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Preface

Welcome to SAFECOMP 2006, the 25th International Conference on Computer
Safety, Security and Reliability, held in Gdansk, Poland. Since it was established
in 1979 by the European Workshop on Industrial Computer Systems, Technical
Committee 7 on Safety, Reliability and Security (EWICS TC7), SAFECOMP
has continuously contributed to the progress in high integrity applications of
information technologies. The conference focuses on the state of the art, experi-
ence and new trends in the areas of safety, security and reliability of critical IT
systems and applications and serves as a platform for knowledge and technology
transfer for researchers, industry (suppliers, operators, users), regulators and
certifiers of such systems. SAFECOMP provides ample opportunity to exchange
insights and experiences on emerging methods, approaches and practical solu-
tions to safety, security and reliability problems across the borders of different
application domains and technologies.

The SAFECOMP 2006 program reflected in this book included 32 papers
selected from 101 submissions of full texts. The submissions came from authors
representing 26 different countries from Europe, Asia, and North and South
America. The 32 accepted papers were prepared by experts representing 14 dif-
ferent countries. The above data confirm the broad and increasing interest in
SAFECOMP and the topics addressed.

The program was supplemented by three keynote presentations by outstand-
ing invited experts (not included in this book). The keynotes focused on in-
terdisciplinary aspects of dependability of computer systems, practical aspects
of application of safety standards and new challenges of information security
research and development.

Preparation of the SAFECOMP 2006 program was a long and intensive
process. Its success is the result of the hard work, involvement and support
of the International Program Committee, the external reviewers, the keynote
speakers, and most of all, the authors who submitted numerous excellent con-
tributions. Selecting from them was by no means an easy task and in many
cases some very good papers could not be accepted because of the program
constraints.

I would like to thank all those who contributed to the preparation of the
SAFECOMP 2006 program for their competence, dedication and sustainable
support. I would also like to thank my colleagues from the Information Assur-
ance Group of the Department of Software Engineering of Gdansk University
of Technology for their organizational support. Special thanks are due to the
National Organizing Committee, for its involvement in the preparation of the
conference.

The next conference, SAFECOMP 2007, will take place in Nuremberg, Ger-
many, and in the name of the organizers I am extending to you the invitation to
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contribute to and attend this important event in the field of Computer Safety,
Reliability and Security.

July 2006 Janusz Górski
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System of Systems Hazard Analysis Using Simulation
and Machine Learning

Robert Alexander, Dimitar Kazakov, and Tim Kelly

Department of Computer Science
University of York, York, YO10 5DD, UK

{robert.alexander, dimitar.kazakov, tim.kelly}@cs.york.ac.uk

Abstract. In the operation of safety-critical systems, the sequences by which
failures can lead to accidents can be many and complex. This is particularly true
for the emerging class of systems known as systems of systems, as they are com-
posed of many distributed, heterogenous and autonomous components. Perform-
ing hazard analysis on such systems is challenging, in part because it is difficult
to know in advance which of the many observable or measurable features of the
system are important for maintaining system safety. Hence there is a need for
effective techniques to find causal relationships within these systems. This pa-
per explores the use of machine learning techniques to extract potential causal
relationships from simulation models. This is illustrated with a case study of a
military system of systems.

1 Introduction

Large-scale military and transport Systems of Systems (SoS) present many challenges
for safety. The term ‘SoS’ is somewhat controversial — attempts at definitions can be
found in [1] and [2]. It is easy, however, to identify uncontroversial examples, Air Traf-
fic Control and Network Centric Warfare being the most prominent. These examples
feature mobile components distributed over large areas, such as regions, counties or
entire continents. Their components frequently interact with each other in an ad-hoc
fashion, and have the potential to cause large-scale destruction and injury.

It follows that for SoS that are being designed and procured now, safety has a high
priority. This is particularly true for SoS incorporating new kinds of autonomous com-
ponent systems, such as Unmanned Aerial Vehicles (UAVs).

This paper is concerned with one aspect of the safety process for SoS, specifically
hazard analysis. This is an important first step in any risk-based safety process. Unfor-
tunately, performing hazard analysis on SoS is not easy. Quite apart from the novelty
of these systems, and the commensurate lack of examples to work from, the charac-
teristics of SoS raise serious difficulties. For example, ad hoc communications mean
that information errors can propagate through the system by many, and unpredictable,
routes.

The following section describes the problems faced in SoS hazard analysis, then
section 3 proposes multi-agent simulation as a possible solution. An approach to per-
forming hazard analysis, using simulation combined with machine learning, is outlined

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 R. Alexander, D. Kazakov, and T. Kelly

in section 4, and the results of a case study are presented in section 5. Section 6 com-
pares the work with existing applications of simulation in safety and section 7 discusses
the issue of model fidelity.

2 The Problem of SoS Hazard Analysis

A definition of the term ‘SoS hazard’ was given by the authors in [3] as “Condition of an
SoS configuration, physical or otherwise, that can lead to an accident.” It follows that
SoS hazard analysis is the process of finding those conditions that can lead to accidents.

The problems faced by safety analysts when attempting to perform hazard analysis
on SoS fall into two key categories: the immediate issue of failure effect propagation,
and the more pernicious category of ‘System Accidents’. It has been noted by Kelly and
Wilkinson, in [4], that these problems are present in conventional systems, too, but the
characteristics of SoS exacerbate them.

2.1 Deriving the Effects of a Failure

In a conventional system, such as a single vehicle or a chemical plant, the system bound-
ary is well-defined and the components within that boundary can be enumerated. When
a safety analyst postulates some failure of a component, the effect of that failure can be
propagated through the system to reveal whether or not the failure results in a hazard.
This is not always easy, because of the complexity of possible interactions and variabil-
ity of system state, hence the need for systematic analysis techniques, automated anal-
ysis tools, and system designs that minimise possible interactions. To make the task
more tractable, most existing hazard analysis techniques (such as FFA and HAZOP)
deal with only a single failure at a time; coincident failures are rarely considered.

In an SoS, this problem is considerably worse. The system boundary is not well de-
fined, and the set of entities within that boundary can vary over time, either as part
of normal operation (a new aircraft enters a controlled airspace region) or as part of
evolutionary development (a military unit receives a new air-defence system). Conven-
tional tactics to minimise interactions may be ineffective, because the system consists
of component entities that are individually mobile. In some cases, particularly military
systems, the entities may be designed (for performance purposes) to form ad-hoc group-
ings amongst themselves. Conventional techniques may be inadequate for determining
whether or not some failure in some entity is hazardous in the context of the SoS as a
whole.

2.2 System Accidents

Perrow, in [5], discusses what he calls ‘normal accidents’ in the context of complex
systems. His ‘Normal Accident Theory’ holds that any complex, tightly-coupled system
has the potential for catastrophic failure stemming from simultaneous minor failures.
Similarly, Leveson, in [6] notes that many accidents have multiple necessary causes. In
such cases it follows that an investigation of any one cause prior to the accident (i.e.
without the benefit of hindsight) would not have shown the accident to be plausible.
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An SoS can certainly be described as a ‘complex, tightly-coupled system’, and as
such is likely to experience such accidents. This line of reasoning can be taken slightly
further, however, to note that a ‘normal accident’ could result from actions by each of
two entities that were safe in themselves, but that are hazardous in combination with
each other and the wider SoS context.

This latter issue is more immediate when we consider that many SoS will incor-
porate systems drawn from multiple manufacturers, developed at different times, and
operated by multiple organisations. The evolutionary and dynamic nature of SoS struc-
tures means that a system designer will not necessarily ever have a clear picture of the
entire SoS context.

2.3 Dealing with These Problems

It follows from the above that in order to perform effective hazard analysis for SoS, there
is a need for a hazard analysis approach that can find the hazards in a system containing
multiple autonomous entities that interact in complex and continually changing ways.

To some extent, this situation is comparable to that faced by the military modelling
and simulation community when they attempted to build models that incorporated ex-
plicit modelling of entity behaviour rather than only high-level mathematical abstrac-
tions. Their solution was the development of multi-agent simulation, which is discussed
in the next section.

3 Multi-agent Simulation

Ferber, in [7] provides the following definition of multi-agent simulation: “Multi-agent
simulation is based on the idea that it is possible to represent in computerised form the
behaviour of entities which are active in the world, and that it is possible to represent
a phenomenon as the fruit of the interactions of an assembly of agents with their own
operational autonomy.”

Similarly, Ilachinski, in [8] offers “[Multi-agent simulations] consist of a discrete
heterogenous set of spatially distributed individual agents, each of which has its own
characteristic properties and rules of behaviour.”

Typically, the value of multi-agent simulation is asserted in comparison to the math-
ematical models that have traditionally been used in biology, economics and military
analysis. Ferber notes that agent-based models allow the integration of quantitative vari-
ables, differential equations and symbolic rules into agent behaviour, thereby providing
a means to exploit qualitative observations as well as quantitative information [7]. He
also notes that such ‘micro-worlds’ allow analysts to experiment by modifying agent
behaviour and adding new agent types, which is not possible with high-level mathe-
matical models. Most significantly for our purposes, Ferber comments that such simu-
lations “make it possible to model complex situations whose overall structures emerge
from interactions between individuals”.

Ilachinski, in [8] makes a similar point: in a multi-agent simulation, different levels of
behaviour can be observed. Analysts can examine both the top-level emergent behaviour
and the low-level interactions between individual agents. That is, the simulations can
both predict overall behaviour and explain why it occurs.
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4 Hazard Analysis Method

The approach described in this paper combines simulation and machine learning. The
SoS to be analysed is represented by a model in which each major component of the
system (such as an aircraft or radar station) is represented by an agent. Each agent is
described in terms of its physical capabilities (such as the ability to fly at a certain
speed) and its rules of behaviour. The simulated system is then placed in a simulated
environment (containing, for example, terrain and hostile forces) and given orders and
objectives for an appropriate military mission.

The resulting simulation model will have dynamics that are too complex to under-
stand merely by watching it run. It is therefore necessary to derive other models that
characterise its behaviour and that are simple enough for humans to read and under-
stand.

This derivation is achieved by defining a set of deviations over the simulation model,
and exploring the set of combinations of these deviations. Machine learning allows an
automated analysis of the resulting output data, resulting in a set of comprehensible
rules that relate deviations to accidents occurring in the simulation. The intention is that
these rules will guide analysts towards identifying some hazards in the system that they
otherwise would have missed.

The five steps of the method are described in the following five sections.

4.1 Build Model

The approach is potentially open to multiple modelling approaches, but the effective-
ness of the analysis process will hinge on the type of model used. Models that are used
for traditional performance analysis can focus heavily on capturing the overall function-
ality of the system. Models for hazard analysis need to capture much of the mechanism
of the system’s operation. This is for two reasons:

– The system needs to be manipulated in ways which the original designers might
not expect (particularly in ways which relate to implementation rather than to func-
tional specification), and the model has to respond appropriately.

– Deviations will be derived by studying how the system works and applying a set of
heuristics. Mechanical detail that is not modelled cannot be used in this process.

Inter-agent mechanisms (communications protocols, operating procedures, roles) are
more important than intra-agent mechanisms (since the internal behaviour of agents will
already be well understood). In order to capture the necessary inter-agent mechanisms,
agent actions and communication must be made explicit. Also, as discussed by Hall-
May in [9], an important aspect of the system model is that of ‘policy’ or ‘operational
doctrine’, the set of rules or procedures that attempt to constrain the global behaviour
of the system.

Further discussion of modelling approaches is outside the scope of this paper. The
important issue of model fidelity, however, is addressed in section 7.
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4.2 Specify Deviations for Model

Given the model specified in the previous step, a set of possible deviations must be
derived. There are many ways to do this, but the one that is used in this paper is to
identify the channels over which interactions can occur between entities. Examples
of channels include network wires, radio transmissions or simply being located in the
same airspace. A set of guide words is then used to hypothesise some failure modes of
these channels. Each combination of some entity exhibiting some failure mode on some
channel provides a single distinct ‘deviation’.

The use of guide words for deriving deviations is based on their usage in HAZOP
[10]. By combining the words used in HAZOP with those from the computer-system
analysis method SHARD [11] we can derive the set shown in Table 1.

Table 1. Channel deviation guide words

Guide Word Interpretation

Omission The interaction does not occur
Commission The interaction occurs when not expected
Early The interaction occurs too early
Late The interaction occurs too late
Too much A parameter associated with the interaction is increased
Too little A parameter associated with the interaction is decreased
Conflicting The interaction conflicts with another interaction on the channel

4.3 Run Simulation to Explore the Effects of Deviations

Given a model and set of possible deviations, the simulation must now be run and the
results recorded. In an ideal world, a run would be performed for every possible combi-
nation of deviations, but this is not realistic because of the number of such combinations
entailed by even a small deviation set. An efficient approach is to work through the low-
order subsets of the deviation set. Given a priori knowledge of the probability of each
deviation, it will be possible to show that the higher-order subsets represent wildly im-
probable circumstances.

4.4 Learn Rules

The task of machine learning can be viewed as one of function approximation from a set
of training instances expressed as input-output pairs; given a function specification (a
set of named input parameters (the ‘features’ used for learning) and a particular form of
output value), the algorithm learns the relationship between combinations of parameter
values and the output of the target function for those values.

For our purposes, the features represent causes and the output values are the con-
sequences within the simulation. All the features used in the current work are explicit
parameters that are given to the model, and the target function is the set of accidents
that occurs during the simulation run. For example, in an air traffic scenario, the anal-
ysis might determine that when the parameter “collision warning distance” is reduced
below 8km, it becomes possible for the accident “mid-air collision” to occur.
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Many machine learning algorithms are described in the literature; a summary is pro-
vided by Mitchell in [12]. Machine learning is used here to produce descriptive rather
than predictive models, i.e. models are learned, but they are not then used to classify any
new instances; rather, they are studied by human analysts who wish to understand how
the system behaves under various failure conditions. Learning approaches that produce
‘black box’ outcome models (i.e. models that are not very amenable to human com-
prehension), such as Bayesian Learners or conventional Neural Networks, are therefore
not very helpful for this purposes of this work..

Learning approaches that do produce comprehensible models are more valuable in
that they allow the engineer or analyst to inspect the learned model to discover why it
considers a particular parameter combination to be hazardous. This is analogous to the
analyst observing the hazardous result produced by the original (simulation) model and
then inspecting the event log, or watching the run via visualisation, in order to determine
why the model produced the result that it did.

4.5 Investigate Rules

Once some set of rules has been learned from a system model, safety analysts need to
study and make use of them. This is a two stage process:

In the first stage, the analysts must try to understand the rules, and how they relate
to the modelled system (rather than the model itself). Important questions at this stage
include “Why did the algorithm learn this rule?”, “Is this realistic, or is it merely a sim-
ulation artifact?”, “Why (in terms of the mechanisms of the model) are these particular
features/causes so important?”

The output of this first stage includes a revised set of rules, which have been manually
filtered (to remove rules that have no apparent correspondence to the real system) and
augmented with explanations and references to particular simulation runs which express
the behaviour well.

In the second stage, analysts must consider the implications of the identified hazards
for the real system. Key questions are “Is this hazard serious and plausible enough to
warrant our attention?” and “What are we going to do about it?”.

5 Example

Our hypothesis is that the machine learning algorithm will learn rules that cover all
the hazards that were identified by manual analysis. The learning tool that has been
used here is a decision tree learner using the C4.5 algorithm as described by Quinlan
in [13]. The algorithm was chosen because it is fast, stable implementations are readily
available, and the resulting rules are human-comprehensible. The implementation used
was that provided by the data mining tool WEKA (described by Witten and Frank in
[14]) under the name of ‘J48’.

The example uses a simulation model of a military unit engaged in anti-guerilla
operations. An overview of the elements in the system is shown in figure 1. Notionally,
it contains four types of entities: Unmanned Air Vehicles (UAVs), Unmanned Self-
Propelled Guns (UGVs), transport helicopters and infantry sections. As the infantry
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move only by air, a helicopter with troops on board is represented by a single entity.
Infantry sections never appear on the map on their own.

Fig. 1. The System

A single scenario has been implemented for this model, in which the units in the sys-
tem must detect and neutralise a number of static enemy positions. The UAVs move on
pre-defined search paths, and when they detect an enemy presence they contribute this
to a shared picture which is available to all friendly entities. Responding to this shared
picture, the artillery entities fire on the enemy until the UAVs report that it is adequately
weakened. Once such weakened enemies are identified, the helicopters move in to take
control of the areas on the ground. It is at this stage that the safety risk manifests, as the
manned helicopters move across the terrain and engage the enemy.

5.1 Hazards in the Model

For a given system it is relatively easy to determine the types of accidents that can occur,
since the set of entity types is finite and there are only a few ways in which an entity can
be involved in an accident. Simple examination of our model reveals that the following
accidents are possible:

– Accident 1 — Helicopter collides with another helicopter
– Accident 2 — Helicopter collides with a UAV
– Accident 3 — Landed helicopter is hit by artillery fire
– Accident 4 — UAV collides with a UAV
– Accident 5 — Helicopter hit by enemy fire

By running the model with all combinations of the possible entity-failure pairs (some
260000 in number), and studying the results manually, we have been able to identify
the following hazards in the system:

– Hazard 1 — Friendly forces in field of fire of inaccurate artillery
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– Hazard 2 — A UAV is in shared airspace with no ability to detect other airborne
entities

– Hazard 3 — A helicopter moves into anti-aircraft range of a strong enemy unit

Hazard 1 can cause accident 3, hazard 2 can cause accident 4, and hazard 3 can
cause accident 5. In the runs that we have performed, given the deviations that we have
implemented (in this case only entity-level failures), there are no instances of accidents
1 and 2. We have not, therefore, been able to identify any hazards that would lead to
them.

5.2 Learning Rules from the Model

In section 4.5, we noted that heuristics can be used to identify and respond to issues
implicit in the learned rules. In this case, the heuristic could be described as ‘single
point of failure’ (i.e. the failure of one entity allows a variety of accidents to occur), and
an appropriate response would be to re-evaluate the roles in the system to redistribute
some of the functionality of the entity, or to insulate other systems from the effects of
its failures.

The model has approximately a quarter of a million combinations of possible devi-
ations. For this simple model we can learn from the complete set of runs, but this will
not be practical for larger examples, so it would be misleading to do so here. Therefore,
only the first 8000 runs were performed. Most of these include only small numbers of
failures, which is appropriate given that larger numbers of failures become increasingly
improbable.

As noted above, it was possible to determine by examination the accidents that were
possible. These then provided learning ‘targets’; for each such target, a decision-tree
model was learned to predict the combinations of failures that would cause that acci-
dent to occur. The failures that provide the learning features for the decision tree were
expressed as entity-failure pairs; one example would be “UAV4 has suffered the failure
loss of communications”. The list of the accidents that were used as learning targets,
together with the labels used for them in the learning tool, was as shown in Table 2.

Table 2. Possible accidents

Accident Label

Helicopter X hit by enemy fire ehX
Helicopter X hit by friendly artillery fire ghX
UAV X collides with UAV Y cuXuY
Helicopter X collides with UAV Y chXuY

Enumerating these combinations gave 36 targets to learn models for. In practice,
many of these accidents were not manifest in the available runs and so no rules were
generated for them. For each accident, the 8000-run input set was processed into a table
with boolean values for each of the 18 entity-failure pairs and a label of either ‘safe’ or
the code for the target accident. Those runs that contained accidents, but not the current
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target accident, were discarded. This ensured that the data set contained positive and
negative examples. The data set was then given to the learner, which was told to learn a
decision tree for predicting the label from the parameters.

As a simple example, consider the accident ‘cu1u4’ i.e. where UAV 1 collided with
UAV 4. Of the 8000 runs, 192 were safe and another 2048 contained cu1u4. These runs
were labelled appropriately while the rest were discarded, and the resulting data set was
given to the tree learner.

The resulting decision tree is shown in figure 2. The rule expressed here is that if
UAV 4 exhibits the failure ‘noairsensors’ then this collision will occur, otherwise it will
not. This learned rule is 100% accurate with respect to the training data; it perfectly
captures the implicit model that was fed to it. Whether this is the optimal inductive
inference will require further testing effort; see below.

Fig. 2. Decision tree learned for accident ‘cu1u4’

A more complex model is that for the accident ‘gh1’ (One of the UGVs hits heli-
copter 1). The learned tree is shown in figure 3.

Fig. 3. Decision tree learned for accident ‘gh1’

Although the tree notation is attractive for simple models, it becomes increasingly
unwieldy as models become larger. As noted by Quinlan in [13], a decision tree can be
‘flattened’ into a set of production rules. The tree for figure 3 has five leaf nodes and
therefore corresponds to the following five rules:

1. ¬lossofcommsfailure uav2 ∧ ¬lossofcommsfailure uav4→ safe
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2. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4 ∧
¬firespreadwidely gun3 ∧ ¬fireskewnorthwest gun3→ accident

3. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4 ∧
¬firespreadwidely gun3 ∧ fireskewnorthwest gun3→ safe

4. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4
∧ firespreadwidely gun3→ accident

5. lossofcommsfailure uav2→ safe

In order to assess the importance of each rule, we can assess the probability of it
occurring in practice by applying a priori probabilities to the individual failures and
setting a ‘threshold of concern’ beyond which a rule will be considered too improbable
to be worthwhile investigating. This is similar to the ‘incredibility of failure’ concept
used in the nuclear industry; the probability that is used for this is given in [15] as 10−7

per year of operation (equivalent to 10−11 per hour).
We will consider all failures to have a probability 10−3 of being present in any given

instance of the scenario, and set a lower threshold of 10−11. Rules with a lower proba-
bility than that will be discarded as implausible.

It can be noted that this approach is somewhat naı̈ve; for example, we have assumed
complete independence between the failures. As the authors noted in [3], the nature of
systems of systems is such that many apparently independent failures have common
causes. It can also be noted that, within an entity, one failure may cause (or indeed
mitigate the effects of) another. We have assumed a simple flat probability for each
individual failure; these probabilities would much better justified if they came from
entity-level safety analyses. For the context of this paper, however, these assumptions
suffice for illustration.

Table 3 summarises the results of this process. For each accident, it shows the number
of instances that contained that accident, the number of rules in the learned model (in
total/rules that led to the accident occurring), percentage accuracy of that learned model
(over the training set), the number of rules above the plausibility threshold and the
highest estimated probability of any of the rules occurring.

Note that the table only contains those accidents for which examples were found in
the first 8000 runs. Many of the accidents that could potentially occur (as apparent from
a simple examination of the simulation model) did not manifest in this result set.

For the five accidents identified in section 5.1, we have rules that correspond to three
of them. (Accidents 1 and 2, involving helicopters colliding with UAVs or other heli-
copters, do not occur in any of the runs we are working with). These three accidents
correspond to the three hazards that were previously identified, as shown in Table 4.

At the beginning of this section, we gave our experimental hypothesis as “the ma-
chine learning algorithm will learn rules that cover all the hazards that were identified
by manual analysis”. It can be seen that the example supports this hypothesis, in that
we have at least one rule that describes a way to cause the accidents corresponding to
each hazard.

The question remaining is whether a safety engineer studying this simulation and
the learning results would be lead directly to discovering the hazards (as opposed to
merely noting that the accidents could happen). It is certainly plausible that the engineer
would discover the hazards, but to give a more affirmative answer in practice (with
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Table 3. Summary of the learned rules

Accident #runs #rules #plausible rules highest prob % accuracy

eh1 6657 54/33 19 9.98 × 10−4 96.7
eh2 6966 42/28 14 1 × 10−3 99.3
eh3 6738 56/35 21 1 × 10−3 99.1
eh4 6842 56/35 21 1 × 10−3 99.2
gh1 14 5/2 2 9.97 × 10−4 99.5
gh3 14 5/2 2 9.97 × 10−4 99.5
cu1u4 2048 2/1 1 1 × 10−3 100
cu4u3 3904 2/1 1 1 × 10−3 100
(other) 0

Table 4. Accidents found and the corresponding hazards

Label Accident Hazard

gh1, gh3 3 1
eh1-4 5 3
cu1u4, cu4u3 4 2

systems of realistic complexity) will require the application of the approach to larger
scale industrial case studies.

5.3 Investigating These Rules

The preceding discussion has looked at the experimental results from the perspective of
function approximation from failures to accidents. We can also look at how these rules
relate to the behaviour of the system as observed through visualisation of the simulation
runs. This is a necessary step in any case because these rules have only been learned in
terms of explicit simulation parameters, rather than in terms of the actual mechanisms
of the simulated system; they tell us (as simulation operators) how we can cause an
accident to manifest, but they don’t tell us what events within the simulation model
lead to that accident. This requires additional analysis, but the analyst has an advantage
in that he is aware of these learned rules and can look first at those runs that implement
the rule preconditions, knowing in advance what overall result he expects to see.

In the current example, we have derived a number of rules from the simulation that
describe how accidents can occur. For purposes of illustration we will follow up the
accident ‘gh1’ (UGV fires on helicopter 1). The rules for this are given in section 5.2 and
are shown in figure 3 as a decision tree. The rules specify that the necessary conditions
for this accident are that UAV 4 has lost all communications and that UAV 2 has not
suffered any loss of communications. Furthermore, UGV 3 must either be (a) firing
accurately (i.e. not skewed) or (b) have its aim spread widely.

Observing some of the runs in which this accident does occur, it is apparent that
removing UAV 4 from the data fusion loop (through communications loss) has an effect
on the order in which enemy positions are detected, and that this affects both the order
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in which the guns target the enemy positions and the order in which the helicopters fly
out to them. In order for this to be dangerous UAV 2 must be functioning normally; if
UAV 2 has suffered a communications failure then this changes the ordering of target
selection, and the corresponding outcome of airspace deconfliction actions, such that
the result is a safe state. (The failures specified for UGV 3 merely mean that it must be
able to hit the square it aims at).

Given this interpretation of the rules, is it plausible that this could occur in the real
world, or are we merely seeing a simulation artefact? Superficially, it would seem to
involve a rather unlikely combination of events (the helicopters being in just the right
position at just the right time) but it can be observed that the fire from the UGVs and the
movement of the helicopters are concentrated around specific locations (those occupied
by the enemy positions) and specific times (when the enemy are first revealed as valid
targets).

Finally, what changes can we propose to prevent this accident occurring in the future?
One apparent issue is that this accident depends heavily on a failure of UAV 4. We
studied the assigned flight path for UAV 4, and it was apparent that UAV 4 is particularly
significant in this context in that it covers a large number of enemy positions. One viable
option would be to change the UAV roles to ensure a more even distribution of coverage,
perhaps by introducing an additional UAV.

6 Existing Applications of Simulation in Safety

In that the current work uses simulation for safety-related analysis, it is similar to the
work of Blom et al. in airspace system safety [16] and Johnson in hospital evacuation
[17]. Both of those, however, use Monte Carlo techniques to acquire quantitative statis-
tical measures of the overall safety of a system under specified conditions. By contrast,
the work described in this paper attempts to determine the relationship of simulation
parameters to distinct (undesirable) modes of behaviour of the system; the aim is to
acquire a qualitative understanding of system behaviour.

Computer system simulation approaches (such as the DEPEND tool described by
Goswami et al. in [18]) generally focus on the interaction of software processes running
on networked processors. Our work is distinct from that in that it explicitly deals with
mobile physical entities interacting in physical space.

Perhaps the closest work described in the literature is that of Platts et al. in [19], in
which rules are learned which relate the behaviour of an unmanned aircraft to success
in a particular mission. The approach described in this paper is similar in that it involves
learning rules which relate entity behaviour to unwanted hazardous consequences.

7 Model Fidelity

In this work, the aim of the simulation is to identify ways in which hazards (and hence
accidents) could reasonably occur; in this respect, it is comparable to existing hazard
analysis techniques. Any hazards that are identified through simulation will require
further manual investigation — the simulation result is valuable in that it has drawn the
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analyst’s attention to the hazard and ‘made a case’ for its plausibility by means of the
recorded event trace.

A standard objection to the use of simulation for analysis is to question the fidelity
of the model with respect to the real system that it purports to represent. In this context,
it is important to note that almost all hazard analysis is performed with respect to some
model of the real system; it cannot be said to be performed on the system itself. This
is partly because the complexity of a real system is unmanageable (and much of it
irrelevant) but also because hazard analysis is important very early in the safety life
cycle, before the detail of the final system design is available.

Whilst there will always be concerns with the fidelity of the models we use, the use
of models and approximations remains an inevitable part of real-world hazard analysis.
One difference when using models for simulation, rather than for manual analysis, is
that in manual analysis there is great opportunity for pragmatic human interpretation,
thereby covering a multitude of deficiencies in any modelling approach adopted.

The use of simulation in our work is for what Dewar et al. describe in [20] as ‘weak
prediction’. They note that “subjective judgement is unavoidable in assessing credibil-
ity” and that when such a simulation produces an unexpected result “it has created an
interesting hypothesis that can (and must) be tested by other means”. In other words,
when a simulation reveals a plausible system hazard, other, more conventional analyses
must be carried out to determine whether it is credible in the real system. Therefore, the
role of the simulation analysis is to narrow down a huge analysis space into one that is
manually tractable.

8 Summary and Future Work

This paper demonstrates an approach to performing hazard analysis for complex sys-
tems of systems using a combination of multi-agent simulation and machine learning.
This was motivated by the successful use of multi-agent techniques in other fields of
modelling and analysis. As illustrated in the example in this paper, we have been able
to show that the approach can be used to identify hazards.

Challenges that remain to be tackled include the application of this technique to a
wide variety of systems and scenarios, and combining the results of simulation and
analysis across multiple scenarios and system configurations. There is also scope for
further experimentation with different machine learning algorithms and different tech-
niques for introducing deviations into simulation runs.
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Abstract. Cyber attacks are the core of any security assessment of ICT-
based systems. One of the more promising research fields in this context is
related to the representation of the attack patterns. Several are the mod-
els proposed to represent them; these models usually provide a generic
representation of attacks. Conversely, the experience shows that attack
profiles are strongly dependent upon several boundary conditions. This
paper defends that from the security assessment perspective, it is nec-
essary to integrate the knowledge contained in the attack patterns with
boundary knowledge related to vulnerability of the target system and
to the potential threats. In this paper, after a characterization of this
boundary knowledge, we propose an n-dimensional view of the attack
tree approach, integrating information on threats and vulnerabilities.
Moreover, we show how to use this view to derive knowledge about the
security exposure of a target system.

Keywords: Security assessment, Attack Pattern.

1 Introduction

Security threats are one of the main problems of this computer-based era. All
systems making use of information and communication technologies (ICT) are
prone to failures and vulnerabilities that can be exploited by malicious software
and agents.

In such a scenario, it has become imperative to perform proper risk assess-
ments, putting in evidence the main threats a system is exposed to and eventu-
ally the effectiveness of the possible countermeasures. There exist in the scientific
literature some interesting approaches to the risk assessment of ICT infrastruc-
tures [7,8]. These methodologies have as core target the analysis of the system
components, the interconnection between components and the set of “Security
Information” (i.e. vulnerabilities, threats, attacks and countermeasures).

Although these methodologies have proved useful for zeroing in the security
lacks of the analyzed systems, we believe that it is possible to improve the results
of risk assessments by a more attentive and precise description of the “Security
Information”.
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In particular, in every risk assessment framework, a prominent role is played
by the capacity to collect and analyze in a correct way information related to
the threats, vulnerabilities and attacks that, in some way may have an undesir-
able effect over the analyzed system. A key point in such a task is, obviously,
the description of the attack pattern which an attacker may put in act in order
to realize a threat. As we describe in the section 3, there are several models
proposed to represent them; these models usually provide a generic representa-
tion of attacks in term of steps needed in order to realize a, possibly malicious,
goal.

However, even if such models have prove useful in the task of attack documen-
tation gathering and sharing, the information they represent is too general and
abstract to be used with real advantages in a risk assessment analysis. In the real
world, the attacks profiles are strongly context dependent [1][2][3]. Therefore, a
traditional attack tree can be used as an “Arianna Thread”, which shows at high
level the typical steps an attacker follows to realize a particular goal. In order to
perform a risk assessment, it is necessary to map such an information on the real
context represented by the system under analysis. In other words in is necessary
to merge the information contained in the attack tree with the boundary knowl-
edge related to vulnerability of the target system, to the security properties of
the system and to the potential threats. In order to address this problem, we
propose in this paper an n-dimensional view of the attack tree approach, inte-
grating information on system, threats and vulnerabilities. Moreover, we show
how to use this view to derive knowledge about the security exposure of a target
system.

The paper is organized as follows: in section 2 we give some preliminary defini-
tion clarifying some basic concepts. In this section we give an overview of the risk
assessment methodology we adopted as reference for the attack tree integration
[8]. Moreover, in section 3 a State of the Art in Attack representation in given.
In section 4 we introduce the “Boundary Knowledge” related to threat, vulner-
abilities and system. Finally in section 5 we present in detail our n-dimensional
attack tree approach.

2 Preliminary Definitions

The work presented in this paper, was conceived to make better use of attack
trees in a risk assessment framework, enriching the trees with relevant infor-
mation. In this section we give some preliminary definitions related to security
concepts and we give an overview of the risk assessment methodology we adopted
as reference.

2.1 Security Definitions

A risk assessment for ICT infrastructure, is strongly connected with some con-
cepts traditionally derived from the field of computer security, in particular five
are the elements of interest that need to be defined: the concepts of Threat,
Vulnerability, Attack, Risk and Asset.
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As defined in [5] and in the Internet RFC glossary of terms, a Threat is a
potential for violation of security, which exists when there is a circumstance,
capability, action, or event that could breach security and cause harm.

A Vulnerability, by definition [10][11], is a weakness in the architecture
design/implementation of an application or a service.

An Attack can be identified as the entire process allowing a Threat Agent to
exploit a system by the use of one or more Vulnerabilities.

According to the ISO/IEC 17799:2000 [6], a Risk may be defined as the
probability that a damaging incident is happening (when a threat occurs because
of a vulnerability), times the potential damage.

Finally according with [6] an Asset is defined as something that has value to
the relevant stakeholders.

Roughly speaking we can think of these security entities as follows: an asset
is (a) somewhat having a relevance for an organization that (b)is the target of
a threat agent which, (c) by the use of some vulnerabilities, put in act (d) an
attack in order to (e) damage the asset and indirectly the organization.

2.2 Risk Assessment Methodology Overview

As claimed in the introduction, our objective is to make the knowledge con-
tained in an attack tree more useful for the assessment of risks. In literature
there exist several security assessment methodologies conceived for the analysis
of ICT infrastructure. We have chosen to adopt as reference the work of Masera
& Nai [8]. In the methodology proposed by Masera & Nai, the authors present
a risk assessment methodology tailored to the analysis of the ICT infrastruc-
ture of complex industrial systems. In the remainder of this section, we give a
brief overview of this methodology. More in detail, this methodology foresees
that in order to assess the security of a system, it is necessary firstly to pro-
vide a description of the system itself, of its components, of its assets, of the
interaction and the relationships among the components, the assets and the ex-
ternal world. Such a description (expressed analytically by tables) could be used
to identify in a systematic way the vulnerabilities affecting the whole system.
These vulnerabilities are then described by some significant parameters and used
to identify the threat that can be associated to the components and to the whole
system. From the analysis of this information, one can derive the evaluation of
the possible damages to the components, their propagation to the system and
the consequent attack pattern. All these operations are quantified in some risk
related indexes that are then employed to perform the evaluation of the security
failure risk and the countermeasures. The approach adopted is based on five
main steps. With regard to the topic of this paper, the attack assessment, in-
formation about attacks are represented by generic attack trees used to magnify
if a system could be considered prone to a target attack. Even if this can be a
good starting point in the evaluation of attack impact on a target system, we
believe that integrating such attack trees with the other information contained
in the target system description could give a great improvement to the analysis
of a system.
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3 State of the Art

In the scientific literature, there exist several methods/approaches used to de-
scribe security information related to attacks. Historically the first approach in
that sense were related to the creation of vulnerability database. Bugtraq [12]
is an example of such database. However, they are usually focused on the de-
scription of the vulnerabilities, lacking completely (but that isn’t their goal)in
the description of the way by which such vulnerabilities can be used in putting
in act complex attacks. The most promising approach allowing to capture such
characteristic is known in the scientific literature as Graph Based Attack Models
[13]. In this category two can be considered the main “Modeling family”: the
Petri Net based Models and the Attack and Fault Trees models.

A good example of the first category can be considered the Attack Net Model
introduced by McDermott [15] in which the places of a Petri Net represent
the steps of an attack and the transitions are used to capture precise actions
performed by the attackers. In this view, an attack is a pattern of states and
results less intuitive to represent an attacks are results of multiple application
of coordinated different attacks.

On the other hand, the second approach (attack trees), originated from the
world of fault analysis, in which a tree representation of the dependencies among
component of a system are used to identify the fault chains that potentially may
affect a system and allowing then to evaluate the propagation of a fault through
the system [16]. In this context, Bruce Schneier [17] proposed to use a similar
techniques based on the use of expansion trees to show the different attacks that
could affect a system. Attack trees can be used to capture the steps of an attack
and their interdependecies. As showed in figure 1, the building blocks of attack
trees are nodes. Every node is used to model the steps of an attack or attacker
actions and the root node of the tree represents the goal of the attack [16][17].
Such an approach has been largely used and improved. For example Daley, Lar-
son & Dawkins [18] have proposed to introduce a layering approach (stratified
node topology)in the attack tree design, in order to separate the attack tree
nodes based on functionality (Event level, State Level etc.). Moreover, in such
a context, recently, Jajodia, Noel and O’Berry [4] have introduced an approach
based on the concept of vulnerability topological analysis, allowing, starting from
the combination of modeled attacker exploits, to discover attack paths.

However, to our knowledge, no much effort has been spent to enforce the link
existing between an high level attack tree and its projection in a real case.

4 Boundary Conditions

As we claimed in the introduction, a “traditional” Attack Tree constitutes a
good way to collect and share information about attacks, in term of the logical
steps and requirements needed in order to realize a malicious scope. However,
in a real case, an attack profile (and its exploitability) strongly depends on the
particular context in which it is applied. In a risk assessment context, we need,
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DoS against web server

Attacker fingerprints target
web server

No traffic shaping policy
definedWeb server is not vulnerableWeb server is vulnerable to DoS

by resource consumption

Attacker injects flooding
packets

Attacker injects malicious
packets

Web server unreachable

OR

AND

Fig. 1. Example of Schneier style Attack Tree

in order to analyze the system exposure, information about attacks, but, on the
other hand, we need to evaluate the impact and the plausibility of such attacks.

Let consider the example in Figure 1. It represents the attack tree of an
hypothetical Denial of Service against a web server. As it is possible to see two
are the main branches of the tree: one related to a resource consumption scenario,
in which the DoS is obtained by consuming all the resources of the webserver,
and one related to a code based vulnerability allowing to crash the web server,
making it unreachable. This is a typical attack tree description. However under a
risk assessment perspective, this attack tree mainly lack in providing two relevant
information:

– Plausibility: how plausible is the attack (in general) or, in more detail,
how plausible is the exploitation of a vulnerability used in the attack or how
plausible is an operation considered needed in order to perform the attack.

– Severity: how severe is the attack in term of potential impact.

For example, referring to the figure 1, if a firewall exists between the Inter-
net and the Web Server and if such a firewall drops systematically every type
of network scan packet (e.g. icmp packets, nmap generated packets etc.), the
plausibility of the fingerprint operation has to be considered low. Moreover, if
for example the Web Server is not affected by known code based vulnerability,
the related branch has to be considered slightly implausible.

All available information of this type can be associated to the attack tree
at the origin, evaluating for example that a particular attack configuration, for
example, may generally be very improbable or that the damage caused by this
attack is in average low.

When an attack tree is used in a security assessment, we need to be able to
reevaluate these values; what is equivalent to make a “projection” of a general
attack to a target, specific case. The benefits deriving from this projection are
intuitively two:

1. Pruning of the analysis input: reassigning plausibility values on the
light of a particular scenario allows, as described previously, to eliminate
improbable branches, reducing then the complexity of the analysis.
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2. Precision of the analysis: reviewing the severity and the plausibility val-
ues taking advantage of information deriving from the the target scenario,
allows to improve the value of the risk analysis in term of precision and
reliability.

The attack projection, as showed in Figure 2 is the result of the intersection
of information coming from:

– The attack tree.
– The system description.
– The description of the adverse environment.

System Descri
ptio

n

Threats Description

Abstract
Attack Three

Vulne ra
biliti

es D
esc

rip
tio

n

Fig. 2. Logical view of an attack tree projection

In what follows, we characterize, making use of the information coming from
these sources, an “Attack Tree Projection”.

4.1 System Description Information Source

Every Risk Assessment framework, departs from a system description phase. As
we claimed in section 2, we adopt as reference the framework proposed by Masera
et al. in [8] and the system description proposed by the same authors in [9]. In
such a description, as showed in figure 3, the system is decomposed in terms
of components, subsystems, services (provided by components or subsystems),
security policies, roles, stakeholders and flows between these entities. Moreover
the concept of Asset and Information Asset [19] are captured.

Under the perspective of integrating attack trees with information derived
from the system description, three are the most relevant objects which can easily
concur in the attack projection:

– Components: they host vulnerabilities and they are the target of several
operations described by an attack tree. For instance, if in the example of



Through the Description of Attacks: A Multidimensional View 21

 

Fig. 3. Logical view of an n-dimensional attack tree

Figure 1 in the system under analysis there isn’t a WebServer the attack be-
came completely implausible. Information about the absence of a particular
component in a system is a precious information allowing to prune all the
branches of an attack tree that take in some way advantage of the presence of
this component (see next section for more clarifications). Moreover, a com-
ponent may have associated some security configurations (e.g. access rules
of a firewall). Even these information may concur to the attack projection
(let us take as example the previous one related to the network fingerprint
in the WebSever DoS).

– Services: They are usually one of the possible final target of an attack. If
some intermediate nodes of an attack tree contain a “Statement” regarding
a service not provided by the target system, it is necessary to reevaluate the
plausibility and the severity of the branch containing the statement

– Security Policies: They represent information about the operations al-
lowed to and on a particular object (component, stakeholder, user, etc.).
The knowledge of the security policies may allow to understand whether
some operations described in an attack tree can be performed in a target
scenario. Moreover, strong or weak policies may have an effect in the plau-
sibility and severity evaluation of the attack tree.

In order to take advantage of this knowledge contained in the system descrip-
tion, it is necessary to introduce a formal representation of these objects which,
as described in section 5, can be easily made compatible with the ndimensional
attack tree definition.

Definition 1. A component ci is defined as a tuple < Name, Desc, Lov, Sbid,
Conf State, sec pol > where:
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– Name is the name of a component.
– Desc is a free text describing the component.
– Lov is the list of the known vulnerabilities affecting the target component.
– Sbid is the id of the subsystem containing the component.
– Conf State is the specification of the component configuration.
– Sec pol is the list of security policies associated to the component

From a logical point of view, a component of a system is the atomic entity of
every system description. It could be a hardware element, a software element,
or, to simplify the view, an actor which has tasks and provide services in the
system.

At the same way, for our scope, a security policy can be defined as follows:

Definition 2. let O = {o1...on} be the universe of the operation, let be C =
{c1...cm} the universe of the actors (component) of a system, we define a tuple
< oi, cj > as a “allowed operation” tuple. A security policy can be defined as a
set Sck

= {< oi, cj > |oi ∈ O, cj ∈ C} representing the collection of the operation
allowed on the component ck.

The previous definition is, of course, too simple to completely represent the
concept of security policy, but this is out of the scope of the paper. What is
relevant in this context is to emphasize the connection between this concept and
the projection of the attack tree.

A service can be defined, according with [9] as follows:

Definition 3. A service S is a tuple < Name, SdL, FL, value, SP > where:

– Name identifies in a unique way a target service
– SdL (Services dependence list) is the list of the services concurring in the

realization of the target service.
– FL (Function logic) is a logical expression (First order) describing the re-

lation between the target service and the services contained in the previous
lists.

– V alue it represent the value associated to a target service.
– SP is the list of the security policies applied to the service.

Information about services are extremely useful in the attack tree projection
and reevaluation, for two reasons: (1) information about the associated security
policies, service dependences and function logic can be used can be used to
validate the feasibility of some attack steps (see next section) having then an
impact on the plausibility evaluation; (2)information about service dependencies,
function logic and service value can be even used to understand the real severity
of a target attack in a target scenario.

4.2 Adverse Environment Information Source

For evaluating the plausibility of an attack, we need to take into consideration
information about the Adverse Environment. In light of such knowledge, the
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plausibility of an attack tree can be reevaluated in order to obtain a more precise
risk exposure evaluation. Information about the adverse environment can be
usually organized in two classes:

– Threats Information: as claimed in Section 2, a threat is a potential viola-
tion of security [11]. The description of a threat, includes information about
the type of threat (natural, human etc.), the description of the threat agent
(e.g criminal or terroristic organizations, hackers, newbie hackers etc.), their
resources etc. This type of information is very useful in the evaluation of the
attack plausibility. If we know for example that at the present time there
is a criminal organization having interest in damaging a particular service
provided by the system under analysis we must consider more plausible all
the attacks having as final scope the interruption of such service. Moreover
information about their motivation, their skills and resources could improve
the plausibility evaluation.

– Vulnerability Information: information about vulnerabilities associated
to a target component, new tools allowing to make easier the exploitation of
a particular vulnerability, has obviously a strong impact in the evaluation of
the plausibility of an attack tree.

As in the case presented in the previous section, in order to take advantage
of the knowledge represented by information on threats and vulnerabilities, it
is necessary to introduce a formal representation of these objects which, as de-
scribed in Section 5, can be easily made compatible with the ndimensional attack
tree definition.

Definition 4. A Threat Agent can be defined as a tuple < Name, Desc,
Sk, Rs > where:

– Name identifies the threat agent
– Desc contains a description of the threat agent
– Sk describes the skills potentially owned by the threat agent
– Rs describes the resources owned by the threat agent (in a qualitative manner)

A Threat then can be described as follows:

Definition 5. A Threat is defined as a tuple < Name, Type, TA, Mot,
Category, plausibility, severity, dis caused > where:

– Name identifies in a unique manner a threat
– Type internal, external, both
– TA contains a Threat Agent tuple
– Mot describes the motivation aiming the threat agent
– Category Natural (meteo, geological.), technological, human... etc.
– Plausibilityindex it gives a measure of the plausibility of the threat consid-

ering information in possession by the analyst
– Severityindex : it gives a measure of the impact the target threat may have

on a certain system
– dis caused: list of the disservice potentially caused, where a disservice is the

negation of a service.
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In the same way we can now formally define a vulnerability.

Definition 6. A vulnerability can be described by a tuple < Name, Type, Desc,
V uln ref, Comp list, Count list, Sev, Exp, res > where:

– Name:identifies in a unique manner a vulnerability
– Type: it identifies a type of vulnerability (e.g. buffer overflow etc.).
– Desc: it contains information about the vulnerability as : how to take advan-

tage of it etc..
– V uln ref : it indicates the Vulnerability Reference Number (rif. MITRE or

CVE).
– Comp list: list of the components affected by the vulnerability.
– Count list: it contains the list of the countermeasures.
– Sev: it contains an index representing the severity of the vulnerability.
– Exp: it contains an index representing the exploitability of the vulnerability.
– res: a description of the resources needed to exploit the vulnerability

In this respect, the elements of particular relevance for the “attack tree pro-
jection” context, are the exploitability of a vulnerability, the plausibility of the
threat, the motivation, the resource and the skills of a threat agent (which have
an impact in the plausibility evaluation of an attack) and the threat and vulner-
ability severity. All of them have an impact on the severity of an attack.

5 N-Dimensional Attack Tree

An attack tree is a particular graph that describes the steps of an attack process.
As we explained in Sections 1, attack trees were introduced to describe and share
information about attack patterns. For this reason they are not usually focused
on a target scenario. On the other hand in a risk assessment perspective, in
order to obtain a more precise and detailed analysis, it is useful to have attack
trees focused on the target scenario. We believe that these context−relevant
trees can be obtained creating a projection of the generic, abstract trees on the
target scenario by the use of the “boundary knowledge” presented in Section 4.
In order to do this, two relevant points need to be improved:

1. The structure of the attack tree must be enriched with information on the
target system and the hypothetical threat agent allowing to characterize bet-
ter the different phases of an attack. Moreover, we note that in a traditional
attack tree (as presented in [17]) all nodes have the same semantic meaning
from a structural point of view. This constitutes a problem in linking the
proper boundary knowledges to the correct nodes.

2. The knowledge contained in the attack tree must be normalized in order to
be compatible with the knowledge derived by the system description and the
adverse environment description.

In what follows, we present an attack tree definition that considers the previ-
ous points.

More in details, attack tree nodes can be categorized into three main classes:
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1. Operations: any step representing an operation made by the attacker in
order to perform the attack.

2. Vulnerabilities: any step describing a vulnerability required in order to
realize the attack.

3. Assertions: any step representing assumptions, results, or requirements
characterizing the attack process.

All these basic steps are linked by the use of logical ports (AND, OR, and NOT).
Figure 4 gives an example of the use of these different elements.
This categorization allows to specify the different semantic meanings of the

attack process steps. However, in order to improve points (1) and (2) it is neces-
sary to define well the information associated to these object classes. Formally
we can define these objects as follows:

Definition 7. An Operation is a tuple < Name, Actor, Target, Action, Desc,
P laus, Sev > where:

– Name identifies the operation
– Actor identifies who performs the action

The VPN Server is
TCP based

Firewall allows
network fingerprint

VPN Server is
Ipsec based

No Traffic shaping policy
defined on VPN server

VPN Server is Vulnerable
to a Resource Consumption

Attack

Attacker runs TCP Flooding
DDoS attack

VPN Server vulnerable to
DoS, ref. CAN-2004-0590

Attacker runs attack
verify_x509cert DoS

Attacker runs TCP Flooding
DDoS attack

Attacker knows Finger Print
Techniques

Attacker acquires
information about FTP

Server

Attack: DoS against VPN
Server

Fig. 4. An attack tree in which the squares represent Assertions, the circles represent
Vulnerabilities used and the hexagons represents operations made by the attackers
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attacked system

Attack
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Vulnerability
information

Fig. 5. Multidimensional attack tree

– Target identifies the target of the action
– Desc describes the operations performed
– Plaus & Severity are the plausibility and severity index associated a priori

to the operation

Definition 8. An Assertion is a tuple < Name, Desc, logic exp > where

– Name identifies the assertion
– Desc contains a description of the assertion
– logic exp contains eventually a logical function to be validated in order to

consider true the assertion

A Vulnerability is defined in Definition 6. Moreover, every attack tree has
a special top node identifying the attack and containing a global evaluation (a
priori) of its severity and its plausibility. As it is possible to see, adopting such a
representation scheme we obtain a “semantic attack tree” with nodes that gains
a contextual−relevant meaning. Moreover, this schema take into account the
boundary knowledge described in the previous section. This schema can be then
used to obtain a projection of the attack tree related to the target scenario. The
projection task can be summarized as follows:
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1. All the Operations of the attack tree are validated considering the configu-
ration of the components involved, the associated security policies and the
services provided by the components.

2. The Vulnerabilities used in the attack tree are validated considering the
vulnerabilities associate to the respective components of the system.

3. The Assertions are validated considering the security policies, the informa-
tion related to the threats (resources needed to realize vulnerabilities etc.)
and the information related to the services.

4. Taking into consideration the validation results, the attack tree is pruned.
5. The values of plausibility and severity of the remaining attack tree are revised

considering the associated boundary information.

The result of this process is then an attack tree which is the projection of
the original and general attack-tree on a target scenario. Moreover, due to the
normalization of the attack tree, it is possible to directly link the boundary
information with the related nodes of the attack tree, obtaining in this way
a multidimensional attack tree containing both information related to the at-
tack, information related to the attacked system and information related to the
attacker (see Figure 5).

6 Conclusion

The risk assessment evaluation of an ICT infrastructure is a extremely complex
task that requires as input a complete picture of the security scenario to be ana-
lyzed. In this picture one must include the description of the attacks that realize a
threat against a system. Such attacks, in the real world, are strongly context de-
pendent. In order to develop a more realistic and precise risk assessment, we have
showed how information about the boundary knowledge derived by the system
and the environment description can be used in order to obtain an n-dimensional
view of the attack tree projected on a target scenario. This is a first attempt,
that of course needs further improvements. In particular, we plan to clarify in a
formal way how the severity and the plausibility associated to the attack trees
have to be modified in consideration of the boundary information. Moreover, we
plan to integrate this approach into the methodology proposed in [8].
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Abstract. This paper evaluates performance of scale-free networks in case of in-
tentional removal of their nodes. The distinguishing feature of this kind of net-
works (Internet is an excellent example) is the power law distribution of node 
degrees.  

An interesting behavior of scale-free networks, if node removal process is 
performed sufficiently long, is manifested by their migration to random net-
works. The main idea of our research is to quantify this process. In contrast to 
well explored parameters like: characteristic path length or clustering coeffi-
cient, we propose the new ones: mean maximum flow, centre of gravity of node 
degree distribution and other. To the best of our knowledge, these measures are 
proposed for the first time. Our results confirm that the migration process steps 
relatively fast. 

1   Introduction 

At present one can observe the increasing dependency of society on large-scale 
complex networked systems. This magnifies the consequences of failures of net-
work elements. In the past, failures – caused by system deficiencies such as soft-
ware errors or hardware corruptions, and accidents – meaning all the potentially 
damaging events such as natural disasters, were mostly considered. They were all 
assumed to be independent and random. However, many errors occur now as the 
result of an attack, often referred to as a man-made disturbance, directed toward an 
important network element, e.g. a node of extraordinary high degree (connected to 
many other nodes). 

Recent wide-area networks typically utilize fiber-optic technology and Dense 
Wavelength Division Multiplexing (DWDM). They offer potentially unlimited 
capacities (tens of terabits per second), and a failure of any network element may 
lead to large data and revenue losses [14]. This in turn amplifies the importance of 
assuring the network survivability, defined as the capability of a system to fulfill  
its mission in a timely manner, in the presence of attacks, failures or accidents 
 [7, 11, 13].  
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It turns out that the extent of losses after an attack strongly depends on network to-
pology. In particular, it can be shown that an attack can be significantly harmful to net-
works of irregular topology, for which the degrees of network nodes deviate much from 
their mean value. Many recent wide-area networks have the irregular topology. What is 
more, their topology is often scale-free, meaning that the node degree distribution fol-
lows the power law. This distribution implies the existence of nodes of an extraordinary 
high degree, called centers, being seriously vulnerable to attacks. Elimination of such 
elements considerably degrades the overall network performance. What is important 
from the practical observation, networks obtain scale-free character over time because 
of their growth and human factor. The latter exhibits in the rich-gets-richer rule [1] and 
implies strengthen of already well connected nodes. So, many well designed networks 
may transform themselves into the scale-free ones in just a few steps. 

The analysis of scale-free networks’ behavior under attack was a subject of several 
research works (see e.g. [3, 4, 5]). Number of other publications considered the re-
semblance of Internet topology to the scale-free one [8, 15, 17]. The static properties 
as well as the growth process of scale-free networks were also investigated [1, 2]. 
However, in almost all of those papers, similar metrics like: characteristic path length 
or clustering coefficient were used.   

Our recent works [9, 12] show, that the analysis of attacked networks should con-
sider the dynamics of the process. Different parameters of scale-free topologies ex-
hibit interesting properties, which allow to differentiate them from other classes of 
topologies. For instance, when analyzing the characteristic path length, scale-free 
networks seem to be rather random (having Poisson distribution of network node 
degrees), while the clustering coefficient parameter shows their resemblance to regu-
lar networks (of deterministic node degree distribution) [16].  

This paper evaluates the network performance after an attack. An interesting be-
havior of scale-free networks have been noticed. We have discovered that, if node 
removal process is performed sufficiently long, the topology of an attacked scale-free 
network migrates to the random one. The main purpose of our research is to quantify 
this process. In contrast to well explored parameters like: characteristic path length or 
clustering coefficient, we propose the new ones: mean maximum flow, centre of grav-
ity of node degree distribution and other. To the best of our knowledge, these meas-
ures are proposed for the first time. Our results confirm that the migration process 
steps relatively fast. 

The rest of the paper is organized as follows. Section 2 briefly presents topological 
features of wide-area networks. It also describes in detail the circumstances that make 
the topologies obtain the scale-free character. Section 3 outlines the negative effects 
of attacks on networks of the most important types of topologies. The proposed per-
formance measures are given in Section 4. Section 5 shows the assumptions for meas-
uring the performance of scale-free networks under malicious attacks. Results of 
modeling are presented in Section 6. 

2   Topological Features of Wide-Area Networks 

In the past, topologies of wide-area networks were mainly ring-based. In order to pro-
vide better coverage and self-healing behavior, multiple rings were further connected 
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together, as shown in Fig. 1. However, due to constant maturing of DWDM switching 
technology, mesh networks (typically of regular or random topology) are becoming 
more popular. It is expected that mesh topology will be the most dominant in the near 
future [18]. An example of a mesh wide-area network is given in Fig. 2. 
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    Fig. 1. Example artificial multiple ring network     Fig. 2. U.S. Long-Distance Network 

Many networks grow over time. Network growth is manifested by adding new 
elements (links or nodes). Since wide-area networks are frequently managed by sev-
eral operators (carriers), each one having individual policy, network growth is often 
uncontrolled. In particular, it means that new network elements are added according 
to the preferential attachment rule. Following such a rule, also known as the rich gets 
richer process, it is more probable for a new element to become attached to the exist-
ing network element of high rather than small degree. Barabási and Albert have 
shown this preference to be linear and defined the probability Π(ni) of linking a new 
node to the existing network node ni in [1] as: 

( ) =Π
j j

i
i n

n
n

)deg(

)deg(  
(1) 

Eq. 1 states that the highly connected network nodes are more likely to obtain new 
neighbors during the further network growth. This process finally causes the network 
topology to obtain power law characteristics of node degree distribution (P(k)~k-γ) [1]. 
Some nodes, referred to as centers, thus become highly connected, while the others 
tend to have a few, if any, neighbors. The power law distribution exhibits linearity in 
a log-log scale. Barabási and Albert called such power law networks scale-free, since 
their node degree distribution follows the power law, independent of the network size.  

Figs. 3-6 show the typical example evolution of an initial regular four-node  
network towards a scale-free one, after preferentially adding 4, 8 and 12 nodes, 
respectively.  

3   Topology-Dependent Impact of Attack on Networks 

Elimination of central nodes in scale-free networks is recently one of the most fre-
quently discussed issues [4]. Centers in such networks are connected to many other 
nodes mostly by links of high capacities and thus switch large amount of data. They 
are excellent goals of malicious attacks, performed to get the maximum destructive 
effect at minimum cost.  
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Fig. 5. A network with 12 nodes                       Fig. 6. A network with 16 nodes  
             (8 nodes added preferentially)                            (12 nodes added preferentially) 

Fig. 7 illustrates the destructive results of an attack on a scale-free network. An at-
tack eliminating only two centers (here: nodes 2 and 3), results in disconnection of 
our network, complete isolation of nodes 8 and 14 and separation of remaining two 
subnetworks. The bigger subnetwork shown in the right part of Fig. 7 is sparse, be-
cause a failure of a node is always equivalent to the simultaneous failure of all its 
incident links. 

However, the problem of attacks seems to be less dangerous for networks of either 
regular or random topology. It is because the degrees of nodes in such networks do 
not deviate so much from the mean value, as in the scale-free ones. Centers are hardly 
visible here, so attack results in such networks are less destructive, compared to 
scale-free networks. 

Fig. 8 illustrates an attack on a network of a random topology (left part of Fig. 8), 
which results in a failure of two nodes (5 and 7, respectively), as given in the right 
part of Fig. 8. When attacking such a network, it is less likely for the remaining nodes 
to loose connectivity with other network elements. 
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Fig. 7. A scale-free network before and after an attack (left and right part, respectively) 
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Fig. 8. A random network before and after an attack (left and right part, respectively) 

Conclusion: if nodes are eliminated intentionally, scale-free networks appear to 
loose functionality much faster than random or regular networks. 

4   Performance Measures of Scale-Free Networks Under Attacks 

In order to capture the dynamics of attacked scale-free networks, a new way of net-
work comparison is introduced. We aim at proving that when increasing the number 
of removed nodes, the properties of the biggest connected domain (often referred to as 
spanning cluster [4]) of remaining network are changing: it tends to migrate towards 
the random network.  

The previous works, considering quantitative random and scale-free topologies 
comparison, proposed the parallel examination of both types of attacked networks, 
proving the differences in their behavior. In this paper, a more distinguishing way of 
measurement is proposed. Each time we generate a random network, with the number 
of nodes and edges being identical to the respective values of the spanning cluster that 
was obtained after attacking a scale-free network. This process is performed for each 
examined number of removed nodes, so that the continuous change may be observed. 
We are convinced that this way is more accurate, since every spanning cluster, ob-
tained in a process of scale-free network degradation, should not be compared to the 
random one destroyed in the same way, but to a network with the same values of 
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rough parameters. Only such research allows us to perceive the underneath differ-
ences between the examined networks. 

We propose the following measures for performance evaluation of our networks: 
a) average maximum flow 
b) cumulative distribution function of network node degrees 
c) centre of gravity of node degree distribution function 
d) spanning cluster size. 

Average Maximum Flow 
We consider a directed backbone network Γ(N,A), where: N – set of nodes; |N| = N; 
A – set of directed arcs; |A| = M. Existing arcs are numbered in a lexicographical 
order. Each arc em ∈ A is characterized by a set of weights like: length, cost and other.  

In order to calculate the average maximum flow, one should find first the set of 
maximum flows between all source-destination pairs of nodes, subject to flow con-
servation, capacity and non-negativity constraints. The flow is bounded by capacities 
of links defined in a network. The maximum flow is the sum of flows counted over a 
set of edges directing from a source to a sink such that no other set produces higher 
flow value. If we denote the maximum flows as: 

qpNqNpf qp ≠== ,,...,1,,...,1;*
,

 

then we define the average maximum flow as follows: 
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Cumulative Distribution Function (CDF) of Network Node Degrees 
Definition of the cdf is based on the probability distribution. For a discrete random 
variable which n-th outcome (here – the degree of a node) occurs with probability Pn, 
it is defined as follows:  

<
=

kn
nPkF )(  

(3) 

Where: k, n are node degrees; Pn is the probability of the occurrence of the degree of 
value n. 

We also introduce the VCDF parameter measuring distance between the cdf for 
a scale-free network and the cdf for a random network, defined as  follows: 

( )( )×−=
k

SFRDCDF kkFkFV )()(  
(4) 

where FSF(k) and FRD(k) are cumulative distribution function values of scale-free and 
random networks, respectively. 

Centre of Gravity of Node Degree Distribution Function 
Centre of gravity of node degree distribution function denoted Cg is defined as fol-
lows. Treating the number of nodes of degree k as a mass (mk) and the degree k as 
position, the following equation defines Cg: 
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where:    Pk is a probability of the k-th node degree 
Kmax is the greatest degree of a node of the modeled network and 
Ktotal is the sum of all the existing degrees of nodes. 

What is more, Ktotal is not counted for every particular node, but only once if there 
exists a node of such degree. The mass is neglected here (singular value used) because 
of better results in differing network types from each other. 

Spanning Cluster Size 
After the repetitive node removal process, the remaining nodes are often disconnected 
and form isolated islands. The spanning cluster size tells how many nodes belong to 
the biggest cohesive cluster in a network and is denoted as S. 

5   Modeling and Simulation Scenarios 

In each single experiment we generated scale-free networks containing N=1000 nodes 
with a given value of mean node degree kmean (which imposed a bound on the number 
of edges). Then networks were attacked until the number of 50 removed nodes (with 
granularity of 5 nodes) was obtained. 

According to the simulation scenario, we assumed 6 values of  kmean ∈ {2.4, 2.6,…, 
3.4}. For each value of kmean, 50 initial scale-free networks were generated. According 
to the described rules, each generated scale-free network was then attacked and the 
respective random network was generated. That gave the total number of 6600 
scale-free and random networks examined. Each network link was assumed to have 
equal and unitary capacity.  

All the numerical results were obtained using the environment of MATLAB and 
Pajek  software [10].  

6   Modeling Results 

In the first series of experiments we observed changes in cumulative distribution 
function of network node degrees during continued attack. Fig. 9 illustrates the cdf 
functions for scale-free and random networks for kmean = 2,4. Each point of each char-
acteristic was calculated as the average value for 50 networks generated for that value 
of kmean.  

Fig. 9a shows the initial characteristics for fully operational networks (number of 
removed nodes=0). The greatest node degree of scale-free networks exceeds 10 sev-
eral times, while in the random networks is around 7. Situation in Fig. 9b, where 10 
centers were attacked does not differ very much compared to the starting point (the 
greatest node degree of scale-free networks still exceeds 10).  

In contrast, when 20 centers are removed due to successful attacks (Fig. 9c), 
scale-free networks noticeably migrate to the random ones. This phenomenon achieves 
its maximum intensity in the next scenario, shown in Fig. 9d, where 30 centers have 
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been eliminated. Both cdf curves are almost the same. This means, that the scale-free 
networks almost became the random ones.  

When the destructive attack is continued, random networks are affected, but proba-
bly remain connected (Figs. 9e for 40 nodes removed and 9f for 50 nodes removed, 
respectively), but scale-free networks suffer to the catastrophic extent. They are cer-
tainly disconnected and separated into isolated subnetworks.  

In conclusion, we see that if the process of intentional destruction of scale-free net-
works is performed with the appropriate determination, it leads to the total destruction 
of the network infrastructure. Unfortunately, this is a relatively fast process and elimi-
nation of 5% of centers is sufficient to achieve the destructive result in a short time. 

Fig. 10 shows the values of the VCDF  parameter used to measure the distance of 
scale-free network topologies to random ones. The positive values of VCDF denote 
how much the scale-free topology differs from the random one. The value of VCDF = 0 
means no difference, i.e. the situation when for a given network, the node degree 
distribution exactly follows the Poisson law (characteristic to random networks). The 
obtained results prove that with increasing number of removed important nodes, the 
scale-free network topological characteristic evolves towards the regular ones. This 
process is faster for scale-free networks with low rather than high node degrees. 
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Fig. 9. Cumulative distribution functions for scale-free and random networks for kmean = 2,4 as 
the function of removed r nodes (r∈{0, 10, 20, 30, 40, 50}) 
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Fig. 10. Values of VCDF for various values of kmean  as the function of removed r nodes  
(r∈{0, 10, 20, 30, 40, 50}) 

In the next series of experiments we compared the dynamic changes of centre of 
gravity of node degree distribution for scale-free and random networks with 
kmean ∈ {2.4, 2.6,…, 3.4} as the function of removed (attacked) nodes.  

An interesting result is that in all scenarios illustrated in Fig. 11, the average centre 
of gravity of node degree distribution for random networks was around 5, while for 
scale-free networks it was systematically decreasing with increasing number of re-
moved centers. This last phenomenon was intuitively expected from the definition (5).  

Our original quantitative result is that we give values of the intersection of the two 
characteristics (for scale-free and random networks, respectively) for various 
kmean ∈ {2,4, 2,6,…, 3,4}. 

In Fig. 11a (kmean =2,4), the intersection occurs when about 24 nodes are removed, 
while in Fig. 11f this happens for about 41 nodes attacked (kmean =3,4). (The exact 
values are given in Tab. 1). 

This observation allows us to state the following conclusions:  

1. The process of scale-free networks degradation under intentional attacks is 
fast, but it is slower in networks with higher node degrees than in networks 
with smaller node degrees. 

2. Random networks are again much more resistant to intentional attacks than 
the scale-free networks and topology density does not play as important role 
as in scale-free networks.    

In the next series of experiments we compared average maximum flows for scale- free 
and random networks for kmean ∈ {2,4, 2,6,…, 3,4} as the function of attacked nodes 
(Fig. 12). Comparing pairs of characteristics for each value of kmean we may iden- 
tify similar phenomenon, as in Figs. 11. The intersection of average maximum 
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Fig. 11. Centre of gravity of node degree distribution for scale-free and random networks for 
various values of kmean  as the function of removed r nodes (r∈{0, 10, 20, 30, 40, 50}) 

Table 1. Numbers of removed r nodes at which the identical values of centre of gravity of node 
degree distribution for scale-free and random networks were obtained 

kmean = 2,4 kmean = 2,6 kmean = 2,8 kmean = 3,0 kmean = 3,2 kmean = 3,4 

r = 24 r = 30 r = 34 r = 38 r = 41 r = 41 

flows for scale-free and random networks occurs later (i.e. when more nodes are re-
moved) for grater values of kmean . This confirms our earlier observation. There is also 
good coincidence between the respective values of both kinds of characteristics (com-
pare results in Tab. 1 and Tab. 2, respectively). 

Another observation of Figs. 12 is that average maximum flows for fully opera-
tional networks are 20-25% better for random networks than for respective scale-free 
networks. This is due to topological features of networks.  

In random networks one can find more alternative routes for source-destination 
pairs than in scale-free networks. In fact, random network can carry more flows com-
pared to a scale-free network of the same size.  

The last series of experiments was performed to measure the spanning cluster size 
after attacking a scale-free network (Fig. 13). The results prove that the decrease of 
the size of the spanning cluster with increasing the number of removed important 
nodes is slower in networks with higher node degrees than in networks with smaller 
node degrees. 

The degradation of scale-free network topology connectivity after an attack seri-
ously affects the performance of higher layer networking protocols (e.g. application 
layer). In [12] we showed that the attack has the greatest negative effect, if the  
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Fig. 12. Average maximum flows for scale-free and random networks for various values of 
kmean as the function of removed r nodes (r∈{0, 10, 20, 30, 40, 50}) 

Table 2. Numbers of removed r nodes at which the identical values of average maximum flow 
for scale-free and random networks were obtained 

kmean = 2,4 kmean = 2,6 kmean = 2,8 kmean = 3,0 kmean = 3,2 kmean = 3,4 

r = 19 r = 27 r = 33 r = 33 r = 38 r = 39 
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Fig. 13. Spanning cluster size for scale-free and random networks for various values of kmean as 
the function of removed r nodes (r∈{0, 10, 20, 30, 40, 50}) 
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standard distance metrics is used to calculate the connection paths. However, we 
proved that when using the metrics based on other parameters like betweenness 
centrality, being more relevant to scale-free networks, the paths tend to omit centers 
and are thus more attack-resistant. The results from [12], presented in Fig. 14, show 
the aggregate numbers of broken connections as the function of the connection class 
of service. The higher the requested level of service continuity is, the decrease in 
the number of broken connections gets more visible. In the best case, about 67% 
less connections were broken for the class 0, compared to the results for the lowest 
class (5). 
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Fig. 14. Aggregate number of broken connections for 6 classes of service 

7   Concluding Remarks 

We have investigated the dynamics of processes of intentional attacks on scale-free 
networks. We showed that, if node removing is performed sufficiently long, the to-
pology of an attacked scale-free network migrates to the random one and we evalu-
ated the speed of this process. Our goal was to show the major threats. We also  
discussed a possible remedy. We proposed the new performance measures: mean 
maximum flow, centre of gravity of node degree distribution, average maximum 
flows. To the best of our knowledge, these measures are proposed for the first time. 
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Abstract. In this paper we describe our experiences in specifying and verifying a
complex cryptographic protocol actually used in industry that has been developed
for the area of chipcard based biometric identification systems. The main empha-
sis was placed on authenticity, integrity and confidentiality properties. The formal
analysis even led to several simplifying modifications of the protocol that facili-
tate the implementation, yet maintaining the protocol security properties we con-
sidered. The formal analysis is based on an inductive approach performed with
the help of VSE (Verification Support Environment). The heuristic based proof
automation techniques realized in VSE result in an average grade of automation
of 80 percent. Thus, VSE provides substantial support for the specification and
verification of cryptographic protocols.

1 Introduction

Protocols that (try to) provide certain security properties in open network environments
by using cryptographic primitives like encrypting, signing, and hashing, play a crucial
role in many emerging application scenarios. Chipcard based biometric identification
systems as they are considered in this paper are an example of a technology whose
common acceptance heavily depends on how far security properties like confidentiality
and authenticity can really be guaranteed by their designers. On the other hand the
analysis of cryptographic protocols has turned out to be error prone if carried out on
an informal basis. Justifiably so, the formal specification and analysis of cryptographic
protocols has become one of the fastest growing research area with a hardly manageable
variety of different approaches.

There is an enormous number of special purpose formalisms and semantic frame-
works for the formal analysis of security protocols. Most prominent candidates perhaps
are Strand Spaces and the Spi-calculus. Strand Spaces [18] as developed by Thayer,
Fábrega, J. C. Herzog, and J. D. Guttman separate a sequence of events into single
strands that were associated to one of the protocol participants. Security properties are
reduced to properties of graphs. Abadi and Gordon developed the Spi-calculus [19] as
an extension of the pi-calculus by cryptographic primitives. Protocols are represented
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as processes and protocol properties are formalized as equivalences on the behavior of
processes.

Some of the formal approaches published in the literature have actually been imple-
mented to provide tool support for debugging or even complete verification of protocols.
While debugging means that for fixed settings (scenarios) protocol runs of a given pro-
tocol are checked for the violation of certain security properties, verification guarantees
appropriately specified security properties for all possible runs in all possible scenarios.
In both cases protocol runs include events caused by an attacker whose basic capabil-
ities are given by the so called Dolev-Yao model which (rather implicitly) has been
introduced in [1].

As in other areas of formal methods in the formal analysis of protocols we roughly
distinguish between approaches that systematically enumerate possible runs of a given
protocol including the attacker events and those that perform an inductive proof about
protocol traces modeled as sequences of events. Although not being restricted to fi-
nite search spaces the former are most often used for detecting situations that indi-
cate security hazards (debugging). Using them for verification requires additional ar-
guments and restrictions. On the other hand successful proofs in the inductive ap-
proach, whose feasibility is argued for in this paper, directly provide security guarantees
while failed proof attempts in general do not lead to a uniform method for debugging
protocols.

Model-checking based approaches have been described in [20, 21, 5, 22, 7, 9, 8, 12,
13,10,15]. Basin [16] uses so called lazy data types in Haskell for treating infinite state
spaces. The protocol as well as the attacker are represented as infinite trees and model-
checking techniques for non-finite state spaces are used to explore the state space step
by step guided by suitable heuristics. This approach got severely improved by usage of
symbolic techniques [17] that allow to get rid of the before mentioned heuristics.

Deductive based approaches can be distinguished primarily by the kind of axioma-
tization and corresponding inference mechanism that is utilized. For example Weiden-
bach [11] builds on (first-order) automatic theorem proving as an inference engine to
analyze security protocols. The restriction to a special first-order monadic horn logic al-
lows to apply known decidability results. Therefore, a variety of properties can be auto-
matically (dis)proved. For example, the confidentiality of session keys for the Neuman-
Stubblebine protocol [14] as well as potential attacks to the protocol can be derived
automatically.

The methodology, VSE is based on, is closely related to Paulson’s approach [2]. In
this method main emphasis is placed on (observable) traces resulting from the execution
of protocol rules and attacker events that are axiomatized explicitly. Reasoning about
protocol traces and the knowledge gained by (Dolev-Yao) attackers given by sets of
messages heavily relies on inductive proofs on these very traces.

Briefly, the major features of this approach are: It allows for complete verification, it
is extendable (at the level of experienced users) by new types of protocol events and the
corresponding capabilities of the attacker (this turned out to be necessary for some ex-
amples), it supports the integration of protocol verification into the overall development
process, but requires user interaction.
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To technically cope with protocol verification problems we make use of the Veri-
fication Support Environment (VSE) system. It is a kind of case tool for formal soft-
ware development that closely combines a front end for specification (including re-
finement) and the management of structured developments with an interactive theorem
prover [23, 24, 25, 26, 27, 28, 29].

The integration of inductive protocol verification in VSE was a major part of the
Valicrypt project funded by the German Information Security Agency (BSI). These
techniques are currently used and extended in the Verisoft [3] project funded by the
Federal Ministry of Education and Research (BMBF).

In this paper we focus on the application of VSE to a cryptographic protocol analyzed
in the context of the Verisoft project. The techniques that were developed to lower the
burden of interactive proof generation to an extent that makes this method applicable
within the limited time frames of commercial developments are evaluated using this
example. The gained experiences were encouraging. Although the size of proof objects
and lemma bases became very large in the real world example that we discuss in this
paper we were able to basically keep track with the design team even in the various
revisions of the protocol.

The paper is organized as follows: We first present the general scenario with its cryp-
tographic protocol to be analyzed. Then we give a short introduction to the part of VSE
that is concerned with the specification and verification of cryptographic protocols. The
formalization of the protocol properties is presented in chapter four. The fifth chapter
illustrates how the properties were proven. Section six concludes the paper by mention-
ing the results and experiences gained with VSE and discussing future work planned in
this area.

2 CBI-Scenario

The Chipcard based Biometric Identification system (CBI) [4] consists of several com-
ponents (see Figure 1):

– A chipcard terminal for the communication between the chipcard owner and the
host system.

– A chipcard that holds the biometric reference template.
– A computer system (Host) that performs the biometric computations and that con-

tains the biometric feature extracting and matching unit.
– A biometric sensor for capturing the fresh biometric data as, for example, a finger-

print.
– A display that gives the user a feedback on the biometric matching.

The main parts of the CBI-System as shown in Figure 1 are the host and the chipcard.
They exchange confidential information that should not be disclosed to an attacker. In
order to secure this connection a cryptographic protocol as the one described in section
2.1 is used. A typical behavior of the system can be described as follows:

– The chipcard and the host perform a mutual authentication using pre-shared sym-
metric keys given in an initial step. After successful authentication a symmetric
session key is known to both parties. Otherwise, the session is terminated.
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Fig. 1. General structure of the CBI-System

– The host reads the error counter from the chipcard that indicates the number of
failed biometric verification attempts. If the error counter is not equal to 0 the host
writes the decremented error counter back to the chipcard.

– The host asks for the reference template and receives it together with the electronic
signature of the reference template generated by an administrator during the enroll-
ment phase.

– The host asks for the fresh biometric data and receives it from a biometric sensor.
– The host compares the fresh biometric template and the reference template. If the

verification is successful the host deletes the fresh biometric data and the reference
data, writes the default error counter back on the chipcard and reports the result to
the user via a display. In the negative case the host deletes the fresh biometric data
and asks for new biometric data. The host repeats this request three times at most.

The output of the CBI-System is “biometrically authenticated” in the positive and “bio-
metric authentication failed” in the negative case. It is clear that such an informal de-
scription is usually not enough to come up with a unique formal protocol specification.
This is the reason why there are usually several iterations involved in the design of such
a protocol. The next section presents a more detailed representation of the protocol and
this will be the basis for the formalization described in section 3.

2.1 Specification of the CBI-Protocol

Figure 2 shows the steps of the CBI-protocol used in the identification scenario in the
CBI-system described before. The words written in typewriter font represent con-
stants whereas the other symbols represent protocol variables, that can be substituted
by different instances in different protocol sessions. Encryption of a message m us-
ing a key k is written as {m}k and the generation of a message authentication code
for a message m using a key k is represented as MAC(k, m) in Figure 2. The keys
Kauth(CK, Host) and Kenc(CK, Host) used in the protocol are assumed to be shared
between the host and the chipcard.

Usually the communication between a card and a host is started by a reset and an
answer to reset (ATR) command. Since these steps only determine the communication
protocol and the communication partners, we omit these steps. In step one of the proto-
col the host (with identifier) Host sends its identifier to the card CK and asks the card



46 L. Cheikhrouhou et al.

1. Host −→ CK : askRandom, Host
2. CK −→ Host : Cnonce
3. Host −→ CK : {Rnonce, Cnonce, CK, Host}Kauth(CK,Host)

4. CK −→ Host : {Rnonce, Cnonce2, Host}Kauth(CK,Host)

5. Host −→ CK : {getSessKey, Cnonce2}Kenc(CK,Host)

6. CK −→ Host : {Cnonce2, KCH}Kenc(CK,Host)

7. Host −→ CK : askMC, MAC(KCH , askMC)
8. CK −→ Host : sendMC, MC, MAC(KCH , {sendMC, MC})
9. Host −→ CK : writeMC, (MC − 1), MAC(KCH , {writeMC, (MC − 1)}),

if MC �= 0
10. CK −→ Host : sendMC∗, (MC − 1), MAC(KCH , {sendMC∗, (MC − 1)})
11. Host −→ CK : {askRefData}KCH

12. CK −→ Host : {Data, {sha({Data, CK})}sk(Admin)}KCH

13. Host −→ Interface : askData
14. Interface −→ Host : Data
15. Host −→ Interface : Ok

Fig. 2. The CBI-Protocol

to generate a random value. This message allows the chipcard to determine the identi-
fier of the communication partner. In step two the card answers by sending a random
Cnonce representing a fresh nonce. The message in step three of the protocol contains
a challenge (a new nonce) Rnonce generated by the host that allows to authenticate the
chipcard in step four. The new nonce, Cnonce2, inserted in step four is used to prevent
replay attacks with the messages from the steps five and six. In step five the card CK
is asked by the host to generate a new session key. The card generate the session key
KCH and sends it back to the host in step six. This new session key is used for secure
messaging in subsequent steps. It ensures confidentiality and integrity of subsequent
messages. Steps seven, eight, nine and ten correspond to the read- and write-steps of
the error counter MC. This counter is used to restrict the number of trials for biometric
identification. In the rest of the protocol the digitally signed1 reference data and the
fresh biometric data are exchanged between the host, the chipcard and the biometric
interface. The presented protocol is formally analyzed with the help of the VSE system
that is described in the next section.

3 VSE - Cryptographic Protocol Specification and Verification

As part of the projects mentioned above an environment for the formal treatment of
cryptographic protocols has been realized in VSE. This environment includes

– a library that provides VSE theories for the basic notions that are needed to formal-
ize protocols,

– an extension of the front end of VSE supporting the user friendly specification of
individual protocols and the automatic generation of (individual) lemma bases, and

– a strategy for the interactive generation of inductive proofs about protocols.

1 This signature is created during the enrollment phase by a trusted third party, called Admin.
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3.1 Cryptographic Protocol Library

To specify and verify protocols (as the one presented in section 2.1) with Paulson’s
approach requires the introduction of abstract data types for agents, keys, nonces, mes-
sages, events, traces, etc. For these notions the VSE protocol environment provides a
structured set of predefined theories.

These theories are generic as they do not contain any definitions that refer to an
individual protocol. They include proofs that can be carried out at this generic level.

Some of the theories in this structure are specific for certain classes of protocols. The
heuristics used to support the user in proving the desired properties are theory dependent
and thus have to be compatible with the configuration chosen for a particular protocol.
A suitable configuration management takes care of these dependencies.

The following example specification is taken from the part of the library that defines
a protocol trace and a protocol event.

BASIC BProtocolTrace
USING BProtocolEvent;

NATURAL
/* Data type for protocol traces: */
ProtocolTrace = nullEvent WITH isNullEvent |

addEvent(lastEvent : ProtocolEvent,
preEvents : ProtocolTrace)

WITH isAddEvent
SIZE FUNCTION ELlength : ProtocolTrace -> NAT

BASICEND

BASIC BProtocolEvent
USING TMsgList_Thms
/* Data type for protocol events: */
ProtocolEvent = Says(sender : AgentT,

address : AgentT,
sentMsg : Msg) WITH isSays |

Gets(receiver : AgentT,
gotMsg : Msg) WITH isGets |

Notes(subject : AgentT,
noteMsg : Msg) WITH isNotes

BASICEND

In the basic theory BProtocolTrace2 the data type ProtocolTrace is de-
fined. Basically, traces are inductively defined by the constructors nullEvent (the
empty trace) and addEvent applied to an event and a trace where events are defined
in the basic theory BProtocolEvent. The data type ProtocolEvent defines the
possible events in a protocol trace. A Says event represents the sending of a message.
It consists of the sender, the address of the intended receiver and the message to be
sent. A Gets event represents the reception of a message. It consists of the receiver
and the received message. A Notes event describes the acquisition of some knowl-
edge by some agent. The complete cryptographic protocol library is about 1100 lines

2 The With clauses introduce predicates to check for certain data types.
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of specification and contains all definitions to specify cryptographic protocols and their
properties.

3.2 Specification of Protocols

In addition to the interactive generation of proofs the VSE system supports the user by
an interface that is structured according to the elements of certain development (speci-
fication) techniques. Since these frameworks are fixed the actual logical representations
including proof obligations are generated by the system. The user has no longer to care
about the correct (adequate) axiomatic treatment of certain development methods.

For protocol verification this interface was extended by a language called VSE-
CAPSL as an extension of CAPSL [6]. It implements a more user friendly way to
specify protocols. These protocols are translated automatically to VSE-SL resulting
in protocol specific theories. Such a theory contains the possible protocol steps defined
as a predicate (CBI in our example) over protocol traces:

CBINull : CBI(nullEvent);
CBIAdd : CBI(addEvent(ev,evs)) <->

(CBI(evs) AND (CBI_Says1(ev,evs) OR
CBI_Says2(ev,evs) OR CBI_Says3(ev,evs) OR
.
.
CBI_Says15(ev,evs) OR CBI_Oops1(ev,evs) OR
Gets_event(ev,evs) OR Fake_event(ev,evs)));

The events CBI Oops1 and Fake event represent the possible actions of an at-
tacker. An example for the specification of a protocol step (step two of our example
protocol) is as follows:

CBISays2 : CBI_Says2(ev,evs) <->
EX CK, Hst, Rsc:
(NOT msgIN(nonce(Rsc), used(evs)) AND
eventIN(Gets(CK, pair(num(askRandom), agent(Hst))), evs) AND
ev = Says(CK, Hst, nonce(Rsc)));

During the afore mentioned translation process the definition of certain proof-struc-
turing lemmata - like possibility, regularity, forwarding and unicity lemmata, that give
rise to the generic proof structure discussed in [2] - are automatically generated by the
system.

4 Formal Specification of the CBI-Protocol Properties

The main properties of cryptographic protocols that we are interested in are confiden-
tiality and authenticity. Sensitive data, like session keys or nonces that are often used
for the generation of new data items that are not used in the current protocol run, like
for example new session keys, have to be protected against a malicious attacker.

Authentication properties are often formulated depending on a particular participant.
For the protocol presented in section 2 the authentication property formulated in The-
orem 1 is formulated from the chipcard perspective. Authentication proofs are often
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based on authenticity properties of certain messages. The authenticity of such a mes-
sage is used to identify the sender of that message (see Lemma 1).

In addition to the top-level properties we have to prove so called structuring lemmata.
These are generated automatically by the system and used by heuristics. Their proof
uses the same basic scheme that is used for confidentiality and authentication.

In the rest of this section we list the main properties of the CBI-protocol.

4.1 Mutual Authentication

The CBI-protocol requires mutual authentication of the chipcard and the host (see sec-
tion 2). This mutual authentication is performed in steps two to four of the CBI-protocol
(see Figure 2). There, the chipcard CK authenticates the Host in step three. The mes-
sage of this step contains the challenge sent before in step two to the host and is en-
crypted by the shared key Kauth(CK, Host). The formalization of this property from
the point of view of the chipcard can be found in Theorem 1 where tr represents an
arbitrary protocol trace.

Theorem 1 (Authentication of the Host)
∀tr, CK, Host, Cnonce, Rnonce :

(tr ∈ CBI ∧ says(CK, Host, Cnonce) ∈ tr ∧
gets(CK, {Rnonce, Cnonce, CK, Host}Kauth(CK,Host)) ∈ tr
∧ CK /∈ bad ∧ Host /∈ bad)
⇒ says(Host, CK, {Rnonce, Cnonce, CK, Host}Kauth(CK,Host)) ∈ tr

After having sent a challenge Cnonce to a Host and after having received the corre-
sponding response, a chipcard CK infers that Host is the sender of this response, pro-
vided both participants are not compromised. The proof of this theorem uses Lemma 1,
that expresses the authenticity of the message in step three of the CBI-protocol.

Lemma 1 (Authenticity of Message in Step 3)
∀tr, Rnonce, Cnonce, CK, Host :

(tr ∈ CBI ∧
{Rnonce, Cnonce, CK, Host}Kauth(CK,Host) ∈ parts(spies(tr))
∧ CK /∈ bad ∧ Host /∈ bad)
⇒ says(Host, CK, {Rnonce, Cnonce, CK, Host}Kauth(CK,Host)) ∈ tr

In the same way, the Host authenticates the chipcard CK with the help of the message
in step four of the CBI-protocol. This message contains the challenge Rnonce sent in
step three and it is encrypted using the shared key Kauth(CK, Host). This property is
formulated from the point of view of the host in Theorem 2.

Theorem 2 (Authentication of the Host)
∀tr, Host, CK, Rnonce, Cnonce, Cnonce2 :

(tr ∈ CBI
∧ says(Host, CK, {Rnonce, Cnonce, CK, Host}Kauth(CK,Host)) ∈ tr
∧ gets(Host, {Rnonce, Cnonce2, Host}Kauth(CK,Host)) ∈ tr
∧ CK /∈ bad ∧ Host /∈ bad)
⇒ says(CK, Host, {Rnonce, Cnonce2, Host}Kauth(CK,Host)) ∈ tr

Theorem 2 relies on Lemma 2, that describes the authenticity of the fourth message.
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Lemma 2 (Authenticity of the Message in Step 4)
∀tr, Rnonce, Cnonce2, Host, CK :

(tr ∈ CBI ∧
{Rnonce, Cnonce2, Host}Kauth(CK,Host) ∈ parts(spies(tr))
∧ CK /∈ bad ∧ Host /∈ bad)
⇒ says(CK, Host, {Rnonce, Cnonce2, Host}Kauth(CK,Host)) ∈ tr

4.2 Secrecy and Integrity of the Session Key

The session key KCH is generated in step six of the CBI-protocol. It is used to ensure
the integrity of the misuse counter MC and the confidentiality of the reference template.

Theorem 3 (Secrecy of the Session Key)
∀tr, CK, Host, KCH , Cnonce2 :

(tr ∈ CBI ∧
says(CK, Host, {Cnonce2, KCH}Kenc(CK,Host)) ∈ tr
∧ CK /∈ bad ∧ Host /∈ bad ∧ notes(spy, {Cnonce2, KCH}) /∈ tr)
⇒ KCH /∈ analz(spies(tr))

Theorem 3 expresses that the attacker (spy) is not able to obtain a session key KCH

which is sent by a chipcard CK to a Host within a session of the CBI-protocol,
that is represented as (part of) an arbitrary trace tr resulting from the CBI-protocol.
The knowledge the attacker can acquire from a trace tr is represented here by the set
analz(spies(tr))3. The theorem requires that the protocol participants CK and Host
are not compromised, and that the session key KCH is not revealed accidentally to
the attacker4. In addition to the confidentiality of the session key, the integrity of the
message containing this key has to be analyzed. The integrity is guaranteed by the au-
thenticity of the message in step six, as formulated in Theorem 4. The integrity relies
on the assumption that honest participants never generate manipulated messages. Note,
that the theorem states that the session key KCH belongs to the session in which the
random Cnonce2 is created.

Theorem 4 (Authenticity of the Message in Step 6)
∀tr, Rnonce, Cnonce2, CK, Host, KCH :

(tr ∈ CBI ∧
{Rnonce, Cnonce2, Host}Kauth(CK,Host) ∈ parts(spies(tr)) ∧
{Cnonce2, KCH}Kenc(CK,Host) ∈ parts(spies(tr))
∧ CK /∈ bad ∧ Host /∈ bad)
⇒ says(CK, Host, {Cnonce2, KCH}Kenc(CK,Host)) ∈ tr

3 This formula represents all the knowledge an attacker can collect by observing all communica-
tions and analyzing the messages by for example decomposing them or decrypting them using
the right key.

4 This is usually represented by an ’oops’ event formally written as notes(spy, {Cnonce2,
KCH}). We consider such an ’oops’ event in the protocol model, to investigate whether re-
vealed session keys can be exploited to attack other protocol sessions.
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4.3 Integrity of the Misuse Counter MC

The misuse counter MC limits the number of failed biometric identification attempts.
As described before the host (i) checks that the current value of MC differs from
0 and (ii) decreases this value by 1 before accessing the reference template. In step
eight of the protocol the host accesses the current value of MC on the card. The in-
tegrity of the corresponding message guarantees that this value is not manipulated.
This again follows from the authenticity of the message in step eight as formulated
in Theorem 5.

Theorem 5 (Authenticity of the Message in Step 8)
∀tr, KCH , Cnonce2, CK, Host, MC :

(tr ∈ CBI ∧
says(CK, Host, {Cnonce2, KCH}Kenc(CK,Host)) ∈ tr
∧KCH /∈ analz(spies(tr)) ∧
MAC(KCH , {sendMC, MC}) ∈ parts(spies(tr)))
⇒ says(CK, Host, {sendMC, MC,

MAC(KCH , {sendMC, MC})}) ∈ tr

By proving this theorem it is guaranteed that the accessed value of MC belongs to the
current session and is not replayed from an earlier protocol run.

In step nine of the protocol, the host checks if the current value of MC differs from
0 and asks the chipcard to replace this value with the decremented value (MC − 1).
In order to verify that the value of MC is indeed changed accordingly on the card,
the host accesses the (changed) value of MC in step ten. Afterwards it compares this
value with the one accessed in step eight of the protocol. The integrity of the mes-
sage in step ten ensures that the changed value on the card is not manipulated. This
again is a consequence of the authenticity of the message in step ten formulated in
Theorem 6.

Theorem 6 (Authenticity of the Message in Step 10)
∀tr, KCH , Cnonce2, CK, Host, MC :

(tr ∈ CBI ∧
says(CK, Host, {Cnonce2, KCH}Kenc(CK,Host)) ∈ tr
∧KCH /∈ analz(spies(tr)) ∧
MAC(KCH , {sendMC∗, MC}) ∈ parts(spies(tr)))
⇒ ∃MC′ :

(MC′ = suc(MC) ∧
says(CK, Host, {sendMC, MC′,

MAC(KCH , {sendMC, MC′})}) ∈ tr ∧
says(Host, CK, {writeMC, MC,

MAC(KCH , {writeMC, MC})}) ∈ tr ∧
says(CK, Host, {sendMC∗, MC,

MAC(KCH , {sendMC∗, MC})}) ∈ tr)
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In addition to the authenticity the theorem sates that the current value of MC results
from a previous value MC′, which was sent by the chipcard CK in step 8 of the
protocol.

5 Verification of the CBI-Protocol in VSE

The verification of cryptographic protocols in VSE heavily relies on structural induction
on the protocol traces. The basic structure of proof tasks discussed below is common to
most induction provers. The heuristics sketched below implement an application spe-
cific refinement of this scheme to a certain type of proof goals and a given (but complex)
theory structure underneath that includes system generated lemmata.

All inductive proofs of protocol properties are structured into the following (proof-)
tasks. For each task there is a collection of heuristics5 applicable for application.

1. Determine the base case and the induction step for the trace structure.
2. Handle the base case.
3. Handle the step cases:

(a) Reduce certain formula to negative assumptions in the induction hypothesis.
(b) Add information individual protocol steps.
(c) Reduce the remaining differences and apply the induction hypothesis.

Currently there are five classes of heuristics used within the different proof tasks.

(1) A heuristic initializes the inductive proof by choosing the induction variable and
reducing the proof goals of the base case and the step case to a simplified normal
form.

(2) There are heuristics to close the proof goal of the base case by contradiction us-
ing pre-stated properties about the empty trace ([]). For instance, the assumption
says(CK, Host, {Rsc2, KCH}Kenc(CK,Host)) ∈ [] occurs in the base case of
Theorems 3, 5 and 6. This allows to close the goal using the appropriate axioms
about traces.

(3) A class of heuristics performs a difference reduction between the goal assumptions
and the corresponding sub-formulas of the induction hypothesis. To give an exam-
ple we consider the proof attempt of Theorem 3. The (underlined) difference be-
tween notes(spy, {Rsc2, KCH}) /∈ (ev#tr) and notes(spy, {Rsc2, KCH}) /∈
tr, that is part of the induction hypotheses, is eliminated by these heuristics. Thus,
the application of the induction hypothesis is prepared.

(4) Other heuristics apply the protocol definition by performing a case split according
to the protocol steps, and inserting the conditions of the corresponding protocol
step as additional goal assumptions.

(5) There are heuristics that try to derive the missing sub-formulas of the induction
hypothesis from corresponding goal assumptions, and this would allow to immedi-
ately close the resulting goals.

5 The developed heuristics extend the proof trees using tactics that apply the basic VSE inference
rules.



Verifying a Chipcard-Based Biometric Identification Protocol in VSE 53

Heuristics (1) - (5) allow us to close most of the proof goals within a proof attempt.
Usually however, some proof goals need further user interaction. These are closed with
the help of so-called proof-structuring lemmata, e.g., regularity lemmata and unicity
theorems [2]. For instance, the impossibility for a shared key Kenc(CK, Host) to be a
member of analz(spies(tr)) can be shown with the help of the so-called elementary
regularity lemma, provided the agents CK and Host are not compromised. This regu-
larity lemma states that such a shared key only belongs to the attacker knowledge if one
of the owning agents is compromised. Lemmata of this kind can be defined a-priori in
case that the considered shared key is not exchanged during the protocol steps. For the
CBI-protocol this condition indeed holds.

For secrecy proofs, the VSE system provides case-specific heuristics that can be
invoked by the user to handle complex goal situations. These heuristics are composed
of task-specific heuristics, which are also used in (5). They apply task-specific heuristics
interleaved with the application of proof-structuring lemmata.

As an example consider the proof of Theorem 3. One of the proof goals that re-
main open after the application of the heuristics (1) - (5) is concerned with protocol
step six. It represents the proof case where the event added to the protocol trace is
says(CK, Host, {Rsc2, KCH}Kenc(CK,Host))6. This proof goal is closed by a case-
specific heuristic as follows:

1. A task-specific heuristic transforms the assumption KCH ∈ analz(spies(says
(CK, Host, {Rsc2, KCH}Kenc(CK,Host))#tr)) by applying the symbolic evalu-
ation of analz. This results in two sub-goals depending on the membership of the
key Kenc(CK, Host) in the set analz(spies(tr)). In case that Kenc(CK, Host)∈
analz(spies(tr)) holds the assumption we started with is changed to KCH ∈
analz([KCH‖spies(tr)]), since the attacker is able to decrypt the message. In the
other case the assumption is replaced by KCH ∈ analz(spies(tr)).

2. The first subgoal is closed by a regularity lemma for the shared key Kenc(CK,
Host) together with the assumption that the agents CK and Host are not compro-
mised7.

3. The second subgoal gets closed by a task-specific heuristic that uses the assumption
KCH /∈ used(tr) (the freshness condition in protocol step six) contradicting the
assumption KCH ∈ analz(spies(tr)).

Case-specific heuristics result in open goal situations when the required proof-struc-
turing lemmata are not available. In this case the user obviously has to analyze the
resulting goal situations and to define the suitable lemmata.

6 Summary and Conclusion

The purpose of this paper is to present a case study that was performed during the
Verisoft project [3] by DFKI GmbH and T-Systems GmbH. The task was to design,
to specify and to verify a real world cryptographic protocol that is indeed used within

6 Note that this step introduces the session key KCH into the protocol run.
7 This is expressed by CK /∈ bad and Host /∈ bad.
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the context of biometric identification systems. As the basic machinery we used the
multi-purpose VSE verification framework.

During the verification process we proved 28 theorems where a typical theorem has
about 1600 proof nodes (steps) represented as a VSE proof tree. A proof of this size
takes (on Pentium M, 1.7 Ghz, 0.5 Gbyte) in general more than one day. The usage
of suitable application oriented heuristics (25 heuristics are currently implemented) re-
duced the burden of interaction substantially. With their help, the proof effort varies
between half an hour (for the less difficult theorems) and three hours. An average
grade of automation of more than 80% has been reached. This is encouraging, for it
shows that even industrial sized problems have become tractable. It turned out that
the VSE approach was not only able to cope with the design team and to deliver the
verified versions within the given time frame, but it additionally showed that some
simplifying modifications of the protocol won’t affect the protocol security proper-
ties. For instance, in a previous version of the protocol presented in Figure 2 step six
contained a message authentication code (MAC) to protect its integrity. We showed
that this MAC can be omitted without losing the integrity of the corresponding mes-
sage (see Theorem 4). Such simplifications have led to the protocol presented in this
paper.

The future work in this area is concerned with the improvement of the user sup-
port also in cases where new event types have to be added to the set of possible steps
in a protocol specification. In this case, the theory of Paulson [2] and the underlying
structuring lemmata have to be adapted accordingly. And of course, some effort is
still spent on the realization of new heuristics that lead to a further reduction of user
interaction.
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29. Werner Stephan, Bruno Langenstein, Andreas Nonnengart, and Georg Rock. Verification
Support Environment. In Dieter Hutter and Werner Stephan, editors, Mechanizing Math-
ematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th
Birthday, Lecture Notes in Computer Science, LNAI 2605, pages 476 – 493, Springer Verlag
January 2005, ISBN 3540250514



J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 57 – 70, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Exploring Resilience Towards Risks in eOperations in 
the Oil and Gas Industry 

Felicjan Rydzak, Lars S. Breistrand, Finn Olav Sveen, Ying Qian,  
and Jose J. Gonzalez* 

Centre for Advanced Manufacturing Technologies, Wroclaw University of Technology, 
ul. Lukasiewicza 5, 50-371 Wroclaw, Poland  
Tel.: +48 71 3204184; Fax: +48 71 3280670 
felicjan.rydzak@pwr.wroc.pl 

Research Cell “Security and Quality in Organizations”, Faculty of Engineering and Science, 
Agder University College, Grooseveien 36 NO-4876 Grimstad, Norway 

Tel.: +47 37253000; Fax: +47 37253001 
sqo@hia.no 

http://ikt.hia.no/sqo  

Abstract. The transition to eOperations in the Norwegian oil and gas industry is 
expected to yield up to 30% reduction in costs and 10% increase in production. 
But new information security risks are introduced by substituting traditional off-
shore operations like drilling, production, delivery, etc, mostly locally operated at 
the offshore platforms with increasing remote onshore operation via computer 
networks. In eOperations, security incidents can have serious safety and perform-
ance implications. Using a generic risk matrix from case studies and a conceptual 
system dynamics model we explore policies for resource allocation to production 
and to security/safety. The simulation model allows studying the resilience of the 
system depending on management policies and incidents as represented in the risk 
matrix. We show that there is a region where the system behaviour is very sensi-
tive to changes in resource allocation and to incidents. 

1   Introduction 

As more and more enterprises conduct a major part of their business from remote cen-
tres that are connected with computer networks, the distinction between safety and secu-
rity becomes blurred. eOperations (also called Integrated Operations), the case of re-
mote operations in the offshore oil & gas industry is particularly interesting. eOpera-
tions is a vision of enormous technological and organizational ambition, with huge 
financial expectations1 and an extremely complex risk landscape, where information 
security and HSE aspects are intertwined.2 Fig. 1 explains the basic operational land-
scape of eOperations and Fig. 2 depicts its evolutionary perspective. 
                                                           
* JJG is professor and head of the research cell “Security and Quality in Organizations” at 

Agder University College and adjunct professor at the Department of Informatics and Media 
Science at Gjøvik University College (both in Norway). 

1 The Net Present Value of the increased value facilitated by eOperations in the Norwegian 
offshore sector has been estimated as more than 40 billions US dollars. See http://www. 
olf.no/english/news/?32101.pdf, quoted 24 May 2006. 

2  Health, Safety and Environment. HSE is the acronym used in the oil & gas industry. 
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For such an inherently HSE risky sector as the offshore oil & gas industry, one 
powerful driver of the transition eOperations is to diminish the exposure of offshore 
personnel to potentially dangerous situations. If eOperations succeed, there should be 
less HSE incidents, and less staff that is affected if incidents happen. But then, it is 
likely that serious HSE incidents will derive from information security failures.  

A recent study by Johnsen et al. [1] has identified the occurrence of generic information 
incidents with potential of very serious to critical HSE implications in companies operat-
ing in the eOperations regime. They are: 1) Wrong situational awareness – The ICT sys-
tem does not give a comprehensive overview of the situation, creating wrong situational 
awareness among the involved actors; 2) Denial-of-service attack on a key communica-
tion component, delaying and stopping data communication between onshore and offshore 
– closing down operations. 3) Virus/worm is being spread closing down key components, 
disturbing the production process. 4) PCS down: The process control system is jammed or 
stopped because of failure in the network.  

 

Fig. 1. The operational landscape of eOperations (increasingly called “Integrated Operations”). 
Source: http://www.olf.no/?26567.pdf , quoted 24 May 2006.  

While pilot projects – such as Norsk Hydro’s transition from traditional operations to 
eOperations for the Brage field – seem to prove the technical feasibility and profitability 
of eOperations, their security (and with it the HSE aspect implied in potential security 
failures) is less certain. Can such remote operations in computer networks with COTS3 
software be conducted in a secure manner – now, one year from now, in 5-10 years?  

                                                           
3 Commercial-off-the-shelf. 
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Fig. 2. The transition will go beyond “Generation 1” (eOperations) to “Generation 2” (Inte-
grated Operations). Generation 1 is essentially the transfer of control from offshore to onshore 
centres. Generation 2 targets the integration of companies, that is, operators, suppliers, vendors, 
etc, with new digital services, new technologies and new business sectors. The time frames are 
about 2005-2010 for Generation 1 and 2008-2015 for Generation 2, with some overlap owing 
to different dynamics in different offshore fields. Source: http://www.olf.no/?26568.pdf , quoted 
24 May 2006. (Acronyms: OOC – Onshore Operation Centre; CCR – Central Control Room). 

The challenges are enormous, owing to the explosion in attacks and their increasing so-
phistication,4 the increasing burden from the exponential growth in internet users, many of 
them without proper security training, etc. Lipson [2; p. 15] has spelt out the dilemma: 
«The Internet’s original design goals never included the support of today’s mission-critical 
and high-stakes applications in business, energy, transportation, communications, banking 
and finance, and national defence. These high-stakes Internet applications pose enor-
mously tempting targets of opportunity for criminals, terrorists, and hostile nations, and 
they overly stress the technology designed for a more innocent time.» 

Oil and gas companies need to rely on the information security of the eOperations in-
frastructure. There is an obvious aspect: Without proper information security a serious 
incident (or a row of less serious incidents) can lead to costly downtime, with large 
potential implications for HSE aspects and even for the viability of eOperations. Since 
much of cost reduction in eOperations will be achieved by a significant reduction 
of staff, the uneasiness regarding the transition to remote operations based on digital 

                                                           
4 See the CERT presentation at http://www.cert.org/archive/pdf/k12_netcon_internet.pdf, Slides 

#9-10. 
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infrastructure has been strong. One of the concerns voiced by trade unions is the ques-
tionable quality of the information security and of its potential impact on HSE. 

The aspects of the security of eOperations mentioned above are central for our re-
search project. Our team is engaged in a major research project involving two Norwe-
gian research institutions and the Norwegian Oil Industry Association [3, 4].  

But in addition to the “obvious aspect” of security in eOperations discussed above 
there is a subtle and insidious aspect related to the resilience of eOperations to (major) 
disruptions. This is the subject of this paper, which is organized as follows: In the 
next section, Modelling Allocation Trade Offs in a Nutshell, we describe the causal 
structure of a conceptual simulation model of a generic example of offshore oil & gas 
company in the eOperations mode. Thereafter, in the section Policy Analysis we dis-
cuss several simulation scenarios for the occurrence of (major) security incidents. We 
show that the company can get trapped in a highly undesired situation of stable un-
derperformance following a significant security event. The reasons for such unde-
sired, stable underperformance are endogenous, that is, they are due to internal 
causes. Then we argue that a resilient state is possible and show that our hypothetical 
offshore oil & gas company can achieve a resilient and favourable state, i.e. a state 
where the company can resist to and recover from major security incidents. In the 
final section, Discussion, we discuss the implications of our findings. Briefly, al-
though our simulation model is simple and conceptual, we argue that resilience is a 
crucial aspect, an aspect that deserves more attention in the critical infrastructure 
sector, in particular, for the oil and gas infrastructure.  

2   Modelling Allocation Trade Offs in a Nutshell 

How can one evaluate such crucial aspects as the resilience of the oil and gas com-
pany toward major security incidents? This question is of central importance for eOp-
erations in the oil and gas industry, and for that matter for eOperations and eRemote 
processes in other branches.  

To understand salient issues for how trade offs of resource allocation to production 
and to security affect resilience we develop a conceptual model of a fictive oil & gas 
company. We assume that the transition from traditional production processes to 
eOperations has been completed. Accordingly, our model can be kept simple in that 
issues such as of deployment of new work processes, development of new know-how 
and introduction of new technology do not need to be considered. 

Consider a generic offshore oil & gas company operating in 2010. By then, the tra-
ditional offshore operations – such as drilling, production, delivery, etc are now being 
mainly operated from remote onshore centres (eOperations). Production has been 
increased and costs have been reduced through optimization of drilling and produc-
tion data, and closer collaboration between offshore and land-based personnel. Much 
of the cost reduction has been achieved by a significant reduction of staff.  

Our “nutshell model” represents the generic oil & gas company at a very high aggre-
gation level. The crucial aspects to model the impact of resources on operations are: 1) 
The oil & gas company generates a stream of revenue in proportion to its uptime. 2) We 
simplify the operational structure of the company by assuming that managers have to 
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pay attention to two aspects: production and security.5 3) Even highly profitable compa-
nies in the Norwegian offshore sector have to carefully consider the allocation of re-
sources to production and to security. In the era of globalisation, a highly competitive 
situation demand that expenses to create and maintain security must be justified by their 
return on investment. Hence, we assume that there is a strict management policy to keep 
costs down. One euro spent on resources for production means one euro less spent on 
resources for security, and vice versa. The trade-offs of this problem resemble features 
of process improvement. 
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Fig. 3. System dynamics model describing allocation of resources to production and to information 
security by a fictive offshore oil and gas company. We assume that the offshore processes are mainly 
run from onshore control centres (eOperations). Hence, information security is of paramount impor-
tance for operational aspects and HSE depends critically on information security. 

Hence, we adapt and extend an illuminating model that was originally developed 
by Repenning and Sterman [5] in the context of process improvement. Fig. 1 shows 
our stock-and-flow model.6 It consists of three stocks (Security Level, Resources to 
Production, Resources to Security) and the associated flows (Security Level Increase, 
Security Level Decrease, Allocation of Resources to Production and Allocation of 
Resources to Security).  
                                                           
5 When speaking of information security we have in mind the integrated aspect of security and 

safety, and by the impact of security incidents we mean the total aspect of HSE, performance 
downtime and intangibles, such as reputation. 

6 Developed with Vensim DSS, a system dynamics modelling tool from Ventana Co. (see 
www.vensim.com). The file with the model equations can be accessed at http://ikt.hia.no/sqo. 
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The core structure of the model is made up of four feedback loops. A basic under-
standing of the model dynamic behaviour can be obtained by analyzing the contribu-
tion of the four feedback loops determining the performance of the generic oil & gas 
company: 1) ‘B1: FOCUS ON PRODUCTION’; 2) ‘B2: FOCUS ON SECURITY’; 3) ‘R: REIN-

VESTMENT’; 4) ‘B3: SHORTCUTS.’ We explain the effect of the feedback loops by “walk-
ing through” the feedback loops. The plus and minus signs in the diagram refer to the 
polarity of the causal influence: A plus sign indicates a causal influence in the same 
direction; a minus sign indicates an influence in the opposite direction.7 A balancing 
loop is indicated by the ‘B’ preceding the name of the loop. Similarly, a “R” indicates a 
reinforcing feedback loop. Following the standards of system dynamics [6], the feed-
backs loops of a given kind (say balancing) are numbered 1, 2, … 

2.1   B1: Focus on Production 

The management of the generic oil & gas company has a target for production (De-
sired Production). If some disruption happens and the performance deteriorates (‘Per-
formance Gap’ increases) management might be tempted to increase production by 
greater ‘Pressure to do Work’. This leads to more resources for production (increase 
in ‘Allocation of Resources to Production’ and, hence, in ‘Resources to Production’), 
which then increases ‘Performance’ and decreases the gap between desired and actual 
performance (‘Performance Gap’ decreases).  

However, because of our assumption that the company imposes a limit on re-
sources to spend, the decision to force production occurs at the expense of resource 
allocation to security. To understand this, we explain the impact of the feedback loop:  

2.2   B2: Focus on Security 

The decision to increase ‘Pressure to do Work’ means necessarily that ‘Pressure to 
Increase Security’ diminishes. (This is shown in that ‘Pressure Allocation’ has a posi-
tive influence on ‘Pressure to do Work’ and a negative influence on ‘Pressure to 
Increase Security’, cf. Fig. 1). As a consequence, ‘Allocation of Resources to Security 
diminishes, which then detracts from ‘Resources to Increase Security’ and, with a 
delay (indicated by the double slash //) weakens ‘Security Level Increase’ gradually. 
Since security needs to be continuously maintained and improved in order to keep 
pace with new threats and increasingly sophisticated attacks, ‘Security Level’ starts to 
decay. Security has a positive impact on production (more security, less disruptions), 
hence, the decay of ‘Security Level’ leads to a decay in Performance’ (that is produc-
tion). Alternatively, if management had found a better balance for pressure allocation, 
both balancing feedback loops B1 and B2 would have acted to close the ‘Performance 
Gap’. The conditions for this to happen depend on the quantitative impact of the vari-
ous causal relationships. In other words, we need to simulate the model quantitatively. 
This we do in the next section, Policy Analysis.  

2.3   R: Reinvestment 

This reinforcing feedback loop strengthens whichever strategy the management ap-
plies. If the management opts for increasing resources to production at the expense of 
                                                           
7 For a more accurate definition of causal link polarity, see ref. [5] p. 139. 
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security, too much emphasis on production (increasing ‘Pressure to do Work’) dimin-
ishes ‘Resources to Increase Security’, which via less ‘Security Level Increase’, lower 
‘Security Level’, less ‘Effect of Security Level on Performance’ and a negative on 
‘Performance’ forces management to increase ‘Pressure to do Work’ to counteract a 
drop in performance caused by more security (and HSE) disruptions. 

If management had better balanced the allocation of pressure, the effect on security 
would have been the opposite one: More ‘Resources to Increase Security’, which via 
more ‘Security Level Increase’, higher ‘Security Level’, higher ‘Effect of Security 
Level on Performance’ and a positive on ‘Performance’ (less security and HSE dis-
ruptions). As we will show in the next section with quantitative simulations, it is in-
deed possible to achieve a balance in the allocation of pressure, so that ‘Performance’ 
(i.e. production) and ‘Security Level’ attain satisfactory levels. 

2.4   B3: Shortcuts 

The reason why a good balance between the allocation of resources to production and 
resources to security is difficult to achieve is the subtle effect of this third balancing 
feedback loop, i.e. cutting corners or taking shortcuts. All kind of disruptions can 
occur, e.g. bad weather conditions leading to loss of production. Whether due to secu-
rity and HSE incidents, bad weather, workforce strikes, … management react toward 
an undesired fall in production by “temporarily” increasing resources to production at 
the expense of resources to security. Indeed, the ‘B3: SHORTCUTS’ feedback loop 
seems like an expedient “solution” to recoup a loss. A shortage in ‘Performance’ 
leads to an increase in ‘Performance Gap’, which managements tries to close by what 
they think is a transient increase in ‘Pressure to do Work.’ An increase in ‘Pressure to 
do Work’ means less ‘Allocation of Resources to Security, less ‘Resources to Increase 
Security’, which allows more ‘Allocation of Resources to Production’ and increases 
‘Resources to Production’, thus increasing ‘Performance.’  

The reduction of resources to security causes a protracted reduction in ‘Security 
Level’. Abusing the shortcuts “solution leads ultimately to bad performance. By the 
insidious effect of the reinforcing loop ‘R: REINVESTMENT,’ management is trapped in a 
vicious circle. The intended temporary shortcut to improve production can lead to so 
many (or so severe) security and HSE disruptions that performance suffers more or less 
permanently. The quantitative simulations in the next section will exemplify this. 

3   Policy Analysis 

We explore policies for resource allocation to production and to security / safety, ap-
plied as a response to various types of security incidents. The types of security incidents 
range from 1 to 6 and they are specified in a generic risk matrix. Incident type 1 occurs 
very often but its results are insignificant, whereas incident type 6 is very rare and its 
consequences are catastrophic.8 It is important to recall that in eOperations, security 

                                                           
8 The generic risk matrix is expressed in our model through the parameters ‘Incident Type’, 

‘Incident’, ‘Severity of Incidents’ and ‘Effect of Severity on Performance’ (cf. Fig. 4). The 
values of these parameters are of the same order of magnitude as a typical risk matrix from 
our case studies for oil & gas fields in the eOperations mode.  
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incidents can have serious performance and HSE implications. The cost of one day of 
production downtime in offshore operations is estimated to be 13 million NOK (1.6 
million €) for small platforms and up to 200 million NOK (25 million €) for large plat-
forms. However, the short-term consequences of an incident in terms of its HSE impli-
cations and its financial impact are not the only results. There are cascading effects, 
resulting from the interdependences between the production processes, actors and man-
agement policies that might eventually lead to a highly undesired system state. 
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Fig. 4. Graphs illustrating the behaviour of the system resulting from a security incident (Inci-
dent Type = 3) occurring in week 5, following three production resource allocation policies 
described by the variable Pressure Allocation (Focus on Production scenario – Pressure 
Allocation = 0.9; Focus on Security scenario – Pressure Allocation = 0.2; Balanced focus 
scenario – Pressure Allocation = 0.6). 

Our policy analysis is based on simulation of the system dynamics model described 
in the previous section. The simulation starts in equilibrium. In week 5 our generic 
offshore oil and gas company experiences a mild security incident – incident type 3. 
As an immediate result, the performance is impaired and a gap between actual and 
desired performance arises. The managerial response to the situation may lead to three 
generic scenarios, presented together for comparison in Fig. 4. 

3.1   Focus on Production 

Usually, a backlog in production increases the pressure to work harder. That is, the 
alarming vision of lost production, and thus of lost revenue, prompts managers to 
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allocate more resources to production. Management expects that such decision will 
improve the performance and bring back the lost profitability. Fig. 4 shows the system 
behaviour illustrating this scenario (line marked Focus on Production). Indeed, as 
Resources for Production increase (Fig. 4, graph#3) Performance quickly recovers 
and already in week 6 it rises above the desired level (Fig. 4, graph#1). This enables 
the organization not only to close the performance gap but also to make up for lost 
production. However, even in profitable offshore oil and gas fields the resources for 
running operations are limited. Allocation of more resources to production occurs at 
the expense of Resources to Increase Security (Fig. 4, graph#4). Emphasis on produc-
tion in the aftermath of the incident detracts from a thorough analysis to identify the 
root causes of the security problem and to implement a proper solution. This leads to 
a decrease of Security Level (Fig. 4, graph#2). In contrast to production, which is 
precisely measured (e.g. in million barrels per day), security is not a tangible asset. Its 
status or level can not be easily determined, and thus security is difficult to manage 
accurately. The situation is even worse, since Security Level does not drop right away 
and the impact of cutting corners / taking shortcuts does not have an immediate effect 
on performance. High pressure to do work detracts from security maintenance and 
improvement, and security erodes at the technical and behavioural level (e.g. new 
patches or intrusion detection systems are not installed / maintained and also people’s 
security consciousness undergoes slow degradation, for instance USB sticks are not 
tested for viruses). Eventually, about week 45 Security Level reaches such a low value 
(Fig. 4, graph#2) that even though the maximum possible number of resources is 
dedicated to production, the performance is disrupted, it can not be sustained at an 
optimal level and it shifts to a highly undesired state (Fig. 4, graph#1). Bringing the 
performance from that state back to its initial level is a real challenge requiring ‘tech-
nical’ and ‘adaptive’ changes [7]. Technical changes correspond to know-how, pro-
duction processes, standards, procedures, and internal regulations whereas adaptive 
changes relate to people’s behaviour, the way they consider the safety issues and 
perform their tasks. 

3.2   Focus on Security 

An alternative policy to the previous one (Focus on Production), which can be im-
plemented in face of the incident and the following performance gap, is to prioritize 
security improvement. The system behaviour illustrating the second scenario is pre-
sented in Fig. 4 by line marked Focus on Security. Higher pressure to improve secu-
rity leads to more allocation of Resources to Increase Security (Fig. 4, graph#4). 
Now, 40% of the total available resources are dedicated to security improvement. 
Managers thoroughly investigate what happened and try to implement a proper solu-
tion to the problem, reducing the chance that similar situations might impair the  
production system again. As illustrated in Fig. 4, graph#2 Security Level rises and 
stabilizes at a high level. However, as in the previous scenario, allocation of resources 
to one area is at the expense of other operations. Resources for Production drops to 
about 60% (Fig. 4, graph#3). This leads to decrease in Performance over week 6 and 
7 (Fig. 4, graph#1). Over the next few weeks, though less Resources for Production 
are available, Performance recovers. This is due to the increase in Security Level, 
which to some extent leads to improved performance (once the security / safety issues 
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are properly treated, offshore operators are not drawn away from work as very often 
happens in the case of ‘rough and ready’, temporary fixes and solutions to security 
problems). Security itself is a necessary but not sufficient condition to keep produc-
tion in the oil and gas industry going. Performance increases but it levels off below 
the desired value (Fig. 4, graph#1). From the perspective of the company’s effective-
ness and profitability, the issue of security is overdone. On the other hand, Perform-
ance does not reach a highly undesired level, as happened in the previous scenario. 
The offshore oil and gas company is more resilient to various kinds of incidents and 
their severity. 

3.3   Balanced Focus 

The third policy of dealing with the incident is to weigh the pressure allocation and 
pay sufficient attention to both production and security improvement. The behaviour 
of the system following this policy is illustrated in Fig. 2 by line marked Balanced 
focus. As a consequence of the incident the pressure caused by performance gap is 
distributed both to do work and to increase security, so that Resources for Production 
and Resources to Increase Security remain at the initial level (Fig. 2, graph#3 and #4). 
Similarly the Security Level remains stable (Fig. 4, graph#2) – there are no changes in 
resources allocation which could lead to a deterioration of procedures and impair 
security / safety culture. This policy allows Performance to recover right after the 
incident to the desired level (Fig. 2, graph#1). The oil and gas company suffers a loss 
due to the unfulfilled production schedule, but still the performance does not shift to 
the undesired state and the security and safety issues are not overdone, as in the pre-
vious scenarios. 

Considering all three scenarios illustrated together in Fig. 4, the last policy seems 
to be optimal. However, this policy is difficult to execute. Managing and weighting 
the allocation of pressure can be imagined as operating at the razor’s edge between 
the effectiveness of and the security of eOperations. The very fact that assessing the 
actual level of security / safety in a company is not an easy task further indicates that 
the identification of an “optimal” policy is a daunting task. Furthermore, we can not 
assume there is only one incident. During one year of operations several incidents of 
varying severity can affect the oil and gas company. Hence, we are lead to a different 
approach, i.e. to investigate the resilience of the oil and gas company towards various 
types and numbers of incidents. This is the subject of the next two scenarios. One of 
them will investigate the behaviour of the system to a single, very severe incident. The 
second scenario will examine the influence of two incidents – type 6 and 3 according to 
the generic risk matrix. 

3.4   Single Incident 

The conditions of the model and the values of the model parameters for the purpose of 
simulation analysis are the same as for the third policy (Balanced focus scenario) de-
scribed above. However, this time, the incident affecting the oil and gas company ex-
periences in week 5, is assumed to be of type 6 – rare and very severe. The response of 
the system is presented in Fig. 5 by line marked Single incident. A more severe incident 
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leads to a larger performance gap. Now, 60% of the pressure to close the performance 
gap is allocated to production and the rest to improve security. As a result, there is a rise 
in Resources for Production (Fig. 5, graph#3) which is amplified by the shortcuts effect 
(since pressure to do work still is high, operators try to skip security improvement and 
spare some more time for production).  
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Fig. 5. Graphs illustrating the response of the system to various types and number of incidents: 
Single Incident scenario – Incident Type = 6 occurring in week 5, Pressure Allocation = 0.6; 
Multiple Incident scenario – Incident Type = 6 occurring in week 5 and Incident Type = 3 
occurring in week 17, Pressure Allocation = 0.6. Pressure Allocation describes the extent of 
allocation to production resources. 

At the same time, due to limited availability of resources, Resources to Increase Se-
curity drops (Fig. 3, graph#4). In such circumstances it is impossible to conduct a thor-
ough analysis of what happened and implement a proper solution. The effect of this is 
that Security Level is reduced (Fig. 3, graph#2). The dynamics of Resources for Produc-
tion and Security Level influences Performance, the sudden increase of Resources for 
Production over week 5 causes a boost in Performance at the start of week 6 (Fig. 3, 
graph#1). Unfortunately, the decrease of Security Level in the following weeks, limits 
the feasible production. Performance is reduced and at about week 15 it levels off below 
the desired value. Over the next weeks the effect of the incident is mitigated within the 
production system and Resources for Production and Resources to Increase Security 
return back to their initial values (Fig. 3, graph#3 and #4). Simultaneously, Security 
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Level is rebuilt, which enables more effective operations (Fig. 3, graph#2). Eventually at 
about week 48 Performance recovers to the desired level (Fig. 3, graph#1). This result is 
possible only because security / safety issues were recognised in the given policy and 
some attention was paid to improve the security level. However, the question is whether 
this amount of attention is really enough to sustain the desired functionality of eOpera-
tions in the oil and gas company. 

3.5   Multiple Incidents 

Assume that the above scenario is expanded and in addition from the incident type 6, 
which occurs in week 5, the company experiences a mild incident of type 3 in week 
17 (according to the risk matrix developed from case studies, such a scenario can 
happen). The behaviour of the system is illustrated in Fig. 3 by line marked Multiple 
Incident. Up to week 17 the dynamics of all variables is the same as in the previous 
scenario. However, once the production system is affected by the second incident the 
oil and gas company can be forced to recognize that the system is highly vulnerable. 
Again, the allocation of additional resources following the increase in the perform-
ance gap (Fig. 3, graph#3 and #4), impairs the already frail Security Level. It does not 
eventually recover to the initial level but shifts to a highly undesired state (Fig. 3, 
graph#2). With Security Level in such a frail condition, Performance is prevented 
from getting back to the desired value (Fig. 3, graph#1). The oil and gas company has 
lost the desired functionality of its production system. 

The final results of the last scenario (Multiple Incident) are similar to the outcome of 
the very first policy described in this section, illustrated in Fig. 2 by line marked Fo-
cus on Production. Adopting a concept of resilience, as defined by C. S. Holling [8] 
in the area of socio-ecological systems and further developed by Gunderson et al. [9] 
and Carpenter [10], we can argue that in these two cases the production system was 
not resilient – it was not able to absorb the impacts of incidents and therefore reorgan-
ized its configuration (relationships between agents and processes in the system and 
allocation of strategic resources). The resilience in that context is defined as the ca-
pacity of the system to undergo disturbance and still maintain its functions, structures 
and controls. 

Resilience itself is not always a positive property, however. The highly undesired 
state the oil and gas company reached in the mentioned two cases (Focus on Produc-
tion scenario and Multiple Incident scenario) can also be considered as resilient. It 
requires a lot of effort and expenditure to adjust procedures, standards, processes and, 
what is even more important, to change peoples’ behaviour and attitude in order to 
rebuild the security level within the company and simultaneously bring back the de-
sired level of performance. Furthermore, this kind of organizational change is not 
always successful, as examples of reengineering projects show [11]. 

Hence, we argue that as far as eOperations in the generic oil and gas company are 
concerned it is crucial to build up the resilience of the desired system configuration in 
advance (increase the security / safety much above the minimal level required to 
optimal performance) or, at least, to pay much more attention to security once the pro-
duction system has experienced a serious incident (as presented by the Focus on Secu-
rity policy described in this section). These approaches would enable the production 
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system to undergo various types and amounts of incidents and still preserve its desired 
state, as well as to avoid expensive and long-term ‘repair’ programmes. One may 
suggest that such policies are less profitable. However, enterprises which strive for 
long-term effectiveness, profitability and competitive advantage have to consider and 
secure the desired functionality of their production systems not only in short periods 
but mainly over long time periods. As Stolz [12] argues ‘Resilience is the only sus-
tainable, portable strategic plan. Resilient individuals, teams, and organizations 
consistently outlast, outmanoeuvre and outperform their less resilient competitors’. 

4   Discussion 

How reliable is our analysis? After all the model of the generic oil & gas company is 
highly aggregated and, thus, “simple.” Would a more complex and “realistic” model 
lead to significantly different results? The question can be rephrased as: Would a 
more detailed model introduce strong feedback structures that could significantly 
change the dynamic behaviour? In nonlinear, feedback rich problems the dynamic 
behaviour is shaped by the feedback loops and the evolution of their strength over 
time. The dominant feedback loop determines the current dynamic behaviour, the 
nonlinear relationships lead to shift in dominance, so that a new feedback loop then 
dominates and determines behaviour [6]. We look forward to adapt and extend our 
model to more closely describe real oil and gas companies. In the meantime we argue 
that the four feedback loops ‘B1: FOCUS ON PRODUCTION’, ‘B2: FOCUS ON SECU-

RITY’, ‘R: REINVESTMENT’, and ‘B3: SHORTCUTS’ are ubiquitous in many enterprises, 
both in the oil and gas industry and in other sectors. Further, they are strong because 
emphasis on control and reduction of costs is paradigmatic. Thus, while we do not 
claim anything like numerical accuracy we do hope that the main qualitative insights 
about the instability of resource allocation policies and the need to invest in proactive 
resilience will prove to be “resilient insights” – that is, robust to changes and exten-
sions of the basic analysis in this paper. An encouraging aspect is the structural simi-
larity to findings in other areas, such as in improvement processes [13] and in CSIRT 
performance [14, 15]. 

One potential insight, which we believe is worth taking seriously, is the strong im-
pact of the limitation of resources on the resilience of the system. Mostly it makes 
sense to have a strong budget discipline, but imposing strong resource limits when 
serious incidents (security / HSE) happen introduces the edge of instability that jeop-
ardizes the system’s resilience. In other words, the procedures for business continuity 
planning in the eOperations mode should have enough resource redundancy. 
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Abstract. This article presents the effort to model the computer system security 
using Stochastic Activity Network (SAN). SAN is a flexible and highly adapt-
able branch of Stochastic Petri Nets and has a well-developed software tool, 
Möbius. A known model of incident process and the computer system is 
adapted and extended. The computer system characterised by the working state 
and defence mechanism strength is affected by an attack described by using 
stochastically distributed severity levels. The attempt to bind a stochastic attack 
severity level to intrusion data parameters collected by Intrusion Detection Sys-
tems is presented. The model-based computer system quantitative characteris-
tics are analysed and survivability is chosen to evaluate the modelled computer 
system security. The article concludes with simulation results and future work 
guidelines. 

1   Introduction 

Computer systems are interconnected to achieve more efficiency and better informa-
tion exchange. The number of potential threats increases because of the computer 
system integration. Evaluation of the impact on the system is possible when specific 
features, type and possible influence are known.  

A computer system is a heterogeneous, distributed computer network, which faces 
some attacks. An attack is realisation of the threat, the harmful action aiming to find 
and exploit the system vulnerability. A successful attack causes intrusion. Vulnerabil-
ity is some poor characteristic of the system establishing conditions for the threat to 
arise. The computer system is affected by the active element – a subject (a user or a 
process) that initiates the query for the object (resource) access and usage. The access 
is interaction between the subject and the object during which they exchange informa-
tion. An incident consists of the attack and the response of the computer system to it. 
An attack can fail to achieve the intended objective for some reasons, but even then 
there exists possibility that the system becomes more vulnerable. 

The quantitative evaluation of the computer system security is usually based on the 
formal method usage or red team experiment results. Both ways are valuable when de-
termining weaknesses and boundaries of the system. The stochastic-based formal method 
usage is irreplaceable when modelling and simulating systems which are not imple-
mented yet, or evaluating possible faults and vulnerabilities which are not discovered yet. 
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Stochastic values are used to describe vulnerability occurrence and discovery, the at-
tacker’s behaviour, system response, system state change, intrusion discovery and sys-
tem function recovery times. 

The computer system security as well as information protection modelling and 
simulation are addressed in a number of researches, articles and theses. Detailed 
simulation of cyberattack considering possible threat, defender strength, attackers’ 
position to the attack object, and the computer system architecture is performed in [1]. 
Huge contribution to the computer system security simulation in order to research 
survivability is presented in [2], later the model was advanced using real intrusion 
data [3]. Some assumptions based on the ideas from the above-mentioned research 
will be used in the current article. Dependability and performance evaluation of intru-
sion tolerant server systems using quantitative cost and benefit values is presented in 
[4]. Models were constructed using Stochastic Activity Networks. 

The primary objective of this article is to model the computer system security us-
ing the chosen formal method – Stochastic Activity Network (SAN). The considera-
tion of choosing the formalism and short definition of SAN is presented. The com-
puter system security characteristics were analysed and one was chosen for simula-
tion. The computer system incident numerical evaluation was proposed in order to 
bind abstract modelling values to the real world taxonomies. The developed computer 
system security model intended for the evaluation of the characteristics of incident 
process affecting the computer system security is presented and survivability is simu-
lated, results were analysed and guidelines for future work were formulated. 

2   Model Development 

The purpose of modelling the computer system and the impact on it is to refine and 
test the acceptance to the objective security parameters. Incident statistic gathering, 
analysis and modelling allow constructing incident forecast models, which provides 
information needed to secure the system. When the system survivability evaluation is 
performed, the computer system and incident occurrence modelling is needed. It al-
lows revealing a relationship between the computer system survivability and the de-
fence mechanism strength, which depends on their cost. The cost consists of finances, 
installation, configuration and support time. 

2.1   Model of the Computer System 

The computer system exists in the space where the threat (planned or incidental) to its 
security arises, having negative effect on the system itself or on contained informa-
tion. The intruder performs the action, searching or exploiting the system vulnerabil-
ity, so called attack. Even if the attack ceases itself it is likely that the system was 
compromised. 

The basic computer system model will be designed, simulated and analysed and 
later this model will be extended to a more complex system. Let us adopt the basic 
computer system model using principles described in [2] and [3]. 

The computer system is a distributed computer network with boundaries defined. 
The computer system provides service k with some operational grade defined by the 
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system states {S}: normal (s=1), attacked (s=2), compromised (s=3), recoverable 
(s=4) and non-functional (s=5). The service operational grade in a specific system 
state and the number of states depend on the system analysed. The initial state of the 
computer system is normal (r=1). The security of the computer system is assured by 
using security mechanisms, which are defined by their strength m. In this case m is 
linearly associated with the cost C(m). The computer system security mechanism cost 
C(m) varies from 0, when no security mechanisms are used, to 100, when all the best 
possible security mechanisms are used. 

It seems likely that a system with correct configuration and resistant design will 
not be impacted by less severe incidents, although defence mechanisms will not be 
used. Correct configuration is minimal, designed according to the creator recommen-
dations and updated service collection, needed for the systems mission. Inter incident 
time is generally longer than a month and recovery time is a lot shorter, so it seems 
likely that the system before the next serious incident will be in the normal initial state 
r=1. The computer system design resistance is defined by the parameters: 1, 3, 1 
and 3. These parameters are the functions depending on the characteristics of an 
incident (j) and the system (s). 

Incident arrival is a stochastic point process. Incidents arrive at random moments 
of time tn and incident type j∈{j} is the incident parameter, and incident probability is 
P(j). Incidents occur at every random rate a, which obeys Poisson distribution. The 
Poisson distribution was chosen because of its simplicity and modelling ability; de-
spite attack motivation relationships with political or technical issues, the occurrence 
of incidents is approximately Poisson [3]. The incident type describes the severity of 
incident and probability that there are several incidents at the same time. Incident is 
most severe when its type j=1 and least severe when j=5.  

The computer system state transitions happen with such logic: probability of going 
to a much worse state is lower than going to a slightly worse state, probability of 
staying normal is higher if the incident is less severe and the security mechanisms are 
stronger, and the system must end up in some state. 

Statistical data show that the mean time to failure TMTTF is much longer than the 
system recovery time TR: (TMTTF>TR), because of that we can consider that the initial 
state of the system is always normal (r=1). Then incident occurs, the next state of the 
system can be one out of system state space {S}, but because of the resistive computer 
system design, the probability that the computer system stays in the normal state 
P(1,1) after the incident is higher. There are two cases: 

if s=1, then ( ) ( ))1(1 ,1 1
2

mCeP ππ −−= ,             (1) 

if s>1, then ( ) ( )[ ]mCesP 1
2 ,1 χχ −= . (2) 

Parameters 1, for s=1 and 1, for s>1 determine P(1,1|m) and P(1,s|m) the prob-
abilities of remaining normal or going to a worse state under attack given a security 
mechanism m. Parameters 3, for s=1 and 3, for s>1 determine the levels of transition 
probabilities P(1,1) and P(1,s) as the cost changes. 

Parameter 1 depends only on incident severity j and parameter 1 depends more on 
the next system state s than on the incident severity j: 



74 E. Garsva 

( ) jj 322 π=π=π , (3) 

( ) ( )( )jssj 4,06 , 322 −−== χχχ . (4) 

This computer system security model is basic, but highly adaptable in the computer 
system security simulation.  

2.2   Stochastic Activity Networks 

Formal methods are widely used for the computer system modelling. Formal methods 
are mathematical approaches to the system development, which support the rigorous 
specification, design, verification and modelling of computer systems. There are 
nearly one hundred of such methods [5], [6]. The modelled computer system is dis-
tributed and the aim of modelling is to make the system more secure by improving the 
security characteristics of the system. For such purpose Petri nets and Performance 
Evaluation Process Algebra (PEPA) are most useful. Eight popular modelling tools 
that use high level Petri nets and SAN were tested. Tools were evaluated according to 
licensing, the operating system, components and documentation. After the analysis 
was performed, Simulaworks [7], TimeNET [8] and Möbius [9] were selected as most 
suitable modelling packages. After some modelling performed Möbius was selected 
as the most powerful and convenient package for the computer system performance 
modelling. It uses a variety of formal methods: PEPA, SAN, etc. SAN was chosen for 
the system modelling and construction of the simulation model. SAN is highly adapt-
able extension of Stochastic Petri nets [9], [10], [11], [12].  

Stochastic activity networks (SANs) consist of such primitives: places, activities, 
input gates, and output gates. Places are as in Petri nets (represented as circles). The 
number of tokens present in a place is called the marking of that place. Markings of 
all the places in SAN comprise the marking of the SAN. Activities (similar to transi-
tions in Petri nets) are of two types, timed and instantaneous. Timed activity (repre-
sented as thick rectangular or oval) has stochastically distributed latency time. Instan-
taneous activity (represented as thin rectangular or oval) completes in a negligible 
amount of time. Instantaneous activities have priority to execute over timed activities. 
Activity can have one or more cases (represented as small circles on one side of an 
activity). Input gates have enabling predicates and functions, while output gates have 
functions. The enabling predicate depends on the places connected to it, and controls 
the enabling of an attached activity. The function associated with input or output gate 
describes an action performed upon completion of the activity.  

When the activity is activated it stays enabled until completion. Later or when en-
abled it can be reactivated. Activities are enabled if there is at least one token in each 
of the places directly connected to the activity and if the predicate of each connected 
input gate is true. When the activity completes, one token is removed from each of the 
places directly connected to the input of the activity and one token added to each of 
the places directly connected to the output of the activity.  

The stochastic nature of the SANs is realized by associating an activity time distri-
bution function with each timed activity and a probability distribution with each set of 
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cases. These two choices determine uniquely the next marking of the SAN, which is 
then obtained by executing the input gates connected to the input of the activity cho-
sen and the output gates connected to the chosen case. Both distributions can depend 
on the global marking of the network. A reactivation function is also associated with 
each timed activity.  

Performance variables of the modelled computer system are defined using reward 
models. Reward models consist of three components: a stochastic process, a reward 
structure, and a performance variable defined in terms of the reward structure and the 
stochastic process. Rate rewards are assigned to states, and impulse rewards are as-
signed to state transitions. 

The formal definition of Stochastic Activity Networks can be written like this: 

SAN=( P,A,I,O,γ,τ,ι,ο,μ0,C,F,G); (5) 

where P is some finite set of places, A is a finite set of activities, I is a finite set of 
input gates, and O is a finite set of output gates. γ specifies the number of cases for 
each activity and τ specifies the type of each activity. The net structure is specified via 
the functions ι mapping input gates to activities and ο mapping output gates to cases 
of activities. The next set of parameters represents the stochastic features: μ0 is the 
initial marking, C is the case distribution assignment, F is the activity time distribu-
tion function assignment and G is the reactivation function assignment. 

2.3   Model-Based Computer System Security Characteristics 

Researches use different characteristics to describe the computer system and its secu-
rity features [13], [14], [15]. Most suitable for the computer system security evalua-
tion are these:  

Performance shows how well the system intended to perform flawlessly operates 
and does not estimate the computer failures and recovery. Performance is usually 
evaluated using throughput (security mechanism ability to process network traffic), 
different response times (intrusion detection duration, incident response time, etc.) 
and load of the resource (the number of simultaneous attacks, system load brought by 
security mechanisms, security mechanism load, etc.). 

Reliability is the characteristic assuring that proper service will be provided during 
the set period of time. It may be evaluated using the probability that the computer 
system will survive in the normal state. 

Availability is the probability that intended service will be provided. The required 
level of the service, which is needed for proper query processing, depends on the 
specific computer system, but possible service level change is not estimated. 

Safety is the probability that the computer system will not fail causing catastrophic 
consequences during the set time period. Safety usually depends more on conse-
quences than on causes, and the amount of damage is considered. 

Integrity is the characteristic assuring the absence of unexpected changes in the 
computer system. Integrity can be evaluated using the probability that the computer 
system state will not change during the set amount of time. 

Maintainability is the computer system ability to be repaired and modified and can 
be evaluated using the system recovery time, cost and the number of operations  
required.  
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Performability is the quantitative definition of the system performance in the state 
of possible failures. Performability combines information of performance and avail-
ability characteristics.  

Survivability is the computer system ability to resist attacks and to keep function-
ing at some level after the incident. To achieve that, the system reaction to and 
evaluation of occurring incidents are needed: to detect incidents, resist to attacks, and 
keep functionality if compromised. The computer system survivability comprises 
such areas as reliability, security and interference resistance. A new state of the com-
puter system after the incident s, in common case, is compromised, and the system 
functions and waits to be restored to full functionality. Survivability can be computed 
for every computer system service. If service does not change, then the survivability 
value is equal to 1, if service is sopped, then it equals to 0, other values are distributed 
between them. 

Researchers differently name the computer system ability to function in the pres-
ence of attacks. In this article survivability paradigm will be used. Reliability charac-
teristic is the probability that service or the system will survive in the maximal state 
and can be called maximal survivability Smax. Availability is the probability that ser-
vice will be provided, even in the least operational state that the service has survived 
and can be called minimal survivability Smin. Performability in the modelled computer 
system does not differ from survivability characteristic S(s). 

Stochastic characteristics of the computer system security depend on the system 
event times, time spent in each system state and the service level in each state. The 
computer system is brought into production at time t0i=tr(i-1) and is affected by some 
incident i at time tinci. It is possible that after some impact period Timi, which depends 
on the computer system response to the attack, system state change will occur at tsci, 
and that will possibly cause a failure at time tfi and bring the system to non-functional 
state (s=5). After some recovery period Tri, which depends on fault discovery time 
and the system repair time, the computer system will be recovered to the fully func-
tional state. These events will occur repeatedly and usage of the system will end at 
time tall. Tall is the time during which simulation is performed in the computer system 
security model. 

 

Fig. 1. Computer system events that impact the computer system security characteristics 

Performance is described using the computer system mean times to some events 
and the security mechanism load. Mean time to the incident TMTTI  is: 
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where N is the total number of incidents. Mean time to the system state change TMTTSC is: 
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Mean time to the system failure is: 

N

tt
T

N

i
ifi

MTTF
=

−
= 1

0 )(
. 

(8) 

The security mechanism load Lm is a ratio of a period of time when the computer 
system is affected by incidents to all the time when the system is in production: 
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Maximal survivability Smax is a probability that the system will be in the normal 
state (s=1): 
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where T(s=1 is the period of time which the computer system is in the normal state.  
Minimal survivability Smin is the probability that service will be provided, even in 

the least operational state and it is equal to availability: 
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where T(s=5) = Tri is a time when the computer system is non-functional.  
Integrity is a ratio between mean time to the system state change TMTTSC and the 

time which system spent in the production Tall: 
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Maintainability is evaluated using the average time needed to recover the system: 
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or with the probability that the computer system will be recovered after failure when 
the incident happens. In the model it is described to be equal to 1. 

The general survivability expression [2] is as follows: 

=
k

kskwsS ),()()( ϕ , 0 w(k) 1; =1)(kw ; 0 (s,k) 1,  (14) 

where (s,k) is the grade to which service k survived in the system state s, and w(k) is 
the weight of the service.  

The most important is the time that the system spent in the normal state 
T(s=1)= Tsc, that is why in this research the maximal survivability characteristic was 
chosen for the simulation. The composed models permit finding all the defined com-
puter system security characteristics.  

2.4   Computer System Attack Severity Numerical Evaluation  

Attack severity numerical values are essential for modelling. Using numbers, which 
represent the attack, it is possible to group, generate and compare attacks as well as 
their distribution in different computer systems and others. The possible attack sever-
ity can be evaluated by the objective of the attack:  

1. Super-user privilege gain,  
2. User privilege gain,  
3. Denial of service,  
4. Information integrity violation,  
5. Information or system resource confidentiality violation,  
6. Malicious code execution, 
7. Security policy violation. 

The attack severity description must be close to those available in Intrusion Detec-
tion Systems (IDS) because IDS are used for the attack statistic data collection. The 
attack description by the objective is used in SNORT IDS [16] and by CERT [17] 
organisation, which has most experience in detecting intrusions and evaluating their 
effect on computer systems. The 5 level attack severity numerical evaluation was 
organised using the suggested attack classification [18] and above mentioned IDS 
classifications. The numerical evaluation using 5 severity levels was chosen because 
the 3 level severity evaluation is not sufficiently accurate for a vast variety of attacks, 
and the 10 level evaluation would make the model too large and complicated. 

First level attacks are most severe, while fifth level attacks are least severe and 
having least possible effect on the computer system.  

A super-user (administrator, root, etc.) has the highest rights in the system and is 
intended to be used for the system administration. The attacker who gains super-user 
rights can have the largest influence on the system, these are most severe attacks, j=1. 

The computer system user has some specified rights and privileges, which depend 
on security and network access policy. The intruder having ability to connect to the 
system as a user can affect the system confidentiality, integrity and cause denial of 
service. User rights make it easier to acquire super-user rights. The total computer 
system control is usually the final objective of the intruders. The severity level of 
these attacks j=2. 
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The system availability is the computer system ability to provide proper service 
during a defined amount of time. When the system fails to provide some service, the 
computer system does not accomplish its mission and the threat to information confi-
dentiality and integrity arises. The severity level of these attacks j=3. 

The information integrity violation caused by information corruption, information 
control between system objects, masquerading as another host and confidentiality 
violation compromise the system. The severity level of these attacks j=4. 

The malicious code execution and security policy violation may compromise the 
system and reveal valuable information to the attacker and encourage striving for 
larger rights in the system. The severity level of these attacks j=5.  

3   Computer System Security Simulation Model 

3.1   Basic Computer System Security Simulation Model 

The SAN based computer system simulation model will be used to evaluate the influ-
ence of the parameters of the model on the security of the modelled computer system. 
The basic computer system model with only two possible types (defined by severity j) 
of the incidents is presented in Fig. 2.  

 

Fig. 2. Basic computer system security simulation model 

The number of incidents is defined via place “in” and incidents, one by one 
through output gate “inc”, which assures that the system is in the initial state r=1 get 
into the system. Timed activity “incidents” assure that the incident occurrence is dis-
tributed according to Poisson distribution with a parameter a. This timed activity has 
two cases which determine which type, out of five possible, of the incident will occur, 
j=1 with probability P(1), or j=2 with probability P(2)=1-P(1). The probabilities are 
normalised by the modelling tool. The type of the incident occurred via output gates 
“j1” or “j2” is transferred to the place “j”, which defines the incident type. In this case 
the system reacts instantaneously to the incident occurred and goes to the state, de-
fined by formulas (1) and (2). Which state the system transition will end up is defined 
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by “S_tr” and output gates “s11”, “s12”, “s13”, “s14”, “s15” set the place correspond-
ing to the system state “s” to that numerical value. The influence of the model pa-
rameters was found by simulating maximal survivability Smax (Fig. 3).  

 

 

 

Fig. 3. The influence of the parameters of model and the incident on the modelled computer 
system is shown via Smax dependence on C(m) 

The parameter 1 growth (Fig. 3.a) means the growth of the probability to remain 
in the normal state, it positively influences Smax, the influence is higher when security 
mechanisms are weaker. The parameter 1, which determines the probability of going 

π1 

π3 

χ1 

χ3 

a P1 

a) b)

c) d)

e) f)
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to a worse state P(1,s) when higher values are used (Fig. 3.b) Smax increases, espe-
cially when security mechanisms are stronger.   

The higher is parameter 3 (Fig. 3.c) determining the level of probability P(1,1), the 
better Smax is. The growth of 3 negatively influences Smax (Fig. 3.d). The influence is 
lower when security mechanisms are weaker for both parameters. 

The higher incident rate a makes Smax characteristic worse (Fig. 3.e), but not too 
drastically, because the incidents do happen faster, but the response is similar. If the 
amount of severe incidents is low, then Smax is better (Fig. 3.f). When security mecha-
nisms are weak, resistance to the incidents depends on the system architecture pa-
rameter that is why the influence of the incident severity is lower if the security 
mechanisms are weaker. 

Base parameter values were similar to [3] during the simulations: a=1, 1=0.15, 
3=0.25, 1=0.008, 3=0.075 and P(1)=0.5. The relative confidence interval, specify-

ing the width of the acceptable interval around the variable estimate, was set to 0.1, 
the confidence level to 0.95, this means that mean variable will not be satisfied until 
the confidence interval is within 10% of the mean estimate 95% of the time. Simula-
tion was done for 90 time units, which correspond to 90 days, such period of time is 
enough for the system features to reveal. 

3.2   Computer System Security Simulation Model 

Let us extend the earlier analyzed computer system model to the more realistic one 
and model the computer system, which has two connections to outer systems: Internet 
(J1) and Intranet (J2), and provides three services: windows sharing (k1), SMTP (k2) 
and HTTP (k3) (Fig. 4). These all three services are used by some human resource 
planning application. Attacks to the services occur with the probabilities and the rate 
presented in Table 1. These attack severity and service attack probabilities were ag-
gregated from the global sources [19], [20] and adapted to the modelled system. 

Table 1. Incident occurrence parameters 

 j=1 j=2 j=3 j=4 j=5 a 
J1 0.15 0.15 0.27 0.19 0.24 1 
J2 0.25 0.19 0.16 0.16 0.27 2 

Modelling logic is the same as used in the basic computer system model. Incidents 
occur faster from the Intranet (J1) than from the Internet (J2), because some security 
measures are implemented by the provider. Generated incidents by “type_2” and 
“type_1” activities, with appropriate types at the set rate arrive to the system via 
places “j_1” and “j_2”. PS1 and PS2 decide what service is attacked. Activities “S-
_ch_1” and “S_ch_2” choose the attacked service at the rate equal to the fastest inci-
dent occurrence rate and output gates transfer attack type j to the specific service k1, 
k2 or k3. Initialization unit “init” assures that services are recovered to the normal 
state s=1 before the incident enters the system. Architecture parameters defining 
initial service strength ( 1, 3, 1 and 3) are the same for all services. Service weights 
w(k) as well as levels at which service k is provided in different system states (s,k) 
differ. Maximal survivability Smax characteristics for all the services (Fig. 4 a), and the 
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Fig. 4. Computer system security simulation model 

a) b)

c)

 

Fig. 5. Survivability characteristics: a) maximal Smax, b) minimal Smin and c) the system sur-
vivability S(s) 
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common maximal survivability Smaxall, representing the probability that all the services 
will be in the normal state s=1, were calculated using formula (10). Minimal surviv-
ability Smin characteristics for all the services (Fig 5. b), and one common, presenting 
the probability that all the services will be provided at some states, except non-
functional, were calculated using formula (11). Then the survivability of all the ser-
vices, according to the levels that service survives in the specific state were calculated 
and one value common to the whole system survivability S(s) (Fig 5. c) was found 
using formula (15). The modelled computer system related parameters used in simula-
tion are shown in Table 2. 

Table 2. Service related parameters used in simulation 

k Type PS1 PS2 (1,k) (2,k) (3,k) (4,k) (5,k) w(k) 1 3 1 3

1 Win Shar. 0.1 0.5 1 0.85 0.7 0.55 0 0.4 
2 SMTP 0.4 0.25 1 0.8 0.6 0.4 0 0.3 
3 HTTP 0.5 0.25 1 0.8 0.6 0 0 0.3 

0.15 0.3 0.01 0.075

 

As it is seen from the graphs (Fig. 5) the survivability curves have similar shapes to 
the basic computer system simulation ones. Because of more distributed incident 
types they are more flat. Common survivability characteristics Smaxall and Sminall have 
lower values, because they represent the worst case in the system. The system surviv-
ability S(s) has average values, which depend in the state to which the services have 
survived and their weight.   

4   Future Work 

Enhancement of the modelled system architecture parameter impact by finding more 
adjustable transition probability curve expressions. 

Examination of the computer system model behaviour by using extreme parame-
ters and definition of the boundaries of the model. 

Research of the differences between the systems in different type organisations 
(government, commercial, educational, SOHO) by using incident severity levels de-
termined by the collected incident data. 

Discovering the best suitable security characteristic for the computer system secu-
rity simulation by running more different system simulations. 

5   Summary 

Simulation of the computer system security helps in forecasting and evaluating the 
computer systems which are in the design phase. The effort to model and simulate the 
computer system security using SAN is presented in this article. The modelling-
related problems, selection of the formalism and tool, defining the computer system 
security characteristics and quantitative computer system attack evaluation, were 
solved. 
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Survivability is a universal and highly adaptable computer system security quanti-
tative characteristic, well suitable for the computer system simulation. 
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Abstract. This paper describes the relationship between the overall safety life-
cycle and the software safety lifecycle during the development of the software 
based safety systems of Nuclear Power Plants. This includes the design and 
evaluation activities of the components as well as the system. This paper also 
compares the safety lifecycle and planning activities defined in IEC 61508 with 
those in IEC 61513, IEC 60880, IEEE 7-4.3.2, and IEEE 1228. Using the Ko-
rean KNICS (Korean Nuclear Instrumentation and Control System) project as 
an example, the software safety lifecycle is described by comparing it to the 
software development, testing, and safety analysis processes of international 
standards. The safety assessment of the software for the KNICS Reactor Protec-
tion System and Programmable Logic Controller is a joint Korean/German pro-
ject. The assessment methods applied in the project and the experiences gained 
from this project are presented. 

1   Introduction 

This paper introduces the lifecycle based software safety analysis tasks for the KNICS 
(Korean Nuclear Instrumentation and Control System) project. The objectives of the 
safety analysis tasks are mainly to develop the programmable logic controller (PLC) 
for safety-critical instrumentation and control (I&C) systems, and then to apply the 
PLC to developing the prototype of the safety-critical software based digital protec-
tion system in nuclear power plants.  

Safety-critical systems are those in which a failure can have serious and irreversi-
ble consequences. For the past two decades, digital technology has been applied  
rapidly to I&C systems for nuclear power plants, railways, airplanes, vehicles, com-
munication networks, etc. In nuclear power plants more and more digital technology 
is being applied to I&C systems, too. Programmable logic controller based platforms 
(e.g., TELEPERM XS, Common Q and Tricon) have been prototyped, evaluated for 
nuclear safety applications, and installed in several applications. The PLC is a special 
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purpose digital controller, originally designed to replace the industrial hard-wired 
control systems. As PLCs are more widely used in digital I&C systems, the safety of 
the PLC software has become a primary consideration. 

Fig. 1 shows the developed PLC prototype of the KNICS project, which mainly 
consists of power modules, a processor module (embedded with the real-time operat-
ing system pCOS), communication modules (HR-SDL, HR-SDN), and I/O modules.  

Power Modules CPU Module Comm. Modules I/O ModulesPower Modules CPU Module Comm. Modules I/O Modules
 

Fig. 1. POSAFE-Q KNICS PLC 

pCOS is the software to control the hardware, such as the processors, storage, I/O 
device, and data communication. It is composed of five components: a scheduler, the 
inter-tasks communication part, a tick timer, an interrupt handler and application tasks. 

As shown in Fig. 2, the plant protection system (PPS) consists of the reactor pro-
tection system (RPS) and the engineered safety feature – component control system 
(ESF-CCS). RPS generates the reactor trip signals and ESF actuation signals auto-
matically whenever the monitored processing variables reach their predefined 
setpoints. PPS is designed as a PLC-based architecture with four redundant chan-
nels/divisions (A, B, C, and D). The software of the prototype of the qualified PLCs 
(i.e. POSAFE-Q) is implemented by the proprietarily developed engineering tool 
pSET. The engineering tool pSET is used for developing the functional block dia-
grams, and for downloading the functional block diagram based programs into 
POSAFE-Q PLCs via RS-232C interface. 

The following chapters deal with the relationship of the overall safety lifecycle to 
the software safety lifecycle for the development of the components (e.g., KNICS 
PLC) and the Reactor Protection System (RPS). The software safety lifecycles of the 
IEC 61508-3, IEC 60880, IEEE 1228-1994, and IEEE standards 7-4.3.2-2003 are com  
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Fig. 2. KNICS Plant Protection System 

pared. The software safety lifecycle for the KNICS RPS and PLC systems is introduc
ed and the relationship of the safety analysis and testing for a software safety lifecycle
 is identified. Finally, software safety assessment methods are described for the KNIC
S RPS and PLC systems. Experiences of the software safety analysis in the KNICS pr
oject are given. 

2   Safety Lifecycles in IEC and IEEE Standards 

The safety assessment of the software for the KNICS RPS and PLC is an ongoing joint 
Korean/German project. In the cases where the documents have been evaluated by 
KAERI, ISTec has checked the results of the evaluation by supplementing spot checks 
for the development documents according to the following IEC and IEEE standards. 

- IEC 61508-1, Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems –Part 1:General requirements [6] 

- IEC 61508-2, Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems –Part 2: Requirements for electrical/electronic/ 
programmable electronic safety-related systems [7] 

- IEC 61508-3, Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems –Part 3: Software requirements [8] 

- IEC 60880, Nuclear Power Plants – I&C systems important to safety – Software 
aspects for computer-based systems performing category A functions [9] 

- IEC 61513, Nuclear Power Plants – Instrumentation and control for systems 
important to safety – General requirements for systems [10] 

- IEEE Std. 7-4.3.2-2003, IEEE Standard Criteria for Digital Computers in 
Safety Systems of Nuclear Power Generating Stations [11] 

- IEEE Std. 1228-1994, IEEE Standard for Software Safety Plan [12] 
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In order to follow both the frameworks of the standards, IEC and IEEE, it is nec-
essary to compare the safety lifecycle, and identify the differences of the frame-
works. Table 1 shows a comparison of the safety lifecycles for the general safety 
electronic systems in IEC 61508 and that for the instrumentation and control system 
of nuclear power plants in IEC 61513. The E/E/PE safety-related systems:  
realisation phase of IEC 61508-1 and the system safety lifecycle of IEC 61513 
cover the whole hardware and software safety lifecycles of IEC 61508-2 and  
IEC 61508-3. 

Table 1. Comparison of the safety lifecycles in IEC 61508 and IEC 61513 

IEC 61508-1 
overall safety 
lifecycle 

IEC 61513 
overall  
safety  
lifecycle 

IEC 61508-2 
hardware 
safety  
lifecycle 

IEC 61508-3 
software 
safety  
lifecycle 

IEC 61513 
system 
safety 
lifecycle 

Concept  

I&C system 
requirements 
from the safety 
design base 

E/E/PES safety 
requirements 
specification 

Software safety 
requirements 
specification 

System 
requirements  
specification 

Overall scope 
definition 

 
E/E/PES safety 
validation 
planning 

Software safety 
validation 
planning 

System 
planning 

Hazard and risk 
analysis   

E/E/PES  
design and 
development 

 
System 
specification  

Overall safety 
requirements 

Overall re-
quirements 
specification 
of the I&C 
system 

 
Software  
design and 
development  

System 
detailed-
design and 
implementa-
tion 

Safety  
requirements 
allocation  

Design of the 
I&C architec-
ture and as-
signment of 
the I&C func-
tions 

General  
requirements 

Architecture 

Design 
Constraint, 
System 
architecture 

Overall operation 
and maintenance 
planning  

Overall 
operation and 
maintenance 
plan 

Requirements 
for hardware 
safety integrity 

Software sys-
tem design 

Design 
constraint 
requirements 

Overall safety 
validation plan-
ning 

Overall inte-
gration and 
commissioning 
plans and 
security plan 

Requirements 
for the avoid-
ance of failure 

Individual 
software mod-
ule design 

System 
safety cycle 

Overall installa-
tion and commis-
sioning planning  

Overall 
integration and 
commissioning 
plans

Requirements 
for the control 
of systematic 
failure 

Support tools 
and program-
ming lan-
guages 

Defense 
against 
propagation 
of failures 
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Table 1. (continued) 

E/E/PE safety-
related systems: 
realisation  

System safety 
lifecycle 

Requirements 
for system 
behavior on 
detection of a 
fault 

 

System 
architecture, 
self-
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ance to 
failures 

Other technology 
safety-related 
systems:  
realisation  
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for E/E/PES 
implementation 

Detailed code 
implementation 
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equipment 

External risk 
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ties: realisation 

Requirements 
for data com-
munication 

Software mod-
ule testing 

Internal 
behavior of 
the system 

Overall installa-
tion and commis-
sioning  

 Overall 
integration and 
commissioning 

 
Software Inte-
gration testing 

 

Overall safety 
validation 

Overall com-
missioning and 
system  
qualification 

E/E/PES 
integration 

E/E/PES  
integration 
(hardware and 
software) 

System 
integration 

Overall operation, 
maintenance and 
repair 

 Overall 
operation and 
maintenance 

E/E/PES op-
eration, and 
maintenance 
procedures 

Software op-
eration and 
modification 
procedures 

System 
operation 
plan 

Overall modifica-
tion and retrofit 

Implicitly 
covered 

E/E/PES safety 
validation  

Software safety 
validation  

System 
validation 

Decommissioning 
or disposal  

 
E/E/PES modi-
fication 

Software  
modification 

System 
modification 

Verification 
Overall quality 
assurance 
programs  

E/E/PES  
verification 

Software  
verification 

System 
verification 
plan 

Functional safety 
assessment 

 

E/E/PES  
functional 
safety  
assessment 

Software  
functional 
safety  
assessment 

 

Table 2 shows the differences of the safety lifecycles in IEC 60880, IEC 61513, 
IEEE 7-4.3.2 and IEEE 1228. 

Table 2. Comparison of the Safety Lifecycles between IEC and IEEE standards 

IEC 61513 system 
safety lifecycle 

IEC 60880  
software safety 
lifecycle 

IEEE 7-4.3.2  
computer system 
safety lifecycle 
(Annex D) 

IEEE 1228  
software safety 
lifecycle 

System require-
ments specification 

Software require-
ments specification 

Hazards identifica-
tion and evaluation 
plan 

Software safety plan 

System planning  
Safety system haz-
ard identification 

Software safety 
analyses preparation 
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Table 2. (continued) 

System specification   
Computer system 
hazards  
identification 

 

System detailed 
design and  
implementation 

 
Software require-
ments hazards i 
dentification 

Software safety 
requirements  
analysis 

System architecture Software design 
Software  
design hazards 
identification 

Software safety 
design analysis 

Design constraint 
requirements 

   

Defense against 
propagation of 
failures 

   

System architecture, 
self-monitoring and 
tolerance to failures 

Implementation of 
new software in 
general purpose 
language 

  

Selection of  
equipment 

Implementation of 
new software in 
application-oriented 
language 

Software implemen-
tation hazards iden-
tification 

Software safety 
code analysis 

Internal behavior of 
system 

Configuration of 
pre-developed soft-
ware and devices 

Evaluation of haz-
ards in previously 
developed systems 

 

System integration 
Software aspects of 
integration 

Computer system 
integration testing 
for hazards  
conditions 

Software safety test 
analysis 

System operation 
plan 

   

System validation 
Software aspects of 
validation 

Computer system 
validation testing 

 

System modification  
Maintenance and 
modification hazard 
analysis 

Software safety 
change analysis 

System verification 
plan 

   

Most of the IEC and IEEE standards consist of three main phases, planning phase, 
realization phases according to the plan, and the validation phase. The safety lifecy-
cles for the industry specific standards, for example, IEC 62279 for a railway, IEC 
61513 for nuclear power plants, inherit the definition of phases from the generic IEC 
standard of IEC 61508. However, the detailed phases of the safety lifecycles for the 
specific industries are different from IEC 61508. Table 2 shows for instance the dif-
ferences in the safety lifecycles between the IEC and IEEE standards. The safety 
lifecycles in the IEEE standards require a direct safety analysis at each phase of the 
lifecycle. 
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3   Software Safety Planning 

In Table 2, there is a safety planning phase in the IEC and IEEE safety lifecycles. 
However, there are differences in the required activities in the planning between the 
IEC and IEEE standards. Table 3 shows the differences of the required activities in 
the planning phases for the IEC and IEEE standards. 

Table 3. Planning activities between the IEC and IEEE standards 

IEC 61508-3  
software safety 
lifecycle 

IEC 61513 I&C  
system safety 
lifecycle 

IEEE 7-4.3.2 com-
puter system safety 
lifecycle(Annex D) 

IEEE 1228 soft-
ware safety  
lifecycle 

Software safety 
validation planning 

System planning 
Hazards identification 
and evaluation plan 

Software safety plan 

schedule 
System quality 
assurance  
programs 

Identify critical  
functions  

1. Purpose,  
2. Definitions 

qualifier 
System  
verification plan 

Identify top-level 
undesired events  

3. Software safety 
management  

operation mode 
System configura-
tion management 
plan 

Identify organizational 
responsibilities 

3.1 Organization 
~ 
3.6 Software safety 
program record  

safety-related soft-
ware 

System security 
plan 

Select the techniques to 
be used 

3.7 Configuration 
management 
~ 
3.9 Verification and 
validation activities 

Technical strategy 
System  
integration plan 

Identify analysis  
assumptions 

3.10 Tool support 
3.11 PDS, COTS  

Measures, tech-
niques and proce-
dures 

System validation 
plan 

Perform a hazards 
identification analysis 

4. Software safety 
analysis through 
lifecycle 

Specific references 
System  
installation plan 

Evaluate identified 
hazards for conse-
quences and probabil-
ity of occurrence 

 

Required environ-
ment 

System operation 
plan 

Perform needed correc-
tive actions and  
re-evaluate the impact 
of any changes  

5. Post development 

pass and fail criteria 
System  
maintenance plan 

  

Policies and proce-
dures for valuating 
the results 

  6. Plan approval 

4   Software Safety Lifecycle for KNICS 

In the KNICS project, the software safety lifecycle was developed based on IEEE 
1228, IEEE 7-4.3.2, IEC 61513, and IEC 60880. The software safety lifecycle of IEC 
61513[10] is given in Fig 3. 
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Fig. 3. Software safety lifecycle (IEC 61513) 

The software safety lifecycle is tightly coupled with the reliability evaluation proc-
ess. Software failures cannot be treated as random events and the probabilities for 
software failures cannot be derived by using historical data [1]. Although attempts 
have been made to apply a quantitative probability for software [2], this approach is 
still controversial. For that reason the standards being used to develop and assess the 
safety critical software for nuclear power plants have established a software safety 
lifecycle and dedicated requirements to ensure safe and high reliable software.  

The software development process is split into consecutive phases. Each phase 
produces its own set of documents. The change-over from one phase to the next one 
includes appropriate verification activities. After system integration, a system valida-
tion shall demonstrate that the system meets the system requirements specification. 
The application of standards will provide a solid basis for high quality software. 

Nevertheless, software development is a complex process that may result in incor-
rect final products. Complete tests for all internal state conditions and input scenarios 
can not be performed due to time constrains. Therefore a software qualification must 
be complemented by safety and reliability analysis. 

Several techniques for a safety analysis have been used by the industries for dec-
ades, and some have attracted great attention in the research community. They include 
Fault Tree Analysis (FTA), Failure Modes, Effects and Criticality Analysis 
(FMECA), Failure Propagation and Transformation Notation (FPTN), Hazard and 
Operability (HAZOP), and Preliminary Hazard Analysis (PHA). In Leveson’s book, 
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“Safeware” [5], there is an excellent summary on the techniques for a system’s safety 
and computers. 

System Hazards

Preliminary System 
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Software Hazards

Hardware FTA

Software FTA

System, Hardware, 
Operator Faults

Software  Causes
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Software Safety Plan

Reliability Analysis 
Process

Safety Analysis 
Process

Design Process

Design Change

 
Fig. 4. Software safety lifecycle for the KNICS RPS and PLC systems 

Additional failure assumptions are made. The assumed failures must be controlled 
by the system. Of course support mechanisms to design a fault tolerant system archi-
tecture are necessary. Since no single method can prove the case of a correctness of 
software a set of different measures gives sufficient evidence. 

The bundle of different measures and activities to ensure a safety and reliability 
comprise: 

− Application of the safety lifecycle, including verification and validation activities, 
− Safety and reliability analysis, 
− Fault tolerant system design. 

In the KNICS project, a safety lifecycle was developed as shown in Fig. 4 with the 
quantitative approach for the reliability analysis of the system and hardware levels, 
but with the qualitative approach for the safety analysis of the software. 

We used the software fault tree analysis (FTA) method for the design and coding 
phases of the lifecycle. After creating the software fault trees by using the procedure, 
they produced two groups of outcomes from the software FTA. One group is the rec-
ommendations to improve the fault tolerance, and the other is the influence on a testing. 

5   Software Safety Analysis Methods for KNICS 

The safety assessment of the software for the KNICS RPS and PLC is a joint Korean/ 
German project. ISTec is a 3rd party assessor of the software of the real time operat-
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ing system pCOS and of the safety communication modules HR-SDL and HR-SDN. 
The assessment work has been performed in parallel with the development process 

of the software components pCOS, HR-SDL and HR-SDN. This means that after each 
development step KAERI has delivered the according documentation which had been 
assessed following the procedure for the assessment of the safety critical software 
developed and applied by ISTec [3]. 

For practical reasons and to enhance the effectiveness of the assessment process 
the work has been done in close collaboration between ISTec and KAERI. Therefore, 
a subset of documents has been evaluated mainly by KAERI which are: 

− Software requirements specification, 
− Software design specification, and  
− Implementation specification (source code). 

In the cases where the documents have been evaluated by KAERI, ISTec has 
checked the results of the evaluation (the verification report) supplemented by spot 
checks of the development documents. 

Failure mode and effect analysis (FMEA) method was used for the system hazard 
analysis, the hazard and operability (HAZOP) method for the software requirements, 
design, and implementation. Fault tree analysis (FTA) method was also used mainly 
for the safety analysis of the coding level during the RPS development. These three 
methods achieve cause-consequence coverage in the safety analysis as shown in 
Fig 5. 

All other documents such as the concept report, test specification, component test 
report and log, and the integration test report and log have been checked completely 
with respect to ISTec’s assessment procedure for safety critical software. This proce-
dure, the so-called software type test (see Fig. 6), was developed by GRS/ISTec 12 
years ago, analogous to the German nuclear safety standard KTA 3503 and in compli-
ance with IEC 60880. 

FTA

FMEA

HAZOP

FTAFTA

FMEAFMEA

HAZOPHAZOP

 

Fig. 5. Cause-consequence coverage of the methods 

It has been applied successfully to the qualification of the TELEPERM XS soft-
ware [3]. This procedure is based on the software lifecycle described in the  
IEC 60880. 
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During the assessment all the documents, starting with the concept report to the test 
reports, are checked for: 

− consistency, 
− formal correctness, and 
− functional traceability. 

 

Fig. 6. Software type test procedure 

The functional and non-functional requirements are applied as stated in the corre-
sponding IEC and IEEE standards. 

Questions and remarks that arise during the checks are collected in “Lists of open 
points” (LOPs) and they are transmitted to the developers. It is expected that the de-
velopers respond to the LOPs and, if necessary, revise the document under assess-
ment. The response is analysed. The procedure is repeated until no open points  
remain. 

The working results are documented in an assessment report. If the assessment 
succeeds, certificates for the software components are issued. 

In the framework of a 3rd party assessment, ISTec evaluated the Concept Report 
(KNICS-PLC-CR101). The evaluation results were documented in a list of open 
points. During a workshop meeting the findings of this LOP were discussed in detail 
and clarified. KAERI documented the answers and sent them to ISTec. Additionally, 
the Concept Report was subjected to a revision. 

Based on the experience as a 3rd party assessor, ISTec could give recommendations 
which contributed to the KNICS project. In the course of the assessment project sev-
eral workshop meetings were held which proved to be of great help in clarifying the 
open points. 



96 J.-S. Lee et al. 

 

Fig. 7. RiskCAT - safety requirements from standards 

A good requirements specification is the prerequisite to produce high quality soft-
ware. The tool RiskCAT was used to elicit the safety requirements of the system and 
software from the related safety standards. Additionally, the tool DOORS was used to 
analyze the traceability of the safety requirements from the standards and customers 
through the safety lifecycle. 

6   Conclusions 

This paper discusses the software lifecycle safety analysis tasks for the safety-critical 
software protection system in nuclear power plants. In order to meet the requirements 
from both the frameworks of the standards, IEC and IEEE, the safety lifecycles have 
been compared, and the differences of the frameworks have been identified. The 
overall safety lifecycle and the software safety lifecycle have been compared for de-
veloping a Reactor Protection System and its components by using the KNICS PLC 
as an example. The differences of the software safety lifecycles of the IEC 61508-3, 
IEC 60880, IEEE 1228-1994, and IEEE standards 7-4.3.2-2003 have been elucidated. 
The software safety lifecycle applied for the KNICS RPS and PLC systems was intro-
duced and the relationship of the safety analysis and testing for a software safety 
lifecycle was identified. Software safety assessment methods were described that have 
been applied for the KNICS RPS and PLC systems.  

When we used the HAZOP method for the hazard analysis of the software require-
ments in the KNICS project, it was difficult to create the checklists with guide phrases 
for a real-time operating system pCOS and the communication modules HR-SDL and 
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HR-SDN. The software FTA method was applied for the RPS software. However, 
there are general limitations in most software FTA techniques.  

- Safety-critical software, whose safety has been analyzed and validated by 
using the FTA techniques, cannot be re-used in other applications without 
performing a separate analysis unless its environment is identical. 

- Within very large systems, it is often prohibitive to perform a complete FTA 
as the fault trees become huge and difficult to relate to the plant and its op-
eration. 

- Since software FTA is a static technique, it does not lend itself to situations 
where timing scenarios must be represented and analyzed. 

In order to overcome these limitations of a software FTA method, the causal requi
rements for a safety analysis (CRSA) method [4] was developed. The KNICS is still 
an on-going project. New method of a software FTA, CRSA will be applied to the sa
fety analysis of the software requirements for RPS system. In addition, the technical 
experience from the project is expected to be applied to other safety-critical software
 industries.  
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Abstract. The gap between nuclear safety-related regulations and the commer-
cial software configuration management causes software quality concerns for 
Digital Control and Information System (DCIS) of a nuclear power plant. The 
main reason is that the DCIS of a nuclear plant are usually constructed by mul-
tiple vendors and each vendor of the DCIS has its own development environ-
ment, such as its development platform, software language and source code. 
The difficulty often comes from lacking consistence and integrity among the 
different vendors. Therefore, it is a great challenge to manage all configuration 
items from multiple vendors and to manage the heterogeneous subsystems 
within DCIS of a nuclear power plant. The Capability Maturity Model Inte-
grated (CMMI) defines the Configuration Management (CM) as a process area 
that provides detailed practices of controlling and managing the software work 
products. This paper proposes an Agent-based Software Configuration Man-
agement (ABSCM) System based on the CM process area of CMMI as well as 
nuclear safety-related regulations to support the operation of nuclear power 
plant.  

1   Introduction 

Traditionally, a Configuration Management (CM) program ensures the construction, 
operation, maintenance, and testing of the physical facilities in accordance with the 
design requirements as expressed in the design documentation, and to maintain this 
consistency throughout the operational life-cycle phase, particularly when as changes 
are being made [2]. 

Software Configuration Management (SCM) is a process that deals with identifying 
configuration items, controlling changes to the configuration items, and maintaining 
integrity and traceability of the configuration items throughout the software develop-
ment life cycle. The configuration items include software work products delivered to 
customers and items required to create the software work products such as software 
design documents, test documents, test data, compilers, etc. Therefore, SCM can be 
regarded as a subset of general CM [6]. 
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Digital Control and Information System (DCIS) have been used in many industries, 
including transportation, chemical industry, and conventional power plants [1]. But, 
the new digital technology has been rarely implemented in nuclear power plants. The 
most important reason is that the efforts needed to provide adequate evidence that the 
DCIS can be used in non-safety and safety applications [2]. There are many advan-
tages offered by the DCIS design, but still there are a few disadvantages. One of the 
main disadvantages is that system designs require interfaces to integrate the individual 
subsystem into the complex DCIS whose interfaces usually are difficult to be speci-
fied, coded, assessed, and tested. Experience has shown that care must be taken dur-
ing the digital system design in order to handle the interfaces prudently to minimize 
the possibilities for errors [2]. More specifically, the requirements for design of inter-
faces shall be specified carefully to ensure successful DCIS system integration, opera-
tion, and reliability [1]. 

The International Atomic Energy Agency (IAEA) Incident Reporting System (IRS) 
shows that on average 25% of nuclear power plant recorded events were caused by 
configuration errors or deficiencies [2]. To ensure the consistency of the change with 
the original software design and to improve the visibility of software changes, it was 
essential to develop an integrated software configuration management system for 
DCIS.  

For enhancing safety, reliability, plant operability, availability and maintainability 
of nuclear power plants, U.S. Nuclear Regulatory Commission (USNRC) issued a set 
of safety system software regulations. Moreover, Software Engineering Institute (SEI) 
also issued the Capability Maturity Model Integrated (CMMI) to improve deliverable 
quality of products. The aim of this paper is to propose an Agent-based Software 
Configuration Management system (ABSCM) based on CM process area of CMMI as 
well as nuclear regulations to support the operation of nuclear power plants.  

We will briefly introduce the system specifications in Section 2. Section 3 describes 
the results of requirements analysis that consists of functional and non-functional 
requirements. Then, a Regulatory SCM Process Model (RSCMPM) is presented to 
identify all activities and to meet system specification in Section 4. The detailed de-
velop processes of ABSCM are presented in Section 5. Finally, some conclusions and 
our future work are given.  

2   Regulatory Software Configuration Management System 
Specifications 

This section firstly describes a requirement acquisition mechanism to meet both nu-
clear regulations and software quality. Then we will list all detailed items of system 
requirement resources.  

2.1   Requirement Acquisition 

The nuclear power industry has developed and implemented a quality assurance pro-
gram for all aspects of the design, manufacture, construction, documentation, and 
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operation of safety-related systems and components. This is specified in ASME 
NQA-1-1989. ASME NQA-1-1989 provides the overall quality assurance program 
requirement. Our regulatory SCM requirements are different and may not directly 
relate to the overall quality assurance outlined in ASME NQA-1-1989.  Therefore, we 
adopted three software-related resources for our requirement acquisition, namely, 
Safety-related regulations, CM of CMMI and IEEE standards. This is shown in Fig.1. 
CM process area of CMMI described generic and specific practices to be referenced. 
Safety-related regulations indicated these criteria for safety system software. More-
over, IEEE industry standards describe software industry approaches to SCM that are 
generally accepted in the software engineering community.  

Activities

Safety Regulations/ 
Guidelines

Industry 
Standards

Standard 
Operation 
Procedure

Configuration 
Management 
Process Area

Of CMMI

NQA-1 1989

 

Fig. 1. Activities and requirement acquisition 

2.2   Configuration Management (CM) Process Area of Capability Maturity 
Model Integrated (CMMI) 

The Software Engineering Institute (SEI) is a research and development center spon-
sored by the U.S. Department of Defense and operated by Carnegie Mellon Univer-
sity. The SEI developed the CMMI to help organizations improve development  
processes and deliverable quality of their products and services through better  
management and technical practices. There are multiple CMMI models staged or 
continuous representations are available, as generated from the CMMI Framework. 
Consequently, you need to be prepared to decide which CMMI model best fits your 
organization’s process-improvement needs. The CMMI staged representation defines 
five levels of process maturity. Each maturity level builds upon key elements, called 
Process Areas (PA). The CM is one of PAs at the Level two of the CMMI. The CM 
includes three Specific Goals (SGs) and one Generic Goal (GG). To achieve specific 
and generic goal, Specific Practices (SP) and Generic Practices (GP) are included as 
shown in Fig.2. The related goals are explained below [8]:  
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- SG 1: Establish Baselines. 
To achieve this goal, three practices are covered by this specific goal. SP 1.1 (Identify 
configuration items) is in charge to identify the configuration items, components, and 
related work products that will be placed under configuration management.  SP 1.2 
(Establish a configuration management system) is in charge to establish and maintain 
a configuration management and change management system for controlling work 
products. SP 1.3 (Create or release baselines) is used to create or release baselines for 
internal use and for delivery to the customer. 
- SG 2: Track and Control Changes. 
The specific practices under this specific goal serve to maintain the baselines. SP 
2.1(Track change requests) addresses not only new or changed requirements, but also 
failures and defects in the work product. SP 2.2 (Control configuration items), this 
control includes tracking the configuration of each of the configuration items, approv-
ing a new configuration if necessary, and updating the baseline. 
- SG 3: Establish Integrity. 
Both specific practices of this specific goal, SP 3.1(Establish configuration manage-
ment records) and SP 3.2 (Perform configuration audits) are used to document and 
audit the integrity of the baselines. 
- GG2: Institutionalize a Managed Process. 
The process includes ten GPs shown in Fig.2.  

SG 1 Establish Baselines
SP 1.1 Identify Configuration Items
SP 1.2 Establish a Configuration Management System
SP 1.3 Create or Release Baselines

SG 2 Track and Control Changes
SP 2.1 Track Change Requests
SP 2.2 Control Configuration Items

SG 3 Establish Integrity
SP 3.1 Establish Configuration Management Records
SP 3.2 Perform Configuration Audits

GG 2 Institutionalize a Managed Process
GP 2.1 (CO 1) Establish an Organizational Policy
GP 2.2 (AB 1) Plan the Process
GP 2.3 (AB 2) Provide Resources
GP 2.4 (AB 3) Assign Responsibility
GP 2.5 (AB 4) Train People
GP 2.6 (DI 1) Manage Configurations
GP 2.7 (DI 2) Identify and Involve Relevant Stakeholders
GP 2.8 (DI 3) Monitor and Control the Process
GP 2.9 (VE 1) Objectively Evaluate Adherence
GP 2.10 (VE 2) Review Status with Higher Level Management  

Fig. 2. Practice-to-goal relationship table 

2.3   Nuclear Safety-Related Regulations and Industry Standards 

There are a few safety-related regulations for nuclear digital I&C from the USNRC, 
such as 10CFR 55, 10CFR 21.51, 10CFR 50 Appendix A and Appendix B. In 10 CFR 
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Part 50, "Domestic Licensing of Production and Utilization Facilities," paragraph 
55a(a)(1) requires, that systems and components are designed, tested, and inspected to 
meet quality standards commensurate with the safety function to be per-formed. Crite-
rion 1, "Quality Standards and Records," of Appendix A, "General Design Criteria for 
Nuclear Power Plants," of 10 CFR Part 50 requires, that appropriate records of the de-
sign and testing of systems and components important to safety are maintained by or 
under the control of the nuclear power unit licensee throughout the life of the unit. 
10CFR 50 Appendix B, "Quality Assurance Criteria for Nuclear Power Plants and Fuel 
Reprocessing Plants," to 10 CFR Part 50 describes criteria that must be met by a quality 
assurance program for systems and components that prevent or mitigate the conse-
quences of postulated accidents. A specific requirement is contained in 10 CFR 50.55a 
(h), which requires that reactor protection systems satisfy the criteria of IEEE Std 279, 
"Criteria for Protection Systems for Nuclear Power Generating Stations". Many of the 
criteria in Appendix B to 10 CFR Part 50 contain requirements closely related to the 
configuration management activity [4]. However, these regulations do not specify de-
tailed instructions and steps. Therefore, we also have gone through all related Regula-
tory Guidelines (RG) for digital computer system software used in safety systems in 
nuclear power plants such as RG 1.169- Configuration management plans ” and RG 
1.168 to RG 1.173. We found these regulatory guidelines also endorse industry stan-
dards such as IEEE 828-1998 IEEE Standard for Software Configuration Manage-
ment Plans” and IEEE 1042- IEEE Standard for Software Configuration Manage-
ment”. IEEE Standards provide guidance for planning and executing an SCM program. 
Compliance with standards does not guarantee that regulatory requirements will be met. 
However, compliance does ensure that practices accepted within various technical 
communities will be incorporated into the development and quality assurance processes 
used to design safety systems. Therefore, both safety-related regulations and industry 
standards are our important requirements resources. 

3   Requirements Analysis 

After analyzing the system specifications as the above section presented, we mapped 
each specific item of the specifications to functional or nonfunctional feature as 
shown in Fig. 3.  These features can be modeled as our regulatory SCM process 
model. 

3.1   Functional Requirements  

Functional Requirements (FRs) define what is necessary for those specific activities 
to perform within SCM. That means an activity needs its data inputs or flow in order 
to be operational. FRs of an activity can be modeled as a data flow that defines in-
put/output relations between activities. 

3.1.1   Basic SCM Function 
The basic functional requirements of SCM are listed below: 

- Identification, trace and control of all design codes, documents generated for the 
application software and all test procedures including related deficiency reports. It 
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also includes those specific configuration items in nuclear safety regulations, such as 
commercial products or components used in a nuclear safety system.  
- Provide relationship link from design data document to software application and 
documentation. 
- The change of data and the introduction into the software configuration must be 
carried out under control of the software maintenance environment. Furthermore, a 
report is required which identifies all configuration items impacted by the change. 
Those activities include change request, change analysis, design specification, related 
document, implementation and system release. 

-  All changes applied to the configuration need to be recorded automatically in the 
software maintenance environment. 
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Fig. 3. Functional and non-functional requirements 

3.1.2   Workflow Management 
Workflow management is used to trace processes by monitoring the review path. 
SCM workflow should be modeled to follow the standard operation procedures. In the 
workflow management mechanism, release of Configuration Item (CI) is channeled 
automatically to the person who has the right to release items. If a CI has interface 
with any other CI; the workflow mechanism automatically transfers the request to the 
personnel responsible by E-mail. As a CI action is registered by the system, the au-
thorized persons can see the status and the position of the request. 

3.1.3   Web Graphic Interface  
It is very convenient to control multiple vendor software by a web enabling graphic 
interface. Concerning the heterogeneous development environmental used within the 
system, E-Mail can be used for notification mechanism. Furthermore, the system 
should select web-based technology such as XML to improve data exchange and 
communication efficiency. 
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3.2   Non Functional Requirement 

The Non-Functional Requirements (NFRs) of an activity is to specify properties or 
environmental requirements like the need for traceability, consistence or integrity 
requirements. 

3.2.1   Traceability  
The main objective of software configuration management and maintenance is to 
establish traceability among involved development elements called CI, such as design 
requirements, firmware/physical configuration, software, documentation, and to main-
tain the traceability throughout the operational life-cycle phases, particularly as 
changes are being made. Any changes of made to an element should be reflected in its 
related elements. 

3.2.2   Consistency Maintenance 
To ensure the safety of the nuclear power plant, two requirements should be designed 
in system design: consistency checking and analyzing the impact of change. The con-
sistency checking is to check consistency in one single system or between different 
systems of the CIs from design specifications to implementation. This may be 
achieved via analyzing the source file and description of the CI. 

For a composite CI, impact analysis may be analyzed according to the architectural 
description because the change of an element of a composite CI will affect the ele-
ments directly connected to the changed element. 

3.2.3   Information Integration  
Another important requirement is information integration because the ability to auto-
matically update data is needed between related subsystems. This function leads to 
better decision-making and resolution of problems. Therefore, it is essential to pro-
vide comprehensive capability to manage heterogeneous configuration items, which 
are built from system level including software and hardware. 

4   Regulatory SCM Process Model (RSCMPM) 

Based on the above results of requirement analysis, we proposed a Regulatory SCM 
Process Model (RSCMPM) to identify five activities as shown in Fig.4. Each activ-
ity is referenced the goals or practices of CM PAs. Moreover, these activities also 
contain software management mechanisms which refer to nuclear safety-related 
regulations or IEEE standards, such as defining safety-related configuration items, 
change control with safety analysis, naming conventions of nuclear power plants, 
accessing control of critical systems, control sub-vendor document and process 
audition. We will discuss these activities phase more detailed in the following  
subsections. 
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Fig. 4. Regulatory SCM process model 

4.1   Plan Preparation 

In the plan preparation activity phase, a SCM plan should be produced, which in-
cludes the contents as follows:  

- Identifies SCM related regulations of nuclear power plants. 
- Identifies the responsibilities and authorities for managing and accomplishing the 

planned SCM activities. [10] 
- Identifies all activities to be performed in the project. 
- Identifies the required coordination of SCM activities with the other activities in the 

project. 
- Identifies tools and physical and human resources required for execution of the plan. 
- Identifies how the plan will be kept current while in effect. 

4.2   Institutionalized Activity Phase 

Institutionalized activity phase is used for supporting SCM activities, which include 
task assignment, environment construction and team training tasks needed to perform. 
In task assignment, both Software Configuration Control Board (SCCB) and SCM 
team representatives need to be identified firstly from related groups. The SCCB 
authorizes establishment of software baselines and identification of configuration 
items. The SCCB also involves in a software change procedure because they represent 
interests of all groups who are affected by changes to software baselines. Secondly, 
the project manager should construct a SCM development environment for SCM 
system developers. Thirdly, all SCM team members are assigned to attend training 
courses.  
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4.3   Baseline Maintenance 

A SCM repository is constructed in the institutionalized activity phase. In the baseline 
maintenance activity phase, baselines will be created and defined. The area of base-
line repository is divided into two parts: Document Library and Source Library. Be-
fore each baseline creation, a baseline report should be published. The SCCB and 
project team members review the baseline report to ensure the accuracy of the base-
line contents and to check if the contents are satisfied the baseline purpose before 
baseline creation. According to configuration items listed in baseline reports as 
planned schedule, a baseline will be created. In each baseline creation, a SCM team 
creates baselines of documents and source code. The baseline of documents is an 
archive or set of approved documents that satisfy the baseline purpose.  

4.4   Change Management 

Change management procedure is the most important task in this phase. A SCM team 
is responsible for managing and controlling the status of a change request in a project. 
Any updates to change requests and software baselines are performed under authority 
of the SCCB. Any raised change requests must be documented and sent to the SCM 
team. The SCM team works with the SCCB for a change request assessment. The 
SCCB can identify a specialist to assess and to give comments on the request. If any 
change requests about safety-related, a safety analysis report should be preview be-
fore change. The assessment result such as rejection, acceptance, or pending will be 
recorded as the change request status, and returned to the owner of the change request 
and to the project team by the SCM team.  

4.5   Audit and Report 

A baseline is considered as approved for further use after the SCCB considers that the 
baseline audit report is completed. A SCM team periodically produces SCM reports to 
inform updated SCM activities to project team members, the SCCB and the affected 
groups. The reporting period defined in this paper is one month, so the SCM group 
produces monthly SCM report.  

5   Agent-Based Software Configuration Management System 
(ABSCM) 

In this section, we propose an Agent-based Software Configuration Management 
System called ABSCM to meet the above requirements. More detailed about ABSCM 
will be presented below respectively.  

5.1   System Analysis 

Unified Modeling Language (UML) is a widely adopted in object-oriented analysis 
and design stages. But, sometimes UML is not easy to analyze workflow-based sys-
tem requirements, moreover, users may not be familiar with UML models, such as 
use case diagrams, class diagrams and dynamic diagrams. Therefore, Structured 



108 I-H. Chou and C.-F. Fan 

Analysis and Design Techniques (ex: IDEF0, IDEF3 and DFD) were adopted first to 
analyze all activities within SCM. We propose a combined object oriented analysis 
and structured analysis technique to analyze data and workflow in system modeling 
[9]. We then converted the resultant models to UML diagrams for implementation. 
Our system analysis diagram is shown in Fig. 5.  

 

Fig. 5. System flow and data analysis diagram 

IDEF0 stands for Integrated DEFinition Language, which is a methodology for de-
scribing, managing and improving complex processes and systems. IDEF3 model is a 
process flow model that graphically describes and documents the process flow, proc-
ess relationships, and process objects. Data Flow Diagram (DFD) will also be used to 
describe the process along with input and output data. 

5.2   Agent-Based Framework 

There are two roles in our ABSCM: I&C SCM system and agent. I&C SCM system 
will maintain central database and respond to overall system configuration manage-
ment. Each agent can operate subsystem SCM activities independently (as shown in 
Fig. 6). We presented three merits of agent-based framework as below: 

1. Agent-based philosophy for modeling and managing organizational relationships 
is appropriate for dealing with the dependencies and interactions that exist in 
complex systems. 

2. Agent-based structure can avoid the complexity of system integration, and each 
subsystem can operate SCM activities at the same time. 

3. Agent-based decomposition is an effective way of partitioning the problem space 
of a complex system. 
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Fig. 6. Agent-based framework 

5.3   System Architecture 

Figure 7 illustrates the architecture of ABSCM, in which I&C central SCM system 
controls the configuration information of subsystems equipped with XML-based con-
figuration agents. User can access I&C SCM using browser via any local agent, and all 
SCM activities will be handled by agents and central SCM system depends on the 
cross-reference index. The central SCM and agent architecture are described as below. 

5.4   Central SCM Database  

The central SCM database has five modules: XML database (XMLDB), cross-
reference service (CRS), workflow process service (WPS), document service engine  
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(DSE) and e-mail service (EMS). The XMLDB possesses the list of subsystems and 
the configuration information of each subsystem in the XMLDB [7]. XMLDB is a 
special database designed only for XML documents [5], stores intact XML documents 
and partially controls the contents of the XML documents. The CRS processes infor-
mation. WPS provides SCM standard processes and application status to various 
agents. DSE receives the notification message from the agent. EMS connects to the 
POP3 server for providing e-mail service. Both XMLDB and Meta data are resources 
of the central SCM database. 

5.5   Agent Side Structure 

The agent structure illustrated in Fig. 7 contains XSL&XSLT, XML parser, XML DB 
handler, Web server and SCM operation modules. XSL&XSL transforms the XML 
form into the HTML form to offer a web-based user interface for browsing users. The 
XML parser module allows for an agent to parse and access the contents of the XML 
message. The XMLDB handler module processes information in agent database 
(agent DB). The SCM operation module has five methods: get, add, delete, modify 
and create. These methods are used to support SCM activities of agent-based subsys-
tems. Similar to XMLDB of central SCM, agent DB are also special databases de-
signed for storing and controlling XML documents. 

5.6   Configuration Information Exchange  

XML is particularly useful to integrate and exchange the information in a heterogene-
ous environment, which can be used to describe the configuration information, ex-
change messages, relationship information, etc [5]. By using an HTTP interaction 
operation model, users easily access SCM operations within the agent environment. In 
order to use automatic reconfiguration of related subsystems, we propose a configura-
tion information model and relationship information model that can apply to DCIS 
agent-based architecture. The relationship information model focuses on the dynamic 
relationships of subsystems. We adopted XML Schema [5] to implement our configu-
ration information model. The subsystems that perform the same work have almost 
the same configuration information, so they are classified into an identical group. The 
sub-elements of the elements such as global-info, group-info and sub-info are to pre-
sent the specific configuration information in the subsystems. Group-info is a collec-
tion of configuration information shared with subsystems in the same group. Sub-info 
is a collection of configuration information used by only one subsystem. 

To describe various relationships of CIs information among subsystems, we pro-
pose an XML Schema for the relationship configuration information model.  

We define three-element tags: reference-info, share-info and inheritance-info to 
express relationships among configuration items. They are explained below:  

1. Reference-info: It presents as caller and callee relations.  
2. Share-info: It is used when the information changes occurring in a subsystem are 

delivered to the other subsystems in the related groups. 
3. Inheritance-info: It is used only the group name if all the sub-elements under the 

group-info are inherited. If the information is partially inherited, the inheritance 
element requires both the group name and the inheritance-info name. It is used 
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when the child node modifies the inherited information independent of the parent 
node. We also use “share-info” and “inheritance-info” relations to support analyz-
ers in change impact analysis. At the same time, XML tags also can be used to 
show change history. The changed fragments may be marked using 
new/removed/changed tags. 

5.7   Implementation 

The workflow and data model diagrams were implemented by using AllFusion Proc-
ess Modeler software. System implement platform and software development tool 
adopted Microsoft .NET framework and Visual Stduio.Net 2003. For the development 
of interactive user interface, the technology employed is Microsoft ASP-based IIS.  

For validating and simplifing our ABSCM architecture, the first prototype applica-
tion: Windows Version SCM (WVCM) without web capability has been constructed 
in our lab. We developed XML-based SCM environment using Microsoft Visual 
Basic 6.0 and Microsoft Access. User can customize XML tags to markup CIs and 
select all kind of reference types in WVCM. All basic SCM functions that described 
in Section 3 are implemented in WVCM. For example, change request form will 
automatically deliver via e-mail to the designated receivers according to the custom-
ized workflow. “Reference-info” and “Inheritance-info” of XML tag are used to sup-
port analyzers in change impact analysis and change history.  

6   Conclusion 

The nuclear industry is one of the most regulated and complex industries in the world. 
The importance of software configuration management and software maintenance is 
clearly understood, but there is yet no clear roadmap on planning and implementation. 
Therefore, we propose an agent-based framework with XML technology to manage 
and maintain multi-vendor and heterogeneous software environment. We also have 
presented both configuration and relation information models that can be applied to 
our agent-based framework using an XML Schema. The pilot windows version is 
implemented and our results indicated its feasibility. 

Taiwan is constructing its fourth nuclear power plant (Lungmen project), which is 
a full-scope digital I&C developed by General Electric and will ship to Taiwan in 
2006. So far, there is no integrated SCM and maintenance environment for I&C of 
Lungmen project site. Therefore, Institute of Nuclear Energy Research (INER) will 
cooperate with Taiwan Power Company (TPC) to apply the agent-based SCM concept 
to manage and maintain digital I&C software of Lungmen project in the near future.  
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Abstract. Software safety standards recommend techniques to use throughout 
the software development lifecycle. These recommendations are a result of 
consensus building amongst software safety experts. Thus the reasoning 
underpinning compliance to these standards tends to be quite subjective. In 
addition, there are factors such as the size of the project, the effect of a review 
process on earlier phases of the development lifecycle, the complexity of the 
design and the quality of the staff, that arguably influence the assessment 
process but are not formally addressed by software safety standards. In this 
paper we present an expert system based on Bayesian Belief networks that take 
into account these and other factors when assessing the integrity at which the 
software was developed. This system has been reviewed by engineers working 
with software safety standard IEC61508. In this paper we illustrate some 
arguments that can be supported using the proposed system.  

This paper and the work it describes were partly funded by the Health and 
Safety Executive. The opinions or conclusions expressed are those of the au-
thors alone and do not necessarily represent the views of the Health and Safety 
Executive. 

Keywords: Software reliability, Safety standards, Integrity claims, Bayesian 
belief networks.  

1   Introduction 

Safety critical software is typically developed according to recommendations made by 
software safety standards. Software safety standards recommend a set of techniques to 
apply in the various stages of the software development lifecycle. The recommen-
dations made by software safety standards are a result of consensus between software 
safety engineers. This approach is highly subjective, relying heavily on ‘engineering 
judgment’. Thus when organizations need to follow these standards they face some 
uncertainty in estimating the rigour at which they managed to comply with the 
standard. In this paper we address this issue by proposing the use of an expert system 
based on Bayesian Belief networks (BBNs) to measure the rigour of compliance with 
software safety standards. Bayesian Belief networks (BBNs) provide a sound 
framework within which to achieve this.  
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Expert systems are designed to replicate or replace human reasoning. Since they 
often focus on a narrow domain it is plausible that under some circumstances they can 
improve on the performance of humans. For example, these systems can provide 
powerful reasoning under uncertainty, which humans find difficult especially when 
confronted with a complex problem containing a large number of factors. 

There are two methods for developing expert systems. We can either get the expert 
system to learn rules from a set of existing data or we can elicit knowledge from a 
human expert (or group of experts) and develop the expert system to provide the same 
reasoning as the human expert. The validation of the expert system is done by giving 
to the expert system unseen scenarios and seeing if predictions made by the expert 
system matches those of the human expert. Like any other system, expert systems also 
are developed according to a development lifecycle. Details of the development 
lifecycle for the type of expert system that we present in this paper are given in [1]. 

The expert system proposed in this paper is a result of interviews held with experts 
working with the IEC61508-3 software safety standard [2]. However, it does not 
restrict its reasoning to that contained within IEC61508; it takes the standard as a 
guide to process-based integrity assessment, but also includes reasoning paradigms 
that are not found in IEC61508. The same principles could be applied to other 
software safety standards such as DO-178 or DEF 00-55.  

Bayesian Belief networks were chosen for their ability to capture subjective 
arguments and because commercial tools already exist to support BBN modeling [3], 
[4]. One can argue that the process of eliciting expert knowledge is subjective and that 
it is difficult to build consensus. Whilst this is true, it remains important to reduce 
subjectivity in safety assessment where possible, and a self-consistent framework for 
capturing uncertain reasoning is an important step towards that aim. In addition, there 
are methods that can be applied to reduce the bias in the elicitation process and also to 
combine opinions of more than one expert, more detail about these techniques can be 
found in [5],[6]. In order to conduct sensitivity analysis on Bayesian expert systems, 
Spiegelhalter, Cowell et. al in [7],[8] presented a new approach to measure the expert 
system’s effectiveness. In their publication the authors used logarithmic scoring rules 
to define monitors for the conditional probability tables. This approach was 
successfully applied to validate a Bayesian expert system designed to measure the 
effectiveness of the software inspection process, [9],[10]. We do not apply these 
sensitivity techniques in this paper, we simply place the experts reasoning within a 
graphical probabilistic structure. 

The use of Bayesian belief networks to predict software integrity based on the 
software development process has been proposed previously by Hall et. al in the 
FASGEP project [11]. However the approach presented by these authors is different 
from ours in the sense that our expert system seeks to assess software integrity based 
on the principles presented in software safety standards. A number of publications 
have been published by Fenton and Neil [12],[13],[14] in the development of BBN 
models for software quality assurance. Models developed by these authors were 
designed to support software quality assessment, resource management and cost 
efficiency analysis for software project management. These models do not attempt to 
measure the rigour of compliance to a software safety standard.  
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The first application of BBN in the specific context of a software safety standard 
was presented in [15],[16] by Gran, who studied the standard DO-178. The model 
presented by Gran comprises two separate blocks, a higher level BBN that represents 
the quality of product development and a lower level BBN representing the 
contribution of testing. The higher level BBN is used to provide estimates for the qua-
lity of the development process. The BBN representing the testing block uses node Y 
to estimate the number of failures in N new tests, where N is introduced as hard 
evidence. The parent nodes of node Y are the number of tests N and the probability of 
failure P. The latter is estimated based upon the quality of the product development. 
This BBN can be used to estimate product dependability by linking node P to a node 
representing the system dependability. Our approach differs from Gran’s in the sense 
that we model the software development lifecycle at a finer level of detail. The BBNs 
presented in this paper capture the set of activities carried out in each phase of the 
software development lifecycle, and also interactions between phases. The BBN 
model presented in this paper combines integrity estimates for all phases of the 
software development lifecycle in order to compute the overall software integrity. The 
quality of each single phase is fed forward to affect the quality achieved after 
subsequent phases. And when errors are found in later phases, that information is fed 
backward to affect integrity assessments of earlier phases. This phenomenon gives 
origin to a form of closed loop BBN that has not been proposed before.  

In section 2 we provide some background on the type of expert system that we are 
designing. In section 3 we first address issues concerning compliance to IEC61508-3 
and give details of the proposed expert system. In section 4 we provide some 
examples of how our model can support safety integrity level (SIL) claims within 
IEC61508-3. Section 5 offers some conclusions and analysis of the results.  

2   Background on Bayesian Belief Networks 

Expert systems based on Bayesian Belief networks reason about problems that are of 
a probabilistic nature where there is a causal relationship amongst variables of the 
domain [17],[18]. The theory supporting Bayesian Belief networks rests on a rich 
tradition of probability theory, and statistical decision theory and it is supported by 
excellent axiomatic and behavioural arguments [19]. A Bayesian belief network for a 
set of variables X = {X1, X2, …, Xn} consists of a) a directed network structure that 
encodes a set of conditional independence assertions about variables in X and b) a set 
P of ‘local’ probability distributions associated with each variable, describing the 
distribution of the variable conditioned on its parent variables. The nodes in the net-
work structure are in one-to-one correspondence with the variables in the probabilistic 
model.  

Typically there are two main tasks in the overall design of BBNs: structure design 
and parameter elicitation. Structure design involves the task of deciding "what 
depends on what?" and encoding that using the conditional independence semantics of 
the network (directed acyclic graph) structure. It can use qualitative information, 
background knowledge and empirical experience. In some cases, network structure 
can be learnt, if there is a large body of experimental data. Where this is not the case, 
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the key problem is how to acquire knowledge from domain experts. The task of 
parameter elicitation, on the other hand, is to fill out the conditional probability tables 
(CPTs) or node probability tables (NPTs) for every random variable. These can be 
obtained from either quantitative data or subjective estimation by domain experts. 
Bayesian belief networks can perform different types of reasoning such as 
predictions, diagnostics, combined and intercausal. Details about each of these types 
of reasoning are presented in [19].  Once a Bayesian Belief network is built it can be 
used to interpret the impact of evidence as it arises, on the distributions of the 
variables at the nodes.  

3   Network Structures 

The suggested BBN structures presented in this section represent an attempt to 
capture the reasoning in software safety standards, but are no means claimed to be 
fully accurate representations. The structure of the networks, and their conditional 
probability tables, must be further evolved in a process of expert consensus building. 
Section 3.1 briefly outlines the process suggested by IEC61508-3.  

In order to model the software development process we use two generic BBN 
structures. One to capture the set of activities that take place in one phase of the 
development process and a larger BBN to provide interaction between all phases of 
the development process. Section 3.2 presents the BBN prototype for estimating the 
integrity of one phase of the software development process and section 3.3 presents 
the generic model used to capture interaction between several phases of the 
development process.  

3.1   Structure of IEC61508-3 Activities 

In IEC61508, system development is structured into three safety lifecycles: the 
overall, the E/E/PES, and the software. Only the software safety lifecycle is addressed 
in this paper. The software safety lifecycle phases are ordered according to the well 
known V diagram for software development.  

Table 1. Software safety requirements specification (see part 3 section 7.2 of the standard) 

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 
1    Computer-aided specification tools R R HR HR 

2a   Semi-formal methods R R HR HR 

2b   Formal methods including for example, CCS, CSP, 
HOL, LOTOS, OBJ, temporal logic, VDM and Z 

--- R R HR 

a) The software safety requirements specification will always require a description of the problem 
in the natural language and any necessary mathematical notation that reflects the application. 
b) The table reflects additional requirements for specifying the software safety requirements 
clearly and precisely. 
c) Appropriate techniques/measures shall be selected according to the safety integrity level. 
Alternate or equivalent techniques/ measures are indicated by a letter following by a number.  Only 
one of the alternate or equivalent techniques/measures has to be satisfied. 
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For each phase, IEC61508 recommends a set of methods to be applied. Table 1 
presents all methods recommended by IEC61508-3 for the first phase of the software 
development lifecycle, software safety requirements specification. More detail about 
how to apply this standard is given in [20]. Each phase of the software development 
lifecycle has its own table, and other tables containing recommended methods are 
presented in appendix A of IEC61508-3. When assessing the integrity of the 
development process, the safety assessor will try estimate how well an organization 
complied with the recommendations presented in these tables. Therefore the overall 
integrity claim for the software development process is a combination of the 
integrities from individual phases of the development process.  

3.2   Single-Phase BBN Prototype 

This part of the problem involves prediction of software integrity from the character 
of the methods used in a single phase of a safety software life-cycle presented in a 
standard such as IEC61508-3. There is some previous work that is relevant to this 
problem as summarised briefly in section 1. The network structure in Fig. 1 is 
proposed.  

The main purpose of the BBN is to estimate the significance of the outstanding 
errors remaining in the system at the end of the phase. This clearly depends on a wide 
variety of factors, many of which are exposed in the BBN. One important factor that 
is not present in the BBN is a program’s operational profile of inputs during use. A 
program’s reliability depends on this profile. It is assumed (as it is in standards) that 
such information is implicitly factored in to the assessment i.e. the verification 
methods used are focused on the proposed usage of the system, so that faults that 
cause large numbers of failures are found quickly. There is some evidence that if this 
is true, software reliability (integrity) is predictable provided latent fault numbers can 
be predicted [21].  

In each phase the BBN divides methods into two types: build methods (e.g. in a 
specification phase, these are the methods used to construct the specification) and 
verification methods (e.g. methods used within the phase to check that the produced 
specification is satisfactory).  

In the proposed BBN, as a general principle, we model the rigour of application of 
any method (its effectiveness), in terms of two subsidiary concepts: the inherent 
power to do the job (‘power of build/verification method i’ nodes) and the intensity of 
its application (‘intensity at which build/verification method i was applied’ nodes). 
The multiple node notation presented in Fig. 1 is used because every phase of the 
IEC61508 safety software development lifecycle has one or more build and 
verification methods, the precise number of nodes depends on:-  

1. The number of build and verification methods applied in each phase, and 
2. The position of the phase within the whole process (see for example the ‘Quality of 

the verification process…’ nodes).  

In the generic single phase BBN shown in Fig. 1, phase ‘i’ is shown with three build 
methods and three verification methods. 
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The ‘Quality of the development process at phase i’ is there to capture the quality 
of implementation of the build methods. The quality of the development process has a 
causal effect on the number of faults introduced in the system.  

The ‘Significance of errors found …’ nodes measures the criticality of errors found 
during the verification process. Errors can have several levels of severity/criticality. 
This node estimates the criticality of all errors found during the verification process 
based on estimates for the quality of the ‘verification process …’, ‘quality of the 
development process…’, ‘size of the product’, ‘size of the verification team’ and also 
‘complexity of the verification task’. The node has four possible states {negligible, 
tolerable, undesirable, intolerable}. Similarly, the ‘significance of outstanding 
errors…’ node refers to the effect of the faults that remain undiscovered. The latter 
node will ultimately feed in to the computation of probable integrity levels (see 
section 3.3). The computation of the probability distribution for this node from its 
parents is one of the most contentious aspects of the reasoning in safety standards. In 
brief, the rationale is that the build processes allow an assessment of integrity prior to 
verification, and then verification finds errors which results in an improved integrity 
assessment. It may be that there are other, more comprehensive network structures 
that can capture the underlying reasoning more accurately. However, it should be 
possible to capture such reasoning in BBN form, and thus to expose it to expert 
scrutiny. The central point of each phase is to estimate the significance of the 
outstanding errors. This is achieved by assessing the confidence levels for the quality 
of the development process and also for the significance/criticality of errors found 
during the verification process. This is assumed to have a direct causal link with the 
SIL that one can claim for phase i. The significance of outstanding errors can take any 
value of the following set: {negligible, tolerable, undesirable, intolerable}. 

The ‘complexity of the build task…’ nodes capture the inherent difficulty of the 
tasks being undertaken in a phase. To see why this is an important factor, suppose a 
phase was modelled in two ways. Firstly, as a single ‘meta-phase’. Secondly, as split 
into two smaller phases. Further, suppose that the same methods were used in all two 
phases with the same intensity. Without the complexity node, the estimated quality 
loss in each sub-phase would be equal to the quality loss for the original meta-phase. 
Depending on how integrity measures from separate phases are composed, the BBN 
model could be incoherent (self-contradictory).   

The ‘Quality of the verification process…’ nodes take values from a discrete set of 
values such as {very poor, poor, medium, good, very good}. Estimations of their 
values are made based on the rigour at which verification methods were applied and 
their relevance. The ‘relevance of the verification method j for phase i’ node 
effectively ‘selects’ the verification processes that are relevant to previous phases of 
the software development lifecycle. Finally, the ‘Application factor’ nodes model the 
effect that different industrial sectors have different perceptions as to the degree of 
rigour at which build methods should be applied and their effectiveness. An 
alternative approach would be to remove this node and use different NPTs for 
different industry sectors. 
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Fig. 1. Generic BBN ‘Flat’structure for one phase of the safety software development lifecycle. 
A rectangular box represents a single discrete variable and a multi-box represents a set of 
nodes. 

3.3   Multi-phase BBN Prototype 

In order to model the entire software safety development lifecycle a larger BBN is 
needed to combine estimations from individual phases. We propose that this larger 
network should feed forward the quality of the development process of each single 
phase, since the subsequent development work will depend on that quality. The 
network also should have a feedback connection so that errors found in later phases 
have an impact on the contribution to the estimated SIL in a previous phase. This 
approach allows us to capture intricate influences between ‘phases’ in a way that 
goes beyond the reasoning currently used in standards. The generic BBN structure 
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Fig. 2. Generic BBN Multi-Level structure for several phases of the safety software devel-
opment lifecycle 

shown in Fig. 2 presents a sub-net for each phase of the safety software life-cycle and 
a net for interaction among phases. 

The interaction net in Fig. 2 aggregates integrity estimates from multiple phases. In 
each phase of the safety software development lifecycle, there is a verification 
exercise that aims to find errors introduced in the development process. This 
verification exercise, or process, aims to find errors that are relevant to particular 
phase at which it is being applied. The verification process of a particular phase can 
clearly also find errors made in previous phases of the safety software lifecycle. 
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Errors found in later phases are deemed to be corrected resulting in a gain in integrity 
level achieved at the end of the previous phase. An example is for instance, errors 
found whilst testing the software. Some of these errors will be relevant to the software 
implementation phase, however some of these errors may have been introduced in the 
software functional specification phase. 

We implemented a simple rule, that the overall integrity after any phase is the 
minimum level of integrity achieved for all previous phases including its own. For 
instance, if one claims SIL 1 for phase 1 and SIL 3 for phase 2, the overall integrity 
that one can claim after phase 2 is SIL 1. Clearly, this is a candidate for debate, and 
there is a strong case for additive models (discussed briefly in section 3.2 in the 
context of the ‘complexity…’ nodes). 

4   Using the BBN 

This section gives some examples of the use of BBNs to estimate integrity levels 
based on the style of reasoning found in safety standards. 

4.1   Example 1: Predicting the Criticality of Outstanding Errors in the Software 
Requirements Specification Phase 

This example concerns phase 1 of the safety lifecycle, software safety requirements 
specification. In the following example, all nodes without parents have been given 
hard evidence, this means that the variables have been instantiated with a value: a 
measurement of the quantity being modeled by the variable e.g. the ‘Training’ node 
has value ‘satisfactory’. This evidence is then propagated through the network 
updating the belief in the states of the nodes that were not given values. In probability 
terms, a probability distribution is calculated for each of the latter nodes, conditioned 
on all of the hard evidence.  

The discussion below shows how the integrity level claimed for the safety 
requirements specification depends on measurements, according to our BBN model.  

• Assume that there was overwhelming evidence for the following statements. 
Formal methods were not applied, the ‘Power of the Semi-formal method’ used is 
‘good’ and it was applied at a ‘low’ intensity. In addition, computer aided 
specification tools were applied at a ‘high’ intensity. Further more the ‘complexity 
of task’ is ‘fair’; ‘Application factor’ is ‘medium’. Further, parent nodes of the 
‘competency of development staff’ were set with evidence as follows: ‘training’ is 
‘satisfactory’, ‘technical knowledge’ is ‘moderate’, ‘Experience’ is ‘moderate’ and 
‘qualifications’ is ‘good’. Then the following distribution would be obtained for 
the significance of the outstanding errors: {28.28, 35.83, 19.44, 16.44}. This means 
that there is 28% belief that the criticality of the outstanding errors in phase 1 is 
negligible, 36% belief that they are tolerable, 19% belief that they are undesirable 
and 16% belief that they are intolerable. For the same conditions the following 
distribution is obtained for the ‘Overall SIL for Phase 1’: {8.23, 14.26, 38.04, 
39.47}. This means that there is 39.47% belief that the development process 
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complies with SIL 4, 78% belief that it complies with SIL 3.  The states of any 
node are mutually exclusive, and so by saying that there was 39% confidence that 
the development process complies with SIL 4 this amount of belief also applies to 
the statement that the software complies with SIL 3. SIL levels vary from 1 to 4 
where level 4 indicates the highest integrity. This scenario is case study 1 in Fig. 3. 
Note that in Fig. 3, only the confidence estimate that the development process 
meets SIL 4 is plotted together with the belief that the criticality of the outstanding 
errors is ‘negligible’.  

• Consider that all previous evidence remains valid, but semiformal methods were 
applied at a ‘moderate’ intensity. Then the following distribution for the 
‘significance of outstanding errors’ would be obtained: {31.02, 37.16, 17.94, 
13.89}. Consequently the distribution for the ‘Phase 1 overall SIL’ would be as 
follows: {6.81, 12.58, 38.07, 42.55}. Hence one could say with a belief (or 
‘confidence’) of 81% that the development process complies with SIL 3. This 
scenario is captured in case study 2 in Fig. 3. Whether this improvement of 3% is 
sufficiently high is a matter for debate, and this shows how these scenarios are a 
means by which expert consensus can judge the network and subsequently tune the 
NPTs.  

• If in addition to all information previously provided if evidence was collected 
supporting the fact that a very powerful formal method was applied at a low 
intensity the following distribution would be obtained for the ‘significance of the 
outstanding errors in phase 1’: {54.01, 30.60, 9.53, 5.87}. Consequently the 
estimated belief that the ‘significance of outstanding errors’ was negligible 
increased to 54%. For the same conditions the following distribution would’ve 
been obtained for the ‘Phase 1 overall SIL’: {2.76, 6.59, 29.83, 60.83}. This means 
that there is now 61% belief that the development process complies with SIL 4. 
The figures are notional. They are proposed as a basis for future discussion and 
nothing more. They do however, illustrate the power of the BBN to capture 
uncertain argumentation of the type needed in standards. This scenario is case 
study 3 in Fig. 3.  

• If formal methods were applied at a high level then the following distribution 
would be obtained for the ‘significance of the outstanding errors in phase 1’: 
{68.87, 23.93, 4.78, 2.42}. For the same conditions the following distribution 
would be obtained for the ‘Phase 1 overall SIL’: {1.11, 3.89, 23.45, 71.56}. This 
means that there is now 72% belief that the development process complies with 
SIL 4. This scenario is case study 4 illustrated in Fig. 3. 

The behaviour of the prototype BBN suggests that the Single-Phase BBN model may 
usefully be used to capture the reasoning in standards. One idea encapsulated by the 
BBN in these cases is that using a more powerful method will not necessarily increase 
integrity unless it is applied diligently.  

Fig. 3 presents the belief estimates for the ‘significance of outstanding errors in 
phase 1’ and ‘Phase 1 overall integrity’ nodes. 
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Fig. 3. Estimates of belief that phase 1 complies with SIL 4 

4.2   Example 2: Estimating Phase_1 Overall Integrity Taking into Account the 
Review Process 

This example illustrates how evidence gathered regarding the review process of 
phases 1, 2 and 3 influence the overall integrity claim for phase one. The node 
capturing the latter measures the integrity level that one can claim for phase 1 and has 
the following states: {SIL1, SIL2, SIL3, SIL4}. In the following example all nodes 
concerning the development process of phase 1 were populated with the same 
evidence as the one considered for case study 1 of the previous example, and then 
evidence is added concerning review processes.  

Fig. 4 presents the belief estimates that ‘Phase 1 overall integrity’ complies with 
SIL 3. For this example the following scenarios were considered: 

• Consider that there is evidence supporting the following assumptions: the ‘power 
of verification method Y’ in phase 1 is ‘moderate’, the ‘intensity at which 
verification method Y was applied’ was ‘moderate’, the ‘relevance of the 
verification method Y to phase 1’ is ‘high’, the ‘independence level’ between 
development team and review team is ‘low’. In addition it was also considered that 
the staff involved in the verification had the same amount of experience, training, 
technical knowledge and qualifications as the staff used in the development 
process. Given the above conditions, the following distribution was obtained for 
the ‘significance of outstanding errors in phase 1’: {28.53, 36.68, 19.68, 15.41} 
and for the ‘Phase 1 overall integrity’ node: {7.78, 14.03, 38.20, 40}. Thus, there is 
78% confidence that phase 1 complies with SIL 3. This scenario is case study 5 in 
Fig. 4. 

• In addition to the information provided previously, consider that the independence 
level between the development team and the verification team is ‘high’ instead of 
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‘low’. The following distribution would be obtained for the ‘significance of 
outstanding errors in phase 1’: {36.71, 47,43, 13.50, 2.35} and for the ‘Phase 1 
overall integrity’ node: {2.32, 9.26, 36.84, 51.58}. Thus, there is 88% confidence 
that phase 1 can claim to comply with SIL 3. This scenario is case study 6 in 
Fig. 4. 

• Furthermore, consider that the same people carried out the review process in phase 
2 ‘software architecture’ and that in addition a good verification technique was 
applied. The following distribution would be obtained for the ‘Phase 1 overall 
integrity’ node: {0.99, 4.88, 37.42, 56.71}. Hence the BBN suggests a 94% 
confidence that the development process of phase 1 complies with SIL 3. This 
scenario corresponds to case study 7 in Fig. 4. 

• Moreover, consider that the same people carried out the review process in phase 3 
‘software design’ and that they used a good verification technique. The following 
distribution would be obtained for the ‘Phase 1 overall integrity’ node: {0.11, 3.12, 
40.83, 55.94}. Hence with the BBN suggests a 97% confidence that the 
development process of phase 1 complies with SIL 3. This scenario is case study 8 
in Fig. 4. 
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Fig. 4. Estimates of belief that phase 1 complies with SIL 3 

The results are a form of ‘reliability claim growth’ in software development 
processes; a gain of integrity in an earlier phase due to the effectiveness of the review 
processes in later phases. This concept is quite different from traditional reliability 
growth in software testing. Here we are addressing software integrity before code is 
available, and plausible reliability claims rather than reliability measurement. This 
modelling goes beyond the reasoning present in standards such as IEC61508.  
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5   Conclusions 

A Bayesian Belief Network model has been proposed to predict software safety 
integrity based on the type of reasoning present in safety standards such as IEC61508-
3. Arguments for this formalisation of the underlying reasoning in such safety 
standards have been presented. The development and application of a software safety 
standard such as IEC61508-3 are both highly complex processes. Probabilistic 
reasoning can provide a sound framework within which to perform them. Although 
they are currently quite limited, the examples in this paper give an initial indication of 
the promise of BBNs in this respect. However, it remains possible that some elements 
of safety standards that cannot be captured in this way. 

The proposed prototype BBN structure introduces a novel way to capture the 
effects that interactions between development phases should have on integrity claims. 
In doing so, it models the notion of growth in reliability claims.   

In the first example studied, we captured the idea that different procedures are not 
considered to be of equal effectiveness. Effectiveness is not just a matter of the 
inherent power of procedures. For example, it is tempting to state that the use of 
formal methods provides more effective assurance than, say, the use of traditional 
code inspection. However, before this statement can be made it is necessary to know 
how intensively the formal method has been applied (e.g. full proof of code, or just a 
few key system properties?), how many people inspected the code, how long were 
they given, and their experience/training etc. This rationale was clearly demonstrated 
in example 1. 

With example two we suggested factors that affect software integrity claims that 
are not addressed by current software safety standards.  

One of the benefits of the BBN approach is that tool support that effectively assists 
in the evaluation of selected methods may result in a more transparent and convincing 
argument that the software achieves its required SIL. Compliance based on the current 
static tables of methods may encourage over-prescriptive use of the standard. 

The proposed BBN structures and local probability tables represent an attempt to 
capture the reasoning in safety standards, but are no means claimed to be fully 
accurate representations. The BBNs will need to be evolved further in a process of 
consensus building amongst domain experts.  
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Abstract. For large systems, the manual construction of fault trees is error-
prone, encouraging automated techniques. In this paper we show how the re-
trenchment approach to formal system model evolution can be developed into a
versatile structured approach for the mechanical construction of fault trees. The
system structure and the structure of retrenchment concessions interact to gen-
erate fault trees with appropriately deep nesting. The same interactions fuel a
structural approach to hierarchical fault trees, allowing a system and its faults
to be viewed at multiple levels of abstraction. We show how this approach can
be extended to deal with minimisation, thereby diminishing the post-hoc sub-
sumption workload and potentially rendering some infeasible cases feasible. The
techniques we describe readily generalise to encompass timing, allowing glitches
and other transient errors to be properly described. Lastly, a mild generalisation
to cope with cyclic system descriptions allows the timed theory to encompass
systems with feedback.

1 Introduction

Reliability analysis of complex systems traditionally involves a set of activities which
help engineers understand the system behaviour in degraded conditions, that is, when
some parts of the system are not working properly. These activities have the goal of
identifying all possible hazards of the system, together with their respective causes. The
identification of hazards is a necessary step for safety-critical applications, to ensure that
the system meets the safety requirements that are required for its deployment and use.

Among the safety analysis activities, a very popular one is Fault Tree Analysis (FTA)
[30]. It is an example of deductive analysis, which, given the specification of an unde-
sired state –usually a failure state– systematically builds all possible chains of one of
more basic faults that contribute to the occurrence of the event. The result of the anal-
ysis is a fault tree, that is, a graphical representation of the logical interrelationships of
the basic events that lead to the undesired state.

The manual construction of fault trees relies on the ability of the safety engineer
to understand and to foresee the system behaviour. As a consequence, it is a time-
consuming and error-prone activity, and may rapidly become impractical in case of
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large system models. Therefore, in recent years there has been a growing interest in
formally based techniques to automate the production of fault trees [15, 13].

The starting point is our previous work relating retrenchment [5, 6, 7, 8, 9, 10, 3]
and formal system model evolution [4]. Namely, in [4] we showed how retrenchment,
as opposed to conventional refinement, can provide a formal account of the relationship
between the abstract system model, that is the model of the system in nominal condi-
tions, and the concrete system model, that is the model enriched with a description of
the envisaged faults the system is designed to be robust against.

In this paper we show how retrenchment can be developed into a versatile structured
approach for the mechanical construction of fault trees. Building on the ideas sketched
in [4], where we exemplified the generation of a fault tree on a two-bit adder exam-
ple, in this paper we show how the simulation relation of retrenchment can be used to
systematically derive fault trees built upon the system structure. This is achieved by
exploiting the structure of retrenchment concessions, using suitable notions of compo-
sition to gather the degraded cases into the concession of a composed retrenchment.
We show how these techniques can be readily generalised in order to deal with issues
like timing and cycles, thus paving the way for the analysis of dynamic systems and sys-
tems with feedback. Finally, we show how the interactions between the system structure
and the structure of concessions yield a structural approach to hierarchical fault trees,
allowing a system and its faults to be viewed at multiple levels of abstraction.

The techniques we present in this paper improve over the ones discussed in [13], in
that they allow the mechanical generation of fault trees built upon the system structure,
which are more informative than the flat (two-level) fault trees of [13]. Furthermore, we
demonstrate the potential of our approach by exemplifying how these techniques can be
fruitfully adapted to address the problem of generating the minimal cut sets of a fault
tree. We show that, by annotating the generated subtrees with suitable minimisation
directives, it is possible to perform some minimisations locally, thereby diminishing the
post-hoc, brute-force subsumption workload of traditional minimisation algorithms.

The rest of the paper is structured as follows. In Section 2 we review retrenchment
and relevant notions of composition of retrenchments. In Section 3 we present our re-
trenchment directed approach to the generation of hierarchical and structured fault trees
on a running example. In Section 4 we show how the structured analysis can be modified
to reduce the work of finding the minimal cut sets of some fault condition. In Section 5
we extend the method to deal with internal state in the subsystem being treated, which
is relatively straightforward as long as the subsystem remains acyclic, and in Section 6
we discuss the issues raised by cyclicity and feedback. Finally, in Section 7 we discuss
some related work and we outline some conclusions.

2 Systems, Retrenchments and Compositions

In this paper we describe systems using input/output transformers. So in general, a
(sub)system will consist of a collection of I/O relations, each describing the behaviour
of a component, and with (sub)system structure expressed by the identification of pre-
decessor component outputs with successor component inputs; obviously some inputs
and outputs remain free to allow communication with the environment. We can write
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such components using a relational notation Thing(i, o), where i and o can be tuples,
eg. i = 〈x, y, z〉 in the case of multi-input/output components.

Retrenchment [5, 6, 7, 8, 9, 10, 3], was introduced to provide a formal vehicle for
describing more flexible model evolution steps than the usual technique for formal sys-
tem development, refinement, conventionally allows. Since refinement was conceived
with the desire to ensure that the next model conformed to properties of its predeces-
sor, while moving towards greater implementability, it is no surprise that not all model
evolutions that one might conceivably find useful fall under its scope.

In this paper, it is the simulation relation of retrenchment which does the work. This
can be expressed as follows. Suppose we have two systems Abs and Conc, and suppose
OpA(i, o) and OpC(j, p) are two corresponding operations, aka component behaviours,
in Abs and Conc respectively.1 A retrenchment simulation between them is given by:

WOp(i, j) ∧ OpC(j, p) ∧ OpA(i, o) ∧ (OOp(o, p, i, j) ∨ COp(o, p, i, j))

Here WOp, OOp, COp are the within, output, concedes relations for the pair of operations
Op. The within relation WOp defines the remit of the retrenchment; while the output and
concedes relations describe what are to be considered ’normal’ and ’deviant’ aspects
of the relationship between OpA and OpC. The aggregate of all the relevant relations
for all corresponding operation pairs is collectively called the retrenchment data for the
particular retrenchment between Abs and Conc that we have in mind.

To consider large systems, we need mechanisms to express hierarchy and composi-
tion. Fortunately these are straightforward. To express hierarchy, it will be sufficient to
decompose the concession into a number of cases covering distinct fault possibilities:
COp ≡ COp,1 ∨ COp,2 ∨ . . . ∨ COp,n. So COp expresses the high level view while the
COp,k give a more detailed lower level perspective.

For composition, we need sequential and parallel composition mechanisms. Fortu-
nately these are both straightforward, and similar to each other. Given Op1 and Op2,
assuming the outputs of Op1 can be identified with the inputs of Op2, their sequential
composition Op1;2 is the relational composition Op1o

9Op2. If now both Op1 and Op2
come in abstract and concrete versions, related by retrenchment data WOp1, OOp1, COp1
and WOp2, OOp2, COp2 respectively, then Op1;2A and Op1;2C will be related by retrench-
ment data:

WOp1;2 = WOp1 (provided (OOp1 ∨ COp1)⇒ WOp2)
OOp1;2 = OOp1o

9OOp2 COp1;2 = OOp1o
9COp2 ∨ COp1o

9OOp2 ∨ COp1o
9COp2

where ∨ is relational union. Parallel composition is even easier. Assuming this time
that Op1 and Op2 act on independent sets of variables, and using | to denote parallel
composition (which, in terms of logic, is just conjunction), the rules are:

WOp1|2 = WOp1|WOp2
OOp1|2 = OOp1|OOp2 COp1|2 = OOp1|COp2 ∨ COp1|OOp2 ∨ COp1|COp2

We see the strong analogy between the two. Moreover, these interact cleanly both with
each other, and with the hierarchy mechanism. Thus if COp1 is a disjunction of n terms,

1 Correspondence of operations in Abs and Conc is a meta level concept, which we indicate by
using the same name for the operation in the two systems, or by other convenient means.
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and COp2 of m terms, the lower level versions of COp1;2 and COp1|2 have mn+m+n terms,
corresponding to the substitution of the low level forms into COp1;2 or COp1|2 respectively.

3 Hierarchy and Fault Tree Structure in a Running Example

In Fig. 1 we see a small circuit which will serve as a running example. At a high level
it is a black box called Fred with two inputs I1, I2 and two outputs O1, O2. At a low
level, it is a circuit in which signals flow from left to right, elements A1, A2, A3 are
adders, and F1, F2, F3 are two-output fanout nodes. We assume that all signals are of
a fixed finite number of bits, and that the adders do cutoff addition (which is to say
that any value greater than or equal to the maximum representable one is output as the
maximum, and there is no overflow). The number of bits is assumed sufficiently large
that the cutoff effects do not occur in the examples we treat. The two diagrams in Fig. 1
represent a descent of one level in a hierarchical description of (part of) a large system.

Fred
I1

I2

O1

O2

I1

I2

F1

F2
A1

A2

A3
F3

O1

O2

K0K2K3K4 K1

Fig. 1. A subsystem Fred and its internal structure

We turn to the internal structure of Fred. For the time being, all elements are stateless,
and all circuits are acyclic. Such circuits possess a parsing which builds them up via
sequential and parallel composition. In general there will be several such parsings. We
choose the one in which the elements closest to the inputs are the most deeply nested:
it can be derived mechanically from a definition of the circuit in terms of elements and
connections, or supplied manually. Such a structure is in sympathy with a top-down
fault analysis starting at the outputs. For Fred the structuring is illustrated in K0-K4.

Introducing names for the internal variables implicitly, the ideal FredA model is
given by fanout component relations: F1A(I1, 〈a1, a2〉) ≡ a1 = a2 = I1 (similarly
for F2A(I2, 〈a3, a4〉) and F3A(a5, 〈a6, a7〉)); and adder component relations, given by:
A1A(〈a2, a3〉, a5) ≡ a5 = a2+a3 (similarly for A2A(〈a1, a6〉, O1), A3A(〈a7, a4〉, O2)).

Fred’s potentially faulty behaviour, model FredC, is given using renamed variables
for clarity. Thus the external inputs/outputs are J1, J2 and P1, P2 respectively, and the
internal variables a1-a7 become c1-c7. We assume that only the fanouts can have faults,
and that these are simply ‘stuck at 0’ faults on one or other output, signalled by the truth
of additional free boolean variables F1.c1 (F1 output c1 ‘stuck at 0’) etc. We assume
(purely for simplicity) that only one fault can be active in any component (at any time).
Thus while the adders A1C, A2C, A3C in FredC are given by mere transliterations of the
A1A, A2A, A3A relations above to J, P, c variables, the fanouts need full redefinition, eg.:

F1C(J1, 〈c1, c2〉) ≡ (F1.c1⇒ c1 = 0) ∧ (F1.c2⇒ c2 = 0) ∧ ONE ELSE IDEAL

In this, ONE = ¬(F1.c1 ∧ F1.c2) and ELSE IDEAL represents the transliteration of F1A to
J, P, c variables, when not overridden by the faulty behaviour of the preceding terms.
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The ideal and faulty Fred models are related by a retrenchment. It will be sufficient
to write down the retrenchment data for just the components, since the data for the
overall system will emerge as needed from the fault tree analysis below. For the adders,
assumed fault-free, we have for A1:

WA1(〈a2, a3〉, 〈c2, c3〉) ≡ true
OA1(a5, c5, 〈a2, a3〉, 〈c2, c3〉)≡ (c5 = c2 + c3)
CA1(a5, c5, 〈a2, a3〉, 〈c2, c3〉) ≡ false

with similar things for A2, A3; a consequence of this is that CA terms can be dropped
below. For the fanouts, we need the more complicated (⊕ is ‘exclusive or’):

WF1(I1, J1) ≡ true
OF1(〈a1, a2〉, 〈c1, c2〉, I1, J1)≡ (c1 = c2 = J1)
CF1(〈a1, a2〉, 〈c1, c2〉, I1, J1) ≡ (F1.c1.0 ∧ c1 = 0 ∧ c2 = J1) ⊕

(F1.c2.0 ∧ c1 = J1 ∧ c2 = 0)

In CF1, following Section 2, we call the two disjuncts CF1,c1 and CF1,c2 respectively, i.e.
CF1 = CF1,c1 ∨ CF1,c2. Similar things hold for F2, F3. Note that the abstract system is
not mentioned in the body of the retrenchment data; it is not needed in this application.

With these ingredients, and a given top level event (TLE), we show how the retrench-
ment data drive a structured fault analysis. First, if it is of interest to check whether the
TLE can arise via fault-free behaviour, it is sufficient to check whether the TLE will
unify with OFred. This is easy to calculate from the assumed parse K0-K4 and the rules
of Section 2, since we will assume that for all components, correct working is given
by a total function, and even incorrect working is a total relation.2 Second, we proceed
downward through CFred, decomposing step by step, eliciting the consequences of com-
position and of local structure, and deriving a resolution tree for all possible ways of
satisfying the TLE within the constraints. Values of variables once assigned, remain in
force as we descend unless we backtrack past the point of assignment, and once the
input values have been reached, any remaining uninstantiated variables can be instanti-
ated within the constraints that hold, case by case, to confirm overall consistency. Now
we consider the specific TLE: J1 = J2 = P1 = 1 (with P2 regarded as irrelevant). It is
easy to check that this does not satisfy OFred. The analysis then proceeds as follows.

TLE: K0 = K2o
9K1, so CK0 = OK2o

9CK1 ∨ CK2o
9OK1 ∨ CK2o

9CK1. Since K1 is nearest
the outputs, and we are working backwards through Fred, we decompose K1 first, i.e.
we decompose OK1 and CK1. Since K1 = A2|A3 and adders don’t fail, CK1 is false,
reducing CK0 to CK2o

9OK1, while OK1 = OA2|OA3. Now OA3 merely imposes existential
constraints on P2, c7, c4 such that A3(〈c7, c4〉, O2) holds; we put these to one side since
the TLE does not constrain them further. OA2 demands that c1 + c6 = 1 (among other
things). There are two ways to satisfy this, namely c1 = 0 ∧ c6 = 1 or c1 = 1 ∧ c6 =
0, giving a top level disjunction into TLE.L or TLE.R for CK2o

9OK1.
TLE.L: Since c1 and c6 are outputs of K2, we next decompose CK2 = CK3;F3 =
OK3o

9CF3 ∨ CK3o
9OF3 ∨ CK3o

9CF3. Now CF3 = CF3,c6 ∨ CF3,c7, and CF3,c6 is inconsis-
tent with c6 = 1. Also OK3 forces c5 = 2, inconsistent with c6 = 1 too, so the terms

2 Similarly, we assume that OK4-OK2 can be evaluated immediately from J1, J2 when needed.
In more general cases, a backwards derivation might be required for some O terms.
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containing these are dropped. So CK3;F3 = CK3o
9OF3 ∨ CK3o

9CF3,c7. In fact the distinc-
tion between these concerns only c7, whose precise value is immaterial, so only CK3 is
of further interest. From c6 = 1, we deduce c5 = 1. We now decompose CK3 = CK4;A1
which is just CK4o

9OA1 since adders don’t fail. Now c5 = 1 implies c2 = 0 ∧ c3 = 1 or
c2 = 1 ∧ c3 = 0, giving a disjunction into TLE.L.L or TLE.L.R for CK4o

9OA1.
TLE.L.L: Since K4 = F1|F2, we have CK4 = OF1|CF2 ∨ CF1|OF2 ∨ CF1|CF2,
with each of CF1, CF2 being a disjunction of two faults. However, we earlier derived
c1 = 0, which is inconsistent with OF1 and J1 = 1, eliminating a term and forcing
F1.c1 true. But c2 = 0 forces F1.c2 true, and we assumed only one fault is ever active
in any one component. So we have a contradiction. In such a case we must backtrack
to the innermost ancestral nontrivial disjunction, and eliminate the subtree rooted at the
relevant disjunct. Thus the subtree at c2 = 0 ∧ c3 = 1 is eliminated.
TLE.L.R: As in the previous case we have F1.c1 true, but this time F1.c2 is false due
to c2 = 1; so we remain within our constraints. Now c3 = 0 forces F2.c3 true, and for
consistency we must have F2.c4 false. This yields a fault configuration for the TLE.
TLE.R: We decompose CK2 as in case TLE.L, getting OK3o

9CF3∨CK3o
9OF3∨CK3o

9CF3.
The constraint c1 = 1 ∧ c6 = 0 and no multiple F3 failures, means that this can be
made valid by: case TLE.R.1, in which OK3o

9CF3,c6 holds, with c5 = 2; or by case
TLE.R.2, in which CK3o

9OF3 is presumed to hold, with c5 = 0; or by case TLE.R.3, in
which CK3o

9CF3,c6 holds, with c5 as yet unconstrained; or by case TLE.R.4, in which
CK3o

9CF3,c7 is presumed to hold, with c5 = 0.
TLE.R.1: OK3o

9CF3,c6 holds, with c5 = 2. This is a valid cause of the TLE.
TLE.R.2: We have CK3o

9OF3 and c5 = 0, so we decompose CK3 = CK4;A1 = CK4o
9OA1

since adders don’t fail. Now c5 = 0 implies c2 = c3 = 0. The latter two imply F1.c2
and F2.c3 both true, and c1 = 1 does not lead to a multiple failure for F1. Also c4 = 1
is acceptable for F2, leading to a valid fault configuration for the TLE.
TLE.R.3: We have CK3o

9CF3,c6 as a consequence of which F3.c6 holds, and c5 is un-
constrained. We seek all possible ways of satisfying CK3 given the inputs J1 = 1 and
J2 = 1. Now K3 is a parallel composition of F1 and F2, so CK3 will contain three terms
as usual. Now each of CF1 and CF2 is a disjunction of two terms, but c1 = 1 prevents
F1.c1 from holding so CF1 has just one term that contributes nontrivially. This leads to
an overall disjunction of five nontrivial terms.
TLE.R.4: We have CK3o

9CF3,c7 and c5 = 0. The latter generates only one solution, i.e.
F1.c2 and F2.c3 must both hold.

A tree that depicts the above is shown in Fig. 2. Near the top we show the variable
assignments, but suppress them lower down to save space, recording only the fault
variables set at various points.3 Although Fig. 2 is not syntactically a fault tree (FT)
according to [30], it is easy to see that it could be straightforwardly transformed into
one. We do this in Section 4 after minimisation. At any rate the present tree represents
a low level view of the fault analysis.

In terms of the hierarchy of which Fred forms a part, a higher level view just repre-
sents the fault by a single node: the TLE node itself. Descending the hierarchy thus cor-
responds to growing the more detailed tree along with uncovering the internal structure

3 The ellipsis in the root indicates that further facts to be accumulated as the analysis descends
are to accumulate inside the scope of the quantifier (elsewhere, we suppress the ellipsis).
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of Fred. Evidently the algorithm described in this section can be easily incorporated
into one which deals with large systems in a hierarchical fashion. Whenever a fault tree
for a given model has been computed, a pure refinement of a subsystem does not require
rebuilding the whole fault tree from scratch. More drastic subsystem evolution, going
beyond pure refinements, can imply more widespread changes to fault trees.

TLE: (∃ P2 • P1 = 1 ∧ J1 = 1 ∧ J2 = 1 …)

c1 = 0 ∧ c6 = 1 c1 = 1 ∧ c6 = 0

c2 = 0 ∧ c3 = 1 c2 = 1 ∧ c3 = 0

F1.c1 F2.c3

F3.c6 F3.c7F3.c6

F1.c2 F2.c3

F1.c2 F2.c3

F1.c2 F2.c3

F1.c2

F1.c2 F2.c4

F2.c3 F2.c4

Fig. 2. Part of a Resolution Tree for the TLE of Fred

4 Structured Minimisation

In practical fault analysis we are most interested in minimal fault configurations, the
so-called minimal cut sets (MCSs for short) consisting of the fewest possible basic
faults that cause a particular TLE. The traditional technique for discovering MCSs is
subsumption. In principle, one needs to generate all possible configurations that cause
a fault, and then check them against one another: any that are subsumed by simpler
configurations are discarded. These subsumption checks can be quite expensive for a
large system model, since the number of leaves in a tree is exponential in its depth, and
the number of subsumption checks is quadratic in the number of leaves. Although in
practice efficient algorithms [17, 18, 27, 28] based on binary decision diagrams (BDDs)
[16] can be used for this purpose, their worst-case complexity is still exponential in the
number of variables of the BDD. In this section we explore ways of reducing the sub-
sumption workload by exploiting the structure of the tree construction as guided by the
retrenchment data. The various minimisations are illustrated on the running example.

M.1: Discarding non-needed subtrees. If, during the construction, a fault is generated
which leads to an assignment to some variable whose value does not affect the validity
of the TLE (eg. there is no dataflow from the fault to the TLE), then the fault node
(and, implicitly, any subtree rooted at it) can be discarded immediately since the TLE
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is satisfied without it. In general, we call such faults incidental faults. As in the case
of the subtree of Fig. 2 rooted at F3.c7, which is an example, such faults can arise by
considering the disjunction of the complete range of possible faulty configurations of
some otherwise needed component.
M.2: Discarding locally subsumed expressions. If, during the construction, a range of
options to explore is generated, some of which are subsumed by others, the subsumed
options can be discarded immediately. Eg. in Fig. 2, F2.c3 subsumes F1.c2 ∧ F2.c3.
(N.B. The example in M.1 can also be viewed this way.)
M.3: Discarding subtrees at input-insensitive faults. If, during the construction, a fault
is generated which is independent of any input to the component in question, the sub-
tree beneath it can be discarded immediately. Eg. in Fig. 2, F3.c6 is a ‘stuck at 0’ fault,
insensitive to inputs to F3. So in TLE.R, in considering OK3o

9CF3,c6 ∨ CK3o
9OF3 ∨

CK3o
9CF3,c6 ∨ . . . , the term CK3o

9CF3,c6 can be discarded immediately in favour of
OK3o

9CF3,c6, even though it is not subsumed by OK3o
9CF3,c6. (N.B. When CK3o

9CF3,c6
is eventually decomposed, it does yield a family of fault configurations subsumed by
F3.c6, as is clear from Fig. 2. Such cases can also be viewed as instances of M.2 pro-
vided satisfiability of OK3 is prima facie unproblematic.)
M.4: Doing final subsumption checking at the subsystem level. The techniques outlined
above are not guaranteed to be complete, insofar as further minimisations to generate
the MCSs may remain. Rather than leaving these to a final whole-model subsumption
check, the brute force subsumption checking to catch them can be done at the subsys-
tem level, since all contributions to the TLE for a fault in a subsystem like Fred are
causally propagated along data pathways within the subsystem (a structural assumption
we take for granted.) Thus the inclusion of the rest of the system will result in an overall
description which necessarily factorises, regardless of whether or not the factorisation
is obscured (whether to a human observer or to some algorithm) by the complexity of
the final expression.

The precise way in which the preceding ideas can be implemented in a tool (such as
the FSAP/NuSMV-SA platform [13]) remain a matter for implementation tactics. For
example, the subsystem parse could be decorated with suitable directives to prompt the
FT generation algorithm to apply certain minimisations when the appropriate point is
encountered, or the FT generation algorithm may be written so as to check for the whole
range of recognised minimisation opportunities every time another stage in the tree is
developed. Internal optimisations, such as the sharing of subcomputations not visible at
the FT level, can also be deployed. Details lie beyond the scope of this paper.

When we apply the above to the running example whose resolution tree is indicated
in Fig. 2, we get a considerably smaller tree. We transform this into a legal FT as per
[30], containing just the MCSs, by accumulating the variable assignments along any
path between two logical connectives into the label for an intermediate event (IE), and
changing the basic fault nodes into round ones.4 When we do all this, we end up with
the minimised fault tree in Fig. 3.

4 N.B. Where a basic fault occurs in the interior of the resolution tree (eg. the subtrees at F3.c6
or F3.c7 in Fig. 2, were these trees not discarded), the subtree is manipulated to distribute the
interior basic fault into the nearest descendant conjunction(s), and IEs are generated labelled
by the relevant logical combinations of the IEs at the roots of the subtrees thus affected.
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TLE: (∃ P2 • P1 = 1 ∧ J1 = 1 ∧ J2 = 1 …)

F1.c2 F2.c3

F3.c6

F1.c1 F2.c3

c1,c6 = 1,0 c1,c5,c6 = 1,0,0c1,c5,c6 = 0,1,1

c3 = 0c2 = 1 c2 = 0 c3 = 0

Fig. 3. A Minimised Fault Tree for the TLE of Fred

5 Timing and Internal State

Up to now everything has been treated as instantaneous, and the job of fault tree anal-
ysis has simply been to trace the possible functional (or more generally, relational)
dependencies that connect the inputs and outputs in a given TLE, and thereby, to dis-
play the connections between the primitive faults that contribute to valid instances of
the TLE. This instantaneous assumption is obviously not adequate for all situations of
interest, and so in this section, we introduce a model of time, in order to capture the
behaviour of systems in which time delays cannot be neglected. Since many of the dig-
ital components that are found in circuits such as our running example are stateful, this
generalisation is an important one.

We introduce discrete time, with ticks labelled by integers, and for ease of expo-
sition we just modify slightly our running example. The adders will remain state-
less, delivering their result instantaneously, while the fanouts will introduce a unit
delay between an input received and the outputs delivered. Thus while the definition
of the adders remains unaltered aside from the introduction of a time parameter, eg.
A1A(〈a2(t), a3(t)〉, a5(t)) ≡ a5(t) = a2(t) + a3(t), the definition of the fanouts be-
comes eg. F1A(I1(t), 〈a1(t + 1), a2(t + 1)〉) ≡ a1(t + 1) = a2(t + 1) = I1(t). As
well as this, the fault variables become time dependent (to permit the description of eg.
glitches), but otherwise, the relational descriptions of components are time independent.
So the faulty behaviour of F1 becomes:

F1C(J1(t), 〈c1(t + 1), c2(t + 1)〉) ≡
(F1.c1(t + 1)⇒ c1(t + 1) = 0) ∧ (F1.c2(t + 1)⇒ c2(t + 1) = 0) ∧
¬(F1.c1(t + 1) ∧ (F1.c2(t + 1)) ELSE IDEAL

Let Fred with these alterations be renamed FreT (we will continue to refer to Fig. 2).
With this change, the retrenchment data for FreT become:

WF1(I1(t), J1(t)) ≡ true
OF1(〈a1(t + 1), a2(t + 1)〉, 〈c1(t + 1), c2(t + 1)〉, I1(t), J1(t)) ≡

(c1(t + 1) = c2(t + 1) = J1(t))
CF1(〈a1(t + 1), a2(t + 1)〉, 〈c1(t + 1), c2(t + 1)〉, I1(t), J1(t)) ≡

(F1.c1.0(t + 1) ∧ c1(t + 1) = 0 ∧ c2(t + 1) = J1(t)) ⊕
(F1.c2.0(t + 1) ∧ c1(t + 1) = J1(t) ∧ c2(t + 1) = 0)
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(We omit the retrenchment data for the adders, which just get labelled by ‘(t)’.)
With this setup, in fact very little changes as regards the top down resolution driven

fault tree analysis, provided we remember that our subsystems are all still finite compo-
nent, finite signal, finite state, and acyclic. The reason that there is little change is that
the set of paths through the subsystem, between inputs and outputs, remains unaltered
by the mere introduction of time delays along them – fault tree analysis (in the sense of
this paper) can in the end be seen as a deductive process about such paths and sets of
such paths. The fault trees resulting from the time sensitive analysis can of course be
differently shaped from those in the time independent one, since the same component
may contribute in different ways at different times.

To illustrate the above, let us do an analysis for the FreT subsystem of the same TLE
we considered previously, but this time with the output P1 instantiated to 1 for some
time t (and otherwise unspecified), and with inputs held constant at 1 as before, which
we write as J1 = J2 = P1(t) = 1. Doing the analysis as described in Section 3, but this
time noting the time labels along the way, and then doing the minimisation as described
in Section 4, we get the FT in Fig. 4, in which preprimes denote the value at t − 1,
and the labelling of the IEs is incomplete for space reasons (a full labelling would cite
values at t and at t − 1 for several variables). Note how the fact that the output is not
required to be constant, has spawned a valid instance of the branch of the FT that was
cut off in Fig. 2. We are only demanding a glitch, so the two F1 faults that could not
coexist statically, are permitted to occur at successive instants. Of course if we asked
for the glitch to persist for two time ticks, this branch would get cut off once more. This
example vividly illustrates the increased expressive power gained by adding timing to
essentially the same techniques that we discussed statically.

TLE: (∃ P2 • P1(t) = 1 ∧ J1 = 1 ∧ J2 = 1 …)

′F1.c2 ′F2.c3

F3.c6

F1.c1 ′F2.c3

c1,c6 = 1,0 c1,′c5,c6 = 1,0,0c1,′c5,c6 = 0,1,1

′c3 = 0′c1 = 1 ′c2 = 0 ′c3 = 0

F1.c1 ′F1.c2

c1,′c5,c6 = 0,1,1

′c2 = 0′c1 = 1

Fig. 4. A Minimised Fault Tree for the TLE of FreT

6 Introducing Feedback

The (technically) relatively mild generalisation of the last section becomes more inter-
esting when we include feedback as well as timing delays. We modify our subsystem
FreT by removing A3 and F2, and introducing a feedback signal (called k in the con-
crete system) from F3 to A1, resulting in subsystem Jim. See Fig. 5.

Now we can no longer rely on a static syntactic description of the subsystem as the
analysis proceeds, but must unfold a recursive structure. The essentials of this are:
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Jim
I1 O1 I1 F1

A1
A2

F3
O1

K0K2K3

Fig. 5. A subsystem Jim with cyclic internal structure

O1(t) = (c1(t) + c6(t)) ; c1(t) = c2(t) = I1(t − 1)
c6(t) = c5(t − 1) = (c2(t − 1) + k(t − 1)) = (c2(t − 1) + c5(t − 2))

This is a standard feedback control system, and its I/O behaviour can be computed by
standard means. Performing the required back substitutions (details omitted for lack of
space), we get:

O1(t) = I1(t − 1) + I1(t − 2) + I1(t − 3) + . . . =
∑∞

q=1 I1(t − q)

This is a shorthand for describing an infinite set of possible finite behaviours, on the
understanding that all values are (bounded) natural numbers, and that an at most finite
number of the I1 values in the summation are non-zero (and that one cuts off the summa-
tion at some point after the earliest non-zero value, to represent initialisation at a point
in the finite past). The proliferation in behaviours is due to the fact that A1’s output re-
mains stable when its c2 input is 0, so that the value held in F3 (and hence output at O1)
remains invariant as long as I1 continues to remain at 0. Thus if we stipulate O1(t) = 2,
then this can arise via I1(t − 1) = 2, or via I1(t − 2) = 2, or I1(t − 3) = 2, etc. (with
all other I1 values zero). Alternatively we could have I1(t − 1) = 1 ∧ I1(t − 2) = 1,
or I1(t − 1) = 1 ∧ I1(t − 3) = 1, or I1(t − 1) = 1 ∧ I1(t − 4) = 1, or . . . etc., or
I1(t − 2) = 1 ∧ I1(t − 3) = 1, or I1(t − 2) = 1 ∧ I1(t − 4) = 1, etc. etc.

Admittedly we have been considering the fault-free behaviour of Jim for the sake of
simplicity, but there is no reason at all why similar situations should not arise during the
analysis of genuine faults. The back substitutions performed from the TLE ‘O1(t) = 2’
are exactly the steps that a retrenchment based fault analysis would dictate.

There are at least three approaches to the question of there being an infinity of pos-
sible causes of some situation, just raised. Firstly one could simply regard the TLE as
underspecified, since it places no constraints on the input values. Any finite constraint
on these that is consistent with the TLE and supplies all the values ‘needed’ by the
TLE5 would immediately reduce the set of possible causes to a finite one, eliminat-
ing the problem. Essentially we would be placing an a priori bound on how far in the
past the earliest of the causes of the TLE had occurred, an approach that in general is
incomplete.

Secondly, one could examine what a standard model checking approach (such as
the FSAP/NuSMV-SA platform [13]) would deliver. Such approaches work by exhaus-
tive search of the state space of the system, keeping an eye out for states already en-
countered along a given path. Finding a repeated occurrence of the same state, cuts

5 We are being rather imprecise here about the definition of neededness, since it would depend
on the precise nature of the components in the subsystem and their interdependencies.
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off the search, since it is interpreted as looping behaviour in the system. In our exam-
ple this would yield a finite representation of the infinite set of possible behaviours,
analogously to the way that the infinite summation above is a finite representation of
it. The stable behaviour of the adders previously alluded to is reflected in self-loops
on the relevant states generated by the state space search algorithm. Such a represen-
tation would require some interpretation as regards the generation of fault trees, since
a naive FT generation algorithm would attempt to generate a tree with infinite disjunc-
tions, and not terminate. Adding a finite starting point in the past is an easy way to
prevent this, although as above, an a priori finite bound in the past makes the approach
incomplete.

A third, and most sophisticated approach to the issue, is to honestly take on board
the control nature of the cyclic system, and to combine the model checking strategy
with deeper insights about control systems.6 The benefits of such an approach are that
it could yield a complete description, by representing recursive parts of the set of be-
haviours in a suitably symbolic manner, even extending to situations in which the state
space is not finite. However all of this would require deep insight into the relation-
ship between decidabilities in the relevant model checking and control theory domains,
since it is well known that combining theories which are decidable on their own, does
not automatically lead to decidability of the combination.

7 Conclusions

In this paper we have presented a formal account of fault tree generation based on
retrenchment. We have shown how the retrenchment framework is able to capture sev-
eral aspects of the fault tree generation, namely the mechanical construction of a fault
tree based on structural information, fault tree minimization, system model evolution
based on a hierarchy of models viewed at multiple levels of abstraction, and fault
injection. Finally, the approach can be generalised to deal with dynamic and cyclic
systems.

Our work has been inspired by Hip-HOPS (Hierarchically Performed Hazard Ori-
gin and Propagation Studies) [24, 25, 26], a framework incorporating a mechanical
fault tree synthesis algorithm based on system structure, and taking into account model
evolution. The synthesis of the fault tree is based on a preliminary functional failure
analysis (FFA) and a tabular technique (IF-FMEA) used to generate a model of the
local failure behaviour, activities normally performed manually during system design
and safety assessment. Our work addresses the automation of the whole process as-
suming that a formal specification of both system and fault model is available. Further-
more, we have shown how the synthesis algorithm can be coupled with suitable tac-
tics to perform local minimal cut-set computation, reducing the overall computational
effort.

Our techniques can be incorporated into formal tools supporting the safety assess-
ment of complex systems, like the FSAP/NuSMV-SA platform [13, 20]. The algorithms

6 Certainly the calculation indicated above is standard feedback control theory, and such calcula-
tions have been automated (in a suitably symbolic manner) in standard control theory toolkits
eg. SIMULINK [1, 21].
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described here improve over the ones used there for two reasons. First, they allow
the generation of structured fault trees, which are more informative than the flat fault
trees produced by the current FSAP platform. Second, they allow the taking of dy-
namic information into account, eg. they can deal with transient failures (Section 5),
and feedback (Section 6). While our focus was on automatic synthesis, the DIFTree
(Dynamic Innovative Fault Tree) [22] methodology, implemented in the Galileo tool
[29], is mainly concerned with the problem of fault tree evaluation. It uses a mod-
ularisation technique [19] to identify (in linear time) independent sub-trees, that can
be evaluated using the most appropriate techniques (BDD-based techniques for static
fault trees, Markov techniques or Monte Carlo simulation for dynamic ones). In ad-
dition, it supports different probability distributions for component failures. A simi-
lar modularisation and decomposition technique is advocated in [2]. That technique
is orthogonal to our notion of structural generation; in particular, it is concerned with
isolating different sub-trees that can be synthesised (or evaluated) separately, whereas
our structural information can be used to synthesise (or evaluate) each sub-tree on its
own.

Although an experimental evaluation of our algorithm was beyond the scope of this
paper, we have provided many hints about the advantages such an algorithm would
have with respect to the traditional monolithic algorithms which just flatten the model.
First, it makes it possible to synthesise the fault tree by considering each component
in isolation, thus avoiding building an internal representation of the whole model (eg.
avoiding the generation of a BDD for it). Second, it suggests that the MCS computation
can benefit from local minimisation. As future work, we wish to design a practical im-
plementation and evaluate it experimentally against state-of-the-art techniques, eg. the
BDD-based routines [17, 18, 27, 28] used in the FSAP platform. Given that integer con-
straint solving is needed to deal with time, we foresee that there might also be room for
using decision procedures for such a theory, eg. MathSAT [11, 23]. Finally, we would
like to integrate such algorithms into the FSAP platform [13].

Further issues we would like to address include dynamic aspects (see eg. [22]), that
we have only sketched in this paper for lack of space. In particular, we would like to
investigate the problem of sequential dependencies and failure duration, and their rep-
resentation inside the fault tree. Finally, it would be interesting to adapt our algorithms
to the truncated computation of prime implicants described in [28].
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Abstract. System development by stepwise refinement is a well-established me-
thod in classical software engineering. We discuss how this method can be adapted
to systematically incorporate security issues, in particular, confidentiality into the
software construction process. Starting with an abstract system model that pre-
cisely captures the relevant confidentiality requirements, subsequent refinements
produce models which introduce more detail or relax assumptions on the envi-
ronment. For each refinement, changing adversary capabilities must be captured
and their compatibility with the given confidentiality requirements must be estab-
lished. In this context, security, and dependability in general, are existential prop-
erties: The existence of a secure implementation must be kept invariant during the
development process. This considerably adds to the complexity of a development.

1 Introduction

Developing secure IT-systems still is a particularly challenging task. Standard systems
and software engineering processes focus on the “functional” properties of a system
and hardly address “non-functional” properties such as security in a systematic way
starting from requirements through design to the final implementation. The reason may
be that security concerns – and non-functional properties in general – are less well
understood and harder to control during the development process. In particular, con-
fidentiality poses problems because it arguably is the facet of security which is least
related to classical functional properties.

The present article discusses a method to develop secure systems in the spirit of sys-
tem development by stepwise refinement. Regarding functional properties, that method
has a firm theoretical basis (e.g., Abrial’s work [1], but also much work in the context
of VDM [12], Z [5], and other specification formalisms), it has been applied in (mostly
safety-critical) real-world projects, and it has influenced software engineering at large:
Meyer’s notion of design-by-contract [18] nowadays is accepted best practice in soft-
ware design. The present work shows how stepwise refinement can be re-interpreted to
accommodate security, and confidentiality in particular. The present paper focuses on
confidentiality. Therefore, “security” is used as a synonym for confidentiality hence-
forth. The major issues to address for stepwise secure refinement are the following:

– The initial model, which is the starting point of the refinement process, must capture
the confidentiality requirements as close as possible, while abstracting from all
unnecessary detail.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 142–155, 2006.
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– To validate the initial model, the confidentiality requirements should be captured
in a descriptive manner. The model should satisfy a confidentiality property, which
can be validated against the informal requirements independently of the model.

– A refinement step can introduce new detail in the model, and consequently offer
new ways of the adversary attacking the system. The refinement is to preserve
confidentiality, i.e., to ensure that the confidentiality property still holds for the
refined model, even with respect to the new attacks.

– The influence of the environment on security must be systematically addressed dur-
ing development by “trading” assumptions made on the environment against func-
tionality of the “machine” (cf. Section 2).

The running example illustrating this development process is an anonymization ser-
vice, a mix [3]. The reader be warned, however, that the results presented here do not
provide new insight in the security conditions of mixes. The problems we will touch
upon are well-known and it is not the purpose of this paper to suggest any new solu-
tions to these problems.

Section 2 introduces the concept of an adversary model, which comprises a func-
tional model of the system and the possibilities of adversary observations. That section
also introduces an abstract model of a mix. Section 3 discusses possibilistic and prob-
abilistic confidentiality properties. In particular, it motivates the existential nature of
confidentiality properties. Section 4 introduces confidentiality-preserving refinement. It
discusses how new detail in a refined model can extend the observational possibilities
of an adversary. The refinement conditions must ensure that the system satisfies the
desired confidentiality properties even against this more powerful adversary. Section 5
reduces assumptions on the environment and extends the functionality of the system ac-
cordingly. Such trading of functionality is unavoidable if the initial model – for sake of
simplicity – captures properties that are crucial for security in the environment process
rather than in the system process. Related research is the topic of Section 6. Section 7
summarizes the process discussed in the paper.

2 An Abstract Model to Specify Confidentiality

The first task in a development by stepwise refinement consists in producing a very
abstract system model that includes only the necessary detail to express the essential
requirements on the system. Subsequent refinement steps add more and more detail1

until that process reaches a rich model that is equivalent to an implementation.
We use the process calculus of Probabilistic CSP (PCSP) [19] to express our models.

Previous work [22] introduced the notion of an adversary model and possibilistic as well
as probabilistic confidentiality properties of an adversary model, which we will use to
express the specification and its subsequent refinements. In the following, we briefly
recap those concepts while introducing the example specification of a mix.

1 Abrial calls this the “parachute” paradigm: He likens stepwise refinement with a parachute
that opens more and more while falling until it is wide open when it reaches the surface (an
implementation).
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Fig. 1. Adversary Model: Machine, Honest Users, and Adversary

A mix [3] is a node in a communication network that mediates the communication
between sending and receiving hosts in such a way that an external observer cannot infer
who is communicating with whom, i.e., it ensures unobservability of communication
relationships although an adversary can observe the sequence of sending events and the
sequence receiving events at its interface. It is well-known that this requirement can be
established in a strict sense only in an very restricted (“closed”) environment but not
in an open environment such as the Internet where requirements on the participating
hosts cannot be strictly enforced. Knowing this, we formulate the following informal
requirement concerning the anonymity provided by our system:

Considering a batch of 2n events at the system interface, n events initiated by send-
ing hosts and n corresponding events forwarding messages to the appropriate receivers,
there are at least s different senders and r different receivers involved in the communi-
cation. Given the sequences of send events and receive events, the system ensures that
all possible communication relationships are approximately equiprobable.

The sequences of sending or receiving events are called the sender and receiver
anonymity sets, respectively. Why we use sequences instead of proper sets will become
clear shortly.

To capture this requirement, we first set up an abstract adversary model, which mod-
els a system with a particular class of adversaries. Following Jackson’s [10] terminol-
ogy, a system consists of a machine in its environment as shown in Figure 1. The ma-
chine is to be implemented whereas the environment captures the working conditions
of the machine.

In an adversary model, the environment consists of two components: the honest users
and the adversary. Formally, an adversary model (P, H, A, AI, EI, W, k) consists of

– a machine process P modeling the machine behavior;
– a process H modeling the admissible behavior of the honest users (or trusted envi-

ronment);
– a process A modeling the assumed behavior of the adversary;
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– a set of communication channels AI, the (functional) adversary interface to the
machine;

– a set of channels EI allowing an active adversary to directly influence the honest
users;

– a set of channels W, the adversary window modeling the adversary’s capabilities to
observe the system; and

– the maximal length k of system runs that the adversary can observe.

The structure of this model is similar to the one underlying reactive simulatability [20].
The process Router1 models the basic functionality of the mix. It communicates

with its environment by the channel ch. An event on that channel either has the form
ch.hs.Send.hr.Rec or the form ch.hr.Rec.hs.Send where hs is a sending host and hr is
a receiving host. The first message means that hs wishes to send to hr, whereas the
second means that hr receives a message that hs initially sent. Note that the model does
not mention message content, because the anonymity requirement does not refer2 to
message content.

The router has two modes of behavior: accepting messages from senders, and for-
warding previously accepted messages. In a batch, it first (process Accept(dss, cons))
accepts n messages from sending hosts and stores them in the sequence dss. In each
batch, it accepts each pair of senders and receivers at most once. The set Connections
contains all possible sender/receiver pairs. Having accepted n messages, the router for-
wards those messages to the respective receivers (process Forward(dss)). The router
nondeterministically chooses the order in which the receivers are addressed (�

ds∈dss
),

i.e., it need not respect the order of events in dss.

Accept(dss) =̂ if count(dss) = n then Forward(dss)

else ch?hs.Send.hr.Rec→

Accept(dss � 〈hr.Rec.hs.Send〉)

Forward(dss) =̂ if dss = 〈 〉 then Accept(〈 〉)

else�
ds∈dss

ch!ds→ Forward(dss− {ds})

Router1 =̂ Forward(〈 〉)

The process Router1 models the basic functionality of the mix but it does not de-
scribe the possible observations of a (passive) adversary who gets to see the sender
and receiver anonymity sets produced in each batch. The process Observer intercepts
the events on channel ch and, for each batch, writes a sender (sends) and a receiver
(recs) anonymity set to the channels ws and wr, which make up the adversary window
W1 = {ws, wr}.

2 Nevertheless, whether an implementation actually satisfies that requirement can depend on the
way it deals with message content (cf., Section 4).
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Summarizing, the process Mix1, which is the parallel composition of Router1 and
Observer communicating over ch, is an abstract model of a mix system.

Obs(i, sends, recs) =̂ if i = 2n then

(ws!sends→ wr!recs→ Obs(0, 〈 〉, 〈 〉))
else

((ch?hs.Send.hr.Rec→ Obs(i + 1, sends � 〈hs〉, recs))

� (ch?hr.Rec.hs.Send→ Obs(i + 1, sends, recs � 〈hr〉)))
Observer =̂ Obs(0, 〈 〉, 〈 〉)

Mix1 =̂ Router1 |[ {ch} ]|Observer

The system process Mix1 alone is not a model of our anonymity requirement, because
it does not enforce the lower bounds s and r on distinct senders and receivers in a
batch. It also does not exhibit any probabilistic properties that would ensure the required
approximate equiprobability of communication relationships in a batch.

For the abstract specification, we shift the responsibility of establishing those re-
quirements to the environment communicating with Mix1. In particular, the process
Sender1 chooses sequences of sender/receiver pairs that satisfy the cardinality require-
ments. The set

S = {〈hs1.Send.hr1.Rec, . . . , hsn.Send.hrn.Rec〉 |
s � card({hs1, . . . , hsn}) ∧ r � card({hr1, . . . , hrn})}

comprises all admissible sequences of sending events. Sender1 probabilistically chooses
one of them (according to the distribution P) and successively feeds them to the mix.

Feed(〈 〉) = Sender1

Feed(〈hs.Send.hr.Rec〉� t) = ch!hs.Send.hr.Rec→ Feed(t)

Sender1 =
⊕P

t∈S Feed(t)

The process Receiver1 complements Sender1 by receiving any message ch.hr.Rec.. . .
on ch. Finally, the user environment of the mix system is the independent parallel exe-
cution Env1 of those sender and receiver processes. We call System1 the mix communi-
cating with the environment on ch.

Env1 =̂ Sender1 ||| Receiver1
System1 =̂ Mix1 |[ {ch} ]|Env1

We consider a passive adversary only. Therefore, the adversary interface is the empty
set, and the process describing the adversary behavior in the adversary model is arbi-
trary (Chaos). The adversary model AM1 = (Mix1, , Env1, Chaos, ∅, ∅, {ws, wr}, k0)
collects all information about the abstract mix model described before and augments
it with an upper bound k0 on the length of system runs that an adversary considers
when drawing conclusions from observations: No adversary will be prepared to wait
infinitely long for the “next” observation to appear on the adversary window. In our
case, a suitable k0 is a multiple of the batch length 2n.
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3 Confidentiality Properties Are Existential

To validate an adversary model, it is useful to have a descriptive way of stating confi-
dentiality properties that this model is supposed to satisfy. Considering the development
process, the abstract specification should model as precisely as possible the desired con-
fidentiality properties of the envisaged system. After all, all subsequent refinements will
faithfully implement that specification. If the specification is too liberal, then an imple-
mentation may not satisfy the confidentiality requirements. If it is too strong, then an
implementation may become unnecessarily complex or even impossible to build.

Earlier [22], we have discussed several kinds of confidentiality properties of adver-
sary models. In the following, we state a possibilistic and a probabilistic property of
AM1 that reflect the anonymity requirement on mixes. Furthermore, we discuss the ex-
istential nature of confidentiality properties of adversary models.

3.1 Possibilistic Confidentiality

The adversary window W of an adversary model induces a partition on the traces of the
system into indistinguishability classes, also called low-level equivalence sets [25]. Two
traces are indistinguishable through W if their projection to the events on the channels
in W are identical. For example, the traces

〈ch.h1.Send.h2.Rec, ch.h3.Send.h4.Rec, ch.h2.Rec.h1.Send, ch.h4.Rec.h3.Send,

ws.〈h1, h3〉, wr.〈h2, h4〉〉

and

〈ch.h1.Send.h4.Rec, ch.h3.Send.h2.Rec, ch.h2.Rec.h3.Send, ch.h4.Rec.h1.Send,

ws.〈h1, h3〉, wr.〈h2, h4〉〉
produce the same observation 〈ws.〈h1, h3〉, wr.〈h2, h4〉〉. Therefore, an adversary can-
not distinguish on the basis of that observation (without further information) whether
the system actually performed the first or the second trace. For the mix, this means that
the adversary cannot distinguish the communication relations (h1 �→ h2, h3 �→ h4) and
(h1 �→ h4, h3 �→ h2).

A maskM for an adversary model (P, H, A, AI, EI, W, k) is a set of pairwise disjoint
subsets of the traces over the alphabet of P such that the members of each set produce
the same observation. Thus, a mask represents the requirement that a system shall not
allow an adversary to (possibilistically) distinguish between behavior that is in the same
member set of the mask. Phrased as a confidentiality property, one can ask whether an
adversary model conceals a given maskM, i.e., whether each indistinguishability class
of the system (communicating with its environment) either contains a member of M
completely or not at all. The system of indistinguishability classes that an adversary
model induces is a mask that the adversary model trivially conceals.

Showing that all members of the mask induced by AM1 satisfy the cardinality re-
quirements on the sets of senders and receivers in each batch, and that each member of
a mask actually contains all possible traces satisfying those cardinality requirements,
establishes a possibilistic validation of the adversary model, i.e., one that abstracts from
probabilistic requirements.
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3.2 The Refinement Paradox

The process System1 is nondeterministic: Forward chooses the order of addressing re-
ceivers nondeterministically. Refining System1 allows developers to resolve nondeter-
minism either by selecting one alternative deterministically or by assigning a probabil-
ity distribution to the set of alternatives. Therefore, a functionally correct refinement of
System1 may implement Forward in such a way that it just copies the events in dss to the
channel ch in the order of their appearance in dss. That implementation would not con-
ceal the mask induced by System1, i.e., it would violate the possibilistic confidentiality
property stated in Section 3.1.

Roscoe [21] showed that possibilistic information flow properties are not preserved
under CSP refinement, and he called this observation the refinement paradox. Refine-
ment in CSP in particular requires that all traces of the refining process are traces of the
refined one (but not necessary vice versa).

To avoid the refinement paradox, Roscoe proposes to consider only deterministic
processes to model information flow requirements. Deterministic processes are fully
refined, and the refinement paradox does not invalidate propositions about those pro-
cesses with respect to information flow properties.

From a methodological point of view, however, requiring the initial adversary model
to be deterministic seems to be very restrictive. When setting up System1, we do not
wish to fix the order in which Forward will put the events in dss on ch. However, we
want to be sure that there is an implementation of Forward (and System1 as a whole)
that satisfies the confidentiality requirements.

This observation makes confidentiality properties of adversary models existential:
An adversary model satisfies a confidentiality property if not necessarily all but at least
one functionally correct refinement satisfies that property. This statement in particular
applies to probabilistic confidentiality properties.

3.3 Probabilistic Confidentiality

Addressing the requirement that all system behaviors producing the same anonymity
sets shall be approximately equiprobable raises two issues: first, what is the probability
of a system behavior given an observation on the adversary window W; second, what is
a general way to capture that kind of probabilistic confidentiality requirement?

Probabilistic CSP [19] extends the (classical) calculus of CSP with a probabilistic
choice operator, which we use to model the choice of sender / receiver pairs in the envi-
ronment process Sender1. Nevertheless, it is impossible to determine the probability of
a trace of System1, because Mix1 does not contain information about the probabilities
with which nondeterministic choices are resolved. For this technical reason, it is nec-
essary to consider a refinement of the system process that resolves all nondeterminism
in a probabilistic way. It is also necessary to require that the environment “drives” the
system in such a way that all external choices, where the system accepts input from the
environment, are resolved probabilistically. We call such an environment3 admissible.

3 A scheduler [4, 24] for nondeterministic probabilistic processes serves a similar purpose but
usually is not specified as a process but as a function on the semantics of processes.
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If these conditions hold for a process QE, then the upper bound k on the length of the
considered system traces ensures that the conditional probability Pk

W(t|o) of a trace t of
QE given an observation o (on W) is well-defined.

The usual probabilistic measure for uncertainty is the entropy of the set of possible
(stochastic) events. In our setting, we can define the (conditional) entropy of a class
JQE,k

W (o) of indistinguishable system behaviors, which all produce the observation o on
W, as follows:

Hk
W(QE|o) =

∑
t∈JQE,k

W (o)

Pk
W(t|o) · log

1
Pk

W(t|o)

A confidentiality property based on the conditional entropy puts lower bounds on
the entropy of each member of a mask M, which the adversary model conceals (for
details, see [22]). Let H : M → R+ map classes of M to possible values of en-
tropy. The adversary model (P, H, A, AI, EI, W, k) ensures the entropy H forM, writ-
ten EntHM(P, H, A, AI, EI, W, k), if there exists a refinement Q of P such that for any
admissible environment E, the process QE that is Q driven by E, first, concealsM, and
second, produces indistinguishability classes whose entropy respects the bounds given
byH. Formally:

∀M :M • ∀ o : ObsW(QE) | M ⊆ JQE,k
W (o) • H(M) ≤ Hk

W(QE|o)

Note that this property only requires a refinement of the machine model P to exist that
satisfies the bounds on the entropy. It does not require all possible refinements to satisfy
that bound. This is similar to a performance requirement, where one cannot expect all
functionally correct implementations to respect performance bounds. Usually, only few
of all possible implementations will meet performance requirements.

For the mix specification AM1, the mask to consider consists of the indistinguisha-
bility classes induced by AM1. The informal requirement calls for approximately
equiprobable members of those classes, which corresponds to requiring the entropy of
those classes to be nearly maximal. If the distribution P in Sender1 is uniform, and the
nondeterministic choice in Mix1 is also resolved in that way, then the resulting refine-
ment satisfies the entropy condition. For the purpose of this paper, the exact calculation
of the entropy is not important.

However, it is methodologically relevant to note that – as for the possibilistic require-
ment – we have an adversary model that exactly produces the required bounds.

4 Confidentiality-Preserving Refinement

The adversary model AM1 captures the essential requirements on a mix, but it does
not model a useful system. Refinements must introduce further detail to add useful
functionality. This includes extending the model with message content, and reducing
nondeterminism. When refining the functionality of the system, the possibilities of an
adversary need to be re-evaluated, too. This results in stating an adversary window for
the refining model, which in general extends the one of the refined model, because the
new model may introduce new means of observation for the adversary. Nevertheless,
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the refining adversary model must preserve the confidentiality properties of the refined
one. Otherwise, the refinement would not be correct with respect to security.

A definition of confidentiality-preserving refinement must address two requirements:

1. a confidentiality-preserving refinement must be functionally correct (disregarding
the extension of the adversary window);

2. it must establish a sufficient condition to preserve the existence of a deterministic
refinement satisfying the required confidentiality property.

The first requirement is easily expressed in terms of the usual refinement of PCSP. For
the probabilistic confidentiality of Section 3.3, the second requirement can be captured
formally in terms of the mutual information between the behavior of the abstract adver-
sary model and the observations of the concrete model, given an abstract observation,
similar to the information flow property of Gray [7]. For the purpose of this paper, it
suffices to appeal to the reader’s intuition and discuss methodological considerations
by way of the running example. A formal definition of confidentiality-preserving re-
finement [8, 23] has been stated elsewhere.

The adversary model AM1 abstracts from the message content that senders and re-
ceivers exchange because that content is irrelevant for stating the confidentiality re-
quirements, i.e., the desired properties of the system. To make the mix practically use-
ful, to transmit message content is an obvious functional requirement. The first refine-
ment AM2 of AM1 therefore extends the model by a type of messages that senders and
receivers exchange.

For the process definitions, this means to extend each event on the channel ch with
a new component m, the message content. The refined version of the router, Router2 is
defined as follows.

Acceptm(dsms) =̂ if count(dsms) = n then

�
rc:RECODING

Forwardm(dsms, rc)

else ch?s.d.m→

Acceptm(dsms � 〈d.s.m〉)

Forwardm(dsms, rc) =̂ if dss = 〈 〉 then Acceptm(〈 〉)

else�
d.s.m∈dsms

ch!d.s.rc(m)→ Forwardm(dss− {ds}, rc)

Router2 =̂ Acceptm(〈 〉)

The forwarding process now relies on a bijective message recoding function rc as
an additional parameter. The router chooses that function nondeterministically for each
batch of messages. A further refinement would implement rc by an asymmetric crypto
system where the recoding corresponds to decoding messages with the secret key.

If the adversary’s observational power remained the same as in AM1 then the confi-
dentiality properties of the refined system would not be in question. It is more realistic
to assume that the adversary can observe the exchanged messages and the sequence of



Stepwise Development of Secure Systems 151

send and receive events at the interface of the mix as well. The adversary still cannot
directly observe the sender / receiver relation. The new observer process produces the
corresponding observations at the new adversary window wm, which records for each
send event the sender hs and the message m, and for each receive event the receiver hr
and the associated message m.

Observerm =̂ (ch?hs.Send.hr.Rec.m→ wm!hs.Send.m→ Observerm)
� (ch?hr.Rec.hs.Send.m→ wm!hr.Rec.m→ Observerm)

The new environment Env2 behaves similar to Env1 but, of course, supplies message
content as well as sender and receiver information. The processes Mix2 and System2 are
defined as before.

The crucial question now is whether the new adversary model AM2 =
(Mix2, Env2, Chaos, ∅, ∅, {ws, wr, wm}, k) is a confidentiality preserving refinement of
AM1. For this to hold, the two refinement conditions mentioned before must be satis-
fied. First, the new machine process must be a behavioral refinement of the first one.
Second, the adversary’s possibilities in AM2 must not allow the adversary to distinguish
“more” than the adversary model AM1 allows him to.

For PCSP, there is a formal notion of refinement P � Q that basically allows a re-
fining process Q to replace nondeterministic choices of P by probabilistic choices with
specific probability distributions (this includes a distribution that assigns a probability
of 1.0 to a particular branch and thus makes the refinement deterministic at that choice
point). A renaming of events allows us to abstract from the newly introduced message
data. The relation R1

2 replaces all events ch.s.d.m by events ch.s.d.

R1
2 = {ch.s.d.m �→ ch.s.d | s, d ∈ HOST ∧ m ∈ MESSAGE}

Thus, the renamed process System2[[R1
2]] works on the same set of events on channel

ch as System1. For comparing the functional behavior of the two systems, the extension
wm of the adversary window in AM2 is irrelevant. Therefore, this channel is hidden in
the following refinement relation:

System1 � System2 \ {wm}[[R1
2]]

This classical correctness condition contributes to integrity and availability because
it ensures that System2 actually exhibits the functional behavior that System1 models. It
also ensures that the common part of the adversary windows behaves in a compatible
way.

Concerning confidentiality, i.e., the anonymity provided by the new model of the
mix, we need to compare the observational power described in AM2 to the one pre-
scribed in AM1. Obviously, AM2 allows the adversary to distinguish more detail of
a batch of communication: not only the sender and receiver anonymity sets, but also
the exact sequence of sending and receiving events, and the message content of those
events is visible to the adversary. The crucial question now is whether the newly pos-
sible observations break the confidentiality properties of AM1, i.e., whether they allow
the adversary to distinguish members of the same indistinguishability class of AM1 –
possibilistically or probabilistically.
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The sequences of events Observerm contain information about the messages ex-
changed between senders and receivers. Abstracting from that information (using R1

2),
the remaining sets of indistinguishable traces are covered by the mask that AM1 induces.

Therefore, it is worthwhile to analyze whether AM2 preserves the probabilistic confi-
dentiality properties of AM1. This is the case if there are PCSP refinements of Mix1 and
Mix2 such that for all refinements of Env1 there is a refinement of Env2 such that Mix1
composed with Env1 is refined by Mix2 composed with Env2, and those processes sat-
isfy the above mentioned condition on mutual information. In the example, this means
that there are refinements of Mix2 such that the choice of a message (which is observable
in AM2) does not provide information about the sender or the receiver of the message.
This can be achieved by using recoding functions that do not establish a correlation
between messages and their recodings.

5 The Role of the Environment

Technically, the two environment processes H and A are necessary components of an
adversary model because they ensure that a probabilistic analysis of a system makes
sense (cf., Section 3.3).

However, the environment model also serves a methodological purpose. In an ad-
versary model, the user environment process H models assumptions about the behavior
of the legitimate users on which the system may rely. The adversary environment A
describes the behavior expected of an active adversary.

Because the user environment process is part of an adversary model, a development
can start with an ideal environment, which relieves the initial system model from certain
responsibilities. It is then the task of subsequent refinement steps to relax the restrictions
on the environment and “trade” them with the responsibilities of the system. Making
the environment less restrictive means that the system can rely on weaker assumptions
and consequently must incorporate more functionality to achieve the same result as the
abstract system interacting with the abstract environment.

In the example, the adversary model AM1 assumes that the environment process
Sender1 triggers the system process Mix1 such that all sender / receiver pairs (match-
ing given anonymity sets) are equiprobable in each batch. In a second refinement step,
the first refinement AM2 can be developed further to reduce the responsibility of the
environment. If the environment Sender3 of the new adversary model AM3 consists of
sender processes which will produce messages at arbitrary rates, then it is the respon-
sibility of the new system process Net3 of AM3 to ensure sufficient (and adequately
distributed) traffic at the mix node. This means, the system must implement part of the
environment functionality of Sender2. It must do this in a distributed manner because
the adversary window will still give access to the events on the interface of the proper
mix node. The system process therefore consists of a collection of send clients (residing
with the senders) and the proper mix node:

Net3 = SendClients |[ {ch.hs.Send} ]|Mix3

The refinement condition requires that Net2 in the context of the environment imple-
ments the Mix2 communicating with its environment.
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This trading between environment assumptions and machine functionality continues
in further refinement steps until the environment process is a realistic model of the true
machine environment and (consequently) the machine model incorporates sufficient
functionality to satisfy the security requirements in the context of the true environment.

If the trading does not succeed, i.e., there is no realistic way of relaxing the environ-
ment assumption to meet the true proposed working environment of the system, then
this shows that the security requirements cannot be met without further non-technical
(organizational or legal) measures.

6 Related Work

The idea of development by stepwise refinement is perhaps most stringently realized
in the B method [1], which has been used successfully to support the development of
safety-critical systems (e.g., [2]).

Much research has investigated possibilistic [6, 17, 25, 16] and probabilistic [7] in-
formation flow properties, but there is little work on a refinement based methodology
to develop secure systems. Jürjens [13, 14] introduces notions of secure refinements in
the context of UMLsec. Section 8.2 [14] mentions refinement-based development with
UML but does not elaborate on methodological issues.

Mantel [15] considers the preservation of information flow properties under refine-
ment. It is well-known that CSP-style refinement does not preserve information flow
properties in general [11]. Mantel shows how refinement operators tailored for spe-
cific information flow properties can modify an intended refinement such that the re-
sulting refinement preserves the given flow property. He, too, does not elaborate on a
refinement-based methodology.

Only recently, Hutter [9] has shown how to preserve possibilistic information flow
properties in action refinements, where an atomic abstract action can be refined into a
sequence of concrete actions.

A unified model with a refinement relation preserving possibilistic and probabilistic
confidentiality properties in the presence of data refinement and action refinement has
not been published yet.

7 Conclusion

We have shown the effect of applying the well-known paradigm of stepwise refinement
to secure systems development. The following conclusions are of particular importance:

– The first, abstract model should describe the desired security properties as precise
as possible. Then, it must be verified whether it satisfies the required security prop-
erties.

– That satisfaction relation is existential, not universal: Usually, not all but only few
implementations of an abstract model are secure. The refinement process therefore
must ensure that each refined model still admits a secure implementation.

– Introducing new detail in a refinement, in particular data-refining the model, usu-
ally entails to re-consider the adversary capabilities. Verifying the refinement must
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show that those new capabilities do not compromise security. If they do, relaxing
the security requirements is a realistic option because one tends to start with overly
ambitious idealistic security requirements which may not be achievable in a practi-
cal implementation.

– Models of the (friendly) environment and the adversary behavior are integral parts
of a system model for security. It is advisable to start the development with a rel-
atively strong environment model and relax the assumptions on the environment
in subsequent refinement steps. This eases capturing security requirements in the
abstract model, and it allows to gradually increase the complexity of the implemen-
tation while reducing the one of the environment. If the achievable environment
properties are still stronger than the properties that the true environment guaran-
tees, then non-technical assumptions need to be considered.

Although this paper has discussed a formal notion of system models and refinement,
these conclusions can be interpreted in a broader view: It is worthwhile to start with
a set of precisely elaborated security requirements and develop a system in a stepwise
fashion, introducing new complexity in small, manageable chunks. Frequent evaluation
of the resulting security properties can help to early spot states of the development
where a trade-off between security and other requirements is necessary – and achieve
this trade-off in a systematic and controlled way.
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Abstract. Software plays an important role in the safety of today’s systems and
is increasingly used to create system with variants in form of product families
or systems with online-reconfiguration in a cost-efficient manner. Therefore, the
required hazard analysis has to consider not only a concrete system and its em-
bedded software but also the different software configurations. We present several
extensions to an existing component-based hazard analysis approach. At first, our
approach permits to identify the optimal design variant w.r.t. the probabilities of
the considered hazard. As the number of variants in a product family is often
enormous, our approach secondly supports the hazard analysis of a whole prod-
uct family at once. The analysis identifies the variant or combination of variants
with the worst hazard probability. Finally, we show that also the hazards of sys-
tems with online-reconfiguration can be analyzed using the presented approach.

1 Introduction

Advanced mechanical products such as cars or airplanes are today realized as so called
mechatronic systems. In these mechatronic systems, beside the classical mechanical,
electronic, and control engineering disciplines, software engineering plays an important
role, as mechanical solutions are often replaced by pure information processing in order
to improve the functionality or reduce costs as in the case of fly-by-wire or drive-by-
wire solutions. Therefore, software and the interaction between the different distributed
software units of the system has a tremendous impact on the safety of today’s systems.
One of the most demanding area in this respect is the automotive area. Here software has
become an important factor in the development of modern high-end vehicles and grows at
an exponential rate while resource and cost constraints make it difficult to apply existing
approaches to handle the software from other areas such as avionics. Today, about 70 %
of the innovations in these cars are software driven and an increase of the percentage of
costs due to the development of software is expected from 20-25 % up to 40 % in the
next years (cf. [1]).

Today, not only a single product but a number of basic configurations and a large
number of optional features for each new product are typically offered. As the different

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
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variants have to be developed in a cost-efficient manner, the paradigm of software prod-
uct families [2,3] has therefore been proposed also for mechatronic products (cf. [4]) to
enable reuse across several variants of the same product. In the software architecture of
these product families the variabilities and dependencies between different features are
explicitly modeled and controlled. Therefore, the different variants of the software and
the different system configurations can be derived from the same product line model
reusing of the same components for a number of system configurations. Often the num-
ber of variant combinations which have to be analyzed to cover a product family is too
large to apply standard approaches for the safety analysis to each of them. A feasible
approach which supports the hazard analysis of a whole product family at once is thus
required.

Alternative behavior does not only result from alternative variants which are selected
at design time. As reported in [5], we can also expect that that the next-generation of
advanced mechatronic systems will adapt their behavior online by means of software
that reconfigures itself in response to changes in the observed context (also denoted
as self-adaptation or self-optimization [6]). Therefore, also safety analysis techniques
which also cover online-reconfiguration are required in the long run.

In this paper we describe a number of extensions to an existing component-based
hazard analysis approach (cf. [7]) which exploits the component-oriented character
of the software to enable a cost-effective safety analysis by enabling the reuse of
component-specific failure propagation information.1 Assuming a description of the
software architecture which covers multiple alternatives, our extensions then permit
to identify the optimal design variant w.r.t. the probabilities of all considered hazards.
In the case of alternative variants of the system rather than a decision at design time
which alternative to chose, the number of variants in a product family is often too
large to be able to apply standard safety analysis approaches to each variant. Therefore,
our extensions also support to analyze the whole product family at once concerning
hazards by identifying the worst case hazard probability for all variants which per-
mit that upper bounds for the whole product family can be established. Also, systems
with online-reconfiguration can be analyzed using a slight modification of the proposed
extensions.

The remainder of the paper is organized as follows: We at first discuss the cur-
rent state of the art for the hazard analysis of systems with design alternatives or
online-reconfiguration in Section 2. Then, the running example employed to explain
our approach is introduced in Section 3 and used to outline the later extended basic
component-based hazard analysis approach in Section 4. Thereafter, the extension of
the component-based hazard analysis approach towards alternative structures is intro-
duced in Section 5. In Section 6, we then describe how an optimal design alternative
w.r.t. the hazard analysis can be identified, how the analysis of product families can be
tackled, and how the online case can be addressed. We finish the paper with our final
conclusions and an outlook on future work.

1 It is to be noted that component-based hazard analysis approaches do not address the functional
correctness of the components or their correct interconnection. Additional analysis tasks have
to ensure that all considered component configurations interact safely (cf. [8]).
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2 State of the Art

Component-based hazard analysis is a hot topic in safety-critical systems research
[9,10,11,12,13]. The basic idea is to ease the hazard analysis by reusing already avail-
able information about failure behavior of the individual components rather than al-
ways start from scratch when performing a hazard analysis. The current approaches for
component-based hazard analysis have in common that they describe the failure propa-
gation of individual components (cf. failure propagation and transfer nets [3]). Outgoing
failures are the result of the combination of internal errors and incoming failures from
other components. The failure classification presented in [14,15] is widely employed
(as in [10,12]) to distinguish different failures.

Papadopoulos et al. [10] describe an approach for a component-based hazard analy-
sis. The basic idea is a Failure Modes and Effects Analysis (FMEA) for each component
based on its interfaces (called IF-FMEA). The outgoing failures are disjunctions of a
combination of internal errors and a combination of incoming failures. They employ
the notion of block diagrams [16] for their components. The results of IF-FMEA are
combined to construct a fault tree for the complete system. A main advantage, besides
reusing already available IF-FMEA results, is an improved consistency between the
structure of the system design and the fault tree of the system. This approach has been
integrated with component concepts of the ROOM [17] methodology in [12]. A ma-
jor weakness of these approaches (as noted in [9]) is the usage of a fault tree for the
combination of the individual IF-FMEA results, since fault trees do not inherently sup-
port common mode failures like a hardware crash failure which influences all software
components executed on that node. Additionally, the authors impose an unnecessary
restriction by the definition that the internal errors are always combined by an logical
or with the incoming failures.

Kaiser et al. [11] present a component concept for fault tree analysis. They propose
to divide a fault tree into fault tree components. A fault tree component has incoming
and outgoing ports. These ports are used to connect the different components and create
the complete fault tree. The main advantage of this approach is the possibility to reuse
existing fault tree components. Thus, by building a repository of fault tree components
for often used system components, the building of fault trees becomes easier. Unfor-
tunately, the proposed fault tree components are not linked in any way to the system
components, whose faults they are modelling. In [13] this approach has been integrated
with ROOM [17]. The input and output actions are used to derive all failure ports. The
failure ports which are used for the connection of the fault tree components are still
not typed. In contrast, our approach additionally supports the flexible classification of
failures at a greater level of detail. In contrast to all discussed approaches, we explicitly
allow cycles in the failure propagation models.

Addouche et al. present an approach for the dependability analysis of systems mod-
eled using structure and behavior UML diagrams [18]. They extend the UML diagrams
by probabilistic and timed annotations and use a probabilistic model checker to verify
dependability properties. Our approach differs since we pessimistically abstract from
behavior and, thus, can provide a more scalable analysis approach.

All above presented approaches do not directly support the hazard analysis of prod-
uct variants of product lines. Instead, variants must be manually created and analyzed.
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Ortmeier et a.l. present in [19] the ForMoSa approach for safety analysis. The ap-
proach builds on the foundation of fault tree analysis for hazard analysis. The approach
supports the analysis of systems with free parameters, e.g. timing parameters. Model
instances with different parameter values can be understand as variants. The approach
supports the optimization of the hazard probability by changes to these free parame-
ters. Our approach is different in supporting variants not only for parameter values but
also for different structures. In addition, our approach can be used to identify the worst
variant of a product family with respect to the hazard probabilities.

3 Application Example

A small excerpt from the New Railway Technology project2 and its safety-critical soft-
ware is used in the following as our application example. The overall project aims at us-
ing a passive track system with intelligent shuttles that operate autonomously and make
independent and decentralized operational decisions. Shuttles either transport goods or
up to approx. 10 passengers.

The track system, the shuttles are using, is divided into several disjoint sections each
of which is controlled by a section control. To enter a section, a shuttle has to be reg-
istered at the corresponding section control. The shuttle sends its data, like position
and speed, to the section control. The section control in turn sends the data of all other
shuttles within the section. Thus, each shuttle knows which other shuttles are nearby.
Shuttles can communicate with each other. If two shuttles approach at a switch, they
can bargain who has right of way. Depending on the topology, the shuttles speed and
its position an optimizer calculates the bid. A more detailed description of this scenario
can be found in [20].

In our example, represented in Figure 1, two shuttle components, a switch and a
section control interact with each other. A component is depicted as rectangle labelled
with at least the component’s type (string following the colon) and possibly labelled
with the component’s name (string preceding the colon). A component represents one
instance of a given type. Consider for example the component on the left of Figure 1.
This component is an instance of type Shuttle and is named sh1. In our example there
is also another shuttle component sh2. This component is of the same type as sh1.

Component ports are shown as small squares at the component’s border. These ports
are used for interaction with other components. In Figure 1, one port of the shuttle com-
ponent is connected with the SectionControl. In this case data is sent in both directions
which is depicted by arrows at both ends of the connection. Some of the connectors are
labelled with nl1..4, this indicates that a network is used for the communication of the
corresponding components.

For our example, we consider two variants. The speed and the position of the shuttle
can be determined either by employing a SpeedSensor or a GPS sensor. Figure 2 shows
the component structure of these two variants.

To describe the connection of hardware and the deployed software components we
employ UML deployment diagrams. For presentation reasons, the UML deployment

2 www.railcab.de/en/
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Fig. 1. Component structure with shuttles, switch, and section control
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Fig. 2. Variants of the shuttle component
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Fig. 3. Deployment specification
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Fig. 4. Failure propagation of the optimizer component

diagrams are visually slightly extended to include the additional hardware ports. These
hardware ports are used to denote the propagation of hardware failures.

Figure 3 shows the deployment specification for the two software variants s1 and
g1. Both software components are deployed on the same node m1. Nodes and software
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components are connected by special deployment connections and, thus, employ the
same error and failure propagation concepts. In addition, both sensor software compo-
nents use special hardware devices for the actual reading of the sensor data (a1 resp. p1).
We omit the mapping of the network links nl1..4 of Figure 1 to a wireless network for
the sake of clearer presentation.

4 Component-Based Hazard Analysis

The component-based architecture presented in Figure 1 and 2 can be exploited to ana-
lyze the systems for hazards in a compositional manner. We will in the following revisit
the employed basic component-based hazard analysis technique of [7].

Assuming a set C of components c ∈ C with Ch the hardware components and Cs the
software components, we use software ports sn ∈ Ps and hardware ports hn ∈ Ph with
n ∈ IN to describe the architecture of a system. A system S can thus be characterized
by a set of components and a connection relation map ⊆ C × P × C × P between
the ports of the components. The component structure of Figures 1 and 3 is formalized
using the above defined sets and relations.

For the outlined component-based architecture, we can conclude that failures – the
external visible derivation from the correct behavior – can only occur at the ports where
the components interact with their environment, while errors – the manifestation of a
fault in the state of a component – are restricted to the internal of the component.

The basic idea to formally model the failure propagation of the components and the
occurrence of hazards due to failures is to use Boolean logic with quantifiers (cf. [21])
to encode the failure propagation. We use two disjoint Boolean variable sets VF and VE

for the propagation of failures and probabilistic independent local events (most often
errors), respectively.

As outlined in [7], we use an extensible failure classification to ensure that the failure
propagation specified for the different components can be combined. In the following,
we restrict our considerations on the three general failure types crash failure (scr), pro-
tocol failure (p), and value failure (v) which build a complete failure classification F .
Failure and event variables are further named according to the following schema: fc,p,t

and ec,t for a component c ∈ C, port p ∈ P , and failure type t ∈ F . In the case of the
events which do not relate to any specific failure type appropriate event types are simply
added. The crash error em1,scr of hardware component m1 is thus contained in set VE .
A crash failure fo1,h1,scr of the software component o1 incoming from its hardware
port h1 is contained in set VF .

The failure propagation of each component can then be described by Boolean logic
expressions over the failure variables (fj ∈ VF where V s

F are related to software ports
and V h

F are related to hardware ports), event variables (ek ∈ VE), and the Boolean
constants 1 for true and 0 for false using the basic Boolean operators ∧, ∨, ¬, ⇒, ⇔
and quantifiers ∀ and ∃.We use free(φ) to denote the set of free variables of φ.

Definition 1. For every component c ∈ C we employ a failure propagation information
Fc = (Oc

F , Ic
F , V c

E , ψc) which consists of the following four elements: (1) A set of
outgoing failure variables Oc

F ⊆ VF , (2) a set of incoming failure variables Ic
F ⊆ VF ,

(3) a set of possible internal event variables V c
E ⊆ VE , and (4) a failure dependency
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condition ψc which relates the variables for failures and errors to each other by a
Boolean logic formula (free(ψc) ⊆ Oc

F ∪ Ic
F ∪ V c

E). We require Oc
F ∩ Ic

F = ∅.

If an incoming failure represented by the variable fk directly results in the outgoing
failure represented by the variable fl, the failure dependency ψc must include fl ⇔ fk.
In general, the failure propagation for an outgoing failure fj ∈ Oc

F is described by the
corresponding formula φj over the incoming failures and events (free(φj) ⊆ Ic

F ∪V c
E)

in the form fj ⇔ φj .
Figures 4(a) and 4(b) show the failure propagation for value and crash failures of the

Optimizer component. As is apparent from the component variant diagrams (Figures
2(a) and 2(b)), the Optimizer uses either the information provided by the GPS or the
SpeedSensor to compute the bids for the bargaining. The employed variant is connected
to the Optimizer via the s2 port. The Optimizer has the ability to detect value failures in
the data, provided by the GPS or the SpeedSensor. Due to algorithmic constraints, the
failure detection cannot detect small value failures and therefore an internal event (event
type ac) is added to model this algorithmic constraint.3 The second failure propagation
model specifies that the optimizer cannot tolerate a crash failure of a sensor variant
or the execution hardware. A protocol failure of the sensor variant or detected value
failures propagate to an outgoing protocol failure as specified in Figure 4(c). Thus,
we get the following failure propagation: ψo1 = (fo1,s3,v ⇔ (fo1,s2,v ∧ eo1,ac)) ∧
(fo1,s3,scr ⇔ (fo1,s2,scr∨fo2,h1,scr))∧(fo1,s3,p ⇔ (fo1,s2,p∨(fo1,s2,v∧(¬fo1,s3,v)))).

As depicted in Figure 4, we use standard fault trees which may additionally include
negated elements to specify the formulas ψk for specific outgoing failures fk ∈ Oc

F . If an
outgoing failure fj is excluded, we add fj ⇔ false to ψc. Then, the failure propagation
formulas ψk for all outgoing failures fk ∈ Oc

F are AND-combined to derive ψc.
To describe the failure propagation of a composed component structure, we use

the AND-composition of the failure information of the involved component instances.
Therefore, we employ a failure propagation information per instance and simply re-
naming the failure and event variables such that the outgoing and ingoing failures are
identical (fc,p,t = fc′,p′,t) if and only if their component ports are matched to each
other ((c, p, c′, p′) ∈ map).

A hazard (top event) corresponds to a hazard condition γ in form of a Boolean for-
mula without negation which references a subset of the outgoing failure variables of all
system components (cf. [7]) and thus an additionally present failure never disables other
failures (cf. monotonic increasing formula in [21]). An example hazard is depicted in
Figure 5.

In our example, one serious hazard that can occur is a sideway collision of two shut-
tles on a switch. Here we will mention only two of the possible failures that can lead to
this hazard. First, one shuttle component has incorrect own data. Or second, one shuttle
has incorrect data of the other shuttle. The incorrect own data can be caused by the
SwitchHandler and the incorrect data of the other shuttle is received via the s1 port of
the shuttle component. As these failures are related to certain components of the system
the analysis on this level is stopped.

3 We pessimistically abstract from the deployment of the Optimizer and SwitchHandler components
w.r.t. value failures as their crash errors simply result in a fail-safe state of the system.
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≥ 1

fsh1,s1,v

Fig. 5. The hazard condition for the shuttle

The corresponding hazard condition is: γ = fsh1,s1,v ∨fswh1,s2,v ∨ . . . . To keep the
example simple we will in the following focus on the case that the SwitchHandler of sh1
delivers incorrect data. Thus, we only consider the hazard condition γ′ = fswh1,s2,v.

We can then use the satisfiability of the AND-composition of the local failure prop-
agation information of all component occurrences c1, . . . , cn with a hazard condition γ
in form of the Boolean formula ψγ = ψc1 ∧ . . .∧ψcn ∧γ to check whether the hazard is
possible at all. Within this check, we can further abstract from the propagated failures
f1, . . . , fm using existential quantification and check ψ∃

γ = ∃f1, . . . , fm : ψc1 ∧ . . . ∧
ψcn ∧ γ instead of ψγ .

In our example, we check whether the hazard γ′ = fswh1,s2,v is possible by combin-
ing appropriately renamed version of the failure propagation information for the GPS,
Optimizer, and SwitchHandler component. The resulting condition ψ∃

γ′ is satisfiable for
any assignments for the internal event variables where the GPS unit has a local error
which results in a value failure.

Like in our example, very often a hazard cannot be excluded. Therefore, we support
to also compute its probability pγ for a given fixed mission time and given probabilities
p(ei) for the same mission time for all internal events e1, . . . , em using ψ∃

γ as follows:

pγ =
∑

v1,...,vm∈{0,1} ψ∃
γ [v1/e1, . . . , vm/em] p(v1, . . . , vm) (1)

We simply sum up for all possible assignments v1, . . . , vm for the internal event vari-
ables e1, . . . , em the related probability (p(v1, . . . , vm) :=

∏m
i=1(vip(ei) + (1 − vi)

(1− p(ei)))) if the assignment fulfills ψ∃
γ .

For more details and the employed symbolic encoding in form of binary decision
diagrams (BDDs) [22] and the efficient computation of pγ please see Appendix A. In
[7], we also outline how to address cyclic dependencies.

5 Introducing Design Alternatives

To further also take alternative system structures into account, we at first extend the
failure propagation information. As alternative structures can also result in different re-
quired resources and may be subject to additional constraints, we also add an encoding
of the resource requirements.

To model the failure propagation of system architectures with alternatives as de-
picted in Figure 2, we add a set of boolean variables VA to model alternative sub-
structures. Each failure propagation information without any alternative structures is
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then extended such that Fc = (Oc
F , Ic

F , V c
E , ψc) for a component c ∈ C becomes

Fc = (Oc
F , Ic

F , V c
E , V c

A, ψc) with V c
A = ∅.

If in contrast two alternative structures a ∈ C and b ∈ C should be combined to
describe a substructure c = a ⊕C b with internal alternatives, we combine the related
failure propagation information of a and b to derive the one for c as follows:

Definition 2. Given two component a, b ∈ C and two failure propagation information
Fa = (Oa

F , Ia
F , V a

E , V a
A , ψa) and Fb = (Ob

F , Ib
F , V b

E , V b
A, ψb) with identical interface

(Oa
F = Ob

F , Ia
F = Ib

F , V a
E ∩ V b

E = ∅), we can derive the alternative combination
Fc = (Oc

F , Ic
F , V c

E , V c
A, ψc) also denoted by Fa⊕F Fb for a variable a ∈ VA\(V a

A∪V b
A)

as follows: (1) Oc
F = Oa

F = Ob
F , (2) Ic

F = Ia
F = Ib

F , (3) V c
E = V a

E � V b
E , and (4)

V c
A = V a

A � V b
A � {a}, and (5) ψc = (a ∧ ψa) ∨ (¬a ∧ ψb).

If the extended failure propagation information for multiple occurrences of the same
component are considered, the renaming of the variables should not include the al-
ternative variables in VA as we study the system under the assumption that the same
alternative has been chosen at design time for all occurrences.

The failure propagation for the two shuttle component variants in our example is
mostly determined whether the GPS sensor variant or the speed sensor variant is em-
ployed. Consequently, this decision is reflected in the failure propagation of the s2
port of the Optimizer component. The boolean decision variable a is used to denote
whether the GPS sensor variant (a = true) or the speed sensor variant is employed
(a = false) and we get the following failure propagation condition: fo1,s2,v ⇔
(a ∧ fg1,s1,v) ∨ (¬a ∧ fs1,s1,v).

Analogously to the case without alternatives, we can then use the satisfiability of
ψ∃

γ to check whether a hazard is possible. The formula ψ∃
γ has the internal events

e1, . . . , em as well as the alternative variables a1, . . . , an as free variables. Thus the
question whether any alternative configuration contains the hazard relates to the satisfi-
ability of the formula ψ∃

γ .
A probability function pγ over the alternative variables a1, . . . , an can analogously

to the basic approach presented in Section 4 (cf. equation 1) be derived from ψ∃
γ for

pγ(v1, ..., vn, w1, ..., wn) = ψ∃
γ [v1/e1, ..., vm/em, w1/a1, ..., wn/an] p(v1, ..., vm) as

follows:
pγ(w1, ..., wn) =

∑
v1,...,vn∈{0,1}

pγ(v1, ..., vn, w1...wn) (2)

Equation 2 extends equation 1 only by the free variables w1 . . . wn to encode the al-
ternatives. The advanced analysis techniques presented later in Section 6 use these free
variables in different ways.

Referring to the set of boolean variables VA to model alternative substructures, we
further add resource expressions rch

c with free(rxh
c ) ⊆ V c

A for each hardware port cp ∈
P h

c to the failure propagation information Fc = (Oc
F , Ic

F , V c
E , V c

A, ψc) of a software
component c ∈ Cs. For a given assignment for the alternative variables in V c

A, the
resource expressions rch

c evaluates to the amount of required resources.4

4 We assume a single resource dimension here, but the outlined concepts can be straight forward
extended to n resource dimensions if required.
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If two alternative structures c′ ∈ C and c′′ ∈ C are combined via the alternative
variable a ∈ VA to describe a substructure c = c′ ⊕C c′′ with internal alternatives, we
thus also combine the related resource expressions. If the hardware port ch ∈ P h

c is
connected to both ch′ ∈ P h

c′ and ch′′ ∈ P h
c′′ we then derive rch

c as a rch
a + (1− a) rch

b .
We finally combine these resource expressions for each hardware component h ∈ Ch

to derive a related constraint ρh for an upper resource limit ru
h as follows:

ρh := rσ
h ≤ ru

h with rσ
h =

∑
(h,hp,c,ch)∈map

rch
c

rσ
h is the sum of all required resource for software components c which are connected

via hardware ports to the hardware component h. The resulting resource constraint ρm1
for the MPC550 depicted in Figure 3 is thus a rh1

GPS + (1− a) rh1
SpeedSensor ≤ ru

m1.

6 Advanced Analysis

Using the beforehand introduced concepts for the failure propagation modeling of archi-
tectures with alternatives, we will present in this section that we can determine optimal
configurations, can determine solutions which are least sensitive to estimation errors
of the internal event probabilities, can analyze whole product families, and can even
analyze system architectures with online-reconfiguration.

Optimal Configuration. In a first step, constraints on the likelihood of hazards such
as the upper bounds for their probabilities, which are required if a specific SIL level
has been assigned to that subsystem or functionality, have to be taken into account. For
the hazard γi and an upper bound αi for the likelihood within a given mission time, we
have the following constraint: ζi := pγi ≤ αi.

To further define the objective function f which determines which is the optimal
solution, a reasonable choice is the risk. We thus have f =

∑
i∈I si pγi for si the

severity of the hazard γi and pγi its probability function.
To determine the optimal design we thus have to solve the optimization problem with

f → min, constraints ζi for all i ∈ I , and resource constraints ρc for all c ∈ Ch.
Employing the BDD algorithms of Appendix A, we compute the variant with the

minimal hazard probability. The analysis is based on the following component errors
and their probabilities (cf. [7]): (1) a value error of the speedometer device p1 with
probability p(ep1,v) = 10−7, (2) a value error of the GPS antenna a1 with p(ea1,v) =
10−8, (3) a crash error of the executing hardware m1 with p(em1,scr) = 10−6, and an
error of the algorithmic constraint of the optimizer components o1 with p(eo1,ac) =
10−7. The following expression f is to be minimized by assigning a boolean value to
variable a:

f := (a∗p(ea1,v)∗(1−p(em1,scr))+(1−a)∗(p(ep1,v)∗(1−p(em1,scr))))∗p(eo1,ac)

Minimizing this expression results in the selection of a = 1 and the solution 10−15.
a = 1 denotes the GPS sensor variant which, thus, is the optimal one w.r.t. the proba-
bility of hazard γ′. It is to be noted that in more complex cases the optimal decision is
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not simply to chose always the most reliable component variant as resource constraints
usually only permit to chose certain combinations and it is not obvious where to invest
the resources to achieve an optimal result.

Sensitivity-Based Selection. While taking the risk as an optimization criteria is a
straight forward solution, in practice any such optimization has the problem that the
estimates for the probabilities of the internal events are often very questionable.

In such cases, we further propose to analyze the considered solutions w.r.t. their
sensitivity concerning the estimated internal event probabilities. Therefore, we add to
the estimated internal event probabilities p(ej) a special variable δ and a factor βj .
When building pγi , we then use p′(ej) = p(ej) + βjδ instead of p(ei). The variable δ
and the factor βj basically determine an interval for the error probabilities. The factor βj

determines the individual width of the interval for the error p(ej). The special variable
δ is then used to maximize the interval for all error probabilities.

Depending on the magnitude of the estimates p(ej) and their known accuracy, ap-
propriate factors βj should be chosen. Assuming for example that p(ej) is assumed to
be approximately 10−6 and the estimation error is about 10−7, we would suggest to use
βj = 10−7.

To determine the design with minimal sensitivity to estimation errors of the internal
event probabilities, we thus have to solve the optimization problem with δ → max,
constraints ζi for all i ∈ I , resource constraints ρc for all c ∈ Ch, and δ ≥ 0.

If δmax is determined this way, we replace the variable δ by the constant δmax and
solve f → min, constraints ζi for all i ∈ I , and resource constraints ρc for all c ∈ Ch in
order to derive the design alternative which fulfills all hazard constraints ζi while allow-
ing the biggest estimation error of the error probabilities. Thus, this design alternative
is the least sensitive to estimation errors (and thus has the maximal safety margin for
the error probabilities determined by δmax).

Product Family Analysis. A product family can also be encoded as a system with
alternative designs with free configuration variables ai ∈ VA. While in the case of al-
ternative design decisions, the extended failure propagation information for multiple
occurrences of the same component are considered, for a product family all combina-
tions of valid product variants have to be considered.

Therefore, the renaming of the variables has to include the alternative variables in
VA as we do not study the system under the assumption that the same alternative has
been chosen at design time for all occurrences. Instead, we need that disjoint variables
for the alternative substructures (V a

A ∩ V b
A = ∅) are employed if these substructures

relate to different instances of the same product family.
In the case of product families, the question whether any combination of variants

contains the hazard again relates to the satisfiability of the formula ψ∃
γ . We can com-

pute the maximal probability pmax
γ of the hazard depending on pγ from equation 2 with

parameters w1, . . . , wn for the alternative variables a1, . . . , an as follows (in the Ap-
pendix A the procedure to efficiently compute this maximum for the employed symbolic
encoding in form of BDDs is sketched):

pmax
γ = maxw1,...,wm∈{0,1} pγ(w1, ..., wm) (3)
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This maximum for each hazard γi and an upper bound αi for the likelihood within a
given mission time can then be used to derive the additional checks pmax

γi
≤ αi which

have to be passed to ensure that any combination of product family variants fulfills the
safety requirements implied by the assigned SIL levels.

The optimization problem with f → max for the constraints ζi for all i ∈ I and
resource constraints ρc for all c ∈ Ch can be further employed to optimize the safety of
the product family. The optimization result relates to a worst case w.r.t. safety and might
relate not to a single product variant but a combination of product variants. Therefore,
we propose to study for each of these variants whether recomputing the optimization
problem with a special constraint that exclude this specific variant can significantly
decrease the likelihood for hazards.

Considering Online Reconfiguration. The outlined encoding for the failure propa-
gation for systems with alternative designs with free configuration variables ai ∈ VA

can also be employed to determine the hazard probabilities for systems with online-
reconfiguration where the switching between the different configurations is atomic and
no cycles in the failure propagation exist. The online reconfiguration can be modeled
like alternative designs of a product family. The hazard analysis can be done using the
equation 3 for product families.

7 Conclusions and Future Work

Today software in technical systems often has to support multiple variants in order to
evaluate different design alternatives, describe product families or system models with
online-reconfiguration. Therefore, this paper proposes an extension of a component-
based hazard analysis technique which permits to describe alternative structures. It has
been described how we can determine optimal configurations, how we can determine
the solution which is the least sensitive one w.r.t. estimation errors of the error probabil-
ities, how we can analyze a whole product family at once, and how we can even analyze
system architectures with online-reconfiguration using the introduced extension.

Planned future work will include a more tight integration of the approach with mod-
eling techniques for product families and online-reconfiguration.
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A Compute Probability Results for Boolean Formulas

Figure 6(a) presents how we employ Binary Decision Diagrams (BDDs) to calculate
the probability of hazards. It shows a BDD containing three nodes for different error
events e1 . . . e3 and special nodes true (0) and false (1). We calculate the probabilities
bottom up by starting with node e1 since both its dependent nodes are already calculated
(trivial for the nodes true and false). The probability for a node is computed as follows:
f(node) = p(ei) ∗ f(node.high()) + (1− p(ei)) ∗ f(node.low()). Thus for node e1,
this results in: f(e1) = 0.3 ∗ 1 + (1 − 0.3) ∗ 0 = 0.3. Propagating this value upward,
we get the hazards probability of 0.24.

0 1

e1e2

p(e1) = 0.3

p(e2) = 0.4

p(e3) = 0.5

1) 1p(e1) + 0(1− p(e1))
= 0.3

2) 0p(e2) + (1− p(e2))0.3
= 0.18

e3 3) p(e3)(0.3) + (1− p(e3))0.18
= 0.15 + 0.09 = 0.24

(a) without variants

0 1

(b) with variants

Fig. 6. Hazard probability calculation using BDDs

A BDD for a hazard analysis with design variants is displayed in Figure 6(b). The
difference to the above presented algorithm is the treatment of nodes representing de-
sign alternatives, e.g. node a1 in the example. Here, the following formula is used:
f(node) = ai ∗ f(node.high()) + (1 − ai) ∗ f(node.low()). In our example, this re-
sults in the expression: f(a1) = 0.3a1+0.18(1−a1). After the complete expression for
the BDD is built, the expression is minimized using a constraint solver. For the given
expression, the result is a1 = 0 as this leads to a hazard probability of 0.18 in contrast
to 0.3, when a1 = 1.

Using the BDD of Figure 6(b), we can also efficiently compute which variant has
the maximum hazard probability also considering the variant nodes ai: f(node) =
max(f(node.high(), f(node.low())) - in our example f(a1) = max(0.3, 0.18). This
means, that the highest hazard probability variant has the probability 0.3.
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Abstract. In this paper we propose a new, lightweight, no bandwidth consum-
ing authentication and integrity scheme for VoIP service based on SIP as a sig-
nalling protocol. It is shared password mechanism and this solution exploits 
digital watermarking. Nowadays, there are many applications of this technique, 
such as solving copyright protection problems, but we propose to use it to se-
cure the transmitted audio and signalling protocol that IP Telephony is based on 
simultaneously. This solution can be the potential answer to the problem VoIP 
faces today: finding a scalable and universal mechanism for securing VoIP traf-
fic (voice and the signalling protocol messages) at the same time. It can greatly 
improve, if we combine it with existing security mechanisms, overall IP  
Telephony system’s security. 

1   VoIP Security Problems 

Securing IP Telephony is a complex process. This not only means the ability to make 
secure conversation between two communicating parties, but also the security of 
signalling messages used to make this call possible at all. The need to provide certain 
QoS (Quality of Service) parameters values often results with not enough or no secu-
rity mechanisms for VoIP service. This is mainly because security mechanisms can be 
responsible for the increased latency. If latency is too high, it can be the most degen-
erating constrain for the quality of the VoIP call. So, nowadays we are often facing 
the necessity of the trade off between providing security and the low latency for real-
time service.  

That is why our motivation in finding alternative way to handle IP Telephony secu-
rity (with special emphasize on the authentication and integrity security services) is 
based on the following facts: 

- There is no universal solution for protecting both: audio and signalling messages for 
IP Telephony systems [8], 

- There are drawbacks of SRTP protocol which are discussed in [3]; SRTP is the most 
popular mechanism to provide authentication and integrity for the data stream, 
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- The speed of embedding/extracting digital watermark into/from audio is suitable for 
real-time services, 

- Authentication based on digital watermarking scheme is inseparably bound to the 
data stream content, 

– VoIP security is still evolving and still it is time for new solutions and ideas. 

That’s why, in this paper, we are proposing a novel approach to the IP Telephony 
security based on digital watermarking. This solution is suitable for the protection of 
both the audio content and signalling messages simultaneously. 

2   Digital Watermarking 

Digital watermarking technique is gaining more and more attention these days. It 
covers a large field of various aspects, from cryptography to signal processing. It is 
mainly used for marking the digital data (images, video, audio or text). From typical 
applications for digital watermarks, described in [1] and [2], most important applica-
tion, which can really improve VoIP security, is the ability of embedding the authen-
tication and integrity watermark. Authors can embed data, which is similar to a 
cryptographic hash, into their digital work. This hash is invisible and inseparable from 
the data. This way we can achieve the copyright protection by watermarking data with 
the author’s identifier (owner authentication) and we can ensure the authentication 
and integrity of the data, which allows us to recognize all later data manipulations (a 
general term in literature is the data authentication [9], [10]). 

The watermark that will be used in the authentication and integrity scheme we pro-
pose, must possess certain properties like: robustness, security, transparency, com-
plexity, capacity, verification and invertibility. The mentioned properties are  
described in details in [1] and [2]. The optimization of these properties for real-time 
audio system is crucial. They are often mutually competitive; that is why there is 
always a compromise necessary to construct an efficient system. For our purpose the 
embedded watermark, that we will use, must be characterized by high robustness 
(but only until the semantics of the data is destroyed), high security and must be non-
perceptual. IP Telephony is a demanding, real-time service, so we need the water-
marking schemes that deal with the real-time services. The number of such solutions 
is not high, however, they already exist. Such watermarking algorithms are described, 
e.g., in [2], [3] and [5].  

The general audio watermarking scheme for VoIP traffic consists of two functions: 
embedding and extractions of the watermark. As soon as the conversation begins, 
certain information is embedding into the voice samples (as a watermark) and it is 
sent through the communication channel. After reaching a called party the watermark 
is extracted, the information is retrieved and verified. If the received watermarked 
data and extracted parameters are correct, the conversation can be continued. 

Most digital watermarking algorithms for the real-time communication are designed 
to survive typical non-malicious IP Telephony operations like: low bit rate audio com-
pression, codec changes, DA/AD conversion and packet loss. For example, in [2] the 
watermarking scheme developed at the Fraunhofer IPSI and the Fraunhofer IIS were 
tested for different compression methods. Those results revealed that the large simulta-
neous capacity and robustness depend on the scale of the codec compression. When 
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the compression rate is high (1:53), the watermark is robust only when we embed 
about 1 bit/s. With a lower compression rate we can obtain about 30 bit/s, whereas the 
highest data rate was 48 bit/s with good robust, transparent and complexity properties. 
For the monophonic audio signal, which is a default type for IP Telephony, the wa-
termark embedding algorithm appeared around 14 times faster and the watermark 
detector almost 6 times faster than the real-time. 

3   VoIP Security Services 

As stated in [16] the security services for system’s information security are: authenti-
cation (and identification), integrity, authorization (logical access control), confidenti-
ality and non-repudiation/non-denial. But if we take into consideration securing IP 
telephony systems, the three most crucial security services are: authentication, integ-
rity and confidentiality. The first two can be provided with the use of the watermark-
ing techniques. The third one should be guaranteed in a different manner, e.g., with 
the use of the security mechanisms (encryption) from the set defined for each VoIP 
standard.  

In particular, the proposed here scheme provides the following security services: 

- Authentication of the data source (one can be sure of the identity of the caller), 
- Authentication of the signalling messages (one can prove that the caller is the 

source of the signalling messages that were exchanged during the signalling phase 
of the call),  

- Signalling messages integrity (one knows that the signalling messages were not 
modified during the transmission through the communication channel)  

- Data authentication – integrity (one can be sure that the audio comes from the 
caller and it has not been tampered). 

Furthermore, making a call in IP Telephony systems consists of two phases: the 
initial signalling phase, in which certain signalling messages are exchanged between 
the parties, and the conversation phase. Each phase has its disjunctive set of security 
mechanisms (although, the secure signalling sometimes includes a secure key-setup 
for the media channels). Nowadays, in SIP and H.323 we can implement different 
security mechanisms designated for securing the data stream (audio) and other that 
cover signalling protocols security. Additionally, the security model for the protocols: 
SIP and H.323 is also different, which means that they use almost disjunctive set of 
the security mechanisms. What we are proposing in this paper is to move providing 
the security of the signalling messages from the first phase to the second one (to the 
conversation phase). We called this method a post factum method. This is a first 
scheme that is using this method. What is characteristic the act of checking the secu-
rity of the signalling protocol is made after the signalling phase is finished. Such a 
solution has disadvantages: the most serious one is that a potential attack on the sig-
nalling protocol is detected some time after the beginning of the conversation. But on 
the other hand, this approach has certain advantages:  

- It provides one, unified solution for the audio and signalling protocol security, 
- It is low-power computing as stated in [2] and no bandwidth consuming mechanism, 

because we use a channel created in media streams, 
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- It is signalling protocol independent solution, 
- It prevents doubling latency and excessive consuming of the processing time, 
- It also reduces complexity (and cost!) of the network equipment on the communica-

tion path, 
- It is capable of solving the security mechanisms compatibility for various IP Te-

lephony systems that are based on different signalling protocols.  

Moreover, it can also help to protect the audio and signalling protocol on the inter-
face between VoIP systems and PSTN (since the watermark is robust, it will survive 
AD/DA operations).  

Unlike the existing security mechanisms for IP Telephony, it provides also real 
end-to-end security. No network equipment on the communication path will be aware 
of the embedded watermark, unless it is designed to do so. 

Thus, we think that the proposed solution can be an important step in providing au-
thentication and integrity for VoIP traffic. 

4   Proposition of Authentication and Integrity Scheme 

We assume that proposed mechanism is independent of the watermarking algorithm. 
It means that it does not depend on watermark embedding and extraction technique. 
No matter which algorithm for real-time communication is used, the output water-
mark, if created, has the best properties allowed for the communication environment 
used. Such an assumption gives this solution flexibility and it will be capable of sup-
porting future ideas of digital watermarking algorithms. Another assumption is that 
both sides of communication share a secret password (in this paper we do not cover 
the algorithm used for password exchanging). 

4.1   Scenarios for Digital Watermarking in VoIP Security and Related Work 

We can point out three possible scenarios, in which we can take advantage of using 
the digital watermarking to provide authentication and integrity for IP Telephony:  

I. We can secure the media stream (audio),  
II. We can secure the signalling messages,  
III. We can secure both: the audio and signalling protocols at the same time.  

Working algorithms for I are presented, i.e., in [2], [3] and [5]. We do not fully bene-
fit from the solution II, because in this case we still have a disjunction set of the secu-
rity mechanisms for securing the media stream and a signalling protocol. This is a 
novel approach and there are no known algorithms that use this approach. As we said 
at the beginning of Section 3, we want to combine two phases of VoIP call to achieve, 
mainly, less significant delay. That is why we will focus on the third possible sce-
nario: the simultaneous authentication and integrity protection of audio and signalling 
messages. All the following considerations, figures and schemes apply to the scenario 
No. III.  
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4.2   General Digital Watermarking Scheme Modifications 

The scheme presented here requires modifications to the general audio watermarking 
system. First, we are proposing to add a new functional block called Pre-processing 
Stage (PPS). It will be responsible for preparing data before the watermark embed-
ding stage. The modified scheme, with this new block, is shown in the Fig. 1 below: 

 

Fig. 1. Modified watermarking scheme with the new Pre-processing Stage (PPS) 

As we see in the Fig. 1 we provide a signalling message and a sample of the 
caller’s original voice, as an input to the PPS block in the transmitter. How the PPS 
block process information will be covered later in the Section 4.4. After the digital 
watermark is embedded and sent through the communication channel, the information 
in the receiver is retrieved and verified in an analogous block on the other communi-
cation side. If the retrieved information is correct, the connection will continue. We 
must also consider the problems connected with the call quality degeneration parame-
ters, such as the packet loss and jitter (characteristic for IP networks). The connection 
cannot break down if the watermark is not retrieved correctly in few samples. The 
problem will be addressed in the Section 4.5. 

The next important thing for this scheme is how much information we are able to 
embed into the original voice data. This will influence the speed of the authentication 
and integrity process throughout the conversation. This parameter, in our solution, is 
expected to be high but it is not crucial. However, the lowest payload watermarks 
(about 1 bit/s) cannot be accepted in our scheme because, in this case, the conversa-
tion would have to last enormously long to work correctly. 

4.3   Pre-processing Block (PPS) Description 

In this section we will describe how the Pre-processing Stage (PPS) block (presented 
in Fig.1) is built, in greater details. It consists of functional blocks shown in Fig. 2, 
which are described below. 

The blocks constituting PPS have the following functions: 

SB (Signalling Message Buffer): stores the signalling messages from the first phase of 
the call. 



 New VoIP Traffic Security Scheme with Digital Watermarking 175 

 

Fig. 2. Architecture of Pre-processing stage block (PPS) 

SP (Signalling Messages Processing): in this block a hash function is performed on 
each signalling message. 
RNG (Randomizer): we use it to provide a unique set of data for every embedded 
watermark, even if the rest of information provided will be the same again (e.g., all 
the signalling messages were verified, so in this case we use the last one that was 
sent). It produces a random value R, which is included later in the watermark. 
WD (Watermarking Data): in this block the input data is concatenated with the 
obligatory R parameter (the randomizer value) and other parameters: IDX (unique, 
global identifier of one side of the connection; X means caller or callee), PASS (the 
password, which is shared and known to both sides of the conversation) and TS 
(time stamp). The last parameter can be optional, because it requires tightly syn-
chronized clocks. However, it is useful since it can protect against the replay  
attacks. 
VFE (Voice Feature Extractor): provides characteristic features (VF) of the original 
voice that we want to protect. Afterwards, a hash is also performed on this value. 

As we can see in the Fig. 2, all the sent signalling messages from the first phase of 
the call are stored in a special buffer (SB). When the voice sample enters the VFE 
block, the first signalling message is send to the SP block where a hash function is 
performed. Simultaneously, the same function is performed over the voice sample in 
VFE. Then, both values are XORed bit by bit and the results enter WD block. The 
input value is concatenated with the randomizer value (R), the global identifier of 
caller (IDX), a shared password (PASS) and, eventually, the time stamp (TS). After 
that, the hash function is performed again. The result, which we will call a token, is 
send to the embedding function and will become a watermark. Next, the watermark-
ing process continues for the other signalling messages in the SB buffer. Before the 
caller’s voice reaches the callee, the token from the watermark must be retrieved and 
verified. This can be done because the callee computes locally the same token, and 
then the two tokens are being compared. 

4.4   The Authentication and Integrity Scheme 

The general idea of the proposed scheme is to compare the received token with a 
locally calculated, appropriate one. Fig. 3 shows how the algorithm works (the inverse 
communication is analogous). 
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Fig. 3. Architecture of Pre-processing stage block (PPS) 

In this situation the values of the tokens AN and BN are: 

R||R||
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PPSB block is functioning analogously to PPSA. That is why it is not shown above in 
details. Additionally, we assume that in the signalling phase some of the signalling 
messages (SMN means N-th Signalling Message) were exchanged (and they are stored 
in SB). Now, in the second phase, they will be verified. H stands for the hash function 
and W for the embedding of the digital watermark into audio. The algorithm works as 
described below: 

(1) When the conversation begins, the first voice sample enters VFEA block  
and, simultaneously, the first signalling message (SM) is send from the buffer (SBA) 
to the SPA block. In the VFEA the feature of the voice sample (VFN) is extracted  
(for the data integrity) and then the hash function is performed on the result.  
At the same time, the hash function is performed on the signalling message  
in SPA.  
 
(2) The result values from SPA and VFEA are, then, XORed (they have the same 
length). Afterwards, the result is sent to WDA block, in which TokenA is cre- 
ated, together with the other parameters like: the randomizer value (R), the sha- 
red password (PASS), the global identifier of A (IDA) and, optionally, the time 
stamp (TS). 
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(3) TokenA is sent to the watermark embedding function and the information, that it 
contains, is saved there in the caller’s voice. Then, the data stream, formed this way, 
is sent through the communication channel.  
 
(4) Before the voice from A reaches the callee B, the watermark is extracted and send 
to the comparator (C) on the receiver side.  
 
(5) From the extracted token, the randomizer value (R) is sent to the analogous PPSB 
block. In this block some pre-processing had taken place (e.g., the hash function from 
signalling message was performed). If we have the R-value, then we can compute 
TokenB. It should be equal to TokenA, if the transmission had not been tampered. 
The result is sent to the comparator (C). 
 
(6) In the comparator (C) both token values are compared.  
 
(7) If TokenA=TokenB, the special parameter LoT (Level of Trust) value (its function 
will be covered in the Section 4.5) is increased. In any other situation it is decreased. 
Then, basing on LoT value, the decision is made whether the call should be continued 
or broken down. 
 
(8) If the call continues, the voice sample finally reaches the callee B. 

4.5   Level of Trust (LoT) Parameter 

Still we can imagine a situation, in which the retrieved token will be corrupted, due to 
the packet loss (or some other reason). In this case, we cannot allow the call to be 
cancelled immediately. That is why both sides will update special parameter named 
LoT (Level of Trust), during a conversation. As we said, if tokens are equal, the LoT 
parameter increases. In any other situation its value decreases. If A sends to B a token 
to compare, the algorithm of handling the LoT parameter (on B side) works as de-
scribed below in a pseudo-code: 

/*CL - Critical Level, LoT - Level of Trust, T–timer*/ 
START 
CL = a; LoTA = x; TA = 0; /* Initiating values */ 
StartTimer(TA); 
FOR (i = 0; i++; i< End of Transmission)  /* i - Time 
slot */ 
  { 
  IF (TokenAA = TokenAB) THEN 
    { 
    LoTA ++; 
    ResetTimer(TA); 
    } 
  ELSE (LoTA --); 
 IF (LoTA <= CL) OR (TA > k) THEN STOP; (1) 
 IF (LoTA = a*x) THEN LoT = x; (2) 
} 



178 W. Mazurczyk and Z. Kotulski 

As we can see, the breakage of the call will take place if the value of the LoT pa-
rameter is equal or below the given threshold (CL value) or if the timer TA  
expires (1). If the communication continues and every signalling message that was 
sent is verified, embedding of the digital watermark does not stop. It is a continuous 
process: to calculate information to be sent, as soon as all the signalling messages 
are verified, we take the last signalling message. The LoT value changes during the 
conversation time. If every signalling message is successfully verified the  
LoT value rises. To prevent its increase from reaching the infinity, we lower it, as 
soon as it reaches the value of the critical level multiplied by the start value of  
LoT (2).  

This way of decreasing the LoT value has one serious disadvantage: it allows an at-
tacker to wait until LoT= (a*x)-1. However, we must assume that he is able to possess 
information about its value and then safely spoof ((a*x) - 1 – (CL + 1)) audio packets 
without LoT’s falling below the threshold (CL). To prevent it, one must choose the 
initiating values (a and x) carefully. Their values should depend on network’s parame-
ters e.g. the packet loss and possible delays. So it can be, for example, a function (F) 
of the following parameters: 

LoT = F (Packet_loss_ratio, Delay, Bit_Error_Rate, …) 

If the network does not suffer heavily from the packet loss, those values must be 
low. In the other case, they must be set to a higher level. For example, the network 
administrator or service provider can circumscribe those parameters for a certain 
network/user.  

5   Implementation of the Scheme for VoIP Based on SIP 

SIP is one of the most popular application-layer (TCP/IP model) signaling protocols 
for IP Telephony that can establish, modify, and terminate multimedia sessions, 
such as VoIP calls. It is text-based and simple. SIP specification [14] defines only 
six main methods: REGISTER for registering contact information, INVITE, ACK, 
and CANCEL for setting up sessions, BYE for terminating sessions and OPTIONS 
for querying servers about their capabilities. SIP uses network elements called 
proxy or redirect servers to help route requests to the user's current location, authen-
ticate and authorize users for services, implement provider’s call-routing policies, 
and provide features to users. Our scheme for this signaling protocol is described 
below. Our mechanism will be integrated with SIP UA and in case of interconnec-
tion scenarios also with Media Gateways (MGs). We will show scenario for basic 
call flow for VoIP based on SIP, which are taken from [15]. In this scenario, Alice 
completes a call to Bob directly: 

Both sides know what signaling messages were exchanged during the signaling 
phase of the call. The tokens flow for this call is the following: 
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Fig. 4. Connection stages and signalling messages exchanged for SIP 

Alice sends to Bob:    

(1) 11111A1 R||R||ALICE||PASS||TS||))VF(H)INVITE(H(HTokenA ⊕=
 

(4) 

   
33111B2 R||R||BOB||PASS||TS||))VFB(H)RINGING180(H(HTokenB ⊕=
 

Bob sends to Alice:  
 
(2) 
 
 
 
(3) 
 

If any new message is exchanged during the connection, for example, for nego-
tiation of any parameter of the call, then it does not influence the call until its au-
thentication and integrity is checked. The tokens are analogous as it is shown 
above.Authentication of BYE (or CANCEL) messages, which is used to terminate a 
VoIP conversation, has to be treated the same as normal messages that come during 
the call. Normally, the media channels are terminated, upon receiving this message. 
In our scheme, it is vital to retain RTP flow until those messages are authenticated. 
So, the authentication and integrity check of messages BYE and the OK are as  
follows: 

22122A4 R||R||ALICE||PASS||TS||))VF(H)ACK(H(HTokenA ⊕=

44122B3 R||R||BOB||PASS||TS||))VFB(H)OK200(H(HTokenB ⊕=
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Bob sends to Alice (for N-th exchange of the tokens): 
 
 
(5) 
 

Alice sends to Bob (for (N+1)-th exchange of the tokens): 

 
(6)  
 

Only after those messages are authenticated and their integrity is verified, the flow 
of RTP packets is stopped and conversation is over. The schemes for other scenarios 
are analogous. If network servers of SIP functional architecture are used (proxy or 
redirect), then only certain fields of signalling messages can be used. Some fields 
must be left free for routing purposes. 

6   Conclusions and Remarks 

In this paper the new, lightweight authentication and integrity scheme for VoIP, based 
on the digital watermarking, has been proposed. It is a new approach that combines 
securing the signalling protocol’s messages and audio, which are exchanged between 
calling parties at the same. The scheme was described for any VoIP system, in gen-
eral. The new functional blocks and algorithms were also defined. We showed, how 
this solution works and how it could be implemented for VoIP based on SIP (Session 
Initiation Protocol) signalling protocol, for a basic call flow. 

The presented solution is a post factum method because it works some time after 
the phase of exchanging the signalling messages took place. So, this mechanism can 
be used only if the connection was previously established. Nevertheless, we find it 
useful and flexible because this algorithm does not depend on the signaling protocol, 
gives new potential possibilities for securing and providing compatibility of IP Te-
lephony. Moreover, it does not consume any additional bandwidth because it uses 
watermarking technique. As proved in [17], there is a need for using lightweight au-
thentication mechanisms, especially for transmissions that depend on certain values of 
QoS parameters and VoIP service is the best example of that. Implementing such a 
solution can greatly reduce number of possible attacks (but it will not eliminate them 
completely) and improve overall system’s security. 
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Abstract. The use of firewalls and network intrusion detection systems (NIDSs)
is the dominant method to survey and guarantee the security policy in current
corporate networks. On the one hand, firewalls are traditional security compo-
nents which provide means to filter traffic within corporate networks, as well as
to police the incoming and outcoming interaction with the Internet. On the other
hand, NIDSs are complementary security components used to enhance the visi-
bility level of the network, pointing to malicious or anomalous traffic. To properly
configure both firewalls and NIDSs, it is necessary the use of a set of configura-
tion rules, i.e., a set of filtering or alerting rules. Nevertheless, the existence of
anomalies within the set of configuration rules of both firewalls and NIDSs is
very likely to degrade the network security policy. The discovering and removal
of these anomalies is a serious and complex problem to solve. In this paper, we
present a set of mechanisms for such a management.

Keywords: Network Security, Firewalls, NIDSs, Policy Anomalies.

1 Introduction

Many companies and organizations use firewalls to police their incoming and outcom-
ing flow of traffic between different zones of the network, as well as network intrusion
detection systems to monitor and survey such a traffic. A firewall is a network security
component, with several interfaces associated with the different zones of the network.
The company may partition, for instance, its network into three different zones: a de-
militarized zone (or DMZ), a private network and a zone for security administration.
This way, one may use a single firewall setup, with three interfaces associated with
these three zones, to police the protection of each zone1. Network intrusion detection
systems (NIDSs for short), on the other hand, are complementary network security com-
ponents which are in charge of detecting malicious or anomalous activity in the network
traffic, such as denial of service (DoS) attacks or intrusion attempts. NIDSs can employ
different families of detection methods, being anomaly detection and misuse detection
two of the most frequently used methods. We refer to [9] for a good survey on the field.

1 Firewalls also implement other functionalities, such as Proxying and Network Address
Transfer (NAT), but it is not the purpose of this paper to cover these functionalities.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 182–194, 2006.
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In order to apply a filtering policy, it is necessary to configure the firewall with a
set of filtering rules. Similarly, and in order to apply an alerting policy, it is also nec-
essary to configure the NIDS with a set of alerting rules (i.e., detection signatures
when using misuse detection methods). Both filtering and alerting rules are specific
cases of a more general configuration rule, which typically defines a decision (such
as filter, alert, pass, etc.) that applies over a set of condition attributes, such as pro-
tocol, source, destination, classification, etc.

For our work, we define a general configuration rule as follows:

Ri : {conditioni} → decisioni (1)

where i is the relative position of the rule within the set of rules, {conditioni} is the
conjunctive set of condition attributes such that {conditioni} equals C1∧C2∧...∧Cp –
being p the number of condition attributes of the given rule – and decision is a boolean
value in {true, false}.

Let us notice that the decision of a filtering rule will be positive (true) whether it
applies to a specific value related to deny (or filter) the traffic it matches, and will be
negative (false) whether it applies to a specific value related to accept (or pass) the traf-
fic it matches. Similarly, the decision of an alerting rule will be positive (true) whether
it applies to a specific value related to warn (or alert) about the traffic it matches, and
will be negative (false) whether it applies to a specific value related to ignore the traffic
it matches.

In the configuration policy of a component, conflicts due to rule overlaps, i.e., the
same traffic matching more than one rule, can occur. To solve these conflicts, most
components implement a first matching strategy through the ordering of rules. This
way, each packet processed by the component is mapped to the decision of the rule
with highest priority. This strategy introduces, however, new configuration errors, often
referred in the literature as policy anomalies.

In [5], we presented an audit process to manage firewall policy anomalies, in order to
detect and remove anomalies within the set of rules of a given firewall. This audit process
is based on the existence of relationships between the condition attributes of the filter-
ing rules, such as coincidence, disjunction, and inclusion, and proposes a transformation
process which derives from an initial set of rules – with potential policy anomalies – to
an equivalent one which is completely free of such anomalies.

In this paper, we extend our proposal of detecting and removing firewall policy
anomalies [5], to a more complete setup where both firewalls and NIDSs are in charge
of the network security policy. Hence, assuming that the role of both prevention and
detection of network attacks is assigned to these two components, our objective is to
completely correct the anomalies within their configuration.

We also extend in this paper the set of anomalies studied in [5] which, in turn, are
not reported, as defined in this paper, in none of the studied related work. For such a
purpose, we also introduce in this paper the use of a model to specify some properties
of the network, e.g., vulnerabilities, as well as to determine whether the network traffic
that matches a given configuration rule, may or may not cross the component configured
by such a rule.

The advantages of our proposal are threefold. First, when performing our proposed
discovery and removal of anomalies, and after rewriting the rules, one can verify that
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the resulting configuration of each component in the network is free of misconfigura-
tion. Each anomalous rule will be reported to the administration console. This way, the
security officer in charge of the network can check the network policy, in order to ver-
ify the correctness of the whole process, and perform the proper policy modifications
to avoid such anomalies.

Second, the resulting rules are totally disjoint, i.e., the ordering of rules is no longer
relevant. Hence, one can perform a second transformation in a positive or negative man-
ner, generating a configuration that only contains positive rules if the component default
policy is negative, and negative rules if the default policy is positive.

Third, the set of configuration rules enhanced through our algorithms may significa-
tively help to reduce the number of false positive events warned by NIDSs (i.e., alerts
that the NIDS reports when it is not supposed to) since we best fit the number and type
of alerting rules to the network properties.

The rest of this paper is organized as follows. Section 2 starts by introducing a net-
work model that is further used in Section 3 when presenting our set of algorithms.
Section 4 overviews the performance of our proposed algorithms, and Section 5 intro-
duces an analysis of some related work. Finally Section 6 closes the paper with some
conclusions.

2 Network Model

The purpose of our network model is to determine whether the traffic that matches a given
configuration rule Ri may or may not cross the component configured by such a rule. It
is defined as follows. First, and concerning the traffic flowing from two different zones
of the network, we may determine the set of components that are crossed by this flow.
Regarding the scenario shown in Figure 1, for example, the set of components crossed
by the network traffic flowing from zone external network to zone private3 equals
[C1,C2,C4], and the set of components crossed by the network traffic flowing from zone
private3 to zone private2 equals [C4,C2,C3].

Let C be a set of components and let Z be a set of zones. We assume that each pair
of zones in Z are mutually disjoint, i.e., if zi ∈ Z and zj ∈ Z then zi∩ zj = ∅. We then
define the predicate connected(c1, c2) as a symmetric and anti-reflexive function which
becomes true whether there exists, at least, one interface connecting component c1 to
component c2. On the other hand, we define the predicate adjacent(c, z) as a relation
between components and zones which becomes true whether the zone z is interfaced to

Fig. 1. Simple distributed policy setup
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component c. Referring to Figure 1, we can verify that predicates connected(C1, C2)
and connected(C1, C3), as well as adjacent(C1, DMZ), adjacent(C2, private1),
adjacent(C3, DMZ), and so on, become true.

We then define the set of paths, P , as follows. If c ∈ C then [c] ∈ P is an atomic path.
Similarly, if [p.c1] ∈ P (be “.” a concatenation functor) and c2 ∈ C, such that c2 /∈ p
and connected(c1, c2), then [p.c1.c2] ∈ P . This way, we can notice that, concerning
Figure 1, [C1, C2, C4] ∈ P and [C1, C3] ∈ P .

Let us now define a set of functions related with the order between paths. We first
define functions first, last, and the order functor between paths. We first define func-
tion first from P in C such that if p is a path, then first(p) corresponds to the first
component in the path. Conversely, we define function last from P in C such that if p
is a path, then last(p) corresponds to the last component in the path. We then define the
order functor between paths as p1 ≤ p2, such that path p1 is shorter than p2, and where
all the components within p1 are also within p2.

Two additional functions are route and minimal route. We define first de-
fine function route from Z to Z , i.e., {route(z1, z2) : Z × Z in 2P }, such
that p ∈ route(z1, z2) iff the path p connects zone z1 to zone z2. Formally,
we define p ∈ route(z1, z2) iff adjacent(first(p), z1) and adjacent(last(p), z2).
Similarly, we then define minimal route from Z to Z , i.e., {minimal route
(z1, z2) : Z × Z in 2P }, such that p ∈ minimal route(z1, z2) iff the following con-
ditions hold: (1) p∈route(z1, z2); (2) There does not exist p′∈route(z1, z2) such that
p′ < p. Regarding Figure 1, we can verify that the minimal route from zone private3
to zone private2 equals [C4, C2, C3], i.e., minimal route(private3, private2) =
{[C4, C2, C3]}.

Let us finally conclude by defining the predicate affects(Z, Ac) as a boolean expres-
sion which becomes true whether there is, at least, an element z ∈ Z such that the
configuration of z is vulnerable to the attack category Ac ∈ V , where V is a vulnera-
bility set built from a vulnerability database, such as CVE[8] or OSVDB[10].

3 Our Proposal

In this section we present our set of audit algorithms, whose main objective is the com-
plete discovering and removal of policy anomalies that could exist in a single com-
ponent policy, i.e., to discover and warn the security officer about potential anomalies
within the configuration rules of a given component. Let us start by classifying the
complete set of anomalies of our proposal.

3.1 Classifying the Anomalies

We classify in this section the complete set of anomalies that can occur within a single
component configuration. An example for each anomaly will be illustrated through the
sample scenarios shown in Figure 2.

Shadowing. A configuration rule Ri is shadowed in a set of configuration rules R
whether such a rule never applies because all the packets that Ri may match, are pre-
viously matched by another rule, or combination of rules, with higher priority in order.
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(a) Example scenario with a single filtering policy.

(b) Example scenario with a single alerting policy.

Fig. 2. Example filtering and alerting policies

Regarding Figure 2, rule C1{R6} is shadowed by the overlapping of rules C1{R3} and
C1{R5}.

Redundancy. A configuration rule Ri is redundant in a set of rules R whether the rule
is not shadowed by any other rule or set of rules and, when removing Ri from R, the
security policy does not change. For instance, referring to Figure 2, rule C1{R4} is
redundant, since the overlapping between rules C1{R3} and C1{R5} is equivalent to
the police of rule C1{R4}.

Irrelevance. A configuration rule Ri is irrelevant in a set of configuration rules R if
one of the following conditions holds:

(1) Both source and destination address are within the same zone, and its deci-
sion is false. For instance, rule C1{R1} is irrelevant since the source of this address,
external network, as well as its destination, is the same.

(2) The component is not within the minimal route that connects the source zone,
concerning the irrelevant rule which causes the anomaly, to the destination zone. Hence,
the rule is irrelevant since it matches traffic which does not flow through this component.
Rule C2{R3}, for example, is irrelevant since component C2 is not in the path which
corresponds to the minimal route between the source zone windows network to the
destination zone unix network.

(3) At least one of the condition attributes in Ri is related with a classification of
attack Ac which does not affect the destination zone of such a rule, i.e., the predicate
affects(zd, Ac) becomes false. Regarding Figure 2, we can see that rule C2{R2} is
irrelevant since the nodes in the destination zone unix network are not affected by
vulnerabilities classified as winworm.
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3.2 Proposed Algorithms

Our proposed audit process is a way to alert the security officer in charge of the network
about these configuration errors, as well as to remove all the useless rules in the initial
component configuration. The data to be used for the detection process is the follow-
ing. A set of rules R as a list of initial size n, where n equals count(R), and where
each element is an associative array with the strings condition,decision,shadowing,
redundancy, and irrelevance as keys to access each necessary value.

For reasons of clarity, we assume one can access a linked-list through the opera-
tor Ri, where i is the relative position regarding the initial list size – count(R). We
also assume one can add new values to the list as any other normal variable does
(element ← value), as well as to remove elements through the addition of an empty
set (element ← ∅). The internal order of elements from the linked-list R keeps with
the relative ordering of rules.

Each element Ri[condition] is a boolean expression over p possible attributes.
To simplify, we only consider as attributes the following ones: szone (source zone),
dzone (destination zone), sport (source port), dport (destination port), protocol,
and attack class – or Ac for short – which will be empty whether the component
is a firewall. In turn, each element Ri[decision] is a boolean variable whose val-
ues are in {true, false}. Finally, elements Ri[shadowing], Ri[redundancy], and
Ri[irrelevance] are boolean variables in {true, false} – which will be initialized to
false by default.

We split the whole process in four different algorithms. The first algorithm (cf. Al-
gorithm 1) is an auxiliary function whose input is two rules, A and B. Once executed,
this auxiliary function returns a further rule, C, whose set of condition attributes is
the exclusion of the set of conditions from A over B. In order to simplify the repre-
sentation of this algorithm, we use the notation Ai as an abbreviation of the variable
A[condition][i], and the notation Bi as an abbreviation of the variable B[condition][i]
– where i in [1, p].

The second algorithm is a boolean function in {true, false} which applies the nec-
essary verifications to decide whether a rule r is irrelevant for the configuration of a
component c. To properly execute this algorithm, let us define Z as the set of zones,
source(r) as a function in Z such that source(r) = szone, and dest(r) as a function
in Z such that dest(r) = dzone.

The third algorithm is a boolean function in {true, false} which, in turn, applies
the transformation exclusion (cf. Algorithm 1) over a set of configuration rules to check
whether the rule obtained as a parameter is potentially redundant.

The last algorithm (i.e., Algorithm 4) performs the whole process of detecting and
removing the complete set of anomalies. This process is split in three different phases.
During the first phase, a set of shadowing rules are detected and removed from a top-
bottom scope, by iteratively applying Algorithm 1 – when the decision field of the two
rules is different. Let us notice that this stage of detecting and removing shadowed rules
is applied before the detection and removal of proper redundant and irrelevant rules.

The resulting set of rules is then used when applying the second phase, also from
a top-bottom scope. This stage is performed to detect and remove proper redundant
rules, through an iterative call to Algorithm 3 (i.e., testRedundancy), as well as to detect
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and remove all the further shadowed rules remaining during the latter process. Finally,
during a third phase the whole set of non-empty rules is analyzed in order to detect and
remove irrelevance, through an iterative call to Algorithm 2 (i.e., testIrrelevance).

Let us conclude by giving an outlook to the set of warnings send to the security
officer after the execution of Algorithm 4 over the configuration of the two components
shown in Figure 2.

First case of irrelevance on C1{R1}
Redundancy on C1{R4}
Shadowing on C1{R6}

Third case of irrelevance on C2{R2}
Second case of irrelevance on C2{R3}
Redundancy on C2{R6}

3.3 Correctness of the Algorithms

Lemma 1. Let Ri : conditioni → decisioni and Rj : conditionj → decisionj

be two configuration rules. Then {Ri, Rj} is equivalent to {Ri, R
′
j} where R′

j ←
exclusion(Rj, Ri).
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Proof of Lemma 1. Let us assume that Ri[condition] = A1 ∧ A2 ∧ ... ∧ Ap, and
Rj [condition] = B1 ∧ B2 ∧ ... ∧ Bp. If (A1 ∩ B1) = ∅ or (A2 ∩ B2) = ∅ or . . . or
(Ap ∩ Bp) = ∅ then exclusion(Rj, Ri) ← Rj . Hence, to prove the equivalence
between {Ri, Rj} and {Ri, R

′
j} is trivial in this case.

Let us now assume that (A1 ∩B1) �= ∅ and (A2 ∩B2) �= ∅ and ... and (Ap ∩Bp) �=
∅. If we apply rules {Ri, Rj} where Ri comes before Rj , then rule Rj applies to a
given packet if this packet satisfies Rj [condition] but not Ri[condition] (since Ri

applies first). Therefore, notice that Rj [condition] − Ri[condition] is equivalent to
(B1 −A1)∧B2 ∧ ...∧Bp or (A1 ∩B1)∧ (B2−A2)∧ ...∧Bp or (A1 ∩B1)∧ (A2 ∩
B2)∧ (B3−A3)∧ ...∧Bp or ... (A1 ∩B1)∧ ...∧ (Ap−1 ∩Bp−1)∧ (Bp−Ap), which
corresponds to R′

j = exclusion(Rj, Ri). This way, if Rj applies to a given packet in
{Ri, Rj}, then rule R′

j also applies to this packet in {Ri, R
′
j}. Conversely, if R′

j applies
to a given packet in {Ri, R

′
j}, then this means this packet satisfies Rj [condition] but

not Ri[condition]. So, it is clear that rule Rj also applies to this packet in {Ri, Rj}.
Since in Algorithm 1 R′

j [decision] becomes Rj [decision], this enables to conclude
that {Ri, Rj} is equivalent to {Ri, R

′
j}. ��

Theorem 2. Let R be a set of configuration rules and let Tr(R) be the resulting rules
obtained by applying Algorithm 4 to R. Then R and Tr(R) are equivalent.

Proof of Theorem 2. Let Tr′1(R) be the set of rules obtained after applying the first
phase of Algorithm 4. Since Tr′1(R) is derived from rule R by applying exclusion
(Rj , Ri) to some rules Rj in R, it is straightforward, from Lemma 1, to conclude that
Tr′1(R) is equivalent to R.

Let us now move to the second phase, and let us consider a rule Ri such that
testRedundancy(Ri) (cf. Algorithm 3) is true. This means that Ri[condition] can
be derived by conditions of a set of rules S with the same decision and that come after
in order than rule Ri. Since every rule Rj with a decision different from the one of
rules in S has already been excluded from rules of S in the first phase of the Algo-
rithm, we can conclude that rule Ri is definitely redundant and can be removed without
changing the component configuration. This way, we conclude that Algorithm 4 pre-
serves equivalence in this case. On the other hand, if testRedundancy(Ri) is false,
then transformation consists in applying function exclusion(Rj, Ri) to some rules Rj

which also preserves equivalence.
Similarly, and once in the third phase, let us consider a rule Ri such that testIr-

relevance(c, Ri) is true. This means that this rule matches traffic that will never cross
component c, or that is irrelevant for the component’s configuration. So, we can remove
Ri from R without changing such a configuration. Thus, in this third case, as in the
other two cases, Tr′(R) is equivalent to Tr′1(R) which, in turn, is equivalent to R. ��

Lemma 3. Let Ri : conditioni→decisioni and Rj : conditionj→decisionj be two
configuration rules. Then rules Ri and R′

j , where R′
j ← exclusion(Rj, Ri) will never

simultaneously apply to any given packet.

Proof of Lemma 3. Notice that rule R′
j only applies when rule Ri does not apply.

Thus, if rule R′
j comes before rule Ri, this will not change the final decision since rule

R′
j only applies to packets that do not match rule Ri. ��
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Theorem 4. Let R be a set of configuration rules and let Tr(R) be the resulting rules
obtained by applying Algorithm 4 to R. Then the following statements hold: (1) Order-
ing the rules in Tr(R) is no longer relevant; (2) Tr(R) is completely free of anomalies.

Proof of Theorem 4. For any pair of rules Ri and Rj such that Ri comes before Rj ,
Rj is replaced by a rule R′

j obtained by recursively replacing Rj by exclusion(Rj, Rk)
for any k < j.

Then, by recursively applying Lemma 3, it is possible to commute rules R′
i and R′

j

in Tr(R) without changing the policy.
Regarding the second statement – Tr(R) is completely free of anomalies – notice

that, in Tr(R), each rule is independent of all other rules. Thus, if we consider a rule
Ri in Tr(R) such that Ri[condition] �= ∅, then this rule will apply to any packet that
satisfies Ri[condition], i.e., it is not shadowed.

On the other hand, rule Ri is not redundant because if we remove this rule, since this
rule is the only one that applies to packets that satisfy Ri[condition], then configuration
of the component will change if we remove rule Ri from Tr(R).

Finally, and after the execution of Algorithm 4 over the initial set of configuration
rules, one may verify that for each rule Ri in Tr(R) the following conditions hold: (1)
s = z1 ∩ source(r) �= ∅ and d = z2 ∩ dest(r) �= ∅ such that z1 �= z2 and component
c is in minimal route(z1, z2); (2) if Ac = attack category(Ri) �= ∅, the predicate
affects(Ac, z2) becomes true. Thus, each rule Ri in Tr(R) is not irrelevant. ��

3.4 Default Policies

Each component implements a positive (i.e., close) or negative (i.e., open) default pol-
icy. In the positive policy, the default policy is to alert or to deny a packet when any
configuration rule applies. By contrast, the negative policy will accepts or pass a packet
when no rule applies.

After rewriting the rules with our algorithms, we can actually remove every rule
whose decision is pass or accept if the default policy of this component is negative (else
this rule is redundant with the default policy) and similarly we can remove every rule
whose decision is deny or alert if the default policy is positive. Thus, we can consider
that our proposed algorithms generate a configuration that only contains positive rules
if the component default policy is negative, and negative rules if the default policy is
positive.

4 Performance Evaluation

In this section, we present an evaluation of the performance of MIRAGE (which stands
for MIsconfiguRAtion manaGEr), a software prototype that implements the algorithms
presented in sections 3. MIRAGE has been developed using PHP, a scripting language
that is especially suited for web services development and can be embedded into HTML
for the construction of client-side GUI based applications [3]. MIRAGE can be locally
or remotely executed by using a HTTP server (e.g., Apache server over UNIX or Win-
dows setups) and a web browser.
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We evaluated our algorithms through a set of experiments over an IPv4 network.
The topology for this network consisted of a single firewall based on Netfilter [13], and
a single NIDS based on Snort [12] – both of them connected to three different zones
with more than 50 hosts. The whole of these experiments were carried out on an Intel-
Pentium M 1.4 GHz processor with 512 MB RAM, running Debian GNU/Linux 2.6.8,
and using Apache/1.3 with PHP/4.3 configured.

(a) Memory space evaluation (b) Processing time evaluation

Fig. 3. Memory and processing time evaluation

During our experiments, we measured the memory space and the processing time
needed to perform Algorithm 4 over several sets of IPv4 filtering and alerting policies
for the two IPv4 networks, according to the three following security officer profiles: be-
ginner, intermediate, and expert – where the probability to have overlaps between rules
increases from 5% to 90%. The results of these measurements are plotted in Figure 3(a)
and Figure 3(b). Although the plots reflect strong memory and process time require-
ments, we consider they are reasonable for off-line analysis, since it is not part of the
critical performance of an alerting or filtering component.

5 Related Work

A first approach to get a configuration free of errors is by applying a formal model to
express the network policy. In [4], for example, we presented a model with this purpose.
This way, a set of configuration rules, whose syntax is specific to a given component,
may be generated using a transformation language.

The proposals in [1,6,7,2], provide means to directly manage the discovery of anoma-
lies from the components’ configuration. For instance, the authors in [1] consider that,
in a configuration set, two rules are in conflict when the first rule in order matches some
packets that match the second rule, and the second rule also matches some of the pack-
ets that match the first rule. This approach is very limited since it just detects a particular
case of wrongly defined rules in a single configuration, i.e., just ambiguity within the
set of rules is detected.

In [6], two new cases of anomalies are considered. First, a rule Rj is defined as
backward redundant iff there exists another rule Ri with higher priority in order such
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R1 : s ∈ [10, 50] → deny
R2 : s ∈ [40, 70] → accept
R3 : s ∈ [50, 80] → accept

(a) Set of rules A

R1 : s ∈ [10, 50] → accept
R2 : s ∈ [40, 90] → accept
R3 : s ∈ [30, 80] → deny

(b) Set of rules B

Fig. 4. Example of some firewall configurations

that all the packets that match rule Rj also match rule Ri. Second, a rule Ri is de-
fined as forward redundant iff there exists another rule Rj with the same decision and
less priority in order such that the following conditions hold: (1) all the packets that
match Ri also match Rj ; (2) for each rule Rk between Ri and Rj , and that matches
all the packets that also match rule Ri, Rk has the same decision as Ri. We consider
this approach as incomplete, since it does not detect all the possible cases of anomalies
defined in this paper. For instance, given the set of rules shown in Figure 4(a), since
R2 comes after R1, rule R2 only applies over the interval [51, 70] – i.e., R2 is redun-
dant. Their approach, however, cannot detect the redundancy of rule R2 within this
setup.

Another similar approach is presented in [2]. Again, and even though the efficiency
of their proposed discovering algorithms and techniques is very promising, we consider
this approach not complete since, given a misconfigured component, their detection
algorithms could not detect all the possible errors. For example, given the set of rules
shown in Figure 4(b) their approach cannot detect that rule R3 will be never applied
due to the union of rules R1 and R2.

6 Conclusions

In this paper we presented an audit process to set the configuration of both firewalls
and network intrusion detection systems (NIDSs) free of anomalies. Our audit process
is based on the existence of relationships between the condition attributes of the config-
uration rules of those network security components, such as coincidence, disjunction,
and inclusion. Then, our proposal uses a transformation process which derives from an
initial set of rules – potentially misconfigured – to an equivalent one which is com-
pletely free of anomalies.

We also presented in this paper a network model to determine whether the network
traffic that matches a given configuration rule, may or may not cross the component
configured by such a rule, as well as other network properties. Thanks to this model,
our approach best defines all the set of anomalies studied in the related work, and it
reports, moreover, a new anomaly case not reported, as defined in this paper, in none of
the other approaches.

Some advantages of our approach are the following. First, our transformation process
verifies that the resulting rules are completely independent between them. Otherwise,
each rule considered as useless during the process is reported to the security officer, in
order to verify the correctness of the whole process. Second, we can perform a second
rewriting of rules, generating a configuration that only contains positive rules if the
component default policy is negative, and negative rules if the default policy is positive.
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Third, the elimination of alerting rules during the audit process helps to reduce future
false positive events alerted by a NIDS.

Regarding a possible increase of the initial number of rules, due to the applying
of our algorithms, it is only significant whether the associated parsing algorithm of
the component depends on the number of rules. In this case, an increase in such a
parameter may degrade the performance of the component. Nonetheless, this is not a
disadvantage since the use of a parsing algorithm independent of the number of rules
becomes the best solution as much for our proposal as for the current deployment of
network technologies. The set pruning tree algorithm is a proper example, because it
only depends on the number and size of attributes to be parsed, not the number of
rules [11].

The implementation of our approach in a software prototype demonstrate the prac-
ticability of our work. We shortly discussed this implementation, based on a scripting
language [3], and presented an evaluation of its performance. Although these experi-
mental results show that our algorithms have strong requirements, we believe that they
are reasonable for off-line analysis, since it is not part of the critical performance of the
audited component.
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Abstract. P2P networks provide a basic form of anonymity, and the participat-
ing nodes exchange information without knowing who is the original sender. 
Packets are relayed through the adjacent nodes and do not contain identity in-
formation about the sender. Since these packets are passed through a dynami-
cally-formed path and since the final destination is not known until the last 
time, it is impossible to know who has sent it in the beginning and who will be 
the final recipient. The anonymity, however, breaks down at download/upload 
time because the IP address of the host from which the data is downloaded (or 
to which it is uploaded) can be known to the outside. We propose a technique to 
provide anonymity for both the client and the server node. A random node 
along the path between the client and the server node is selected as an agent 
node and works as a proxy: the client will see it as the server and the server 
looks at it as the client, hence protecting the identity of the client and the server 
from anonymity-breaking attacks. 

1   Introduction 

Internet has been developed based on information share for recent years. On the other 
hand, network users are demanding privacy more than share of information. Anonym-
ity is not exclusive to specific system or specific network any more. In fact the most 
important protocol, TCP/IP protocol puts more emphasis on the improvement of per-
formance such as scalability or efficiency rather than privacy of users. Therefore 
under open internet environment when sending information, private information 
which should be secured may be attacked or detected on anonymity-breaking at-
tacks[10,11,12,13].  

Under special circumstances, network users may demand different types of  
anonymity each other. Anonymity can largely be classified into three types: resistant-
censorship; anonymity of initiator or responder; mutual anonymity. Mutual anonym-
ity is composed of the following three parts: initiator having anonymity; responder 
having anonymity; and communication having anonymity between the initiator and 
the responder. In the most recent studies on mutual anonymity, trusted agent, random 
agent and random or static proxy techniques are included.  

The latest file sharing applications such as Napster[1], FreeNet[2], Gnutella[3], 
eDonkey[4], KaZaA[5] and distributed Hash Table techniques as in Tapestry[6,7], 
Can[8], or Chord[9] were designed to make it possible to easily retrieve or share 
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information under internet environment. In P2P system peers freely participate in and 
leave network so they frequently 'join' and 'leave', and each peer performs the roles of 
provider and consumer at the same time.  

P2P systems can largely be classified into centralized system and decentralized sys-
tem. Centralized system such as Napster can be attacked by denial of service. Decen-
tralized system is strong in terms of high fault-tolerance, high autonomy and flexible 
scalability. This study puts focus on decentralized and unstructured P2P systems. 
Nodes participating in P2P systems communicate only with neighbor nodes and fi-
nally any node is unable to know the information of node which is more than 2 hops 
away. Hence Query message requesting for retrieval does not include IP address of 
node to process the Query[3]. 

Identity of peer is exposed to all the neighbors and some of malicious peers collect 
and analyze information with no difficulty by monitoring packet flow. For example 
type of packet or TTL value, Hops value, retrieval character and so forth can be ob-
tained. Therefore through this method initiator and responder lose the anonymity 
among their neighbors and at last P2P system as well loses the anonymity.  

This study proposes mutual anonymity technique through grouping nodes that can 
avoid denial of service. Identity is exposed on responder side by initiator receiving 
QueryHit[3] packet and initiator's identity comes to get exposed to responder by ini-
tiator's download request made to responder. Therefore through packet monitoring 
malicious peer knows who the initiator and responder are. In addition using the in-
formation obtained from the information, it can fail initiator and responder with denial 
of service attack. The proposed technique not only protects identity of initiator and 
responder through grouping but also enables anonymous communication by perform-
ing packet relay for nodes belonging to group in random order. Since cryptography 
processing implemented in previous papers is not used, it is advantageous in that 
mutual anonymity can easily be provided using previous protocol as it is without 
additional overhead.  

Other parts of this paper is organized as follows: chapter 2 looks into the unstruc-
tured p2p system and Anonymity problem in P2P networks, which are the focus of 
this paper; chapter 3 looks through mutual anonymity technique, proposed in this 
paper in detail; chapter 4 tests packet overhead of grouping technique, proposed in 
this paper; at last chapter 5 draws conclusions. 

2   Related Researches 

In this Section, we present the unstructured P2P file sharing application and anonym-
ity problem issues in P2P networks. The primary goal for Freenet security is protect-
ing the anonymity of requestors and inserters of files. As Freenet communication is 
not directed towards specific receivers, receiver anonymity is more accurately viewed 
as key anonymity, that is, hiding the key which is being requested or inserted. 
Anonymous point-to-point channels based on Chaum’s mix-net scheme[14] have 
been implemented for email by the Mixmaster remailer[15] and for general TCP/IP 
traffic by onion routing[16,17] and freedom[18]. Such channels are not in themselves 
easily suited to one-to-many publication, however, and are best viewed as a comple-
ment to Freenet since they do not provide file access and storage. Anonymity for 
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consumers of information in the web context is provided by browser proxy services 
such as the Anonymizer[19], although they provide no protection for producers of 
information and do not protect consumers against logs kept by the services them-
selves. Private information retrieval schemes[20] provide much stronger guarantees 
for information consumers, but only to the extent of hiding which piece of informa-
tion was retrieved from a particular server. In many cases, the fact of contacting a 
particular server in itself can reveal much about the information retrieved, which can 
only be counteracted by having every server hold all information. Reiter and Rubin’s 
Crowds system[21] uses a similar method of proxing requests for consumers, al-
though Crowds does not itself store information and does not protect information 
producers. Berthold et al. propose Web MIXes[22], a stronger system that uses mes-
sage padding and reordering and dummy messages to increase security, but again 
does not protect information producers. 

The Rewebber[23] provides a measure of anonymity for producers of web informa-
tion by means of an encrypted URL service that is essentially the inverse of an ano-
nymizing browser proxy, but has the same difficulty of providing no protection 
against the operator of the service itself. Publius[24] enhances availability by distrib-
uting files as redundant shares among n webservers, only k of which are needed to 
reconstruct a file; however, since the identity of the servers themselves is not ano-
nymized, an attacker might remove information by forcing the closure of n-k+1 serv-
ers. The Eternity proposal[25] seeks to archive information permanently and anony-
mously, although it lacks specifics on how to efficiently locate stored files, making it 
more akin to an anonymous backup service. Free Haven[26] is an interesting anony-
mous publication system that uses a trust network and file trading mechanism to pro-
vide greater server accountability while maintaining anonymity. 

MUTE[27] forces all intermediate nodes along the path between the client and the 
server node to work as proxies to protect the identities of the client and the server. 
Tarzan[28] is a peer-to-peer anonymous IP network overly. so it works with any inter-
net application. Its peer-to-peer design makes it decentralized, scalable, and easy to 
manage. Mantis[29] is similar to Crowds in that there are helping nodes to propagate 
the request to the candidate servers anonymously.  

3   Providing Anonymity Via Random Agent Nodes 

With the technique proposed in this paper neighbor nodes are tied into a group and the 
group becomes a fixed proxy. Each node belonging to the group processes the request 
of client in part. Fig. 1 shows the p2p retrieval system of general flooding basis. 
Whenever client sends Query it has GUID value of its own. Therefore when client 
receives QueryHit packet, in case that the current guid value and the GUID value of 
received QueryHit packet are different it is ignored since it is the answer to the former 
request.  

In Fig. 1 client broadcasts Query packet to neighbor node and the node receiving 
the packet broadcasts it to the neighbor node again. If retrieval matches to among 
these nodes, it responds as QueryHit packet. In general gnutella system, if receiving 
Query packet having the same GUID value again, it is aborted. If not, numerous query 
packets are generated and substantial network traffic may be found. In the proposed 
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technique these rules are ignored according to certain standard. In Fig. 1 Nodes 8 
initially received the packet having the same GUID. Then they broadcasts it again to 
server, the neighbor node. According to general rule, server will respond to one of 
Queries sent by node 7, or others if it matches to retrieval. However with technique 
proposed in Fig. 2, if it matches to retrieval, it will respond to all Queries having the 
same guid value.  Nodes X, Y, Z receiving QueryHit packet from server are grouped 
as one through the exchange of SetGroup packet. Through the exchange of SetGroup 
packet, it is known that nodes X, Y, Z belong to the same group and finally client 
communicates with server through the group in the end. 

Node1 Node2

TTL:7
Hops:0

Node3 Node4

TTL:6
Hops:1

TTL:5
Hops:2

TTL:4
Hops:3

TTL:3
Hops:4

TTL:2
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TTL:1
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Discard

TTL:7
Hops:0
IP:node7's IP
Port:node7's Port
UUID:node7's UUID

TTL:6
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Port:node7's Port
UUID:node7's UUID
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Fig. 1. Flow of Query and Query Hit packets 
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Fig. 2. Intermediate nodes through overlapping receipt of Query message 
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Fig. 3. Anonymous communication flow between server and client 

When downloading a file, client can download file from all the nodes, X, Y, Z be-
longing to group. In Fig. 2, client receives QueryHit packet sent by X,Y,Z server's 
neighbor nodes from the neighbor nodes, X*, Z*, Y*. In general Gnutella protocol, one 
retrieval result value is obtained. Where client has same general GUID value and 
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receives QueryHit packet having Servant Session ID value from different node(X*, 
Y*, Z*), the client is processed as follows:  

I-I. If the received packet is QueryHit packet then it is checked that the local GUID 
value and guid value of packet are identical. If they are not identical, abort it.  

I-II. If the received packet is QueryHit packet and the values of local GUID and 
packet's GUID are the same, then GUID value and Servant Session ID local GUID 
value are saved to g-table. 

I-II-I. If there is the same GUID value and entry which equals to servant session 
ID value, new entry is added and same Group is set.  
I-II-II. In user application, only one group is marked as retrieval result. ii). Users 
request file download by means of application.  
II. If the file download request belongs to g_table a Group, one of them is selected 

randomly and file request is made. Namely, file download request can be sent to node 
other than node requested by user.   

Fig 3 shows client's downloading flow. In Fig. 2, client tries to download among 
retrieval list obtained by received QueryHit. If it belongs to a Group at g_table, one of 
them is randomly selected. In Fig. 3 node X was selected. For node X it conforms to 
the following process:  

I). In node X value obtained from SetGroup packet exchange performed at Fig. 2 
process is stored at g_table. So it is known that nodes X and Y belong to the same 
group.  

II). Node X randomly fixes order within the Group. In Fig. 3, number one is X, 
number two, Y, and number three, Z. Node X sends these order information, SetOr-
derGroup packet to nodes, X and Z.  

III). Node X sends the IP address and Port value of PUSH packet after setting them 
as IP address and Port of the last node in order, node Z.  

IV). Because Server received PUSH packet it tries to connect to node Z and sends 
filed requested by client.  

V). Node Z knows node Y with order number 2 and sends the file sent by Sever to 
node Y.  

VI). Node Y sends it to node X with order number 1 again.  
VII). NodeX sends the file to client. 

To explain in more detail, random nodes between server and client are tied to one 
Group and through this group file sharing is performed between server and client. 
Client sends request for file download randomly selecting one out of this group and 
node receiving this request settles relay order of each node within group. This request 
is received to Server after changing it into PUSH packet while sending from Group to 
Server. Because server received PUSH packet, it requests connection to random node 
in Group and starts sending file. Finally the file received from server of nodes within 
Group is sent to client again.  

As shown on Fig.3, nodes belonging to the same group, settles the order and per-
forms like proxy between Server and Client. Therefore server and client do not know 
who the client and the server are. Attacker also has to know all the nodes of the same 
group when it intends to attack server and client and although if the attacker finds out 
them, the information of server and client can be known only if it correctly knows the 
order of packet sending within group.  
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There is order in nodes in the same group but the order is randomly settled.  Pass 
between client and server in Fig. 3 is for one-time and next time connection path is 
differently settled and it communicates with other group. Therefore identity of client 
and Server is protected and anonymous communication between client and server can 
be kept. 

4   Experimentation 

We have modified the behavior of Minism[30] to implement our algorithm. Espe-
cially a routing table is built to trace the movement of QueryHit packet. Fig. 4 and 
Fig. 5 shows the inner-working of Minism code. Fig. 4 shows a P2P network gener-
ated by Minism. The figure shows each node is assigned a number of neighbor nodes: 
node 0 has neighbors of node 3 and 4; node 1 has neighbors of node 102, 9789, etc. 
Fig. 5 shows the propagation of Query packet. The "reached" array shows the nodes 
the Query packet reached at each stage. In "reached" array, nodes with -1 are ones 
that are not reached yet; nodes with 1 are those that are visited already; finally a node 
with (1) is one we are going to visit next. Below "reached" array, we can see the state 
of the stack that contains the Query packet. To simulate the propagation of a packet, 
the stack shows at each stage which path each duplicated Query packet should follow 
(from which node to which node). For example, at stage 1, all nodes are marked with 
-1 except node 0 since we haven't visited any node yet, and the starting node is node 
0. The stack contains the path we should relay the packet: from -1 (no where) to 0 (the 
starting node). At stage 1, we can see node 0 is already visited (at stage 1); the next 
node we should visit is node 3 because node 0 has two neighbors - node 3 and 4 - and 
node 3 is selected as the next one. The stack shows the two path segments we should 
take (from 0 to 3 and from 0 to 4) for the Query packet. The segment at the top of the 
stack (from 0 to 3) will be chosen. 
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Fig. 4. A P2P network generated by Minism 

We have modified the behavior of Minism to implement our algorithm. Especially 
a routing table is built to trace the movement of QueryHit packet. Fig. 4 and Fig. 5 
shows the inner-working of Minism code. Fig. 4 shows a P2P network generated by 
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Fig. 5. The propagation of a Query packet 
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Fig. 6. A routing history table 

Minism. The figure shows each node is assigned a number of neighbor nodes: node 0 
has neighbors of node 3 and 4; node 1 has neighbors of node 102, 9789, etc. Fig. 5 
shows the propagation of Query packet. The "reached" array shows the nodes the 
Query packet reached at each stage. In "reached" array, nodes with -1 are ones that 
are not reached yet; nodes with 1 are those that are visited already; finally a node with 
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(1) is one we are going to visit next. Below "reached" array, we can see the state of 
the stack that contains the Query packet. To simulate the propagation of a packet, the 
stack shows at each stage which path each duplicated Query packet should follow 
(from which node to which node). For example, at stage 1, all nodes are marked with 
-1 except node 0 since we haven't visited any node yet, and the starting node is node 
0. The stack contains the path we should relay the packet: from -1 (no where) to 0 (the 
starting node). At stage 1, we can see node 0 is already visited (at stage 1); the next 
node we should visit is node 3 because node 0 has two neighbors - node 3 and 4 - and 
node 3 is selected as the next one. The stack shows the two path segments we should 
take (from 0 to 3 and from 0 to 4) for the Query packet. The segment at the top of the 
stack (from 0 to 3) will be chosen.  

In chapter 3 algorithm proposed in this paper was explained. As shown on Fig. 3 
several nodes are grouped and nodes in the group relay file between server and client 
in turn. However there is problem here. If all the nodes between server and client are 
grouped in one, relay nodes are so many as MUTE so it leads to cause lots of packet 
and the sending speed is fixed to the lowest bandwidth of nodes within group as well.  
Accordingly the number of nodes in the same group is needed to be properly fixed. 
Fig. 4 shows the number of relay nodes included in Group simulated with Minism. 
Maximum neighbor nodes per node is 5, the TTL value is 7, and the probability to be 
retrieved is 30%. Probability to be retrieved here means that approximately 30 % of 
all the nodes have matching file. 
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Fig. 7. Group length at small unit P2P network 
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Fig. 8. Group length at large unit P2P network 



 Using Group Overlapping to Protect Server 203 

Fig. 7, 8 shows the number of nodes in a group when the size of P2P network is 
classified as small, medium, and large unit each. As shown on the figures although the 
number of nodes participating in network is diminished or increased, the number of 
node in Group is not so variable. Therefore packet overload is not caused as MUTE. 

5   Conclusions 

In P2P network without center control each peer is independent and has all the re-
sponsibility as well. Accordingly it is relatively weaker in terms of security rather 
than in centralized P2P network. In this paper we proposed protecting Agent from 
Attack technique to provide mutual anonymous between server and client when re-
trieval is made in P2P. Initiator and responder do not exactly know who the initiator 
and responder are through mutual anonymity technique. Initiator knows that it com-
municates with specific node of group but does not know node belonging to the group 
and even if it knows the node the relay order of each node is randomly set that hardly 
knows the location of responder. It is the same as with responder side that identity of 
responder and initiator is secured. In proposed technique according to the number of 
node in one group packet overhead can be made. Test results found that group length 
is constantly maintained to a certain level regardless of the number of node. Therefore 
with mutual anonymity technique, since overhead such as cryptography processing is 
not aroused the mutual anonymity can be provided with relatively little overhead. 
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Abstract. Assuring safety of autonomous vehicles operating in an open envi-
ronment requires reliable situation awareness, action planning and prediction of 
actions of other vehicles and objects. Factors that also have to be considered are 
certainty and completeness of available information and trust in information 
sources and other entities. The paper discusses the problem of autonomous ve-
hicle safety assurance and proposes dynamic situation assessment to cope with 
the problem of environment dynamics and incomplete and uncertain situation 
knowledge. The approach is presented for a simple example of a simulated 
autonomous vehicle. The situation awareness model and autonomous vehicle 
control system architecture is presented. The problems of justifying system 
safety are discussed. 

1   Introduction 

In 1981 the first man was killed by a robot in a manufacturing plant in Japan [1]. 
The maintenance worker entered the robot's operating zone to fix its component. 
Instead of opening the robot's safety gate – which was supposed to cut off its power – 
he jumped over the barrier fence and accidentally switched the robot back on. The 
robot sensor was activated then the robot decided that he was an industrial component 
and crushed him. Other similar accidents have been reported [2]. The main cause of 
this kind of accidents was that a robot was unaware of a human being present in the 
area it operated. The fatal accidents as described above were caused not by compo-
nents failures but weak ability to percept and assess the situation. 

The objective of the paper is to investigate the problem of safety assurance for 
autonomous systems where external events and interaction with the environment and 
other systems have essential influence on safety. The problem and assumptions are 
introduced in section 2. Section 3 discusses the concept of situation risk assessment, 
trust in other agents and the problem of uncertain and incomplete knowledge. 
An example of an autonomous vehicle is introduced in Section 4. Then a situation 
awareness model is proposed in Section 5. The way how the situation awareness 
model is applied for the autonomous vehicle control system is presented in section 6. 
Hazard analysis of presented architecture is discussed in section 7. A vehicle coopera-
tion process that strengthens safety is proposed in section 8. Experiences from 
autonomous vehicle simulation experiments are discussed in section 9. 
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2   The Problem of Autonomous Vehicles Safety 

Autonomy relates to an individual or collective ability to make decisions and act 
without outside control or intervention. Autonomy is quite a new concept for safety-
critical systems. 

Autonomous vehicle (AV) is a vehicle able to perform action planning and control 
without human interaction in order to accomplish its long-term mission goals. 
Autonomous vehicles operate in an open (i.e. non-controlled) environment. 

Open environment is defined as an environment in which agents operate and can 
have different, not consistent missions and strategies. Some regulations can be de-
fined for the environment and agents should follow them however it cannot be guar-
antied that every agent would always act in accordance with the regulations. In an 
open environment an agent cannot assume that all other agents will cooperate and 
preserve safety. As an agent we understand a vehicle or an object. 

An object can be able to communicate with other agents but not able to move. Ex-
amples of objects are traffic lights (which communicate to vehicles if they should stop 
or drive on) or a command centre (which communicates missions to vehicles). 

The essential feature of an autonomous system is its ability to plan actions and 
achieve some long-term mission goals. Usually AV objective is to: 

− accomplish its mission (a long-term goal), 
− comply with the regulations if such rules are defined, 
− preserve safety (avoid hazardous events). 

An example of a hazardous event is a collision – when a vehicle collides with an-
other vehicle or an object. Intuitionally one can say that a collision will happen when 
two vehicles have crossing courses. There may be many different causes for this 
event. It can be a sensor or actuator failure, wrong route planning, unexpected events 
in the environment or manoeuvres of other vehicles. 

Accident models are useful for analysis of accidents causes and possible counter-
measures. The sequential accident model is the simplest one. More complex models 
are also available however the sequential model is a good starting point sufficient for 
the purpose of the presented analysis. The model starts with the safe state followed by 
a sequence of states (see Fig. 1).  

 

Fig. 1. Sequential accident scenario model 

The presented sequential model emphasises that not only adverse events (like 
components failures) can cause hazards. There are many other factors that have to 
occur for a hazard to happen. This can be demonstrated on an example of a scenario 
in which a vehicle starts to overtake another vehicle while being overtaken at the 
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same moment. This hazardous situation is caused by the vehicles interaction and not 
by a mechanical component failure. Table 1 shows the increasing risk level for the 
consecutive accident scenario situations. 

Table 1. Examples of accidents scenarios 

Model state Industrial robot Autonomous vehicle Risk level 
Safe situation Normal robot operation No other vehicle in close 

distance 
no risk 

Preceding robot is off 
(no part can be passed on 
to work on) 

Another vehicle in front 
(see Fig. 2.b) 
 

Situation with 
potential for 
adverse events 

A human in operating 
area 

Decision to overtake the 
vehicle in front  

low risk 

The robot switched on 
The human activates 
a robot sensor 

Unexpected manoeuvre 
of the vehicle in front 

Adverse event 

Robot arm starts the 
operation 

Braking and course 
change fails 

high risk 

Accident Robot arm hits the hu-
man 

Vehicles collide 
unsafe state 

Loss Fatal injury Vehicles damaged  

A risk level can be attributed to each situation and can be used to denote how far it 
is from the unsafe state. The longer is the sequence the better are chances that hazard 
can be avoided. To assure safety the system should continuously assess the situation 
and act accordingly when some risk factors are detected. 

Similar sequential accident model is used by the European Automobile Manufac-
turers Association (ACEA) [3] for road traffic accidents. The ACEA model distin-
guishes “danger” state when an accident can be avoided and “crash unavoidable” 
state. This depicts the problem that to avoid a hazard the countermeasures should be 
taken before the risk level is too high. 

3   Situation Awareness, Risk and Trust 

Situation awareness (SAW) is, generally speaking, the knowledge of what is going 
around. Situation awareness is an area of research in domains of philosophy, logic, 
psychology, artificial intelligence, computer science (human-computer interface) and 
robotics. The research goal in psychology is to examine how a human maintains situa-
tion awareness, while in robotics the aim is to create machine SAW. Assessment if a 
situation is safe or dangerous is one of the situation awareness functions. 

The general concept of situation awareness is well known however there is no one 
agreed definition. Endsley introduces three levels of human situation awareness [4]: 
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1. perception: basic perception of cues based on direct observation. 
2. reasoning: the ability to comprehend or to integrate multiple pieces of information 

and determine the relevance to the goals the human wants to achieve. 
3. predicting: ability to forecast future situation events and dynamics based on the 

perception and comprehension of the present situation. 

Situation awareness is necessary for humans to assess the risk, plan actions and 
avoid dangerous situations. Reason in [5] describes mechanisms how humans per-
ceive situations and the associated risk, how make errors (mistakes and lapses), and 
how react in case of unexpected events. 

Another area of research on situation awareness is focused on remote controlled 
robots [6]. Its objective is to provide humans (who are regarded as the only entities 
with the ability of situation awareness) with the right information to ensure situation 
awareness and safe robot operation. 

Situation risk assessment is one of the key human abilities to preserve safety. 
When someone drives a car at the speed of 50 km/h it is quite normal to pass a person 
on the pavement. That person is only two meters away from the passing car and no 
physical barrier exists between them. The driver trusts that the person will not enter 
the road in front of the car and therefore assesses the risk as low. On the other hand 
the person on the pavement trusts that the car will not leave the road. But we do not 
always trust everybody. For example when we see children we usually slow down – 
the situation is assessed as more risky. 

Trust in an entity is related to certainty that the entity will behave in a predicted 
way and follow the regulations or some rules. Any entity acting in unpredictable way 
is not trusted. If an entity is trusted and its behaviour is predictable then the vehicle 
route can be planed with high probability that it will not cause unsafe events. 

Rules are used both for assuring safety (the rule says that the person will not enter 
the road) and prediction of entity actions (the person will stay on the pavement). It is 
easier to predict future actions when an agent follows the rules. 

Another problem is completeness and certainty of available information. 
The situation knowledge can be incomplete because of perception limitations, un-
available information sources or external factors. The information can come from 
unreliable sources and turn out to be false. Some attributes cannot be measured and 
have to be assessed. Such assessments can be uncertain. 

Some improvement in completeness and certainty of the situation knowledge can 
be a result of communication. Examples of the road traffic communication are the use 
of turn indicator lights (vehicle-vehicle communication) and traffic lights at crossings 
(agent-vehicle communication). When a person stands on the edge of road he or she 
communicates the intention to cross the road. Communication helps to ensure more 
complete and certain situation knowledge and allows for more accurate prediction. 

Assessing the risk is a heavy cognitive task requiring perception skills, knowledge 
and experience. Not always it is possible to correctly assess the risk. Humans make 
mistakes, especially when in stress conditions and have too little time. What humans 
do to cope with that problem is to be aware of limitations of their own assessments 
and take it into account (for example not to drive fast in the fog). Humans recognise 
situations with a potential for causing adverse events. In these situations they are 
more attentive and careful. Generally complete and certain knowledge of the situation 
is practically impossible due to the broad scope of information needed and short time 
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for decision. There is always something that we don’t know about the situation. 
Therefore autonomous machines also need the ability to make assessments based on 
incomplete knowledge and judge on the credibility of its own assessments. 

Summarising the section it can be said that: 

− situation awareness is necessary to assess the risk of present and predicted future 
situations, 

− the situation risk assessment depends on trust to other agents that they will act in 
a predictable way, 

− situation assessment can be uncertain due to incompleteness of knowledge and 
uncertain information sources. 

The problem how situation awareness can be used for safety assurance will be dis-
cussed for an example of a simple simulated autonomous vehicle presented in the next 
section. 

4   An Example of a Simulated Autonomous Vehicle 

Simulation was chosen as the first step of the proposed approach verification. 
The definition of a simulated autonomous vehicle (SAV) is based on the concept of 
road traffic on a two-lane road. Vehicles can drive along the road in both directions 
and each of them has been assigned with its own mission. Some objects are also pre-
sent in the environment: traffic lights and speed limit signs. Some examples of possi-
ble situations are presented in Fig. 2. 

 

Fig. 2. Examples of simulated autonomous vehicle action scenarios 

SAV is equipped with: 
− Motors and brakes that enable it to move along the road and change lanes (going 

off the road is defined as unsafe behaviour and the simulated vehicle is stopped 
when it leaves the road). 

− A set of sensors: speed sensor, clock, position sensor and a set of distance sensors. 
− A communication module that allows for communication with other vehicles and 

objects in a given range. 

The objective of SAV is to: 
1. accomplish its mission (get to a defined point on the road and then stop), 
2. comply with the rules (regulations defined for the environment): 

− drive along the right lane except when overtaking another vehicle, 

a)                                       b)                                     c) 

AV2 

AV1 AV1 AV2 AV1 
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− do not overtake on crossings, 
− stop before the crossing when the traffic light is other then green, 
− do not increase the speed when being overtaken, 
− keep the speed in the limit according to the traffic signs, 
− do not go off the road, 

3. avoid unsafe event: a collision with other vehicles or objects. 

The simulated AV environment is simplified. The main limitations are: 
− Properties of agents and the environment are static. Agents do not have to adapt to 

new conditions, regulations o changed characteristics of other agents. 
− The world is limited to the road. The physics of the simulated world is simplified. 

Discrete time is used in the simulation (a time tick is defined). 
− The image recognition problem is excluded from the analysis (SAV does not have 

to see traffic signs or other agents). 
− Objects are considered to be reliable. No object failures are simulated. 
The problem to be solved is how to assure safety of presented SAV when situations 
dynamically change depending on behaviour of other vehicles and objects. 

5   Situation Awareness Model for SAV 

The situation awareness model is proposed in this section. The model uses the con-
cept of ontology. 

Ontology is a description of some domain of real world, which is sometimes called 
a universe, which allows for classification and analysis of some properties [7, 8, 9]. 
Barry Smith provides the following definition: Ontology is the science of what is, of 
the kinds and structures of objects, properties, events, processes and relations in every 
area of reality. For an information system, ontology is a representation of some pre-
existing domain of reality which: 

1. reflects the properties of the objects within its domain in such a way that there 
obtains a systematic correlation between reality and the representation itself, 

2. is intelligible to a domain expert, 
3. is formalized in a way that allows it to support automatic information processing. 

The situation awareness model presented below has been developed for SAV de-
scribed in the previous section. VDM-like notation [10] is used in the definition of the 
model. The model has been designed to be as simple as possible to be suitable for 
SAV. More sophisticated situation awareness models should be built for more com-
plex systems. 

Universe. For the analysed system the universe state is a set of information that SAV 
“knows” about itself and the environment. This can be defined as follows: 

UniverseState :: 
 InternalState : AttributeId  ( Value × Certainty ) 
 Events  : SensorId  ( Value × Certainty ) 
 Environment : <AV knowledge about environment: terrain map (road)> 
 Agents  : AgentId  AgentInfo 

AgentInfo = AgentAttributeId  ( Value × Certainty ) 
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UniverseState describes the AV knowledge about itself and the environment for 
a given moment of time. UniverseState is not a real world. It is a SAV’s knowledge of 
the world. Ontology is well defined if the model complies with three conditions de-
fined at the beginning of this section. 

InternalState incorporates attributes such as the time, position, speed, mission goal, 
command for actuators. Examples of agents attributes are agent type, position and 
speed. Information about environment is static and limited to the road coordinates 
(that’s one of the SAV limitations).  

Certainty. Knowledge about the situation can be uncertain and therefore Certainty 
type was introduced to the model. Certainty here does not mean objective probability 
but a result of SAV assessment on how certain is particular value of an attribute. 
This was achieved by introducing BasicProbability type. The Basic probability is a 
concept from Dempster-Shafer theory [11, 12]: 

BasicProbability :: 
 belief  : R 
 disbelief  : R 
 invariant( belief, disbelief ) ≡ 

belief   0  ∧  disbelief   0  ∧  belief + disbelief   1 

Certainty  =  BasicProbability 

BasicProbability is a tuple of two values: belief and disbelief. Belief is an assessed 
probability that the value is true, while disbelief indicates assessed probability of 
false. Basic probability can be used to represent certainty that a situation is safe. 
Value (1, 0) means that there is 100% assessed probability that the situation is safe. 
Value (0.5, 0.5) relates to fifty-fifty assessment that the situation is safe or not safe. 

When the situation assessment is uncertain, the sum of belief and disbelief is less 
then 1. Value (0.2, 0.3) means that there is 20% probability that the situation is safe, 
30% that it is not safe however the remaining 50% is uncertain – it’s not known if it is 
safe or not. In other words it can be said that because of incomplete knowledge and 
uncertain assessment the probability of the safe situation is believed to be somewhere 
from 20% to 70%. Uncertainty is calculated by function: 

uncertainty: BasicProbability → R 
uncertainty( bp ) ≡  1 – bp.belief – bp.disbelief  

Situation assessment. Basic probability is used to represent assessments if the situa-
tion is safe, the rules (regulations) are followed and whether there is a progress in 
achieving mission goals: 

SituationAssessment :: missionProgress : BasicProbability 
    rulesAccordance : BasicProbability 
    safetyLevel : BasicProbability 
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Trust. Trust to other agents and sensors is also represented by basic probability: 

TrustAssessment    =    ( AgentId ∪ SensorId )  BasicProbability 

Situation awareness. UniverseState represents knowledge about a situation at a given 
moment of time. The Situation awareness is not only the knowledge of the current 
universe state, but also the past and future states. 

SituationAwareness  ::   now   : Time 
  observedSituations : Time  UniverseState 
  predictedSituations : Time  UniverseState  
  assessment  : SituationAssessment 
  trust   : TrustAssessment 

invariant( mk-SituationAwareness( now, observed, predicted, sa, ta ) ) ≡ 
 ∀ t ∈ dom( observed ) ⋅ t  now 

There is a question if the perception, prediction and assessment methods should be 
included as part of the situation awareness model. This has not been done for the 
presented example. Intuitively the situation awareness model should comprise this 
kind of knowledge. This knowledge may also evolve in order to adapt to changing 
environmental conditions, new agent types or new possible accident scenarios. The 
problem of adapting and learning from experience is out of the scope of this paper. 

6   SAV Control System 

SAV control system has been designed using the layered architecture [13, 14]. 
The system is decomposed into policy layer, mission layer, tactical layer and control 
layer. Situation assessment and action planning is located in the tactical layer and this 
layer is described in this section. The SAV tactical layer is decomposed into two main 
processes: Situation analysis (SA) and Task planning (TP) presented in Fig. 3. 

 

Fig. 3. SAV control system Situation analysis and Task planning processes 

The goal of Situation analysis (SA) process is to collect information from available 
sources to provide situation awareness knowledge. The process is decomposed into 
following subprocesses: 

SA.1. Read sensor values and update observedSituations( now ).Events (use sensors 
trust as initial value for data certainty) 
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SA.2. Calculate observedSituations( now ).Agents and InternalState attributes and 
check for data consistency (rise or lower trust in appropriate data sources) 

SA.3. Update trust in other agents depending on their observed behaviour 

Task planning process (TP) objective is to predict possible situations and then choose 
the optimal sequence of actions. The process is decomposed into the following steps: 

TP.1. Generate a set of possible scenarios of actions. 
TP.2. Assess each scenario for: 
 TP.2A. progress towards mission goals, 
 TP.2B. compliance with formal rules (regulations), 
 TP.2C. situation risk level. 
TP.3. Choose the optimal scenario (according to SAV strategy). Update predicted-

Situations and assessment 
TP.4. Chosen scenario tasks are communicated to the Control layer. 

TP.1 process generates a set of possible action scenarios determined by possible 
AV actions and predicted behaviour of other agents. Generally the range of possible 
actions of other agents is very broad. This depends mostly on an agent decision to 
obey the rules or not. For example for a situation presented in Fig. 2.a an agent AV1 
must predict possible set of AV2 actions. If AV2 does not intend to follow the rules 
then it will be possible that AV2 will suddenly change lane in front of AV1. This 
could lead to a collision. This would not happen if AV2 followed the regulations. 
What is needed here is trust. Both agents need to trust each other that they will con-
form to the regulations (precisely: obey the rule to drive along the right lane). 

When the trust in other vehicle is equal to (0.9, 0) it is interpreted as 10% uncer-
tainty that the vehicle will follow regulations. In such case more scenarios of its be-
haviour would be analysed. 

The effectiveness of the situation risk assessment generally depends on two factors. 
The first is the span, certainty and completeness of the prediction (TP.1). The second 
factor is the ability of TP.2C function to assess the risk depended on the current situa-
tion knowledge. The value of joining risk assessment with prediction algorithm comes 
from the possibility of examining possible actions for hazard avoidance when unex-
pected events occur. Even for high risk situations the prediction function will provide 
for possible scenarios to reach safe state (propose actions that lead to situations with 
lower risk level). 

Two safety assessment functions TP.2B and TP2C have been defined. The first one 
uses static rules (regulations). The second assessment function examines current and 
expected future situations to judge the possibility of a hazard. These two assessment 
functions are both necessary for safe operation of the vehicle. The comparison of 
these two functions is presented in Table 2. 

Three different assessment functions are used in the TP.2 process and a question 
arises what strategy should be used to choose the so-called optimal scenario (TP.3 
process). Many different strategies are possible. Three of them are: 

1. Care for yourself strategy – if there are some risk factors (safetyLevel.disbelief > 0) 
then choose the safest scenario or otherwise select the scenario with the best com-
bination of assessment values. In case of any risk factor the vehicle will ignore all 
rules and will perform any action to achieve no-risk state. 
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2. Stick to the rules strategy – always choose the scenario with the highest TP.2B 
assessment, then the second priority is the safety level and mission progress. 

3. Mission first strategy – always choose scenario with the best mission progress 
assessment (this strategy can be used to implement hostile vehicles). 

Table 2. Rule-based and risk-based assessment function comparison 

Rules Compliance (TP.2B) Situation Risk Assessment (TP.2C) 

Based on static rules Based on dynamic risk assessment 

Easier for design and verification More difficult for design and verification 

Supports external judgment if a vehicle 
obeys the rules 

Supports decision making when plan-
ning individual and group actions 

Can be used to assure safety in normal 
situations. May not assure safety if 
rules are violated in the environment 

Can be used to assure hazard avoidance 
in any situations  

Will not assure safety if rules are in-
complete for a context of a given envi-
ronment 

Will not assure safety if the knowledge 
is incomplete or uncertain in context of a 
given environment 

When function fails: breaking the rule 
will sometimes (but not always) cause 
a hazard depending on the situation 

When function fails: choosing unsafe 
scenario of actions will lead to hazard if 
no other countermeasures are taken 

Is required in order to assure compli-
ance with the regulations 

Is required in order to assure hazard 
avoidance in open environment 

A question comes to mind what strategy is the right one. Even when more sophisti-
cated strategies are defined, the question remains when an autonomous agent can 
violate regulations in order to avoid hazard. Never? Whenever it perceives any risk 
factor? Only when the risk is high? How high? All rules can be violated or only some 
of them? And what if the agent risk assessment is wrong? These are hard questions to 
answer. 

7   The Problem of Autonomous System Hazard Analysis 

The autonomous vehicle is considered to be a safety-critical system therefore demon-
strating that the solution assures safety is essential. This can be done by developing a 
safety case for the system. The system architecture is more complex then for most 
embedded systems and to develop such a safety case can be a nontrivial task. 

The first problem encountered when constructing the safety case was the decision 
how the hazards should be defined. The first attempt was to define accepted probabil-
ity of hazard occurrence. This led to probabilistic claims and assumptions on external 
events (like behaviour of other vehicles). Quantitative arguments were left off for the 
moment and the analysis focus was on what situations and combinations of events can 
lead to hazard (qualitative arguments). 
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The argument for the claim that the hazard will be avoided (e.g. SAV will not col-
lide) intuitively leads to safety requirements like: the Task Planning process will not 
give unsafe action plan as an output. A fault tree-like analysis can be used to track 
down the causes for such event and then define requirements for processes and their 
input data. Such analysis on the components level has been carried out. The result of 
this analysis was a set of safety requirements. Some of them relate to situation aware-
ness model and assessment functions. 

Justification for claims like completeness of situation awareness model, correctness 
of prediction process TP.1 or correctness of risk assessment function TP.2C requires 
providing evidence based on the environment and AV mechanical engineering models 
and accident models. This is an area of future research. 

8   Extending SAV with a Collaboration Process 

The vehicle presented in Section 4 is fully autonomous. It does not cooperate with 
other agents and does not exchange any information with them. Cooperation can offer 
possibility for: 

− verification of situation awareness knowledge by comparison to information from 
other agents, 

− more reliable prediction of other agents behaviour, 
− using recommendation mechanism for more accurate assessments of trust in other 

agents. 

These properties strengthen justification for some safety requirements identified in the 
safety case. 

Extending AV with a communication process is a big change of autonomous vehi-
cle characteristics. A set of non-communicating autonomous vehicles is now trans-
formed into a set of vehicles which cooperate to assure safety although each of them 
has its own mission. 

The proposed solution is to extend Situation analysis process (described in sec-
tion 6) with additional process decomposed into four steps: 

1. Communicate with other agents to exchange a subset of situation awareness infor-
mation. The scope of the information exchange depends on the AV strategy. For 
the simulated AV the data exchange scope is the vehicle identification data, posi-
tion, speed, planned actions and also trust levels to other vehicles. 

2. Analyse consistency of the recommendations and own trust assessments and ac-
cordingly update trust in a recommended agent, the recommender and own trust 
assessment function data sources. 

3. Consistency check – for each situation awareness attribute find related data re-
ceived from other agents, if found then check consistency and adjust the data, its 
certainty and the data sources trust levels according to the detected data consis-
tency or discrepancy. 

4. Situation awareness extention – add information on other agents planned actions. 
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The proposed cooperation process makes stronger arguments for justification of 
claims like completeness of situation awareness model, correctness of prediction 
process TP.1 or correctness of risk assessment function TP.2C. 

9   Experiments Results 

A simulation tool has been designed and developed using Java development environ-
ment. Some number of simulation experiments has been carried out to verify the ap-
proach. The main limitation of the simulation tool is that AV processes are run as 
sequential tasks for each simulated time tick. No concurrency has been implemented 
and no time requirements have been analysed. 

Analysis of simulation results is difficult except for simple situations. For a given 
scenario the risk and trust evolve in time but have no directly measurable values in the 
real world. The problem is that humans also have different perception of how risky 
are some situations. Therefore justification for a particular risk value for a given situa-
tion is usually questionable. Risk assessment function results depend on many pa-
rameters. Changing slightly some parameters can sometimes cause big change in the 
risk assessment value. Designing the risk assessment algorithms is a non-trivial task 
even for the simple simulated AV. The conclusion of the experiments is that the criti-
cal issue is to start with explicit definition of safe and unsafe situations, which are 
denoted as the extreme BasicProbability values (1,0) and (0,1). 

The safe level assessment value (1,0) was defined as lack of any risk factors and 
full certainty of the situation knowledge. The risk factors are derived from the acci-
dent model analysis. The safety level value (0,1) has been defined as accident (vehi-
cles collide). It is not required to justify the exact risk assessment values however risk 
assessment consistency should be justified (the same risk value should be assigned to 
the situations of the same risk level). 

The SAV accident scenario analysis was made manually and tool support for this 
task is needed. The plan is to use accident scenario risk profiles. A risk profile is a 
chart showing change of safety level in time together with labels for relevant events. 
The objective of using risk profiles is to ensure that the assessment is consistent with 
the concept of the increasing risk level for accident scenarios (compare to Table 1) 
and to stretch the period of time when the risk is perceived. 

Another issue analysed in the experiments was what initial trust level should be as-
signed to other vehicles. Three approaches were tested: full trust, uncertain or no 
trust. Also the ways how humans assess trust have been analysed. This led to the first 
impression mechanism. Humans usually judge any person within the first three sec-
onds when they meet. This strategy was chosen as the best one. Initial trust level for 
any new vehicle should be uncertain, denoted as value (0,0). For some short period of 
time the trust assessment function should be more sensitive to make wide range of 
trust adjustment possible. When the trust level is stabilized, the function should be-
come less sensitive. That leads to the problem which factors should be considered as 
relevant for initial trust or distrust. Some strategies for building trust (e.g. regulations 
conformance, identifying itself to other vehicles, cooperation) have been analysed. 
The mechanism of the first impression needs further research. 

Some number of scenarios have been simulated and analysed. 
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Scenario 1 (see Fig 2.a in section 4) relates to a situation when two vehicles pass 
each other on separate lanes. The situation risk level depends on the distance, speed 
and direction of the vehicles and available space (limited to the road by the rule). 
When AV does not fully trust other vehicle then it tries to keep safe distance. 
That may lead to speed decrease and turning to the road side. The safe passing sce-
nario (Fig. 2.a) is possible when vehicles follow the rules and trust each other. 

Scenario 2 (see Fig. 2.b) relates to a situation when one vehicle is followed by an-
other one and finally can be overtaken. The first issue is the safe distance between the 
two vehicles. When vehicles cooperate and trust each other the distance can be 
smaller. When there is no trust relation then the safe distance is longer. The second 
issue is the decision when to overtake safely. Some problems were caused by limita-
tions of the prediction function as the predicted scenario was shorter then the overtake 
manuevre. Longer scenario would ease the risk assessment. Some work was needed to 
elaborate a risk assessment function that would preserve safety when for example 
another vehicle is approaching on the left lane or there is a crossing not far away. 
Effect of safe overtaking was achieved after some experimental trials however the 
systematic process for accident model analysis is needed. 

Scenario 3 (see Fig. 2.c) was introduced to investigate how cooperating vehicles 
behave in dynamically changing environment. The first problem encountered was the 
influence of action plan changes on trust. In the tested scenario two vehicles were 
driving one following another. The first vehicle stopped when the traffic lights 
changed from green to yellow. When the second vehicle noticed the change in 
planned actions it lowered the trust level in AV1. This approach is too simplified. The 
justification for other vehicle plan change should be assessed before the trust level is 
altered. Analysis how this can be achieved is a possible future work. 

Another problem encountered in the experiments was that the risk level definition 
does not take in account the hazard consequences. The conclusion was to extend the 
situation risk definition from BasicProbability to a set of tuples containing accident 
consequences (the loss) and probability assessment. Quite interesting is that such 
model could be used for risk assessment compliant with Three Laws of Robotics 
defined by Asimov [15]. An example of such situation risk assessment can be a set 
{ ( human-harm, (0, 0.9) ), ( robot-damage, (1,0) ) }. Other possibilities for the situa-
tion awareness model extensions are also analysed. 

10   Summary 

The main conclusion of the paper is that the situation awareness is the key factor in 
autonomous vehicles safety assurance. Autonomous vehicles need to be able to per-
ceive current situation, assess it and predict future situations. Situation awareness 
model should be built on a sound ontology which describes the vehicle and its envi-
ronment. The model should provide means to cope with the problems of trust in other 
agents and uncertain and incomplete knowledge. The proposed solution is based on 
simple patterns of human situation awareness. 

Three situation assessment functions were distinguished: situation risk level as-
sessment, regulations compliance assessment and mission progress assessment. Haz-
ard avoidance is dependent on the perception and assessment of the situation risk. 
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Communication and cooperation has been proposed to strengthen safety in a situation 
of dynamic agent interactions. 

The proposed approach was demonstrated on a small simulated example of an 
autonomous vehicle. For most scenarios the simulated vehicle could perceive unsafe 
situations and avoid them. Limitations of the method and experiences from the ex-
periments have been discussed in Section 8.  

Systematic process for accident model analysis and building safety argument is an 
area of planned research. Plans for future work include also application of presented 
approach to a laboratory autonomous vehicle and extending the situation awareness 
model. A challenge that is foreseen is to enable AV to adapt to changing environment 
characteristics. Autonomy is a novel concept for safety-critical systems and will re-
quire a lot of research work to provide sound arguments for safety justification. 
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Abstract. The paper describes the current regulatory situation in England with 
respect to medical devices and healthcare providers. Trusts already produce 
evidence to the Healthcare Commission that they operate in accordance with 
standards set out by the Department of Health and the NHS. The paper illus-
trates how the adoption of an explicit goal-based argument could facilitate the 
identification and assessment of secondary implications of proposed changes. 
The NHS is undergoing major changes in accordance with its 10-year moderni-
sation plan. These changes cannot be confined to the Trust level, but will have 
NHS-wide implications. The paper explores the possibility of an organisational 
safety case, which could be a useful tool in the management of such fundamen-
tal changes. 

1   Introduction 

Healthcare organisations are undergoing major changes everywhere, both technical 
and organisational. The NHS in England is currently implementing a 10-year mod-
ernisation plan [1] that will have implications for all areas of healthcare provision. 
Managing change in a safe and effective way poses major challenges. Similar restruc-
turings of this scale have had serious implications; compare for example the privatisa-
tion and reorganisation of the UK railways. To deal with these implications in avia-
tion, Eurocontrol explored the possibility of producing a whole-airspace safety case 
[2]. Railways, air traffic control and even more so healthcare are instances of complex 
socio-technical systems. Different authors characterise complex systems [3], [4] in 
different ways, but in general there is agreement that complex systems possess a large 
number of individual components or agents, whose rich interactions are difficult and 
sometimes impossible to predict. These interactions and the interactions with the 
environment often are non-linear and they are sensitive to the system’s history and 
initial conditions. Complex systems exhibit emergent properties, i.e. properties that 
cannot be anticipated from a functional decomposition, and that are the result of 
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unexpected non-linear interactions that occur between the components and the envi-
ronment (e.g. [5], [6], [7], [8], see also [9] for a discussion about emergent proper-
ties). In [10] it is argued that changes in such complex systems produce “a set of or-
ganizational reverberations that are difficult to anticipate or predict and may go far 
beyond the expectations of designers”.  

This paper explores such safety challenges within the health sector and how these 
might be addressed by supporting risk and change management through the construc-
tion and use of system-wide safety cases. The present exploration may be set within 
our broader work agenda. In particular there are a number of concerns: 

 Institutional and organisational issues (the scope of this paper):  
As a necessary first step, this paper discusses the institutional and regulatory 
background in order to identify, for example, relevant requirements, stan-
dards, stakeholders, organisational structure, and the type of evidence cur-
rently available. This forms the basis for all subsequent work, and is used in 
the discussion about formal characteristics of a system-wide argument in-
cluding appropriate level, ownership and structure.  

 Technical issues (future work): 
The discussion of the paper raises questions about how a safety case could be 
realised in practice. The last 10 years have seen substantial progress in safety 
case development. There has been a shift from prescriptive to goal-based 
regulation [11], and a graphical notation (GSN) has been developed [12], 
which facilitates the construction and communication of safety cases of 
large-scale systems. A study needs to investigate how this and subsequent 
work on maintenance [13] and on modularisation of safety cases [14] may 
render the construction of safety cases for large, complex systems, such as 
healthcare organisations, technically feasible.  

 Application of the safety case (addressed in this paper and future work):  
The activity of producing a safety case requires explicit consideration of 
safety-related issues, and provides assurance to both the organisation and to 
regulators that the system is adequately safe. The safety case has also the po-
tential to be a useful tool in assessing the implications of change, both tech-
nical and organisational. A methodology for systematically utilising a sys-
tem-wide safety case to support the management of change will be explored.  

 Safety cases for systems exhibiting strong emergence (future work):  
This is the most challenging aspect and more about this issue will be said in 
the discussion. Strong emergence [15], [9] refers to properties or patterns that 
cannot be derived from models of interaction of components at lower hierar-
chical levels. This has far-reaching consequences for the way risk analysis is 
conducted (see e.g. [16]) and for the way safety cases are to be understood in 
the future and the type of evidence that needs to be provided.  

The next section describes the regulatory context in England, and briefly outlines 
the large-scale organisational changes that are still ongoing in this domain. In this 
context two simplified yet realistic examples are considered at different levels of 
representation. Firstly a technical change within a hospital environment is used to 
discuss how a goal-based argument could facilitate the identification and assessment 
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of implications of that change. This addresses interactions that may be difficult to 
spot, but that may be handled given appropriate representational tools (such as a 
safety case). Secondly, an organisational change is considered in the context of the 
modernisation plan of the NHS in order to discuss the possibility that a safety case 
could be used to support the management of this change. This also touches upon 
the issue of interactions that may be impossible to predict, and thus raises questions 
about the suitability of current safety cases to deal with such complex systems. The 
concluding section follows this up by discussing ongoing work and by reflecting on 
possible limitations.  

2   The Regulatory Context in England 

In England, as in other comparable European healthcare systems, there is a differen-
tiation between manufacturers of medical devices on the one hand and healthcare 
providers as users or consumers of such devices on the other hand. Both are regulated 
by and are accountable to the Department of Health, albeit through different agencies 
and institutions. In general, manufacturers have to provide evidence that their devices 
are tolerably safe for a particular use in a specific environment. Healthcare providers, 
on the other hand, are audited to ensure that the care they provide meets national 
standards. A part of this is the requirement to utilise only previously certified medical 
devices.  

2.1   The Certification of Medical Devices Within the UK Environment 

The UK Medical Devices Regulations 2002 (MDR 2002) implement a number of 
European directives relevant to the certification of medical devices (MDD 
93/43/EEC; IV-Diagnostic MDD 98/79/EC; Active Implantable MDD 90/385/EEC). 
The definition of what constitutes a medical device is broad and comprises devices as 
diverse as radiation therapy machines, syringes and wheelchairs. The Medicines and 
Healthcare Products Regulatory Agency (MHRA) acts as the Competent Authority 
overseeing the certification of medical devices. Notified Bodies of experts provide 
evaluation of high and medium risk medical devices undergoing certification to the 
Competent Authority.  

The medical devices directive consists of three parts:  

1. Essential Requirements that have to be met by any medical device to be mar-
keted in the EU. Six requirements are regarded as essential including: defining ac-
ceptable levels of risk; applying safety principles during design and construction; 
establishing and meeting performance criteria, ensuring that undesirable side ef-
fects constitute an acceptable level of risk.  
2. Classification Rules that specify four classes for medical devices. Class I devices 
pose little risk and are non-invasive. Classes IIa and IIb devices pose medium risk 
(medium to low risk, and medium to high risk, respectively), while Class III de-
vices pose high risk.  
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3. Conformity Routes specifying different ways of manufacturer compliance with 
the Essential Requirements. In the case of Class I devices the manufacturer has to 
declare through a self-documentation process (no Notified Body is involved) that 
the Essential Requirements are met, and compile adequate technical documenta-
tion. For devices of the other classes a number of methods for demonstrating con-
formity are available. This is frequently done through a Full Quality Assurance 
System assessment (ISO13485:2003). In the case of Classes IIa and IIb it is also 
possible to provide evidence, including the results of risk analysis, test and inspec-
tion reports, design documentation, instructions for use and so on. The manufac-
turer is expected to have a systematic risk management process in place (e.g. 
ISO14971).  

All of these standards are addressed to the manufacturer of medical devices. When 
healthcare providers assemble different devices to create a system, the safety of the 
resulting system generally will not have been assured. As indicated in [17], the role of 
a systems integrator, with the responsibility of installing medical devices according to 
the manufacturers' instructions for use, of demonstrating the safety of the resulting 
system, and of providing documentation, training and support to the actual end users 
would be an important contribution to ensuring patient safety.  

Apart from issuing instructions for use, the manufacturer has little influence on the 
way the devices are actually used in practice. More importantly, the manufacturer 
does not have detailed information about the specific environment and the processes 
within which the device will be operated within a particular healthcare provider's 
setting. In complex systems this is a serious cause for concern, as in this way the 
possible interactions between system components and interactions with the environ-
ment as well as the system’s particular history will not have been accounted for. It is 
reasonable, therefore, to expect healthcare providers to demonstrate that the services 
they are providing are acceptably safe. Such a demonstration should make use of data 
supplied by the manufacturers.  

2.2   Auditing of Healthcare Providers 

Healthcare in England involves a diversity of actors. The Department of Health is 
responsible for setting the overall strategic direction of the NHS, for setting national 
standards for improving the quality of health services, and for securing adequate fund-
ing for the NHS. At the time of writing there were 28 Strategic Health Authorities 
(SHA) responsible for setting and managing the local strategic direction of the NHS. 
However, this situation is still undergoing change. The SHA develops plans to im-
prove local services, and monitors the performance of healthcare providers within 
their region. The monitoring function is increasingly being taken over by the Health-
care Commission (HC), which assesses all healthcare providers against national stan-
dards. Primary Care Trusts (PCT) are local healthcare organisations responsible for 
assessing the healthcare needs of the local communities, and for commissioning ser-
vices from GPs, hospitals and so on. NHS Hospital Trusts manage hospitals ensuring 
healthcare provision is of sufficient quality, and that finances are managed effectively. 
PCTs purchase these services on behalf of their patients. On top of all this there are a 
large number of additional actors such as pharmacies, dentists, walk-in centres, NHS 
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direct telephone services and so on. For the purpose of this paper it is sufficient to 
give a simplified version of the organisational structure including regulatory bodies 
and agencies, see fig. 1. These organisational arrangements are still fairly recent and 
are undergoing continuous change. 

Primary Care Trusts
Local Services

NHS Trusts
Hospital Services

Purchases
from

SHA
Local strategic 
direction

DoH
Strategic direction
Funding

HC
Auditing

NHSLA
Claims Management
Risk Management audit

NICE
Best practice

NSFs
Standards

Strategic direction
Improvement Plan
Standards for Better Health

Strategic direction
Improvement Plan
Standards for Better Health

Improvement Plan
Standards for Better Health

DirectsAudit

Provide guidance
CNST standards
Assessment criteria
Best-practice guidance  

Fig. 1. Simplified structure of regulatory context of healthcare provision in England 

In 2004 the Department of Health published the ‘Standards For Better Health’ [18] 
to set out quality expectations for all organisations providing NHS care in England. 
The standards focus on a broad spectrum of seven domains designed to cover the full 
spectrum of healthcare: safety; clinical and cost effectiveness; governance; patient 
focus; accessible and responsive care; care environment and amenities; public health. 
Each domain incorporates two types of standards: core standards and developmental 
standards. The 24 core standards are based on a number of standards or requirements 
that already exist. Developmental standards, on the other hand, outline requirements 
towards which continuous progress is expected.  

Safety and risk management aspects are covered in particular in domains 1 (Safety) 
and 3 (Governance). The corresponding core standards for safety focus on learning 
from incidents, fast response to incidents, adherence to NICE (National Institute for 
Clinical Excellence) guidance, decontamination of medical devices, minimisation of 
risks associated with the acquisition and use of medical devices etc. The developmen-
tal standard requires healthcare providers to continuously review and improve all 
aspects of their activities that directly affect patient safety, and to apply best practice 
in assessing and managing risks to patients, staff and others.  

The Healthcare Commission (HC) undertakes annual reviews of the provision of 
healthcare by each NHS organisation in England including PCTs, ambulance trusts, 
mental health trusts, and acute trusts. These reviews aim to verify compliance with the 
core standards, as well as the achievement against the developmental standards.  
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2.3   The Need for Integration 

In conclusion therefore, within the regulatory context both manufacturers of medical 
devices and healthcare service providers are regulated and are required to provide 
evidence that their devices and the services they provide are tolerably safe and meet 
acceptable standards of quality. The producer - consumer relationship of manufactur-
ers and healthcare providers has led to two regulatory contexts, which as yet show 
little integration. Healthcare service providers are required to use only certified medi-
cal devices, and they have to react to patient safety alerts (with respect to medical 
devices) quickly, but there is no integration of assumptions and evidence produced by 
the manufacturers into a demonstration of safety produced by the healthcare organisa-
tion. In complex systems, where local changes may have unexpected consequences in 
other parts of the system, this poses a serious cause for concern. In [10] it is pointed 
out that “validation of individual device design is an insufficient basis from which to 
conclude that use in context will attain the design performance levels”.  

The standards against which healthcare organisations are audited require healthcare 
providers to have a systematic risk management process in place. To demonstrate 
compliance with this requirement, healthcare providers produce prescribed evidence 
such as an official risk management strategy, including full allocation of responsibil-
ity and accountability, as well as evidence that the strategy is actually operational, 
such as minutes of risk management meetings. The regulator collects data throughout 
the year from a number of different sources. However, no formal argument (as re-
quired in aviation, for example) on the part of the healthcare organisation is required. 
This implies that assumptions and dependencies may not be documented properly, 
that interactions and unintended consequences of changes may go unnoticed, and that 
there are no formal notions of issues such as confidence in the evidence or diverse 
evidence to mitigate possible uncertainty.  

Having identified and described the current regulatory context, we will briefly ex-
plore in the remaining sections the role that safety cases could play in managing tech-
nical and organisational changes.  

3   Assessment of Technical Changes 

This section describes a possible technical change in a hospital context. The demon-
stration of adequate levels of safety for complex systems cannot be achieved at the 
level of the individual device. The actual changes taking place within the setting de-
pend on the particular history of that setting, and are a result of the numerous interac-
tions of a variety of actors and other sub-systems.  

It is argued that a goal-based safety argument at the hospital level could facilitate 
the assessment of potentially adverse implications of the change and would enable an 
analysis of dependencies that might otherwise go unnoticed. The safety case becomes 
a tool for documenting assumptions and dependencies, and for the systematic identifi-
cation of predictable, yet otherwise difficult to spot, interactions, both locally, where 
the change is introduced, as well as in other areas of the hospital.  
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G1: Services provided are safe

G1.1.2: Health care processes and working 
practices prevent or reduce the 
risk of harm to patients

G1.1.2.1: Patient safety incidents are identified
and lead to improvements in practice
based on local and national experience  

G1.1.2.2: Patient safety alerts are acted
upon within the required time scales   

G1.1.1: All relevant hazards controlled
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List of assumptions, e.g. 
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Local incident
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AArgue that there is 
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Fig. 2. Simple top-level argument fragment 

G1.1.1: All relevant hazards controlled

G1.1.1.1: Relevant 
hazards identified   

G1.1.1..2: Relevant 
hazards risk 
assessed   

G1.1.1..3: Relevant 
hazards eliminated   

G1.1.1.4: Relevant 
hazards ALARP 

G1.1.1.5: Effectiveness 
measured   

Ref. to 
relevant sections 
of FHA

Ref. to 
description
of monitoring
process

 

Fig. 3. Simple top-level argument fragment (ctd.) 

Medication administration on a typical ward within a hospital relies on the nurse’s 
matching of patients to the identity and quantity of drugs to be administered [19]. 
Usually such practices are not risk-assessed. However, clinical risk management will 
aim to ensure that all incidents concerning patient mismatching are reported, and best-
practice guidance issued by agencies such as the NPSA is implemented.  

Structurally a safety case would include as evidence a risk assessment of the above 
activities that would support the claims that all hazards have been identified, risk-
assessed, and eliminated or reduced to be as low as reasonably practicable. This in 
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turn could support the claim that all relevant hazards have been controlled. For the 
sake of illustration a simplistic top-level argument fragment is presented in fig. 2 and 
fig. 3 (in GSN format [12]). The construction and description of a detailed top-level 
argument is beyond the scope of this paper and remains future work.  

G1: Hazard:  Risk associated with 
patient receiving wrong drug due 
to wrong labels is tolerable

G1.1: Severity < x G1.2: Probability < y

G1.1.1: Severe adverse events are 
detected within an appropriate 
time frame

Periodic checks 
by nurse / dr

ASS1: 
Nurse / doctor are close 
by and conduct checks

Argument over probability of failure 
in pharmacy and of nurse

G1.2.1: Probability of nurse’s 
failing to perform x-check 
successfully < p1

G1.2.2: Probability of 
Pharmacy’s labelling drugs 
wrong < p2

HRA
Past 
experience

S

A

 

Fig. 4. Hazard mitigation argument 

An example of a possible hazard mitigation argument forming part of the (hypo-
thetical) Functional Hazard Analysis (FHA) is depicted in fig. 4. The argument is 
intended to demonstrate that the risk associated with wrong drug labels is tolerable. 
The argument relies on three key claims as well as one essential assumption: 

 
 Claim G1.1.1: The most severe adverse events are caught in time, thus reduc-

ing overall severity  
 Claim G1.2.2: The probability of wrong labels is less than p2 
 Claim G1.2.1: The probability of the nurse’s not performing the cross-check 

is less than p1 
 The assumption (ASS1) is that there is always a nurse or a doctor close by 

and that they are attentive to changes in the symptoms of the patient. 
 
Consider now a situation where the claims pertaining to the nurse (G1.2.1) and to 

the pharmacy (G1.2.2) are considered to be untenable, and a technological solution, 
namely bar-coding, is proposed as a means of conforming to the required targets. The 
bar-coding hardware and software will be identified as a medical device, and the 
manufacturer will have conducted and documented a risk assessment of the device. 
The hospital as a consumer would purchase the device possibly with initial support 
for installation and operation. In purchasing the equipment the hospital would be 
required to conduct its own risk assessment.  
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G1.2: Probability < y

Argument over probability of failure 
in pharmacy and of nurse

G1.2.1: Probability of 
nurse’s failing to perform 
x-check successfully < p1

G1.2.2: Probability of 
pharmacy’s labelling drugs 
wrong < p2

Maintenance 
schedule

S

ASS2: 
Nurse follows procedures

A

G1.2.1.2.1: Device 
unavailability < m

G1.2.1.2.2: Device
pfd  < n

Reference to
manufacturer
data

G1.2.1.1: Prob. of
nurse as a back-up
not successful < p3

HRA

G1.2.1.2: Prob. 
x-check fails < p4

ASS3: 
Hospital Information 
System available & 
accessible A

 

Fig. 5. Modified hazard mitigation argument (probability branch) 

The paper focuses on the (possible) modifications to the (hypothetical) hazard 
mitigation argument pertaining to the support of claim G1.2.1 (probability of nurse’s 
failing to perform cross-check successfully) as illustrated in fig. 5. An assumption 
(ASS2) would now be required that the nurse follows the new procedures (i.e., uses 
the bar-coding device to identify patients, and then administers drugs to the previ-
ously identified patient). The support comes from a pair of claims relating to the 
probability of failure of the bar-code x-check (G1.2.1.2), and to the fact that the nurse 
will act as a back-up in case there is a problem with the bar-code x-check (G1.2.1.1).  

There is an assumption that the Hospital Information System (required for a suc-
cessful x-check) is available and accessible through the network (ASS 3). The bar-
code x-check claim (G1.2.1.2) is supported essentially by reference to the probability 
of failure on demand as supplied by the manufacturer’s documentation (G1.2.1.2.2). 
In addition, the implicit assumption that the bar-coding hardware is available to the 
nurse and operational is made explicit (G1.2.1.2.1).  

To ensure that the availability claim is supported by valid evidence, sufficient 
technical staff time has to be allocated, training will have to be provided, facilities 
may have to be changed and so on. Establishing that this evidence is required may 
have the effect of altering the activities of the technicians (they may have to do work 
on wards when they previously did not), it requires their time, and it may conflict with 
similar statements made elsewhere for other hardware. In fig. 6 this is illustrated by 
the link to an argument fragment claiming the availability of pharmacy label printers 
(i.e. a completely different context). Potential conflicts are of particular concern in the 
sense that they represent a class of assumptions about dependencies that often remain 
undetected. 

Fig. 6 illustrates also a second instance of possible conflict due to shared resources. 
The assumption that the Hospital Information System (HIS) is accessible presupposes 
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the availability of network capacity and in turn implies a resulting load on the net-
work. This could conflict (in particular when failure scenarios are considered) with 
similar assumptions made elsewhere, for example an assumption made in the inten-
sive care setting, where fast access to drugs is essential. The assumption is about a 
different system (HIS on the one hand, pharmacy system on the other hand), but they 
are linked through the shared network resource.  

G1.2

Argument

G1.2.1 G1.2.2

Maintenance 
schedule

S

ASS2

A

G1.2.1.2.1 G1.2.1.2.2

S3

G1.2.1.1

S1

G1.2.1.2
ASS3: 
Hospital Information 
System available & 
accessible A

G1.2

Argument

G1.2.1 G1.2.2

Maintenance 
schedule

S

ASS2

A

G1.2.1.2.1 G1.2.1.2.2

S3

G1.2.1.1

S1

G1.2.1.2
ASS3: 
Hospital Information 
System available & 
accessible A

G1: Label printer
available

Maintenance
schedule

Backup
printer

Pharmacy: 

G2: Time until 
drugs available <x

Automatic 
Dispensing
Unit

Manual
backup

ASS1: 
Pharmacy system
accessible

A

Intensive Care: 

 

Fig. 6. Example of possible interactions 

Two problematic issues have been outlined through this scenario: The first prob-
lem arises from the fact that medical devices and healthcare providers are certified 
and audited separately. Assumptions and information “hidden” within the documenta-
tion of the medical device may not be acknowledged or used properly within the au-
diting process of the healthcare provider. Likewise, device manufacturers possess 
only limited information about the specifics of the settings within which their devices 
will be employed, and of the systems which the devices will become part of. 

The complexity of the setting with the resulting tight integration of the various ac-
tivities within the healthcare organisation implies that changes cannot be assessed 
properly within their local context in relation to the activities that are immediately 
affected. Secondary effects may propagate throughout the organisation. These effects 
may have unintended or adverse consequences if not properly taken into account.  

A (more) formal demonstration of safety in the form of an explicit argument could 
be a valuable tool. Such a demonstration would need to integrate information and 
assumptions of arguments produced by manufacturers into the larger perspective of an 
organisation-wide safety argument. The process of producing a formal argument 
could in itself prove to be valuable, as it would prompt risk managers and other stake-
holders to reason about such issues. In addition, once such an organisation-wide 
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argument exists that makes all assumptions explicit, it will facilitate the assessment of 
both direct and secondary effects of changes, as well as previously hidden or un-
documented dependencies.  

The process for identifying dependencies and interactions followed in this paper 
consisted of the identification of newly added solutions, assumptions, and changes to 
the context elements, and the subsequent search for occurrences elsewhere. In the ex-
ample above, the common elements were shared resources (maintenance personnel, 
network). This is similar to the process outlined in [14] for safety case maintenance. A 
more formal approach is conceivable as well. [20] describes an approach that augments 
each claim with a UML context representation. In cases, where all claims are specified 
using a formal language, shared occurrences could be detected automatically.  

The dependencies and interactions that can be identified with such an approach are 
“predictable”, i.e. a person with a thorough understanding of the overall system is 
expected to spot them. In this respect, the approach can be regarded as a tool contrib-
uting to a thorough understanding of the system. However, complex systems also 
exhibit emergent forms of behaviour that cannot be predicted in such a way. While 
the next section outlines that the safety case approach may still be a valuable tool at 
higher hierarchical levels, it becomes also clear, that novel approaches to risk assess-
ment and to safety case construction are required to take account of the complexity of 
healthcare organisations.  

4   Assessment of Organisational Changes 

A major concern in the NHS has been the problem of patient waiting times. Treatment 
waiting times of up to 18 months are to be reduced to a target of 18 weeks for the 
entire “patient journey”. One of the changes directed at achieving the aims of higher 
quality, personalised care, and reduced waiting times is the introduction of specialist 
nurses as mediators between primary and secondary care. A simplified scenario is 
described below in order to explore the implications of such change (see [21] for a 
detailed description). 

Urinary tract infections (UTI) in children may lead to renal scarring and other ad-
verse consequences when not diagnosed and treated quickly and adequately. The 
previous referral pathway for the investigation of childhood UTI required often a 
minimum of three interactions between practitioners and the children and their par-
ents, taking up to a year.  

The aims of the introduction of a UTI specialist nurse included improved aware-
ness among primary care teams, increased detection rates, reduction in time required 
of patients and parents, streamlined working with other agencies involved in the in-
vestigation process, reduction in overall duration of the process, and improved rela-
tionship with patients and parents.  

The new solution is a nurse-led service for childhood UTI, combined with an edu-
cation package for primary care teams, and available telephone support. The specialist 
nurse is autonomous, not supervised directly by a consultant. The nurse acts across 
the interface between primary care and secondary care. A consultant gets involved 
only when the nurse determines that a particular case requires such attention based on 
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clinical judgment. The nurse will make decisions based on the test results, and she 
will inform both the GP and the patient and parents promptly.  

Proactive assessment of such change is not straightforward as comprehensive rep-
resentations of how the various actors and systems interact for the whole system are 
more or less completely absent even though limited safety cases of sub-systems some-
times do exist for the local environment.  

The interface between primary and secondary care leads to a large number of inter-
actions. The GP decision-making process is now different, from a diagnosis to a fast 
referral for in-depth consideration by the specialist nurse. This will release GP re-
source and will modify the GP’s communication and relationship with hospital con-
sultants. Testing services will interact only with the specialist nurse. The Consultant 
will deal with a smaller proportion of cases. There will be a redistribution of resources 
to finance the new role on part of the Hospital Trust. The far-reaching consequences 
of this change (consequences that have only been hinted at) can only be assessed with 
proper models of the organisation, and in particular with models of how the organisa-
tion achieves safe operations. This becomes even more relevant when this change is 
seen in the broader view of all the other changes taking place concurrently. In addi-
tion to the UTI specialist nurse, other similar specialist roles are being introduced 
(e.g. diabetes, palliative care etc.), all changing the activities of GPs, consultants, test 
facilities, patients and so on, and all possibly interacting with one another.  

A formal safety argument could be used to make explicit how the overall organisa-
tion is achieving safe operations by making explicit the assumptions, dependencies 
and interactions that could be used to identify and to resolve interactions between 
changes. To make the use of such a safety argument possible a number of problems 
would need to be addressed. Currently, manufacturers of devices are certified by the 
Competent Authority. Healthcare providers (PCT, NHS Trust etc.), on the other hand, 
are audited independently by the HC. As already discussed changes often cut across 
sub-systems and responsibilities and may involve transfer of responsibility, transfer of 
resources and introduction of new technologies all at the same time. Any overarching 
safety argument would need to integrate information from all of these actors and, for 
this to happen, one actor would need to take overall responsibility. The SHA seems a 
possible candidate for this as it is involved in the process of performance monitoring 
of the healthcare providers, whereas auditing is increasingly being taken over by the 
HC. The SHA could thus assume the responsibility of compiling a safety argument 
for its area of responsibility. This safety argument would function as a tool within the 
management of change process rather than being part of the auditing process (as the 
HC does not audit the SHA) and would contribute to the achievement of the SHA’s 
aim of providing higher-quality care within its region.  

Achieving management of change through such arguments presents problems for 
the developers of safety arguments. They would need to integrate a substantial num-
ber of autonomous actors and would need to develop an underlying model upon 
which the argument could be constructed. Traditional analytical models often fall 
short of providing adequate representations of organisations. A decomposition of the 
organisation into its elements for analytical reasons would not be an appropriate way 
of dealing with the emergent properties resulting from the manifold and complex 



 Demonstration of Safety in Healthcare Organisations 231 

interactions of all the elements of an organisation. Alternative models and representa-
tions are required that can interpret the organisation’s defences or barriers in terms of 
human activity, and make this explicit to prevent unwanted and unsafe interactions. 

5   Conclusion 

This paper discusses the role that a safety argument might play in managing the safety 
implications of organisational change. Specifically, healthcare organisations are com-
plex systems characterised by a large number of interactions and interrelationships. 
Safety of such complex systems is an emergent property of these interactions. The 
complexity of healthcare organisations, the large number of autonomous actors, and 
the disjoint regulation of healthcare providers and medical device manufacturers ren-
ders the assessment of the implications of change very difficult. The paper demon-
strates that the construction of a safety case at the appropriate level can be a useful 
tool for identifying possible predictable interactions and dependencies.  

However, the complexity of whole-system safety arguments makes the possibility 
of their construction and management a matter of concern. The example of organisa-
tional change used for illustration was relatively simple involving few agents and yet 
many issues emerged through the discussion. For example no one actor in the organi-
sation has responsibility for maintaining the whole safety of the system and therefore 
the overall safety argument. It is not clear how well existing argumentation techniques 
would manage the unforeseen emergent properties of these complex systems. As yet 
no systematic techniques exist for managing effectively change through these argu-
ments – an issue that we wish to explore in our future research agenda. 

As indicated in the introduction, we are particularly interested in exploring ways of 
assessing risks and of demonstrating safety that take into account the fact that certain 
patterns of behaviour exhibited by the system are emergent and cannot be predicted 
using traditional decomposition. This undertaking is somewhat aporetic, and may 
consequently require a debate about the perception and acceptability of risks, and the 
reformulation of the purpose of safety arguments. Maybe the emphasis will need to 
shift towards more reliable monitoring of system performance and faster and more 
flexible reaction to abnormalities, while at the same time accepting that some acci-
dents are inevitable [5].  
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Abstract. In this paper, we have designed and modeled the ubiquitous RFID
healthcare system architecture and framework workflow, which are described by
six classified core players or subsystems, and have also analyzed by an economic
value-chain model. They consist of the patient and wearable ECG sensor, net-
work service, healthcare service, emergency service, and PKI service providers.
To enhance the security level control for the patient’s medical privacy, individ-
ual private and public keys should be stored on smart cards. All the patient and
service providers in the proposed security control architecture should have suit-
able secure private and public keys to access medical data and diagnosis results
with RFID/GPS tracking information for emergency service. By enforcing the
requirements of necessary keys among the patient and service providers, the pa-
tient’s ECG data can be protected and effectively controlled over the open medical
directory service. Consequently, the proposed architecture for ubiquitous RFID
healthcare system using the smart card terminal is appropriate to build up medical
privacy policies in future ubiquitous sensor networking and home networking en-
vironments. In addition, we have analyzed an economic value-chain model based
on the proposed architecture consisting of RFID, GPS, PDA, ECG sensor, and
smart card systems in large-scale wireless sensor networks and have also ana-
lyzed two market derivers – customer demands and technology – in the proposed
service architecture using the value-chain model. Finally, policy modeling for
privacy and security protection for customers, service providers, and regulatory
agency is considered to promote beneficial utilization of the collected healthcare
data and derived new business of healthcare applications.

1 Introduction

Recently, electronic healthcare systems have extended to ubiquitous healthcare systems
such as personal home networking healthcare. They enable medical professionals to
remotely make real-time monitoring, early diagnosis, and treatment for potential risky
disease, and to provide the medical diagnosis and consulting results to the patient via
wired/wireless communication channels. In addition to new ubiquitous medical equip-
ments for patients (e.g., wearable healthcare sensor systems), smart home/sensor net-
works, radio frequency identification (RFID), public-key infrastructure (PKI), and Grid
computing technology for large-scale physiologic and electrocardiogram (ECG) signal
analysis have been studied and developed [1]-[8].
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In spite of all the research and development in ubiquitous healthcare systems for a
variety of applications, the system should still have to address both access control and
privacy protection issues for the patient’s individual medical data. These problems are
serious when unauthorized persons or groups trying to monitor and access to the sys-
tems, remotely and stealthily. The problem can be complicated since it is possible to
collect the patient’s medical data from a wide variety of ubiquitous sensor nodes and to
track an individual patient’s location in ubiquitous networking world. To address those
issues systematically, advanced study of privacy and security control architecture is
critical. We have designed and modeled an architecture based on RFID and smart card
technologies for ubiquitous healthcare in wireless sensor networks. Our novel architec-
ture can effectively protect personal medical data and diagnosis results [4],[9]-[11].

Additionally, a need for an efficient method of storing personalized medical data,
while providing security, reliability and portability, has arisen for ubiquitous RFID
healthcare system in large-scale wireless sensor networks. The current PC-based smart
card terminal should not only be designed to interface with smart cards and to control
the retrieval or storage of data on the card but should also consist of several hardware
components [12]. The microprocessor, memory, and the other hardware components
needed for data encryption are embedded in the IC chip of the smart card. Therefore,
smart cards are usually used in the area of wireless sensor networks. There is a need
for smart card terminal-based systems with technical specifications for specific IC card
operations [13],[14].

Finally, most research for new system architectures has only focused on technical
aspects. In this paper, however, we have described not only the technical approach but
also performed economic evaluation of the architecture using a value chain model and
proposed policy modeling process of privacy and security protection. The value chain
is a systematic approach to examining the development of competitive advantage and it
was introduced by M.E.Porter [16]. The chain consists of a series of activities that create
and build value. Moreover, it serves a useful analytical tool of emerging new system
or service, particularly under rapidly changing telecommunications environments [17].
Thus, this paper describes that a value chain of the healthcare system and core players
of each stage exist for value creation of RFID wearable sensor healthcare systems. For
the business value to make new healthcare industry, the system must operate based
on confirmed policies of privacy and security protection. For the policy modeling, this
paper proposes a scheme of confidentiality and patient-identifiability to utilize collected
healthcare data for public benefit. Service providers are required to allocate privacy and
security rules to procedures and technologies to implement the levels of protection.

2 Architectural Design Process

2.1 Ubiquitous RFID Healthcare System

In the proposed security control architecture for ubiquitous healthcare system, we use
radio frequency identification (RFID) tag, wearable electrocardiogram (ECG) sensor,
smart card, Grid computing, PhysioNet, wired/wireless networks, and public-key in-
frastructure (PKI) technologies. The system architecture and framework are described
by six classified core players or subsystems as shown in Figure 1.
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Fig. 1. The schematic diagram consisting of six core player or subsystems with their individ-
ual components and functions at privacy and security control architecture for ubiquitous RFID
healthcare system

They consist of the patient (PAT) and wearable ECG sensor provider (WSP), network
service provider (NSP) with encrypted medical database and Grid computing, health-
care service provider (HSP) with PhysioNet database, emergency service provider
(ESP), and PKI service provider (PSP) with certificate and directory databases. The
individual private and public keys should be stored on the smart card and be used to
enhance security level control for the patient’s medical privacy.

The WSP supplies its wearable ECG sensor system with RFID tag to the PAT, whose
tag has unique identification information for the wearable sensor node. In order to pro-
tect the patient’s privacy, all of the providers only recognize and use the tag information,
instead of directly accessing to the patient’s personal data. In addition, unique RFID tag
information can be also used to track a patient in wearable RFID sensor system for
emergency service by the ESP under ubiquitous RFID terminal network environments.

All individual public keys with correspondence to each private key should be stored
on the PKI key server at the PSP. To verify the unique identification of each player or
subsystem, the certificate of each public key should be issued by using the private key
of the PSP and be stored on the PKI directory server. Then, both the certificates and the
public key with correspondence to the private key of the PSP should be in service to all
of the patient and providers via wired/wireless secure communication channels.

2.2 Security Features of Healthcare Smart Card

Digital Signature. A smart card can carry all the data needed to generate the holder’s
digital signature in sensor networks. The main components are encryption and
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Fig. 2. The first processing sequence required to generate a digital signature for authentication
purposes in ubiquitous RFID healthcare systems

decryption keys (private/public key pair) and a signed digital certificate. Digital signa-
tures use a method of encryption and decryption known as ‘asymmetric.’ This method
uses two keys, one to encrypt and the other to decrypt. If a message is encrypted using
one key, it can only be decrypted using the other. These key pairs need not both be
secret.

In ‘public-key encryption’ systems, one key is private, the users, and the other is the
public domain. Note that in these cases, key distribution is trivial since the private key
is never conveyed to anyone and the public key is available to everyone. An electronic
signature cannot be forged. It is a computed digest of some text that is encrypted and
sent with the text message. A digital signature ensures that the document originated
with the person signing it and that it was not tampered with after the signature was
applied.
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Smart Card Authentication. As shown in Figure 2, you have to have access to that
public key. Not only do you need that access, but you also need to be sure that the public
key you obtain really is the public key for the person in question. One way to verify the
validity of a public key is to sign it with yet another key, whose public key you know to
be valid. Thus, it belongs to a trusted third party and a patient’s smart card. This is the
‘signed’ digital certificate [15].

Public-Key Infrastructure. A Public-Key Infrastructure (PKI) is a collection of ser-
vices that enables the use of public-key encryption techniques. The functions of a PKI
include creating digital certificates, storing public keys, and tracking expiration dates
of certificates. A public key obtained through a PKI is trustworthy. By managing these
keys and certificates, an organization, such as the National Health Service (NHS), es-
tablishes and maintains a trustworthy networking environment. The existence of a PKI
is therefore a critical factor in the use of the HPC in the NHS.

As commonly used, a digital certificate contains: (1) an expiration date, (2) the name
of the certifying authority that issued the certificate, (3) a serial number, (4) the digital
signature of the certificate issuer and the Certification Authority (CA), (5) the identity of
the registered holder, and (6) the holder’s public key. Using smart cards in conjunction
with a PKI implies that the CA issues the card with certificates and key pairs already
written on it. This would apply both to the healthcare professional card and the patient’s
data card. Signed public keys are stored in a public directory. In the NHS, this would
be the managed directory service [15].

2.3 Functions of Healthcare Smart Card

Login Process. The Healthcare Professional Card (HPC) is the core of the login pro-
cess, which involves verification of the user and authentication of the HPC. Authenti-
cation is the process that identifies and validates either the principal(s) involved in a
transaction, or the origin of a message. We assume for the sake of illustration that the
HPC holder wishes to use a healthcare application. We also assume that the application
is a client/server system with a wireless PDA acting as the user terminal and that it is
fitted with a smart card terminal.

The first part of the login process will comprise the user inserting the HPC into the
terminal. The application will request the HPC to generate the holder’s digital signature.
At the same time, the application will request the user to enter identification details. This
will enable the application to verify that the user is the authorized holder of the HPC
and that the card is genuine, and then start the session. The user identification might
include the use of a Personal Identification Number (PIN) or password. This method
has often been dismissed as ‘weak’ security and easily compromised. However, this
is not necessarily the case, and the weaknesses often lie in sending clear text to the
authentication server [15].

Request and Response Procedures. The authentication process performed by the ap-
plication is achieved using a request and response procedure employing the crypto-
graphic algorithm recorded on the HPC. To authenticate the HPC, the system requests
the card by sending a random number. Figure 2 shows the first part of the request pro-
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Fig. 3. The second processing sequence required to generate a digital signature for authentication
purposes in ubiquitous RFID healthcare systems

cess. i.e., the ‘message’ sent to the card being the random number. The card uses this
number and its own secret (private) key as input to its cryptographic algorithm [15].

The output of the calculation is then transmitted to the application as a digital sig-
nature. The application decrypts the signature using the public key obtained through
the Public-Key Infrastructure (PKI). It compares the result with the original. If the two
match, the card is considered to be genuine. Figure 3 shows the authentication process,
the second part of the request-response. The application obtains the public key for the
user from the PKI, using the identification details supplied.

Authentication and Access Control. For security purposes it is necessary for the
healthcare application to check that the card is genuine. This means that the card must
be issued by the National Health Service (NHS) Certification Authority (CA) for the
holder’s GP and initialized with signed security data. For the Healthcare Professional
Card (HPC) and Patient’s Data Card (PDC) interaction, two services are required as
the PDC has to prove its authenticity and the healthcare professional has to prove ac-
cess rights [15]. When proving access rights, an authentication procedure has to be
performed. If after successful authentication a read or update command is performed
on a smart card file, the application has to verify that the respective security condition
described in the security attributes of this PDC file is fulfilled. Access rights can be
expressed in terms of either individual professionals or identifiable groups, or both. The
problems with the application can therefore be complicated by the need to recognize
the HPC holder as a member of an access group [15].
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The PDC authentication procedure assumes that the professional has already logged
into the healthcare application using an HPC. The patient holds a healthcare smart card,
which is plugged into the auxiliary card terminal. The PDC is authenticated by the
challenge-response method. This entails the professional entering the patient’s NHS
number at the user terminal.

Authentication proves that the PDC belongs to the NHS number supplied and was
created by an authorized professional. When the application reads data from the card,
it checks that the professional currently in session has the right to access that data. If
not, the application will inform the professional that access has been denied, but pro-
vide an override facility for emergency purposes. If the professional makes a decision
that affects the card’s data, the application will check that the professional has the right
to amend the data. If the professional is not authorized, an emergency override facil-
ity will be offered [15]. Any data written will have the professional’s digital signature
attached. Referring to Figure 2, the ‘message’ represents the data to be written to the
card. The digital signature is a function of the data written. Therefore any later unau-
thorized attempt to alter the data written will result in the digital signature not matching
the data.

3 Architectural Integration Process

In the proposed architecture combined with wearable and wireless sensor network envi-
ronments, the patient’s ECG signals should be automatically measured and periodically
stored on the internal flash memory of the wearable ECG sensor system. The stored
medical raw data will be transferred to the patient’s or medical professional’s wireless
PDA with a 2-way double-type smart card terminal or GPS smart phone. For the data
transfer, near-field wireless communications such as the Bluetooth wireless technology
is used. The transferred data should be encrypted by using the patient’s one-time secure
key at the handheld devices.

As illustrated in Figure 4, all the data in wearable ECG sensors as well as analyzed
data in Grid computing with PhysioNet should be encrypted by using an individually
generated one-time secure key with expire-time by the PAT’s and HSP’s private keys,
respectively. Additionally, the issued one-time secure keys are also encrypted by us-
ing public keys of the patient and pre-approved service providers. These encrypted
medical data and encrypted secure keys will be also transferred to the network ser-
vice provider via secured communication channels in wired/wireless networks. The en-
crypted data and keys with unique RFID tag information should be stored on the secured
database directory of network service provider. The database meta-schema has de-
crypted and encrypted fields, that are used to make access control among the patient and
providers.

4 Economic Value Modeling Process

Value chain is the linkage and integration of a series of activities in which enterprises
deliver the created and valued products or services to customers. The value chain of en-
terprises is essentially encompassed in a broader value system. This consists of activities
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Fig. 4. The schematic diagram consisting of five core player or subsystems without public-key
service provider

such as design, production, marketing, distribution, and support to the final consumer
[16]. In the value chain of ubiquitous system, however, subsystems of the existing value
chains are regrouped in response to major function of system’s players. The proposed
six classified core players in large-scale wireless sensor networks should match with
five activities in value chain corresponding to common function. The Figure 5 shows
the players of each activity. Therefore, the reconfiguration value chain of the system
consists of four parts; sensing, networking, diagnosis, and acting stages. Figure 6 shows
the reconfigured value chain. Each stage has its own customer demands and technology
derivers that define the speed and direction of evolution path for RFID wearable health-
care systems. Customer evaluates and responses the service level of health care system.
Their responses are not only critical of success and failure of the system but affecting
the scale of service market. Additionally, evolution of each technology accelerates new
system. Two major market drivers – customer demands and technology – can be defined
by stages.

Sensing Stage. In the sensing stage, it is essential to have a precise awareness and
convenient sensing technology. Through the ubiquitous RFID/GPS technology, the
patients can be diagnosed in any place at any time so that the importance character-
istic of this stage is sensor and sensing technology such as wearable ECG sensor.
Additionally patients can feel comfortable to attach senor without any trouble. The
technology for sensing is RFID technology in terms of weight and easy of use (e.g.,
tag, reader, and server).

Networking Stage. The following stage is networking. Privacy and security are crit-
ical for the customer, especially in this stage. Network service provider provides
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Fig. 5. The players and activities of RFID wearable healthcare system in large-scale wireless
sensor networks

wireless sensor networks, and PKI service provider supports high-level encryption
and decryption algorithm for the protection of patients’ medical data. Thus, the two
players carry out important technical issues. Moreover, high-bandwidth infrastruc-
ture for huge data handling is also essential.

Diagnosis Stage. The third stage is a diagnosis stage. The correct and high-quality
diagnosis service of a medical specialist is major customer needs based on the
collected patients’ medical data. The major technical issue of this stage is grid
computing technology. It also provides the ability to perform computations on large
medical data sets and to accomplish more computations at once with accuracy.
From the accumulating patient’s medical data, healthcare service provider analyzes
the symptom and prescribes the medicine or treatment.

Acting Stage. Finally, last stage is an acting stage which is the reaction and control
of hospital or pharmacy for the diagnosed patients. Emergency service provider
(ESP) can be a core player of this stage. When any alerts from the diagnosis is
announced, the ESP can track him through location-based system and then it gives
expediency and bring the patients to the proper hospital or organization within a
short time. The technology issue of this stage is location-based sensor and sensing,
for example, RFID and GPS.
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Fig. 6. The economic value-chain model of RFID wearable healthcare systems in large-scale
wireless sensor networks

The former two stages (sensing and networking) are based on the technology. To have
comparative advantage in those business cost reduction, standardization for the market
domination, and partnership between network provider and PKI service provider are
necessary. The latter two stages (diagnosis and acting) are for the service from hospital
or pharmacy. ESP can be a good business model for these stages. What we have to
consider in terms of business is service pricing, customer relation management (CRM),
advertising, and subscription model.

5 Policy Modeling Process

For the business about healthcare information, customer’s privacy concern is not con-
fined within unauthorized access but extended to the scope of its utilization for business.
Although RFID and smartcard can offer access control and privacy protection for a spe-
cific service, the customer always worries about the abuse of private information, and
the provider always wants to create economic value from the information to make new
business. Therefore, we need a set of rules to make a compromise between the protec-
tion and the utilization of private information. We describe policy modeling process that
can be deployed to the healthcare system on the sensor networks.

Generally disclosure of private information has negative effects on the attitude to
the related service. In other words, the customer undertakes some cost based on the
quality and quantity of their private information. The cost depends on some factors,
such as importance of the information for the service proposition, legitimacy of col-
lecting the information, and perceived difficulty of response [19]. At the case of the
proposed sensor networks, they may relive the difficulty of response, but the customer
does not easily control the flow of critical information. One approach to empower the
customer to control private information is the standard of Platform for Privacy Pref-
erences Project (P3P). On the platform, a user’s Internet browser and a web site con-
tract the degree of privacy disclosure based on the user’s privacy preference and the
site’s P3P profile [20]. Such a contract-based approach is more useful when many ap-
plications are provided on the sensor networks because it relieves the user’s burden
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Fig. 7. The categories and required privacy protection levels of healthcare information in large-
scale wireless sensor networks

of manual confirmation and promotes development of various derived services. Based
on the contract, service providers can develop new business and research for public
benefit.

To classify the sensitivity of healthcare information, we use a scheme of confiden-
tiality and patient-identifiability of the information [21]. However, the proposed ap-
plication also collects GPS data, which may be potentially used to identify the pa-
tient combined with other trivial information. Therefore, we add one more category on
patient-identifiability, and consider privacy protection levels respectively as shown in
Figure 7. For the information with confidentiality, its scope of utilization is broadened
as the information lacks patient-specific data. If the information is not secret, patient-
identifiable information must be anonymized to be used outside. At the case of potential
risk of patient-identification, separating location data from other information is a possi-
ble solution to protect privacy. Regulatory agency may play a role in making the policy
and persuading customers because it costs too much for each service provider to de-
velop the policy case by case.

For service providers, the levels of privacy protection are implemented through a set
of security and privacy rules. Since the system can not operate without manual proce-
dures, the rules are enforced via procedures and via technologies [22]. For example,
transferring critical data to removable electronic media or hardcopy involves security
rules allocated to procedures. However, most of a healthcare system is protected by
secure technology about user management, data management, logging and accounting,
digital signature, and so on. Recently Health Insurance Portability and Accountability
Act (HIPAA) in the USA explicitly mentioned the security and privacy regulations [23].

Consequently, as shown in Figure 8, healthcare systems on sensor networks face new
challenges in policy-based privacy protection. As the customer must control the privacy
information, the service provider must be able to make new business. The regulatory
agency coordinates them and pursues public benefit. Policy models of privacy protec-
tion levels and security rules are indispensable to the goals of all players in healthcare
industry.
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6 Conclusion

In the proposed privacy and security control architecture for ubiquitous RFID health-
care systems in large-scale wireless sensor networks, all of the patient and providers
need suitable secure private and public keys in order to access to ECG medical raw data
and diagnosis results with RFID and GPS tracking information for emergency service.
By enforcing the requirements of necessary keys among the patient and providers, the
patient’s ECG data can be protected and effectively controlled over the open medical
directory service of network service providers. Consequently, the proposed architec-
ture for ubiquitous RFID healthcare system is appropriate to build up medical privacy
policies. The architecture can provide a new business model to wired/wireless network
service providers. In the future, the system architecture workflow and protocols will be
modeled and verified using Petri nets.

The new emerging system and service have only been considered customer require-
ments analysis, systems design, integration, implementation, and verification passing
over economic aspects. However, this paper analyzes not only the verification of pro-
posed system architecture in technical aspect but also evaluating economic value cre-
ation through developing an economic value-chain model. The value chain model devel-
oped in this paper is also reconfigured in response to common function of classified six
players. The reconfiguration value chain of the system describes five activities: (1)cus-
tomer, (2)sensing, (3)networking, (4)diagnosis, and (5)acting stages. The results show
that the customer is the patients, the sensing stage contains wearable ECG sensor, the
networking stage has network service provider and PKI service provider, the diagnosis
stage has healthcare service provider, and the acting stage contains emergency service
provider. In addition, it should be analyzed customer demand and technology derivers
for four service providers. Therefore, this new value-chain should be contributed to a
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better understanding of RFID wearable healthcare system in large-scale wireless sensor
networks. It will be expanded by examining six players considering the evolution of
networks.

For the business the system must establish policies of privacy and security protec-
tion also. For the policy modeling, this paper proposes a scheme of confidentiality and
patient-identifiability to utilize collected healthcare data considering the characteristics
of ubiquitous service. Recent legislation specifies the obligation of service providers
to allocate privacy and security rules for privacy protection. The regulatory agency’s
coordination and enforcement are critical to the industry.
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Abstract. Many automotive electronic systems are safety related and therefore 
need to be developed using a safety process. A preliminary hazard analysis, 
PHA, is one of the first and vital steps in such a process. In this paper, two 
methods with different approaches are experimentally evaluated using an elec-
trical steering column lock system. The two methods are an adapted FFA, func-
tional failure analysis, method based on induction with generic failure modes 
and a method from ESA based on induction with generic low level hazards. In 
the evaluation, interviews and questionnaires are used to triangulate the results. 
Both methods are found to be applicable for hazard identification in the auto-
motive system context. The experiments conducted also show, with statistical 
significance, that the adapted FFA method is less time consuming and easier to 
use than the ESA method. Hence, the FFA method is found to be more suitable 
for hazard identification in early phases of development in this context. 

1   Introduction 

Active safety systems can, together with passive safety systems, increase road safety. 
Normally, active safety systems require complex implementations in both software 
and hardware. As these systems are inherently safety related they must be developed 
according to a rigid system safety process. 

One of the first steps in the safety process is to do a Preliminary Hazard Analysis, 
PHA [1]. The PHA includes identification of the system’s hazards and a consequence 
evaluation, a severity grading and exposure estimations of the identified hazards. A 
hazard is defined by Storey in [2] as “a situation in which there is actual or potential 
danger to people or to the environment.” The PHA serves several purposes in the 
system’s development, including early assessment of required safety level, elicitation 
of safety requirements, identification of safe states, and support to the organization in 
gaining an understanding of the system and its functionality. 

Automotive related standards, such as IEC-61508 [1], MISRA [3], and the working 
draft version of ISO-26262 [4], dictate the usage of early hazard analysis. These stan-
dards have slightly different guidance for determining the required safety level of the 
system given the list of hazards. The IEC-61508 defines Safety Integrity Levels while 
ISO/WD 26262 [4] defines a concept of Automotive Safety Integrity Levels. 
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The standards all target the development of safety related systems to ensure safe 
products and are currently used in the automotive industry. This is achieved by defin-
ing process requirements and detailed technical requirements. However, methods for 
performing the hazard identification are not specified in these standards, in order to 
allow adaptation to advancements and company specific practices. 

As the PHA is a critical step in the development process, an unsuitable identifica-
tion method will drastically reduce the trustworthiness of the safety argumentation for 
the system implementation, complicate development, and increase cost. Hence it is 
important to use a method that is both simple and identifies all relevant hazards. This 
paper evaluates two principally different methods for conducting hazard identifica-
tion, both of which provide the basis for the safety level classification. 

Figure 1 shows two different approaches to identifying hazards, from system fail-
ure modes and from low-level hazards. 

 

Fig. 1. Approaches to hazard identification 

Three different approaches for identifying system hazards have been identified: 
• Ad hoc or unstructured methods such as brainstorming. 
• Induction with generic failure modes, in which failure modes are applied to actua-

tors, functions or system states to identify the system hazards. FFA [5] and HAZOP 
[6] are typical examples of this type of method. 

• Induction with generic low-level hazards, in which a generic set of hazards is ap-
plied to the system components to derive the system failure mode. ESA [7] and 
FMEA [2] are examples of this type of approach. 
An ad hoc approach is highly dependant on the expertise of the engineers who are 

using it, since it does not provide structure or guidance. Therefore, it is not suitable 
for hazard identification for safety relevant systems. 

In this study, one method representing each of the approaches was selected for 
evaluation. The first method chosen was the ESA hazard analysis method [7] and the 
second method was an adapted FFA presented in [8]. The main criterion in choosing 
these two methods is that they are currently used in the automotive industry. 

2   Related Work 

The concept of PHA has been used in several standards in the area of system safety 
development and hazard analysis. The value of early hazard analysis has been thor-
oughly discussed by Leveson [9] and Storey [2]. 

The automotive industry is dependant on several standards. One standard is IEC-
61508 [1], which is a meta standard for developing functional safe systems and is cur-
rently in use in the automotive industry. The initiative for ISO-26262 [4] is working 
on an instantiation of the IEC-61508. A third standard is the MISRA guideline [3] that 
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provides a supplement in severity rating. All these standards include requirements on 
classification of the system based on hazard analysis. 

Hazard analysis is addressed in several methods such as FFA [5], HAZOP [6], Hi-
pHops [10], and an extended FFA proposed by Johannessen et al. [8]. 

Also included in hazard analysis is a root cause analysis. This provides a necessary 
basis for deriving detailed safety requirements. The state of the art for this purpose is 
the fault tree analysis, FTA [2]. This method, however, like FMEA, is better suited for 
later stages where more information about the system solution is available. 

3   Methodology 

The base of this study is an experiment, which is followed by a questionnaire and an 
interview to make it possible to triangulate the results. Hence, the study has an ex-
perimental set up with both qualitative and quantitative measurements. Figure 2 
shows an overview of the study. 
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Fig. 2. Research process overview 

In order to evaluate the methods, seven evaluation criteria were defined. Each 
evaluation criterion is presented in Table 1 with the corresponding metric and 
definition. 

Table 1. Evaluation criteria, corresponding measurement method and definition 

Evaluation criteria Measurement method Definition
Ease of use Questionnaire, interviews Subject's rating of the ease of use of the method.

Efficiency Experimental results, 
interviews

Time required to carry out the method.

Applicability Experimental results, 
interviews

Answers the question of whether the method 
serves the purpose of identifying the hazards.

Understandability Questionnaire, interviews Subject's rating of the method's learning curse

Confidence Questionnaire, interviews Subject's rating of perceived confidence in the 
method.

Level of engineering 
judgment

Experimental results, 
interviews

The method's inherent need for engineering 
judgment.

Scalability Experimental results, 
interviews

The growth of the information generated based on 
the system's size.  
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In order to determine which properties each of the methods provides, a statistical 
analysis was made of the empirical data from the questionnaire. This analysis was 
based on the following hypothesis: 

HX: There is no difference between the methods in regard to criteria X. 
To conduct the study, an experimental system was needed. Requirements were 

identified and four systems of different size and complexity were developed during 
the pre-study, in different detail levels. 

The descriptions of both methods and step by step instructions were developed 
based on the ESA standard [7] and the papers by Johannessen et al. [8] [12]. 

In the pre-study, a questionnaire whose purpose was to measure some of the above 
stated criteria was also developed. Further, the methods were applied to the experi-
mental systems in order to gain experience. The results were concluded to be the basis 
for a “Golden Run” and the experiences were noted and used as discussion material in 
the interviews. 

Given the limitations of the subjects' availability, it was decided that each subject 
should be able to complete the experiment and interview within four hours. Given 
these limitations, one experimental system, described in section 5, as well as a speci-
fied detail level of the system solution, was chosen. 

The experiment subjects were of two categories. The first category was safety ex-
perts and the second was Ph.D. students doing research in embedded automotive 
systems. The experiment subjects were divided into two sets, of which one started 
with the ESA method and the other started with the FFA based method. 

All subjects were asked to conduct a hazard analysis for the purpose of identifying 
the hazards based on their given role as an engineer responsible for the safety of the 
system. The researcher’s interference during the experiment was limited to clarifying 
questions regarding the system specification and the two method instructions. 

The results of the experiment and the time spent on each method were logged in a 
spreadsheet. 

The interviews were conducted to further investigate opinions and thoughts about 
the methods and hazard identification in general as well as to explore the potential 
bias of the subjects. Hence, an interview was held with each subject. 

The qualitative data from the experiment and the questionnaire were analyzed for 
descriptive statistics. The statistical test (the Wilcoxon matched-pairs signed ranks 
test [11] with p=0.05) was used for testing the hypothesis on the basis of the results of 
the questionnaire and the measured times. 

After completion of the experiment with all subjects, the “Golden Run” was up-
dated. Further, the questionnaire and interview data were compiled in a spreadsheet. 

The three data sources were used to verify the results, with the emphasis being on 
the interviews with the expert safety group. Further, the results of the analysis were 
discussed to evaluate the suitability of the methods for the given context. 

3.1   Validity Evaluation 

There are two basic threats to validity in this study. The first is that the sizes of the 
subject categories are small, and the subjects have similar backgrounds. The second is 
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the limited size of the experiment system. However, threats to validity can be dis-
cussed in terms of Conclusion, External, Internal and Construct validity according 
to [11]. 

Conclusion validity. The subjects received the same introductory lecture and were 
given the same material. It is thus unlikely that the subjects perceive the system and 
the methods differently, influencing the results excessively. However, the answers of 
human subjects are used and the measures gathered are therefore not fully repeatable. 

Another threat is that the chosen statistical test has too low a power, which results 
in a false hypothesis not being rejected. However, the Wilcoxon matched-pairs signed 
ranks test used in the analysis is a well known instrument and is a non-parametric 
alternative to the paired t-test. Measuring dependent variables is a threat to conclusion 
validity when treated as independent variables in the statistical analysis. However, in 
this study the criteria are fairly orthogonal and the interviews have been used for 
verification. 

Internal validity. Instrumentation, such as the questionnaire and interview technique, 
may be flawed. However, this is mitigated with triangulation with both qualitative and 
quantitative data. Further, the subjects are neutral to the research question and are 
therefore not constrained in their answers. Further, they all have a background in 
research oriented work and thus have limited their potential bias.  

The subjects' maturity in conducting the second method may also be a threat since 
the same experiment system is used for both methods and a subject can learn from the 
first method. This is mitigated by dividing the subjects into two sets, one starting with 
the ESA method and the other starting with the FFA method, which should balance 
this effect. 

Construct validity. Interviews and questionnaires developed during the pre-study are 
dependent on subjective measurements, which are difficult to define using a scale. 

However, the questionnaire is designed to be as non-leading as possible and to re-
flect only the opinion of the subject himself. 

Mono-method bias is avoided by utilizing several methods for measuring. How-
ever, since a single system is used in this experiment, there is a risk that the choice of 
the system influences the results more than the methods under evaluation. However, 
since the system was simple, the subjects could focus on the methods instead of the 
system. The experiment was conducted with one subject at a time and the researcher 
was present during the experiment to observe. Further, the subjects may be biased 
towards one of the methods and thereby intentionally favor it, although no indication 
of this was observed during the interviews. 

The researcher has contributed to the development of the adapted FFA, but ac-
knowledged this from the beginning. Further, the researcher did not answer questions 
during the experiment, except to clarify the methods and the system solution. The 
subjects had limited or no earlier experience from the methods. 

External validity. The important generalization in this study is to determine the ap-
plicability and efficiency of the methods in the automotive domain. 
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The subjects shall represent the total population of all engineers that may receive 
the task of carrying out the method. In this study, the subjects are chosen from two 
categories. The first category, safety experts from the automotive industry, is chosen 
for their competence and experience. Further, the three safety experts are employed 
by three different companies, all working in the Swedish national ISO standardization 
group for ISO-26262. The second category of subjects is Ph.D. students, who are 
active in automotive embedded system research, and represent engineers who could 
be assigned to conducting a hazard analysis in the industry. By making this selection, 
the two major industrial user groups are represented. However, the group is small and 
may therefore not be completely representative of the total population. Further, the 
system that is used in this experiment is representative for the automotive domain, 
although simplified. 

4   Description of the Methods 

Two following sections will give background and approach descriptions. 

4.1   The ESA Method 

The ESA method is based on the assumption that all hazards of the system originate 
from the environment. The method is fully described in European Space Agency 
standard PSS-01-403 [7] and is aimed at space applications. However, other industries 
have found it to be useful, including the automotive industry, where it is currently 
used. 

The approach is to provide a set of generic hazards that should be applied to the 
system’s components and characteristics in order to derive the induced possible fail-
ure behavior, hence hazards. The generic hazard list is the key to the method. It con-
sists of environmentally based hazard inducers such as “AB2-high temperature”. 
Since the origin of the method is the space industry, the generic hazards have been 
influenced by this. As a consequence, generic hazards such as “Zero gravity” should 
be disregarded when it is applied to an automotive system. The ESA method is also 
extensive and covers hazard analysis for all stages of product development. However, 
given the scope of this paper, the method is applied as described to a conceptual 
design. 

In addition to hazard identification, the ESA method’s hazard analysis also speci-
fies how to determine exposure, severity etc. These parts have been removed within 
the scope of this study. A few generic hazards have also been added that concern 
malfunctioning of processors and electrical networks [13]. 

4.2   The Adapted FFA Method 

The adapted FFA method is derived from FFA, Functional Failure Analysis, de-
scribed in aerospace standard ARP-4761 [5]. However, the method was adapted by 
Papadopoulos et al. [6] and further enhanced for the automotive domain by Johannes-
sen et al. [8] [12]. It is based on the assumption that the only part of a system capable 
of affecting the environment is the actuator. Hence, by applying failure modes to the 
actuators, the system’s hazards and their effects can be determined. By extending 
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the analysis to also include the functionality itself, multiple failure induced hazards 
can be covered. 

The generic failure modes are driven by the guide words Omission, Commission, 
Late, Early, Less, More, and Stuck. These guide words refer to the behavior of an 
actuator in comparison to the intended behavior. In this study, the set of guide words 
has been simplified to include only Omission and Commission in order to limit the 
time needed for the analysis. This is further discussed in section 7.2.2. 

This method has, as well as the ESA method, a part that determines a severity rat-
ing, and hence this part has been removed to serve the context of this study [13]. 

5   Experimental Set Up 

To be able to evaluate the two methods, one experiment system was needed. The 
following requirements for the system were identified: 

 Relevant – The system should be in the automotive context. 
 Simple – In order to limit the number of potential hazards. 
 Easy to understand – To be able to complete the study in a reasonable time. 
 Granularity – The system should be available on several detail levels. 

Some limitations of the system were also made in order to match the early design 
phase automotive context. The power supply was removed since both methods cover 
this as a failure mode or a generic hazard. Further, the diagnostic system was removed 
since this may not yet be decided in the early stages of development. 

Of three candidate systems, the Electrical Steering Column Lock was found to be 
the most suitable. 

5.1   Electrical Steering Column Lock System 

The electrical steering column lock system has the purpose of prohibiting theft of the 
vehicle by locking the steering wheel when no valid key is present. It is a mechatronic 
system but has the same basic functionality as a traditional mechanical column lock. 
The system includes a sensor for reading the presence of a valid key, an ECU for 
computations, and an actuator controlling the column lock. 

The system was developed in four levels of detail spanning from a solution with 
two interacting ECUs and signal sequence diagrams to a rudimentary solution with 
only one ECU, an actuator, and a sensor. In order not to favor one of the methods a 
detail level including one ECU, basic signals, and a CAN network was chosen, as 
shown in Figure 3. 

 

Fig. 3. The Electrical Steering Column system overview 
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In addition to the conceptual design, the functionality was described in UML use 
cases. The use cases of the system are two scenarios or functionality modes, Lock and 
Unlock. 

6   Empirical Data 

This section gives the empirical data collected in the experiment and data from the 
questionnaire and interviews. The analysis and discussion are found in Sections 7 and 
Section 8. The study includes in total seven subjects, four Ph.D. students and three 
safety experts. 

Table 2 presents the vehicle phases that the subjects identified. The vehicle phase 
is a key element in both methods and it is therefore important that it is identified 
correctly. 

Table 2. Vehicle phases identified in the experiment 

Vehicle phase PhD students Safety Experts All

“Vehicle moving” 4 3 7

“Vehicle standing still” 4 3 7

“Vehicle moving with valid key” 1 1 2
“Vehicle standing still with valid key” 1 1 2  

Table 3 shows the results of the hazard identification experiment for the two meth-
ods. The data are presented in number of subjects who identified the hazards, both in 
each group and as a total. 

Table 3. Hazards identified in the experiment 

ESA FFA ESA FFA ESA FFA
“System locks the steering when vehicle is 
moving.” 4 4 3 3 7 7
“System does not unlock when vehicle starts to 
move” 3 3 2 2 5 5

Hazard

PhD students Safety Experts All

 

Table 4 shows the mean and standard deviation of the number of generic hazards 
that were identified as applicable, compared to the number of hazards identified by 
the majority, i.e. by at least four of the subjects. 

Table 4. Data for application of generic hazards to three major system components 

Mean StdDev

Identified by 
majority Mean StdDev

Identified by 
Majority Mean StdDev

Identified by 
majority 

PhD students 14,5 6,1 14,8 3,1 13,3 3,6

Safety Experts 9,7 0,9 8,3 2,1 9,0 1,6

All 12,4 5,2 12,0 4,2 11,4 3,6

8 11 10

Group

Sensor ECU Actuator
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The questionnaire results are presented in Table 5 and Table 6 for the ESA and the 
FFA method with descriptive statistics. 

In Table 5 adjustment was made of one subject's time for the ESA method since 
the task was abandoned before completion. The task was judged to be 50% complete; 
hence the time was multiplied by two, indicated by a ‘*’ in the table. 

Table 5. Empirical data for the ESA method collected in the questionnaire 

ESA method Scale

Property Mean Std dev Mean Std dev Mean Std dev

Ease of use 4,3 1,3 2,7 0,5 3,6 1,3 1=Easy..5=Hard

Understandability 3,0 0,7 2,7 0,5 2,9 0,6 1=Easy..5=Hard

Percieved confidence 3,0 1,0 2,0 0,8 2,6 1,0 1=Weak..5=Strong

Spent time 148,3 4,9 103,3 * 17,0 129,0 25,1 Minutes

Number of subjects Persons4 3 7

PhD Students Safety Experts All

 

Table 6. Empirical data for the FFA method collected in the questionnaire 

FFA method Scale

Property Mean Std dev Mean Std dev Mean Std dev

Ease of use 2,0 0,0 1,3 0,5 1,7 0,5 1=Easy..5=Hard

Understandability 2,5 0,9 1,3 0,5 2,0 0,9 1=Easy..5=Hard

Percieved confidence 2,8 0,4 4,3 0,5 3,4 0,9 1=Weak..5=Strong

Spent time 57,5 17,5 45,0 4,1 52,1 14,8 Minutes

Number of subjects Persons

PhD Students Safety Experts All

4 3 7  

Hypothesis HX was tested for the applicable criteria presented in the Table 1. For 
the total population, the hypotheses HEase of use and HSpent time can be rejected according 
to the Wilcoxon matched-pairs signed ranks test with p=0.05. Hence, there is a differ-
ence in the means with regard to ease of use and time spent in the two methods.  

Table 7 shows how many lines in the spreadsheet were needed by each method to 
evaluate the system. A line in the spreadsheet corresponds to a potential hazard that 
must be considered in the analysis. 

Table 7. Lines in spreadsheet to be evaluated for identification of a hazard 

System Characteristic ESA FFA

ECU 48 -

Actuator 46 8

Sensor 48 -
Functionality - 8  

7   Analysis 

The first part of this analysis discusses the empirical results and the second part  
discusses the characteristics of each method. 
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7.1   Analysis of the Empirical Results 

Table 2 presents the phases identified by the subjects to be relevant for the test sys-
tem: “Vehicle moving”, “Vehicle standing still” or the equivalent of these. 

Further, two subjects identified the presence of a valid key as giving another di-
mension to the vehicle phase and hence concluded that four vehicle phases were rele-
vant. It is important for the subsequent analysis to have correctly identified the right 
vehicle phases. The phases should describe the vehicle states that are relevant for the 
functionality under analysis. 

The results of the hazard identification experiment are given in Table 3 and the fol-
lowing functional hazards were identified with both the ESA and FFA methods by all 
subjects: “The system locks the steering when the vehicle is moving.” or derivates 
thereof. Further, five of seven subjects identified the hazard “System does not unlock 
when a driver inserts the key and starts the vehicle” or derivates thereof using the 
ESA method. One of the subjects, who did not identify the last hazard, completed 
only half of the task due to time constraints. The second hazard was also identified by 
five of seven subjects using the FFA method. However, for both subjects that did not 
identify the second hazard, the first hazard was formulated such that it implicitly 
covered the second hazard. The hazards identified were compared to the Golden Run 
and it was concluded that all functional hazards were found. 

Some of the subjects also identified hazards not related to the system's functions 
utilizing the ESA method. One example is “Driver may get an electric shock from the 
key slot”. Since these hazards are not functional hazards and are outside the electrical 
system’s boundary, they are not focused on in this paper. 

The ESA method relies on the generic hazards and their application to the system’s 
characteristics. Table 4 shows that there is a major difference in how many generic 
hazards are identified. On average, 12.4 generic hazards were identified to be applica-
ble to the sensor component of the experiment system. However, only 64% of them 
were identified by more than four persons. 

Hypothesis HEase of use was rejected and given the averages shown in Table 5 and 
Table 6. It is concluded that the FFA method is statistically significantly easier to use 
than the ESA method, according to the subjects.  

It was difficult for the subjects to fully complete the ESA method within a reason-
able time. A limitation had to be included stating that only three hazards for each 
System Characteristic should be evaluated. The test subjects decided which three of 
the possible hazards were to be evaluated. This decreased the actual time needed to 
complete the ESA method. Hypothesis HTime spent was still rejected and, when the in-
formation in Table 5 and Table 6 is combine, it can therefore be concluded that the 
FFA method was less time consuming, with a mean completion time of 52.1 minutes. 

However, with respect to the criterion of Understandability and Confidence, the 
hypothesis could not be rejected. Hence, the study can not conclude that any method 
is better in these regards. 

As a system’s size and complexity increases, the demands on scalability of the 
methods will be higher. Table 7 shows the number of lines in a spreadsheet that must 
be evaluated in order to identify the relevant hazards. The ESA method requires more 
than eight times as many lines as the FFA method. 
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7.2   Experiences from the Methods 

This section will discuss the characteristics of the two methods. The material is based 
on the interviews and the pre-study results. 

ESA method experiences. When the generic hazards are applied to the system char-
acteristics, there is always a question of whether the hazards are applicable.  

As presented in Table 4, there are considerable differences among the test subjects' 
engineering judgment of which generic hazards should be applied to each system 
characteristic type. Hence, an uncertainty exists which creates a possible threat of 
inconsistency. One subject identified the problem as “The relevance and effect of 
certain generic hazards are difficult to determine”. 

However, it is apparent that a skilled engineer needs to utilize his judgment to 
identify the relevant hazards among all those generated. There is no guidance as to 
what level these generic hazards should be applied. Further, some generic hazards, 
such as “zero gravity”, are not suitable for the automotive domain. This could how-
ever be remedied by further adapting the list to the automotive domain. The generic 
hazards also exist on different levels. It should be possible to remove some of the 
generic hazards since they only cause other generic hazards. One example is the ge-
neric hazard of “wetness”, which can lead to the generic hazards “short circuit” and 
“high current”. The list of generic hazards is said to be non exhaustive and should 
build on experience from earlier projects as well as actual failure data. 

On the other hand, the generic hazards can easily be reused. Most systems today 
include at least one ECU, a network, a sensor, and an actuator. All these component 
types could have specified hazard profiles, eliminating a part of the engineering task. 

Further, the ESA method does not consider the functionality in itself. This is not 
apparent in this experiment since there is an input signal that triggers the functional-
ity; hence this signal’s hazards will coincide with the functionality’s hazard. 

FFA method experiences. The engineering judgment in this method is related to the 
application of the generic failure modes and the interpretations of these guide words. 

In this experiment, only two guide words were used since “Omission” and “Com-
mission” can be considered to cover the other proposed guide words. This is possible 
since “Late” and “Early” add a time aspect to the actuator’s behavior, which can be 
considered to be omission or commission. “Less”, “More”, and “Stuck” can be inter-
preted in a similar manner depending on the situation. Further, this reasoning is 
strengthened by the available information regarding the actuators behavior perhaps 
not being sufficiently detailed in this early design phase. However, if the time aspect 
is introduced, e.g. by adding “Late” and “Earlier”, the spreadsheet lines in Table 7 
would increase by 100%, but the identification rate of the second hazard, presented in 
Table 3, would probably increase. This would also increase the time required to con-
duct the FFA method but would most likely not reach the level of time required by the 
ESA method. 

8   Evaluation 

The importance of identifying the major hazards as early as possible implies that a 
good hazard identification method should be well structured and repeatable. This 
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study shows that both methods are capable of solving the hazard identification task 
and do so with a well defined structure for guiding the engineer. Thus both methods 
are considered to be applicable in the automotive context. 

While the study has provided a basis for an informed selection, in this section we 
also present our evaluation of which method is most suitable in the context of the 
early design phase in the automotive industry.  

As a basis for this evaluation, the three data sources have been triangulated where 
applicable. As can be seen in Table 8, the FFA method is preferred for most of the 
evaluation criteria. Further, a qualitative evaluation is given below to place the results 
in an overall perspective. 

Table 8. Triangulation of criteria evaluation 

Evaluation criteria Experiment Questionnaire Interview
Ease of use FFA FFA FFA

Efficiency FFA N/A FFA

Understandability N/A Undecided Undecided

Confidence N/A Undecided Undecided

Level of engineering judgment FFA N/A FFA

Scalability FFA N/A Undecided  

Given that the method is applicable it must also be easy to use to be of value in an 
industrial setting. As shown in this study, the FFA method is clearly considered to be 
easier to use than the ESA method. 

Understandability is primarily important for estimating the level of training needed 
when the method is introduced in an organization. However, this study cannot show 
any difference between the two methods. Nevertheless, both methods can be argued 
to be easy to learn, since the subjects in this study learned how to use the methods, 
conducted the analysis, and were interviewed within four hours. 

The two methods rely on engineering judgment to different extents. It is important 
to minimize the necessary experience since engineers at different levels of experience 
may be assigned the task of hazard identification. As the study shows, the application 
of generic hazards, which the ESA method uses, is highly dependent on experience. 
However, this may be compensated for by a standard library of generic hazards that 
should be applied to certain system characteristics or components. 

As the study also shows, the ESA approach results in many potential hazards, and 
it is up to the engineer to decide which of them are valid. The approach of the FFA 
method is also inductive but, by applying common failure modes to the relevant parts 
of the system, fewer potential hazards are derived. Since both methods identify the 
relevant hazards, it can be concluded that the FFA method is more efficient. Another 
aspect is that the FFA method scales better when the method is applied to larger sys-
tems. While the FFA method can be handled within a spreadsheet for large systems, 
the ESA method would need specialized software to support ease of use. 

Both methods are affected by engineering judgment regarding identifying the nec-
essary vehicle phases. This is unavoidable but can be mitigated with a catalogue of 
standard vehicle phases, which can be provided by standards. 
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As the empirical data clearly shows, the ESA method takes considerably more time 
to complete than the FFA method in this experiment. Hence the FFA method is con-
cluded to be the most suitable, among the two evaluated methods, for conducting 
hazard identification in a PHA in the automotive context. 

However, the interviews indicate the ESA method to be a better basis for deriving 
safety requirements. Reasons for this could be that the method gives a deeper under-
standing of the system design and that it works at a more detailed level. 

9   Conclusions 

The two methods, ESA and FFA, for hazard identification in a PHA are found to be 
applicable to the automotive system context. Further, the results of the experiment 
conducted show with statistical significance that the FFA method is less time consum-
ing and easier to use than the ESA method for detection of the same hazards. Hence, 
the FFA method is found to be the most efficient method for hazard identification in 
early phases of development. 
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Abstract. In real-time safety-critical systems, it is important to predict  the con-
sequences of specific faults in databus logic and driver software on the safe op-
eration of a databus.  For this purpose we have developed a test-bench based on 
the TrueTime simulator extended by adding a fault injection capability, with 
new network models and fault modeling strategy.  Faults are simulated by dis-
turbing specified parameters of the databus model. In this paper, we present the 
modeling approach, the fault injection scenarios, and illustrate it with examples 
of the impact of the simulated faults on data throughput, message latency and 
bus scheduling for CAN and TTCAN networks. 

1   Introduction 

The communication standards in real-time safety, critical systems should assure high 
dependability; hence there arises the problem of the definition and verification of 
safety requirements. This paper presents a new approach to evaluate safety-critical 
network interfaces in the context of their performance capabilities, based on the 
TrueTime simulator developed at Lund Institute of Technology [3,7] and extended in 
our Institute.  Previous research [2,8] has shown that performance alone cannot guar-
antee safety, but system’s performance evaluation can provide meaningful insights 
into dependability and safety aspects only when evaluated in an appropriate context. 
Various fault injection scenarios presented in [5] and in this paper facilitate depend-
ability and safety assessment. 

The TrueTime simulator allows us to model the system under test and its interac-
tion with the external environment.  In our case we simulate communication interface 
of a distributed network and its environment, which is a set of real-time operating 
system kernels (in the network nodes) that process data transferred via the network 
interfaces. The simulation process can be supplemented with the specified application 
algorithms that communicate with the kernel models.  This is assured by S-function 
programming (due to Simulink and Matlab used in TrueTime). It facilitates creation 
of specific interfaces that can be used to transfer application data to and from the 
operating system kernel data structures. We have extended the network interface 
model with fault injection capabilities for dependability assessment purposes. 
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In our approach we generate abstract state-space models of the studied network 
protocols and analyze their behavior in the presence of injected faults, simulated by 
disturbing model variables. The results of fault injection scenarios are compared with 
fault-free cases.  This approach is useful in the analysis of fault effect propagation and 
identification of critical paths within the state space models of the network protocols.   

In the next three sections, we present the simulation network model, our new fault 
injection model and experimental results that show the impact of the faults on the 
performance of network interfaces.  The last section presents the conclusion and sug-
gestions for the future research.  

2   Modeling and Simulation Approach 

All simulations within the TrueTime simulator are performed according to the follow-
ing steps. First, all necessary distributed environment entities are instantiated by the 
user. The user determines the number of nodes, the type of the communication net-
work and then instantiates the appropriate kernel, network interface and fault model 
entities. Next, the user enables the simulation and all control algorithms described by 
necessary application tasks. Those tasks are executed with the help of the associated 
kernel entities.  

The most important model for our simulations is the network interface model. 
When initializing a specific network model a user specifies an instance of the model. 
This instance of a network model forms an entity that follows a specific network 
interface behavioral model. The TrueTime network interface entities function as units 
under test. Each behavioral model is configured during simulation initialization phase 
in which the user specifies configuration parameters for each network entity.  These 
parameters include network interface type, data throughput rate, communication 
schedule, total number of nodes that utilize the given network model, bit error prob-
ability in the communication channel, etc. After the initialization, messages can be 
exchanged among nodes that belong to a specific network model instance.   

In addition to the network entities our simulations also instantiate necessary kernel 
entities. Each kernel entity in a simulation models the functionality of a physical real-
time operating system. The kernel model is quite complex. The most important 
mechanism of the kernel model is the task scheduling mechanism which defines task 
triggering, suspension and execution points in time. Tasks triggered by kernel entities 
are of the following types: network interface, operating system, or application. Net-
work related interface tasks are those responsible for transmission and reception of 
data and servicing of some network interrupts. Operating systems tasks are tasks di-
rectly responsible for the management of computational resources.  Application tasks 
are tasks that execute the application or high-level, user control algorithms.  

The developed fault injection functionality is modeled as fault entities (they dis-
turb network performance parameters) embedded within the network interface enti-
ties. Figure 1 presents an example of a distributed simulation environment with a 
network interface, kernel and fault entities instantiated. In this diagram a tree like 
architecture can be observed for each entity; namely its associated tasks, task seg-
ments and data variables. The original TrueTime provides only selected and simpli-
fied models of the kernel and network interfaces (Ki and Ii on the diagram). The 
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application model Ai has to be defined by the user. We have also defined the fault 
injection model (its instance Fi is shown in fig. 1).  Details of the fault model are 
presented in section 3.  In section 2.1, we describe in more detail how the actual mod-
eling and simulation are performed in TrueTime with explicit emphasis on the net-
work interface. In section 2.2 we present the bus access technique for CAN interface. 

 

Fig. 1. Model of a distributed network and associated entities with their structures 

The authors of the TrueTime simulator concentrated on applications for discrete 
automatic control [5]. Some details regarding the models used in the simulator are 
described in [3] and are mainly related to the task structural, scheduling and timing 
models of TrueTime. Network interface modeling is described rather vaguely, so here 
we present a more elaborated network model, in the context of dependability issues. 

2.1   Network Interface Model in TrueTime 

In the TrueTime simulator the kernel model reflects a physical real-time operating 
system whose function is to handle internal and external interrupts and trigger tasks 
according to the appropriate scheduling policy. Interrupts and task triggering in-
stances are all modeled as events and therefore the kernel model is an event model.  
All events that need to be serviced by the kernel are temporally ordered according to 
the global simulator time tsim; this is the simulated real-time variable, which synchro-
nizes all events in the kernel.   

The kernel is a process, which executes periodic and aperiodic tasks according to a 
specific schedule. In the TrueTime each task Tk executed on kernel Ki is divide into 
segments. Segments are task intervals with specified worst-case execution times. 
After triggering a task by the simulator the kernel executes its segments sequentially.  
The calls to the network interfaces take place in task segments.  An example of such 
interface is the call to the ttSendMsg() function.  A call to this function schedules a 
network interrupt and transmits data via a logical channel.  This channel is formed by 
a pair of queues (input and output) - at least one queue pair exists. 

The input queue is responsible for receiving local node messages generated by ker-
nel tasks, whereas the output queue receives messages from all nodes in the network. 
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During the transmission, a message is first stored in the input queue and when a task 
gains access to the channel, this message is removed from the input queue and ap-
pended to the output queue of the corresponding reception node. When a node re-
ceives a message, it also receives an interrupt from the network entity. This interrupt 
is then serviced by an appropriate interrupt handling function. A priority value may be 
assigned to the handling function. If this value is lower then the priority of a task 
currently executing on the receiving node, then the interrupt request is added to the 
waiting queue and its position within the queue is determined by the priority value. If 
the interrupt priority is greater then the executing task priority then the task is sus-
pended and the interrupt is serviced. In our simulations, application, kernel, and net-
work tasks were sorted and triggered according to the static priority scheduling. 

The network model is mainly responsible for the data transfer between nodes and 
scheduling the access to the logical databus (i.e. access scheduling to above men-
tioned input and output network message queues). The actual access to the databus 
follows the protocol specification, such as CAN or TTCAN.  Here, due to limited 
space, we discuss only the details of CAN bus arbitration. 

2.2   CAN Bus Access Modeling Principles in TrueTime 

In the CAN databus, bus access occurs on the first-come first-served basis.  If during 
a simulation, two task messages try to access the databus at the same time interval, the 
access problem is resolved through message contention. The task with higher priority 
message wins the contention, the losing task backs off for a certain amount of time 
and later tries again to gain the access to the databus.  This bus access strategy is then 
followed by the data transmission. Next we explain essential steps performed by the 
CAN state machine before every transmission. 

The protocol first determines if anyone has been transmitting on the bus in the pre-
vious event instance.  If a node has been transmitting on the bus during the currently 
handled event, the protocol attempts to continue this transmission.  Let us assume that 
during the execution of task Ti a new event occurs related to transmission of task Tj. If 
the priority of task Tj  is greater than  Ti  then the task Ti is suspended till the execu-
tion of the higher priority task transmission. In the opposite case task Ti  is continued 
(including its transmissions) and then lower priority transmission of the second task 
will be executed.  

When the transmission is finished the receiving node protocol must make a deci-
sion where to put the data.  If the transmitter designates a message as a unicast mes-
sage then this message is appended to the output queue of only one receiver.  In the 
other case (broadcast), the message is appended to all output queues of all nodes in 
the network.  After this the transmitter node sets necessary state variables to indicate 
that the transmission is finished and the transmitting node is now idle. 

Note that events in the event queue of the simulator are either generated by net-
work, kernel or application entities.  Some events are detected by an event sampling 
operation which detects changing signals at the input ports of entities (i.e., network 
interface inputs) and others may be specified explicitly by setting the Next Hit event 
variable. A detection of an event with the Next Hit variable is possible through a spe-
cial MATLAB function detect_zero_crossing().  This function detects a zero 
difference between tsim and tevent = Next Hit.  Therefore detection of events can occur 
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in two ways – either through constant entity input sampling or value adjustment of the 
Next Hit. After a detection of an event, a Simulink engine invokes a MATLAB func-
tion mdlOuputs. This function updates all outputs associated with the detected 
event.  The event detection, evaluation and update processes continue within a loop 
until the simulation terminating time is reached. 

In cases when the databus is not occupied, i.e., no one has been transmitting on the 
bus during the last event time, appropriate state variables are checked to see if any 
node has messages waiting in their input queues. If so, the protocol prepares for a new 
transmission on the bus. This means that the protocol once again checks the bus to see 
if the bus is still idle and if this is true then it designates the node wishing to transmit 
as the transmitting node. The Next Hit is then updated (taking into account the pre-
dicted transmission time), so that when the protocol executes at the next event interval 
it will know that a node has been transmitting on the bus in the past.  If during bus  
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Fig. 2. CAN state diagram 

occupation analysis, the protocol determines that someone else is trying to access the 
databus, then it compares both message priorities and goes into a contention process.  
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The winning node transmits the message, the loser stops requesting transmission and 
awaits some time before it attempts again to transmit. This gives an overview of the 
simulated CAN model. Figure 2 presents a simplified CAN state machine description.  
This state machine description contains only 12 most relevant states for the purpose of 
understanding CAN’s control flow. Such machines are created for all nodes. They 
communicate via appropriate variables. 

The START state initializes all protocol variables. The BUS IDLE state determines 
if the bus is currently idle. The SCAN_FOR_TX state allows each node in the net-
work to check if any other node is currently accessing the databus. The COLLISION 
state puts the protocol in a contention mode if two or more nodes (in fig.2 collision is 
shown for two nodes – branch with THIS_MSG1 THIS_MSG2) attempt to access the 
databus at the same time interval. When a node is in the THIS_TX state then all other 
nodes in the network will see that node as the one that has gained access to the da-
tabus. When a node is in the UPDATE_NEXT_HIT state this means that it has fin-
ished processing of a job and needs to update future event processing time. 
ADD_THIS_MSG and DEL_THIS_MSG put a node into a state that appends or re-
moves a network message to/from output/input queue of the node.  THIS_MSG tells 
all nodes in the network which message has gained the access to the databus.  The 
state transitions in this diagram occur in accordance with current or past values of a 
large number of state variables. Values of those variables determine protocol behavior 
at any time point during the simulation.  The given list of variables in Fig. 2 is essen-
tial for understanding the presented state transitions. Exhaustive explanation of all 
variables influencing the numerous sub-states or states that are contained within pre-
sented main states is out of scope of this paper.  For further explanation we encourage 
analysis of the available TrueTime source code. 

3   Fault Injection Model 

In order to analyze the dependability aspects of interfaces with the TrueTime simula-
tor, we have developed a fault injection model which extends the simulator with a 
new fault object entity capable of disturbing network interface entities. We assume 
that  the system comprises n control nodes (Ni , 0 < i  n ). For each control node Ni,    
we can define a set of pairs < Ti,k, Ii,y > , where Ti,k denotes task Tk executed on the i-
th node and Ii,y  denotes interface of type y used by the task Tk on the i-th node. For 
example, <T1,2, I1,1> means that task T2 is running on node N1 and this task is associ-
ated with interface I1. The interface can be of any type: general i/o or a specific  
network interface.  If a task of node N1 is associated with two interfaces, then the 
following tuples are defined <T1,2, I1,1> ∩  <T1,2, I1,2>.  Our model supports multiple 
interfaces to deal with redundant systems.  Each task Tk and interface Iy are described 
by a set of properties Pk and Py, respectively. These properties are specified in the 
following form: 

Pk : <td, twcet, p, r, S, Fk >, Py : <td, twcet, p, r, S, Fy> 

where td is the task’s relative deadline, twcet  is task’s worst-case execution time (it is 
calculated as the sum of the worst-case execution time of all segments belonging to 
the considered task), p is the task period, r is the task priority, Fk and Fy are  sets of the 
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simulated fault vectors for the considered  task and interface. The fault vectors are 
defined as 5-tuple: <ftyp, fd, fp, focc, frand>. Each element of the vector specifies value of 
the corresponding variable describing fault properties. They are explained in the next 
section. If a particular variable (parameter) is not applicable, then its value is set to 0.  

3.1   Description of Fault Parameters 

In the previous section we have introduced the fault vector composed of a set of 5 
parameters (variables). These parameters are defined as follows:  

 
• ftyp ≡ flt_type designates which fault from the fault type set G = 

{type1,type2,type3,…} is to be utilized by the model, where the parameter value is 
the fault enumeration value or type1 ≡ 1. 

• fd ≡ flt_dur is the fault duration; specified by time moments corresponding 
to variable disturbance (simulating fault) and its recovery to the previous state;  

• fp ≡ flt_per is the fault period and specifies the time between consecutive 
fault activations of the same fault type; 

• focc ≡ flt_nbr_occ specifies the maximal number of fault activations; 
• frand ≡ flt_rand specifies the random properties of fault activation; if 

flt_rand is set to 0, it means that the fault element is deterministic; if this value 
is set to 1, then the fault’s activation pattern follows uniform distribution; if 
flt_rand is set to 2, then the fault element activation pattern follows Gaussian 
distribution; therefore, if flt_rand > 0 our model effectively sets flt_per and 
flt_dur according to a probabilistic distribution desired by the user - currently 
only time is supported by probabilistic activation; values of flt_nbr_occ and 
flt_type cannot be set explicitly as probabilistic but future improvements of 
our model will include this possibility. 

 
In a general case where our fault model (frand > 0) probabilistically adjusts all pa-

rameters of fault vector F, we define a fault transformation operator RFT{.,},  which 
generates appropriate values of these parameters. In the performed simulations our 
objective was to trace the effect of selected (a priori) fault element F in relevance to 
the  network safety and performance.  In order to accomplish this, the elements in the 
set of considered fault vectors F were transformed only partially.  This means that 
only activation times of F may be random, but fault_type parameter in F is deter-
ministic, i.e., we know what faults types will occur but possibly not their activation 
and duration time. Transforming all fault parameters render the actual nature and 
timing of faults unpredictable. 

In the paper we describe fault models which disturb only network interface entities.  
This means that faults affect interface functions, which allow application and kernel 
tasks to interact with the network model.  When an application task calls one of the 
network interface functions, it effectively passes control to the appropriate safety-
critical communication protocol. Once this redirection of the control is performed, the 
respective protocol state machine model is responsible for scheduling a databus ac-
cess and message transmission. Our faults are injected at the state machine level.  In 
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the sequel, we explain the logic of fault injection at this lower level of abstraction for 
some of the faults implemented in our model. 

At the lower level of abstraction our fault types disturb protocol state machines, 
namely, their respective state variables.  An interesting problem is mapping physical 
faults into logical ones. We deal with this problem in the on-going research.  

3.2   State Variable Level 

Below we present a more detailed explanation of some state variables, which we 
disturb in experiments. This approach addresses specific logical faults at the lower 
level of abstraction – the state variable abstraction. 

The first state variable that we decided to disturb is the Broadcast conditional vari-
able.  Setting the value of this variable to 1 means that the protocol is dealing with a 
broadcast message.  Any other value for this variable  0 designates the node id of the 
receiving node. Changing the value of this variable will convert a broadcast message 
to a unicast message or vise versa (wrong id in the unicast transmission is also possi-
ble).  In cases where unicast messages are converted by a fault to broadcast messages, 
we expect to increase network interrupt processing delays (the nodes will have to 
process extra messages regardless of their actual significance).  A significant message 
is a message that contributes to either protocol state machine transition or application 
state transition.  Other messages simply occupy network bandwidth with redundant 
information. 

Another important state variable that we decided to disturb is the Remaining Num-
ber of Bytes for Transmission conditional variable.  Setting this variable to any value 
tells the state machine how many bytes still need to be transmitted for the message 
under consideration. Decreasing the value of the considered variable will allow the 
state machine to cease the data bus access prematurely,  increasing the value of this 
variable extends transmission time.  This may cause incomplete message transmission 
(partial data transmission) or inefficient message transmission (allocated frame size is 
larger than required for efficient transmission). 

The next disturbed state variable in our experiments is the Remaining Tx Time con-
ditional variable.  This variable specifies how much time is needed for the transmis-
sion of a message.  Each protocol finite state machine (PFSM) found in each node 
computes this value separately.  A Remaining Tx Time ≈ 0 enables the PFSM transi-
tion into the next state that appends the transmitted message into the appropriate 
queue of the receiver. Disturbing this variable we may simulate value and slightly off-
specifications faults (compare [1]).  For example, if the protocol state machine deter-
mined that at 1 Mbps (transmission speed) it will take 0.512 ms to transmit a 64 byte 
message, then under ideal conditions a complete message transmission occurs at t = 
0.512 (assuming that transmission starts at t=0).  Inserting a fault into Remaining Tx 
Time by changing this value to 0.500 ms decreases the amount of information trans-
mitted in a message to 500 bits.  If the last eight least significant bits of information 
are shortened from 10110010 to 1011(0000) then the application may interpret an 
incorrect sensor reading resulting in a slightly off specification error.  Faults injected 
into this state variable are also expected to generate timing errors because in some 
instances data may not meet its assigned delivery deadline. 
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Another important variable in our fault injection model is the Next Hit conditional 
variable.  Detailed explanation of this variable is given in section 2.2.  Increasing the 
Next Hit value (due to a fault) will result in processing the associated event later than 
expected.  Such fault will lead to increased delays experienced by network messages.  
Under some circumstances excessively delayed messages can be considered invalid 
by an application.  Rejection of late messages often degrades control performance of 
an application algorithm.  This discussion only described a sample of fault types im-
plemented in our model.  In addition to the faults mentioned above, we have disturbed 
state variables that tell the PFSM if the node is currently sending, receiving or in the 
idle mode of operation. Moreover, we disturbed the message content of a node, and 
the state variable that tells the PFSM the size of the transmitted message.  In addition 
to those experiments, we also injected a fault into the PFSM variable responsible for 
network event suspension and activation.  In the next section we present a specific 
simulation scenario and sample results obtained with our fault injection model. 

4   Examples of Simulation Results 

To illustrate the capability of the implemented model we give some examples of re-
sults obtained for CAN and TTCAN networks.  Namely, we present the effects of 
Next Hit faults on the global network throughput and node message delay.  Finally, 
we present the effects of Remaining Tx Time faults on CAN bus access scheduling.  

In our experiments the simulation environment consisted of a distributed network 
with 8 nodes communicating on a CAN or TTCAN logical data bus.  This setup is a 
good representation of a physical network, and may model a distributed control net-
work in a vehicle active suspension system.  As shown in Fig. 1 each node Ni in the 
simulation environment encapsulated a network interface Ii, an application Ai, a ker-
nel Ki and a fault Fi entity.  In order to enable proper simulation of all entities, spe-
cific parameters for each entity were configured.  When evaluating a simulation 
experiment the reader must refer to these parameters for correct interpretation of re-
sults. Detailed explanation of these  parameters can be found in [3]. 

Data transmission is realized through network interface functions of the simulator.  
When the application task is ready to send data it calls the ttSendMsg() network 
interface function.  If an application is expecting to receive a message from the net-
work interface it calls the ttGetMsg() function.  When new data arrives at its desti-
nation, an interrupt is triggered in the receiving node and the real-time kernel invokes 
an interrupt handler. The handling task then determines how the received data is proc-
essed. In our simulation model, the node forwards the incoming network data to the 
next node in the network.  For example, when node Ni receives a message M from 
node Ni – 1, this message generates an interrupt in the node Ni.  An interrupt handler 
function in Ni is invoked and the message is received by the handling function.  This 
handling function then sends the message M again to the next node in the network, 
namely node N i + 1. This type of data flow proceeds in a circular way but still respects 
the databus scheduling policy of its protocol.  This type of traffic flow can model 
sensor traffic for a shock absorber in an automotive suspension control system.  All 
controller nodes that control the mechanical actuators process this sensor reading and 
compute appropriate control. 



270 D. Trawczynski, J. Sosnowski, and J. Zalewski 

The circular data flow generates a traffic that monotonically increases network 
congestion. Network congestion in this case refers to the total number of messages 
WM waiting in input and output queues of all nodes in the network.  Increasing WM  at 
a rate ΔWM leads to increased message delays and effectively models traffic flow in 
physical networks. In our simulations we generated network messages at an exponen-
tial rate (in node 1) and measured the associated global network throughput and mes-
sage delay. The delay has been measured as the difference between the message send 
and receive time points. This approach effectively measures the application message 
end-to-end delay. The global network throughput (GNT) and message delay (MD) are 
calculated according to the following formulas: 
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where NTXi is the total number of databus transmissions performed by the i-th net-
work node at time kT, and k is the integer multiple of period T. This period defines 
the length of a time interval or its granule for which GNT is computed.  In our simula-
tions T has been selected to be small enough so that throughput measurements would 
be accurate and still efficient.  By efficiency we mean that the measurements them-
selves did not introduce considerable delays due to increased fine grained computa-
tional demands by the MATLAB simulator engine.  MSi is the size of the message 
sent by the i-th node. In equation (2) MD represents a delay a single message experi-
ences in a CAN or TTCAN network.  MSGTXTIME is the timestamp for the message 
M, it specifies the time at which an application task invoked the ttSendMsg() 
network interface function.  The MSGRXTIME defines the time at which the re-
ceiver’s application task invoked the ttGetMsg() function and obtained the associ-
ated message M from the node’s associated output queue. 

In our experimental network all nodes access a network data bus through the above 
mentioned interface functions.  Each node in our network executes three tasks namely 
task A1, A2, and I1.  Therefore the total number of tasks executing on 8 nodes is 24.  
A1 task is a periodic task that generates some data and sends this data to other network 
nodes.  Task A2 is an interference task whose priority rA2 > rA1.  Each interference task 
sends messages via respective network interface once every 10ms with varying time 
offsets.  Task I1 is the network interface task and in our simulations its priority rI1 
fulfills relation rA2 > rI1 > rA1.  Therefore in all experiments presented in this section 
every node executes three tasks that model a simple case of a physical situation.  In 
more complex simulation scenarios, greater number of tasks may be executing on 
each node. 

Our fault injection model disturbs the network interface model.  In the next sub-
sections we explain the effect of injected faults on the network throughput, message 
delay and bus scheduling. Those three parameters are compared against the total net-
work traffic or total number of transmissions completed by all nodes at any given 
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simulation time t. The simulation results present the effects of two fault types; namely 
the Next Hit and Remaining Tx Time fault effects. 

4.1   Network Throughput vs. Number of Transmissions 

This section presents results of experiments with respect to network throughput.  The 
experiments were performed under one set of tasks.  In each simulation run only one 
fault of the same type had been injected into all nodes in the network.  By injection of 
only one fault at a time we avoided fault effect correlation and were able to directly 
observe the effects of the injection.  All faults were active for 1 second.  This time was 
sufficient to analyze the network properties, which means that we were able to obtain 
enough state transitions within the PFSM to evaluate the behavior of the protocol. 
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Fig. 3. CAN and TTCAN throughput under presence of Next Hit fault 

The experiment measured how the global network throughput (GNT) can be af-
fected by a fault in the Next Hit variable.  Figure 3 presents the results for CAN and 
TTCAN in a situation where this state variable is increased by 1 second.  Adjustment 
of this variable changes the time a kernel waits before it processes its next internal or 
external event.  Therefore, as this time was increased, the throughput decreased con-
siderably from an ideal 1 Mbps to less then 35 kbps in case of CAN and 12 kbps in 
case of TTCAN.  The higher decrease in throughput of TTCAN network can be at-
tributed to its scheduling policy.  Once a message in TTCAN misses its transmission 
slot it must wait until the next cycle.  Variation of Next Hit further increases this wait-
ing time which leads to further degradation of throughput.  The performance of both 
protocols with respect to throughput is highly sensitive to this type of fault.  By sensi-
tivity we mean that small variation in Next Hit can have a significant effect on the 
network ability to handle traffic.   

4.2   Message Delay vs. Number of Transmissions 

Figure 4 presents simulation results for message delay (MD) under the presence of 
Next Hit fault (delay between node 1 and 2).  Here, too, Next Hit was incremented in 
value by 1 second and no other faults were injected into the PFSM of each node be-
sides the Next Hit fault.  The generated discrete levels correspond to task triggering 
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times, which increase message delays.  For the same simulation time in TTCAN, only 
200 message transmissions were completed with a delay of 0.7ms. This is due to the 
scheduling mechanism of the protocol which prevented other transmissions to take 
place under the conditions of Next Hit fault.  

 

Fig. 4. CAN and TTCAN message delay under presence of Next Hit fault 

4.3   CAN Scheduling Under Presence of Faults 

Figure 5 presents protocol scheduling results under fault-free and fault-present condi-
tions.  This experiment shows the effect a Remaining Tx Time fault has on the CAN 
databus utilization. This fault increased the Remaining Tx Time variable by one sec-
ond. In this diagram a high signal (1) represents time interval during which the i-th  
node Ni is accessing a databus. A low signal indicates that the databus is idle.  Da-
tabus access performance is often measured according to the utilization parameter U = 
tacc / T where tacc is the total access time for all nodes in the network and T is the 
simulation time interval.  In CAN we notice much lower bus utilization in a simula-
tion window of 50 ms. 
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This low bus utilization occurred in a situation when Remaining Tx Time faults 
were present in all eight nodes in the network.  The utilization was measured to be 
less then 10%, when a fault-free CAN protocol achieved a utilization of over 75%.  
This experiment shows that, in situations when such fault types occur, utilization can 
drastically affect the performance of a protocol.  Reduction of utilization under heavy 
loads is problematic and negatively affects dependability of a network interface. 

5   Conclusion 

The main benefit of extending the TrueTime simulator with our fault injection model-
ing, compared to other dependability evaluation methods, is that we are able to simu-
late faults at the logical level of the network protocol state machine and, at the same 
time, simulate a real-time operating system kernel. Co-simulation of the network 
interface and real-time kernel allows us to create more realistic traffic flows where 
control, interrupt, protocol and interference tasks all compete for bus access. Addi-
tionally, with our model we could inject faults into specific areas of the state ma-
chines, while in other models errors are often injected randomly.  Such approach 
allows tracing the injection effects and mapping them onto performance issues. This 
can be combined with fault effect analysis at other abstraction levels (compare [4]). 

In the sample simulations performed we found that both data buses used, CAN 
and TTCAN, can be realistically modeled and evaluated with respect to safety, when 
certain parameters are disturbed.  TTCAN performed more predictably in cases where 
additional time delays were introduced by fault injection.  In those instances the 
scheduling mechanism of this protocol ensured that “useless” time delays were lim-
ited by the specified slot size.  CAN, however, performed better in instances where 
the time when the kernel should wake up and process its input/outputs, was disturbed 
with a faulty value.  By better performance we mean that more information had been 
transferred by CAN than TTCAN due to the event driven nature of the protocol.  
TTCAN transferred less information because of its strict scheduling policy. Accord-
ing to this policy, if a message misses its slot it must wait at minimum one cycle be-
fore it can be transmitted over the network.  For example, incrementing a value of the 
Next Hit variable delays this message and causes more slot misses. Effectively, this 
causes decreased global network throughput in TTCAN. 

Future extensions of the models will cover fault tolerant mechanisms that will pre-
vent state machine faults that manifest themselves as errors and degradations of net-
work performance.  Finally, future research will also include implementations of other 
safety-critical data buses, such as TTP or FlexRay, and their comparisons with the 
two discussed in this paper in the context of their impact on safety. 

References 

1. Adermaj A.: Slightly-of-specification failures in the time triggered architecture. Proc. of 7th 
IEEE Int. Workshop on High Level Design and Validation and Test (2002) 7-12 

2. Albert, A., Gerth, W.: Evaluation and Comparison of the Real-Time Performance of CAN 
and TTCAN.  Proc. of 9th CAN Conference, Munich (2003)  



274 D. Trawczynski, J. Sosnowski, and J. Zalewski 

3. Anderrson, M., Henriksson, D., Cervin A.: TrueTime 1.3 Manual. Lund Institute of Tech-
nology, Sweden (2005) 

4. Anghel L., Leveugle R., Vanhauwaert P.: Evaluation of SET and SEU effects at multiple 
abstraction levels. Proc. of the 11-th IEEE International On-line Test Symposium, (2005), 
309-314 

5. Arlat, J., Crouzet, Y., Karlsson, J., Folkesson, P., Fuchs, E., Leber, G.H.: Comparison of 
physical and software implemented fault injection techniques. IEEE Transactions on Com-
puters, vol. 52, no.9  (2003) 1115-1133 

6. Henriksson, D., Cervin, A., Arzen, K.: TrueTime: Real-Time Control System Simulation 
with MATLAB/Simulink. Proceedings of the Nordic MATLAB Conference,  Copenhagen, 
Denmark (2003) 

7. TrueTime 1.3 Simulink Simulator. Lund Institute of Technology, Sweden. 
http://www.control.lth.se/~dan/truetime/ 

8. Zalewski, J., Trawczynski, D., Sosnowski, J., Kornecki, A., Sniezek, M.: Safety Issues in 
Avionics and Automotive Databuses. IFAC World Congress, Prague Czech Republic 
(2005) 



Towards a Unified Model-Based Safety
Assessment�

Thomas Peikenkamp1, Antonella Cavallo2, Laura Valacca3, Eckard Böde1,
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Abstract. The increase of complexity in aircraft systems demands for
enhanced analysis techniques. Methods are required that leverage the
burden of their application by reusing existing design and process infor-
mation and by enforcing the reusability of analyses results allowing early
identification of design’s weak points and check of design alternatives.
This report elaborates on a method that assumes a system specification
in an industrial standard notation and allows to perform several formal
safety analyses. Based on a collection of failure models and means of
specifying safety requirements, the techniques produce results along the
lines of traditional methods.

We show how to combine traditional techniques, required by the Aero-
spaceRecommendedPractice (SAE-ARP) standards, likeFaultTreeAnal-
ysis, Failure Mode and Effect Analysis and Common Cause Analysis and
also how to automate most of the analysis activities.

The methods described in this paper can be used as means to support
the Certification process.

1 Introduction

As avionic systems are getting more complex, it becomes increasingly difficult to
perform safety assessment activities required by Aerospace Recommended Prac-
tice standards. In particular, the need of having considered all safety-related
aspects on a high level of confidence demands for a more systematic and auto-
matic way for performing safety analyses. To address these problems, we present
an integrated model-based safety assessment framework, which automates ARP
4761 safety assessment techniques such as Fault Tree Analysis (FTA), Failure
Modes and Effects Analysis (FMEA) and Common Cause Analysis (CCA). The
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framework uses a sound formal approach by employing formal methods to as-
sess the safety of system models implemented in industrial modelling tools such
as Statemate [1] or Simulink [2]. We will show the approach to be more com-
prehensive in respect to the traditional approach since it allows to consider
the full temporal properties of the system, for example allowing safety-critical
events to be specified by temporal patterns stating that events need to occur
in a particular order to be safety-relevant. The underlying analysis techniques
elaborate on these specifications and allow, for instance, to identify and relate
failure causes and consequences even if they happen at different time instances
with several system interactions between them. The possibility to automatically
generate results which are easily update-able when the system model changes
allows to quickly verify possible design alternatives. This approach can be ap-
plied since the first system development phases, therefore identifying potential
weak design points with timeliness avoiding later and costly design changes.
By applying some of the developed techniques to a given case study we will
moreover show that we achieve results beyond those that can be achieved by
classical verification techniques [3,4] like model-checking, yet having the same
degree of accuracy. The two main enablers for these are, first, a failure injection
(c.f. section 3.2) that essentially allows to maintain nominal and dysfunctional
system behaviour within one model and, second, the corresponding analysis al-
gorithms (c.f. sections 3.3–3.6). The latter allow to reduce the number of verifica-
tion runs by a factor that (e.g. in the case of FTA) is exponential in the number of
failures.

Typical questions that will be answered by the techniques presented are “Is
it possible to violate a certain safety requirement?”, “Which failures and failure
combinations need to occur to violate the safety requirement and which addi-
tional timing constraints are necessary?”, “Is it possible for a fault to occur
undetected?”, “Will a list of impacted items violate independence assumptions
underlying a system design?”, “Is it possible to continue a flight in a failed con-
figuration?”, “Will an erroneous flight procedure lead to a safety requirement
violation?”. In the following it is shown how such questions can be answered
by performing several analyses on the braking system of an aircraft. All analy-
ses were carried out with STSA, a Statemate [1] Plug-in for supporting safety
assessment actions. The paper is structured as follows: Section 2 explains the
model of a braking system to be used as an example throughout the follow-
ing sections. Section 3 shows how to apply several traditional and new safety
analysis methods on the braking system model. Section 4 discusses related work
and section 5 concludes with the indication of future work.

2 Braking System Example

We illustrate our approach by applying it to the model of the wheel brake system
as described in appendix L of ARP 4761 [5]. The example was chosen due to
the fact that the systems description is relatively concise while retaining a lot
of interesting features w.r.t. to safety analysis. Since it is featured in the ARP,
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it should be well known to safety engineers. Incidentally, [4] uses the same ex-
ample (albeit modelled in Simulink rather than Statemate), which gives us the
opportunity to directly compare their results with ours. A detailed description
of the Statemate model can be found in [6].

The braking system, whose architecture is depicted in figure 1, controls the
amount of hydraulic power applied to the brake pistons installed at the main
landing gears. Hydraulic power is supplied via two independent hydraulic lines,
the normal and the alternate line. The normal line is powered by the green hy-
draulic pump, the alternate line by the blue one. Additionally, the blue pump
is backed up by an accumulator. Thus, the system distinguishes three opera-
tional modes, normal (powered by the green pump), alternate (blue) and emer-
gency (accumulator). In normal mode, the valves regulating the flow of the
hydraulic pressure are completely controlled by the BSCU (Braking System
Control Unit), a computer which computes braking and anti-skid commands.
In alternate mode, the BSCU provides anti-skid commands, as long as it is
working. The normal braking commands are directly taken from the mechan-
ical position of the brake pedals. In emergency mode, anti-skid is disabled
completely.
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Fig. 1. Architecture of the wheel braking system

The BSCU itself consists of
two redundant command units
and two monitoring units which
supervise their respective com-
mand units. A switch is used to
select the active command unit
based on the output of the first
monitor. When the monitor sig-
nals a failure in the first com-
mand unit, the switch selects the
second one.1 When both moni-
tors signal failure of their respec-
tive command units, the shutoff
signal is issued.

The shutoff signal closes the
“Shut Off Selector Valve”, which inhibits the green pressure from reaching the
“Selector Valve”. The Selector Valve engages the alternate mode as soon as the
green pressure is not available (which can be caused by the described BSCU
shutoff or the failure of the green pump). Also, switching between modes can be
commanded manually by the pilot.

The presented Statemate model of the braking system is largely a direct for-
malisation of the model described in the ARP [5]. The main differences are the
missing autobrake mode in our model and the restriction to one braking pedal.
However, these differences are irrelevant w.r.t. the analyses carried out in the
later sections.

1 Note that our model uses an invalid signal, while the original ARP model uses a
valid signal. However, this is equivalent on the model level.



278 T. Peikenkamp et al.

3 A Stepwise Approach to Safety Analysis

Before we start looking at possible failures, causes, and impacts, we assume that
the model is free of design errors. The validation of this assumption will be done
with available verification tools [3]. For the braking system this is outlined in
section 3.1. Having passed this check we extend the nominal behaviour by failure
behaviour as shown in section 3.2. After this we pass to more traditional methods
used in safety assessment. All of them are applied on the extended model ensur-
ing consistent results. In section 3.3 we are looking for a complete set of causes
for a given failure by performing a fault tree analysis (FTA) and a refinement of
this analysis allowing the simulation of identified cut-sets. Looking in the other
direction, i.e. by investigating failure impacts, we will perform a Failure Mode
and Effect Analysis (FMEA) in section 3.4. After this we “jump” over system
boundaries and look at causes that arise external to the system. In particular,
we will investigate, how to identify common causes that lead to a violation of
failure independencies. In section 3.5 we show how to perform the necessary
Common Cause Analysis (CCA) and how to incorporate the results in the FTA
of section 3.3. The final aspects we will consider are “dynamic safety require-
ments”, i.e. requirements that change over the time of the system’s operation.
Such requirements occur in Mission and Reliability Analyses (MRA) and will be
investigated in section 3.6.

3.1 Nominal Correctness

The goal in the model-based safety-analysis is to show that all safety require-
ments hold in the nominal case and the probability for all scenarios containing
failures that violate it is within acceptable limits. As an example throughout
this text we will use the following safety requirement from ARP 4761:

Loss of all wheel braking during landing or Rejected Take Off (RTO)
shall be less than 5 · 10−7 per flight.

Since we are performing a qualitative rather than a quantitative analysis we do
not compute the probability itself. Rather we determine the failure combinations
qualitatively that contribute to this probability. So we rephrase the requirement
and ask for:

Loss of all wheel braking shall not occur.

Having a formalisation of the model (from section 2), we need to formalise the
safety requirement as well. In simple setting such formalisation may be done by
characterising a safety-critical state (e.g. by specifying that the pressure of the
blue line is above a given limit). If timing is important for the specification of
the safety requirement, temporal logic may be used [7]. Although being quite
expressive, temporal formulas are sometimes not easy to understand. A reason-
able approach is to use patterns for typical temporal relationships occurring in
safety requirements. For establishing the nominal correctness of the design we
use the ModelCertifier from OSC [8] that comes with a library of patterns for
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typical safety requirements. The most obvious way to formalise the above safety
requirement is to state that whenever the pilot pushes the braking pedals, either
the green or the blue line have to supply pressure to the wheels subsequently.
Due to the stepwise propagation of the braking commands we cannot simply use
a safety requirement of the form

(Pedal pressed) implies ((Green pressure high) or (Blue pressure high)).

Instead, we use the following pattern supplied by the OSC pattern library:

P stable X steps implies finally Q B.

This pattern states that whenever P (the pressed pedal in our case) is true for
X steps then Q has to hold after at most B steps. In our case, Q is instantiated
with the disjunction from above, while we set X and B to 10 milliseconds, each.
We require the pedals to be pressed for at least 10 milliseconds in order to avoid
situations where the pedal is pressed and released over and over again. Otherwise,
we run into situations, where one of the different valves along each line is always
closed thus blocking the pressure from reaching the wheels. Another solution to
overcome this problem is to change the system to open all the valves for a certain
amount of time, whenever the pedals are pressed (or to check whether physical
laws ensure this). Using this pattern, we can prove the nominal correctness of the
system model with the ModelCertifier. Further verification tasks solvable with
the ModelCertifier include checks for non-determinism, races, range violations
and others.

3.2 Failure Injection

10 ms

8 ms 16 ms

F3

F1 F2

F2 F1

Fig. 2. Different system runs with
three injected failures

After the nominal correctness has been es-
tablished, the next steps will evaluate the
system behaviour in case of failures. Thus,
the model has to be extended to reflect the
possible behaviour of the system in the pres-
ence of failures. This is accomplished by in-
jecting a number of (candidate) failures, i.e.
failures that might occur. As a consequence,
the resulting model may behave as in the
nominal case or it may behave as if some
combination of the injected failures have oc-
curred. In the latter case it is free to apply
the failures in any order with any kind of
time passing between their occurrences. Fig-
ure 2 indicates three possible runs of a system with three failures (F1, F2, F3)
injected. It is this kind of generality that allows to do an exhaustive investigation
of possible failure scenarios (as outlined, for instance, in section 3.3).

For the sake of the analyses presented in the following sections we require
the failures to be observable, so in addition to the actual failure behaviour an
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observer is introduced for each injected failure that is able to detect whether
(and when) the failure occurs. By this means we guarantee that nominal and
failure behaviour are strictly separated. In particular it allows to check whether
failures or failure combinations are causal for some safety-critical event. This
fact will be exploited in section 3.3 to guarantee minimality of cut-sets.

The internal complexity of the failure injection is hidden to the user of STSA,
who is only required to identify the affected system variable, selecting a failure-
mode that should be applied to the variable, and, if necessary, supply failure-
mode parameters (see figure 3). Again, a pattern-based approach is used to
provide a list of failure-mode templates including stuck-at, delay, noise, and
random failures. When the provided failure-mode patterns are insufficient, e.g.
if the failure affects several model variables in a complex fashion, or the failure
makes use of some internal system mode (degraded system mode), it is possible
to apply user-defined failures, i.e. failures that are defined within Statemate. In
this case the system ensures that nominal and failure behaviour is separated by
requiring the user to specify an input that triggers the failure behaviour. After
all failure candidates are specified, STSA injects them without any additional
interaction in the aforementioned way.

Fig. 3. Specifying a stuck-at failure

The failure injection was applied to
the braking system in the following way:
Failures of the electrical and hydraulic
power supplies are represented by user-
defined failure-modes, since the supplies
are modelled as inputs to the model. A
user-defined failure-mode may also be
applied to the manual mode selection
thus modelling wrong behaviour of the
pilot. Failures occurring inside the
braking system itself are modelled using
stuck-at failure modes.

We defined stuck-at failure-modes for a variety of variables. Failures of each
of the valves are modelled using a stuck-at failure-mode with both states (open
and close) as possible values. This way, the failure-mode can force the valve
to be stuck in the open position, passing the incoming hydraulic pressure, or
stuck close, blocking the pressure. Similarly, the validity signals from the BSCU
monitors can either be made stuck true or false. Further failure-modes were
created for the braking commands computed by the two redundant BSCU units
and the reference commands the monitoring units compute. Another failure-
mode was created to model the failure of the switch unit inside the BSCU.

3.3 Fault-Tree Analysis

After the nominal correctness has been analysed and the system model has been
extended with failure-modes it is now possible to perform a fault-tree analysis
(FTA). In order to do this the next step is the definition of a Top-Level Event
(TLE). A top-level event describes a system state that should not be reachable in
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the nominal behaviour. In most case there is a direct relation between a top-level
event and a safety requirement in the sense that TLE = ¬SafetyRequirement
so that is is possible to reuse the definition of safety requirements as they are
described in section 3.1.

After all the basic parts of the analysis definition are in place we can start
with the analysis. The algorithms we are using to perform an FTA are build on
BDD techniques and are related to BDD model-checking. Although our approach
shares the fundamental attributes of these techniques it has been extensively
enhanced. The main enhancement is in the results that are obtained from the
analysis, traditionally model-checking algorithms only analyse whether a certain
property can be proven correct or try to find a counter example if the property
has been found to be be invalid. In our analysis we are not only interested in
a single counter example but in finding all the causes for a TLE. During our
FTA analysis a set of all failure-combinations that are necessary to reach the
TLE are computed. As these combinations are minimal by construction, they
are similar to the well known minimal cut-sets that are often used in traditional
safety-analysis [9].

Minimal cut-sets are an abstraction notion of a failure-situation. Even for
a designer who has an in-depth knowledge of the system it is often not easy
to understand the interaction of failure-modes and how they lead to the TLE.
In order to ease this task it is possible to use STSA to generate a concrete
counter example that shows not only the development of the failure-modes but
also that of the the system variables. While the fault-tree generation employs a
free-ordering semantics, i.e. the order of failures is not restricted in any way, the
generation of a counter example produces one concrete ordering. The usefulness
of this approach is that the generated fault-tree is complete since it considers
all possible orderings of failures, while the generated counter examples show
a concrete ordering enabling the designer to easily find the deficiencies in the
system. One should also note that this kind of analysis is hardly to be achieved
by a simulation-based approach, since then one is required to actually specify
the order and duration of failures during simulation. Thus to achieve the same
quality of result one had to do a lot of iterations.

We applied the fault-tree generation to the braking system using the safety
requirement described in section 3.1 (loss of wheel braking) and a subset of
the failure-modes described in section 3.2. The INVALID signals of the BSCU
monitors and the complete shutoff of the BSCU were used as intermediate events.
This results in the fault-tree shown in figure 4. We will have a closer look at the
two highlighted subtrees.

Subtree b) is directly related to the one depicted in the ARP [5, page 200],
except that we did not include failure-modes for the electrical power or the
failure of the hydraulic system (except for the pumps). The subtree shows that
the safety requirement is violated, when all three modes fail to operate. The
reason for the failure of the normal mode is further broken down to be caused
by the failure of the green hydraulic pump or failure of the BSCU units to
command braking. Note that this also occurs, when the BSCU monitors fail to
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Fig. 4. Auto generated fault-tree

correctly compute the reference signal, which is covered by the events 5 and 2
in the fault-tree.

The consideration of monitoring failures is also the reason for the generated
fault-tree to be more comprehensive than the one depicted in the ARP, where
the occurrence of monitoring failures seems not to be considered. Subtree a)
of figure 4 is one of the additional subtrees stemming from this fact. The first
remarkable observation of this subtree is the circumstance that it only features
failures occurring inside the BSCU, i.e. the TLE is reachable without any failure
of the alternate and emergency mode. This is due to the fact that the failure
of the monitoring unit inside the BSCU can inhibit its shutoff, thus preventing
the system from changing to alternate mode. Nevertheless, a closer look at the
minimal cut-set of subtree a) in figure 4 reveals a situation which is confusing at
first. The failure of the first monitor (Event 2) activates the first invalid signal,
yet the subtree also contains a failure which makes the same signal stay inactive.
We can find an explanation for this by letting STSA compute a counter example,
which shows the temporal ordering of the involved failures.
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Fig. 5. Traceviewer showing the
temporal ordering of failures

Such a trace is depicted in figure 5 which
easily explains the odd situation in the fault-
tree. One can see, that the first failure occur-
ring is the failure of the first monitor. Due to
this, the BSCU switches to the second com-
mand unit, which subsequently fails. At last,
the invalid signal fails, inhibiting the shutoff
of BSCU.

We conclude by referring to [10], where
the technique has been applied to the high-
lift system of an aircraft.

3.4 FMEA

Each of the cut-sets that has been computed may give rise to other questions,
for instance, whether there are other impacts. Since all kind of analyses are
performed on unique system and failure models we may proceed to investigate
cut-sets for further possible impacts. The traditional way for answering this
question is to perform a Failure Mode and Effect Analysis (FMEA), also em-
bedded in STSA. An important difference to the traditional (application of the)
FMEA method is that it is possible not only to investigate single failures for
their effects, but also failure combinations. In particular the minimal cut-sets
that have been identified during fault tree analysis may be imported and fur-
ther investigated. This idea of having formal tools guiding the safety assessment
process will be further followed in the following section about the identification
of common causes. It is in contrast to [4] where the idea is “to try to pose
the right verification questions to formal tools”. Although we agree that stan-
dard verification tools can be used in principle to perform safety assessment
activities (and in fact we use several classical verification engines), they need to
be adopted for safety assessment purposes (e.g. the setting in [4] does not even
allow to detect causality of failures).

Fig. 6. Auto generated FMEA table

Usually FMEA result are
given in the form of tables,
as shown in figure 6. Each
row shows the effect of (a
subset) of the failure-modes
under consideration, if any.
In this case, the first row cor-
responds to the cut-set de-
picted in subtree a) of fig-
ure 4, which was used as an

input to the analysis. The other rows depict the effects that different subsets of
the failure-modes have on the system. Subsets without any effect on the TLEs
are not shown (e.g. the sole failure of the INVALID 1 signal in our example).

Depending on the size of the state space of the model and the length of propa-
gation paths several kinds of analysis techniques are used in the implementation.
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Both, SAT-based and BDD-based [11,12] techniques are used in several variants.
Again, it is possible to produce a simulation trace for each effect detected during
FMEA, thus allowing to trace problems down to concrete runs of the system
(model).

3.5 Common Causes

Fig. 7. Tyre burst trajectories

The idea behind failure-modes that have been
described in section 3.2 is that all failure-modes
are independent. The goal in the common cause
analysis is to evaluate the consequences of vio-
lations to these independence assumptions. For
instance, the violation of independence hypoth-
esis for AND-ed failure events implies the in-
validation of basic redundancies foreseen by
the aircraft system’s architecture and then dif-
ferent qualitative and quantitative assessment
about the violation of safety requirements. As
recommended by the ARP, it is therefore nec-
essary to ensure that such independence exists,
or that the risk associated with dependence is

deemed acceptable in respect to the applicable certification standard require-
ments.
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Typically the violation of independence
assumption is caused by an external event
establishing dependencies that are not repre-
sented in the system model. An example for
such an external event could be a tyre burst
where the ejected particles hit several com-
ponents that are independent in the func-
tional design model but closely located
within the physical structure (see figure 7).
Taking such dependencies into account re-
quires the integration of the functional mod-
els with the the geometrical representation
of the system installation. This integration
is performed in the context of a stepwise
process that starts from the geometry and
moves towards the functional tools. The re-
sults of safety analyses are then translated
back into the geometrical domain to high-
light the potential weak points of design installation in terms of violation of
safety requirements.

The main steps of the process are detailed in the following. Geometrical models
of fragments and relevant trajectories — picked up from a library and built in
agreement with the reference standards — are located on geometrical item/s
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potentially interested by a particular risk event (for instance a rotor stage of an
engine or a tyre). In this extended geometrical environment (including aircraft
systems and fragments trajectories), the consequences of a particular risk event
are evaluated by means of interference analysis facilities. The output of this
first phase of the process is a list of impacted geometrical components for each
possible trajectory of the ejected debris. In the second step of the process the
list of impacted items for each trajectory is translated into the list of functional
failure-modes through a dictionary. The output of this step is a list of groups
of failures that are triggered by the same cause. We call each group of failure-
modes a failure-set. Each failure-set is identified by the angular coordinates of
one or more possible trajectories of the considered fragment. The BSCU from the
braking system is divided into several zones (see figure 8). In the example analysis
we are presenting there is one trajectory that hits the zones A1 and A2 thereby
failing both Command1 and Monitor1. This information is then imported into
the analysis tool as a new failure-set that references the failure-modes that have
been defined for the affected components.
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I E

r=0
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stuck-at (p) :
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Fig. 9. Fault-tree with Com-
mon Causes

The last step of forward flow of the process
consists in performing the same safety analyses
described in previous sections 3.3 (FTA) and 3.4
(FMEA), this time taking into account common
causes. To do that, the failure-sets imported into
STSA are treated as additional failure-modes in
the elaboration of safety results. As we can see
from figure 9 the fault-tree now contains a single
failure-mode cut-set that is relevant to tyre burst
fragment trajectories. This has an obvious im-
pact from the quantitative point of view. The
critical trajectories identified in the analysis (i.e.
those trajectories that invalidate safety require-
ments) can be highlighted in the 3D tools after-
wards. If the quantitative requirements are not
satisfied, our integrated approach eases the ver-
ification of possible design alternatives.

As final note, we highlight an alternative use
of the failure-set facility. The user has the possi-
bility to bypass the interference analysis by man-

ually creating groups of dependent failures. This could be helpful in order to per-
form user-guided grouping of failures sharing one or more geometrical attribute.
A possible useful application of this manual definition of failure-sets could be
in performing the Zonal Hazard Analysis [5]: in this case the failure-sets will
be relevant to failures of components located in the same Aircraft zone (see
figure 8).

3.6 Mission and Reliability Analysis

So far, our example safety requirement (c.f. section 3.1) did not take different
flight phases into account. This section shows, how this can be done by specifying
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the successful completion of the aircraft’s mission as the safety requirement. The
goal of the mission analysis therefore is to determine to what extent the success
of a mission depends on the availability of certain functions (in certain phases
of the mission).

GATE 1

MISSION_SC:FAIL

EVENT 1

(user (p) :
BLUE_PRESSURE =

PRES_LOW) in
(MISSION_SC:LANDING) 

I E

r=0

EVENT 2

(user (p) :
GREEN_PRESSURE =

PRES_LOW) in
(MISSION_SC:LANDING) 

I E

r=0

Fig. 10. Fault-tree with
mission phases

In order to reason about the aircraft’s mission,
a formal model of it is needed. We refer to such a
model as the mission manager. Usually, it consists of
a statechart describing the succession of the differ-
ent mission phases. Transitions between the phases
are annotated with the requirements for the success-
ful completion of the phases. Failure to meet these
requirements can either result in the transition to
an alternative successor phase or the failure of the
mission.2

For the braking system example, we created a mis-
sion whose objective is to land on an icy runway. The
mission consists of the usual phases of a flight such
as Cruise, Descent, Landing and Taxi. Assume that
the successful completion of such a mission requires
the anti-skid function to be working. The mission
manager is designed in such a way that upon failure
of the anti-skid function, the mission changes the ob-
jective to use another runway, which does not require

anti-skid. However, this is only possible before the mission reaches the Landing
phase.

By defining the phases of the mission to be interesting observables the analysis
can be used to determine the impact of a function loss during a certain mission
phase (on the success of the mission). The observables are then used to re-
organise the tree that results from the analysis, where the mission phases are
reported in the description of the basic events to indicate that the failure-mode of
the system items has to occur in a specific phase to have an effect on the missions
failure. Figure 10 shows a fault-tree where the occurrence of the failures is only
relevant during the Landing phase – earlier occurrences do not lead to the failure
of the mission (because an alternate runway can be used).

4 Related Work

Model-based verification of fault-trees is shown, for instance in [13,14]. They
allow for a very detailed specification of (intermediate) events. The fault-tree
itself has to be created manually. However, some work exists how to complete
an incomplete fault-tree [15]. The Hip-HOPS [16,17] method is based on the
construction of a failure propagation model that is afterwards analysed. The
result of the first step is usually a model that is simple in structure when com-
pared with a typical functional model that is created by tools like Statemate [1]
2 Where the mission’s failure is considered to be catastrophic.
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or Simulink [2]. Another model-based safety analysis approach, derived from
methods we jointly developed in [18] within the ESACS consortium, is pre-
sented in [4]. The method applies standard verification tools to produce single
failure scenarios and is based on a taxonomy of failure models and failure se-
mantics that were developed in [18]. From the safety point of view, however, it
suffers from an important drawback: Because standard verification algorithms
are used, the method is bound to investigate only single failure scenarios, i.e.
each failure combination has to be specified and investigated independently im-
plying that for n failure candidates in the worst case 2n analysis runs have to
be performed to completely traverse the search space induced by the failure
combinations. Even this number increases if system modes or mission phases
are taken into account. Another weakness of the approach is that it does not
take causality of failures into account leaving the safety engineer alone with the
question of whether a given cut set is minimal. In contrast to the pattern-based
failure injection presented here, they have chosen a manual injection method
that, beside being time-consuming, leaves the system engineer alone with the
question of what is the system and what are the failures. It seems question-
able whether such manual injection can be carried out practically on larger
designs.

5 Conclusion, Further Work

We have presented a tool-supported method for performing a model-based safety
assessment.A unique model of the system extended with failure modes — obtained
by instantiating pattern from a failure mode library — was used to perform several
traditional safety analysis techniques, namely FTA, FMEA, CCA, and MRA. By
identifying causal failure combination in the ARP 6741 braking system model it
was demonstrated that the results are beyond those that are achievable by stan-
dard model checking techniques. Other improvements were achieved by exploiting
synergies from a combination of analysis results, so that common causes could be
incorporated in a fault tree and the role of mission phases could be identified when
investigating requirement violation in a MRA. The failure injection and the analy-
sis methods were implemented as a plug-in for Statemate, allowing easy definition
and execution of safety analysis tasks. The techniques allows to analyse system
models up to 10100 states without modifications. Further work includes the adop-
tion of abstraction techniques to address more complex models.

There are no general obstacles in extending the presented analyses to the
quantitative, i.e. probabilistic case. The necessary models are at hand (c.f. [19])
and also existing stochastic analysis techniques (e.g. [20]) are waiting to be
extended much like we have extended traditional verification techniques to cope
with qualitative questions of safety. The challenge will be to apply these to
models of realistic size. The necessary state aggregation techniques have already
been set up in [21]. Thus, most of the presented techniques are likely to be lifted
to the quantitative case in the near future.
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Abstract. Resilient Packet Ring is a novel metro access standard. Here,
we analyze it from the reliability viewpoint. The reliability function,
availability as well as Mean Time to Failure metrics are analyzed. Simu-
lation experiments are performed to confirm that the formulas obtained
on the theoretical basis are correct.

1 Introduction

RPR (Resilient Packet Ring) is a standard finished and approved in June 2004
and marked as IEEE 802.17 [1]. It is based on DPT (Dynamic Packet Trans-
port), the solution for MAN and WAN networks proposed by Cisco in 2000 [2].
The main goals of DPT (and also RPR) are: fast and manageable transmission,
spatial reuse, fairness and fast reaction to any failure. There are many papers
published on conferences or in magazines where RPR features are described and
propositions how to develop the 802.17 standard are presented. The problem of
RPR reliability estimation is not widely studied. This is rather strange, as RPR
is substantially a resilience assurance technique and the reliability assessment
of it could be very useful in designing networks based on that paradigm as well
as to compare with alternative solutions. In this paper, we analyze this prob-
lem and present a simple mathematical model. Nevertheless, results obtained by
simulation experiments suggest that even such a simple analysis is very useful.

The structure of the paper is as follows. In Section 2 the architecture of RPR
together with the main features of RPR are shown. In Section 3 the reliability
analysis is introduced, including the methodology, reliability function, availabil-
ity and Mean Time to Failure parameter of the network based on RPR. In
Section 4 numerical example and simulation results are presented. They show
that the derived formulas can be used as a good estimate of reliability factors
for RPR and that the presented conclusions are correct.

2 Resilient Packet Rings: Short Overview

The RPR standard is proposed to be use in MAN and WAN networks. The
architecture is based on a ring topology with two counter-rotated rings. The
� The author was supported by The Foundation for Polish Science.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 289–301, 2006.
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packets of traffic flows may be sent in both rings at the same time, but while
packets of the flow are sent in one ring, the control packets of this flow are sent
in the opposite direction in other ring. The architecture of an RPR ring with
four nodes is presented in Fig. 1.

Fig. 1. Simple RPR network with four nodes

There are three traffic classes described in the RPR standard. The highest
priority is given to class A packets. Within this class two subclasses are described
and named A0 and A1. The class A packets are usually used for real time
transmissions, where no delays are acceptable. Medium priority packets (class
B) are used for real time transmissions where low packet delays are acceptable.
Within this class two subclasses are defined: B-CIR (provides bounded delay
transfer of traffic at or below the committed information rate) and B-EIR (the
traffic with rate beyond the committed rate is treated as best effort traffic). The
lowest priority packets (class C ) are used for best effort transmissions [3].

The transmission of best effort traffic is additionally controlled by a fairness
algorithm. The available bandwidth is fairly divided and assigned to each flow.
The concept of such a mechanism allows for using the Spatial Reuse concept. It
assumes that more bandwidth than computed by the fairness algorithm may be
assigned to a traffic flow in a selected part of the ring. Such method allows for
increased bandwidth utilization and decreasing packet latency. The concept of
the fairness algorithm and spatial reuse mechanism is presented in Fig. 2.

The dual-ring architecture is the most important advantage from the resilience
point of view. The alternative path between a source and a destination is avail-
able after a single node or span failure. There are two approaches to react to a
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Fig. 2. Fairness algorithm and spatial reuse mechanism

failure: protection and passthrough. Two protection mechanisms are described in
the RPR standard:

– steering: an obligatory mechanism for each node in the RPR ring; when a
link or node along a packet route fails, the packets are redirected in the
source node to the opposite ring;

– wrapping: an optional mechanism for nodes in the RPR ring; if implemented
in a node placed next to a failure point, packets are redirected in this node;
it allows for lossless transmission but with higher delays.

Obviously, if only steering mechanism is used, packets sent towards the failure
point are lost. Thus, the most popular and suitable proposition to use is the
wrapping-then-steering mechanism. In such a case, packets sent towards a failure
point are redirected to the opposite ring in node placed next to the failure point.
Then, other packets (from time instant when the source node is aware of the
failure point) are redirected in the source node. It decreases the probability of
packet loss. The main objective of using protection mechanisms is limitation of
service interruption to 50 ms.

The passthrough mode is also described in the RPR standard. When the
node failure occurs, the node may be just removed from the ring. It allows for
continuation of transmission in both rings [4]. The passthrough mode is optional.
It may be activated by a failed node (the way of activating the mode depends
on implementation). What is very important, the failure cannot be physical (the
network cards must be in the working order). The passthrough mode is usually
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activated by a failed node in situation when the steering or wrapping mechanism
has been already activated.

The most popular cases of restoring transmission in an RPR network after a
single failure are as follows:

– wrapping the failed (damaged) span,
– steering the traffic after a span failure,
– passthrough mode (removal of a failed station from the ring),
– wrapping the span next to the failed station,
– steering the traffic after a station (node) failure.

The examples of using wrapping and steering mechanisms after link failure
and passthrough mode are presented in Fig. 3.

Both protection mechanisms work under control of the IPS (Intelligent Pro-
tection Switching) protocol, which decides when and which mechanism should
be used. The Topology Discovery mechanism has a major role in protection and
restoration actions. It is activated periodically and after any topology change
and gives the full knowledge of the ring topology.

3 Reliability Analysis

3.1 Applied Methodology

We apply the following commonly used metrics for network resilience assessment:

– Reliability function R(t) which can be defined as the probability that the
system operates successfully for a given period of time (0, t) if we assume
that in time 0 the system is operational [5];

– Steady-state availability A defined as the limit (if exists), when time t tends
to infinity, of the probability that a system is in the operational state at time
t [6]. Unlike the reliability, it is a number, not a function;

– Mean Time to Failure MTTF , i.e., the average amount of time before the
system fails.

For each structure we derive two types of reliability (and analogously, avail-
ability as well as MTTF ):

– the all-terminal reliability: if a network consists of N nodes, it is defined as
the probability that all N nodes are connected for a given period of time
(0, t);

– the two-terminal reliability: if a network consists of N nodes, it is calculated
for selected source node s and termination node t, and equals the probability
that these nodes are connected (it is also called s− t reliability)

While the all-terminal metrics can be used as an overall assessment of the net-
work resilience, two-terminal metrics can be treated as some Quality of Service
parameter related to a given connection.

Closed-form formulas usable to draw practical conclusions are desired. There-
fore, to simplify the derivation, we take some common simplifying assumptions:
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(a) Wrapping

(b) Steering

(c) Passthrough

Fig. 3. Examples of steering and wrapping mechanisms and passthrough mode
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– the self-healing operates properly, i.e., we do not take into account the prob-
ability that backup switching systems fail;

– failures of two spans are supposed to be statistically independent;
– both ringlets in a span fail simultaneously;
– we consider only total span and total node failures, thus, we do not take into

account situations where the possthrough mode is used;
– we are interested in a steady-state, not an instantaneous behavior of a net-

work and additionally, we study the operation in the sense of physical recov-
ery (not the packet level recovery); thus, we do not deal with wrapping which
is not mandatory for RPR and has a meaning only for the fast recovery;

– we are interested only in class A traffic which uses so little resources that
a failure of recovery due to protecting resources shortage is impossible, i.e.,
a failure of recovery could be caused only by multiple simultaneous failures;
class B and C traffic is adjusted to the surviving resources so a notion of a
failure of recovery related to these both traffic classes is not relevant;

– for each span we determine the reliability function as: ∀irspani (t) ≡ rs(t) (in
Section 4, rs(t) is calculated as the mean value of all reliabilities resulting
from lengths of spans); hence, a single average reliability function is used
for all spans (and consequently, the analogous process is performed for the
availability).

We use the following notation:

– N is the number of spans (nodes) in an RPR ring (N ≥ 3);
– k is the distance between s−t nodes, when two-terminal metrics are assessed;
– rs(t) is the reliability function of a span;
– rn(t) is the reliability function of a node;
– λs represents the failure rate of a single span;
– λn represents the node failure rate;
– μs, is the repair intensity of a single span;
– μn, is the repair intensity of a single node;
– RRPRall(t) is the reliability function of a whole RPR ring;
– RRPR2(k, t) represents the reliability function of a connection between a pair

of s− t nodes which as a primary path use the shortest path composed of k
contiguous spans and k − 1 nodes;

– MTTFRPRall stands for the Mean Time to Failure of a whole RPR ring;
– MTTRRPR2(k) refers to the Meant Time to Failure of a connection between

a pair of s− t nodes.

In the case of reliability/availability calculations we use the state enumera-
tion method, i.e., all events fostering up states are listed and the sum of their
probabilities is calculated. First, formulas for the reliability function are found.
Then, on this basis, the steady-state availability is calculated, i.e., the reliability
functions of a span/node are substituted with the steady-state availability value
of a span or node, respectively.

In the case of MTTF calculation, we model the behaviour of a system as a
continuous time Markov chain [7], where states are related to different failure
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situations. We assume that failure as well as repair processes are memoryless and
we take into consideration failure/repair intensities in appropriate transitions.
Thus, we use the homogeneous Markov chains. To obtain MTTF easily, the
Laplace transform is used. Then, the sum of probabilities in limit where the
imaginary variable tends to 0 gives MTTF values.

The similar methodology of the reliability function in the communication
connections context was used for instance in [8]. The methodology of network-
related MTTF assessment is similar to the one presented in [9].

3.2 Reliability Function and Availability

All-terminal Reliability/Availability. There are only two classes of proba-
bility events resulting in the situation in which all RPR nodes are connected:

(a) all nodes as well as all spans are operational;
(b) all nodes are operational and only one among the spans is faulty, all re-

maining spans are operational.

On the basis of such analysis the following formula for the all-terminal relia-
bility of an RPR ring can be derived:

RRPRall(t) = rN
n (t)× rN

s (t)︸ ︷︷ ︸
(a)

+ N × rN
n (t)× rN−1

s (t)×
[
1− rs(t)

]
︸ ︷︷ ︸

(b)

(1)

From the all-terminal reliability viewpoint, the behavior of an RPR is the
same as a BLSR (Bidirectional Line-switching Ring) or a p-cycle.

Two-terminal Reliability/Availability. The two-terminal reliability for a
pair of nodes can be calculated when a ‘span distance’ between them equal to k
(1 ≤ k ≤ �N/2�) is assumed. The reliability is related to the parallel structure
built by two elements:

(a) shortest path;
(b) recovery path.

While also two end nodes of the connection (s and t) must be up to ensure
the connectivity reliability block diagrams representing these nodes are treated
as an element connected serially in the reliability sense (c).

Thus, the two-terminal reliability of a connection in an RPR ring is equal to:

RRPRall(t) =
{
1−

[
1−rk+1

n (t)× rk
s (t)︸ ︷︷ ︸

(a)

]
×

[
1−rN−k+1

n (t)× rN−k
s (t)︸ ︷︷ ︸

(b)

]}
×r2

n(t)︸ ︷︷ ︸
(c)

(2)

3.3 Mean Time to Failure

All-terminal Case. As it was said before, to calculate MTTF we will need
state space models instead of combinatorial ones used previously. In this section
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Fig. 4. Markov reliability model related to the all-terminal reliability of an RPR ring

we present the methodology of calculations and not the final formulas as they are,
generally, very long and hard to understand. The values are calculated with the
SHARPE modeling tool [10]. The modeling will be shown by using an example
of the simplest model, i.e., MTTF of a system which is here an all-terminal
RPR ring. To obtain the formula describing the Mean Time to Failure when
repairs are taken into account, a Markov model of failure states, presented in
Fig. 4, will be used. In the Markov model we assume that it is impossible to
have more than a double failure in a network. This allows us to have a relatively
small state space. In fact, it is not so small, especially in the two-terminal cases.
The influence of triple, quadruple, etc. failures is negligible. Therefore, we do
not consider any transitions related to triple and higher order failures. Let us
denote the states in the model presented in Fig. 4:

s0 the state where all spans and nodes are operational; it is an initial state, i.e.,
the state in which the system starts to work;

s1 the state where one node is faulty; this state is treated here as the absorbing
one;

s2 the state where one span is faulty (and steering is activated)
s3 the state where one span and one node are faulty (absorbing state);
s4 the state where two spans are faulty (absorbing state).

The intensity of the transition from s0 to s2 equals Nλs as there are N spans
that can fail. The intensity of the transition from s2 to s0 is equal to μs as
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Fig. 5. Markov reliability model related to the two-terminal reliability case in an RPR
ring

in this case only one span can be recovered. Other transition intensity values
are determined in the analogous way. MTTFRPRall is here expressed as the
mean value of the sum of the probabilities of non-absorbing states [11] (here:
Pr{s0}+ Pr{s2}).
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Two-Terminal Case. In the two-terminal case, the following transient states
can be distinguished (absorbing states are not given to not disturb the clarity,
in Fig. 5 only transitions to these states are given):

s0 the state where everything is operational;
s1 the state where one of k spans in the shortest path is faulty (other spans and

nodes in the ring are operational);
s2 the state where one of k spans in the shortest path is faulty (other spans and

nodes in the ring are operational);
s3 the state where only one of the spans of the recovery path is not operational;
s4 the state where only two spans of the recovery path is not operational;
s5 the state where only one node on the working path is faulty
s6 the state where only two nodes of the recovery path is not operational;
s7 the state where one node and one span of the working path are faulty;
s8 the state where one node of the recovery path is faulty;
s9 the state where two nodes of the recovery path are faulty;
s10 the state where one node and one span of the recovery path are faulty;

Here, all enumerated states are non-absorbing, thus MTTFRPR2 is expressed
as the mean value of

∑10
i=0 Pr{si}).

Fig. 6. Comparison of theoretical (circle) and simulation results (squares) in example
RPR rings: all-terminal availability. 95% confidence intervals are marked.
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Fig. 7. Comparison of theoretical (circle) and simulation results (squares) in example
RPR rings: Mean Time to Failure: all-terminal availability. 95% confidence intervals
are marked.

4 Numerical Example

To verify the results of our analysis we performed some simulation experiments as
we lack empirical data from carriers’ statistics. To show that the derived formulas
were calculated properly and can be used as resilience performance estimates,
we simulated failures in an RPR ring with different number of nodes. Span
lengths were chosen randomly on the basis of the normal distribution N(200, 100)
(distance is given in km).

In the steady state, we have the well known relation:

MTBF = MTTF + MTTR (3)

where: MTTR is the Mean Time to Repair (MTTR = 1/μ) and MTBF repre-
sents Mean Time Between Failures (MTBF = 1/λ). It can be useful as an input
in some studies, because its value is based of statistical studies derived from the
data collected by operators, i.e., the frequency of cable cuts. Let CC (cable cuts
parameter, measured in km) represents the average length of a fiber which is
cut once a year. Provided it is known, the value of MTBF (in hours) of a fiber,
which is l miles long, can be calculated according to the following relation [12]:

MTBF = (CC × 365× 24)/l (4)

In our simulations CC = 530 km.
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The steady-state availability for a cable forming a span is calculated as follows:

A =
MTTF

MTBF
=

MTTF

MTTF + MTTR
=

MTBF −MTTR

MTBF
(5)

We apply the availability models to the reliability formulas derived in the
previous section. If the availability of a cable calculated according to Eq. (5)
substitutes function rs(t) in the formulas describing the reliability, the formula
for the steady-state availability will be obtained. rn(t) is substituted with the
standard value of a node availability 0.99994 [13].

Simulation results are compared with the values theoretically obtained for
all-terminal cases in Figs. 6-7. When repairs are taken into account (in MTTF
models) the values of node repair intensities are equal to: μn = 4 (based on the
values of respective MTTRs extracted from [13]).

We can see that values predicted on the basis of theoretical models are quite
good approximation of values obtained in the simulation. It can be observed
that for larger numbers of spans (nodes) in an RPR ring, i.e., larger than 20, the
values of MTTF are decreasing below one year. That suggests that the usage
of such big RPR rings is risky ad it signifies that approximately once a year a
carrier will have problems with transporting some quantity of traffic according
to not restored faults.

5 Conclusion

In the paper, different reliability models related to an RPR rings were applied.
This is the first approach to the RPR reliability analysis. The reliability function
as well as Mean Time to Failure are covered. All- and two- terminal cases are
taken into account. The simulation results confirm that they can be successfully
used to assess the resiliency features of this technique. Further works will focus
on more systematic analysis of reliability aspects when the RPR protocol is
embedded in a wider system (e.g., MPLS-over-RPR).
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3. Spadaro, S., Solé-Pareta, J., Careglio, D., Wajda, K., Szymański, A.: Positioning
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Abstract. Run-time checks are often assumed to be a cost-effective way
of improving the dependability of software components, by checking re-
quired properties of their outputs and flagging an output as incorrect if
it fails the check. Run-time checks’ main point of attractiveness is that
they are supposed to be easy to implement. Also, they are implicitly as-
sumed to be effective in detecting incorrect outputs. This paper reports
the results of an experiment designed to challenge these assumptions
about run-time checks.

The experiment uses a subset of 196 of 867 programs (primaries) solv-
ing a problem called “Make Palindrome”. This is an existing problem on
the “On-Line Judge” website of the university of Valladolid. We formu-
lated eight run-time checks, and posted this problem on the same web-
site. This resulted in 335 programs (checkers) implementing the run-time
checks, 115 of which are used for the experiment.

In this experiment: (1) the effectiveness of the population of possibly
faulty checkers is very close to the effectiveness of a correct checker; (2)
the reliability improvement provided by the run-time checks is relatively
small, between a factor of one and three; (3) The reliability improvement
gained by using multiple-version redundancy is much higher. Given the
fact that this experiment only considers one primary/Run-Time Check
combination, it is not yet possible to generalise the results.

1 Introduction

Redundancy is a means to improve the reliability of software components. Much
research has been invested in multiple-version redundancy, e.g. 1-out-of-2 sys-
tems. Much less research has been invested in asymmetrical redundancy, e.g. the
use of run-time checks, RTCs, see Figure 1. In these cases a primary program is
checked by an, ideally relatively simple, RTC.

RTCs are often proposed as a means to improve the dependability of software
components. They are seen as cheap compared to other means of increasing relia-
bility by run-time redundancy, e.g. N-version programming. We are interested in
answering questions like whether RTCs are effective and how their performance
compares to that of symmetrical redundancy. We also want to confirm or reject
common conjectures, such as that RTCs are so simple that we may assume that
they are correctly programmed.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 302–315, 2006.
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Checker Checker Output

Primary OutputInput

Fig. 1. Primary/Checker model

Table 1. Sample inputs and sample outputs for the primary

Sample Input Sample Output
abcd 3 abcdcba
aaaa 0 aaaa
abc 2 abcba
aab 1 baab
abababaabababa 0 abababaabababa
pqrsabcdpqrs 9 pqrsabcdpqrqpdcbasrqp

RTCs (also called executable assertions and other names) can be based on
various principles (see e.g. Lee and Anderson [3] for a summary), and have wide
application. For instance, the concept of design by contract [5] enables a check
on properties of program behaviour.

Some RTCs can detect all failures, for example checks that perform an inverse
operation on the result of a software component [1,2]. If the program computes
y = f(x), an error is detected if x �= f−1(y). This is especially attractive when
computing f(x) is complex, and the computation of the inverse f−1 relatively
simple. The argument is then that because computing f−1 is simple, the likeli-
hood of failure of this RTC is low. Also, it seems unlikely that both the primary
computation and the RTC would fail on the same invocation and in a consistent
fashion. Together, these factors lead to a high degree of confidence that program
outputs that pass the check will be correct. However—as these authors readily
admit—such theoretically perfect checks do not exist in many cases, maybe even
not in the majority of cases. RTCs can then still be applied, but they will in
general not be capable of finding all failures. Examples of these partial RTCs
are given by e.g. [11].

Previous empirical evaluation of RTCs have generally used small samples of
programs, or single programs [4,7,10]. Importantly, our experiment involves a
population of programs, both of the primary and of the checker, because we
think that in order to learn something general about RTCs, we need a statistical
approach. We can now study the complex interplay between (possible faulty)
primaries combined with (partial, possibly faulty) checkers.

The interaction between the primary and the checker is complex because the
performance of the checker is dependent on that of the primary. An example
of this interaction is that it may be that improving the primary may lead to
a rise in the probability of undetected failure. Suppose that a primary (e.g., to
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compute f(n) = (n+2)(n−2)) is incorrect (f(5) = 27) and that the checker (e.g.,
f(n) ≤ n2) detects the incorrect outputs of the primary. Now, the programmer
changes the primary (f(5) = 23); its output is now closer to the correct answer,
but still incorrect. It may now be that the checker is unable to detect the incorrect
outputs. As a result, the probability of undetected failure may have increased.

2 The Experiment

2.1 The UVa Online Judge

The “UVa Online Judge”-Website (http://acm.uva.es, [8]) is an initiative of
one of the authors (Revilla). It contains program specifications for which anyone
may submit programs in C, C++, Java or Pascal intended to implement them.
The correctness of a program is automatically judged by the “Online Judge”.
Most authors submit programs repeatedly until one is judged correct. Many
thousands of authors contribute and together they have produced more than
3,000,000 programs for the approximately 1,500 specifications on the website.

2.2 Specification of the Primary

For the primary, we took a specification from the Online Judge formulated by
Md. Kamruzzaman: a program to generate palindromes. It takes an input string
of 1000 or less lower case characters and makes it into a palindrome by inserting
lower case characters into the input string at any position. The number of char-
acters inserted shall be as low as possible. The output is the number of characters
inserted, followed by the resulting palindrome. See for a complete specification
the Online Judge website, http://acm.uva.es/p/v104/10453.html, and Ta-
ble 1 for some examples of correct input and output combinations.

2.3 Specification of the Checker

Based on the specification of the primary, we formulated a specification for its
checker. The checker (http://acm.uva.es/p/v104/10848.html) takes as its in-
put a string of 5000 or less ASCII characters (5000 to allow for faults in the
primary, leading to the output of many characters). It tests this string for the
following properties:

P1. It consists of a first string of lower case characters (length ≤ 1000), a single
space, an integer (≥ 0, ≤ 1000), a single space, and a second string of lower
case letters (length ≤ 2000).

P2. P1 & the second string is a palindrome.
P3. P1 & all letters of the first string appear in the second string.
P4. P1 & the frequency of every letter in the second string is at least the

frequency of this letter in the first string.
P5. P1 & the first string can be made out of the second string by removing 0

or more letters (and leaving the order of the letters intact).
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Table 2. Sample inputs and sample outputs for the checker

Sample Input Sample Output
abcd 3 abcdcba TTTTTTT The solution is accepted
aaaa 3 abcdcba TTTFFTT The solution is not accepted
abc 2 abdcba TFTTTFT The solution is not accepted
aab b baab FFFFFFF The solution is not accepted
abababaabababa 0 abababaabababa TTTTTTT The solution is accepted
pqrsabcdpqrs 9 pqrsabcdpqrqpdcbasrqp TTTTTTT The solution is accepted

P6. P1 & the length of the second string is equal to the length of the first string
plus the value of the integer.

P7. P1 & the value of the integer is smaller than the length of the first string.

Obviously, when all properties are true, the output of the primary may still
be faulty.

The output consists of the value "T" or "F" (for True and False) for every
property in the list above, and a statement "The solution is accepted" if all
properties are true, and "The solution is not accepted" otherwise. We will call
this property P8. See Table 2 for some examples of correct input and output
combinations.

Although the checkers implement all eight different properties, we will analyse
these separately, as if the checker programs only implement one of these. When
we address any of the run-time checks, we will use the abbreviation RTC. When
we address the implementations of one of the properties P1-8, we will use the
abbreviations RTC1-8.

2.4 System Behaviour

Table 3 shows how we classify the effects on the system based on the outputs of
the primary and the run-time checks. The effects from the system viewpoint are
rather obvious, except for the consequences of “No output” from the RTC (this
includes invalid output). We have chosen to accept the output of the primary
in these cases; the other option would also have been possible, it would have
increased the number of false alarms. Our choice is based on the assumption
that false alarms of RTCs are in general very undesirable.

RTC1 differs from RTC2-8, because it is purely a syntactical check of the
input. It is a necessary precondition to be able to do any of the other checks. It
is interesting to separate this check from RTC2-8, because it gives us an idea how
much the more application specific RTC2-8 add to this basic syntactic check.

2.5 Equivalence Classes

We subjected the primary to 10,000 demands: strings of lower case characters.
Each string has a random length between 1 and 30 characters with random
characters from the set “a”..“e”. The reason for the limited character set is that
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Table 3. Classification of execution results with RTCs

Output of run-time Effect from
primary check system viewpoint
Correct Accept Correct
Correct Reject False alarm
Correct No output Correct
Incorrect Accept Undetected failure
Incorrect Reject Detected failure
Incorrect No output Undetected failure

cases with character repetition will more frequently occur. The reason for the
maximum length of the string is to limit the execution time of the primary.

We sorted the primaries in “equivalence classes”, i.e. sets of programs produc-
ing exactly the same output. There is more than 1 correct equivalence class,
because for almost all inputs there is more than one correct solution, e.g. the
correct output to the input “ab” may be “1 aba” or “1 bab”.

The primaries gave mostly equal, but also many different outputs to the 10,000
demands; in total there were 529,433 different outputs to the 10,000 inputs. to
reduce computing time, we randomly selected 17,241 of these (approximately
1/30). We generated an input file to the checkers by combining each output
with the corresponding input. This input file is used to determine the equivalence
classes of the checkers and was only used for this purpose; for the rest of the
experiment we used the 10,000 demands as used for determining the primary
equivalence classes. We assumed that these 17,241 demands are sufficient to
discern the different checker equivalent classes.

For every primary equivalence class we made an input file for the checkers
by combining the 10,000 demands (the same for every primary) and their out-
puts. We executed every combination of primary and checker equivalence classes
with the appropriate input files. This was computationally quite intensive; the
computation took approximately three days.

2.6 Score Functions

Assume a specification for the primary, Sπ:

Sπ(x, y) ≡ “y is valid primary output for input x” (1)

Then, we define the score function ωπ for a random primary π as:

ωπ(π, x) ≡ ¬S(x, π(x)) (2)

I.e., the score function is true when the primary π fails to compute a valid
output y for a given input x.

The behaviour of an RTC σ can be described as:

σ(x, y) ≡ “y is accepted as valid primary output for input x” (3)
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Note the similarity to the specification of the primary, Sπ. Whereas the specifi-
cation is supposed to be correct, we assume that the checker may be faulty: it
may erroneously accept an incorrect pair (x, y). The checker fails if there is a
discrepancy with the specification. The score function ωσ for an RTC is:

ωσ(σ, x, y) ≡ Sπ(x, y)⊕ σ(x, y) (4)

I.e., the score function is true when the checker fails to recognize whether y is
valid primary output for input x or not.

For our system as depicted in Figure 1 and the variables (x, π, σ) for the input,
the primary and the checker, there are four possibilities:

1. ¬ωπ(π, x) ∧ ¬ωσ(σ, x, π(x)): Correct operation.
2. ¬ωπ(π, x) ∧ ωσ(σ, x, π(x)): False alarm.
3. ωπ(π, x) ∧ ¬ωσ(σ, x, π(x)): Detected failure.
4. ωπ(π, x) ∧ ωσ(σ, x, π(x)): Undetected failure.

We have calculated the score functions ωπ(π, x) and ωσ(σ, x, y) for the primary
and the checker equivalence classes.

2.7 Subsets for the Experiment

There are 867 submissions for the primary specification. We included the primaries
that are written in C, C++ or Pascal, compile and provide output within one sec-
ond. This left 566 primaries. Then we excluded primaries that fail for all inputs,
that left 484 primaries. From these we used the first submission of each author: 196
primaries. There are various reasons for selecting the first submissions:

1. We do not want to include more than one submission of a single author,
because subsequent submissions are shown to be highly similar, and that
would corrupt our statistical analyses.

2. The variability between first versions is higher, e.g. because later submissions
are more likely to be correct. This gives more room for statistical analyses.

3. A first submission is most comparable to a first submission in a “normal”
development process, because feedback to the authors differs from normal
feedback in various ways, e.g. the Online Judge will not communicate for
which input the program failed.

There are 395 submissions for the checker specification. We included the check-
ers that are written in C, C++ or Pascal, compile and provide output within
one second. This left 335 checkers.

For these checkers we compute the average FAR (false alarm rate, the fraction
of false alarms) for a specific primary π for RTC8 (for the calculations: TRUE =
1, FALSE = 0):

FAR(π) =
∑
x∈D

∑
σ∈Rσ

(1− ωπ(π, x)) · ωσ(σ, x, σ(x)) ·Q(x) (5)
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Rσ is the set of checkers, Q(X) is the demand profile over the demand space
D. D is the test set of 10,000 demands; we assume that each of the 10,000
demands is equiprobable, and therefore: Q(x) = 1/10, 000.

We excluded checkers that have a FAR of more than 0.1 for any primary or do
not provide sensible output at all (manual check), that left 306 checkers. From
these we used the first submission of each author: 118 checkers.

The rationale for excluding checkers with a high FAR is that these will nor-
mally be quickly detected during development. This is our modelling of the de-
bugging process of the checkers. There is only one checker left with a FAR larger
than zero. This checker fails for RTC1 (and subsequently often for RTC2-8) in
a rather erratic way.

3 Observations

3.1 General

The first observation was already done during selection of a suitable primary
for this research. It appeared that it is only possible for a small subset of the
problems of the Online Judge to formulate meaningful RTCs. In many cases,
the output of a program is a (set of) number(s) for which it is not possible
to formulate an inverse function to the input, or even an interesting weaker
relationship.

We chose this primary because it is possible to define RTCs, and a sufficient
number of submissions for the primary is available.

3.2 The Specification of the Checker

The checker specification appeared to be incomplete: we forgot to specify a lower
bound on the length of the strings. This leaves it to the programmers to decide
whether an empty string is correct input or not. As it appears, some of the
authors allow empty strings. This ambiguity has consequences for property 2: is
an empty string a palindrome or not? As it happens some authors who accept
empty strings consider an empty string to be a palindrome, others don’t.

A peculiar problem occurs for property 4: P1 & the frequency of every letter
in the second string is at least the frequency of this letter in the first string. We
intended to write: P1 & the frequency of every letter in the first string is smaller
than or equal to the frequency of this letter in the second string. Peculiarly,
most authors interpreted it this way. They thus wrote a stronger test than was
specified.

We argue that problems with specifications are common, and that this obser-
vation does therefore not invalidate the conclusions of the paper. Maybe even
to the contrary: they might even be supporting it, since specifying is part of the
development process, and a possible source of errors.

There is one equivalence class containing a correct checker, i.e. a program that
does not accept empty strings and interprets P4 as written in the specification.
Nobody submitted a correct program as their first submission. This implies there
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Table 4. Most frequent equivalence classes in the first submissions for the primary

Fault Freq. PFD Detection
Correct 129 0.00 No detection.
Adds too many characters to input string. 5 0.54 No detection.
Forgets last character in input string. 2 0.69 P3 (28%), P4 (55%),

P5 (100%), P8 (100%)
Adds too many characters to input string. 2 0.55 No detection.
Output string is not always a palindrome. 2 0.12 P2 (100%), P8 (100%)
. . .
Often fails to output second string. 1 0.94 P1-8 (100%)
Often outputs very large integers. 1 0.99 P126 (93%), P345 (96%),

P8 (100%)
. . .
No integer in output. 0 1.00 P1-8 (100%)
Often outputs control character at end of
second string.

0 0.94 P1-8 (100%)

is no correct submission in the set of programs we do our analyses on in this
paper, c.f. 2.7.

3.3 Faults in the Primary

To give an idea of the kinds of faults made, Table 4 presents some of the equiv-
alence classes of the primaries. There are 17 correct equivalence classes, with
in total 129 submissions. There are 67 incorrect submissions in 59 equivalence
classes. Only five equivalence classes contain more than one submission, these
are listed in the table. The fact that equivalence classes tend to only contain one
program indicates that authors tend to choose different approaches and tend to
make different mistakes. Furthermore, the presence of many different equivalence
classes for correct solutions indicates that authors do not tend to copy solutions
from each other, one of the worries for the usefulness of the data.

The table also shows whether the faults are detected by a correct checker, and
how effective these checks are.

3.4 Faults in the Checker

Table 5 presents some of the equivalence classes of the checkers. There are 54
correct submissions in one equivalence class (there is only one way to solve this
problem). There are 64 incorrect submissions in 51 equivalence classes, only
seven of these contain more than one submission. This again indicates that the
authors do not tend to make exactly the same mistake.

Seven submissions give no output when the second string is empty.
The most frequent mistake is that a checker fails when there are special ASCII

characters in the input string, e.g. the NULL character. This is problematic, be-
cause some primaries fail in a way that produces exactly these characters. This is
caused by the fact that the solution to the “Make Palindrome”-problem typically
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Table 5. Most frequent equivalence classes in the first submissions for the checker

Fault Freq.
Correct, except that P4 is interpreted more extensively. 54
Fails when input contains control characters. 5
Fails when integer in input string is very large. 4
Always outputs “TTTTTT The solutions is accepted”. 3
Fails when second string is absent. 2
Fails when there is a control character in the second string. 2
Fails when integer in input string is very large. 2
Fails when there is a control character in the integer or in the second string. 2
. . .
Fails for P4, behaves partly as specified. 1
Fails for P4, behaves as specified, but strange other fault. 1
Accepts empty second string, assumes empty string is palindrome. 1
. . .
Correct. 0
. . .

includes array manipulation. This, combined with a bug leading to a pointer
being out of array bounds, leads to possibly outputting these characters. Impor-
tant is here that this observation may undermine the conjecture of independence
between primaries and checkers.

4 Statistical Calculations

4.1 Reliability Improvement

To know the reliability improvement the checkers give, we first have to compute
the probability of failure on demand of the primaries:

PFD(π) =
∑
x∈D

ωπ(π, x) ·Q(x) (6)

Figure 2(a) presents the distribution of the PFDs of the primaries in a his-
togram.

The probability of undetected failure of a primary, averaged over the checkers
is:

PUFD(π) =
∑
x∈D

∑
σ∈Rσ

ωπ(π, x) · ωσ(σ, x, σ(x)) ·Q(x) (7)

Figure 2(b) shows the distribution of the probability of undetected failure
after applying RTC8. As can be expected, there is a significant shift to the left.

We now calculate the improvement of the primary PFD for various checkers
for subsets of the primary programs:
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Fig. 2. (a) Histogram of the PFDs of the primaries; (b) Histogram of the average
probability of undetected failure for the same primaries, with RTC8. Both graphs
exclude the 129 correct primaries.

I(PFDmin, PFDmax) =

∑
π∈R̂π

PFD(π)∑
π∈R̂π

PUFD(π)
(8)

with R̂π = {π|PFDmin < PFD(π) ≤ PFDmax}.
We choose 10 subsets R̂π of the primary programs such that: 0 < PFD(π) ≤

0.1, 0.1 < PFD(π) ≤ 0.2, and so on. Figure 3 shows the improvement of the
probability of undetected failure in the various PFD ranges for RTCs 1, 2, 4, 6 and
8 for a correct checker (wedonot showall, because thismakes the figure unreadable;
the other RTCs show similar erratic behaviour). There appears to be no obvious
relation between the PFD of the primaries and the effectiveness of RTCs. Who
would have expected that RTC6 would be very effective for reliable primaries?

Some RTCs are very effective, others are not. Some are effective for low pri-
mary PFDs, others for high. It is however not predictable which RTCs will be
effective, since this depends on factors as the demand space and the program-
ming faults made in the primary.

The graph gives rise to one possible conclusion: RTCs may still be effective
for reliable primaries.

4.2 Effectiveness of the RTCs for Decreasing Average PUFD

We now investigate the effectiveness of RTCs as a function of the average PFD
of primaries. To vary the PFD, we take the pool of 196 primaries and we one
after another remove primaries with the highest PFD. The result is shown in
Figure 4.

As observed in our earlier paper [9], the effectiveness of RTCs shows a rather
unpredictable pattern. The PFD-improvement of RTC1-7 remains well below a
factor three in almost the entire graph. RTC6 and 8 become infinity for low
PUFDs, but that is mainly caused by the fact that the number of primaries in
this region becomes very small and the checkers manage to capture the faults in
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Fig. 3. The improvement of the probability of undetected failure in various PFD ranges
for RTCs 1, 2, 4, 6 and 8 for a correct checker. The improvement in the range 0-0.1
excludes correct primaries.
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(a) Correct checker. (b) Pool of checkers.

Fig. 4. The effectiveness of the eight RTCs as with decreasing average PFD of the
pool of primaries. The PFD is lowered by subsequently removing the most unreliable
programs. (a) For a correct checker; (b) averaged over the pool of checkers.

these few programs. The numbers computed in this region of the graph should
be considered with care. RTC8 is the conjunction of RTC1-7, and reaches an
average PFD improvement of about a factor three.

When we compare the PUFD of the correct checker with the average of the
checkers, we can observe that there is little difference, except for highly reliable
primaries. Here, the performance of the checkers is reduced, because of faults in
some checkers.

There may be a turning point at which a checker’s effectiveness becomes ques-
tionable: when the ratio between false alarms and detection of primary failure
becomes worse. Here we see a complex interplay between improving the quality
of the primary and the checker. Improving the quality of the checker may have
low priority, thus possibly resulting in poor specificity of the average checker.
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Fig. 5. Improvement of the PUFD of a pair of randomly chosen primaries, relative
to a single version. The horizontal axis shows the average PUFD of the pool from
which both primaries are selected. The vertical axis shows the PUFD improvement
(PUFDA/PUFDAB). The diagonal represents the theoretical reliability improvement
if the programs fail independently, i.e. PUFDAB = PUFDA · PUFDB .

5 RTCs vs. Multiple-Version Diversity

We now compare the effectiveness of RTCs with 1-out-of-2 diversity. We make a
graph in the same way as Figure 4, except that we take two primaries from the
pool instead of one.

We observe (see Figure 5) that 1-out-of-2 diversity becomes more effective
with decreasing PFD of the pool of primaries from which the pair is selected.
The reliability improvement ranges from a factor 25 to 100 for primary PFDs
between 0.01 and 0.001. The effectiveness seems to reach a peak at a PFD of
0.001. (note that the opposite trend—effectiveness decreasing with decreasing
mean PFD—is also possible, as proved by models and empirical results [6]). The
improvement factor of most run-time checks remains fairly constant between 1
and 3 over this range, depending on the RTC. Only RTC8 reaches a factor of
10, when the PFD of the primaries is around 0.02. The improvement factor of
using diversity is significantly higher than that of applying RTCs.

These results also confirm those in our earlier publication on the effectiveness
of RTCs [9].

6 Conclusions

In this paper, we examined the effectiveness of Run-Time Checks without the
assumption that these are fault-free. The effectiveness of the average checker
appears to not deviate much from that of a perfect checker.

The effectiveness of the Run-Time Checks is comparable to that in our ear-
lier study [9], a factor between one and three. We also confirmed the earlier
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result that multiple-version diversity is far more effective for decreasing the
PUFD.

As yet, it seems not predictable which Run-Time Checks will be most effective,
although in this study it is obvious that RTC8 will have the best coverage, simply
because it is the conjunction of all the others. As a side effect, RTC8 also has the
highest false alarm rate. Here again, it is hard to make a well-informed choice,
because it is virtually impossible to predict the false alarm rate.

The results also show that Run-Time Checks may remain effective, also for
the more reliable primaries. It may therefore be useful to keep the RTCs in
primaries, also after extensive debugging. This however needs to be a trade-off
with the possibility of raising false alarms.

We have to keep in mind that this research only considers one primary/Run-
Time Checker combination, and that we can as yet not generalise, except perhaps
for those observations that confirm those in our earlier publication on Run-Time
Checks.
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Abstract. The paper presents a risk-based integrated platform for the 
information and e-services security management related to the Information 
Security Managements System (ISMS) concept. The current state of the work is 
shown, including the UML-based methodology, and the incrementally 
developed computer-aided tool prototype. The assumptions of the integrated 
platform can be specified on the basis of sampled experiences from the first 
deployment and case studies, an analysis of standards, legal requirements and 
technology, and a study of the needs and requirements of various organizations. 
It is assumed that the common and enhanced assets inventory will integrate 
information security, business continuity and IT services management 
processes. The paper concludes the current, initial state of the work and defines 
its further directions.  

Keywords: information security management, risk, IT services, UML. 

1   Introduction 

The paper presents the work aimed at building a risk-based integrated platform for the 
information and e-services security management. The platform can be considered an 
extended version of the well known ISMS framework (Information Security 
Managements System) [1], [2], based on the PDCA (Plan-Do-Check-Act) scheme. 

The use of today’s ICT (Information and Communication Technologies) for the 
management of large businesses, critical information infrastructures, or emerging e-
services, upholding e-business, e-government or e-health applications, demands 
technically and economically efficient solutions that should provide the right 
assurance for their stakeholders and users. These demands can be met by the common 
approach that considers the following issues: 

− the needs of business processes concerning information and e-services security,  
− effective use of ICT providing managed IT services for business processes, 
− detailed risk characteristics, including cost/benefit aspects, 
− dependable and trustworthy solutions providing the right assurance. 

The security systems based on this common approach require the right 
management that is more and more often computer-aided. The challenge is how to 
build the management framework that would be an open platform integrating different 
methods and tools.  
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For this reason, the Institute of Control Systems (ISS) and the IT Centre of the 
Mining Industry (COIG) have just begun the Targeted Project “The comprehensive 
information and e-services security system” granted by the Polish Ministry of 
Education and Science. The project is based on the results of the earlier project 
“SecFrame” [3] dealing with the ISMS implementation and computer-aided tool 
prototype. The concept of the integrated and risk-based information and e-services 
security platform (ISP) has been elaborated on the basis of: 

− a study of the needs and requirements of various organizations, 
− an analysis of the current state of standards, legal requirements and technology 

(overview of existing methodologies and tools),  
− experiences sampled during the first SecFrame deployment and case studies.  

For the ISP platform the following main assumptions have been taken: 
− strong integration of ISMS processes, business processes, and business continuity 

and IT services management processes [4], [5]; it is especially important for e-
services and critical information infrastructure protection; 

− enhanced, three-layer, UML-model-based risk analyzer (allowing to assess the risk 
according to qualitative and/or quantitative measures), with a built-in ROI (Return 
on Investment) type mechanism; 

− possibility of confronting the information of generally hypothetical nature obtained 
during the risk analysis with the information that presents a real situation and is 
gathered on-line by monitoring tools, like firewalls, IDSes, or security testers; 

− consideration of implementing the selected assurance [6] methods. 

The basic innovation of the ISP is its holistic approach to problem solution 
concerning information security, IT services management and business continuity 
management. So far these problems have usually been solved separately. The holistic 
approach allows to create a common, business-oriented and highly-integrated 
management system. The paper is a continuation of earlier works [7], [8], [9], that 
present an idea of using a UML-based approach for modelling security management 
systems. The paper presents first steps of the recently initiated Targeted Project, i.e.. 
the study of the needs and requirements of various organizations, summary of the 
current state of technology, experiences sampled during earlier development and 
deployment works, and other basic issues concerning the elaboration of the ISP 
platform concept. The paper concludes also the current state of the work and defines 
its directions for the nearest future. 

2   Needs and Requirements of Organizations Concerning 
Information and E-Services Security Management 

The information security requirements of today’s organizations, which rely on ICT, 
depend on different factors. All these factors influence the implementation of the 
information security management system. The paper emphasizes the issue of e-
services security. This security is of key importance for such areas as e-business, e-
government and e-health. The following activities were undertaken at the beginning 
of the project to better specify the characteristics and needs of the organizations in 
which the ISP will be deployed: 
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− the identification of basic factors (above a hundred) influencing the information 
security management system, e.g. the kind and importance of business or public 
mission the organization carries out, its size, branch/sector, organization structure, 
location and environment, owned assets, legal acts, head management motivation, 
engaged people and their awareness, the used ICT, and business processes 
dependency on ICT – divided into primary and auxiliary factors; 

− defining the discussed below Organization overview criteria (OOC), based on the 
primary factors, to identify the organization profile that expresses the size and 
character of the organization; 

− refining the OOC criteria using the auxiliary factors; elaborating the Basic security 
needs criteria (BSNC) to determine numerous details needed for risk analysis and 
to establish the security management system. 

3   Summarizing the Current State of Technology 

To better position such a large project it was necessary to perform an extensive study 
of the current state of technology encompassing all ISP relevant and publicly 
available standards, recommendations, best practices, guidelines, case studies, EU 
Framework programmes results, concepts, methodologies, their implementations and 
renowned supporting tools, concerning particularly: 

− information security management systems (BS-7799-2, ISO/IEC 17799 and their 
revised versions aiming at the elaborated ISO/IEC 2700x) as the key security 
standards of the ISP platform and their well-known supporting tools, including risk 
management tools – for the right understanding of the ISMS implementation, 

− different IT security and risk management methodologies: ISO/IEC [10], US NIST 
publications, Canadian TRA, German IT Grundschutz as auxiliary documents – to 
supplement or extend the ISP platform features and facilities, 

− IT services management [4], [5], [11], IT governance [12] – to better integrate 
them with the information security management, 

− business continuity management, e.g. [13], as well as quality, environmental, 
occupational safety and health management systems usually co-existing in the 
organization – to consider their requirements in the ISP processes, 

− business processes modelling – to identify their relationships with the above 
mentioned management systems, especially information security and IT services; 
“business orientation” is the key issue for the ISP platform, 

− methods and tools focusing on the risk management in the information security 
domain – the ISP platform should be “risk-based”, 

− assurance methods [6], survivability, dependability, the safety approach to the risk 
management, large ICT infrastructures modelling and behaviour investigation – to 
facilitate the ISP platform implementation in large distributed applications, e.g. in 
critical information infrastructure protection (CIIP), and to build information 
security systems with better assurance, 

− ICT and general technical issues (communication protocols, network equipment, 
cryptographic applications, physical protection) – as a context of the ISP, 
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− security testers and monitoring tools, including firewalls, IDSes – to allow to 
confront the hypothetical information concerning risk with the information that 
presents a real situation and is sampled on-line by these tools. 

Additionally, a very exhaustive legal acts overview (above 100 acts – international, 
domestic, branch specific, etc.) was done to identify the ISP requirements with respect 
to legal compatibility, data protection and privacy, and to develop audit tools. 

Basically, methods and tools are focused either on general security management or 
on risk analysis, and do not fully cover other issues. There are different management 
frameworks defined in standards but the overview concentrated on the ISMS-
compliant ones, usually supported by tools, e.g. well-known Callio Secura 17799 [14] 
or Proteus Enterprise [15]. The frameworks focus on the security management 
processes, documentation management, checklists-based audit facilities, and have 
relatively simple risk analysis tools in comparison with others.  

The second group of methods and tools, like Cobra [16], Cora [17], Coras [18], 
Cramm [19], Ebios [20], Ezrisk [21], Mehari (Risicare) [22], Octave [23], Riskpac 
[24], specialize in risk management and support, to some extent, information security 
management (ISMS-compatible or not). They have different advantages and gaps as 
well. Even if they are able to carry out the detailed risk factors analysis (Ebios), they 
cannot operate on monetary values during the risk analysis. Cora can perform the ROI 
analysis. Coras has the UML-based advanced model of risk implemented, 
incorporating the safety risk management methods (Hazop, FME(C)A, FTA) and 
allowing a simple causality analysis. The risk analysis methods focus rather on 
detailed risk analysis for the whole of ICT systems in the organization, and only [25], 
[8] assume to implement the combined approach [10]. During the preliminary high 
level risk analysis this approach allows to identify the security domains of similar 
security requirements, and further to perform a detailed risk analysis only for the 
critical domains, and to apply baseline protection for others. This approach allows to 
avoid a costly detailed risk analysis for the entire organization. 

It should be noted that the assets inventories that focus on risk management differ 
from those that focus on security, business continuity or IT services management. 
Besides, there is no sufficient support for the central management of ISMS records. 

It is very important that management systems dealing with information security 
[1], [2] and IT services [4], [5], and a few other systems concerning quality, 
environment, occupational safety and health, are based on the same PDCA scheme. 
They work separately but the standard [1] encourages their integration. Mehari and its 
Risicare risk supporting tool can identify relationships between IT service quality and 
risk value. The works concerning the aligning and better integration of information 
security management and IT services management are in progress [12], [26]. Only 
few of the above mentioned tools have more advanced business continuity 
management support implemented [15], [19], [24]. 

It can be useful to adopt the achievements of dependability, fault tolerance and 
survivability, as well as the assurance methods, for the development of the ISP, 
especially for a large distributed environment. 

The EESA (End To End Security Assessment) method [27] focuses on the IT 
aspects of large distributed critical systems. By analyzing the information flow and 
the mechanisms of security services together with the risk analysis results, one can 
discover gaps between them and prepare a plan of actions to remove the gaps. There 
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is an analogy between EESA and the ISP platform concerning the idea to compare the 
risk analysis hypotheses with the real world picture.  

There are no comprehensive, scalable, modular solutions configured according to 
the size and character of an organization. There are no methods (except Octave-S) 
focused on small organizations. Built-in libraries of document patterns and process 
frames, checklists, predefined measures and forms support the reusability of project 
elements. Other advantages of the methods and tools described above can be the 
following: advanced reporting or documents generation and their web-site 
presentation, graphical visualization, statistics and measures facilities, action planning 
or risk workshops supporting. Looking at the current state of technology, including 
standards, best practices, legal acts, methods and tools, helps to select the most useful 
features for the ISP, achieve compliance with laws and standards, and to steer the next 
steps of the project. Currently, different tools for specific purposes exist but large 
organizations need integrated solutions for central information and service security 
management. Small organizations, in turn, need simple, tailored and more cost-
effective security solutions. 

4   Preliminary Project Results 

During the ISP platform project preparation phase, the basic ISMS implementation 
methodology and the SecFrame tool prototype [3] were developed using the UML 
approach [7], [8], [9]. The general ISMS structure was expressed by class diagrams. 
The activity diagrams and use case diagrams were used to show the ISMS elaboration 
and processes specification.  

The tool supports all ISMS management processes. It allows to sample the basic 
characteristics of an organization and its risk characteristics, and provides predefined 
checklists and document templates. It can perform a high-level risk analysis for the 
organization to identify the security needs of its particular business domains; it can 
also identify the assets of the organization according to the assumed asset model. 
Basic security roles and responsibilities are taken into account. Moreover, for each 
domain a detailed risk analysis can be performed allowing to order all risk scenarios 
by risk value with respect to the risk acceptance criteria assumed for the organization. 
Typical, yet exhaustive, threats and vulnerability lists are built in. The controls are 
selected with respect to the risk value, expressed in predefined scales or in monetary 
values. For each of the selected controls, a statement of applicability, implementation 
manner and audit records are specified. All related documents (diagrams, procedures, 
forms, etc.) can be attached and managed. The tool supports the audit using various 
types of checklists.  

Currently, the tool can be considered the basic ISMS implementation, allowing to 
sample experiences from the first deployments and case studies. An example of an 
application window is presented in the Fig. 1. The risk analysis methodology and 
security documentation were validated during the development of the PKI project for 
the Polish Post which included root and operational certification authorities, 
registration authority, and electronic transactional application, all communicating 
over the corporate WAN. The tool is also used for security documentation 
management in an electric power plant. 
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Fig. 1. Information security management tool – PLAN. Based on the high-level risk analysis 
results (bottom left screenshot) the organization is divided into security domains of similar 
requirements. For each of them a detailed risk analysis can be done and, on the basis of its 
results, controls are selected, justified, implemented and managed by means of the PDCA 
processes [3]. The bottom right screenshot presents audit progress. 

Currently, the tool prototype is deployed in a PKI-based management system for a 
wholesale coal distribution system owned by the ISP project partner, it is used in a 
project of a virtual consultant of public e-services, and deployed for the ISMS 
implementation by two consulting companies. It will be deployed shortly in a middle-
size town hall. The project results are presented during trainings and workshops. All 
these activities should provide the ISP platform developers with important feedback 
and experience for the further incremental development. 

5   Assumptions for the Integrated Security Platform 

The results of the above mentioned preparatory works allow to define the assumptions 
for the ISP platform that will be refined and evaluated during the next project stages, 
to achieve a comprehensive information and e-services security management system, 
a tool supporting it, as well as the deployment and evaluation methodology. 

The proposed ISP platform is shown in the Fig. 2. It has a common asset inventory 
(CAI) integrating: the information security management subsystem (ISMS) [1], [2] 
(Fig. 3), which is an enhanced version of the one previously implemented in the 
SecFrame tool; the IT services management subsystem (ITSMS) [4], [5]; the business 
continuity management system (BCMS); and the business processes communication 
subsystem (BPCS). The ISP platform integrates different processes co-existing with 
the business processes and influencing their security. 
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Fig. 2. Basic elements of the integrated security platform (ISP) 

Other general assumptions are the following: 

− the PDCA scheme is the backbone of all ISP platform management subsystems, 
− to ensure scalability – the elements of the ISP platform should be configured with 

respect to the size of the organization; 
− to ensure modularity – the elements of the ISP platform should be configured for 

the needs of organizations of different branches and sectors; the business character 
of the organization influences mainly the specific modules selection; 

− to ensure openness – the ISP platform can integrate optional processes, e.g. critical 
information infrastructure protection processes (modelling behaviour, cascading 
effects simulation, survivability analysis); it will be possible thanks to CAI. 

The ISP platform, encompassing ICT systems of the organization which deliver 
manageable IT services for business processes, should provide stakeholders and users 
with assurance. The assurance methods [6] can be used for the ISP platform 
development as well as for the ICT systems encompassed by this platform design. 
Rigorous development of the ISP platform processes, precise procedures, automated 
tools, using certified ICT components, exhaustive risk analysis, security tests or 
audits, evaluation and certification – all these may be considered assurance methods 
with respect to the information security management domain. 

5.1   Applying Results of the Previous Work Concerning the ISMS 
Implementation 

The previous works [7], [8] discuss the ISMS structure and process elaboration 
methodology. Every class (Fig. 3) concerns security management processes, actions, 
related documents and records. The refinement of these data structures allows to 
develop the activity diagrams expressing ISMS processes that were implemented in 
the SecFrame tool and the methodology related to them. The elaborated UML model 
can be considered as the basic implementation of the ISMS incorporated into the ISP 
design, which is incrementally developed and integrated with other ISP subsystems. 

Currently, the development work is focusing on the following features: 

− enhancing the asset inventory, as well as high- and low level risk analyzers, 
− comparing the audit results (history options) and security records management, 
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Fig. 3. Class diagram expressing the ISMS processes. Please note the ISMS hierarchical 
structure with PDCA classes grouping the management processes as subclasses exactly as it is 
presented in [1]. For this reason, its detailed description is omitted. Each class, e.g. “Incident 
management”, expresses more detailed class diagrams presenting process details which cannot 
be shown there. The works [7] and [8] discuss business environment of the ISMS and the Plan 
stage processes elaboration with the use of activity diagrams. 

− maturity model and security measures implementation, 
− sampling the information from on-line monitoring systems and comparing it with 

the risk analysis results for the ISMS improvements. 

5.2   Business Needs Orientation of the Developed Platform 

The ISP does not consider business processes management though all related and 
synthetic business information required for the security management and for the IT 
services management ought to be gathered by the BPCS subsystem. It is assumed that 
the innovative two-step business needs analysis, continued further during the risk 
analysis, is performed: 
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Fig. 4. Capturing basic organization characteristics. The BSNC, not shown there, are more 
refined. OOC and BSNC are both used in the first, preparatory steps of the risk analysis. 

− general organization overview, based on the Organization overview criteria (OOC) 
– to identify the organization profile (Fig. 4), 

− detailed organization overview, based on the Basic security needs criteria (BSNC) 
– to identify business domains. 

The Profile of the organization (PO) is the combination of two basic factors: AR 
(Activity range) and KO (Kind of organization). 

Both OOC and BSNC: 

− are implemented as active questionnaires to determine, during workshops or 
interviews, the organization’s needs and requirements with respect to the shape of 
the elaborated security system, 

− support the ISP platform scalability (AR) and modularity (KO), and provide 
guidance for the risk analysis.  

The OOC and BSNC case studies for different profiles are performed to refine 
these criteria and their implementation, e.g. L-COM (the distributed PKI-based system 
of wholesale coal distribution belonging to COIG, i.e. the project partner 
organization), M-COM (ISS – the author’s organization), M-PAG (management of a 
city with 100,000 inhabitants), S-HE (small out-patient clinic).  

To support modularity and scalability, a set of predefined processes and document 
templates, reference lists, checklists, measures, etc. will be proposed for every 
possible profile that expresses the size and kind of the organization. Then the set will 
be refined during the ISP deployment in the given organization. 
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5.3   Advanced Risk Support 

The three-layer risk analysis is assumed. The OOC and BSNC analyses can be 
considered as the first of the three steps. On this basis, a high-level risk analysis is 
performed for every domain, and then a detailed (low-level) risk analysis is done 
within the domains.  

The high-level risk analysis [10], [8] encompasses the following steps for every 
business domain (Fig.1): 

1. Characterize business processes criticality for the organization (C4O in the Fig.1). 
2. Characterize business domain dependency on ICT (ITDD in the Fig.1). 
3. Identify protection needs PN concerning integrity, availability and confidentiality. 
4. Determine business impact BI concerning integrity, availability and confidentiality. 
5. Identify information security requirements ISR concerning integrity, availability 

and confidentiality. 
6. Calculate high-level risk concerning integrity, availability and confidentiality. 

Not only should the current organization security be under control but also the cost 
of achieving and maintaining this security. All activities and investments for security 
should improve the organization’s position on the market or in the society. To reach 
economic efficiency, one simple rule is obeyed – only necessary and sufficient 
security measures can be applied. This requires the implementation of more and more 
efficient risk management methods and tools that are a combination of qualitative and 
quantitative (monetary) methods and allow simple cost/benefit analyses, including 
ROI. During the detailed risk analysis it is possible to compare: 

− the annualized costs of the security maintenance (SC [i]), i.e. safeguard 
depreciation plus labour cost vs. the annualized losses (RVC [i]) in a given 
currency, derived from the risk value for a given risk case; i – current, i+1 – after 
reduction, 

− the safeguard efficiency (ROI) corresponding to different safeguarding variants 
(Example 1). 

][]1[

]1[][
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−+
+−=+  . (1) 

Example 1. Simple ROI Interpretation for a Given Risk Scenario 
Risk reduction can be achieved by choosing 1 of 3 possible safeguard variants. The 
variants have different annualized costs and losses derived from the risk reduction 
possibility shown in the Table 1. Preliminary assessments for the organization: 

SC [i]      =   10,000 € current annualized safeguards cost, 
RVC [i]    =  136,000 € assessed annualized losses caused by risk. 

Table 1. A simple ROI analysis example 

Variant Cost /year SC [i+1] Losses /year RVC [i+1] ROI 
1 20,000 € 75,000 € 6.1 
2 50,000 € 10,000 € 3.1 
3 120,000 € 8,000 € 1.2 



326 A. Białas 

After analyzing different variants of safeguards (having different cost and risk 
reduction possibilities), the variant #2 was chosen for implementation. Though the 
variant #1 has better ROI, it has losses of 75,000 € /year, which was not acceptable in 
this organization. The variant #3, on the other hand, seems to be very expensive.  

The example 1 shows that even a very simple tool can support decisions during a 
risk management process by simulation of different variants. Please note that ROI is 
especially convenient for the commercial sector where monetary values are easy to 
operate. The currently implemented method, based on the flat lists of triples (asset, 
threat, vulnerability), should be enhanced. It will allow a more efficient causality and 
consequence analysis, based on the UML risk model similar to the one used in [18], 
and the generics-based model used in the Common Criteria development [28]. 

5.4   ISP Asset Model and Underlying Management Systems 

Strong integration of information security management with the IT services 
management is needed to effectively support business processes. This is achieved by: 

− explicitly defined critical services, along with sensitive data, in the data assets 
model (Fig. 5) implemented according to the previously developed six-layer 
hierarchical assets model [29]; lower level assets are nested and managed by the 
asset of a higher level, e.g. a given business task (MISS) is performed by a given 
person (PERS) in a given physical environment (PHYS), by using an IT system 
(ITI), where the application (APPS) is responsible for data processing or IT 
services providing (SDCS) – to perform the above mentioned business task; 

 

Fig. 5. Hierarchy of asset classes, representing groups of assets – a general model 

− building a common assets inventory being also the configuration management 
database (CMDB) [4]; 

− building synergy between information security, business continuity and IT services 
processes, on the basis of their mutual relationships; all processes of both 
management systems should be analyzed step by step with respect to this issue. 

The IT service management subsystem [4], [5], as a PDCA framework integrating 
management processes, is presented in the Fig. 6, but the processes used to manage 
these services are shown in the Fig. 7. 
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Fig. 6. IT service management framework. The ITSM processes class is shown in the Fig. 7 

Please note that the ISP has a well established set of service management 
processes. 

 

Fig. 7. IT service management processes – class diagram 
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Similarly to the ISMS, the ITSM has also a hierarchical structure, but the 
management framework processes and IT services management processes are 
separated. Details concerning both groups of processes are presented in [4], [5], and 
on this basis detailed models are created but they cannot be shown there due to their 
complexity. Contrary to ITIL [11], there is no explicitly specified Service desk 
process. The business continuity management processes [13] can be expressed in the 
same way . 

6   Conclusions 

There are a lot of methods, standards and tools developed in the realm of IT security. 
They should be constantly improved to catch up with the development and 
dissemination of ICT technologies in different areas of economy and society. The 
works described in the paper concern this very issue. The paper deals with the open, 
PDCA-based, integrated security platform (ISP) for different security-related 
processes influencing the execution of business tasks by modern, strongly ICT-
dependent organizations. The motivation for the risk-based, holistic, and highly-
integrated security platform development includes the following: 

− the need to integrate different business-supporting management systems, 
− providing modular and scalable solutions for different types of organizations, 
− providing new features and tools, including enhanced risk analysis. 

The assumptions for this project were specified and evaluated on the basis of:  
− the investigation of the needs and requirements concerning co-existence of 

different management systems which deal with business processes, their security, 
continuity, IT services, quality, environment, etc., 

− the current state of technology and standards overview, 
− the incrementally developed prototype used for experimentation, first deployment 

and case studies.  

On the basis of the presented general model of the ISP platform, its detailed model 
will be created, validated and implemented, to achieve a comprehensive information 
and e-services security management system, a tool supporting it and the deployment 
and evaluation methodology. Please note that the detailed implementation 
methodology should mainly comply with the “Plan” and “Do” processes of the 
considered subsystem. However, the evaluation of the implemented subsystem bases 
on the “Check” processes (Fig. 3, Fig. 6) – all presented within the standards. The tool 
ought to support these efforts widely and reasonably. 

Please note the wide use of the UML in the ISP project. The sampled experiences 
show that: 

− it is possible to take full advantage of the UML approach with respect to the kind 
of the management systems discussed there, similarly to many other areas of the 
UML deployment, 

− thanks to the UML it is possible to specify the entire ISP and its processes in a 
modular way – methods, measures, tools, and document templates can be changed, 

− this flexibility allows to tailor the ISP according to the size and specific needs of 
the organization (document templates defined for the assumed organization 
profiles). 
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Abstract. A safety policy defines the set of rules that governs the safe interac-
tion of agents operating together as part of a system of systems (SoS). Agent
autonomy can give rise to unpredictable, and potentially undesirable, emergent
behaviour. Deriving rules of safety policy requires an understanding of the ca-
pabilities of an agent as well as how its actions affect the environment and con-
sequently the actions of others. Methods for multi-agent system design can aid
in this understanding. Such approaches mention organisational rules. However,
there is little discussion about how they are derived. This paper proposes mod-
elling systems according to three viewpoints: an agent viewpoint, a causal view-
point and a domain viewpoint. The agent viewpoint captures system capabilities
and inter-relationships. The causal viewpoint describes the effect an agent’s ac-
tions has on its environment as well as inter-agent influences. The domain view-
point models assumed properties of the operating environment.

1 Introduction

1.1 Making Systems of Systems Safe

A system of systems (SoS) is a large-scale network of autonomous, heterogeneous, and
often mobile entities that are individually purposeful, and yet are expected to inter-
operate towards a common purpose. SoS are, perhaps more than single platform sys-
tems, characterised by the interaction of feedback loops. Astonishingly complex be-
haviour can arise from the iteration of relatively simple cycles of behaviour. The term
‘OODA’ — observe, orient, decide, act — coined by Boyd [1], describes the process of
relating perceptions of the environment to actions in that same environment, which al-
lows systems to interact and operate together in a shared space. It is just this interaction
of many autonomously operating cycles of behaviour that can give rise to hazards, and
hence to accidents.

The authors explained in [2] that a safety policy can be used to restrict the behaviour
of the component systems of a SoS such that hazards are avoided or mitigated through
corrective action. As described in this paper, a safety policy decomposition proceeds
from top-level safety objectives down to low-level constraints on system behaviour.
However, at each step of the decomposition assumptions are inevitably made that relate
to mental models of the system of systems whose behaviour the policy is intended to
govern. Making these models explicit is a first step towards allowing the information
that they contain to be used in a systematic policy decomposition process. Developing
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such models is not the principal concern of deriving a safety policy, but is a necessary
precursor to a successful decomposition.

The informal role of models in policy making is well established [3]. Theoretical
as well as empirical models are used by Government and other decision makers to
set policies on a number of issues, ranging from health and the economy to the en-
vironment. Indeed, the defence industry uses models to guide combat decisions based
on their knowledge, assumptions and best guesses of enemy capability, the anticipated
operational environment as well as the configuration and inter-operation of their own
forces.

In order to inform a policy decomposition we must have an understanding of the
environment in which the systems are expected to operate, the type of knowledge they
employ in decision-making processes, the capabilities they have and the ways in which
these are used to interact with one another.

1.2 Learning from Multi-agent Systems

It has been said that “much confusion still remains about words and phrases for systems-
of-systems type problems, let alone the best modeling approaches for dealing with
them” [4]. There is surprisingly little consensus on appropriate modelling techniques.
Is it perhaps possible to draw inspiration from related domains whose problem areas
share the characteristics of SoS? Indeed, the community of research concerning the de-
sign of intelligent agents would seem to be a rich area with much to contribute to our
area of research. Multi-agent systems (MAS) deal with the problem of many interacting
autonomous agents, each of which may have its own goals and objectives.

Although multi-agent systems would seem germane to the problem area of SoS, it is
important to recognise key differences. Often the focus of a MAS is on software agents
(as opposed to embodied agents) and agents are described as ‘mobile’ only in the sense
that they can move their code between hosts. These software agents act primarily in the
‘information’ world, whereas our focus is on agents that can also act in the physical
world — e.g. an unmanned air vehicle (UAV). It is worth highlighting that agents are
still considered embodied even if they are operating in a simulation of the real world.
Contrast, for example, a simulation of a UAV agent with a meeting scheduler agent.

Pynadath and Tambe [5] sum up the agent community’s very different approach to
safety, as the cancellation by an agent of a meeting that a human intended to attend
is considered a ‘catastrophic’ event. SoS and MAS share many characteristics, among
them autonomous entities, local knowledge and decentralised decision-making. How-
ever, it is also necessary to recognise the primary distinction between them, namely
that a SoS comprises entities that are capable of physical, not just computational, in-
teraction. This capability is arguably the reason that the term SoS is much used in the
military domain and is key in investigating issues of safety, since physical interaction is
a prerequisite for death or injury to occur.

1.3 Structure of the Paper

Section 2 will expand on the notion of a safety policy. Sections 3–5 will introduce
three viewpoints by which a SoS can be modelled. Section 6 will examine how these
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models can be used to inform a safety policy decomposition. Section 7 will summarise
the paper.

Throughout the paper we will illustrate concepts and techniques where possible with
reference to an example SoS for the military domain. Figure 1 gives a representation
of the example SoS, which depicts a minimal set of systems operating together nec-
essary to mount an attack and to clear a given region of a guerrilla enemy force. The
systems communicate via a shared ‘data fusion’ picture, indicated by jagged lines, and
include a UAV with sensors capable of target identification, long range artillery capable
of launching suppressing fire on a target and infantry (carried by transport helicopters)
capable of neutralising an already suppressed target.

Fig. 1. A Concept View of a System of Systems for Anti-guerrilla Operations (AGO)

2 Safety Policy

Pynadath and Tambe [5] state that “it is unreasonable (if not impossible) to have humans
specify sufficient safety conditions to completely determine correct agent behaviour”.
Quite so, the important distinction is that safety policy specifies constraints that are
orthogonal to normal functional behaviour. A safety policy aims to circumscribe the
potentially hazardous but functionally possible behaviour, in such a fashion that it leaves
only that which is considered acceptably safe. It is not the job of safety policy to define
functionally correct behaviour — for this is merely rigorous specification — policy is
separate from the behaviour to achieve goals.

Sørby [6] describes a safety policy as being analogous to security policy in that it
influences the stakeholders in a system by enforcing a number of safety requirements,
which are in turn influenced by safety standards (see Figure 2). Taken together, the set
of safety requirements should ensure the safety of the system.

MAS development often mentions organisational rules [7], however there is gener-
ally little explanation of how the rules are derived. This paper represents a step towards
a more structured, systematic process to their derivation, which increases traceability
of rules from high-level objectives and increases confidence in the completeness of the
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Fig. 2. Excerpt of Sørby’s Safety Ontology Relating Safety Policy to Safety Requirements

rule set. Policy is a hierarchical decomposition of high-level policy objectives into con-
straints over agent actions and interactions. The Goal Structuring Notation (GSN) [8]
— typically used to construct safety cases — can be used to represent policy decompo-
sition structures.

To support policy decomposition, we propose modelling the SoS from three view-
points: an agent viewpoint, a domain viewpoint and a causal viewpoint. The agent view-
point captures the technical aspects of the SoS and its constituent component systems,
including their attributes and relationships in terms of planned interactions. A domain
viewpoint provides a consistent terminology and model of the SoS environmental as-
sumptions. A causal viewpoint focuses on the way factors such as actions, states and
other variables influence each other in the SoS, potentially leading to unplanned inter-
actions. These viewpoints are the focus of this paper.

3 Agent Viewpoint

Despite the recent increase in interest in engineering systems of systems [9], there has
been little consensus on a successful modelling approach. An object-oriented (OO) ap-
proach has been recommended for the specification and analysis of requirements for
systems of systems [10, 11]. Caffall and Michael propose treating the SoS as a single
entity comprising abstract classes, rather than decomposing the SoS into its constituent
systems in a functional fashion.

Agent UML [12] extends the standard Unified Modelling Language typically used
to model OO systems in various ways to enable agent-oriented design. As previously
mentioned, MAS techniques often focus on software agents. Commensurately, Agent
UML focuses on capabilities in terms of logical or mathematical operations and services
such as ‘computation’, rather than capabilities for physical interaction.

The PASSI (Process for Agent Societies Specification and Implementation) method-
ology makes use of conventional and agent UML notation to express five different mod-
els of increasing specificity for the design of agent-based societies [13]. The process can
be viewed as comprising analysis and design activities. For the purposes of this paper
we concentrate on the analysis phase, including the modelling of system requirements
and the agent society. Each of the five models has several phases, each of which utilises
a particular (Agent) UML diagram to capture specific information.

Figure 3 shows the relationships between the models and phases of PASSI. PASSI en-
courages identification of agents early on in the development process. This is supported
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Fig. 3. The Models and Phases of the PASSI Methodology

by the claim that the types of MAS targeted by this process comprise agents that can be
‘bidden’ or influenced but not deterministically controlled [14]. Therefore, it is desirable
to allocate required behaviours to “loci of responsibility” as soon as possible.

Fig. 4. An Agent Identification Diagram for the AGO System of Systems

Using the PASSI methodology the example SoS configured for anti-guerilla opera-
tions and presented in Figure 1 has been modelled. Figure 4 shows a description of the
SoS in terms of use cases. The use cases represent the domain of functionality of the
SoS, and external actors have been identified with which the SoS interacts. These are
the user of the SoS, which is most likely to be a set of commands coming from outside
of the theatre of interest, the environment and the enemy targets. Delineating what is
inside the system boundary is a significant challenge even for a single platform, and
respectively more difficult for a SoS [15].
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In order to secure the area, the enemy must be detected (distinguished from the envi-
ronment), suppressed and finally neutralised altogether. Due to the large geographical
nature of the area of interest, more than one system is needed to secure it. Due to the na-
ture of SoS, i.e. the systems are geographically dispersed, but can only act and observe
locally, there is also a need to share intelligence between them. The agent identification
diagram is derived from a higher level domain description diagram, which is not shown
here due to space constraints. An agent is described as a package of use cases. The use
cases that make up the functionality of the SoS have been assigned as the responsibility
of one of five agents: artillery, infantry, UAV, helicopter or theatre command.

 : User : User
Controller : 

TheatreCommand
Controller : 

TheatreCommand
Nominator : 

UAV
Nominator : 

UAV
Suppressor : 

Artillery
Suppressor : 

Artillery
Transporter : 

Helicopter
Transporter : 

Helicopter
Confirmer : 

UAV
Confirmer : 

UAV
Neutraliser : 

Infantry
Neutraliser : 

Infantry  : Environment : Environment  : Target : Target
Fuser : 

TheatreCommand
Fuser : 

TheatreCommand
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6: Target(pos)

7: FireShell

8: Update(targetSuppressed)

9: QueryTargets

10: TargetSuppressed(pos)

11: QueryTargets

12: Target(pos)

13: OrderTakeOff

14: Destroy

15: Update(targetNeutralised)

16: QueryTargets

17: TargetNeutralised(pos)

18: QueryTargets

19: NoTargesRemaining

20: MissionComplete

Fig. 5. A Role Identification Sequence Diagram for the AGO System of Systems

Figure 5 shows the role identification diagram, which describes an envisaged sce-
nario. This diagram adds detail to the communicate relationships between agents in
Figure 4 by identifying the role that agents play and the sequence in which messages
occur. The role identification diagram is abstract, in that it does not show the reality of
the interactions. An agent viewpoint is important when developing policy in order to
consider the types of communications that will occur as well as which agent relies on
the services or knowledge of another.

4 Domain Viewpoint

The PASSI methodology employs a knowledge-centric agent model. Agents act to
achieve their objectives on the basis of local goals and knowledge, which increases
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through communication with other agents and exploration of the real world. It is inter-
esting to note that PASSI eschews the use of Agent UML’s extension to the class dia-
gram in favour of the conventional notation for representing agents. Instead, knowledge
is represented in the domain ontology description phase as a conventional class dia-
gram, where each class represents a concept, a predicate or action on that concept. The
communication ontology description diagram shows the agent and its ascribed knowl-
edge attributes and the communicative relationships between them.

Communication among agents is considered different to that between agents and
external ‘actors’. Principally, agent communication proceeds according to certain pro-
tocols and uses a specific ontology. Communication with agents not part of the SoS
(e.g. the enemy, non-squad troops) might occur indirectly through sensing devices.

The representation of knowledge is very important to mental models, and there-
fore highly relevant to our particular application (since inconsistencies between agents’
mental states are a significant factor in the cause of SoS accidents). Hence, even though
PASSI allows us to model knowledge using class diagrams, it is worthwhile treating the
construction of the domain viewpoint as a significant exercise in its own right.

An ontology represents knowledge of what exists — from the Greek ontos (that
which exists) + logos (knowledge of) — and is important in order to disambiguate
concepts in communications between agents. When one agent talks to another about
an ostensibly common concept, they might have very different mental images of what
is being discussed. For instance, consider the potential for confusion when discussing
the many definitions of the word ‘target’. However, the confusion may be even more
subtle, as was the case with the mix-up between imperial and metric units that al-
lowed the Mars Climate Orbiter to fly too close to the planet’s surface and thus be
destroyed [16].

Ontologies are used in domain modelling, conceptual modelling and knowledge en-
gineering. Aside from providing a common understanding and vocabulary, they can
be used to give meaning and potentially a taxonomical organisation to domain terms
provided by a subject-matter expert (SME). According to Guarino and Welty [17], “on-
tologies are becoming increasingly popular in practice, but a principled methodology
for building them is still lacking.” Indeed, there are many ways in which one might
build an ontology from a data dictionary as provided by a SME. What is needed is an
organising principle with which to structure the ontology.

Much work has gone into creating so-called upper ontologies. These include Cyc
[18], SUMO [19] and SENSUS [20], which describe high-level terms, under which
domain-specific ontologies can be organised. The upper ontology typically includes
concepts such as physical, tangible and abstract entities. A mid-level ontology might
include specialised versions of these concepts to do with time and space. Finally, a do-
main ontology is geared towards the particular application of interest. Valente et al [21]
suggest for a military application the use of several ontologies including terms encom-
passing Communications, Organisations, Physical resources and Service descriptions.

Figure 6 shows the domain ontology diagram for the AGO system. This is necessar-
ily simplified and could potentially be extended to include the standard terms provided
by any of the above-mentioned upper ontologies. Accompanied by the communica-
tions ontology diagram, which ascribes ontologies to agents as concepts to be used in
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Fig. 6. A Domain Ontology Diagram for the AGO System of Systems

communications, this gives an indication of how the misinterpretation of common real-
world artifacts in local mental models can occur.

5 Causal Viewpoint

The causal viewpoint recognises that accidents in a SoS arise out of, as Perrow de-
scribed, dysfunctional interactions [22]. The accident model, STAMP [23], recognises
the importance of this type of interaction in safety-critical applications. Similarly, we
must take a more systems-theoretic approach to describing the relationships between
causal factors in the lead up to an accident, rather than traditional chain-of-event failure
models such as Fault Trees. As described, the behaviour of a SoS is typified by multiple
interacting feedback loops. This means that it is not possible to take a mechanical ap-
proach to working through the causal chain, because many factors influence each other
as well as, indirectly, themselves.

The inter- and intra-agent behaviour can be described as a feedback-based loop “ob-
serve, orient, decide, act” (OODA). Orient means updating one’s mental model based
on new observations, where these are interpreted through experience, training, tradi-
tions, previous observations etc. The interpreted observations allow the agent to decide
among a number of alternatives and to enact the chosen one, causing some effect on the
environment.

A consideration of the OODA cycle of agent behaviour can help in structuring the
task specification diagram for individual agents. In Figure 7 the UAV goes through a
cycle of scanning the ground for threats (observation), processing the data (orientation),
deciding whether the data represents a new threat or a change to the state of an existing
known target (decision) and finally passing this information to Theatre Command (ac-
tion). It is only during the observation and action activities that interaction with other
agents can occur. When observing, the agent not only uses its own senses to inves-
tigate the environment but can also integrate information provided by other agents.
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Fig. 7. A Task Specification Diagram for the UAV Agent

Similarly, it can provide the results of its decision-making process to other agents
through its actions.

Figure 8 shows several loops for the Theatre Command agent, whose behaviour is
more complicated than the UAV and which interacts with (influences) more agents in
so doing. The sequence diagram (Figure 5) describing the interaction between roles in
the AGO scenario must be consistent with the task specification diagrams. That is, the
sequence of events described must be able to be generated from the interaction of all
the agents’ OODA cycles.

It is clear, however, that the task specification models do not capture all the un-
planned interactions that are required when considering how to develop a safety pol-
icy. Planned actions are those that it is anticipated the agent will undertake in or-
der to complete its task. We want to model agents with only local abilities and im-
perfect knowledge, i.e. they cannot assess the current state of the world, nor observe
the effects of their actions on all other agents. The causal viewpoint needs to capture
problems of failure, uncertainty and the effects of an agent’s actions. For this we can
take inspiration from another branch of agent theory, namely Multi-agent Influence
Diagrams (MAIDs) [24].

MAIDs are an extension to Bayesian Belief Networks (BBNs) and decision net-
works. Using them it is possible to represent how agents’ decisions are influenced by
various factors. These factors include probabilistic variables (represented by circular
‘chance’ nodes) that are in effect ‘decided’ by the environment, as well as the results of
other agents’ decisions (rectangular nodes). Decision networks also require specifying
the utility of the decisions to the agents, i.e. their preference for the result of a particular
decision (represented by diamond-shaped nodes). This is not an aspect of MAIDs that
is of immediate application, since we do not intend to ‘solve’ the MAID, i.e. calculate
which combination of decisions results in the greatest utility for all the agents. Rather,
we are simply using the notation to represent which variables influence which other
variables and whether these variables are determined by chance or are under the control
of an intelligent agent. In terms of the PASSI model, chance nodes belong to actors, i.e.
the enemy, the environment, whereas decision nodes belong to the agents in the system.

The construction of a MAID also relies on a consideration of the OODA loop as
it relates decisions (the choice between a number of actions) to the observations that
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Fig. 8. A Task Specification Diagram for the Theatre Command Agent

the agent has made, i.e. the information it has available to it at the time of making the
decision. Observations can be the value of probabilistic variables (the enemy has been
destroyed) or actions taken by other agents, either directly or indirectly observed. An
example of a direct observation might be that the artillery immediately observes the
decision of the helicopters to take off. In reality, agents have limited knowledge and can
only make localised observations, hence an indirect observation such as the UAV report-
ing that the helicopters have taken off is more likely. This observation is then subject to
other factors, such as the probability of the failure of the UAV to send the message, the
message getting lost or corrupted by the network, or even being misinterpreted by the
recipient. All these factors combine to form the mental picture of the agent (in this case
the artillery) and influence how close this picture approximates reality.

Figure 9 shows an example MAID for modelling of the artillery’s decision to launch
suppressing fire upon a given target. From this we can see that this decision is ultimately
dependent on the result of the UAV’s reconnaissance. However, there are many addi-
tional factors on which the artillery’s action (or inaction) is based. These result from
the fact that the artillery cannot directly observe the UAV’s decision, but rather rely on
the data fusion picture, which is affected by the previous state of the theatre picture,
the state of the communications network, the UAV’s sensor, and so on. Even in this
simplified model, the number of influences are numerous.

The application of MAIDs must be judicious because they entail some rather lim-
iting assumptions. The common prior assumption considers that two agents that have
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Fig. 9. A Multi-agent Influence Diagram for the AGO System of Systems

a common set of prior observations will make the same decision. The assumption of
perfect recall does not allow for an agent to forget any observation that it has made and
assumes it has all this evidence available to it when making a decision. It is important
in MAIDs to explicitly represent the informational links to decision nodes, because the
assumption of perfect recall only applies to each individual agent. Any particular agent
may not necessarily have made the same observations as other agents, nor be able to
observe the results of other agents’ decisions. Therefore, informational links must be
explicitly added to the graph as dashed lines.

6 Using Models in Policy Decomposition

Models serve two purposes in policy decomposition. Firstly, they aid in decomposing
safety goals by, together with patterns of decomposition, providing the policy-maker
with factors that should be considered in the achievement of the top-level goal. Sec-
ondly, the models provide a vocabulary for the expression of these goals. In this way,
templates can be created that are more structured than the “verb-phrase noun-phrase”
of traditional safety case goal statements.

6.1 Example 1

From Figure 4, it can be seen that securing the area involves both suppressing and neu-
tralising the enemy. The former use case includes functionality that has been assigned
to the artillery agent, which is capable of delivering suppressing fire onto the target.
The latter use case includes functionality that has been assigned to both the helicopter
and infantry agents, which brings them into proximity of the target. It is also obvious
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Infantry Avoid Artillery

Target

Infantry must avoid areas that
are designated as current
target for the artillery in the
shared picture

Fig. 10. An Excerpt from the Safety Policy Decomposition for the AGO SoS

that, although the helicopter and infantry communicate their efforts, there is no com-
munication with the artillery. The hazard therefore exists that the infantry may be in the
vicinity of the target at the same time as the artillery fires upon it. Given that no direct
communication is possible between the two agents (nor indeed necessary to achieve
the aims of the mission), a safety policy must be derived to make the artillery aware
of the helicopter’s movements. This leads to the policy decomposition shown in Figure
10 (represented in GSN). The left-hand side of the policy structure concentrates on in-
forming the artillery of the infantry locations so as to avoid accidental attack, whereas
the right-hand side focuses on informing the infantry to avoid an area designated as a
target for the artillery.

6.2 Example 2

In understanding how an agent might misinterpret its environment we need to know ad-
ditional properties about the domain in which it operates. The domain ontology (Figure
6) allows us to consider the possibility of ontology mismatches between agents when
communicating. In this instance, the common ontology revolves round the location and
status of a target. Due to the critical nature of these concepts, the policy governing the
agents interactions should make sure that there is no chance of a mismatch between
mental models, e.g. the artillery fires on a target that has already been suppressed, or
the helicopters transport troops to an incorrect location due to a misunderstanding in
the way target locations are represented.

6.3 Example 3

The causal model (Figure 9) prompts us to consider the other factors that influence the
observations that decide an agent’s actions. In this case, the artillery’s decision to launch
is not directly dependent on the UAV’s observations, since many other factors outside
of the agent’s control are also involved. This must lead us to consider some level of
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corroboration or cross-checking of the targets nominated by the UAV before the long-
range artillery fires blind. Unfortunately, space restrictions do not allow the inclusion
of the policy decomposition structure that governs this behaviour.

7 Summary

Safety policy is the rules that govern safe interaction of systems operating as part of
a SoS. Decomposing safety policy objectives into rules that individual systems can
implement is a difficult task. In this paper we have taken inspiration from agent-based
techniques for modelling the SoS in order to support the systematic decomposition
of safety policy. We suggest modelling the SoS from three viewpoints, namely agent,
domain and causal viewpoints. It can be seen that none of the viewpoints in isolation
can be used to complete the safety policy decomposition. Each is important in revealing
different aspects of the SoS being modelled. The aim of this work is now to identify
and explicitly define links between the safety policy decomposition and elements of the
system models.
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Abstract. RTCP-nets are a subclass of timed coloured Petri nets. They use tran-
sitions’ priorities and different time model than timed CP-nets. The subclass has
been defined for modelling and analysis of embedded real-time systems and the
ability of analysis of timing properties is one of the most important features of
RTCP-nets. The paper discusses a formal, based on RTCP-nets, approach to ve-
rification of automatic train protection systems. Two examples of train protec-
tion systems are considered in the paper. A simple model of an automatic train
stop system is used to introduce formal definition of RTCP-nets. A more com-
plex model of automatic driver is used to present advanced aspects of modelling
and verification with RTCP-nets. (The work is carried out within KBN Research
Project, Grant No. 4 T11C 035 24.)

1 Introduction

The paper is concerned with a formal verification of safety-critical systems used to
ensure railway safety. Critical systems are systems that may result in injury, loss of
life or serious environmental damage upon their failure [6]. The high cost of safety-
critical systems failure means that trusted methods and techniques must be used for
development. For such systems, the costs of verification and validation are usually very
high (more than 50% of the total system development cost). Using of formal methods
can reduce the amount of testing and ensure more dependable products ([3]). A few
different approaches to modelling of railway control systems have been proposed in
the literature on formal methods. Some recently published papers are as follows: using
of SDL language for modelling of such systems is discussed in [1], and statecharts
approach is presented in [2]. A domain specific language for railway control systems
modelling is discussed in [4].

The presented approach uses RTCP-nets ([7], [8]) as modelling language for safety-
critical systems. RTCP-nets have been defined for modelling and analysis of embedded
real-time systems. The concept is based on timed coloured Petri nets (CP-nets, [5])
but some modifications are introduced to equip Petri nets with capability of direct mo-
delling of elements such as task priorities, timeouts, etc., but also to facilitate analysis
of timing properties of high level Petri nets. Analysis of RTCP-nets may be carried out
with coverability graphs. Such a graph may be used to analyse boundedness, liveness
and timing properties of the corresponding RTCP-net ([8]). If the set of reachable mark-
ings of an RTCP-net is finite, it is possible to construct a finite coverability graph that
represents the set of all reachable states regardless of the fact the set is finite or infinite.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 344–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Trains could not run safely without signalling devices. Some automatic systems are
used to transfer signal directly to a driver cab. A driver must always obey the signal, but
the possibility of human error can cause serious accidents. Automatic Train Protection
(ATP) systems are used to guarantee a train safety even if the driver is not capable of
controlling the train. Furthermore, computer systems can drive a train without a human
support. Two examples of such embedded systems are considered in the paper. A simple
model of an Automatic Train Stop system is presented in section 2. A hierarchical
model of an Automatic Driver System is described in section 3. Section 4 deals with
verification procedures. The paper ends with a short summary in the final section.

2 RTCP-Nets

The definition of RTCP-nets is based on the definition of non-hierarchical timed CP-
nets presented in [5]. For any variable v, T (v) will be used to denote the type of the
variable i.e. the set of all admissible values, the variable can be associated with. Let
x be an expression. V(x) will denote the set of all variables in the expression x, and
T (x) will denote the type of the expression, i.e. the set of all possible values that can
be obtained by evaluating of the expression. For any given set of variables V , the type
of the set of variables is defined as follows: T (V ) = {T (v): v ∈ V }.

Let Bool denote the boolean type. For an arc a, P (a) and T (a) will be used to denote
the place node and the transition node of the arc, respectively.

Definition 1. An RTCP-net is a tupleN = (Σ, P, T, A, C, G, I, EM , ES , M0, S0) sa-
tisfying the following requirements.

(1) Σ is a finite set of non-empty types (colour sets).
(2) P is a finite set of places.
(3) T is a finite set of transitions such that P ∩ T = ∅.
(4) A ⊆ (P × T ) ∪ (T × P ) is a flow relation.
(5) C: P → Σ is a type function, which maps each place to its type.
(6) G is a guard function, which maps each transition to an expression such that:
∀t ∈ T : T (G(t)) ⊆ Bool ∧ T (V(G(t))) ⊆ Σ.

(7) I: T → N ∪ {0} is a priority function, which maps each transition to a non-
negative integer called transition priority.

(8) EM is an arc expression function, which maps each arc to a weight expression
such that: ∀a ∈ A: T (EM (a)) ⊆ C(P (a)) ∧ T (V(EM (a))) ⊆ Σ.

(9) ES is an arc time expression function, which maps each arc to a time expression
such that: ∀a ∈ A: T (ES(a)) ⊆ Q+ ∪ {0} ∧ T (V(ES(a))) ⊆ Σ,

(10) M0 is an initial marking, which maps each place to a multi-set M0(p) ∈ 2C(p)∗
,

where 2C(p)∗
denotes the set of all multi-sets over the set C(p).

(11) S0: P → Q is an initial time stamp function, which maps each place to a rational
value called initial time stamp.

A model of a simple Automatic Train Stop (ATS) system is used to introduce main
features of RTCP-nets. In the ATS system, a light signal is turned on every 60 seconds to
check whether the driver controls the train. If the driver fails to acknowledge the signal
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within 6 seconds, a sound signal is turned on. Then, if the driver does not disactivate
the signals within 3 seconds, using the acknowledge button, the emergency brakes are
applied automatically to stop the train. A model of such a system is shown in Fig. 1.

ContrSyst

Console

TurnOnLSTurnOnSS

TurnOnBr

Brake

Disactivate

Driver

State

ControlState

ConsoleState

State

(safe)

(off,off)

(off)

(on)

(on)

(off,off)

(on,off)

on@60

on
safe

lsOn

(on,off)

(on,on)

lsOn@6

ssOn

on

off

ssOn@3

brOn

(off,off)

(on,x)

safe

[y=lsOn or y=ssOn]

y

HumaneState
(active)

active

on

on@60

active@n

Timer1

Timer2
State

1
active

active

[n=5
or n=8
or n=10]

Activity

Fig. 1. Model of a simple ATS system

The RTCP-net presented in Fig. 1 contains six places: ContrSyst (the control element
of the ATS system), Console (to display warning signals), Brake, Driver, Timer1 and
Timer2; and five transitions: TurnOnLS (turn on light signal), TurnOnSS (turn on sound
signal), TurnOnBr (turn on brake), Disactivate (driver disactivates warning signals) and
Activity (to introduce into model some delays of the driver response). Initial markings
are placed into parenthesis and initial time stamps equal to 0 are omitted. The transi-
tion’s Disactivate priority is equal to 1, while other transition’s priorities are equal to
0. The weight and time expressions are separated by the @ sign. If a time expression is
equal to 0 it is omitted. Each arc with double arrows stands for a pair of arcs.

A marking of an RTCP-net N is a function M defined on the set P , such that ∀p ∈
P : M(p) ∈ 2C(p)∗

. A time stamp function is a function S defined on the set P , such
that ∀p ∈ P : S(p) ∈ Q. A state is a pair (M, S), where M is a marking and S is
a time stamp function. If we assume that P is ordered set, both a marking M and a time
stamp function S can be represented by vectors with |P | entries. Let the set of places
be ordered as follows P = { ContrSyst, Timer1, Console, Brake, Driver, Timer}. The
initial state of the considered net is as follows:

M0 = (safe , on, (off , off ), off , active, on),
S0 = (0, 0, 0, 0, 0, 0). (1)
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Let X = P ∪ T denote the set of all nodes of an RTCP-net. In(x) and Out(x)
denote the set of input and output nodes of a node x, i.e. In(x) = {y ∈ X : (y, x) ∈ A}
and Out(x) = {y ∈ X : (x, y) ∈ A}. Let V(t) be the set of variables occurring in the
expressions of arcs that surround the transition t and in the guard of the transition. A
binding of a transition t is a substitution that replaces each variable of V(t) with a value
of the corresponding type, such that the guard evaluates to true. The set of all bindings
of a transition t is denoted by B(t). G(t)b denotes the evaluation of the guard expression
in the binding b. Similarly, EM (p, t)b and ES(p, t)b denote the evaluation of the weight
and the time expression in the binding b, respectively.

Definition 2. A transition t ∈ T is enabled in a state (M, S) in a binding b iff the
following conditions hold:

∀p ∈ In(t): EM (p, t)b ∈M(p) ∧ ES(p, t)b ≤ −S(p),
∀p ∈ Out(t): S(p) ≤ 0.

(2)

and for any transition t′ �= t that satisfies the above conditions, I(t′) ≤ I(t) or In(t)∩
In(t′) = Out(t) ∩Out(t′) = ∅.

It means that a transition is enabled if all input places contain suitable tokens and
have suitable time stamps, all output places are accessible and no other transition with
a higher priority strives for the same input or output places. A transition t ∈ T is en-
abled in a state (M, S) means that the transition t is enabled in a state (M, S) in one of
its bindings. If a transition t ∈ T is enabled in a state (M1, S1) in a binding b it may
fire, changing the state (M1, S1) to another state (M2, S2) such that:

M2(p) =

⎧⎪⎪⎨
⎪⎪⎩

M1(p)− {EM (p, t)b} for p ∈ In(t)−Out(t),
M1(p)− {EM (p, t)b} ∪ {EM (t, p)b} for p ∈ In(t) ∩Out(t),
M1(p) ∪ {EM (t, p)b} for p ∈ Out(t)− In(t),
M1(p) otherwise.

(3)

S2(p) =

⎧⎨
⎩

ES(t, p)b for p ∈ Out(t),
0 for p ∈ In(t)−Out(t),
S1(p) otherwise.

(4)

If a transition t ∈ T is enabled in a state (M1, S1) in a binding b and a state (M2, S2)

is derived from firing of the transition, then we write (M1, S1)
(t,b)−→ (M2, S2). The

binding b will be omitted if it is obvious or redundant.
Two transitions Activity and TurnOnLS are enabled in the initial state. The first tran-

sition is enabled in three different bindings: b1 = (5/n) (the value of the variable n
is equal to 5), b2 = (8/n) and b3 = (10/n), while the second one is enabled in the
binding b = () (a trivial binding). For example, the result of firing of the transition
TurnOnLS in the initial state is the state (M1, S1), where:

M1 = (lsOn, on , (on, off ), off , active, on),
S1 = (0, 60, 0, 0, 0, 0). (5)

A global clock is used to measure time. Every time the clock goes forward, all time
stamps are decreased by the same value.
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Definition 3. Let (M, S) be a state and e = (1, 1, . . . , 1) a vector with |P | entries. The
state (M, S) is changed into a state (M ′, S′) by a passage of time τ ∈ Q+, denoted
by (M, S) τ→ (M ′, S′), iff M = M ′ and the passage of time τ is possible, i.e., no
transition is enabled in any state (M, S′′) such that S′′ = S − τ ′ · e, for 0 ≤ τ ′ < τ .

The result of firing of transitions TurnOnLS and Activity (in binding b2) is the state
(M2, S2), where M2 = M1 and S2 = (0, 60, 0, 0, 8, 60). None transition is enabled
in the state but it is possible a passage of time τ = 6 that leads to the state (M2, S

′
2),

where S′
2 = (−6, 54,−6,−6, 2, 54). A timeout occurs in this state. A token in the place

Console is 6 seconds old (the driver did not response within 6 seconds), so the transition
TurnOnSS will fire.

A firing sequence of an RTCP-netN is a sequence of pairs α = (t1, b1), (t2, b2), . . .,
such that bi is a binding of the transition ti, for i = 1, 2, . . . The firing sequence is
feasible from a state (M1, S1) iff there exists a sequence of states such that:

(M1, S1)
τ1→ (M1, S

′
1)

(t1,b1)−→ (M2, S2)
τ2→ . . .

(tn,bn)−→ (Mn+1, Sn+1)
τn+1→ . . . (6)

For the sake of simplicity, we will assume that there is at most one passage of time
(sometimes equal to 0) between firing of two consecutive transitions. A firing sequence
may be finite or infinite. The set of all firing sequences feasible from a state (M, S)
is denoted by L(M, S). A state (M ′, S′) is reachable from a state (M, S) iff there
exists a finite firing sequence α feasible from the state (M, S) and leading to the state
(M ′, S′). In such case, we can also say that the marking M ′ is reachable from the
marking M . The set of all states that are reachable from (M, S) is denoted byR(M, S),
whileR(M) denotes the set of all markings reachable from the marking M .

3 Hierarchical Models

Hierarchical RTCP-nets are based on hierarchical CP-nets. Substitution transitions and
fusion places ([5]) are used to combine pages (non-hierarchical parts of the model)
but they are a mere designing convenience. The former idea allows the user to refine
a transition and its surrounding arcs to a more complex net, which usually gives a more
precise and detailed description of the activity represented by the substitution transition.
In comparison with CP-nets general ports are not allowed in RTCP-nets. Moreover, each
socket node must have only one port node assigned and vice versa. Thus, a hierarchical
net can be easily ”squash” to a non-hierarchical one.

A fusion of places allows users to specify a set of places that should be considered
as a single one. It means, that they all represent a single conceptual place, but are drawn
as separate individual places (e.g. for clarity reasons). The places participating in such
a fusion set may belong to several different pages. They must have the same types and
initial markings. Global fusion sets only are allowed in RTCP-nets.

Let’s consider a model of an Automatic Driver system. A train line is divided into
blocks and each block is protected by a signal. A train on a line receives two pieces of
information about speed limits in the next two blocks. So we will use integer num-
bers to code the signals, the following pairs of signals are possible: (0, 0), (40, 0),
(40, 40) (the second number stands for 40/60 e.g. 40 or 60), (40, 100), (40, 160), (160
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stands for maximum speed), (60, 0), (60, 40), (60, 100), (60, 160), (100, 0), (100, 40),
(100, 100), (100, 160),(160, 0), (160, 40), (160, 100) and (160, 160).

Every time a new signals are received system uses the brake or the accelerator to
adjust the speed to current limits. Moreover, it checks its speed every 10 seconds to
guarantee safe and optimal train speed. A rule based system that describes the system
behaviour is presented in Table 1. The symbol V stands for the train speed, V 1 and V 2
stand for the signals, A stands for Accelerator and B stands for Brake.

Table 1. Rule-based system for the automatic driver

V V 1 V 2 A B

V > 0 V 1 < V V 2 off on
V V 1 = V V 2 off off
V < 100 V 1 > V V 2 on off
V ≥ 100 V 1 > V V 2 > 0 on off
V ≥ 100 V 1 ≥ V V 2 = 0 off off

The formula V 2 denotes that any value of the attribute V 2 is possible. Let’s consider
the first rule: If the train speed is greater than 0, but less than current block speed limit
then turn on the accelerator and turn off the brake.

Design of an RTCP-net starts by distinguishing objects that constitute the system.
They are divided into subsets: active objects, i.e., objects performing activities, and
passive objects, that do not perform any individual activity. State of each object is rep-
resented by marking of the corresponding place. Active objects and their activities are
represented by primary place pages. Such a page is composed of one place that rep-
resents the object and one transition for each object activity. These pages constitute
the top level of the model. Primary place pages for the considered model are shown
in Fig. 2. Definitions of types and declarations of variables used in the model are as
follows:

color Speed = int with 0..160;
color Signal = product Speed * Speed;
color State = bool with (off, on);
color Input = product Speed * Speed * Speed;
color Output = product State * State;
var x1, x2 : State;
var v, v1, v2 : Speed;

The second level of an RTCP-net model contains primary transition pages. They are
oriented towards activities’ presentation and constitute the dynamic level of the model.
Each such a page is composed of one transition that represents the activity and a few
places that contains tokens necessary to execute the activity.

Some primary transition pages are presented in Fig. 3. The page SignalReceipt con-
tains two passive objects: Trigger used to trigger off the sporadic read, and Environment.
A marking of the second place represents all possible signals. The place Trigger belongs
to a fusion set with the same name. Firing of the transition SignalReceipt changes to-
kens in places AutoDriver and Trigger. A token with new speed limits is placed in the
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place AutoDriver and an on token is placed in the place Trigger. The page SporadicRead
contains a passive object Speedometer. A token in the place represents the current train
speed. The transition SporadicRead activity is based on the set of rules presented in
the Table 1. Two more subpages are needed to represent the transition activity. The
subpage for the transition SequentialRead is similar, but it does not contain the place
Trigger. Moreover, the time expression of the arc going from the place AutoDriver to
the transition SequentialRead is equal to 10 (the token in the place must be at least 10
seconds old to be consume by the transition). Thus, we can observe that two different
activities can be model in a very simple way. The time expression guarantee that the
transition SequentialRead will be fired every 10 seconds, while the place Trigger en-
able modelling service of sporadic events. Moreover, if the sporadic event occurs, one
occurring of the transition SequentialRead is omitted (It is like a reseting a timer for the
activity.)

The last page (Fig. 3 c) represents the Brake activity. If the place Brake contains an
on token for at least 2 seconds, the speed decreases by 10 kph. The page AcceleratorAc-
tivity is constructed analogously.

R2

R3

R4

R5

R1
(v,v1,v2)

(v,v1,v2)

(v,v1,v2)

(v,v1,v2)

(v,v1,0)

[(v > 0) and (v1 < v)]

[v1 = v]

[(v < 100) and (v1 > v)]

[(v >= 100) and (v1 > v) and (v2 > 0)]

[(v >= 100) and (v1 >= v)]

In Out
In Out

Input Output

(off, on)

(off, off)

(on, off)

(on, off)

(off, off)

Fig. 4. D-net form of the Table 1

To be included into an RTCP-net a decision table (see Table 1) must be transformed
into a D-net (see Fig. 4). Each decision rule is represented by a transition and its input
and output arcs. A token placed in the In place denotes a sequence of values of condi-
tional attributes. Similarly, a token placed in the Out place denotes a sequence of values
of decision attributes.

To include the D-net into the model a linking page must be constructed. Linking
pages are used to represent an algorithm that describes an activity in details or as an
interface for gluing the corresponding D-net into a model. Such a page is used to gather
all necessary information for the D-net and to distribute the results of the D-net activity.
Linking pages and D-nets belong to the functional level of a model. A link page for
the SporadicRead activity is presented in Fig. 5. A link page for the SequentialRead
activity is constructed analogously, but it does not contain the place Trigger.
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I/O

I/O

I/O

AutoDriver

Trigger

Accelerator

Brake

Speedometer
I/O

I/O

v

(v1,v2)

x1

x2

on

HS

Memory

InputOutput

Input

ReadDnet

SporadicReadOut SporadicReadIn

Signal

State

State

State

Speed

(40,40)

(off)

(off)

(off)

(40)

(v,v1,v2)

(v,v1,v2)(x1,x2)

(x1,x2)

x1

x2

v

off

(v1,v2)

(v,v1,v2)(v,v1,v2)

1

InputOutput

Fig. 5. Linking page for the SporadicRead transition

SporadicReadSignalReceipt SequentialRead

SporadicRead SequentialRead

ReadDnetReadDnet

SporadicRead#3SignalReceipt#2

AutoDriver#1

SequentialRead#4

SporadicLink#5 SequentialLink#6

ReadDnet#7 ReadDnet#8

Accelerator#9
AcceleratorActivity

AcceleratorActivity#10

Brake#11
BrakeActivity

BrakeActivity#12

Fig. 6. Page hierarchy graph
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All connections among pages are presented using a page hierarchy graph. A node
in such a graph represents a single page, and an arc represents a connection between
a subpage and its substitution transition. The page hierarchy graph for the considered
model is shown in Fig. 6. For more details on hierarchical RTCP-nets see [7].

4 Verification

Analysis of RTCP-nets may be carried out using reachability graphs. The set of reach-
able states R(M0, S0) is represented as a weighted, directed graph. Each node corre-
sponds to a unique state, consisting of a net marking and a time vector, such that the state
is a result of firing of a transition. Each arc represents a change from a state (Mi, Si) to
a state (Mj , Sj) resulting from a passage of time τ ≥ 0 and a firing of a transition t in
a binding b ∈ B(t).

Let’s consider the net presented in Fig. 1. None transition is enabled in the state
(M2, S2), but it is possible a passage of time τ = 6 that leads to the state (M2, S

′
2).

The transition TurnOnSS is enabled in the state and its firing leads to the state (M3, S3),
where:

M3 = (ssOn, on , (on, on), off , active, on),
S3 = (0, 54, 0,−6, 2, 54). (7)

Thus, in the reachability graph, there will be nodes for the states (M2, S2) and (M3, S3),
and an arc going from (M2, S2) to (M3, S3) with label ((TurnOnSS , ()), 6).

An RTCP-net N is said to be bounded if each place p ∈ P has an upper integer
bound, i.e. ∃k ∈ N ∀(M, S) ∈ R(M0, S0): |M(p)| ≤ k, and it is said to be strongly
bounded if each place p has a finite upper multiset bound, i.e. ∃X ∈ 2C(p)∗ ∀(M, S) ∈
R(M0, S0): M(p) ≤ X , and X is a finite multiset. A reachability graph for an RTCP-
nets may be infinite even though the net is strongly bounded, e.g. if the time stamp of
at least one place is decreasing infinitely.

Let’s consider two states of the RTCP-net presented in Fig. 1, the state (M2, S
′
2)

and a state (M2, S
′′
2 ), where S′′

2 = (−8, 54,−6,−6, 2, 54). The same transitions are
enabled in both states and the same sequences of actions are feasible from the states.
A token in the place ContrSyst is accessible for all its output transitions if its age is at
least 6 time-units, i.e. the value of the time stamp is equal to or less than −6. It makes
no difference whether the time stamp is equal to −6, −8, etc. The states (M2, S

′
2) and

(M2, S
′′
2 ) will be said to cover each other and only one node in the coverability graph

will be used to represent them.
Let p ∈ P be a place of an RTCP-net N and let OutA(p) denote the set of output

arcs of the place p. The maximal accessibility age of the place p is the number:

δmax(p) = max
a∈OutA(p)

{
max

b∈B(T (a))
ES(a)b

}
. (8)

The maximal accessibility age of a place p denotes the age when tokens in the place
become accessible for all output transitions of the place.

Definition 4. Let N be an RTCP-net and let (M1, S1) and (M2, S2) be states of the
net. The state (M1, S1) is said to cover the state (M2, S2) (denoted by (M1, S1) �
(M2, S2)) iff M1 = M2 and:
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∀p ∈ P : (S1(p) = S2(p)) ∨ (S1(p) ≤ −δmax(p) ∧ S2(p) ≤ −δmax(p)). (9)

The coverability relation � is an equivalence relation onR(M0, S0). If (M1, S1) �
(M2, S2), (M1, S1)

(t,b)−→ (M ′
1, S

′
1) and (M2, S2)

(t,b)−→ (M ′
2, S2)′, then also (M ′

1, S
′
1) �

(M ′
2, S

′
2) and L(M1, S1) = L(M2, S2).

Proposition 1. If an RTCP-net N is strongly bounded and each type Σi ∈ Σ is finite,
then the coverability graph is also finite.

The proof for this proposition can be found in [10].
The reachability and coverability graphs are constructed in similar way. They differ

only about the way a new node is added to the graph. For the coverability graph, after
calculating a new node, we check first whether there already exists a node that covers
the new one. If so, we add only a new arc that goes to the found state and the new one
is omitted. Otherwise, the new state is added to the coverability graph together with the
corresponding arc. The coverability graph contains only one node for each equivalence
class of the coverability relation.

The coverability graph for the RTCP-net presented in Fig. 1 is shown in Fig. 7.
The coverability graph for an RTCP-net provides similar capabilities of analysis of the
net properties as the full reachability graph. It contains all reachable markings so it is
possible to check the boundedness properties – all places of the considered net are 1-
bounded. The coverability graph contains the same arcs’ labels as the reachability one,
therefore, it is possible to check also the liveness properties – the net is not live (but it is
L3-live [8]). Each label of an arc is a pair of a transition with its binding and a passage
of time. The second element of a pair can be treated as the weight of the arc. Thus, arcs’
weights capture the time taken by transition from one state to the next. (We consider
only states that are results of firing of transitions). Using the coverability graph, one can
find the minimal and maximal times of the transition from one state to another, etc. To
do this we can use typical algorithms for finding the shortest or longest paths between
two nodes in a directed graph (multigraph).

To be useful RTCP-nets must be supported by computer software. A CASE tools for
RTCP-nets called Adder Tools are being developed at AGH University of Science and
Technology in Kraków. Adder Tools is a free software covered by the GNU Library
General Public License. It is being implemented in the GNU/Linux environment by the
use of the Qt Open Source Edition. The software also compiles and runs with Mac OS
X and Windows. Adder Tools contain:

– Adder Designer – for design and verification of rule-based systems;
– Adder Editor – for design of RTCP-nets;
– Adder Simulator – for simulation of RTCP-nets.

Adder Tools home page, hosting information about current status of the project, is lo-
cated at http://adder.ia.agh.edu.pl. For more details see [9].

Let’s consider the model of an automatic driver presented in section 3. The state
space for the model is infinite. Verification of a model usually starts by simulating it.
A small part of a simulation report is presented below:
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(0,0,0,0,0,0)
(safe,on,(off,off),off,active,on)

(safe,on,(off,off),off,active,on) (safe,on,(off,off),off,active,on) (safe,on,(off,off),off,active,on)
(0,0,0,0,5,60) (0,0,0,0,8,60) (0,0,0,0,10,60)
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(TurnOnLS,(),0)
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(TurnOnLS,(),0)(TurnOnLS,(),0)
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(0,55,0,−5,0,55)

(TurnOnLS,(),0)

(ssOn,on,(on,on),off,active,on)

(TurnOnSS,(),6)(Disactivate,(off/x,lsOn/y),5) (TurnOnSS,(),6)

(ssOn,on,(on,on),off,active,on)
(0,54,0,−6,2,54) (0,54,0,−6,4,54)

(Disactivate,(on/x,ssOn/y),2)

(Activity,(10/n),55)(Activity,(8/n),55)(Activity,(5/n),55)

(safe,on,(off,off),off,active,on) (safe,on,(off,off),off,active,on) (safe,on,(off,off),off,active,on)
(−55,0,−55,−60,5,60) (−55,0,−55,−60,8,60) (−55,0,−55,−60,10,60)
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(0,52,0,−8,0,52)
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(Activity,(10/n),52)
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(Activity,(8/n),60)

(Activity,(10/n),60)

(Activity,(8/n),60)

(Activity,(5/n),60)

(Activity,(10/n),60)

(Activity,(10/n),51)

Fig. 7. Coverability graph for the RTCP-net presented in Fig. 1

0 ((40,40), 40, off, off, off, X) (0, 0, 0, 0, 0, 0)
--((SigReceipt,(40/v1,100/v2,40/v3,40/v4,off/x1)), 0)--> 1

1 ((40,100), 40, on, off, off, X) (0, 0, 0, 0, 0, 30)
--((SporRead,(40/v1,100/v2,off/x1,off/x2,40/v)), 0)--> 2

2 ((40,100), 40, off, off, off, X) (0, 0, 0, 0, 0, 30)
--((SeqRead,(40/v1,100/v2,off/x1,off/x2,40/v)), 10)--> 3

3 ((40,100), 40, off, off, off, X) (0, 0, -10, 0, 0, 20)
--((SeqRead,(40/v1,100/v2,off/x1,off/x2,40/v)), 10)--> 4
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Each part of the report contains the folowing pieces of information: a state number,
a marking, a time stamp vector, a transition name, a binding of the transition and a passage
of time. For example in the state 2 it is possible a passage of time τ = 10 and then the
transition SequentialRead in the binding b = (40/v1, 100/v2, off /x1, off /x2, 40/v) is
fired. (Due to editor reasons in the report the transition names are abbreviated and the
symbol X stands for the marking of the place Environment.)

Due to the number of different signals transmitted from the environment, the cover-
ability graph for the considered model contains more than 4000 nodes. A small part of
a textual form of the graph is as follows:

10 ((100,0), 40, on, off, off, X) (0, 0, 0, 0, 0, 30)
--((SporRead,(100/v1,0/v2,off/x1,off/x2,40/v)), 0)--> 27

27 ((100,0), 40, off, off, on, X) (0, 0, 0, 0, 0, 30)
--((AccActivity,(40/v)), 2)--> 44

44 ((100,0), 50, off, off, on, X) (-2, 0, -2, -2, 0, 28)
--((AccActivity,(50/v)), 2)--> 61

61 ((100,0), 60, off, off, on, X) (-4, 0, -4, -4, 0, 26)
--((AcceActivity,(60/v)), 2)--> 91

91 ((100,0), 70, off, off, on, X) (-6, 0, -6, -6, 0, 24)
--((AccActivity,(70/v)), 2)--> 104

104 ((100,0), 80, off, off, on, X) (-8, 0, -8, -8, 0, 22)
--((AccActivity,(80/v)), 2)--> 122
--((SeqRead,(100/v1,0/v2,off/x1,on/x2,80/v)), 2)--> 121

The RTCP-nets is bounded. All places but the place Environment are 1-bounded
(safe). The net is live. The system is always capable of stopping the train before the
next signal is received except a situation when it runs at maximal speed and the maximal
speed limit is suddenly replace with the stop signal. A possible solution of this problem
is to limit the maximal speed to 150 kph.

5 Summary

Some possibilities of application of RTCP-nets for modelling and verification of safety-
critical systems have been presented in the paper. Two examples of models of train
protection systems have been used to illustrate the approach. Due to the high cost of
such systems failure using of formal methods is worth considering and it can ensure
more dependable products.

RTCP-nets are based on timed coloured Petri nets but some new features introduced
into the definition enhanced usefulness of them for modelling of real-time systems. The
new time model and transition priorities enable users to model timeouts – system waits
for an event, but if it does not occur an alternative activity is taken, and task priorities
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in a very simple way. RTCP-nets together with computer tools allow users to design
models and manipulate its properties fast and effectively. It seams that the nets can be
treated as an interesting alternative for other formal modeling languages.
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Abstract. Mismatches of units and of scales of values in physical calculations 
are disastrous, but rather common, in the development of embedded control sys-
tems. They can be as plain as mixing feet and metres, or as hidden as a wrong 
exponent in a complex calculation formula. These errors can be found by a 
checking algorithm, following some simple rules, if information on the units of 
the used variables is provided. This paper describes a developer friendly ap-
proach of providing this checking functionality in SCADE, a model-based 
graphical development tool for safety-critical embedded applications. 

Keywords: physical units, safety, verification, error detection, dependable  
embedded systems, model based software development, SCADE, DECOS. 

1   Introduction 

Control systems usually have to deal with physical quantities like time, temperature, 
length, speed or electrical current. Simply using numeric standard data types like real 
or float paves the way for typical programming errors like mixing scales (e.g. adding 
seconds and milliseconds), using wrong operators (v : m*s), swapping operands (v : 
s/m) etc. The most well known/notorious example is the loss of the mars climate 
orbiter in 1999 [11], lost due to a unit conversion mistake not found during testing. 
But earth bound safety critical applications are prone to this family of errors as well. 

While several methods and tools are available for various programming languages 
to cope with such problems (see section 5), for data-flow oriented modelling lan-
guages like Simulink [17] or SCADE [13], which are increasingly used in the domain 
of embedded systems, this is less the case. In particular, SCADE is especially appro-
priate for development of safety-critical applications, due to its strict temporal execu-
tion model, various included testing and verification tools like a model checker and a 
qualified C-code generator. Since in DECOS, which aims at development support of 
distributed embedded real-time systems of up to highest criticality, SCADE is an 

                                                           
*  This work is partially funded by DECOS (Dependable Embedded COmponents and Sys-

tems), an integrated project funded by the EU within priority “Information Society Technolo-
gies (IST)” in the sixth EU framework programme (contract no. FP6-511 764). 
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important part of the DECOS tool chain, it was decided to develop a SCADE exten-
sion which allows a developer to check its model for dimensional or physical unit 
errors. Since this is done at modelling time and prior to code generation, it does not 
affect runtime performance. 

Therefore, this paper is structured as follows. The next section presents the con-
cepts of a general approach, based on SI, the international system of physical units, 
and a special notation. Section 3 introduces SCADE shortly, and describes how this 
approach is implemented for SCADE, while section 4 gives some application exam-
ples. The last two sections address related work and draw a conclusion, respectively. 

2   General Approach 

This section first gives a short terminology introduction and then describes the princi-
pal rules applied in automatic unit checking at development-time.  

2.1   The SI Unit System and Unit Representation 

Physical quantities have a dimension; each dimension can be measured in multiple 
units. A unit system defines units for a set of mutually independent dimensions. These 
are the base units, all other units can be derived from them (giving derived units) by 
(multiple) multiplication and division of the base units. 

The SI unit system [14] is the standardized unit system most widely used in engi-
neering today. SI base units are kilograms (kg), meters (m), seconds (s), ampere (A), 
Kelvin (K), mole (mol) and candela (cd). The remainder of this document is based on 
the SI unit system unless noted otherwise. 

Taking the SI units into consideration, it is fairly natural to represent a physical 
unit as a 7-dimensional vector, where each element denotes the exponent of the re-
spective base unit in the given order. So, kg is denoted by [1,0,0,0,0,0,0], and s by 
[0,0,1,0,0,0,0]. Consequently, derived units are represented by vectors with more than 
one element different from 0; for instance: 

[ ] ,0],0,0,0,-2,1[1, cd, mol, K, A, s, mkg
s

kgm
=N 0000-211

2
:force   (1) 

In the rest of the paper, this notation will be simply referred as unit representation, 
synonymously with unit. 

2.2   Rules for Operating on Physical Units 

In scientific work and engineering, dimensional analysis and the unit-factor method 
are commonly used to ensure the correctness of equations and calculations. 

The following rules are basically the rules for dimensional analysis, adapted for 
use in computer programs and extended with some issues useful in control systems. 

Basic Rules.  For the four basic arithmetical operations, the following rules apply: 

• Addition and subtraction is allowed only for values with identical vectors. 
• Multiplication gives a new unit. Base unit exponents are calculated by adding the 

respective base unit exponents from the multiplicands. 
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• Division gives a new unit. Base unit exponents are calculated by subtracting the 
divisors base unit exponents from the dividends exponents. 

Power is derived from multiplication – base unit exponents are multiplied by the 
power exponent.  

Root, as inverse function to power, results in the unit exponents divided by the root 
base. If the exponents are not divisible without remainder, the operation is not al-
lowed. (In theory rational exponents are possible in intermediate results, but for the 
sake of brevity such details are not addressed here.) 

More Rules. Functions like logarithm, exponentiation, or the trigonometric functions 
operate only on dimensionless numbers.1 Operators typically used in programming 
environments should also be supported. They can be grouped as follows: 

• Decision operators: all possible outputs of if and case must have the same unit. 
• Comparison operators: only quantities with identical units can be compared. 
• Composite data types: arithmetical operations only operate on basic data types, 

units of the basic data type are preserved through composition and decomposition. 
• Temporal operators (SCADE specific): simply preserve the unit of their inputs. 

For vector and matrix operations, similar rules to the ones for the base calculation 
methods apply. An important aspect is that a scalar and a vector with the same dimen-
sion definitely do not have the same dimension as a whole (see also next clause). 

Exotic Rules. There are issues with units being (formally) the same for different 
dimensions as well as the general topic of dimensionless units and numbers. 

Ambiguous Units. Due to the use of a scalar form for the notation of units, situations 
can occur where the same unit name applies for two or more physical quantities. One 
example for this situation is Newton metres. It can measure both work and torque 
(See formulas 2 and 3). In correct dimensional analysis, work is the scalar product of 
two vector quantities - force and the distance over which it moves, resulting in a 
scalar value; torque is the vector product of the same quantities force and the length of 
the lever. 

The usual representation of units looses this information whether a quantity is a 
vector or not, therefore the dimensional analysis based on this unit check is some-
times incomplete. 

[ ] =
2

2 ·kg
  :torque

s

m
Nm   

(vector, force normal to radius, outer product of two vectors) 

(2) 

[ ]= 2

2 ·kg
  :k/heatenergy/wor

s

m
J  

(scalar, force along a way, scalar product of two vectors) 

(3) 

                                                           
1 These functions can be expressed as power series, where ascending powers of the argument 

are summed up. Adding values with different dimension exponents would break the basic 
rules and therefore the argument must be dimensionless. 
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Despite the fact that torque is formally a vector, it is often feasible and efficient to 
treat it as a scalar during calculation, e.g. because all relevant axes are parallel  
anyway. 

Since energy and torque are units that are rather frequent in embedded and espe-
cially automotive applications, it seems desirable to have a means to distinguish be-
tween the two cases even when no vectors are used for calculations. 

A workaround to achieve this is to introduce an additional unit “radial meter” mr 
used when a radius is used in conjunction with tangential forces and other physical 
values. With it, the two units now become Nmr = mr m kg/s2, and J = m2 kg/s2. 

mr can be modelled as an additional unit in the vector and should be used consis-
tently for all related units like angular velocity. If a lever length is used in a calcula-
tion, it must have mr as unit. All calculation rules apply to this new unit as well as for 
the original seven SI units. When torque is treated as a three dimensional vector, this 
is not necessary, although there may be other but similar issues.  

In general, dimensional analysis can be complemented by orientational analysis, 
checking a formula for errors in spatial orientation [15, 16]. Support for spatial di-
mensions and orientational analysis would address the loss of information mentioned 
above and possibly will be added later on, but is out of the scope of this paper 

Dimensionless Units. There are two dimensionless derived SI units: 

[ ] [ ]1==
m

m
rad :angle  [ ] [ ]1==

2

2

  :anglesolid
m

m
sr  (4) 

In many cases, it is desirable for readability to preserve these “units”. A simple solu-
tion is to make use of the “radial meter” introduced above: rad = m/mr, and sr = 
m2/mr2. 

This avoids cancelling down the unit in the fraction and still gives sensible results. 
For example, multiplying torque with the rotational angle it is applied for yields the 
accomplished work. 

Dimensionless Numbers. There are a lot of dimensionless physical values in various 
application areas, especially in fluid dynamics. Sometimes it is helpful to keep the 
information about the quantity being measured by putting the same units in both the 
numerator and denominator as for radians above. 

Generalized support for this would go beyond the scope of the drafted checking 
method, particularly because the technique of non-dimensionalization is especially 
used in number crunching and fluid dynamics, but little in the physics used in embed-
ded control.  

A group of special cases of dimensionless numbers are logarithmically scaled ra-
tios like dB. Some of them, like decibel microvolts (dBμV), are used in technical 
applications. In fact, they are dimensionless and if the represented quantity is needed 
for calculations, the value needs to be “delogarithmized” and multiplied with the base 
value (e.g. 1 μV for dBμV). Then the resulting value is a dimensioned value that can 
be checked for consistent units use as described above. 
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2.3   Scaling 

Along with the SI units, a set of SI prefixes is defined. They are representing factors 
in steps of 1000 ranging from 10-24 – 1024 as well as the factors 10-2, 10-1, 10 and 100. 

The factor 10 can be modelled as an additional “unit” to represent the SI prefix in 
the same way as the seven SI units with the same rules for checking consistency. Only 
the root function behaves different, since it is valid to draw a root even if the exponent 
is not divisible by the root’s base; for a unit exponent, this would be an error. The 
resulting scaling exponent would be a fractional instead of an integer number as 
shown in the example below: 

[ ] [ ] [ ]m=m=m ⋅⋅⋅⋅ 13 14
1010334 103 10  (5) 

The 3101  part must be included in a free scaling factor (see “Odd Scaling Factors” 
below), part of the unit information only kept for analysis.  

Normalising and other conversion can be done by multiplication with dimen-
sionless constants of a “scaled value” of 1, as 1000 milli (10-3) or 1/1000 kilo (103).  

Odd Scaling Factors 

Distances, Weights, Areas and Volumes. Especially for distances, weights, areas and 
volumes exists a multitude of units outside of the SI system (usually old, pre-SI units) 
some of which are (still) widely used in some regions (e.g. US customary units) or 
working areas (oil barrels, gold ounces, …). All of these have in common that they 
are a simple factor larger or smaller than the corresponding SI units. For scaling fac-
tors, the basic calculation rules are adapted. 

Angles. Angles differ from other units due to their periodicity. But since sensors may 
deliver angles like for torsion or rotational position in any range, it appears reasonable 
to allow signed values outside the circle range without any special consideration. 

2.4   Absolute and Relative Values and Zero Point Translation  

Most of the physical values covered above are always “relative” values. Nonetheless, 
at least one commonly used physical value is either relative or absolute: temperature. 

A data type can be marked as “absolute”. This means certain rules for calculations 
apply and they can have a zero point offset. At the moment, this is only aimed at tem-
peratures but may be found useful for other units as well. In short, absolute (xa) and 
relative (xr) types of the same dimension can be combined as follows: 

• ara xx±x → : offset value stays the same 

• raa xxx →− : offset value must be identical, result is relative and has no offset 

Other addition/subtraction expressions over absolute values are invalid. 

2.5   Extended Unit Representation 

According to the previous, the 7-dimensional unit representation introduced in 2.1 
should be extended for 



 Checking SCADE Models for Correct Usage of Physical Units 363 

• distinction between m and mr, 
• representing the scaling exponent relative to the dimension’s unit scale, 
• representing an “odd” scaling factor for non SI-units or “rooting” results, 
• marking of “absolute” values 
• offset for absolute values . 

3   Solution/Application in SCADE 

After a short introduction to SCADE, this section describes how the concepts and 
rules discussed before are implemented in SCADE. 

3.1   About SCADE 

SCADE (the Safety Critical Application Development Environment) is both a nota-
tion and a toolset that was specifically developed to describe and implement safety 
critical systems for application domains such as aeronautics or automobile. The 
SCADE notation includes both block diagrams2 and safe state machines, giving a 
rigorous description of the complete behaviour of the software [8]. It has been for-
mally defined and it has the following characteristics that are key in the targeted ap-
plication domain, i.e. the development of safety critical systems: 

• Strong typing 
• Explicit initialization of data flows 
• Explicit management of time (delays, clocks, etc) 
• Simple expression of concurrency (data dependencies) 
• Deterministic execution 

In SCADE, a node (which we can also call a “block”) performs logically atomic com-
putations, providing deterministic output values corresponding to a given set of input 
values, according to the previous memorized state. Nodes can use other nodes as 
shown in figure 5, the root node taking its inputs from the environment. Feedback 
loops are handled in a simple way thanks to the time operators (delay). Recursion is 
forbidden. 

The computation is often triggered by a periodic clock (although it need not be), 
after inputs are sampled from the environment and hold.  

The SCADE toolset supports a model-driven paradigm in which the SCADE 
model is the software specification. Verification activities are supported by a combi-
nation of three different tools [2, 5]: 

• The SCADE Suite Simulator supports interactive or batch simulation of a SCADE 
model, for both data flows and safe state machines. 

• The SCADE Suite Model Test Coverage (MTC) tool is used to measure the cover-
age of the SCADE model with respect to a given requirements-based test suite. 

• The SCADE Suite Design Verifier (DV) supports corner bug detection and formal 
verification of safety requirements.  

                                                           
2 Examples of block diagrams are shown in Figures 3 and 5. 
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The SCADE toolset also provides an API to access all the details of a model from tcl 
scripts. This allows in a simple way development of utilities to check for example that 
a model conforms to some user specific methodological rules. 

The C code generator is certified with respect to DO-178B level A (avionics) [6] 
and IEC 61508 up to Safety Integrity Level (SIL) 4 (other industrial domains, such as 
automotive or railways), thus providing a guarantee that the generated code is correct 
with respect to the model. 

3.2   Implementation 

The Units-Check package for SCADE consists of: 

1. The units-check function itself, fully integrated into the SCADE user interface 
2. A SCADE library containing 

• predefined units (SI and non-SI) 
• conversion factor constants 
• unit related operators 

This package is implemented using the following concepts: 

• the unit representation (as extended in 2.5) is stored in custom annotations to the 
data type 

• values (inputs and outputs as well as constants and internal variables) are 
marked with their units by use of “unit annotated” data types. 

• operator effects are controlled by applying the rules described in section 2. 

Units-check support for developers covers the following activities: 

• Marking variables with units 
• Unit conversion 
• Checking a model for consistent use of units 
• Extending the units library 
• Extending the units system 
• Integrating user-implemented operators (native SCADE and imported C  

functions) 

Marking Variables with Units. The units-library contains a continuously expanded 
set of predefined aliases for the real data type. Wherever a variable is a physical 
quantity, the corresponding unit data type is to be used instead of real. 

To profit from the checking script, only inputs and outputs of the root node and all 
used constants need to be unit-typed. However, it is good style to do the same for the 
inputs and outputs of all subnodes if they represent certain physical quantities. 

Through the use of individual data types, unit information is documented directly 
in the model and improves the maintainability of the model. No changes to the pro-
gram function are introduced due to SCADE’s notion of the units as “compatible” 
data types to real. 
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Fig. 1. Dialog window for selecting a predefined unit data type for a variable 

Unit Conversion. Scaling and unit conversion is done manually by multiplication 
with or division by the scaling constants contained in the unit library. (See second 
example). 

Some solutions for unit support in other languages implicitly convert units when 
necessary. This is not easily implemented in SCADE and would break the require-
ment of minimum disturbance by massively changing the executed code. 

Checking a Model for Consistent Use of units. The checking function is integrated 
into the SCADE development environment as an analysis report for either a single 
node or all nodes of the project. This is quite similar to the SCADE quickcheck 
function for checking model consistency; therefore, SCADE application developers 
are familiar with the concept. The checking function is a tcl script using SCADE’s 
extension mechanism. 

The checking function walks through the entire model and for each operator de-
rives the unit of the output(s) from the unit of the input(s). Conflicts for the operator 
inputs and conflicts between the developer defined and the derived units of the nodes 
outputs are reported as errors. 

Extending the Units Library. Units not contained in the library can be easily added 
in the development model or an own library by the user.  

Unit data types are defined as aliases for real with an added unit annotation. A dia-
log for unit annotations is shown in  the left hand side of figure 2. 

Extending the Units System. The checking script is implemented in a generic way. 
If a new basic unit is needed or the used unit system should be changed, the 
annotation type definition for units can be changed without touching the script 
itself. 

Additional units (e.g. for memory size) can be introduced by adding fields with 
names in the form: <base_unit_name>_exponent . If wanted, but at the loss of use for 
the provided unit library, a unit system with completely different base units could be 
built by removing/renaming the existing unit exponent fields. 
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Fig. 2. View of an example units library and the unit annotation for milliseconds 

Integrating User-implemented Operators. Each modelled SCADE node is itself an 
operator usable for the modelling of other higher level models. 

Native SCADE operators. Operators (nodes) defined in SCADE are transparently 
traversed by the checking script. 

Imported C functions, called imported operators, cannot directly be checked like nor-
mal SCADE nodes. If inputs and outputs have unit types associated, unit compatibil-
ity will be checked there. For imported operators operating on generic data types or 
plain reals, the developer can provide a tcl script calculating the output units from the 
input units and raising error messages. 

4   Examples 

For demonstration we use the node shown in figure 3, calculating an average speed in 
m/s, from a given number of wheel axle rotations per execution cycle (ticks). The 
wheel circumference, the execution cycleduration and the cyclenumber of the average 
time window are defined in constants. 

As a test scenario, the units for circumference and cycleduration differ from the 
units assumed by the model (cm vs. m and ms vs. s). 

The data type one represents a “dimensionless” type compatible with the other unit 
types.  As you can see, no further unit information is given for the internal variables 
(the “wires”) – SCADE implicitly derived the types for _L14, _L34, _L35 and _L36 
from the respective sources.  

A first run of the units-check Data gives a result containing (among others): 

unit determination error circle in type propagation for _L22 - please set manually 



 Checking SCADE Models for Correct Usage of Physical Units 367 

This is caused by back feeding the delayed value _L22 to its own input values. The 
current algorithm recognizes circles; better heuristics for resolving them with less or 
without user interaction are possible but not implemented yet. 

 

Fig. 3. SCADE node “avg_speed“ 

After manually naming _L22 to dist and setting the type to meters, the units-check 
result looks as shown in table 1, containing 4 distinct error messages. 

Table 1. Check result for the node “avg_speed”, after manually resolving the propagation circle 

eqBlock Context Message  Type Message 

L19 =  L15 
+ dist 

input unit  
mismatch 

Error – units for inputs differ while they are 
expected to be identical 

L21 =  L19 - 
_L17 

input unit  
mismatch 

Error – units for inputs differ while they are 
expected to be identical 

dist = fby( 
L21, 1, 0.0) 

unit mismatch 
error 

Conflicting Units single {0 1 0 0 0 0 0 
1.000000} and unknown 

eq_avg_speed_2_1 

speed =_L26 unit mismatch 
error 

Conflicting Units single {0 1 -1 0 0 0 0 
1.000000} and single {0 1 -1 0 0 0 3 
1.000000} 

The input mismatch for the addition _L19 = _L15 + dist through the multi- 
plication for _L15 is caused by circumference having the wrong prefix (cm instead 
of m). This can be corrected either by changing the unit and the value of circumfer-
ence or in the model by division of circumference through the scaling constant  
for centi.  

The next two messages are due to error propagation. If the resulting unit cannot 
be determined, the unit “unknown” is used for further propagation. For _L21 this 
means that _L17 and unknown are different (message 2). The manually set unit of 
dist is in conflict with the unknown unit propagated from _L21 in the third message. 
Solving the mismatch for _L19 takes care of all these three error messages.  
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Fig. 4. Example node “speed_limit” using the node from the first example showing unit con-
versions and comparisons 

The last error message tells that the derived unit for _L26 is not the same as expected 
for speed because of its data type m_per_s. In a small model like this example, this 
error is easily traced back to the unit for cycleduration. In larger models, it can be 
helpful to explicitly set intermediate unit information as done above for _L22 to nar-
row down the possible cause of a unit error. 

The second example shown in figure 5 makes use of the first example as a sub-
node. The calculated speed in m/s is converted to miles per hour and kilometres per 
hour; the converted values are compared to two speed_limit inputs. 

In the model as shown, the speedlimit-inputs have data type real and therefore no 
unit information associated. This gives the units-check result shown in table 2, easily 
leading to the missing units information for the speed_limit inputs.  

The used conversion factors are defined in the unit library. The factor_3_pt_6 has 
an own unit data type by_3_pt_6, having all fields of the unit annotation except the 
scaling factor set to zero. The scaling factor is set to 0.2778, the reciprocal of the 
constants value 3.6.  

Table 2. Check result for the node “speedlimit” 

eqBlock Context Message Type Message

 L16 = L4 >  L12 input unit
mismatch

Error – units for inputs differ while they
are expected to be identical

 L17 = L13 < L6 input unit
mismatch

Error – units for inputs differ while they
are expected to be identical

speedlimit : real unit determination
warning

Units information not retrievable / not 
given for input/hidden input 

eq_speedlimit_1

us  speedlimit : real unit determination
warning

Units information not retrievable / not 
given for input/hidden input 
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5   Related Work 

Since the problem area is well known and widespread throughout application do-
mains, there are various tools and libraries for units support. Some theoretical work 
was already done in 1978 [10] and before. 

Languages and tools with available, but sometimes rudimentary, unit libraries are, 
among others: Ada3[9], C4, C++ [3,18], Excel [1], Fortran-905[12], Java6, Lisp[4], 
MatLab7, and Visual Basic8. The main feature sets found are: explicit conversion, 
implicit conversion, documentation, runtime-check, compile-time (or other develop-
ment-time) check and unit inference. 

With the exception of C++ and Ada, the mentioned libraries support only runtime-
evaluation (of  a subset) of calculation correctness or are even limited to mere conver-
sion helpers. In dependable embedded systems, though, unit information is usually 
not dynamic and therefore unit correctness can and should be treated at development 
time. This avoids related runtime overhead as well as the resulting runtime errors. 

For C++, this can be achieved by using template metaprogramming, resulting in 
compile time error messages for unit errors. This usage of templates is increasingly 
often used as an example in the teaching of C++ templates and multiple implementa-
tions of various degrees of maturity are available, e.g. the SIunits library and the open 
source project Quantities9. [3] gives a good description of the general approach and 
details of implementation in the SIunits library. 

Guo and McCamant [7] describe a different approach for C: In large (especially 
legacy) programs it is difficult to “annotate” each and every variable and constant 
with the correct unit information. To help with this problem, they propose an analysis 
tool that infers a set of unit types based on the usage of variables and constants in the 
program. This allows some consistency checks without further programmer interven-
tion and can help a programmer annotating variables and constants. For a pre-existing 
open source utility with more than 50000 lines of code, they could reduce the 11000 
program variables to 163 basic units requiring unit annotation. 

6   Conclusion 

An approach for checking SCADE models for correct usage of physical dimensions 
has been presented which provides the following benefits: 

Development-time error recognition – and, as a result, keeping unit error discovery 
independent from test data and test methodology, and avoiding runtime overhead. 

                                                           
3 http://www.dmitry-kazakov.de/ada/units.htm 
4 http://www.unidata.ucar.edu/software/udunits 
5 http://rain.aos.wisc.edu/~gpetty/physunits.html 
6 http://nanotitan.com/software/Libraries/quantity 
7 http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10070, 
  http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6850 
8 http://www.entisoft.com/ESTools/Units.HTML 
9 http://www.echem.uni-tuebingen.de/~bs/AKhomepage/Quantities/quantities.html 
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Ease of Use – by providing libraries of predefined units, a convenient way to use 
them and complete integration of the toolset into the development platform. 

Minimum disturbance – other SCADE features, including code generation and model 
checking, remain unaffected. 

Retro-applicability – can be applied to existing models by only setting input, output 
and constant units in the model itself or a wrapper node or by simply using the 
model as a subnode in a unit marked model. 

Extensibility and generic implementation – by allowing definition of new units and 
even extensions/changes to the unit system used (e.g. by adding “memory units”). 

Of course, it should be noted that several limitations have to be considered. There is 
the possibility to have ambiguity on scaling factors and exponents (100*103 vs. 1 * 
105) and problems with computational accuracy when scaling factors are used  
intensively.  

Therefore, future work will address these topics, as well as trying to further im-
prove the usability e.g. by automatically resolving unit propagation circles and show-
ing derived units in the block diagram. Also, future extensions of SCADE like for 
matrix handling will be considered, possibly together with a major extension of the 
functionality to support orientational analysis. 

Finally, it will be investigated whether the taken approach can be migrated to other 
platforms like e.g. Simulink. 

As concluding remark, it can be stated that tools like that described in this paper 
are helpful for avoiding software development errors and thus important means for 
the verification of software. 

Acknowledgements. The Authors would like to thank Esterel Technologies expert 
Jean-Louis Colaço for proof reading this paper. 
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Abstract. The integrated EU-project DECOS (Dependable Embedded Comp-
onents and Systems) aims at developing an integrated architecture for 
embedded systems to reduce life-cycle costs and to increase dependability of 
embedded applications. To facilitate the certification process of DECOS-based 
applications, the DECOS Test Bench constitutes a framework to support 
Validation & Verification. By implementing a modular approach, an application 
safety case merely contains the application-specific issues and re-uses the safety 
arguments of the “generic” safety cases of the DECOS platform. The Test 
Bench covers the complete life cycle from the platform-independent models to 
deployment, including model validation and transformations. The safety cases 
are based on validation-plans (v-plans) comprising the steps to validate the 
safety requirements. The Test Bench provides a methods/tools repository, 
guidelines to generate and execute v-plans, and integration of tools and of 
remotely distributed test beds.  

1   Introduction 

“Smart Systems” are based on intelligent embedded control systems, which are 
distributed within the application systems, and often hidden to the every-day life user. 
E.g., more and more functions in today’s cars are realized by electronics and software, 
80-90% of the new innovative features are realized by distributed embedded systems. 
Eventually, even highly safety critical mechanical and hydraulic control systems will 
be replaced by electronic components. Value of electronics in cars will increase 
beyond 40% of the total value. Even today, upper class cars contain up to 80 ECUs, 
several bus systems, and about 55% of all failures are caused by electronics, software, 
cables and connectors [3], [11].  

The DECOS project [2] aims at making a significant contribution to the safety of 
dependable embedded systems by facilitating the systematic design and deployment 
of integrated systems [1]. DECOS (Dependable Embedded Components and Systems) 
is a European Integrated Project in FP6, Embedded Systems area, scheduled for the  
                                                           
* Research supported in part by EU IST-FP6-511764 (DECOS). 
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period 2004-2007. Co-ordinator is Austrian Research Centers Seibersdorf research 
(ARCS). Work is performed by 19 partners: Two research centers (ARCS, SP 
(Sweden)), six universities (Universities of Technology Vienna, Darmstadt, Budapest, 
Hamburg-Harburg, Universities of Kassel and Kiel), three technology and tool 
providers (TTTech Vienna, Esterel Toulouse, Infineon Munich), and eight 
demonstrator/application related industrial partners (Audi AEV, CR Fiat, Hella, 
Airbus, Thales, EADS, Liebherr Aerospace, Profactor).  

In federated systems, each application subsystem is located on a dedicated 
processor. The federated approach provides natural separation of application 
functions, but causes increased weight, electric energy consumption and cost due to 
resource duplication and the large number of wires, buses and connectors. Integrated 
systems not only help to alleviate this problem, they also permit communication 
among application functions. A remarkable feature of the integrated DECOS 
architecture is that hardware nodes are capable of executing several tasks of 
application subsystems of different criticality. Throughout this paper, we will use the 
notion of a node instead of processor or component.  

An integrated architecture provides a fixed number of nodes, each of which has 
certain properties (e.g., size of memory, computational power, I/O resources). All 
tasks have to be allocated such that given functional and dependability constraints are 
satisfied. This is discussed in detail in [4]. 

This paper focuses on the description of the DECOS Test Bench which supports 
the validation and certification process within DECOS. It has been developed within 
subproject 4 (validation and certification). An overview of the other subprojects is 
found in [5]. 

2   Goals of the DECOS Test Bench – Modular Certifiability 

The DECOS Test Bench has the goal to facilitate certification of DECOS-based 
systems in a modular (component based) manner, making use of properties of  
the DECOS core services, high level services, and the DECOS design and 
development processes. Basis is the generic functional safety standard IEC 61508. 
A comparison and evaluation of several domain specific standards and IEC 61508 
has shown, that systems conforming to higher SIL levels of IEC 61508 or related 
standards fulfill the major requirements of domain specific standards, such as IEC 
50129 (railways), the evolving ISO 26262 automotive functional safety standard 
(the so-called DIN-FAKRA standard proposal) or RTCA/DO 178B for aircraft 
industry.  

The modular certification of a DECOS-based system is based on the definition of 
so-called Modular Safety Cases and works in the following way:  

• The first step is to provide generic safety cases for the application independent 
parts of DECOS, e.g. the core-services or the DECOS nodes. For each entity a 
safety case is generated. These safety cases are called generic safety cases 
because they provide the generic infrastructure for any DECOS application but 
are (per definition) independent from them (comparison: generic telephone 
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infrastructure and applications). The generic safety cases themselves form a 
modular system. 

• The second step is to provide the safety cases for each application of the system, 
re-using the generic safety case(s) for the DECOS infrastructure technology.  

Fig. 1 shows the two approaches to establish a safety case. On the left hand side the 
traditional (federal) approach is shown: one large monolithic safety case for each 
application. On the right hand side the modular approach is illustrated: reuse of the 
architecture related (generic) safety cases such as the DECOS nodes, the core 
services and the high level services. This approach leads to a well manageable 
certification process and to a clearly arranged application safety case. 

The modular, component-based approach to safety case generation is of utmost 
importance in case of re-certification of DECOS-based systems: based on the generic 
safety cases and the already proven properties and evidences, re-certification is 
considerably simplified, the process more cost-effective. 

Within DECOS only certifiability will be proven: it is up to the subprojects to 
prove that the requirements have been met or can be met in a production process 
(“certifiability”). Doing so, the certifiability of the whole DECOS system is proven. 

 

Fig. 1. Monolithic versus modular application safety case 

At this stage, one “Generic Safety Case” for a safety critical part of a DECOS node 
has been established. It builds on the inherent assumptions and the assumed 
fulfillment of the requirements defined in all the subprojects for the integrated 
DECOS architecture and services (architecture claims, core services, high level 
services) [1].  

The construct to be looked at is shown in Fig. 2. It consists of the safety-critical 
part of a DECOS node, including the SCCU (safety–critical connector unit) and the PI 
(Platform Interface) (for details of DECOS nodes, see [1]), but not of the application, 
because only the generic part is looked at. The result is an evaluation and assessment 
of the contribution of the DECOS architecture to the safety of application systems, 
which is intended to be included in the safety case of DECOS-based applications and 
is expected to facilitate this part of the system certification. 
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Fig. 2. DECOS node, system boundary for generic safety case 

3   DECOS Test Bench Structure 

The primary outputs of the DECOS Test Bench are the necessary documents to prove 
the certifiability of a DECOS-based system, i.e. the required (generic) safety cases. 
The Test Bench shall therefore allow for generating, organizing, storing and exporting 
the safety cases. What does this mean precisely? Typically a safety case comprises the 
necessary safety arguments which correspond to the V&V activities and the related 
evidence (for details see section 4). A V&V activity is related to one or more safety 
requirements and is a necessary step to prove these requirements. A V&V activity is 
performed either manually or by means of a V&V tool according to the selected V&V 
method. The evidence is the (written) proof that the V&V activity has been completed 
with positive results. Note that there is no evidence in case the V&V activity has 
failed (negative results) or been indecisive (inappropriate V&V tool). 

In order to further simplify the certification process, the Test Bench provides an 
initial list of requirements and related V&V activities for each artefact under test 
(AUT, e.g. ranging from DECOS metamodels to architecture models, DECOS tools, 
components (hardware and software, see fig. 8), DECOS applications or DECOS 
application (sub) systems). The proposed V&V activities in this list are also 
influenced by the chosen standard and the required safety integrity level (according to 
IEC 61508 or related standards). The list of the V&V activities for a certain AUT is 
called a validation plan (v-plan), thus the initial list is called initial v-plan. 

The DECOS Test Bench provides a number of facilities which provide guidance to 
generate and execute v-plans to obtain the evidence. The v-plans are explained in 
section 4. Among the facilities provided by the Test Bench are predefined v-plan 
templates and the possibility to integrate V&V tools. 
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Conceptually, the DECOS Test Bench constitutes a framework for the consolidated 
collective V&V capabilities corresponding to the DECOS artefact categories, 
providing v-plans to control the respective V&V activities in a progressive integrated 
manner, as indicated in Fig. 3.  

Depending on the AUT, an appropriate initial v-plan is established, considering all 
related requirements, and describing the start-up activities for the corresponding V&V 
process. During progress of this process, this list is continuously updated by either 
marking individual activities as completed, splitting activities into sub-activities etc.  
Each activity is linked to one V&V method and/or tool which is to be used to perform 
the respective V&V activity. Typical V&V methods for various technologies and life 
cycle phases (notated in brackets) are  

• FTA, FMECA and Hazop (system analysis and evaluation) 
• Theorem proving and model checking (formal methods) 
• Application of UML and MatLab/Simulink (simulation and modelling) 
• Audit, inspection (review) 
• Functional, white box and black box testing, coverage, static analysis (testing) 
• SWIFI and EMFI (fault injection) 
• Conducted and radiated emission (EMI) 
 

 

Fig. 3. Relationship between DECOS artefacts and Test Bench structure 

A v-plan therefore is always specific for one AUT, comprises the list of requirements 
to be fulfilled for that AUT, describes the set of associated V&V activities, and 
contains meta-information like responsibilities and details about the AUT.  

Safety cases are related to v-plans since the establishment of a safety case requires 
the collection of safety evidence for the claimed dependability of the respective 
system (or artefact), and v-plans describe how these arguments could be verified and 
validated. 

An important aspect is that the Test Bench shall support treatment of more than 
one AUT at a time, illustrated in the parallelism of the various v-plans. 
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A top-level view of the Test Bench framework is shown in Fig. 4.  Vertical 
alignments indicate ‘uses’- or ‘consists of’-relationships. So, a safety case uses a v-
plan and the evidence based on positive results of V&V activity, while a v-plan 
essentially consists of the requirements (or claims, respectively) to be satisfied for a 
certain AUT, and the V&V activities performed in order to satisfy the requirements.  
A V&V activity is either a test case generation, or the application of a V&V method.  
The latter is performed by means of a certain V&V tool assigned to it. 

Horizontally, major information flows are indicated. The whole process is 
requirements driven - requirements are derived from the DECOS artefact, relevant 
standards, and potentially other sources, e.g. – depending on the AUT category – from 
the respective domain. For instance, for an automotive brake-by-wire application, 
SIL3 would be a domain requirement, while for an aerospace flap-control SIL4 or 
equivalent would be required. In addition, requirements may also be generated 
internally during the V&V process, e.g. from risk analysis or by substituting general 
requirements, which cannot be verified as such, by more specific ones. V&V tools use 
the AUT in its appropriate form (specification, model, software, hardware etc.) – also 
called ‘incarnation’ – and produce results. Positive results are used to establish 
evidence for the validity of the stated requirements, while negative results will be 
reported to the developer. (Of course, also positive results will be reported to 
developers.) After error correction, new test cases may have to be added, and failed 
activities repeated. Test cases are considered to be requirements, since they have to be 
treated in essentially the same way; however, in addition to be entered manually, they 
can also be generated by means of test case generators. Finally, all collected evidence 
establishes the arguments for certifiability of the AUT. 

 

 

Fig. 4. Top-level structure of the DECOS Test Bench framework 

Therefore, the DECOS Test Bench consists of the consolidated set of V&V tools, 
and a set of software services for guided use of these tools as well as management of 
all related documentation. These services establish the Test Bench framework, and 
largely coincide with the ingredients listed illustrated in Fig. 4.  

In the following, specific aspects of the Test Bench framework are described: these 
are v-plans and evidence (section 4), execution of V&V activities (section 5), 
integration of external tools using model transformation (section 6) and the EMI part 
of the Test Bench (section 7).  
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4   V-Plans and Evidence 

As described earlier, the v-plan describes the sequence of verification and validation 
activities. Within the DECOS project an example v-plan has been established for 
validation of the FTCOM layer. The FTCOM layer is a middleware layer of the 
DECOS platform which provides fault-tolerance (FT) and hardware-accelerated 
communication (COM) services to the application. The FTCOM layer is especially 
suitable as an example since it both consists of software and hardware. The hardware 
part is challenging due to the fact that it is an FPGA which functionality is designed 
using a hardware description language, i.e. software. 

The DECOS platform shall be able to accommodate applications of highest safety 
integrity and since DECOS uses IEC 61508 as base standard, the FTCOM validation 
plan is consequently based on the requirements put by IEC 61508 on SIL4 safety 
functions. In its present form, the v-plan does not cover the complete safety life cycle 
of IEC 61508, instead it has been focused on the phases that have a correspondence in 
a development model such as the v model, see Fig. 5. In other words, concept and 
maintenance phases have e.g. been left out. 

 

 
Fig. 5. Modified V-model from the IEC 61508 standard 

In order to find all necessary V&V activities which will constitute the FTCOM v-
plan, all methods that are highly recommended (HR), recommended (R), or mandatory 
for SIL4 safety functions to avoid systematic failures during the different phases of the 
safety lifecycle have been gathered; both for the hardware (IEC 61508-2) and the 
software (IEC 61508-3) parts. Additional requirements on e.g. document, config-
uration, and version management as well as requirement formulation have been 
captured in checklists. 

Even though the FTCOM layer only provides 11 services, 4 hardware based and 7 
software based, the vast number of V&V activities imposed by IEC 61508 makes it 
practically impossible (due to limited resources) to carry them all out within a three 
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year’s research development project such as DECOS, which is clearly pre-competitive 
and not developing a product. Instead, a few carefully selected V&V activities will be 
carried out as a proof-of-concept and to demonstrate certifiability. This is neither a 
drawback of DECOS nor of the processes implemented, and their feasibility is 
demonstrated by the application demonstrators in the automotive, aerospace and 
industrial control area. Guidelines will be provided how the processes have to be 
carried out in case of  product certification and attention is directed to the critical 
issues. The selection of activities is based on the competences of the DECOS partners 
and the availability of a specific V&V tool. The V&V activities performed within the 
DECOS project range from reviews, static analyses, and formal verification to testing 
and fault injection. Different V&V activities apply for different DECOS artifacts.  
(see section 3 and 8). 

5   Execution of V and V Activities 

This section looks at one detail of the v-plan execution: the execution of the V&V 
activities. For simplicity reasons we consider the execution of only a single V&V 
activity in this context. Note that the Test Bench allows for parallel execution of 
several V&V activities due to its distributed client/server architecture1. As shown in 
Fig. 6, each V&V activity in the Test Bench has a well defined life cycle (note that 
the interaction with the requirements is explained below). It starts with the state “Not 
Ready” which means that the V&V activity has been defined but is lacking the 
relevant input which is necessary for execution. If the necessary input has been 
provided and the V&V tool has been selected, the V&V activity passes into the next 
state which is called “Ready”. The input for the V&V activity comprises the input 
data requested by the tool to produce a significant output, further the definition of a 
deadline, and a responsible person. The Test Bench provides guidance by offering a 
repository of V&V methods/tools and an adequate help file. It also supports the input 
preparation for the selected V&V tool by offering model transformation (for details 
see section 6). 

At this point the Test Bench offers the possibility to implicitly change to the state 
“Processing”: an e-mail is generated which endows the responsible person with the 
relevant information he or she needs to execute the V&V activity. The responsible 
person is supposed to directly work on the Test Bench (by having installed a client on 
its work station). Depending on the selected V&V tool the tool execution might be 
automated using e. g. a message server (for details and an example see section 6) so 
that the results are automatically fed back into the Test Bench. In case of a manual 
execution of the V&V activity the Test Bench provides user guidance by offering a 
dialog which leads the user step-by-step through the process. An manual execution is 
typically required for GUI based tools or in case of distributed test sites needing 
specific equipment (e.g. EMI – Electromagnetic Interference – tests through a test lab, 
see section 7). The workflow support for the validation and certification process is 
designed in a manner that the Test Bench can be distributed and include remote sites 

                                                           
1 Based on Telelogic DOORS®. 
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on both levels of integration. The Test Bench provides a distributed service for many 
clients and distributed test sites, based on the workflow described and a common 
repository for reuse of V&V results and documents.  

Depending on the results of the V&V activity, there are three possibilities of the 
consecutive states: “Completed” if all results are positive, “Failed” if not all results 
are positive, in other words that there is at least one negative result and “Indecisive” if 
the selected V&V tool turns out to be not appropriate to cover all required aspects. In 
the second and third case the V&V activity shall be repeated using an updated AUT 
or V&V tool, respectively, setting it back to “Not Ready”. In case of a new version of 
the AUT the V&V activities of the associated v-plans have to be repeated as well 
(regression test). 

 

 

Fig. 6. Life cycle of a V&V activity and an associated requirement 

Apart from this life cycle process of the V&V activities the Test Bench supports 
and/or automates further processes.  

It automates the interaction with the associated requirements (see dashed lines in 
Fig. 6): (1) in the state “Ready” the associated requirements are checked whether 
they are already set to “Approved / open” which means that the requirement has 
been approved and is stable (note that the initial state “Proposed” denotes the 
requirements which are not approved yet). (2) In the state “Completed” the 
associated requirements are checked whether they have already been fully validated 
(i.e. all the associated V&V activities are completed). In the positive case they are 
set to “Closed”.  

The Test Bench supports a tree-like hierarchy of V&V activities: V&V activities 
shall be split into sub V&V activities in case more than one V&V tools are used to 
 



 Validation and Certification of Safety-Critical Embedded Systems 381 

perform the required task. Such V&V activities are called “compound” then, in 
contrast to “elementary”. Also a v-plan can be seen as a compound V&V activity. The 
state of a compound V&V activity is automatically set to the logically lowest state 
of its sub V&V activities (according to Fig. 6, the order from lowest to highest 
corresponds to the direction from top to bottom and from left to right in the final 
row).  

The Test Bench supports modular certifiability by allowing reference from a V&V 
activity to existing safety cases/arguments. It allows the reuse of modular safety cases 
(or successful V&V activities). Thus, the Test Bench provides a repository (or a 
library) of reusable safety arguments. 

The Test Bench supports the generation of documents in standard format out of 
the database information. This allows for automating the generation of safety cases. 
The safety case contains the relevant evidence, but to keep the safety case slim it 
shall contain only the reference to the evidence which is downloaded from the 
document repository on request. The overall Test Bench Process as described is 
shown in Fig. 7. 
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Fig. 7. The overall validation & certification process of the Test Bench 
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6   Integration of External Tools Using Model Transformation 

One goal of the Test Bench is to provide guidance for the integration of external tools 
in order to facilitate the execution of the V&V activities. One part of the integration is 
the preparation of the input data for the V&V tools. This is done using model 
transformation. Hereby we describe the test bench configuration by the example of 
the PIM (Platform Independent Model) validation as a case study to illustrate the 
functioning of the Test Bench. In this step a PIM is validated against the DECOS PIM 
metamodel using ontology. The development process of a DECOS application is 
shown in Fig. 8, a part of which is the PIM generation. 

In the case study, the PIM is edited by a UML modeling tool and stored in XML. 
Therefore, it has to be transformed into the representation format of an ontology tool 
and then it can be validated by posing questions against a reasoning system. The first 
prototype of this transformation was written in XML Schema Transformation 
Language [6], but a new version is also implemented in the VIATRA [7] tool by 
using model transformation. 
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Fig. 8. DECOS development from model to deployment 

As multiple users may submit their AUTs for a particular test to the same V&V 
tool, the DECOS test bench architecture should support the message-driven test 
evaluation in order to run the memory and CPU time consuming V&V tools in 
multiple instances on the same server. The well-proven Message Queuing (MQ) 
technology is proposed as a messaging middleware. Hereby we discuss the concrete 
implementation considerations, and present the architecture to run the test 
prototypes on. 

The configuration of the implementation is shown in Fig. 9. 
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Fig. 9. Configuration of the Test Bench 

The core of the basic architecture is a Java Message Service ([9]) compliant 
messaging server. The consumers and the receivers are the wrappers around the test 
bench tools sending test requests and results. We have chosen to use the JMS 
implementation of the JBoss [10] as it is a widespread, open product. The central 
messaging server and the test bench tools, such as the VIATRA framework and 
RACER are running on separate machines, thus the architecture is more flexible and 
extendable. 

The requirements are stored in the DOORS tool. Sending a PIM to the test bench 
needs only a single Java wrapper class which takes the model, or a reference to the 
model stored in a repository, and sends it to a queue on the server. A concrete queue 
represents one test tool; in this case, VIATRA2. As the DOORS tool is able to start an 
executable file, this class can be instantiated from a DOORS script. Messages are 
extended with a unique message id to correlate response messages. 

7   The EMI Part of the Test Bench 

In a distributed safety-critical embedded system communication is vital. To be able to 
design and analyse different cable types and network topologies for the 
interconnection bus, a dedicated EMI test bed is developed within DECOS. The EMI 
test bed consists of two parts: one based on software (simulation program) and one 
based on hardware (measurement set-up). When designing these test beds, relevant 
standards from all three application areas, automotive, aerospace, and industrial 
control, have to be considered (e.g. MIL-Std. 461-E, DO 160D, EMC Directive 
89/336/EC) . In the EMI test bed it is possible to analyse emission and susceptibility 
both for narrow band and wide band disturbances. 

The EMI hardware test bed is set up inside an anechoic chamber of the accredited 
EMC test lab at ARCS where the cable under test is mounted in an adjustable fixture 
and driven and loaded by appropriate circuits, nodes. Three different antennas are 
provided to cover the targeted frequency range from 150 kHz to 1 GHz. 
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The EMI software test bed, or simulator, is an enhancement of an existing in-house 
developed tool at SP Swedish National Testing and Research Institute. The topology 
of the simulated bus as well as the resulting electric field distribution is graphically 
presented. Experiments carried out using the EMI hardware test bed will be used to 
fine tune the EMI software test bed. 

8   Conclusions and Future Work 

The DECOS Test Bench supports the modular certifiability of integrated dependable 
systems (such as the DECOS-based systems) according to the safety standards, e.g. 
IEC 61508, which is a central goal of the DECOS project. For this purpose it provides 
the Test Bench framework (based on Telelogic DOORS®) which manages the 
requirements, v-plans and V&V tools and provides guidance to execute v-plans and to 
obtain the evidence. Since each v-plan is associated to one artifact of the DECOS 
system, it is straightforward to establish a generic safety case for that artifact. An 
application safety case thus only contains the application-specific evidence and reuses 
the results of the generic safety cases. 

A further strength of the DECOS Test Bench is that it supports the integration with 
external tools. In many cases the available input data does not fully match with the 
required formats of the tool. For this reason it provides a generic way of model 
transformation based on the tool VIATRA2. This is also true for external test sites 
such as the EMI Test Bed. 

In the automotive application, a mixed criticality approach is demonstrated by 
integrating a door-control system and a critical crash warning and avoidance system 
demonstrator (vehicle and environment simulator with DECOS hardware in-the-loop, 
based on Layered FlexRay core technology). 

The aerospace demonstrator is a flap control system for the Airbus outer flap 
control, a really critical application, with a gateway to the AFDX-bus of Airbus.  

The industrial control demonstrator is control of a production- and business critical 
vibration control system for high-end nano-imprinting machines, controlling piezo-
electric sensor and actuator networks. The long term vision of this demonstrator is 
critical structural control of engineering structures (helicopter cabins, aircraft wings, 
buildings, noise suppression etc.). 

The next steps will be the following:  

• Identification of a basic set of (existing) V&V tools to be integrated into the Test 
Bench to fulfill the major V&V requirements of the project (e.g. Item from 
Itemsoft for FMECA, LDRA (static and dynamic testing, coverage, top level test 
case generation), SCADE-MTC, a SWIFI (Software Fault Injection) tool like 
Propane from TU Darmstadt, a tool for PIM Validation (already explained in 
section 6) with the implementation of the appropriate model transformations.  

• Establishment of further v-plans and evidence for the generic safety cases.  
• Experiments (e.g. on quad modular redundancy by EMFI (EMI fault injection), 

evaluation of other basic core architectures such as Layered FlexRay and TT-
Ethernet (time-triggered), evaluation of the impact of SoC (System-of-Chip) 
implementation of a few DECOS high level services, and a vulnerability 
analysis/trust case experiment) which are accomplished in the realm of DECOS. 
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Abstract. This paper presents an approach to structured integration
of different application subsystems on the same embedded hardware, as
currently developed in DECOS (Dependable Embedded Components and
Systems), an integrated project within the Sixth Framework Programme
of the European Commission. Those application subsystems can have dif-
ferent criticality levels and vendors. Furthermore, reliable communication
among application subsystems is a major concern.

Focusing on the Encapsulated Execution Environment (EEE), which
separates application subsystems in the space AND the time domain,
this approach outlines the concepts and principles of an exokernel oper-
ating system, of partitioning, and of virtualization. The Core Operating
System (COS) is described as a case study, including the hardware used,
the current feature set, and benchmark values of central COS operations.

This paper also presents a model for a platform-independent applica-
tion interface layer. Parts of this interface layer are generated from task
specification to provide tasks with tailored communication services.

Keywords: Embedded Systems, Dependability, Virtualization.

1 Introduction

The development of electronic architectures in domains like the automotive,
aerospace, or industrial control domain calls for a steadily increasing integration
density of independent application subsystems. As mentioned in [1], it is ex-
pected that in the near future application subsystems from different vendors are
seamlessly integrated in the same hardware platform. A study of A.D. Little [2],
for example, states that currently about 70 ECUs are used in cars and in the
next decade, a significant reduction to about 20 ECUs is expected. Application
subsystems may have different levels of criticality and must be protected against
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each other in space and time. Otherwise, each module on the common hardware
has to be developed to fulfill the highest safety requirements.

This paper presents an approach to the integration of mixed criticality sub-
systems that are executed on the same embedded hardware. This approach is
currently under development in DECOS (Dependable Embedded Components
and Systems), an integrated project within the Sixth Framework Programme
of the European Commission. The Core Operating System (COS) of the DE-
COS Encapsulated Execution Environment (EEE), an exokernel [3] operating
system, separates application subsystems in the space and the time domain. In
order to minimize dependency of application software from specific implemen-
tations of the underlying DECOS services, a so-called platform interface layer
(PIL) realizes the interface between the application subsystems and the COS.

The remainder of the paper is structured as follows: Subsequent to this intro-
duction, section 2 describes the concepts and technology of the EEE. Section 3
outlines the experiences that have been gained through the implementation of
the COS of the EEE, including the hardware used, the current feature set, and
benchmark values of central COS operations. Section 4 starts with the conceptual
DECOS node architecture from the viewpoint of an application and thereafter
elaborates the implementation of the PIL on the EEE. Section 5 gives a short
summary of the paper.

2 Concepts and Technology

In contrast to the federated architecture of traditional systems, the integrated
architecture of the DECOS EEE provides means to support applications of dif-
ferent safety criticality levels to be executed in parallel on top of the same phys-
ical hardware, without any undesired interference between those applications.
The architecture addresses the concept of modular certification, i. e., a safety-
relevant application that is certified to a higher certification level can be executed
together with a non-safety-relevant application that is certified to a lower certi-
fication level or is even not certified at all. Non-safety-relevant applications shall
not inherit the criticality level of safety-relevant applications. This requirement
is the reason why system resources (time and space) have to be shared among
the applications, without any undesired interactions. Especially errors of one
application shall not interfere with other applications. This fault containment is
one of the main features of the DECOS EEE, where unspecified behavior of an
application is recognized and its propagation prevented by the EEE.

Fault containment is achieved due to a strong and reliable encapsulation of
every application which prevents undefined (unwanted) interaction to or from
other applications. The encapsulation is achieved by separating the applications
into independent partitions and arranging the protection in the space and time
domain based on these partitions (refer to figure 1). The system resources are
statically distributed to the partitions by the EEE.

The protection in the space domain prevents undefined accesses and manip-
ulation of data in the memory of the system. Every partition is associated to a
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Fig. 1. A DECOS Node (Example)

(private) list of memory regions with read, write and execute rights. In addition
the access to system I/O resources is also controlled by the space protection.

The protection in the time domain provides a guaranteed time window, where
the CPU exclusively executes the program (i. e., the application) of the partition.
Every partition is associated to a time window within a periodic schedule where
every partition is activated at least once per (core) cycle (refer to figure 2).
The EEE activates the partition at the start of the defined time window, and
deactivates the partition at the end of the time window. The EEE prevents any
exceptions to this schedule. Asynchronous events (like interrupts) are associated
with at least one partition and are activated only in this partition.

Fig. 2. Core Schedule (Example)

The strong protection mechanisms of the DECOS EEE enable the integra-
tion of safety-relevant tasks with non-safety-relevant tasks in separate partitions
without compromising dependability properties of the safety-relevant task. How-
ever, every exchange of data between partitions requires additional means of the
EEE. For this purpose virtual communication channels can be set up as a high-
level service on top of the EEE, which can be used to transport information,
without violating the encapsulation properties of the partitions.
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Within an encapsulated partition a separate operating system could be real-
ized. In case a separate operating system runs within a partition, the EEE offers
virtualization of the resources that are bound to a partition. That means that
resources within a partition can be further (sub-)managed without interference
of other partitions.

The DECOS EEE consists of the core operating system (COS), which provides
means for partition handling and protection, error handling and health moni-
toring, and inter-partition communication. A partition interfaces the services of
the COS via the system interface (SI) (refer to figure 3).

Fig. 3. Core Operating System and Partitions

The COS is implemented as an exokernel [3] that limits its functionality ex-
clusively to the management (dispersal and protection) of shared resources – in
our case memory and CPU time management. This leads to a slim kernel which
can be tested more easily than a bigger kernel approach.

Memory protection is supported by a hardware/software mechanism as de-
scribed in [1]. This ensures a maximum of flexibility without the cost of reduced
reliability. Inter-partition communication can be realized either by message chan-
nels that are explicitly provided by the COS, or by the use of a statically defined
shared memory.

For interrupt handling, the COS kernel is responsible for ensuring that a
partition is only interrupted if it wants to receive the interrupt. So interrupts
may be ignored and multiple occurrences may get lost if they are not handled
in time.

A partition could contain a local operating system which we call partition
operating system (POS). The purpose of a POS is to enhance the services that
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are offered via the SI of the COS. In section 4 the DECOS platform interface
layer (PIL) is introduced, which can be regarded as a basic POS.

3 Implementation of COS

A prototype implementation of the EEE COS has been implemented using an
Infineon TriCore TC1796B [4]. This 32-bit microcontroller provides sophisticated
memory protection over the unified data and program address space as well as
several internal and external flash and SRAM memories. Additionally, it provides
three levels of input/output space access protection:

– level zero, with no access allowed,
– level one, with a hard-wired access allowance set and
– the supervisor mode.

The TC1796 supports context switches by hardware and includes a CRC32
checksum engine as well as error correction code (ECC) checks on flash memory
and parity for SRAMs. The CPU runs with a frequency of up to 150 MHz and
provides 32-bit integer- and single-precision floating point arithmetics.

The evaluation board provides additional flash and SRAM memories which are
connected to the microcontroller via its external bus interface. The external bus
interface has a clock rate of up to 75 MHz. With its unified memory architecture
it is easy to change the memory location of data and programs within the virtual
4 GB address space.

3.1 Features of Implementation

To provide clear distinction between the COS and the partitions, the COS was
implemented to run as handler for every interrupt or hardware exception. Every
service of the COS is executed after a context switch. Thereby the context of
the currently active partition is saved by hardware in a context save area. After
that, the COS service is executed. COS services are for instance timer events,
interrupts, and service requests by partitions. The context save areas are an in-
genious concept of the TC1796 to store the context, i.e., the current register set,
in a linked list instead of pushing it on the stack. This concept allows manipu-
lating the partition contexts in an easy way, especially when adding additional
context save areas for function invocation.

Protection in space has been realized through the memory protection unit
of the microcontroller. Furthermore, extensive checking of memory addresses
(with respect to read and write operations) that originate from the partition via
a system call must be performed. This is necessary because the COS runs in
supervisor mode and has read and write access to the whole memory. Without
that, a partition could provide an illegal pointer to a COS service that reads or
manipulates data of another partition.
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The Protection in Time paradigm was implemented using an interrupt pro-
vided by a free running hardware clock timer with compare match functionality.
This timer interrupt has the highest priority and preempts the active partition
after a statically defined time period.

Several OS services like message channels, health checks, error reporting and
logging can be configured through the system interface which interacts with the
COS via system calls.

Flexibility is limited by the number of objects of each type in the COS, which
must be predefined. There is no dynamic allocation of memory at all, so all
objects needed at runtime must be defined at design time. Nevertheless most
of them can be enabled, disabled or reconfigured at runtime. This design not
only prevents typical problems when using dynamic memory allocation but also
enables direct access for most objects.

As COS objects may be manipulated at runtime it is necessary to ensure data
consistency. A central design decision is that COS operations must be atomic
and cannot be interrupted. This affects static COS operations like scheduling
as well as dynamic operations like system calls via the system interface, which
are initiated by the partitions dynamically. To enforce the protection in time,
system calls must not happen shortly before the deactivation of the partition.
For that, the COS checks at the begin of a system call if there is enough time
left to perform the request. Otherwise, the call is suspended and performed the
next time the partition is activated and there is enough time to execute the
request.

Synchronization to a global time source is done within the time space of a
designated synchronization partition which needs to be scheduled for this task.
Within this partition’s time space, a ”virtual time jump” is performed by ma-
nipulating the local system time, i.e., synchronizing the local clock to the global
time source. The synchronization is established by varying durations of the sync
partition. This ensures that no timer event of a partition gets lost as well as
execution time for each partition can be guaranteed, regardless of time synchro-
nization. Each partition is granted the execution time (number of CPU ticks)
defined at design time [5].

3.2 Performance

Although not a driving factor of this prototype implementation, performance is
a central concern. Starting with non-optimized code and deactivated caching,
using either optimized code or caching improves COS performance by 25 to 37
percent. Optimized code and enabling of caching boosts the overall performance
by about 80(!) percent. It seems that optimized code is specifically tailored to
the use of the instruction cache. Using different memory locations for code and
data can also have massive impact. For that, all performance values depicted in
table 1 are only valid for the specific configuration and not worst case execution
times (WCET).

As outlined in table 1, partition switching, i.e., partition activation plus par-
tition deactivation, and COS services, like for instance the sending of a message,
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Table 1. Performance of COS

Operation 40 MHz CPU and Sys 150 MHz CPU, 75 MHz Sys

Startup 35,600 ticks, 890 μs 29,500 ticks, 393 μs
Partition activation 6,000 ticks, 150 μs 4,800 ticks, 64 μs

Partition deactivation 6,750 ticks, 169 μs 4,900 ticks, 66 μs
Send message (1 word) 3,400 ticks, 85 μs 2,150 ticks, 29 μs

Receive message (1 word) 3,700 ticks, 93 μs 2,350 ticks, 32 μs

create significant overhead. This is due to massive switching overhead and be-
cause of the need for extensive checking of access rights. There is only a small
difference between sending/receiving one single word and several words. The
copy operation itself needs only a few ticks per word.

3.3 Issues

The existence (or non-existence) of several properties of the selected microcon-
troller may potentially ease or constrain the implementation of the above men-
tioned concepts of partitioning and protection. During the implementation of the
COS for the TC1796 it turned out that all important features of the COS could
be realized. However, we found several restrictions that have been introduced
by the selection of the TC1796. In the following, we will discuss our experiences
during the implementation of the COS:

– The memory protection system of the TriCore family provides up to four
memory protection register sets (PRSs) (see [4], chap. 8.1), but the TC1796
only supports two ([6], chap. 2.4.5).

Since the COS is the handler for every interrupt and trap, one PRS is
needed for the COS, and so only one is left for all partitions. That’s why the
memory protection must be virtualized for the partitions.

For the TC1796 one PRS contains 4 data segment protection register
pairs, 1 mode register for read and write access, 2 code segment protection
register pairs, and 1 mode register for execute access. From this it follows
that up to 14 registers must be set before every partition switch.

– The memory protection, as briefly described in the previous paragraph,
works excellently for read-, write-, and execute-protection, but not for I/O-
protection. For I/O there are only three access modes ([4], chap. 1.3), with
predefined access rights: User-0 Mode, which has no access to peripheral de-
vices, User-1 Mode, which has access to a set of the peripheral devices and
additionally can also disable and enable interrupts globally, and Supervisor
Mode, with full access.

Hence a partition that is not trusted could only be executed in User-0
Mode, and two possibilities exist for all other partitions that need I/O access:
• The partition must be certified to the same level as the COS. However,

this approach would contradict the basic idea of DECOS.
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• The I/O code of the partition will be moved into a separate I/O parti-
tion, and only the I/O partition has to be certified to the same (high)
level as the COS. However, this approach introduces an overhead for the
communication between application partition and I/O partition as well
as additional partition switches.

If neither of the two concepts is realized, it is possible that a partition could
affect the peripheral of another partition, or that partitions could affect
the COS by disabling interrupts globally, and so the protection in time is
disabled. Even the use of the HW watchdog ([6], chap. 16) cannot fully avoid
the violation of the protection in time. However, if acceptable for a certain
system, the HW watchdog could at least shut down a partition that disables
the interrupts and thus, limits such an error to a unique event.

– While debugging a program with the On-Chip Debug Support, OCDS, of the
TC1796 ([6], chap. 17), it is not possible to use PRSs, because the on-chip
breakpoints are realized through the PRSs. This means that the memory
protection system must be disabled during debugging, and so it is hardly
possible to debug problems regarding the protection system and to test the
protection settings with the OCDS respectively.

– State of the art microcontrollers use sophisticated buffering methods such as
caching and prefetch buffers to improve average execution time. The TC1796
has several caches and instruction buffers to minimize latency effects. To
maximize safety, the program code of the COS resides in flash memory,
where ECC can correct single bit failures and detect up to two bit failures.
Using burstmode and buffering improves performance dramatically, espe-
cially when using the external flash ROM. But caching and using buffers
makes execution time indeterministic. Particularly, a special buffer within
the TriCore CPU which cannot be disabled and is not controllable makes
WCET analysis very hard. When not using caches, execution time of sim-
ple loops may vary by two orders of magnitude. With caches, the impact
of the buffer is attenuated to a variation of about plus-minus 30 percent.
It is hard to say if the measured execution times are worst case, even if a
specific call was measured several thousand times. Even after several thou-
sand measurements, additional execution time measurements of the same
code with identical call parameters would sometimes yield new maximum
values. So performance values given in the table above are not WCET,
but maximum execution times measured after several hundred thousand
calls (average execution time was mostly about half the maximum execu-
tion time).

– A central design decision was the atomicity of COS operations to ensure data
integrity. To guarantee partition execution times, COS operations may not
be requested if they are too close to the preemption of the current partition.
So the COS has to check if the time left is sufficient. Therefore, a table of
WCET values of all system calls is needed. However, the measurement of
the WCETs turned out to be very tricky because of the above mentioned
buffering methods.
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4 PIL and Architectural Services

As already addressed briefly in the introduction, the primary goal of DECOS
is the provision of a uniform platform for integration of embedded distributed
(real-time) applications of mixed (up to highest) criticality. As described in the
previous sections, the EEE strongly supports this goal by allowing the integration
of various application subsystems on a single node without the risk of affecting
other subsystems by a faulty one thanks to its strong partitioning in both space
(memory protection) and time (time windows). Due to that, it provides fault
isolation on subsystem level.

A further important goal of DECOS is to minimize dependency of application
software from specific implementations of the underlying DECOS services, as
well as to put minimal restrictions on the form of how these services are realized.
Although the described approach is a major achievement of the DECOS project,
other node implementations are possible, and have actually been carried out
within DECOS.

In order to explain how this will be realized on the platform described before,
a short outline of basic corresponding DECOS concepts is given in [7], which
may also help to put EEE into the greater context established by DECOS.

4.1 Conceptual DECOS Node Architecture

In the conceptual DECOS view, an application is a distributed embedded (real-
time) system, consisting of a set of so-called Distributed Application Subsystems
or DASs. Each DAS consists of a set of (application) jobs, which exchange in-
formation by either state or event messages. Note that job in this diction corre-
sponds to subsystem used in this paper, and to avoid confusion, we will use that
term rather than job. State messages realize sample semantics, i.e. the latest
transmitted value is always valid and overwrites any previous transmitted value;
they always have to be transmitted in a time-triggered style with required peri-
odicity. In contrast, event messages carry event information, where each message
must not overwrite previous messages of the same event type, und must there-
fore be queued. Event messaging not only bears the risk of queue overflow but
it is also more difficult to implement than state messaging (due to the need for
queue handling). It was therefore decided that safety-critical subsystems must
not use event messages, and all system services needed to support safety-critical
subsystems must be as simple as possible in order to ease their certification up
to SIL 4 (safety integrity level 4, [8,9]). Consequently, a conceptual architecture
of a DECOS-conformant system node has been defined, which is depicted in
figure 4.

Evidently, DECOS takes a layered architecture approach. On top, applica-
tions access DECOS services solely through the API of the Platform Interface
Layer (PIL). Among other functionalities, PIL provides services for sending and
receiving state and event messages in a platform-independent way. Below PIL,
the Secondary Connector Units (SCU) provide so-called DECOS architectural
services like virtualization of physical bandwidth of the communication network
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Fig. 4. Conceptual Architecture of a DECOS Node

shared by all DASs, such that each DAS operates as it would own a physical net-
work, or gateways for a controlled information exchange between different DASs.
At bottom, the communication with other nodes is realized, together with core
services like deterministic message transport and global fault-tolerant clock syn-
chronization. In particular, the Basic Connector Unit (BCU) interfaces between
the communication network and the SCUs by splitting bandwidth between them.

Using concepts of model-based system engineering (MBSE), with OMG’s
MDA as prominent representative [10], for each DAS a so-called PIM (Platform
Independent Model) is specified, which describes its jobs (or subsystems, respec-
tively), the exchanged messages, and all further performance- and dependability-
related requirements. From such DAS-PIMs, the allocation of jobs to computing
nodes, the schedules for message transmissions and job executions, as well as
platform interface and middleware services are finally generated (configured).

For instance, if a job X receives a state message S of type t S and may send
event messages E of type t E, then essentially the following C-API will be gen-
erated for it:

DCS_RetCode DCS_get_S
(t_S *out_S, DCS_bool *out_validityIndicator);

DCS_RetCode DCS_queue_E
(const t_E * in_E, const DCS_Time* in_timeout);

(’DCS’ stands for DECOS.) Some more functions are generated for allowing
different access styles, but according to the same principle. In addition, domain-
specific services like for CAN support are possible and envisaged. However, these
will largely use the native PIL-API, and will therefore not further be addressed
here.
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4.2 Implementation on EEE

The conceptual architecture elements as depicted in figure 4 are implemented
on EEE according to the following rules:

– Each subsystem is mapped into one partition.
– BCU and CC are implemented on a separate processor board, with a shared

memory interconnect to the EEE.
– State messages are exchanged via shared memory between PIL and BCU

directly. By exploiting memory protection and partition scheduling, highest
dependability can be guaranteed without SCU.

– An exception is local state message communication, which also is realized by
shared memory. However, BCU will not access these memory locations. In-
stead, either the memory is shared directly among the respective job partitions
or, if a delay is needed due to scheduling requests stated in the PIM, the SCU
will be mapped into a partition of its own. There, it is executed at the appro-
priate phase to perform a copy operation from writing to reading partition.

– This ”SCU partition” will also comprise gateways between safety-critical
subsystems and from safety- to non-critical subsystems of different DASs.

– Event messages are handled by PIL. In each partition, a queue of its own
is established for each event, both outgoing and incoming. For each event
message, a buffer for one message is defined in the memory shared with BCU.

– Whenever a queue for outgoing messages is not empty and that BCU buffer
is marked as free, PIL moves the oldest message from its queue into that
buffer. At next opportunity, the BCU will transmit the message and mark
the buffer as free.

– Symmetrically, whenever the BCU buffer of an incoming message is marked
as filled, PIL moves it into the local receive queue of each recipient, as long
as this is not filled completely. In the latter case, an input overflow occurred,
and that message is lost for the respective receiving partition. In any case,
the BCU buffer is marked as free. This avoids back propagation of a faulty
receiver to the sender or other receivers: if the input channel of a receiver
overflows, only that receiver will lose the message.

– An explicit XCU partition will be used if gateways between non-critical
subsystems of different DASs are needed.

5 Conclusion

Integrating applications with different levels of safety relevance (and possibly
from different vendors) on the same hardware requires protection mechanisms
that guarantee that no malicious interference between the applications can take
place. The Core Operating System (COS) that is currently under development in
the European research project DECOS offers the required level of encapsulation.
The COS is an exokernel operating system that offers mechanisms for protection
and virtualization of hardware resources and thus allows the integration of mixed
criticality applications on the same hardware.
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After elaborating the concepts of encapsulation and virtualization, we pre-
sented the intermediate (performance) results of our COS implementation, as
well as implications of the chosen microcontroller (an Infineon TC1796). Fur-
thermore, the concept of a platform interface layer (PIL) has been introduced
that offers an abstraction layer for the application software. The implementation
of the PIL has been briefly outlined.
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Abstract. We introduce the Railway Control Systems Domain (RCSD)
profile of the Unified Modeling Language UML 2.0 as a domain specific
modeling language for railway and tramway control systems. The RCSD
profile covers the segments of the rail network, sensors, and control ele-
ments like signals and switches. Using these terms of the railway domain,
it facilitates the communication between domain experts and special-
ists for embedded control system development. Defined as a profile for
UML 2.0, the development of precise RCSD descriptions is supported
by standard UML tools, visualizing railway networks in the same way as
domain experts are used to. The static description of networks is comple-
mented by the characterization of the dynamics within the network with
trains running on predefined routes. This behaviour is provided by the
semantics of a state transition system derived from the object diagram of
a particular network model. This rigorous semantic approach constitutes
a prerequisite for further tool-supported analysis of safety requirements,
and generation of the actual control system.

1 Introduction

With the present paper we contribute to the model driven development process of
railway control systems. With emphasis on a modeling language and its formal
semantics, we support the foundation of the widely automated generation of
controller components in the railway domain. As we provide a means to capture
the requirements of these control components thoroughly and unambiguously,
the focus within the development process shifts towards the modeling phase, i.e.
the formalization of the application users’ view onto the system.

We demonstrate our approach of utilizing a UML 2.0 profile as a domain
specific language for a problem in the railway control system domain. The domain
of control – also called physical model – consists of a railway network composed of
track segments, points, signals, and sensors. Trains enter the domain of control at
distinguished entry segments and request to take pre-defined routes through the
network. Detection of trains is possible only via sensor observations. A controller
monitors state changes within the network, derives train locations, and governs
signals and points to enable the correct passage of trains through the network.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 398–411, 2006.
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With all activities, the controller must ensure that no hazardous situation arises,
formulated by requiring compliance with a specific set of safety conditions.

The railway control domain is a perfect candidate to apply a domain specific
language as it contains a rather limited amount of different entities. The special-
ized objects involved may exhibit only a limited variation of behavior, and the high
safety requirements already established in the railwaydomainhave resulted in a de-
cent formalization of component descriptions. Part of the challenge of formulating
a domain theory of railways [Rai] lies in the long history of the domain where do-
main experts gathered a respectable amount of knowledge which is hard to contain
in a computing science formalism. Thus, an approach to deal with critical railway
control applications has to carefully connect the expertise in railway engineering
with the development techniques of safety critical software.

Among the various proposed solutions, we observe a number of characteristics
that we deem desirable: (1) The UniSpec language within the EURIS method
[FKvV98] provides a domain specific language with graphical elements to reflect
the topology of a railway network. (2) In order to support the development pro-
cess with standard tools the wide-spectrum Unified Modeling Language UML
[RJB04] is used in the SafeUML project [Hun06] which specifically aims at gen-
erating code conforming to safety standards. The use of UML is restricted here
by guidelines to ensure maintenance of safety requirements which still allow suf-
ficiently expressiveness for the modeling process. (3) In [PBH00, HP02, HP03a]
the domain analysis concentrates on the relevant issues for formal treatment of
the control problem using a presentation form of tables and lists as foundation
for a formal model.

Based on these experiences, we propose to use the profile mechanism for
UML 2.0 [OMG04, OMG05b] to create a domain-specific description formal-
ism for requirements modeling in the railway control systems domain (RCSD).
This approach allows us to use a graphical representation of the domain elements
with domain specific icons in order to facilitate the communication between do-
main experts and specialists for embedded control systems development. As the
profile mechanism is part of the UML standard, the wide-spread variety of exist-
ing tools can be adapted within the very spirit of the UML using UML-inherent
concepts. Since a profile allows to introduce new semantics for the elements of
the profile we can attach a rigorous mathematical model to the descriptions of
the domain model. Timed state transition system semantics form the base for
formal transformations towards code generation for the controller as well as for
the verification task that guarantees conformance to the safety requirements.
Consequently, the RCSD profile [BHP] constitutes the first and founding step
in a development process for the automatic generation and verification of con-
trollers derived from a domain model as outlined in [HP03a, HPG+04].

The next section gives a brief introduction to the railway control domain
terminology as background for the development of a profile. Section 3 explains
first the basic concepts and techniques for the construction of a UML 2.0 pro-
file, followed by selected examples of the RCSD profile. An example in Section
4 demonstrates the successful connection between the typical domain notation
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and the conceptual view of the profile. In Section 5, we sketch the underlying
mathematical model induced by a RCSD description of the physical model and
give an overview on the development of the associated controller. We also indi-
cated how this semantic model can be used for tool-supported verification and
code generation.

2 Elements of the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain
and their properties as e.g. described in [Pac02]. We focus on the modeling of
main tracks. All elements that are not allowed on main tracks as e.g. track locks
are discarded. The further elements are divided into track elements, sensors,
signals, automatic train runnings, and routes. Elements in the domain that come
in different but similar shapes like signals are modeled as one element with
different characteristics. In this way, we can abstract the railway domain to
eight main modeling elements. These are described in the following:

end1

end2

Fig. 1. Segment

end3

end2

end1

end4

Fig. 2. Crossing

end3

end4

end1

end2

Fig. 3. Interlaced segments

Track Elements. The track network consists of segments, crossings, and points.
Segments are rails with two ends (see Fig. 1), while crossings consist of either two
crossing segments or two interlaced segments (see Fig. 2 and Fig. 3). In general,
the number of trains on a crossing is restricted to one to ensure safety. Points
allow a changeover from one segment to another one. We use single points with
a stem and a branch (see Fig. 4). There is no explicit model element for double
points, as these are seldom used in practice. If needed, they can be modeled by
two single points. Single slip points and double slip points are crossings with
one, respectively two, changeover possibilities from one of the crossing segments
to the other one (see Fig. 5 and Fig. 6). All points have in common that the
number of trains at each point in time is restricted to one.

end3end2

end1

Fig. 4. Single point

end3

end2

end1

end4

Fig. 5. Single slip point

end1

end4

end3

end2

Fig. 6. Double slip point

Sensors. Sensors are used to identify the position of trains on the track network,
i.e. the current track element. To achieve this goal, track elements have entry and
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exit sensors located at each end. The number of sensors depends on the allowed
driving directions, i.e. the uni- or bidirectional usage of the track element. Each
sensor is the exit sensor of one track element and the entry sensor of the following
one. If the track elements can be used bidirectionally, another sensor is needed
that works vice versa.

Signals. Signals come in various ways. In general, they indicate if a train may
go or if it has to stop. The permission to go may be constrained, e.g. by speed
limits or by obligatory directions in case of points. As it is significant to know if
a train moves according to signaling, signals are always located at sensors.

Automatic Train Running. Automatic train running systems are used to enforce
braking of trains, usually in safety-critical situations. The brake enforcement
may be permanent or controlled, i.e. it can be switched on and off. Automatic
train running systems are also located at sensors.

Route Definition. As sensors are used as connection between track elements,
routes of a track network are defined by sequences of sensors. They can be
entered if the required signal setting of the first signal of the route is set. This
can only be done if all points are in the correct position needed for this route.
Conflicting routes cannot be released at the same time. Some conflicts occur as
the required point positions or signal settings are incompatible. Another problem
are routes that cross and are potentially safety-critical.

3 The UML 2.0 RCSD Profile

The next step is tailoring the UML 2.0 to the railway domain to provide the pre-
viously identified elements of the domain. There are two approaches to achieve
this goal. The first one is using the UML 2.0 profile mechanism described in
[OMG04] and [OMG05b] that allows for: (1) introducing new terminology, (2) in-
troducing new syntax/notation, (3) introducing new constraints, (4) introduc-
ing new semantics, and (5) introducing further information like transformation
rules.

Changing the existing metamodel itself e.g. by introducing semantics contrary
to the existing ones or removing elements is not allowed. Consequently, each
model that uses profiles is a valid UML model. The second approach is adapting
the UML 2.0 metamodel to the needs of the railway domain by using MOF 2.0
(see [OMG06]). This approach offers more possibilities as elements can be added
to or removed from the metamodel, syntax can be changed, etc. In fact, a new
metamodel is created that is based on UML but is not UML anymore.

We have chosen the first approach - defining a UML 2.0 profile - as this sup-
ports exactly the features we need: the elements of the railway domain are new
terminology that we want to use as modeling elements. To simplify communi-
cation between domain specialists and system developers, the usual notation
of the railway domain should be used in a defined way. Therefore, constraints
are needed to determine the meaning of the new elements. Track networks de-
scribed with the new profile are transfered to transition systems. This is done
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by transformation rules. Also, we have valid UML models and therefore various
tool support.

A UML 2.0 profile mainly consists of stereotypes, i.e. extensions of already
existing UML modeling elements. You have to choose which element should be
extended and define the add-ons. The RCSD profile uses either Class, Associa-
tion, or InstanceSpecification as basis of stereotypes. In addition, new primitive
datatypes and enumerations can be defined as necessary.

<<metaclass>>
Class

0..1

0..1

0..1

0..1 <<stereotype>>
AutomaticRunning

Signal

<<stereotype>>

<<stereotype>>

<<stereotype>>

TrackElement

Sensor

<<stereotype>>

<<stereotype>>

<<stereotype>>

Segment

Crossing

Point

<<enumeration>>
SensorStateKind RouteKind
LOW

FAILURE
HIGH

STRAIGHT
LEFT

LEFT STOP

FAILURE
RIGHT FAILURE

<<enumeration>>
SignalStateKind
<<enumeration>>

PointStateKind
STRAIGHT GO

<<enumeration>><<enumeration>> <<enumeration>>
PermissionKind AutoRunKind

GO ON

RIGHT FAILURE
STOP OFF

<<stereotype>>
SinglePoint

<<stereotype>>
SlipPoint

Fig. 7. Network elements part of the RCSD profile

Unfortunately, defining eight stereotypes as suggested by the domain analysis
in Sec. 2 is not sufficient. New primitive datatypes and enumerations are needed
to model attributes adequately. Special kinds of association are needed to model
interrelationships between stereotypes. Furthermore, UML supports two mod-
eling layers, i.e. the model layer itself (class diagrams) and the instances layer
(e.g. object diagrams). In the RCSD profile, both layers are needed: class dia-
grams are used to model specific parts of the railway domain, e.g. tramways or
railroad models. They consist of the same components but with different charac-
teristics. Second, object diagrams show explicit track layouts for such a model.
Here, the symbols of the railway domain have to be used. We need stereotypes
on the object level to define these features. For these reasons, the RCSD profile
is structured in six parts: the definition of primitive datatypes, network ele-
ments on class level, associations between these elements, network elements and
associations on object level, routes, and top-level constraints.

Defining new primitive types is the easiest part. New datatypes must be iden-
tified and their range of values specified. In our case, these are identifiers for all
controllable elements, identifiers for routes (e.g. to specify conflicting ones), time
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<<metaclass>>
Association

AutoRunAssociation

<<stereotype>>

<<stereotype>>

<<stereotype>>

SignalAssociation

SensorAssociation

0..1

0..1

0..1

Fig. 8. Associations part of the
RCSD profile

<<stereotype>>

<<stereotype>>

0..1

0..1 0..1

0..1

0..1

AutomaticRunningInstance SensorInstance

<<stereotype>>

<<stereotype>> <<stereotype>>

<<stereotype>>

<<stereotype>>

SegmentInstance

CrossingInstance

SinglePointInstance

SlipPointInstance

SignalInstance

0..1

0..1

0..1

0..1

0..1

<<stereotype>>
SignalLink

<<stereotype>>
SensorLink

<<stereotype>>
AutoRunLink

<<metaclass>>

InstanceSpecification

Fig. 9. Instances of network elements and as-
sociations part of the RCSD profile

instants and durations. All of them have in common that the value domain is
N. Nevertheless, defining different datatypes is important as we have to consider
constraints like: all signal identifiers are unique, all point identifiers are unique
and so on.

The next part of the profile defines all track network elements, i.e. segments,
crossing, points, signals, sensors, and automatic train runnings (see Fig. 7). Seg-
ment, Crossing, and Point have in common that they form the track network
itself, therefore they are all subclasses of the abstract TrackElement. Similarly,
SinglePoint and SlipPoint are specializations of Point. All elements are equipped
with a set of constraints that define which properties each element must support
and how it is related to other elements.

To give an example, each TrackElement has at least two ends that are con-
nected to at most two Sensors, one entry sensor and one exit sensor. The number
of sensors depends on the function of the track element, i.e. if it is used uni- or
bidirectionally or if it is a sink or source of the track network. As properties,
the maximal number of trains allowed on the element at one point in time and -
optional - fixed speed limits are needed. These features are defined by OCL 2.0
(see [OMG05a]) constraints that each TrackElement in a model must fulfill.

(ownedAttribute->one(a1 |
a1.name=’limit’ and
a1.oclIsTypeOf(Integer) and
a1.upperBound()=1 and
a1.lowerBound()≥0 and
a1.isReadOnly=true)) or

(not ownedAttribute->exists(a2 |
a2.name=’limit’))

(ownedAttribute->one(a1 |
a1.name=’e1Entry’ and
a1.oclIsTypeOf(Sensor) and
a1.upperBound()=1 and
a1.lowerBound()≥0 and
a1.isReadOnly=true and
a1.association.oclIsTypeOf

(SensorAssociation))) or
(not ownedAttribute->exists(a2 |

a2.name=’e1Entry’))
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We can see above two example constraints. The first one describes that each
track element has an optional attribute limit. If this attribute exists, its type is
Integer, its multiplicity is 0..1 or 1, and its value is constant. Else, no attribute
at all with this name exists to avoid confusion. The second example describes
an attribute that will be modeled by an association in a class diagram. Each
association goes hand in hand with an attribute at each navigable end. In this
case, we have an optional association to a sensor where the associated property
is end1Entry. The type of the attribute is Sensor as this is the type at the other
end of the association which itself has the type SensorAssociation that is also
defined in the profile. Again, the attribute has a constant value and either 0..1
or 1 as multiplicity.

Sig2
Sig1

S2S1

Fig. 10. RCSD nota-
tion

:<<Segment>>Seg :<<Segment>>Seg

signal
sensor

sensor

e2exit

e1exite2entry
entry
exit entry

e1entry

signal

Sig1:<<Signal>>Sig

Sig2:<<Signal>>Sig

S1:<<Sensor>>Sens

S2:<<Sensor>>Sens

exit

Fig. 11. UML notation

Such constraints describe the appearance of each stereotype. To give another
example, Points have at least three ends with associated sensors and are not sinks
or sources of the track network. They also have more attributes, i.e. pointId, ac-
tualState, requestedState, requestTime and delta p. These are their identification
number as points are controllable, the actual state that is either STRAIGHT,
LEFT, RIGHT, or FAILURE, the requested state that is either STRAIGHT,
LEFT, or RIGHT, the time of the last request, and the duration needed to switch
the point after a request has been received. The possible values for the requested
and actual state of the point are defined by RouteKind and PointStateKind as
shown in Fig. 7. Other elements have similar required attributes and associations.
An example model is shown in Sec. 4.

As associations SensorAssociation that connect track elements and sensors,
SignalAssociations that connect signals and sensors, and AutoRunAssociations
that connect automatic train runnings and sensors are used as shown in Fig. 8.
Here, constraints are needed to determine the kind of stereotype at the ends of
each association. Most important, two constraints of SensorAssociation describe
that each sensor is the exit sensor of one track element and the entry sensor of
the following one. In that way, routes can be defined as sequences of sensors.

For each non-abstract modeling element and each association, there exists a
corresponding instance stereotype (see Fig. 9). Most important is the definition
of domain-specific notation. Of course, usual UML notation can be used but is
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0..1

<<metaclass>>
Class

<<stereotype>>
Route

<<stereotype>>
RouteInstance

0..1
InstanceSpecification

<<metaclass>>

0..1

0..1

0..1

<<stereotype>>

<<stereotype>>

<<stereotype>>

SignalSetting

PointPosition

RouteConflict

RouteConflictKind
<<enumeration>>

noAllocation
stopSignal

Fig. 12. Route definition part of the RCSD profile

infeasible as we can see in the direct comparison. In Fig. 10, two bidirectional seg-
ments connected by two sensors S1 and S2 are shown. Signal Sig1 is associated
to S1, signal Sig2 is associated to S2. For comparison, the same constellation in
object notation is given in Fig. 11.

Furthermore, the profile defines routes and their instances. Each Route is
defined by an ordered sequence of sensors. Also, the signal setting for entering
the route is given. Other properties are ordered sets of required point positions
and of conflicts with other routes. The stereotypes to describe this information
are given in Fig. 12. Again, constraints are used for unambiguous and strict
definitions of attributes and suchlike.

The last part of the profile is a set of top-level constraints that describe
interrelationships between stereotypes. The first example states that all point
ids have to be unique. The second example describes that all sensors in route
definitions really exists:

SinglePointInstance::allInstances()->
collect(slots)->union

(SlipPointInstance::allInstances()->
collect(slots))->

select(s1 |
s1.definingFeature.name=’pointId’
or
s1.definingFeature.name=’pointIdOpp’)->

isUnique(s2 | s2.value)

def: r1:RouteInstance::allInstances()->
collect(slots)->

select(s2 |
s2.definingFeature=’routeDefinition’)

def: r2:SensorInstance::allInstances()->
collect(slots)->

select(s1 |
s1.definingFeature.name=’sensorId’)->

collect(value)

r1.forAll(s3 | r2->including(s3.value))

4 Modeling with the RCSD Profile

The stereotypes and data types defined in the profile are used in UML diagrams.
A class diagram is used to model a concrete problem in the railway domain, e.g.
trams. The concrete track networks are object diagrams related to the class
diagram.
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limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

TramCrossing
<<Crossing>>

<<Sensor>>
TramSensor

TramSegment
<<Segment>>

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

<<RouteConflict>>
Conflicts

routeId:RouteId {readOnly}
kind:RouteConflictKind {readOnly}

Signals
<<SignalSetting>>

sigState:SignalStateKind {readOnly}
signalId:SignalId {readOnly}

dirState:RouteKind[0..1] {readOnly}

Points
<<PointPosition>>

pointId:PointId {readOnly}
pointState:PointStateKind {readOnly}

TramRoute
<<Route>>

routeId:RouteId {readOnly}
routeDefinition:SensorId[0..*] {readOnly, ordered}

actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:Duration {readOnly}

signalId:SignalId {readOnly}

requestTime:TimeInstant

direction:RouteKind

<<Signal>>
TramSignal

{(e1entry−>size()=1 and e2entry−>size()=0 and e3entry−>size()=0 
and e1exit−>size()=0 and e2exit−>size=1 and e3exit−>e()=1) or
(e1entry−>size()=0 and e2entry−>size()=1 and e3entry−>size()=1 
and e1exit−>size=1 and e2exit−>size=0 and e3exit−>size=0)}

TramPoint
<<SinglePoint>>

pointId:PointId {readOnly}
plus:PointStateKind {readOnly}
minus:PointStateKind {ReadOnly}
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}
delta_p:Duration {readOnly}

e4exit

e3exit

1

entry

exit

exit

entry exit

e2exit
0..1

0..1

1

1

1

1

1

1

1

actualState:SensorStateKind
sentTime:TimeInstant
counter:Integer
delta_l:Duration {readOnly}
delta_tram:Duration {readOnly}

sensorId:SensorId {readOnly}

{xor} {xor}

entry

entry

entry

entry

e2exit

e2exit

e1exit

sensor

e3entry

e2entry

e3entry

e1entry

e1entry

e1entry

1

1

0..1

0..1

0..1

1

0..1

1

1

0..1

0..1

1

1

1

exit

exit

exit
1

pointPos{readOnly, ordered}routeConflict {readOnly, ordered}

signalSetting{readOnly}
1

signal 0..1

0..* 0..*

Fig. 13. Generic tram network

In our example, a tram track network is given in a class diagram as shown in
Fig. 13. The interrelationships between the different stereotypes from RCSD are
concretized for trams: there are no automatic running systems and no slip points,
all segments are used unidirectionally, and signals do not use speed limits. The
maximal number of trains allowed on each segment is 1. The network description
of a concrete tram track network to be controlled is an object diagram that is
based on the class diagram given above. An object diagram in RCSD profile
notation is shown in Fig. 14.

In Fig. 15, a fragment of the same track network is shown in usual UML
notation, i.e. an object diagram. Comparing the two figures, it is obvious that
the RCSD profile notation is more comprehensible and therefore preferable in
the communication process between domain experts and software designers.

5 Semantics

In this section we describe the behavior of the physical model – as captured in a
RCSD object diagram – as a Timed State Transition System (TSTS). We extend
this view by incorporating the behavior of a controller which has to guarantee
safety conditions for the running system. The operations of this controller are
given as generic patterns independent from the particular physical model. The
composition of the controller and the individual domain of control should then
allow only sequences of transitions which never violate a safety condition. Since
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G24.2

G30.1

G30.0

S21

S22

ROUTE 0:
S20−G21.1

G20.0
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Fig. 14. Concrete tram network in profile notation
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e3exit e1entry
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e2exit

e4exite1entry

e2exit

e1entry e1exit

e2exit e3entry

e2entrye2exit

e2exit

e1entry

exit entry

exit entry

exit entry

entry

entry exit

exit

e1entry

entry exit

Fig. 15. Fragment of a concrete tram network in usual UML notation

we give a strict mathematical model of this composition, it can be proven by
bounded model checking techniques.

As listed in Section 2, a physical rail network consists of a set of segments, a
set of signals, and a set of sensors. Among the segments, the set of points and
the set of crossings are of special interest for the formulation of safety condi-
tions. Each element e in one of these sets owns some attributes according to the
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profile definition, which we will denote by var(e). Since we require that com-
ponents fulfill some real-time restrictions, we use a distinguished variable t ∈ N

to denote the actual time. The set of variables of a network is thus given by
V AR =

⋃
e var(e) ∪ {t}, the union of the variables of all elements and t. As

customary, a state σ ∈ Σ : V AR �→ V AL is a type-consistent mapping from
variables to values. A physical network thus induces a timed state transition
system (Σ, σ0, T ) with T ⊆ Σ × Σ a set of transitions, and σ0 ∈ Σ an initial
state, where all variables are given some default value. A transition t = (σ, σ′)
will also be denoted by σ → σ′. The state change of variables x̄ to values v̄ from
σ to σ′ is expressed by σ′ = (σ : x̄ �→ v̄)1.

The network description with its track segments and control elements exhibits
some behavior for the following reasons: (1) Change of a sensor status due to a
train passing. (2) Change of a component state according to its normal individual
behavior, e.g. setting the state of a signal to the requested state (3) Changes due
to decisions of the control component. We give some examples for the first two
groups of state changes, an extended selection with in-depth explanations is
listed in [HPG+04].

As trains themselves do not belong to the model, their presence is only noted
via sensors, which change their actualState to HIGH and record this in their
attributes sentT ime and counter. An example transition σ → σ′ for a sensor sen
would be enabled if σ(sen.actualState) = LOW ∧ σ(t) > σ(sen.sentT ime) +
sen.delta tram, i.e., if at least sen.delta tram time units have passed since the
last detection, modeling a mandatory minimal distance between trains to ensure
individual detection. The resulting state is then σ′ = (σ : sen.actualState,
sen.sentT ime, sen.counter �→ HIGH, t, σ(sen.counter) + 1).

Typical transitions associated with some point p which represent its in-
tended behavior are: (1) Change its actualState to meet a request. This
is formalized by a rule σ → σ′ requiring condition σ(p.requestState) �=
σ(p.actualState) ∧ σ(p.requestT ime) + σ(p.delta p) ≤ σ(t), changing the state
to σ′ = (σ : p.actualState �→ σ(p.requestState)).(2) Fail to comply to a
request in time. This is formalized by a rule σ → σ′ requiring condition
σ(p.requestState) �= σ(p.actualState)∧σ(p.requestT ime)+σ(p.delta p) > σ(t),
changing the state to σ′ = (σ : p.actualState �→ FAILURE). Similar transi-
tions exist for signals. Additionally, we have a clock rule, which allows time to
proceed, expressed by a transition σ → σ′ with σ′ = (σ : t �→ σ(t) + 1).

Note that all transitions of the domain model have their effects restricted to
the variables of one object, allowing to model the network in a compositional
fashion as parallel composition of its constituents as illustrated in [HP03b]. Yet,
all changes of the physical network, i.e. point positions, signal positions, and
sensor states are covered by these transitions only.

The controller observes sensor state changes, deriving the current train loca-
tions within the network from them. Trains may issue requests to pass through
the network on pre-defined routes. The controller issues commands to switch

1 For brevity, we use a simultaneous assignment notation here which coincides with a
reasonable granularity of operations which should be uninterruptible.
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signal and point states and monitors the correct state of these track elements.
The architectural model of the controller consists of three components [HP02]:
(1) a route dispatcher which registers the requests of individual trains for specific
routes and administers the allocation of these routes, (2) a route controller re-
sponsible for setting points and signals for active routes, and (3) a safety monitor
checking for deviations of the actual from the expected state and subsequently
ensuring a safe state.

These separated tasks of the controller are executed by sets of transition pat-
terns, i.e. generic transitions which abstract from the concrete physical model.
As an example, we have for each route r a transition for the route dispatcher
component which checks whether r is requested, r is not yet scheduled for acti-
vation, and no conflicting routes are active or scheduled.

The state space Σ′ of the controller is an extension of the state space Σ of the
domain model as additional variables are needed, e.g. for the administration of
routes some data structure is needed to store the current state of a route reser-
vation. The controller model together with the domain model (Σ, σ0, T ) induces
a TSTS (Σ′, σ′

0, T
′) where σ′

0 is the extension of σ0 by assigning appropriate
initial values to the additional variables of Σ′. The set of transitions T ′ contains
the set T and the set of transitions generated from the controller model and
the domain data. As demonstrated in [HPG+04], the concrete transitions are
derived by instantiating the generic rules according to the physical layout of the
network and the route definitions.

In an independent derivation, we formulate a set of safety conditions out of
the physical model. These safety requirements are informally listed as: (1) No
trains are driving in opposite directions on the same segment. (2) No trains are
moving in opposite direction towards the same sensor. (3) The number of trains
approaching a point from stem and branches at the same time is at most 1.
(4) On each segment the number of trains passing in one direction is less than a
predefined maximum. (5) There are no trains residing simultaneously on cross-
ings. Observe that these requirements are formulated generically in terms of
track elements only and that each condition involves only a very limited part of
the network. Within the physical model, these requirements are instantiated to
a set of constraints. As an example from Fig. 14, we take a closer look on the
crossing between sensors G20.3 and G30.0, and respectively, between G29.9 and
G22.9. Clearly, requirement (5) has to be satisfied for this track element. The
fact that a train is present in a segment, can be deduced from a comparison of
the counters of its entry and exit sensors: Assuming the default settings that no
train is present in a segment and both sensors have the same value of their re-
spective counter attribute, the predicate σ(G20.3.counter) > σ(G30.0.counter)
models the fact that at least one train is still located between the sensors G20.3
and G30.0. Consequently, requirement (5) can be formalized for this instance
of a crossing as ¬(σ(G20.3.counter) > σ(G30.0.counter) ∧ σ(G29.9.counter) >
σ(G22.9.counter)).

For a given network, we can thus automatically derive a TSTS as model
which exhibits the behavior of this network under supervision of the controller
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and a set of constraints which have to hold throughout all executions within
our model. Analyzing whether a violation of safety requirements is possible
amounts to a check whether some state is reachable that does not satisfy all
constraints.

While we present a rather abstract mathematical model here, it is an easy task
to come up with an equivalent model which encodes all transitions as guarded
commands. Representation of timed state transition systems in a special pro-
gramming language suited for further analysis then boils down to encode states
and transitions into this language. This has been worked out in [HPG+04] for
SystemC [GLMS02, MRR03], as input language for a proof by bounded model-
checking that the safety requirements are satisfied. The SystemC code can be
compiled into C/C++ code, leading to the generation of executable code for the
controller. In a similar fashion, it is even possible to take the generated machine
code and verify its correctness w.r.t. the requirements on the domain model by
comparing the TSTS model of the network/controller model to a TSTS model
of the machine code. This comparison is feasible, as the abstraction function
from the data structures of the machine code to the data model of the domain
description is total, and for all transition patterns of the above model a correct
refinement in machine code exists.

6 Conclusions

We have presented the RCSD profile for UML 2.0 as suitable formalism to cap-
ture the domain specific requirements of the railway control systems domain. In
particular, the feature to use a domain specific graphical notation for the do-
main description helps to bridge the gap between domain experts and developers
of controller systems. As any model denoted in the RCSD profile formalism is
still a UML model, standard tools which support the profile mechanisms can be
used in the development process. Existing UML tools support the analysis of
RCSD models as textual representations of a model serve as input for the gen-
eration of the TSTS model or the SystemC model. Another example would be
the application of graph transformations to the RCSD object instance diagram
for simulation purposes [GZ04].

We associate a formal behavioral model with RCSD descriptions as any object
diagram induces a timed state transition system, which covers the behavior of
the domain of control. Together with the utilization of design patterns for the
controller component, we generate a model which serves as foundation for the
formal verification of this model w.r.t. a set of safety requirements. In addition,
the TSTS model serves as reference for the verification of executable code for
the controller. A major advantage of using the transition system model as the
semantical model of a RCSD description lies in the fact that various concrete
programming languages as well as other formal specification languages can use
the transition system model as reference.
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Institute of Computer Science, Technical University of Lodz, Poland
anetap@ics.p.lodz.pl

Abstract. Security administration in an information system is a com-
plex task. In order to be defined properly, the security policy requires
formulation of a large number of security constraints. Moreover, the in-
formation system used in an enterprise should be coherent, which means
that all its element, including relations between them as well as their
constraints should posses this property.

The objective of this paper is to present security constraints of a se-
curity schema in an information system based on the RBAC model and
the methods to assure the coherence of global security schema. Start-
ing from the global schema of the coherent security, any insertion of a
new application should respect the global coherence of the new security
schema being the consequence of the fusion of these two schemas.

1 Introduction

In an information system, data protection against improper disclosure or modifi-
cation is an important requirement. The access control regulates what a user can
do directly and what the programs executed on behalf of the user are allowed to
do. The system administrators have to implement access control mechanisms to
protect the confidentiality and integrity of applications and its data. In the past,
the user access was granted by adding necessary permissions to each individual
application, which made the administration, involving many users and several
different applications, complicated and ineffective.

The alternative is not to assign users directly to permissions for each applica-
tion but to assign users to roles and the permissions to roles for each application.
Then any change in the user’s position or their needs can be solved by the ad-
ministrator simply by assigning the user to another role. Since roles contain ap-
propriate permissions, the administrator does not have to update authorizations
for each user application. Such situation can be solved by using the role-based
access control (RBAC) model as an access control model in the security processes
of an information system. The RBAC model is an interesting alternative to the
traditional access control models, like MAC (Mandatory Access Control, [1]) or
DAC (Discretionary Access Control, [1]). The RBAC model was defined in the
nineties of the 20th century [2,3]. The most important idea of the RBAC model
is the concept of role, which facilitates the access control management performed
by the security administrator as users and permissions can be assigned to roles.
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Each user has a utilization profile that defines his roles in the enterprise. The
role is the set of permissions that allow execution of the system functions and the
access to data used by these functions. The user playing a given role is allowed
to execute all accesses to which the role is authorized.

The actual complexity of organizations gave rise to the idea of extending the
standard RBAC model to ensure a finer decomposition of responsibilities in an
enterprise [10]. To this aim, the notion of a function has been introduced. Since
a person employed in an enterprise may have many responsibilities in it, he may
be attached to an entire set of roles. Each role defined in the extended RBAC
model makes it possible to realize a specific task associated with the enterprise
process. At the same time, every role can contain many functions that a user
can take, and therefore it is possible to choose functions in the system that are
necessary for a given role. Consequently, a role can be presented as a set of
functions that this role can take and realize. As each function can have one or
more permissions, a function can be defined as a set of permissions. If an access
to an object is required, then the necessary permissions can be assigned to the
function to complete the desired job.

The security administration in an information system is a complex task. Nu-
merous security constraints should be formulated in order to define the security
policy in a proper way. The security constraints specified for an application give
the possibility to manage its complexity. The application developer can define
the security constraints associated with this application. On the other hand,
with his good knowledge of the global security policy, the security administrator
can set up the constraints on the global level. The main difficulty is to assure
the global coherence of all elements (applicative and organizational) when a new
application with new elements, i.e. roles, functions, permissions is added into the
existing information system.

The objective of this paper is to present security constraints of a security
schema in an information system basing on the RBAC model. The first part
of the paper deals with the partition of responsibilities between the application
developer and the security administrator in the design and creation of the in-
formation system security. The next part describes classification of the security
constraints. The last part presents the global coherence maintenance based on
the security constraints: the integration chain of constraints in a coherent sys-
tem, the definition of the system coherence and the verification of the security
system coherence while a new application is being added to an existing informa-
tion system. This verification is realized using a proposed algorithm to assure
the system coherence.

2 Partition of Responsibilities in Creation of Information
System

Two types of actors cooperate at the conception stage of creation of an informa-
tion system (IS) and a security schema associeted with it [9,11]: the information
system developer, who knows specifications of an information system that need
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to be realized and the security administrator who has the knowledge of the
general security constraints that should be respected on the enterprise level.
Fig. 1 presents the partition of responsibilities between these two actors and
their cooperation to establish the global access control (i.e. security schema)
using the extended RBAC model.

User

constraint

*

*

*

* Role
*

*
*

* Permission

constraint

Enterprise
function

Function

EXPLOITATION LEVEL

SECURITY ADMINISTRATOR

*
*

DEVELOPER

CONCEPTION LEVEL

Fig. 1. Responsibilty areas of application developer and security administrator

The tasks of the application developer are: definition and assignment of el-
ements (permissions to functions and functions to roles) and setting up the
constraints associated with this application. The security administrator should
manage the set of applications assuring the global coherence of a system. The
tasks of the security administrator are: assignment of elements (roles to enter-
prise functions and users to enterprise functions) and setting up the constraints
on the relations between thses elements. The security administrator should also
verify whether these new constraints remain in agreement with the constraints
of the existing information system in order to guarantee coherence of the new
information system.

3 Security Constraints

A security constraint is an information assigned to the system elements that
specifies the conditions to be satisfied so that the security rules and global co-
herence be guaranteed.

The security constraints can be classified into two groups. On one hand, it is
possible to distinguish the constraints expressed in the application context (i.e.
application constraints). They are verified on the conception level by the applica-
tion developer. For example, taking the information system of a university and,
particularly, one of its applications - management of student grades - a student
can access this application only on the level of his own grades. On the other
hand, we can distinguish the global constraints or, in other words, organization
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constraints that determine the global security policy of an information system.
They are proposed on the organization level by the global security administrator
[4,5,6]. For example, only the teacher responsible for a group of students gains
access to the school dossiers of the students in this group.

The differences between the two types of actors in our approach led to the
choice of two languages to express the constraints:

– OCL language [7,8], proposed as the most suitable language for the formula-
tion of the developer’s constraints because it was created to allow constraint
definitions in different UML diagrams.

– RCL 2000 language [4,5], created to support the constraints of RBAC model,
seems to be the best to express the administrator’s constraints.

3.1 Classification of Security Constraints

Our classification of constraints reflects the cycle of application life: analysis-
development and exploitation-maintenance. In the analysis-development phase,
the application developer composes utilization constraints that guarantee con-
fidentiality and integrity of the data manipulated by this application. In the
exploitation-maintenance phase, the application is inserted in the existing infor-
mation system. This insertion should respect the global coherence of the system
using the global security constraints. Therefore, the first classification level of
constraints is proposed as follows:

– constraints from the developer’s point of view - constraints on the application
level, specified to create a complex application,

– constraints from the administrator’s point of view - organization constraints
defined on the global security level of an enterprise.

The second classification level of constraints represents the constraints asso-
ciated with an extended RBAC model:

– constraints imposed on a permission - limit the set of objects accessible for
a permission.

– separation of duty (SOD) constraints - represent the concept of mutually
exclusive roles and mutually exclusive permissions [6]

– prerequisite constraints - based on the concept of prerequisite roles or pre-
requisite permissions: e.g. a user can be assigned to role Teacher only if he
has been assigned to role Employee; or a permission p can be assigned to
a function only if this function has a permission q (e.g. the permission of
“read” some file asks the permission of “read” the directory in which this
file is situated),

– cardinality constraints - numerical limitation on classes in role-based system
or numerical limitation on application elements; e.g. the number of users
authorized to be assigned to a role is limited (in application example there
is only one person who can be assigned to role Dean), or the permission of
“read” the file with confidential information about the system users can be
given only to one specific role.
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– session constraints and role hierarchy constraints in the RBAC model,
– administration constraints - associated with the ARBAC model [2].

The last level of the classification of constraints comprises:

– static constraints that exist before different types of data access in a system
is executed, e.g. the constraints on the value domain taken by the data,

– dynamic constraints that appear during the session and are responsible for
the necessity to possess certain types of access to the data in a system.

Basing on these three classification types of constraints and on the responsibil-
ities of both the application developer and the security administrator presented
in the previous section, constraints of a global classification in the information
system security have been built as shown in Fig. 2. This classification does not
allow for the constraints connected with temporal or spatial aspects that are
necessary in the workflow process.

CONSTRAINTS

prerequis constraints

constraints on a permission

APPLICATION CONSTRAINTS

ENTERPRISE CONSTRAINTS

Static, Dynamic

Static, Dynamic

cardinality constraints

Static, Dynamic

Static, Dynamic

Static, Dynamic

Static, Dynamic

Static, Dynamic

Dynamic

Static

SOD constraints

prerequis constraints

cardinality constraints

role hierarchy constraints

administration constraints

session constraints

Developer point od view

Security administrator point of view

Fig. 2. Classification of security constraints

4 Coherence of Information System Security -
Confrontation of Two Viewpoints

The responsibilities of the application developer are different from those of the
security administrator. The developer is expected to meet the needs of his client
as well as of future system users. Moreover, he must ensure that the set of
roles and the set of permissions in the system should be in agreement with
the application constraints. The security administrator is responsible for the
coherence of constraints as well as the coherence in the assignment of users to
roles. He works on the elements received from the developer in agreement with
the security policy.
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The confrontation of the two points of view consists in verification that the
developer’s work does not contain incoherences with regard to the work of the
security administrator. Confrontation of the two points of view makes it possible
to find out possible problems that can be caused by:

– addition of a new enterprise function to the system by the security adminis-
trator,

– addition of a new application that uses elements of another application ex-
isting in the system, e.g. the data stored in the system,

– addition of a new application with new roles, functions or/and permissions
whose elements will be included in the role hierarchy of the system,

– addition of new elements, e.g. roles or functions, and new relations between
these elements and the elements already existing in the system,

– removal of elements from the system, e.g. an application, enterprise func-
tions, roles, etc. by the security administrator.

These problems have to be resolved either on the conception level and/or the
security administration level. The confrontation of the two points of view can
reveal possible incoherences between these two levels and then enable their so-
lution. As the security administrator bases his work on the results produced by
the developer, the coherence rules should be obeyed on both levels.

For example, anapplication“Managementof students” thatalready exists in the
university information system, contains information about students (name, sur-
name, address, birth date, year of study, chosen courses, etc.). A new application
“Management of grades”, thatmanages the grades of students, added to the system
uses certain data of the application “Management of students”, for example: name,
surname of a student. In this situation, the security administrator should eliminate
possible incoherences, by determining the data (i.e. objects) of the first application
that can be used by the second application, i.e. by defining the constraints specify-
ing the set of objects of the first application accessible by the second one.

4.1 Integration Chain of Constraints in Coherent System

The verification of coherence is to guarantee that addition of a new application
to an information system will not cause incoherences and this verification should
be executed before its integration in the existing security system. It might be
interesting to see how the addition of a new application in an information system
can be automated and how the administrator can be assisted in detecting the
incoherences or/and determining new relations between the elements already
existing in a system [9,11].

Fig. 3 presents the flow diagram of verification of the two points of view under
consideration. The first part allows generation of the model specification. The
parser analyses the UML model of an application from the conception viewpoint
and preserves the concepts that can be used to make this verification. The model
representation is given according to the UML meta-model. The security adminis-
trator, on the other hand, provides the extended RBAC Model of an application
with the constraints expressed in the extended RCL 2000 language.
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The second part is the stage of verification and correction of the elements
and constraints defined by the developer and by the security administrator. It
is necessary to compare these two groups of constraints and eventually apply
the changes if they are not coherent. The constraints on the developer level are
expressed in OCL. We propose to translate the constraints expressed in the OCL
language into the RCL 2000 language on the security administrator level. It is
also necessary to iterate the previous stages up to the final validation made by
the security administrator. It can be realized at the moment of integration of
the new application in the existing global system.
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Fig. 3. Validation chain of modifications for global security schema

Validation of the two levels presented above is as follows:

– translation of UML Model performed by the developer into the model com-
prehensible to the security administrator, followed by

– integration of new elements according to the constraints defined by the de-
veloper (on the application level) and by the security administrator (on the
system level that will contain the new application).

It is necessary to unify the concepts used by the developer and the security
administrator if the developer’s work is to be validated more or less automatically
and the security administrator to be assisted in finding possible conflicts.

4.2 Definition of Coherence

The purpose of Model validation is to guarantee that the addition of a new
application to an information system will not produce incoherences. It is neces-
sary to verify whether the set of elements (users, roles, functions, etc.) of a new
application has common elements with the set of the system elements.



Access Control Coherence of Information Systems 419

Let E be a set of system elements and contains the following subsets: users,
sessions, roles, functions, permissions, methods and objects

E = {U, R, F, P, M, O} , Ei ∈ E and eij ∈ Ei − an element j of set Ei

The definitions (including the definitions of constraints) for an element eij ∈
Ei in the information system limit the set of elements accessible on the sys-
tem level. Let: Es (eij)i be a set of the elements related to element eij by the
constraint associations in the system:

ESk
(eij) ∈ ES (eij) , ESk

(eij) ::=
{US (eij) | SS (eij) | RS (eij) | FS (eij) | PS (eij) |MS (eij) | OS (eij)}

The following definition of coherence is proposed:

Definition. The extended RBAC model is coherent if and only if each element
eij ∈ Ei (user, role, function, permission, method or object) satisfies the follow-
ing condition: for each element eij ∈ Ei the set of elements in relation with eij

should be different than the empty set, i.e.

∀eij ∈ Ei, ∀k (ESk
(eij) ∈ ES (eij) ∧ ESk

(eij) �= ∅) (1)

in particular:
∀ uj ∈ U, (ESk (uj) ::= RS (uj) ∧ ∀k ESk (uj) �= ∅)

∀ rj ∈ R, (ESk (rj) ::= US (rj) | FS (rj) ∧ ∀k ESk (rj) �= ∅)
∀ fj ∈ F, (ESk (fj) ::= RS (fj) | PS (fj) ∧ ∀k ESk (fj) �= ∅)

∀ pj ∈ P, (ESk (pj) ::= FS (pj) |MS (pj) | OS (pj) ∧ ∀k ESk (pj) �= ∅)
∀ mj ∈M, (ESk (mj) ::= PS (mj) ∧ ESk (mj) �= ∅)
∀ oj ∈ O, (ESk (oj) ::= PS (oj) ∧ESk (oj) �= ∅)

The concepts of role inheritance and function inheritance (reflexive associa-
tions) are not taken into consideration. There are roles in the set of roles that
do not inherit other roles, therefore the set of roles RS (eij) for eij ∈ R can be
empty. Analogously, there are functions in the set of functions that do not inherit
other functions, therefore the set of functions FS (eij) for eij ∈ F can be empty.
In consequence, the verification of role inheritance or function inheritance is not
necessary for the verification of the model coherence.

Moreover, the session concept is not considered either, because it represents
the dynamic aspect of the model. A session becomes opened in the system by a
user who is in contact with it. Therefore, the analysis cannot be made for U-S
or S-R relations.

4.3 Verification of Security System Coherence During Addition of
an Application

To prove that the system remains coherent after new elements have been added,
the definition of coherence should continue to be satisfied. The case that is going
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to be considered is the addition of a new application as involves addition of new
elements, new relations and new constraints, which may give rise to incoherences.
To find possible incoherences it is necessary to verify whether the set of elements
(roles, functions, etc.) of the new application has any common elements with the
set of the existing elements. These common elements, their relations with other
elements and their constraints can lead to incoherences. Therefore, the conditions
of coherence should be verified for each common element.

Let EA be a set of elements of the new application that contains the subsets:
users (UA), sessions (SA), roles (RA), functions (FA), permissions (PA), methods
(MA) and objects (OA) of the new application

EA = {UA, RA, FA, PA, MA, OA} and EAi ∈ EA

It must be checked whether E′ = E ∩EA contains any elements or not, that
is to say it is necessary to verify whether the new application has any elements
common with the elements already existing in the system. The verification of
coherence should be executed for each subset in the following way:

U ′ = U ∩ UA, R′ = R ∩RA, F ′ = F ∩ FA, P ′ = P ∩ PA,
M ′ = M ∩MA and O′ = O ∩OA

Let: E′
i ∈ E′ and E′

i ::= {U ′ | S′ | R′ | F ′ | P ′ |M ′ | O′} , ecij ∈ E′
i be an

element of set E′
i. The calculation of set intersection E′ can yield one of the

following two results:

– E′ = ∅, i.e. E ∩EA = ∅ - there are no common elements in the set of system
elements and the set of elements of the new application; consequently, there
are no incoherences between the new application and the existing system
(between the conception and administration levels),

– E′ �= ∅, i.e. E∩EA �= ∅ - the common elements exist, and consequently, they
should be studied to identify and eliminate possible incoherences.

The constraints defined for a common element ecij ∈ E′
i determine a set of

elements accessible for it on both the application level and the global system
level. Let: ES (ecij) be a set of elements related to a common element ecij by
constrained associations in the existing system, and let EA (ecij) be a set of ele-
ments being in relations with a common element ecij by constrained associations
in the new application.

ESk (ecij) ∈ ES (ecij) and
ESk (ecij) ::= US (ecij) | RS (ecij) | FS (ecij) | PS (ecij) |MS (ecij) | OS (ecij)

EAk (ecij) ∈ EA (ecij) and
EAk (ecij) ::= UA (ecij) | RA (ecij) | FA (ecij) | PA (ecij) |MA (ecij) | OA (ecij)

The coherence is verified if equation (1) is verified, if ES (ecij)∩EA (ecij) �= ∅.

4.4 Verification Algorithm of System Coherence

If a new application is added to the system, it can have common elements with
this system. It must be verified that the constraints defined on these common
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elements do not provoke incoherences. To eliminate possible incoherences, the
following stages of verification algorithm are proposed ([9]): (1) find all common
elements of each type, (2) identify the constraints for each common element, (3)
verify the global coherence of the common elements, (4) identify the constraints
that provoke the incoherences, and (5) propose and realize the necessary modifi-
cations in the definitions of the constraints that have provoked the incoherences.

Find all common elements of each type means to find common users (U’),
common roles (R’), common functions (F’), common permissions (P’), common
methods (M’) or/and common objects (O’) in the new application and the actual
system.

Identify the constraints for each common element is carried out as follows:
for an element ecij ∈ E′

i the set of constraints contains the set of constraints
already defined in the system and the set of constraints defined in the new
application:

∀ ecij ∈ E′
i, C (ecij) = CS (ecij) ∪ CA (ecij)

C (ecij)− set of constraints of an element ecij

CS (ecij)− set of constraints of element ecij that exists in the system
CA (ecij)− set of constraints of element ecij in a new application

In particular, the set of constraints for common role rj ∈ R′ is defined by:

∀ rj ∈ R′, C (rj) = CS (rj) ∪CA (rj)

and, analogously, for the elements of the other types:

∀ fj ∈ F ′, C (fj) = CS (fj) ∪ CA (fj)

∀ pj ∈ P ′, C (pj) = CS (pj) ∪ CA (pj)

∀ mj ∈M ′, C (mj) = CS (mj) ∪ CA (mj)

∀ oj ∈ O′, C (oj) = CS (oj) ∪ CA (oj)

∀ uj ∈ U ′, C (uj) = CS (uj) ∪CA (uj)

Verify the global coherence of the common elements - verify whether these
constraints do not provoke incoherences, it signifies to verify if the common
elements with their constraints satisfy the definition of coherence:

∀ ecij ∈ E′
i ∧ ∀k, (ESk (ecij) ∈ ES (ecij) ∧ ESk (ecij) �= ∅)

If the common elements are coherent, it is not necessary to make changes in
the new application; otherwies the constraints provoking incoherences should be
identified for each common element.

Identify the constraints that provoke the incoherences - it is necessary to find
the constraints of the common element that are responsible for the incoherences
on this element. It should be determined which sets of constraints CS (ecij)
and/or CA (ecij) do not satisfy the definition of coherence:
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∀ ecij ∈ E′
i for which the incoherences are identified, find the sets of con-

straints that are responsible for these incoherences, i.e. the sets CS (ecij) and/or
CA (ecij).

Propose and realize the necessary modifications in the definitions of the con-
straints that provoke the incoherences. This stage is realized manually by the
security administrator and/or application developer. These modifications can
be carried out on the security administration level according to the constraints
defined in the system and in the considered application. If this is not possible,
the application developer should also perform the modifications on the level of
the new application.

The algorithm 1 shows the stages of verification of the system coherence after
the addition of a new application.

Table 1. The verification of system coherence after the addition of a new application

V erificationCoherence (E, EA)

Begin
for each (Ei ∈ E and EAi ∈ EA) do

E′
i = Ei ∩ EAi

if E′
i �= ∅ then

for each ecij ∈ E′
i do

CS (ecij) = identifyConstraints (ecij)
CA (ecij) = identifyConstraints (ecij)
coherence = verifyCoherence (ecij , CS (ecij) , CA (ecij))
if (! coherence) then

CI (ecij) = findConstraintsIncoherent (ecij , CS (ecij) , CA (ecij))
show (CI (ecij))
return coherence

endIf
done

endIf
done
return true

End

The first stage, i.e. identification of common elements in the system and the
new application consists in the passage of sets of elements of the same type from
the system and from the application, i.e. U with UA, R with RA, etc. and then
the determination of their common elements:

U ′ = U ∩ UA, R′ = R ∩RA, F ′ = F ∩ FA, P ′ = P ∩ PA, M ′ =
M ∩MA and O′ = O ∩OA

The set of users UA of the new application will be empty because the applica-
tion developer does not define the users who will use this application. The task
of determination of future users of the application is realized by the security
administrator. Therefore, the next section takes into consideration the following
sets of common elements:
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R′ = R ∩RA, F ′ = F ∩ FA, P ′ = P ∩ PA, M ′ = M ∩MA and O′ = O ∩OA

Stage of Identification of Constraints for Common Elements. This stage
requires identification of constraints defined for a common element ecij ∈ E′

i, i.e.
a set C (ecij) = CS (ecij) ∪ CA (ecij). For each element ecij ∈ E′

i, it is possible
to find two groups of constraints on the system level and on the new application
level:

– the constraints attached “directly” to an element ecij , i.e. the constraints
applied exactly to this element,

– the constraints attached “indirectly” to an element ecij , i.e. the constraints
defined on the elements that are joined to an element ecij by the relations
of the RBAC model.

The process of identification of constraints for common elements is realized
by the passage of graph of constraints defined for these elements. This passage
creates the set of constraints defined for a common element ecij ∈ E′

i as follows:

CS (ecij) = cS (ecij) ∪
⋃

CS (elij)

CA (ecij) = cA (ecij) ∪
⋃

CA (elij)

cS (ecij) - set of constraints defined on element ecij in the system
cA (ecij) - set of constraints defined on element ecij in the new application
elij ∈ Ei - an element attached to element ecij, for example: for ecij = f

(function) element elij = p (permission) or elij = r (role)
CS (elij) - set of constraints defined on elij, attached directly or indirectly to

ecij in the system
CA (elij) - set of constraints defined on elij, attached directly or indirectly to

ecij in the new application

In particular, the constraints defined for a role rj :

CS (rj) = cS (rj) ∪
⋃

CS (elj) and CA (rj) = cA (rj) ∪
⋃

CA (elj)
where CS (elj) ::= CS (uj) | CS (fj) and CA (elj) ::= CA (uj) | CA (fj)

C (rj) = CS (rj) ∪CA (rj)

The identified set of constraints, defined for a common element ecij ∈ E′,
limits the elements accessible for this element.

Stage of Verification of Coherence for Common Elements. This stage
of algorithm verifies the coherence of the common elements of both the system
and the new application, i.e. it checks whether the definition of coherence is still
satisfied after addition of the new application. Therefore, to verify the coherence
of the common elements it is necessary:

– to determine the elements accessible for each common element, i.e. to identify
the set ES (ecij) - the elements limited by the constraints defined on the
system level (i.e. CS (ecij)) and on the new application level (i.e. CA (ecij)),
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– to verify that the definition of coherence is still satisfied for each common
element in the set of accessible elements ES (ecij).

The identification of elements accessible for each common element ecij should be
realized with the passage of graph of relations (i.e. associations) of the common
element with the other elements according to the constraints identified on the
system level CS (ecij) and on the new application level CA (ecij).

If the definition of coherence is satisfied for each common element, then the
system after the addition of the new application is still coherent. In the opposite
case, it is necessary to eliminate the incoherences introducing changes in the
constraints. Therefore, the constraints responsible for any possible incoherences
in the system should be identified.

Stage of Searching for Responsible Constraints. It is of use to receive
a list of the constraints that produce incoherences if the system turns out to
be incoherent after a new application has been added. Thus, it is necessary to
verify which sets of constraints CS (ecij) and/or CA (ecij) provoke the situations
in which the definition of coherence is not satisfied: for each common element
ecij ∈ E′

i for which the incoherences are identified, the sets of constraints that
are responsible for these incoherences, i.e. the set that belongs to sets CS (ecij)
and CA (ecij) should be found.

For element ecij ∈ E′
i the identification of constraints that produce incoher-

ences involves identification of sets ESk (ecij) ∈ ES (ecij) such as: ESk (ecij) = ∅.
In view of numerous solutions that can be applied the final choice of con-

straints to eliminate or modify should be made by the security administrator
and/or the application developer. The security administrator should choose the
level on which the modifications of constraints can be realized taking into consid-
eration: the simplicity of modifications, the facility of verification of the system
coherence and future profits on the global system level.

After the modifications have been introduced, the stages of coherence ver-
ification should be executed once again to obtain the new definitely coherent
system.

5 Conclusions

The paper discusses security constraints of a security schema in an informa-
tion system of an enterprise based on the extended RBAC model. The proposed
classification of security constraints is carried out on three levels depending on
different aspects of creating the security in the information system. The main
classification divides the constraints into two groups: constraints defined by the
application/system developer and constraints determined by the security admin-
istrator of an enterprise information system.

The discussed approach requires collaboration of the system developer and
the global security administrator since both of them define security elements
and constraints for the system, though each one on a different level. The issues
of their activities have to be confronted and verified. The confrontation of the
two viewpoints consists of the verification that the developer’s work does not
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cause incoherences in the global security of the information system through
identification of the problems that may have appeared between these two levels.

Starting from the global schema of coherent security, any insertion of a new
application should respect the global coherence of new security schema. The in-
formation system used in an enterprise should be coherent, which means all the
elements defined in the system, their relations and their constraints should be
coherent. After the definition of the system coherence is given the integration of a
new application in the existing security system can be performed taking into con-
sideration the coherence of the entire system. The paper proposes the algorithm
for the verification of system coherence after addition of a new application. This
algorithm helps to introduce desired modifications into the information system,
e.g. addition of a new application with preserving the coherence of information
system security.
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Abstract. This paper presents a technique for automated test data generation ap-
plicable to both procedural and object-oriented programs. During the generation,
the test cases are optimised such as to maximise structural code coverage by min-
imising at the same time the number of test cases required. To cope with these
two inherently conflicting goals, hybrid self-adaptive and multi-objective evolu-
tionary algorithms are applied. Our approach is based on a preliminary activity
that provides support for the automatic instrumentation of source code in order
to record the relevant data flow information at runtime. By exclusively utilising
the insight gained hereby, test data sets are successively enhanced towards the
goals mentioned above. Finally, the efficiency of the test set generated is eval-
uated in terms of its fault detection capability by means of mutation testing. In
addition, the actual coverage percentage achieved is determined by taking into
account the results of a static data flow analysis of the system under test. Thanks
to the dramatic decrease of effort required for generating and verifying test cases,
the technique presented here allows to substantially improve the V&V-phase of
complex, safety-relevant software. Preliminary experimental results gained so far
are reported in the paper.

Keywords: testing, data flow, evolutionary algorithms, automated test data gen-
eration, object-oriented software, mutation testing.

1 Introduction and Related Work

In spite of considerable advances in the field of software engineering contributing to
support the software development on the base of sound engineering knowledge, the
number and criticality of software faults still represents a major challenge, due to the
growing complexity of today’s software systems and to their increasing safety rele-
vance. In order to ensure the required level of reliability and availability demanded
by the application envisaged, testing still represents an essential phase, certainly not
replaceable by other techniques, be they conceived to support design or verification ac-
tivities, by formal or informal methods. Average estimates of quality assurance effort
amount to ca. 37% of the total development and to ca. 60% of the total software life-
cycle costs [1]. Such figures clearly reflect the impressive role and decisive importance
of software testing with regard to both the underlying safety and business risks.

J. Górski (Ed.): SAFECOMP 2006, LNCS 4166, pp. 426–438, 2006.
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The main reason why testing requires a substantial amount of time and money - in
particular when done according to control flow or data flow oriented strategies - lies in
the fact that considerable work still has to be carried out by hand. Already the identifi-
cation of test cases for the purpose of fulfilling a given testing criterion usually requires
an elaborate, tiresome and error-prone task. Moreover, after execution of the test data
identified, the results of the test runs are to be analysed in terms of their compliance
with the specification or with the behaviour envisaged resp. needed. This step has to be
iterated as long as the target coverage criterion is not completely achieved.

What is usually referred to test automation today, mostly relates and is restricted to
the automatic support of the process of running the test cases identified. On the other
hand, determining whether a particular coverage criterion is fulfilled by a given set of
test cases still represents a task poorly supported, as soon as criteria going beyond basic
control flow testing (typically statement and branch coverage) are concerned. Actually,
the most ungrateful task to be carried out by testing personnel consists of extending the
present test set by new test cases allowing to increase coverage up to the target level. As
widely known, uncontrolled random generation of input data is of limited usefulness,
since runs already tested tend to repeat themselves, while the random generation of data
covering the few paths still missing becomes increasingly improbable. Additionally, all
the test runs have to be validated one by one; therefore, the smaller the set of test cases
achieving the testing target, the lesser the effort spent on validation.

Recently, evolutionary algorithms have become popular in the field of test case gen-
eration and several approaches to software testing have been published [2,3,4,5,6,7,8].
For instance, genetic algorithms were successfully applied to approximate upper and
lower bounds of execution time in real-time applications [2]. Within a project led by
automotive industry, test cases were generated by evolutionary optimisation such as to
reveal specific critical defects [7], like the overrunning of parking spots by an automatic
car parking system. Evolutionary techniques were also used to generate test cases for
statement and branch coverage of programs written in C [6], where for each statement
resp. branch still uncovered, one individual test case is searched such as to cover it.
Data flow oriented testing of functional block diagrams was recently addressed in [8];
the approach presented there, however, is constrained to quite simple functional blocks
without loops.

The novelty of our technique, which will be presented in the rest of the article, con-
cerns different aspects. It provides a fully automatic generation and evaluation of test
cases for object-oriented programs, allowing for the complete Java language without
any restrictions, and thus including programs written in classical paradigms. Moreover,
the key issue of this technique in comparison to related ones concerns the fact that the
optimisation simultaneously addresses the following two objectives:

– the maximisation of the coverage achieved by the test set and
– the minimisation of the number of test cases required to do so.

2 Data Flow Based Testing

The approach presented here was originally developed for data flow based testing. It
soon turned out that the technique is universally applicable to most other structural
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testing strategies. For example, an extension of this method in order to include condition
coverage criteria is in progress within our current research project. The classical theory
of data flow based testing, as was originally introduced by Rapps and Weyuker [9]
is well-known to scientists working in the field. This theory was extended by Ntafos
[10] as well as Laski and Korel [11] towards more sophisticated coverage concepts and
adapted to the peculiarities of modern object-oriented programming languages. The
testing concept is based on the control flow of the program annotated by relevant data
flow information, as shortly summarized in the following.

The goal of data flow based testing is to execute inputs allowing each assignment of
a value to a variable (so-called definition, or def in short) to reach instructions requiring
to read that value. Reading a value may be carried out for different purposes, or uses:
they may be computational uses (c-uses), if the value of a variable is read in order to
perform a computation, or predicative uses (in short p-uses), if the value of a variable
is used within a conditional statement in order to come to a decision. According to this
semantic, c-uses are associated to control flow nodes containing a computation, whereas
p-uses related to a conditional statement are associated to edges leaving the control flow
node containing that condition.

More than 10 different testing criteria based on data flow coverage were defined and
hierarchically organized in [9,10,11]; most of them subsume classical branch coverage.
Among them is the widely known all-uses criterion, which requires the execution of
at least one sub-path from any definition of any variable to any reachable use of that
variable, where no further definition of the variable under consideration occurs along
the sub-paths considered.

Thanks to the enrichment of the underlying control flow by additional data flow
information, in general such testing strategies are superior to simple control flow strate-
gies in terms of their fault detection capability. For example, the obvious fault in figure
1 may remain undetected after a test conceived to achieve statement or branch cov-
erage, e.g. covering the following two paths of instructions: 1,2,3,4,5,6,7,9,10,11 and
1,2,3,5,6,7,8,9,10,11. In fact, none of these paths allows the assignment of variable c
(def in line 4) to reach its use (c-use in line 8), as required by data flow testing of
variable c.

Faults and anomalies usually discovered by data flow testing include, but are not
limited to the following classes:

1. faults/anomalies detectable by static analysis:
– dead code
– endless loops
– non-initialised variables
– misplaced statements, like definitions without reachable uses

2. faults/anomalies detectable by dynamic execution:
– faults in the context of conditions, especially concerning their antecedent data

flow
– def/use-pairs, which, though associated with respect to control flow, cannot

actually be covered by any input data
– anomalous conversions or type-inconsistent uses
– in the particular case of object-oriented programs: incorrect call sequences that

manifest themselves by messages reaching an object in an improper state



Automatic Test Data Generation by Multi-objective Optimisation 429

1 p u b l i c i n t f ( i n t a , i n t b , S t r i n g c ) {
2 . . . / / any s t a t e m e n t s
3 i f ( a > 0) {
4 c = n u l l ;
5 }
6 . . . / / c o n t a i n s no d e f o f c
7 i f ( b < 0) {
8 b = c . l e n g t h ( ) ;
9 }

10 re tu rn b ;
11 }

Fig. 1. Example source code

In spite of the superiority of data flow testing, its practical application to industrial
systems is still limited, mainly due to the effort required until recently and which fortu-
nately is starting to become affordable, thanks to the evolutionary approach described
in the following.

3 Static and Dynamic Data Flow Analysis of Java Programs

In order to discover as many of the faults described in section 2 as possible, test cases
must be identified such as to cover all the data flow entities requested by the criterion
under consideration; this set of entities can be determined by static analysis prior to
testing. In order to evaluate how many entities were covered and especially which ones
were not yet, the execution of each test case must be traced by dynamic analysis.

3.1 Static Analysis

The static analyser implemented in our project is based on symbolic execution. For rea-
sons of simplicity we preferred to analyse Java byte code instead of the original source
code. This choice offers different advantages: it allows us to avoid carrying out type in-
ference, which is already taken over by the compiler; in addition, it permits to perform
testing activities based on a level close to the real behaviour of the underlying machine.

For the entire program under consideration, the analyser represents each method as
a data flow annotated Interprocedural Control Flow Graph. After selecting a starting
method (typically public static void main(String[])), each subsequent state-
ment is virtually interpreted by symbolic execution. In order to cope with pointer-
aliasing [12], a points-to-set is constructed to be considered during the further symbolic
execution, as proposed in [13,14]. The interprocedural control flow considered is lim-
ited to the system under test only, excluding external code (e.g. libraries) in order to
avoid redundant verification activities. Since loops might influence the points-to-set of
certain variables, an optimised fixed point iteration strategy is applied, such that super-
fluous reconsideration of sub-paths is avoided. For example, when the points-to-set at
a node is expected to change due to reconsideration of one of its ancestors, the anal-
ysis of the respective node is postponed until the ancestors have been analysed. This



430 N. Oster and F. Saglietti

yields a safe set of def/use-pairs (possibly including uncoverable pairs) as well as all
the loop-free sub-paths (so-called DU-paths) connecting them.

3.2 Dynamic Analysis

For the sake of automatic generation of data flow based test cases by means of evolu-
tionary algorithms, the static analysis mentioned above can be omitted when replaced
by dynamic analysis. This is crucial since such a static analysis turned out to be very
time-consuming, requiring hours of computation, even for moderately sized systems.
In order to gain an objective measure of the number of data flow pairs covered by a
given test case (see section 4), the source code of the system under test is instrumented
[15] by using ANTLR1, where the source of each class is transformed into an abstract
syntax tree (AST) first. This tree is then modified at dedicated locations by inserting
additional nodes, representing calls to a logging facility. At this step, all available in-
formation concerning the instrumentation is stored in a so-called instrumentation log
in order to keep the runtime overhead as small as possible. The instrumentation phase
is concluded by converting the modified AST back to Java source code. In such a way,
during the execution of a test case, the logging facility efficiently receives data flow
related messages from the running system and stores them in a runtime log. After re-
solving the data of the runtime log based on the instrumentation log, the complete data
flow of the underlying test case is reproduced, resulting in an objective measure of the
number of data flow pairs actually covered. Since each instance of a class can easily be
distinguished at runtime, pointer-aliasing is accurately resolved at very low cost.

3.3 Overall Process

The complexity of static analysis varies depending on the criterion under consideration.
For relatively simple criteria like branch- and all-defs-coverage [9], the instrumentation
log yielded by the dynamic analysis as described in section 3.2 is sufficient to statically
determine the number of entities to be covered, as in such cases no detailed analysis
concerning all def/use-pairs is required. The upper half of figure 2 shows the results of
a static analysis performed for branch- and all-defs-coverage based on the instrumenta-
tion log of the dynamic analysis tool at source code level.

For more complex criteria like all-uses resp. all-DU-paths on the other hand, all
def/use-pairs resp. all loop-free sub-paths between each def and its uses have to be
identified. For this reason, an explicit and detailed static analysis as described in section
3.1 is needed. The results from the static analysis of byte code executed for the all-uses-
and all-DU-paths-criteria is shown in the lower part of figure 2.

4 Multi-objective Test Set Generation and Optimisation

At first glance, classical random test case generators might be helpful, but when applied
to structural testing, they usually spawn a lot of superfluous data. This is due to the fact

1 ANother Tool for Language Recognition, see http://www.antlr.org/
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Fig. 2. Static analysis output

that they create many similar test cases covering the same paths many times while pos-
sibly not executing others at all. The problem that arises here is that all those test cases
have to be validated individually. Therefore, the smaller the set of generated test cases
fulfilling the testing goal, the lesser the effort spent on validation. In order to cope with
this conflicting task, so-called multi-objective optimisation can be applied. Many differ-
ent techniques for general multi-objective optimisation problems were proposed in the
literature, four of which were adopted and compared in our research project. A principal
item that has to be addressed first is the definition of the optimisation goal, expressed
in terms of the so-called fitness function. Multi-objective optimisation strategies keep
track of at least two such objectives. In our case, one objective is the number of entities
(e.g. branches or def/use-pairs) to be covered and the other is the size of the test set. A
solution consists of combining both objectives into one fitness function by means of a
weighted sum, considering that one fitness value has to be maximised while the other
must be minimised.

For the purpose of comparing the performance of different optimisation strategies,
different algorithms were implemented. The simplest approach among them is based
on a multi-objective random search, where first two sets of test cases, are chosen
at random. The sizes of both test sets and the number of entities covered by each are
then determined. The overall fitness of each test set is evaluated by a weighted sum
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of its values, once these values were normalised in order to avoid overruling of single
aspects. This procedure is repeated with the test set of highest fitness and a randomly
selected new one until it is stopped by the tester.

Since random optimisation is known to perform poorly, better algorithms were de-
veloped, such as simulated annealing. In this case, instead of choosing a new test set at
random, a copy of the last one is smoothly modified before evaluating its fitness. Unlike
random search, a test set may be kept (at low probability) despite its lower fitness.

Both algorithms presented above are known to be easily trapped in local optima due
to the fact that only one test set is considered at each time. This problem may be over-
come by considering whole populations of potential solutions to a given optimisation
problem, thus giving rise to so-called evolutionary algorithms. The main philosophy
common to these techniques refers to the principles of Darwinian evolution and to the
theory of survival of the fittest. Developed by Holland and Rechenberg in the mid 70s,
they are well known powerful search and optimisation techniques and as such applied
in many different areas [16,17].

For the purpose of test case generation and optimisation, evolutionary engines per-
form the following operations:

1. Initialisation: First, a random initial population is generated, where each of the
individuals of this population represents a test set containing several test cases.

2. Evaluation: Each test set is evaluated by means of the fitness function. Usually, the
fitness of the global optimum is not known in advance (e.g. because its determina-
tion is extremely complex, see sections 3 and 5), but a comparison of fitness values
among individuals is sufficient to apply this optimisation technique.

3. A new generation is constructed by repeatedly applying the following two steps:
– Selection: Two test sets are randomly selected from the old generation with

probability proportional to the size of their fitness values (several selection
criteria exist [16]).

– Crossover: The test sets selected are merged in such a way as to form two new
individuals (again, different crossover strategies may be applied), which are
successively added to the population.

4. Mutation: Each test set of the new population is subjected to mutation, i.e. to slight
modification by adding, removing or modifying some of their test cases. This is
done in order to introduce new genetic material such that the search procedure is
not limited to mere combinations of initial values.

5. At this point steps 2 - 4 are repeated for the new generation. In order to reduce
execution time, unmodified test cases are not re-executed.

6. The whole optimisation process is stopped as soon as a solution can be found to
be optimal or after a predetermined number of iterations, thus yielding at least a
sub-optimal solution.

Within our research project, we decided to implement two different variants of ge-
netic algorithms: the Multi-Objective Aggregation (MOA) makes use of the weighted
sum as described for the non-evolutionary algorithms above. This approach suffers from
crucial problems, like the determination of appropriate weights. For this reason, alterna-
tives like the Vector Evaluated Genetic Algorithm (VEGA), the Niched Pareto Genetic
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Fig. 3. Pareto-optimal front of test cases

Algorithm (NPGA) and the Non-dominated Sorting Genetic Algorithm (NSGA) [18,19]
were considered, which avoid requiring weights by evaluating the fitness of step 2 con-
sidering the domination relation. A solution is said to be non-dominated, if it is optimal
in the sense that no other known solution is better with respect to all objectives at the
same time. Proceeding this way, the three alternative algorithms mentioned above of-
fer several optimal results aligned up the so-called Pareto-front, hereby reflecting the
trade-off between the objectives.

Different experimental investigations showed that the Non-dominated Sorting Ge-
netic Algorithm is generally outperforming VEGA and NPGA. Therefore, we choose
this algorithm as our fourth alternative. In NSGA, step 2 of the outline above is carried
out in three steps:

1. Each objective is evaluated on its own.
2. The population is partitioned into sub-populations by identifying one maximal non-

dominated subpopulation and repeating this step for the remaining population until
a non-dominated subpopulation is left.
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3. To each member of a subpopulation a fitness value is associated, such that its mag-
nitude decreases with the order in which the corresponding subpopulation was iden-
tified.

Figure 3 shows a snapshot of the intermediate population distribution during the
optimisation process - the curve represents the best trade-off between test set size and
number of covered def/use-pairs identified up to that point.

In the past, evolutionary algorithms were enhanced in different ways. Since they de-
cisively depend on several parameters, e.g. on the probability for crossover or on the
selection strategy, self-adaptation during optimisation may offer reasonable assistance.
Self-adaptation may be carried out by defining in advance certain modifications of the
parameters (like increasing mutation probabilities by predefined increments), and by
applying the resulting parameters to each new generation. A simpler approach to self-
adaptation lets the algorithm choose the parameters by including them into the genetic
material such that the solution evolves as part of the population. The underlying idea
assumes that better individuals are developed by use of better parameters. Since the
generation of new populations is also subject to randomness, it is not guaranteed that
good solutions are kept until the end of the process. To avoid their disappearance dur-
ing evolution, so-called elitism may be applied, which consists in saving a number of
best individuals of each generation and adding them without modification to the new
generation.

5 Experimental Results

In order to evaluate the practical relevance of the technique presented in this paper,
we implemented the four optimisation algorithms of section 4 in a tool named .gEAr
(DOTgEAr: Data flow Oriented Test case generation with Evolutionary Algorithms).
It automatically generates test cases for most basic data flow criteria as well as branch
coverage and is now being extended to include condition coverage and equivalence
class testing.

In order to speed up the test set generation and optimisation, .gEAr makes use of dis-
tributed, fault tolerant test case execution. This is achieved by executing hidden daemon
processes on simple networked PCs which receive the executable system under test and
a test case, run the program in the background (unperceived by the actual user) and send
back the coverage data. In our experimental setup, we used between 10 and 45 of such
”execution servers”, depending on their availability. Because of varying workload on
and availability of the PCs, a comparison based on the actual runtime required would
be quite complex and of limited significance. For this reason, we opted for a compar-
ison of performance of the different optimisation algorithms based on the number of
test runs required. In figure 4, the x-axis represents the total number of test cases exe-
cuted and thus provides a ”relative indicator” of runtime. On the other hand, the y-axis
shows the number of def/use-pairs covered by the optimal test set as was identified after
processing the corresponding amount of test cases.

We applied .gEAr to a number of projects ranging from 38 lines of code (LOC) in
1 class up to 5439 LOC in 27 classes. Two of them (projects 5 and 6 in table 1) were
extracted without any modifications from the JavaTMsource repository. In most cases,
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Simulated Annealing outperformed Multi-objective Aggregation and Random testing,
e.g. in case of project BigFloat as shown in figure 4. As expected, Random testing
soon got stuck in a local optimum. Even if Non-dominated Sorting Genetic Algorithm
(NSGA) did not surpass the simulated annealing in terms of performance, it offers a
higher flexibility as described in section 4, because it does not just return a single op-
timal result, but a complete front of trade-offs. In figure 4 the line labelled NSGA was
chosen to reflect the test set of highest coverage within each corresponding Pareto front.
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Fig. 4. Comparison of the performance of different optimisation techniques (BigFloat), units on
the axis are specified in the running text

As coverage criteria measure how exhaustively a system under test was explored in
terms of its structure, some correlation between testing coverage and fault detection
capability might be expected, as was also revealed by a number of experimental inves-
tigations. In order to analyse more rigorously this correlation, we decided to use a more
objective indicator of fault detection by test cases generated by .gEAr, namely the so-
called mutation score. The key idea consists of introducing small modifications into the
system under test, each representing a typical fault and resulting in a particular mutant
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Table 1. Experimental results

branch coverage all-uses coverage mutation testing
ID Project NM GT CE COV MS GT CE COV MS ET RT MS

1 BigFloat 1528 5 144 98,63 69,18 17 1511 82,83∗ 75,85 3000 232 95,75
2 Dijkstra 220 1 26 100 70,45 2 168 93,75∗ 71,82 10000 8 75,91
3 Hanoi 227 2 4 100 74,89 2 42 96,67 76,65 1000 11 85,90
4 Huffman 623 3 61 100 74,32 3 353 92,86∗ 75,44 n/a 6 100
5 JDK sort 852 1 37 100 61,50 2 315 83,44 65,38 4000 108 81,46
6 JDK log 1970 35 317 65,23 24,62 61 1599 82,82∗ 25,23 n/a n/a n/a

NM: total number of generated mutants (including functionally equivalent mutants)
GT: number of generated test cases
CE: number of covered entities (branches resp. def/use-pairs)
COV: coverage (in %; based on static analysis)
MS: ratio between killed mutants and NM (in %)
ET: total number of test cases executed for mutation testing
RT: number of relevant test cases achieving respective mutation score
∗ average over analysable methods

program. Subsequently, the original program and each mutant execute a test set. During
the execution of each test case, the behaviour of each mutant is compared to that of the
original program; in case they differ, the mutant is said to have been killed by the test
case in question. After completion of the whole test set, the relative amount of mutants
killed yields the mutation score of the test set considered, which provides an indicator
of its capability of detecting the faults introduced by mutation.

Table 1 shows the results of applying .gEAr on different applications. For each of
the 6 projects a number NM of different mutants was generated (some of which could
be functionally equivalent to the original program). All the optimisation techniques
implemented were first applied to the branch coverage-criterion and then to the all-
uses-criterion. For each of both coverage types, table 1 shows the number GT of test
cases generated as well as number CE of entities (branches resp. def/use-pairs) actually
covered, in case both objectives (size and coverage) were prioritized at scale 0.05:1. In
addition, table 1 provides an estimate COV of the coverage actually achieved by the test
cases generated. Such coverage estimations are conservative in that the static analysis
counts all entities which should be covered, not just those which actually can be covered
during operation.

The columns MS indicate the ratio between the number of mutants killed and the
total number NM of mutants generated. To determine the exact mutation score, this
ratio must be adjusted by considering functionally equivalent mutants. Unfortunately,
an analysis of functional equivalence between original program and mutants cannot be
carried out automatically; on the other hand, a manual check is prohibitive due to the
substantial amount of mutants generated. In order to estimate the number of equivalent
mutants, we availed ourselves of statistical sampling theory by uniform random gener-
ation of a high number ET of inputs on which to execute original program and mutants.
Mutants surviving all ET inputs generated can be assumed to be functionally equivalent
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to the original program at a high confidence level. The number of test cases killing the
remaining mutants is given in column RT of table 1.

In the light of these considerations, the results of table 1 evidently show that the fault
detection capability per test case is several orders of magnitude higher when test cases
are generated and optimised by .gEAr as presented in this paper rather than by classical
random generation.

6 Conclusion and Outlook

This article has presented an approach supporting the automatic generation of test data
for object-oriented programs implemented in Java with respect to control flow and data
flow based criteria. The technique proposed is based on evolutionary algorithms aiming
at maximizing data flow coverage and minimizing the size of the test set, and thus the
effort for validation.

Different search and optimization methods have been implemented for several data
flow criteria and validated by practical examples. The preliminary results achieved con-
firm the efficiency and ease of use of the approach adopted. Nevertheless, both results
and performance can be enhanced by extending the evolutionary algorithms presented,
e.g. by hybridisation. A possible hybridisation approach consists in interleaving the
global optimisation phase with a local test case generation.

Method and tool described in this article have found the interest of a major German
industrial company involved in the development of software for medical devices. In
cooperation with this industrial partner we intend to apply the process on large-scale
industrial applications, thus helping to reduce verification costs and to enhance the ef-
fectiveness of test activities at the same time.
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Pretzer, Matthias 275

Qian, Ying 57

Rak, Jacek 29
Revilla, Miguel A. 302
Rock, Georg 42
Rosenblattl, Maximilian 386
Rydzak, Felicjan 57

Saglietti, Francesca 426
Santen, Thomas 142
Schlager, Martin 386
Schlick, Rupert 358
Schoitsch, Erwin 372
Schwan, Matthias 42
Song, Won Jay 233
Sosnowski, Janusz 261
Stephan, Werner 42



440 Author Index

Steven, Alison 219
Sujan, Mark-Alexander 219
Sveen, Finn Olav 57
Szmuc, Tomasz 344
Szpyrka, Marcin 344

Tichy, Matthias 156
Törner, Fredrik 247
Trawczynski, Dawid 261

Valacca, Laura 275
Vernon, Susan J. 219
Vinter, Jonny 372

Wajda, Krzysztof 289
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