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Abstract. Visual cryptography schemes encrypt a secret image into n shares so 
that any qualified set of shares enables one to visually decrypt the hidden secret; 
whereas any forbidden set of shares cannot leak out any secret information. In the 
study of visual cryptography, pixel expansion and contrast are two important 
issues. Since pixel-expansion based methods encode a pixel to many pixels on 
each share, the size of the share is larger than that of the secret image. Therefore, 
they result in distortion of shares and consume more storage space. In this paper, 
we propose a method to reach better contrast without pixel expansion. The 
concept of probability is used to construct an optimization model for general 
access structures, and the solution space is searched by genetic algorithms. 
Experimental result shows that the proposed method can reach better contrast and 
blackness of black pixels in comparison with Ateniese et al.’s. 

1   Introduction 

Visual cryptography schemes (VCSs) were first proposed by Naor and Shamir in 
1995 [1]. The difference between visual cryptography and traditional ones is the 
decryption process. Traditional cryptographic methods decrypt secrets by computers; 
while visual cryptography schemes can decrypt secrets only with human eyes. 
Therefore, VCSs are practical methods to share secrets when computers are not 
available. The (k, n)-threshold visual cryptography scheme is a method to encrypt a 
binary secret image into n shadow images called shares, so that any k or more shares 
enable the “visual” recovery of the secret image when they are stacked together. 
However, one cannot gain any secret information by gathering less than k shares. 
Ateniese et al. [2] extended the (k, n)-threshold access structure to general access 
structures in the form of (ΓQual, ΓForb, m), where ΓQual denotes a set of qualified sets, 
ΓForb denotes a set of forbidden sets, and m is the pixel expansion parameter. Any 
qualified set Q ∈ ΓQual is able to recover the secret image, whereas any forbidden set 
F ∈ ΓForb cannot leak out any secret information. In the study of visual cryptography, 
pixel expansion and contrast are two primary issues [3]. Since pixel-expansion based 
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methods encode a pixel to many pixels on each share, the size of the share is larger 
than that of the secret image [1-6]. Therefore, such schemes not only result in 
distortion of shares but also consume more storage space. 

In this paper, a method using genetic algorithms is proposed to cope with the 
problems of pixel expansion. Based on the requirements of security and contrast, the 
basic idea uses the concept of probability to construct an optimization model for 
general access structures, and the solution space is searched by genetic algorithms. 
The result shows that, in comparison with Ateniese et al.’s method, the proposed 
method can reach better contrast and blackness of black pixels in the case with four 
shares. 

2   The Proposed Scheme 

2.1   Access Structures 

Let N = {1, …, n} be a set of n shares, and let 2N denote the set of all subsets of N. Let 
ΓQual ⊆ 2N and ΓForb ⊆ 2N, where ΓQual » ΓForb = Ø. We refer to members of ΓQual as 
qualified sets and members of ΓForb as forbidden sets. Any qualified set Q ∈ ΓQual of 
shares can recover the secret image, whereas any forbidden set F ∈ ΓForb of shares 
cannot leak out any secret information. The pair (ΓQual, ΓForb) is called the access 
structure on N. For A ⊆ 2N, we say that A is monotone increasing if for any B ∈ A and 
any C ⊆ N such that B » C = Ø, we have B ∪ C ∈ A. That is, any superset of the set 
belonging to A is also in A. We say that A is monotone decreasing if for any B ∈ A 
and any C ⊆ B we have that B\C ∈ A. That is, any subset of the set belonging to A is 
also in A. In the case where ΓQual is monotone increasing, ΓForb is monotone 
decreasing, and ΓQual ∪ ΓForb = 2N, we say the access structure is strong. In this paper, 
we assume that access structures are strong. 

 
Example 1: Let N = {1, 2, 3, 4} be the set of shares. Suppose that sets {1, 4}, {3, 4}, 
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, and {1, 2, 3, 4} can decrypt the secret image. 
However, other sets must not leak out any secret information. This access structure 
can be represented as ΓQual = {{1, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, 
{1, 2, 3, 4}} and ΓForb = 2N − ΓQual. 

2.2   Probability and Blackness 

From the perspective of digital image halftoning, in a region of a binary image, the 
higher the density of evenly distributed black pixels is, the darker that region is. Thus, 
by adjusting the density of evenly distributed black pixels, one can create various 
degrees of blackness, which range from 0% (pure white) to 100% (pure black). For 
example, if 70 pixels of a 10 × 10 image block are randomly selected and colored 
black, then this block will be interpreted as an area with 70% blackness by human 
eyes. In other words, if the probability that a pixel is colored black in a binary image 
block is 0.7, then the blackness of this block will be 70%. Since visual cryptography 
is characterized by the “visual” decryption process, the secret can be successfully 
recovered as long as human eyes can distinguish the difference between black and 
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white regions. Therefore, by controlling the probability of black pixels in an image 
region, we can realize a visual cryptography scheme without pixel expansion. 

To encrypt a secret image without pixel expansion, one can encrypt each secret 
pixel to a black or a white pixel on each share. Therefore, for n shares, we have 2n 
encryption rules to encrypt a secret pixel. Take the (2, 2)-threshold access structure 
for example; that is, N = {1, 2}, ΓQual = {{1, 2}}, and ΓForb = {{1}, {2}}. The four 
encryption rules for each secret pixel will be “white-white”, “white-black”, “black-
white”, and “black-black” at the corresponding positions on the share S1 and the 
share S2. The corresponding colors of the stacked share (S1 + S2) are “white”, 
“black”, “black”, and “black”, respectively (see Table 1). The key point is how to 
determine the probability values of the corresponding encryption rules on the premise 
that security is assured and that contrast is optimized. To ensure security, we should 
guarantee that the probability values of the encryption rules for white pixels and that 
for black pixels should be identical. Suppose that Pw (resp. Pb) denotes the probability 
that a white (resp. black) pixel is encrypted and stacked as a black pixel on the 
stacked share of a forbidden set F ∈ ΓForb. Based on the monotone assumption, it is 
trivial to prove that perfect secrecy is ensured if Pw equals to Pb for every forbidden 
set. From the contrast point of view, the secret image can be reconstructed by the 
stacked share of a qualified set Q ∈ ΓQual.only if the difference between Pw and Pb is 
large enough so that human eyes can distinguish between black and white regions. 

Table 1. Encryption rules of the (2, 2)-threshold VCS 

Pixels ShareS1 Share S2 Stacked share (S1 + S2) Probability 
   ? 
   ? 
   ? 

 

   ? 
   ? 
   ? 
   ? 

 

   ? 

Table 2 shows the probability setting of the encryption rules for the (2, 2)-threshold 
VCS and their effects on security and contrast. In table 2, (sj1, sj2) denotes the j-th 
encryption rule on the share S1 and the share S2, and sj3 denotes the result of “OR”ing 
sj1 and sj2, where 0 denotes a white pixel and 1 denotes a black pixel. Let c0j (resp. c1j) 
be the probability that a white (resp. black) pixel is encrypted by the j-th encryption 
rule. Table 2 shows that, on S1, the probability that a white pixel is encrypted as a 
black pixel is FC01 = s11 × c01 + s21 × c02 + s31 × c03 + s41 × c04 = 0.5, and the 
probability that a black pixel is encrypted as a black pixel is also 0.5. Since FC01 = 
FC11 = 0.5 and FC02 = FC12 = 0.5, security is ensured. On the stacked share (S1 + S2), 
the probability that a white pixel is encrypted and stacked as a black pixel is QC01 = 
s13 × c01 + s23 × c02 + s33 × c03 + s43 × c04 = 0.5, and the probability that a black pixel is 
encrypted and stacked as a black pixel is QC11 = 1. Since QC11 > QC01, one can 
recognize the secret information from (S1 + S2) with eyes (see Fig. 1). 
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Table 2. An example of the probability setting with good security and good contrast 

Probability of being black 
Pixels 

Share 
S1 

Share 
S2 

Stacked share 
(S1 + S2) 

Probability 
S1 S2 (S1+S2) 

s11 = 0 s12 = 0 s13 = 0 c01 = 0.5 
s21 = 0 s22 = 1 s23 = 1 c02 = 0.0 
s31 = 1 s32 = 0 s33 = 1 c03 = 0.0 

0 

s41 = 1 s42 = 1 s43 = 1 c04 = 0.5 

FC01 = 
0.5 

FC02 = 
0.5 

QC01 = 
0.5 

s11 = 0 s12 = 0 s13 = 0 c11 = 0.0 
s21 = 0 s22 = 1 s23 = 1 c12 = 0.5 
s31 = 1 s32 = 0 s33 = 1 c13 = 0.5 

1 

s41 = 1 s42 = 1 s43 = 1 c14 = 0.0 

FC11 = 
0.5 

FC12 = 
0.5 

QC11 = 
1.0 

 

    
(a) Secret image (b) Share S1 (c) Share S2 (d) S1 + S2 

Fig. 1. An example of good security and good contrast 

    
(a) Secret image (b) Share S1 (c) Share S2 (d) S1 + S2 

Fig. 2. An example of poor security and moderate contrast 

If we change the probability setting of encryption rules in Table 2 to (0.25, 0.25, 
0.25, 0.25, 0.00, 0.25, 0.25, 0.50), even though the new probability setting can also 
make difference between black and white regions on the stacked share (S1 + S2), i.e., 
QC01 (0.75) < QC11 (1.00), the probabilities corresponding to white and black pixels 
on the share S1 and S2 are not identical, i.e., FC01 (0.50) < FC11 (0.75) and FC02 
(0.50) < FC12 (0.75). Thus, the security this access structure cannot be ensured (see 
Fig. 2). Our objective is to find a proper probability setting (c0j, c1j) so that the 
contrast of the stacked share is optimized and the security is ensured as well. 

3   The Model for General Access Structures 

3.1   Encryption Rule and Probability Matrices 

Let S = [sjn] be a 2n × n Boolean matrix, where sjn ∈ {0, 1}. We call S the encryption 
rule matrix, which represents all of the encryption rules on the set N of n shares. Each 
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row vector Sj = [sj1, sj2, …, sjn] denotes an encryption rule. In the case of n = 3, Sj = [1, 
0, 0] indicates that a pixel (either black or white) will be encrypted as a black pixel, a 
white pixel and a white pixel on the first, the second, and the third share, respectively. 
Let C = [cij] be a 2 × 2n matrix, where cij ∈ [0, 1], and  

1
2

1
=∑ =

n

j ijc  (1) 

We call C the probability matrix, where c0j (resp. c1j) denotes the probability that a 
white (resp. black) pixel is encrypted by the j-th encryption rule. Consider the case of 
(2, 2)-threshold VCS in Table 2, c01 = 0.5 means that there is 50% of chance that a 
white pixel (‘0’) is encrypted by the first encryption rule [0, 0], and c14 = 0.0 means 
that there is no chance that a black pixel (‘1’) is encrypted by the fourth encryption 
rule [1, 1]. 

3.2   Security 

Let FC0k (resp. FC1k) be the probability that a white (resp. black) pixel is encrypted 
and stacked as a black pixel on the stacked share of a forbidden set Fk ∈ ΓForb. If the 
security is to be assured, the values of FC0k and FC1k must necessarily be the same for 
each forbidden set Fk. Otherwise, if FC0k ≠ FC1k, then the variation of frequency may 
leak out the secret information; thus, security is not ensured. We denote the security 
index of each forbidden set Fk as follows:  

σk = |FC1k − FC0k|. (2) 

Since we assume that access structures are monotone, we can ensure the security of an 
access structure Γ = (ΓQual, ΓForb) as long as σk = 0 for every forbidden set Fk. That is, 
the probability setting of the encryption rules for black pixels and that for white pixels 
are identical. In Eq.(2), FCik can be obtained by the following equation: 

FCik = C × OR(S, Fk) (3) 

where OR(S, Fk) denotes the column vector obtained by “OR”ing those columns in S 
corresponding to the shares of the forbidden set Fk. 

3.3   Contrast 

Let QC0h (resp. QC1h) be the probability that a white (resp. black) pixel is encrypted 
and stacked as a black pixel on the stacked share of a qualified set Qh ∈ ΓQual. Then, 
QCih can be obtained by the following equation: 

QCih = C × OR(S, Qh). (4) 

We define the contrast index of the stacked share of a qualified set Qh to be 

αh = QC1h − QC0h. (5) 
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The larger the value of the contrast index αh is, the better the contrast of the stacked 
share of the qualified set Qh is; that is, the secret information can be recognized by 
human eyes more easily. 

3.4   The Model 

We use the form Γ = (ΓQual, ΓForb) to denote an arbitrary access structure with q 
qualified sets and f forbidden sets for a single secret image. The optimization model 
for VCSs of Γ = (ΓQual, ΓForb) is formulated as Eq.(6). Since there are 2n possible 
encryption rules for each secret pixel, there are totally 2 × 2n variables corresponding 
to all the probability values needed to be solved. Furthermore, each variable is a real 
number between 0 and 1, and all variables corresponding to the black or white pixels 
must sum up to be 1. The model also contains f constraint functions with respect to 
security. Besides, since we need to pursue better contrast of each stacked share of the 
qualified set Q ∈ ΓQual, there are totally q objective functions to be optimized.  
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4   The Application of Genetic Algorithms 

Genetic algorithms (GAs), search and optimization procedures, which simulate the 
natural evolution rules, were proposed by Holland in the 1970s [7]. GAs are 
composed of a population of chromosomes and several genetic operators. In a 
population, a chromosome denotes a solution of a specific problem. In addition, GAs 
use the fitness function to evaluate the goodness of each solution and to guide the 
direction of search in the solution space. There are three primary operators for GAs: 
reproduction, crossover and mutation. The reproduction operator is used to choose 
more survivable chromosomes according to the given fitness function, and then copy 
these selected chromosomes to the matting pool for further genetic operations. The 
crossover operator is used to exchange parts of the genes of two chromosomes and 
then to generate the corresponding offspring. The mutation operator is used 
sporadically to alter genes randomly; therefore, some important genes that do not 
present before may appear and some new solutions may be generated from a near 
converged population. Due to the parallel mechanism for processing a population of 
chromosomes simultaneously, the power of searching from multiple points makes it 
very suitable for multi-modal and multi-objective optimization problems. 

4.1   Encoding and Decoding 

Due to the real number data type of the decision variables in Eq.(6), real parameter 
encoding method is used; that is, each chromosome is composed of a series of real 
numbers. The real parameter encoding method is superior in its ability to avoid the 
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problems of “Hamming cliffs” and loss in precision caused by the binary encoding 
method [8, 9]; moreover, a real number string is shorter than a binary string. To 
satisfy the last two constraints in Eq.(6), we pick the 2n − 1 real numbers (xi1, xi2, …, 
xi,2n−1) from the range between 0 and 1 as the partition points. Thus, the range between 
0 and 1 is divided into 2n segments. The length of the j-th segment represents the 
value of cij. Therefore, the chromosome is encoded as x = (x01, x02, …, x0,2n−1, x11, x12, 
…, x1,2n−1). After (xi1, xi2, …, xi,2n−1) is sorted in an ascending order, the 2n − 1 partition 
points are generated. Let (x′i1, x′i2, …, x′i,2n−1) = Sort(xi1, xi2, …, xi,2n−1), x′i0 = 0, and 
x′i,2n = 1, where i = 0, 1. Using these partition points, we can decode the chromosomes 
by cij = x′ij − x′i, j−1.  

4.2   Fitness Function 

Based on the aforementioned chromosome encoding and decoding schemes, we can 
formulate the contrast functions as θh(x) = αh, for h = 1, 2, …, q. In addition, to deal 
with the first constraint in Eq.(6), we use the penalty function φ(x) = ∑σk, which 
represents the level of violation of the constraints in the optimization model. 
Consequently, the fitness functions incorporated with the constraints are written as 
Θh(x) = θh(x) − β⋅φ(x), where β determines the strength of penalty. To solve this 
multiple objective optimization problem, we use the weighted-sum approach because 
of its excellences in efficiency and the ease of implementation. The fitness function 
under the weight-sum approach is formulated as Θ(x) = ∑Θh(x). 

4.3   Reproduction, Crossover and Mutation 

To deal with negative fitness values, we use the binary tournament selection method. 
The procedure is as follows: pick two chromosomes randomly from the population, 
compare their fitness values, and copy the chromosome with higher fitness value to 
the matting pool. Besides, we employ the simulated binary crossover (SBX) operator 
[10], which biases solutions near each parent more favorably than solutions away 
from the parents, to deal with the crossover operation for the real number strings. The 
advantage of using the SBX operator is that one can control the search power of GAs 
by controlling the distribution index ηc. Finally, we mutate a specific gene by the 
random initialization operation. Let xi be the i-th gene in the real parameter encoded 
string, let yi be the result of mutating xi, and let xi

(U) and xi
(L) be the upper and lower 

bounds of xi, respectively. The random initialization operation is formulated as yi = 
ri(xi

(U) − xi
(L)) + xi

(L), where ri denotes a random number between 0 and 1. Besides, we 
assume that the probability of mutation for each gene is uniform. 

5   Results and Discussions 

We deal with an access structures shown in Example 1. The parameters for GAs are 
listed in Table 3, and the resultant probability matrix C is as follows. 
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Table 3. Parameters for genetic algorithms 

Parameters Values 
Population size 1000 
Chromosome length 32 
Crossover rate 0.9 
Mutation rate 0.01/per gene 
Reproduction method Binary tournament selection 
Crossover method SBX with ηc = 2 
Stop condition 600 generations 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.01.00.00.00.03.01.00.00.00.02.00.01.00.02.00.0

0.00.01.00.04.00.00.00.01.00.00.01.00.00.00.03.0
C

 
(7) 

Table 4. The security and contrast analysis for Γ 

The security index σk  
of the forbidden set Fk 

The contrast index αh of the qualified set Qh 

F1 = {1} σ1 = 0 Q1 = {1, 4} α1 = 0.4 (QC01 = 0.6, QC11 = 1.0) 
F2 = {2} σ2 = 0 Q2 = {3, 4} α2 = 0.4 (QC02 = 0.6, QC12 = 1.0) 
F3 = {3} σ3 = 0 Q3 = {1, 2, 3} α3 = 0.1 (QC03 = 0.7, QC13 = 0.8) 
F4 = {4} σ4 = 0 Q4 = {1, 2, 4} α4 = 0.3 (QC04 = 0.7, QC14 = 1.0) 

F5 = {1, 2} σ5 = 0 Q5 = {1, 3, 4} α5 = 0.4 (QC05 = 0.6, QC15 = 1.0) 
F6 = {1, 3} σ6 = 0 Q6 = {2, 3, 4} α6 = 0.3 (QC06 = 0.7, QC16 = 1.0) 
F7 = {2, 3} σ7 = 0 Q7 = {1, 2, 3, 4} α7 = 0.3 (QC07 = 0.7, QC17 = 1.0) 
F8 = {2, 4} σ8 = 0   

 

     
Share S1 Share S2 Share S3 Share S4 S1+S2 

     
S1+S3 S2+S3 S2+S4 S1+S4 S3+S4 

     
S1+S2+S3 S1+S2+S4 S1+S3+S4 S2+S3+S4 S1+S2+S3+S4 

Fig. 3. The experimental result for the access structure Γ 



66 C.-S. Hsu, S.-F. Tu, and Y.-C. Hou 

The security and contrast for the resultant probability matrices C are analyzed in 
Table 4. The shares and stacked results generated according to C are shown in Fig. 3. 
We can see from Table 4 that the security indices of all the forbidden sets are zero; 
therefore, C is secure. On the other hand, the contrast indices of the qualified sets Q1 
~ Q7 are α1 = 0.4, α2 = 0.4, α3 = 0.1, α4 = 0.3, α5 = 0.4, α6 = 0.3, and α7 = 0.3, 
respectively. Observing Fig. 3, we can say that one can easily recognize the hidden 
secret from the stacked shares of the qualified sets. Besides, we can also see from 
Table 4 that the blackness of black regions of the qualified sets Q1, Q2, and Q4 ~ Q7 
are 100%; therefore, we realized perfect reconstruction of black pixels on the stacked 
shares of these qualified sets in this experiment. 

Ateniese et al. [4] proposed a pixel-expansion-based method to construct basis 
matrices for the same access structures shown in Example 1, and their basis matrices 
M0 for white pixels and M1 for black pixels with minimum pixel expansion m* = 5 are 
listed below. 
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Using M0 and M1, the contrast indices of the qualified sets Q1 ~ Q7 are 0.2, 0.2, 0.2, 
0.2, 0.2, 0.2, and 0.4, respectively. Comparing with our results, we found that the 
average contrast is 37.7% higher than that proposed by Ateniese et al. In addition, we 
reached perfect reconstruction of black pixels on six qualified sets. However, in 
Ateniese et al.’s method, only the qualified set {1, 2, 3, 4} has 100% of blackness for 
black pixels. We can conclude that our method is superior to Ateniese et al.’s in 
contrast and blackness of black pixels. Moreover, we do not need to expand pixels. 

6   Conclusions 

Most visual cryptographic methods need to expand pixels so that the size of each share 
is larger than that of the secret image. Pixel expansion not only results in distortion of 
the shares but also consumes more storage space. Consequently, it leads to the difficulty 
in carrying these shares and the requirement of more storage space. This paper proposed 
a new method without pixel expansion. We used the concept of probability and 
considered the security and contrast issues to construct an optimization model for 
general access structures. Then, the solution space is searched by genetic algorithms. In 
the case of four shares, we found that our method was superior to Ateniese et al.’s in 
contrast and blackness of black pixels. In the future, we will study the optimization 
model for sharing multiple secret images among a set of participants. 
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