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Abstract. In this paper, we focus on the problem of feature selection
with confidence machines (CM). CM allows us to make predictions within
predefined confidence levels, thus providing a controlled and calibrated
classification environment. We present a new feature selection method,
namely Strangeness Minimisation Feature Selection, designed for CM.
We apply this feature selection method to the problem of microarray
classification and demonstrate its effectiveness.

1 Introduction

Confidence machine (CM) is a framework for constructing learning algorithms
that predict with confidence. In particular, we use CM to produce hedged pre-
dictions with accuracy controlled by predefined confidence level. Predictions us-
ing CM are not only accurate but also, unlike many conventional algorithms,
well-calibrated [2,5]. This method is ideally suited to the problem of providing
measured and controlled risk of error for microarray analysis. In this paper, we
focus on the problem of feature selection with CM and describe a new feature
selection method, namely Strangeness Minimisation Feature Selection, designed
for CM. We apply this feature selection method to the problem of microarray
classification and demonstrate its effectiveness.

2 Confidence Machines

CM is a general learning framework for making well-calibrated predictions, in the
sense that test accuracy is controlled. Intuitively, we predict that a new example
(eg microarray data for a new patient with unknown diagnosis) will have a
label (eg disease diagnosis) that makes it similar to previous examples in some
specific way, and we use the degree to which the specified type of similarity holds
within the previous examples to estimate confidence in the prediction. Formally,
CMs work by deriving a p-value based on a strangeness measure. A strangeness
measure is a function that provides an indication of how strange or typical a
new example is in relation to a given sequence of examples.

Once a strangeness measure A is defined, we can compute the p-value for a
new example. Given a sequence of labelled examples for training (z1, ..., zn−1)
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where each example zi consists of an object xi and its label yi, and a new example
xn with label withheld, we calculate p-values for each y ∈ Y , where Y is the set
of all possible class labels, as

py =
|{i : i ∈ {1, ..., n}, αi ≥ αn}|

n
(1)

where αi = A(zi, (z1, ..., zn)) and zn = (xn, y) for i ∈ {1, ..., n}. So, py is com-
puted from the sequence (z1, ..., zn−1, (xn, y)). Clearly 1

n ≤ py ≤ 1. The p-value
py gives a measure of typicalness for classifying xn with label y. The use of
p-values in this context is related to the Martin-Löf test for randomness [3]. In-
deed, the p-values generated by CM form a valid randomness test under the iid
assumption.

A region prediction for xn is then computed as R = {{y : py > δ} ∪
argmaxy(py)} where 1 − δ is a confidence level supplied prior to using CM (and
argmax here returns the set of arguments giving the maximum value). This re-
gion prediction will always predict the label with the highest p-value, but may
also hedge this prediction by including any other label with a p-value greater
than δ. If |R| = 1, i.e. only one label is predicted, it is called a certain prediction.
Otherwise, if |R| > 1, it is an uncertain prediction. Clearly, certain predictions
are more efficient than uncertain ones, so an objective of learning with region
predictions is to make as many certain predictions as possible. A region predic-
tion is correct if the true label for the example is a member of the predicted
region. Otherwise it is an error. Region predictions are well-calibrated, in the
sense that we expect the number of errors for k predictions to be approximately
less than or equal to kδ [11].

CM can operate as an on-line or off-line learner. In the on-line learning set-
ting the examples are presented one by one. Each time, the classifier takes an
object to predict its label. Then the classifier receives the true label from an
ideal teacher and goes on to the next example. The classifier starts by observ-
ing x1 and predicting its label ŷ1. Then the classifier receives feedback of the
true label y1 and observes the second object x2, to predict its label ŷ2. The
new example (x2, y2) is then included in the training set for the next trial.
And so on. At the nth trial, the classifier has observed the previous examples
(x1, y1), ..., (xn−1, yn−1) and the new object xn and will predict ŷn. We expect
the quality of the predictions made by the classifier to improve as more and more
examples are accumulated. In the off-line learning setting, the classifier is given a
training set (x1, y1), (x2, y2), ..., (xn, yn) which is then used to make predictions
on new unlabelled examples xn+1,xn+2, ...,xn+k. For on-line learning, it is pos-
sible to prove that CM is well-calibrated, in the sense that the test errors form a
Bernoulli sequence with parameter δ if we assume identically and independently
distributed (iid) data. Calibration to confidence level is a useful property of CM
allowing direct control of risk of error. For example, CM has been applied success-
fully to the problem of reliable diagnosis from microarray data and proteomics
patterns [2,5]. In order to achieve calibration, the strangeness measure needs to
be exchangeable in the sense that the strangeness value αi is not dependent on
the order of the sequence of labelled examples given to Equation (1) [11].
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3 Feature Selection

Most microarray gene expression data sets suffer from the dual problem of low
sample size and high-dimensional feature space [8]. It is well known that di-
mension reduction is necessary when high dimensional data is analysed. This is
because,

1. large number of features may cause over-fitting, if they are not relevant
features, and if the underlying distributions are not estimated accurately,

2. large number of features makes it difficult to design a classifier due to time
and space complexity issues.

Previous work with gene expression data has shown that the use of feature
selection during classification can lead to improvements in performance, in light
of these problems; eg Yeoh et al [12].

Feature selection is the process of selecting a subset of features from a given
space of features with the intention of meeting one or more of the following goals:

– choose the feature subset that maximises the performance of the learning
algorithm;

– minimise the size of the feature subset without reducing the performance of
a learning algorithm on a learning problem significantly;

– reduce the requirement for storage and computational time to classify data.

There are three general methods for feature selection: filters, wrappers and em-
bedded feature selection. The filter method employs a feature ranking function
to choose the best features. For example, the signal to noise ratio (SNR) is a
ranking function that scores a feature by how well it is a signal for the clas-
sification label. Wrapper methods are general purpose algorithms that search
the space of feature subsets, testing performance of each subset using a learn-
ing algorithm. Some learning algorithms include an embedded feature selection
method. Selecting features is then an implicit part of the learning process. This
is the case, for example, with decision learners like ID3.

It is possible to derive feature selection from within the CM framework. In
this paper, we propose a new method called Strangeness Minimisation Feature
Selection (SMFS) that selects the subset of features that minimise the overall
strangeness values of a sequence of examples. The intuition for this approach
is that reducing overall strangeness implies an increase in conformity amongst
the examples in the sequence. Therefore, the set of features that minimise over-
all strangeness are most relevant to maximising conformity between training
examples.

3.1 Strangeness Minimisation Feature Selection

The SMFS goal is defined in relation to any strangeness measure. Let Ã be an
exchangeable measure. The optimal strangeness minimisation feature subset S0
of size t for a sequence (z1, ..., zn) ∈ Zn with feature space F is the SMFS goal,
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S0 = arg min
S∈G

n∑

i=1

Ã(zi, (z1, ..., zn), S) (2)

where G = {R : R ⊆ F, |R| = t}. We establish that this is an exchangeable fea-
ture selection function and can be implemented in CM. In common with wrapper
feature selection methods, it requires a search over the space of all subsets of
F , although restricted to subsets of size t. For m features, in the typical case
when t < m, this search has computational complexity of O(mt). The number of
selected features t does not need to be very large for this to become intractable.
Fortunately, practical implementations of SMFS are possible if we restrict our
attention to a subclass of linear strangeness measures. The problem becomes
tractable without the need for ad-hoc heuristics that are often required with
wrapper methods. Within CM framework, we can still implement useful ver-
sions of CM based on learning algorithms such as nearest centroid and SVM.
We find that SMFS is a principled, broad and practical feature selection frame-
work, for which distinct feature selection methods are determined by strangeness
measures.

The function Ã : Z×Zn × 2F → R is a linear measure based on the transfor-
mation function φ : Z × F × Zn → R if

Ã(zi, (z1, ..., zn), S) =
∑

j∈S

φ(zi, j, (z1, ..., zn)) (3)

for all zi ∈ Z, and S ⊆ F .
In CM, strangeness examples are computed as α-strangeness values for each

example, see Eq (1). By using linear strangeness measures, we can compute
strangeness values for each feature. We call them β-strangeness measures. The
β-strangeness value for feature j is defined as

βj =
n∑

i=1

φ(zi, j, (z1, ..., zn)). (4)

We reformulate the SMFS goal to minimise the sum of β-strangness measure
values across subsets of features of size t,

S0 = arg min
S∈G

∑

j∈S

βj (5)

where G = {R : R ⊆ F, |R| = t}. It is easy to see that this minimum is computed
from the set of features giving the smallest β-strangeness values. Hence, the
SMFS goal can be solved by

1. computing β-strangeness values for each feature,
2. sorting the β-strangeness values in ascending order and choosing the top t.

Clearly, this solution is tractable and is a great improvement on the computa-
tional complexity for SMFS in general.
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We now consider implementing SMFS using two examples of linear strangeness
measures and construct strangeness measures based on the Nearest Centroid
(NC) classifier [8] and linear classifier. In both cases, we derive an exchangeable
transformation function and the corresponding β-strangeness measure.

For the NC classifier, a linear strangeness measure can be given using specif-
ically one of family of Minkowski distance metrics,

ÃNC((x0, y0), (z1, ..., zn), S) =
∑

j∈S

(
|x0j − μ

(y0)j
|

σj
)k (6)

where μ
(y0)j

is the within class mean for label y0 and σj variance for feature j

based on the sequence (z1, ..., zn). If we consider NC with the usual Euclidean
distance measure (k = 2), the β-strangeness measure corresponding to the NC
linear strangeness measure ÃNC is

βj =

∑
y∈Y (|Cy|σ2

(y)j)

σ2
j

(7)

where |Cy| is the number of examples with label y.
We have described a strangeness measure for SVM based on the Lagrange

multipliers defined in the dual form optimisation problem for SVM [5]. Although
these work for SVM, they cannot be applied to other linear classifiers in general.
Also, the range of strangeness values that are output is small since all nonsupport
vector examples will have a strangeness value of zero. This means strangeness
cannot be measured between these examples. We define a new strangeness mea-
sure which resolves both these difficulties, by measuring the distance between an
example and the separating hyperplane. The linear classifier strangeness measure
is the function ÃLC defined for all (x0, y0) and (z1, ..., zn) as

ÃLC((x0, y0), (z1, ..., zn), S) = −y0(
∑

j∈S

wjx0j + b) (8)

where the hyperplane (w, b) has been computed using a linear inductive learner
based on the sequence (z1, ..., zn). We can take the threshold b as an extra weight
on a new constant-valued feature without loss of generality. The β-strangeness
measure corresponding to the above linear classifier strangeness measure ÃLC is

βj = −wj

n∑

i=1

yixij . (9)

4 Experiments

Our experiments are based on two public databases of Affymetrix HG-U133A
oligonucleotide microarrays for children with acute leukaemia. These microarrays
provide gene expression measurements on over 22,000 gene probes for human
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genes. The data are given with an established clinical subtype classification for
each microarray. Each example is classified as either ALL or AML and then
as a specific subtype within each of these groups. Therefore each patient is
represented as a vector of expression levels and a subtype label.

Dataset A comprises 84 microarrays sourced from Royal London Hospital, UK
[10]. There are 62 ALL and 22 AML examples and the data is available at
nostradamus.cs.rhul.ac.uk/MicroArray. Dataset A was normalised so that
each example had the same mean expression level (across all gene probes) and a log
transform applied prior to classification. Dataset B is a combination of 132 ALL
cases [7] and 130 AML cases [6] which are both sourced from St. Jude Children’s
Research Hospital, USA and are available at www.stjuderesearch.org/data.

Strangeness Minimisation Feature Selection (SMFS) is a new feature selection
method proposed in this paper. The effectiveness of these two new linear strange-
ness measures is tested on the two microarray datasets and compared with other
feature selection techniques, such as using the SNR filter. SVM is used as the
linear classifier without kernels. Both test accuracy and and efficiency which is
the ratio of certain predictions are measured. For predictions to be useful, the
large majority of region predictions need to be certain.

Table 1. Dataset A: On-line CM with different feature selection methods

Feature selection method Accuracy Efficiency
None 1 0.018
SNR 0.976 0.607

ANOVA 0.988 0.702
SAM 1 0.750
SMFS 1 0.738

The NC strangeness measure given in Equation (7) for SMFS was applied to
Dataset A classifying for subtypes ALL or AML. The online setting was used
to determine the effectiveness of classification over the time. CM was run with-
out feature selection and then with SMFS taking the top t = 40 features. Both
were run in the online setting with a confidence level of 95%. SMFS was also
contrasted with several established feature selection techniques for microarray
analysis: the SNR filter, analysis of variance (ANOVA) as available in the Gene-
Spring 5.0.3 and the more sophisticated Significance Analysis of Microarrays
(SAM) for reducing the false discovery rate [9]. The top t = 40 genes were cho-
sen for each method and a 95% confidence level was set. Table 1 shows results at
the last trial. SMFS gives clearly better results than SNR, in terms of less errors
and uncertain predictions, is slightly better than ANOVA and is comparable
with SAM. Both ANOVA and SAM were run on the entire data set prior to
classification so we might expect some selection bias with these experiments [1].

CM was run with the linear classifier strangeness measure define in Equation
(9), based on SVM. The same algorithm was applied to Dataset B using 10
cross validation. Since the linear classifier SVM is binary classifier, the binary
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Table 2. Dataset B: Off-line CM results

Confidence level
97.5% 95% 90%

Method Accuracy Efficiency Accuracy Efficiency Accuracy Efficiency
SVM

No FS 0.989 0.034 0.966 0.065 0.939 0.160
SNR 0.989 0.496 0.977 0.710 0.973 0.966
SMFS 0.989 0.996 0.989 1 0.989 1

NC
SMFS 0.992 0.992 0.992 0.992 0.992 0.992

classification task of discriminating between subtypes ALL and AML was un-
dertaken. It is contrasted with applying CM without feature selection and with
using the SNR filter feature selection, instead of SMFS. Results are shown in
Table 2 for different confidence levels. This shows that using SMFS yields the
best performance in terms of accuracy and efficiency and CM is well-calibrated
in all cases. The results for CM based on the NC strangeness measure are also
shown for 10 cross validation. Both NC and SVM perform well with NC giving
slightly higher accuracy but less efficiency. Standardisation was applied as a pre-
processing step prior to classification using the SVM linear classifier strangeness
measure [4].

5 Conclusions

Feature selection is important for successful microarray classification. We have
described the recently developed feature selection method, namely strangeness
minimisation feature selection, designed for confidence machines. Our experi-
ments demonstrate that SMFS works well.
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