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Abstract
Background: The computer-assisted detection of small molecules by
mass spectrometry in biological samples provides a snapshot of thou-
sands of peptides, protein fragments and proteins in biological samples.
This new analytical technology has the potential to identify disease asso-
ciated proteomic patterns in blood serum. However, the presently avail-
able bioinformatic tools are not sensitive enough to identify clinically
important low abundant proteins as hormons or tumor markers with
only low blood concentrations.
Aim: Find, analyze and compare serum proteom patterns in groups of
human subjects having different properties such as disease status with a
new workflow to enhance sensitivity and specificity.
Problems: Mass data acquired from high-throughput platforms fre-
quently are blurred and noisy. This complicates the reliable identification
of peaks in general and very small peaks even below noise level in par-
ticular.1 However, this statement is only valid for single or few spectra.
If the algorithm has access to a large number of spectra (e.g. N > 1000),
new possibilities arise, one of such being a statistical approach.
Approach: Apply signal preprocessing steps followed by statistical ana-
lyses of the blurred data and the region below the typical noise threshold
to identify signals usually hidden below this “barrier”.
Results: A new analysis workflow has been developed that is able to
accurately identify, analyze and determine peaks and their parameters
even below noise level which other tools can not detect. A Comparison
to commercial software2 has clearly proven this gain in sensitivity. These
additional peaks can be used in subsequent steps to build better peak
patterns for proteomic pattern analysis. We belive that this new approach
will foster identification of new biomarkers having not been detectable
by most algorithms currently available.

1 It is due to the fact that it is not possible to distinguish noise from signals if these
two components fully overlay.

2 ClinProTools 2.0, Bruker Daltronics: manufacturer of mass spectrometry instru-
ments and accessories.
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1 Introduction

With the advantages of proteomic technologies it became possible to assess small
and low abundant molecules in biological fluids. These peptide or protein pat-
terns (often referred to as “fingerprints”) can indicate status or progress of a
specific disease. Several studies have shown the potential of such patterns for
early detection of different types of cancer [1, 2].

After reducing sample complexity by biochemical separation techniques [3],
the protein fingerprinting of biological samples consists of three main steps:
first, generating of mass spectra, that is presenting the complete spectrum of
peptides and proteins in the sample. Second, features (usually peaks) in the
resulting spectra are detected that can be used to discriminate between groups
of individuals with various phenotypes (eg. gender, age or disease). Third, the
features have to be tested in independent studies to confirm and to detect the
underlying molecules.

Mass spectrometry is a high-throughput profiling technique able to fulfill the
first part of the task3. The second step is usually done by machine learning al-
gorithms and statistical approaches which are used to analyze the data obtained
from mass spectrometry and to detect phenotype specific patterns.

Todays mass spectrometry based protein fingerprinting techniques rely on
the analysis of spectra from complex biological protein mixtures (e.g. serum)
obtained from high-throughput platforms in clinical settings. An unsolved bioin-
formatic problem is the highly sensitive detection of peaks (potential features)
within this “crossfire of influences”. Embedded in systematic and random noise
introduced during acquisition of data it is very difficult and questionable to de-
tect peaks and correctly determine their parameters, such as location, height
or width. Most methods simply ignore any signals below an estimated noise
threshold and potentially lose many signals hidden in this region.

In this study, we propose a new statistical driven approach that allows to ana-
lyze noise and identify signals below the commonly used signal-to-noise
threshold4. This is done by sophisticated preprocessing steps and statistical
analysis of all potential signals in a large number of spectra by identifying even
smallest features. Compared to commercial software5 (see Tab.1) our approach
- in the cases tested - is about 20000 times more sensitive without loss of speci-
ficity. Additionally peaks identified can be used in subsequent steps to build
better patterns for proteomic fingerprinting analysis. We belive that this will
foster identification of new biomarkers having not been detectable by most al-
gorithms currently available.
3 In this study we used the “Matrix-assisted Laser Desorption/Ionization - Time-Of-

Flight - Mass Spectrometry” (MALDI-TOF MS). For a recent review and a good
introdutcion to this topic see e.g.[4] and references therein.

4 This method only regards peaks if their height is above a certain value determined
by a noise-estimation step. A common setting for the minimum peak height is three
times the estimated noise level.

5 ClinProTools 2.0, Bruker Daltronics: manufacturer of mass spectrometry instru-
ments and accessories.
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2 Material and Methods

2.1 Spectra Preprocessing

The raw spectrum acquired by a TOF mass-spectrometer (see Fig.1 left) is a
mixture of the real signal and noise. The noise itself consists of a low-frequency
baseline and high-frequency chemical and random noise. Preprocessing of TOF
spectra includes suppression of noise and enhancing of the real signal - it is
therefore a crucial step prior to the actual signal extraction. The next sections
describe steps performed to prepare the raw signal enabling subsequent reliable
peak detection and analyses.

Baseline Correction. The baseline is an exponential like offset dependent on
the m/z value (mass-to-charge; x-value). It is mainly caused by clusters of ma-
trix components and small molecular fragments originating from degradation
processes, desorption and collisions in the acceleration phase. A baseline correc-
tion is performed to remove this rather low-frequency noise from the spectrum.

Following [5–7] we use a morphological TopHat filter. Mathematical morphol-
ogy is the analysis of spatial structures and is used here to eliminate certain
spatial structures within the signal, in our case the baseline. Its simplicity and
rapidity make it extremely handy for application to large amounts of data. Fig.
1 illustrates this method. Note that this technique does not produce negative
intensity values as many other popular methods depending on polynomial fitting
[8], piecewise linear regression [9] or convex hulls [10] do.

Fig. 1. Application of the TopHat Filter: the opening is substracted from the raw signal
(left) yielding the filtered version (right)

Smoothing. Smoothing or denoising the raw signal X tries to separate the
Gaussian contribution from the undisturbed signal S and generally yields bet-
ter results in subsequent steps of the analysis workflow, since some general as-
sumptions about smoothness can be taken. We define the Gaussian distributed
component of the signal as noise. Consider the problem of denoising a raw signal
X ∈ R having additive noise n with zero mean:

xi = si + ni i = 1..N, n ∼ N (0, σ2) (1)
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Since the noise described above occurs on much faster time scales as the signal,
we use a multiresolution analysis on X [11] based on a time-invariant discrete
orthogonal wavelet transformation [12].

Opposed to other denoising algorithms, such as moving average or low-pass
filter (e.g. Savitzky-Golay), this approach utilizes the multi-scale nature of the
signal and therefore has better energy conservation properties, that is, the am-
plitude of the signal decreases less through denoising.

Normalization. Inter-spectrum normalization is the process of removing sys-
tematic variations between spectra. Many different techniques exist such as “In-
verse Normalization” [13] or “Logarithmic Normalization” [14]. Our implemen-
tation follows the idea of the most frequently used method which is global nor-
malization with respect to the average total ion current (TIC6)7 [16, 17] with
an important extension: from the set of spectra to be normalized all TIC values
are computed, outliers removed and the remaining highest value (instead of the
average) is used for the actual computation.

2.2 Peak Identification in Single Spectra

Most peak detection algorithms have in common that they use threshold driven
detection techniques. That is, a peak will only be regarded if it is higher than a
predetermined signal-to-noise threshold depending on the calculated noise level
(see e.g. [18]).

As shown exemplarily in Fig. 2, by assuming a noise level of 508 and using a
signal-to-noise ratio of 39 about 85% of the 1332 potential peaks in this particular
spectrum would be discarded and their assigned information lost. Although most
of these peaks essentially are noise, some might carry important information.
This means, that these artificially introduced “barriers” would prevent detection
of small signals in a very early pre-processing stage.

The subsequent sections describe our new approaches to overcome this signal-
to-noise barrier, that means increasing sensitivity without decreasing specificity.

Detection of Candidate Peaks. The initial peak detection simply determines
the location of potential peaks, a process often referred to as “seeding”. Utilizing
the properties of the TopHat filter (see Sec. 2.1) it is sufficient to detect inter-
ception points of the curve with the X-axis. These points define start- and end
points of potential peaks and are stored in a database for further analyses.

The advantage of this approach is that even smallest peaks are considered for
consecutive steps. However, a deliberate validation algorithm must be applied to
this set of candidate peaks to distinguish real peaks from noise and detect and
deconvolute overlapping peaks.
6 The TIC is the sum of the area of all peaks in a spectra.
7 The normalization by the ratio R = “TIC of spectrum”

“Average TIC of all spectra” is reported to be supe-
rior to other methods tested [15, 6].

8 Different noise-estimators compute values ranging from 50 to 150.
9 A commonly used value to get reliable results.
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Fig. 2. Histogram of peak heights in a randomly chosen spectrum of the study described
in [3]. Only peaks smaller than 500 are displayed.

Analyzing Candidate Peaks. In mass spectra of complex protein mixtures
(such as serum) most of the peaks detected are broadened and/or highly con-
voluted. This results for example from molecular fragments having very similar
masses and thus partly overlay, from poor machine resolution, or different iso-
topic forms of the same molecule. Therefore, a successful peak detection algo-
rithm needs to deconvolute those peaks. A widely accepted method assumes a
“blurred peak” to be a mixture of Gaussians and tries to resolve it back into its
original components. A commonly used technique is “Maximum Entropy” that
has been originally developed for clarifying blurred images (see [19]). Based on
this idea we have developed an approach to separate and evaluate the assumed
mixture of Gaussians. The key steps for each candidate peak found are as follows:

1. Determine number of Gaussian components by density estimation using the
“Greedy Expectation Maximization” algorithm [20]. This algorithm has been
shown to have a very good performance even on large mixtures often found
in peaks at higher masses (> 3000Da). (For a comparative study see [21].)

2. To account for isotopic forms a de-isotoping step is carried out by fitting a
mass dependent pre-calculated model (see [22] for details) if more than one
Gaussian component is found. If successfull, the peaks involved are tagged
as belonging to the same molecule(-fragment). If the quality of the fit is too
poor the peak is split according to the number of Gaussians found and for
each of the new parts step 1 is performed again.

3. Determine and store the parameters (height, width, center, area, shape qual-
ity10) of this peak.

2.3 Peak Assignment Across Spectra

In order to identify a particular peak across spectra a list of so called “mas-
terpeaks” is maintained per spectra group (e.g. male or healthy). A masterpeak

10 This is achieved by geometrical hashing [23]. The hashing algorithm returns a dis-
crete value c ∈ {0, 1 . . . 5}, indicating the class the hashing algorithm has assigned
to this shape. c = 0 means “noise” and c = 1..5 peak, where c = 5 is assigned if the
peak looks “perfect”. The categories are trained a priori.
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comprises peaks having similar properties (m/z value, height, shape, etc.) across
spectra in this group. From the comprehensive distribution of property values
the “real” values for a masterpeak will be derived in later stages.

Preprocessing: Finding Candidate Masterpeaks. To build a set of poten-
tial masterpeaks the following two steps are carried out:

1. Center and width of every peak identifyed in step 2.2 in a group of spectra
under scrutiny (e.g. healthy or female) are stored in a temporary table,
ordered by their center.

2. Candidate clusters of these peaks are built with respect to the centers and
the width of these peaks. Peaks belong to the same cluster if they overlap
in at least one point. Since we can simply “march” through this ordered
set of peaks with a linear number of comparisons, the complexity is O(n).
Alternatively, complete-linkage hierarchical clustering could be performed
[24] to build the clusters which is computationally more expensive.

Masterpeak Property Determination. We now have a set of candidate
clusters often containing more than one “real” group of similar peaks. This step
is going to resolve these groups by a Bayesian Clustering approach. From the
clusters found in this step all properties such as center, height or width are
derived. From the law of large numbers we know that the average values will
converge to the real values. The probabilistic object that underlies this approach
is a distribution on partitions of integers11 known as the (weighted) Chinese
restaurant process (CRP) [27–29].

The CRP can be best described by a process where N customers sit down
in a Chinese restaurant with an infinite number of tables C1, C2, . . . and each
table has an infinite number of seats. Suppose customers arrive sequentially. Per
definition the first guest sits down at the first table. The n + 1th subsequent
customer xn+1 sits at a table drawn from the following distribution:

p(occupied table i | previous customers) = ci
α+n

· R · s(xn+1|xj , j ∈ Ci)
p(new table | previous customers) = α

α+n

where ci is the number of customers already sitting at table Ci, R is a rescaling
factor and α > 0 is a parameter defining the CRP. Obviously, the choice of the
similarity function s(·) is crucial and is explained in the following paragraphs.

Let Ci(A) be the average value of a property A of a set of peaks “sitting”
at table i. (For example, C2(center) would be the average center of peaks at
the second table.) Let xj(A) be the value of property A of peak j. s(·) has the
following properties:

1. The distance of the center of a peak to the average center of an existing
group of peaks can not be further away than 2 Da.

2. s(·) is the likelihood of xj belonging to “table” Ci depending on how similar
the properties of xj are to the peaks already at “table” Ci.

11 Interestingly, the partition after N steps has the same structure as draws from a
Dirichlet process [25, 26].
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This results in:

s(x) =
{

0 if |Ci(center) − xj(center)| > 2�
A∈PP ki,A(x(A)) otherwise

PP being the set of peak properties and ki,A(·) is constructed as follows:

1. Kernel Density Estimation (KDE)12 [30] is performed on xj(A), j ∈ Ci.
2. This resulting density is transformed through interpolation to the continuous

function ki,A(·).

The resulting sub-clusters (tables) are processed further in order to merge to-
gether similar groups and stored in the database.

3 Results and Discussion

Although having been designed for large amounts of spectra, we conducted first
experiments with a small set of samples. To obtain a first “proof-of-principle”
and to test the overall performance of our workflow we spiked a subset of human
serum samples13 with a peptide mix14. We split 16 different samples into five
groups each. Before sample pretreatment and measurement each of the groups
was spiked with one of the following concentrations: 121.21nMol/L, 0.76nMol/L,
0.30nMol/L, 3.03pMol/L, 0.075pMol/L, resulting in 320 spectra (64 for each
concentration group due to 4-fold spotting).

We then processed each resulting raw spectrum as described above. For each
of the five resulting concentration groups we evaluated the masterpeaks found.
Subsequently we validated whether masterpeaks originating from the spiked pep-
tides were identified by the algorithms and checked the deviation of the deter-
mined centers to the postulated ones. Note that at this stage no analysis of other
detected peaks has been performed. Table 1 summarizes the findings:

1. The algorithms successfully detect peaks even for very small concentrations
at pMol/L level. This is exemplarily shown for the hormones Angiotensin,
Bombesin and ACTH clip 18-39 which can be detected in a very low and bi-
ologically relevant concentration range ( ∼3 pMol/L). Peaks for Angiotensin
and Bombesin are not detected by commercial software15. Therefore, in these
examples, our algorithm is at least 20000 times more sensitive than a com-
mercial algorithm using a signal-to-noise threshold.

12 Following the Parzen Window approach with Gaussian Kernel.
13 The protocol used for preprocessing and (magnetic bead) fractionation has been

described in [3].
14 Protein calibration standard mix (Part No.: 206355 & 206196 purchased from Bruker

Daltronics, Leipzig, Germany).
15 ClinProTools 2.0, Bruker Daltronics. Parameters used: Signal-to-Noise Level: 3, Peak

Detection Algorithm: Centroid.
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Table 1. Results of the spiking experiments (see text for explanation). Note that no
calibration has been performed for the Proteomics.NET platform.

Substance Plat- Theor. Center found
form3 Center (Concentration of spiked peptide mix as stated below)

121.21nMol/L 0.76nMol/L 0.30nMol/L 3.03pMol/L 0.075pMol/L

Angiotensin II P.NET 1047.20 1047.1 -1 -1 -1 -1

Angiotensin II CPT 1047.20 1046.9 -2 -2 -2 -2

Angiotensin I P.NET 1297.51 1297.6 1298.0 1299.3 1299.2 -1

Angiotensin I CPT 1297.51 1297.2 -2 -2 -2 -2

Bombesin P.NET 1620.88 1620.9 1618.1 1617.2 1617.2 -1

Bombesin CPT 1620.88 1620.6 -2 -2 -2 -2

ACTH clip 18-39 P.NET 2466.73 2466.8 2465.8 2465.8 2466.2 -1

ACTH clip 18-39 CPT 2466.73 2466.2 -2 2466.1 2465.9 -2

Somatostatin 28 P.NET 3149.61 3149.5 -1 -1 -1 -1

Somatostatin 28 CPT 3149.61 3149.0 -2 -2 -2 -2

Insulin P.NET 5734.56 5734.3 -1 -1 -1 -1

Insulin CPT 5734.56 5734.2 -2 -2 -2 -2

1: No significant masterpeak in this range at this concentration found, 2: No signifi-
cant peaks in this range at this concentration found, 3: CPT: Bruker ClinprotTools,
P.NET: Our Proposed Platform: Proteomics.NET.

2. The proposed methods are able to detect peak centers accurately since shifts
and noise in the spectra largely are cancelled out after averaging by the clus-
ter partition process described above16. The centers found are determined
more precise than the commercial software does.

4 Conclusion

We have presented new methods for preprocessing MALDI-TOF MS spectra and
detecting and evaluating peaks in these spectra. These steps lead to an enhanced
sensitivity in the overall peak detection process. In a proof-of-concept setting,
our results show that our algorithms with the statistical driven approach are
able to detect spiked peptides in serum spectra in a concentration as low as
3.03pMol/L. We believe that this new approach will promote the sensitivity of
proteome pattern diagnostics in laboratory medicine.
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