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Abstract. The increase of complexity in aircraft systems demands for
enhanced analysis techniques. Methods are required that leverage the
burden of their application by reusing existing design and process infor-
mation and by enforcing the reusability of analyses results allowing early
identification of design’s weak points and check of design alternatives.
This report elaborates on a method that assumes a system specification
in an industrial standard notation and allows to perform several formal
safety analyses. Based on a collection of failure models and means of
specifying safety requirements, the techniques produce results along the
lines of traditional methods.

We show how to combine traditional techniques, required by the Aero-
space Recommended Practice (SAE-ARP) standards, like Fault Tree Anal-
ysis, Failure Mode and Effect Analysis and Common Cause Analysis and
also how to automate most of the analysis activities.

The methods described in this paper can be used as means to support
the Certification process.

1 Introduction

As avionic systems are getting more complex, it becomes increasingly difficult to
perform safety assessment activities required by Aerospace Recommended Prac-
tice standards. In particular, the need of having considered all safety-related
aspects on a high level of confidence demands for a more systematic and auto-
matic way for performing safety analyses. To address these problems, we present
an integrated model-based safety assessment framework, which automates ARP
4761 safety assessment techniques such as Fault Tree Analysis (FTA), Failure
Modes and Effects Analysis (FMEA) and Common Cause Analysis (CCA). The
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framework uses a sound formal approach by employing formal methods to as-
sess the safety of system models implemented in industrial modelling tools such
as Statemate [I] or Simulink [2]. We will show the approach to be more com-
prehensive in respect to the traditional approach since it allows to consider
the full temporal properties of the system, for example allowing safety-critical
events to be specified by temporal patterns stating that events need to occur
in a particular order to be safety-relevant. The underlying analysis techniques
elaborate on these specifications and allow, for instance, to identify and relate
failure causes and consequences even if they happen at different time instances
with several system interactions between them. The possibility to automatically
generate results which are easily update-able when the system model changes
allows to quickly verify possible design alternatives. This approach can be ap-
plied since the first system development phases, therefore identifying potential
weak design points with timeliness avoiding later and costly design changes.
By applying some of the developed techniques to a given case study we will
moreover show that we achieve results beyond those that can be achieved by
classical verification techniques [3/4] like model-checking, yet having the same
degree of accuracy. The two main enablers for these are, first, a failure injection
(c.f. section B2)) that essentially allows to maintain nominal and dysfunctional
system behaviour within one model and, second, the corresponding analysis al-
gorithms (c.f. sections B:3H3.0]). The latter allow to reduce the number of verifica-
tion runs by a factor that (e.g. in the case of FTA) is exponential in the number of
failures.

Typical questions that will be answered by the techniques presented are “Is
it possible to violate a certain safety requirement?”, “Which failures and failure
combinations need to occur to violate the safety requirement and which addi-
tional timing constraints are necessary?”’, “Is it possible for a fault to occur
undetected?”, “Will a list of impacted items violate independence assumptions
underlying a system design?”, “Is it possible to continue a flight in a failed con-
figuration?”, “Will an erroneous flight procedure lead to a safety requirement
violation?”. In the following it is shown how such questions can be answered
by performing several analyses on the braking system of an aircraft. All analy-
ses were carried out with STSA, a Statemate [I] Plug-in for supporting safety
assessment actions. The paper is structured as follows: Section 2] explains the
model of a braking system to be used as an example throughout the follow-
ing sections. Section B] shows how to apply several traditional and new safety
analysis methods on the braking system model. Section [ discusses related work
and section [f] concludes with the indication of future work.

2 Braking System Example

We illustrate our approach by applying it to the model of the wheel brake system
as described in appendix L of ARP 4761 [5]. The example was chosen due to
the fact that the systems description is relatively concise while retaining a lot
of interesting features w.r.t. to safety analysis. Since it is featured in the ARP,
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it should be well known to safety engineers. Incidentally, [4] uses the same ex-
ample (albeit modelled in Simulink rather than Statemate), which gives us the
opportunity to directly compare their results with ours. A detailed description
of the Statemate model can be found in [6].

The braking system, whose architecture is depicted in figure [, controls the
amount of hydraulic power applied to the brake pistons installed at the main
landing gears. Hydraulic power is supplied via two independent hydraulic lines,
the normal and the alternate line. The normal line is powered by the green hy-
draulic pump, the alternate line by the blue one. Additionally, the blue pump
is backed up by an accumulator. Thus, the system distinguishes three opera-
tional modes, normal (powered by the green pump), alternate (blue) and emer-
gency (accumulator). In normal mode, the valves regulating the flow of the
hydraulic pressure are completely controlled by the BSCU (Braking System
Control Unit), a computer which computes braking and anti-skid commands.
In alternate mode, the BSCU provides anti-skid commands, as long as it is
working. The normal braking commands are directly taken from the mechan-
ical position of the brake pedals. In emergency mode, anti-skid is disabled

completely.

The BSCU itself consists of por Pl —
two redundant command units LT L Geen L5
and two monitoring units which Monior Monitor2 S o E%L]m
supervise their respective com- g A
mand units. A switch is used to I 2
select the active command unit P e [ ' =
based on the output of the first
monitor. When the monitor sig-  |o®[ [as| lgs A
nals a failure in the first com- l s ]
mand unit, the switch selects the v At S E Vale Mehpedl o
second onel] When both moni- e

tors signal failure of their respec-
tive command units, the shutoff Fig. 1. Architecture of the wheel braking system
signal is issued.

The shutoff signal closes the
“Shut Off Selector Valve”, which inhibits the green pressure from reaching the
“Selector Valve”. The Selector Valve engages the alternate mode as soon as the
green pressure is not available (which can be caused by the described BSCU
shutoff or the failure of the green pump). Also, switching between modes can be
commanded manually by the pilot.

The presented Statemate model of the braking system is largely a direct for-
malisation of the model described in the ARP [5]. The main differences are the
missing autobrake mode in our model and the restriction to one braking pedal.
However, these differences are irrelevant w.r.t. the analyses carried out in the
later sections.

! Note that our model uses an invalid signal, while the original ARP model uses a
valid signal. However, this is equivalent on the model level.
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3 A Stepwise Approach to Safety Analysis

Before we start looking at possible failures, causes, and impacts, we assume that
the model is free of design errors. The validation of this assumption will be done
with available verification tools [3]. For the braking system this is outlined in
section 3.1l Having passed this check we extend the nominal behaviour by failure
behaviour as shown in section[3.21 After this we pass to more traditional methods
used in safety assessment. All of them are applied on the extended model ensur-
ing consistent results. In section we are looking for a complete set of causes
for a given failure by performing a fault tree analysis (FTA) and a refinement of
this analysis allowing the simulation of identified cut-sets. Looking in the other
direction, i.e. by investigating failure impacts, we will perform a Failure Mode
and Effect Analysis (FMEA) in section B4l After this we “jump” over system
boundaries and look at causes that arise external to the system. In particular,
we will investigate, how to identify common causes that lead to a violation of
failure independencies. In section we show how to perform the necessary
Common Cause Analysis (CCA) and how to incorporate the results in the FTA
of section The final aspects we will consider are “dynamic safety require-
ments”, i.e. requirements that change over the time of the system’s operation.
Such requirements occur in Mission and Reliability Analyses (MRA) and will be
investigated in section

3.1 Nominal Correctness

The goal in the model-based safety-analysis is to show that all safety require-
ments hold in the nominal case and the probability for all scenarios containing
failures that violate it is within acceptable limits. As an example throughout
this text we will use the following safety requirement from ARP 4761:

Loss of all wheel braking during landing or Rejected Take Off (RTO)
shall be less than 5-10~7 per flight.

Since we are performing a qualitative rather than a quantitative analysis we do
not compute the probability itself. Rather we determine the failure combinations
qualitatively that contribute to this probability. So we rephrase the requirement
and ask for:

Loss of all wheel braking shall not occur.

Having a formalisation of the model (from section ), we need to formalise the
safety requirement as well. In simple setting such formalisation may be done by
characterising a safety-critical state (e.g. by specifying that the pressure of the
blue line is above a given limit). If timing is important for the specification of
the safety requirement, temporal logic may be used [7]. Although being quite
expressive, temporal formulas are sometimes not easy to understand. A reason-
able approach is to use patterns for typical temporal relationships occurring in
safety requirements. For establishing the nominal correctness of the design we
use the ModelCertifier from OSC [§] that comes with a library of patterns for
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typical safety requirements. The most obvious way to formalise the above safety
requirement is to state that whenever the pilot pushes the braking pedals, either
the green or the blue line have to supply pressure to the wheels subsequently.
Due to the stepwise propagation of the braking commands we cannot simply use
a safety requirement of the form

(Pedal pressed) implies ((Green pressure high) or (Blue pressure high)).
Instead, we use the following pattern supplied by the OSC pattern library:
P stable X steps implies finally Q B.

This pattern states that whenever P (the pressed pedal in our case) is true for
X steps then Q has to hold after at most B steps. In our case, Q is instantiated
with the disjunction from above, while we set X and B to 10 milliseconds, each.
We require the pedals to be pressed for at least 10 milliseconds in order to avoid
situations where the pedal is pressed and released over and over again. Otherwise,
we run into situations, where one of the different valves along each line is always
closed thus blocking the pressure from reaching the wheels. Another solution to
overcome this problem is to change the system to open all the valves for a certain
amount of time, whenever the pedals are pressed (or to check whether physical
laws ensure this). Using this pattern, we can prove the nominal correctness of the
system model with the ModelCertifier. Further verification tasks solvable with
the ModelCertifier include checks for non-determinism, races, range violations
and others.

3.2 Failure Injection

After the nominal correctness has been es-

tablished, the next steps will evaluate the I F,
system behaviour in case of failures. Thus, i 1

the model has to be extended to reflect the 10 ms

possible behaviour of the system in the pres- s B F

ence of failures. This is accomplished by in-
jecting a number of (candidate) failures, i.e.
failures that might occur. As a consequence,
the resulting model may behave as in the
nominal case or it may behave as if some
combination of the injected failures have oc- Fig.2. Different system runs with
curred. In the latter case it is free to apply three injected failures
the failures in any order with any kind of
time passing between their occurrences. Fig-
ure [2] indicates three possible runs of a system with three failures (Fy, Fy, F3)
injected. It is this kind of generality that allows to do an exhaustive investigation
of possible failure scenarios (as outlined, for instance, in section B.3)).

For the sake of the analyses presented in the following sections we require
the failures to be observable, so in addition to the actual failure behaviour an

8 ms 16 ms
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observer is introduced for each injected failure that is able to detect whether
(and when) the failure occurs. By this means we guarantee that nominal and
failure behaviour are strictly separated. In particular it allows to check whether
failures or failure combinations are causal for some safety-critical event. This
fact will be exploited in section .3l to guarantee minimality of cut-sets.

The internal complexity of the failure injection is hidden to the user of STSA,
who is only required to identify the affected system variable, selecting a failure-
mode that should be applied to the variable, and, if necessary, supply failure-
mode parameters (see figure B]). Again, a pattern-based approach is used to
provide a list of failure-mode templates including stuck-at, delay, noise, and
random failures. When the provided failure-mode patterns are insufficient, e.g.
if the failure affects several model variables in a complex fashion, or the failure
makes use of some internal system mode (degraded system mode), it is possible
to apply user-defined failures, i.e. failures that are defined within Statemate. In
this case the system ensures that nominal and failure behaviour is separated by
requiring the user to specify an input that triggers the failure behaviour. After
all failure candidates are specified, STSA injects them without any additional
interaction in the aforementioned way.

The failure injection was applied to i Stuck-at Failure i ol x|
the braking system in the following way:
Failures of the electrical and hydraulic
power supplies are represented by wuser- o EEEEE =
defined failure-modes, since the supplies Stuckat  [CMD_NOBRAKE
are modelled as inputs to the model. A comment  [Command urit 1 fais
user-defined failure-mode may also be
applied to the manual mode selection
thus modelling wrong behaviour of the
pilot. Failures occurring inside the
braking system itself are modelled using Fig. 3. Specifying a stuck-at failure
stuck-at failure modes.

We defined stuck-at failure-modes for a variety of variables. Failures of each
of the valves are modelled using a stuck-at failure-mode with both states (open
and close) as possible values. This way, the failure-mode can force the valve
to be stuck in the open position, passing the incoming hydraulic pressure, or
stuck close, blocking the pressure. Similarly, the validity signals from the BSCU
monitors can either be made stuck true or false. Further failure-modes were
created for the braking commands computed by the two redundant BSCU units
and the reference commands the monitoring units compute. Another failure-
mode was created to model the failure of the switch unit inside the BSCU.

Stuck-at Failure

(& persistent ( sporadic { disabled

Ok Cancel

3.3 Fault-Tree Analysis

After the nominal correctness has been analysed and the system model has been
extended with failure-modes it is now possible to perform a fault-tree analysis
(FTA). In order to do this the next step is the definition of a Top-Level Event
(TLE). A top-level event describes a system state that should not be reachable in
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the nominal behaviour. In most case there is a direct relation between a top-level
event and a safety requirement in the sense that TLE = —SafetyRequirement
so that is is possible to reuse the definition of safety requirements as they are
described in section Bl

After all the basic parts of the analysis definition are in place we can start
with the analysis. The algorithms we are using to perform an FTA are build on
BDD techniques and are related to BDD model-checking. Although our approach
shares the fundamental attributes of these techniques it has been extensively
enhanced. The main enhancement is in the results that are obtained from the
analysis, traditionally model-checking algorithms only analyse whether a certain
property can be proven correct or try to find a counter example if the property
has been found to be be invalid. In our analysis we are not only interested in
a single counter example but in finding all the causes for a TLE. During our
FTA analysis a set of all failure-combinations that are necessary to reach the
TLE are computed. As these combinations are minimal by construction, they
are similar to the well known minimal cut-sets that are often used in traditional
safety-analysis [9].

Minimal cut-sets are an abstraction notion of a failure-situation. Even for
a designer who has an in-depth knowledge of the system it is often not easy
to understand the interaction of failure-modes and how they lead to the TLE.
In order to ease this task it is possible to use STSA to generate a concrete
counter example that shows not only the development of the failure-modes but
also that of the the system variables. While the fault-tree generation employs a
free-ordering semantics, i.e. the order of failures is not restricted in any way, the
generation of a counter example produces one concrete ordering. The usefulness
of this approach is that the generated fault-tree is complete since it considers
all possible orderings of failures, while the generated counter examples show
a concrete ordering enabling the designer to easily find the deficiencies in the
system. One should also note that this kind of analysis is hardly to be achieved
by a simulation-based approach, since then one is required to actually specify
the order and duration of failures during simulation. Thus to achieve the same
quality of result one had to do a lot of iterations.

We applied the fault-tree generation to the braking system using the safety
requirement described in section B (loss of wheel braking) and a subset of
the failure-modes described in section The INVALID signals of the BSCU
monitors and the complete shutoff of the BSCU were used as intermediate events.
This results in the fault-tree shown in figure @ We will have a closer look at the
two highlighted subtrees.

Subtree b) is directly related to the one depicted in the ARP [5, page 200],
except that we did not include failure-modes for the electrical power or the
failure of the hydraulic system (except for the pumps). The subtree shows that
the safety requirement is violated, when all three modes fail to operate. The
reason for the failure of the normal mode is further broken down to be caused
by the failure of the green hydraulic pump or failure of the BSCU units to
command braking. Note that this also occurs, when the BSCU monitors fail to
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Fig. 4. Auto generated fault-tree

correctly compute the reference signal, which is covered by the events 5 and 2
in the fault-tree.

The consideration of monitoring failures is also the reason for the generated
fault-tree to be more comprehensive than the one depicted in the ARP, where
the occurrence of monitoring failures seems not to be considered. Subtree a)
of figure @ is one of the additional subtrees stemming from this fact. The first
remarkable observation of this subtree is the circumstance that it only features
failures occurring inside the BSCU, i.e. the TLE is reachable without any failure
of the alternate and emergency mode. This is due to the fact that the failure
of the monitoring unit inside the BSCU can inhibit its shutoff, thus preventing
the system from changing to alternate mode. Nevertheless, a closer look at the
minimal cut-set of subtree a) in figure @ reveals a situation which is confusing at
first. The failure of the first monitor (Event 2) activates the first invalid signal,
yet the subtree also contains a failure which makes the same signal stay inactive.
We can find an explanation for this by letting STSA compute a counter example,
which shows the temporal ordering of the involved failures.
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Such a trace is depicted in figure [l which

File Wiew Edit Help

easily explains the odd situation in the fault- W% % & 5 & %
tree. One can see, that the first failure occur- |2 DRI - =
ring is the failure of the first monitor. Due to " e
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mand unit, which subsequently fails. At last, |puememas e

the invalid signal fails, inhibiting the shutoff mEE_,._paEssm_E_w amzs:ox — frES Lo
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We conclude by referring to [I0], where Fig.5. Traceviewer showing the
the technique has been applied to the high-  temporal ordering of failures
lift system of an aircraft.

3.4 FMEA

Each of the cut-sets that has been computed may give rise to other questions,
for instance, whether there are other impacts. Since all kind of analyses are
performed on unique system and failure models we may proceed to investigate
cut-sets for further possible impacts. The traditional way for answering this
question is to perform a Failure Mode and Effect Analysis (FMEA), also em-
bedded in STSA. An important difference to the traditional (application of the)
FMEA method is that it is possible not only to investigate single failures for
their effects, but also failure combinations. In particular the minimal cut-sets
that have been identified during fault tree analysis may be imported and fur-
ther investigated. This idea of having formal tools guiding the safety assessment
process will be further followed in the following section about the identification
of common causes. It is in contrast to [4] where the idea is “to try to pose
the right verification questions to formal tools”. Although we agree that stan-
dard verification tools can be used in principle to perform safety assessment
activities (and in fact we use several classical verification engines), they need to
be adopted for safety assessment purposes (e.g. the setting in [4] does not even
allow to detect causality of failures).
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responds to the cut-set de-

Fig. 6. Auto generated FMEA table picted in subtree a) of fig-

ure [ which was used as an

input to the analysis. The other rows depict the effects that different subsets of

the failure-modes have on the system. Subsets without any effect on the TLEs
are not shown (e.g. the sole failure of the INVALID 1 signal in our example).

Depending on the size of the state space of the model and the length of propa-

gation paths several kinds of analysis techniques are used in the implementation.
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Both, SAT-based and BDD-based [11J12] techniques are used in several variants.
Again, it is possible to produce a simulation trace for each effect detected during
FMEA, thus allowing to trace problems down to concrete runs of the system
(model).

3.5 Common Causes

The idea behind failure-modes that have been
described in section B2lis that all failure-modes
are independent. The goal in the common cause
analysis is to evaluate the consequences of vio-
lations to these independence assumptions. For
instance, the violation of independence hypoth-
esis for AND-ed failure events implies the in-
validation of basic redundancies foreseen by
the aircraft system’s architecture and then dif-
ferent qualitative and quantitative assessment
about the violation of safety requirements. As
recommended by the ARP, it is therefore nec-
Fig. 7. Tyre burst trajectories  essary to ensure that such independence exists,
or that the risk associated with dependence is
deemed acceptable in respect to the applicable certification standard require-
ments.

Typically the violation of independence
assumption is caused by an external event
establishing dependencies that are not repre-
sented in the system model. An example for
such an external event could be a tyre burst
where the ejected particles hit several com- f
ponents that are independent in the func- e v R -
tional design model but closely located Command :
within the physical structure (see figure ). | 1

Command

Taking such dependencies into account re-

quires the integration of the functional mod- ‘

els with the the geometrical representation | 1 s
of the system installation. This integration || i
is performed in the context of a stepwise ) %%
process that starts from the geometry and | Bscu
moves towards the functional tools. The re-

sults of safety analyses are then translated Fig. 8. Zones for the BSCU

back into the geometrical domain to high-
light the potential weak points of design installation in terms of violation of
safety requirements.

The main steps of the process are detailed in the following. Geometrical models
of fragments and relevant trajectories — picked up from a library and built in
agreement with the reference standards — are located on geometrical item/s
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potentially interested by a particular risk event (for instance a rotor stage of an
engine or a tyre). In this extended geometrical environment (including aircraft
systems and fragments trajectories), the consequences of a particular risk event
are evaluated by means of interference analysis facilities. The output of this
first phase of the process is a list of impacted geometrical components for each
possible trajectory of the ejected debris. In the second step of the process the
list of impacted items for each trajectory is translated into the list of functional
failure-modes through a dictionary. The output of this step is a list of groups
of failures that are triggered by the same cause. We call each group of failure-
modes a failure-set. Each failure-set is identified by the angular coordinates of
one or more possible trajectories of the considered fragment. The BSCU from the
braking system is divided into several zones (see figure[)). In the example analysis
we are presenting there is one trajectory that hits the zones A1l and A2 thereby
failing both Command! and Monitorl. This information is then imported into
the analysis tool as a new failure-set that references the failure-modes that have
been defined for the affected components.

The last step of forward flow of the process
consists in performing the same safety analyses
described in previous sections B3 (FTA) and B4
(FMEA), this time taking into account common
causes. To do that, the failure-sets imported into
STSA are treated as additional failure-modes in
the elaboration of safety results. As we can see
from figure [d the fault-tree now contains a single

05s of wheel
braking

AND failure-set:
Zone A

= failure-mode cut-set that is relevant to tyre burst

[catE2 ] [LEvenTs | fragment trajectories. This has an obvious im-

=0 pact from the quantitative point of view. The

FreE ey critical trajectories identified in the analysis (i.e.

CMD NOSRAKE| [CUD NOBRAKE those trajectories that invalidate safety require-

N BN ments) can be highlighted in the 3D tools after-

wards. If the quantitative requirements are not

=0 r=0 satisfied, our integrated approach eases the ver-
ification of possible design alternatives.

Fig.9. Fault-tree with Com-  Ag final note, we highlight an alternative use

mon Causes of the failure-set facility. The user has the possi-

bility to bypass the interference analysis by man-
ually creating groups of dependent failures. This could be helpful in order to per-
form user-guided grouping of failures sharing one or more geometrical attribute.
A possible useful application of this manual definition of failure-sets could be
in performing the Zonal Hazard Analysis [0]: in this case the failure-sets will
be relevant to failures of components located in the same Aircraft zone (see

figure [§)).
3.6 Mission and Reliability Analysis

So far, our example safety requirement (c.f. section BJ]) did not take different
flight phases into account. This section shows, how this can be done by specifying
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the successful completion of the aircraft’s mission as the safety requirement. The
goal of the mission analysis therefore is to determine to what extent the success
of a mission depends on the availability of certain functions (in certain phases
of the mission).

In order to reason about the aircraft’s mission,
MISSION_SC:FAIL a formal model of it is needed. We refer to such a
model as the mission manager. Usually, it consists of
a statechart describing the succession of the differ-

/N ent mission phases. Transitions between the phases
are annotated with the requirements for the success-
L ful completion of the phases. Failure to meet these

requirements can either result in the transition to
an alternative successor phase or the failure of the

BLUE(,L;’S;rE(SpéUERE = GREEV\(I‘i;eRr‘épS)S:L!RE = . .
(M\SSEEE&?&“&NG) (MISSIOF\EéL‘)?LV/V\NSING) mission
= o For the braking system example, we created a mis-
sion whose objective is to land on an icy runway. The
[ EVENT1 | [ EVENT2 | pigsion consists of the usual phases of a flight such
pry pr as Cruise, Descent, Landing and Taxi. Assume that

the successful completion of such a mission requires
the anti-skid function to be working. The mission
manager is designed in such a way that upon failure
of the anti-skid function, the mission changes the ob-
jective to use another runway, which does not require
anti-skid. However, this is only possible before the mission reaches the Landing
phase.

By defining the phases of the mission to be interesting observables the analysis
can be used to determine the impact of a function loss during a certain mission
phase (on the success of the mission). The observables are then used to re-
organise the tree that results from the analysis, where the mission phases are
reported in the description of the basic events to indicate that the failure-mode of
the system items has to occur in a specific phase to have an effect on the missions
failure. Figure [[(] shows a fault-tree where the occurrence of the failures is only
relevant during the Landing phase — earlier occurrences do not lead to the failure
of the mission (because an alternate runway can be used).

Fig.10. Fault-tree with
mission phases

4 Related Work

Model-based verification of fault-trees is shown, for instance in [I3l14]. They
allow for a very detailed specification of (intermediate) events. The fault-tree
itself has to be created manually. However, some work exists how to complete
an incomplete fault-tree [I5]. The Hip-HOPS [I6/17] method is based on the
construction of a failure propagation model that is afterwards analysed. The
result of the first step is usually a model that is simple in structure when com-
pared with a typical functional model that is created by tools like Statemate [I]

2 Where the mission’s failure is considered to be catastrophic.
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or Simulink [2]. Another model-based safety analysis approach, derived from
methods we jointly developed in [I8] within the ESACS consortium, is pre-
sented in [4]. The method applies standard verification tools to produce single
failure scenarios and is based on a taxonomy of failure models and failure se-
mantics that were developed in [I8]. From the safety point of view, however, it
suffers from an important drawback: Because standard verification algorithms
are used, the method is bound to investigate only single failure scenarios, i.e.
each failure combination has to be specified and investigated independently im-
plying that for n failure candidates in the worst case 2™ analysis runs have to
be performed to completely traverse the search space induced by the failure
combinations. Even this number increases if system modes or mission phases
are taken into account. Another weakness of the approach is that it does not
take causality of failures into account leaving the safety engineer alone with the
question of whether a given cut set is minimal. In contrast to the pattern-based
failure injection presented here, they have chosen a manual injection method
that, beside being time-consuming, leaves the system engineer alone with the
question of what is the system and what are the failures. It seems question-
able whether such manual injection can be carried out practically on larger
designs.

5 Conclusion, Further Work

We have presented a tool-supported method for performing a model-based safety
assessment. A unique model of the system extended with failure modes — obtained
by instantiating pattern from a failure mode library — was used to perform several
traditional safety analysis techniques, namely FTA, FMEA, CCA, and MRA. By
identifying causal failure combination in the ARP 6741 braking system model it
was demonstrated that the results are beyond those that are achievable by stan-
dard model checking techniques. Other improvements were achieved by exploiting
synergies from a combination of analysis results, so that common causes could be
incorporated in a fault tree and the role of mission phases could be identified when
investigating requirement violation in a MRA. The failure injection and the analy-
sis methods were implemented as a plug-in for Statemate, allowing easy definition
and execution of safety analysis tasks. The techniques allows to analyse system
models up to 10'%° states without modifications. Further work includes the adop-
tion of abstraction techniques to address more complex models.

There are no general obstacles in extending the presented analyses to the
quantitative, i.e. probabilistic case. The necessary models are at hand (c.f. [19])
and also existing stochastic analysis techniques (e.g. [20]) are waiting to be
extended much like we have extended traditional verification techniques to cope
with qualitative questions of safety. The challenge will be to apply these to
models of realistic size. The necessary state aggregation techniques have already
been set up in [21]. Thus, most of the presented techniques are likely to be lifted
to the quantitative case in the near future.
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