
W. Nejdl and K. Tochtermann (Eds.): EC-TEL 2006, LNCS 4227, pp. 21 – 33, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Creating and Delivering Adaptive Courses with AHA!

Paul De Bra, David Smits, and Natalia Stash

Faculty of Mathematics and Computer Science, Eindhoven University of Technology,
Postbus 513, 5600 MB Eindhoven, The Netherlands
{debra, dsmits, nstash}@win.tue.nl

Abstract. AHA! is an Open Source adaptive hypermedia platform, resulting
from 10 years of experience with creating, using and improving on-line adap-
tive courses and presentations. This paper focuses on some recent additions to
AHA! that are especially important for adaptive educational applications,
namely stable presentations, adaptive link (icon) annotations and adaptive link
destinations. We not only describe the technical aspects of these parts of AHA!
but also illustrate their use in educational applications. We describe some fun-
damental limitations of Web-based adaptive applications, and show how AHA!
deals with them in order to provide adaptation to prerequisite relationships in
the way one would expect.

1 Introduction and Motivation

World Wide Web has changed the world in more than one way. It has radically
changed the way in which all kinds of organizations provide information to their em-
ployees, customers and the general public. It has also made it possible to have direct
interaction between an end-user and provider. But it also changed the form in which
information is available: linear documents (or hierarchically structured ones) have
been replaced by hypertext. The navigational freedom that comes with hypertext has
stimulated a browsing learning style, where the user looking for information or learn-
ing material simply picks out the items she is interested in (judging this based either
on link anchors or titles or on the opinion of a search engine). This seemingly random
user behavior (most suitable for field-independent [6] learners) makes it difficult for
an author or a course designer to develop content and a link structure that can be fully
understood, no matter which path the end-user decides to follow.

Adaptive hypermedia [2,3] comes to the rescue. In “normal” (or static) hypertext it
is impossible to offer the right content, the needed definitions and explanations, and at
the same time hide or deemphasize already known definitions and unnecessary expla-
nations. When creating the content you have no way of knowing what the end-user
has studied before jumping to a certain (web)page. With adaptive hypermedia it is
possible to select and present information content based on the user’s previous actions
(processed and stored in a user model) and to select and annotate links in a way that
guides the user towards the most relevant information. As we will show in this paper,
this added service for the end-user can be created and delivered with little additional
effort on the author’s side.

22 P.D. Bra, D. Smits, and N. Stash

At the TU/e we started offering a course on the topic of hypermedia in 1994 [8].
This course was offered through the Web, in hypermedia (actually mostly hypertext)
form. Initially there were also lectures, but as of 1996 the course was reduced to just
its on-line hypermedia form and made available to students of different Dutch and
Belgian universities. In order to make it possible to fully utilize the hypertext nature
of the course text, with a rich link structure and no hierarchical menu system that
would constrain the learner’s navigational freedom, we decided to make the course
text adaptive. This development has resulted in the Adaptive Hypermedia Architec-
ture AHA!, which is now available in its third major release. (See [9] and
http://aha.win.tue.nl/ for details about the AHA! project.) Feedback from authors,
researchers and end-users has led us to create a rich feature set, with items that target
a large spectrum of possible applications, and with items that are specifically useful
for educational applications, including progress reports, inspection (and update) of the
knowledge of all the concepts of a course, forms for setting preferences or altering
other parts of the user model, and an (externally contributed) authoring and delivery
tool for multiple-choice tests. Based on user experience we also designed the main
authoring tool for AHA!: the Graph Author [10], used to define concepts, concept
relationships and the (one-to-one or one-to-many) connection between concepts and
resources (like webpages).

Fairly complete information on AHA! can be found on the project website
aha.win.tue.nl, including a tutorial. In this paper we only focus on three novel aspects
in AHA! that are especially useful for educational applications:

1. stable presentations: When an adaptive system continuously adapts the informa-
tion it presents to the user model (or the user’s estimated knowledge state) pages
are adapted (and thus changed) each time the user visits them. We have grown
accustomed to changing link colors (blue link anchors turning purple when they
refer to already visited pages) but not to changing content. We expect a page to
present the same information when we revisit it later (although some content is
expected to be dynamic, like a weather or traffic report). The stable presentations
technique in AHA! lets authors decide which pages or objects should always be
adapted, or should only be adapted under certain conditions. (And by offering the
learner a form to alter a value that influences the condition the end-user can also
influence the decision to keep the presentation stable or not.)

2. adaptive link (icon) annotations: In several existing adaptive hypermedia systems
the “status” of a link (recommended or not, interesting, already visited, etc.) is
not or not only indicated through a change in the color of the link anchor, but
also through some icon, like a small or large checkmark, or a colored ball (in
ELM-ART [5], Interbook [4], NetCoach [17], KBS-Hyperbook [12]), etc. The
balls or other icons can be placed in front of the link anchor or behind it. Each
system has its own rules for deciding which icon to use under which circum-
stances. In AHA! an author can easily define these rules or conditions, for any
arbitrary number of icons. Also, different views (or html frames) can use different
icons with different conditions for selecting them.

3. adaptive link destinations: Link adaptation is not always a simple case of recom-
mended vs. not recommended, but sometimes a matter of where to send the user
to. A link to a topic may wish to refer a (field-dependent [6]) beginner to an in-
troductory page on that topic, and an expert to an advanced page. In AHA! the

 Creating and Delivering Adaptive Courses with AHA! 23

binding between the concept a link points to and the actual resource (or page)
that is returned is dynamic. The link destination is selected adaptively, based on
the user model.

In each of the following sections we highlight one of these adaptation techniques. We
explain how to make use of them in AHA! and illustrate their use in an (educational)
example. But first we briefly explain how most Web-based adaptive systems work,
and how they deal with the fundamental limitations of using page-based HTTP re-
quests and responses.

2 Architecture and Limitations of Web-Based AHS

AHA! is a typical Java-based web application, using Servlets in combination with a
Java-based server like Tomcat. Figure 1 shows the global architecture of such a sys-
tem, and Figure 2 shows the different files or databases used by the AHA! engine.

Fig. 1. Global architecture of a Web-based application

Fig. 2. Data stores used by the AHA! engine

In Figure 2 we see that the AHA! engine uses three types of local information, and
potentially also pages that reside on other servers on the Web. The combined domain
and adaptation model DM/AM represents a model of the conceptual structure of the
application, and the adaptation rules. This information is retrieved when the end-user

24 P.D. Bra, D. Smits, and N. Stash

logs in. As the user is interacting with the application a user model (UM) is used and
constantly updated. The interaction involves (mostly) the retrieval of pages and other
application files (like images), but it can also involve using forms to update UM or
taking multiple-choice tests. DM/AM and UM are used to decide which application
file or “page” to retrieve upon a request from the user (and which objects to condi-
tionally include in that page). The request may also result in files being retrieved from
other webservers.

As a “pure” Web-Based system, AHA! only reacts to HTTP requests and sends
HTTP responses that contain a document (typically in HTML or XHTML, but any
XML format is allowed). The interaction between the user and the AHA! application
thus happens on a page by page basis. (AHA! allows the use of the novel “Ajax”
technologies to allow requests for parts of a page that are updated without refreshing
the whole page, but we have not yet considered the UM updates that one might wish
to associate with such within-page interaction.) Each time the user issues an HTTP
request (typically by clicking on a link) the following procedure is followed:

1. The request contains a URL that can refer to a concept (from DM) or to a page.
In DM concepts belong to a hierarchy and can have an associated resource
which is a page. When a request refers to a page, the corresponding concept is
looked up. The procedure continues with the found concept. If a concept does
not have an associated page AHA! will generate a menu-like page that links to
sub-concepts from the concept hierarchy. (We will not consider this case in the
sequel.)

2. UM is retrieved (if not already cached). AHA! normally caches UM during a
session, but it updates the stored version after every request so that other appli-
cations can see the changes.

3. The AHA! engine executes rules from AM, starting from the rules associated
with the “access” attribute of the requested concept/page. These rules cause up-
dates to some attributes (attribute values) of some (UM) concepts.

4. The updates caused by rules are considered as events that trigger the rules asso-
ciated with the updated attributes (of the corresponding concepts). Rules thus
trigger each other, and this process continues until there are no more triggered
rules.

5. A concept may have either just one associated page, or it may have several, one
of which is (adaptively) selected, as we explain in section 5 (on adaptive link
destinations). The selected page is retrieved (either from local storage or from a
remote website) and filtered according to AM and UM, as follows:

a. The page may contain conditionally included fragments and/or condi-
tionally included objects. Each selected fragment or object is inserted
into the parse stream and must thus be a valid piece of (x)html. It may
contain other fragments or objects to be conditionally included.

b. The page may contain “conditional” links (<a> tags) to other concepts
or pages. The AHA! engine checks UM to decide how to present the
link. Link adaptation typically depends on the suitability of the link
destination (concept or page). This suitability determines how the link
anchor is annotated (using icons and/or link color changes). The section
on link adaptation explains the details.

 Creating and Delivering Adaptive Courses with AHA! 25

c. Any other content of the page is passed to the browser. Some text frag-
ments may be adaptively presented using a different presentation style,
but most content is normally presented without any adaptation.

It is important to note that this procedure implies that UM updates happen before the
page is filtered using that UM instance. Using typical adaptation rules (delivered with
AHA! by default), the “knowledge value” of a page is updated before the page is
displayed. This “knowledge value” can thus not be used to conditionally show a pre-
requisite explanation upon the first visit of the page (and not in subsequent visits).
The “visited” counter can be used for this purpose. This counter is initialized to 0 so it
will have the value 1 when the page is visited for the first time because it is incre-
mented before the page is presented.

There is a good reason why the UM updates happen before the page is filtered and
presented, not just in AHA! but in all Web-based adaptive systems that use the HTTP
request/response paradigm on a page by page basis. This can be illustrated using pre-
requisite relationships in an educational application. In elementary math you probably
have to learn about the “addition” before you learn about the “subtraction”. “Addi-
tion” is thus a prerequisite for “subtraction”. Links to “subtraction” will not be shown
or recommended until enough knowledge of “addition” is obtained. Now consider
that there is a page that provides a lot of information about the “addition” and that
contains a link to “subtraction”. The author’s idea is that the user should read this
page and then follow the link to “subtraction”. When reading the “addition” page the
user will obtain enough knowledge of “addition” to satisfy the prerequisite require-
ment for “subtraction”. So after reading this page the link to “subtraction” should
become recommended. But the adaptation (including the presentation of the link to
“subtraction”) is done before the reading begins. The UM update on which the adap-
tation is based must thus be performed before presenting the page.

In the future it may become possible to adapt the page (in a controlled way) while
the user is reading, so links may become available and recommended during the read-
ing process. Usability research is needed in order to decide whether adaptation while
reading would be a desirable adaptation behavior. For now we only consider the typi-
cal architecture in which adaptation must be done before the engine sends the page to
the browser.

3 Combining Adaptation with Stable Presentations

The hypermedia course (which prompted the start of the AHA! development) contains
a page about URLs and their syntax. It briefly refers to the addressing scheme in
Xanadu. Learners who visit the URL page before the Xanadu page see the following
piece of text:

In Xanadu (a fully distributed hypertext system, developed by Ted Nelson at
Browsn University, from 1965 on) there was only one protocol, ...

Learners who have seen the Xanadu page see a different explanation:

In Xanadu there was only one protocol, ...

26 P.D. Bra, D. Smits, and N. Stash

This is a clear and simple form of content adaptation, which Brusilovsky calls the
conditional inclusion of fragments. There is no discussion that providing such prereq-
uisite explanations is a good thing. However, what isn’t so clear is whether the
learner, who has first seen this fragment, then studies the page on Xanadu and then
comes back to the URL page, should be presented the prerequisite explanation again,
or not. Typical adaptive behavior would remove the explanation on this repeat visit.
In this specific example we have not (yet) experienced that learners noticed the ongo-
ing adaptation. But when the changes are more significant it may become desirable to
leave a prerequisite explanation (or any content that is conditionally included for
some reason) in place even though the adaptation rules dictate that the content is no
longer needed.

The on-line adaptive AHA! design paper [11] at http://aha.win.tue.nl/ahadesign/
makes use of the small elementary math example (about addition and subtraction) we
described in section 2. The example appears in two places in that paper. It is explained
on the first of these pages the reader visits, and is recalled on the second page:

In elementary math you probably have to learn about the “addition” before
you learn about the “subtraction”. “Addition” is said to be a prerequisite for
“subtraction”.

or

Recall the elementary math example about “addition” and “subtraction”.

Whichever page is visited first will conditionally include the explanation. If we call
the pages “page1” and “page2” then the rule for including the explanation would be:

page1.visited + page2.visited == 1

Afterwards (when the example is visited for a second time, or more) the reader no
longer needs the explanation, so the example is simply recalled. But it is not desirable
to have the explanation disappear completely on all pages, which is what would hap-
pen if the above expression would be used for the adaptation all the time. In order to
show the explanation again upon a second visit to that first visited page (but not show
it on the other page) the presentation of the pages must be made stable, meaning that
adaptation is performed on the first visit, and no more adaptation is performed when
the page is presented again (although the “visited” counters are still incremented).

In AHA! pages and objects can be defined as stable. When a page is stable that sta-
bility is automatically inherited by included objects. (At the same time small fragments
that are conditionally included inline are still adapted, as are the link annotations. The
Xanadu example in the hypermedia course is realized using inline fragments and thus
remains “unstable”.) In AHA! stability comes in four different gradations:

• no stability: this is the default behavior where each UM update immediately
influences the adaptation, at all times.

• always stable: the first time the concept is accessed UM updates are applied,
and the concept is presented based on that UM state; afterwards the presenta-
tion is still based on that UM state (even though UM updates are still per-
formed and recorded because other, unstable, pages may depend on these
updates).

 Creating and Delivering Adaptive Courses with AHA! 27

• session stability: the first time a concept is accessed during a session, UM up-
dates are applied, and the concept is presented based on that UM state; after-
wards the presentation is based on that UM state for as long as the session
lasts. When the user logs out and later resumes the session, adaptation is again
applied on the first access.

• conditional stability: the stability holds as long as a certain condition (an ex-
pression using UM attribute values) is true. When the expression becomes
false, adaptation is done based on the new UM state. (The page remains unsta-
ble until the expression becomes true again.)

Creating stable presentations is very easy. Figure 3 shows the dialog box used by the
Graph Author tool to create a new concept or edit an existing one. Stability is enabled
through a simple checkbox. When conditional stability is selected the author must pro-
vide an expression which “freezes” the page as long as that expression remains true.

Fig. 3. Edit concept dialog box that allows the selection of stability

4 Adaptive Link Annotation

The (early) Web has been criticized for not having typed links. Hyper-G [1], later
renamed to Hyperwave, proposed a completely new architecture with links as first-
class citizens, but it has not become widely adopted. Using classes and cascading
style sheets (CSS) it is possible to assign a “type” (or “class”) to a link anchor, and to
associate presentation attributes with that type. This is of course only a small step
towards making links become full-fledged objects, but it is a start. AHA! uses link
classes to choose a color for the link anchor (text). An arbitrary number of link classes

28 P.D. Bra, D. Smits, and N. Stash

can be defined, but in this paper we refer to the three link classes that have been used
most in AHA!-based courses up to now: GOOD (recommended), NEUTRAL (rec-
ommended but already visited) and BAD (not recommended). There are two ways to
associate these to classes to colors:

1. The author can include a (reference to a) stylesheet in every page, defining
the presentation style for each link class. AHA! provides a default stylesheet
(aha.css) which defines the standard color scheme with blue, purple and
black, for good, neutral and bad links. If the author does not include a
stylesheet the AHA! engine will insert one automatically.

2. AHA! offers a special form through which end-users can change the color
scheme. (This is only available if the author includes access to that form in
the course.) When an end-user changes his color preferences AHA! will
automatically insert stylesheet commands in the page, overriding any prede-
fined stylesheet.

A number of existing adaptive hypermedia/learning systems also use icons, placed in
front of or behind link anchors, to indicate the status of the link (destination). The
systems that are descendents of ELM-ART [5] (including Interbook [4] and NetCoach
[17]) and other systems simply inspired by it, like KBS-Hyperbook, make use of such
icons. A green , white , or red ball (or yellow or orange in some systems), placed
in front of the link anchor, is used to indicate the state of the link and corresponds to
the idea of good, neutral and bad links. Sometimes icons behind the link anchors are
used, like small , medium or large checkmarks to indicate how much knowledge
the learner already has about the destination concept. In AHA! a file “ConceptType-
Config.xml” contains pairs of expressions and icons, indicating under which condi-
tion which icon should be displayed. An example:

<icon expr=”suitability && visited==0”
 place=”front”>icons/GreenBall.gif</icon>

This tag expresses that when the destination of a link is “suitable” and has not been
visited before (“visited==0”) then a green ball will be placed in front of the link an-
chor. Because of the binding of icons to user model expressions the icon selection of
different other systems can be easily simulated. When the knowledge levels of Inter-
book are translated to values like 0, 30, 60, 90 (so that knowledge increments by 1/10
of a level are also possible, as is done in Interbook when reading non-recommended
pages), the checkmarks that follow links to (background or outcome) concepts can be
chosen using rules like:

<icon expr=”knowledge > 29 && knowledge < 60”
 place=”back”>icons/SmallCheckM.gif</icon>

AHA! supports forward as well as backward reasoning, meaning that the attributes
like “suitability” and “knowledge” may contain either stored values, calculated
through rules that are executed when a concept is accessed, or expressions over
(other) attributes of (other) concepts, and thus calculated (backwards) from many
different user model values.

 Creating and Delivering Adaptive Courses with AHA! 29

Fig. 4. An AHA! application with adaptive link icon annotations

Figure 4 below shows an AHA! application, generated automatically from the In-
terbook Manual (which is of course authored for Interbook). This AHA! application
shows a clear resemblance to the original Interbook application (including the typical
background and the colored balls and checkmarks) but it also uses additional adaptive
elements offered by AHA!, including the use of different link colors, not just for links
to concepts but also for the “back” and “continue” buttons.

5 Adaptive Link Destinations

In a “normal” Website pages contain link anchors, with link destinations identified
using uniform resource locators, or URLs. The connections between pages are thus
completely fixed. At the other end of the spectrum we find open hypermedia (a rich
research field with many publications, among others leading to the FOHM model
published in [13]), where the pages do not contain any links, but instead are combined
with a link database in order to (possibly adaptively) select the links that are going to
be shown to the user. AHA! takes an intermediate approach: the author of pages must
include the link anchors, but the link destinations are concepts, not pages (although
that is still possible), and the adaptation engine decides which page to show when a
link to a certain concept is followed. So this decision is not made when a page (con-
taining links) is generated, but only when a link on the page is followed.

For most concepts and pages there is a one-to-one mapping between a concept and
the corresponding page, and vice versa. However, AHA! allows a concept to be asso-
ciated with multiple pages, one of which is (adaptively) selected for presentation to

30 P.D. Bra, D. Smits, and N. Stash

Fig. 5. Resource selection dialog box

the user. Figure 4 shows the dialog box used by the Graph Author tool for creating a
list of expressions coupled with resources (pages). The adaptation engine will return
the first resource with an expression that evaluates to true.

This dialog box is the same for conditional link destinations and for the conditional
inclusion of objects, and there is also a potential very similar use of these techniques.
Research into learning styles [6] has revealed that field-independent learners can start
a course by diving right into the details of a single topic without first getting ac-
quainted with the whole spectrum of subjects of the course. They can thus follow a
depth-first navigation path. Field-dependent learners on the other hand need more
context, and can be helped by offering them a breadth-first navigation path. From this
we can conclude that at least for field-dependent learners it is a good idea to provide
an introductory page on each major topic, before diving into the details. In a course
like the hypermedia course that prompted the development of AHA! there are three
introductory chapters that can be studied in any order, and there are six “advanced”
chapters that should be studied after the first three. A field-dependent learner would
like to at least get a glimpse of these advanced chapters before studying any chapter in
detail. There are two ways to make this possible:

1. On a page you can conditionally include objects. An <object> tag that refers
to a concept is linked to resources in the same way as shown in Figure 5. The
resource must be a valid xhtml fragment. (If you wish to conditionally in-
clude some media item like an image you have to include it from within the
xhtml fragment, e.g. by using an tag.) In order to show an introduc-
tion to the field-dependent learner who visits the chapter at the start of the
learning process and to show the “normal” page (possibly containing links to

 Creating and Delivering Adaptive Courses with AHA! 31

pages with more details) to field-independent learners, or to the field-
dependent learner who is ready for it, a skeleton page can be created that in-
cludes an object that is conditionally connected to the two resources. How-
ever, using conditionally included (page-size) objects to simulate having two
different pages is a rather artificial use of this technique.

2. Offering an introductory page and a “normal” page can be done by condi-
tially assigning two pages (or “resources”) to the concept that represents the
chapter. Through the dialog box of Figure 5 the conditions for presenting
each version are defined. Because the selection is now done entirely in the
conceptual definition of the application generating adaptive link destination
structures is easier than generating skeleton pages and conditional object in-
clusions. This is especially important for authoring tools that generate AHA!
applications from some high-level description format, possibly including
learning style adaptation [14]. Tools that perform such translation are the
MOT to AHA! convertor [7, 15] and a learning-style authoring tool of [16]
(which has since been extended significantly).

6 Discussion and Conclusion

There is no one size fits all solution in adaptive (personalized) e-learning. This not
only holds for the learners (who have different learning styles) but also for authors.
AHA! therefore offers a rich set of possibilities for creating adaptive applications,
with different layout, different menu-like structures, different ways to adapt the pres-
entation of links, with or without icons, different ways to adapt the page content, with
inline fragments or with external conditionally included objects, and with adaptive
link destinations to enable the same link to lead to different pages, all of this depend-
ing on the values in the user model.

However, more is not always better in the area of adaptive hypermedia and person-
alized e-learning. Too much adaptation may turn an application into an adventure
game. In this paper we proposed to use stable presentations as an alternative for sim-
ply applying less adaptation. Applying adaptation once (and perhaps later again, un-
der controlled circumstances) makes the adaptation invisible to the users because they
only see one version of each page. They may only become aware that the application
is adaptive when they compare what they see on a page to what other users see on the
same page.

Having a rich functionality for creating adaptive behavior, and ways to disable un-
wanted adaptation, does not guarantee that usable adaptive applications will be pro-
duced. The Graph Author tool lets authors create a conceptual structure in a graphical
way. An author can for instance simply draw a graph of prerequisite relationships
between concepts. And concepts automatically become part of a hierarchy of larger
concepts (like chapters) and smaller ones (like pages and fragments). But this concep-
tual structure must still be designed carefully. A drawing tool (with additional features
such as cycle detection) for concept relationships of different types is a useful tool but
it does not perform the design phase for you.

People have frequently asked us whether creating an adaptive course using AHA!
is more work (and if so, how much more) than creating a static Web-based course.

32 P.D. Bra, D. Smits, and N. Stash

The answer is twofold: yes, it is more work, because one has to consider prerequisites
and design measures to deal with them. This includes creating the prerequisite rela-
tionships in the Graph Author tool so that links are properly annotated (to guide us-
ers), and it includes writing prerequisite explanations to conditionally include on
pages that require prerequisite knowledge that can be sufficiently compensated for by
a short explanation (instead of warning the learner not the page at all), or writing
introductory pages to replace detailed ones, and have links conditionally refer to the
intro or the details. On the other hand, creating a non-adaptive (or static) Web-based
course text that can be browsed freely without encountering pages that cannot be
understood because of missing foreknowledge is completely impossible. So we argue
that it is a matter of putting in some extra effort to create a course of high quality that
cannot be obtained without using adaptation. AHA! tries to minimize the required
extra effort but cannot completely eliminate it.

Acknowledgements

This work is/was supported by the PROLEARN network of excellence and the NLnet
Foundation.

References

1. Andrews, K., Kappe, F., Maurer, M., Serving Information to the Web with Hyper-G. Third
International World Wide Web Conference, Computer Networks and ISDN Systems (27)
pp. 919-026 (1995).

2. Brusilovsky, P., Methods and Techniques of Adaptive Hypermedia. User Modeling and
User-Adapted Interaction, 6, pp. 87-129, 1996.

3. Brusilovsky, P., Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11,
pp. 87-110, 2001.

4. Brusilovsky, P., Eklund, J., Schwarz, E., Web-based education for all: A tool for develop-
ing adaptive courseware. Computer Networks and ISDN Systems (Proceedings of the 7th
Int. World Wide Web Conference, 30 (1-7), pp. 291-300, (1998).

5. Brusilovsky, P., Schwarz, E., Weber, G., ELM-ART: An intelligent tutorian system on
World Wide Web. In Proceedings of ITS’96, Intelligent Tutoring Systems (Springer LNCS
Vol 1086), pp. 261-269 (1996).

6. Chen, S., Macredie, R., Cognitive styles and hypermedia navigation: Development of a
learning model. Journal of the American Society for Information Science and Technology,
53 (1), pp. 3-15 (2002).

7. Cristea, A.I., Smits, D., De Bra, P., Writing MOT, Reading AHA! - converting between an
authoring and a delivery system for adaptive educational hypermedia. A3EH Workshop,
AIED'05 (2005).

8. De Bra, P., Hypermedia Structures and Systems. Adaptive course text offered at the TU/e,
available at http://wwwis.win.tue.nl/2L690/ (1994, 1996).

9. De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits, D., Stash,
N., AHA! The Adaptive Hypermedia Architecture. Proceedings of the ACM Hypertext
Conference, Nottingham, UK, pp. 81-84 (2003).

10. De Bra, P., Aerts, A., Rousseau, B., Concept Relationship Types for AHA! 2.0. Proceed-
ings of the AACE ELearn’2002 conference, pp. 1386-1389 (2002).

 Creating and Delivering Adaptive Courses with AHA! 33

11. De Bra, P., Smits, D., Stash, N., The Design of AHA!. Proceedings of the ACM Hypertext
Conference, Odense, Denmark (2006), and on-line adaptive version at http://aha.win.tue.nl/
ahadesign/.

12. Henze, N., Nejdl, W., Adaptivity in the KBS Hyperbook System. Second Workshop on
Adaptive Systems and User Modeling on the WWW, TU/e CSN 99-97, pp. 67-74, To-
ronto, Canada, (1999).

13. Millard, D., Moreau, L., Davis, H., Reich, S., FOHM: A Fundamental Open Hypertext
Model for Investigating Interoperability between Hypertext Domains. Proceedings of the
ACM Conference on Hypertext, pp. 93-102 (2000).

14. Stash, N., Cristea, A., De Bra, P. Explicit Intelligence in Adaptive Hypermedia: Generic
Adaptation Languages for Learning Preferences and Styles, HT’05, CIAH Workshop,
Salzburg, (2005).

15. Stash, N., Cristea, A.I., De Bra, P., Authoring of Learning Styles in Adaptive Hypermedia:
Problems and Solutions, WWW'04 (The 13th International World Wide Web Conference)
pp. 114-123 (2004).

16. Stash, N., De Bra, P., Incorporating Cognitive Styles in AHA! (The Adaptive Hypermedia
Architecture), Proceedings of the IASTED International Conference Web-Based Educa-
tion, pp. 378-383 (2004).

17. Weber, G., Kuhl, H.-C., Weibelzahl, S., Developing Adaptive Internet Based Courses with
the Authoring System NetCoach, Proceedings of the Third Workshop on Adaptive Hy-
permedia (AH2001), Springer LNCS Vol. 2266, pp. 226-238 (2001).

	Introduction and Motivation
	Architecture and Limitations of Web-Based AHS
	Combining Adaptation with Stable Presentations
	Adaptive Link Annotation
	Adaptive Link Destinations
	Discussion and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

