
Modeling the Railway Control Domain
Rigorously with a UML 2.0 Profile

Kirsten Berkenkötter and Ulrich Hannemann

University of Bremen,
P.O. Box 330 440

28334 Bremen, Germany
{kirsten, ulrichh}@informatik.uni-bremen.de

Abstract. We introduce the Railway Control Systems Domain (RCSD)
profile of the Unified Modeling Language UML 2.0 as a domain specific
modeling language for railway and tramway control systems. The RCSD
profile covers the segments of the rail network, sensors, and control ele-
ments like signals and switches. Using these terms of the railway domain,
it facilitates the communication between domain experts and special-
ists for embedded control system development. Defined as a profile for
UML 2.0, the development of precise RCSD descriptions is supported
by standard UML tools, visualizing railway networks in the same way as
domain experts are used to. The static description of networks is comple-
mented by the characterization of the dynamics within the network with
trains running on predefined routes. This behaviour is provided by the
semantics of a state transition system derived from the object diagram of
a particular network model. This rigorous semantic approach constitutes
a prerequisite for further tool-supported analysis of safety requirements,
and generation of the actual control system.

1 Introduction

With the present paper we contribute to the model driven development process of
railway control systems. With emphasis on a modeling language and its formal
semantics, we support the foundation of the widely automated generation of
controller components in the railway domain. As we provide a means to capture
the requirements of these control components thoroughly and unambiguously,
the focus within the development process shifts towards the modeling phase, i.e.
the formalization of the application users’ view onto the system.

We demonstrate our approach of utilizing a UML 2.0 profile as a domain
specific language for a problem in the railway control system domain. The domain
of control – also called physical model – consists of a railway network composed of
track segments, points, signals, and sensors. Trains enter the domain of control at
distinguished entry segments and request to take pre-defined routes through the
network. Detection of trains is possible only via sensor observations. A controller
monitors state changes within the network, derives train locations, and governs
signals and points to enable the correct passage of trains through the network.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 398–411, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 399

With all activities, the controller must ensure that no hazardous situation arises,
formulated by requiring compliance with a specific set of safety conditions.

The railway control domain is a perfect candidate to apply a domain specific
language as it contains a rather limited amount of different entities. The special-
ized objects involved may exhibit only a limited variation of behavior, and the high
safety requirements already established in the railwaydomainhave resulted in a de-
cent formalization of component descriptions. Part of the challenge of formulating
a domain theory of railways [Rai] lies in the long history of the domain where do-
main experts gathered a respectable amount of knowledge which is hard to contain
in a computing science formalism. Thus, an approach to deal with critical railway
control applications has to carefully connect the expertise in railway engineering
with the development techniques of safety critical software.

Among the various proposed solutions, we observe a number of characteristics
that we deem desirable: (1) The UniSpec language within the EURIS method
[FKvV98] provides a domain specific language with graphical elements to reflect
the topology of a railway network. (2) In order to support the development pro-
cess with standard tools the wide-spectrum Unified Modeling Language UML
[RJB04] is used in the SafeUML project [Hun06] which specifically aims at gen-
erating code conforming to safety standards. The use of UML is restricted here
by guidelines to ensure maintenance of safety requirements which still allow suf-
ficiently expressiveness for the modeling process. (3) In [PBH00, HP02, HP03a]
the domain analysis concentrates on the relevant issues for formal treatment of
the control problem using a presentation form of tables and lists as foundation
for a formal model.

Based on these experiences, we propose to use the profile mechanism for
UML 2.0 [OMG04, OMG05b] to create a domain-specific description formal-
ism for requirements modeling in the railway control systems domain (RCSD).
This approach allows us to use a graphical representation of the domain elements
with domain specific icons in order to facilitate the communication between do-
main experts and specialists for embedded control systems development. As the
profile mechanism is part of the UML standard, the wide-spread variety of exist-
ing tools can be adapted within the very spirit of the UML using UML-inherent
concepts. Since a profile allows to introduce new semantics for the elements of
the profile we can attach a rigorous mathematical model to the descriptions of
the domain model. Timed state transition system semantics form the base for
formal transformations towards code generation for the controller as well as for
the verification task that guarantees conformance to the safety requirements.
Consequently, the RCSD profile [BHP] constitutes the first and founding step
in a development process for the automatic generation and verification of con-
trollers derived from a domain model as outlined in [HP03a, HPG+04].

The next section gives a brief introduction to the railway control domain
terminology as background for the development of a profile. Section 3 explains
first the basic concepts and techniques for the construction of a UML 2.0 pro-
file, followed by selected examples of the RCSD profile. An example in Section
4 demonstrates the successful connection between the typical domain notation

400 K. Berkenkötter and U. Hannemann

and the conceptual view of the profile. In Section 5, we sketch the underlying
mathematical model induced by a RCSD description of the physical model and
give an overview on the development of the associated controller. We also indi-
cated how this semantic model can be used for tool-supported verification and
code generation.

2 Elements of the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain
and their properties as e.g. described in [Pac02]. We focus on the modeling of
main tracks. All elements that are not allowed on main tracks as e.g. track locks
are discarded. The further elements are divided into track elements, sensors,
signals, automatic train runnings, and routes. Elements in the domain that come
in different but similar shapes like signals are modeled as one element with
different characteristics. In this way, we can abstract the railway domain to
eight main modeling elements. These are described in the following:

end1

end2

Fig. 1. Segment

end3

end2

end1

end4

Fig. 2. Crossing

end3

end4

end1

end2

Fig. 3. Interlaced segments

Track Elements. The track network consists of segments, crossings, and points.
Segments are rails with two ends (see Fig. 1), while crossings consist of either two
crossing segments or two interlaced segments (see Fig. 2 and Fig. 3). In general,
the number of trains on a crossing is restricted to one to ensure safety. Points
allow a changeover from one segment to another one. We use single points with
a stem and a branch (see Fig. 4). There is no explicit model element for double
points, as these are seldom used in practice. If needed, they can be modeled by
two single points. Single slip points and double slip points are crossings with
one, respectively two, changeover possibilities from one of the crossing segments
to the other one (see Fig. 5 and Fig. 6). All points have in common that the
number of trains at each point in time is restricted to one.

end3end2

end1

Fig. 4. Single point

end3

end2

end1

end4

Fig. 5. Single slip point

end1

end4

end3

end2

Fig. 6. Double slip point

Sensors. Sensors are used to identify the position of trains on the track network,
i.e. the current track element. To achieve this goal, track elements have entry and

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 401

exit sensors located at each end. The number of sensors depends on the allowed
driving directions, i.e. the uni- or bidirectional usage of the track element. Each
sensor is the exit sensor of one track element and the entry sensor of the following
one. If the track elements can be used bidirectionally, another sensor is needed
that works vice versa.

Signals. Signals come in various ways. In general, they indicate if a train may
go or if it has to stop. The permission to go may be constrained, e.g. by speed
limits or by obligatory directions in case of points. As it is significant to know if
a train moves according to signaling, signals are always located at sensors.

Automatic Train Running. Automatic train running systems are used to enforce
braking of trains, usually in safety-critical situations. The brake enforcement
may be permanent or controlled, i.e. it can be switched on and off. Automatic
train running systems are also located at sensors.

Route Definition. As sensors are used as connection between track elements,
routes of a track network are defined by sequences of sensors. They can be
entered if the required signal setting of the first signal of the route is set. This
can only be done if all points are in the correct position needed for this route.
Conflicting routes cannot be released at the same time. Some conflicts occur as
the required point positions or signal settings are incompatible. Another problem
are routes that cross and are potentially safety-critical.

3 The UML 2.0 RCSD Profile

The next step is tailoring the UML 2.0 to the railway domain to provide the pre-
viously identified elements of the domain. There are two approaches to achieve
this goal. The first one is using the UML 2.0 profile mechanism described in
[OMG04] and [OMG05b] that allows for: (1) introducing new terminology, (2) in-
troducing new syntax/notation, (3) introducing new constraints, (4) introduc-
ing new semantics, and (5) introducing further information like transformation
rules.

Changing the existing metamodel itself e.g. by introducing semantics contrary
to the existing ones or removing elements is not allowed. Consequently, each
model that uses profiles is a valid UML model. The second approach is adapting
the UML 2.0 metamodel to the needs of the railway domain by using MOF 2.0
(see [OMG06]). This approach offers more possibilities as elements can be added
to or removed from the metamodel, syntax can be changed, etc. In fact, a new
metamodel is created that is based on UML but is not UML anymore.

We have chosen the first approach - defining a UML 2.0 profile - as this sup-
ports exactly the features we need: the elements of the railway domain are new
terminology that we want to use as modeling elements. To simplify communi-
cation between domain specialists and system developers, the usual notation
of the railway domain should be used in a defined way. Therefore, constraints
are needed to determine the meaning of the new elements. Track networks de-
scribed with the new profile are transfered to transition systems. This is done

402 K. Berkenkötter and U. Hannemann

by transformation rules. Also, we have valid UML models and therefore various
tool support.

A UML 2.0 profile mainly consists of stereotypes, i.e. extensions of already
existing UML modeling elements. You have to choose which element should be
extended and define the add-ons. The RCSD profile uses either Class, Associa-
tion, or InstanceSpecification as basis of stereotypes. In addition, new primitive
datatypes and enumerations can be defined as necessary.

<<metaclass>>
Class

0..1

0..1

0..1

0..1 <<stereotype>>
AutomaticRunning

Signal

<<stereotype>>

<<stereotype>>

<<stereotype>>

TrackElement

Sensor

<<stereotype>>

<<stereotype>>

<<stereotype>>

Segment

Crossing

Point

<<enumeration>>
SensorStateKind RouteKind
LOW

FAILURE
HIGH

STRAIGHT
LEFT

LEFT STOP

FAILURE
RIGHT FAILURE

<<enumeration>>
SignalStateKind
<<enumeration>>

PointStateKind
STRAIGHT GO

<<enumeration>><<enumeration>> <<enumeration>>
PermissionKind AutoRunKind

GO ON

RIGHT FAILURE
STOP OFF

<<stereotype>>
SinglePoint

<<stereotype>>
SlipPoint

Fig. 7. Network elements part of the RCSD profile

Unfortunately, defining eight stereotypes as suggested by the domain analysis
in Sec. 2 is not sufficient. New primitive datatypes and enumerations are needed
to model attributes adequately. Special kinds of association are needed to model
interrelationships between stereotypes. Furthermore, UML supports two mod-
eling layers, i.e. the model layer itself (class diagrams) and the instances layer
(e.g. object diagrams). In the RCSD profile, both layers are needed: class dia-
grams are used to model specific parts of the railway domain, e.g. tramways or
railroad models. They consist of the same components but with different charac-
teristics. Second, object diagrams show explicit track layouts for such a model.
Here, the symbols of the railway domain have to be used. We need stereotypes
on the object level to define these features. For these reasons, the RCSD profile
is structured in six parts: the definition of primitive datatypes, network ele-
ments on class level, associations between these elements, network elements and
associations on object level, routes, and top-level constraints.

Defining new primitive types is the easiest part. New datatypes must be iden-
tified and their range of values specified. In our case, these are identifiers for all
controllable elements, identifiers for routes (e.g. to specify conflicting ones), time

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 403

<<metaclass>>
Association

AutoRunAssociation

<<stereotype>>

<<stereotype>>

<<stereotype>>

SignalAssociation

SensorAssociation

0..1

0..1

0..1

Fig. 8. Associations part of the
RCSD profile

<<stereotype>>

<<stereotype>>

0..1

0..1 0..1

0..1

0..1

AutomaticRunningInstance SensorInstance

<<stereotype>>

<<stereotype>> <<stereotype>>

<<stereotype>>

<<stereotype>>

SegmentInstance

CrossingInstance

SinglePointInstance

SlipPointInstance

SignalInstance

0..1

0..1

0..1

0..1

0..1

<<stereotype>>
SignalLink

<<stereotype>>
SensorLink

<<stereotype>>
AutoRunLink

<<metaclass>>

InstanceSpecification

Fig. 9. Instances of network elements and as-
sociations part of the RCSD profile

instants and durations. All of them have in common that the value domain is
N. Nevertheless, defining different datatypes is important as we have to consider
constraints like: all signal identifiers are unique, all point identifiers are unique
and so on.

The next part of the profile defines all track network elements, i.e. segments,
crossing, points, signals, sensors, and automatic train runnings (see Fig. 7). Seg-
ment, Crossing, and Point have in common that they form the track network
itself, therefore they are all subclasses of the abstract TrackElement. Similarly,
SinglePoint and SlipPoint are specializations of Point. All elements are equipped
with a set of constraints that define which properties each element must support
and how it is related to other elements.

To give an example, each TrackElement has at least two ends that are con-
nected to at most two Sensors, one entry sensor and one exit sensor. The number
of sensors depends on the function of the track element, i.e. if it is used uni- or
bidirectionally or if it is a sink or source of the track network. As properties,
the maximal number of trains allowed on the element at one point in time and -
optional - fixed speed limits are needed. These features are defined by OCL 2.0
(see [OMG05a]) constraints that each TrackElement in a model must fulfill.

(ownedAttribute->one(a1 |
a1.name=’limit’ and
a1.oclIsTypeOf(Integer) and
a1.upperBound()=1 and
a1.lowerBound()≥0 and
a1.isReadOnly=true)) or

(not ownedAttribute->exists(a2 |
a2.name=’limit’))

(ownedAttribute->one(a1 |
a1.name=’e1Entry’ and
a1.oclIsTypeOf(Sensor) and
a1.upperBound()=1 and
a1.lowerBound()≥0 and
a1.isReadOnly=true and
a1.association.oclIsTypeOf

(SensorAssociation))) or
(not ownedAttribute->exists(a2 |

a2.name=’e1Entry’))

404 K. Berkenkötter and U. Hannemann

We can see above two example constraints. The first one describes that each
track element has an optional attribute limit. If this attribute exists, its type is
Integer, its multiplicity is 0..1 or 1, and its value is constant. Else, no attribute
at all with this name exists to avoid confusion. The second example describes
an attribute that will be modeled by an association in a class diagram. Each
association goes hand in hand with an attribute at each navigable end. In this
case, we have an optional association to a sensor where the associated property
is end1Entry. The type of the attribute is Sensor as this is the type at the other
end of the association which itself has the type SensorAssociation that is also
defined in the profile. Again, the attribute has a constant value and either 0..1
or 1 as multiplicity.

Sig2
Sig1

S2S1

Fig. 10. RCSD nota-
tion

:<<Segment>>Seg :<<Segment>>Seg

signal
sensor

sensor

e2exit

e1exite2entry
entry
exit entry

e1entry

signal

Sig1:<<Signal>>Sig

Sig2:<<Signal>>Sig

S1:<<Sensor>>Sens

S2:<<Sensor>>Sens

exit

Fig. 11. UML notation

Such constraints describe the appearance of each stereotype. To give another
example, Points have at least three ends with associated sensors and are not sinks
or sources of the track network. They also have more attributes, i.e. pointId, ac-
tualState, requestedState, requestTime and delta p. These are their identification
number as points are controllable, the actual state that is either STRAIGHT,
LEFT, RIGHT, or FAILURE, the requested state that is either STRAIGHT,
LEFT, or RIGHT, the time of the last request, and the duration needed to switch
the point after a request has been received. The possible values for the requested
and actual state of the point are defined by RouteKind and PointStateKind as
shown in Fig. 7. Other elements have similar required attributes and associations.
An example model is shown in Sec. 4.

As associations SensorAssociation that connect track elements and sensors,
SignalAssociations that connect signals and sensors, and AutoRunAssociations
that connect automatic train runnings and sensors are used as shown in Fig. 8.
Here, constraints are needed to determine the kind of stereotype at the ends of
each association. Most important, two constraints of SensorAssociation describe
that each sensor is the exit sensor of one track element and the entry sensor of
the following one. In that way, routes can be defined as sequences of sensors.

For each non-abstract modeling element and each association, there exists a
corresponding instance stereotype (see Fig. 9). Most important is the definition
of domain-specific notation. Of course, usual UML notation can be used but is

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 405

0..1

<<metaclass>>
Class

<<stereotype>>
Route

<<stereotype>>
RouteInstance

0..1
InstanceSpecification

<<metaclass>>

0..1

0..1

0..1

<<stereotype>>

<<stereotype>>

<<stereotype>>

SignalSetting

PointPosition

RouteConflict

RouteConflictKind
<<enumeration>>

noAllocation
stopSignal

Fig. 12. Route definition part of the RCSD profile

infeasible as we can see in the direct comparison. In Fig. 10, two bidirectional seg-
ments connected by two sensors S1 and S2 are shown. Signal Sig1 is associated
to S1, signal Sig2 is associated to S2. For comparison, the same constellation in
object notation is given in Fig. 11.

Furthermore, the profile defines routes and their instances. Each Route is
defined by an ordered sequence of sensors. Also, the signal setting for entering
the route is given. Other properties are ordered sets of required point positions
and of conflicts with other routes. The stereotypes to describe this information
are given in Fig. 12. Again, constraints are used for unambiguous and strict
definitions of attributes and suchlike.

The last part of the profile is a set of top-level constraints that describe
interrelationships between stereotypes. The first example states that all point
ids have to be unique. The second example describes that all sensors in route
definitions really exists:

SinglePointInstance::allInstances()->
collect(slots)->union

(SlipPointInstance::allInstances()->
collect(slots))->

select(s1 |
s1.definingFeature.name=’pointId’
or
s1.definingFeature.name=’pointIdOpp’)->

isUnique(s2 | s2.value)

def: r1:RouteInstance::allInstances()->
collect(slots)->

select(s2 |
s2.definingFeature=’routeDefinition’)

def: r2:SensorInstance::allInstances()->
collect(slots)->

select(s1 |
s1.definingFeature.name=’sensorId’)->

collect(value)

r1.forAll(s3 | r2->including(s3.value))

4 Modeling with the RCSD Profile

The stereotypes and data types defined in the profile are used in UML diagrams.
A class diagram is used to model a concrete problem in the railway domain, e.g.
trams. The concrete track networks are object diagrams related to the class
diagram.

406 K. Berkenkötter and U. Hannemann

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

TramCrossing
<<Crossing>>

<<Sensor>>
TramSensor

TramSegment
<<Segment>>

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

<<RouteConflict>>
Conflicts

routeId:RouteId {readOnly}
kind:RouteConflictKind {readOnly}

Signals
<<SignalSetting>>

sigState:SignalStateKind {readOnly}
signalId:SignalId {readOnly}

dirState:RouteKind[0..1] {readOnly}

Points
<<PointPosition>>

pointId:PointId {readOnly}
pointState:PointStateKind {readOnly}

TramRoute
<<Route>>

routeId:RouteId {readOnly}
routeDefinition:SensorId[0..*] {readOnly, ordered}

actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:Duration {readOnly}

signalId:SignalId {readOnly}

requestTime:TimeInstant

direction:RouteKind

<<Signal>>
TramSignal

{(e1entry−>size()=1 and e2entry−>size()=0 and e3entry−>size()=0
and e1exit−>size()=0 and e2exit−>size=1 and e3exit−>e()=1) or
(e1entry−>size()=0 and e2entry−>size()=1 and e3entry−>size()=1
and e1exit−>size=1 and e2exit−>size=0 and e3exit−>size=0)}

TramPoint
<<SinglePoint>>

pointId:PointId {readOnly}
plus:PointStateKind {readOnly}
minus:PointStateKind {ReadOnly}
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}
delta_p:Duration {readOnly}

e4exit

e3exit

1

entry

exit

exit

entry exit

e2exit
0..1

0..1

1

1

1

1

1

1

1

actualState:SensorStateKind
sentTime:TimeInstant
counter:Integer
delta_l:Duration {readOnly}
delta_tram:Duration {readOnly}

sensorId:SensorId {readOnly}

{xor} {xor}

entry

entry

entry

entry

e2exit

e2exit

e1exit

sensor

e3entry

e2entry

e3entry

e1entry

e1entry

e1entry

1

1

0..1

0..1

0..1

1

0..1

1

1

0..1

0..1

1

1

1

exit

exit

exit
1

pointPos{readOnly, ordered}routeConflict {readOnly, ordered}

signalSetting{readOnly}
1

signal 0..1

0..* 0..*

Fig. 13. Generic tram network

In our example, a tram track network is given in a class diagram as shown in
Fig. 13. The interrelationships between the different stereotypes from RCSD are
concretized for trams: there are no automatic running systems and no slip points,
all segments are used unidirectionally, and signals do not use speed limits. The
maximal number of trains allowed on each segment is 1. The network description
of a concrete tram track network to be controlled is an object diagram that is
based on the class diagram given above. An object diagram in RCSD profile
notation is shown in Fig. 14.

In Fig. 15, a fragment of the same track network is shown in usual UML
notation, i.e. an object diagram. Comparing the two figures, it is obvious that
the RCSD profile notation is more comprehensible and therefore preferable in
the communication process between domain experts and software designers.

5 Semantics

In this section we describe the behavior of the physical model – as captured in a
RCSD object diagram – as a Timed State Transition System (TSTS). We extend
this view by incorporating the behavior of a controller which has to guarantee
safety conditions for the running system. The operations of this controller are
given as generic patterns independent from the particular physical model. The
composition of the controller and the individual domain of control should then
allow only sequences of transitions which never violate a safety condition. Since

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 407

G24.3G20.3

W119

G22.3

W118

G20.8

W103

W101

G24.2

G30.1

G30.0

S21

S22

ROUTE 0:
S20−G21.1

G20.0
S20

G20.1

G20.2

G20.9

G21.0

G21.1

ROUTE 5:
S22−G21.1

S20−G25.1
ROUTE 1:

W102

ROUTE 2
S21−G23.1

G23.1

G23.0

G22.9

G29.9

G22.2

G22.1

G22.0

TRAM MAINTENANCE SITE

G25.0 G25.1G22.9

W100

ROUTE4: S22−G23.1

ROUTE 3: S21−G25.1

G24.1 G24.0

Fig. 14. Concrete tram network in profile notation

sensorId=202

G20.0:<<Sensor>>TramSensor

sensor

:<<Crossing>>TramCrossing

signal
sensorId=200

:<<Segment>>TramSegment

pointId=102 sensorId=203

W102:<<SinglePoint>>TramPoint

e1entry

e3exit e1entry
exit entry

:<<Segment>>TramSegment :<<Segment>>TramSegment

G23.1:<<Sensor>>TramSensor

S20:<<Signal>>TramSignal G23.0:<<Sensor>>TramSensor

sensorId=299

:<<SinglePoint>>TramPoint

sensorId=231

signalId=20 sensorId=230

entrypointId=119

:<<Segment>>TramSegment

G20.1:<<Sensor>>TramSensor

sensorId=201 sensorId=229

G20.3:<<Sensor>>TramSensor

exit

G20.2:<<Sensor>>TramSensor

G22.9:<<Sensor>>TramSensor

G29.9:<<Sensor>>TramSensor

e2exit

e4exite1entry

e2exit

e1entry e1exit

e2exit e3entry

e2entrye2exit

e2exit

e1entry

exit entry

exit entry

exit entry

entry

entry exit

exit

e1entry

entry exit

Fig. 15. Fragment of a concrete tram network in usual UML notation

we give a strict mathematical model of this composition, it can be proven by
bounded model checking techniques.

As listed in Section 2, a physical rail network consists of a set of segments, a
set of signals, and a set of sensors. Among the segments, the set of points and
the set of crossings are of special interest for the formulation of safety condi-
tions. Each element e in one of these sets owns some attributes according to the

408 K. Berkenkötter and U. Hannemann

profile definition, which we will denote by var(e). Since we require that com-
ponents fulfill some real-time restrictions, we use a distinguished variable t ∈ N

to denote the actual time. The set of variables of a network is thus given by
V AR =

⋃
e var(e) ∪ {t}, the union of the variables of all elements and t. As

customary, a state σ ∈ Σ : V AR �→ V AL is a type-consistent mapping from
variables to values. A physical network thus induces a timed state transition
system (Σ, σ0, T) with T ⊆ Σ × Σ a set of transitions, and σ0 ∈ Σ an initial
state, where all variables are given some default value. A transition t = (σ, σ′)
will also be denoted by σ → σ′. The state change of variables x̄ to values v̄ from
σ to σ′ is expressed by σ′ = (σ : x̄ �→ v̄)1.

The network description with its track segments and control elements exhibits
some behavior for the following reasons: (1) Change of a sensor status due to a
train passing. (2) Change of a component state according to its normal individual
behavior, e.g. setting the state of a signal to the requested state (3) Changes due
to decisions of the control component. We give some examples for the first two
groups of state changes, an extended selection with in-depth explanations is
listed in [HPG+04].

As trains themselves do not belong to the model, their presence is only noted
via sensors, which change their actualState to HIGH and record this in their
attributes sentT ime and counter. An example transition σ → σ′ for a sensor sen
would be enabled if σ(sen.actualState) = LOW ∧ σ(t) > σ(sen.sentT ime) +
sen.delta tram, i.e., if at least sen.delta tram time units have passed since the
last detection, modeling a mandatory minimal distance between trains to ensure
individual detection. The resulting state is then σ′ = (σ : sen.actualState,
sen.sentT ime, sen.counter �→ HIGH, t, σ(sen.counter) + 1).

Typical transitions associated with some point p which represent its in-
tended behavior are: (1) Change its actualState to meet a request. This
is formalized by a rule σ → σ′ requiring condition σ(p.requestState) �=
σ(p.actualState) ∧ σ(p.requestT ime) + σ(p.delta p) ≤ σ(t), changing the state
to σ′ = (σ : p.actualState �→ σ(p.requestState)).(2) Fail to comply to a
request in time. This is formalized by a rule σ → σ′ requiring condition
σ(p.requestState) �= σ(p.actualState)∧σ(p.requestT ime)+σ(p.delta p) > σ(t),
changing the state to σ′ = (σ : p.actualState �→ FAILURE). Similar transi-
tions exist for signals. Additionally, we have a clock rule, which allows time to
proceed, expressed by a transition σ → σ′ with σ′ = (σ : t �→ σ(t) + 1).

Note that all transitions of the domain model have their effects restricted to
the variables of one object, allowing to model the network in a compositional
fashion as parallel composition of its constituents as illustrated in [HP03b]. Yet,
all changes of the physical network, i.e. point positions, signal positions, and
sensor states are covered by these transitions only.

The controller observes sensor state changes, deriving the current train loca-
tions within the network from them. Trains may issue requests to pass through
the network on pre-defined routes. The controller issues commands to switch

1 For brevity, we use a simultaneous assignment notation here which coincides with a
reasonable granularity of operations which should be uninterruptible.

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 409

signal and point states and monitors the correct state of these track elements.
The architectural model of the controller consists of three components [HP02]:
(1) a route dispatcher which registers the requests of individual trains for specific
routes and administers the allocation of these routes, (2) a route controller re-
sponsible for setting points and signals for active routes, and (3) a safety monitor
checking for deviations of the actual from the expected state and subsequently
ensuring a safe state.

These separated tasks of the controller are executed by sets of transition pat-
terns, i.e. generic transitions which abstract from the concrete physical model.
As an example, we have for each route r a transition for the route dispatcher
component which checks whether r is requested, r is not yet scheduled for acti-
vation, and no conflicting routes are active or scheduled.

The state space Σ′ of the controller is an extension of the state space Σ of the
domain model as additional variables are needed, e.g. for the administration of
routes some data structure is needed to store the current state of a route reser-
vation. The controller model together with the domain model (Σ, σ0, T) induces
a TSTS (Σ′, σ′

0, T
′) where σ′

0 is the extension of σ0 by assigning appropriate
initial values to the additional variables of Σ′. The set of transitions T ′ contains
the set T and the set of transitions generated from the controller model and
the domain data. As demonstrated in [HPG+04], the concrete transitions are
derived by instantiating the generic rules according to the physical layout of the
network and the route definitions.

In an independent derivation, we formulate a set of safety conditions out of
the physical model. These safety requirements are informally listed as: (1) No
trains are driving in opposite directions on the same segment. (2) No trains are
moving in opposite direction towards the same sensor. (3) The number of trains
approaching a point from stem and branches at the same time is at most 1.
(4) On each segment the number of trains passing in one direction is less than a
predefined maximum. (5) There are no trains residing simultaneously on cross-
ings. Observe that these requirements are formulated generically in terms of
track elements only and that each condition involves only a very limited part of
the network. Within the physical model, these requirements are instantiated to
a set of constraints. As an example from Fig. 14, we take a closer look on the
crossing between sensors G20.3 and G30.0, and respectively, between G29.9 and
G22.9. Clearly, requirement (5) has to be satisfied for this track element. The
fact that a train is present in a segment, can be deduced from a comparison of
the counters of its entry and exit sensors: Assuming the default settings that no
train is present in a segment and both sensors have the same value of their re-
spective counter attribute, the predicate σ(G20.3.counter) > σ(G30.0.counter)
models the fact that at least one train is still located between the sensors G20.3
and G30.0. Consequently, requirement (5) can be formalized for this instance
of a crossing as ¬(σ(G20.3.counter) > σ(G30.0.counter) ∧ σ(G29.9.counter) >
σ(G22.9.counter)).

For a given network, we can thus automatically derive a TSTS as model
which exhibits the behavior of this network under supervision of the controller

410 K. Berkenkötter and U. Hannemann

and a set of constraints which have to hold throughout all executions within
our model. Analyzing whether a violation of safety requirements is possible
amounts to a check whether some state is reachable that does not satisfy all
constraints.

While we present a rather abstract mathematical model here, it is an easy task
to come up with an equivalent model which encodes all transitions as guarded
commands. Representation of timed state transition systems in a special pro-
gramming language suited for further analysis then boils down to encode states
and transitions into this language. This has been worked out in [HPG+04] for
SystemC [GLMS02, MRR03], as input language for a proof by bounded model-
checking that the safety requirements are satisfied. The SystemC code can be
compiled into C/C++ code, leading to the generation of executable code for the
controller. In a similar fashion, it is even possible to take the generated machine
code and verify its correctness w.r.t. the requirements on the domain model by
comparing the TSTS model of the network/controller model to a TSTS model
of the machine code. This comparison is feasible, as the abstraction function
from the data structures of the machine code to the data model of the domain
description is total, and for all transition patterns of the above model a correct
refinement in machine code exists.

6 Conclusions

We have presented the RCSD profile for UML 2.0 as suitable formalism to cap-
ture the domain specific requirements of the railway control systems domain. In
particular, the feature to use a domain specific graphical notation for the do-
main description helps to bridge the gap between domain experts and developers
of controller systems. As any model denoted in the RCSD profile formalism is
still a UML model, standard tools which support the profile mechanisms can be
used in the development process. Existing UML tools support the analysis of
RCSD models as textual representations of a model serve as input for the gen-
eration of the TSTS model or the SystemC model. Another example would be
the application of graph transformations to the RCSD object instance diagram
for simulation purposes [GZ04].

We associate a formal behavioral model with RCSD descriptions as any object
diagram induces a timed state transition system, which covers the behavior of
the domain of control. Together with the utilization of design patterns for the
controller component, we generate a model which serves as foundation for the
formal verification of this model w.r.t. a set of safety requirements. In addition,
the TSTS model serves as reference for the verification of executable code for
the controller. A major advantage of using the transition system model as the
semantical model of a RCSD description lies in the fact that various concrete
programming languages as well as other formal specification languages can use
the transition system model as reference.

Modeling the Railway Control Domain Rigorously with a UML 2.0 Profile 411

References

[BHP] K. Berkenkötter, U. Hannemann, and J. Peleska. The Railway Control Sys-
tem Domain. Draft, http://www.informatik.uni-bremen.de/ agbs/research/
RCSD/.

[FKvV98] W. J. Fokkink, G. P. Kolk, and S. F. M. van Vlijmen. EURIS, a specification
method for distributed interlockings. In Proceedings of SAFECOMP ’98,
LNCS, volume 1516, pp. 296–305. Springer-Verlag, 1998.

[GLMS02] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[GZ04] M. Gogolla and P. Ziemann. Checking BART Test Scenarios with UML’s
Object Constraint Language. Formal Methods for Embedded Distributed
Systems - How to master the complexity. F. Kordon, M. Lemoine (Eds.),
Kluwer, Boston. pp. 133-170, 2004.

[HP02] A.E. Haxthausen and J. Peleska. A Domain Specific Language for Railway
Control Systems. In Proceedings of the Sixth Biennial World Conference on
Integrated Design and Process Technology, (IDPT2002), Pasadena, Califor-
nia, June 23-28 2002.

[HP03a] A. E. Haxthausen and J. Peleska. Automatic Verification, Validation and
Test for Railway Control Systems based on Domain-Specific Descriptions.
In Proceedings of the 10th IFAC Symposium on Control in Transportation
Systems. Elsevier Science Ltd, Oxford, 2003.

[HP03b] A. E. Haxthausen and J. Peleska. Generation of Executable Railway Con-
trol Components from Domain-Specific Descriptions. In Proceedings of the
Symposium on Formal Methods for Railway Operation and Control Systems
(FORMS’2003), Budapest/Hungary, pp. 83–90. May 15-16 2003.

[HPG+04] A.E. Haxthausen, J. Peleska, D. Große and R. Drechsler. Automated
Verification for Train Control Systems. Proceedings of Symposium
FORMS/FORMAT 2004, Braunschweig, Germany, 2nd and 3rd Dec. 2004.

[Hun06] H. Hungar. UML-basierte Entwicklung sicherheitskritische Systeme im
bahnbereich. In Dagstuhl Workshop MBEES - Modellbasierte Entwicklung
eingebetteter Systeme, Informatik Bericht, pp. 63–64, TU Braunschweig, Jan
2006.

[MRR03] W. Müller, J. Ruf, and W. Rosenstiel. SystemC – Methodologies and Ap-
plications, chapter 4, pp. 97–126. Kluwer Academic Publishers, 2003.

[OMG04] Object Management Group. Unified Modeling Language (UML) Specifi-
cation: Infrastructure, version 2.0. http://www.omg.org/docs/ptc/04-10-
14.pdf, October 2004.

[OMG05a] Object Management Group. OCL 2.0 Specification, version 2.0.
http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

[OMG05b] Object Management Group. Unified Modeling Language: Superstructure,
version 2.0. http://www.omg.org/docs/formal/05-07-04.pdf, July 2005.

[OMG06] Object Management Group. Meta Object Facility (MOF) 2.0 Core Speci-
fication. http://www.omg.org/docs/formal/06-01-01.pdf, January 2006.

[Pac02] Joern Pachl. Railway Operation and Control. VTD Rail Publishing, Mount-
lake Terrace (USA), 2002. ISBN 0-9719915-1-0.

[PBH00] J. Peleska, A. Baer, and A. E. Haxthausen. Towards Domain-Specific For-
mal Specification Languages for Railway Control Systems. In Proceedings
of the 9th IFAC Symposium on Control in Transportation Systems 2000,
June 13-15, 2000, Braunschweig, Germany, pp. 147–152, 2000.

[Rai] A grand challenge for computing science: Towards a domain theory of rail-
ways. http://www.railwaydomain.org.

[RJB04] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
– Reference Manual, 2nd edition. Addison-Wesley, July 2004.

	Introduction
	Elements of the Railway Domain
	The UML 2.0 RCSD Profile
	Modeling with the RCSD Profile
	Semantics
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

