
Satisfiability and Finite Model Property

for the Alternating-Time μ-Calculus�

Sven Schewe and Bernd Finkbeiner

Universität des Saarlandes, 66123 Saarbrücken, Germany
{schewe, finkbeiner}@cs.uni-sb.de

Abstract. This paper presents a decision procedure for the alternating-
time μ-calculus. The algorithm is based on a representation of
alternating-time formulas as automata over concurrent game structures.
We show that language emptiness of these automata can be checked in
exponential time. The complexity of our construction meets the known
lower bounds for deciding the satisfiability of the classic μ-calculus. It
follows that the satisfiability problem is EXPTIME-complete for the
alternating-time μ-calculus.

1 Introduction

In the design of distributed protocols, we are often interested in the strategic
abilities of certain agents. For example, in a contract-signing protocol, it is im-
portant to ensure that while Alice and Bob can cooperate to sign a contract,
Bob never has a strategy to obtain Alice’s signature unless, at the same time,
Alice has a strategy to obtain Bob’s signature as well (cf. [10]). Such properties
can be expressed in the alternating-time μ-calculus (AMC) [1], which extends
the classic μ-calculus with modalities that quantify over the strategic choices of
a group of agents. The models of AMC are a special type of labeled transition
systems, called concurrent game structures, where each transition results from a
set of decisions, one for each agent.

In this paper, we present the first decision procedure for the satisfiability
of AMC formulas. The satisfiability problem asks for a given AMC formula ϕ
whether there exists a concurrent game structure that satisfies ϕ. Previous re-
search has focused on the model checking problem [1,2], which asks whether a
given concurrent game structure satisfies its specification. By contrast, our pro-
cedure checks whether a specification can be implemented at all. For example,
we can automatically prove the classic result that it is impossible to implement
fair contract-signing without a trusted third party [6].

We introduce an automata-theoretic framework for alternating-time logics.
Automata over concurrent game structures (ACGs) are a variant of alternating

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 591–605, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

592 S. Schewe and B. Finkbeiner

tree automata, where the atoms in the transition function do not refer to in-
dividual successors in the input structure, but instead quantify universally or
existentially over all successors that result from the agents’ decisions. Specifi-
cally, a universal atom (�, A′) refers to all successor states for some decision of
the agents in a set A′, and an existential atom (♦, A′) refers to some successor
state for each decision of the agents not in A′. In this way, the automaton can run
on game structures with arbitrary, even infinite, branching degree. Every AMC
formula can be translated into an automaton that accepts exactly the models
of the formula. Satisfiability of AMC formulas thus corresponds to language
nonemptiness of ACGs.

The core result of the paper is the finite model property for ACGs. We first
prove that, given any game structure accepted by an ACG G, we can find a
bounded game structure that is also accepted by G. In the bounded game struc-
ture, the number of possible decisions of each agent is limited by some constant
m, determined by the size of G.

The emptiness problem of ACGs thus reduces to the emptiness problem of
alternating tree automata and, since non-empty automata over finitely-branching
structures always accept some finite structure [15,14], there must exist a finite
game structure in the language of G. The drawback of this reduction is that the
trees accepted by the alternating tree automaton branch over the decisions of all
agents: the number of directions is therefore exponential in the number of agents.
Since the emptiness problem of alternating tree automata is exponential in the
number of directions, this results in a double-exponential decision procedure.

We show that it is possible to decide emptiness in single-exponential time.
Instead of constructing an alternating automaton that accepts exactly the
m-bounded game structures in the language of the ACG, we construct a uni-
versal automaton that only preserves emptiness. Unlike alternating automata,
universal automata can be reduced to deterministic automata with just a single
exponential increase in the number of states. For deterministic automata, the
complexity of the emptiness problem is only linear in the number of directions.

Our approach is constructive and yields a tight complexity bound: the satis-
fiability problem for AMC is EXPTIME-complete. If the AMC formula is sat-
isfiable, we can synthesize a finite model within the same complexity bound.
Since AMC subsumes the alternating-time temporal logic ATL* [4,1], we obtain
a decision procedure for this logic as well.

Related work. The automata-theoretic approach to the satisfiability problem
was initiated in the classic work by Büchi, McNaughton, and Rabin on monadic
second-order logic [3,13,15]. For linear-time temporal logic, satisfiability can be
decided by a translation to automata over infinite words [18]; for branching-time
logics, such as CTL* and the modal μ-calculus, by a translation to automata
over infinite trees that branch according to inputs and nondeterministic choices
[12,5,11,20]. For alternating-time temporal logics, previous decidability results
have been restricted to ATL [17,19], a sublogic of ATL*.

Automata over concurrent game structures, introduced in this paper, pro-
vide an automata-theoretic framework for alternating-time logics. Automata

Satisfiability and Finite Model Property for the AMC 593

over concurrent game structures extend symmetric alternating automata [20],
which have been proposed as the automata-theoretic framework for the classic
μ-calculus. Symmetric automata branch universally into all successors or exis-
tentially into some successor.

2 Preliminaries

2.1 Concurrent Game Structures

Concurrent game structures [1] generalize labeled transition systems to a set-
ting with multiple agents. A concurrent game structure (CGS) is a tuple
C = (P,A, S, s0, l, Δ, τ), where

– P is a finite set of atomic propositions,
– A is a finite set of agents,
– S is a set of states, with a designated initial state s0 ∈ S,
– l : S → 2P is a labeling function that decorates each state with a subset of

the atomic propositions,
– Δ is a set of possible decisions for every agent, and
– τ : S ×ΔA → S is a transition function that maps a state and the decisions

of the agents to a new state.

A concurrent game structure is called bounded if the set Δ of decisions is finite,
m-bounded if Δ = Nm = {1, . . . ,m}, and finite if S and Δ are finite.

Example. As a running example, we introduce a simple CGS C0 with an
infinite number of states and an infinite number of possible decisions. In every
step, two agents each pick a real number and move to the state d2

2 − d1
2,

where d1 is the decision of agent a1 and d2 is the decision of agent a2. We
use two propositions, p1 and p2, where p1 identifies the non-negative numbers
and p2 the rational numbers. Let C0 = (P,A, S, s0, l, Δ, τ), with P = {p1, p2},
A = {a1, a2}, S = R, s0 = 0, p1 ∈ l(s) iff s ≥ 0, p2 ∈ l(s) iff s ∈ Q, Δ = R,
and τ : (s, (d1, d2)) �→ d2

2 − d1
2. It is easy to see that in all states of this CGS,

agent a1 can enforce that p1 eventually always holds true. Additionally, if agent
a1 decides before agent a2, agent a2 can always respond with a decision such
that p2 holds in the following state.

2.2 Alternating-Time μ-Calculus

The alternating-time μ-calculus (AMC) extends the classical μ-calculus with
modal operators which express that an agent or a coalition of agents has a
strategy to accomplish a goal. AMC formulas are interpreted over concurrent
game structures.

AMC Syntax. AMC contains the modality �A′ϕ, expressing that a set A′ ⊆ A
of agents can enforce that a property ϕ holds in the successor state, and the
modality ♦A′ϕ, expressing that it cannot be enforced against the agents A′ that
ϕ is violated in the successor state. Let P and B denote disjoint finite sets of
atomic propositions and bound variables, respectively. Then

594 S. Schewe and B. Finkbeiner

– true and false are AMC formulas.
– p, ¬p and x are AMC formulas for all p ∈ P and x ∈ B.
– If ϕ and ψ are AMC formulas then ϕ ∧ ψ and ϕ ∨ ψ are AMC formulas.
– If ϕ is an AMC formula and A′ ⊆ A then �A′ϕ and ♦A′ϕ are AMC formulas.
– If x ∈ B and ϕ is an AMC formula where x occurs only free, then μx.ϕ and
νx.ϕ are AMC formulas.

The set of subformulas of a formula ϕ is denoted by sub(ϕ) and its alternation
depth by alt(ϕ) (for simplicity we use the syntactic alternation of least and
greatest fixed-point operators).

AMC Semantics. An AMC formula ϕ with atomic propositions P is inter-
preted over a CGS C = (P,A, S, s0, l, Δ, τ). ‖ϕ‖C ⊆ S denotes the set of states
where ϕ holds. A CGS C = (P,A, S, s0, l, Δ, τ) is a model of a specification ϕ
with atomic propositions P iff s0 ∈ ‖ϕ‖C.

– Atomic propositions are interpreted as follows: ‖false‖C = ∅ and
‖true‖C = S, ‖p‖C = {s ∈ S | p ∈ l(s)} and ‖¬p‖C = {s ∈ S | p /∈ l(s)}.

– Conjunction and disjunction are interpreted as intersection and union, re-
spectively: ‖ϕ ∧ ψ‖C = ‖ϕ‖C ∩ ‖ψ‖C and ‖ϕ ∨ ψ‖C = ‖ϕ‖C ∪ ‖ψ‖C.

– A state s ∈ S is in ‖�A′ϕ‖C iff the agents A′ can make a decision υ ∈ ΔA′

such that, for all decisions υ′ ∈ ΔA�A′
, ϕ holds in the successor state:

‖�A′ϕ‖C = {s ∈ S | ∃υ ∈ ΔA′
. ∀υ′ ∈ ΔA�A′

. τ(s, (υ, υ′)) ∈ ‖ϕ‖C}.
– A state s ∈ S is in ‖♦A′ϕ‖C iff for all decisions υ ∈ ΔA�A′

of the agents not
in A′, the agents in A′ have a counter decision υ′ ∈ ΔA′

which ensures that
ϕ holds in the successor state:
‖♦A′ϕ‖C = {s ∈ S | ∀υ′ ∈ ΔA�A′

. ∃υ ∈ ΔA′
. τ(s, (υ, υ′)) ∈ ‖ϕ‖C}.

– The least and greatest fixed points are interpreted as follows:
‖μx.ϕ‖C =

⋂{Sx ⊆ S | ‖ϕ‖CSx
x

⊆ Sx}, ‖νx.ϕ‖C =
⋃{Sx ⊆ S | ‖ϕ‖CSx

x
⊇ Sx},

where CSx
x = (P ∪{x}, A, S, s0, lSx

x , Δ, τ) denotes the modified CGS with the
labeling function lSx

x : S → 2P∪{x} with lSx
x (s) ∩ P = l(s) and x ∈ lSx

x (s) ⇔
s ∈ Sx ⊆ S. Since the bound variable x occurs only positive in ϕ, ‖ϕ‖CSx

x
is

monotone in Sx and the fixed points are well-defined.

AMC contains the classic μ-calculus with the modal operators � and ♦, which
abbreviate �∅ and ♦A, respectively. AMC also subsumes the temporal logic
ATL* [1], which is the alternating-time extension of the branching-time temporal
logic CTL*. ATL* contains the path quantifier 〈〈A′〉〉, which ranges over all paths
the players in A′ can enforce. There is a canonical translation from ATL* to
AMC [4].

Example. As discussed in Section 2.1, the example CGS C0 has the property
that in all states, agent a1 can enforce that p1 eventually always holds true, and
agent a2 can respond to any decision of agent a1 with a counter decision such
that p2 holds in the following state. This property is expressed by the AMC
formula ψ = νx.(μy.νz.�{a1}(p1 ∧ z ∨ y)) ∧♦{a2}p2 ∧ ♦∅x.

Satisfiability and Finite Model Property for the AMC 595

2.3 Automata over Finitely Branching Structures

An alternating parity automaton with a finite set Υ of directions is a tuple
A = (Σ,Q, q0, δ, α), where Σ is a finite alphabet, Q is a finite set of states,
q0 ∈ Q is a designated initial state, δ is a transition function, and α : Q→ C ⊂ N

is a coloring function. The transition function δ : Q × Σ → B
+(Q × Υ) maps

a state and an input letter to a positive boolean combination of states and
directions.

In the context of this paper, we consider alternating parity automata that
run on bounded CGSs with a fixed set P of atomic propositions (Σ=2P), a fixed
set A of agents and a fixed finite set Δ of decisions (Υ=ΔA). The acceptance
mechanism is defined in terms of run trees. As usual, an Υ -tree is a prefix-closed
subset Y ⊆ Υ ∗ of the finite words over the set Υ of directions. For given sets
Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Y, l〉, consisting of a tree Y ⊆ Υ ∗ and a
labeling function l : Y → Σ that maps every node of Y to a letter of Σ. If Υ
and Σ are not important or clear from the context, 〈Y, l〉 is called a tree.

A run tree 〈R, r〉 on a given CGS C = (P,A, S, s0, l, Δ, τ) is a Q×S-labeled
tree whose root is decorated with r(ε) = (q0, s0), and for each node n ∈ R
decorated with a label r(n) = (q, s), there is a set An ⊆ Q × Υ that satisfies
δ(q, l(s)), such that (q′, υ) is in An iff some child of n is decorated with a label
(q′, τ(s, υ)).

A run tree is accepting iff all infinite paths fulfill the parity condition. An infi-
nite path fulfills the parity condition iff the highest color of the states appearing
infinitely often on the path is even. A CGS is accepted by the automaton iff
it has an accepting run tree. The set of CGSs accepted by an automaton A is
called its language L(A). An automaton is empty iff its language is empty.

The acceptance of a given CGS C can also be viewed as the outcome of a game
played over Q×S, starting in (q0, s0). When the game reaches a position (q, s),
player accept first chooses a set A ⊆ Q×Υ of atoms that satisfies δ(q, l(s)).
Player reject then chooses one atom (q′, υ) from A and the game continues
in (q′, τ(s, υ)). An infinite sequence (q0, s0)(q1, s1)(q2, s2) . . . of game positions
is called a play. A play is winning for player accept iff it satisfies the parity
condition. A strategy for player accept (reject) maps each history of decisions of
both players to a decision of player accept (reject). A pair of strategies determines
a play. A strategy for player accept is winning iff, for all strategies of player reject,
the play determined by the strategies is winning for player accept. The CGS C
is accepted iff player accept has a winning strategy.

An automaton is universal iff the image of δ consists only of conjunctions,
nondeterministic iff the image of δ consists only of formulas that, when rewritten
into disjunctive normal form, contain in each disjunct exactly one element of
Q×{υ} for each υ ∈ Υ , and deterministic iff it is universal and nondeterministic.

For nondeterministic automata, emptiness can be checked with an emptiness
game over Q where, instead of considering the letter l(s) on some state s of
a given CGS, the letter is chosen by player accept. The nondeterministic au-
tomaton is non-empty iff player accept has a winning strategy in the emptiness
game.

596 S. Schewe and B. Finkbeiner

3 Automata over Concurrent Game Structures

In this section, we introduce automata over concurrent game structures (ACGs)
as an automata-theoretic framework for the alternating-time μ-calculus. The
automata over finitely branching structures described in Section 2.3 do not suf-
fice for this purpose, because they are limited to bounded CGSs. Generalizing
symmetric automata [20], ACGs contain universal atoms (�, A′), which refer
to all successor states for some decision of the agents in A′, and existential
atoms (♦, A′), which refer to some successor state for each decision of the agents
not in A′. In this way, ACGs can run on CGSs with an arbitrary, even infinite,
number of decisions.

An ACG is a tuple G = (Σ,Q, q0, δ, α), where Σ, Q, q0, and α are defined as
for alternating parity automata in the previous section. The transition function
δ : Q×Σ → B

+(Q× (({�,♦}×2A)∪{ε})) now maps a state and an input letter
to a positive boolean combination of three types of atoms: (�, A′) is a universal
atom, (♦, A′) is an existential atom, and ε is an ε-transition, where only the
state of the automaton is changed and the state of the CGS remains unchanged.
If an ACG has no ε-transitions, it is called ε-free.

A run tree 〈R, r〉 on a given CGS C = (P,A, S, s0, l, Δ, τ) is a Q×S-labeled
tree where the root is labeled with (q0, s0) and where, for a node n with a label
(q, s) and a set L = {r(n · ρ) |n · ρ ∈ R} of labels of its successors, the following
property holds: there is a set A ⊆ Q × ({�,♦} × 2A ∪ {ε}) of atoms satisfying
δ(q, l(s)) such that

– for all universal atoms (q′,�, A′) in A, there exists a decision υ ∈ ΔA′

of the agents in A′ such that, for all counter decisions υ′ ∈ ΔA�A′
,

(q′, τ(s, (υ, υ′))) ∈ L,
– for all existential atoms (q′,♦, A′) in A and all decisions υ′ ∈ ΔA�A′

of
the agents not in A′, there exists a counter decision υ ∈ ΔA′

such that
(q′, τ(s, (υ, υ′))) ∈ L, and

– for all ε-transitions (q′, ε) in A, (q′, s) ∈ L.

As before, a run tree is accepting iff all paths satisfy the parity condition, and a
CGS is accepted iff there exists an accepting run tree.

The acceptance of a CGS can again equivalently be defined as the outcome of
a game over Q× S, starting in (q0, s0). Each round of the game now consists of
two stages. In the first stage, player accept chooses a set A of atoms satisfying
δ(q, l(s)), and player reject picks one atom from A. If the result of the first stage
is an ε-transition (q′, ε), then the round is finished and the game continues in
(q′, s) with the new state of the automaton. If the result of the first stage is
a universal atom (q′, (�, A′)), the second stage begins by player accept making
the decisions υ ∈ ΔA′

for the agents in A′, followed by player reject making the
decisions υ′ ∈ ΔA�A′

for the remaining agents. Finally, if the result of the first
stage is an existential atom (q, (♦, A′)), the order of the two choices is reversed:
first, player reject makes the decisions υ′ ∈ ΔA�A′

for the agents in A�A′;
then, player accept makes the decisions υ ∈ ΔA′

for the players in A′. After the
decisions are made, the game continues in (q′, τ(s, (υ, υ′))).

Satisfiability and Finite Model Property for the AMC 597

A winning strategy for player accept uniquely defines an accepting run tree,
and the existence of an accepting run tree implies the existence of a winning
strategy. The game-theoretic characterization of acceptance is often more con-
venient than the characterization through run trees, because parity games are
memoryless determined [5]. A CGS is therefore accepted by an ACG iff player
accept has a memoryless winning strategy in the acceptance game, i.e., iff she
has a strategy where her choices only depend on the state of the game and the
previous decisions in the current round.

As an additional complexity measure for an ACG G, we use the set atom(G) ⊆
Q×{�,♦, ε}×2A of atoms that actually occur in some boolean function δ(q, σ).
The elements of atom(G) are called the atoms of G.

Example. The CGSs that satisfy the AMC formula ψ = νx.(μy.νz.�{a1}(p1∧
z ∨ y)) ∧ ♦{a2}p2 ∧ ♦∅x from Section 2.2 are recognized by the ACG Gψ =
(Σ,Q, q0, δ, α), where Σ = 2{p1,p2} and Q = {q0, qμ, qν , qp2}. The transition
function δ maps

– (qp2 , σ) to true if p2 ∈ σ, and to false otherwise,
– (qμ, σ) and (qν , σ) to (qν ,�, {a1}) if p1 ∈ σ, and to (qμ,�, {a1}) otherwise,

and
– (q0, σ) to δ(qμ, σ) ∧ (qp2 ,♦, {a2}) ∧ (q0,♦, ∅).

The coloring function α maps qμ to 1 and the remaining states to 0.
Consider again the example CGS C0 from Section 2.1, which satisfies ψ. In the

acceptance game of Gψ for C0, player accept has no choice during the first stage
of each move, and can win the game by making the following decisions during
the second stage:

– If one of the atoms (qμ,�, {a1}) or (qν ,�, {a1}) is the outcome of the first
stage, agent a1 makes the decision 0.

– If the atom (qp2 ,♦, {a2}) is the outcome of the first stage and agent a1 has
made the decision d1, agent a2 chooses d2 = d1.

– For all other atoms (q, ◦, A′), the decision for all agents in A′ is 0.

3.1 From AMC Formulas to Automata over Concurrent Game
Structures

The following theorem provides a translation of AMC formulas to equivalent
ACGs. It generalizes the construction for the modal μ-calculus suggested in [20]
and can be proved analogously.

Theorem 1. Given an AMC formula ϕ, we can construct an ACG Gεϕ =
(2V , sub(ϕ), ϕ, δ, α) with |sub(ϕ)| states and atoms and O(|alt(ϕ)|) colors that
accepts exactly the models of ϕ.

Construction: W.l.o.g., we assume that the bound variables have been con-
sistently renamed to ensure that for each pair of different subformulas λx.ψ and
λ′x′.ψ′ (λ, λ′ ∈ {μ, ν}) of ϕ, the bound variables are different (x �= x′).

598 S. Schewe and B. Finkbeiner

– The transition function δ is defined, for all free variables p and all bound
variables x, by
• δ(p, σ) = true, δ(¬p, σ) = false ∀p ∈ σ;
• δ(¬p, σ) = true, δ(p, σ) = false ∀p ∈ P � σ;
• δ(ϕ ∧ ψ, σ) = (ϕ, ε) ∧ (ψ, ε) and δ(ϕ ∨ ψ, σ) = (ϕ, ε) ∨ (ψ, ε);
• δ(�A′ϕ, σ) = (ϕ, (�, A′)) and δ(♦A′ϕ, σ) = (ϕ, (♦, A′));
• δ(x, σ) = (λx.ϕ, ε) and δ(λx.ϕ, σ) = (ϕ, ε) λ ∈ {μ, ν}.

– The coloring function α maps every subformula that is not a fixed point
formula to 0. The colors of the fixed point formulas are defined inductively:
• Every least fixed point formula μp.ψ is colored by the smallest odd color

that is greater or equal to the highest color of each subformula of ψ.
• Every greatest fixed point formula νp.ψ is colored by the smallest even

color that is greater or equal to the highest color of each subformula
of ψ. ��

3.2 Eliminating ε-Transitions

Given an ACG Gε = (Σ,Q, q0, δ, α) with ε-transitions, we can find an ε-free ACG
that accepts the same language. The idea of our construction is to consider
the sequences of transitions from some position of the acceptance game that
exclusively consist of ε-transitions: if the sequence is infinite, we can declare the
winner of the game without considering the rest of the game; if the sequence is
finite, we skip forward to the next non-ε-atom.

The construction is related to the elimination of ε-transitions in ordinary
alternating automata [20] and will be included in the full version.

Lemma 1. Given an ACG Gε with n states, c colors and a atoms, we can
construct an equivalent ε-free ACG with at most c · n states, c colors and c · a
atoms. ��

4 Bounded Models

We now show that for every ACG G there exists a bound m such that G is empty
if and only if G does not accept any m-bounded CGSs. Consider an ε-free ACG
G and a CGS C = (P,A, S, s0, l, Δ, τ) accepted by G. In the following, we define a
finite set Γ of decisions and a transition function τ ′ : S×ΓA → S, such that the
resulting bounded CGS C′ = (P,A, S, s0, l, Γ, τ ′) is also accepted by G. Before
we formally define the construction in the proof of Theorem 2 below, we first
give an informal outline.

Let us begin with the special case where all atoms of G are of the form
(q,�, {a}), i.e., a universal atom with a single agent. We use the set of atoms as
the new set of decisions of each agent. The new transition function is obtained
by first mapping the decision of each agent in C′ to a decision in C, and then
applying the old transition function.

To map the decisions, we fix a memoryless winning strategy for player accept
in the acceptance game for C. After an atom (q,�, {a}) has been chosen in the

Satisfiability and Finite Model Property for the AMC 599

first stage of the acceptance game, player accept begins the second stage by
selecting a decision da for agent a. We map each decision (q,�, {a}) in C′ to this
decision da in C.

Player accept wins the acceptance game for C′ with the following strategy:
In the first stage of each move, we apply the winning strategy of player accept
in the acceptance game for C. In the second stage, we simply select the atom
(q′,�, {a′}) that was chosen in the first stage as the decision for agent a′. Since
the strategy for C wins for all possible decisions of the agents in A�{a′}, it wins
in particular for the decisions selected in the transition function.

Suppose next that we still have only universal atoms (q,�, A′), but that the
set A′ of agents is not required to be singleton. There is no guarantee that the
decisions of the agents in A′ are consistent: an agent a may choose an atom
(q,�, A′) where A′ does not contain a or contains some other agent a′ who
made a different decision. For the purpose of computing the transition function,
we therefore harmonize the decisions by replacing, in such cases, the decision of
agent a with a fixed decision (q0,�, {a}).

To win the acceptance game for C′, player accept selects, after an atom
(q,�, A′) has been chosen in the first stage, this atom (q,�, A′) for all agents in
A′. The selection is therefore consistent for all agents in A′. Since the strategy
wins for all decisions of the agents in A�A′, it does not matter if some of their
decisions have been replaced. Note that, this way, only decisions of player reject
are changed in the harmonization.

Finally, suppose that G contains existential atoms. If an existential atom
(q,♦, A′) is the outcome of the first stage of the acceptance game, player ac-
cept only decides after the decisions of the agents in A�A′ have been made by
player reject. To implement this order of the choices in the computation of the
transition function, we allow the player who chooses the last existential atom to
override all decisions for existential atoms of his opponent. We add the natural
numbers ≤ |A| as an additional component to the decisions of the agents. For
a given combined decision of the agents, the sum over the numbers in the deci-
sions of the agents, modulo |A|, then identifies one favored agent a0 ∈ A. In this
way, whichever player chooses last can determine the favored agent. Given the
decision of agent a0 for some atom (q′′,♦, A′′) or (q′′,�, A′′), we replace each
decision for an existential atom by an agent in A � A′′ by the fixed decision
(q0,�, {a}).

To win the acceptance game for C′, the strategy for player accept makes the
following choice after an atom (q′,♦, A′) has been chosen in the first stage and
player reject has made the decisions for all agents in A�A′: for all agents in A′,
she selects the atom (q′,♦, A′), combined with some number that ensures that
the favored agent a0 is in A′.

Example. Consider again the CGS C0, which is accepted by the ACG Gψ
with the winning strategy for player accept described in Section 3.1. The new
transition function consists of two steps:

In the first step, we harmonize the given combined decision of the agents by
replacing the inconsistent decisions. In the acceptance game, this may change

600 S. Schewe and B. Finkbeiner

the decisions of the agents controlled by player reject. If, for example, the atom
(qp2 ,♦, {a2}) is the outcome of the first stage of the acceptance game and player
reject makes the decision (q0,♦, ∅, 1) for agent a1, player accept responds by
making the decision (qp2 ,♦, {a2}, 1) for agent a2. The sum of the natural num-
bers (1+1) identifies agent a2, and all existential choices for groups of agents not
containing a2 are overridden. The resulting choices are (q0,�, {a1}) for agent a1

and (qp2 ,♦, {a2}) for agent a2.
In the second step, the decisions of the agents are mapped to decisions in the

CGS C0. First, the universal choices are evaluated: The winning strategy maps
(q0,�, {a1}) to the decision d1 = 0 for agent a1. Then, the existential choice is
evaluated: The winning strategy maps (qp2 ,♦, {a2}) and the decision d1 = 0 for
agent a1 to the decision d2 = d1 = 0 for agent a2.

The resulting bounded CGS is very simple: the new transition function maps
all decisions to state 0.

Theorem 2. An ε-free ACG G = (Σ,Q, q0, δ, α) is non-empty iff it accepts a
(|atom(G)| · |A|)-bounded CGS.

Proof. If C = (P,A, S, s0, l, Δ, τ) is accepted by the ε-free ACG G =
(2P , Q, q0, δ, α), then player accept has a memoryless winning strategy in the
acceptance game for C. We fix such a memoryless strategy and use it to con-
struct the bounded CGS C′ = (P,A, S, s0, l, Γ, τ ′).

Decisions. For convenience, we assume that the set A of agents is an initial
sequence of the natural numbers. The new set of decisions Γ = atom(G) × A
consists of pairs of atoms and numbers. If the first component is an existential
atom (q,♦, A′), then the sum of the second components of the decisions of all
agents is used to validate the choice.

We say that two decisions d1, d2 ∈ Γ are equivalent if they agree on their first
component: (a1, a

′
1) ∼ (a2, a

′
2) :⇔ a1 = a2.

We say that a combined decision υ ∈ ΓA favors an agent a ∈ A, υ � a, if the
sum of the second arguments, modulo |A|, of this combined decision is equal to a.

We say that the decision da ∈ Γ of agent a prevails in the combined decision
υ ∈ ΓA if the following conditions hold for da = ((q, ◦, A′), a′′), ◦ ∈ {�,♦}:
– a ∈ A′,
– all agents a′ ∈ A′ have made a decision da′ ∼ da equivalent to the decision

of a, and
– if ◦ = ♦, then a cooperates with the agent favored by the combined decision
υ (υ � a′ ∈ A′).

Harmonization. Let A = Q × {�,♦} × 2A. The harmonization h : ΓA → AA

maps the decision of the agents to a harmonic decision. Harmonic decisions are
elements of AA such that

– each agent a ∈ A chooses an atom (q, ◦, A′) with q ∈ Q, ◦ ∈ {�,♦}, and
a ∈ A′ ⊆ A,

Satisfiability and Finite Model Property for the AMC 601

– if an agent a ∈ A chooses an atom (q, ◦, A′) ∈ A, then all agents a′ ∈ A′

choose the same atom, and
– if an agent a ∈ A chooses an existential atom (q,♦, A′) ∈ A, then all agents
a′ /∈ A′ choose universal atoms.

For prevailing decisions, the harmonization h only deletes the second compo-
nent. Non-prevailing decisions of an agent a are replaced by the fixed decision
(q0,�, {a}) (which is not necessarily in atom(G)).

Direction. We define the function fs : AA → ΔA that maps a harmonic decision
to a direction υ ∈ ΔA in C. fs depends on the state s ∈ S of C and is determined
by the second stage of the fixed memoryless strategy.

First, the universal decisions are evaluated: if an agent makes the harmonic
decision (q,�, A′), then υ′ ∈ ΔA′

is determined by the choice of player accept
in the second stage of the winning strategy in state s, when confronted with
the atom (q,�, A′).

Then, the existential decisions are evaluated: If an agent makes the harmonic
decision (q,♦, A′) then υ′ ∈ ΔA′

is determined by the choice of player accept
in the second stage of the winning strategy in state s, when confronted with
the atom (q,♦, A′) and the decision υ′′ ∈ ΔA�A′

fixed by the evaluation of the
universal harmonic decisions.

The new transition function τ ′ : S × ΓA → S is defined as
τ ′ : (s, υ) �→ τ(s, fs(h(υ))).

Acceptance. In the acceptance game for C′, player accept has the following
strategy: in the first stage of each round, she applies the winning strategy of
the acceptance game for C. The strategy for the second stage depends on the
outcome of the first stage:

– If an atom (q,�, A′) is chosen in the first stage, player accept fixes the
prevailing decision ((q,�, A′), 1) for all agents a ∈ A′.

– If an atom (q,♦, A′) with A′ �= ∅ is chosen in the first stage and player
reject has made the decisions da for all agents a /∈ A′, player accept fixes
the prevailing decisions ((q,♦, A′), na) for the agents a ∈ A′ such that an
agent a′ ∈ A′ is favored.

– If an atom (q,♦, ∅) is chosen in the first stage, then player accept does not
participate in the second stage.

We now show that the run tree 〈R′, r′〉 defined by this strategy is accepting.
Let 〈R, r〉 be the run tree defined by the winning strategy in the accep-
tance game for C. In the following, we argue that for each branch labeled
(q0, s0) (q1, s1) (q2, s2) . . . in 〈R′, r′〉, there is an identically labeled branch in
〈R, r〉. Since all branches of 〈R, r〉 satisfy the parity condition, 〈R′, r′〉 must be
accepting as well.

The root of both run trees is labeled by (q0, s0). If a node labeled (qi, si) in
〈R′, r′〉 has a child labeled (qi+1, si+1), then there must be an atom (qi+1, ◦, A′) ∈
Q×{�,♦}× 2A in the set of atoms chosen by player accept, such that following

602 S. Schewe and B. Finkbeiner

holds: for the decision υ′ ∈ ΓA
′

defined by the strategy of player accept, there
is a decision υ′′ ∈ ΓA�A′

such that si+1 = τ ′(si, (υ′, υ′′)) = τ(si, fsi(h(υ′, υ′′))).
Now consider a node labeled (qi, si) in 〈R, r〉. Since the strategy of player

accept in the first stage of each round is identical for the two acceptance games,
the atom (qi+1, ◦, A′) is also included in the set of atoms chosen by player
accept in the acceptance game for C. Player reject can enforce the decision
υ = fsi(h(υ′, υ′′)) as follows:

– If ◦ = �, player accept chooses the ΔA′
part of υ under the fixed memoryless

strategy for the acceptance game of C, and player reject can respond by
choosing the ΔA�A′

part of υ.
– If ◦ = ♦, player reject can choose the ΔA�A′

part of υ, and player accept
will react by choosing the ΔA′

part of υ under the fixed memoryless strategy
for the acceptance game of C, guaranteeing that υ = fsi(h(υ′, υ′′)).

In both cases, the new state si+1 = τ(si, υ) is chosen. The node labeled (qi, si)
in 〈R, r〉 must therefore have a child labeled (qi+1, si+1). ��

5 Satisfiability and Complexity

An AMC formula is satisfiable if and only if the language of its ACG is nonempty.
A simple procedure for deciding emptiness of ACGs is immediately suggested
by Theorem 2: since we can restrict our attention to m-bounded CGSs with
fixed m = |atom(G)| · |A|, we can replace (q, (�, A′)) and (q, (♦, A′)) by the cor-
responding positive boolean combinations: the resulting automaton accepts ex-
actly the m-bounded concurrent game structures in the language of G. To decide
emptiness, we nondeterminize the automaton [7,14] and then solve the empti-
ness game. The complexity of this construction is double-exponential: solving the
emptiness game of the nondeterministic automaton is exponential in the number
of directions, which is already exponential in the number of agents (m|A|).

We now describe an alternative algorithm with only single-exponential com-
plexity. Instead of going through an alternating automaton to a nondeterministic
automaton, we go through a universal automaton to a deterministic automaton.
The advantage of solving the emptiness game for a deterministic automaton in-
stead of for a nondeterministic automaton is that the set of atoms chosen by
player accept is uniquely determined by the input letter; this reduces the num-
ber of choices from exponential in the number of directions to linear in the size
of the input alphabet.

The construction of the universal automaton is based on the observation that
the winning strategy of player accept that we defined in the previous section can
be represented by assigning a function fs : Q → 2atom(G) to each state s of C.
The set fs(q) contains the atoms that player accept chooses in the first stage of
the game at position (q, s). Since the strategy for the second stage depends only
on the chosen atom and not on the states of C and G, fs determines the entire
strategy of player accept.

The universal automaton runs on bounded CGSs that are annotated by this
function fs; i.e., we extend the alphabet from Σ to Σ × (Q → 2atom(G)) and

Satisfiability and Finite Model Property for the AMC 603

a CGS is accepted iff fs identifies a winning strategy for player accept in the
acceptance game of the ACG. The construction does not change the set of states
and increases the input alphabet by an exponential factor in the number of states
and atoms of the ACG.

Lemma 2. Given an ε-free ACG G = (Σ,Q, q0, δ, α) and a set A of agents, we
can construct a universal parity automaton U = (Σ×(Q→ 2atom(G)), Q, q0, δ′, α)
on Σ× (Q→ 2atom(G))-labeled CGSs with the set atom(G)×A of decisions such
that U has the following properties:

– If U accepts a CGS C = (P,A, S, s0, l×strat1, atom(G)×A, τ) then G accepts
its Σ projection C′ = (P,A, S, s0, l, atom(G) ×A, τ).

– If U is empty, then G is empty.

Proof. We denote with strat2 the function that maps each atom a of G to the
set D ⊆ (atom(G) × A)A of decisions that are the outcome of the second stage
of the acceptance game for some strategy of player reject, when the outcome of
the first stage is a and player accept follows the simple strategy for the second
stage described in the proof of Theorem 2. Generalizing strat2 to sets of atoms,
we define the transition function δ′ of U by setting δ′(q;σ, s) to false if s(q) does
not satisfy δ(q, σ), and to a conjunction over strat2(s(q)) otherwise.

If U accepts a CGS C = (P,A, S, s0, l × strat1, atom(G) × A, τ), then player
accept has a winning strategy for C′ = (P,A, S, s0, l, atom(G) × A, τ) in the
acceptance game of G, where the strategy in the first stage is defined by strat1

and the strategy in the second stage is as defined in the proof of Theorem 2.
If G accepts a CGS C, then there exists, as described in the proof of The-

orem 2, a CGS C′ = (P,A, S, s0, l, atom(G) × A, τ), such that player ac-
cept wins the acceptance game using some memoryless strategy strat1 in the
first stage and the canonical strategy in the second stage. The CGS C′′ =
(P,A, S, s0, l × strat1, atom(G) ×A, τ) is accepted by U . ��
We transform the universal parity automaton U into a deterministic parity au-
tomaton by first transforming U into a universal co-Büchi automaton withO(c·n)
states and then using Safra’s construction [16,7].

Lemma 3. Given a universal automaton U with n states and c colors, we can
construct an equivalent deterministic parity automaton D with nO(c·n) states and
O(c · n) colors. ��
Our transformation of the ACG to the deterministic automaton D thus increases
both the number of states and the size of the input alphabet to at most expo-
nential in the number of states of the ACG. The emptiness game of D is solved
in polynomial time both in the number of states and in the size of the input
alphabet, providing an exponential-time procedure for deciding emptiness of an
ACG.

Lemma 4. Given a deterministic parity automaton D = (Σ,Q, q0, δ, α) with
n states and c colors, we can, in time (n · |Σ|)O(c), decide emptiness and, if
L(D) �= ∅, construct a finite CGS C ∈ L(D).

604 S. Schewe and B. Finkbeiner

Proof. The emptiness problem can be reduced to a bipartite parity game with
n·(1+|Σ|) positions and c colors: Player accept owns the positions Q and chooses
a label σ ∈ Σ. Player reject owns the resulting pairs Q×Σ and can move from
a position (q, σ) with δ(q, σ) =

∧
υ∈Υ (qυ , υ) to a position qυ (intuitively by

choosing a direction υ ∈ Υ). The colors of the positions owned by player accept
are defined by the coloring function α, while all states owned by player reject
are colored by the minimum color in the mapping of α. This parity game can be
solved in time (n · |Σ|)O(c) [8].

D is empty iff player reject has a winning strategy, and the Σ-projection of
a memoryless winning strategy for player accept defines a CGS in the language
of D. ��
Combining Lemma 1, Theorem 2, and Lemmata 2, 3 and 4, we obtain the finite
model property of automata over concurrent game structures.

Theorem 3. Every non-empty ACG with n states, c colors, a atoms and a′

agents accepts some finite CGS with a · a′ directions and at most nO(c3·n2·a2·a′)

states, which can be constructed in time nO(c3·n2·a2·a′). ��
Combining Theorem 3 with Theorem 1, we furthermore obtain the finite model
property for the alternating-time μ-calculus:

Theorem 4. Given an AMC formula ϕ with alternation depth d, n subformulas,
and a agents, we can decide satisfiability of ϕ and, if ϕ is satisfiable, construct
a model of ϕ in time nO(d3·n4·a). ��
Matching lower bounds for the AMC satisfiability and synthesis problems are
given by the lower bounds for the classic μ-calculus [9,11].

Corollary 1. The satisfiability and synthesis problems for the alternating-time
μ-calculus are EXPTIME-complete. ��

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

2. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: Modularity in model checking. In Proc. CAV, pages 521–525.
Springer-Verlag, June 1998.

3. J. R. Büchi. On a decision method in restricted second order arithmetic. Logic,
Methodology and Philosophy of Science, pages 1–11, 1962.

4. L. de Alfaro, T. A. Henzinger, and R. Majumdar. From verification to control:
Dynamic programs for omega-regular objectives. In Proc. LICS, pages 279–290.
IEEE Computer Society Press, June 2001.

5. E. A. Emerson and C. S. Jutla. Tree automata, μ-calculus and determinacy. In
Proc. FOCS, pages 368–377. IEEE Computer Society Press, October 1991.

6. S. Even and Y. Yacobi. Relations among public key signature systems. Technical
Report 175, Technion, Haifa, Israel, March 1980.

Satisfiability and Finite Model Property for the AMC 605

7. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. LICS, pages
321–330. IEEE Computer Society Press, June 2005.

8. M. Jurdziński. Small progress measures for solving parity games. In Proc. STACS,
pages 290–301. Springer-Verlag, 2000.

9. D. Kozen and R. J. Parikh. A decision procedure for the propositional μ-calculus.
In Proc. Logic of Programs, pages 313–325. Springer-Verlag, 1983.

10. S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security, 11(3):399–430, 2003.

11. O. Kupferman and M. Y. Vardi. μ-calculus synthesis. In Proc. MFCS, pages
497–507. Springer-Verlag, 2000.

12. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, March 2000.

13. R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9(5):521–530, October 1966.

14. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata: new results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1-2):69–107, 1995.

15. M. O. Rabin. Automata on Infinite Objects and Church’s Problem, volume 13 of
Regional Conference Series in Mathematics. Amer. Math. Soc., 1972.

16. S. Safra. On the complexity of the ω-automata. In Proc. FoCS, pages 319–327.
IEEE Computer Society Press, 1988.

17. G. van Drimmelen. Satisfiability in alternating-time temporal logic. In Proc. LICS,
pages 208–217. IEEE Computer Society Press, June 2003.

18. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Journal of
Information and Computation, 115(1):1–37, May 1994.

19. D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. Atl satisfiability is indeed
exptime-complete. Journal of Logic and Computation, 2006. To appear.

20. T. Wilke. Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg., 8(2), May 2001.

	Introduction
	Preliminaries
	Concurrent Game Structures
	Alternating-Time μ-Calculus
	Automata over Finitely Branching Structures

	Automata over Concurrent Game Structures
	From AMC Formulas to Automata over Concurrent Game Structures
	Eliminating ε-Transitions

	Bounded Models
	Satisfiability and Complexity

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

