to specify a list of zero or more
elements, e.g., ClassDecl* in CompUnit.

The system generates a constructor and accessor methods for value and tree ele-
ments. The accessor method for a value element has the same name as the element, e.g.,
String name(), while the tree element is prefixed by get, e.g., Name getType(). List ele-
ments have an index to select the appropriate node, e.g., getClassDecl(int index), and
there is an accessor for the number of elements in the list, e.g., int getNumClassDecl().

2.2 Declarative Attributes

Attribute Grammars [10] have proven useful when describing context-sensitive infor-
mation for programming languages. Their declarativeness makes it easy to modular-
ize grammars freely, and they integrate well with the object-oriented programming
paradigm, in particular when augmented with reference attributes, allowing an attribute
to be a reference to another tree node object [6]. This section gives a very brief intro-
duction to synthesized and inherited declarative attributes.

A synthesized attribute is similar to a virtual method without side-effects which al-
lows for efficient evaluation using caching. Consider the grammar in Listing 1.1 and
the task to determine whether a Stmt node declares a local variable named name or not.
This can be implemented through a synthesized attribute using the following JastAdd
syntax:

syn boolean Stmt.isLocalVariableDecl (String name);
eq Stmt.isLocalVariableDecl (String name) { return false; }
eq LocalVariableDecl .isLocalVariableDecl (String name) =

name ().equals(name);

Notice that the equation for LocalVariableDecl overrides the default equation for its
superclass Stmt. Notice also the functional styled short-hand for its right-hand side: it
uses an expression rather than a block with a return statement. An additional shorthand
is possible (but not shown): combining the attribute declaration and the first equation
into a single clause by inserting the equation right-hand side before the semicolon in
the declaration.

JastAdd supports inter-type declarations [9] where attributes can be added to an
existing class in a modular fashion. The target class for each attribute and equation
is specified by qualifying its name with the target class name, e.g Stmt and Local-
VariableDecl above. The attribute is then woven into the class hierarchy generated
from the abstract grammar.

An inherited attribute propagates the context downwards the AST. Consider the task
to determine the enclosing Block for a Stmt node. A block can tell all its enclosed
Stmts that it is the enclosing Block declaration. This can be implemented through an
inherited attribute using the following syntax:

inh Block Stmt.enclosingBlock ();
eq Block.getStmt(). enclosingBlock () = this;

Equations for inherited attributes are broadcast to an entire subtree in a similar way
as for the including construct in the Eli attribute grammar system [13]. This subtree is

Modular Name Analysis for Java Using JastAdd 425

explicitly selected using a child accessor (getStmt() in this case). The equation should
thus be read as: define the value for the enclosingBlock attribute in the entire subtree
whose root is the node returned by getStmt() in a block node. The value should be this,
i.e., a reference to the block node defining the equation.

2.3 Context-Dependent Rewriting

JastAdd supports declarative context-dependent rewrites to dynamically change the
AST. A node of type S is automatically rewritten to a node of type T when a certain
condition is true using the syntax below:

rewrite S {
when(condition ())
to T new T(...);

}

The rewrites are context-dependent in that the conditions may depend on synthesized
and/or inherited attributes. The rewrites are declarative in that they are performed au-
tomatically by a rewrite evaluation engine. In the final tree, no rewrite conditions are
true. There may be multiple when-to clauses in which case they are evaluated in lexical
order. The evaluation engine is demand-driven and rewrites nodes when they are being
visited, interleaved with attribute evaluation. The examples discuss the resulting trans-
formation order for each rewrite as well as interaction with other rewrites and attribute
evaluation. The evaluation algorithm is presented in [2].

3 Name Analysis for DemoJavaNames

This section presents the implementation of name analysis for a tiny subset of Java
that only includes compilation units, packages, nested classes with inheritance, fields,
initializers, blocks, local variables, and names. We call this subset DemoJavaNames
and, while being far from useful as a practical language, it captures all the characteristic
problems in resolving contextually ambiguous names that occur in full Java.

The input of the name analysis is a context-free tree constructed by the parser. The
result is an attributed tree where all names have been resolved to appropriate name
kinds, and have reference attributes denoting the appropriate declaration node. The pur-
pose of the paper is to show how ambiguities related to names of variables, types, and
packages, can be solved in a declarative and modular manner, using JastAdd. We will
show how each of the rules in the language maps to a specific equation in the attribute
grammar.

DemoJavaNames keeps just enough language constructs to illustrate the following
name related concepts: multiple kinds of nested scopes, object-oriented inheritance,
qualified names, shadowing and hiding, and multiple kinds of variables. To simplify the
example we removed all language concepts unrelated to names and we also removed
language concepts that duplicate name analysis problems, e.g., we only use classes and
not interfaces. For brevity, we also removed some language constructs that do affect
name binding, i.e., imports of types and access control. While they are not included

426 T. Ekman and G. Hedin

ast Prog ::= CompUnit*;
ast CompUnit ::= <packageName :String > ClassDecl *;
ast ClassDecl ::= <name:String > Super:Name BodyDecl*;

ast abstract BodyDecl;
ast FieldDecl : BodyDecl ::= FieldType:Name <name:String > Expr;
ast MemberClassDecl : BodyDecl ::= ClassDecl;
ast Initializer : BodyDecl ::= Block;

ast abstract Stmt;
ast Block : Stmt ::= Stmt *;
ast LocalVariableDecl : Stmt ::= VarType:Name <name:String > Expr;

ast abstract Expr;
ast abstract Name : Expr ::= <name:String >;
ast Dot : Name ::= Left:Name Right:Name;
ast ExpressionName : Name;
ast PackageName : Name;
ast TypeName : Name;

Listing 1.1. DemoJavaNames abstract grammar. A minimal subset of Java used to illustrate the
problems in resolving contextually ambiguous names.

in the program listings we discuss how the implementation can be extended to handle
these features as well.

Listing 1.1 presents the abstract grammar for DemoJavaNames. The Dot production
that represents a qualified name requires further explanation. The parser is expected
to build right recursive trees where the Left child is always a simple name while the
Right child may be a Dot or a simple name. It is also worth noticing that the names
in the grammar are context-sensitive, e.g., ExpressionName, TypeName, Package.
We introduce context-free names and transformations into context-sensitive names in
Section 3.3.

The type of names and variable declarations is needed to define qualified lookups
and inherited members in later modules. We therefore define the type as an attribute of
expressions and declarations. Listing 1.2 implements the type attribute as a reference
to the appropriate declaration. To simplify equations in name binding modules we use
a null object to represent unknown types. That way it is always possible to query an
expression for members instead of handling the special case where the type is unknown.

The following sections present modules for name lookup and reclassification of am-
biguous names followed by a discussion on how to extend the implementation to handle
full Java.

3.1 Visible Declarations

The most important contextual information used in name analysis is the set of visi-
ble declarations at each point in a program. Those declarations are then used to bind
names in an actual context to their appropriate declarations. The name binding module

Modular Name Analysis for Java Using JastAdd 427

syn ClassDecl Expr.type() = unknownType ();
eq Dot.type() = getRight ().type ();
eq ExpressionName .type() = lookupVariable (name ()) != null ?

lookupVariable (name ()). type () : unknownType ();
eq TypeName.type() = lookupType (name ()) != null ?

lookupType (name ()) : unknownType ();
syn ClassDecl LocalVariableDecl .type() = getVarType ().type ();
syn ClassDecl FieldDecl.type() = getFieldType ().type ();

Listing 1.2. Type binding for DemoJavaNames where each expression and variable declaration
is bound to a class declaration. A null object is used for unknown types to allow for a unified
member lookup.

in Listing 1.3 defines an attribute inh Variable Name.lookupVariable(String name)

that provides a binding through a reference to a named visible variable-declaration.
Language constructs that change the set of visible declarations, e.g., introduce new

declarations or limit scope for an existing declaration, need to provide an equation for
the lookup attribute. DemoJavaNames has two kinds of variables, LocalVariable-
Declarations declared in Blocks, and FieldDeclarations declared in ClassDecls.
The equations for lookup need thus be placed in the Block and ClassDecl types.

Nested Scopes with Shadowing. The scope of a declaration is the region of the pro-
gram in which the declaration can be referred to using a simple name. The scope of a
declaration often involves nested language elements where declarations in one element
are in scope in enclosed elements as well. A declaration may be shadowed in part of its
scope by another declaration of the same name.

Both classes and blocks are allowed to be nested in DemoJavaNames and both im-
plement shadowing as well. In Listing 1.3 the delegation to enclosing context, marked
with ➁, implements nested scopes. The eager return at first match, marked with ➀,
implements shadowing.

Declarations in a block have a declare before use policy. This is implemented by
limiting the range of the block that is searched for declarations at ➂. The equation is
parameterized by the index of the Stmt in the element list and the search stops at the
Stmt that encloses the name.

Inheritance. The member fields of a class are not only the locally declared fields but
also fields inherited from the superclass. A field is inherited if there is not a local field
declaration that hides the field in the superclass. The eager return at ➃ implements
hiding and the delegation to the superclass at ➄ implements inheritance.

Canonical Type Lookup. The lookup of visible class declarations is implemented in a
similar fashion to variable lookup. The main difference is how the lookup is handled at
the compilation unit level. If the type is not found in the current compilation unit then
the top level types in compilation units belonging to the same package are considered.
This is implemented in Listing 1.4 by delegation ➀ to a canonical lookup that takes
both the package name and type name into account ➁. Inheritance of member classes
is implemented in the same way as for variables.

428 T. Ekman and G. Hedin

/ / v i s i b l e v a r i a b l e or n u l l
inh Variable Name.lookupVariable (String name);

/ / l o c a l v a r i a b l e s i n b l o c k s
eq Block.getStmt(int index).lookupVariable (String name) {

➂ for(int i = 0; i < index; i++)
if(getStmt(i). isLocalVariableDecl (name))

➀ return (LocalVariableDecl)getStmt(i);
➁ return lookupVariable (name);

}
syn boolean Stmt.isLocalVariableDecl (String name) = false;
eq LocalVariableDecl .isLocalVariableDecl (String name) =

name ().equals(name);
inh Variable Block.lookupVariable (String name);
/ / member f i e l d s i n c l a s s e s
eq ClassDecl.getBodyDecl ().lookupVariable (String name) {
if(memberField (name) != null)

➀ return memberField (name);
➁ return lookupVariable (name);

}
/ / members i n c l u d i n g i n h e r i t a n c e
syn FieldDecl ClassDecl.memberField (String name) {
for(int i = 0; i < getNumBodyDecl (); i++)

if(getBodyDecl (i).isField(name))
➃ return (FieldDecl)getBodyDecl (i);
➄ if(getSuper().type (). memberField (name) != null)

return getSuper().type (). memberField (name);
return null;

}
syn boolean BodyDecl.isField(String name) = false;
eq FieldDecl.isField(String name) = name ().equals(name);
inh Variable ClassDecl.lookupVariable (String name);
/ / no more n e s t e d d e c l a r a t i o n s
eq Prog.getCompUnit (). lookupVariable (String name) = null;

/ / a b s t r a c t i o n f o r F i e l d D e c l and L o c a l V a r i a b l e D e c l
interface Variable {

String name ();
ClassDecl type ();

}
FieldDecl implements Variable;
LocalVariableDecl implements Variable;

Listing 1.3. Variable binding for DemoJavaNames. Shadowing is implemented by eager return
statements marked ➀. Nesting is implemented using delegation marked ➁. Declare before use is
implemented by limiting variable search to the current node index in ➂.

Modular Name Analysis for Java Using JastAdd 429

/ / v i s i b l e t y p e or n u l l o b j e c t
inh ClassDecl Name.lookupType (String name);

/ / t o p l e v e l t y p e s i n c o m p i l a t i o n u n i t
eq CompUnit.getClassDecl ().lookupType (String name) {
if(topLevelType (name) != null)

return topLevelType (name);
/ / d e c l a r a t i o n s i n same package

➀ return lookupCanonical (packageName (), name);
}
syn ClassDecl CompUnit.topLevelType (String name) {
for(int i = 0; i < getNumClassDecl (); i++)

if(getClassDecl (i).name ().equals(name))
return getClassDecl (i);

return null;
}
/ / l ookup a t y p e u s i n g i t s c a n o n i c a l name
inh ClassDecl Name.lookupCanonical (String pack , String type);
eq Prog.getCompUnit (). lookupCanonical (String p, String t) {
for(int i = 0; i < getNumCompUnit (); i++)

➁ if(getCompUnit (i).packageName ().equals(p) &&
getCompUnit (i).topLevelType (t) != null)

return getCompUnit (i).topLevelType (t);
return null;

}
/ / member c l a s s e s i n c l a s s d e c l a r a t i o n
/ / ana loguous t o t h e member f i e l d s i m p l e m e n t a t i o n
eq ClassDecl.getBodyDecl ().lookupType (String name) { ... }
/ / no more n e s t e d d e c l a r a t i o n s
eq Prog.getCompUnit (). lookupType (String name) = null;

Listing 1.4. Type lookup for DemoJavaNames

3.2 Qualified Lookup

The set of visible declarations for a qualified name depends on the target of the re-
solved name to the left of the dot. A valid ExpressionName can be preceded by ei-
ther a TypeName or an ExpressionName. Either way, the ExpressionName refers to a
member field in the ClassDecl that represents the type of the preceding expression.
Listing 1.5 extends the name binding module with qualified lookup. The equation at ➀

defines the variable lookup to search the ClassDecl (that the qualifier’s type is bound
to) for members.

The lookup attribute is an inherited attribute and thus defined by an equation in an
ancestor node. The qualifier to the left of the dot in a qualified name should provide the
equation for the name on the right hand side of the dot. This is done by the common
ancestor Dot which propagates the value of the equation from left to right for variables
at ➀ and types at ➁, overriding the lookup defined by an ancestor further up in the AST.

430 T. Ekman and G. Hedin

A valid TypeName can be preceded by either a PackageName or a TypeName. If the
qualifier is a PackageName then the qualified name is the canonical name of the type.
But if the qualifier is a TypeName then the name refers to a member type. There are
thus different rules for the lookup depending on the kind of expression that precedes
the name. The Dot therefore delegates the lookup to the expression at ➁ and searches
for member types at ➂ as the default strategy for expressions while the PackageName
overrides the lookup at ➃ to use canonical type names.

eq Dot.getRight (). lookupVariable (String name) =
➀ getLeft().type ().memberField (name);

eq Dot.getRight (). lookupType(String name) =
➁ getLeft(). qualifiedLookupType (name);

syn ClassDecl Expr.qualifiedLookupType (String name) =
➂ type ().memberClass (name);

eq PackageName .qualifiedLookupType (String typeName) =
➃ lookupCanonical (name(), typeName);

Listing 1.5. Qualified lookup of types and fields

3.3 Determine the Meaning of Names

The abstract syntax defined so far contains name nodes that are highly context sensitive
and can thus not be built by a context-free parser. We now extend the abstract syntax
with additional context-free name nodes that are used for gradually refining the names
to reflect their semantic meaning.

The parser constructs unqualified name nodes only using the node type ParseName.
These nodes are then refined by the name analysis to the resulting nodes listed in
Listing 1.1. To simplify this computation, some of the refinements are done in in-
termediate steps, making use of two additional node types: PackageOrTypeName and
AmbiguousName, see Listing 1.6.

Syntactic Classification of Names. The first step in resolving names is to reclassify the
ParseName nodes based on their immediate syntactic context. This way some nodes can
be directly refined to their final class: PackageName, TypeName, or ExpressionName.
However, for some names, the immediate syntactic context is not sufficient, in which
case the ParseName is refined to PackageOrTypeName (for names that must refer pack-
ages or types), or AmbiguousName (for names where the kind cannot yet be determined
at all).

The Java language specification defines the classification process by describing a
context and the expected name kind. For instance, a name is syntactically classified as
a TypeName in the extends clause of a class declaration. We therefore introduce an
inherited attribute kind() that describes the syntactic classification in a certain context
by referring to an element in an enumeration of the above name kinds. Listing 1.6

Modular Name Analysis for Java Using JastAdd 431

shows the kind() attribute declaration at ➁, the enumeration at ➅, and the sample
classification description at ➂.

A qualifier in a qualified name may depend on the classification of the name it qual-
ifies. For instance, a name is syntactically classified as a PackageOrTypeName to the
left of the dot in a qualified TypeName. However, we still have the same requirement
for equations in the ancestor as for qualified names. We therefore introduce another
attribute predKind() which is delegated from right to left at ➃ and the equation corre-
sponding to the above example at ➄.

The equations for kind() and predKind() complete the description of classification
context and the transformation is almost trivial. The conditional rewrite at ➀ transforms
a ParseName node into its syntactically classified counterpart. It is worth noticing that
the dependences introduced by the kind() attribute equations in combination with de-
mand driven rewriting causes qualified names to be classified from right to left.

Reclassification of Contextually Ambiguous Names. The next step is to reclassify con-
textually ambiguous names, i.e., AmbiguousName and PackageOrTypeName, in the con-
text of visible declarations. An AmbiguousName is reclassified as an ExpressionName
if there is a visible variable declaration with the same name. Otherwise, as a TypeName
if there is a visible type declaration with the same name. Otherwise, as a PackageName
if there is a visible package with the same name. The corresponding implementation is
shown in Listing 1.7.

A contextually ambiguous name is resolved by binding it in the context of its quali-
fier. There is thus a dependence that the qualifier must be resolved before its right hand
side can be resolved. We implement this dependence by making sure that all rewrite
conditions in Listing 1.7 are false when the qualifier of a name is ambiguous. These
conditions are false when there are no visible names. The type of an ambiguous name
is unknownType() which has no visible member fields or types. To make the property
hold we add an attribute hasPackage(String name) that is true when there is a visible
package with that name and no ambiguous qualifiers. A qualified name a.b.c is thus
first syntactically classified from right to left because of the dependences in the kind()
attribute, and then reclassified from left to right.

3.4 Extensions to Handle Full Java

The DemoJavaNames language lacks some important name-related language constructs
available in Java. This section describes the needed changes to the implementation to
support full Java.

The implementation can be extended with more nested scopes by providing a new
equation for the lookup attribute in each new scope. The various nested scopes are
totally decoupled from each other using inherited attributes with parameters. The only
constraint is that a scope is nested in another scope if they are on the same path to the
root node. A ForStmt may for instance provide an equation (very similar to the equation
for Block in Listing 1.3) that searches for LocalVariableDeclarations in its init-
clause. Type imports extend the scope of type declarations and can be implemented
by inserting a search for matching imports at ➀ in Listing 1.4. Java 5 [4] constructs
such as static imports and the enhanced for statement can be supported using the same

432 T. Ekman and G. Hedin

ast ParseName : Name;
ast PackageOrTypeName : Name;
ast AmbiguousName : Name;

➀ rewrite ParseName {
when(kind() == Kind.PACKAGE_NAME)
to Name new PackageName (name ());
when(kind() == Kind.TYPE_NAME)
to Name new TypeName(name ());
when(kind() == Kind.EXPRESSION_NAME)
to Name new ExpressionName (name ());
when(kind() == Kind.PACKAGE_OR_TYPE_NAME)
to Name new PackageOrTypeName (name ());
when(kind() == Kind.AMBIGUOUS_NAME)
to Name new AmbiguousName (name ());

}

➁ inh Kind ParseName.kind ();
eq Prog.getCompUnit ().kind () = Kind.AMBIGUOUS_NAME ;

➂ eq ClassDecl.getSuper ().kind() = Kind.PACKAGE_NAME ;
eq FieldDecl.getFieldType ().kind () = Kind.TYPE_NAME;
eq FieldDecl.getExpr().kind() = Kind.EXPRESSION_NAME ;
eq LocalVariableDecl .getVarType ().kind () = Kind.TYPE_NAME;
eq LocalVariableDecl .getExpr().kind() = Kind.EXPRESSION_NAME ;

/ / p r o p a g a t e i n f o r m a t i o n from r i g h t t o l e f t
➃ eq Dot.getLeft().kind() = getRight ().predKind ();

syn Kind Name.predKind() = Kind.AMBIGUOUS_NAME ;
eq Dot.predKind() = getLeft().predKind ();

eq PackageName .predKind() = Kind.PACKAGE_NAME ;
➄ eq TypeName.predKind () = Kind.PACKAGE_OR_TYPE_NAME ;

eq ExpressionName .predKind () = Kind.AMBIGUOUS_NAME ;
eq PackageOrTypeName .predKind() = Kind.PACKAGE_OR_TYPE_NAME ;
eq AmbiguousName .predKind() = Kind.AMBIGUOUS_NAME ;

➅ class Kind {
static Kind PACKAGE_NAME = new Kind ();
static Kind TYPE_NAME = new Kind ();
static Kind EXPRESSION_NAME = new Kind ();
static Kind PACKAGE_OR_TYPE_NAME = new Kind ();
static Kind AMBIGUOUS_NAME = new Kind ();

}

Listing 1.6. Syntactic classification of names depending on their context. The context-free Parse-
Name names are classified and rewritten to any of the five name kinds defined in Kind.

Modular Name Analysis for Java Using JastAdd 433

rewrite AmbiguousName {
when(lookupVariable (name ()) != null)
to Name new ExpressionName (name ());
when(lookupType (name ()) != null)
to Name new TypeName(name ());
when(hasPackage (name ()))
to Name new PackageName (name ());

}
rewrite PackageOrTypeName {
when(lookupType (name ()) != null)
to Name new TypeName(name ());
when(hasPackage (name ()))
to Name new PackageName (name ());

}
inh boolean Name.hasPackage(String name);
eq Program.getCompUnit ().hasPackage (String name) {
for(int i = 0; i < getNumCompUnit (); i++)

if(getCompUnit (i).packageName ().equals(name))
return true;

return false;
}
eq Dot.getRight (). hasPackage(String name) =

getLeft(). qualifiedHasPackage (name);
syn boolean Expr.qualifiedHasPackage (String name) = false;
eq PackageName .qualifiedHasPackage (String name) =

hasPackage(name() + ’.’ + name);

Listing 1.7. Reclassification of Contextually Ambiguous Names

technique by adding a search for imported fields in the CompUnit node type and a
lookup equation for local variable declarations in the enhanced for statement AST node.

Java supports access control where modifiers impose visibility constraints on names.
Access control limits inheritance in that only non private accessible members are inher-
ited from the superclass. This is easily implemented by adding a filter at ➄ in Listing 1.3
that removes private non accessible fields. Access control also affects qualified lookups.
The type of a qualifier must for instance be accessible and there are also additional con-
straints when the qualifier is an ExpressionName. Such behavior can be implemented
by filters at ➀ and ➁ in Listing 1.5. The specialized rules for ExpressionName may
require the qualified lookup for fields to be extended to the variant used for types. The
filter can then be placed on the ExpressionName qualifier.

DemoJavaNames supports inheritance from classes only while Java also supports
interfaces. Interfaces complicate name analysis somewhat in that multiple inheritance
may cause several fields with the same name to be inherited. This is only an error if a
name refers to the ambiguous fields and the error detection can thus not occur in the
ClassDecl directly but needs to be deferred to a Name node. This can be implemented
by turning the lookup attribute into a set of references instead of a single reference. This
does not affect the described modularization, but a few equations need to be changed to

434 T. Ekman and G. Hedin

handle sets. Lookup equations defined to reference a single declaration are changed to a
set of declarations, e.g., eq Block.getStmt(int index).lookupVariable(String name)

in Listing 1.3 should return a set with a single reference to a variable declaration. Equa-
tions that expect a single reference need to ensure that the queried set contains a single
reference and then extract that reference, e.g., eq ExpressionName.type() in Listing 1.2
should extract a single type declaration reference or return unknownType(). If a name
binds to more than one element the name is ambiguous and a compile-time error is
reported.

4 Related Work

Transformation technology is commonly used in compiler construction to refine the
AST to include context-sensitive information for later passes. Our approach differs
from similar techniques in the use of context-dependent rewrites interleaved with at-
tribute computations. Rewrites allow us to gradually define new concepts in terms of
existing concepts, in the same way commonly used in informal language definitions.
The fine-grained interaction between attribute computation and rewriting enables the
immediate use of these concepts in equations without the need of defining separate
passes. This is a key mechanism that allows complex analysis problems like Java name
resolution to be broken down into small simple steps. To our knowledge, there are no
other systems supporting similar mechanisms. Higher-order attribute grammars [17, 12]
allow the AST to be used as the only data structure, and combined with forwarding [15]
it may be possible to use in a similar fashion, but as far as we know, forwarding has
only been implemented in prototypes built on top of Haskell, and it is unclear how the
practical performance would scale to full languages like Java.

The basic idea of name analysis for object-oriented languages based on explicit name
bindings was used by ourselves earlier for simpler object-oriented languages [5], [6],
and by Vorthmann in his visibility graph technique [18]. Vorthmann also uses a filtering
technique to take care of constructs that limit declaration visibility. However, these
approaches did not use context-dependent node types, which contribute substantially
to making the approach modular. There is some other work aiming at separating the
name analysis from other phases of a compiler, most notably the work on Kastens and
Waite on an abstract data type for symbol tables [8]. The current version of Eli [13]
contains an extensible library of modules for a large variety of scope rules, e.g., single
inheritance, multiple inheritance, declare before use.

JastAdd lets context-dependent computations drive the transformations but it is in-
teresting to compare to the opposite approach: letting transformations drive contextual
computations commonly used in transformation systems such as ASF+SDF [14] and
Stratego [16]. An important difference is that transformation systems typically han-
dle contextual information by using an external database that is updated during the
transformations. This requires the user to explicitly associate database updates with
particular transformation rules or phases. The traversal order must thus take contex-
tual dependences, which can be highly nonlocal, into account. In contrast, JastAdd uses
the contextual dependences to derive a suitable traversal strategy. The Stratego system
has a mechanism for dependent dynamic transformation rules [11], supporting certain

Modular Name Analysis for Java Using JastAdd 435

context-dependent transformations, but it is not clear how this could be used for imple-
menting name binding and similar problems in object-oriented languages.

5 Conclusions

We have presented a technique to implement name analysis for the Java programming
language. The main contribution of the paper is to show how complex problems in name
analysis including ambiguities related to names of variables, types, and packages can be
solved in a declarative and modular way. The use of declarative attributes and contextual
rewrites allow the implementation to be modularized in the same way as the language
specification. Context-free as well as context dependent concepts in the language can
be used directly in attributes and equations. It is worth noticing that the implementation
can be freely modularized according to different criteria. A language extender may for
instance choose to define a module with all attributes and equations related to a new
language construct. The granularity of what can be modularized is a single attribute or
equation, thereby providing excellent support for separation of concerns.

We have defined a small subset of Java that captures all the characteristic problems
in resolving contextually ambiguous names. The implementation using JastAdd is less
than 200 lines of code, most of it included in the paper. The source code and the JastAdd
tool are available for download at [1]. The technique has been used to implement a full
Java 1.4 compiler to verify that the technique scales to the full language. The system
has been validated against the Jacks test-suite and passes more tests than the production
quality compilers javac and jikes [1] while being roughly half the size of the handwritten
javac compiler.

Acknowledgements

We are grateful to Calle Lejdfors and the anonymous reviewers for valuable feedback
and helpful comments.

References

1. T. Ekman and G. Hedin. The JastAdd compiler compiler system. http://jastadd.cs.lth.se.
2. T. Ekman and G. Hedin. Rewritable Reference Attributed Grammars. In Proceedings of

ECOOP 2004, volume 3086 of LNCS. Springer-Verlag, 2004.
3. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification Second Edi-

tion. Addison-Wesley, Boston, Mass., 2000.
4. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification Third Edition.

Addison-Wesley, Boston, Mass., 2005.
5. G. Hedin. An overview of door attribute grammars. In Proceedings of Compiler Construction

1994, volume 786 of LNCS, pages 31–51. Springer-Verlag, 1994.
6. G. Hedin. Reference attribute grammars. In Informatica (Slovenia), 24(3), 2000.
7. G. Hedin and E. Magnusson. JastAdd: an aspect-oriented compiler construction system.

Science of Computer Programming, 47(1):37–58, 2003.
8. U. Kastens and W. M. Waite. An abstract data type for name analysis. Acta Informatica,

28(6):539–558, 1991.

436 T. Ekman and G. Hedin

9. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In ECOOP 2001, volume 2072 of LNCS, pages 327–355. Springer-Verlag, 2001.

10. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–
145, June 1968. Correction: Mathematical Systems Theory 5, 1, pp. 95-96 (March 1971).

11. K. Olmos and E. Visser. Composing source-to-source data-flow transformations with rewrit-
ing strategies and dependent dynamic rewrite rules. In Proceedings of Compiler Construction
2005, volume 3443 of LNCS. Springer-Verlag, 2005.

12. J. Saraiva. Purely functional implementation of attribute grammars. PhD thesis, Utrecht
University, The Netherlands, 1999.

13. A. Sloane, W. M. Waite, and U. Kastens. Eli - translator construction made easy. http://eli-
project.sourceforge.net/.

14. M. van den Brand and P. Klint. The ASF+SDF MetaEnvironment.
http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment.

15. E. Van Wyk, O. d. Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in attribute gram-
mars for modular language design. In Proceedings of Compiler Construction 2002, volume
2304 of LNCS, pages 128–142. Springer-Verlag, 2002.

16. E. Visser, M. Bravenboer, and R. Vermaas. Stratego: Strategies for Program Transformation.
http://www.program-transformation.org/Stratego/WebHome.

17. H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. In Proceed-
ings of the SIGPLAN ’89 Conference on Programming language design and implementation,
pages 131–145. ACM Press, 1989.

18. S. A. Vorthmann. Modelling and specifying name visibility and binding semantics. Technical
Report CMU//CS-93-158, 1993.

Techniques for Lightweight Generator
Refactoring

Holger Krahn and Bernhard Rumpe

Institute for Software Systems Engineering
Technische Universität Braunschweig, Braunschweig, Germany

http://www.sse.cs.tu-bs.de

Abstract. This paper presents an exercise to facilitate refactoring tech-
niques not only on generated code, but also on generator templates by
reusing existing refactoring techniques from the target language. Refac-
toring is particularly useful if not only the generated classes but also
the template defining the result of the code generator can be adapted
in a uniform treatment. We describe a simple demonstration prototype
that illustrates our approach. The demonstration is based on the idea to
define the templates for code generation themselves as compilable and
therefore refactorable source code. However, this limits the directives em-
bedded in the template used for code generation, as we have to embed
those as comments. We explore how far this approach carries and where
its limits are.

1 Introduction and Problem Statement

Code generation avoids repetitive and tedious programming tasks and helps to
improve code quality as it “reuses” code from templates [13]. When code genera-
tors are used in agile projects, a subtle problem occurs: hand-coded source code
is frequently changed using existing refactoring [7, 11] tools. To keep all existing
code consistent, usually tools like Eclipse [6] also refactor the generated code.
However, template and generated code are then not consistent anymore. So far
two ways to handle this exist: either the generation is regarded a non-repeatable
one-shot and the template is never reused, or the changes are manually applied
to the template. In the latter case, it is important to ensure that generated
code is in sync again, which forces re-generation and manual checks if the result
is consistent. However, this approach is time consuming and therefore hinders
an agile refactoring of software. This problem is illustrated further in Figure 1,
where the following steps are applied within a software system that makes use
of code generation.

1. A generator takes a model, in the following text also called data, and a given
template file to generate the code. The results of this process are gener-
ated source files that typically interact with handwritten source code e.g.
comprising technical interfaces, specific algorithms or reusable framework
components.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 437–446, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

438 H. Krahn and B. Rumpe

2. The source code is refactored. If the generated source code contains ref-
erences like method calls or variable instantiations that are defined in the
hand-written code, changes are adopted automatically by the refactoring en-
gine. This process is usually called updating references [11] in the source code
that is not directly refactored.

3. The model or data is changed manually, which results in the necessity to
generate the classes again. One efficiency problem is that now the changes
done by the refactoring engine in step 2 are discarded and the resulting
source code is not necessarily interacting correctly with the generated code
anymore.

Data
DataGenerated

Source Code

Data
DataGenerated

Source Code

Model

Data
DataGenerated

Source Code

Hand-Written
Source Code

interact

Refactoring

Model

Hand-Written
Source Code

interact

Model

Hand-Written
Source Code

interact

Change of
model

Generator/
Template

Generator/
Template

Generator/
Template

Refactoring

time

Step 1:
Use of code
generation
in software
project

Step 2:
Refactor hand-written code

Step 3:
Change model and generate again

Incorrect
interaction

Fig. 1. Risk of incompatibility when refactoring generated source code

The problem described hadn’t occurred if the template would have been refac-
tored in the same fashion as the refactoring engine updates the generated classes
in step 1. Our approach allows to write templates in a form that allows for au-
tomatic refactoring by any code refactoring engine that updates references and
preserves comments. Our experiments show that e.g. the built-in Eclipse refac-
toring engine is sufficient for this purpose.

Various ways of code generation are already published. For a survey of the
most common approaches see for example [10]. Most similar to our approach
are template-based code generators like Velocity [1] which is e.g. also used in
Poseidon [2]. The mainstream of these approaches uses a template that is a
combination of pieces of the target language that includes “holes” where pieces of
the code generator language are included. For example, if one wants to generate
Java classes with Velocity, the template contains a number of Velocity tags
embedded in a Java frame. Such a file is in usually not compilable, because the
Velocity tags are not valid parts of the Java language. From a practical point of
view, a refactoring engine thus simply ignores the template files and is therefore

Techniques for Lightweight Generator Refactoring 439

incapable of updating references in them. A heavyweight solution would be to
enhance the refactoring engine to actually understand and transform a template
as well. This is sophisticated work to do and even though the number of used
templates will probably increasing a lot in future software projects, it may not be
worth the effort. So the key idea of our lightweight approach is to use templates
that are already compilable source files and hence allow a refactoring engine to
recognize templates and update references by that.

Therefore we call our approach “language preserving” as from a point of view
of the target language, the template is already syntactically valid, even though a
semantically useless file. To our knowledge, there was so far no other experiment
that facilitates this idea and actually built a working code generator on that idea.
However, model templates which are written in the target modeling language and
decorated with stereotypes are a similar idea [4].

The rest of this paper is organized as follows. Section 2 describes the template
engine and its technical properties. In Section 3 a longer example demonstrates
the applicability of the approach. Some refactorings are listed that can be applied
to hand-written source code and change the template file automatically. Section 4
gives an overview of the whole process of code generation which supports the
usage of the proposed template engine. Section 5 concludes this paper.

2 A “Language Preserving” Template Engine

The main idea of this template engine is not to generate code through completing
the template by inserting data in the template holes, but to replace marked
exemplary data with real data. The template consists of two types of elements.
The main part is code of the target language which is basically copied to the
output. Embedded are then special comments of the target language, so-called
tags, that are interpreted as commands by the template engine to guide the code
generation process. The template engine accesses the model class1 to retrieve
data and writes it to the output. In total, comments plus the exemplary data,
which is usually a single word, are transformed into the real piece of code. An
example of this behavior can be found in Figure 2.

A tag in this template language looks like a special Java multiline comment
(/*C ... */). As described above, the word following the tag is replaced by real
data. Which data is chosen depends on the tokens which are the words within
the special comment. Our engine allows two possible types of tokens which are
all concatenated directly without spaces to replace the word after the comment.
The first type of token is surrounded by %-characters and serves as substitutable
parameters. They are substituted by the value of the model attribute with the
same name as shown in Figure 2. The second type of token is regarded as plain
text and is copied directly to the output. This feature can be used for example
to form valid strings.

1 Please note that a “model class” belongs to the abstract syntax describing the model
and thus to the meta-model.

440 H. Krahn and B. Rumpe

public class /*C %Type% */ Test {

public String toString() {
return /*C " %Message% " */ "Hi" ;

}
}

public class MyClass {

public void toString() {
return "HelloWorld!";

}
}

public class MeMyselfAndI {

public void toString() {
return "My statement!";

}
}

:Data

Type = "MyClass"
Message = "HelloWorld!"

:Data

Type = "MeMyselfAndI"
Message = "My statement!"

template

data

generated class

Template engine combines
data and template to form

generated classes

Fig. 2. Example for code generation with proposed template engine

In our template engine at each generation step one model object (that is an
instance of a model class) has the “focus”. This concept stems from traditional
object-orientation, where exactly the this-object is active. This means that all
tokens surrounded by % access attributes of the model object. In this point
it differs from Velocity which extends to the definition of variables to access
different model objects at the same time. In order to change the active model
object, our template engine supports the following additional tags introducing
the usual control structures:

/*for %X% */ ... /*end*/ The prerequisite for this tag is that the active
model object resp. its class provides a method getX() which will be ac-
cessed by the template engine. The return value of this method becomes the
active model object until the end comment (/*end*/) is reached. Then the
original model object becomes the active model object again.

/*foreach %X% */ ... /*end*/ The prerequisite for this tag is that the ac-
tive model object has got a method getX() which will be accessed by the
template engine. The return value must be of the type java.util.List.
The first entry in this list becomes the active model object and is used for
code generation until the end comment (/*end*/) is reached. The resulting
behavior is repeated for every entry in the list.

/*if %X% */ ... /*else*/ ... /*end*/ The prerequisite for this tag is that
the active model object has a method isX() which will be accessed by the
template engine and returns a boolean value. If the return value is true, the
template engine uses the code written in the first clause for code generation,
otherwise the else clause is used. However, this control tag does not change
the focus of the used model object.

The above mentioned control structures can be nested arbitrarily to access the
model tree (See Section 4 for an explanation why we make use of trees and
not graphs here). Within a for or foreach environment the nodes upwards in
the tree can be accessed via %number%name% where number is a natural number

Techniques for Lightweight Generator Refactoring 441

counting the steps upwards in the model tree (1 for direct parent) and name is
the name of the attribute to be accessed.

In certain situations it is easier to directly output data without having example
data after the comment that will be replaced. This resembles the usual behavior
of a template engine and is supported via the tag /*O ... */.

With these mechanisms, a reasonable code generator engine is given to suffi-
ciently demonstrate and explore our concept.

3 Example

To explore the properties of our approach, we use a comparative template engine
for generating code. Martin Fowler shows in [8] different ways to realize code
generation. In the following we concentrate on his solution using the template
engine Velocity. The example is taken from the article, but translated from C#
to Java and slightly adopted to make the concepts clearer and shorter without
losing the crucial points. Especially note that while both the template and the
resulting Java code are full class files, in the figures only the class body is shown.

The main idea of the example is to customize a so called reader by objects
of the type ReaderStrategy. These are used to parse files in a line-oriented file
format, where keywords at the beginning of each line determine the structure of
the following data. Depending on the keyword, characters between a start and
an end position have a meaning and should be extracted. For further details on
the example see [8]. The example in Figure 3 shows that it is possible to invent
APIs to split the code into two parts, one containing basic functions and one
containing code using these basic functions in a way that is specific for a given
problem.

The code from Figure 3 can be used as it is, but for complex files, one would
rather like to use a form of description that just contains the information needed

public void Configure(Reader target) {
target.AddStrategy(ConfigureServiceCall());
target.AddStrategy(ConfigureUsage());

}
private ReaderStrategy ConfigureServiceCall() {
ReaderStrategy result = new ReaderStrategy("SVCL", ServiceCall.class);
result.AddFieldExtractor(4, 18, "CustomerName");
result.AddFieldExtractor(19, 23, "CustomerID");
return result;

}
private ReaderStrategy ConfigureUsage() {
ReaderStrategy result = new ReaderStrategy("USGE", Usage.class);
result.AddFieldExtractor(4, 8, "CustomerID");
result.AddFieldExtractor(9, 22, "CustomerName");
return result;

}

Fig. 3. Generated code (adapted from [8])

442 H. Krahn and B. Rumpe

and not that much extra technical code. This form of description is usually called
a domain-specific language (DSL). Figure 4 shows the condensed information
garbled (or even hidden) in the Java code in Figure 3.

mapping SVCL ServiceCall
4-18: CustomerName

19-23: CustomerID
mapping USGE Usage

4- 8: CustomerID
9-22: CustomerName

Fig. 4. Domain specific description for code from Figure 3

The template for the code generation can of course be described using Velocity
(cf. Figure 5) or our approach (cf. Figure 6).

public void Configure(Reader target) {
#foreach($map in ${config.Mappings})
target.AddStrategy(Configure${map.TargetClassNameOnly}());
#end

}
#foreach($map in ${config.Mappings})
private ReaderStrategy Configure${map.TargetClassNameOnly}() {
ReaderStrategy result =

new ReaderStrategy("$map.Code", typeof ($map.TargetClassName));
#foreach($f in $map.Fields)
result.AddFieldExtractor($f.Start, $f.End, "$f.FieldName");
#end
return result;

} #end

Fig. 5. Template using Velocity (adapted from [8])

To our experience, the templates for our engine tend to be a bit easier to
understand than the ones for Velocity because each replaceable tag is usually
followed by an example of what could be generated from it. It turned out to be
the best strategy, to either use meaningful names (as we did in the example) or
to take names that obviously are meant for replacement, e.g. by beginning with
double underscores.

Also typos like a forgotten semicolon at the end of a statement are usually
discovered quicker, as modern IDEs compile source in the background and mis-
takes are highlighted immediately. This is possible because the templates for our
engine are compilable. Using template engines like Velocity a generation process
is required first to detect this kind of errors. As the template file is valid Java
source code, various helper functions of modern IDEs can be used to create or
modify the template. This includes the generation of get/set-methods, the re-
naming of variables, code assistants like listing all available methods by typing

Techniques for Lightweight Generator Refactoring 443

public void Configure(Reader target) {
/*foreach %Mappings% */
target.AddStrategy(/*C Configure %ClassName% () */ ConfigureSCall());
/*end*/

}
/*foreach %Mappings% */
private ReaderStrategy /*C Configure %ClassName% () */ ConfigureSCall() {
ReaderStrategy result = new ReaderStrategy

(/*C " %name% " */ "SVCL" , /*C %ClassName% */ ServiceCall .class);

/*foreach %Entries% */
result.AddFieldExtractor(/*C %LowerBound% */ 4 ,

/*C %UpperBound% */ 18 , /*C " %Name% " */ "CustomerName");
/*end*/
return result;

} /*end*/

Fig. 6. Template using proposed template engine

a dot after a class name, and the generation of method bodies for all methods of
a superclass. But these features are just by-products of the main advantage, the
improved possibility of refactoring the template file together with the generated
files.

In our experiment, we applied a number of refactorings, including the following
ones using the Eclipse built-in refactoring engine to hand-written source code
that interacts with the generated source code from the example. All refactorings
lead to an automatic and correct change of our template without any additional
effort:

– Renaming
e.g. Reader to Parser or ReaderStrategy to ParserStrategy.

– Change method signature
e.g. adding an additional parameter to ReaderStrategy.addFieldExtractor
with a default value or deleting one parameter of the same method.

– Extract Interface
e.g. extracting an interface from ReaderStrategy called Strategy and use
that instead of ReaderStrategy in the generated code.

– Move
e.g. move the class ReaderStrategy to another package. The necessary im-
ports are also updated in the template file.

This list is certainly not complete, but could give an overview on how to apply
refactorings that change both the generated and the hand-written source.

In addition to the given experiment, we e.g. developed a code generation for
statecharts. A result of further experiments and discussions during the summer-
school was that only hand-written code and the template are refactored auto-
matically but the model stays unchanged. Depending on the concrete template
this might be a drawback because the model can contain elements like class,

444 H. Krahn and B. Rumpe

method or variable names which refer to elements in the implementation but are
not changed by a refactoring. It is still an open question if there is a lightweight
way to overcome this limitation or if only a heavyweight solution exists.

4 Easy Method for Developing a Code Generator

For a complete understanding, we describe a method to develop such a code
generator that makes use of our template engine in the following three steps:

1. A prototype for the generated code is programmed manually by developing
an example as it can be found in Figure 3. To our experience this first step
simplifies the following steps tremendously because programming an example
first is usually a lot easier than starting off directly with the template.

2. The variation points (template holes) of the class are identified and special
comments are added directly before the words to be replaced. The form of
these comments are described in Section 2 and the resulting template looks
e.g. like the source shown in Figure 6.

3. In order to generate the resulting Java code shown in Figure 3 from the DSL
description given in Figure 4, we need model classes whose instances will
represent the information of the DSL description (abstract syntax) internally.

Extracting the information from a textual description is a typical task for a
parser, which can be generated by parser-generator or compiler-compiler [5]. A
parser generator takes a grammar as input and generates a running parser. A
number of tools also generate a default set of classes representing the abstract
syntax tree (AST) (e.g. [3, 9, 14]). Available tools differ in the underlying parser
technology and the form of these AST classes quite heavily. Some syntax rep-
resentations for example use untyped trees, others build rather deeply nested
trees.

MontiCore is a project at the Institute for Software Systems Engineering at
the Technical University of Braunschweig that develops techniques to simplify
the definition of domain-specific languages. As MontiCore focuses on analysis
algorithms, formal verification techniques and generation mechanisms, it is re-
stricted to textual input. One of its key techniques is to enrich a grammar, such
that it contains enough information to generate both parser and AST classes.
Technically speaking, the description for creating an AST is identical to the
parser rules. This both restricts the choices of a developer in a sense that the
AST structure strongly corresponds to the grammar (similar to [9]), but it im-
proves the effectiveness of the developer, as it allows very compact definitions
of languages. As a side effect it simplifies the development of new languages for
less experienced users.

MontiCore is not a parser-generator on its own, but is built on Antlr, a rather
widely used tool [12], as a backend to generate the parser component. The AST
class construction and the grammar description form is similar to the one used by
SableCC [9]. The underlying parsing technology is a recursive-descent predicate

Techniques for Lightweight Generator Refactoring 445

MontiCore-Grammar

File:
(Mappings:Mapping)+ ;

Mapping:
!"mapping" Name:IDENT ClassName:IDENT
(Entries:MapEntry)* ;

MapEntry:
LowerBound:NUMBER "-" UpperBound:NUMBER

":" Name:IDENT ;

EBNF

File ::=
(Mapping)+

Mapping ::=
’mapping’ IDENT IDENT (MapEntry)*

MapEntry ::=
NUMBER ’-’ NUMBER ’:’ IDENT

ASTFile

mappings : ASTMappingList

+ getMappings() : ASTMappingList
+ setMappings(mappings : ASTMappingList):void

ASTMappingList :
 java.util.List(ASTMapping)

1

1

ASTMapping

name : String
className : String
entries : ASTMapEntryList

+ getName() : String
+ setName(name : String):void
+ getClassName() : String
+ setClassName(classname : String):void
+ getEntries() : ASTMapEntryList
+ setName(entries : ASTMapEntryList):void

*

1

ASTMapEntryList :
 java.util.List(ASTMapEntry)

1

1

ASTMapEntry

lowerBound : String
upperBound : String
name : String

+ getLowerBound() : String
+ setLowerBound(lowerbound : String):void
+ getUpperBound() : String
+ setUpperBound(upperbound : String):void
+ getName() : String
+ setName(name : String):void

*

1

Fig. 7. Overview of MontiCore descriptions

LL-parser which simplifies the compositional embedding of languages into each
other in comparison to using a LR-parser.

The following example in Figure 7 contains the MontiCore grammar, the
respective EBNF grammar that describes the same language and a UML class
diagram of the derived AST classes. The generated parser instantiates objects of
these classes to build the internal representation of the model (abstract syntax).
MontiCore is e.g. used in the example in Section 3 to parse the input data from
the DSL description and to generate the AST classes which are used by the
template engine. The parser and AST classes of the template engine itself are
also constructed using MontiCore.

Based on our experience so far, it is worth extending the current capabilities
of defining domain-specific languages and code generators for them, because it
indeed speeds up the development and in particular the agile development of
software systems.

5 Conclusions and Outlook

In this experiment we have shown how templates for code generation can look
like, so that they allow for an automatic refactoring within an agile development
process. We also have demonstrated the usability of this approach by a longer

446 H. Krahn and B. Rumpe

example, where we used MontiCore, a newly developed prototype, to simplify
supporting work like the generation of a parser for input data and the creation
of classes storing this data.

However, for our approach it was necessary to develop a new template replace-
ment engine and we could not reuse e.g. Velocity. For demonstration purposes,
it was sufficient to use the described features. However, for practical use it would
be good to have more capabilities of Velocity accessible through the template
engine.

Furthermore, the concrete syntax of the template engine is still not very
elegant. We used it mainly for experiments first and also integrated it into
MontiCore to generate the AST classes itself. But the experiments also showed
that for practical usage additional tags simplify the development. This has e.g.
led to the development of additional tags like /*O ... */. Also the approach
where only one model object has the focus at a certain point was weakened
by adding the ability to access model objects upwards in the AST-hierarchy by
%number%attribute%. These experiments encourage us to combine the idea to
embed tags as comments with the comfort of a grown-up template engine like
Velocity in near future.

References

1. Apache Velocity Website. http://jakarta.apache.org/velocity/.
2. Poseidon for UML Website. http://www.gentleware.com.
3. M. van den Brand, P.-E. Moreau, and J. Vinju. Generator of efficient strongly

typed abstract syntax trees in Java. IEE Proceedings - Software, 152(2):70–78,
2005.

4. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In Proceedings of GPCE ’05, pages 422–
437, 2005.

5. C. Donnelly and R. Stallman. Bison: The Yacc-Compatible Parser Generator.
iUniverse Inc., 2000.

6. Eclipse Website. http://eclipse.org.
7. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional, 1999.
8. M. Fowler. Generating Code for DSLs, 2005.

http://www.martinfowler.com/articles/codeGenDsl.html.
9. E. Gagnon and L. Hendren. SableCC – an object-oriented compiler framework. In

Proceedings of TOOLS 1998, August 1998.
10. J. Herrington. Code Generation in Action. Manning Publications Co., 2003.
11. W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University

of Illinois at Urbana-Champaign, 1992.
12. T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator.

Software – Practice and Experience, 25(7):789–810, 1995.
13. B. Rumpe. Agile Modellierung mit UML : Codegenerierung, Testfälle, Refactoring.

Xpert.press. Springer-Verlag, 2005.
14. J. Visser. Visitor combination and traversal control. In Proc. of OOPSLA ’01,

pages 270–282, New York, NY, USA, 2001. ACM Press.

E-CARES Project: Reengineering of
Telecommunication Systems

Christof Mosler

Department of Computer Science 3, RWTH Aachen University,
Ahornstr. 55, 52074 Aachen, Germany

christof.mosler@rwth-aachen.de

Abstract. One important field of application for embedded real-time systems is
in the telecommunications industry. In the first phase of the E-CARES reengi-
neering project, we regarded the architecture modeling and the reverse engineer-
ing of telecommunication systems. Current work concerns the restructuring of
such systems including their re-design and re-implementation. The aim is to pro-
vide concepts, languages, methods, and tools to improve the architecture and the
real-time performance of the software system. Our reengineering prototype is
based on a graph rewriting system by which the underlying application logic is
generated.

1 Introduction

There exist many approaches concerning reengineering of legacy systems, but the ma-
jority of these approaches deals with systems in the field of business applications. Our
project concerns understanding and restructuring of complex legacy systems from the
telecommunications domain. Such systems are embedded real-time systems using the
signaling paradigm, thus they pose additional requirements regarding fault tolerance, re-
liability, availability, and response time. Corresponding reengineering tools should take
into account these performance aspects and provide adapted visualisation and modeling
methods for their analyses.

The E-CARES research project is a cooperation between Ericsson Eurolab Deutsch-
land GmbH (EED) and Department of Computer Science 3, RWTH Aachen Univer-
sity. The acronym E-CARES stands for Ericsson Communication ARchitecture for
Embedded Systems. The current system under study is Ericsson’s AXE10, a mobile-
service switching center (MSC) comprising more than ten million lines of code written
in PLEX (Programming Language for EXchanges) [1].

The aim of the project is to provide a flexible and interactive reengineering environ-
ment, not only for the PLEX programming language but also for other languages used in
the domain of embedded real-time systems. Figure 1 presents the different parts of the
software reengineering process according to a model introduced by Byrne in [2]. The
reverse engineering of telecommunication software was studied in the first phase of the
E-CARES project [1]. Current work concerns the extension of the E-CARES prototype
by providing restructuring support. For that reason, we study not only re-design tech-
niques but also forward engineering methods which can propagate the changes from the
design level to the implementation level.

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 447–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

448 C. Mosler

Fig. 1. General model of software reengineering [2]

The E-CARES prototype is based on the graph rewriting system PROGRES [3].
The PROGRES language is a strongly typed specification language for complex data
structures. It is based on a graph model and allows the definition of graph schemes and
corresponding graph transformations. The PROGRES programming environment con-
sists basically of a syntax-directed editor and a code generator for C-code, by which the
underlying application logic of the E-CARES prototype is generated. Graph grammars
offer a convenient and efficient way to define the required transformations [4].

This paper describes how we use simple restructuring transformations to improve
the AXE10 system. The extensions of the PROGRES specification and the new func-
tionalities of the E-CARES prototype are presented. The implemented transformations
improve the architecture of the software system and consider also aspects specific to
embedded real-time systems.

The paper is structured as follows: Section 2 introduces the terminology relevant
in the telecommunications context. In section 3, the current status of the E-CARES
prototype is described. Section 4 explains how we use the graph rewriting system PRO-
GRES to perform re-design transformations. Section 5 describes how we perform the
code modifications to adapt the source code to the changes performed on the graph. In
section 6, the related work is classified and the current state-of-the-art is shown. In the
last section, the results are summarized and an outlook for future work is given.

2 System Under Study

The GSM network (Global System for Mobile Communication) is the current stan-
dard in mobile telecommunications. A very important part of the GSM network are the
mobile-service switching centers (MSCs). They provide services like phone call, data
call, and short message service (SMS). They are also responsible for the authentication
and for the communication with other MSCs and networks. The AXE10 is Ericsson’s
implementation of an MSC. It consists of hardware and software units. Each switch has
a central processor and a range of regional processors controlling various hardware de-
vices like sensors and actors. Each processor executes the corresponding program code
on its own runtime system. Incoming events are handled by the regional processors or
forwarded to other processors.

E-CARES Project: Reengineering of Telecommunication Systems 449

The software units of the AXE10 system are implemented in PLEX (Programming
Language for EXchanges). This language was developed in about 1970 at Ericsson and
is still in wide use within the company. It has a signaling paradigm, which means that
only incoming signals can trigger code execution. The main unit of a PLEX program is
a block and each block is stored in its own file. PLEX provides only very simple means
for program structuring, therefore, engineers at Ericsson often use special implementa-
tion patterns to obtain a clear program structure. For example, it is not possible to define
subsystems in the PLEX language. To group a set of blocks with similar functionality
to a subsystem, they use predefined name conventions and comments. However, the
concept of subsystems is still very important for the organisation and finds a wide ap-
plication in the AXE10 context. For such complex legacy systems a clear and under-
standable architecture is essential. For that reason, we study reengineering techniques
improving the software architecture, like the decomposition of subsystems and blocks.
However, specific challenges of PLEX comprise primarily performance aspects. Some
examples will be presented in section 4.

3 E-CARES Tool Suite

The aim of the project is to provide a flexible and interactive reengineering environment.
To achieve the desired flexibility the implementation of the E-CARES prototype is ex-
tremely modular and extensible (see figure 2). The different parts of the environment are
entirely exchangeable. We use formal specifications from which major parts of the pro-
totype are generated. Hence, the scanners and parsers are generated automatically. Here,
we use the lexical analyser generator jlex [5] and the parser generator jay [6]. The code
modifier is based on the rule-based programming language TXL [7]. Furthermore, the
PROGRES specification language offers a convenient way to specify the required graph
operations. In this manner, new functionalities (e.g. new analyses, transformations, and
views) can be added easily. And also extensions for other programming languages are
possible, as showed in [1] for the C language by providing a corresponding graph model.
However, the code generated from a PROGRES specification forms only the applica-
tion logic responsible for the graph operations. We use UPGRADE [8], a framework for
building graph-based applications, to provide the control over these graph operations.
That is, the PROGRES generated source code is the engine of the prototype while the
Java-based UPGRADE framework and its extensions provide the user interface.

In our reverse engineering approach we use different sources of information. The
most important and most reliable one is the source code of the PLEX system. We parse
the source code and create a textual document describing the system structure, compris-
ing its communication, control, and data flow. Furthermore, we use some other sources
of information which are also parsed; the extracted information is added to the struc-
ture document. For example, we use a textual file called signal list which provides the
names of the blocks to which outgoing signals are sent during runtime. In PLEX, sig-
nal receivers are often initialized dynamically. By considering this list, we are able to
exclude from the graph any signal edges which are potentially possible, but never actu-
ally used. Another example of an additional source of information is the textual system
hierarchy description which itemizes blocks belonging to each subsystem.

450 C. Mosler

Fig. 2. Current status of the E-CARES prototype [1]

The graph described in the structure document consists of a main system node, sub-
system nodes, block nodes, and the nodes for different program parts of each block. All
nodes comprise different types of attributes describing where the corresponding soft-
ware parts can be found and what their characteristics are. The nodes are connected to
each other by various kinds of edges (e.g. contains, goto, calls, from source, to target).
An example of a structure graph is shown in figure 3.

The main part of the reengineering environment consists of three tools whose ap-
plication logic is generated from the PROGRES specification. The static analysis tool

Fig. 3. Cutout of a structure graph

E-CARES Project: Reengineering of Telecommunication Systems 451

reads the graph description in the structure document and instantiates the graph in the
underlying database. Then the user can perform various types of analyses by using dif-
ferent visualisation and query techniques. Also, different metrics can be used to obtain
more quantitative characterizations of the analysed system. This tool provides not only
the system structure but also behavioural information which can be identified by the
static analysis. For instance, behavioural information allow the analysis of link chains
[9] which describe how different block instances are combined at runtime to realise a
certain service.

With the dynamic analysis tool the user is able to analyse the system behaviour
during runtime. Usually, we are interested in the system behaviour for a certain sce-
nario, e.g. an incoming phone call. The trace files containing all the information can
be obtained either from an emulator or from a running AXE10 machine. For the inter-
connected blocks involved in the processing of the incoming event an instance graph is
created which is also connected to the structure graph. Further graph transformations
and queries can be used to analyse and visualise the dynamic behaviour of the system.

The basic functionalities of both tools have been already successfully implemented
[9], but the graph model still must be adapted to new emerging requirements concern-
ing implementation patterns used at Ericsson. For this purpose the missing information
must be added to the graph model and new transformations defined. Furthermore, the
two tools indicated by dashed lines in figure 2 are still in development. The re-design
tool should provide an interface allowing the user to interactively improve the soft-
ware system by applying different kinds of modifications. This tool uses several graph
transformations which are also specified in PROGRES. The second tool, the code trans-
former, propagates the changes performed on the graph to the actual source code.

4 Graph Transformations for Architecture Re-design

Successful software restructuring requires a solid understanding of the existing system.
By representing the system structure by a graph the engineer is able to work on a more
abstract representation of the system. The analysis is easier and there are many aspects
which can be visualised in a very effective way. To perform a restructuring on this level
of abstraction means to manipulate such a graph.

To present a concrete example of a re-design rule we introduce a simplified restruc-
turing scenario. Each subsystem consists of blocks, which all should be related to one
particular functionality of the system. But, subsystems often contain blocks which are
assigned to them simply because of historical reasons. Such situations make the soft-
ware very difficult to understand and especially the maintenance of such a system is
very painful. For this reason, engineers at Ericsson would like to have tool support for
identifying such blocks and eventually for moving them to other subsystems. In a sim-
plified scenario, we could look for blocks which are not used by any other block from
the same subsystem and move them to a subsystem where they are used.

Figure 4 shows a corresponding rule in a PROGRES-like notation. From this rule, the
PROGRES environment generates a corresponding C-function which can automatically
be accessed by the UPGRADE-based user interface of the prototype. The left-hand side
of the rule defines the subgraph we are trying to find in the instantiated structure graph.

452 C. Mosler

Fig. 4. Graph transformation rule for moving blocks

Given a certain subsystem as parameter, we try to find a block in it, which does not
receive signals from any other block in this subsystem (expressed by the negative path
expression between node ’3 and node ’6). As shown on the right-hand side of the rule,
this block should then be moved to another subsystem where at least one other block is
sending signals to it. To simplify the transformation rule we use signal path to indicate
inter-block communication. The definition of this complex path can be found in figure 5.
Like already shown in figure 3, in the actual structure graph, blocks contain statement
sequences which can send signals to entry points of other blocks. To model signals
we use an edge-node-edge construction which allows storing complex attributes for the
signals.

After applying this graph transformation, we obtain a clearer software architecture
with more self-contained subsystems. But we also have to store information about the
corresponding changes in the PLEX source code which result in the performed graph

Fig. 5. PROGRES definition of signal path

E-CARES Project: Reengineering of Telecommunication Systems 453

transformation. For that reason, every graph node has an attribute CodeTransform col-
lecting all source code changes to be performed later. Each new transformation is indi-
cated by the character sequence “##”. In our example, only in the node of block ’6 the
information about moving it from subsystem1 (node ’1) to the found subsystem (node
’2) is assigned.

Of course, there are other restructurings possible for improving the software. When
reengineering embedded real-time systems, the objective is not only to obtain a clear
and understandable architecture, but also a good system performance. Algorithms con-
cerning performance aspects in PLEX are the subject of ongoing work. The goal is to
provide Ericsson engineers with proposals where to improve the software. Currently,
there are two areas we are working on:

– Moving blocks from one subsystem to another does not cause any changes on the
source code level. However, in a very similar way we can search through a block
for subroutines and labeled statement sequences which could be moved to other
blocks. For example, if we find code parts of a block which are mainly used by an-
other block we can reduce the number of exchanged signals and temporal variable
allocations by moving these parts. Alternatively, we can merge blocks with related
functionalities to form a new, more complex block.

– Another promising approach to improve system performance is the analysis of com-
munication buffers. Instead of transferring a large amount of data between a num-
ber of blocks, we can utilize a global memory buffer and send signals containing a
pointer to such a communication buffer. We are developing algorithms supporting
decisions on where usual signal communication and where communication buffers
should be used. For this analysis, Ericsson provides tables with capacity break-
points depending on the data size and the number of blocks involved in the com-
munication.

All of these transformations require algorithms analysing complex graph patterns.
Though the task of processing such patterns seemed to be very difficult in the begin-
ning, usually some simple rule expressions are all we need to provide the operations for
the graph. The PROGRES environment generates the C-code for the given graph opera-
tion and the UPGRADE framework automatically offers an adapted interface to access
it. Thus, not much additional functionality needs to be coded outside the PROGRES
specification.

5 Code Modifications

After the re-design phase, the tool must propagate the corresponding improvements to
the implementation level. This section describes briefly how we transform the source
code according to the changes performed on the structure graph.

The information about the improved software architecture is stored in the structure
graph. However, this graph only forms an instantiated representation of the system; it
does not contain all the information needed for the generation of the new source code.
Each graph node representing a data or a control structure stores its original file name
and its line numbers but not the actual source code. Therefore, to obtain the changed

454 C. Mosler

Fig. 6. Generation of the new PLEX source code

program we resort to the original source code files and enhance them by adding infor-
mation extracted from the graph, describing how the particular parts should be trans-
formed. Figure 6 shows what our code transformer tool looks like.

The UPGRADE framework, built around the generated application logic of our
reengineering prototype, stores the instantiated structure graph in a database. It pro-
vides facilities to export the graph to a GXL[10] file. GXL (Graph eXchange Language)
is a standard format for exchanging graph-based data. The code transformer consists of
two parts: the preprocessor and the actual source code transformation tool.

The preprocessor uses the GXL file and the original source code files to generate an
intermediate version of the code. According to the new system architecture, the prepro-
cessor copies all PLEX files to a new directory and at the same time performs opera-
tions moving re-designed block parts between the files. Information about the original

Fig. 7. Prepared PLEX source code and the TXL transformation tool

E-CARES Project: Reengineering of Telecommunication Systems 455

file names and line numbers have been stored in the graph, thus the program can find the
corresponding source code parts easily. In the next step, the preprocessor enhances the
new PLEX code by adding annotations describing source code transformations to be
performed by the transformation tool. These annotations correspond to the data stored
for each node in the attribute CodeTransform (see section 4) and they encapsulate the
involved source code lines. If the attribute of a control or a data structure stores more
than one transformation, all of them will be added to the source code, clasping the trans-
formations to be performed beforehand. On the left side of figure 7 we see an example
of the prepared source code. By using the “RenameVar” annotation we want to rename
the variable “NUMBER” to “NR BLOCK A”. The “Global2Local” annotation intends
to transform a “SEND” statement, sending a signal to another block, to a “TRANS-
FER”, statement sending a local signal to a signal entry point within the same block.
As we can see in the document on the right-hand side no “REFERENCE” variable is
needed in the new code anymore. Such a transformation is used, for example, when a
labeled statement sequence was moved from another block to the current one.

To avoid conflicts when applying different source code modifications we store in the
graph only source code transformations for atomic PLEX parts, such as subroutines,
labeled statement sequences, and data structure declarations. Such atomic parts have no
child nodes in the graph and cannot be split or merged during the re-design process.
By preserving the order of the code modifications for every node, we can guarantee
the uniqueness of the resulting new PLEX code. This is the reason why we have used
“RenameVar” for every occurrence of ’NUMBER’ instead of applying it directly to the
entire PLEX block. It is up to the engineer specifying the re-design transformations to
take into account all graph nodes involved in the re-code process.

The syntax of this prepared code and the corresponding transformations are defined in
the rule-based programming language TXL [7]. The TXL transformation system parses
each of these prepared files individually and performs the transformations on the cre-
ated abstract syntax trees. We do not think that we can provide TXL transformations
for all possible graph re-design rules. The current set implements rules for renaming
of identifiers, transforming of different signal types (e.g. local signals, goto- and call-
statements to global signals and vice verse), and moving of subroutines, labeled state-
ment sequences, and data structure declarations. This set is sufficient for all re-design
operations provided by the current PROGRES specification. The introduction of new re-
design rules can require the definition of new TXL transformations. However, we argue
that the great advantage of declarative specifications is the possibility to add new trans-
formations easily. This is valid for the re-design as well as for the re-code level. Although
the code transformer tool is still in development we have already achieved first positive
results after applying some simple re-designs on a limited number of PLEX blocks.

6 Related Work

There exist other graph-based reengineering tools. The main differences between these
projects are described in the following paragraphs.

Rigi [11] is an interactive tool for reverse engineering. It can extract, navigate, anal-
yse and document the structure of large systems. Program understanding is supported

456 C. Mosler

through visualisation of the software structure. Rigi is also used in the Bauhaus project
[12], which offers a wide range of techniques for (semi-)automatic extraction and de-
scription of software architectures. In contrast to E-CARES, these two projects are not
based on a high-level specification language. They also do not analyse dynamic data
and do not support software restructuring.

GUPRO [13] (Generic Understanding of PROgrams) is a system allowing the gener-
ation of program understanding tools. The toolkit supports several programming
languages. After the parsing the user can browse through the parsed software in a
hypertext-like manner. A graph query language is used to define different kinds of anal-
yses, but graph transformations can not be specified in a declarative way. GUPRO does
not support restructuring.

Fujaba (From UML to Java And Back Again) [14] is a free open-source CASE tool
with round-trip engineering support for Java. It provides a rule-based visual program-
ming language for manipulating object structures using graph productions based on
UML. The Fujaba Tool Suite RE [15] is a collection of Fujaba reengineering tools and
plug-ins. It allows the parsing of Java source code and supports different kinds of static
and dynamic analyses, such as recognition of design patterns and antipatterns [16].

The approach in [17] shows how refactorings for object-oriented software can be de-
fined by using graph rewrite rules. Instead of PROGRES the researchers use Fujaba and
AGG [18] for tool validation. AGG provides a convenient way to define source code
refactorings formally. AGG is a general tool environment for algebraic graph transfor-
mation which follows the interpretative approach. The AGG environment consists of
a graphical user interface and an interpreter which can be used for the specification
and prototypical implementation of Java applications with complex graph-structured
data. The paper at hand presents a very similar approach for defining software trans-
formations. However, the E-CARES project is based on another specification language
and aims at the reengineering of programs written in a different kind of programming
language.

In comparison to the other graph-based reengineering projects, E-CARES follows a
more complex approach to the problem. For the analyses we use not only the source
code files but also other sources of information. We perform a structural analysis but
at the same time we are able to add static behavioural information to the graph, and
even dynamic data from trace files. Our approach comprises aspects important for the
reengineering of embedded real-time systems, like performance restrictions and special
visualisation techniques.

7 Conclusion

This paper presents the current state of the E-CARES project. It comprises research in
the area of reengineering for systems in the telecommunications industry. This paper
shows how graph rewriting can be used to process graphs containing information about
the structure and behaviour of the systems. Graph rewriting systems like PROGRES
offer a convenient way to specify the corresponding graph operations. New kinds of
analyses, transformations, and views can be added easily, and also extensions for other
languages are possible.

E-CARES Project: Reengineering of Telecommunication Systems 457

The comparison with the other projects following a graph-based approach shows that
some of the other tools lack the support provided by a high-level specification language
or do not support restructuring at all. Comparatively, the E-CARES tool also uses a
wider range of information and concentrates on specific aspects of embedded real-time
systems. As described in the introduction, the characteristics of such systems strongly
impact the structuring and implementation of this kind of tool.

The first part of the project concerned the reverse engineering of telecommunication
systems. The graph rewriting system was used to specify the operations needed for the
analysis of the AXE10 software system. Current results show how graph rewriting sys-
tems can be used to perform transformations in order to improve the system. We have
been able to successfully analyse parts of the AXE10 software system with respect to
problem descriptions stated by Ericsson experts and provide suggestions how to im-
prove the software architecture. Our current goal is to provide algorithms improving
system performance by moving source code parts from one block to another, and by
optimizing the use of communication buffers.

References

1. Marburger, A.: Reverse Engineering of Complex Legacy Telecommunication Systems.
Shaker Verlag, Aachen, Germany (2004) ISBN 3-8322-4154-X.

2. Byrne, E.J.: A Conceptual Foundation of Software Re-engineering. In IEEE Computer
Society Press: Los Alamitos CA, U., ed.: Proceedings of the 1992 International Conference
on Software Maintenance (ICSM ’92), Chicago, USA (1992) 226–235

3. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and Environ-
ment. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages, and Tools.
Volume 2. World Scientific: Singapore (1999) 487–550

4. Cremer, K., Marburger, A., Westfechtel, B.: Graph-based tools for re-engineering. Journal
of Software Maintenance and Evolution: Research and Practice 14 (2002) 257–292

5. Berk, E.: JLex: A lexical analyzer generator for Java(TM). Department of
Computer Science, Princeton University. (2000) http://www.cs.princeton.edu/∼

appel/modern/java/JLex/current/manual.html.
6. Schreiner, A.T., Kühl, B.: jay – a yacc for java. homepage (2003) URL: http://www.

informatik.uni-osnabrueck.de/alumni/bernd/jay/.
7. Cordy, J.R., Halpern-Hamu, C.D., Promislow, E.: TXL: A Rapid Prototyping System for

Programming Language Dialects. Computer Languages 16 (1991) 97–107
8. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: A Framework for Build-

ing Graph-Based Interactive Tools. In Mens, T., Schürr, A., Taentzer, G., eds.: Proceedings
of the International Workshop on Graph-Based Tools (GraBaTs 2002). Volume 72 of Elec-
tronic Notes in Theoretical Computer Science., Barcelona, Spain, Elsevier: Amsterdam, The
Netherlands (2002)

9. Marburger, A., Westfechtel, B.: Behavioral Analysis of Telecommunication Systems by
Graph Transformations. In Pfaltz, J.L., Nagl, M., Böhlen, B., eds.: Proceedings of the 2nd
Workshop on Applications of Graph Transformations with Industrial Relevance AGTIVE
2003. LNCS 3062, Charlottesville, Virginia, USA, Springer: Heidelberg, Germany (2003)
202–219

10. Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL - Graph eXchange Language. homepage
(2006) http://www.gupro.de/GXL/.

458 C. Mosler

11. Müller, H.A., Wong, K., Tilley, S.R.: Understanding Software Systems Using Reverse En-
gineering Technology. In: The 62nd Congress of L’Association Canadienne Francaise pour
l’Avancement des Sciences ACFAS 1994, Montreal, Canada (1994) 41–48

12. Koschke, R.: Atomic Architectural Component Recovery for Program Understanding and
Evolution. Doctoral thesis, Institute of Computer Science, University of Stuttgart: Stuttgart,
Germany, Stuttgart, Germany (2000) 414 pp.

13. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO – Generic Understanding of Pro-
grams: An Overview. Electronic Notes in Theoretical Computer Science 72 (2002) URL:
http://www.elsevier.nl/locate/entcs/volume72.html.

14. Nickel, U., Niere, J., Zündorf, A.: Tool Demonstration: The Fujaba Environment. In: Pro-
ceedings of the 22nd International Conference on Software Engineering ICSE 2000, Limer-
ick, Ireland, IEEE Computer Society Press: Los Alamitos, CA, USA (2000) 742–745

15. Fujaba: Fujaba Tool Suite RE. homepage (2005) http://wwwcs.uni-paderborn.de/cs/fujaba/
projects/reengineering/.

16. Niere, J., Schäfer, W., Wadsack, J.P., Wendehals, L., Welsh, J.: Towards pattern-based design
recovery. In: Proc. of the 24th International Conference on Software Engineering (ICSE),
Orlando, Florida, USA, ACM Press (2002) 338–348

17. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings with graph
transformations. Journal on Software Maintenance and Evolution: Research and Practice
(2005)

18. Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In: Proceedings
AGTIVE 99. LNCS 1779, Kerkrade, Netherlands, Springer: Heidelberg, Germany (1999)
481–488

A Feature Composition Problem and a Solution
Based on C++ Template Metaprogramming

Zoltán Porkoláb and István Zólyomi

Department of Programming Languages and Compilers,
Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
{gsd, scamel}@elte.hu

Abstract. Separation of concerns and collaboration based design is usu-
ally a suitable concept for library implementation: it results in easily
scalable and maintainable code. After specifying and implementing or-
thogonal features, we aim to easily assemble library components. In real
life, components can be used only after appropriate refinement steps,
progressively adding features in each step. Therefore the specific solu-
tion for a particular task can be produced by composing a set of refined
components. Unfortunately, a subtype anomaly occurs in object-oriented
languages between such composite components that have different num-
bers of features from different refinement stages. In this article we anal-
yse this anomaly that we named chevron-shape inheritance and present
a framework based on standard C++ template metaprogramming.

1 Introduction

The creation of large scale software systems is still a critical challenge of soft-
ware engineering. Several design principles exist to keep the complexity of large
systems manageable. Different methodologies are used to divide the problem
into smaller orthogonal parts that can be planned, implemented and tested sep-
arately with moderate complexity. In a fortunate case such parts already exist
as some foundation library module, otherwise they can be produced by reason-
able efforts. This separation of concerns is widely discussed in [25] and [12].
In object-oriented libraries these concerns are mostly implemented as separate
classes.

Possessing our premanufactured components we have several methodologies to
assemble a full system from the required components. This so-called collaboration
based design is supported by aspect oriented programming [21], subject oriented
programming [27] [28], feature oriented programming [10] and composition fil-
ters [19]. Besides, the assembly can be naturally expressed by deriving from all
required components using multiple inheritance in languages that support this
feature, such as C++. This mixin-based1 technique is highly attractive for im-
plementing collaboration-based design [13]. Whichever approach we choose, the
1 There is a number of different meanings of “mixins”. We use the term mixin accord-

ing to Batory and Smaragdakis [13].

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 459–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

460 Z. Porkoláb and I. Zólyomi

basic idea is to easily create the solution as a union of components implemented
in separate modules.

However, in real life it is hard to find a component that implements the
required feature exactly. In most cases we have to customize the components to
meet the requirements of the current task by adding features [12]. Specializations
for every separate component are made orthogonally which leads to separated
refinement chains, each representing refinement steps of individual features. The
specific solution for a particular task can be finally produced by assembling
specialized components from appropriate layers of different chains.

In object-oriented languages we represent our components as classes. Refine-
ment is regularly expressed by inheritance, hence we gain a subtype relationship
between the refined and the original component. In [11], Batory et al. claim
that “the only classes that are instantiated in a synthesized application are the
terminal classes of the refinement chains [...] Non-terminal classes [...] are never
instantiated.” Nevertheless, it is a frequent scenario that some client code han-
dles the objects of terminal classes through an interface of an earlier refinement
layer. For example, the client code has been implemented prior to the final refine-
ment steps or the refinements serving implementational purposes only should be
hidden. In such cases, subtyping should be provided between refinement layers.

In this article we present examples where conventional subtyping yields un-
desired effects, give a detailed discussion of an inheritance anomaly, dispute ex-
isting or proposed alternative solutions and introduce a solution based on code
transformation using standard C++ template metaprogramming.

2 Problem Description

To define the problem, we rely on the notation and formalism of AHEAD [11].
In this model, we consider features as refinement transformations. Every feature
fi is a function that transforms a (possibly empty) component. As a result,
the represented feature will be added to the component. Assuming an existing
component ci, we mark such extensions by fi • ci.

For an easier creation of programs, we allow the composition2 of features.
A composition is represented by a set, e.g. a union of features is {fi, fj}. An
extension of a compound component by a set of features is formalized as

f • c = {f1, ..., fn} • {c1, ..., cn} = {f1 • c1, ..., fn • cn} (1)

Note that feature addition is distributive over the composition above [11]. In
widely used object-oriented languages, such as Java, C++, C# or Eiffel, feature
addition (component refinement) is implemented by inheritance. Additionally,
composition may also be implemented by multiple inheritance3 or aggregation.

2 Such compositions are referred as collectives in [11].
3 Note that some languages (e.g. Java) do not support multiple inheritance directly,

but are able to simulate it (e.g. using interfaces). The problem exists in these cases,
too.

Feature Composition with C++ Templates 461

What is the problem with inheritance? In object-oriented languages, reusing
code and defining subtype relations is not clearly separated, they are both ex-
pressed through inheritance. Thus, composition implemented by multiple inher-
itance or aggregation fails to fulfil the distributive property. Hence the foremen-
tioned languages does not conform to equation (1).

The service for a specific user requirement can be constructed as a composi-
tion of refined features. In the same time, we should be able to use any subset of
features from different refinement stages as an interface to this service. Therefore
a subtype relation should be provided between any of these collectives irrespec-
tively of the number and refinement level of participant concern classes. Thus
we have to decide: if we derive the refined collaboration from the original col-
laboration class, we lose the subtype relationship with classes implementing the
refined features; otherwise (deriving from the refined features) we lose the sub-
type relationship with the original collective. In figure 1 the general structure of
the anomaly can be seen, according to the two mentioned cases respectively. We
have named this anomaly chevron-shape inheritance.

Fig. 1. Chevron-shape inheritance. (Missing subtypes are marked by dashed lines)

3 Examples

To clarify the formalism above, let us introduce an example from the C++
Standard Library. In Fig. 2 you can see the class hierarchy of the stream imple-
mentation in GNU C++ as specified by the C++ standard. (We omit the fact
that all the following classes are templates by the standard, because this does
not affect the problem).

Classes istream and ostream are representing input and output streams as
orthogonal concerns. (There is a common base class ios for both classes that
holds some general stream functionality.) Class iostream unifies input and out-
put functionalities representing streams that can be both read and written. Using
the formalism introduced above, iostream = {istream, ostream}. iostream is

462 Z. Porkoláb and I. Zólyomi

Fig. 2. I/O library according to the C++ standard

implemented by multiple inheritance from classes istream and ostream. The
result is a well known anomaly called diamond-shape inheritance. It is usually
resolved using virtual inheritance in classes istream and ostream.

The library contains refinements for both input and output streams. Streams
opened over certain physical devices belong to classes ifstream or ofstream
as refinements of istream and ostream respectively. Formalising this, we gain
ifstream = fileio• istream, class ofstream can be defined analogously. Similar
refinements exist for streams stored in a memory buffer (e.g. istringstream and
ostringstream). These refinements are implemented using inheritance. Class
fstream (and stringstream also) inherits from iostream and represents file
streams for both input and output operations. For fstream, we gain fstream =
fileio • iostream. Until this point, the class hierarchy is specified by the C++
standard.

Surprisingly, this construction causes some unexpected results. Intuitively,
fstream is clearly a subtype of both ifstream and ofstream, so fstream =
{ifstream, ofstream}. The inheritance hieararchy described above does not
express this, hence there is no conversion from fstream to either istream or
ostream. Thus,

fstream = fileio • iostream = fileio • {istream, ostream}
�= {fileio • istream, fileio • ostream} = {ifstream, ofstream} (2)

Clients handling input files are not able to use objects from fstream as an in-
stance of ifstream, they are enforced to use istream as a more general interface
losing file-specific information. After examining classes iostream and istream
this may be an astonishing fact.

There is another possible construction scheme for the I/O library that is de-
scribed in [29] and also referred in Stroustrup’s fundamental book The Design

Feature Composition with C++ Templates 463

and Evolution of C++ [17]. Classes ifstream and ofstream are derived from
ifstream and ostream respectively, and also from class fstreambase, which rep-
resents an orthogonal, third concern (file operations). Here, fstream is derived
from ifstream and ofstream, therefore our previous problem is substituted
with another one: iostream is not an ancestor of fstream anymore, therefore
cannot be used as an interface for input and output file operations.

The implementation technique of file streams is not covered by the standard.
Examining certain implementations like the one in the old GNU C++ version
2.95 we get an even more confusing picture (see figure 3). The problem arises
at the implementation of file streams. Since all file streams handle files, it is
highly attractive to detach file-specific functionality into fstreambase. The con-
sequence of this structure is a kind of mixture of the two previous approaches:
ifstream and ofstream are descendents of istream and ostream respectively,
and fstreambase like in [29]. However, fstream is inherited from iostream and
fstreambase as in the current standard.

Fig. 3. The GNU implementation of the I/O library

The current C++ standard votes for the first solution. No matter, which
one we choose, disturbing gaps remain in subtype relations between refinement
stages. It seems we can not express the whole subtype graph that the user would
find natural.

Another example is from the Eiffel programming language [18]. The kernel
library of Eiffel contains several abstract classes like NUMERIC for arithmetics,
COMPARABLE for sorting, HASHABLE for associative containers, etc. These classes
are practical to have because in Eiffel we can require a template parameter to be
a subclass of such an “interface”. These classes can be combined as needed using

464 Z. Porkoláb and I. Zólyomi

multiple inheritance, hence we can derive a NUMERIC COMPARABLE HASHABLE or
a NUMERIC COMPARABLE interface directly from the bases. Again, the problem
appears when we try to use an object of the first class with a generic algorithm
requiring the latter type. No subtype relation is provided by the compiler, we
have to resolve it by hand creating conversion functions.

4 Classical Approaches

In this section we discuss several widely used methods that may promise a pos-
sible solution for the anomaly and analyze the results.

Virtual Inheritance (opposed to conventional inheritance) guarantees that
when a class occurs as a superclass several times, its members will be not du-
plicated in the descendants. Virtual inheritance can usually solve issues related
to multiple inheritance and with a combination of abstract classes it supports a
programming style where the abstract bases define interfaces and several derived
classes contribute to the implementation [17] [16].

Virtual inheritance has several drawbacks in our case. Besides having memory
and runtime penalties, we must explicitly mark our intention to use a class as
a virtual base, hence it is intrusive and can not be a solution using precompiled
libraries. Additionally, in the case of several feature refinement chains, the num-
ber of possible collectives grows exponentially, only an automatic mechanism
provides an acceptable solution, thus it provides a suitable solution only for a
small number of features.

Signatures play an important role in certain functional languages, like Stan-
dard ML. A signature prescribes the typenames, values and nested structures
that must appear in a structure. That way signatures constrain the contents of
structures [7].

Signatures for C++ were proposed by Gerald Baumgartner [4]. They provide a
facility similar to interfaces, but in a non-intrusive way. Signatures have features
similar to classes, e.g. they can inherit from other signatures, and a compiler can
check whether a class has all members to meet the requirements of a signature.
However, using signatures, unintentional conversions may occur: though it is
conceptionally wrong, a Gun can be cast to a Camera because they both have
function shoot() and signatures ignore any semantic information. Additionally,
signatures are non-standard language extensions for C++.

Structural subtyping binds the subtype relation to data structures instead
of inheritance. Languages like C++, Java or Eiffel declare subtyping at the
point of class definition. Contrary, subtype relations are based on structural
subtyping in many functional languages where existence of subtype relations
can be decided based on structural conformance. The reader can find a well
known implementation in the Ocaml language [8]. We suggest reading [20] on
the theoretical background of structural subtyping.

Structural subtyping provides an excellent solution to our anomaly: in lan-
guages supporting this feature our anomaly does not exist. Unfortunately, struc-
tural subtyping suffers from the problem of accidental conformance the same way

Feature Composition with C++ Templates 465

as signatures do. Furthermore, no widely used object-oriented language provides
structural subtyping. Recently, several attempts were made to unify the object
oriented and structural approaches, see [9].

Aspects address the subtyping problem a different way than structural sub-
typing. Instead of providing an algorithmic model to implicitly deduce subtype
relations, another approach is to provide a language mechanishm external to
the class definition that establishes a subtyping relation [23]. Aspect-oriented
programming systems, such as AspectJ [22] allow modification of types indepen-
dently of their original definitions. For example, an existing class can be modified
to implement a newly created interface using static cross-cutting [21]. Though
aspects are usable to weave a single feature into a hierarchy, we find the same
subtyping anomaly when aspects have their own refinement chains.

5 Implementation

Beside object-orientation, the C++ language also has a rich feature set for sup-
porting generative programming. C++ templates provide parametric polymor-
phism as an extension to inclusion polymorphism provided by inheritance. We
can create template specializations to have a completely different implementa-
tion from the general one for some special template arguments. Thus we can
create a matrix class that stores elements in a plain array except for booleans,
where it stores an array of chars each representing (mostly) eight booleans. Be-
cause booleans can be passed as template arguments, we can specialize upon
compile time conditions. Specializations also allow us to write algorithms run-
ning in compilation time inside the compiler instead of runtime in the program.
This approach is called template metaprogramming [5].

Theoretically, template metaprogramming in C++ is a Turing complete lan-
guage in itself, therefore any algorithm can be expressed as a metaprogram (see
[15]). Practically, compilers have limitations in resources (e.g. a maximal depth
of recursion during template instantiation) so this possibility must be used with
care. Additionally, programming compile time algorithms is still an uncomfort-
able effort lacking standard libraries and debug tools. However, it is very useful
for simple cases, especially to give a performance boost. (See expression tem-
plates [6]).

5.1 CSet

The template metaprogramming features discussed above enable us to solve the
chevron-shape anomaly described in section 2. To achieve this goal we perform
an automatic transformation to simulate a subtype relationship between col-
lectives: based on the possibilities of template metaprogramming we implement
automatic conversions between them. In the remaining part of the article we call
these sets CSets (where C can be pronounced as any of class, concern, collabora-
tion, collective, chevron, etc, as conceptually needed). Presenting the technical
implementation details is out of the scope of this paper, it can be found in [1].

466 Z. Porkoláb and I. Zólyomi

In this article we concentrate on usage and applicability of the CSet framework
in feature-oriented programming.

Creating CSet, our first task is to assemble the collaborating classes into a
single entity which we implement as a C++ class using multiple inheritance.
Class CSet is written to directly inherit from all classes in a recursive way,
according to the recursive structure of typelists.

// --- Inherit from all types in list
typedef TYPELIST_3(Container, Rectangle, GuiComponent) WindowList;
typedef CSet<WindowList> Window;
Window win;
win.add(Button("OK")); // --- Container method
win.move(13, 42); // --- Rectangle method
win.draw(); // --- GuiComponent method

Above we assemble three features into a CSet called Window: Container,
Rectangle and GuiComponent. The structure of the created CSet can be seen in
Fig. 4. After having a window object we can call the methods of all three classes.

Fig. 4. Example for a CSet hierarchy

The main issue in CSet is the support of conversions between all appropri-
ate collectives. The implementation is based on the fact that constructors are
ordinary functions in C++, therefore they can be defined to be templates as
well. This way we can make the conversion in elementary recursive steps using
built-in conversions provided by the compiler. Because the conversion is built
into constructors, it can be used in a completely transparent form without any
function calls for conversion:

// --- Conversion using the constructor
CSET_2(GuiComponent, Shape) widget(win);

widget = win; // --- or the assignment operator

Feature Composition with C++ Templates 467

Note that CSet has CSET N macros similar to TYPELIST N providing an easier
form of definition. Our object win can be converted to the collective of features
GuiComponent and Shape because win itself is an instance of GuiComponent,
furthermore it also can be converted to a shape since win has feature Rectangle
which is refined from Shape. Thus the conversion is legal and the object widget
can be initialized using win.

Similarly to the constructor, the assignment operator can be defined as a
template, too. Template functions provide another advantage: not only CSets,
but other user objects can be converted with these functions.

// --- Create a user class and an instance
struct MyWindow : public GuiComponent,

public Circle, public Vector { ... };
MyWindow myObj;

// --- Conversion from user object
CSET_2(Shape, GuiComponent) widget(myObj);

5.2 Dynamic Binding

So far we are able to perform appropriate conversions between matching CSets.
Unfortunately these conversions are done by value. This may imply the loss of
dynamic data of the converted object which is often called slicing in C++. To
avoid slicing, we have to convert our objects by pointer or reference. We follow
the conventional way in our implementation and create our own smart pointers
and references. Because the implementation and usage of these classes are very
similar, we introduce only our smart pointer class called CSetPtr.

Conversions using class CSetPtr can be written the same way as with CSet,
but using pointers we bind dynamically.

// --- Conversion using the constructor
CSETPTR_2(GuiComponent, Shape) widgetPtr(win);

widgetPtr = win; // --- or assignment operator

In CSetPtr we aggregate pointer data members instead of inheriting from an-
cestors to implement elementary conversion steps. As a result, the structure of
CSetPtr created by the previous definition is completely different from the struc-
ture of an appropriate CSet. The created hierarchy and the essence of dynamic
binding can be seen in figure 5.

CSetPtr holds a pointer member for each type in the set, so every pointer
can be set to the appropriate part of an adequate CSet object. This way we can
utilize dynamic binding provided by conventional pointers in C++. CSetPtr can
be transparently converted to any of its pointer members, so virtual functions
can be called easily.

Shape *shape = widgetPtr;
shape->draw(); // --- Use dynamic binding

468 Z. Porkoláb and I. Zólyomi

Fig. 5. Example for a CSetPtr hierarchy

The difference between CSetPtr and CSetRef comes from the type of their
data members: CSetRef holds references instead of pointers. Thus it must be
initialized and conversions are done by reference or value after initialization.

5.3 Limitations and Further Work

Though our solution relies on standard C++ features only, we encountered prob-
lems with some compilers regarding conformance to the standard. Aged compil-
ers tend to fail providing language requirements like partial template special-
ization or has unacceptable compile time, exponentially growing by the number
of composed features. Hopefully these problems will disappear in new compiler
versions.

Another kind of problems is related to our implementation of feature compo-
sition. While we exploit the advantages of multiple inheritance, we also suffer
from its usual drawbacks like possible name resolution disambiguities.

Our current version does not provide const correctness which is an essential
language feature to improve semantical correctness of complex C++ programs,
e.g. const member functions, pointers to const data or const iterator.

In our future work we plan to further improve our solution by eliminating the
problems enlisted above.

6 Summary

The subtyping mechanism of current object oriented languages is not flexible
enough to express required subtype relationships that arise at the implemen-
tation of collaboration based designs. We described an anomaly called chevron-
shape inheritance which arises assembling collectives created during the stepwise
refinement of features. We have introduced a framework called CSet based on
C++ template metaprogramming to transform the subtyping mechanism of the
C++ language. CSets make subtype relationships created during refinement dis-
tributive with feature composition. It supports coercion polymorphism between
appropriate collectives and inclusion polymorphism allowing dynamic binding of
methods with smart pointers. The framework is strictly based on standard C++
features, therefore neither language extensions nor additional tools are required.

Feature Composition with C++ Templates 469

References

1. István Zólyomi, Zoltán Porkoláb, Tamás Kozsik: An extension to the subtype re-
lationship in C++. GPCE 2003, LNCS 2830 (2003), pp. 209 - 227.

2. Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

3. David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide.
Addison-Wesley (2003)

4. Gerald Baumgartner, Vincent F. Russo: Implementing Signatures for C++. ACM
Transactions on Programming Languages and Systems (TOPLAS) Vol. 19 Issue 1.
1997. pp. 153-187.

5. Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,
1995, pp. 36-43.

6. Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5, 1995, pp. 26-31.
7. Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock:

A Comparative Study of Language Support for Generic Programming. Proceedings
of the 18th ACM SIGPLAN OOPSLA 2003, pp. 115-134.

8. Leroy, Xavier et al.: The Objective Caml system, release 3.0.8 (July 2004), docu-
mentation and user’s manual. http://caml.inria.fr/ocaml/htmlman/index.html

9. Jeremy Siek: A Language for Generic Programming. PhD thesis, Indiana Univer-
sity, August 2005.

10. Don Batory: A Tutorial on Feature Oriented Programming and the AHEAD Tool
Suite. Technical Report, TR-CCTC/DI-35, GTTSE 2005, pp. 153-186.

11. Don Batory, Jacob Neal Sarvela, Axel Rauschmayer: Scaling Step-Wise Refine-
ment. IEEE Transactions on Software Engineering, vol. 30, no. 6, pp. 355-371.

12. Don Batory, Jia Liu, Jacob Neal Sarvela: Refinements and multi-dimensional sep-
aration of concerns. Proceedings of the 9th European Software Engineering Con-
ference, 2003.

13. Yannis Smaragdakis, Don Batory: Mixin-Based Programming in C++. In proceed-
ings of Net.Object Days 2000 pp. 464-478.

14. Yannis Smaragdakis, Don Batory: Mixin Layers: An Object-Oriented Implemen-
tation Technique for Refinements and Collaboration-Based Designs. ACM Trans-
actions of Software Engineering and Methodology Vol. 11, No. 2, April 2002, pp.
215-255.

15. Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods,
Tools and Applications. Addison-Wesley (2000)

16. Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-
Wesley (2000)

17. Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)
18. Bertrand Meyer: Eiffel: The Language. Prentice Hall (1991)
19. Lodewijk Bergmans, Mehmet Aksit: Composing Crosscutting Concerns Using

Composition Filters. Communications of the ACM, Vol. 44, No. 10, pp. 51-57,
October 2001.

20. Luca Cardelli: Structural Subtyping and the Notion of Power Type. Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, January 1988. pp. 70-79.

21. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, John Irwin: Aspect-Oriented Programming. Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241, June 1997.

470 Z. Porkoláb and I. Zólyomi

22. Gregor Kiczales et al.: An overview of AspectJ. LNCS 2072 (2001), pp. 327-355.
23. G. Baumgartner, M. Jansche, K. Läufer: Half & Half: Multiply Dispatch and

Retroactive Abstraction for Java. Technical Report OSU-CISRC-5/01-TR08. Ohio
State University, 2002.

24. Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A Solution to the
Constructor-Problem of Mixin-Based Programming in C++. Presented at the
GCSE2000 Workshop on C++ Template Programming.

25. Harold Ossher, Peri Tarr: Multi-Dimensional Separation of Concerns and The Hy-
perspace Approach. IBM Research Report 21452, April, 1999. IBM T.J. Watson
Research Center. http://www.research.ibm.com/hyperspace/Papers/tr21452.ps

26. Harold Ossher, Peri Tarr: Hiper/J. Multidemensional Separation of Concerns for
Java. International Conference on Software Engineering 2001. ACM pp. 734-737.

27. William Harrison, Harold Ossher: Subject-oriented programming: a critique of pure
objects. Proceedings of 8th OOPSLA 1993, Washington D.C., USA. pp. 411-428.

28. Subject Oriented Programming. http://www.research.ibm.com/sop
29. Jonathan E. Shopiro: An Example of Multiple Inheritance in C++: a Model of the

Iostream Library. ACM SIGPLAN Notices, December, 1989.

Author Index

Aßmann, Uwe 357
Andrade, Luis 261
Antunes, Miguel 261

Batory, Don 3
Benavides, David 399
Beranek, Jason 378
Bézivin, Jean 36
Brand, M.G.J. van den 278
Bravenboer, Martin 297

Chiba, Shigeru 65
Cleve, Anthony 409

Dean, Thomas 312

Ekman, Torbjörn 422
El-Ramly, Mohammad 261

Galhardas, Helena 327
Geiger, Leif 344
Gouveia, João 261
Groot, René de 297

Hainaut, Jean-Luc 95, 409
Hedin, Görel 422
Heuzeroth, Dirk 357
Hu, Zhenjiang 144

Koutsoukos, Georgios 261
Krahn, Holger 437
Kuttruff, Volker 357

Lämmel, Ralf 169

Meijer, Erik 169
Mens, Tom 219
Mosler, Christof 447

Porkoláb, Zoltán 459

Ruiz-Cortés, Antonio 399
Rumpe, Bernhard 437

Segura, Sergio 399
Synytskyy, Mykyta 312

Takeichi, Masato 144
Trifu, Mircea 357
Trinidad, Pablo 399

Visser, Eelco 297

Winter, Victor 378

Yokoyama, Tetsuo 144

Zólyomi, István 459
Zündorf, Albert 344

	Frontmatter
	Tutorials
	A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite
	Model Driven Engineering: An Emerging Technical Space
	Program Transformation with Reflection and Aspect-Oriented Programming
	The Transformational Approach to Database Engineering
	Program Optimizations and Transformations in Calculation Form
	Mappings Make Data Processing Go 'Round
	On the Use of Graph Transformations for Model Refactoring

	Technology Presentations
	Forms2Net -- Migrating Oracle Forms to Microsoft .NET
	Applications of the {\sc Asf}+{\sc Sdf} Meta-Environment
	MetaBorg in Action: Examples of Domain-Specific Language Embedding and Assimilation Using Stratego/XT
	Agile Parsing to Transform Web Applications
	Data Cleaning and Transformation Using the AJAX Framework
	Developing Tools with Fujaba XProM
	The COMPOST, COMPASS, Inject/J and RECODER Tool Suite for Invasive Software Composition: Invasive Composition with COMPASS Aspect-Oriented Connectors
	Program Transformation Using HATS 1.84

	Participants' Contributions
	Using Java CSP Solvers in the Automated Analyses of Feature Models
	Co-transformations in Database Applications Evolution
	Modular Name Analysis for Java Using JastAdd
	Techniques for Lightweight Generator Refactoring
	E-CARES Project: Reengineering of Telecommunication Systems
	A Feature Composition Problem and a Solution Based on C++ Template Metaprogramming

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

