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Abstract. For large systems, the manual construction of fault trees is error-
prone, encouraging automated techniques. In this paper we show how the re-
trenchment approach to formal system model evolution can be developed into a
versatile structured approach for the mechanical construction of fault trees. The
system structure and the structure of retrenchment concessions interact to gen-
erate fault trees with appropriately deep nesting. The same interactions fuel a
structural approach to hierarchical fault trees, allowing a system and its faults
to be viewed at multiple levels of abstraction. We show how this approach can
be extended to deal with minimisation, thereby diminishing the post-hoc sub-
sumption workload and potentially rendering some infeasible cases feasible. The
techniques we describe readily generalise to encompass timing, allowing glitches
and other transient errors to be properly described. Lastly, a mild generalisation
to cope with cyclic system descriptions allows the timed theory to encompass
systems with feedback.

1 Introduction

Reliability analysis of complex systems traditionally involves a set of activities which
help engineers understand the system behaviour in degraded conditions, that is, when
some parts of the system are not working properly. These activities have the goal of
identifying all possible hazards of the system, together with their respective causes. The
identification of hazards is a necessary step for safety-critical applications, to ensure that
the system meets the safety requirements that are required for its deployment and use.

Among the safety analysis activities, a very popular one is Fault Tree Analysis (FTA)
[30]. It is an example of deductive analysis, which, given the specification of an unde-
sired state –usually a failure state– systematically builds all possible chains of one of
more basic faults that contribute to the occurrence of the event. The result of the anal-
ysis is a fault tree, that is, a graphical representation of the logical interrelationships of
the basic events that lead to the undesired state.

The manual construction of fault trees relies on the ability of the safety engineer
to understand and to foresee the system behaviour. As a consequence, it is a time-
consuming and error-prone activity, and may rapidly become impractical in case of
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large system models. Therefore, in recent years there has been a growing interest in
formally based techniques to automate the production of fault trees [15, 13].

The starting point is our previous work relating retrenchment [5, 6, 7, 8, 9, 10, 3]
and formal system model evolution [4]. Namely, in [4] we showed how retrenchment,
as opposed to conventional refinement, can provide a formal account of the relationship
between the abstract system model, that is the model of the system in nominal condi-
tions, and the concrete system model, that is the model enriched with a description of
the envisaged faults the system is designed to be robust against.

In this paper we show how retrenchment can be developed into a versatile structured
approach for the mechanical construction of fault trees. Building on the ideas sketched
in [4], where we exemplified the generation of a fault tree on a two-bit adder exam-
ple, in this paper we show how the simulation relation of retrenchment can be used to
systematically derive fault trees built upon the system structure. This is achieved by
exploiting the structure of retrenchment concessions, using suitable notions of compo-
sition to gather the degraded cases into the concession of a composed retrenchment.
We show how these techniques can be readily generalised in order to deal with issues
like timing and cycles, thus paving the way for the analysis of dynamic systems and sys-
tems with feedback. Finally, we show how the interactions between the system structure
and the structure of concessions yield a structural approach to hierarchical fault trees,
allowing a system and its faults to be viewed at multiple levels of abstraction.

The techniques we present in this paper improve over the ones discussed in [13], in
that they allow the mechanical generation of fault trees built upon the system structure,
which are more informative than the flat (two-level) fault trees of [13]. Furthermore, we
demonstrate the potential of our approach by exemplifying how these techniques can be
fruitfully adapted to address the problem of generating the minimal cut sets of a fault
tree. We show that, by annotating the generated subtrees with suitable minimisation
directives, it is possible to perform some minimisations locally, thereby diminishing the
post-hoc, brute-force subsumption workload of traditional minimisation algorithms.

The rest of the paper is structured as follows. In Section 2 we review retrenchment
and relevant notions of composition of retrenchments. In Section 3 we present our re-
trenchment directed approach to the generation of hierarchical and structured fault trees
on a running example. In Section 4 we show how the structured analysis can be modified
to reduce the work of finding the minimal cut sets of some fault condition. In Section 5
we extend the method to deal with internal state in the subsystem being treated, which
is relatively straightforward as long as the subsystem remains acyclic, and in Section 6
we discuss the issues raised by cyclicity and feedback. Finally, in Section 7 we discuss
some related work and we outline some conclusions.

2 Systems, Retrenchments and Compositions

In this paper we describe systems using input/output transformers. So in general, a
(sub)system will consist of a collection of I/O relations, each describing the behaviour
of a component, and with (sub)system structure expressed by the identification of pre-
decessor component outputs with successor component inputs; obviously some inputs
and outputs remain free to allow communication with the environment. We can write
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such components using a relational notation Thing(i, o), where i and o can be tuples,
eg. i = 〈x, y, z〉 in the case of multi-input/output components.

Retrenchment [5, 6, 7, 8, 9, 10, 3], was introduced to provide a formal vehicle for
describing more flexible model evolution steps than the usual technique for formal sys-
tem development, refinement, conventionally allows. Since refinement was conceived
with the desire to ensure that the next model conformed to properties of its predeces-
sor, while moving towards greater implementability, it is no surprise that not all model
evolutions that one might conceivably find useful fall under its scope.

In this paper, it is the simulation relation of retrenchment which does the work. This
can be expressed as follows. Suppose we have two systems Abs and Conc, and suppose
OpA(i, o) and OpC(j, p) are two corresponding operations, aka component behaviours,
in Abs and Conc respectively.1 A retrenchment simulation between them is given by:

WOp(i, j) ∧ OpC(j, p) ∧ OpA(i, o) ∧ (OOp(o, p, i, j) ∨ COp(o, p, i, j))

Here WOp, OOp, COp are the within, output, concedes relations for the pair of operations
Op. The within relation WOp defines the remit of the retrenchment; while the output and
concedes relations describe what are to be considered ’normal’ and ’deviant’ aspects
of the relationship between OpA and OpC. The aggregate of all the relevant relations
for all corresponding operation pairs is collectively called the retrenchment data for the
particular retrenchment between Abs and Conc that we have in mind.

To consider large systems, we need mechanisms to express hierarchy and composi-
tion. Fortunately these are straightforward. To express hierarchy, it will be sufficient to
decompose the concession into a number of cases covering distinct fault possibilities:
COp ≡ COp,1 ∨ COp,2 ∨ . . . ∨ COp,n. So COp expresses the high level view while the
COp,k give a more detailed lower level perspective.

For composition, we need sequential and parallel composition mechanisms. Fortu-
nately these are both straightforward, and similar to each other. Given Op1 and Op2,
assuming the outputs of Op1 can be identified with the inputs of Op2, their sequential
composition Op1;2 is the relational composition Op1o

9Op2. If now both Op1 and Op2
come in abstract and concrete versions, related by retrenchment data WOp1, OOp1, COp1
and WOp2, OOp2, COp2 respectively, then Op1;2A and Op1;2C will be related by retrench-
ment data:

WOp1;2 = WOp1 (provided (OOp1 ∨ COp1) ⇒ WOp2)
OOp1;2 = OOp1o

9OOp2 COp1;2 = OOp1o
9COp2 ∨ COp1o

9OOp2 ∨ COp1o
9COp2

where ∨ is relational union. Parallel composition is even easier. Assuming this time
that Op1 and Op2 act on independent sets of variables, and using | to denote parallel
composition (which, in terms of logic, is just conjunction), the rules are:

WOp1|2 = WOp1|WOp2
OOp1|2 = OOp1|OOp2 COp1|2 = OOp1|COp2 ∨ COp1|OOp2 ∨ COp1|COp2

We see the strong analogy between the two. Moreover, these interact cleanly both with
each other, and with the hierarchy mechanism. Thus if COp1 is a disjunction of n terms,

1 Correspondence of operations in Abs and Conc is a meta level concept, which we indicate by
using the same name for the operation in the two systems, or by other convenient means.
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and COp2 of m terms, the lower level versions of COp1;2 and COp1|2 have mn+m+n terms,
corresponding to the substitution of the low level forms into COp1;2 or COp1|2 respectively.

3 Hierarchy and Fault Tree Structure in a Running Example

In Fig. 1 we see a small circuit which will serve as a running example. At a high level
it is a black box called Fred with two inputs I1, I2 and two outputs O1, O2. At a low
level, it is a circuit in which signals flow from left to right, elements A1, A2, A3 are
adders, and F1, F2, F3 are two-output fanout nodes. We assume that all signals are of
a fixed finite number of bits, and that the adders do cutoff addition (which is to say
that any value greater than or equal to the maximum representable one is output as the
maximum, and there is no overflow). The number of bits is assumed sufficiently large
that the cutoff effects do not occur in the examples we treat. The two diagrams in Fig. 1
represent a descent of one level in a hierarchical description of (part of) a large system.

Fred
I1

I2

O1

O2

I1

I2

F1

F2
A1

A2

A3
F3

O1

O2

K0K2K3K4 K1

Fig. 1. A subsystem Fred and its internal structure

We turn to the internal structure of Fred. For the time being, all elements are stateless,
and all circuits are acyclic. Such circuits possess a parsing which builds them up via
sequential and parallel composition. In general there will be several such parsings. We
choose the one in which the elements closest to the inputs are the most deeply nested:
it can be derived mechanically from a definition of the circuit in terms of elements and
connections, or supplied manually. Such a structure is in sympathy with a top-down
fault analysis starting at the outputs. For Fred the structuring is illustrated in K0-K4.

Introducing names for the internal variables implicitly, the ideal FredA model is
given by fanout component relations: F1A(I1, 〈a1, a2〉) ≡ a1 = a2 = I1 (similarly
for F2A(I2, 〈a3, a4〉) and F3A(a5, 〈a6, a7〉)); and adder component relations, given by:
A1A(〈a2, a3〉, a5) ≡ a5 = a2+a3 (similarly for A2A(〈a1, a6〉, O1), A3A(〈a7, a4〉, O2)).

Fred’s potentially faulty behaviour, model FredC, is given using renamed variables
for clarity. Thus the external inputs/outputs are J1, J2 and P1, P2 respectively, and the
internal variables a1-a7 become c1-c7. We assume that only the fanouts can have faults,
and that these are simply ‘stuck at 0’ faults on one or other output, signalled by the truth
of additional free boolean variables F1.c1 (F1 output c1 ‘stuck at 0’) etc. We assume
(purely for simplicity) that only one fault can be active in any component (at any time).
Thus while the adders A1C, A2C, A3C in FredC are given by mere transliterations of the
A1A, A2A, A3A relations above to J, P, c variables, the fanouts need full redefinition, eg.:

F1C(J1, 〈c1, c2〉) ≡ (F1.c1 ⇒ c1 = 0) ∧ (F1.c2 ⇒ c2 = 0) ∧ ONE ELSE IDEAL

In this, ONE = ¬(F1.c1 ∧ F1.c2) and ELSE IDEAL represents the transliteration of F1A to
J, P, c variables, when not overridden by the faulty behaviour of the preceding terms.
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The ideal and faulty Fred models are related by a retrenchment. It will be sufficient
to write down the retrenchment data for just the components, since the data for the
overall system will emerge as needed from the fault tree analysis below. For the adders,
assumed fault-free, we have for A1:

WA1(〈a2, a3〉, 〈c2, c3〉) ≡ true
OA1(a5, c5, 〈a2, a3〉, 〈c2, c3〉) ≡ (c5 = c2 + c3)
CA1(a5, c5, 〈a2, a3〉, 〈c2, c3〉) ≡ false

with similar things for A2, A3; a consequence of this is that CA terms can be dropped
below. For the fanouts, we need the more complicated (⊕ is ‘exclusive or’):

WF1(I1, J1) ≡ true
OF1(〈a1, a2〉, 〈c1, c2〉, I1, J1) ≡ (c1 = c2 = J1)
CF1(〈a1, a2〉, 〈c1, c2〉, I1, J1) ≡ (F1.c1.0 ∧ c1 = 0 ∧ c2 = J1) ⊕

(F1.c2.0 ∧ c1 = J1 ∧ c2 = 0)

In CF1, following Section 2, we call the two disjuncts CF1,c1 and CF1,c2 respectively, i.e.
CF1 = CF1,c1 ∨ CF1,c2. Similar things hold for F2, F3. Note that the abstract system is
not mentioned in the body of the retrenchment data; it is not needed in this application.

With these ingredients, and a given top level event (TLE), we show how the retrench-
ment data drive a structured fault analysis. First, if it is of interest to check whether the
TLE can arise via fault-free behaviour, it is sufficient to check whether the TLE will
unify with OFred. This is easy to calculate from the assumed parse K0-K4 and the rules
of Section 2, since we will assume that for all components, correct working is given
by a total function, and even incorrect working is a total relation.2 Second, we proceed
downward through CFred, decomposing step by step, eliciting the consequences of com-
position and of local structure, and deriving a resolution tree for all possible ways of
satisfying the TLE within the constraints. Values of variables once assigned, remain in
force as we descend unless we backtrack past the point of assignment, and once the
input values have been reached, any remaining uninstantiated variables can be instanti-
ated within the constraints that hold, case by case, to confirm overall consistency. Now
we consider the specific TLE: J1 = J2 = P1 = 1 (with P2 regarded as irrelevant). It is
easy to check that this does not satisfy OFred. The analysis then proceeds as follows.

TLE: K0 = K2o
9K1, so CK0 = OK2o

9CK1 ∨ CK2o
9OK1 ∨ CK2o

9CK1. Since K1 is nearest
the outputs, and we are working backwards through Fred, we decompose K1 first, i.e.
we decompose OK1 and CK1. Since K1 = A2|A3 and adders don’t fail, CK1 is false,
reducing CK0 to CK2o

9OK1, while OK1 = OA2|OA3. Now OA3 merely imposes existential
constraints on P2, c7, c4 such that A3(〈c7, c4〉, O2) holds; we put these to one side since
the TLE does not constrain them further. OA2 demands that c1 + c6 = 1 (among other
things). There are two ways to satisfy this, namely c1 = 0 ∧ c6 = 1 or c1 = 1 ∧ c6 =
0, giving a top level disjunction into TLE.L or TLE.R for CK2o

9OK1.
TLE.L: Since c1 and c6 are outputs of K2, we next decompose CK2 = CK3;F3 =
OK3o

9CF3 ∨ CK3o
9OF3 ∨ CK3o

9CF3. Now CF3 = CF3,c6 ∨ CF3,c7, and CF3,c6 is inconsis-
tent with c6 = 1. Also OK3 forces c5 = 2, inconsistent with c6 = 1 too, so the terms

2 Similarly, we assume that OK4-OK2 can be evaluated immediately from J1, J2 when needed.
In more general cases, a backwards derivation might be required for some O terms.
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containing these are dropped. So CK3;F3 = CK3o
9OF3 ∨ CK3o

9CF3,c7. In fact the distinc-
tion between these concerns only c7, whose precise value is immaterial, so only CK3 is
of further interest. From c6 = 1, we deduce c5 = 1. We now decompose CK3 = CK4;A1
which is just CK4o

9OA1 since adders don’t fail. Now c5 = 1 implies c2 = 0 ∧ c3 = 1 or
c2 = 1 ∧ c3 = 0, giving a disjunction into TLE.L.L or TLE.L.R for CK4o

9OA1.
TLE.L.L: Since K4 = F1|F2, we have CK4 = OF1|CF2 ∨ CF1|OF2 ∨ CF1|CF2,
with each of CF1, CF2 being a disjunction of two faults. However, we earlier derived
c1 = 0, which is inconsistent with OF1 and J1 = 1, eliminating a term and forcing
F1.c1 true. But c2 = 0 forces F1.c2 true, and we assumed only one fault is ever active
in any one component. So we have a contradiction. In such a case we must backtrack
to the innermost ancestral nontrivial disjunction, and eliminate the subtree rooted at the
relevant disjunct. Thus the subtree at c2 = 0 ∧ c3 = 1 is eliminated.
TLE.L.R: As in the previous case we have F1.c1 true, but this time F1.c2 is false due
to c2 = 1; so we remain within our constraints. Now c3 = 0 forces F2.c3 true, and for
consistency we must have F2.c4 false. This yields a fault configuration for the TLE.
TLE.R: We decompose CK2 as in case TLE.L, getting OK3o

9CF3 ∨CK3o
9OF3∨CK3o

9CF3.
The constraint c1 = 1 ∧ c6 = 0 and no multiple F3 failures, means that this can be
made valid by: case TLE.R.1, in which OK3o

9CF3,c6 holds, with c5 = 2; or by case
TLE.R.2, in which CK3o

9OF3 is presumed to hold, with c5 = 0; or by case TLE.R.3, in
which CK3o

9CF3,c6 holds, with c5 as yet unconstrained; or by case TLE.R.4, in which
CK3o

9CF3,c7 is presumed to hold, with c5 = 0.
TLE.R.1: OK3o

9CF3,c6 holds, with c5 = 2. This is a valid cause of the TLE.
TLE.R.2: We have CK3o

9OF3 and c5 = 0, so we decompose CK3 = CK4;A1 = CK4o
9OA1

since adders don’t fail. Now c5 = 0 implies c2 = c3 = 0. The latter two imply F1.c2
and F2.c3 both true, and c1 = 1 does not lead to a multiple failure for F1. Also c4 = 1
is acceptable for F2, leading to a valid fault configuration for the TLE.
TLE.R.3: We have CK3o

9CF3,c6 as a consequence of which F3.c6 holds, and c5 is un-
constrained. We seek all possible ways of satisfying CK3 given the inputs J1 = 1 and
J2 = 1. Now K3 is a parallel composition of F1 and F2, so CK3 will contain three terms
as usual. Now each of CF1 and CF2 is a disjunction of two terms, but c1 = 1 prevents
F1.c1 from holding so CF1 has just one term that contributes nontrivially. This leads to
an overall disjunction of five nontrivial terms.
TLE.R.4: We have CK3o

9CF3,c7 and c5 = 0. The latter generates only one solution, i.e.
F1.c2 and F2.c3 must both hold.

A tree that depicts the above is shown in Fig. 2. Near the top we show the variable
assignments, but suppress them lower down to save space, recording only the fault
variables set at various points.3 Although Fig. 2 is not syntactically a fault tree (FT)
according to [30], it is easy to see that it could be straightforwardly transformed into
one. We do this in Section 4 after minimisation. At any rate the present tree represents
a low level view of the fault analysis.

In terms of the hierarchy of which Fred forms a part, a higher level view just repre-
sents the fault by a single node: the TLE node itself. Descending the hierarchy thus cor-
responds to growing the more detailed tree along with uncovering the internal structure

3 The ellipsis in the root indicates that further facts to be accumulated as the analysis descends
are to accumulate inside the scope of the quantifier (elsewhere, we suppress the ellipsis).
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of Fred. Evidently the algorithm described in this section can be easily incorporated
into one which deals with large systems in a hierarchical fashion. Whenever a fault tree
for a given model has been computed, a pure refinement of a subsystem does not require
rebuilding the whole fault tree from scratch. More drastic subsystem evolution, going
beyond pure refinements, can imply more widespread changes to fault trees.

TLE: (∃ P2 • P1 = 1 ∧ J1 = 1 ∧ J2 = 1 …)

c1 = 0 ∧ c6 = 1 c1 = 1 ∧ c6 = 0

c2 = 0 ∧ c3 = 1 c2 = 1 ∧ c3 = 0

F1.c1 F2.c3

F3.c6 F3.c7F3.c6

F1.c2 F2.c3

F1.c2 F2.c3

F1.c2 F2.c3

F1.c2

F1.c2 F2.c4

F2.c3 F2.c4

Fig. 2. Part of a Resolution Tree for the TLE of Fred

4 Structured Minimisation

In practical fault analysis we are most interested in minimal fault configurations, the
so-called minimal cut sets (MCSs for short) consisting of the fewest possible basic
faults that cause a particular TLE. The traditional technique for discovering MCSs is
subsumption. In principle, one needs to generate all possible configurations that cause
a fault, and then check them against one another: any that are subsumed by simpler
configurations are discarded. These subsumption checks can be quite expensive for a
large system model, since the number of leaves in a tree is exponential in its depth, and
the number of subsumption checks is quadratic in the number of leaves. Although in
practice efficient algorithms [17, 18, 27, 28] based on binary decision diagrams (BDDs)
[16] can be used for this purpose, their worst-case complexity is still exponential in the
number of variables of the BDD. In this section we explore ways of reducing the sub-
sumption workload by exploiting the structure of the tree construction as guided by the
retrenchment data. The various minimisations are illustrated on the running example.

M.1: Discarding non-needed subtrees. If, during the construction, a fault is generated
which leads to an assignment to some variable whose value does not affect the validity
of the TLE (eg. there is no dataflow from the fault to the TLE), then the fault node
(and, implicitly, any subtree rooted at it) can be discarded immediately since the TLE
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is satisfied without it. In general, we call such faults incidental faults. As in the case
of the subtree of Fig. 2 rooted at F3.c7, which is an example, such faults can arise by
considering the disjunction of the complete range of possible faulty configurations of
some otherwise needed component.
M.2: Discarding locally subsumed expressions. If, during the construction, a range of
options to explore is generated, some of which are subsumed by others, the subsumed
options can be discarded immediately. Eg. in Fig. 2, F2.c3 subsumes F1.c2 ∧ F2.c3.
(N.B. The example in M.1 can also be viewed this way.)
M.3: Discarding subtrees at input-insensitive faults. If, during the construction, a fault
is generated which is independent of any input to the component in question, the sub-
tree beneath it can be discarded immediately. Eg. in Fig. 2, F3.c6 is a ‘stuck at 0’ fault,
insensitive to inputs to F3. So in TLE.R, in considering OK3o

9CF3,c6 ∨ CK3o
9OF3 ∨

CK3o
9CF3,c6 ∨ . . . , the term CK3o

9CF3,c6 can be discarded immediately in favour of
OK3o

9CF3,c6, even though it is not subsumed by OK3o
9CF3,c6. (N.B. When CK3o

9CF3,c6
is eventually decomposed, it does yield a family of fault configurations subsumed by
F3.c6, as is clear from Fig. 2. Such cases can also be viewed as instances of M.2 pro-
vided satisfiability of OK3 is prima facie unproblematic.)
M.4: Doing final subsumption checking at the subsystem level. The techniques outlined
above are not guaranteed to be complete, insofar as further minimisations to generate
the MCSs may remain. Rather than leaving these to a final whole-model subsumption
check, the brute force subsumption checking to catch them can be done at the subsys-
tem level, since all contributions to the TLE for a fault in a subsystem like Fred are
causally propagated along data pathways within the subsystem (a structural assumption
we take for granted.) Thus the inclusion of the rest of the system will result in an overall
description which necessarily factorises, regardless of whether or not the factorisation
is obscured (whether to a human observer or to some algorithm) by the complexity of
the final expression.

The precise way in which the preceding ideas can be implemented in a tool (such as
the FSAP/NuSMV-SA platform [13]) remain a matter for implementation tactics. For
example, the subsystem parse could be decorated with suitable directives to prompt the
FT generation algorithm to apply certain minimisations when the appropriate point is
encountered, or the FT generation algorithm may be written so as to check for the whole
range of recognised minimisation opportunities every time another stage in the tree is
developed. Internal optimisations, such as the sharing of subcomputations not visible at
the FT level, can also be deployed. Details lie beyond the scope of this paper.

When we apply the above to the running example whose resolution tree is indicated
in Fig. 2, we get a considerably smaller tree. We transform this into a legal FT as per
[30], containing just the MCSs, by accumulating the variable assignments along any
path between two logical connectives into the label for an intermediate event (IE), and
changing the basic fault nodes into round ones.4 When we do all this, we end up with
the minimised fault tree in Fig. 3.

4 N.B. Where a basic fault occurs in the interior of the resolution tree (eg. the subtrees at F3.c6
or F3.c7 in Fig. 2, were these trees not discarded), the subtree is manipulated to distribute the
interior basic fault into the nearest descendant conjunction(s), and IEs are generated labelled
by the relevant logical combinations of the IEs at the roots of the subtrees thus affected.
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TLE: (∃ P2 • P1 = 1 ∧ J1 = 1 ∧ J2 = 1 …)

F1.c2 F2.c3

F3.c6

F1.c1 F2.c3

c1,c6 = 1,0 c1,c5,c6 = 1,0,0c1,c5,c6 = 0,1,1

c3 = 0c2 = 1 c2 = 0 c3 = 0

Fig. 3. A Minimised Fault Tree for the TLE of Fred

5 Timing and Internal State

Up to now everything has been treated as instantaneous, and the job of fault tree anal-
ysis has simply been to trace the possible functional (or more generally, relational)
dependencies that connect the inputs and outputs in a given TLE, and thereby, to dis-
play the connections between the primitive faults that contribute to valid instances of
the TLE. This instantaneous assumption is obviously not adequate for all situations of
interest, and so in this section, we introduce a model of time, in order to capture the
behaviour of systems in which time delays cannot be neglected. Since many of the dig-
ital components that are found in circuits such as our running example are stateful, this
generalisation is an important one.

We introduce discrete time, with ticks labelled by integers, and for ease of expo-
sition we just modify slightly our running example. The adders will remain state-
less, delivering their result instantaneously, while the fanouts will introduce a unit
delay between an input received and the outputs delivered. Thus while the definition
of the adders remains unaltered aside from the introduction of a time parameter, eg.
A1A(〈a2(t), a3(t)〉, a5(t)) ≡ a5(t) = a2(t) + a3(t), the definition of the fanouts be-
comes eg. F1A(I1(t), 〈a1(t + 1), a2(t + 1)〉) ≡ a1(t + 1) = a2(t + 1) = I1(t). As
well as this, the fault variables become time dependent (to permit the description of eg.
glitches), but otherwise, the relational descriptions of components are time independent.
So the faulty behaviour of F1 becomes:

F1C(J1(t), 〈c1(t + 1), c2(t + 1)〉) ≡
(F1.c1(t + 1) ⇒ c1(t + 1) = 0) ∧ (F1.c2(t + 1) ⇒ c2(t + 1) = 0) ∧
¬(F1.c1(t + 1) ∧ (F1.c2(t + 1)) ELSE IDEAL

Let Fred with these alterations be renamed FreT (we will continue to refer to Fig. 2).
With this change, the retrenchment data for FreT become:

WF1(I1(t), J1(t)) ≡ true
OF1(〈a1(t + 1), a2(t + 1)〉, 〈c1(t + 1), c2(t + 1)〉, I1(t), J1(t)) ≡

(c1(t + 1) = c2(t + 1) = J1(t))
CF1(〈a1(t + 1), a2(t + 1)〉, 〈c1(t + 1), c2(t + 1)〉, I1(t), J1(t)) ≡

(F1.c1.0(t + 1) ∧ c1(t + 1) = 0 ∧ c2(t + 1) = J1(t)) ⊕
(F1.c2.0(t + 1) ∧ c1(t + 1) = J1(t) ∧ c2(t + 1) = 0)
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(We omit the retrenchment data for the adders, which just get labelled by ‘(t)’.)
With this setup, in fact very little changes as regards the top down resolution driven

fault tree analysis, provided we remember that our subsystems are all still finite compo-
nent, finite signal, finite state, and acyclic. The reason that there is little change is that
the set of paths through the subsystem, between inputs and outputs, remains unaltered
by the mere introduction of time delays along them – fault tree analysis (in the sense of
this paper) can in the end be seen as a deductive process about such paths and sets of
such paths. The fault trees resulting from the time sensitive analysis can of course be
differently shaped from those in the time independent one, since the same component
may contribute in different ways at different times.

To illustrate the above, let us do an analysis for the FreT subsystem of the same TLE
we considered previously, but this time with the output P1 instantiated to 1 for some
time t (and otherwise unspecified), and with inputs held constant at 1 as before, which
we write as J1 = J2 = P1(t) = 1. Doing the analysis as described in Section 3, but this
time noting the time labels along the way, and then doing the minimisation as described
in Section 4, we get the FT in Fig. 4, in which preprimes denote the value at t − 1,
and the labelling of the IEs is incomplete for space reasons (a full labelling would cite
values at t and at t − 1 for several variables). Note how the fact that the output is not
required to be constant, has spawned a valid instance of the branch of the FT that was
cut off in Fig. 2. We are only demanding a glitch, so the two F1 faults that could not
coexist statically, are permitted to occur at successive instants. Of course if we asked
for the glitch to persist for two time ticks, this branch would get cut off once more. This
example vividly illustrates the increased expressive power gained by adding timing to
essentially the same techniques that we discussed statically.

TLE: (∃ P2 • P1(t) = 1 ∧ J1 = 1 ∧ J2 = 1 …)

′F1.c2 ′F2.c3

F3.c6

F1.c1 ′F2.c3

c1,c6 = 1,0 c1,′c5,c6 = 1,0,0c1,′c5,c6 = 0,1,1

′c3 = 0′c1 = 1 ′c2 = 0 ′c3 = 0

F1.c1 ′F1.c2

c1,′c5,c6 = 0,1,1

′c2 = 0′c1 = 1

Fig. 4. A Minimised Fault Tree for the TLE of FreT

6 Introducing Feedback

The (technically) relatively mild generalisation of the last section becomes more inter-
esting when we include feedback as well as timing delays. We modify our subsystem
FreT by removing A3 and F2, and introducing a feedback signal (called k in the con-
crete system) from F3 to A1, resulting in subsystem Jim. See Fig. 5.

Now we can no longer rely on a static syntactic description of the subsystem as the
analysis proceeds, but must unfold a recursive structure. The essentials of this are:
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Jim
I1 O1 I1 F1

A1
A2

F3
O1

K0K2K3

Fig. 5. A subsystem Jim with cyclic internal structure

O1(t) = (c1(t) + c6(t)) ; c1(t) = c2(t) = I1(t − 1)
c6(t) = c5(t − 1) = (c2(t − 1) + k(t − 1)) = (c2(t − 1) + c5(t − 2))

This is a standard feedback control system, and its I/O behaviour can be computed by
standard means. Performing the required back substitutions (details omitted for lack of
space), we get:

O1(t) = I1(t − 1) + I1(t − 2) + I1(t − 3) + . . . =
∑∞

q=1 I1(t − q)

This is a shorthand for describing an infinite set of possible finite behaviours, on the
understanding that all values are (bounded) natural numbers, and that an at most finite
number of the I1 values in the summation are non-zero (and that one cuts off the summa-
tion at some point after the earliest non-zero value, to represent initialisation at a point
in the finite past). The proliferation in behaviours is due to the fact that A1’s output re-
mains stable when its c2 input is 0, so that the value held in F3 (and hence output at O1)
remains invariant as long as I1 continues to remain at 0. Thus if we stipulate O1(t) = 2,
then this can arise via I1(t − 1) = 2, or via I1(t − 2) = 2, or I1(t − 3) = 2, etc. (with
all other I1 values zero). Alternatively we could have I1(t − 1) = 1 ∧ I1(t − 2) = 1,
or I1(t − 1) = 1 ∧ I1(t − 3) = 1, or I1(t − 1) = 1 ∧ I1(t − 4) = 1, or . . . etc., or
I1(t − 2) = 1 ∧ I1(t − 3) = 1, or I1(t − 2) = 1 ∧ I1(t − 4) = 1, etc. etc.

Admittedly we have been considering the fault-free behaviour of Jim for the sake of
simplicity, but there is no reason at all why similar situations should not arise during the
analysis of genuine faults. The back substitutions performed from the TLE ‘O1(t) = 2’
are exactly the steps that a retrenchment based fault analysis would dictate.

There are at least three approaches to the question of there being an infinity of pos-
sible causes of some situation, just raised. Firstly one could simply regard the TLE as
underspecified, since it places no constraints on the input values. Any finite constraint
on these that is consistent with the TLE and supplies all the values ‘needed’ by the
TLE5 would immediately reduce the set of possible causes to a finite one, eliminat-
ing the problem. Essentially we would be placing an a priori bound on how far in the
past the earliest of the causes of the TLE had occurred, an approach that in general is
incomplete.

Secondly, one could examine what a standard model checking approach (such as
the FSAP/NuSMV-SA platform [13]) would deliver. Such approaches work by exhaus-
tive search of the state space of the system, keeping an eye out for states already en-
countered along a given path. Finding a repeated occurrence of the same state, cuts

5 We are being rather imprecise here about the definition of neededness, since it would depend
on the precise nature of the components in the subsystem and their interdependencies.
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off the search, since it is interpreted as looping behaviour in the system. In our exam-
ple this would yield a finite representation of the infinite set of possible behaviours,
analogously to the way that the infinite summation above is a finite representation of
it. The stable behaviour of the adders previously alluded to is reflected in self-loops
on the relevant states generated by the state space search algorithm. Such a represen-
tation would require some interpretation as regards the generation of fault trees, since
a naive FT generation algorithm would attempt to generate a tree with infinite disjunc-
tions, and not terminate. Adding a finite starting point in the past is an easy way to
prevent this, although as above, an a priori finite bound in the past makes the approach
incomplete.

A third, and most sophisticated approach to the issue, is to honestly take on board
the control nature of the cyclic system, and to combine the model checking strategy
with deeper insights about control systems.6 The benefits of such an approach are that
it could yield a complete description, by representing recursive parts of the set of be-
haviours in a suitably symbolic manner, even extending to situations in which the state
space is not finite. However all of this would require deep insight into the relation-
ship between decidabilities in the relevant model checking and control theory domains,
since it is well known that combining theories which are decidable on their own, does
not automatically lead to decidability of the combination.

7 Conclusions

In this paper we have presented a formal account of fault tree generation based on
retrenchment. We have shown how the retrenchment framework is able to capture sev-
eral aspects of the fault tree generation, namely the mechanical construction of a fault
tree based on structural information, fault tree minimization, system model evolution
based on a hierarchy of models viewed at multiple levels of abstraction, and fault
injection. Finally, the approach can be generalised to deal with dynamic and cyclic
systems.

Our work has been inspired by Hip-HOPS (Hierarchically Performed Hazard Ori-
gin and Propagation Studies) [24, 25, 26], a framework incorporating a mechanical
fault tree synthesis algorithm based on system structure, and taking into account model
evolution. The synthesis of the fault tree is based on a preliminary functional failure
analysis (FFA) and a tabular technique (IF-FMEA) used to generate a model of the
local failure behaviour, activities normally performed manually during system design
and safety assessment. Our work addresses the automation of the whole process as-
suming that a formal specification of both system and fault model is available. Further-
more, we have shown how the synthesis algorithm can be coupled with suitable tac-
tics to perform local minimal cut-set computation, reducing the overall computational
effort.

Our techniques can be incorporated into formal tools supporting the safety assess-
ment of complex systems, like the FSAP/NuSMV-SA platform [13, 20]. The algorithms

6 Certainly the calculation indicated above is standard feedback control theory, and such calcula-
tions have been automated (in a suitably symbolic manner) in standard control theory toolkits
eg. SIMULINK [1, 21].
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described here improve over the ones used there for two reasons. First, they allow
the generation of structured fault trees, which are more informative than the flat fault
trees produced by the current FSAP platform. Second, they allow the taking of dy-
namic information into account, eg. they can deal with transient failures (Section 5),
and feedback (Section 6). While our focus was on automatic synthesis, the DIFTree
(Dynamic Innovative Fault Tree) [22] methodology, implemented in the Galileo tool
[29], is mainly concerned with the problem of fault tree evaluation. It uses a mod-
ularisation technique [19] to identify (in linear time) independent sub-trees, that can
be evaluated using the most appropriate techniques (BDD-based techniques for static
fault trees, Markov techniques or Monte Carlo simulation for dynamic ones). In ad-
dition, it supports different probability distributions for component failures. A simi-
lar modularisation and decomposition technique is advocated in [2]. That technique
is orthogonal to our notion of structural generation; in particular, it is concerned with
isolating different sub-trees that can be synthesised (or evaluated) separately, whereas
our structural information can be used to synthesise (or evaluate) each sub-tree on its
own.

Although an experimental evaluation of our algorithm was beyond the scope of this
paper, we have provided many hints about the advantages such an algorithm would
have with respect to the traditional monolithic algorithms which just flatten the model.
First, it makes it possible to synthesise the fault tree by considering each component
in isolation, thus avoiding building an internal representation of the whole model (eg.
avoiding the generation of a BDD for it). Second, it suggests that the MCS computation
can benefit from local minimisation. As future work, we wish to design a practical im-
plementation and evaluate it experimentally against state-of-the-art techniques, eg. the
BDD-based routines [17, 18, 27, 28] used in the FSAP platform. Given that integer con-
straint solving is needed to deal with time, we foresee that there might also be room for
using decision procedures for such a theory, eg. MathSAT [11, 23]. Finally, we would
like to integrate such algorithms into the FSAP platform [13].

Further issues we would like to address include dynamic aspects (see eg. [22]), that
we have only sketched in this paper for lack of space. In particular, we would like to
investigate the problem of sequential dependencies and failure duration, and their rep-
resentation inside the fault tree. Finally, it would be interesting to adapt our algorithms
to the truncated computation of prime implicants described in [28].
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