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Abstract. Graph coloring is used to characterize some properties of graphs. A b-
coloring of a graph G (using colors 1,2,…,k) is a coloring of the vertices of G 
such that (i) two neighbors have different colors (proper coloring) and (ii) for each 
color class there exists a dominating vertex which is adjacent to all other k-1 color 
classes. In this paper, based on a b-coloring of a graph, we propose a new cluster-
ing technique. Additionally, we provide a cluster validation algorithm. This algo-
rithm aims at finding the optimal number of clusters by evaluating the property of 
color dominating vertex. We adopt this clustering technique for discovering a new 
typology of hospital stays in the French healthcare system. 

1   Introduction  

Clustering is the process of dividing a set of given objects into groups, or clusters, 
such that all objects in the same group are similar to each other, while objects from 
different groups are dissimilar. Clustering plays an important role in data mining 
applications such as Web analysis, information retrieval and many other domains. 

In French hospitals, the Diagnosis Related Groups (DRG) system was introduced 
in the eighties, by the Information Systems Medicalisation Program (PMSI). Accord-
ing to the PMSI process deployment, the PMSI data can also used for the assessment 
of performances for both public and private hospitals. This evaluation is based on the 
production of a Standard Discharge Summary (RSS) for each hospital stay. The RSS 
contains data related to the nature of treatments, medical exams and diagnosis as well 
as patient’s information. The RSS is then identified to correspond to one patient’s 
group called DRG, which is used for the classification of hospital stays. This opera-
tion is performed using a supervised approach according to a decision tree.  

In spite of the successive improvements of DRG classification, this method re-
mains inefficient for public and private hospitals. The major known problem of this 
method is that heterogeneous pathologies and examinations find themselves in the 
same DRG class. In this paper, we propose a new clustering approach based on graph 
b-coloring as an alternative for DRG classification: it builds a refined typology of 
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hospital stays. A graph b-coloring consists to color the vertices of a graph with the 
largest number of color such that (i) two neighbors have different colors (proper  
coloring) and (ii) for each color class there exists a dominating vertex which is adja-
cent to all other color classes. 

The paper is organized as follows: Section 2 provides summary of related work. Sec-
tion 3 describes the clustering algorithm that uses as foundation a graph b-coloring 
method. Section 4 is devoted to the cluster validation algorithm. In Section 5, the appli-
cation of the proposed method on PMSI data is illustrated. The experiments show that 
the algorithm is appropriate to find the optimal number of hospital stay groups. We 
conclude in Section 6 by anticipating on necessary extensions. 

2   Related Work 

Clustering of data is generally based on two approaches: hierarchical and partitioning 
[1]. The hierarchical clustering algorithms build a cluster hierarchy or, in other 
words, a tree of clusters, (dendrogram) whose leaves are the data points and whose 
internal nodes represent nested clusters of various sizes [2]. Hierarchical clustering 
methods can be further subdivided into agglomerative and divisive, depending on 
whether they start from the bottom or the top of the tree. The main weakness of this 
algorithm is a choice of the level that provides the best partition. It is often the data 
miner who decides about the number of clusters associated both the context and the 
goal of the analysis. Among these hierarchical methods, some authors have proposed 
to use graph coloring techniques for the classification purpose. In [3], the authors 
propose a divisive classification method based on the distance tables, where the itera-
tive algorithm consists, at each step, in finding a partition by subdivising the class 
with the largest diameter into two classes in order to offer a new partition with mini-
mal diameter. The subdivision is obtained by a 2-coloring of the vertices of the maxi-
mum spanning tree built from the dissimilarity table.  

The partitioning clustering algorithms give a single partition of the data by fixing 
some parameters (number of clusters, thresholds, etc.). The partitioning algorithm 
typically starts with an initial partition of data set and then uses an iterative control 
strategy to optimize an objective function. Each cluster is then represented by its 
centroid (k-means algorithms: does not work well with symbolic data like medical 
diagnoses) [4] or by one of its objects located near its center (k-medoid algorithms) 
[5]. In practice, the algorithm is typically running multiple times with different start-
ing states to identify the optimal values of the fixed parameters. The best configura-
tion obtained from all of the runs is used as the output clustering. In the framework of 
partitioning methods, Hansen and Delattre [6] reduced the partitioning problem of a 
data set into p classes with minimal diameter, to the minimal coloring problem of 
a superior threshold graph. The edges of this graph are the pairs of vertices distanced 
from more than a given threshold.  

In this paper we propose a new coloring method namely b-coloring, well-adapted 
for clustering. It allows to build a fine partition of the data set (classical or symbolic) 
in classes where the number of classes is not pre-defined. This approach is interesting  
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in the sense that it identifies each cluster by at least one dominant object which guar-
antees the disparity between the classes of the partition. The optimal number of 
classes is then determined based on a new validation algorithm. This algorithm is 
designed to identify a partition of data that are compact and well separated by evaluat-
ing the property of class dominant object. 

3   Symbolic Clustering Approach 

In this section we describe our new graph clustering algorithm. It uses pairwise repre-
sentation, where the objects (hospital stays) are mapped to the nodes of an undirected 
edge-weighted graph. The edge weights reflect the dissimilarity between the corre-
sponding pair of nodes. The objective here is to generate a partition of a set of n ob-
jects V = {v1,...,vn} in cohesive and well separated classes where their number is not 
given beforehand. The set V is described by a dissimilarity table D={dj,j’| vj,vj’ ∈ V}. 

Notations: we denote by G=(V,D), the complete weighted graph depicting the objects 
set V={v1,...,vn} where each pair (vi,vj) is weighted by the dissimilarity dij. Each object 
vi is represented by a mixture of m symbolic as well as classical attributes denoted xi

k 
(k∈{1...m}). Therefore, the object vi corresponds to the vector (xi

1, xi
2,…, xi

m). Classi-
cal attributes are defined by either quantitative or qualitative values when symbolic 
attributes can be either a set of values or intervals. The clustering problem is now 
formulated as a graph b-coloring problem. 

3.1   A Graph b-Coloring Method 

Let G=(V,E) be an undirected, connected and simple graph without loops with a ver-
tex set V and an edge set E. The b-coloring of G is the vertex coloring such that: 

o For each pair of adjacent vertices (x,y) ∈ G, the color of x and y are different 
(proper coloring), 

o In each color class, there exists at least one vertex having neighbors in all other 
color classes. Such a vertex is called a dominating vertex.  A color which has a 
dominating vertex is called a dominating color. 

We call the b-chromatic number φ(G) of a graph G the largest number k such that 
G has a b-coloring with k colors. 

In contrast to the minimal coloring of the vertices of graph G, the b-coloring con-
sists to a maximal coloring under property and dominance constraints. 

The degree of vertex is the number of its neighbors and the maximum degree de-
noted by Δ(G) of a graph G is the largest degree over all vertices of G. Irving and 
Manlove [7] have shown that: 

χ(G) ≤ φ(G) ≤ ∆(G)+1 . (1) 

where chromatic number χ(G) is the minimum number of colors used to have a proper 
coloring of G,  

Irving and Manlove have also shown that finding the b-chromatic number φ(G) for 
any graph is a NP-hard problem. Several authors investigated this parameter for par-
ticular classes of graphs like trees [7] and power graphs [8] 
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3.2   Construction of the Threshold Graph 

Our clustering approach based on a b-coloring technique requires to construct a supe-
rior threshold graph, which is a partial graph of the initial graph G=(V,D). Let 
G>s=(V,D>s) be the superior threshold graph associated with threshold value s chosen 
among the dissimilarity table D. In other words, G>s is given by V={v1,...,vn} as vertex 
set and {(vi,vj)| D(vi,vj)=dij >s}as edge set. Figure 1 gives the superior threshold graph 
G>0.2 associated with the following dissimilarity table: 

Table 1. One dissimilarity table 

vi A B C D E F G 
A 0       
B 0.20 0      
C 0.20 0.30 0     
D 0.10 0.20 0.25 0    
E 0.20 0.20 0.10 0.40 0   
F 0.20 0.20 0.20 0.25 0.20 0  
G 0.25 0.20 0.20 0.10 0.20 0.65 0 

 

Fig. 1. The superior threshold graph G>0.2 

3.3   Algorithm 

We present here our new clustering algorithm which is based on a graph b-coloring 
technique. The idea consists in applying the b-coloring technique-which we adapt to 
the clustering problem, on the superior threshold graph G>s. One partition associated 
to the selected threshold value s is then returned. Doing so, the dissimilarity between 
objects within the same class is lower to s.  

Notations: Let G=(V,D>s) be the threshold graph, such that: 

o V={v1,...,vn}: the vertex set and D>s the edge set.  
o ∆: the maximum degree of G. 
o c(vi): the color (integer value) of the vertex vi.  
o N(vi): the neighborhood of vertex vi. 
o Nc(vi): the neighborhood colors of vertex vi. 
o dist(vi,c): the distance between the vertex vi and the color c defined as the 

minimum distance from vi to all vertices with color c: 
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o L is the color set used in the graph (a set of integer values). 
o Dm is a set of colors which have dominating vertices. 
o NDm is a set of colors which have not dominating vertices. 

A Graph b-Coloring Algorithm 
The b-coloring algorithm uses a two-step procedure. Before starting the b-coloring 
algorithm, each vertex must be colored. The following procedure gives an initial con-
figuration using the maximum number of colors available for a b-coloring (Eq. 2) (i.e. 
∆+1). While vertices are not colored yet, the algorithm starts from the vertex of 
maximum degree ∆ (let v be such a vertex). Then the algorithm puts: c(v)=1. The 
Procedure 1 then colors remaining vertices. Let: 

o T be the set of colored vertices which is sorted on descending order of vertex 
degrees. Initially T contains only the vertex v and it is updated as long as Pro-
cedure 1 runs.  

o Update(Nc(vi)) be the method which updates the neighborhood colors of the 
vertex vi when the color of at least one of its neighbors is changed. 

o Add(o,S) be the method which adds o (e.g.: color, vertex) into the set S. 
o Remove(o,S) be the method which remove the object o from the set S. 
o Sort(S) be the method which sorts the elements of S by decreasing order of 

vertex degree. 

Procedure 1 Init_b-coloring() 
 begin 
    L := {1,2,.., ∆+1}; 
    repeat 
      select vi from T; M := Nc(vi) ∪ {c(vi)}; q := 0; 
      for each vertex vj ∈ N(vi) such that c(vj)=∅ do 
        q := min{k| k>q, k∉M and k∉ Nc(vj)}; 
        if q ≤ ∆+1 then c(vj):= q; 
        else c(vj) := min{k|k∉ Nc(vj)}; 
        Add(vj,T); 
        for each vertex vk ∈ N(vj) do Update(Nc(vk)); enddo. 
        sort(T); 
      enddo. 
      if Nc(vi)=L\{c(vi)}then Add(c(vi),Dm); endif. 
      Remove(vi,T); 
    until(T=∅) 
 end. 

Lemma 1. Procedure 1 executes in O(n2∆). 
Proof. Procedure 1 is applied once on every colored vertex (at most n). First, the 
algorithm colors every non-colored neighbor (at most ∆). For each neighbor, the 
change of color is propagated to its own neighbors and the elements of set T (at most 
n: O(n)) are sorted by decreasing order of degree. Therefore Procedure 1 executes in 
at most O(n2∆). 
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Procedure 1 performed on the previous threshold graph G>0.2 gives the following 
colored graph: 

 

Fig. 2. The initial colored graph G>0.2 

After applying Procedure 1, some colors remain without any dominating vertex. The 
following Procedure 2 finds a b-coloring of graph G where all the colors belonging to L 
are dominating colors (i.e. Dm=L). The idea is the following: each non-dominating color 
q (i.e. q ∈ NDm) can be changed. In fact, after removing q from the graph G, for each 
vertex vi colored with q (i.e. c(vi)=q), a new color is assigned to vi which is different 
from those of its neighborhoods. As our objective is to find a partition such that the sum 
of vertex dissimilarities within each class is minimized, the color whose distance with vi 
is minimal will be selected if there is a choice between many colors for vi. Before start-
ing again with another color q’∈ NDm, we verify if colors of NDm have a dominating 
vertex (in such a case, these colors are added to the Dm set).  

Procedure 2 find_b-coloring() 
begin 
  repeat 
    q := max{k| k∈ NDm}; L := L\{q}; NDm:= L\Dm; 
    for each vertex vi such that c(vi)=q do 
      K := {k| k∈L and k∉ Nc(vi)}; 
      c(vj):= {c| dist(vi,c)=mink∈K(dist(vi,k))};  
    enddo. 
    for each vertex vj such that c(vj) ∈ NDm do 
      Update(Nc(vj)); 
      if Nc(vj)=L\{c(vj)}then Add(c(vj),Dm); endif. 
    enddo. 
  until(NDm =∅) 
end. 

Once we modify the color of all vertices vi having color q, we must verify, using the 
instructions I, if each non-dominating color became a new dominating color.   

Lemma 2. We see easily that the coloring generated by Procedure 2 is proper. 

Proof. If the color c(vi) is changed, it is selected to be different from the neighbor 
colors of vi. 

Lemma 3. After running the Procedure 2, there exists at least one dominating vertex 
for each obtained color class. 

Proof. The Procedure 2 converges when the set of colors which have not dominating 
vertices is an empty set. 

Lemma 4. Procedure 2 generates the b-coloring of any graph G in O(n∆2). 

I 
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Proof. Procedure 2 is applied for every color q without dominating vertices (at most 
∆). A color q is removed, and every vertex vi such that c(vi)=q (at most n) is recol-
ored. Then, for every vertex vj (at most n), we update its neighborhood colors Nc(vj) 
(at most ∆) and thus we verify if its color is a new dominating color. Therefore Pro-
cedure 2 uses at most ((n+n*∆) * ∆) instructions. Its complexity is O(n∆2). 

Let us consider the previous example. Starting with L={1,2,3,4} and Dm={1}, the 
b-coloring of the graph G>0.2  given by Procedure 2 is depicted in Figure 3. 

 

Fig. 3. The b-coloring of the graph G>0.2 

Thus, the graph G>0.2 is colored with three colors, with one dominating vertex for 
each color. Therefore, the partition returned by the algorithm associated to the thresh-
old 0.2 is composed of the three following classes: C1={D,A}, C2={C,G} and 
C3={F,B,E} as shown in Figure 4. The bold characters represent dominating vertices 
of the obtained classes. This means that these vertices are joined to at least one vertex 
in each other color class. 

 

Fig. 4. A partition associated to the threshold 0.2 

4   Cluster Validation Algorithm  

The clustering algorithm is an iterative algorithm which that executes multiple runs 
increasing the value of dissimilarity threshold s. Next, the major problem is the vali-
dation of clusters resulting from all the runs to select the best configuration (partition) 
which is considered as the optimal output clustering.  

Different cluster validation indices have been proposed in the literature [9], such as 
Davies-Bouldin index and Dunn’s index. Therefore, the correct value of dissimilarity 
threshold corresponds to an optimal index value. However, there are several ties or 
near-ties corresponding to the best results. In order to make the automatic determina-
tion of the optimal data partition more robust and eliminate such ties, a cluster valida-
tion algorithm was implemented by evaluating the property of dominance in each 
cluster from all the best considered threshold partitions.   

We denote by IV(Pi) the validity index value associated with the partition Pi. 
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Algorithm 
begin 
V=(v1,v2,..,vn); 
for each Partition P

i
 selected as one best partition do 

 for each cluster Ci=(v1i,..,vηii)∈ Pi where v1i is a dominant do  
  for each object vji∈ Ci do 
 Q(v1i -> vji):= Q(v1i -> vji)+IV(Pi

); // The Rule quality 
 Add(v1i -> vji) to the rules set R if it does not exists; 
enddo. enddo. enddo. 
Sort R by decreasing order of rule quality Q; 
for each rule  (x

 
-> y) ∈ R taken consecutively such that V≠∅ do 

  Add y to the cluster C which contains x;  
  Remove x and y from V if they exist; 
  Remove from R all the rules such that x or y are results; 
  For each rule Ri such that y is dominant as (y -> t) do 
  Q(y -> t):= Q(x -> t)/Q(y -> t);  
  enddo. 
  Sort R by decreasing order of rule quality Q; 
enddo. 
end. 

The cluster validation algorithm was run on the previous data set (A,B,C,D,E,F,G). 
For each threshold selected in the dissimilarity Table 1, the value of Dunn’s index of 
the returned partition is calculated (cf. Table 2). The Dunn’s index is designed to offer 
a compromise between the intercluster separation and the intracluster distances. It 
identifies sets of clusters that are compact and well separated. Let sa(Ck) denote the 
average distance within the cluster Ck and da(Ck, Cl) the between-cluster separation. 
The larger values of Dunn’s indicate the better clustering. For a partition P into p 
clusters (C1,C2,..,Cp), the Dunn’s index is defined as follows:  
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where 1≤ i, j, k≤ p, D indicates the dissimilarity measures, and ηk the number of ob-
jects in cluster Ck. 

Table 2. Evaluation of each threshold partition 

Threshold Partition Dunn’s index value 
0.1 {A} {B} {C,E}{G,D}{F} 1.75 
0.2 {C,G} {F,B,E} {D,A} 1.00 
0.25 {F,A,B,D}{C,E,G} 1.37 
0.3 {F,A,B,C,D}{E,G} 1.19 
0.4 {F,A,B,C,D,E} {G} 1.25 

From Table 2, one can note that the optimal partition which maximizes the Dunn’s 
index value is associated with the threshold 0.1. However, if there are several ties or 
near-ties corresponding to the maximal values of Dunn’s index, we propose to apply  
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the validation algorithm on the first closest partitions. Assume that the first four best 
results for the Dunn’s index (1.75, 1.37, 1.25 and 1.19) are too closed, so it is not easy 
to really decide which is the optimal partition, the cluster validation algorithm gives 
the partition composed of the two clusters: {F,A,B,D} and {C,E,G}. 

5   Experiments 

The clustering algorithm and the cluster validation algorithm described in Sections 3 
and 4, respectively, were implemented and evaluated. The clustering algorithm was 
applied to a real data set. This data set consists of 500 instances of PMSI hospital 
stays with 10 features. There are 5 quantitative, 2 qualitative and 3 symbolic attrib-
utes. The instances are pre-classified on 21 DRG. 

Since the objective was to perform unsupervised classification, hence any class in-
formation was eliminated from the data. The results are compared with that of Ag-
glomerative Hierarchical Classification (AHC) [2] and the predefined DRG classifica-
tion. The measures of the overall average distance within cluster Sa and the overall 
average between-cluster separations Da are used for this purpose. For a partition P 
into p clusters (C1,C2,..,Cp) the values of Sa and Da are given by: 

 ∑
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Table 3 shows the first ten best clustering results according to the larger values of 
Dunn’s index. 

 
Table 3. The first ten best Dunn’s index values of the PMSI data 

Threshold Number of clusters of partition Dunn’s index value 
1.540665 28 0.568483 
1.360186 45 0.568007 
1.539183 27 0.567937 
1.469705 32 0.567813 
1.363826 45 0.566491 
1.581157 27 0.562751 
1.583693 26 0.562511 
1.590260 25 0.561748 
1.591159 24 0.561563 
1.377407 43 0.560905 

Table 4. Evaluation of AHC, DRG and our typology of PMSI hospital stays 

Classification Method Number of clusters Dunn’s Sa Da Da / Sa 
Our optimal partition 27 0.5679 1.1767 1.8729 1.5916 
Optimal AHC partition 23 0.4026 1.2490 1.8516 1.4824 
DRG 21 0.2843 1.2932 1.7989 1.3910 
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The application of the cluster validation algorithm to these ten partitions provides 
the partition composed of 27 clusters and associated with the threshold 1.539183 as 
an optimal partition. According to the Dunn’s index, Sa and Da measures, the results 
presented in the table 4 show that our clustering approach gives better results than the 
AHC method and also the DRG classification. 

6   Conclusion 

In this paper, a new clustering algorithm is proposed. It is based on a graph b-coloring 
technique. We implemented, performed experiments, and compared our approach to 
the Agglomerative Hierarchical Classification and the DRG classification, and illus-
trated its efficiency on the PMSI data. A real advantage of this method is that it offers 
a real representation of clusters by a dominant object which is used to evaluate the 
quality of cluster. So, an optimization algorithm has been developed based on a clus-
ter dominance property. The optimal partition is therefore automatically identified. 

The present work can be extended in many directions: (1) we are leading additional 
experiments on a larger PMSI data set by considering other validity indices, (2) im-
provements have to be made on this stage in order to formally prove the performance 
of the method; (3) the validation stage of the hospital stays typology will be com-
pleted with the participation of several specialists from the medical domain. 
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