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Abstract. A type-based approach to termination uses sized types: an
ordinal bound for the size of a data structure is stored in its type. A
recursive function over a sized type is accepted if it is visible in the
type system that recursive calls occur just at a smaller size. This ap-
proach is only sound if the type of the recursive function is admissible,
i.e., depends on the size index in a certain way. To explore the space
of admissible functions in the presence of higher-kinded data types and
impredicative polymorphism, a semantics is developed where sized types
are interpreted as functions from ordinals into sets of strongly normaliz-
ing terms. It is shown that upper semi-continuity of such functions is a
sufficient semantical criterion for admissibility. To provide a syntactical
criterion, a calculus for semi-continuous function is developed.

1 Introduction

Termination of computer programs has received continuous interest in the his-
tory of computer science, and classical applications are total correctness and
termination of partial evaluation. In languages with a notion of computation on
the type-level, such as dependently-typed languages or rich typed intermediate
languages in compilers [11], termination of expressions that compute a type is
required for type checking and type soundness. Further, theorem provers that are
based on the Curry-Howard Isomorphism and offer a functional programming
language to write down proofs usually reject non-terminating programs to en-
sure consistency. Since the pioneering work of Mendler [15], termination analysis
has been combined with typing, with much success for strongly-typed languages
[14,6,13,19,7,9]. The resulting technique, type-based termination checking, has
several advantages over a purely syntactical termination analysis: (1) It is ro-
bust w. r. t. small changes of the analyzed program, since it is working on an
abstraction of the program: its type. So if the reformulation of a program (e.g.,
by introducing a redex) still can be assigned the same sized type, it automat-
ically passes the termination check. (2) In design and justification, type-based
termination rests on a technology extensively studied for several decades: types.
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(3) Type-based termination is essentially a refinement of the typing rules for re-
cursion and for introduction and elimination of data. This is orthogonal to other
language constructs, like variants, records, and modules. Thus, a language can
be easily enriched without change to the termination module. This is not true
if termination checking is a separate static analysis. Orthogonality has an espe-
cially pleasing effect: (4) Type-based termination scales to higher-order functions
and polymorphism. (5) Last but not least, it effortlessly creates a termination
certificate, which is just the typing derivation.

Type-based termination especially plays its strength when combined with
higher-order datatypes and higher-rank polymorphism, i. e., occurrence of ∀ to
the left of an arrow. Let us see an example. We consider the type of generalized
rose trees GRoseFA parameterized by an element type A and the branching
type F . It is given by two constructors:

leaf : GRoseFA
node : A → F (GRoseFA) → GRoseFA

Generalized rose trees are either a leaf or a node a fr of a label a of type A and
a collection of subtrees fr of type F (GRose FA). Instances of generalized rose
trees are binary trees (FA = A × A), finitely branching trees (FA = ListA),
or infinitely branching trees (FA = Nat → A). Programming a generic equality
function for generalized rose trees that is polymorphic in F and A, we will end
up with the following equations:

EqA = A → A → Bool

eqGRose : (∀A. Eq A → Eq (FA)) → ∀A. Eq A → Eq (GRose FA)

eqGRose eqF eqA leaf leaf = true
eqGRose eqF eqA (node a fr ) (node a′ fr ′) = (eqA a a′) ∧

(eqF (eqGRose eqF eqA) fr fr ′)
eqGRose eqF eqA _ _ = false

The generic equality eqGRose takes two parametric arguments, eqF and eqA.
The second one is a placeholder for an equality test for type A, the first one
lifts an equality test for an arbitrary type A to an equality test for the type FA.
The equality test for generalized rose trees, eqGRose eqF eqA, is then defined by
recursion on the next two arguments. In the case of two nodes we would expect
a recursive call, but instead, the function itself is passed as an argument to eqF ,
one of its own arguments! Nevertheless, eqGRose is a total function, provided its
arguments are total and well-typed. However, with traditional methods, which
only take the computational behavior into account, it will be hard to verify
termination of eqGRose. This is due to the fact that the polymorphic nature of
eqF plays a crucial role. It is easy to find an instance of eqF of the wrong type
which makes the program loop. Take, for instance:

eqF : Eq (GRoseF Nat) → Eq (F (GRose F Nat))
eqF eq fr fr ′ = eq (node 0 fr) (node 0 fr ′)
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A type-based termination criterion however passes eqGRose with ease: Con-
sider the indexed type GRoseı FA of generalized rose trees whose height is smaller
than ı. The types of the constructors are refined as follows:

leaf : ∀F∀A∀ı. GRoseı+1 FA

node : ∀F∀A∀ı. A → GRoseı FA → GRoseı+1 FA

When defining eqGRose for trees of height < ı+ 1, we may use eqGRose on trees
of height < ı. Hence, in the clause for two nodes, term eqGRose eqF eqA has type
Eq (GRoseı FA), and eqF (eqGRose eqF eqA) gets type Eq (F (GRoseı FA)), by
instantiation of the polymorphic type of eqF . Now it is safe to apply the last
expression to fr and fr ′ which are in F (GRoseı FA), since nodea fr and nodea′ fr ′

were assumed to be in GRoseı+1 FA.
In essence, type-based termination is a stricter typing of the fixed-point com-

binator fix which introduces recursion. The unrestricted use, via the typing rule
(1), is replaced by a rule with a stronger hypothesis (2):

(1)
f : A → A

fix f : A
(2)

f : ∀ı. A(ı) → A(ı + 1)
fix f : ∀n. A(n)

Soundness of rule (2) can be shown by induction on n. To get started, we need to
show fix f : A(0) which requires A(ı) to be of a special shape, for instance A(ı) =
GRoseı F B → C (this corresponds to Hughes, Pareto, and Sabry’s bottom check
[14]). Then A(0) denotes functions which have to behave well for all arguments
in GRose0 F B, i. e., for no arguments, since GRose0 F B is empty. Trivially, any
program fulfills this condition. In the step case, we need to show fix f : A(n+1),
but this follows from the equation fix f = f (fix f) since f : A(n) → A(n + 1),
and fix f : A(n) by induction hypothesis.

In general, the index ı in A(ı) will be an ordinal number. Ordinals are useful
when we want to speak of objects of unbounded size, e. g., generalized rose
trees of height < ω that inhabit the type GRoseω FA. Even more, ordinals are
required to denote the height of infinitely branching trees: take generalized rose
trees with FA = Nat → A. Other examples of infinite branching, which come
from the area of inductive theorem provers, are the W -type, Brouwer ordinals
and the accessibility predicate [17].

In the presence of ordinal indices, rule (2) has to be proven sound by transfinite
induction. In the case of a limit ordinal λ, we have to infer fix f : A(λ) from the
induction hypothesis fix f : ∀α < λ. A(α). This imposes extra conditions on the
shape of a so-called admissible A, which are the object of this article. Of course,
a monotone A is trivially admissible, but many interesting types for recursive
functions are not monotone, like A(α) = Natα → Natα → Natα (where Natα

contains the natural numbers < α). We will show that all types A(α) that are
upper semi-continuous in α, meaning lim supα→λ A(α) ⊆ A(λ) for limit ordinals
λ, are admissible. Function types C(α) = A(α) → B(α) will be admissible if
A is lower semi-continuous (A(λ) ⊆ lim infα→λ A(α)) and B is upper semi-
continuous. Similar laws will be developed for the other type constructors and
put into the form of a kinding system for semi-continuous types.
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Before we dive into the mathematics, let us make sure that semi-continuity is
really necessary for termination. A type which is not upper semi-continuous is
A(ı) = (Natω → Natı) → Natω (see Sect. 4.2). Assuming we can nevertheless use
this type for a recursive function, we can construct a loop. First, define successor
succ : ∀ı. Natı → Natı+1 and predecessor pred : ∀ı. Natı+1 → Natı. Note that the
size index is an upper bound and ω is the biggest such bound for the case of
natural numbers, thus, we have the subtype relations Natı ≤ Natı+1 ≤ · · · ≤
Natω ≤ Natω+1 ≤ Natω .

We make the following definitions:

A(ı) := (Natω → Natı) → Natω

shift : ∀ı. (Natω → Natı+1)
→ Natω → Natı

shift := λgλn. pred (g (succ n))

f : ∀ı. A(ı) → A(ı + 1)
f := λloopλg. loop (shift g)

loop : ∀ı. A(ı)
loop := fix f

Since Natω → Nat0 is empty, A passes the bottom check. Still, instantiating
types to succ : Natω → Natω and loop : (Natω → Natω) → Natω we convince
ourselves that the execution of loop succ indeed runs forever.

1.1 Related Work and Contribution

Ensuring termination through typing is quite an old idea, just think of type
systems for the λ-calculus like simple types, System F, System Fω , or the Calculus
of Constructions, which all have the normalization property. These systems have
been extended by special recursion operators, like primitive recursion in Gödel’s
T, or the recursors generated for inductive definitions in Type Theory (e. g., in
Coq), that preserve normalization but limit the definition of recursive functions
to special patterns, namely instantiations of the recursion scheme dictated by
the recursion operator. Taming the general recursion operator fix through typing,
however, which allows the definition of recursive functions in the intuitive way
known from functional programming, is not yet fully explored. Mendler [15]
pioneered this field; he used a certain polymorphic typing of the functional f to
obtain primitive (co)recursive functions over arbitrary datatypes. Amadio and
Coupet-Grimal [6] and Giménez [13] developed Mendler’s approach further, until
a presentation using ordinal-indexed (co)inductive types was found and proven
sound by Barthe et al. [7]. The system λ̂ presented in loc. cit. restricts types
A(ı) of recursive functions to the shape µıF → C(ı) where the domain must
be an inductive type µıF indexed by ı and the codomain a type C(ı) that is
monotonic in ı. This criterion, which has also been described by the author [2],
allows for a simple soundness proof in the limit case of the transfinite induction,
but excludes interesting types like the considered

Eq (GRoseı FA) = GRoseı FA → GRoseı FA → Bool

which has an antitonic codomain C(ı) = GRoseı FA → Bool. The author has
in previous work widened the criterion, but only for a type system without
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polymorphism [1]. Other recent works on type-based termination [9,10,8] stick
to the restriction of λ̂ . Xi [19] uses dependent types and lexicographic measures
to ensure termination of recursive programs in a call-by-value language, but his
indices are natural numbers instead of ordinals which excludes infinite objects
we are interested in.

Closest to the present work is the sized type system of Hughes, Pareto, and
Sabry [14], Synchronous Haskell [16], which admits ordinal indices up to ω. Index
quantifiers as in ∀ı. A(ı) range over natural numbers, but can be instantiated to
ω if A(ı) is ω-undershooting. Sound semantical criteria for ω-undershooting types
are already present, but in a rather ad-hoc manner. We cast these criteria in the
established mathematical framework of semi-continuous functions and provide
a syntactical implementation in form of a derivation system. Furthermore, we
also allow ordinals up to the ωth uncountable and infinitely branching inductive
types that invalidate some criteria for the only finitely branching tree types
in Synchronous Haskell. Finally, we allow polymorphic recursion, impredicative
polymorphism and higher-kinded inductive and coinductive types such as GRose.
This article summarizes the main results of the author’s dissertation [4].

2 Overview of System Fω̂

In this section we introduce Fω ,̂ an a posteriori strongly normalizing extension of
System Fω with higher-kinded inductive and coinductive types and (co)recursion
combinators. Figure 1 summarizes the syntactic entities. Function kinds are
equipped with polarities p [18], which are written before the domain or on top
of the arrow. Polarity + denotes covariant constructors, − contravariant con-
structors and ◦ mixed-variant constructors [12]. It is well-known that in order
to obtain a normalizing language, any constructor underlying an inductive type
must be covariant [15], hence, we restrict formation of least fixed-points µa

κF to
covariant F s. (Abel [3] and Matthes [5] provide more explanation on polarities.)

The first argument, a, to µ, which we usually write as superscript, denotes
the upper bound for the height of elements in the inductive type. The index a
is a constructor of kind ord and denotes an ordinal; the canonical inhabitants of
ord are given by the grammar

a ::= ı | s a | ∞

with ı an ordinal variable. If a actually denotes a finite ordinal (a natural num-
ber), then the height is simply the number of data constructors on the longest
path in the tree structure of any element of µaF . Since a is only an upper bound,
µaF is a subtype of µbF , written µaF ≤ µbF for a ≤ b, meaning that µ is co-
variant in the index argument. Finally, F ≤ F ′ implies µaF ≤ µaF ′, so we get
the kinding

µκ : ord +→ (κ +→ κ) +→ κ

for the least fixed-point constructor. The kind κ is required to be pure, i. e.,
a kind not mentioning ord, for cardinality reasons. Only then it is possible to
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Polarities, kinds, constructors, kinding contexts.

p ::= + | − | ◦ polarity
κ ::= ∗ | ord | pκ → κ′ kind
κ∗ ::= ∗ | pκ∗ → κ′

∗ pure kind
a, b, A, B, F, G ::= C | X | λX :κ. F | F G (type) constructor
C ::= 1 | + | × | → | ∀κ | µκ∗ | νκ∗ | s | ∞ constructor constants
∆ ::= � | ∆, X :pκ kinding context

Constructor constants and their kinds (κ p→ κ′ means pκ → κ′).

1 : ∗ unit type
+ : ∗ +→ ∗ +→ ∗ disjoint sum
× : ∗ +→ ∗ +→ ∗ cartesian product
→ : ∗ −→ ∗ +→ ∗ function space
∀κ : (κ ◦→ ∗) +→ ∗ quantification
µκ∗ : ord +→ (κ∗

+→ κ∗)
+→ κ∗ inductive constructors

νκ∗ : ord −→ (κ∗
+→ κ∗)

+→ κ∗ coinductive constructors
s : ord +→ ord successor of ordinal
∞ : ord infinity ordinal

Objects (terms), values, evaluation frames, typing contexts.

r, s, t ::= c | x | λxt | r s term
c ::= () | pair | fst | snd | inl | inr | case | in | out | fixµ

n | fixν
n constant (n ∈ N)

v ::= λxt | pair t1 t2 | inl t | inr t | in t | c | pair t | fix∇ns t1..m value (m ≤ n)
e(_) ::= _ s | fst _ | snd_ | case _ | out _ | fixµ

n s t1..n _ evaluation frame
E ::= Id | E ◦ e evaluation context
Γ ::= � | Γ, x :A | Γ, X :pκ typing context

Reduction t −→ t′.

(λxt) s −→ [s/x]t
fst (r, s) −→ r
snd (r, s) −→ s
case (inl r) −→ λxλy. x r
case (inr r) −→ λxλy. y r

out (in r) −→ r
fixµ

n s t1..n (in t) −→ s (fixµ
n s) t1..n (in t)

out (fixν
n s t1..n) −→ out (s (fixν

n s) t1..n)

+ closure under all term constructs

Fig. 1. Fω :̂ Syntax and operational semantics

estimate a single closure ordinal ∞ at which the fixed-point is reached for all
inductive types. We have

µ∞F = µ∞+1F,
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where ∞+1 is a shorthand for s∞, s : ord +→ ord being the successor on ordinals.
If ord was allowed in the kind of a fixed-point, the closure ordinal of this fixed-
point would depend on which ordinals are in the semantics of ord, which in turn
would depend on what the closure ordinal for all fixed-points was—a vicious
cycle. However, I do not see a practical example where one want to construct
the fixed point of a sized-type transformer F : (ord ◦→ κ) +→ (ord ◦→ κ). Note
that this does not exclude fixed-points inside fixed-points, such as

BTreeı,j A = µıλX. 1 + X × (µjλY. 1 + A × X × Y ),

“B-trees” of height < ı with each node containing < j keys of type A.
Because ∞ is the closure ordinal, the equation s ∞ = ∞ makes sense. Equality

on type constructors is defined as the least congruent equivalence relation closed
under this equation and βη.

Example 1 (Some sized types).

Nat : ord +→ ∗
Nat := λı. µıλX. 1 + X

List : ord +→ ∗ +→ ∗
List := λıλA. µıλX. 1 + A × X

Stream : ord −→ ∗ +→ ∗
Stream := λıλA. νıλX. A × X

GRose : ord +→ (∗ +→ ∗) +→ ∗ +→ ∗
GRose := λıλFλA. µıλX. 1 + A × F X

Tree : ord +→ ∗ −→ ∗ +→ ∗
Tree := λıλBλA. GRoseı (λX. B → X)A

The term language of Fω̂ is the λ-calculus plus the standard constants to
introduce and eliminate unit (1), sum (+), and product (×) types. Further,
there is folding, in, and unfolding, out, of (co)inductive types. Let κ = pκ → ∗
a pure kind, F : +κ → κ, Gi : κi for 1 ≤ i ≤ |κ|, a : ord, and ∇ ∈ {µ, ν}, then
we have the following (un)folding rules:

ty-fold
Γ � t : F (∇a

κ F )G

Γ � in t : ∇a+1
κ F G

ty-unfold
Γ � r : ∇a+1

κ F G

Γ � out r : F (∇a
κ F )G

Finally, there are fixed-point combinators fixµ
n and fixν

n for each n ∈ N on the term
level. The term fixµ

n s denotes a recursive function with n leading non-recursive
arguments; the n + 1st argument must be of an inductive type. Similarly, fixν

n s
is a corecursive function which takes n arguments and produces an inhabitant
of a coinductive type.

One-step reduction t −→ t′ is defined by the β-reduction axioms given in
Figure 1 plus congruence rules. Interesting are the reduction rules for recursion
and corecursion:

fixµ
n s t1..n (in t) −→ s (fixµ

n s) t1..n (in t)
out (fixν

n s t1..n) −→ out (s (fixν
n s) t1..n)

A recursive function is only unfolded if its recursive argument is a value, i. e.,
of the form in t. This condition is required to ensure strong normalization; it is
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present in the work of Mendler [15], Giménez [13], Barthe et al. [7], and the
author [2]. Dually, corecursive functions are only unfolded on demand, i. e., in
an evaluation context, the matching one being out_.

As pointed out in the introduction, recursion is introduced by the rule

ty-rec
Γ � A fix∇n-adm Γ � a : ord

Γ � fix∇n : (∀ı :ord. A ı → A (ı + 1)) → Aa
.

Herein, ∇ stands for µ or ν, and the judgement A fix∇n-adm makes sure type A is
admissible for (co)recursion, as discussed in the introduction. In the following,
we will find out which types are admissible.

3 Semantics

In this section, we provide an interpretation of types as saturated sets of strongly
normalizing terms. Let S denote the set of strongly normalizing terms. We define
safe (weak head) reduction by these axioms:

(λxt) s � [s/x]t if s ∈ S
fst (pair r s) � r if s ∈ S
snd (pair r s) � s if r ∈ S
out (in r) � r

case (inl r) � λxλy. x r
case (inr r) � λxλy. y r
fixµ

ns t1..n (in r) � s (fixµ
ns) t1..n (in r)

out (fixν
ns t1..n) � out (s (fixν

ns) t1..n)

Additionally, we close safe reduction under evaluation contexts and transitivity:

E(t) � E(t′) if t � t′

t1 � t3 if t1 � t2 and t2 � t3

The relation is defined such that S is closed under �-expansion, meaning t� t′ ∈
S implies t ∈ S. Let �A denote the closure of term set A under �-expansion. In
general, the closure of term set A is defined as

A = �(A ∪ {E(x) | x variable, E(x) ∈ S}).

A term set is closed if A = A. The least closed set is the set of neutral terms
N := ∅ �= ∅. Intuitively, a neutral term never reduces to a value, it necessarily
has a free variable, and it can be substituted into any terms without creating a
new redex. A term set A is saturated if A is closed and N ⊆ A ⊆ S.

Interpretation of kinds. The saturated sets form a complete lattice [[∗]] with
least element ⊥∗ := N and greatest element �∗ := S. It is ordered by inclusion
�∗ := ⊆ and has set-theoretic infimum inf∗ :=

⋂

and supremum sup∗ :=
⋃

.
Let [[ord]] := O where O = [0; �ord] is an initial segment of the set-theoretic or-
dinals. With the usual ordering on ordinals, O constitutes a complete lattice as
well. Function kinds [[◦κ → κ′]] := [[κ]] → [[κ′]] are interpreted as set-theoretic
function spaces; a covariant function kind denotes just the monotonic functions
and a contravariant kind the antitonic ones. For all function kinds, ordering is
defined pointwise: F �pκ→κ′ F ′ :⇐⇒ F(G) �κ′ F ′(G) for all G ∈ [[κ]]. Simi-
larly, ⊥pκ→κ′

(G) := ⊥κ′
is defined pointwise, and so are �pκ→κ′

, infpκ→κ′
, and

suppκ→κ′
.
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Limits and iteration. In the following λ ∈ O will denote a limit ordinal. (We will
only consider proper limits, i. e., λ �= 0.) For L a complete lattice and f ∈ O → L
we define:

lim infα→λ f(α) := supα0<λ infα0≤α<λ f(α)
lim supα→λ f(α) := infα0<λ supα0≤α<λ f(α)

Using infλ f as shorthand for infα<λ f(α), and analogous shorthands for sup,
lim inf, and lim sup, we have infλ f � lim infλ f � lim supλ f � supλ f . If f is
monotone, then even lim infλ f = supλ f , and if f is antitone, then infλ f =
lim supλ f .

If f ∈ L → L and g ∈ L, we define transfinite iteration fα(g) by recursion on
α as follows:

f0 (g) := g
fα+1(g) := f(fα(g))
fλ (g) := lim supα→λ fα(g)

For monotone f , we obtain the usual approximants of least and greatest fixed-
points as µαf = fα(⊥) and ναf = fα(�).

Closure ordinal. Let �n be a sequence of cardinals defined by �0 = |N| and
�n+1 = |P(�n)|. For a pure kind κ, let |κ| be the number of ∗s in κ. Since
[[∗]] consists of countable sets, |[[∗]]| ≤ |P(N)| = �1, and by induction on κ,
|[[κ]]| ≤ �|κ|+1. Since an (ascending or descending) chain in [[κ]] is shorter than
|[[κ]]|, each fixed point is reached latest at the |[[κ]]|th iteration. Hence, the closure
ordinal for all (co)inductive types can be approximated from above by �ord = �ω .

Interpretation of types. For r a term, e an evaluation frame, and A a term set,
let r ·A = {r s | s ∈ A} and e−1A = {r | e(r) ∈ A}. For saturated sets A, B ∈ [[∗]]
we define the following saturated sets:

A + B := inl · A ∪ inr · B

A × B := (fst _)−1A ∩ (snd _)−1B

A → B :=
⋂

s∈A (_ s)−1B

1 := {()}

Aµ := in · A

Aν := (out_)−1A

The last two notations are lifted pointwise to operators F ∈ [[pκ → κ′]] by setting
F∇(G) = (F(G))∇, where ∇ ∈ {µ, ν}.

For a constructor constant C :κ, the semantics [[C]] ∈ [[κ]] is defined as follows:

[[+]](A, B ∈ [[∗]]) := A + B
[[×]](A, B ∈ [[∗]]) := A × B
[[→]](A, B ∈ [[∗]]) := A → B
[[µκ]](α)(F ∈ [[κ]] +→ [[κ]]) := µαFµ

[[νκ]](α)(F ∈ [[κ]] +→ [[κ]]) := ναFν

[[∀κ]](F ∈ [[κ]] → [[∗]]) :=
⋂

G∈[[κ]] F(G)

[[1]] := 1
[[∞]] := �ord

[[s]](�ord) := �ord

[[s]](α < �ord) := α + 1
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We extend this semantics to constructors F in the usual way, such that if ∆ �
F : κ and θ(X) ∈ [[κ′]] for all (X :pκ′) ∈ ∆, then [[F ]]θ ∈ [[κ]].

Now we can compute the semantics of types, e. g., [[Natı]](ı
→α) = Natα =
µα(X �→ (1 + X )µ). Similarly, the semantical versions of List, Stream, etc. are
denoted by List , Stream, etc.

Semantic admissibility and strong normalization. For the main theorem to fol-
low, we assume semantical soundness of our yet to be defined syntactical criterion
of admissibility: If Γ � A fix∇n-adm and θ(X) ∈ [[κ]] for all (X : κ) ∈ [[Γ ]] then
A := [[A]]θ ∈ [[ord]] → [[∗]] has the following properties:

1. Shape: A(α) =
⋂

k∈K B1(k, α) → . . . → Bn(k, α) → B(k, α) for some
K and some B1, . . . , Bn, B ∈ K × [[ord]] → [[∗]]. In case ∇ = µ, B(k, α) =
I(k, α)µ → C(k, α) for some I, C. Otherwise, B(k, α) = C(k, α)ν for some C.

2. Bottom-check: I(k, 0)µ = ⊥∗ in case ∇ = µ and C(k, 0)ν = �∗ in case ∇ = ν.
3. Semi-continuity: lim supα→λ A(α) ⊆ A(λ) for all limit ordinals λ ∈ [[ord]] \

{0}.

Let tθ denote the simultaneous substitution of θ(x) for each x ∈ FV(t) in t.

Theorem 1 (Type soundness). Let θ(X) ∈ [[κ]] for all (X : κ) ∈ Γ and
θ(x) ∈ [[A]]θ for all (x :A) ∈ Γ . If Γ � t : B then tθ ∈ [[B]]θ.

Corollary 1 (Strong normalization). If Γ � t : B then t is strongly
normalizing.

4 Semi-continuity

As motivated in the introduction, only types C ∈ [[ord]] → [[∗]] with infλ C �
C(λ) can be admissible for recursion. Under which conditions on A and B can
a function type A(α) → B(α) be admissible? It shows that the first choice
infλ B � B(λ) is a requirement too strong: To show infα<λ(A(α) → B(α)) �
A(λ) → B(λ) we would need A(λ) � infλ A, which is not even true for A = Nat
at limit ω. However, each type C with lim supλ C � C(λ) also fulfills infλ C � C(λ),
and the modified condition distributes better over function spaces.

Lemma 1. If A(λ) � lim infλ A and lim supλ B � B(λ) then lim supλ(A(α) →
B(α)) � A(λ) → B(λ).
The conditions on A and B in the lemma are established mathematical terms:
They are subconcepts of continuity. In this article, we consider only functions
f ∈ O → L from ordinals into some lattice L. For such f , the question whether f
is continuous in point α only makes sense if α is a limit ordinal, because only then
there are infinite non-stationary sequences which converge to α; and since ev-
ery strictly decreasing sequence is finite on ordinals (well-foundedness!), it only
makes sense to look at ascending sequences, i. e., approaching the limit from
the left. Hence, function f is upper semi-continuous in λ, if lim supλ f � f(λ),
and lower semi-continuous, if f(λ) � lim infλ f . If f is both upper and lower
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semi-continuous in λ, then it is continuous in λ (then upper and lower limit
coincide with f(λ)).

4.1 Positive Results

Basic semi-continuous types. Obviously, any monotone function is upper semi-
continuous, and any antitone function is lower semi-continuous. Now consider a
monotone f with f(λ) = supλ f , as it is the case for an inductive type f(α) =
µαF (where F does not depend on α). Since for monotone f , supλ f = lim infλ f ,
f is lower semi-continuous. This criterion can be used to show upper semi-
continuity of function types such as Eq(GRoseı FA) (see introduction) and, e. g.,

C(α) = Natα → Listα(A) → C′(α)

where C′(α) is any monotonic type-valued function, for instance, Listα(Natα),
and A is some constant type: The domain types, Natα and Listα(A), are lower
semi-continuous according the just established criterion and the monotonic co-
domain C′(α) is upper semi-continuous, hence, Lemma 1 proves upper semi-con-
tinuity of C. Note that this criterion fails us if we replace the domain Listα(A)
by Listα(Natα), or even µα(F(Natα)) for some monotone F , since it is not
immediately obvious that

µω(F(Natω)) = sup
α<ω

µα(F(sup
β<ω

Natβ)) ?= sup
γ<ω

µγ(F(Natγ)).

However, domain types where one indexed inductive type is inside another in-
ductive type are useful in practice, see Example 3. Before we consider lower
semi-continuity of such types, let us consider the dual case.

For f(α) = ναF , F not dependent on α, f is antitone and f(λ) = infλ f . An
antitone f guarantees infλ f = lim supλ f , so f is upper semi-continuous. This
establishes upper semi-continuity of a type involved in stream-zipping,

Streamα(A) → Streamα(B) → Streamα(C).

The domain types are antitonic, hence lower semi-continuous, and the coinduc-
tive codomain is upper semi-continuous. Upper semi-continuity of Streamα(Natα)
and similar types is not yet covered, but now we will develop concepts that allow
us to look inside (co)inductive types.

Semi-continuity and (co)induction. Let f ∈ L → L′. We say lim sup pushes
through f , or f is lim sup-pushable, if for all g ∈ O → L, lim supα→λ f(g(α)) �
f(lim supλ g). Analogously, f is lim inf-pullable, or lim inf can be pulled out of f ,
if for all g, f(lim infλ g) � lim infα→λ f(g(α)). These notions extend straightfor-
wardly to fs with several arguments.

Lemma 2 (Facts about limits).

1. lim supα→λ f(α, α) � lim supβ→λ lim supγ→λ f(β, γ).
2. lim infβ→λ lim infγ→λ f(β, γ) � lim infα→λ f(α, α).
3. lim supα→λ infi∈I f(α, i) � infi∈I lim supα→λ f(α, i).
4. supi∈I lim infα→λ f(α, i) � lim infα→λ supi∈I f(α, i).
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Strictly positive contexts: Π ::= � | Π,X :+κ∗.

Semi-continuity ∆; Π 	ıq F : κ for q ∈ {⊕, �}.

cont-co
∆, ı :+ord 	 F : κ p ∈ {+, ◦}

∆, ı :pord; Π 	ı⊕ F : κ
cont-c’tra

∆, ı :−ord 	 F : κ p ∈ {−, ◦}
∆, ı :pord; Π 	ı� F : κ

cont-in
∆ 	 F : κ

∆, ı :pord; Π 	ıq F : κ
cont-var

X :pκ ∈ ∆, Π p ∈ {+, ◦}
∆; Π 	ıq X : κ

cont-∀ ∆; Π 	ı⊕ F : ◦κ → ∗
∆; Π 	ı⊕ ∀κF : ∗ cont-abs

∆, X :pκ;Π 	ıq F : κ′

∆; Π 	ıq λXF : pκ → κ′ X �= ı

cont-app
∆, ı :p′ord; Π 	ıq F : pκ → κ′ p−1∆ 	 G : κ

∆, ı :p′ord; Π 	ıq F G : κ′

cont-sum
∆; Π 	ıq A,B : ∗

∆; Π 	ıq A + B : ∗ cont-prod
∆; Π 	ıq A,B : ∗

∆; Π 	ıq A × B : ∗

cont-arr
−∆; � 	ı� A : ∗ ∆; Π 	ı⊕ B : ∗

∆; Π 	ı⊕ A → B : ∗

cont-mu
∆; Π,X :+κ∗ 	ı� F : κ∗ ∆ 	ı� a : ord

∆; Π 	ı� µa
κ∗λXF : κ∗

cont-nu
∆; Π,X :+κ∗ 	ı⊕ F : κ∗ a ∈ {∞, snj | (j :pord) ∈ ∆ with p ∈ {+, ◦}}

∆; Π 	ı⊕ νa
κ∗λXF : κ∗

Fig. 2. Fω :̂ Semi-continuous constructors

Fact 3 states that lim sup pushes through infimum and, thus, justifies rule
cont-∀ in Fig. 2 (see Sect. 5). The dual fact 4 expresses that lim inf can be
pulled out of a supremum.

Lemma 3. Binary sums + and products × and the operations (−)µ and (−)ν

are lim sup-pushable and lim inf-pullable.

Using monotonicity of the product constructor, the lemma entails that A(α) ×
B(α) is upper/lower semi-continuous if A(α) and B(α) are. This applies also for
+ .

A generalization of Lemma 1 is:

Lemma 4 (lim sup through function space).
lim supα→λ (A(α) → B(α)) � (lim infλ A) → lim supλ B.

Now, to (co)inductive types. Let φ ∈ O → O.

Lemma 5. µlim infλ φ = lim infα→λ µφ(α) and lim supα→λ νφ(α) = ν lim infλ φ.
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Lemma 6. For α ∈ O, let Fα ∈ L
+→ L be lim inf-pullable and Gα ∈ L

+→ L
be lim sup-pushable. Then for all β ∈ O, µβ(lim infλ F) � lim infα→λ µβFα and
lim supα→λ νβGα � νβ(lim supλ G).

Proof. By transfinite induction on β.

Corollary 2 (Limits and (co)inductive types).

1. µlim infλ φ lim infλ F � lim infα→λ µφ(α)Fα,
2. lim supα→λ νφ(α)Gα � ν lim infλ φ lim supλ G.

Proof. For instance, the second inclusion can be derived in three steps using
Lemma 2.1, Lemma 5, and Lemma 6.

Now, since Gα(X ) = (Natα × X )ν is lim sup-pushable, we have can infer up-
per semi-continuity of Streamα(Natα) = ναGα. Analogously, we establish lower
semi-continuity of Listα(Natα).

4.2 Negative Results

Function space and lower semi-continuity. One may wonder whether Lemma 1
can be dualized, i. e., does upper semi-continuity of A and lower semi-continuity
of B entail lower semi-continuity of C(α) = A(α) → B(α)? The answer is no,
e. g., consider C(α) = Natω → Natα. Although A(α) = Natω is trivially up-
per semi-continuous, and B(α) = Natα is lower semi-continuous, C is not lower
semi-continuous: For instance, the identity function is in C(ω) but in no C(α)
for α < ω, hence, also not in lim infω C. And indeed, if this C was lower semi-
continuous, then our criterion would be unsound, because then by Lemma 1 the
type (Natω → Natα) → Natω, which admits a looping function (see introduc-
tion), would be upper semi-continuous.

Inductive types and upper semi-continuity. Pareto [16] proves that inductive
types are (in our terminology) lim sup-pushable. His inductive types denote
only finitely branching trees, but we also consider infinite branching, arising
from function space embedded in inductive types. In my thesis [4, Sect. 5.4.3] I
show that infinitely branching inductive data types do not inherit upper semi-
continuity from their defining body. But remember that inductive types can still
be upper semi-continuous if they are covariant in their size index.

5 A Kinding System for Semi-continuity

We turn the results of the last section into a calculus and define a judgement
∆; Π �ıq F : κ, where ı is an ordinal variable (ı :pord) ∈ ∆, the bit q ∈ {�, ⊕}
states whether the constructor F under consideration is lower (�) or upper (⊕)
semi-continuous, and Π is a context of strictly positive constructor variables
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X :+κ′. The complete listing of rules can be found in Figure 2; in the following,
we discuss a few.

cont-co
∆, ı :+ord � F : κ p ∈ {+, ◦}

∆, ı :pord; Π �ı⊕ F : κ

If ı appears positively in F , then F is trivially upper semi-continuous. In the con-
clusion we may choose to set p = ◦, meaning that we forget that F is monotone
in ı.

cont-arr
−∆; � �ı� A : ∗ ∆; Π �ı⊕ B : ∗

∆; Π �ı⊕ A → B : ∗
This rule incarnates Lemma 1. Note that, because A is to the left of the arrow,
the polarity of all ordinary variables in A is reversed, and A may not contain
strictly positive variables.

cont-nu
∆; Π, X :+κ∗ �ı⊕ F : κ∗

∆; Π �ı⊕ νaλX :κ∗. F : κ∗

Rule cont-nu states that strictly positive coinductive types are upper semi-
continuous. The ordinal a must be ∞ or snj for some j :ord ∈ ∆ (which may also
be identical to ı).

Theorem 2 (Soundness of Continuity Derivations). Let θ a valuation of
the variables in ∆ and Π, (X :+κ′) ∈ Π, G ∈ [[ord]] → [[κ′]], and λ ∈ [[ord]] a limit
ordinal.

1. If ∆; Π �ı� F : κ then
(a) [[F ]]θ[ı
→λ] � lim infα→λ[[F ]]θ[ı
→α], and
(b) [[F ]]θ[X 
→lim infλ G] � lim infα→λ[[F ]]θ[X 
→G(α)].

2. If ∆; Π �ı⊕ F : κ then
(a) lim supα→λ[[F ]]θ[ı
→α] � [[F ]]θ[ı
→λ], and
(b) lim supα→λ[[F ]]θ[X 
→G(α)] � [[F ]]θ[X 
→lim supλ G]

Proof. By induction on the derivation [4, Sect. 5.5]. The soundness of cont-nu
hinges on the fact that strictly positive coinductive types close at ordinal ω.

Now we are able to formulate the syntactical admissibility criterion for types of
(co)recursive functions.

Γ � (λı. ∀X :κ.B1 → · · · → Bn → µıFH → C) fixµ
n-adm

iff Γ, ı :◦ord, X :κ; � �ı⊕ B1..n → µıFH → C : ∗

Γ � (λı. ∀X :κ.B1 → · · · → Bn → νıFH) fixν
n-adm

iff Γ, ı :◦ord, X :κ; � �ı⊕ B1..n → νıFH : ∗

It is easy to check that admissible types fulfill the semantic criteria given at the
end of Section 3.
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Example 2 (Inductive type inside coinductive type). Rule cont-nu allows the
type system to accept the following definition, which assigns an informative
type to the stream nats of all natural numbers in ascending order:

mapStream : ∀A∀B. (A → B) → ∀ı. StreamıA → StreamıB

nats : ∀ı. Streamı Natı

nats := fixν
0λnats . 〈zero, mapStream succ nats〉

Example 3 (Inductive type inside inductive type). In the following, we describe
breadth-first traversal of rose (finitely branching) trees whose termination is
recognized by Fω .̂

Rose : ord +→ ∗ +→ ∗
Rose := λıλA. GRoseı List∞ A = λıλA. µı

∗λX. A × List∞X

The step function, defined by induction on j, traverses a list of rose trees of
height < ı + 1 and produces a list of the roots and a list of the branches (height
< ı).

step : ∀j∀A∀ı. Listj(Roseı+1 A) → Listj A × List∞(Roseı A)

step := fixµ
0λstepλl. match l with
nil �→ 〈nil, nil〉
cons 〈a, rs ′〉 rs �→ match step rs with

〈as , rs ′′〉 �→ 〈cons a as , append rs ′ rs ′′〉
Now, bf iterates step on a non-empty forest. It is defined by induction on ı.

bf : ∀ı∀A. Roseı A → List∞(Roseı A) → List∞A
bf := fixµ

0λbf λrλrs . match step (cons r rs) with
〈as , nil〉 �→ as
〈as , cons r′ rs ′〉 �→ append as (bf r′ rs ′)

Function bf terminates because the recursive-call trees in forest cons r′ rs are
smaller than the input trees in forest cons r rs . This information is available
to the type system through the type of step. The type of bf is admissible for
recursion since List∞ (Roseı A) is lower semi-continuous in ı—thanks to Cor. 2
and rule cont-mu.

6 Conclusions

We have motivated the importance of semi-continuity for the soundness of type-
based termination checking, explored the realm of semi-continuous functions
from ordinals to semantical types, and developed a calculus for semi-continuous
types. We have seen a few interesting examples involving semi-continuous types,
many more can be found in the author’s thesis [4, Ch. 6]. These examples cannot
be handled by type-based termination à la Barthe et al. [7,8], but our develop-
ments could be directly incorporated into their calculus.
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In previous work [1], I have already presented a calculus for admissible recur-
sion types. But the language had neither polymorphism, higher-kinded types,
nor semi-continuous types inside each other (Streamı Natı). Hughes, Pareto, and
Sabry [14] have also given criteria for admissible types similar to ours, but rather
ad-hoc ones, not based on the mathematical concept of semi-continuity. Also, a
crucial difference is that we also treat infinitely branching data structures. To
be fair, I should say that their work has been a major source of inspiration for
me.

As a further direction of research, I propose to develop a kinding system
where semi-continuity is first class, i. e., one can abstract over semi-continuous
constructors, and kind arrows can carry the corresponding polarities � or ⊕.
First attempts suggest that such a calculus is not straightforward, and more
fine-grained polarity system will be necessary.
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