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Preface

Computer Science Logic (CSL) is the annual conference of the European Associ-
ation for Computer Science Logic. The conference series started as a programme
of International Workshops on Computer Science Logic, and then from its sixth
meeting became the Annual Conference of the EACSL. The 15th Annual Confer-
ence (and 20th International Workshop), CSL 2006, took place during September
25–29, 2006. It was organized by the Department of Computer Science, Univer-
sity of Szeged. Previous CSL conferences were held in Karlsruhe (1987), Duis-
burg (1988), Kaiserslautern (1989), Heidelberg (1990), Bern (1991), San Miniato
(1992), Swansea (1993), Kazimierz (1994), Padernborn (1995), Utrecht (1996),
Aarhus (1997), Brno (1998), Madrid (1999), Fischbachau (2000), Paris (2001),
Edinburgh (2002), Vienna (2003), Karpacz (2004) and Oxford (2005).

The suggested topics of the conference included automated deduction and in-
teractive theorem proving, constructive mathematics and type theory, equational
logic and term rewriting, automata and formal logics, modal and temporal logic,
model checking, logical aspects of computational complexity, finite model theory,
computational proof theory, logic programming and constraints, lambda calculus
and combinatory logic, categorical logic and topological semantics, domain the-
ory, database theory, specification, extraction and transformation of programs,
logical foundations of programming paradigms, verification of security protocols,
linear logic, higher-order logic, nonmonotonic reasoning, logics and type systems
for biology.

In response to the Call for Papers, a total of 132 abstracts were submitted
of which 108 were accompanied by a full paper. The International Programme
Committee accepted 37 papers for presentation and inclusion in these proceed-
ings. The Programme Committee invited lectures from Mart́ın Escardó (Birm-
ingham), Paul-André Melliès (Paris), Luke Ong (Oxford), Luc Segoufin (Orsay)
and Miros�law Truszczyński (Lexington, KY).

The Ackermann Award is the EACSL Outstanding Dissertation Award for
Logic in Computer Science. The 2006 Ackermann Award was presented to Balder
ten Cate and Stefan Milius at the conference.

These proceedings contain the texts of 4 invited lectures and the 37 accepted
papers and the report of the Ackermann Award Committee whose members were
J. Makowsky (President of EACSL), D. Niwiński (Vice-President of EACSL), S.
Abramsky, B. Courcelle, E. Grädel, M. Hyland, and A. Razborov.

I would like to thank everybody who submitted a paper to the conference
and all members of the Programme Committee and their subreferees for their
excellent cooperation in the evaluations of the papers. Finally, I would like to
thank my colleagues Zsolt Gazdag, Szabolcs Iván and Zoltán L. Németh for their
technical assistance during the preparation of these proceedings.
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The conference was sponsored by the Department of Computer Science, Uni-
versity of Szeged, the Hungarian Academy of Science, the Fund for Research and
Education in Informatics, the Fund for Szeged and the Nokia Hungary, Ltd.

Szeged, July 2006 Zoltán Ésik
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Damian Niwiński (Warsaw)
Ramaswamy Ramanujam (Chennai)
Philip Scott (Ottawa)
Philippe Schnoebelen (Cachan)
Alex Simpson (Edinburgh)

Additional Referees

Luca Aceto
Marco Aiello
Roberto Amadio
Christel Baier
Patrick Baillot
Paolo Baldan
Matteo Baldoni
Bruno Barras
David A. Mix Barrington
Arnold Beckmann
Gianluigi Bellin
Ulrich Berger
Dietmar Berwanger
Lars Birkedal
Roderick Bloem
Stephen L. Bloom
Richard Blute
Mikolaj Bojanczyk
Maria Paola Bonacina
Filippo Bonchi
Guillamue Bonfante
Michele Boreale
Paolo Bottoni
Pierre Boudes
Roberto Bruni
Glenn Bruns

Antonio Bucciarelli
Pedro Cabalar
Andrea Cantini
Venanzio Capretta
Franck Cassez
Maria Luisa Dalla Chiara
Juliusz Chroboczek
Vincenzo Ciancia
Gabriel Ciobanu
Thierry Coquand
Flavio Corradini
Bruno Courcelle
Olivier Danvy
Stéphane Demri
Mariangiola

Dezani-Ciancaglini
Roy Dyckhoff
Maribel Fernández
Wan Fokkink
Nissim Francez
David de Frutos-Escrig
Murdoch James Gabbay
Marco Gaboardi
Blaise Genest
Giorgio Ghelli
Silvio Ghilardi

Hugo Gimbert
Jean Goubault-Larrecq
Stefano Guerrini
Esfandiar Haghverdi
Masahiro Hamano
Jerry den Hartog
Masahito Hasegawa
Rolf Hennicker
Claudio Hermida
Daniel Hirschkoff
Pieter Hofstra
Doug Howe
Yuval Ishai
Radha Jagadeesan
Petr Jančar
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Géraud Sénizergues
Sharon Shoham
Sunil Easaw Simon

Alan Smaill
Viorica

Sofronie-Stokkermans
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Functorial Boxes in String Diagrams�

Paul-André Melliès

Equipe Preuves, Programmes, Systèmes
CNRS — Université Paris 7 Denis Diderot

Abstract. String diagrams were introduced by Roger Penrose as a
handy notation to manipulate morphisms in a monoidal category. In
principle, this graphical notation should encompass the various pictorial
systems introduced in proof-theory (like Jean-Yves Girard’s proof-nets)
and in concurrency theory (like Robin Milner’s bigraphs). This is not
the case however, at least because string diagrams do not accomodate
boxes — a key ingredient in these pictorial systems. In this short tuto-
rial, based on our accidental rediscovery of an idea by Robin Cockett and
Robert Seely, we explain how string diagrams may be extended with a
notion of functorial box depicting a functor transporting an inside world
(its source category) to an outside world (its target category). We expose
two elementary applications of the notation: first, we characterize graph-
ically when a faithful balanced monoidal functor F : C −→ D transports
a trace operator from the category D to the category C, and exploit
this to construct well-behaved fixpoint operators in cartesian closed cat-
egories generated by models of linear logic; second, we explain how the
categorical semantics of linear logic induces that the exponential box of
proof-nets decomposes as two enshrined boxes.

1 Introduction

The origins. Although the process was already initiated in the late 1960s and
early 1970s, very few people could have foreseen that Logic and Computer Sci-
ence would converge so harmoniously and so far in the two areas of proof theory
and programming language design. Today, about fourty years later, the two re-
search fields are so closely connected indeed, that any important discovery in one
of them will have, sooner or later, an effect on the other one. The very existence
of the conference Computer Science Logic bears witness of this important and
quite extraordinary matter of fact.

The convergence would not have been as successful without the mediation
of category theory — which made an excellent matchmaker between the two
subjects, by exhibiting the algebraic properties underlying the mathematical
models (or denotational semantics) of both proof systems and programming
languages. At the end of the 1970s, a few people were already aware that:

� Research partially supported by the ANR Project INVAL “Invariants algébriques
des systèmes informatiques”.

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 1–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P.-A. Melliès

– intuitionistic logic as articulated in proof theory,
– the λ-calculus as implemented in programming languages,
– cartesian closed categories as investigated in category theory

are essentially the same object in three different guises — see for instance Jim
Lambek and Phil Scott’s monograph [34]. The idea circulated widely in the
community, so that a few years later, in the mid-1980s, the following trilogy of
concepts has become prominent:

Cartesian-Closed
Categories

Intuitionistic
Logicλ-calculus

A linear world opens. The year 1985 was then a turning point, with the
discovery of linear logic by Jean-Yves Girard. This single discovery had the quite
extraordinary effect of refurbishing every part of the subject with new tools, new
ideas, and new open problems. In particular, each of the three concepts above was
reunderstood in a linear fashion. In effect, Jean-Yves Girard [18,19] introduced
simultaneously:

1. a sequent calculus for linear logic, which refines the sequent calculus for
Intuitionistic Logic defined by Gerhard Gentzen in the 1930s — in particular,
every derivation rule in intuitionistic logic may be translated as a series of
more “atomic” derivation rules in linear logic,

2. a graphical syntax of proofs, called proof-nets, which refines the term syntax
provided by λ-terms — in particular, every simply-typed λ-term may be
translated as a proof-net, in such a way that a β-reduction step on the
original λ-term is mirrored as a series of more “atomic” cut-elimination steps
in the associated proof-net,

3. a denotational semantics of linear logic, based on coherence spaces and
cliques, which refines the model of dI-domains and stable functions defined by
Gérard Berry [7] for the purely functional language PCF, a simply-typed λ-
calculus extended with a fixpoint operator, a conditional test on booleans,
and the main arithmetic operations. People like Robert Seely [45], Yves La-
font [31] and François Lamarche [33] realized very early that the construction
amounts to replacing a cartesian closed category (of dI-domains and sta-
ble maps) by a monoidal closed category (of coherence spaces and cliques)
equipped with a particular kind of comonad to interpret the exponential
modality (noted !) of linear logic.

From this followed a new and refined “linear” trilogy, which became prominent
in the early 1990s:
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Monoidal-Closed
Categories

Linear LogicProof-Nets

A puzzle in string diagrams. I started my PhD thesis exactly at that time,
but in a quite different topic: Rewriting Theory, with Jean-Jacques Lévy at IN-
RIA Rocquencourt. Although I devoted all my energies to exploring the arcanes
of my own subject, this culminating in [38,39], I was astonished by the elegance
of linear logic, and by the extraordinary perspectives opened by its discovery.
Indeed, our emerging field: the semantics of proofs and programs, was suddenly
connected to something like mainstream mathematics: linear algebra, represen-
tation theory, low-dimensional topology, etc.

My interest was reinforced after a discussion with Yves Lafont, who revealed
suddenly to me that multiplicative proof-nets, and more generally, his own notion
of interaction nets [32] are specific instances of a graphical notation invented by
Roger Penrose [43,44] to manipulate morphisms in monoidal categories; and that
this notation is itself connected to the works by Jean Bénabou on bicategories [4],
by Ross Street on computads [47], and by Albert Burroni on polygraphs and
higher-dimensional rewriting [13]. Then, André Joyal and Ross Street published
at about the same time two remarkable papers [27,28] devoted to braided mo-
noidal categories and string diagrams. This elegant work finished to convince
me... Indeed, I will start this tutorial on string diagrams by giving a very brief
and partial account of the two articles [27,28] in Section 2.

Now, it is worth recalling that a proof-net is called multiplicative when it
describes a proof limited to the multiplicative fragment of linear logic. Since
multiplicative proof-nets are instances of string diagrams... there remains to
understand the “stringy” nature of general proof-nets — that is, proof-nets
not limited to the multiplicative fragment. A serious difficulty arises at this
point: general proof-nets admit exponential boxes which depict the action of
the exponential modality ! on proofs, by encapsulating them. Recall that the
purpose of the modality ! is to transform a “linear” proof which must be used
exactly once, into a “multiple” proof which may be repeated or discarded during
the reasoning. So, by surrounding a proof, the exponential box indicates that
this proof may be duplicated or erased. The trouble is that, quite unfortunately,
string diagrams do not admit any comparable notion of “box”. Consequently,
one would like to extend string diagrams with boxes... But how to proceed?

The lessons of categorical semantics. Interestingly, the solution to this
puzzle appears in the categorical semantics of linear logic, in the following way. In
the early 1990s, Martin Hyland and Gordon Plotkin initiated together with their
students and collaborators Andrew Barber, Nick Benton, Gavin Bierman, Valeria
de Paiva, and Andrea Schalk, a meticulous study of the categorical structure
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defining a model of linear logic [6,8,5,9,3,23]. The research was fruitful in many
ways. In particular, it disclosed a common pattern behind the various categorical
axiomatizations of linear logic. Indeed, every different axiomatization of linear
logic generates what appears to be a symmetric monoidal adjunction

M

L

��
⊥ L

M

�� (1)

between a symmetric monoidal closed category L and a cartesian category M.
This important notion was introduced and called a Linear-Non-Linear model
by Nick Benton [5,37]. Here, it will be simply called a linear adjunction. The
notations L and M are mnemonics for Linearize and Multiply. Intuitively, a
proof of linear logic is interpreted as a morphism in the category L or in the
category M, depending whether it is “linear” or “multiple”. Then,

• the functor M transports a “linear” proof into a “multiple” proof, which
may be then replicated or discarded inside the cartesian category M,
• conversely, the functor L transports a “multiple” proof into a “linear” proof,

which may be then manipulated inside the symmetric monoidal closed cat-
egory L.

To summarize: there are two “worlds” or “universes of discourse” noted L and M,
each of them implementing a particular policy, and two functors L and M de-
signed to transport proofs from one world to the other.

An early illustration. Interestingly, this pattern traces back to the very origin
of linear logic: coherence spaces. Indeed, Max Kelly notices [25,24] that what one
calls “symmetric monoidal adjunction” in (1) is simply an adjunction L �M in
the usual sense, in which one requires moreover that the left adjoint functor L
transports the cartesian structure of M to the symmetric monoidal structure of L.
The detailed proof of this fact appears in my recent survey on the categorical
semantics of linear logic [40]. Such a functor L is called strong monoidal in the
litterature — the precise definition is recalled in Section 4. Now, the practiced
reader will recognize that the linear adjunction (1) describes precisely how the
category M of dI-domains and stable functions is related to the category L of
coherence spaces and cliques. Recall indeed that a coherence space is simply a
reflexive graph, and that the functor L transforms every dI-domain D into a
coherence space L(D) whose nodes are the elements of D, and in which two
nodes x ∈ D and y ∈ D are connected by an edge (that is, are coherent)
precisely when there exists an element z ∈ D such that x ≤ z ≥ y. Since the
tensor product of coherence spaces is the same thing as the usual product of
graphs, the equality follows:

L(D × E) = L(D)⊗ L(E).

Although one should check carefully the conditions of Section 4, it is quite im-
mediate that the functor L is strict monoidal — hence strong monoidal. At this
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point, there only remains to define a right adjoint functor M to the functor L in
the way exposed in [18,19,1] in order to find oneself in the situation of a linear
adjunction (1).

The exponential modality decomposed. Although the pattern of linear ad-
junction (1) looks familiar from a semantic point of view, it appears quite unex-
pected from the point of view of proof-nets — because the exponential modality !
is not a primitive anymore: it is deduced instead as the comonad

! = L ◦ M (2)

generated by the linear adjunction (1) in the category L. In other words, the
exponential modality ! factors into a pair of more atomic modalities L and M .
Nick Benton [5] mirrors this semantic decomposition into a logic and a term
language, which he calls Linear-Non-Linear logic. The decomposition may be
transposed instead into the pictorial language of proof-nets: it tells then that
the exponential box should decompose into a pair of “boxes” interpreting the
two modalities L and M . This pictorial decomposition of the box ! should follow
the principles of string diagrams, and be nothing more, and nothing less, than
a handy graphical notation for the categorical equality (2).

Functorial boxes. Now, the two modalities L and M in the linear adjunc-
tion (1) are monoidal functors between the monoidal categories L and M —
where the monoidal structure of M is provided by its cartesian structure. Hence,
monoidal functors are precisely what one wants to depict as “boxes” in string
diagrams. The task of Sections 3 and 4 is precisely to explain how monoidal
functors are depicted as functorial boxes in string diagrams — and what kind of
box depicts a lax, a colax or a strong monoidal functor. I rediscover in this way,
ten years later, an idea published by Robin Cockett and Richard Seely [15] in
their work on linearly distributive categories and functors. See also the related
article written in collaboration with Rick Blute [11]. Obviously, all the credit for
the idea should go to them. On the other hand, I find appropriate to promote
here this graphical notation which remained a bit confidential; and to illustrate
how this handy notation for monoidal functors may be applied in other contexts
than linear logic or linearly distributive categories.

So, I will discuss briefly in Section 7 how the exponential box ! of linear
logic decomposes into a functorial box M enshrined inside a functorial box L.
Categorical semantics indicates that the functor L is strong monoidal whereas
the functor M is lax monoidal — see Section 4 for a definition. Consequently,
the two functorial boxes are of a different nature. One benefit of using string
diagrams instead of proof-nets is that the graphical notation mirrors exactly the
underlying categorical semantics. In particular, I will illustrate how the typical
cut-elimination steps in proof-nets are themselves decomposed into sequences
of more atomic rewrite steps in string diagrams. Each of these rewrite steps
depicts a step in the proof of soundness of the categorical semantics of linear
logic implemented by Linear-Non-Linear models.
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Trace operators in linear logic. In order to interpret recursive calls in a
programming language like PCF, one needs a cartesian closed category equipped
with a fixpoint operator. Recall that a parametric fixpoint operator Fix in a
cartesian category C is a family of functions

FixUA : C(A× U,U) −→ C(A,U)

making the diagram below commute

A

∆A

��

FixU
A(f) �� U

A×A
idA×FixU

A(f) �� A× U

f

��

for every morphism f : A × U −→ U . The diagram expresses that FixUA is a
parametric fixpoint of the morphism f . A fixpoint operator should also satisfy
a series of naturality properties described in Theorem 3.1 of [20].

A few years ago, Martin Hyland and Masahito Hasegawa [20] have pointed
out independently that the notion of fixpoint operator is closely related to the
notion of trace introduced by André Joyal, Ross Street and Dominic Verity [29]
in the context of balanced monoidal categories — a mild refinement of braided
monoidal categories, see Section 5 for a definition of trace. More precisely, Martin
Hyland and Masahito Hasegawa show that a trace in a cartesian category C is the
same thing as a particularly well-behaved notion of parametric fixpoint, see [20].

Now, it appears that in many existing models of linear logic, formulated here
as a linear adjunction (1), the symmetric monoidal closed category L has a trace.
This happens typically when the category L is autonomous, like the category Rel
of sets and relations (with the usual product of sets as tensor product) or variants
recently studied by Nicolas Tabareau [49] of the category of Conway games
introduced by André Joyal [26]. An interesting question thus is to understand
when a trace in the category L may be transported to a trace, and thus a fixpoint
operator, in the cartesian category M.

A nice example, suggested to me by Masahito Hasegawa, shows that this is not
possible in general. Consider the powerset monad T on the usual category Set
of sets and functions: the monad associates to every set X the set TX of its
subsets. The monad T induces an adjunction

Set

L

��
⊥ Rel

M

�� (3)

between the category Set and its kleisli category SetT — which is isomorphic to
the category Rel of sets and relations. The lifting monad T being commutative,
or equivalently, symmetric monoidal (in the lax sense), the adjunction (3) is
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symmetric monoidal, see [30]. In particular, the kleisli category SetT inherits
its monoidal structure from the cartesian structure of the category Set ; and the
functor L which sends the category Set to the subcategory of functions in Rel ,
is strict monoidal. So, the adjunction (3) is linear, and defines a model of linear
logic, in which the category L = Rel is autonomous, and thus has a trace. On
the other hand, there is no fixpoint operator, and thus no trace, in the cartesian
category M = Set .

At this point, it is worth noticing that the functor L is faithful in the typ-
ical models of linear logic, because the category M is either equivalent to a
subcategory of commutative comonoids in L, or equivalent to a subcategory of
coalgebras of the comonad ! = L ◦M — in particular to the category of free
coalgebras when M is the co-kleisli category associated to the comonad. Another
equivalent statement is that every component of the unit η of the monad M ◦L is
a monomorphism. This observation motivates to characterize in Section 6 when
a faithful balanced monoidal functor

C
F �� D (4)

between balanced monoidal categories transports a trace in the target category D
to a trace in the source category C. The proof of this result is perfectly elemen-
tary, and offers a nice opportunity to demonstrate how string diagrams and
functorial boxes may be manipulated in order to produce purely diagrammatic
proofs. Of course, the result specializes then to the strong monoidal functor L
involved in a typical model of linear logic. This enables to transport a trace in
the category L to a well-behaved parametric fixpoint operator in the category M
in several models of interest — including the relational model of linear logic, and
the categories of Conway games mentioned earlier.

String diagrams in computer science and logic: a few perspectives. My
ambition in writing this elementary tutorial is to demonstrate in a few pictures
that categorical semantics is also of a diagrammatic nature. Proof-nets were
invented by a genial mind, but they remain an ad’hoc and slightly autarchic
artefact of proof-theory. On the other hand, string diagrams flourished in the
middle of algebra. Categorical semantics is precisely here to connect the two
subjects, with benefits on both sides: logic and computer science on the one
hand, categorical algebra on the other hand.

Obviously, much work remains to be done in the area. In many respects, the
three concepts appearing in the first trilogy (intuitionistic logic, λ-calculus, carte-
sian closed categories) were more tightly connected in the mid-1980s than the
three concepts appearing in the second trilogy (linear logic, proof-nets, monoidal
closed categories) are connected today.

The article published recently by Maria Emilia Maietti, Paola Maneggia, Va-
leria de Paiva, Eike Ritter [37] is extremely clarifying from that point of view:
it is established there that the Linear-Non-Linear term language introduced
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by Nick Benton [5] is the internal language of the category of linear adjunc-
tions (1). Note that the idea of reformulating this result using string diagrams
(extended with functorial boxes) instead of a term language motivates implicitly
the discussion in Section 7. Another key work in the area was published by Rick
Blute, Robin Cockett, Robert Seely and Todd Trimble [12] about coherence in
linearly distributive categories. The article describes the free linearly distributive
category and the free ∗-autonomous over a given category C, using equations on
a variant of Jean-Yves Girard’s multiplicative proof-nets.

I am confident that a broader picture will emerge at some point from the
current work at the interface of linear logic and categorical algebra. In the near
future, we will certainly find natural to extract a language or a logic as the
internal language of a particular categorical pattern, similar to the linear ad-
junction (1) and possibly formulated as a 2-dimensional version of Lawvere the-
ory [35,47,13,10,46]. The languages would be expressed alternatively with string
diagrams, for handy manipulation, or with terms, for easy implementation. The
resulting trilogy of concepts:

Categorical
Semantics

Logic and
LanguageString Diagrams

would be broader in scope and more tightly connected than the current one.
It would also integrate the algebraic and pictorial systems formulated for con-
currency theory, like Robin Milner’s bigraphs [41]. The existing categorical se-
mantics of action calculi [22,42,2] indicate a close relationship with the notion
of fibred functor between fibred categories, and with the models of linear logic
based on linear adjunctions (1).

I should conclude this introduction by observing that functorial boxes in string
diagrams offer a handy 2-dimensional notation for what could be depicted al-
ternatively using Ross Street’s 3-dimensional surface diagrams [48]. Surface di-
agrams are more perspicuous in many ways: for instance, a functor is depicted
there as a string, instead of a box. However, the two notations are not extremely
different: the practiced reader will easily translate the string diagrams appearing
in the tutorial into surface diagrams — in which strings are replaced by ribbons,
in order to accomodate the twists. In that respect, this tutorial should be also
understood as incentive to carry on in the diagrammatic path, and to depict
proofs as surface diagrams. The resulting 3-dimensional notation, added to the
observation [16] that a ∗-autonomous category is essentially the same thing as
a Frobenius algebra in the autonomous category of small categories and “pro-
functors” or “distributors” — will certainly offer a revitalizing point of view on
linear logic, which remains to be investigated.
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2 String Diagrams

In a series of two remarkable papers, André Joyal and Ross Street introduce
the notion of balanced monoidal category [27] and develop a graphical notation,
based on string diagrams, to denote morphisms in these categories [28]. Note that
from a purely topological point of view, these string diagrams are embedded in
the 3-dimensional space. The main task of the second paper [28] is precisely
to justify the notation, by showing that any two string diagrams equal modulo
continuous deformation denote the same morphism in the balanced monoidal
category. The interested reader will find the argument in [28].

Recall that a monoidal category [36] is a category C equipped with a functor

⊗ : C× C −→ C

called the tensor product, and an object I called the unit object ; as well as three
natural isomorphisms

αA,B,C : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)

λA : I ⊗A −→ A, ρA : A⊗ I −→ A

called the associativity, the left and the right unit constraints respectively; such
that, for all objects A, B, C and D of the category, the following two diagrams
called MacLane’s associativity pentagon and triangle for unit, commute:

(A⊗B)⊗ (C ⊗D)
α

����������

((A⊗B)⊗ C)⊗D

α 		��������

α⊗idD

��

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D
α �� A⊗ ((B ⊗ C)⊗D)

idA⊗α
��

(A⊗ I)⊗B
α ��

ρ⊗idB ������������
A⊗ (I ⊗B)

idA⊗λ

����������

A⊗B

A braiding is a natural isomorphism

γA,B : A⊗B −→ B ⊗A

such that, for all objects A,B and C of the category, the two hexagonal diagrams
below commute:

A⊗ (B ⊗ C)
γ �� (B ⊗ C)⊗A

α
���������

(A⊗B)⊗ C

α ���������

γ⊗C ���������
B ⊗ (C ⊗A)

(B ⊗A)⊗ C
α �� B ⊗ (A⊗ C)

B⊗γ

���������
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(A⊗B)⊗ C
γ �� C ⊗ (A⊗B)

α−1

���������

A⊗ (B ⊗ C)

α−1 ���������

A⊗γ ���������
(C ⊗A)⊗B

A⊗ (C ⊗B) α−1
�� (A⊗ C)⊗B

γ⊗B

���������

Finally, a twist is a natural isomorphism

θA : A −→ A

such that
θI = idI

and, for all objects A and B of the category, the diagram below commutes:

A⊗B
γA,B ��

θA⊗B

��

B ⊗A

θA⊗θB

��
A⊗B B ⊗AγB,A



Definition 1. A balanced monoidal category is a monoidal category equipped
with a braiding and a twist.

Note that a symmetric monoidal category is a balanced category in which, for
all objects A and B of the category, the morphism

A⊗B
γA,B �� B ⊗A

γB,A �� A⊗B

is equal to the identity morphism idA⊗B; and the twist morphism θA coincides
with the identity morphism idA.

From now on, we suppose for legibility that our balanced monoidal category
is strict : this means that, for all objects A,B and C of the category, the com-
ponent αA,B,C , λA and ρA of the the associativity and unit isomorphisms, are
identity morphisms. We follow the conventions used in [28] and thus depict a
morphism f : A⊗B ⊗ C −→ D ⊗ E in string diagrams as:

f

A B C

D E

We depict the composite g ◦ f : A −→ C of two morphisms f : A −→ B and
g : B −→ C as:
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g

f

AA A

B

CC

=g ◦ f

and the tensor product f ⊗ g : A⊗C −→ B ⊗D of two morphisms f : A −→ B
and g : C −→ D as:

gf

A⊗ C A

B ⊗D

C

B D

=f ⊗ g

Then, the braiding γA,B and its inverse γ−1
A,B, the twist θA and its inverse θ−1

A

are depicted respectively as:

A

A

A

A

B A

BB

B A

A A

A

A

Note that the third dimension of string diagrams enables to depict the braidings,
and that drawing ribbons (instead of strings) is convenient to depict the twists.

3 Functors in String Diagrams

Here, we recall the graphical notation introduced by Robin Cockett and Robert
Seely [15] in order to depict a usual functor

F : C −→ D

between balanced monoidal categories. The functor applied to a morphism f :
A −→ B of the category C is represented as a box tagged by the label F , and
drawn around the morphism f in the following way:

f

F

FA FA

FB

B

FB

A

=Ff
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Like any box, the functorial box F is designed to separate an inside world from
an outside world: in that case, the inside world is the source category C and the
outside world is the target category D. This explains why a string typed FA
outside the box (thus, in the category D) becomes a string typed A (thus, in the
category C) when it crosses the frontier and enters the box; and that a string
typed B inside the box (in the category C) becomes a string typed FB (in the
category C) when it crosses the frontier and leaves the box.

Given a pair of morphisms f : A −→ B and g : B −→ C, one depicts the two
functorial equalities

F (g ◦ f) = Fg ◦ Ff F (idA) = idFA

in the following way:

F

g

F

f f

F

F

g

FB

FA FA

B

FAFA

C

B

C

FC

B

AA

FA

A

FA

A

FC

==

Note that exactly one string enters and exits each functorial box F .

4 Monoidal Functors in String Diagrams

In this section, we recall how the graphical notation for functors introduced
in the previous section specializes to monoidal functors, see [15] again. It will
appear that a monoidal functor (in the lax sense) implements a particular kind of
functorial box in which several strings (possibly none) may enter simultaneously,
and from which exactly one string exits. Recall that a lax monoidal functor

(F,m) : C −→ D

between two monoidal categories is a functor F equipped with a morphism

m[−] : I −→ FI

and a natural morphism

m[A,B] : FA⊗ FB −→ F (A⊗B)

such that, for all objects A,B and C, the three “coherence” diagrams below
commute:
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(FA⊗ FB)⊗ FC
α ��

m⊗FC
��

FA⊗ (FB ⊗ FC)

FA⊗m
��

F (A⊗B)⊗ FC

m

��

FA⊗ F (B ⊗ C)

m

��
F ((A ⊗B)⊗ C) Fα �� F (A⊗ (B ⊗ C)

FA⊗ I
ρ ��

FA⊗m

��

FA

FA⊗ FI
m �� F (A⊗ I)

Fρ

�� I ⊗ FB
λ ��

m⊗FB

��

FB

FI ⊗ FB
m �� F (I ⊗B)

Fλ

��

The notion of colax monoidal functor (F, n) is defined in just the same way,
except that the coercion morphisms n go in the other direction:

n[−] : FI −→ I n[A,B] : F (A⊗B) −→ FA⊗ FB

A strong monoidal functor is a lax monoidal functor (F,m) in which the coercion
maps m are all isomorphisms; equivalently, it is a colax monoidal functor (F, n)
in which the coercion maps n are all isomorphisms.

Let us explain now how we depict monoidal functors in string diagrams. We
will suppose for legibility that the two monoidal categories C and D are strict.
Given k objects in the category C, there may be several ways to construct a
morphism

m[A1,···,Ak] : FA1 ⊗ · · · ⊗ FAk −→ F (A1 ⊗ · · · ⊗Ak)

by applying a series of structural morphisms m. Then, the definition of a lax mo-
noidal functor, and more specifically the coherence diagrams recalled above, are
designed to ensure that these various ways define the same morphism m[A1,···,Ak]

in the end. This morphism is depicted in string diagrams as a box F in which k
strings labelled A1, · · · , Ak enter simultaneously, join together into a unique
string labelled A1 ⊗ · · · ⊗ Ak which then exits the box. For instance, the two
structural morphisms m[A1,A2,A3] and m[−] are depicted as follows:

FI

I

F FA2

FA3FA2

A3A1

FA1

F (A1 ⊗A2 ⊗A3)

A1 ⊗A2 ⊗A3

(5)
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More generally, given a morphism

f : A1 ⊗ · · · ⊗Ak −→ B

in the source category C, one depicts as the functorial box with k inputs and
exactly one output:

f

F

FA1 FAk

FB

AkA1

B

(6)

the morphism

F (f) ◦m[A1,···,Ak] : FA1 ⊗ · · · ⊗ FAk −→ FB

obtained by precomposing the image of f by the functor F in the target cate-
gory D, with the morphism m[A1,···,Ak].

Remark. The definition of lax monoidal functor would permit a more general and
delayed form of fusion between boxes (think of surface diagrams [48] here). Here,
we limit ourselves to the specific pattern (5) of k boxes F , each one encapsulating
a unique string labelled Ai, for 1 ≤ i ≤ k, and joining together simultaneously
in a box F encapsulating a unique string labelled A1 ⊗ · · · ⊗ Ak. This specific
pattern generates boxes of the shape (6) which are easy to understand and to
manipulate, and sufficient to the purpose of this tutorial.

The coherence properties required by the definition of a monoidal functor ensure
that we may safely “merge” two monoidal boxes in a string diagram:

g

F

f

C

FAk

A1

B

Ak

FAj

AjAi

FAiFA1

FC

=

F

F

g

f

FA1

FC

C

B

FB

AkA1

FAj FAk

AjAi

FAi

B

(7)
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Note that a colax monoidal functor may be depicated in a similar fashion, as
a functorial box in which exactly one string enters, and several strings (pos-
sibly none) exit. Now, a strong monoidal functor is at the same time a lax
monoidal functor (F,m) and a colax monoidal functor (F, n). It is thus depicted
as a functorial box in which several strings may enter, and several strings may
exit. Besides, the coercion maps m are inverse to the coercion maps n. Two
diagrammatic equalities follow, which enable to split a “strong monoidal” box
horizontally:

g

F

f

B1

FCkFC1

Ck

FAi

AiA1

FA1

C1

Bj

=

g

F

f

F

FCkFC1

Ck

FAi

AiA1

FA1

C1

FBjFB1

(8)

as well as vertically:

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

=

F

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

(9)

These equalities will be illustrated in the series of diagrammatic manipulations
exposed in Sections 6 and 7.

5 Traced Monoidal Categories

In a remarkable article, André Joyal, Ross Street and Dominic Verity [29] define
a trace in a balanced monoidal category C as a natural family of functions

TrUA,B : C(A⊗ U,B ⊗ U) −→ C(A,B)

satisfying three axioms:

vanishing (monoidality in U)

TrU⊗VA,B (g) = TrUA,B(TrVA⊗U,B⊗U (g)), TrIA,B(f) = f.
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superposing

TrUA,B(f)⊗ g = TrUA⊗C,B⊗D((idB ⊗ γ−1
D,U ) ◦ (f ⊗ g) ◦ (idA ⊗ γC,U ))

= TrUA⊗C,B⊗D((idB ⊗ γD,U ) ◦ (f ⊗ g) ◦ (idA ⊗ γ−1
C,U ))

yanking

TrUU,U (γU,U ◦ (θ−1 ⊗ idU )) = idU = TrUU,U (γ−1
U,U ◦ (θ ⊗ idU )).

A balanced monoidal category equipped with a trace is then called a traced
monoidal category. String diagrams for balanced monoidal categories extend to
traced monoidal categories by depicting the trace as follows:

( ) ff =

AA

U

B BU

U

TrUA,B

The small arrow embroidered on the ribbon recalls that this part of the string
diagram depicts a trace, which expresses intuitively a notion of feedback. Thanks
to this ingenious notation for traces, the algebraic axioms of a trace are de-
picted as a series of elementary topological deformations on ribbons, recalled
here from [29]:

sliding (naturality in U)

u

u

ff =

AA

B B

V

U

U

V

tightening (naturality in A,B)

a

b

a

b

f f=
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vanishing (monoidality in U)

f f=

U ⊗ V

V

U

f f=

I

superposing

gff gf g ==

yanking

UUU

= =

6 Transport of Trace Along a Faithful Functor

Recall [29] that a balanced monoidal functor F : C −→ D between balanced
monoidal categories is a strong monoidal functor satisfying that, for all objects A
and B, the diagram below commutes

FA⊗ FB
γA,B ��

mA,B

��

FB ⊗ FA

mB,A

��
F (A⊗B)

F (γA,B) �� F (B ⊗A)

and the equality FθA = θFA holds. This may be depicted as the two equalities:

F

F

FA

FAFB

FB FA

FAFB

FB FA

FA FA

FA

= =
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When C and D are traced monoidal, one says that F : C −→ D is traced monoidal
when F is balanced monoidal, and preserves traces in the expected sense that,
for all objects A,B and U and for all morphism f : A ⊗ U −→ B ⊗ U of the
category C, the following equality holds:

F (TrUA,B(f)) = TrFUFA,FB(m−1
[A,B] ◦ Ff ◦m[A,B]).

This equality is depicted as follows:

U

FU

FAFA

FB FB

F

ff =

F

An elementary exercise in string diagrams with functorial boxes follows. It con-
sists in establishing in a purely diagrammatic fashion a mild but useful general-
ization of a statement (Proposition 2.4) appearing in [29].

Proposition 1 (Characterization of transport along a faithful functor).
Suppose that F : C −→ D is a faithful, balanced monoidal functor with D traced
monoidal. Then, there exists a trace on C for which F is a traced monoidal
functor iff for all objects A,B,U of the category C, and all morphism

f : A⊗ U −→ B ⊗ U

there exists a morphism g : A −→ B such that

F (g) = TrFUFA,FB(m−1
[A,B] ◦ F (f) ◦m[A,B]) (10)

where Tr denotes the trace in D. The equality is depicted as follows:

FU

FAFA

A

FB

FB

B

F

fg

F

=

Moreover, if this trace on C exists, it is unique: it is called the trace on the
category C transported from the category D along the functor F .
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Proof. The direction (⇒) follows immediately from the very definition of a traced
monoidal functor. Hence, we only establish here the converse direction (⇐). We
suppose from now on that for every morphism f : A⊗U −→ B⊗U there exists
a morphism g : A −→ B satisfying Equation (10). Note that the morphism g is
unique because the functor F is faithful. This defines a family of functions noted

trUA,B : C(A⊗ U,B ⊗ U) −→ C(A,B).

We establish that tr satisfies the equational axioms of a trace. To that purpose,
we introduce a handy notation for the morphism trUA,B(f):

( )f f=

A A

U

BB U

U

trUA,B

By definition, trUA,B satisfies the diagrammatic equality:

U

FU

FAFA

FB FB

F

ff =

F

We establish each of the equations by a series of elementary manipulations on
string diagrams. Although the proof is diagrammatic, it is absolutely rigorous,
and works for weak monoidal categories C and D as well as strict ones.

Sliding (naturality in U). We want to show the equality

u

ff

u

=

AA

V

B

U

B

U
V

Because the functor F is faithful, it is sufficient to establish that the two mor-
phisms A −→ B have the same image FA −→ FB in the target category D:
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u

ff

u

F F

=

FAFA

V

FB FB

U
V

U

Once the definition of tr applied, we separate the box in two parts, using Equa-
tion (7) for the lax monoidal functor F :

f

u

F

FA

FB

V

U

= f

u
F

FA

FB
FV

U

=

u

F

f

F

FA

FV

FB

U

FU

Then, after applying the sliding axiom of the trace Tr in the target category D,
we reunify the two separate boxes, using the variant of Equation (7) satisfied by
colax monoidal functors. The definition of tr concludes the proof.

u

F

f

F

FA

FU

FB

V

FV

= f

u

F

FA

FB
FU

V
=

u

f

F

FA

FB

U
V

Tightening (Naturality in A and B). The proof is very similar to the proof of the
sliding equality. Because the functor F is faithful, we will deduce the equality

a

b

a

b

f f=

from the equality by F of the image of the two morphisms in the target category:
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a

b

a

b

f f

F F

=

FAFA

FBFB

This is established as follows. Once the definition of tr applied, we separate the
box in three parts, using Equation (7) for lax monoidal functors, and its colax
variant:

a

b

f

F

FA

FB

=

b

a

f

F

FA

FB

=

b

a

F

f

F

F

FA

FB

Then, we apply the tightening axiom of the trace Tr in the category D, fol-
lowed by the definition of tr, and finally reunify the three boxes together, using
Equation (7) for lax monoidal functors, and its colax variant.

b

a

F

f

F

F

FA

FB

=

b

a

F

f

F

F

FA

FB

=

a

b

f

F

FA

FB

Vanishing (monoidality in U). We will proceed here as in the previous proofs,
and deduce the two equalities formulated in the source category C,

f U ⊗ V = f V U f I = f
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from the two equalities below, formulated in the target category D,

f

F

U ⊗ V = f

F

V U f

F

I = f

F

The first equation is established as follows. After applying the definition of tr,
we split the string U ⊗ V in two strings U and V , then separate the box in two
parts, using Equation (8) for the strong monoidal functor F :

f

F

U ⊗ V =
F

f

F (U ⊗ V )

=

f

F

U

U ⊗ V

F (U ⊗ V )

U ⊗ V

V

=

f

F

F

FU

U ⊗ V

U ⊗ V

F (U ⊗ V )

FV

Then, we apply the sliding and vanishing axioms of the trace Tr in the cat-
egory D, and reunify the two boxes using Equation (8), before concluding by
applying the definition of tr twice.

F

f

F

U ⊗ V

U ⊗ V

FUFV

= f

F

U ⊗ V

U ⊗ V

= f

F

FV

FU

= f

F

V U

The second equation is established exactly as the previous one, except that we
are dealing now with the nullary case instead of the binary one. After applying
the definition of tr, we split the string I, and separate the box in two parts,
using Equation (8) for the strong monoidal functor F :

f

F

I =

FI

f

F

=

f

F

F (I)

I

I

=

f

F

F

F (U ⊗ V )

I

I
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Then, just as for the binary case, we apply the sliding and vanishing axioms of
the trace Tr and reunify the two boxes, before concluding.

F

f

F

I

I

=
f

F

I

I

=
f

F

Note that we need the hypothesis that the functor F is strong monoidal in order
to perform the manipulations for vanishing — while we needed only that it is
lax and colax monoidal in the arguments devoted to sliding and tightening.

Superposing. We will establish only the first of the two equalities below — since
the second one is proved in exactly the same way.

f g = gf = gf

Because the functor F is faithful, this reduces to showing that the two morphisms
have the same image in the category D — which we establish by the series of
equalities below. First, we separate the box in two parts, using Equation (9) for
the strong monoidal functor F ; and apply the definition of tr in one of the two
boxes.

f g

F

=

F

f g

F

=

F

f g

F

Then, after applying the superposing axiom of the trace Tr in the target cate-
gory D, we merge the two boxes, using again Equation (9) for the strong monoidal
functor F ; we insert the two braidings inside the box, using the hypothesis that
the functor F is balanced; and finally conclude using the definition of tr.

F

f g

F

= f g

F

= f g

F

=

F

gf
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Yanking. The diagrammatic proof follows easily from the hypothesis that the
functor F is faithful, and balanced monoidal. The proof is left to the reader as
exercise.

From this, we conclude that tr defines a trace in the source category C. The fact
that the functor F is traced monoidal follows then immediately from the very
definition of tr. This concludes the proof of Proposition 1.

Application to models of linear logic. In a typical model of linear logic based
on a linear adjunction (1) the category M is a full subcategory of the category
of Eilenberg-Moore coalgebras of the comonad ! = L ◦M in the category L —
and the functor L is the associated forgetful functor. In that case, Proposition 1
ensures that the category M is traced when the category L is traced, and when,
moreover, the trace

TrLULA,LB(f) : LA −→ LB (11)

of every coalgebraic morphism

f : LA⊗ LU −→ LB ⊗ LU (12)

is coalgebraic. This is precisely what happens in the relational model of linear
logic, where:

– L is the category Rel of sets and relations, with tensor product defined as
usual set-theoretic product,

– M is the co-kleisli category of the comonad ! which transports every set A
to the free commutative comonoid !A with finite multisets of elements of A
as elements, and multiset union as coproduct. Note that the co-kleisli cate-
gory M is understood here as the full subcategory of free coalgebras of the
exponential comonad.

This establishes that the category M has a well-behaved fixpoint operator. A
similar method applies to construct well-behaved fixpoint operators in categories
of games and strategies [49].

Another application: Masahito Hasegawa observed (private communication)
that the category M is traced whenever it is the co-kleisli category of an idem-
potent comonad ! = L ◦M . This interesting fact may be explained (and mildly
generalized) by applying Proposition 1 in the following way. Let η and ε denote
the unit of the monad M ◦L and the counit of the comonad L ◦M respectively.
For general reasons related to adjunctions, it appears that for every morphism

f : A× U −→ B × U (13)

in the category M, the morphism

h = TrLULA,LB(m−1
[A,B] ◦ Lf ◦m[A,B]) : LA �� LB

is equal in the category L to the morphism

LA
Lη �� LMLA

LMh �� LMLB
εLB �� LB. (14)

The equality is nicely depicted in string diagrams:
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LU

LA

LB

f

L

=

LU

MLA

LMLB

LB

LA

LA

A

LB

ε

f

L

M

η

L

Here, Proposition 1 applies, and the category M is thus traced, whenever the
functor L is faithful, and for every morphism f in (13), the morphism (14) is
the image L(g) in the category L of a morphism g : A −→ B in the category M.

This is precisely what happens when the category M is defined as the co-
kleisli category associated to an idempotent comonad ! = L ◦M . In that case,
indeed, the morphism εLB : LMLB −→ LB is the identity, and the morphism g
is defined as:

g = A
η �� MLA

Mh �� MLB.

A nice problem remains open. A few years ago, Ryu Hasegawa [21] constructed
a trace related to the Lagrange-Good inversion formula, in a category of analytic
functors. This category, which is cartesian, is the co-kleisli category associated to
a specific model of linear logic. Interestingly, the diagrammatic account exposed
in this tutorial does not seem to apply (at least directly) to Ryu Hasegawa’s
construction. It would be extremely satisfactory to devise alternative algebraic
conditions to cover this important example. We leave this open here.

7 Decomposing the Exponential Box of Linear Logic

The decomposition ! = L◦M of the exponential modality of linear logic illustrates
the general diagrammatic principle that every functorial box separates an inside
world from an outside world, each world implementing his own (eg. cartesian,
monoidal closed) policy. We take the freedom of considering here a “balanced”
version of linear logic, whose categorical model is defined as a balanced monoidal
adjunction

M

L

��
⊥ L

M

�� (15)
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between a balanced monoidal category L and a cartesian category M. Note that
in such an adjunction, the functor L is balanced monoidal.

In that setting, the exponential box ! with its auxiliary doors labelled by the
formulas !A1, ..., !Ak and with its principal door labelled by the formula !B is
translated as a lax monoidal box M enshrined inside a strong monoidal box L,
in the following way:

!

f

!B

B

Ak

!Ak!A1

A1

=

L

M

f

MB

MAkMA1

B

LMAk

AkA1

LMA1

LMB

Now, the category M enshrined “inside” the functorial box L is cartesian, with
binary product noted × here. Hence, every object X of the category M induces
a diagonal morphism

∆X : X −→ X ×X.

In particular, every object A of the category L induces a diagonal morphism

∆MA : MA −→MA×MA.

The contraction of linear logic is defined as the morphism L(∆MA) depicted as
the diagonal string ∆MA inside the strong monoidal box L:

c

!A

!A !A

= ∆

L

MA

MA

LMA

LMA LMA

MA

If one translates in string diagrams the usual cut-elimination step of linear logic
between a contraction rule and an introduction rule of the exponential box, this
decomposes the step in a series of more atomic steps. First, the box L which
encapsulates the diagonal ∆MA merges with the box L which encapsulates the
content f of the exponential box. This releases the diagonal ∆MA inside the
cartesian category M enshrined in the exponential box.
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L

∆

M

L

f

MB

LMB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MBMB

=

L

∆

M

f

MB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MB

Then, the diagonal ∆MA replicates the content f of the exponential box — or
more precisely the morphism f encapsulated by the lax monoidal box M . Note
that the duplication step is performed in the cartesian category M enshrined by
the functorial box L.

M

L

ff

∆

M

∆

MB

MA1
MAk

MA1

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

B

Once the duplication finished, the strong monoidal box is split in three horizontal
parts using Equation (8).

L

f

L

M

L

f

M

∆ ∆

MA1

MB

MAk

MA1

B

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

MAkMA1

The intermediate box may be removed, because the functor L is balanced.
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f

M

L

f

L

M

∆∆

MAkMA1

MB

MA1 MAk

B

LMAk

AkA1

LMA1

LMB

MAkMA1

MB

LMB

LMA1

B

AkA1

LMAk

Finally, the remaining monoidal boxes L are split vertically, using Equation (9).

L

L

f

L

M

f

L

M

∆ ∆

MB

MAk

MA1

B

LMAk

Ak

A1

LMA1

LMB

MA1

MB

MAk

LMB

B

Ak

A1

LMA1 LMAk

This completes the categorical and diagrammatical transcription of this particu-
lar cut-elimination step. The other cut-elimination steps of linear logic involving
the exponential box ! are decomposed in a similar fashion.
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49. N. Tabareau. De l’opérateur de trace dans les jeux de Conway. Mémoire de Master 2.
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Verifying Finitely-Presentable Infinite
Structures (Extended Abstract)
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Abstract. We present some results on a game-semantic approach to
verifying infinite structures that are generated by higher-order recursion
schemes. The key idea is a certain Transference Principle from the struc-
ture generated by a given recursion scheme to an auxiliary computation
tree, which is itself generated by a related order-0 recursion scheme. By a
structural analysis of the computation tree based on the innocent game
semantics of the recursion scheme, we can infer certain properties of the
generated structure by appropriate algorithmic analysis of the computa-
tion tree.

1 Introduction

A basic problem in Verification is to identify classes of finitely-presentable infinite-
state systems that have decidable monadic second-order (MSO) theories. This is
a question of practical importance because MSO logic is highly expressive: tem-
poral logics that are widely used in computer-aided verification such as LTL,
CTL and CTL∗ are embeddable in the modal mu-calculus, and hence, embed-
dable in MSO logic. Indeed MSO logic is a kind of gold standard in Verification
because it is virtually as strong (a specification language) as can be, in the sense
that any obvious extension of the logic would render it undecidable.

Perhaps one of the best known examples of such MSO-decidable structures
is the class of regular trees, as studied by Rabin [1] in 1969. A notable ad-
vance occurred some fifteen years later, when Muller and Shupp [2] proved that
the configuration graphs of pushdown systems have decidable MSO theories. In
the 1990s, as finite-state technologies matured, researchers embraced the chal-
lenges of software verification. A highlight in this period was Caucal’s result [3]
that prefix-recognisable graphs have decidable MSO theories. Prefix-recognisable
graphs may have unbounded out-degrees; they can be characterized [4] as graphs
that are obtained from the configuration graphs of pushdown systems by factor-
ing out the ε-transitions.

In 2002 a flurry of discoveries significantly extended and unified earlier de-
velopments. In a FOSSACS 2002 paper [5], Knapik, Niwiński and Urzyczyn in-
troduced an infinite hierarchy of (possibly infinite) Σ-labelled trees (i.e. ranked
and ordered trees whose nodes are labelled by symbols of a ranked alphabet Σ):

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 31–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the nth level of the hierarchy, SafeRecTreenΣ, consists of Σ-labelled trees gen-
erated by order-n recursion schemes that are homogeneously typed1 and satisfy
a syntactic constraint called safety2. They showed that for every n ≥ 0, trees
in SafeRecTreenΣ have decidable MSO theories; further SafeRecTreenΣ =
PushdownTreenΣ i.e. Σ-labelled trees generated by order-n safe recursion
schemes are exactly those that are generated by order-n (deterministic) push-
down automata. Thus SafeRecTree0Σ, the order-0 trees, are the regular trees
(i.e. trees generated by finite-state transducers); and SafeRecTree1Σ, the order-
1 trees, are those generated by deterministic pushdown automata. Later in the
year, Caucal [6] introduced an infinite hierarchy of Σ-labelled trees, the nth level
of which, CaucalTreenΣ, consists of Σ-labelled trees that are obtained from
regular Σ-labelled trees by iterating n-times the operation of inverse determin-
istic rational mapping followed by unravelling. A major result in Caucal’s work
[6, Theorem 3.5] is that SafeRecTreenΣ = CaucalTreenΣ. To summarize:

Theorem 1 (Knapik, Niwinski, Urzyczyn and Caucal 2002). For any
ranked alphabet Σ, and for every n ≥ 0, we have

SafeRecTreenΣ = PushdownTreenΣ = CaucalTreenΣ;

further, trees from the class have decidable MSO theories.

Though a rather awkward syntactic constraint, safety plays an important al-
gorithmic rôle. Knapik et al. have asked [5] if the safety assumption is really
necessary for their decidability result. In other words, let RecTreenΣ be the
class of Σ-labelled trees generated by order-n recursion schemes (whether safe
or not, and whether homogeneously typed or not), the question is:

For which n ≥ 2 do trees in RecTreenΣ have decidable MSO theories?

A partial answer to the question has recently been obtained by Aehlig, de
Miranda and Ong at TLCA 2005 [7]; they showed that all trees in RecTree2Σ
have decidable MSO theories. Independently, Knapik, Niwiński, Urzyczyn and
Walukiewicz obtained a somewhat sharper result (see their ICALP 2005 paper
[8]); they proved that the modal mu-calculus model checking problem for trees
generated by order-2 homogeneously-typed recursion schemes (whether safe or
not) is 2-EXPTIME complete.

1 The base type o is homogeneous; a function type A1 → (A2 → · · · → (An → o) · · ·)
is homogeneous just if each Ai is homogeneous, and ord(A1) ≥ ord(A2) ≥ · · · ≥
ord(An). A term (or a rewrite rule or a recursion scheme) is homogeneously typed
just if all types that occur in it are homogeneous.

2 A homogeneously-typed term of order k > 0 is said to be unsafe if it contains an
occurrence of a parameter of order strictly less than k, otherwise the term is safe.
An occurrence of an unsafe term t, as a subexpression of a term t′, is safe if it occurs
in an operator position (i.e. it is in the context · · · (ts) · · ·), otherwise the occurrence
is unsafe. A recursion scheme is safe if no unsafe term has an unsafe occurrence in
the righthand side of any rewrite rule.
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In this extended abstract, we explain a game-semantic approach to verifying
infinite structures that are generated by higher-order recursion schemes. As a
major case study, we extend the result of Knapik et al. [8] by proving that for
all n ≥ 0, trees in RecTreenΣ have decidable MSO theories; we give an outline
of the proof in Section 2. In Section 3 we give an automata-theoretic character-
ization of trees in RecTreenΣ where n ≥ 0. We show that for the purpose of
generating Σ-labelled tree, recursion schemes are equi-expressive with a new kind
of automata called collapsible pushdown automata. The same game-semantic ap-
proach can be extended to verify certain classes of finitely-presentable infinite
graphs. In Section 4, we briefly consider the solution of parity games on config-
uration graphs of collapsible pushdown automata. Finally we mention a couple
of further directions in Section 5.

Technical Preliminaries

Types are generated from the base type o using the arrow constructor→. Every
type A can be written uniquely as A1 → · · · → An → o (by convention arrows
associate to the right), for some n ≥ 0 which is called its arity. We define the
order of a type by: ord(o) = o and ord(A → B) = max(ord(A) + 1, ord(B)).
Let Σ be a ranked alphabet i.e. each Σ-symbol f has an arity ar (f) ≥ 0 which
determines its type o→ · · · → o︸ ︷︷ ︸

ar(f)

→ o. Further we shall assume that each symbol

f ∈ Σ is assigned a finite set Dir(f) = { 1, · · · , ar(f) } of directions, and we
define Dir(Σ) =

⋃
f∈Σ Dir(f). Let D be a set of directions; a D-tree is just

a prefix-closed subset of D∗, the free monoid of D. A Σ-labelled tree is a
function t : Dom(t) −→ Σ such that Dom(t) is a Dir(Σ)-tree, and for every node
α ∈ Dom(t), the Σ-symbol t(α) has arity k if and only if α has exactly k children
and the set of its children is {α 1, · · · , α k } i.e. t is a ranked (and ordered) tree.

For each type A, we assume an infinite collection VarA of variables of type
A. A (deterministic) recursion scheme is a tuple G = 〈Σ,N ,R, S 〉 where Σ
is a ranked alphabet of terminals; N is a set of non-terminals, each of a fixed
type; S ∈ N is a distinguished start symbol of type o; R is a finite set of rewrite
rules – one for each non-terminal F : (A1, · · · , An, o) – of the form

F ξ1 · · · ξn → e

where each ξi is in VarAi , and e is an applicative term3 of type o constructed
from elements of Σ ∪ N ∪ { ξ1, · · · , ξn }. The order of a recursion scheme is the
highest order of its non-terminals.

We use recursion schemes as generators of Σ-labelled trees. The value tree of
(or the tree generated by) a recursion scheme G is a possibly infinite applicative
term, but viewed as a Σ-labelled tree, constructed from the terminals in Σ, that

3 Applicative terms are terms constructed from the generators using the application
rule: if d : A → B and e : A then (de) : B. Standardly we identify finite Σ-labelled
trees with applicative terms of type o generated from Σ-symbols endowed with 1st-
order types as given by their arities.
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is obtained by unfolding the rewrite rules of G ad infinitum, replacing formal
by actual parameters each time, starting from the start symbol S. For n ≥ 0
we define RecTreenΣ to be the class of Σ-labelled value trees of (arbitrary)
order-n recursion schemes. Plainly we have SafeRecTreenΣ ⊆ RecTreenΣ for
every n ≥ 0. It follows from the definition of safety that SafeRecTreenΣ =
RecTreenΣ for n = 0 and 1, but it is not known whether the inclusion is strict
for n ≥ 2 (see Conjecture 1).

Example 1. Let G be the order-2 (unsafe) recursion scheme with rewrite rules:

S → H a
H zo → F (g z)

F ϕ(o,o) → ϕ (ϕ (F h))

where the arities of the terminals g, h, a are 2, 1, 0 respectively. The value tree
[[G ]] is the Σ-labelled tree defined by the infinite term g a (g a (h (h (h · · ·)))):

g
����

� ����
�

a g
���� ����

a h

h

...

The only infinite path in the tree is the node-sequence ε · 2 · 22 · 221 · 2211 · · ·
(with the corresponding trace g g h h h · · · ∈ Σω).

2 Trees Generated by Recursion Schemes Have Decidable
MSO Theories

We state our first main result as follows:

Theorem 2. For every n ≥ 0 the modal mu-calculus model-checking problem
for trees in RecTreenΣ is n-EXPTIME complete.

Since MSO logic and the modal mu-calculus are equi-expressive over trees (see
e.g. [9]), it follows that these trees have decidable MSO theories. Our proof
of Theorem 2 relies on a certain Transference Principle from the value tree of
a recursion scheme G to an auxiliary computation tree, which is itself a tree
generated by a related order-0 recursion scheme G, called the long transform of
G. By exploiting a structural analysis of the computation tree made possible by
the innocent game semantics (in the sense of Hyland and Ong [12]) of the scheme
G, we can infer certain properties of the value tree [[G ]] (e.g. acceptance by a
given tree automaton) by appropriate algorithmic analysis of the computation
tree. A full account of the result can be found in the preprint [10]; see also the
summary at LICS 2006 [11].
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Removing the safety assumption: a game-semantic approach
Here we briefly explain our approach. First we note that it would be futile
to analyse directly the value tree [[G ]] since it has no useful structure for our
purpose: by definition [[G ]] is the extensional outcome of a potentially infinite
process of rewriting. Rather it is the algorithmics of this computational process
that one should seek to understand. Given an order-(n+1) safe recursion scheme
G, the approach taken in [5] was to consider an associated tree that is obtained
by contracting only (and all) the order-1 (i.e. lowest ordered) β-redexes in the
rewrite rules of G. The tree thus generated, written �G, coincides with the value
tree of a related order-n recursion scheme Gα (i.e. �G = [[Gα ]]); further the MSO
theory of the order-(n+1) tree [[G ]] is reducible to that of the order-n tree [[Gα ]]
in the sense that there is a recursive mapping of MSO sentences ϕ �→ ϕ′ such that
[[G ]] � ϕ iff [[Gα ]] � ϕ′ [5, Theorem 3.3]. The safety assumption is crucial to the
reduction argument. Roughly speaking, the point is that β-redexes in a safe term
can be contracted using capture-permitting substitution (i.e. without renaming
bound variables). It follows that one can construct the tree �G using only the
original variables of the recursion schemes G. Without the safety assumption,
the same construction would require an unbounded supply of names!

Our approach to removing the safety assumption stems from an observation
due to Klaus Aehlig [7]: by considering the long transform of a recursion scheme
(which is obtained by expanding the RHS of each rewrite rule to its η-long form,
inserting explicit application operators, and then currying the rule), the two
constituent actions of the rewriting process, namely, unfolding and β-reduction,
can be teased out and hence analysed separately. Given an order-n recursion
scheme G:

– We first construct the long transform G, which is an order-0 recursion
scheme.

– We then build an auxiliary computation tree λ(G) which is the outcome of
performing all of the unfolding4, but none of the β-reduction, in the G-rules.
As no substitution is performed, no variable-renaming is needed.

– We can now analyse the β-reductions locally (i.e. without the global operation
of substitution) by considering traversals over the computation tree, based
on innocent game semantics [12].

Note that we do not (need to) assume that the recursion scheme G is safe or type-
homogeneous. Formally the computation tree λ(G) is defined to be the value tree
of the long transform G; the tree λ(G) is regular, since G is an order-0 recursion
scheme.

Correspondence between paths in [[G ]] and traversals over λ(G)
We sketch an outline of the proof of Theorem 2. We are concerned with the
decision problem: Given a modal mu-calculus formula ϕ and an order-n recursion
scheme G, does [[G ]] satisfy ϕ (at the root ε)? The problem is equivalent [14]

4 I.e. rewriting the LHS of a rule to the RHS with no parameter passing - since the G
rules, being order-0, have no formal parameters.
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to deciding whether a given alternating parity tree automaton (APT) B has an
accepting run-tree over the Σ-labelled tree [[G ]]. Recall that an accepting run-
tree of B over [[G ]] is a certain set of state-annotated paths in [[G ]] that respect
the transition relation of B, such that every infinite path in the set satisfies
the parity condition. Instead of analysing paths in [[G ]] directly, we use game
semantics to establish a strong correspondence between paths in the value tree
and traversals over the computation tree.

Theorem 3 (Correspondence). Let G be a recursion scheme. There is a one-
one correspondence, p �→ tp, between maximal paths p in the value tree [[G ]]
and maximal traversals tp over the computation tree λ(G). Further for every
maximal path p in [[G ]], we have tp � Σ− = p � Σ−, where s � Σ− denotes the
subsequence of s consisting of only Σ−-symbols with Σ− = Σ \ {⊥ }.

The proof of the Theorem is an application of the innocent game semantics of
the recursion scheme G (see [13] for a proof of the statement in a more general
setting). In the language of game semantics, paths in the value tree correspond
exactly to plays in the strategy-denotation of the recursion scheme; a traversal is
then (a representation of) the uncovering [12] of such a play. The path-traversal
correspondence (Theorem 3) allows us to prove the following useful transference
result:

Corollary 1. A given property5 APT has an accepting run-tree over the value
tree if and only if it has an accepting traversal-tree over the computation tree.

Relative to a property APT B over Σ-labelled trees, an (accepting) traversal-tree
of B over λ(G) plays the same rôle as an (accepting) run-tree of B over [[G ]]. A
path in a traversal-tree is a traversal in which each node is annotated by a state
of B.

Simulating traversals over λ(G) by paths in λ(G)
Our problem is thus reduced to finding an effective method of recognising certain
sets of infinite traversals (over a given computation tree) that satisfy the parity
condition. This requires a new idea as a traversal is a sequence of nodes that
is most unlike a path; it can jump all over the tree and may even visit certain
nodes infinitely often. Our solution again exploits the game-semantic connexion.
It is a property of traversals that their P-views (in the sense of [12]) are paths (in
the computation tree). This allows us to simulate a traversal over a computation
tree by (the P-views of its prefixes, which are) annotated paths of a certain
kind in the same tree. The simulation is made precise in the notion of traversal-
simulating APT (associated with a given property APT and a recursion scheme
G). We establish the correctness of the simulation by the following result:

Theorem 4 (Simulation). A given property APT has an accepting traversal-
tree over the computation tree λ(G) if and only if the associated traversal-
simulating APT has an accepting run-tree over the computation tree.
5 Property APT because the APT corresponds to the property described by a given

modal mu-calculus formula.
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Note that decidability of the modal mu-calculus model-checking problem for
trees in RecTreenΣ follows at once since computation trees are regular, and the
APT acceptance problem for regular trees is decidable [1,14].

To prove n-EXPTIME decidability of the model-checking problem, we first
establish a certain succinctness property for traversal-simulating APT C: If C
has an accepting run-tree, then it has one with a reduced branching factor. The
desired time bound is then obtained by analysing the complexity of solving an
associated (finite) acceptance parity game, which is an appropriate product of
the traversal-simulating APT and a finite deterministic graph that unravels to
the computation tree in question. n-EXPTIME hardness of the model-checking
problem follows from a result of Engelfriet [15] (see also [16]).

3 Collapsible Pushdown Automata and Recursion
Schemes

In their ICALP 2005 paper [8], Knapik et al. showed that order-2 homogeneously-
typed recursion schemes are equi-expressive with a variant class of order-2 push-
down automata called panic automata. In view of their result, it is natural to
ask if there is a corresponding automata-theoretic characterization of arbitrary
recursion schemes for all finite orders. In recent joint work with A. S. Murawski
[17], we have shown that for the purpose of generating Σ-labelled trees, recursion
schemes are equi-expressive with collapsible pushdown automata. Precisely:

Theorem 5 (Equi-expressivity). For each n ≥ 0, a Σ-labelled tree is gen-
erated by an order-n (deterministic) recursion scheme iff it is generated by an
order-n (deterministic) collapsible pushdown automaton.

An order-n collapsible pushdown automaton (CPDA) is just an order-n push-
down automaton in which every symbol a in the n-stack S may have a link to a
necessarily lower-ordered stack situated below a in S, if there is such a stack at
that point; if the stack pointed to is of order j, the link is called a (j+1)-link. For
2 ≤ j ≤ n, j-links are introduced by the order-1 push operation pusha1,j where a
is a stack symbol: when pusha1,j is applied to an n-stack S, a link is first attached
from a copy of a to the (j − 1)-stack that lies just below the top (j − 1)-stack
of S; the symbol a, together with its link, is then pushed onto the top of the
top 1-stack of S. Whenever the top (j − 1)-stack is duplicated by the order-j
operation pushj , the link-structure of the top (j − 1)-stack is preserved. There
is a new stack operation called collapse, whose effect is to cause the stack S to
collapse up to the point indicated by the link emanating from the top1-element
of S i.e. the top (j − 1)-stack of collapse(S) is the (j − 1)-stack pointed to by
the link emanating from the top1-element of S.

An outline proof of Theorem 5
Given an order-n recursion scheme G, we construct an order-n collapsible push-
down automaton CPDA(G) whose stack symbols are given by the (ranked) sym-
bols that label the nodes of the computation tree λ(G). We then show that
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CPDA(G) can compute any given traversal over the computation tree λ(G), and
hence, by the path-traversal correspondence (Theorem 3), it can compute any
path in the value tree [[G ]] as required.

In the other direction, given an order-n CPDA A with state-set { 1, · · · ,m },
we construct an order-n recursion scheme GA whose non-terminals are

Fa,ep : (n− e)m → (n− 1)m → · · · → 0m → 0

where a ranges over the stack alphabet, 1 ≤ p ≤ m, 2 ≤ e ≤ n, 0 is the base
type (of order 0), and the types (n + 1) = nm → n (of order n + 1) are defined
by recursion. We use ground-type terms

Fa,ep LMn−1 · · ·M0 : 0

to represent (reachable) configurations (p, S) of A, where S is the n-stack. The
idea is that the top1-element of S – a with an e-link (say) – (more precisely the
pair (p, top1 S)) is coded as Fa,ep L : n; further for each 1 ≤ j ≤ n and 1 ≤ p ≤ m,
we have

– (p, topj S) is coded as Fa,ep LMn−1 · · ·Mn−j+1 : n− j + 1
– (p, popj S) is coded as Mn−j,pMn−j−1 · · ·M0 : 0
– (p, collapseS) is coded as LpMn−e−1 · · ·M0 : 0.

Restricted to order-2, CPDA coincide with second-order pushdown automata
with links (in the sense of Aehlig et al. [18]), which are essentially the same as
panic automata (in the sense of Knapik et al. [8]). Our CPDA-to-scheme trans-
formation specialises to exactly the same transformation in [8], when restricted
to order-2 CPDA. Our result in this section will be presented elsewhere; a full
account can be found in the preprint [17].

4 Parity Games over Configuration Graphs of CPDA

The same game-semantic approach can be carried over to certain classes of
finitely-presented graphs such as those given by (non-deterministic) collapsi-
ble pushdown automata. Fix an order-n CPDA A and a parity game over its
configuration graph CGA, and let GA be the recursion scheme determined by A
(as given by the CPDA-to-scheme transformation in Theorem 5). Paths in the
configuration graph correspond exactly to traversals over the computation tree
λ(GA) (or equivalently, traversals over the finite directed graph Gr(GA) that
unravels to λ(GA)). For any parity game over CGA, accepting traversal-trees
over Gr(GA) can be recognised by a traversal-simulating APT C (i.e. a version
of Theorem 4); it follows that there is an equivalent finite acceptance parity
game, which is an appropriate product of Gr(GA) and C. Hence parity games
over the configuration graphs of order-n CPDA are solvable. We intend to extend
the approach to the solution of games with ω-regular and non-regular winning
conditions. Another interesting problem is the computation of winning regions
of these games.
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5 Further Directions

Does safety constrain expressiveness?
This is the most pressing open problem. In a FOSSACS 2005 paper [18], we have
shown that there is no inherently unsafe word language at order 2. More precisely,
for every word language that is generated by an order-2 unsafe recursion scheme,
there is a safe (but in general non-deterministic) recursion scheme that generates
the same language. However it is conjectured that the result does not hold at
order 3. Further, for trees, we conjecture that there are already inherently unsafe
trees at order 2 i.e.

Conjecture 1. SafeRecTree2Σ ⊂ RecTree2Σ i.e. there is an unsafe order-2
deterministic recursion scheme whose value tree is not the value tree of any safe
deterministic recursion scheme.

The Conjecture is closely related to a word language, which we call Urzyczyn’s
language [18]. The language can be generated by a deterministic, unsafe order-
2 recursion scheme (and hence, by a non-deterministic, safe order-2 recursion
scheme). The Conjecture is equivalent to the statement: Urzyczyn’s language
cannot be generated by any deterministic, safe order-2 recursion scheme (or
equivalently any order-2 deterministic pushdown automaton).

Semantic vs verification games
We would like to develop further the pleasing mix of Semantics (games) and
Verification (games) in the work. A specific project, pace [19], is to give a deno-
tational semantics of the lambda calculus “relative to an APT”. More generally,
construct a cartesian closed category, parameterized by APTs, whose maps are
witnessed by the variable profiles (see [10]).
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Abstract. In a data word or a data tree each position carries a label
from a finite alphabet and a data value from some infinite domain. These
models have been considered in the realm of semistructured data, timed
automata and extended temporal logics.

This paper survey several know results on automata and logics ma-
nipulating data words and data trees, the focus being on their relative
expressive power and decidability.

1 Introduction

In many areas there is a need for good abstract models manipulating explicitly
data values. We mention two of them here.

In program verification one has to decide statically whether a program satisfies
some given specification. Programs may contain several procedures calling each
other recursively. Procedures may have parameters and data could be exchanged
via the parameters. In program verification, variables over unbounded domains
such as integers, arrays, parameters etc. are usually abstracted to finite range
domains and configuration graphs of pushdown automata have been used quite
successfully in order to model recursive dependencies between procedures. It is
then possible to check properties expressed by temporal logics such as LTL or
CTL. The modelization using a finite domain has some obvious limitations but
it is hard to avoid while remaining decidable. One notable exception is [8] where
procedures can have one parameter whose value can range over the integers and
the procedures can perform limited arithmetic on that parameter.

In the database context also, most theoretical work on XML and its query
languages models XML documents by labeled ordered unranked trees, where
the labels are from a finite set. Attribute values are usually ignored. This has
basically two reasons, which are not independent. First, the modeling allows to
apply automata based techniques, as automata operate on trees of this kind.
Second, extending the model by attribute values (data values) quickly leads to
languages with undecidable static analysis (see, for instance [1,4,18,27]). Never-
theless, there are examples of decidable static reasoning tasks involving attribute
values.

One of them is validation of schema design. A schema contains a struc-
tural part and integrity constraints such as keys and inclusion constraints. In
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a semistructured model such as XML the structural part is mainly a mecha-
nism for assigning types to nodes of the document tree. It is then natural to ask
whether a specification is consistent and whether a set of integrity constraints is
minimal or not (implication problem). Decidable cases were proposed for XML
schemas in [2].

Another one is query optimization and checking whether one query is in-
cluded into or equivalent to another one. Each of these inclusion tests could
be relativized by the presence of a schema. In the context of XML and one
of its most popular language XPath several decidable fragments were proposed
in [27,4,18,6].

Each of the papers cited above propose a decidable framework where data
values are explicitly manipulated. In each of them the decidability was obtained
using a non-trivial ad-hoc argument. It is natural to wonder whether there exists
a general decidable suitable theoretical framework which could be used to infer
all this kind of results. This framework is yet to be discovered and this paper is
a modest attempt to gather known results in this direction. We tried to group
here interesting models of automata and logical frameworks which could be used
in order to code some of the problems mentioned above.

To make this survey finite size we have restricted our attention to an approach
that, in our opinion, deserves more attention from the theoretical community. All
over this survey we model data values using an infinite domain (like the integers).
Moreover our structures have a very simple shape as they are either finite strings
or finite trees. More precisely we are given two alphabets over strings and trees,
one which is finite and can be used to code names and constants appearing in
the programs, in the schemas, or in the queries, and another one which is infinite
and which can be used to code data values. We call such structures data words
or data trees.

We present several models of automata and several logics which are evaluated
on data words and data trees. We focus on their relative expressive power and
on decidability.

When dealing with an infinite domain, like the integers for instance, the al-
lowed arithmetic is a central issue in order to obtain decidability. We avoid
this problem here by allowing only the simplest arithmetical operation which is
equality test: The only operation that can be performed in our infinite domain
is checking whether to values are equal. We will see that this is already enough
to make the story interesting.

We have modified slightly several known concepts so that we could present
each of them within a uniform framework in order to compare them. We hope
that the reader familiar with one of them will not be too much disturbed by
this.

This survey contains no proof at all. Those can be found in the references
provided all over the paper. We wish we had time to include more references,
especially in the verification context.
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2 Some Notations

In this paper we consider two kinds of model: data words and data trees. Let Σ
be a finite alphabet of labels and D an infinite set of data values.

A data word w = w1 · · ·wn is a finite sequence over Σ ×D, i.e., each wi is of
the form (ai, di) with ai ∈ Σ and di ∈ D. A data word language is a set of data
words.

A data tree t is a finite unranked, ordered tree where each node is of the form
(ai, di) with ai ∈ Σ and di ∈ D. As above a data tree language is a set of data
trees.

Given a node x of a data tree or a position x of a data word, we denote
respectively by x.d and x.l the data value of D and the label of Σ associated
to x. The idea is that the alphabet Σ is accessed directly, while data values can
only be tested for equality. This amounts to considering words and trees over the
finite alphabet Σ endowed with an equivalence relation on the set of positions.
With this in mind, given a data word or a data tree w, we will call class of
w a set of positions/nodes of w having the same data value. Finally, given a
data word w (or a data tree t), the string projection of w (the tree projection of
t), denoted by str(w) (tree(t)), is the word (tree) constructed from w (t) by
keeping only the label in Σ and projecting out all the data values.

For each integer n ∈ N we note [n] the set of all integers from 1 to n. Given
a data word w we denote its length by |w|.

3 Automata

In this section we present several models of automata over data words and data
trees. We present them in details in the word case and only briefly discuss the
extension to trees.

3.1 Register Automata

Register automata are finite state machines equiped with a finite number of
registers. These registers can be used to store temporarily values from D. When
processing a string, an automaton compares the data value of the current position
with values in the registers; based on this comparison, the current state and the
label of the position it can decide on its action. We stress that the only allowed
operation on registers (apart from assignment) is a comparison with the symbol
currently being processed. The possible actions are storing the current data value
in some register and specifying the new state. This model has been introduced
in [20] and was later studied more extensively in [28]. We give here an equivalent
formalism that fits with data words.

Definition 3.1. A k-register automaton A is a tuple (Q, q0, F, τ0, T ) where

– Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of
final states;
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– τ0 : {1, . . . , k} → D is the initial register assignment; and,
– T is a finite set of transitions of the forms (q, a, E)→ q′ or (q, a, E)→ (q′, i).

Here, i ∈ {1, . . . , k}, q, q′ ∈ Q, a ∈ Σ and E ⊆ {1, . . . , k}.

Given a data word w, a configuration of A on w is a tuple [j, q, τ ] where 0 ≤
j ≤ |w| is the current position in the word, q ∈ Q is the current state, and
τ : {1, . . . , k} → D is the current register assignment. The initial configuration
is γ0 := [1, q0, τ0]. A configuration [j, q, τ ] with q ∈ F is accepting. Given γ =
[j, q, τ ], the transition (p, a, E) → β applies to γ iff p = q, wj .l = a and E =
{l | wj .d = τ(l)} is the set of registers having the same data value as the current
position.

A configuration γ′ = [j′, q′, τ ′] is a successor of a configuration γ = [j, q, τ ] iff
there is a transition (q, a, E) → q′ that applies to γ, τ ′ = τ , and j′ = j + 1; or
there is a transition (q, a, E) → (q′, i) that applies to γ, j′ = j + 1, and τ ′ is
obtained from τ by setting τ ′(i) to wj .d. Based on this, reachable configuration
and acceptance of a data word is defined in the standard way. We denote by
L(A) the language of data words accepted by the register automata A.

Example 3.2. There exists a 1-register automata which checks whether the input
data words contains two positions labeled with a with the same data value (a
is not a key): it non-deterministically moves to the first position labeled with
a with a duplicated data value, stores the data value in its register and then
checks that this value appears again under another position labeled with a.

The complement of this language, all node labeled with a have different data
values, which would be useful for key integrity constraints in the database context
is not expressible with register automata. To prove this, one can show that for
each data word accepted by a given register automata, there exists another
accepted data word that have the same string projection but uses a number of
data values depending only on the automaton (see [20] for more details).

This shows that register automata are not closed under complementation.
They are also not closed under determinization as the first example cannot be
achieved with a deterministic register automata.

The main result for register automata is that emptiness is decidable.

Theorem 3.3. [20] Emptiness of register automata is decidable.

In term of complexity the problem is PSpace-complete [14]. Without labels it
was shown to be NP-complete in [30]. As illustrated with the examples above,
register automata are quite limited in expressive power. This limitation can also
be formalized with the following proposition which should be contrasted with
the similar one in the case of data automata presented later (Proposition 3.14).

Proposition 3.4. [20,9] Given a language L of data words accepted by a register
automata the language of strings str(L) is regular.

There exist many obvious extensions of register automata. For instance one could
add alternation or 2-wayness. Unfortunately those extensions are undecidable.
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Theorem 3.5. 1. Universality of register automata is undecidable [28].
2. Emptiness of 1-register 2-way automata is undecidable [12].

An immediate corollary of Theorem 3.5 is:

Corollary 3.6. [28] Inclusion and equivalence of register automata is undecid-
able.

There are several variants that weaken or strengthen the model of register au-
tomata as presented above without affecting much the results. We only briefly
mention two of them. One possible extension is to allow the automata to store a
non-deterministically chosen value from D in one of the register. With this ex-
tension the language of data words such that the data value of the last position
of the word is different from all the other positions can be accepted. Without
it the language is not accepted by a register automata. This model was studied
in [11,22] and is a little bit more robust than the one presented here. In the
model presented above the automata knows the equality type of the current
data value with all the registers. One possible weakening of the model is to allow
only an equality test of the current data value with a fix register. That is the
transitions are of the form (q, a, i) −→ q′ or (q, a, i) −→ (q′, j). This setting
was studied in [32]. The language of data words such that the first two data
values are distinct can no longer be accepted [21]. On the other hand this model
has equivalent regular expressions [21]. Another notable property of this weaker
model is that inclusion becomes decidable [32]. To conclude this discussion one
should mention that the model of the register automata as presented above have
algebraic characterizations, see [9,17] for more details.

Trees. To extend this model to binary trees the technical difficulty is to specify
how registers are splited (for the top-down variants) or merged (for the bottom-
up variant). In the top-down case the natural solution is to propagate the content
of the registers to the children of the current node. In the bottom-up case a
function can be included into the specification of the transitions of the automata
which specify, for each register, whether the new value should come from some
register of the left child or from some register of the right one. It is possible to
do this so that the family obtained is decidable and robust in the sense that the
bottom-up variant correspond to the top-down variant. This model has all the
properties of register automata over data words: emptiness is decidable and the
tree projection is regular. We refer to [21] for more details.

3.2 Pebble Automata

Another model of automata uses pebbles instead of registers. The automata
can drop and lift pebbles on any position in the string and eventually compare
the current value with the ones marked by the pebbles. To ensure a “regular”
behavior, the use of pebbles is restricted by a stack discipline. That is, pebbles
are numbered from 1 to k and pebble i + 1 can only be placed when pebble i
is present on the string. A transition depends on the current state, the current
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label, the pebbles placed on the current position of the head, and the equality
type of the current data value with the data values under the placed pebbles. The
transition relation specifies change of state, and possibly whether the last pebble
is removed or a new pebble is placed. In the following more formal definition we
follow [28] and assume that the head of the automata is always the last pebble.
This does not make much difference in term of expressive power, at least in the
2-way case which is the most natural for this model, but simplifies a lot the
notations:

Definition 3.7. A k-pebble automaton A is a tuple (Q, q0, F, T ) where

– Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final
states; and,

– T is a finite set of transitions of the form α→ β, where
• α is of the form (q, a, i, P, V, q), where i ∈ {1, . . . , k}, a ∈ Σ, P, V ⊆
{1, . . . , i− 1}, and
• β is of the form (q, d) with q ∈ Q and d is either drop of lift.

Given a data word w, a configuration of A on w is of the form γ = [q, j, θ]
where i is the current position in w, q ∈ Q the current state, j ∈ {1, . . . , k} the
number of pebbles already dropped, and θ : {1, . . . , j} → [|w|] the positions of
the pebbles. Note that the current position always correspond to θ(j). We call θ
a pebble assignment. The initial configuration is γ0 := [q0, 1, θ0], with θ0(1) = 1.
A configuration [q, j, θ] with q ∈ F is accepting.

A transition (p, a, i, P, V, p)→ β applies to a configuration γ = [q, j, θ], if

1. i = j, p = q,
2. V = {l < j | wθ(l).d = wθ(j).d} is the set of pebbles placed on a position

which has the same data value than the current position.
3. P = {l < j | θ(l) = θ(j)} is the set of pebbles placed at the current position,

and
4. wj = a.

Intuitively, (p, a, i, P, V )→ β applies to a configuration if pebble i is the current
head, p is the current state, V is the set of pebbles that see the same data value
as the top pebble, P is the set of pebbles that sit at the same position as the
top pebble, and the current label seen by the top pebble is a.

A configuration [q′, j′, θ′] is a successor of a configuration γ = [q, j, θ] if there
is a transition α→ (p, d) that applies to γ such that q′ = p and θ′(i) = θ(i), for
all i < j, and

– if d=drop, then j′ = j + 1, θ′(j) = θ(j) = θ′(j + 1),
– if d=lift, then j′ = i− 1.

Note that this implies that when a pebble is lifted, the computation resumes at
the position of the previous pebble.

Example 3.8. The languages of data words such that all nodes labeled with a
have different data values is accepted by a 2-pebble automata as follows. At each
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position labeled with a the automata drops pebble 1 and then check that the
data value never occurs under a position labeled with a to the right of the pebble.
When this is done it comes back to pebble 1 and move to the next position.

Register automata and pebble automata are likely to be incomparable in expres-
sive power. The example above can be expressed by a pebble automata but not
by a register automata. On the other hand, pebble automata have a stack disci-
pline constraint on the use of pebbles while register automata can update their
register in an arbitrary order. Based on this, examples of languages expressible
with register automata but not with pebble automata are easy to construct but
we are not aware of any formal proof of this fact.

Strictly speaking the model presented above is not really 1-way as when it
lifts a pebble the automata proceed at the position of previous pebble. It is also
immediate to extends this model in order to make it 2-way. The advantage of
this definition is that the model is robust:

Theorem 3.9. [28] Pebble automata are determinizable and the 2-way variant
has the same expressive power than its 1-way variant.

But unfortunately the model is too strong in expressive power. In the result
below, recall that with our definition the head of the automata counts as 1
pebble. Therefore in a sense the result is optimal.

Theorem 3.10. [28,12] Emptiness of 2-pebble automata over data words is un-
decidable.

Trees. The most natural way to extend this model to trees is to consider tree
walking automata with pebbles on trees. This model extend the 2-way variant
of pebble automata as presented here in a natural way with moves allowing to
“walk” the tree in all possible directions (up, down, left right). Of course, this
model remains undecidable.

3.3 Data Automata

This model was introduced in [6,7]. It extends the model of register automata,
remains decidable and has better connections with logic. Data automata runs
on data words in two passes. During the first one a letter-to-letter transducers
is run. This transducers does not have access to the data values and change
the label of each position. During the second pass, an automata is run on each
sequence of letters having the same data value, in other words, on each class.

A data automaton D = (A,B) consists of

– a non-deterministic letter-to-letter string transducer A (the base automaton)
with input alphabet Σ, for some output alphabet Γ (letter-to-letter means
that each transition reads and writes exactly one symbol), and

– a non-deterministic string automaton B (the class automaton) with input
alphabet Γ .
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A data word w = w1 · · ·wn is accepted by D if there is an accepting run of A
on the string projection of w, yielding an output string b1 · · · bn, such that, for
each class {x1, . . . , xk} ⊆ {1, . . . , n}, x1 < · · · < xk, the class automaton accepts
bx1 , . . . , bxk

.

Example 3.11. The language of data words such that all positions labeled with
a have different data values can be accepted by a data automaton as follows.
The base automaton does nothing and only copy its input. The class automata
accepts only words containing only one a.

The complement of the above language, the set of all data words containing
two positions labeled with a with the same data value, is done as follows. The
base automata non-deterministically selects two positions labeled with a and
output 1 on each of them and 0 everywhere else. The class automata checks
that each class contains either no 1 or exactly 2.

The language of data words such that there exists two positions labeled with a
and having the same data value but with no positions labeled with b (no matter
what the data value is) in between is accepted by a data automaton. The base
automata outputs 0 on all positions excepts two, labeled with a, that it selects
non-deterministically and on which it outputs 1. It also checks that between the
two selected positions no b occurs. The class automata checks that each class
contains either no 1 or exactly 2.

It is not clear how to do the complement of this language using a data au-
tomata. This suggest that data automata are not closed under complementation
but we are not aware of any formal proof of this result. It will follow from the re-
sults of Section 4 that if they would be closed under complementation then they
would not be effectively closed under complementation, by this we mean that
there would be no algorithm computing the complement of a data automata.

By just looking at the definitions it is not immediate that data automata extends
the model of register automata presented in Section 3.1. But it is indeed the case.

Proposition 3.12. [5] For each register automata there exists a data automaton
accepting the same language.

The main result on data automata is that emptiness remains decidable. We will
use this fact to show decidability of several logics in Section 4.

Theorem 3.13. [7] Emptiness of data automata is decidable.

In order to better understand the expressive power of data automata we show
that the string projection of languages accepted by data automata correspond to
languages accepted to multicounter automata. Recall that for register automata
the string projection remains regular (Proposition 3.4).

We first briefly review the definition of multicounter automata. An ε-free
multicounter automaton is a finite automaton extended by a finite set C =
{1, . . . , n} of counters. It can be described as a tuple (Q,Σ,C, δ, qI , F ). The set
of states Q, finite alphabet Σ, initial state qI ∈ Q and final states F ⊆ Q are
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as in a usual finite automaton. The transition relation δ is a finite subset of
Q×Σ × (dec∗(i) inc∗(i))i∈C ×Q.

The idea is that in each step, the automaton can change its state and modify
the counters, by incrementing or decrementing them, according to the current
state and the current letter on the input. In a step, the automaton can apply to
each counter i ∈ C a sequence of decrements, followed by a sequence of incre-
ments. Whenever it tries to decrement a counter of value zero the computation
stops. Besides this, the transition of a multicounter automaton does not depend
on the value of the counters. In particular, it cannot test whether a counter
is exactly zero (otherwise the model would be undecidable). Nevertheless, by
decrementing a counter k times and incrementing it again afterward it can test
whether the value of that counter is at least k.

A configuration of such an automaton is a tuple c = (q, (ci)i∈C) ∈ Q × Nn,
where q is the current state and ci is the value of the counter i. A transition

(q, a, (decki(i)incli(i))i∈C , q′) ∈ δ

can be applied if the current state is q, the current letter is a and for every
counter i ∈ C, the value ci is at least ki. The successor configuration is d =
(q′, (c(i)− ki+ li)i∈C). A run over a word w is a sequence of configurations that
is consistent with the transition function δ. The acceptance condition is given
by a subset R of the counters C and the final states. A run is accepting if it
starts in the state qI with all counters empty and ends in a configuration where
all counters in R are empty and the state is final.

Emptiness of multicounter automata is known to be decidable [26,23].

Proposition 3.14. [7]

• If L is a language of data words accepted by a data automata then str(L) a
language of strings accepted by a multicounter automata.
• If L is a language of strings accepted by a multicounter automata then there

exists a language L′ of data words accepted by a data automata such that
h(str(L′)) = L, where h is an erasing morphism.

The constructions of Proposition 3.14 are constructive (the time complexity
requires a tower of 3 exponentials in the first case and is only polynomial in
the second case) and thus Proposition 3.14 implies Theorem 3.13. Therefore the
emptiness problem of data automata is elementary equivalent to the emptiness
problem of multicounter automata which is not yet known to be elementary
(the best known lower-bound being ExpSpace [24] and the best known upper-
bound being non-elementary [26,23]). The precise complexity of Theorem 3.13
is therefore still an open issue.

Trees. This model can be extended to unranked ordered trees as follows. Both
the base automaton and the class automaton are bottom-up tree automaton. The
base automata works as in the word case and reassigns a label to each node. Each
class can now be viewed as an unranked ordered tree by contracting the initial
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tree edges which contains a node not in the class. The class automata is then run
on the resulting trees. Unfortunately decidability of data tree automata remains
an open issue. Data tree automata still have some connection with multicounter
tree automata. It is not clear yet whether the first part of Proposition 3.14
holds or not, but the second one does hold. Therefore showing decidability of
data automata would implies showing decidability of multicounter tree automata
which has eluded all efforts so far (see [13] and the references therein).

3.4 Other Generalizations

We have consider so far only automata for data words or data trees that are based
on the classical notion of finite state automata. It is also possible to consider
more powerful devices for manipulating data words such as pushdown automata.

Historically the first models of pushdown automata over infinite alphabet
were presented in [3] and [19]. Those models extend the notions of Context-Free
grammars and of pushdown automata in the obvious way by allowing infinitely
many rules and infinitely many transition functions, one for each letter in D.
Hence the models are not even finitely presented and decidability does not make
much sense. In term of expressive power, with some technical constraints on
the pushdown automata models (see [19]), both the context-free grammars and
pushdown automata defines the same class of languages.

The most robust decidable notion so far was given in [11] using ideas similar to
register automata. We describe it next. Intuitively the automata has k registers
and makes its choices given, the current state, the label of the current node, and
the equality type of the current data value with the values present in the registers.
The possible actions are: change the current state, update some of the registers
with the current data value, push the values stored into some registers into the
stack together with some finite content, pop the top of the stack. Moreover,
in order to have a robust model with an equivalent context-free grammar, the
model allows ε transition which can store into one of the registers a new, non-
deterministically chosen, data value.

Definition 3.15. A k-register pushdown automatonA is a tuple (Q, q0, F, Γ, τ0,
T ) where

– Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of
final states;

– Γ is a finite set of labels for stack symbols;
– τ0 : {1, . . . , k} → D is the initial register assignment; and,
– T is a finite set of transitions of the form (q, a, E, γ)→ (q′, i, s) or (q, ε, E, γ)
→ (q′, i).
Here, i ∈ {1, . . . , k}, q, q′ ∈ Q, a ∈ Σ, γ ∈ Γ , s ∈ (Γ × {1, . . . , k})∗ and
E ⊆ {�, 1, . . . , k}.

Given a stack symbol s we denote by s.l and s.d respectively the label in Γ and
the data value in D of s. Given a data word w, a configuration of A on w is
a tuple [j, q, τ, µ] where 1 ≤ j ≤ |w| is the current position in the data words,
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q ∈ Q is the current state, τ : {1, . . . , k} → D is the current register assignment,
and µ ∈ (γ × D)∗ is the current stack content. The initial configuration is
ν0 := [1, q0, τ0, ε]. A configuration [j, q, τ, µ] with q ∈ F is accepting. Given
ν = [j, q, τ, µ] with top stack symbol s, the transition (p, a, E, γ)→ β applies to
ν iff p = q, wj .l = a, s.l = γ, and E = {l | wj .d = τ(l)} ∪ S with S is empty if
wj .d �= s.d and is {�} otherwise.

A configuration ν′ = [j′, q′, τ ′, µ′] is a successor of a configuration ν = [j, q, τ, µ]
iff there is a transition (q, a, E, γ) → (q′, i, s) that applies to ν, τ ′(l) = τ(l) for
all l �= i, τ ′(i) = wj .d, j′ = j + 1 and µ′ is µ with the top of the stack removed
and replaced by (a1, di1 ) · · · (am, dim) where s = (a1, i1) · · · (am, im) and dl is
the current value of register l; or there is a transition (q, a, E, γ) → (q′, i) that
applies to ν, j′ = j, µ = µ′, and τ ′ is obtained from τ by setting τ ′(i) to some
arbitrary value of D. Based on this, reachable configuration and acceptance of
a data word is defined in the standard way.

Note that we allow ε transitions which can introduce non-deterministically a
new symbol in some register. This make the model more robust.

Example 3.16. The language of data words such that the data values form a
sequence wwR where wR is the reverse sequence of w is accepted by a register
data automata in the obvious way by first pushing the data values into the stack
and then poping them one by one.

The language of data words such that all positions labeled with a have different
data values is not accepted by a register pushdown automata. This uses argument
similar than for register automata. See [11] for more details and more example.

This model of register pushdown automata extends in a natural way the classical
notion of pushdown automata. It can be shown that the good properties of
Context-Free languages can be extended to this model. In particular we have:

Theorem 3.17. [11] Emptiness of register pushdown automata is decidable.

This model is also robust and has an equivalent presentation in term of Context-
Free grammar that we don’t present here. The interested reader will find in [11]
more details and more properties of the model. We conclude with a characteriza-
tion of the projection languages defined by register pushdown automata similar
to Proposition 3.4.

Proposition 3.18. If L is a language accepted by a register pushdown automata
then str(L) is Context-Free.

4 Logics

The previous section was concerned with finding decidable automata for manip-
ulating words and trees containing data values. In this section we are looking
for declarative decidable tools such as logics.

Data words and data trees can be seen as models for a logical formula.
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In the case of data words, the universe of the model is the set of positions in
the word and we have the following built-in predicates: x ∼ y, x < y, x = y + 1,
and a predicate a(x) for every a ∈ Σ. The interpretation of a(x) is that the label
in position x is a. The order < and successor +1 are interpreted in the usual way.
Two positions satisfy x ∼ y if they have the same data value. Given a formula
φ over this signature, we write L(φ) for the set of data words that satisfy the
formula φ. A formula satisfied by some data word is satisfiable.

In the case of data trees, the universe of the structure is the set of nodes of
the tree with the following predicates available:

– For each possible label a ∈ Σ, there is a unary predicate a(x), which is true
for all nodes that have the label a.

– The binary predicate x ∼ y holds for two nodes if they have the same data
value.

– The binary predicate E→(x, y) holds for two nodes if x and y have the same
parent node and y is the immediate successor of x in the order of children
of that node.

– The binary predicate E↓(x, y) holds if y is a child of x.
– The binary predicates E⇒ and E⇓ are the transitive closures of E→ and E↓,

respectively.

For both words and trees, we write FO(∼, <,+1) for first-order logic over a
signature containing all the predicates mentioned above for the corresponding
context. We also write FO(∼,+1) when the predicates E⇒ and E⇓ -in the case
of trees- and without < -in the case of words are missing.

A logic L is said to be decidable over a classM of models if, given a sentence
ϕ ∈ L, it is decidable whether there exists a model M ∈ M such that M |= ϕ.

4.1 First-Order logics

Example 4.1. The language of data words such that all positions labeled with
a have different data values can be expressed in FO(∼, <,+1) by ∀x, y (a(x) ∧
a(y) ∧ x �= y) −→ x �∼ y.

The complement of the above language, the set of all data words containing
two positions labeled with a having the same data value, is thus ∃x, y a(x) ∧
a(y) ∧ x �= y ∧ x ∼ y.

The language of data words where each position labeled with a has a data
value which also appears under a position labeled with b (inclusion dependency)
is expressed in FO(∼, <,+1) by ∀x∃y a(x) −→ (b(y) ∧ x ∼ y).

Let L be the language of data words such that (i) any two positions labeled
with a have a distinct data value, (ii) any two positions labeled with b have a
distinct data value and (iii) the sequence of data values of the positions labeled
a is exactly the same as the sequence of data values labeled with b. L can be
expressed in FO(∼, <,+1) as follows. First we use sentences as given in the
first three examples in order to express (i), (ii) and the fact that each data value
appears exactly twice under two positions, one labeled a and one labeled b. Then
the following sentence shows that the sequences are the same: ∀x, y, z (a(x) ∧
a(y) ∧ x < y ∧ b(z) ∧ x ∼ z) −→ (∃x b(x) ∧ x ∼ y ∧ z < x).



Automata and Logics for Words and Trees over an Infinite Alphabet 53

The relative expressive power of register and pebble automata with logics has
been studied in [28] over data words. In term of expressive power, FO(∼, <,+1)
is not comparable with register automata and it is strictly included into pebble
automata.

As FO(∼, <,+1) is a fragment of pebble automata it is natural to wonder
whether it forms a decidable fragment. We write FOk for formulas using at most
k variables (possibly reusing them at will). In the examples above note that
the first three are definable in FO2(∼, <,+1) while the third one requires three
variables. This last example can be pushed a little bit in order to code PCP.
Therefore we have:

Theorem 4.2. [7] FO3(∼, <,+1) is not decidable over data words.

However the two-variable fragment of FO(∼, <,+1), which turns out to be often
sufficient for our needs, especially in the database context, is decidable.

Theorem 4.3. [7] FO2(∼, <,+1) is decidable over data words.

Theorem 4.3 follows from the fact that any data word language definable by
a formula of FO2(∼, <,+1) is accepted by a data word automata described in
Section 3. Actually we can show a stronger result than this. Consider the new
binary predicate �1 which holds true at position x and y if the positions de-
noted by x and y have the same data value and y is the successor of x in their
class. Note that this predicate is not expressible in FO2(∼, <,+1). Consider
now the logic EMSO2(∼,<,+1,�1) which extends FO2(∼,<,+1,�1) by existen-
tial monadic second-order predicates quantification in front of FO2(∼,<,+1,�1)
formulas.

Theorem 4.4. [7] For any data word language L the following are equivalent.

1. L is definable in EMSO2(∼,<,+1,�1),
2. L is accepted by a data word automata.

Moreover the translations between EMSO2(∼,<,+1,�1) formulas and data word
automata are effective.

This immediately yields:

Corollary 4.5. EMSO2(∼,<,+1,�1) is decidable over data words.

Again the precise complexity is not known as it more or less correspond to
deciding emptiness of multicounter automata.

Note that adding a little bit more of arithmetic, like assuming that D is
linearly order and that the logic contains an extra binary predicate checking
for this order among data values, yields undecidability even for the 2-variables
fragment of FO [7].
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Trees. The step from data words to data trees seems non trivial and we don’t
yet know whether Theorem 4.4 holds in the data tree case. In particular we
don’t know whether languages definable in FO2(∼, <,+1) are always accepted
by a data tree automata. On the other hand FO2(∼, <,+1) is expressive enough
to simulate multicounter tree automata therefore satisfiability of FO2(∼, <,+1)
over data trees is likely to be a difficult problem.

On the other hand we can show:

Theorem 4.6. [6] FO2(∼,+1), and therefore EMSO2(∼,+1), is decidable over
data trees.

The proof of Theorem 4.6 is quite involved and does not use automata but
rather some kind of puzzles. It is shown, using this puzzles, that any satisfiable
sentences of FO2(∼,+1) has a tame model and that deciding whether a sentence
has a tame model is decidable. The complexity obtained this way is 3NExpTime
which is possibly not optimal.

4.2 LTL with Freeze Quantifier

This logic was studied in the context of data words in [14,15]. Roughly speaking
it extends the linear temporal logic LTL with a freeze operator which binds the
data value of the current position in the data words to a register for later use.

We consider the temporal operators X for Next, X−1 for Previous, F for
Sometime in the future, F−1 for sometime in the past, U for Until,
U−1 for Previous. As usual we regard G as an abbreviation for ¬F¬. We
define LTL↓n using the following grammar:

S ::= � | a | ↓r S | S ∧ S | ¬S | O(S...S) | ↑r
where r ∈ [1, n], a ∈ Σ and O is a temporal operator in {X,X−1, F, F−1, U, U−1}.

We only consider well-formed formulas where ↑r is only used in the scope of
a ↓r. When we want to use only a subset O of the temporal operators then we
write LTL↓n(O).

The semantic is classical for the Boolean and temporal operators. The formula
a holds at any position whose label is a. The formula ↓r S stores the data value
of the current position in the register r and then checks for S starting at the
current position. The formula ↑r checks that the data values stored in the register
r equals the data value of the current position.

Example 4.7. The language of data words containing two positions labeled with
a having the same data value, can be expressed in LTL↓1 by F (a∧ ↓1 XF (a∧ ↑1)).

The complement of the above language, data words such that all positions
labeled with a have different data values, is thus ¬F (a∧ ↓1 XF (a∧ ↑1)).

The language of data words where each position labeled with a has a data
value which also appears under a position labeled with b (inclusion dependency)
is expressed in LTL↓1 by G(a −→ (↓1 (F (b∧ ↑1) ∨ F−1(b∧ ↑1)))).

The language of data words such that any two distinct positions labeled with
a and having the same data value have a b in between can be expressed in LTL↓1
by: G

(
(a∧ ↓1 F (a∧ ↑1)) −→ (¬(a∧ ↑1)Ub)

)
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Theorem 4.8. [14,15]

1. LTL↓1(X,U) is decidable over data words.
2. LTL↓2(X,F ) is undecidable over data words.
3. LTL↓1(X,F, F−1) is undecidable over data words.

The logics LTL↓1(X,U) and FO2(∼, <,+1) are incomparable. Indeed the third
example above (inclusion dependency) is expressible in FO2(∼, <,+1) but not
in LTL↓ without past temporal operators. On the other hand the last example
above is expressible in LTL↓1(X,U) but not in FO2(∼, <,+1) (and most likely
this property is also not expressible using a data automaton).

There exists a fragment of LTL↓1 which correspond to FO2(∼, <,+1). A LTL↓1
formula is said to be simple if any temporal operator is immediately preceded by
a ↓1 and there are no occurrences of ↓1 operators. Then simple-LTL↓1(X,X−1, X2

F,X−2F−1) has exactly the same expressive power than FO2(∼, <,+1). This
fact was first mentioned in [14]. The translations in both directions are effective
and use the same ideas as in [16].

Trees. The extension of this ideas to trees, using languages like CTL, remains
to be done.

5 Conclusion

We have presented several models of decidable automata and logics over data
words and data trees. The logical approach has the advantage of compositionality
and has many other interesting closure properties which makes it easier for
coding problems into it. The complexities obtained for logics are usually quite
high which makes them quite unsuited for practical applications. However it is
possible to obtain lower complexities by imposing some extra constraints, see for
instance [6,7].

Several of the results presented in this paper were extended to infinite data
words. This is useful in the context of verification in order to code infinite com-
putations. For instance Theorem 4.3 have been extended over infinite data words
in [7].

The tree case is usually a lot more difficult than the word case. If several
decidability results were obtained over data trees, like for register automata or
FO2(∼,+1), many decidability questions remains open, like the decidability of
FO2(∼, <,+1).

The decidability result of EMSO2(∼,+1) over data trees presented in Theo-
rem 4.6 was used in a database context in [6] in order to show decidability of the
inclusion problem of certain fragments of XPath in the presence of DTDs. It was
also used to show decidability of validation of DTDs in the presence of unary
key and foreign key constraints [6]. Those two results were obtained via different
coding of the problems into data trees and EMSO2(∼,+1). This builds on the
fact that any regular tree language (and therefore the structural part of DTDs)
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can be expressed in EMSO2(∼,+1) (without using the predicate ∼) and XPath
1.0 is also intimately related with first-order logics with two variables [25].

Altogether we hope that we have convinced the reader that there is a need
for more decidable automata models and more decidable logics over data words
and data trees. This is a challenging topic which has a lot of applications, in
particular in database and in program verification.

Acknowledgment. We thanks Miko�laj Bojańczik, Anca Muscholl, and Thomas
Schwentick for all the interesting discussions we had while writing this paper.
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Department of Computer Science
University of Kentucky

Lexington, KY 40506-0046, USA

Abstract. The goal of this note is to provide a background and refer-
ences for the invited lecture presented at Computer Science Logic 2006.
We briefly discuss motivations that led to the emergence of nonmonotonic
logics and introduce two major nonmonotonic formalisms, default and
autoepistemic logics. We then point out to algebraic principles behind
the two logics and present an abstract algebraic theory that unifies them
and provides an effective framework to study properties of nonmono-
tonic reasoning. We conclude with comments on other major research
directions in nonmonotonic logics.

1 Why Nonmonotonic Logics

In the late 1970s, research on languages for knowledge representation, and con-
siderations of basic patterns of commonsense reasoning brought attention to
rules of inference that admit exceptions and are used only under the assumption
of normality of the world in which one functions or to put it differently, when
things are as expected.

For instance, a knowledge base concerning a university should support an
inference that, given no information that might indicate otherwise, if Dr. Jones
is a professor at that university, then Dr. Jones teaches. Such conclusion might
be sanctioned by an inference rule stating that normally university professors
teach. In commonsense reasoning rules with exceptions are ubiquitous. Planning
our day and knowing we are to have lunch with a friend, we might use the
following rule: normally, lunches end by 1:00pm. If nothing we know indicates
that the situation we are in is not normal, we use this rule and conclude that
our lunch will be over by 1:00pm.

The problem with such rules is that they do not lend themselves in any di-
rect way to formalizations in terms of first-order logic, unless all exceptions are
known and explicitly represented — an unrealistic expectation in practice. The
reason is that standard logical inference is monotone: whenever a sentence α is
a consequence of a set T of sentences then α is also a consequence of any set
of sentences T ′ such that T ⊆ T ′. On the other hand, it is clear that reasoning
with normality rules when complete information is unavailable, is not monotone.
In our lunch scenario, we may conclude that the lunch will be over by 1:00pm.
However, if we learn that our friend will be delayed, the normality assumption
is no longer valid our earlier inference is unsupported; we have to withdraw it.
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Such reasoning, where additional information may invalidate conclusions, is
called nonmonotonic. As we briefly noted above, it is common. It has been a focus
of extensive studies by the knowledge representation community since the early
eighties of the last century. This research developed along two major directions.

The first direction is concerned with the design of nonmonotonic logics —
formalisms with direct ways to model rules with exceptions and with ways to
use them. Arguably, two most studied nonmonotonic formalisms are default logic
[1] and autoepistemic logic [2,3]. These two logics are the focus of this note. Our
main goal in this paper is to introduce default and autoepistemic logics, identify
algebraic principles that underlie them, and show that both logics can be viewed
through a single abstract unifying framework of operators on complete lattices.

The second direction focused on studies of nonmonotone inference relations
either in terms of classes of models or abstract postulates, the two perspectives
being quite closely intertwined. Circumscription [4] and, more generally, pref-
erence logics [5] fall in this general research direction, as do studies of abstract
properties of nonmonotonic inference relations [6,7,8,9]. Although outside our fo-
cus, for the sake of completeness, we will provide a few comments on preference
logics and nonmonotonic inference relations in the last section of the paper.

2 Default Logic — An Introduction

In his ground-breaking paper [1] Ray Reiter wrote: Imagine a first order formal-
ization of what we know about any reasonably complex world. Since we cannot
know everything [...] — there will be gaps in our knowledge — this first order the-
ory will be incomplete. [...] The role of a default is to help fill in some of the gaps
in the knowledge base [...]. Defaults therefore function somewhat like meta-rules:
they are instructions about how to create an extension of this incomplete theory.
Those formulas sanctioned by the defaults and which extend the theory can be
viewed as beliefs about the world. Now in general there are many different ways
of extending an incomplete theory, which suggests that the default rules may be
nondeterministic. Different applications of the defaults yield different extensions
and hence different sets of beliefs about the world.

According to Reiter defaults are meta-rules of the form “in the absence of
any information to the contrary, assume ...” (hence, they admit exceptions), and
default reasoning consists of applying them. Reiter’s far-reaching contribution is
that he provided a formal method to do so.

We will now present basic notions of default logic. We consider the language
L(At) (or simply, L) of propositional logic determined by a set At of proposi-
tional variables. A default is an expression

d =
α : β1, . . . , βk

γ
, (1)

where α, βi, 1 ≤ i ≤ k, and γ are formulas from L. We say that α is the
prerequisite, βi, 1 ≤ i ≤ k, are justifications, and γ is the consequent of default
d. If α is a tautology, we omit it from the notation. For a default d, we write
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p(d), c(d) and j(d) for its prerequisite, consequent, and the set of justifications,
respectively.

An informal reading of a default (1) is: conclude γ if α holds and if all justifica-
tions βi are possible. In other words, to apply a default and assert its consequent,
we must derive the prerequisite and establish that all justifications are possible.
We will soon formalize this intuition. For now, we note that we can encode the
rule arising in the university example by the following default:

profJ : teachesJ
teachesJ

saying that if profJ holds and it is possible that teachesJ holds (no information
contradicts teachesJ), then teachesJ does hold.

A default theory is a pair (D,W ), where D is a set of defaults and W is a
theory in the language L. The role of W is to represent our knowledge (which is,
in general, incomplete) while the role of defaults in D is to serve as “meta-rules”
we might use to fill in gaps in what we know.

Let ∆ = (D,W ) be a default theory and let S be a propositional theory
closed under consequence. If we start with S as our beliefs, ∆ could be used
to revise them. The revised belief set should contain W . Further, it should be
closed under propositional consequence (to be a belief set) and under those
defaults whose justifications are not contradicted by the current belief set S
(are possible with respect to S). This revision process can be formalized by
an operator Γ∆ such that for a any set S of formulas (not necessarily closed
under propositional consequence), Γ∆(S) is defined as the inclusion-least set U
of propositional formulas satisfying the following conditions:

1. U is closed under propositional provability
2. W ⊆ U
3. for every default d ∈ D, if p(d) ∈ U and for every β ∈ j(d), S �� ¬β, then

c(d) ∈ U .

Fixpoints of the operator Γ∆ represent belief sets (by (1) they are indeed closed
under propositional consequence) that are in a way stable with respect to ∆ —
they cannot be revised away. Reiter [1] proposed them as belief sets associated
with ∆ and called them extensions.

Definition 1. Let ∆ be a default theory. A propositional theory S is an exten-
sion of ∆ if S = Γ∆(S).

Let us look again at the university scenario, which we expand slightly. We know
that Dr. Jones is a professor. We also know that if Dr. Jones is chair of the
department then Dr. Jones does not teach. Finally we have the default rule
saying that normally Dr. Jones teaches. This knowledge can be captured by a
default theory (D,W ), where

W = {profJ , chairJ ⊃ ¬teachesJ}
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and

D =
{

profJ : teachesJ
teachesJ

}
.

One can check that this default theory has only one extension and it contains
teachesJ . However, if we append W by additional information that Dr. Jones is
chair of the department (chairJ ), then the resulting default theory has also one
extension but it does not contain teachesJ , anymore (it contains ¬teachesJ).
Thus, default theories with the semantics of extension can model nonmonotonic
inferences.

Much of the theory of default logic is concerned with properties of extensions.
A detailed studies of extensions can be found in [10,11].

3 Autoepistemic Logic

Autoepistemic logic is a logic in a modal propositional language LK(At) (or
simply, LK), where At is the a of propositional variables and K stands for the
modal operator. It was proposed to formalize how a rational agent with perfect
introspection might construct belief sets [2,3].

The first modal nonmonotonic logic was introduced by McDermott and Doyle
[12]. They proposed to use modal-free formulas to represent facts about an appli-
cation domain, and “proper” modal formulas to encode nonmonotonic reasoning
patterns. An informal reading of a modal formula Kα is “α is believed” or “α
is known.” It suggests that a formula ¬K¬α ⊃ β could be read “if ¬α is not
believed (or, to put it differently, if α is possible) then β. Given this intuition,
McDermott and Doyle [12] proposed to use the formula ¬K¬α ⊃ β to repre-
sent a reasoning pattern “in the absence of information contradicting α, infer
β” and gave a method to reason with such formulas supporting nonmonotonic
inferences.

The logic of McDermott and Doyle was found to have counterintuitive prop-
erties [13,2,3]. Moore proposed autoepistemic logic [2,3] as a way to address this
problem. As in the case of default logic, the goal was to describe a mechanism to
assign to a theory belief sets that can be justified on its basis. Unlike in default
logic, a specific objective for autoepistemic logic was to formalize belief sets a
rational agent reasoning with perfect introspection might form.

Given a theory T ⊆ LK , Moore [3] defined an expansion of T to be a theory
E ⊆ LK such that

E = Cn(T ∪ {Kα | α ∈ E} ∪ {¬Kα | α /∈ E})

(Cn stands for the operator of propositional consequence which treats formulas
Kα as propositional variables). Moore justified this fixpoint equation by arguing
that expansions should consist precisely of formulas that can be inferred from T
and from formulas obtained by positive and negative introspection on the agent’s
beliefs.

Moore’s expansions of T indeed have properties that make them adequate for
modeling belief sets a rational agent reasoning with perfect introspection may
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built out of a theory T . In particular, expansions satisfy postulates put forth by
Stalnaker [14] for belief sets in a modal language:

B1: Cn(E) ⊆ E (rationality postulate)
B2: if α ∈ E, then Kα ∈ E (closure under positive introspection)
B3: if α /∈ E, then ¬Kα ∈ E (closure under negative introspection).

Although motivated differently, autoepistemic logic can capture similar rea-
soning patterns as default logic does. For instance, the university example can
be described in the modal language by a single theory

T = {profJ , chairJ ⊃ ¬teachesJ ,KprofJ ∧ ¬K¬teachesJ ⊃ teachesJ}.

This theory has exactly one expansion and it contains teachesJ . When ex-
tended with chairJ , the new theory also has just one expansion but it contains
¬teachesJ .

Examples like this one raised the question of the relationship between default
and autoepistemic logics. Konolige suggested to encode a default

d =
α : β1, . . . , βk

γ

with a modal formula

k(d) = Kα ∧ ¬K¬β1 ∧ . . . ∧ ¬K¬βk ⊃ γ

and to represent a default theory ∆ = (D,W ) by a modal theory

k(∆) = W ∪ {k(d) : d ∈ D}.

The translation seemed intuitive enough. In particular, it worked in the uni-
versity example in the sense that extension of the default logic representation
correspond to expansions of the modal logic representation obtained by trans-
lating the default logic one. However, it turned not to align extensions with
expansions in general (a default theory ({ p : q

p }, ∅) has one extension but its
modal counterpart has two expansions).

4 Default and Autoepistemic Logics — Algebraically

Explaining the relationship between the two logics became a major research
challenge. We will present here a recent algebraic account of this relationship
[15]. As the first step, we will describe expansions and extensions within the
framework of operators on the lattice of possible-world structures.

A possible-world structure is a set (possibly empty) of truth assignments to
atoms in At . Possible-world structures can be ordered by the reverse set inclu-
sion: for Q, Q′ ∈ W, Q � Q′ if Q′ ⊆ Q. The ordering � can be thought of as an
ordering of increasing knowledge. As we move from one possible-world structure
to another, greater with respect to �, some interpretations are excluded and
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our knowledge of the world improves. We denote the set of all possible-world
structures with W . One can check that 〈W ,�〉 is a complete lattice.

A possible-world structure Q and an interpretation I, determine the truth
function HQ,I inductively as follows:

1. HQ,I(p) = I(p), if p is an atom.
2. HQ,I(ϕ1 ∧ϕ2) = t if HQ,I(ϕ1) = t and HQ,I(ϕ2) = t. Otherwise, HQ,I(ϕ1 ∧

ϕ2) = f.
3. HQ,I(ϕ1 ∨ ϕ2) = t if HQ,I(ϕ1) = t or HQ,I(ϕ2) = t. Otherwise, HQ,I(ϕ1 ∨

ϕ2) = f.
4. HQ,I(¬ϕ) = t if HQ,I(ϕ) = f. Otherwise, HQ,I(ϕ) = f.
5. HQ,I(Kϕ) = t, if for every interpretation J ∈ Q, HQ,J (ϕ) = t. Otherwise,
HQ,I(Kϕ) = f.

It is clear that for every formula ϕ ∈ LK , the truth value HQ,I(Kϕ) does
not depend on I. Thus, and we will denote it by HQ(Kϕ), dropping I from the
notation. The modal theory of a possible-world structure Q, denoted by ThK(Q),
is the set of all modal formulas that are believed in Q. Formally,

ThK(Q) = {ϕ : HQ(Kϕ) = t}.

The (modal-free) theory of Q, denoted Th(Q), is defined by

Th(Q) = ThK(Q) ∩ L.

(As an aside, we note here a close relation between possible-world structures and
Kripke models with universal accessibility relations.)

Default and autoepistemic logics can both be defined in terms of fixpoints
of operators on the lattice 〈W ,�〉. A characterization of expansions in terms
of fixpoints of an operator on W has been known since Moore [2]. Given a
theory T ⊆ LK and a possible-world structure Q, Moore defined a possible-
world structure DT (Q) as follows:

DT (Q) = {I : HQ,I(ϕ) = t, for every ϕ ∈ T}.

The intuition behind this definition is as follows (perhaps not coincidentally,
as in the case of default logic, we again refer to belief-set revision intuitions).
The possible-world structure DT (Q) is a revision of a possible-world structure
Q. This revision consists of the worlds that are acceptable given the constraints
on agent’s beliefs captured by T . That is, the revision consists precisely of these
worlds that make all formulas in T true (in the context of Q — the current
belief state). Fixpoints of the operator DT represent “stable” belief sets — they
cannot be revised any further and so take a special role in the space of belief
sets. It turns out [3] that they correspond to expansions!

Theorem 1. Let T ⊆ LK . A theory E ⊆ LK is an expansion of T if and only
if E = ThK(Q), for some possible-world structure Q such that Q = DT (Q).
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A default theory defines a similar operator. With the Konolige’s interpretation
of defaults in mind, we first define a truth function on the set of all propositional
formulas and defaults. Namely, for a propositional formula ϕ, we define

HdlQ,I(ϕ) = I(ϕ),

and for a default d = α : β1,...,βk

γ , we set

HdlQ,I(d) = t

if at least one of the following conditions holds:

1. there is J ∈ Q such that J(α) = f.
2. there is i, 1 ≤ i ≤ k, such that for every J ∈ Q, J(βi) = f.
3. I(γ) = t

(we set HdlQ,I(d) = f, otherwise).
Given a default theory ∆ = (D,W ), for a possible-world structure Q, we

define a possible-world structure D∆(Q) as follows:

D∆(Q) = {I : HQ,I(ϕ) = t, for every ϕ ∈W ∪D}.

Do fixpoints of D∆ correspond to extensions? The answer is no. Fixpoints of D∆

correspond to weak extensions [16], another class of belief sets one can associate
with default theories.

To characterize extensions a different operator is needed. The following def-
inition is due (essentially) to Guerreiro and Casanova [17]. Let ∆ = (D,W )
be a default theory and let Q be a possible-world structure. We define Γ ′∆(Q)
to be the least possible-world structure Q′ (with respect to �) satisfying the
conditions:

1. W ⊆ Th(Q′)
2. for every default d ∈ D, if p(d) ∈ Th(Q′) and for every β ∈ j(d), ¬β /∈

Th(Q), then c(d) ∈ Th(Q′).

One can show that Γ ′∆(Q) is well defined. Moreover, for every possible-world
structure Q,

Th(Γ ′∆(Q)) = Γ∆(Th(Q))

Consequently, we have the following result connecting fixpoints of Γ ′∆(Q) and
extensions of ∆ [17].

Theorem 2. Let ∆ be a default theory. A theory S ⊆ L is an extension of ∆ if
and only if S = Th(Q) for some possible-world structure Q such that Q = Γ ′∆(Q).

Several questions arise. Is there a connection between the operators D∆ and
Γ ′∆? Is there a counterpart to the operator Γ ′∆ in autoepistemic logic? Can
these operators, their fixpoints and their interrelations be considered in a more
abstract setting? What are abstract algebraic principles behind autoepistemic
and default logics? We provide some answers in the next section.
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5 Approximation Theory

Possible-world structures form a complete lattice. As we argued, default and
autoepistemic theories determine “revision” operators on this lattice. These op-
erators formalize a view of a theory (default or modal) as a device for revising
possible-world structures. Possible-world structures that are stable under the
revision or, more formally, which are fixpoints of the revision operator give a
semantics to the theory (of course, with respect to the revision operator used).

Operators on a complete lattice of propositional truth assignments and their
fixpoints were used in a similar way to study the semantics of logic programs with
negation. Fitting [18,19,20] characterized all major 2-, 3- and 4-valued semantics
of logic programs, specifically, supported-model semantics [21], stable-model se-
mantics [22], Kripke-Kleene semantics [18,23] and well-founded semantics [24],
in terms of fixpoints of the van Emden-Kowalski operator [25,26] and its gener-
alizations and variants.

These results suggested the existence of more general and abstract princi-
ples underlying these characterizations. [27,28] identified them and proposed a
comprehensive unifying abstract framework of approximating operators as an al-
gebraic foundation for nonmonotonic reasoning. We will now outline the theory
of approximating operators and use it to relate default and autoepistemic logics.
For details, we refer to [27,28].

Let 〈L,≤〉 be a poset. An element x ∈ L is a pre-fixpoint of an operator
O : L → L if O(x) ≤ x; x is a fixpoint of O if O(x) = x. We denote a least
fixpoint of O (if it exists) by lfp(O).

An operator O : L → L is monotone if for every x, y ∈ L such that x ≤ y,
O(x) ≤ O(y). Monotone operators play a key role in the algebraic approach to
nonmonotonic reasoning. Tarski and Knaster’s theorem asserts that monotone
operators on complete lattices (from now on L will always stand for a complete
lattice) have least fixpoints [29].

Theorem 3. Let L be a complete lattice and let O be a monotone operator on
L. Then O has a least fixpoint and a least pre-fixpoint, and these two elements
of L coincide. That is, we have lfp(O) =

∧
{x ∈ L : O(x) ≤ x}.

The product bilattice [30] of a complete lattice L is the set L2 = L× L with the
following two orderings ≤p and ≤:

1. (x, y) ≤p (x′, y′) if x ≤ x′ and y′ ≤ y
2. (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.

Both orderings are complete lattice orderings in L2. For the theory of approxi-
mating operators, the ordering ≤p is of primary importance.

If (x, y) ∈ L2 and x ≤ z ≤ y, then (x, y) ∈ L2 approximates z. The “higher”
a pair (x, y) in L2 with respect to ≤p, the more precise estimate it provides to
elements it approximates. Therefore, we call this ordering the precision ordering.
Most precise approximations are provided by pairs (x, y) ∈ L2 for which x = y.
We call such pairs exact.
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For a pair (x, y) ∈ L2, we define its projections as:

(x, y)1 = x and (x, y)2 = y.

Similarly, for an operator A : L2 → L2, if A(x, y) = (x′, y′), we define

A(x, y)1 = x′ and A(x, y)2 = y′.

Definition 2. An operator A : L2 → L2 is symmetric if for every (x, y) ∈ L2,
A(x, y)1 = A(y, x)2; A is approximating if A is symmetric and ≤p-monotone.

Every approximating operator A on L2 maps exact pairs to exact pairs. Indeed,
A(x, x) = (A(x, x)1, A(x, x)2) and, by the symmetry of A, A(x, x)1 = A(x, x)2.

Definition 3. If A is an approximating operator and O is an operator on L
such that for every x ∈ L A(x, x) = (O(x), O(x)), then A is an approximating
operator for O.

Let A : L2 → L2 be an approximating operator. Then for every y ∈ L, the
operator A(·, y)1 (on the lattice L) is ≤-monotone. Thus, by Theorem 3, it has
a least fixpoint. This observation brings us to the following definition.

Definition 4. Let A : L2 → L2 be an approximating operator. The stable oper-
ator for A, CA, is defined by

CA(x, y) = (CA(y), CA(x)),

where CA(y) = lfp(A(·, y)1) (or equivalently, as A is symmetric, CA(y) =
lfp(A(y, ·)2)).

The following result states two key properties of stable operators.

Theorem 4. Let A : L2 → L2 be an approximating operator. Then

1. CA is ≤p-monotone, and
2. if CA(x, y) = (x, y), then A(x, y) = (x, y).

Operators A and CA are ≤p-monotone. By Theorem 3, they have least fixpoints.
We call them the Kripke-Kleene and the well-founded fixpoints of A, respectively
(the latter term is justified by Theorem 4).

Let A be an approximating operator for an operator O. An A-stable fixpoint
of O is any element x such that (x, x) is a fixpoint of CA. By Theorem 4, if (x, x)
is a fixpoint of CA then it is a fixpoint of A and so, x is a fixpoint of O. Thus,
our terminology is justified. The following result gathers some basic properties
of fixpoints of approximating operators.

Theorem 5. Let O be an operator on a complete lattice L and A its approxi-
mating operator. Then,

1. fixpoints of the operator CA are minimal fixpoints of A (with respect to the
ordering ≤ of L2); in particular, A-stable fixpoints of O are minimal fixpoints
of O
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2. the Kripke-Kleene fixpoint of A approximates all fixpoints of O

3. the well-founded fixpoint of A approximates all A-stable fixpoints of O

How does it all relate to default and autoepistemic logic? In both logics opera-
tors D∆ and DT have natural generalizations, D∆ and DT , respectively, defined
on the latticeW2 — the product lattice of the latticeW of possible-world struc-
tures [15]. One can show that D∆ and DT are approximating operators for the
operators D∆ and DT . Fixpoints of operators D∆ and DT and their stable coun-
terparts define several classes of belief sets one can associate with default and
autoepistemic theories.

Exact fixpoints of the operators D∆ and DT (or, more precisely, the corre-
sponding fixpoints of operators D∆ and DT ) define the semantics of expansions
(in the case of autoepistemic logic, proposed originally by Moore; in the case
of default logic, expansions were known as weak extensions [16]). The stable
fixpoints of the operators D∆ and DT define the semantics of extensions (in
the case of default logic, proposed originally by Reiter, in the case of autoepis-
temic logic the concept was not identified until algebraic considerations in [15]
revealed it). Finally, the Kripke-Kleene and the well-founded fixpoints provide
three-valued belief sets that approximate expansions and extensions (except for
[31], these concepts received essentially no attention in the literature, despite
their useful computational properties [15]).

Moreover, these semantics are aligned when we cross from default to au-
toepistemic logic by means of the Konolige’s translation. One can check that the
operators D∆ and Dk(∆) coincide. The Konolige’s translation preserves expan-
sions, extensions, the Kripke-Kleene and the well-founded semantics. However,
clearly, it does not align default extensions with autoepistemic expansions. Dif-
ferent principles underlie these two concepts. Expansions are fixpoints of the
basic revision operator D∆ or DT , while extensions are fixpoints of the stable
operators for D∆ or DT , respectively.

Properties of fixpoints of approximating operators we stated in Theorems 4
and 5 specialize to properties of expansions and extensions of default and au-
toepistemic theories. One can prove several other properties of approximating
operators that imply known or new results for default and autoepistemic logics.
In particular, one can generalize the notion of stratification of a default (au-
toepistemic) theory to the case of operators and obtain results on the existence
and properties of extensions and expansions of stratified theories as corollaries
of more general results on fixpoints of stratified operators [32,33].

Similarly, one can extend to the case of operators concepts of strong and
uniform equivalence of nonmonotonic theories and prove characterization results
purely in the algebraic setting [34].

6 Additional Comments

In this note, we focused on nonmonotonic logics which use fixpoint conditions
to define belief sets and we discussed abstract algebraic principles behind these
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logics. We will now briefly mention some other research directions in nonmono-
tonic reasoning.

Default extensions are in some sense minimal (cf. Theorem 5(1)) and mini-
mality was identified early as one of the fundamental principles in nonmonotonic
reasoning. McCarthy [4] used it to define circumscription, a nonmonotonic logic
in the language of first-order logic in which entailment is defined with respect to
minimal models only. Circumscription was extensively studied [35,36]. Compu-
tational aspects were studied in [37,38,39]; connections to fixpoint-based logics
were discussed in [40,41,42].

Preferential models [5,8] generalize circumscription and provide a method
to define nonmonotonic inference relations. Inference relations determined by
preferential models were shown in [8] to be precisely inference relations satisfying
properties of Left Logical Equivalence, Right Weakening, Reflexivity, And, Or
and Cautious Monotony. Inference relations determined by ranked preferential
models were shown in [9] to be precisely those preferential inference relations
that satisfy Rational Monotony.

Default conditionals that capture statements “if α then normally β” were
studied in [43,9,44]. [9,44] introduce the notion of rational closure of sets of
conditionals as as a method of inference ([44] uses the term system Z).

Default extensions and autoepistemic expansions also define nonmonotonic
inference relations. For instance, given a set of defaults D, we might say that a
formula β can be inferred from a formula α given D if β is in every extension
of the default theory (D, {α}). A precise relationship (if any) between this and
similar inference relations based on the concept of extension or expansion to
preferential or rational inference relations is not know at this time. Discovering
it is a major research problem.

We conclude this paper by pointing to several research monographs on non-
monotonic reasoning [45,46,10,47,11,48,49,50].
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10. Marek, W., Truszczyński, M.: Nonmonotonic Logic; Context-Dependent Reason-
ing. Springer, Berlin (1993)

11. Antoniou, G.: Nonmonotonic Reasoning. MIT Press (1997)
12. McDermott, D., Doyle, J.: Nonmonotonic logic I. Artificial Intelligence 13 (1980)

41–72
13. McDermott, D.: Nonmonotonic logic II: nonmonotonic modal theories. Journal of

the ACM 29 (1982) 33–57
14. Stalnaker, R.: A note on nonmonotonic modal logic. Unpublished manuscript

(1980)
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Abstract. A type-based approach to termination uses sized types: an
ordinal bound for the size of a data structure is stored in its type. A
recursive function over a sized type is accepted if it is visible in the
type system that recursive calls occur just at a smaller size. This ap-
proach is only sound if the type of the recursive function is admissible,
i.e., depends on the size index in a certain way. To explore the space
of admissible functions in the presence of higher-kinded data types and
impredicative polymorphism, a semantics is developed where sized types
are interpreted as functions from ordinals into sets of strongly normaliz-
ing terms. It is shown that upper semi-continuity of such functions is a
sufficient semantical criterion for admissibility. To provide a syntactical
criterion, a calculus for semi-continuous function is developed.

1 Introduction

Termination of computer programs has received continuous interest in the his-
tory of computer science, and classical applications are total correctness and
termination of partial evaluation. In languages with a notion of computation on
the type-level, such as dependently-typed languages or rich typed intermediate
languages in compilers [11], termination of expressions that compute a type is
required for type checking and type soundness. Further, theorem provers that are
based on the Curry-Howard Isomorphism and offer a functional programming
language to write down proofs usually reject non-terminating programs to en-
sure consistency. Since the pioneering work of Mendler [15], termination analysis
has been combined with typing, with much success for strongly-typed languages
[14,6,13,19,7,9]. The resulting technique, type-based termination checking, has
several advantages over a purely syntactical termination analysis: (1) It is ro-
bust w. r. t. small changes of the analyzed program, since it is working on an
abstraction of the program: its type. So if the reformulation of a program (e.g.,
by introducing a redex) still can be assigned the same sized type, it automat-
ically passes the termination check. (2) In design and justification, type-based
termination rests on a technology extensively studied for several decades: types.
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(3) Type-based termination is essentially a refinement of the typing rules for re-
cursion and for introduction and elimination of data. This is orthogonal to other
language constructs, like variants, records, and modules. Thus, a language can
be easily enriched without change to the termination module. This is not true
if termination checking is a separate static analysis. Orthogonality has an espe-
cially pleasing effect: (4) Type-based termination scales to higher-order functions
and polymorphism. (5) Last but not least, it effortlessly creates a termination
certificate, which is just the typing derivation.

Type-based termination especially plays its strength when combined with
higher-order datatypes and higher-rank polymorphism, i. e., occurrence of ∀ to
the left of an arrow. Let us see an example. We consider the type of generalized
rose trees GRoseFA parameterized by an element type A and the branching
type F . It is given by two constructors:

leaf : GRoseFA
node : A → F (GRoseFA) → GRoseFA

Generalized rose trees are either a leaf or a node a fr of a label a of type A and
a collection of subtrees fr of type F (GRose FA). Instances of generalized rose
trees are binary trees (FA = A × A), finitely branching trees (FA = ListA),
or infinitely branching trees (FA = Nat → A). Programming a generic equality
function for generalized rose trees that is polymorphic in F and A, we will end
up with the following equations:

EqA = A → A → Bool

eqGRose : (∀A.Eq A → Eq (FA)) → ∀A.Eq A → Eq (GRose FA)

eqGRose eqF eqA leaf leaf = true
eqGRose eqF eqA (node a fr ) (node a′ fr ′) = (eqA a a′) ∧

(eqF (eqGRose eqF eqA) fr fr ′)
eqGRose eqF eqA _ _ = false

The generic equality eqGRose takes two parametric arguments, eqF and eqA.
The second one is a placeholder for an equality test for type A, the first one
lifts an equality test for an arbitrary type A to an equality test for the type FA.
The equality test for generalized rose trees, eqGRose eqF eqA, is then defined by
recursion on the next two arguments. In the case of two nodes we would expect
a recursive call, but instead, the function itself is passed as an argument to eqF ,
one of its own arguments! Nevertheless, eqGRose is a total function, provided its
arguments are total and well-typed. However, with traditional methods, which
only take the computational behavior into account, it will be hard to verify
termination of eqGRose. This is due to the fact that the polymorphic nature of
eqF plays a crucial role. It is easy to find an instance of eqF of the wrong type
which makes the program loop. Take, for instance:

eqF : Eq (GRoseF Nat) → Eq (F (GRose F Nat))
eqF eq fr fr ′ = eq (node 0 fr) (node 0 fr ′)
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A type-based termination criterion however passes eqGRose with ease: Con-
sider the indexed type GRoseı FA of generalized rose trees whose height is smaller
than ı. The types of the constructors are refined as follows:

leaf : ∀F∀A∀ı.GRoseı+1 FA

node : ∀F∀A∀ı. A → GRoseı FA → GRoseı+1 FA

When defining eqGRose for trees of height < ı+ 1, we may use eqGRose on trees
of height < ı. Hence, in the clause for two nodes, term eqGRose eqF eqA has type
Eq (GRoseı FA), and eqF (eqGRose eqF eqA) gets type Eq (F (GRoseı FA)), by
instantiation of the polymorphic type of eqF . Now it is safe to apply the last
expression to fr and fr ′ which are in F (GRoseı FA), since nodea fr and nodea′ fr ′

were assumed to be in GRoseı+1 FA.
In essence, type-based termination is a stricter typing of the fixed-point com-

binator fix which introduces recursion. The unrestricted use, via the typing rule
(1), is replaced by a rule with a stronger hypothesis (2):

(1)
f : A → A

fix f : A
(2)

f : ∀ı.A(ı) → A(ı + 1)
fix f : ∀n.A(n)

Soundness of rule (2) can be shown by induction on n. To get started, we need to
show fix f : A(0) which requires A(ı) to be of a special shape, for instance A(ı) =
GRoseı F B → C (this corresponds to Hughes, Pareto, and Sabry’s bottom check
[14]). Then A(0) denotes functions which have to behave well for all arguments
in GRose0 F B, i. e., for no arguments, since GRose0 F B is empty. Trivially, any
program fulfills this condition. In the step case, we need to show fix f : A(n+1),
but this follows from the equation fix f = f (fix f) since f : A(n) → A(n + 1),
and fix f : A(n) by induction hypothesis.

In general, the index ı in A(ı) will be an ordinal number. Ordinals are useful
when we want to speak of objects of unbounded size, e. g., generalized rose
trees of height < ω that inhabit the type GRoseω FA. Even more, ordinals are
required to denote the height of infinitely branching trees: take generalized rose
trees with FA = Nat → A. Other examples of infinite branching, which come
from the area of inductive theorem provers, are the W -type, Brouwer ordinals
and the accessibility predicate [17].

In the presence of ordinal indices, rule (2) has to be proven sound by transfinite
induction. In the case of a limit ordinal λ, we have to infer fix f : A(λ) from the
induction hypothesis fix f : ∀α < λ.A(α). This imposes extra conditions on the
shape of a so-called admissible A, which are the object of this article. Of course,
a monotone A is trivially admissible, but many interesting types for recursive
functions are not monotone, like A(α) = Natα → Natα → Natα (where Natα

contains the natural numbers < α). We will show that all types A(α) that are
upper semi-continuous in α, meaning lim supα→λA(α) ⊆ A(λ) for limit ordinals
λ, are admissible. Function types C(α) = A(α) → B(α) will be admissible if
A is lower semi-continuous (A(λ) ⊆ lim infα→λA(α)) and B is upper semi-
continuous. Similar laws will be developed for the other type constructors and
put into the form of a kinding system for semi-continuous types.



Semi-continuous Sized Types and Termination 75

Before we dive into the mathematics, let us make sure that semi-continuity is
really necessary for termination. A type which is not upper semi-continuous is
A(ı) = (Natω → Natı) → Natω (see Sect. 4.2). Assuming we can nevertheless use
this type for a recursive function, we can construct a loop. First, define successor
succ : ∀ı.Natı → Natı+1 and predecessor pred : ∀ı.Natı+1 → Natı. Note that the
size index is an upper bound and ω is the biggest such bound for the case of
natural numbers, thus, we have the subtype relations Natı ≤ Natı+1 ≤ · · · ≤
Natω ≤ Natω+1 ≤ Natω .

We make the following definitions:

A(ı) := (Natω → Natı) → Natω

shift : ∀ı. (Natω → Natı+1)
→ Natω → Natı

shift := λgλn. pred (g (succ n))

f : ∀ı.A(ı) → A(ı + 1)
f := λloopλg. loop (shift g)

loop : ∀ı.A(ı)
loop := fix f

Since Natω → Nat0 is empty, A passes the bottom check. Still, instantiating
types to succ : Natω → Natω and loop : (Natω → Natω) → Natω we convince
ourselves that the execution of loop succ indeed runs forever.

1.1 Related Work and Contribution

Ensuring termination through typing is quite an old idea, just think of type
systems for the λ-calculus like simple types, System F, System Fω , or the Calculus
of Constructions, which all have the normalization property. These systems have
been extended by special recursion operators, like primitive recursion in Gödel’s
T, or the recursors generated for inductive definitions in Type Theory (e. g., in
Coq), that preserve normalization but limit the definition of recursive functions
to special patterns, namely instantiations of the recursion scheme dictated by
the recursion operator. Taming the general recursion operator fix through typing,
however, which allows the definition of recursive functions in the intuitive way
known from functional programming, is not yet fully explored. Mendler [15]
pioneered this field; he used a certain polymorphic typing of the functional f to
obtain primitive (co)recursive functions over arbitrary datatypes. Amadio and
Coupet-Grimal [6] and Giménez [13] developed Mendler’s approach further, until
a presentation using ordinal-indexed (co)inductive types was found and proven
sound by Barthe et al. [7]. The system λ̂ presented in loc. cit. restricts types
A(ı) of recursive functions to the shape µıF → C(ı) where the domain must
be an inductive type µıF indexed by ı and the codomain a type C(ı) that is
monotonic in ı. This criterion, which has also been described by the author [2],
allows for a simple soundness proof in the limit case of the transfinite induction,
but excludes interesting types like the considered

Eq (GRoseı FA) = GRoseı FA → GRoseı FA → Bool

which has an antitonic codomain C(ı) = GRoseı FA → Bool. The author has
in previous work widened the criterion, but only for a type system without
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polymorphism [1]. Other recent works on type-based termination [9,10,8] stick
to the restriction of λ̂ . Xi [19] uses dependent types and lexicographic measures
to ensure termination of recursive programs in a call-by-value language, but his
indices are natural numbers instead of ordinals which excludes infinite objects
we are interested in.

Closest to the present work is the sized type system of Hughes, Pareto, and
Sabry [14], Synchronous Haskell [16], which admits ordinal indices up to ω. Index
quantifiers as in ∀ı.A(ı) range over natural numbers, but can be instantiated to
ω if A(ı) is ω-undershooting. Sound semantical criteria for ω-undershooting types
are already present, but in a rather ad-hoc manner. We cast these criteria in the
established mathematical framework of semi-continuous functions and provide
a syntactical implementation in form of a derivation system. Furthermore, we
also allow ordinals up to the ωth uncountable and infinitely branching inductive
types that invalidate some criteria for the only finitely branching tree types
in Synchronous Haskell. Finally, we allow polymorphic recursion, impredicative
polymorphism and higher-kinded inductive and coinductive types such as GRose.
This article summarizes the main results of the author’s dissertation [4].

2 Overview of System Fω̂

In this section we introduce Fω̂, an a posteriori strongly normalizing extension of
System Fω with higher-kinded inductive and coinductive types and (co)recursion
combinators. Figure 1 summarizes the syntactic entities. Function kinds are
equipped with polarities p [18], which are written before the domain or on top
of the arrow. Polarity + denotes covariant constructors, − contravariant con-
structors and ◦ mixed-variant constructors [12]. It is well-known that in order
to obtain a normalizing language, any constructor underlying an inductive type
must be covariant [15], hence, we restrict formation of least fixed-points µa

κF to
covariant F s. (Abel [3] and Matthes [5] provide more explanation on polarities.)

The first argument, a, to µ, which we usually write as superscript, denotes
the upper bound for the height of elements in the inductive type. The index a
is a constructor of kind ord and denotes an ordinal; the canonical inhabitants of
ord are given by the grammar

a ::= ı | s a | ∞

with ı an ordinal variable. If a actually denotes a finite ordinal (a natural num-
ber), then the height is simply the number of data constructors on the longest
path in the tree structure of any element of µaF . Since a is only an upper bound,
µaF is a subtype of µbF , written µaF ≤ µbF for a ≤ b, meaning that µ is co-
variant in the index argument. Finally, F ≤ F ′ implies µaF ≤ µaF ′, so we get
the kinding

µκ : ord
+→ (κ +→ κ) +→ κ

for the least fixed-point constructor. The kind κ is required to be pure, i. e.,
a kind not mentioning ord, for cardinality reasons. Only then it is possible to
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Polarities, kinds, constructors, kinding contexts.

p ::= + | − | ◦ polarity
κ ::= ∗ | ord | pκ → κ′ kind
κ∗ ::= ∗ | pκ∗ → κ′

∗ pure kind
a, b, A, B, F, G ::= C | X | λX :κ. F | F G (type) constructor
C ::= 1 | + | × | → | ∀κ | µκ∗ | νκ∗ | s | ∞ constructor constants
∆ ::= � | ∆, X :pκ kinding context

Constructor constants and their kinds (κ p→ κ′ means pκ → κ′).

1 : ∗ unit type
+ : ∗ +→ ∗ +→ ∗ disjoint sum
× : ∗ +→ ∗ +→ ∗ cartesian product
→ : ∗ −→ ∗ +→ ∗ function space
∀κ : (κ

◦→ ∗) +→ ∗ quantification
µκ∗ : ord +→ (κ∗

+→ κ∗)
+→ κ∗ inductive constructors

νκ∗ : ord −→ (κ∗
+→ κ∗)

+→ κ∗ coinductive constructors
s : ord +→ ord successor of ordinal
∞ : ord infinity ordinal

Objects (terms), values, evaluation frames, typing contexts.

r, s, t ::= c | x | λxt | r s term
c ::= () | pair | fst | snd | inl | inr | case | in | out | fixµ

n | fixν
n constant (n ∈ N)

v ::= λxt | pair t1 t2 | inl t | inr t | in t | c | pair t | fix∇ns t1..m value (m ≤ n)
e(_) ::= _ s | fst _ | snd_ | case _ | out _ | fixµ

n s t1..n _ evaluation frame
E ::= Id | E ◦ e evaluation context
Γ ::= � | Γ, x :A | Γ, X :pκ typing context

Reduction t −→ t′.

(λxt) s −→ [s/x]t
fst (r, s) −→ r
snd (r, s) −→ s
case (inl r) −→ λxλy. x r
case (inr r) −→ λxλy. y r

out (in r) −→ r
fixµ

n s t1..n (in t) −→ s (fixµ
n s) t1..n (in t)

out (fixν
n s t1..n) −→ out (s (fixν

n s) t1..n)

+ closure under all term constructs

Fig. 1. Fω̂ : Syntax and operational semantics

estimate a single closure ordinal ∞ at which the fixed-point is reached for all
inductive types. We have

µ∞F = µ∞+1F,
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where∞+1 is a shorthand for s∞, s : ord
+→ ord being the successor on ordinals.

If ord was allowed in the kind of a fixed-point, the closure ordinal of this fixed-
point would depend on which ordinals are in the semantics of ord, which in turn
would depend on what the closure ordinal for all fixed-points was—a vicious
cycle. However, I do not see a practical example where one want to construct
the fixed point of a sized-type transformer F : (ord ◦→ κ) +→ (ord ◦→ κ). Note
that this does not exclude fixed-points inside fixed-points, such as

BTreeı,j A = µıλX. 1 + X × (µjλY. 1 + A×X × Y ),

“B-trees” of height < ı with each node containing < j keys of type A.
Because∞ is the closure ordinal, the equation s∞ =∞ makes sense. Equality

on type constructors is defined as the least congruent equivalence relation closed
under this equation and βη.

Example 1 (Some sized types).

Nat : ord
+→ ∗

Nat := λı. µıλX. 1 + X

List : ord
+→ ∗ +→ ∗

List := λıλA. µıλX. 1 + A×X

Stream : ord
−→ ∗ +→ ∗

Stream := λıλA. νıλX.A×X

GRose : ord
+→ (∗ +→ ∗) +→ ∗ +→ ∗

GRose := λıλFλA. µıλX. 1 + A× F X

Tree : ord
+→ ∗ −→ ∗ +→ ∗

Tree := λıλBλA.GRoseı (λX.B → X)A

The term language of Fω̂ is the λ-calculus plus the standard constants to
introduce and eliminate unit (1), sum (+), and product (×) types. Further,
there is folding, in, and unfolding, out, of (co)inductive types. Let κ = pκ → ∗
a pure kind, F : +κ → κ, Gi : κi for 1 ≤ i ≤ |κ|, a : ord, and ∇ ∈ {µ, ν}, then
we have the following (un)folding rules:

ty-fold
Γ � t : F (∇a

κ F )G

Γ � in t : ∇a+1
κ F G

ty-unfold
Γ � r : ∇a+1

κ F G

Γ � out r : F (∇a
κ F )G

Finally, there are fixed-point combinators fixµn and fixνn for each n ∈ N on the term
level. The term fixµn s denotes a recursive function with n leading non-recursive
arguments; the n + 1st argument must be of an inductive type. Similarly, fixνn s
is a corecursive function which takes n arguments and produces an inhabitant
of a coinductive type.

One-step reduction t −→ t′ is defined by the β-reduction axioms given in
Figure 1 plus congruence rules. Interesting are the reduction rules for recursion
and corecursion:

fixµn s t1..n (in t) −→ s (fixµn s) t1..n (in t)
out (fixνn s t1..n) −→ out (s (fixνn s) t1..n)

A recursive function is only unfolded if its recursive argument is a value, i. e.,
of the form in t. This condition is required to ensure strong normalization; it is
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present in the work of Mendler [15], Giménez [13], Barthe et al. [7], and the
author [2]. Dually, corecursive functions are only unfolded on demand, i. e., in
an evaluation context, the matching one being out_.

As pointed out in the introduction, recursion is introduced by the rule

ty-rec
Γ � A fix∇n-adm Γ � a : ord

Γ � fix∇n : (∀ı :ord.A ı → A (ı + 1)) → Aa
.

Herein, ∇ stands for µ or ν, and the judgement A fix∇n-adm makes sure type A is
admissible for (co)recursion, as discussed in the introduction. In the following,
we will find out which types are admissible.

3 Semantics

In this section, we provide an interpretation of types as saturated sets of strongly
normalizing terms. Let S denote the set of strongly normalizing terms. We define
safe (weak head) reduction by these axioms:

(λxt) s � [s/x]t if s ∈ S
fst (pair r s) � r if s ∈ S
snd (pair r s) � s if r ∈ S
out (in r) � r

case (inl r) � λxλy.x r
case (inr r) � λxλy. y r
fixµns t1..n (in r) � s (fixµns) t1..n (in r)
out (fixνns t1..n) � out (s (fixνns) t1..n)

Additionally, we close safe reduction under evaluation contexts and transitivity:

E(t) � E(t′) if t � t′

t1 � t3 if t1 � t2 and t2 � t3

The relation is defined such that S is closed under �-expansion, meaning t� t′ ∈
S implies t ∈ S. Let �A denote the closure of term set A under �-expansion. In
general, the closure of term set A is defined as

A = �(A ∪ {E(x) | x variable, E(x) ∈ S}).
A term set is closed if A = A. The least closed set is the set of neutral terms
N := ∅ �= ∅. Intuitively, a neutral term never reduces to a value, it necessarily
has a free variable, and it can be substituted into any terms without creating a
new redex. A term set A is saturated if A is closed and N ⊆ A ⊆ S.

Interpretation of kinds. The saturated sets form a complete lattice [[∗]] with
least element ⊥∗ := N and greatest element �∗ := S. It is ordered by inclusion
�∗ := ⊆ and has set-theoretic infimum inf∗ :=

⋂
and supremum sup∗ :=

⋃
.

Let [[ord]] := O where O = [0;�ord] is an initial segment of the set-theoretic or-
dinals. With the usual ordering on ordinals, O constitutes a complete lattice as
well. Function kinds [[◦κ → κ′]] := [[κ]] → [[κ′]] are interpreted as set-theoretic
function spaces; a covariant function kind denotes just the monotonic functions
and a contravariant kind the antitonic ones. For all function kinds, ordering is
defined pointwise: F �pκ→κ′ F ′ :⇐⇒ F(G) �κ′ F ′(G) for all G ∈ [[κ]]. Simi-
larly, ⊥pκ→κ′

(G) := ⊥κ′
is defined pointwise, and so are �pκ→κ′

, infpκ→κ′
, and

suppκ→κ′
.
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Limits and iteration. In the following λ ∈ O will denote a limit ordinal. (We will
only consider proper limits, i. e., λ �= 0.) For L a complete lattice and f ∈ O → L
we define:

lim infα→λ f(α) := supα0<λ infα0≤α<λ f(α)
lim supα→λ f(α) := infα0<λ supα0≤α<λ f(α)

Using infλ f as shorthand for infα<λ f(α), and analogous shorthands for sup,
lim inf, and lim sup, we have infλ f � lim infλ f � lim supλ f � supλ f . If f is
monotone, then even lim infλ f = supλ f , and if f is antitone, then infλ f =
lim supλ f .

If f ∈ L → L and g ∈ L, we define transfinite iteration fα(g) by recursion on
α as follows:

f0 (g) := g
fα+1(g) := f(fα(g))
fλ (g) := lim supα→λ fα(g)

For monotone f , we obtain the usual approximants of least and greatest fixed-
points as µαf = fα(⊥) and ναf = fα(�).

Closure ordinal. Let �n be a sequence of cardinals defined by �0 = |N| and
�n+1 = |P(�n)|. For a pure kind κ, let |κ| be the number of ∗s in κ. Since
[[∗]] consists of countable sets, |[[∗]]| ≤ |P(N)| = �1, and by induction on κ,
|[[κ]]| ≤ �|κ|+1. Since an (ascending or descending) chain in [[κ]] is shorter than
|[[κ]]|, each fixed point is reached latest at the |[[κ]]|th iteration. Hence, the closure
ordinal for all (co)inductive types can be approximated from above by �ord = �ω .

Interpretation of types. For r a term, e an evaluation frame, and A a term set,
let r ·A = {r s | s ∈ A} and e−1A = {r | e(r) ∈ A}. For saturated sets A,B ∈ [[∗]]
we define the following saturated sets:

A + B := inl · A ∪ inr · B

A × B := (fst _)−1A ∩ (snd _)−1B
A → B :=

⋂
s∈A (_ s)−1B

1 := {()}

Aµ := in · A
Aν := (out_)−1A

The last two notations are lifted pointwise to operators F ∈ [[pκ → κ′]] by setting
F∇(G) = (F(G))∇, where ∇ ∈ {µ, ν}.

For a constructor constant C :κ, the semantics [[C]] ∈ [[κ]] is defined as follows:

[[+]](A,B ∈ [[∗]]) := A + B
[[×]](A,B ∈ [[∗]]) := A × B
[[→]](A,B ∈ [[∗]]) := A → B
[[µκ]](α)(F ∈ [[κ]] +→ [[κ]]) := µαFµ

[[νκ]](α)(F ∈ [[κ]] +→ [[κ]]) := ναFν

[[∀κ]](F ∈ [[κ]] → [[∗]]) :=
⋂
G∈[[κ]]F(G)

[[1]] := 1
[[∞]] := �ord

[[s]](�ord) := �ord

[[s]](α < �ord) := α + 1
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We extend this semantics to constructors F in the usual way, such that if ∆ �
F : κ and θ(X) ∈ [[κ′]] for all (X :pκ′) ∈ ∆, then [[F ]]θ ∈ [[κ]].

Now we can compute the semantics of types, e. g., [[Natı]](ı�→α) = Natα =
µα(X �→ (1 + X )µ). Similarly, the semantical versions of List, Stream, etc. are
denoted by List , Stream, etc.

Semantic admissibility and strong normalization. For the main theorem to fol-
low, we assume semantical soundness of our yet to be defined syntactical criterion
of admissibility: If Γ � A fix∇n-adm and θ(X) ∈ [[κ]] for all (X : κ) ∈ [[Γ ]] then
A := [[A]]θ ∈ [[ord]] → [[∗]] has the following properties:

1. Shape: A(α) =
⋂

k∈K B1(k, α) → . . . → Bn(k, α) → B(k, α) for some
K and some B1, . . . ,Bn,B ∈ K × [[ord]] → [[∗]]. In case ∇ = µ, B(k, α) =
I(k, α)µ → C(k, α) for some I, C. Otherwise, B(k, α) = C(k, α)ν for some C.

2. Bottom-check: I(k, 0)µ = ⊥∗ in case∇ = µ and C(k, 0)ν = �∗ in case∇ = ν.
3. Semi-continuity: lim supα→λA(α) ⊆ A(λ) for all limit ordinals λ ∈ [[ord]] \
{0}.

Let tθ denote the simultaneous substitution of θ(x) for each x ∈ FV(t) in t.

Theorem 1 (Type soundness). Let θ(X) ∈ [[κ]] for all (X : κ) ∈ Γ and
θ(x) ∈ [[A]]θ for all (x :A) ∈ Γ . If Γ � t : B then tθ ∈ [[B]]θ.

Corollary 1 (Strong normalization). If Γ � t : B then t is strongly
normalizing.

4 Semi-continuity

As motivated in the introduction, only types C ∈ [[ord]] → [[∗]] with infλ C �
C(λ) can be admissible for recursion. Under which conditions on A and B can
a function type A(α) → B(α) be admissible? It shows that the first choice
infλ B � B(λ) is a requirement too strong: To show infα<λ(A(α) → B(α)) �
A(λ) → B(λ) we would need A(λ) � infλA, which is not even true for A = Nat
at limit ω. However, each type C with lim supλ C � C(λ) also fulfills infλ C � C(λ),
and the modified condition distributes better over function spaces.

Lemma 1. If A(λ) � lim infλA and lim supλ B � B(λ) then lim supλ(A(α) →
B(α)) � A(λ) → B(λ).
The conditions on A and B in the lemma are established mathematical terms:
They are subconcepts of continuity. In this article, we consider only functions
f ∈ O → L from ordinals into some lattice L. For such f , the question whether f
is continuous in point α only makes sense if α is a limit ordinal, because only then
there are infinite non-stationary sequences which converge to α; and since ev-
ery strictly decreasing sequence is finite on ordinals (well-foundedness!), it only
makes sense to look at ascending sequences, i. e., approaching the limit from
the left. Hence, function f is upper semi-continuous in λ, if lim supλ f � f(λ),
and lower semi-continuous, if f(λ) � lim infλ f . If f is both upper and lower
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semi-continuous in λ, then it is continuous in λ (then upper and lower limit
coincide with f(λ)).

4.1 Positive Results

Basic semi-continuous types. Obviously, any monotone function is upper semi-
continuous, and any antitone function is lower semi-continuous. Now consider a
monotone f with f(λ) = supλ f , as it is the case for an inductive type f(α) =
µαF (where F does not depend on α). Since for monotone f , supλ f = lim infλ f ,
f is lower semi-continuous. This criterion can be used to show upper semi-
continuity of function types such as Eq(GRoseı FA) (see introduction) and, e. g.,

C(α) = Natα → Listα(A) → C′(α)

where C′(α) is any monotonic type-valued function, for instance, Listα(Natα),
and A is some constant type: The domain types, Natα and Listα(A), are lower
semi-continuous according the just established criterion and the monotonic co-
domain C′(α) is upper semi-continuous, hence, Lemma 1 proves upper semi-con-
tinuity of C. Note that this criterion fails us if we replace the domain Listα(A)
by Listα(Natα), or even µα(F(Natα)) for some monotone F , since it is not
immediately obvious that

µω(F(Natω)) = sup
α<ω

µα(F(sup
β<ω
Natβ)) ?= sup

γ<ω
µγ(F(Natγ)).

However, domain types where one indexed inductive type is inside another in-
ductive type are useful in practice, see Example 3. Before we consider lower
semi-continuity of such types, let us consider the dual case.

For f(α) = ναF , F not dependent on α, f is antitone and f(λ) = infλ f . An
antitone f guarantees infλ f = lim supλ f , so f is upper semi-continuous. This
establishes upper semi-continuity of a type involved in stream-zipping,

Streamα(A) → Streamα(B) → Streamα(C).
The domain types are antitonic, hence lower semi-continuous, and the coinduc-
tive codomain is upper semi-continuous. Upper semi-continuity of Streamα(Natα)
and similar types is not yet covered, but now we will develop concepts that allow
us to look inside (co)inductive types.

Semi-continuity and (co)induction. Let f ∈ L → L′. We say lim sup pushes
through f , or f is lim sup-pushable, if for all g ∈ O → L, lim supα→λ f(g(α)) �
f(lim supλ g). Analogously, f is lim inf-pullable, or lim inf can be pulled out of f ,
if for all g, f(lim infλ g) � lim infα→λ f(g(α)). These notions extend straightfor-
wardly to fs with several arguments.

Lemma 2 (Facts about limits).

1. lim supα→λ f(α, α) � lim supβ→λ lim supγ→λ f(β, γ).
2. lim infβ→λ lim infγ→λ f(β, γ) � lim infα→λ f(α, α).
3. lim supα→λ infi∈I f(α, i) � infi∈I lim supα→λ f(α, i).
4. supi∈I lim infα→λ f(α, i) � lim infα→λ supi∈I f(α, i).
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Strictly positive contexts: Π ::= � | Π,X :+κ∗.

Semi-continuity ∆; Π 
ıq F : κ for q ∈ {⊕,�}.

cont-co
∆, ı :+ord 
 F : κ p ∈ {+, ◦}

∆, ı :pord; Π 
ı⊕ F : κ
cont-c’tra

∆, ı :−ord 
 F : κ p ∈ {−, ◦}
∆, ı :pord; Π 
ı� F : κ

cont-in
∆ 
 F : κ

∆, ı :pord; Π 
ıq F : κ
cont-var

X :pκ ∈ ∆, Π p ∈ {+, ◦}
∆; Π 
ıq X : κ

cont-∀ ∆; Π 
ı⊕ F : ◦κ → ∗
∆; Π 
ı⊕ ∀κF : ∗ cont-abs

∆, X :pκ;Π 
ıq F : κ′

∆; Π 
ıq λXF : pκ → κ′ X = ı

cont-app
∆, ı :p′ord; Π 
ıq F : pκ → κ′ p−1∆ 
 G : κ

∆, ı :p′ord; Π 
ıq F G : κ′

cont-sum
∆; Π 
ıq A,B : ∗

∆; Π 
ıq A + B : ∗ cont-prod
∆; Π 
ıq A,B : ∗

∆; Π 
ıq A × B : ∗

cont-arr
−∆; � 
ı� A : ∗ ∆; Π 
ı⊕ B : ∗

∆; Π 
ı⊕ A → B : ∗

cont-mu
∆; Π,X :+κ∗ 
ı� F : κ∗ ∆ 
ı� a : ord

∆; Π 
ı� µa
κ∗λXF : κ∗

cont-nu
∆; Π,X :+κ∗ 
ı⊕ F : κ∗ a ∈ {∞, snj | (j :pord) ∈ ∆ with p ∈ {+, ◦}}

∆; Π 
ı⊕ νa
κ∗λXF : κ∗

Fig. 2. Fω̂: Semi-continuous constructors

Fact 3 states that lim sup pushes through infimum and, thus, justifies rule
cont-∀ in Fig. 2 (see Sect. 5). The dual fact 4 expresses that lim inf can be
pulled out of a supremum.

Lemma 3. Binary sums + and products × and the operations (−)µ and (−)ν

are lim sup-pushable and lim inf-pullable.

Using monotonicity of the product constructor, the lemma entails that A(α) ×
B(α) is upper/lower semi-continuous if A(α) and B(α) are. This applies also for
+ .

A generalization of Lemma 1 is:

Lemma 4 (lim sup through function space).
lim supα→λ (A(α) → B(α)) � (lim infλA) → lim supλ B.

Now, to (co)inductive types. Let φ ∈ O → O.

Lemma 5. µlim infλ φ = lim infα→λ µφ(α) and lim supα→λ νφ(α) = ν lim infλ φ.
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Lemma 6. For α ∈ O, let Fα ∈ L
+→ L be lim inf-pullable and Gα ∈ L

+→ L
be lim sup-pushable. Then for all β ∈ O, µβ(lim infλ F) � lim infα→λ µβFα and
lim supα→λ νβGα � νβ(lim supλ G).

Proof. By transfinite induction on β.

Corollary 2 (Limits and (co)inductive types).

1. µlim infλ φ lim infλ F � lim infα→λ µφ(α)Fα,
2. lim supα→λ νφ(α)Gα � ν lim infλ φ lim supλ G.

Proof. For instance, the second inclusion can be derived in three steps using
Lemma 2.1, Lemma 5, and Lemma 6.

Now, since Gα(X ) = (Natα × X )ν is lim sup-pushable, we have can infer up-
per semi-continuity of Streamα(Natα) = ναGα. Analogously, we establish lower
semi-continuity of Listα(Natα).

4.2 Negative Results

Function space and lower semi-continuity. One may wonder whether Lemma 1
can be dualized, i. e., does upper semi-continuity of A and lower semi-continuity
of B entail lower semi-continuity of C(α) = A(α) → B(α)? The answer is no,
e. g., consider C(α) = Natω → Natα. Although A(α) = Natω is trivially up-
per semi-continuous, and B(α) = Natα is lower semi-continuous, C is not lower
semi-continuous: For instance, the identity function is in C(ω) but in no C(α)
for α < ω, hence, also not in lim infω C. And indeed, if this C was lower semi-
continuous, then our criterion would be unsound, because then by Lemma 1 the
type (Natω → Natα) → Natω, which admits a looping function (see introduc-
tion), would be upper semi-continuous.

Inductive types and upper semi-continuity. Pareto [16] proves that inductive
types are (in our terminology) lim sup-pushable. His inductive types denote
only finitely branching trees, but we also consider infinite branching, arising
from function space embedded in inductive types. In my thesis [4, Sect. 5.4.3] I
show that infinitely branching inductive data types do not inherit upper semi-
continuity from their defining body. But remember that inductive types can still
be upper semi-continuous if they are covariant in their size index.

5 A Kinding System for Semi-continuity

We turn the results of the last section into a calculus and define a judgement
∆;Π �ıq F : κ, where ı is an ordinal variable (ı :pord) ∈ ∆, the bit q ∈ {",⊕}
states whether the constructor F under consideration is lower (") or upper (⊕)
semi-continuous, and Π is a context of strictly positive constructor variables
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X :+κ′. The complete listing of rules can be found in Figure 2; in the following,
we discuss a few.

cont-co
∆, ı :+ord � F : κ p ∈ {+, ◦}

∆, ı :pord;Π �ı⊕ F : κ

If ı appears positively in F , then F is trivially upper semi-continuous. In the con-
clusion we may choose to set p = ◦, meaning that we forget that F is monotone
in ı.

cont-arr
−∆; $ �ı� A : ∗ ∆;Π �ı⊕ B : ∗

∆;Π �ı⊕ A → B : ∗
This rule incarnates Lemma 1. Note that, because A is to the left of the arrow,
the polarity of all ordinary variables in A is reversed, and A may not contain
strictly positive variables.

cont-nu
∆;Π, X :+κ∗ �ı⊕ F : κ∗

∆;Π �ı⊕ νaλX :κ∗.F : κ∗

Rule cont-nu states that strictly positive coinductive types are upper semi-
continuous. The ordinal a must be∞ or snj for some j :ord ∈ ∆ (which may also
be identical to ı).

Theorem 2 (Soundness of Continuity Derivations). Let θ a valuation of
the variables in ∆ and Π, (X :+κ′) ∈ Π, G ∈ [[ord]] → [[κ′]], and λ ∈ [[ord]] a limit
ordinal.

1. If ∆;Π �ı� F : κ then
(a) [[F ]]θ[ı�→λ] � lim infα→λ[[F ]]θ[ı�→α], and
(b) [[F ]]θ[X �→lim infλ G] � lim infα→λ[[F ]]θ[X �→G(α)].

2. If ∆;Π �ı⊕ F : κ then
(a) lim supα→λ[[F ]]θ[ı�→α] � [[F ]]θ[ı�→λ], and
(b) lim supα→λ[[F ]]θ[X �→G(α)] � [[F ]]θ[X �→lim supλ G]

Proof. By induction on the derivation [4, Sect. 5.5]. The soundness of cont-nu
hinges on the fact that strictly positive coinductive types close at ordinal ω.

Now we are able to formulate the syntactical admissibility criterion for types of
(co)recursive functions.

Γ � (λı. ∀X :κ.B1 → · · ·→ Bn → µıFH → C) fixµn-adm
iff Γ, ı :◦ord, X :κ; $ �ı⊕ B1..n → µıFH → C : ∗

Γ � (λı. ∀X :κ.B1 → · · ·→ Bn → νıFH) fixνn-adm
iff Γ, ı :◦ord, X :κ; $ �ı⊕ B1..n → νıFH : ∗

It is easy to check that admissible types fulfill the semantic criteria given at the
end of Section 3.
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Example 2 (Inductive type inside coinductive type). Rule cont-nu allows the
type system to accept the following definition, which assigns an informative
type to the stream nats of all natural numbers in ascending order:

mapStream : ∀A∀B. (A → B) → ∀ı. StreamıA → StreamıB

nats : ∀ı. Streamı Natı

nats := fixν0λnats . 〈zero, mapStream succ nats〉

Example 3 (Inductive type inside inductive type). In the following, we describe
breadth-first traversal of rose (finitely branching) trees whose termination is
recognized by Fω̂.

Rose : ord
+→ ∗ +→ ∗

Rose := λıλA.GRoseı List∞A = λıλA. µı∗λX.A× List∞X

The step function, defined by induction on j, traverses a list of rose trees of
height < ı+ 1 and produces a list of the roots and a list of the branches (height
< ı).

step : ∀j∀A∀ı. Listj(Roseı+1 A) → ListjA× List∞(RoseıA)

step := fixµ0λstepλl.match l with
nil �→ 〈nil, nil〉
cons 〈a, rs ′〉 rs �→ match step rs with

〈as , rs ′′〉 �→ 〈cons a as , append rs ′ rs ′′〉
Now, bf iterates step on a non-empty forest. It is defined by induction on ı.

bf : ∀ı∀A.RoseıA → List∞(RoseıA) → List∞A
bf := fixµ0λbf λrλrs . match step (cons r rs) with

〈as , nil〉 �→ as
〈as , cons r′ rs ′〉 �→ append as (bf r′ rs ′)

Function bf terminates because the recursive-call trees in forest cons r′ rs are
smaller than the input trees in forest cons r rs . This information is available
to the type system through the type of step. The type of bf is admissible for
recursion since List∞ (RoseıA) is lower semi-continuous in ı—thanks to Cor. 2
and rule cont-mu.

6 Conclusions

We have motivated the importance of semi-continuity for the soundness of type-
based termination checking, explored the realm of semi-continuous functions
from ordinals to semantical types, and developed a calculus for semi-continuous
types. We have seen a few interesting examples involving semi-continuous types,
many more can be found in the author’s thesis [4, Ch. 6]. These examples cannot
be handled by type-based termination à la Barthe et al. [7,8], but our develop-
ments could be directly incorporated into their calculus.
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In previous work [1], I have already presented a calculus for admissible recur-
sion types. But the language had neither polymorphism, higher-kinded types,
nor semi-continuous types inside each other (Streamı Natı). Hughes, Pareto, and
Sabry [14] have also given criteria for admissible types similar to ours, but rather
ad-hoc ones, not based on the mathematical concept of semi-continuity. Also, a
crucial difference is that we also treat infinitely branching data structures. To
be fair, I should say that their work has been a major source of inspiration for
me.

As a further direction of research, I propose to develop a kinding system
where semi-continuity is first class, i. e., one can abstract over semi-continuous
constructors, and kind arrows can carry the corresponding polarities " or ⊕.
First attempts suggest that such a calculus is not straightforward, and more
fine-grained polarity system will be necessary.

Acknowledgments. I would like to thank my supervisor, Martin Hofmann, for
discussions on Fω̂. Thanks to John Hughes for lending his ear in difficult phases
of this work, for instance, when I was trying to prove upper semi-continuity of
inductive types but then found a counterexample. Thanks to the anonymous
referees of previous versions of this paper who gave insightful and helpful com-
ments.
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Abstract. We investigate the possibility of (bi)simulation-like pre-
order/equivalence checking on the class of visibly pushdown automata
and its natural subclasses visibly BPA (Basic Process Algebra) and
visibly one-counter automata. We describe generic methods for prov-
ing complexity upper and lower bounds for a number of studied pre-
orders and equivalences like simulation, completed simulation, ready
simulation, 2-nested simulation preorders/equivalences and bisimulation
equivalence. Our main results are that all the mentioned equivalences
and preorders are EXPTIME-complete on visibly pushdown automata,
PSPACE-complete on visibly one-counter automata and P-complete on
visibly BPA. Our PSPACE lower bound for visibly one-counter automata
improves also the previously known DP-hardness results for ordinary
one-counter automata and one-counter nets. Finally, we study regularity
checking problems for visibly pushdown automata and show that they
can be decided in polynomial time.

1 Introduction

Visibly pushdown languages were introduced by Alur and Madhusudan in [4]
as a subclass of context-free languages suitable for formal program analysis, yet
tractable and with nice closure properties like the class of regular languages.
Visibly pushdown languages are accepted by visibly pushdown automata whose
stack behaviour is determined by the input symbol. If the symbol belongs to the
category of call actions then the automaton must push, if it belongs to return
actions then the automaton must pop, otherwise (for the internal actions) it
cannot change the stack height. In [4] it is shown that the class of visibly push-
down languages is closed under intersection, union, complementation, renaming,
concatenation and Kleene star. A number of decision problems like universality,
language equivalence and language inclusion, which are undecidable for context-
free languages, become EXPTIME-complete for visibly pushdown languages.

Recently, visibly pushdown languages have been intensively studied and ap-
plied to e.g. program analysis [2], XML processing [20] and the language theory
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of this class has been further investigated in [3,6]. Some recent results show for
example the application of a variant of vPDA for proving decidability of contex-
tual equivalence (and other problems) for the third-order fragment of Idealized
Algol [18].

In this paper we study visibly pushdown automata from a different perspec-
tive. Rather than as language acceptors, we consider visibly pushdown automata
as devices that generate infinite-state labelled graphs and we study the questions
of decidability of behavioral equivalences and preorders on this class. Our results
confirm the tractability of a number of verification problems for visibly pushdown
automata.

We prove EXPTIME-completeness of equivalence checking on visibly push-
down automata (vPDA) for practically all preorders and equivalences between
simulation preorder and bisimulation equivalence that have been studied in the
literature (our focus includes simulation, completed simulation, ready simula-
tion, 2-nested simulation and bisimulation). We then study two natural (and
incomparable) subclasses of visibly pushdown automata: visibly basic process
algebra (vBPA) and visibly one-counter automata (v1CA). In case of v1CA we
demonstrate PSPACE-completeness of the preorder/equivalence checking prob-
lems and in case of vBPA even P-completeness. For vBPA we provide also a
direct reduction of the studied problems to equivalence checking on finite-state
systems, hence the fast algorithms already developed for systems with finitely
many reachable states can be directly used. All the mentioned upper bounds are
matched by the corresponding lower bounds. The PSPACE-hardness proof for
v1CA moreover improves the currently known DP lower bounds [13] for equiv-
alence checking problems on ordinary one-counter automata and one-counter
nets and some other problems (see Remark 2). Finally, we consider regularity
checking for visibly pushdown automata and show P-completeness for vPDA
and vBPA, and NL-completeness for v1CA w.r.t. all equivalences between trace
equivalence and isomorphism of labelled transition systems.

Related work. The main reason why many problems for visibly pushdown lan-
guages become tractable is, as observed in [4], that a pair of visibly pushdown
automata can be synchronized in a similar fashion as finite automata. We use
this idea to construct, for a given pair of vPDA processes, a single pushdown
automaton where we in a particular way encode the behaviour of both input
processes so that they can alternate in performing their moves. This is done in
such a way that the question of equality of the input processes w.r.t. a given
preorder/equivalence can be tested by asking about the validity of particular
(and fixed) modal µ-calculus formulae on the single pushdown process. A simi-
lar result of reducing weak simulation between a pushdown process and a finite-
state process (and vice versa) to the model checking problem appeared in [17].
We generalize these ideas to cover preorders/equivalences between two visibly
pushdown processes and provide a generic proof for all the equivalence checking
problems. The technical details of our construction are different from [17] and in
particular our construction works immediately also for vBPA (as the necessary
bookkeeping is stored in the stack alphabet). As a result we thus show how to
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handle essentially any so far studied equivalence/preorder between simulation
and bisimulation in a uniform way for vPDA, vBPA as well as for v1CA.

In [6] the authors study language regularity problems for visibly pushdown
automata. Their line of research is orthogonal to ours because they define a
visibly pushdown automaton as regular if it is language equivalent to some visibly
one-counter automaton. We study the regularity problems in the context of
the standard definitions from the concurrency theory, i.e., whether for a given
vPDA process there is a behaviorally equivalent finite-state system. Though, as
remarked in more detail in the conclusion, questions of finding an equivalent
v1CA and in particular vBPA for a given vPDA could be also interesting to
investigate.

Note: full version of this paper will appear as BRICS technical report.

2 Definitions

A labelled transition system (LTS) is a triple (S,Act,−→) where S is the set of
states (or processes), Act is the set of labels (or actions), and −→⊆ S ×Act× S

is the transition relation; for each a ∈ Act, we view a−→ as a binary relation on
S where s

a−→ s′ iff (s, a, s′) ∈−→. The notation can be naturally extended to
s

w−→ s′ for finite sequences of actions w ∈ Act∗. For a process s ∈ S we define
the set of its initial actions by I(s) def= {a ∈ Act | ∃s′ ∈ S. s

a−→ s′}.
We shall now define the studied equivalences/preorders which are between

simulation and bisimilarity. Given an LTS (S,Act,−→), a binary relation R ⊆
S × S is a

– simulation iff for each (s, t) ∈ R, a ∈ Act, and s′ such that s
a−→ s′ there is

t′ such that t
a−→ t′ and (s′, t′) ∈ R,

– completed simulation iff R is a simulation and moreover for each (s, t) ∈ R
it holds that I(s) = ∅ if and only if I(t) = ∅,

– ready simulation iff R is a simulation and moreover for each (s, t) ∈ R it
holds that I(s) = I(t),

– 2-nested simulation iff R is a simulation and moreover R−1 ⊆ R, and
– bisimulation iff R is a simulation and moreover R−1 = R.

We write s �s t if there is a simulation R such that (s, t) ∈ R, s �cs t if
there is a completed simulation R such that (s, t) ∈ R, s �rs t if there is a ready
simulation R such that (s, t) ∈ R, s �2s t if there is a 2-nested simulation R
such that (s, t) ∈ R, s ∼ t if there is a bisimulation R such that (s, t) ∈ R. The
relations are called the corresponding preorders (except for bisimilarity, which is
already an equivalence). For a preorder � ∈ {�s, �cs,�rs, �2s} we define the
corresponding equivalence by s = t iff s � t and t � s. We remind the reader of
the fact that ∼ ⊆ �2s ⊆ �rs ⊆ �cs ⊆ �s and ∼ ⊆ =2s ⊆ =rs ⊆ =cs ⊆ =s and
all inclusions are strict.

We shall use a standard game-theoretic characterization of (bi)similarity. A
bisimulation game on a pair of processes (s1, t1) is a two-player game between
Attacker and Defender. The game is played in rounds on pairs of states from
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S×S. In each round the players change the current pair of states (s, t) (initially
s = s1 and t = t1) according to the following rule:

1. Attacker chooses either s or t, a ∈ Act and performs a move s
a−→ s′

or t
a−→ t′.

2. Defender responds by choosing the opposite process (either t or s)
and performs a move t

a−→ t′ or s
a−→ s′ under the same action a.

3. The pair (s′, t′) becomes the (new) current pair of states.

A play (of the bisimulation game) is a sequence of pairs of processes formed by
the players according to the rules mentioned above. A play is finite iff one of the
players gets stuck (cannot make a move); the player who got stuck lost the play
and the other player is the winner. If the play is infinite then Defender is the
winner.

We use the following standard fact.

Proposition 1. It holds that s ∼ t iff Defender has a winning strategy in the
bisimulation game starting with the pair (s, t), and s �∼ t iff Attacker has a
winning strategy in the corresponding game.

The rules of the bisimulation game can be easily modified in order to capture
the other equivalences/preorders.

In the simulation preorder game, Attacker is restricted to attack only from
the (left-hand side) process s. In the simulation equivalence game, Attacker can
first choose a side (either s or t) but after that he is not allowed to change
the side any more. Completed/ready simulation game has the same rules as the
simulation game but Defender is moreover losing in any configuration which
brakes the extra condition imposed by the definition (i.e. s and t should have
the same set of initial actions in case of ready simulation, and their sets of initial
actions should be both empty at the same time in case of completed simulation).
Finally, in the 2-nested simulation preorder game, Attacker starts playing from
the left-hand side process s and at most once during the play he is allowed to
switch sides (the soundness follows from the characterization provided in [1]). In
the 2-nested simulation equivalence game, Attacker can initially choose any side
but he is still restricted that he can change sides at most once during the play.

We shall now define the model of pushdown automata. Let Act be a finite
set of actions, let Γ be a finite set of stack symbols and let Q be a finite set of
control states. We assume that the sets Act, Γ and Q are pairwise disjoint. A
pushdown automaton (PDA) over the set of actions Act, stack alphabet Γ and
control states Q is a finite set ∆ of rules of the form pX

a−→ qα where p, q ∈ Q,
a ∈ Act, X ∈ Γ and α ∈ Γ ∗.

A PDA ∆ determines a labelled transition system T (∆) = (S,Act,−→) where
the states are configurations of the form state×stack (i.e. S = Q × Γ ∗ and
configurations like (p, α) are usually written as pα where the top of the stack
α is by agreement on the left) and the transition relation is determined by the
following prefix rewriting rule.
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(pX a−→ qα) ∈ ∆, γ ∈ Γ ∗

pXγ
a−→ qαγ

A pushdown automaton is called BPA for Basic Process Algebra if the set
of control states is a singleton set (|Q| = 1). In this case we usually omit the
control state from the rules and configurations.

A pushdown automaton is called 1CA for one-counter automaton if the stack
alphabet consists of two symbols only, Γ = {I, Z}, and every rule is of the form
pI

a−→ qα or pZ a−→ qαZ, where α ∈ {I}∗. This means that every configuration
reachable from pZ is of the form pInZ where In stands for a sequence of n
symbols I and Z corresponds to the bottom of the stack (the value zero). We
shall simply denote such a configuration by p(n) and say that it represents the
counter value n.

Assume that Act = Actc ∪Actr ∪Acti is partitioned into a disjoint union of
finite sets of call, return and internal actions, respectively. A visibly pushdown
automaton (vPDA) is a PDA which, for every rule pX a−→ qα, satisfies additional
three requirements (where |α| stands for the length of α):

– if a ∈ Actc then |α| = 2 (call),
– if a ∈ Actr then |α| = 0 (return), and
– if a ∈ Acti then |α| = 1 (internal).

Hence in vPDA the type of the input action determines the change in the height
of the stack (call by +1, return by −1, internal by 0).

The classes of visibly basic process algebra (vBPA) and visibly one-counter
automata (v1CA) are defined analogously.

Remark 1. For internal actions we allow to modify also the top of the stack.
This model (for vPDA) can be easily seen to be equivalent to the standard
one (as introduced in [4]) where the top of the stack does not change under
internal actions. However, when we consider the subclass vBPA, the possibility
of changing the top of the stack under internal actions significantly increases the
descriptive power of the formalism. Unlike in [4], we do not allow to perform
return actions on the empty stack.

The question we are interested in is: given a vPDA (or vBPA, or v1CA) and two
of its initial configurations pX and qY , can we algorithmically decide whether
pX and qY are equal with respect to a given preorder/equivalence and if yes,
what is the complexity?

3 Decidability of Preorder/Equivalence Checking

3.1 Visibly Pushdown Automata

We shall now study preorder/equivalence checking problems on the class of vis-
ibly pushdown automata. We prove the decidability by reducing the problems
to model checking of an ordinary pushdown system against a fixed µ-calculus
formula.
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Let ∆ be a vPDA over the set of actions Act = Actc ∪ Actr ∪ Acti, stack
alphabet Γ and control states Q. We shall construct a PDA ∆′ over the actions
Act′

def= Act∪Act∪{�, r} whereAct
def= {a | a ∈ Act}, stack alphabet Γ ′ def= G×G

where G
def= Γ ∪ (Γ × Γ )∪ (Γ ×Act) ∪ {ε}, and control states Q′

def= Q×Q. For
notational convenience, elements (X, a) ∈ Γ ×Act will be written simply as Xa.

The idea is that for a given pair of vPDA processes we shall construct a
single PDA process which simulates the behaviour of both vPDA processes by
repeatedly performing a move in one of the processes, immediately followed by
a move under the same action in the other process. The actions � and r make it
visible, whether the move is performed on the left-hand side or right-hand side.
The assumption that the given processes are vPDA ensures that their stacks are
kept synchronized.

We shall define a partial mapping [ . , . ] : Γ ∗×Γ ∗ → (Γ ×Γ )∗ inductively as
follows (X,Y ∈ Γ and α, β ∈ Γ ∗ such that |α| = |β|): [Xα,Y β] def= (X,Y )[α, β]
and [ε, ε] def= ε. The mapping provides the possibility to merge stacks.

Assume a given pair of vPDA processes pX and qY . Our aim is to effectively
construct a new PDA system ∆′ such that for every �� ∈ {�s,=s,�cs,=cs,�rs,
=rs,�2s,=2s,∼} it is the case that pX �� qY in ∆ if and only if (p, q)(X,Y ) |=
φ�� in ∆′ for a fixed µ-calculus formula φ��. We refer the reader to [16] for the
introduction to the modal µ-calculus.

The set of PDA rules ∆′ is defined as follows. Whenever (pX a−→ qα) ∈ ∆
then the following rules belong to ∆′:

1. (p, p′)(X,X ′) �−→ (q, p′)(α,X ′
a) for every p′ ∈ Q and X ′ ∈ Γ ,

2. (p′, p)(X ′, X) r−→ (p′, q)(X ′
a, α) for every p′ ∈ Q and X ′ ∈ Γ ,

3. (p′, p)(β,Xa)
r−→ (p′, q)[β, α] for every p′ ∈ Q and β ∈ Γ ∪ (Γ × Γ ) ∪ {ε},

4. (p, p′)(Xa, β) �−→ (q, p′)[α, β] for every p′ ∈ Q and β ∈ Γ ∪ (Γ × Γ ) ∪ {ε},
5. (p, p′)(X,X ′) a−→ (p, p′)(X,X ′) for every p′ ∈ Q and X ′ ∈ Γ , and
6. (p′, p)(X ′, X) a−→ (p′, p)(X ′, X) for every p′ ∈ Q and X ′ ∈ Γ .

From a configuration (p, q)[α, β] the rules of the form 1. and 2. select either the
left-hand or right-hand side and perform some transition in the selected process.
The next possible transition (by rules 3. and 4.) is only from the opposite side
of the configuration than in the previous step. Symbols of the form Xa where
X ∈ Γ and a ∈ Act are used to make sure that the transitions in these two steps
are due to pushdown rules under the same label a. Note that in the rules 3. and
4. it is thus guaranteed that |α| = |β|. Finally, the rules 5. and 6. introduce a
number of self-loops in order to make visible the initial actions of the processes.

Lemma 1. Let ∆ be a vPDA system over the set of actions Act and pX, qY
two of its processes. Let (p, q)(X,Y ) be a process in the system ∆′ constructed
above. Let

– φ�s ≡ νZ.[�]〈r〉Z,
– φ=s ≡ φ�s ∧ (νZ.[r]〈�〉Z),
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– φ�cs ≡ νZ.
(
[�]〈r〉Z ∧ (〈Act〉tt⇔ 〈Act〉tt)

)
,

– φ=cs ≡ φ�cs ∧ νZ.
(
[r]〈�〉Z ∧ (〈Act〉tt⇔ 〈Act〉tt)

)
,

– φ�rs ≡ νZ.
(
[�]〈r〉Z ∧

∧
a∈Act

(〈a〉tt⇔ 〈a〉tt)
)
,

– φ=rs ≡ φ�rs ∧ νZ.
(
[r]〈�〉Z ∧

∧
a∈Act

(〈a〉tt⇔ 〈a〉tt)
)
,

– φ�2s ≡ νZ.
(
[�]〈r〉Z ∧ (νZ ′.[r]〈�〉Z ′)

)
,

– φ=2s ≡ φ�2s ∧ νZ.
(
[r]〈�〉Z ∧ (νZ ′.[�]〈r〉Z ′)

)
, and

– φ∼ ≡ νZ.[�, r]〈�, r〉Z.

For every �� ∈ {�s,=s,�cs,=cs,�rs,=rs,�2s,=2s,∼} it holds that pX �� qY if
and only if (p, q)(X,Y ) |= φ��.

Theorem 1. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
decidable on vPDA and all these problems are EXPTIME-complete.

Proof. EXPTIME-hardness (for all relations between simulation preorder and
bisimulation equivalence) follows from [17] as the pushdown automaton con-
structed in the proof is in fact a vPDA.

For the containment in EXPTIME observe that all our equivalence check-
ing problems are reduced in polynomial time to model checking of a pushdown
automaton against a fixed size formula of modal µ-calculus. The complexity of
the model checking problem for a pushdown automaton with m states and k
stack symbols and a formula of the size n1 and of the alternation depth n2 is
O((k2cmn1n2)n2)) for some constant c [25]. In our case for a given vPDA system
with m states and k stack symbols we construct a PDA system with m2 states
and with O(k3 · |Act|) stack symbols (used in the transition rules). Hence the
overall time complexity of checking whether two vPDA processes pX and qY
are equivalent is (k3 · |Act|)2O(m2). '(

3.2 Visibly Basic Process Algebra

We shall now focus on the complexity of preorder/equivalence checking for vBPA,
a strict subclass of vPDA.

Theorem 2. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
P-complete on vBPA.

Proof. Recall that a vBPA process is a vPDA processes with a single control
state. By using the arguments from the proof of Theorem 1, the complexity of
equivalence checking on vBPA is therefore O(k3 ·|Act|) where k is the cardinality
of the stack alphabet (and where m = 1). P-hardness was proved in [21] even
for finite-state systems. '(

In fact, for vBPA we can introduce even better complexity upper bounds by
reducing it to preorder/equivalence checking on finite-state systems.
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��
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��														

														 ε

(X, Y )

1

��

2 �� Y

b

��

Fig. 1. Transformation of a vBPA into a finite-state system

Theorem 3. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence on
vBPA is reducible to checking the same preorder/equivalence on finite-state sys-
tems. For any vBPA process ∆ (with the natural requirement that every stack
symbol appears at least in one rule from ∆), the reduction is computable in time
O(|∆|) and outputs a finite-state system with O(|∆|) states and O(|∆|) transi-
tions.

Proof. Let Act = Actc ∪ Actr ∪ Acti be the set of actions and let Γ be the
stack alphabet of a given vBPA system ∆ (we shall omit writing the control
states as this is a singleton set). Let S

def= {(Y, Z) ∈ Γ × Γ | ∃(X a−→ Y Z) ∈
∆ for some X ∈ Γ and a ∈ Actc }. We construct a finite-state transition system
T = (Γ ∪{ε}∪S,Act∪{1, 2},=⇒) for fresh actions 1 and 2 as follows. For every
vBPA rule (X a−→ α) ∈ ∆, we add the transitions:

– X
a=⇒ ε if a ∈ Actr (and α = ε),

– X
a=⇒ Y if a ∈ Acti and α = Y ,

– X
a=⇒ (Y, Z) if a ∈ Actc and α = Y Z,

– (Y, Z) 1=⇒ Y if a ∈ Actc and α = Y Z, and

– (Y, Z) 2=⇒ Z if a ∈ Actc and α = Y Z such that Y −→∗ ε.

Note that the set {Y ∈ Γ | Y −→∗ ε} can be (by standard techniques)
computed in time O(|∆|). Moreover, the finite-state system T has O(|∆|) states
and O(|∆|) transitions. See Figure 1 for an example of the transformation.

Let us now observe that in vBPA systems we have the following decomposition
property. It is the case that Xα ∼ X ′α′ in ∆ (where X,X ′ ∈ Γ and α, α′ ∈ Γ ∗)
if and only if in ∆ the following two conditions hold: (i) X ∼ X ′ and (ii) if
(X −→∗ ε or X ′ −→∗ ε) then α ∼ α′. Hence for any X,Y ∈ Γ we have that
X ∼ Y in ∆ iff X ∼ Y in T . It is easy to check that the fact above holds also
for any other preorder/equivalence as stated by the theorem. '(

This means that for preorder/equivalence checking on vBPA we can use the
efficient algorithms already developed for finite-state systems. For example, for
finite-state transition systems with k states and t transitions, bisimilarity can
be decided in time O(t log k) [19]. Hence bisimilarity on a vBPA system ∆ is
decidable in time O(|∆| · log |∆|).
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3.3 Visibly One-Counter Automata

We will now continue with studying preorder/equivalence checking problems on
v1CA, a strict subclass of vPDA and an incomparable class with vBPA (w.r.t.
bisimilarity). We start by showing PSPACE-hardness of the problems. The proof
is by reduction from a PSPACE-complete problem of emptiness of one-way al-
ternating finite automata over one-letter alphabet [11].

A one-way alternating finite automaton over one-letter alphabet is a 5-tuple
A = (Q∃, Q∀, q0, δ, F ) where Q∃ and Q∀ are finite and disjoint sets of existential,
resp. universal control states, q0 ∈ Q∃ ∪Q∀ is the initial state, F ⊆ Q∃ ∪Q∀ is
the set of final states and δ : Q∃ ∪Q∀ → 2Q∃∪Q∀ is the transition function.

A computational tree for an input word of the form In (where n is a natural
number and I is the only letter in the input alphabet) is a tree where every
branch has exactly n+1 nodes labelled by control states from Q∃∪Q∀ such that
the root is labelled with q0 and every non-leaf node that is already labelled by
some q ∈ Q∃ ∪Q∀ such that δ(q) = {q1, . . . , qk} has either

– one child labelled by qi for some i, 1 ≤ i ≤ k, if q ∈ Q∃, or
– k children labelled by q1, . . . , qk, if q ∈ Q∀.

A computational tree is accepting if the labels of all its leaves are fi-
nal (i.e. belong to F ). The language of A is defined by L(A) def= {In |
In has some accepting computational tree }.

The emptiness problem for one-way alternating finite automata over one-
letter alphabet (denoted as Empty) is to decide whether L(A) = ∅ for a given
automaton A. The problem Empty is known to be PSPACE-complete due to
Holzer [11].

In what follows we shall demonstrate a polynomial time reduction from
Empty to equivalence/preorder checking on visibly one-counter automata. We
shall moreover show the reduction for any (arbitrary) relation between simu-
lation preorder and bisimulation equivalence. This in particular covers all pre-
orders/equivalences introduced in this paper.

Lemma 2. All relations between simulation preorder and bisimulation equiva-
lence are PSPACE-hard on v1CA.

Proof. Let A = (Q∃, Q∀, q0, δ, F ) be a given instance of Empty. We shall con-
struct a visibly one-counter automaton ∆ over the set of actions Actc

def= {i},
Actr

def= {dq | q ∈ Q∃ ∪ Q∀}, Acti
def= {a, e} and with control states Q

def=
{p, p′, t} ∪ {q, q′, tq | q ∈ Q∃ ∪Q∀} such that

– if L(A) = ∅ then Defender has a winning strategy from pZ and p′Z in the
bisimulation game (i.e. pZ ∼ p′Z), and

– if L(A) �= ∅ then Attacker has a winning strategy from pZ and p′Z in the
simulation preorder game (i.e. pZ ��s p′Z).

The intuition is that Attacker generates some counter value n in both of the
processes pZ and p′Z and then switches into a checking phase by changing
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the configurations to q0(n) and q′0(n). Now the players decrease the counter
and change the control states according to the function δ. Attacker selects the
successor in any existential configuration, while Defender makes the choice of
the successor in every universal configuration. Attacker wins if the players reach
a pair of configurations q(0) and q′(0) where q ∈ F .

We shall now define the set of rules ∆. The initial rules allow Attacker (by
performing repeatedly the action i) to set the counter into an arbitrary number,
i.e., Attacker generates a candidate word from L(A).

pZ
i−→ pIZ p′Z

i−→ p′IZ

pI
i−→ pII p′I

i−→ p′II

pZ
a−→ q0Z p′Z

a−→ q′0Z

pI
a−→ q0I p′I

a−→ q′0I

Observe that Attacker is at some point forced to perform the action a (an infinite
play is winning for Defender) and switch to the checking phase starting from
q0(n) and q′0(n).

Now for every existential state q ∈ Q∃ with δ(q) = {q1, . . . , qk} and for every
i ∈ {1, . . . , k} we add the following rules.

qI
dqi−→ qi q′I

dqi−→ q′i

This means that Attacker can decide on the successor qi of q and the players in
one round move from the pair q(n) and q′(n) into qi(n− 1) and q′i(n− 1).

Next for every universal state q ∈ Q∀ with δ(q) = {q1, . . . , qk} and for every
i ∈ {1, . . . , k} we add the rules

qI
a−→ tI q′I

a−→ tqiI

qI
a−→ tqiI

and for every q, r ∈ Q∃ ∪Q∀ such that q �= r we add

tI
dq−→ q tqI

dq−→ q′

tqI
dr−→ r .

These rules are more complex and they correspond to a particular imple-
mentation of so called Defender’s Choice Technique (for further examples see
e.g. [15]). We shall explain the idea by using Figure 2. Assume that q ∈ Q∀ and
δ(q) = {q1, . . . , qk}. In the first round of the bisimulation game starting from
q(n) and q′(n) where n > 0, Attacker is forced to take the move q(n) a−→ t(n).
On any other move Defender answers by immediately reaching a pair of syntacti-
cally equal processes (and thus wins the game). Defender’s answer on Attacker’s
move q(n) a−→ t(n) is to perform q′(n) a−→ tqi(n) for some i ∈ {1, . . . , k}. The
second round thus starts from the pair t(n) and tqi(n). Should Attacker choose
to play the action dr for some state r such that r �= qi (on either side), Defender
can again reach a syntactic equality and wins. Hence Attacker is forced to play
the action dqi on which Defender answers by the same action in the opposite



Visibly Pushdown Automata 99

q(n)

a

��

a

��

























a

���������������������������������������

a

����������������������������������������������������� q′(n)

a

��







a

����
��

��
��

���
��

a

��
t(n)

dqi

��

dr

��























 tq1(n) tqi(n)

dr

��








dqi

��

tqk (n)

∀r = qi

qi(n − 1) r(n − 1) q′i(n − 1)

Fig. 2. Defender’s Choice: q ∈ Q∀ and δ(q) = {q1, . . . , qk}

process and the players reach the pair qi(n− 1) and q′i(n− 1). Note that it was
Defender who selected the new control state qi.

Finally, for every q ∈ F we add the rule

qZ
e−→ qZ .

It is easy to see that ∆ is a visibly one-counter automaton. Moreover, if
L(A) = ∅ then pZ ∼ p′Z, and if L(A) �= ∅ then pZ ��s p′Z. '(

Remark 2. The reduction above works also for a strict subclass of one-counter
automata called one-counter nets (where it is not allowed to test for zero, see
e.g. [13]). It is enough to replace the final rule qZ

e−→ qZ with two new rules
q

e−→ q and q′I
e−→ q′I for every q ∈ F . Moreover, a slight modification of

the system allows to show PSPACE-hardness of simulation preorder checking
between one-counter automata and finite-state systems and vice versa. Hence
the previously know DP lower bounds [13] for all relations between simulation
preorder and bisimulation equivalence on one-counter nets (and one-counter
automata) as well as of simulation preorder/equivalence between one-counter
automata and finite-state systems, and between finite-state systems and one-
counter automata are raised to PSPACE-hardness.

We are now ready to state the precise complexity of (bi)simulation-like pre-
orders/equivalences on visibly one-counter automata.

Theorem 4. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
PSPACE-complete on v1CA.

Proof. PSPACE-hardness follows from Lemma 2. Containment in PSPACE is
due to Lemma 1 and due to [23] where it was very recently showed that model
checking modal µ-calculus on one-counter automata is decidable in PSPACE.
The only slight complication is that the system used in Lemma 1 is not nec-
essarily a one-counter automaton. All stack symbols are of the form (I, I) or
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(Z,Z) which is fine, except for the very top of the stack where more stack sym-
bols are used. Nevertheless, by standard techniques, the top of the stack can be
remembered in the control states in order to apply the result from [23]. '(

4 Decidability of Regularity Checking

In this section we ask the question whether a given vPDA process is equivalent
to some finite-state system. Should this be the case, we call the given process
regular (w.r.t. the considered equivalence). The main result of this section is
a semantical characterization of regular vPDA processes via the property of
unbounded popping and a polynomial time decision algorithm to test whether
a given process satisfies this property.

Let Act = Actc∪Actr∪Acti be the set of actions of a given vPDA. We define
a function h : Act → {−1, 0,+1} by h(a) = +1 for all a ∈ Actc, h(a) = −1 for
all a ∈ Actr, and h(a) = 0 for all a ∈ Acti. The function h can be naturally
extended to sequences of actions by h(a1 . . . an) =

∑
i∈{1,...,n} h(ai). Observe

now that for any computation pα
w−→ qβ we have |β| = |α|+ h(w).

Definition 1. Let pX be a vPDA configuration. We say that pX provides un-
bounded popping if for every natural number d there is a configuration qβ and
a word w ∈ Act∗ such that h(w) ≤ −d and pX −→∗ qβ w−→ .

Lemma 3. Let pX be a vPDA configuration which provides unbounded popping.
Then pX is not regular w.r.t. trace equivalence.

Proof (Sketch). By contradiction. Let pX be trace equivalent to some finite-state
system A with n states. Let us consider a trace w1w2 such that pX

w1−→ qβ
w2−→

for some qβ and h(w2) ≤ −n. Such a trace must exist because pX provides
unbounded popping. The trace w1w2 must be executable also in A. However,
because A has n states, during the computation on w2, it must necessarily enter
twice the same state such that it forms a loop on some substring w′ of w2. We can
moreover assume that h(w′) < 0. This means that by taking the loop sufficiently
many times A can achieve a trace w with h(w) < 1. However, this trace is not
possible from pX (any word w such that pX w−→ satisfies that h(w) ≥ −1). This
is a contradiction. '(

Lemma 4. Let pX be a vPDA configuration which does not provide unbounded
popping. Then pX is regular w.r.t. isomorphism of labelled transition systems.

Proof. Assume that pX does not provide unbounded popping. In other words,
there is a constant dmax such that for every process qβ reachable from pX it is
the case that for any computation starting from qβ, the stack height |β| cannot
be decreased by more than dmax symbols. This means that in any reachable
configuration it is necessary to remember only dmax top-most stack symbols and
hence the system can be up to isomorphism described as a finite-state system
(in general of exponential size). '(
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Theorem 5. Let pX be a vPDA configuration. Then, for any equivalence rela-
tion between trace equivalence and isomorphism of labelled transition systems,
pX provides unbounded popping if and only if pX is not regular.

Proof. Directly from Lemma 3 and Lemma 4. '(

Theorem 6. Regularity checking of vPDA w.r.t. any equivalence between trace
equivalence and isomorphism of labelled transition systems (in particular also
w.r.t. any equivalence considered in this paper) is decidable in deterministic poly-
nomial time. The problems are P-complete for vPDA and vBPA and NL-complete
for v1CA.

Proof (Sketch). We can check for every q ∈ Q and Y ∈ Γ whether the regular
set post∗(qY ) ∩ pre∗({rε | r ∈ Q}) is infinite. If yes, this means that qY has
infinitely many different successors (with higher and higher stacks) such that all
of them can be completely emptied. To see whether a given vPDA process pX
provides unbounded popping, it is now enough to test whether pX ∈ pre∗(qY Γ ∗)
for some qY satisfying the condition above. The test can be done in polynomial
time because the sets pre∗ and post∗ are regular and computable in polynomial
time as showed e.g. in [7]. The proofs of P-completeness and NL-completeness
are in the full version of the paper. '(

5 Conclusion

In the following table we provide a comparison of bisimulation, simulation and
regularity (w.r.t. bisimilarity) checking on PDA, 1CA, BPA and their subclasses
vPDA, v1CA, vBPA. Results achieved in this paper are in bold.

∼ �s and =s ∼-regularity

PDA
decidable [22]

EXPTIME-hard [17]
undecidable [10]

?
EXPTIME-hard [17,24]

vPDA
in EXPTIME

EXPTIME-hard [17]
in EXPTIME

EXPTIME-hard [17]
P-compl.

1CA
decidable [12]

PSPACE-hard
undecidable [14]

decidable [12]
P-hard [5,24]

v1CA PSPACE-compl. PSPACE-compl. NL-compl.

BPA
in 2-EXPTIME [8]
PSPACE-hard [24]

undecidable [10]
in 2-EXPTIME [9,8]
PSPACE-hard [24]

vBPA
in P

P-hard [5]
in P

P-hard [21]
P-compl.

In fact, our results about EXPTIME-completeness for vPDA, PSPACE-
completeness for v1CA and P-completeness for vBPA hold for all preorders and
equivalences between simulation preorder and bisimulation equivalence studied
in the literature (like completed simulation, ready simulation and 2-nested simu-
lation). The results confirm a general trend seen in the classical language theory
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of pushdown automata: a relatively minor restriction (from the practical point
of view) of being able to distinguish call, return and internal actions often sig-
nificantly improves the complexity of the studied problems and sometimes even
changes undecidable problems into decidable ones, moreover with reasonable
complexity upper bounds.

All the upper bounds proved in this paper are matched by the correspond-
ing lower bounds. Here the most interesting result is PSPACE-hardness of pre-
order/equivalence checking on v1CA for all relations between simulation preorder
and bisimulation equivalence. As noted in Remark 2, this proof improves also a
number of other complexity lower bounds for problems on standard one-counter
nets and one-counter automata, which were previously known to be only DP-
hard (DP-hardness is, most likely, a slightly stronger result than NP and co-NP
hardness).

Finally, we have proved that for all the studied equivalences, the regular-
ity problem is decidable in polynomial time. Checking whether an infinite-state
process is equivalent to some regular one is a relevant question because many
problems about such a process can be answered by verifying the equivalent finite-
state system and for finite-state systems many efficient algorithms have been
developed. A rather interesting observation is that preorder/equivalence check-
ing on vBPA for preorders/equivalences between simulation and bisimilarity can
be polynomially translated to verification problems on finite-state systems. On
the other hand, the class of vBPA processes is significantly larger than the class
of finite-state processes and hence the questions, whether for a given vPDA (or
v1CA) process there is some equivalent vBPA process, are of a particular interest.
We shall investigate these questions in the future research, as well as a general-
ization of the unbounded popping property for visibly pushdown automata that
enable to perform return actions also on the empty stack.

Acknowledgments. I would like to thank Markus Lohrey for a discussion at
ETAPS’06 and for a reference to PSPACE-completeness of the emptiness prob-
lem for alternating automata over one-letter alphabet. My thanks go also to the
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proof of regularity checking for vPDA and vBPA.
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Abstract. Model checking properties are often described by means of
finite automata. Any particular such automaton divides the set of infinite
trees into finitely many classes, according to which state has an infinite
run. Building the full type hierarchy upon this interpretation of the base
type gives a finite semantics for simply-typed lambda-trees.

A calculus based on this semantics is proven sound and complete.
In particular, for regular infinite lambda-trees it is decidable whether a
given automaton has a run or not. As regular lambda-trees are precisely
recursion schemes, this decidability result holds for arbitrary recursion
schemes of arbitrary level, without any syntactical restriction. This par-
tially solves an open problem of Knapik, Niwinski and Urzyczyn.

1 Introduction and Related Work

The lambda calculus has long been used as a model of computation. Restricting
it to simple types allows for a particularly simple set-theoretic semantics. The
drawback, however, is that only few functions can be defined in the simply-typed
lambda calculus. To overcome this problem one can, for example, add fixed-point
combinators Yσ at every type, or allow infinitary lambda terms. The latter is
more flexible, as we can always syntactically unfold fixed points, paying the price
to obtain an infinite, but regular, lambda-tree.

Finite automata are a standard tool in the realm of model checking [10]. They
provide a concrete machine model for the properties to be verified. In this ar-
ticle we combine automata, and hence properties relevant for model checking,
with the infinitary simply-typed lambda calculus, using the fact that the stan-
dard set theoretic semantics for the simple types has a free parameter — the
interpretation of the base type.

More precisely, we consider the following problem.

Given a, possibly infinite, simply-typed lambda-tree t of base type, and
given a non-deterministic tree automaton A. Does A have a run on the
normal form of t?

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 104–118, 2006.
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The idea is to provide a “proof” of a run of A on the normal form of t by
annotating each subterm of t with a semantical value describing how this subterm
“looks, as seen by A”. Since, in the end, all the annotations turn out to be out
of a fixed finite set, the existence of such a proof is decidable.

So, what does a lambda-tree look like, if seen by an automaton A? At the
base type, a lambda-tree denotes an infinite term. Hence, from A’s point of
view, we have to distinguish for which states there is an infinite run starting in
this particular state.

Since we are interested in model checking terms of base type only, we can
use any semantics for higher types, as long as it is adequate, that is, sound and
complete. So we use the most simple one available, that is, the full set-theoretic
semantics with the base type interpreted as just discussed. This yields a finite
set as semantical realm for every type.

As an application of the techniques developed in this article, we show that
for arbitrary recursion schemes it is decidable whether the defined tree has a
property expressible by an automaton with trivial acceptance condition. This
gives a partial answer to an open problem by Knapik, Niwinski and Urzyczyn [5].

Infinitary lambda-trees were also considered by Knapik, Niwinski and Urzy-
czyn [4], who also proved the decidability of the Monadic Second Order (MSO)
theory of trees given by recursion schemes enjoying a certain “safety” condi-
tion [5]. The fact, that the safety restriction can be dropped at level two has
been shown by Aehlig, de Miranda and Ong [2], and, independently, by Knapik,
Niwinski, Urzyczyn and Walukiewicz [6]. The work of the former group also uses
implicitly the idea of a “proof” that a particular automaton has a run on the
normal form of a given infinite lambda-tree.

Recently [9] Luke Ong showed simultaneously and independently that the
safety restriction can be dropped for all levels and still decidability for the full
MSO theory is obtained. His approach is based on game semantics and is techni-
cally quite involved. Therefore, the author believes that his approach, due to its
simplicity and straight forwardness, is still of interest, despite showing a weaker
result. Moreover, the novel construction of a finite semantics and its adequacy
even in a coinductive setting seem to be of independent interest.

2 Preliminaries

Let Σ′ be a set of letters or terminals. We use f to denote elements of Σ′. Each
terminal f is associated an arity �(f) ∈ N.

Definition 1. Define Σ = Σ′ ∪ {R, β} with R, β two new terminals of arity
one.

Definition 2. For ∆ a set of terminals, a ∆-term is a, not necessarily well-
founded, tree labelled with elements of ∆ where every node labelled with f has
�(f) many children.

Example 3. Let Σ′ = {f, g, a} with f, g and a of arities 2, 1, and 0, respectively.
Figure 1 shows two Σ′-terms.
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Let A be a fixed nondeterministic tree automaton with state set Q and transition
function δ : Q × Σ → P((Q ∪ {∗})N) where N = max{�(g) | g ∈ Σ} is the
maximal arity and δ(q, g) ⊂ Q�(g) × {∗}N−�(g) whenever q ∈ Q and g ∈ Σ.

In other words, let A be a nondeterministic tree automaton that works on
Σ-terms.

Definition 4. We say that A has a run up to level n, if it has a run that goes
at least till all nodes with distance at most n from the root.

f
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a f

��
g f
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��
g

g
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...
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g

g

a

f
��
g

g

g

g

a

f
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g

g

g

g

g

g

g

g

a

...

Fig. 1. Two {f, g, a}-terms

We write A, q |=n t to denote that A has a
run on t up to level n starting in state q. We
write A, q |=∞ t to denote that A has an infi-
nite run on t starting in state q. Since there
are only finitely many ways to extend a run
of length n to one of length n + 1, by König’s
Lemma we obtain that A, q |=∞ t if and only
if ∀n.A, q |=n t.

Example 5. Continuing Example 3 consider
the property

“Every maximal chain of letters g has
even length”.

It can be expressed by an automaton with two
states Q = {q2, q1} where q2 means that an
even number of gs has been passed on the path
so far, where q1 means that the maximal chain
of gs passed has odd length. Then the initial
state is q2 and the transition function is as
follows.

δ(f, q2) = {(q2, q2)} δ(f, q1) = ∅
δ(g, q2) = {(q1, ∗)} δ(g, q1) = {(q2, ∗)}
δ(a, q2) = {(∗, ∗)} δ(a, q1) = ∅

This automaton can be extended to work on Σ-trees by setting δ(q,R) =
δ(q, β) = {(q, ∗)}. Note that this automaton has an infinite run on the second
tree in Figure 1, whereas it has a run only up to level 3 on the first one.

Definition 6. The simple types, denoted by ρ, σ, τ , are built from the base
type ι by arrows ρ → σ. The arrow associates to the right. In particular, −→ρ → ι
is short for ρ1 → (ρ2 → (. . . (ρn → ι) . . .)).

Definition 7. Infinitary simply-typed lambda-trees over typed terminals Σ′ are
coinductively given by the grammar
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r, s ::= xρ | (λxρtσ)ρ→σ | (tρ→σsρ)σ | fι→...→ι→ι .
In other words, they are, not-necessarily well founded, trees built, in a locally
type respecting way, from unary λxρ-nodes, binary @-nodes representing ap-
plication, and leaf nodes consisting of typed variables xρ of type ρ and typed
constants f ∈ Σ′ of type ι → . . . → ι︸ ︷︷ ︸

�(f)

→ ι.

Here λxρ binds free occurrences of the variable xρ in its body. Trees with all
variables bound are called closed.

A lambda-tree with only finitely many non-isomorphic subtrees is called
regular.

We omit type superscripts if they are clear from the context, or irrelevant.
We usually leave out the words “simply typed”, tacitly assuming all our

lambda-trees to be simply typed and to use terminals from Σ′ only. Figure 2
shows two regular lambda-trees. Arrows are used to show where the pattern re-
peats, or to draw isomorphic subtrees only once. Note that they denote terms
(shown in Figure 1) that are not regular. Here, by “denote” we mean the term
reading of the normal form.
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Fig. 2. Two regular lambda-trees with denotation being the {f, g, a}-terms in Figure 1

Remark 8. It should be noted that in lambda-trees, as opposed to Σ′-terms, all
constants and variables, no matter what their type is, occur at leaf positions.

The reason is, that in a lambda-calculus setting the main concept is that of
an application. This is different from first order terms, where the constructors
are the main concept.
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Note that we use lambda-trees to denote Σ′-terms. As these are different
concepts, even normal lambda-trees differ from their denotation. For example

the lambda-tree
@

��
@

��
a

g a

denotes the Σ′-term
g

��
a a

.

3 Recursion Schemes as Means to Define Regular
Lambda Trees

The interest in infinitary lambda-trees in the verification community recently
arose by the study of recursion schemes. It could be shown [4,5] that under a
certain “safety” condition the (infinite) terms generated by recursion schemes
have decidable monadic second order theory. For our purpose it is enough to
consider recursion schemes as a convenient means to define regular lambda-trees.

Definition 9. Recursion schemes are given by a set of first order terminal sym-
bols, simply-typed non-terminal symbols and for every non-terminal F an equa-
tion

F−→x = e

where e is an expression of ground type built up from terminals, non-terminals
and the variables −→x by type-respecting application. There is a distinguished
non-terminal symbol S of ground type, called the start symbol.

Definition 10. Each recursion scheme denotes, in the obvious way, a partial, in
general infinite, term built from the terminals. Starting from the start symbol,
recursively replace the outer-most non-terminals by their definitions with the
arguments substituted in appropriately.

Definition 11. To every recursion scheme is associated a regular lambda-tree
in the following way. First replace all equations F−→x = e by

F = λ−→x .e

where the right hand side is read as a lambda term.
Then, starting from the start symbol, recursively replace all non-terminals by

their definition without performing any computations.

Remark 12. Immediately from the definition we note that the β-normal form of
the lambda-tree associated with a recursion scheme, when read a term, is the
term denoted by that recursion scheme.

Example 13. Figure 3 shows two recursion schemes with non-terminals F : ι → ι,
F ′ : (ι → ι) → ι, W : (ι → ι) → ι → ι, and S, S′ : ι. Their corresponding lambda-
trees are the ones shown in Figure 2. The sharing of an isomorphic sub-tree arises
as both are translations of the same non-terminal W . As already observed, these
recursion schemes denote the terms shown in Figure 1.
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S = Fa

Fx = fx(F (gx))

S′ = F ′(Wg)
F ′ϕ = f(ϕa)(F ′(Wϕ))
Wϕx = ϕ(ϕx)

Fig. 3. Two recursion schemes

Remark 14. The notion of a recursion scheme wouldn’t change if we allowed λ-
abstractions on the right hand side of the equations; we can always build the
closure and “factor it out” as a new non-terminal. For example, the Wϕ in the
definition of F ′ in Figure 3 should be thought of as a factored-out closure of a
line that originally looked

F ′ϕ = f(ϕa)(F ′(λx.ϕ(ϕx))) .

4 Using Continuous Normalisation

As mentioned in the introduction, we are interested in the question, whether A
has a run on the normal form of some lambda-tree t. Our plan to investigate
this question is by analysing the term t.

However, there is no bound on the number of nodes of t that have to be
inspected, and no bound on the number of beta-reductions to be carried out,
before the first symbol of the normal form is determined — if it ever will be. In
fact, it may well be that an infinite simply-typed lambda-tree leaves the normal
form undefined at some point.

Whereas the first observation is merely a huge inconvenience, the second ob-
servation makes it unclear what it even is supposed to mean that “A has a run
on the normal form of t” — if there is no such normal form.

Fortunately, it is long known how to overcome this problem. If we don’t know
any definite answer yet, we just output a “don’t know” constructor and carry on.
This idea is known as “continuous normalisation” [7,8] and is quite natural [1]
in the realm of the lambda calculus.

Definition 15. For t,
−→
t closed infinitary simply-typed lambda-trees such that

t
−→
t is of ground type we define a Σ-term t@

−→
t coinductively as follows.

(rs)@
−→
t = R(r@(s,

−→
t ))

(λx.r)@(s,
−→
t ) = β(r[s/x]@

−→
t )

f@
−→
t = f(tβ1 , . . . , tβn)

Here we used r[s/x] to denote the substitution of s for x in r. This substitution
is necessarily capture free as s is closed. By f(T1, . . . , Tn) we denote the term
with label f at the root and T1, . . . , Tn as its n children; this includes the case
n = 0, where f() denotes the term consisting of a single node f. Similar notation
is used for R(T ) and β(T ). Moreover we used rβ as a shorthand for r@().

Immediately from the definition we notice that, after removing the R and β
constructors, r@−→s is the term reading of the normal form of r−→s , whenever the
latter is defined.
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The number of β constructors counts the number of reductions necessary to
reach a particular letter of the normal form [1]. Therefore, A can talk not only
about properties of the normal form of t, but also about the computation that
led there.

It should be noted that no price has to be paid for this extra expressivity.
Given an automaton on Σ′ we can extend its transition function δ by setting
δ(q,R) = δ(q, β) = {(q, ∗, . . . , ∗)}.

5 Finitary Semantics and Proof System

The main technical idea of this article is to use a finite semantics for the simple
types, describing how A “sees” an object of that type.

Definition 16. For τ a simple type we define [[τ ]] inductively as follows.

[[ι]] = P(Q)
[[ρ → σ]] = [[ρ]][[σ]]

In other words, we start with the powerset of the state set of A in the base case,
and use the full set theoretic function space for arrow-types.

Remark 17. Obviously all the [[τ ]] are finite sets.

Example 18. Taking the automaton A of Example 5, we have [[ι]] = {∅, {q2},
{q1}, Q} and examples of elements of [[ι → ι]] include the identity function id,
as well as the “swap function” swap defined by swap(∅) = ∅, swap(Q) = Q,
swap({q2}) = {q1}, and swap({q1}) = {q2}.

Definition 19. [[τ ]] is partially ordered as follows.

– For R, S ∈ [[ι]] we set R � S iff R ⊆ S.
– For f, g ∈ [[ρ → σ]] we set f � g iff ∀a ∈ [[ρ]].fa � ga.

Remark 20. Obviously suprema and infima with respect to � exist.

We often need the concept “continue with f after reading one R symbol”. We
call this R-lifting. Similar for β.

Definition 21. For f ∈ [[−→ρ → ι]] we define the liftings R(f), β(f) ∈ [[−→ρ → ι]] as
follows.

R(f)(−→a ) = {q | δ(q,R) ∩ f−→a × {∗} × . . .× {∗} �= ∅}
β(f)(−→a ) = {q | δ(q, β) ∩ f−→a × {∗} × . . .× {∗} �= ∅}

Remark 22. If A is obtained from an automaton working on Σ′-terms by setting
δ(q,R) = δ(q, β) = {(q, ∗, . . . , ∗)} then R(f) = β(f) = f for all f .

Using this finite semantics we can use it to annotate a lambda-tree by semantical
values for its subtrees to show that the denoted term has good properties with
respect to A. We start by an example.
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Fig. 4. A proof that A has an infinite run starting in q2 on the denoted term

Example 23. The second recursion scheme in Figure 3 denotes a term where the
“side branches” contain 2, 4, 8, . . . , 2n, . . . times the letter g. As these are all even
numbers, A should have a run when starting in q2.

So we start by assigning the root {q2} ∈ [[ι]]. Since the term is an application, we
have to guess the semantics of the argument (of type ι → ι). Our (correct) guess
is, that it keeps the parity of gs unchanged, hence our guess is id; the function
side then must be something that maps id to {q2}. Let us denote by id �→ {q2}
the function in [[ι→ι]][[ι]] defined by (id �→ {q2})(id) = {q2} and (id �→ {q2})(f) = ∅
if f �= id.

The next node to the left is an abstraction. So we have to assign the body
the value {q2} in a context where ϕ is mapped to id. Let us denote this context
by Γϕ.

In a similar way we fill out the remaining annotations. Figure 4 shows the
whole proof. Here Γ ′ϕ is the context that maps ϕ to swap; moreover Γϕ,x, Γ ′ϕ,x,
Γϕ,x′ , and Γ ′ϕ,x′ are the same as Γϕ and Γ ′ϕ but with x mapped to {q2} and {q1},
respectively.

It should be noted that a similar attempt to assign semantical values to the
other lambda-tree in Figure 2 fails at the down-most x where in the context Γ
with Γ (x) = {q2} we cannot assign x the value {q1}.

To make the intuition of the example precise, we formally define a “proof system”
of possible annotations (Γ, a) for a (sub)tree. Since the [[τ ]] are all finite sets, there
are only finitely many possible annotations.
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To simplify the later argument on our proof, which otherwise would be coin-
ductive, we add a level n to our notion of proof. This level should be interpreted
as “for up to n steps we can pretend to have a proof”. This reflects the fact that
coinduction is nothing but induction on observations.

Definition 24. For Γ a finite mapping from variables xσ to their corresponding
semantics [[σ]], a value a ∈ [[ρ]], and t an infinitary, maybe open, lambda-tree of
type ρ, with free variables among dom(Γ ), we define

Γ �n
A a � t : ρ

by induction on the natural number n as follows.

– Γ �0
A a � t : ρ always holds.

– Γ �n
A a � xi : ρ holds, provided a � Γ (xi).

– Γ �n+1
A a � st : σ holds, provided there exists f ∈ [[ρ → σ]], u ∈ [[ρ]] such that

a � R(fu), Γ �n
A f � s : ρ → σ, and Γ �n

A u � t : ρ.
– Γ �n+1

A f � λxρ.s : ρ → σ holds, provided for all a ∈ [[ρ]] there is a ba ∈ [[σ]]
such that fa � β(ba) and Γ a

x �n
A ba � s : σ.

– Γ �n
A f � f : ι → . . . → ι → ι holds, provided for all −→a ∈ [[−→ι ]] we have f−→a ⊂

{q | δ(q, f) ∩ a1 × . . .× a�(f) × {∗} × . . .× {∗} �= ∅}.

It should be noted that all the quantifiers in the rules range over finite sets.
Hence the correctness of a rule application can be checked effectively (and even
by a finite automaton).

We write Γ �∞A a � t : ρ to denote ∀n.Γ �n
A a � t : ρ.

Remark 25. Obviously Γ �n+1
A a � t : ρ implies Γ �n

A a � t : ρ. Moreover,
a′ � a and Γ �n

A a � t : ρ imply Γ �n
A a′ � t : ρ. Finally, Γ �n

A a � t : ρ, if
Γ ′ �n

A a � t : ρ for some Γ ′ which agrees with Γ on the free variables of t.

As already mentioned, for t a term with finitely many free variables, the anno-
tations (Γ, a) come from a fixed finite set, since we can restrict Γ to the set of
free variables of t. If, moreover, t has only finitely many different sub-trees, that
is to say, if t is regular, then only finitely many terms t have to be considered.
So we obtain

Proposition 26. For t regular, it is decidable whether Γ �∞A a � t : ρ.

Before we continue and show our calculus in Definition 24 to be sound (Sec-
tion 6) and complete (Section 7) let us step back and see what we will then have
achieved, once our calculus is proven sound and complete.

Proposition 26 gives us decidability for terms denoted by regular lambda-trees,
and hence in particular for trees obtained by recursion schemes. Moreover, since
the annotations only have to fit locally, individual subtrees of the lambda-tree
can be verified separately. This is of interest, as for each non-terminal a separate
subtree is generated. In other words, this approach allows for modular verifica-
tion; think of the different non-terminals as different subroutines. As the seman-
tics is the set-theoretic one, the annotations are clear enough to be meaningful,
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if we have chosen our automaton in such a way that the individual states can
be interpreted extensionally, for example as “even” versus “odd” number of gs.

It should also be noted, that the number of possible annotations only depends
on the type of the subtree, and on A, that is, the property to be investigated.
Fixing A and the allowed types (which both usually tend to be quite small), the
amount of work to be carried out grows only linearly with the representation of t
as a regular lambda-tree. For every node we have to make a guess and we have to
check whether this guess is consistent with the guesses for the (at most two) child
nodes. Given that the number of nodes of the representation of t growth linearly
with the size of the recursion scheme, the problem is in fixed-parameter-NP,
which doesn’t seem too bad for practical applications.

6 Truth Relation and Proof of Soundness

The soundness of a calculus is usually shown by using a logical relation, that
is, a relation indexed by a type that interprets the type arrow “→” as logical
arrow “⇒”; in other words, we define partial truth predicates for the individual
types [11].

Since we want to do induction on the “observation depth” n of our proof
· �n

A · � · : τ we have to include that depth in the definition of our truth pred-
icates · ≺≺n

A · : τ . For technical reasons we have to build in weakening on this
depth as well.

Definition 27. For f ∈ [[−→ρ → ι]], n ∈ N, t a closed infinitary lambda tree of
type −→ρ → ι, the relation f ≺≺n

A t : −→ρ → ι is defined by induction on the type as
follows.

f ≺≺n
A t : −→ρ → ι iff

∀� ≤ n∀−→a ∈ [[−→ρ ]]∀−→r : −→ρ
(∀i. ai ≺≺	

A ri : ρi) ⇒ ∀q ∈ f−→a . A, q |=	 t@−→r

Remark 28. Immediately from the definition we get the following monotonicity
property.

If f � f ′ and f ′ ≺≺n
A t : ρ then f ≺≺n

A t : ρ.

Remark 29. In the special case −→ρ = ε we get

S ≺≺n
A t : ι iff ∀q ∈ S.A, q |=n tβ

Here we used that ∀� ≤ n.A, q |=	 s iff A, q |=n s.

Immediately from the definition we obtain weakening in the level.

Proposition 30. If f ≺≺n
A t : ρ then f ≺≺n−1

A t : ρ.

Theorem 31. Assume Γ �n
A a � t : ρ for some Γ with domain {x1, . . . , x2}. For

all � ≤ n and all closed terms
−→
t : −→ρ , if ∀i. Γ (xi) ≺≺	

A ti : ρi then
a ≺≺	

A t[
−→
t /−→x ] : ρ.
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Proof. Induction on n, cases according to Γ �n
A a � t : ρ.

We just show the case of the λ-rule. The other cases are similar, and even
simpler.

Case Γ �n+1
A f � λxρ.s : ρ → σ thanks to ∀a ∈ [[ρ]] ∃ba ∈ [[σ]] such that fa �

β(ba) and Γ a
x �n

A ba � s : σ.
Let � ≤ n + 1 be given and

−→
t : −→ρ with Γ (xi) ≺≺	

A ti : ρi.
We have to show f ≺≺	

A (λxρsσ)η : ρ → σ where η is short for [
−→
t /−→x ].

Let σ have the form σ = −→σ → ι. Let k ≤ � be given and r : ρ, −→s : −→σ , c ∈ [[ρ]],
ci ∈ [[σi]] such that c ≺≺k

A r : ρ, ci ≺≺k
A si : σi. We have to show for all q ∈ fc−→c

that A, q |=k (λxs)η@r,−→s︸ ︷︷ ︸
β.sηr

x@−→s

.

Hence it suffices to show that there is a q̃ ∈ δ(q, β) such that
A, q̃ |=k−1 sηr

x@−→s .
We know c ≺≺k

A r : ρ; using Proposition 30 we get c ≺≺k−1
A r : ρ and

∀i. Γ (xi) ≺≺k−1
A ti : ρi. Since k ≤ � ≤ n + 1 we get k − 1 ≤ n, hence we may

apply the induction hypothesis to Γ a
x �n

A ba � s : σ and obtain ba ≺≺k−1
A sηr

x : σ.
Since again by Proposition 30 we also know ci ≺≺k−1

A si : σi, we obtain for all
q̂ ∈ ba

−→c that A, q̂ |=k−1 sηr
x@−→s .

Since fc � β(bc) we get that ∀q ∈ fc−→c ∃q̃ ∈ δ(q, β). q̃ ∈ bc
−→c . This, together

with the last statement yields the claim.

It should be noted that in the proof of Theorem 31 in the cases of the λ-rule and
the application-rule it was possible to use the induction hypothesis due to the fact
that we used continuous normalisation, as opposed to standard normalisation.

Corollary 32. For t a closed infinitary lambda term we get immediately from
Theorem 31

∅ �n
A S � t : ι =⇒ ∀q ∈ S. A, q |=n tβ

In particular, if ∅ �∞A S � t : ι then ∀q ∈ S. A, q |=∞ tβ.

7 The Canonical Semantics and the Proof of
Completeness

If we want to prove that there is an infinite run, then, in the case of an application
st, we have to guess a value for the term t “cut out”.

We could assume an actual run be given and analyse the “communication”,
in the sense of game semantics [3], between the function s and its argument
t. However, it is simpler to assign each term a “canonical semantics” 〈〈t〉〉A∞,
roughly the supremum of all values we have canonical proofs for.

The subscript ∞ signifies that we only consider infinite runs. The reason is
that the level n in our proofs Γ �n

A a � t : ρ is not a tight bound; whenever we
have a proofs of level n, then there are runs for at least n steps, but on the other
hand, runs might be longer than the maximal level of a proof. This is due to the
fact that β-reduction moves subterms “downwards”, that is, further away from
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the root, and in that way may construct longer runs. The estimates in our proof
calculus, however, have to consider (in order to be sound) the worst case, that
is, that an argument is used immediately.

Since, in general, the term t may also have free variables, we have to consider
a canonical semantics 〈〈t〉〉ΓA∞ with respect to an environment Γ .

Definition 33. By induction on the type we define for t a closed infinite lambda-
tree of type ρ = −→ρ → ι its canonical semantics 〈〈t〉〉A∞ ∈ [[ρ]] as follows.

〈〈t〉〉A∞(−→a ) = {q | ∃−→s : −→ρ . 〈〈−→s 〉〉A∞ � −→a ∧ A, q |=∞ t@−→s }

Remark 34. For t a closed term of base type we have 〈〈t〉〉A∞ = {q | A, q |=∞ tβ}.

Definition 35. For Γ a context, t : ρ typed in context Γ of type ρ = −→ρ → ι we
define 〈〈t〉〉ΓA∞ ∈ [[ρ]] by the following explicit definition.

〈〈t〉〉ΓA∞(−→a ) = {q | ∃η. dom(η) = dom(Γ )∧
(∀x ∈ dom(Γ ).η(x) closed ∧ 〈〈η(x)〉〉A∞ � Γ (x)) ∧
∃−→s : −→ρ .〈〈−→s 〉〉A∞ � −→a ∧ A, q |=∞ tη@−→s }

Remark 36. For t a closed term and Γ = ∅ we have 〈〈t〉〉ΓA∞ = 〈〈t〉〉A∞.

Proposition 37. If s has type −→σ → ι in some context compatible with Γ , and
η is some substitution with dom(η) = dom(Γ ) such that for all x ∈ dom(Γ ) we
have η(x) closed and 〈〈η(x)〉〉A∞ � Γ (x), then

〈〈sη〉〉A∞ � 〈〈s〉〉ΓA∞

Proof. Let −→a ∈ [[−→σ ]] and q ∈ 〈〈sη〉〉A∞(−→a ) be given. Then there are −→s : −→σ with
〈〈−→s 〉〉A∞ � −→a such that A, q |=∞ sη@−→s . Together with the assumed properties
of η this witnesses q ∈ 〈〈s〉〉ΓA∞(−→a ).

Lemma 38. If r and s are terms of type σ → −→ρ → ι and σ, respectively, in
some context compatible with Γ , then we have

〈〈rs〉〉ΓA∞ � R(〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞)

Proof. Let −→a ∈ [[−→ρ ]] and q ∈ 〈〈rs〉〉ΓA∞(−→a ) be given. Then there is η with ∀x ∈
dom(Γ ). 〈〈η(x)〉〉A∞ � Γ (x) and there are −→s : −→ρ with 〈〈−→s 〉〉A∞ � −→a and

A, q |=∞ (rs)η@−→s︸ ︷︷ ︸
R.rη@sη,−→s

Hence there is a q′ ∈ δ(q,R) with A, q′ |=∞ rη@sη,−→s . It suffices to show that
for this q′ we have q′ ∈ 〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞−→a .

By Proposition 37 we have 〈〈sη〉〉A∞ � 〈〈s〉〉ΓA∞ and we already have 〈〈−→s 〉〉A∞ �−→a . So the given η together with sη and −→s witnesses q′ ∈ 〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞
−→a .
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Lemma 39. Assume that λx.r has type σ → −→ρ → ι in some context compatible
with Γ . Then

〈〈λxr〉〉ΓA∞(a) � β(〈〈r〉〉Γ
a
x

A∞)

Proof. Let −→a ∈ [[−→ρ ]] and q ∈ 〈〈λxr〉〉ΓA∞(a,−→a ) be given. Then there is an η with
∀x ∈ dom(Γ ) we have η(x) closed and 〈〈η(x)〉〉A∞ � Γ (x) and there are s,−→s
with 〈〈s〉〉A∞ � a and 〈〈−→s 〉〉A∞ � −→a such that

A, q |=∞ (λxr)η@s,−→s︸ ︷︷ ︸
β.rx[s]η@−→s

So there is a q̃ ∈ δ(q, β) with A, q̃ |=∞ rx[s]η@−→s . It suffices to show that
q̃ ∈ 〈〈r〉〉Γ

a
x

A∞(−→a ).
By the properties of η and since 〈〈s〉〉A∞ � a we know that for all y ∈ dom(Γ a

x )
we have 〈〈η(y)〉〉A∞ � Γ a

x (y). This witnesses q̃ ∈ 〈〈r〉〉Γ
a
x

A∞(−→a ).

Lemma 40. 〈〈x〉〉ΓA∞ � Γ (x)

Theorem 41. Γ �n
A 〈〈t〉〉ΓA∞ � t : ρ

Proof. Induction on n, cases on t. Trivial for n = 0. So let n > 0. We distinguish
cases according to t. The cases rs, λx.r and x are immediately from the induction
hypotheses and Lemmata 38, 39, and 40, respectively.

So, let t = f be a terminal symbol. We have to show Γ �n
A 〈〈f〉〉ΓA∞ � f : ι → ι.

So, let
−→
S ∈ [[−→ι ]] and q ∈ 〈〈f〉〉ΓA∞(S). Hence there is are −→s of type ι with

〈〈si〉〉A∞ � Si and A, q |=∞ f@−→s︸ ︷︷ ︸
f(
−→
sβ )

.

So there is (q̃1, . . . , q̃�(f), ∗, . . . , ∗) ∈ δ(q, f) with A, q̃i |=∞ sβi . But then q̃i ∈
〈〈si〉〉A∞ ⊂ Si.

Corollary 42. If t : ι is closed and of ground type then
∅ �n

A {q | A, q |=∞ tβ} � t : ι.

Finally, let us sum up what we have achieved.

Corollary 43. For t a closed regular lambda term, and q0 ∈ Q it is decidable
whether A, q0 |=∞ tβ.

Proof. By Proposition 26 it suffices to show that ∅ �∞A {q0} � t : ι holds, if and
only if A, q0 |=∞ tβ .

The “if”-direction follows from Corollary 42 and the weakening provided by
Remark 25. The “only if”-direction is provided by Corollary 32.

8 Model Checking

Formulae of Monadic Second Order Logic can be presented [10] by appropriate
tree automata. As mentioned, we consider here only a special case. More pre-
cisely, let ϕ be a property that can be recognised by a non-deterministic tree
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automaton with trivial acceptance condition, that is, an automaton accepting by
having an infinite run. In other words, let ϕ be such that there is an automaton
Aϕ such that T |= ϕ ⇔ Aϕ, q0 |=∞ T holds for every Σ′-tree T .

Applying the theory developed above to this setting we obtain the following.

Theorem 44. Given a tree T defined by an arbitrary recursion scheme (of arbi-
trary level) and a property ϕ that can be recognised by an automaton with trivial
acceptance condition it is decidable whether T |= ϕ.

Proof. Let t be the infinite lambda-tree associated with the recursion scheme.
Then t is effectively given as a regular closed lambda term of ground type and
T is the normal form of t.

Let Aϕ be the automaton (with initial state q0) describing ϕ. By keeping the
state when reading a R or β it can be effectively extended to an automaton A
that works on the continuous normal form, rather than on the usual one. So
T |= ϕ ⇔ A, q0 |=∞ tβ. The latter, however, is decidable by Corollary 43.

Remark 45. As discussed after Proposition 26 the complexity is fixed-parameter
non-deterministic linear time in the size of the recursion scheme, if we consider
ϕ and the allowed types as a parameter.
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6. T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars,
panic automata, and decidability. In L. Caires, G. F. Italiano, L. Monteiro,
C. Palamidessi, and M. Yung, editors, 32nd International Colloquium on Automata,
Languages and Programming (ICALP ’05), volume 3580 of Lecture Notes in Com-
puter Science, pages 1450–1461. Springer Verlag, 2005.



118 K. Aehlig

7. G. Kreisel, G. E. Mints, and S. G. Simpson. The use of abstract language in
elementary metamathematics: Some pedagogic examples. In R. Parikh, editor,
Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 38–131.
Springer Verlag, 1975.

8. G. E. Mints. Finite investigations of transfinite derivations. Journal of Soviet
Mathematics, 10:548–596, 1978. Translated from: Zap. Nauchn. Semin. LOMI 49
(1975). Cited after Grigori Mints. Selected papers in Proof Theory. Studies in Proof
Theory. Bibliopolis, 1992.

9. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In Proceedings of the Twentyfrist Annual IEEE Symposium on Logic
in Computer Science (LICS ’06), 2006. to appear.

10. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, July 1969.

11. W. W. Tait. Intensional interpretations of functionals of finite type. The Journal
of Symbolic Logic, 32(2):198–212, 1967.



The Power of Linear Functions�

Sandra Alves1, Maribel Fernández2, Mário Florido1, and Ian Mackie2,3,��

1 University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

2 King’s College London, Department of Computer Science,
Strand, London WC2R 2LS, U.K.
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Abstract. The linear lambda calculus is very weak in terms of expres-
sive power: in particular, all functions terminate in linear time. In this
paper we consider a simple extension with Booleans, natural numbers
and a linear iterator. We show properties of this linear version of Gödel’s
System T and study the class of functions that can be represented. Sur-
prisingly, this linear calculus is extremely expressive: it is as powerful as
System T .

1 Introduction

One of the many strands of work stemming from Girard’s Linear Logic [8] is
the area of linear functional programming (see for instance [1,19,14]). These
languages are based on a version of the λ-calculus with a type system corre-
sponding to intuitionistic linear logic. One of the features of the calculus (which
can be seen as a minimal functional programming language) is that it provides
explicit syntactical constructs for copying and erasing terms (corresponding to
the exponentials in linear logic).

A question that arises from this work is what exactly is the computational
power of a linear calculus without the exponentials, i.e., a calculus that is syn-
tactically linear: all variables occur exactly once. This is a severely restricted
form of the (simply typed) λ-calculus, and is summarised by just the following
three rules:

x : A � x : A
Γ, x : A � t : B

Γ � λx.t : A−◦B
Γ � t : A−◦B ∆ � u : A

Γ,∆ � tu : B

Due to the typing constraints—there is no contraction or weakening rule—terms
are linear. Reduction is given by the usual β-reduction rule, but since there is
no duplication or erasing of terms during reduction, this calculus has limited
computational power—all functions terminate in linear time [12].
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Our work builds this language up by introducing: pairs, Booleans with a
conditional, and natural numbers with the corresponding iterator, to obtain
a linear version of Gödel’s System T which we call System L. The study of
System L led us to the discovery of an interesting interplay between linearity
and iteration in Gödel’s original System T . We will show that there is a great
deal of redundancy in Gödel’s System T and the same computational power can
be achieved in a much more restricted system. Gödel’s System T is a formalism
built from the simply typed λ-calculus, adding numbers and Booleans, and a
recursion operator. It is a very simple system, yet has enormous expressive power.
We will show that its power comes essentially from primitive recursion combined
with linear higher-order functions—we can achieve the same power in a calculus
which has these two ingredients: System L.

It is interesting to note that, in contrast with previous linear versions of
System T (e.g., [16,13]), System L accepts iterators on open linear functions,
since these terms are linear. Reduction is only performed on those terms if the
function becomes closed (i.e., reduction does not create non-linear terms). This
design choice has an enormous impact in the computation power of the calculus:
we show that our calculus is as powerful as System T , whereas previous linear
calculi were strictly weaker (see [16]).

From another perspective there have been a number of calculi, again many
based on linear logic, for capturing specific complexity classes ([2,7,11,3,15,24,4]).
One of the main examples is that of bounded linear logic [11], which has as one
of its main aims to find a calculus in-between the linear λ-calculus and that
with the exponentials (specifically the polynomial time computable functions).
There is also previous work that uses linear types to characterise computations
with time bounds [13]. Thus our work can be seen as establishing another cal-
culus with good computational properties which does not need the full power of
the exponentials, and introduces the non-linear features (copying and erasing)
through alternative means.

Summarising, this paper studies the computational power of a linear System
T , exposing the structure of the components of Gödel’s System T . We show that
System T is intrinsically redundant, in that it has several ways of expressing
duplication and erasure. Can one eliminate this redundancy? The answer is yes;
in this paper we:

– define a linear λ-calculus with natural numbers and an iterator, and intro-
duce iterative types and the closed reduction strategy for this calculus;

– show that we can define the whole class of primitive recursive functions in
this calculus, and more general functions such as Ackermann’s;

– demonstrate that this linear System T has the same computational power
as the full System T .

In the next section we recall the background material. In Section 3 we define
System L and in Section 4 we demonstrate that we can encode the primitive
recursive functions in this calculus, and even go considerably beyond this class
of functions. In Section 5 we show how to encode Gödel’s System T . Finally we
conclude the paper in Section 6.
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2 Background

We assume the reader is familiar with the λ-calculus [5], and with the main no-
tions on primitive recursive functions [23]. In this section we recall some notions
on Gödel’s System T , for more details we refer to [10].

System T is the simply typed λ-calculus (with arrow types and products, and
the usual β-reduction and projection rules) where two basic types have been
added: numbers (built from 0 and S; we write n̄ or Sn 0 for S . . . (S︸ ︷︷ ︸

n

0)) and

Booleans with a recursor and a conditional defined by the reduction rules:

R 0 u v −→ u
R (St) u v −→ v (R t u v) t

cond true u v −→ u
cond false u v −→ v

System T is confluent, strongly normalising and reduction preserves types (see
[10] for the complete system and results). It is well-known that an iterator has
the same computational power as the recursor. We will replace the recursor by
a simpler iterator:

iter 0 u v −→ u iter (S t) u v −→ v(iter t u v)

with the following typing rule:

Γ �T t : Nat Θ �T u : A ∆ �T v : A→ A

Γ,Θ,∆ �T iter t u v : A

In the rest of the paper, when we refer to System T it will be the system with
iterators rather than recursors (it is also confluent, strongly normalising, and
type preserving). We recall the following property, which is used in Section 5:

Lemma 1. – If Γ �T λx.u : T then T = A → B and Γ, x : A �T u : B for
some A, B.

– If Γ �T π1(s) : T then Γ �T s : T ×B for some B.
– If Γ �T π2(s) : T then Γ �T s : A× T for some A.

We now define a call-by-name evaluation strategy for System T : t ⇓ v means
that the closed term t evaluates to the value v.
v is a value

v ⇓ v

t ⇓ λx.t′ t′[u/x] ⇓ v

tu ⇓ v

t ⇓ 〈s, s′〉 s ⇓ v

π1(t) ⇓ v

t ⇓ 〈s, s′〉 s′ ⇓ v

π2(t) ⇓ v

t ⇓ v

S t ⇓ S v

t ⇓ Sn 0 sn(u) ⇓ v

iter t u s ⇓ v

b ⇓ true t ⇓ v

cond b t u ⇓ v

b ⇓ false u ⇓ v

cond b t u ⇓ v

Values are terms of the form: Sn0, true, false, 〈s, s′〉, λx.s.
Lemma 2 (Adequacy of · ⇓ · for System T ). 1. If t ⇓ v then t −→∗ v.
2. If Γ � t : T , t closed, then:

T = Nat ⇒ t ⇓ S(S . . . (S 0)) T = A×B ⇒ t ⇓ 〈u, s〉
T = Bool⇒ t ⇓ true or t ⇓ false T = A→ B ⇒ t ⇓ λx.s

A program in System T is a closed term at base type (Nat or Bool).
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3 Linear λ-Calculus with Iterator: System L

In this section we extend the linear λ-calculus [1] with numbers, Booleans, pairs,
and an iterator, and we specify a reduction strategy inspired by closed reduc-
tion [6,9]. We call this system System L. We begin by defining the set of linear
λ-terms, which are terms from the λ-calculus restricted in the following way
(fv(t) denotes the set of free variables of t).

x
λx.t if x ∈ fv(t)
tu if fv(t) ∩ fv(u) = ∅

Note that x is used at least once in the body of the abstraction, and the condition
on the application ensures that all variables are used at most once. Thus these
conditions ensure syntactic linearity (variables occur exactly once). Next we add
to this linear λ-calculus: pairs, Booleans and numbers. Table 1 summarises the
syntax of System L.
Pairs :

〈t, u〉 if fv(t) ∩ fv(u) = ∅
let 〈x, y〉 = t in u if x, y ∈ fv(u) and fv(t) ∩ fv(u)=∅

Note that when projecting from a pair, we use both projections. A simple ex-
ample of such a term is the function that swaps the components of a pair:
λx.let 〈y, z〉 = x in 〈z, y〉.
Booleans : true and false, and a conditional:

cond t u v if fv(t) ∩ fv(u) = ∅ and fv(u) = fv(v)

Note that this linear conditional uses the same resources in each branch.
Numbers : 0 and S, and an iterator:

iter t u v if fv(t)∩fv(u)= fv(u)∩fv(v)= fv(v)∩fv(t)=∅

Table 1.

Construction Variable Constraint Free Variables (fv)
0, true, false − ∅

S t − fv(t)
iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = fv(t) ∪ fv(u) ∪ fv(v)

fv(t) ∩ fv(v) = ∅

x − {x}
tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λx.t x ∈ fv(t) fv(t) � {x}
〈t,u〉 fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

let 〈x, y〉 = t in u fv(t) ∩ fv(u) = ∅, x, y ∈ fv(u) fv(t) ∪ (fv(u) � {x, y})
cond t u v fv(u) = fv(v), fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)
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Table 2. Closed reduction

Name Reduction Condition

Beta (λx.t)v −→ t[v/x] fv(v) = ∅
Let let 〈x, y〉 = 〈t, u〉 in v −→ (v[t/x])[u/y] fv(t) = fv(u) = ∅
Cond cond true u v −→ u
Cond cond false u v −→ v
Iter iter (S t) u v −→ v(iter t u v) fv(tv) = ∅
Iter iter 0 u v −→ u fv(v) = ∅

Definition 1 (Closed Reduction). Table 2 gives the reduction rules for Sys-
tem L, substitution is a meta-operation defined as usual. Reductions can take
place in any context.

Reduction is weak: for example, λx.(λy.y)x is a normal form. Note that all the
substitutions created during reduction (rules Beta, Let) are closed; this corre-
sponds to a closed-argument reduction strategy (called ca in [6]). Also note that
Iter rules are only triggered when the function v is closed.

The following results are proved by induction, by showing that substitution
and reduction preserve the variable constraints given in Table 1.

Lemma 3 (Correctness of Substitution). Let t and u be valid terms, x ∈
fv(t), and fv(u) = ∅, then t[u/x] is valid.

Lemma 4 (Correctness of −→). Let t be a valid term, and t −→ u, then:

1. fv(t) = fv(u);
2. u is a valid term.

Although reduction preserves the free variables of the term, a subterm of the
form iter n u v may become closed after a reduction in a superterm, triggering
in this way a reduction with an Iter rule.

3.1 Typed Terms

The set of linear types is generated by the grammar:

A,B ::= Nat | Bool | A−◦B | A⊗B

Definition 2. Let A0, . . . , An be a list of linear types (note that A0, . . . , An
cannot be empty). It(A0, . . . , An) denotes a non-empty set of iterative types
defined by induction on n:

n = 0 : It(A0) = {A0 −◦A0}
n = 1 : It(A0, A1) = {A0 −◦A1}
n ≥ 2 : It(A0, . . . , An) = It(A0, . . . , An−1) ∪ {An−1 −◦An}

Iterative types will serve to type the functions used in iterators. Note that
It(A0) = It(A0, A0) = It(A0, . . . , A0). We associate types to terms in System L
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Axiom and Structural Rule:

(Axiom)
x : A 
L x : A

Γ, x : A, y : B, ∆ 
L t : C
(Exchange)

Γ, y : B, x : A,∆ 
L t : C

Logical Rules:

Γ, x : A 
L t : B
(−◦Intro)

Γ 
L λx.t : A −◦ B

Γ 
L t : A −◦ B ∆ 
L u : A
(−◦Elim)

Γ, ∆ 
L tu : B

Γ 
L t : A ∆ 
L u : B
(⊗Intro)

Γ, ∆ 
L 〈t, u〉 : A ⊗ B

Γ 
L t : A ⊗ B x : A, y : B, ∆ 
L u : C
(⊗Elim)

Γ, ∆ 
L let 〈x, y〉 = t in u : C

Numbers

(Zero)

L 0 : Nat

Γ 
L n : Nat
(Succ)

Γ 
L S n : Nat
Γ 
L t : Nat Θ 
L u : A0 ∆ 
L v : It(A0, . . . , An) ()

(Iter)
Γ, Θ, ∆ 
L iter t u v : An

() where if t ≡ Sm 0 then n = m otherwise n = 0
Booleans

(True)

L true : Bool

(False)

L false : Bool

∆ 
L t : Bool Γ 
L u : A Γ 
L v : A
(Cond)

Γ, ∆ 
L cond t u v : A

Fig. 1. Type System for System L

using the typing rules given in Figure 1, where we use the following abbrevia-
tions: Γ �L t : It(A0, . . . , An) iff Γ �L t : B for each B ∈ It(A0, . . . , An). We
use a Curry-style type system; the typing rules specify how to assign types to
untyped terms (there are no type decorations).

Note that the only structural rule in Figure 1 is Exchange, we do not have
Weakening and Contraction rules: we are in a linear system. For the same reason,
the logical rules split the context between the premises. The rules for numbers
are standard. In the case of a term of the form iter t u v, we check that t is a term
of type Nat and that v and u are compatible. There are two cases: if t is Sn 0 then
we require v to be a function that can be iterated n times on u. Otherwise, if t is
not (yet) a number, we require v to have a type that allows it to be iterated any
number of times (i.e. u has type A and v : A−◦A, for some type A). The typing
of iterators is therefore more flexible than in System T , but we will see that this
extra flexibility does not compromise the confluence and strong normalisation
of the system. Also note that we allow the typing of iter t u v even if v is open
(in contrast with [16,13]), but we do not allow reduction until v is closed. This
feature gives our system the full power of System T (whereas systems that do
not allow building iter with v open are strictly weaker [16]).

We denote by dom(Γ ) the set of variables xi such that xi : Ai ∈ Γ . Since
there are no Weakening and Contraction rules, we have:
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Lemma 5. If Γ �L t : A then dom(Γ ) = fv(t).

Theorem 1 (Subject Reduction). If Γ �L M : A and M −→ N , then
Γ �L N : A.

Proof. By induction on the type derivation Γ �L M : A, using a Substitution
Lemma: If Γ, x : A �L t : B and ∆ �L u : A (where fv(t) ∩ fv(u) = ∅) then
Γ,∆ �L t[u/x] : B. �
3.2 Strong Normalisation

In System L, every sequence of reductions starting from a typable term is finite
(i.e. typable terms are strongly normalisable). Note that, although System L
extends the linear λ-calculus (where every term is strongly normalisable), un-
typed terms of System L may have infinite reductions. Strong normalisation for
System L is a consequence of strong normalisation for System T . We start by
defining a translation from System L into System T .

Definition 3. We define the compilation of types and terms in System L into
System T , denoted �·�, in the following way:

�Nat� =Nat �Bool� =Bool
�A−◦B�=�A�→ �B� �A⊗B�=�A�× �B�

�0� = 0
�true� = true
�false� = false
�S t� = S(�t�)
�x� = x
�λy.t� = λy.�t�
�tu� = �t��u�
�〈t, u〉� = 〈�t�, �u�〉
�let 〈x, y〉 = t in u� = �u�[(π1�t�)/x][(π2�t�)/y]�cond t u v� = cond �t� �u� �v�
�iter t u v� =

{�v�m(�u�) if t = Sm0, m > 0
iter �t� �u� �v� otherwise

If Γ = x1 : A1, . . . xn : An, then �Γ � = x1 : �A1�, . . . xn : �An�. Note that the
translation of an iterator where the number of times to iterate is known and
positive, develops this iteration. If it is zero or not known we use System T ’s
iterator.

Theorem 2 (Strong Normalisation). If Γ �L t : T , t is strongly
normalisable.

Proof (Sketch). Strong normalisation for System L is proved by mapping all
the reduction steps in System L into one or more reduction steps in System T .
Notice that reduction steps of the form iter Sm+10 u v −→ v(iter Sm0 u v) map
into zero reduction steps in System T , but we can prove that any sequence of
reduction steps of that form is always terminating. �
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3.3 Church-Rosser

System L is confluent, which implies that normal forms are unique. For typable
terms, confluence is a direct consequence of strong normalisation and the fact
that the rules are non-overlapping (using Newmann’s Lemma [21]). In fact, all
System L terms are confluent even if they are non-terminating: this can be
proved using parallel-reductions.

Theorem 3 (Church-Rosser). If t −→∗ t1 and t −→∗ t2, then there is a term
t3 such that t1 −→∗ t3 and t2 −→∗ t3.

Theorem 4 (Adequacy). If t is closed and typable, then one of the following
holds:

– �L t : Nat and t −→∗ n
– �L t : Bool and t −→∗ true or t −→∗ false
– �L t : A−◦B and t −→∗ λx.u for some term u.
– �L t : A⊗B and t −→∗ 〈u, v〉 for some terms u, v.

Proof. By Lemma 5, typing judgements for t have the form �L t : T , and T is
either Nat, Bool, A−◦B or A⊗B. By Subject Reduction, Strong Normalisation,
and Lemma 4, we know that t has a closed, typable normal form u. We show the
case when �L u : Nat, the others follow with similar reasoning. Since u is a closed
term of type Nat, it cannot be a variable, an abstraction or a pair. Hence u is
either an application, a pair projection, a conditional, an iterator or a number.

– Let u = u1u2 . . . un, n ≥ 2, such that u1 is not an application. Then u1 is
closed, and since u is typable, u1 must have an arrow type. But then by
induction u1 is an abstraction, and then the Beta rule would apply, contra-
dicting our assumptions.

– Let u = let 〈x, y〉 = s in v. Then s is closed and fv(v) = {x, y}. Since u
is typable, s has type A ⊗ B, and by induction it should be a (closed) pair
〈s1, s2〉. But then the Let rule would apply contradicting our assumptions.

– Let u = cond n s v. Then n, t, v are closed. Since u is typable, n must have
a Boolean type, and by induction it should be either true or false. But then
the Cond rule would apply contradicting our assumptions.

– Let u = iter n s v. Since u is closed, so are n, t and v. Since u is typable n
must be a term of type Nat, and by induction, n is a number. But then the
Iter rule would apply contradicting our assumptions.

Thus, if �L t : Nat then t reduces to a number. �

4 Primitive Recursive Functions Linearly

In this section we show how to define the primitive recursive functions in System
L. We conclude the section indicating that we can encode substantially more
than primitive recursive functions.
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Erasing linearly. Although System L is a linear calculus, we can erase numbers.
In particular, we can define the projection functions fst, snd : Nat⊗ Nat−◦ Nat:

fst = λx.let 〈u, v〉 = x in iter v u (λz.z)
snd = λx.let 〈u, v〉 = x in iter u v (λz.z)

Lemma 6. For any numbers ā and b̄, fst〈ā, b̄〉 −→∗ ā and snd〈ā, b̄〉 −→∗ b̄.

Proof. We show the case for fst. Let ā = Sn 0, b̄ = Sm 0.
fst〈ā, b̄〉 −→ (let 〈u, v〉 = 〈Sn 0, Sm 0〉 in iter v u λz.z)

−→ iter (Sm 0) (Sn 0) λz.z −→∗ Sn 0 = ā. �
Copying linearly. We can also copy natural numbers in this linear calculus. For
this, we define a function C : Nat−◦Nat⊗Nat that given a number n̄ returns a
pair 〈n̄, n̄〉: C = λx.iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa, Sb〉).

Lemma 7. For any number n̄, C n̄ −→∗ 〈n̄, n̄〉.

Proof. By induction on n̄.
C 0 −→ iter 0 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa, Sb〉) −→ 〈0, 0〉
C (St+1 0) = iter (St+1 0) 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa, Sb〉)

−→ (λx.let 〈a, b〉 = x in 〈Sa, Sb〉)
(iter (St 0) 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa, Sb〉))

−→∗ (λx.let 〈a, b〉 = x in 〈Sa, Sb〉)〈t, t〉
−→ let 〈a, b〉 = 〈t, t〉 in 〈Sa, Sb〉 −→ 〈St, St〉 �

It is easy to apply this technique to other data structures (e.g. linear lists). Note
that we do not need iterative types for this (the standard typing of iterators is
sufficient). More interestingly, we will show in Section 5 that iterators will indeed
allow us to erase any closed term, and moreover copy any closed term.

Primitive Recursive Functions. System L can express the whole class of primitive
recursive functions. We have already shown we can project, and of course we have
composition. We now show how to encode a function h defined by primitive
recursion from f and g (see Section 2) using iter. First, assume h is defined by
the following, simpler scheme (it uses n only once in the second equation):

h(x, 0) = f(x)
h(x, n + 1) = g(x, h(x, n))

Given a function g : Nat−◦Nat−◦ Nat, let g′ be the term:

λy.λz.let 〈z1, z2〉 = C z in gz1(yz2) : (Nat−◦Nat)−◦ (Nat−◦ Nat)

then h(x, n) is defined by the term (iter n f g′)x : Nat, with f : Nat −◦ Nat.
Indeed, we can show by induction that (iter n f g′)x, where x and n are numbers,
reduces to the number h(x, n); we use Lemma 7 to copy numbers:
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(iter 0 f g′)x −→ (f x) = h(x, 0)
(iter (Sn+1 0) f g′) x −→∗ (let 〈z1, z2〉 = C z in gz1(yz2))

[(iter (Sn 0) f g′)/y, x/z]
−→∗ let 〈z1, z2〉 = 〈x, x〉 in gz1((iter (Sn 0) f g′)z2)
−→ g x((iter (Sn 0) f g′)x) = h(x, n + 1) by induction.

Now to encode the standard primitive recursive scheme, which has an extra n in
the last equation, all we need to do is copy n: h(x, n) = let 〈n1, n2〉 = C n in sx,
where s = iter n2 f (λy.λz.let 〈z1, z2〉 = C z in gz1(yz2)n1). Note that the
iterator in the encoding of h(x, n) uses an open function, but it will be closed
before reduction.

Beyond Primitive Recursion. Ackermann’s function is a standard example of a
non primitive recursive function:

ack(0, n) = S n
ack(S n, 0) = ack(n, S 0)
ack(S n, S m) = ack(n, ack(S n,m))

In a higher-order functional language, we have an alternative definition. Let
succ = λx.S x : Nat −◦ Nat, then ack(m,n) = a m n where a is the function
defined by:

a 0 = succ A g 0 = g(S 0)
a (S n) = A (a n) A g (S n) = g(A g n)

Lemma 8. Both definitions are equivalent: For all x, y : Nat, a x y = ack(x, y).

Proof. By induction on x, proving first by induction on n that if g = λy.ack(x, y)
then A g n = ack(S x, n). �
We can define a and A in System L as follows:

a n = iter n succ A : Nat−◦ Nat A g n = iter (S n) (S 0) g : Nat
We show by induction that this encoding is correct:

– a 0 = iter 0 succ A = succ
A g 0 = iter (S 0) (S 0) g = g(S 0)

– a (S n) = iter (Sn 0) succ A = A(iter n succ A) = A(a n)
A g (S n) = iter (S(S n)) (S 0) g = g(iter (S n) (S 0) g) = g(A g n).

Then Ackermann’s function can be defined in System L as:
ack(m,n) = (iter m succ (λgu.iter (S u) (S 0) g)) n : Nat

The correctness of this encoding follows directly from the lemma above. Note
that iter (S u) (S 0) g cannot be typed in [16], because g is a free variable. We
allow building the term with the free variable g, but we do not allow reduction
until it is closed.

5 The Power of System L: System T Linearly

In this section we show how to compile System T programs into System L, i.e.
we show that System T and System L have the same computational power.
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Explicit Erasing. In the linear λ-calculus, we are not able to erase arguments.
However, terms are consumed by reduction. The idea of erasing by consuming is
not new, it is known as Solvability (see [5] for instance). Our goal in this section
is to give an analogous result that allows us to obtain a general form of erasing.

Definition 4 (Erasing). We define the following mutually recursive operations
which, respectively, erase and create a System L term. If Γ �L t : T , then E(t, T )
is defined as follows (where I = λx.x):

E(t,Nat) = iter t I I E(t, A⊗B) = let 〈x, y〉 = t in E(x,A)E(y,B)
E(t,Bool) = cond t I I E(t, A−◦B) = E(tM(A), B)

M(Nat) = 0 M(A⊗B) = 〈M(A),M(B)〉
M(Bool) = true M(A−◦B) = λx.E(x,A)M(B)

Lemma 9. If Γ �L t : T then:

1. fv(E(t, T )) = fv(t) and Γ �L E(t, T ) : A−◦A.
2. M(T ) is a closed System L term such that �LM(T ) : T .

Proof. Simultaneous induction on T . We show two cases:

– fv(E(t, A⊗B)) = fv(let 〈x, y〉 = t in E(x,A)E(y,B)) = fv(t). By induction:
x : A �L E(x,A) : (C −◦C)−◦ (C −◦ C) and y : B �L E(y,B) : C −◦C
then x : A, y : B �L E(x,A)E(y,B) : C −◦ C. Then
x : A, y : B �L E(t, A⊗B) : C −◦ C, for any C.
fv(M(A⊗B)) = fv(〈M(A),M(B)〉) = ∅ by IH(2), and �L 〈M(A),M(B)〉 :
A⊗B by IH(2).

– fv(E(t, A −◦ B)) = fv(E(tM(A), B)) = fv(tM(A)) = fv(t) by IH (1 and 2).
Also, by IH(1) Γ �L E(tM(A), B) : C −◦ C for any C, since �L M(A) : A
by IH(2).
fv(M(A−◦B)) = fv(λx.E(x,A)M(B)) = ∅ by IH(1 and 2). Also, �LM(A−◦
B) : A −◦ B because by IH(1) x : A �L E(x,A) : B −◦ B and by IH(2)
�L M(B) : B. �

Lemma 10. If x : A �L t : T and �L v : A then: E(t, T )[v/x] = E(t[v/x], T ).

Proof. By induction on T , using the fact that �L t[v/x] : T . �
Lemma 11 (Erasing Lemma). If �L t : T (i.e. t closed) then E(t, T ) −→∗ I.

Proof. By induction on T , using Theorem 4:

E(t,Nat) = iter t I I −→∗ iter (Sn0) I I −→∗ I
E(t,Bool) = cond t I I −→∗ I.
If T = A ⊗ B, then t −→∗ 〈a, b〉 and by Theorem 1 and Lemma 4: �L a : A

and �L b : B. By induction, E(a,A) −→∗ I and E(b, B) −→∗ I, therefore
let 〈x, y〉 = 〈a, b〉 in E(x,A)E(y,B) −→∗ I.

If T = A −◦B then E(t, A −◦ B) = E(tM(A), B) and by Lemma 9 M(A) is a
closed System L term of type A, thus by induction E(tM(A), B) −→∗ I. �



130 S. Alves et al.

Explicit Copying. We have shown how to duplicate numbers in Section 4, but
to simulate System T we need to be able to copy arbitrary terms. The previous
technique can be generalised to other data structures, but not to functions.
However, the iterator copies (closed) functions. Our aim now is to harness this.
We proceed with an example before giving the general principle. Suppose that
we want to write λx.〈x, x〉. This term can be linearised : λxy.〈x, y〉. If we now
apply this term to two copies of the argument, we are done. Although we don’t
have the argument yet, we can write a System L term which will create these
copies: λz.iter (S2 0) (λxy.〈x, y〉) (λx.xz).

Lemma 12 (Duplication Lemma). If t is a closed System L term, then there
is a System L term D such that Dt = 〈t, t〉.

Proof. Let D = λz.iter S(S 0) (λxy.〈x, y〉) (λx.xz) then
Dt −→ iter S(S 0) (λxy.〈x, y〉) (λx.xt)
−→∗ (λx.xt)((λx.xt)(λxy.〈x, y〉)) −→∗ 〈t, t〉 �

This result also applies to numbers, so we have two different ways of copying
numbers in System L.

5.1 Compilation

We now put the previous ideas together to give a formal compilation of System
T into System L.

Definition 5. System T types are translated into System L types using 〈〈·〉〉 de-
fined by:

〈〈Nat〉〉 = Nat 〈〈Bool〉〉 = Bool
〈〈A→ B〉〉 = 〈〈A〉〉 −◦ 〈〈B〉〉 〈〈A×B〉〉 = 〈〈A〉〉 ⊗ 〈〈B〉〉

If Γ = x1 : T1, . . . , xn : Tn then 〈〈Γ 〉〉 = x1 : 〈〈T1〉〉, . . . , xn : 〈〈Tn〉〉.

Definition 6 (Compilation). Let t be a System T term such that Γ �T t :
T . Its compilation into System L is defined as: [x1] . . . [xn]〈〈t〉〉 where fv(t) =
{x1, . . . , xn}, n ≥ 0, we assume without loss of generality that the variables are
processed in lexicographic order, and 〈〈·〉〉, [·]· are defined below. We abbreviate
iter (Sn 0) (λx1 · · ·xn.t) (λz.zx) as Cx1,...,xn

x t, and ([x]t)[y/x] as Axyt.

〈〈x〉〉 = x
〈〈tu〉〉 = 〈〈t〉〉〈〈u〉〉
〈〈λx.t〉〉 = λx.[x]〈〈t〉〉, if x ∈ fv(t)

= λx.E(x, 〈〈A〉〉)〈〈t〉〉, otherwise, where Γ �T t : A→ B = T
(Lemma 1)

〈〈0〉〉 = 0
〈〈S t〉〉 = S〈〈t〉〉
〈〈iter n u v〉〉 = iter 〈〈n〉〉 〈〈u〉〉 〈〈v〉〉
〈〈true〉〉 = true
〈〈false〉〉 = false
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〈〈cond n u v〉〉 = cond 〈〈n〉〉 〈〈u〉〉 〈〈v〉〉
〈〈〈t, u〉〉〉 = 〈〈〈t〉〉, 〈〈u〉〉〉
〈〈π1t〉〉 = let 〈x, y〉 = 〈〈t〉〉 in E(y, 〈〈B〉〉)x, where Γ �T t : A×B = T

(Lemma 1)
〈〈π2t〉〉 = let 〈x, y〉 = 〈〈t〉〉 in E(x, 〈〈A〉〉)y, where Γ �T t : A×B = T

(Lemma 1)

and [·]· is defined as:

[x](S t) = S([x]t)
[x]x = x
[x](λy.t) = λy.[x]t

[x](tu) =

⎧⎪⎨⎪⎩
Cx1,x2
x (Axx1

t)(Axx2
u) x ∈ fv(t), x ∈ fv(u)

([x]t)u x ∈ fv(t), x �∈ fv(u)
t([x]u) x ∈ fv(u), x �∈ fv(t)

[x](iter n u v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iter [x]n u v x ∈ fv(n), x �∈ fv(uv)
iter n [x]u v x �∈ fv(nv), x ∈ fv(u)
iter n u [x]v x �∈ fv(nu), x ∈ fv(v)
C
x,x2
x iter (Axx1

n) (Axx2
u) v x ∈ fv(n) ∩ fv(u), x �∈ fv(v)

Cx1,x3
x iter (Axx1

n) u (Axx3
v) x ∈ fv(n) ∩ fv(v), x �∈ fv(u)

Cx2,x3
x iter n (Axx2

u) (Axx3
v) x �∈ fv(n), x ∈ fv(u) ∩ fv(v)

Cx1,x2,x3
x iter (Axx1

n) (Axx2
u) (Axx3

v) x ∈ fv(n) ∩ fv(u) ∩ fv(v)

[x](cond n u v) follows the same structure as iter above, replacing iter by cond.

[x]〈t, u〉 =

⎧⎪⎨⎪⎩
Cx1,x2
x 〈Axx1

t, Axx2
u〉, x ∈ fv(t), x ∈ fv(u)

〈[x]t, u〉, x ∈ fv(t), x �∈ fv(u)
〈t, [x]u〉, x ∈ fv(u), x �∈ fv(t)

[x](let 〈y, z〉 = t in u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
let 〈y, z〉 = [x]t in u x ∈ fv(t), x �∈ fv(u)
let 〈y, z〉 = t in [x]u x �∈ fv(t), x ∈ fv(u)
Cx1,x2
x (let 〈y, z〉 = Axx1

t in Axx2
u)
x ∈ fv(t), x ∈ fv(u)

where the variables x1, x2 and x3 above are assumed fresh.

As an example, we show the compilation of the combinators:
− 〈〈λx.x〉〉 = λx.x
− 〈〈λxyz.xz(yz)〉〉 = λxyz.iter 2 (λz1z2.xz1(yz2)) λa.az
− 〈〈λxy.x〉〉 = λxy.E(y,B)x

Lemma 13. If t is a System T term, then:

1. fv([x1] · · · [xn]〈〈t〉〉) = fv(t).
2. [x1] · · · [xn]〈〈t〉〉 is a valid System L term (satisfying the constraints in Ta-

ble 1), if fv(t) = {x1, . . . , xn}.
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Proof. The first part is by induction on t using Lemma 9, and the second part
by induction on t using the first part. �
We will now prove that the compilation produces a typable term in System L.
For this we will need a lemma in which we will use the type system for System
L augmented with weakening and contraction rules for variables in a certain set
X . Typing judgements in this system will be denoted Γ �L+X t : T . We will
denote Γ|X the restriction of Γ to the variables in X .

Lemma 14. If Γ �T t : T and {x1, . . . , xn} ⊆ fv(t) then

1. 〈〈Γ|fv(t)〉〉 �L+fv(t) 〈〈t〉〉 : 〈〈T 〉〉
2. 〈〈Γ|fv(t)〉〉 �L+X [x1] . . . [xn]〈〈t〉〉 : 〈〈T 〉〉 implies
〈〈Γ|fv(t)〉〉 �L+X′ [x][x1] . . . [xn]〈〈t〉〉 : 〈〈T 〉〉 where X = fv(t)−{x1, . . . , xn}, x ∈ X,
X ′ = X − {x}.

Proof. By simultaneous induction on t. �
Corollary 1. If Γ �T t : T and fv(t) = {x1, . . . , xn} then
〈〈Γ|fv(t)〉〉 �L [x1] . . . [xn]〈〈t〉〉 : 〈〈T 〉〉.

We will now prove that we can simulate System T evaluations. First we prove a
substitution lemma.

Lemma 15 (Substitution). Let t and w be System L terms such that fv(t) =
{x1, . . . , xn}, n ≥ 1, and fv(w) = ∅, then

([x1] . . . [xn]〈〈t〉〉)[〈〈w〉〉/x1 ] −→∗ [x2] . . . [xn]〈〈t[w/x1]〉〉.

Proof. By Lemma 13 (Part 1), fv(〈〈w〉〉) = ∅, and x1 ∈ fv([x1] . . . [xn]〈〈t〉〉). We
proceed by induction on t. �
Theorem 5 (Simulation). Let t be a System T program, then: t ⇓ u ⇒
〈〈t〉〉 −→∗ 〈〈u〉〉.

Proof. By induction on t ⇓ u. We show two cases:
Application. By induction: 〈〈tu〉〉 = 〈〈t〉〉〈〈u〉〉 −→∗ 〈〈λx.t′〉〉〈〈u〉〉. There are now two
cases:

If x ∈ fv(t′) then using Lemma 15:
〈〈λx.t′〉〉〈〈u〉〉 = (λx.[x]〈〈t′〉〉)〈〈u〉〉 −→ ([x]〈〈t′〉〉)[〈〈u〉〉/x] −→∗ 〈〈t′[u/x]〉〉 −→∗ 〈〈v〉〉

Otherwise, using Lemmas 10 and 11:
〈〈λx.t′〉〉〈〈u〉〉 = (λx.E(x,A)〈〈t′〉〉)〈〈u〉〉 −→∗ (E(〈〈u〉〉, 〈〈A〉〉)〈〈t′ 〉〉) −→ 〈〈t′〉〉

= 〈〈t′[u/x]〉〉 −→∗ 〈〈v〉〉
Projection. By induction and Lemmas 10 and 11:
〈〈π1t〉〉 = let 〈x, y〉 = 〈〈t〉〉 in E(y, 〈〈A〉〉)x −→∗ let 〈x, y〉 = 〈〈〈u, v〉〉〉 in E(y, 〈〈A〉〉)x

= let 〈x, y〉 = 〈〈〈u〉〉, 〈〈v〉〉〉 in E(y, 〈〈A〉〉)x −→ E(〈〈v〉〉, 〈〈A〉〉)〈〈u〉〉 −→∗ 〈〈v〉〉 �
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6 Conclusions

We have shown how to build a powerful calculus starting from the (very weak in
terms of computational power) linear λ-calculus, by adding Booleans, numbers
and linear iterators. We have seen that linear iterators can express much more
than primitive recursive functions: the system has the computational power of
System T .

We have focused on the computational power of the linear calculus in this
paper; there are other interesting aspects that remain to be studied:

– By the Curry-Howard isomorphism, the results can also be expressed as a
property of the underlying logic (our translation from System T to System
L eliminates Weakening and Contraction rules).

– Applications to category theory: It is well-known that a Cartesian closed
category (CCC) models the structure of the simply typed λ-calculus (i.e., a
CCC is the internal language for the λ-calculus [17,18]). The internal lan-
guage of a symmetric monoidal closed category (SMCC) is the linear λ-
calculus [20]. If we add a natural numbers object (NNO) to this category,
then this corresponds to adding natural numbers and an iterator to the cal-
culus. In this setting, a natural question arises : what is the correspondence
between CCC+NNO and SMCC+NNO?

– Does the technique extend to other typed λ-calculi, for instance the Calculus
of Inductive Constructions [22]?
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Abstract. The Hintikka-style modal logic approach to knowledge con-
tains a well-known defect of logical omniscience, i.e., the unrealistic fea-
ture that an agent knows all logical consequences of her assumptions. In
this paper, we suggest the following Logical Omniscience Test (LOT):
an epistemic system E is not logically omniscient if for any valid in E
knowledge assertion A of type ‘F is known,’ there is a proof of F in E,
the complexity of which is bounded by some polynomial in the length
of A. We show that the usual epistemic modal logics are logically omni-
scient (modulo some common complexity assumptions). We also apply
LOT to evidence-based knowledge systems, which, along with the usual
knowledge operator Ki(F ) (‘agent i knows F ’), contain evidence asser-
tions t : F (‘t is a justification for F ’). In evidence-based systems, the
evidence part is an appropriate extension of the Logic of Proofs LP,
which guarantees that the collection of evidence terms t is rich enough
to match modal logic. We show that evidence-based knowledge systems
are logically omniscient w.r.t. the usual knowledge and are not logically
omniscient w.r.t. evidence-based knowledge.

1 Introduction

The modal logic approach to knowledge [25] contains a well-known defect of
logical omniscience, i.e., the unrealistic feature that an agent knows all logi-
cal consequences of her assumptions. In particular, a logically omniscient agent
who knows the rules of chess would also know whether White has a non-losing
strategy.

The logical omniscience sickness is a major obstacle in the way of applying
the logic of knowledge in Computer Science. For example, within the modal
logic of knowledge, an agent who knows the product of two primes also knows
both of those primes1, which makes this logic useless in analyzing cryptographic
protocols epistemically.

The logical omniscience problem, raised in [14,15,26,38,40], has been studied
extensively in logic, epistemology, game theory and economics, distributed sys-
tems, artificial intelligence, etc., in a large number of papers, including
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the CUNY Graduate Center.
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[1,9,13,14,15,16,22,23,27,33,36,37,41,42,44,45,46,47,48], and many others. Most
of them adjust epistemic models to avoid certain features of logical omniscience.

In this paper, we try a general approach based on proof complexity to define
and test the logical omniscience property of an epistemic system. This approach
was inspired by the Cook-Reckhow theory of proof complexity [11,43].

We see the essence of the logical omniscience problem in a nonconstructive
character of modal languages, which are able to symbolically represent knowledge
without providing any information about its origin. In a modal language, there
are valid knowledge assertions that do not have feasible justifications and hence
cannot be regarded valid in any practical sense. We view logical omniscience
rather as a syntactic and complexity issue. On the basis of this understanding,
we suggest the following test:

An epistemic system E is not logically omniscient if for any valid in E
knowledge assertion A of type F is known, there is a proof of F in E, the
complexity of which is bounded by some polynomial in the length of A.

We show that the traditional epistemic modal logics do not pass this test and
hence are logically omniscient. This complies nicely with the intuition that led
to the recognition of the logical omniscience problem in the first place.

The aforementioned test suggests ways of building epistemic systems that are
not logically omniscient: one has to alter the syntax of knowledge assertions F is
known in order to include more information about why F is known. This added
information should be sufficient for recovering a certified justification, e.g. a
feasible proof, for F .

We show that recently introduced evidence-based knowledge systems from
[3,4,6,8] are not logically omniscient.

In Section 2, we formally introduce the Logical Omniscience Test (LOT). In
Section 3, we show that, according to LOT, the traditional epistemic modal
logics are logically omniscient. Then, in Section 4, we formulate the system LP,
which is a general purpose calculus of evidence terms, and show in Section 5
that LP as an epistemic system is not logically omniscient. Finally, in Section 6,
we extend these results to the multi-agent logics with common knowledge and
the corresponding evidence-based knowledge systems.

2 Logical Omniscience Test

Let L be a logical theory. According to Cook and Reckhow (cf. [11,43]), a proof
system for L is a polynomial-time computable function p: Σ∗ → L from the set
of strings in some alphabet, called proofs, onto the set of L-valid formulas. In
addition, we consider a measure of size for proofs, which is a function �: Σ∗ → IN,
and a measure of size for individual formulas | · |: FmL → IN.

Logical Omniscience Test (Artemov, 2005). Let L be a theory capable
of expressing knowledge assertions ‘formula F is known,’ supplied with a proof
system p, a measure of size for proofs �, and a measure of size for individual
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formulas | · |. Theory L is not logically omniscient w.r.t. proof system p under
size measures � and |·| if there exists a polynomial P such that for each valid in L
knowledge assertion A stating that ‘F is known,’ formula F has a proof D ∈ Σ∗

such that
�(D) ≤ P (|A|) .

Note 1. This test has a proof system and measures of size for proofs and formulas
as parameters. With such a freedom, one should be careful when applying this
test to real epistemic systems. In particular, in this paper, we consider only
complexity measures that are commonly used in proof complexity for various
specific types of proofs.

In this paper, we mostly consider Hilbert-style proof systems. The size measures
commonly associated with them are

1. the number of formulas in a derivation, i.e., the number of proof steps,
2. the number of logical symbols in a derivation,
3. the bit size of a derivation, i.e., the number of symbols with the size of indices

of propositional variables, etc. taken into account. In other words, this is the
string length in the alphabet Σ∗.

These are the three measures on which we will concentrate. If the size of a
proof �(D) is the number of symbols (counting or not counting indices), it seems
reasonable to use the same measure for the size of formulas: |F | = �(F ). But
in case 1, i.e., when we only take into account the number of formulas, using
the same measure for the size of formulas would yield |F | = 1 for any single
formula F , which is not a fair measure. So, if the size of a proof is the number
of formulas, we will measure the size of individual formulas using number of
symbols (again with or without indices). This is the reason why, in general, we
need two different measures for proofs and formulas.

3 Modal Epistemic Logics Are Logically Omniscient

It is fairly easy to show that a modal logic, such as S4, is logically omniscient
under the bit size measure w.r.t. any proof system, modulo a common complexity
assumption. Consider S4 with the modality K.

Theorem 1. Consider any proof system p for S4. Let the size of a proof (a for-
mula) be the string length of that proof (that formula). Then S4 is logically
omniscient unless PSPACE = NP.

Proof. Indeed, suppose S4 is not logically omniscient. So for every valid knowl-
edge assertion KF , formula F has a polynomial-size proof in the proof system p,
i.e., there exists a polynomial P such that for every knowledge assertion KF
provable in S4 there is a proof DF of F with �(DF ) ≤ P (|KF |).

Then we can construct an NP decision procedure for the validity problem
in S4. We have S4 � G iff S4 � KG. So to determine whether a formula G is
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valid, non-deterministically guess its polynomial-size proof in the proof system p.
Then, check that it is indeed a proof of G; this can be done in polynomial time
of the size of the proof (by definition of a proof system), which, in its turn, is a
polynomial in |KG| = |G|+ 1.

On the other hand, it is well known that S4 is PSPACE-complete ([30]). Thus,
the existence of an NP-algorithm for S4 would ensure that PSPACE ⊆ NP, in
which case these two classes coincide. '(

If we restrict our attention to the Hilbert-style proofs, there are two more size
measures available: the number of proof steps and the number of logical symbols
in a derivation. For either of the two, one can show that S4 is logically omniscient
(modulo the same common complexity assumption).

Theorem 2. S4 is logically omniscient w.r.t. the Hilbert proof system with the
size of a proof being the number of formulas in it unless PSPACE = NP.

Proof. Again, we want to construct an NP algorithm for the decision problem
in S4. But it is not so easy to NP-guess the whole proof in this case. Although
there are only polynomially many formulas, still the proof can a priori be expo-
nentially long if the formulas are huge.

We will use unification and modified Robinson’s algorithm (see [12]) to do the
proof schematically.

Again, for an arbitrary formula G, non-deterministically guess the structure
of a Hilbert proof of G, i.e., for each of the polynomially many formulas, guess
whether it is an axiom, or a conclusion of a modus ponens rule, or a conclusion
of a necessitation rule. For each rule, also guess which of the other formulas
was(were) used as its premise(s); for each axiom, guess to which of the finitely
many axiom schemes it belongs. This gives us the structure of the derivation
tree, in fact, of the derivation dag because in Hilbert proofs, one formula can be
used in several rules.

Write each axiom used in the form of the corresponding axiom scheme using
variables over formulas (variables in different axioms must be distinct). Then,
starting from the axioms, we can restore the proof in a schematic way. Where
a necessitation rule needs to be used, just prefix the formula with K. A case
of modus ponens is more interesting. Suppose modus ponens is to be used on
schemes X → Y and Z. Then, unify X with Z using modified Robinson’s algo-
rithm from [12] and apply the resulting most general unifier (m.g.u.) to Y .

Eventually, at the root of the tree, we will obtain the most general form of
formulas that can be proved using derivations with this particular dag structure.
Unify this form with the formula G.

All unifications can be done in quadratic time of the size of all the formula dags
in the derivation dag; such is the complexity of modified Robinson’s algorithm.
Each axiom scheme at the beginning has a constant size, and the number of
axioms and rules is polynomial in |KG|; hence the whole unification procedure
is polynomial.

Again we were able to construct an NP decision algorithm under the assump-
tion that there is a polynomial-step Hilbert derivation. '(
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So S4 turns out to be logically omniscient w.r.t. an arbitrary proof system under
the bit size measure and w.r.t. the Hilbert proofs under any commonly used
measure, provided, of course, that PSPACE �= NP.

It is not hard to generalize this result to the epistemic logic S4n of n knowledge
agents and the logic of common knowledge S4C

n . The argument is essentially the
same, only for S4C

n the effect of it not being logically omniscient would be even
more devastating: S4C

n is EXPTIME-complete (for n ≥ 2) (see [23]).

Theorem 3. 1. S4n is logically omniscient w.r.t. an arbitrary proof system
under the bit size measure unless PSPACE = NP.

2. S4n is logically omniscient w.r.t. the Hilbert proof system with the size of a
proof being the number of formulas in it unless PSPACE = NP.

3. S4C
n is logically omniscient w.r.t. an arbitrary proof system under the bit size

measure unless EXPTIME = NP.
4. S4C

n is logically omniscient w.r.t. the Hilbert proof system with the size of a
proof being the number of formulas in it unless EXPTIME = NP.

Similar results hold for epistemic logics that are co-NP-complete, e.g. S5. Re-
peating the argument for them would yield NP = co-NP.

4 Logic of Evidence-Based Knowledge LP

The system LP was originally introduced in [2] (cf. [3]) as a logic of formal math-
ematical proofs. Subsequently, in [4,5,6,7,8,17,19], LP has been used as a general
purpose calculus of evidence, which has helped to incorporate justification into
formal epistemology, thus meeting a long standing demand in this area.

The issue of having a justification formally presented in the logic of knowl-
edge has been discussed widely in mainstream epistemology, as well as in Com-
puter Science communities [10,20,21,24,31,32,34,39]. This problem can be traced
back to Plato who defined knowledge as Justified True Belief (JTB): despite
well-known criticism, JTB specification is considered a necessary condition for
possessing knowledge. The traditional Hintikka-style modal theory of knowledge
does not contain justification and hence has some well-known deficiencies: it does
not reflect awareness, agents are logically omniscient, the traditional common
knowledge operator effectively ruins logics of knowledge proof-theoretically and
substantially increases complexity. Most prominently, however, the traditional
modal logic of knowledge lacked expressive tools for discussing evidence and
analyzing the reasons for knowledge. According to Hintikka’s traditional modal
logic of knowledge, an agent i knows F iff F holds in all situations that i con-
siders possible. This approach leaves doors open for a wide range of speculative
‘knowledge’: occasional, coincidental, not recognizable, etc. The evidence-based
approach views knowledge through the prism of justification: the new epistemic
atoms here are of the form t :F , “F is known for the reason t.” Naturally, this
approach required a special theory of justification and the Logic of Proofs re-
vealed the basic structure of evidence. In order to match the expressive power
of modal logic, it suffices to have only three manageable operations on evidence:
application, union, and evidence checker.
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4.1 Axiom System

Evidence terms t are built from evidence constants ci and evidence variables xi

by means of three operations: unary ‘!’ and binary ‘+’ and ‘·’

t ::= ci | xi | ! t | t · t | t + t

The axioms of LP0 are obtained by adding the following schemes to a finite set
of axiom schemes of classical propositional logic:

LP1 s : (F → G) → (t :F → (s · t) :G) (application)
LP2 t :F → ! t :t :F (evidence checker)
LP3 s :F → (s + t) :F, t :F → (s + t) :F (union)
LP4 t :F → F (reflexivity)

The only rule of LP0 is modus ponens. The usual way to define the full LP is to
add to LP0 the rule of axiom necessitation:

If A is a propositional axiom or one of LP1-4 and c is a constant, infer c :A.

The system LP behaves as a normal propositional logic. In particular, LP is
closed under substitutions and enjoys the deduction theorem. The standard se-
mantics of proofs for LP considers variables xi as unspecified proofs, and con-
stants ci as unanalyzed proofs of “elementary facts,” i.e., logical axioms.

A constant specification CS is a set of LP-formulas of form c : A, where c is
an evidence constant, A is an axiom. Each LP-derivation generates a constant
specification that consists of the formulas of form c :A introduced by the axiom
necessitation rule.

A constant specification is called injective if no evidence constant is assigned
to two different axioms. In such specifications, each constant carries complete
information about the axiom the proof of which it represents.

The maximal constant specification is that in which each evidence constant
is assigned to every axiom. This corresponds to the situation where there is no
restriction on the use of evidence constants in the axiom necessitation rule.

We define LPCS as the result of adding constant specification CS as new axioms
to LP0. LP is LPCS for the maximal constant specification CS.

At first glance, LP looks like an explicit version of the modal logic S4 with basic
modal axioms replaced by their explicit counterparts. However, some pieces seem
to be missing, e.g. the modal necessitation rule � F ⇒ � KF . The following
lemma shows that LP enjoys a clear constructive version of the necessitation
rule.

Lifting Lemma 1. ([2,3]) If LP � F , then there exists a +-free ground2 evi-
dence term t such that LP � t :F .

In fact, the analogy between LP and S4 can be extended to its maximal degree.
We define a forgetful mapping as (t : F )◦ = K(F ◦). The following realization
theorem shows that S4 is the forgetful projection of LP.
2 Ground here means that no evidence variable occurs within it.
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Theorem 4 (Realization Theorem). ([2,3])

1. If LP � G, then S4 � G◦.
2. If S4 � H, then there exists an LP-formula B (called a realization of H) such

that LP � B and B◦ = H.

In particular, the Realization Theorem shows that each occurrence of epistemic
modality K in a modal epistemic principle H can be replaced by some evidence
term, thus extracting the explicit meaning of H . Moreover, it is possible to
recover the evidence terms in a Skolem style, namely, by realizing negative oc-
currences of modality by evidence variables only. Furthermore, any S4-theorem
can be realized using injective constant specifications only.

4.2 Epistemic Semantics of Evidence-Based Knowledge

Epistemic semantics for LP was introduced by Fitting in [17,19] based on earlier
work by Mkrtychev ([35]). Fitting semantics was extended to evidence-based
systems with both knowledge modalities KiF and evidence assertions t : F
in [4,6,7,8].

A Fitting model for LP is a quadrupleM = (W, R, E , V ), where (W, R, V ) is
the usual S4 Kripke model and E is an evidence function defined as follows.

Definition 1. A possible evidence function E :W×Tm → 2Fm maps worlds and
terms to sets of formulas. An evidence function is a possible evidence function
E :W × Tm → 2Fm that satisfies the following conditions:

1. Monotonicity: wRu implies E(w, t) ⊆ E(u, t)
2. Closure:

– Application: (F → G) ∈ E(w, s) and F ∈ E(w, t) implies G ∈ E(w, s · t)
– Evidence Checker: F ∈ E(w, t) implies t :F ∈ E(w, ! t)
– Union: E(w, s) ∪ E(w, t) ⊆ E(w, s + t)

For a given constant specification CS, a CS-evidence function is an evidence
function that respects the constant specification CS, i.e., c : A ∈ CS implies
A ∈ E(w, c). When speaking about CS-evidence functions for the maximal CS
(case of LP), we will omit prefix CS and simply call them evidence functions.

Forcing relationM, w � F is defined by induction on F .

1. M, w � P iff V (w, P ) = t for propositional variables P ;
2. boolean connectives are classical;
3. M, w � s :G iff G ∈ E(w, s) and M, u � G for all wRu.

Again, when speaking about models for LP (case of the maximal CS), we will
omit prefix CS and will simply call them models (or F-models).

As was shown in [17,19], LPCS is sound and complete with respect to CS-
models. Mkrtychev models (M-models) are single-world Fitting models. As was
shown in [35], LPCS is sound and complete with respect to M-models as well.

We are mostly interested in knowledge assertions t :F . A special calculus for
such formulas was suggested in [28].
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Definition 2. The axioms of logic rLPCS are exactly the set CS. The rules are

t :F
! t :t :F

s :F
(s + t) :F

t :F
(s + t) :F

s : (F → G) t :F
(s · t) :G

Theorem 5. ([28]) LPCS � t :F iff rLPCS � t :F .

We will again omit subscript CS when discussing the maximal constant specifi-
cation.

5 Evidence-Based Knowledge Is Not Logically
Omniscient

Now we are ready to show that evidence-based knowledge avoids logical omni-
science. The first question we have to settle is what constitutes a ‘knowledge
assertion’ here. Apparently, the straightforward answer t : F , generally speak-
ing, is not satisfactory since both t and F may contain evidence constants, the
meaning of which is given only in the corresponding constant specification, thus
the latter should be a legitimate part of the input.

Definition 3. A comprehensive knowledge assertion has form∧
CS → t :F ,

where CS is a finite injective constant specification that specifies all the constants
occurring in t.

Each LP-derivation only uses the axiom necessitation rule finitely many times.
Hence, each derivation of F can be turned into an LP0-derivation of

∧
CS → F .

Lemma 2. LP � t : F iff LP0 �
∧
CS → t : F iff rLPCS � t : F for some

finite constant specification CS.

In this section we consider all three proof complexity measures: number of for-
mulas, length, and bit size. In all three cases we show that LP is not logically
omniscient. In fact, for the number of lines measure we are able to get a stronger
result: LP has polynomial-step proofs of F even in the length of t :F , i.e., without
taking into account constant specifications. For the sake of technical convenience,
we begin with this result.

5.1 Number of Formulas in the Proof

Throughout this subsection, the size of a derivation �(D) is the number of formu-
las in the derivation. Moreover, we allow here arbitrary constant specifications,
not necessarily injective.

Theorem 6. LP is not logically omniscient w.r.t. the Hilbert proof system, with
the size of a proof being the number of formulas it contains.
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Proof. We show that for each valid knowledge assertion t :F there is a Hilbert-
style derivation of F that makes a linear number of steps. We will show that
actually 3|t|+ 2 steps is enough, where |t| is the number of symbols in t.

Indeed, since LP � t : F , by Theorem 5 we have rLP � t : F . It can be easily
seen that a derivation of any formula t :F in rLP requires at most |t| steps since
each rule increases the size of the outer term by at least 1.

Each axiom of rLP is an instance of an axiom necessitation rule of LP. Each rule
of rLP can be emulated in LP by writing the corresponding axiom (LP1 for the
·-rule, LP2 for the !-rule, or LP3 for the +-rule) and by using modus ponens once
for each of the second and the third cases or twice for the first case. Thus each
step of the rLP-derivation is translated as two or three steps of the corresponding
LP-derivation. Finally, to derive F from t :F we need to add two formulas: LP4-
axiom t : F → F and formula F by modus ponens. Hence we need at most
3|t|+ 2 steps in this Hilbert-style derivation of F . '(

The lower bound on the number of steps in the derivation is also encoded by
evidence terms. But here we cannot take an arbitrary term t such that LP � t :F .
If evidence t corresponds to a very inefficient way of showing validity of F , it
would be possible to significantly shorten it. But an efficient evidence term t
does give a lower bound on the derivation of F . In what follows, by †(t) we mean
the size of the syntactic dag for t, i.e., the number of subterms in t.

Theorem 7. For a given F , let t be the term smallest in dag-size among all the
terms such that LP � t :F . Let D be the shortest Hilbert-style proof of F . Then
the number of steps in D is at least half the number of subterms in t:

�(D) ≥ 1
2
†(t) .

Proof. Let D be a derivation of F , minimal in the number of steps N = �(D). By
Lifting Lemma 1, there exists a +-free ground term t′ such that LP � t′ :F . The
structure of the derivation tree of D is almost identical to that of the syntactic
tree of t′. The only difference is due to the fact that an axiom necessitation
rule c :A in a leaf of a derivation tree corresponds to two nodes in the syntactic
tree: for c and for ! c. But we are interested in the dag sizes of both. Dag structures
may have further differences if one evidence constant was used in D for several
axiom necessitation instances. This would further decrease the size of the dag
for t′. Hence, for the dag-smallest term t we have

�(D) ≥ 1
2
†(t′) ≥ 1

2
†(t) . '(

Combining the results of Theorems 6 and 7 we obtain the following

Corollary 1. Let t be the dag-smallest term such that LP � t :F . Let D be the
shortest Hilbert-style proof of F . Then

1
2
†(t) ≤ �(D) ≤ 3|t|+ 2 .
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Remark 1. Although we were able to obtain both the lower and the upper bound
on the size of the derivation, these bounds are not tight as the tree-size (number
of symbols) and the dag-size (number of subterms) can differ exponentially.
Indeed, consider a sequence {tn} of terms such that t1 = c and tn+1 = tn · tn.
Then |tn| = 2†(tn) − 1.

5.2 Length and Bit Size of Proofs

Let now �(D) stand for either the number of symbols in D or the number of
bits in D. Accordingly, let |F | = �(F ). We will also assume that constant spec-
ifications are injective. This does not limit the scope of LP, since the principal
Realization Theorem 4 is established in [2,3] for injective constant specifications
as well.

Theorem 8. Let
∧
CS → t : F be a comprehensive knowledge assertion valid

in LP0. Then there exist a polynomial P and a Hilbert-style LPCS-derivation D
of F such that

�(D) ≤ P
(∣∣∣∧ CS → t :F

∣∣∣) .

Proof. The knowledge assertion
∧
CS → t : F is valid, hence rLPCS � t : F by

Lemma 2. A derivation in rLPCS will again consist of at most |t| steps; only here
we know exactly which axioms were used in the leaves because of injectivity
of CS.

Each formula in this derivation has form s :G where s is a subterm of t; let us
call these G’s evidenced formulas. We claim that the size of evidenced formulas,
|G|, is bounded by �(CS) + |t|2. Indeed, the rules for ‘+’ do not change the
evidenced formula. The rule for ‘·’ goes from evidenced formulas A → B and A
to evidenced formula B, which is smaller than A → B. The only rule that does
increase the size of the evidenced formula is the rule for ‘!’: it yields s :G instead
of G. Such an increase is by |s| ≤ |t| and the number of !-rules is also bounded
by |t|.

Therefore the rLPCS -derivation has at most |t| formulas of size at most �(CS)+
|t|2 + |t| each. It is clear that the size of the whole derivation is polynomial
in |

∧
CS → t:F |.

As before, we convert an rLPCS-derivation into an LPCS -derivation as de-
scribed in the proof of Theorem 6. Evidently, the additional LP-axioms and
intermediate results of modus ponens for ‘·’ only yield a polynomial growth of
the derivation size.

Finally, we append the LPCS-derivation with t :F → F and F . The resulting
derivation of F is polynomial in |

∧
CS → t:F |. '(

6 Combining Implicit and Evidence-Based Knowledge

In this section we will extend the Logical Omniscience Test to modal epistemic
systems with justifications [4,6,7,8] and show that these systems are logically
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omniscient w.r.t. the usual (implicit) knowledge, but remain non logically om-
niscient w.r.t. evidence-based knowledge.

Logic of knowledge with justification S4LP 3 was introduced in [6,7,8]. Along
with the usual modality of (implicit) knowledge KF (‘F is known’), this system
contains evidence-based knowledge assertions t :F (‘F is known for a reason t ’)
represented by an LP-style module. S4LP was shown in [6,18] to be sound and
complete with respect to F-models, where modality is given the standard Kripke
semantics.

In a more general setting, logics S4nLP of evidence-based common knowledge
were introduced in [4] to model multiple agents that all agree with the same set
of explicit reasons. Its language contains n knowledge modalities Ki along with
t : F constructs for the same set of evidence terms as in LP. The axioms and
rules of S4nLP are as follows:

1. finitely many propositional axiom schemes and modus ponens rule,
2. standard S4-axioms with necessitation rule for each modality Ki,
3. axioms LP1–LP4 with the axiom necessitation rule,
4. Connecting principle t :F → KiF for each modality Ki.

The system S4LP is S4nLP for n = 1.
Fitting-style models for S4nLP were introduced in [4]. Let W be a non-empty

set of worlds. Let R, R1, . . . , Rn be reflexive and transitive binary relations on W
with R ⊇ Ri, i = 1, . . . , n. Let E be an evidence function satisfying all the
conditions from the definition of F-models, where Monotonicity is formulated
with respect to accessibility relation R and constant specification is taken to
be the maximal for S4nLP. Let V be a valuation in the usual modal sense.
An S4nLP-model is a tuple M = (W, R, R1, . . . , Rn, E , V ) with forcing relation
defined as follows:

1. M, w � P iff V (w, P ) = t for propositional variables P ,
2. boolean connectives are classical,
3. M, w � KiG iff M, u � G for all wRiu.
4. M, w � s :G iff G ∈ E(w, s) and M, u � G for all wRu.

As was shown in [4], S4nLP is sound and complete with respect to the models
described above.

In S4nLP, we also have two kinds of knowledge assertions: implicit KiF and
evidence-based t :F .

Theorem 9. S4nLP is logically omniscient with respect to usual knowledge as-
sertions (unless PSPACE �= NP) and is not logically omniscient with respect to
evidence-based knowledge assertions.

Proof. Without loss of generality, we will give a proof for n = 1, i.e., for S4LP.

1. Implicit knowledge is logically omniscient in the same sense as S4 was shown
to be in Theorems 1 and 2. The logic S4LP was shown to be PSPACE-complete
3 It was called LPS4 in [6].
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in [29]. It is quite evident that S4LP � F iff S4LP � KF . Hence the proof of
Theorem 1 remains intact for S4LP and implicit knowledge in S4LP is logically
omniscient w.r.t. an arbitrary proof system under the bit size measure.

2. Consider the number of formulas in a Hilbert-style proof as the measure of
its size. We show how to adapt the proof of Theorem 2 to S4LP. In addition to
axioms, modus ponens and necessitation rules, S4LP-derivations also may have
axiom necessitation rules c :A. For these, we need to guess which of the evidence
constants c occurring in KF are introduced and to which of the axiom schemes
those A’s belong. Also, for axioms we may need to use variables over evidence
terms and unify over them. These are all the changes needed for the proof, and
thus implicit knowledge in S4LP is logically omniscient w.r.t. the number of
formulas in Hilbert proofs.

3. Evidence-based knowledge is not logically omniscient. The primary tool we
used in Theorem 6 was N. Krupski’s calculus rLP. We need to develop a similar
tool for S4LP. It turns out that the calculus in the language of S4LP with the
same rules as rLP suffices.

Definition 4. Let rS4LP be the logic in the language of S4LP with the same set
of rules as rLP and with the same maximal constant specification as the set of
axioms.

Lemma 3. S4LP � t :F iff rS4LP � t :F

Proof. The original proof from [28] remains almost intact. The ‘if’ part is trivial.
For the ‘only if’ part, it is sufficient to use the minimal evidence function in a
single-world F-model instead of one in an M-model as in [28] (see also [29]). '(

Now we can take the proof of Theorem 6 word for word, replacing all instances
of LP by S4LP and rLP by rS4LP. Thus explicit knowledge in S4LP is not logically
omniscient w.r.t. the number of formulas in Hilbert proofs.

4. Similarly, we can define comprehensive knowledge assertions and prove that
S4LP is not logically omniscient w.r.t. comprehensive knowledge assertions and
Hilbert proofs measured by the number of symbols or number of bits in the proof
along the lines of Theorem 8. '(

7 Conclusions

We introduced the Logical Omniscience Test for epistemic systems on the basis
of proof complexity considerations that were inspired by Cook and Reckhow the-
ory (cf. [11,43]). This test distinguishes the traditional Hintikka-style epistemic
modal systems from evidence-based knowledge systems. We show that epistemic
systems are logically omniscient with respect to the usual (implicit) knowledge
represented by modal statements KiF (i-th agent knows F ) whereas none is log-
ically omniscient with respect to evidence-based knowledge assertions t :F (F is
known for a reason t).

One has to be careful when applying the Logical Omniscience Test. One could
engineer artificial systems to pass the test by throwing out knowledge assertions
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from a natural epistemic logic. However, comparing modal epistemic logics with
evidence-based systems is fair since, by the Realization Theorem, every knowl-
edge assertion in the former has a representative in the latter. Hence logics of
evidence-based knowledge have rich and representative systems of knowledge
assertions, both implicit and explicit.

One could try another approach to defining and testing logical omniscience
in the spirit of general algorithmic complexity. Consider the following Strong
Logical Omniscience Test (SLOT): an epistemic system E is not logically om-
niscient if there is a decision procedure for knowledge assertions A in E, the
time complexity of which is bounded by a polynomial in the length of A. It
is obvious that evidence-based knowledge systems are SLOT-logically omni-
scient w.r.t. the usual implicit knowledge (modulo common complexity assump-
tions). Furthermore, these systems are not SLOT-logically omniscient w.r.t. the
evidence-based knowledge given by +-free terms, i.e., on comprehensive knowl-
edge assertions

∧
CS → t :F , where t is +-free. Note that by the Lifting Lemma 1,

for any valid formula F , there is a +-free term t such that t :F holds. Unfortu-
nately, the page limit of this paper does not allow us to provide any more details
here.

Acknowledgements

We thank Steven Cook, Vladimir Krupski and the anonymous CSL’06 referees
of our paper for valuable comments and suggestions. Special thanks to Karen
Kletter for proofreading and editing this paper.

References

1. N. Alechina and B. Logan. Ascribing beliefs to resource bounded agents. In
Proceedings of the 1st International Joint Conference on Autonomous Agents &
Multiagent Systems (AAMAS-2002), Bologna, Italy, July 15–19, 2002, volume II,
pages 881–888. ACM Press, 2002.

2. S. Artemov. Operational modal logic. Technical Report MSI 95-29, Cornell Uni-
versity, 1995.

3. S. Artemov. Explicit provability and constructive semantics. Bulletin of Symbolic
Logic, 7(1):1–36, 2001.

4. S. Artemov. Justified Common Knowledge. Theoretical Computer Science, 357(1-
3):4–22, 2006.

5. S. Artemov, E. Kazakov, and D. Shapiro. Epistemic logic with justifications. Tech-
nical Report CFIS 99-12, Cornell University, 1999.

6. S. Artemov and E. Nogina. Logic of knowledge with justifications from the provabil-
ity perspective. Technical Report TR-2004011, CUNY Ph.D. Program in Computer
Science, 2004.

7. S. Artemov and E. Nogina. Introducing justification into epistemic logic. Journal
of Logic and Computation, 15(6):1059–1073, 2005.

8. S. Artemov and E. Nogina. On epistemic logic with justification. In Ron van der
Meyden, editor, Proceedings of the 10th Conference on Theoretical Aspects of Ratio-
nality and Knowledge (TARK-2005), Singapore, June 10–12, 2005, pages 279–294.
National University of Singapore, 2005.



148 S. Artemov and R. Kuznets

9. R. Aumann. Reasoning about knowledge in economics. In J. Halpern, editor, Pro-
ceedings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK-1986), Monterey, CA, USA, March 1986, page 251. Morgan Kaufmann,
1986.

10. L. Bonjour. The coherence theory of empirical knowledge. Philosophical Stud-
ies, 30:281–312, 1976. Reprinted in Contemporary Readings in Epistemology,
M.F. Goodman and R.A. Snyder (eds). Prentice Hall, pp. 70–89, 1993.

11. S. Cook and R. Reckhow. On the lengths of proofs in the propositional calculus
(preliminary version). In Conference Record of 6th Annual ACM Symposium on
Theory of Computing (STOC-1974), Seattle, WA, USA, April 30–May 2, 1974,
pages 135–148. ACM Press, 1974.

12. J. Corbin and M. Bidoit. A rehabilitation of Robinson’s unification algorithm. In
R. E. A. Mason, editor, Proceedings of the IFIP 9th World Computer Congress
(IFIP Congress-1983), Paris, France, September 19–23, 1983, pages 909–914.
North-Holland, 1983.

13. J. Elgot-Drapkin, M. Miller, and D. Perlis. Memory, Reason, and Time: The Step-
logic approach. In R. Cummins and J. Pollock, editors, Philosophy and AI: Essays
at the Interface, pages 79–103. MIT Press, 1991.

14. R. Fagin and J. Halpern. Belief, awareness, and limited reasoning: Preliminary
report. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (IJCAI-85), pages 491–501, 1985.

15. R. Fagin and J. Halpern. Belief, awareness, and limited reasoning. Artificial Intel-
ligence, 34(1):39–76, 1988.

16. R. Fagin, J. Halpern, and M. Vardi. A nonstandard approach to the logical omni-
science problem. Artificial Intelligence, 79(2):203–240, 1995.

17. M. Fitting. A semantics for the logic of proofs. Technical Report TR-2003012,
CUNY Ph.D. Program in Computer Science, 2003.

18. M. Fitting. Semantics and tableaus for LPS4. Technical Report TR-2004016,
CUNY Ph.D. Program in Computer Science, 2004.

19. M. Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic,
132(1):1–25, 2005.

20. E. Gettier. Is Justified True Belief Knowledge? Analysis, 23:121–123, 1963.
21. A. Goldman. A causal theory of knowing. The Journal of Philosophy, 64:335–372,

1967.
22. J. Halpern and Y. Moses. A guide to modal logics of knowledge and belief. In

Proceedings of the Ninth International Joint Conference on Artificial Intelligence
(IJCAI-85), pages 480–490, 1985.

23. J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and beliefs. Journal of Artificial Intelligence, 54:319–379, 1992.

24. V. Hendricks. Active agents. Journal of Logic, Language and Information,
12(4):469–495, 2003.

25. J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.
26. J. Hintikka. Impossible possible worlds vindicated. Journal of Philosophical Logic,

4:475–484, 1975.
27. K. Konolige. A Deductive Model of Belief. Research Notes in Artificial Intelligence.

Morgan Kaufmann, 1986.
28. N. Krupski. On the complexity of the reflected logic of proofs. Theoretical Computer

Science, 357:136–142, 2006.
29. R. Kuznets. Complexity of evidence-based knowledge. Accepted for publication in

proceeding of Rationality and Knowledge workshop of ESSLLI-2006, 2006.



Logical Omniscience Via Proof Complexity 149

30. R. Ladner. The computational complexity of provability in systems of modal propo-
sitional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

31. K. Lehrer and T. Paxson. Knowledge: undefeated justified true belief. The Journal
of Philosophy, 66:1–22, 1969.

32. W. Lenzen. Knowledge, belief and subjective probability. In V. Hendricks,
K. Jörgensen, and S. Pedersen, editors, Knowledge Contributors. Kluwer, 2003.

33. H. Levesque. A logic of implicit and explicit belief. In R. Brachman, editor,
Proceedings of the National Conference on Artificial Intelligence (AAAI-1984),
Austin, TX, USA, August 6–10, 1984, pages 198–202. AAAI Press, 1984.

34. D. Lewis. Elusive knowledge. Australian Journal of Philosophy, 7:549–567, 1996.
35. A. Mkrtychev. Models for the logic of proofs. In S. Adian and A. Nerode, editors,

Logical Foundations of Computer Science ‘97, Yaroslavl’, volume 1234 of Lecture
Notes in Computer Science, pages 266–275. Springer, 1997.

36. R. Montague. Universal Grammar. Theoria, 36:373–398, 1970.
37. R. Moore. Reasoning about knowledge in artificial intelligence. In J.Y. Halpern,

editor, Proceedings of the 1st Conference on Theoretical Aspects of Reasoning about
Knowledge (TARK-1986), Monterey, CA, USA, March 1986, page 81. Morgan
Kaufmann, 1986.

38. Y. Moses. Resource-bounded knowledge. In M. Vardi, editor, Proceedings of the 2nd
Conference on Theoretical Aspects of Reasoning about Knowledge (TARK-1988),
Pacific Grove, CA, USA, March 1988, pages 261–275. Morgan Kaufmann, 1988.

39. R. Nozick. Philosophical Explanations. Harvard University Press, 1981.
40. R. Parikh. Knowledge and the problem of logical omniscience. In Z. Ras and M. Ze-

mankova, editors, Proceedings of the 2nd International Symposium on Methodolo-
gies for Intelligent Systems (ISMIS-1987), Charlotte, NC, USA, October 14–17,
1987, pages 432–439. North-Holland, 1987.

41. R. Parikh. Logical omniscience. In D. Leivant, editor, Logical and Computational
Complexity. Selected Papers. Logic and Computational Complexity, International
Workshop (LCC-1994), Indianapolis, IN, USA, October 13–16, 1994, volume 960
of Lecture Notes in Computer Science, pages 22–29. Springer, 1995.

42. R. Parikh. Logical omniscience and common knowledge: WHAT do we know and
what do WE know? In R. van der Meyden, editor, Proceedings of the 10th Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK-2005), Sin-
gapore, June 10–12, 2005, pages 62–77. National University of Singapore, 2005.

43. P. Pudlak. The Lengths of Proofs. In S. Buss, editor, Handbook of Proof Theory,
pages 547–637. Elsevier, 1998.

44. V. Rantala. Impossible worlds semantics and logical omniscience. Acta Philosophica
Fennica, 35:18–24, 1982.

45. D. Scott. Advice in modal logic. In K. Lambert, editor, Philosophical Problems in
Logic, pages 143–173. Reidel, 1970.

46. H. Shin and T. Williamson. Representing the knowledge of turing machine. Theory
and Decision, 37(1):125–146, 1994.

47. M. Vardi. On epistemic logic and logical omniscience. In J. Halpern, editor, Pro-
ceedings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK-1986), Monterey, CA, USA, March 1986, pages 293–305. Morgan Kauf-
mann, 1986.

48. H. Wansing. A general possible worlds framework for reasoning about knowledge.
Studia Logica, 49(4):523–539, 1990.



Verification of Ptime Reducibility for

System F Terms Via Dual Light Affine Logic

Vincent Atassi1,�, Patrick Baillot2,�, and Kazushige Terui3,��

1 LIPN, Univ. Paris 13 / CNRS , France
atassi@lipn.univ-paris13.fr

2 LIPN, Univ. Paris 13 / CNRS, France
pb@lipn.univ-paris13.fr

3 National Institute of Informatics, Japan
terui@nii.ac.jp

Abstract. In a previous work we introduced Dual Light Affine Logic
(DLAL) ([BT04]) as a variant of Light Linear Logic suitable for guaran-
teeing complexity properties on lambda-calculus terms: all typable terms
can be evaluated in polynomial time and all Ptime functions can be
represented. In the present work we address the problem of typing lamb-
da-terms in second-order DLAL. For that we give a procedure which,
starting with a term typed in system F, finds all possible ways to dec-
orate it into a DLAL typed term. We show that our procedure can be
run in time polynomial in the size of the original Church typed system
F term.

1 Introduction

Several works have studied programming languages with intrinsic computational
complexity properties. This line of research, Implicit computational complexity
(ICC), is motivated both by the perspective of automated complexity analysis,
and by foundational goals, in particular to give natural characterizations of com-
plexity classes, like Ptime or Pspace. Different calculi have been used for this pur-
pose coming from primitive recursion, lambda-calculus, rewriting systems (e.g.
[BC92, MM00, LM93]). . . A convenient way to see these systems is in general
to describe them as a subset of programs of a larger language satisfying certain
criteria: for instance primitive recursive programs satisfying safe/ramified recur-
sion conditions, rewriting systems admitting a termination ordering and quasi
interpretation, etc. . .

Inference. To use such ICC systems for programming purpose it is natural
to wish to automatize the verification of the criterion. This way the user could
stick to a simple programming language and the compiler would check whether
the program satisfies the criterion, in which case a complexity property would
be guaranteed.
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In general this decision procedure involves finding a certain witness, like a
type, a proof or a termination ordering. Depending on the system this witness
might be useful to provide more precise information, like an actual bound on the
running time, or a suitable strategy to evaluate the program. It might be used
as a certificate guaranteeing a particular quantitative property of the program.

Light linear logic. In the present work we consider the approach of Light
linear logic (LLL) ([Gir98]), a variant of Linear logic which characterizes poly-
nomial time computation, within the proofs-as-programs correspondence. It in-
cludes higher-order and polymorphism, and can be extended to a naive set the-
ory ([Ter04a]), in which the provably total functions correspond to the class of
polynomial time functions.

The original formulation of LLL by Girard was quite complicated, but a first
simplification was given by Asperti with Light Affine Logic (LAL) ([AR02]).
Both systems have two modalities (one more than Linear logic) to control dupli-
cation. There is a forgetful map to system F terms (polymorphic types) obtained
by erasing some information (modalities) in types; if an LAL typed term t is
mapped to an F-typed term M we also say that t is a decoration of M .

So an LAL program can be understood as a system F program, together with
a typing guarantee that it can be evaluated in polynomial time. As system F is
a reference system for the study of polymorphically typed functional languages
and has been extensively studied, this seems to offer a solid basis to LAL.

However LAL itself is still difficult to handle and following the previous idea
for the application of ICC methods, we would prefer to use plain lambda-calculus
as a front-end language, without having to worry about the handling of modal-
ities, and instead to delegate the LAL typing part to a type inference engine.
The study of this approach was started in [Bai02]. For it to be fully manageable
however several conditions should be fulfilled:

1. a suitable way to execute the lambda-terms with the expected complexity
bound,

2. an efficient type inference,
3. a typed language which is expressive enough so that a reasonable range of

programs is accepted.

The language LAL presents some drawback for the first point, because the
LAL typed terms need to be evaluated with a specific graph syntax, proof-nets,
in order to satisfy the polynomial bound, and plain beta reduction can lead
to exponential blow-up. In a previous work ([BT04]) we addressed this issue
by defining a subsystem of LAL, called Dual Light Affine Logic (DLAL). It is
defined with both linear and non-linear function types. It is complete for Ptime
just as LAL and its main advantage is that it is also Ptime sound w.r.t. beta
reduction: a DLAL term admits a bound on the length of all its beta reduction
sequences. Hence DLAL stands as a reasonable substitute for plain LAL for
typing issues.
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Concerning point 2, as type inference for system F is undecidable ([Wel99])
we don’t try to give a full-fledged type inference algorithm from untyped terms.
Instead, to separate the polymorphic part issue from the proper DLAL part one,
we assume the initial program is already typed in F. Either the system F typing
work is left to the user, or one could use a partial algorithm for system F typing
for this preliminary phase.

So the contribution of the present work is to define an efficient algorithm to
decide if a system F term can be decorated in a DLAL typed term. This was
actually one of the original motivations for defining DLAL. We show here that
decoration can be performed in polynomial time. This is obtained by taking
advantage of intuitions coming from proof-nets, but it is presented in a standard
form with a first phase consisting in generating constraints expressing typability
and a second phase for constraints solving. One difficulty is that the initial
presentation of the constraints involves disjunctions of linear constraints, for
which there is no obvious Ptime bound. Hence we provide a specific resolution
strategy.

The complete algorithm is already implemented in ML, in a way that follows
closely the specification given in the article. It is modular and usable with any
linear constraints solver. The code is commented, and available for public down-
load (Section 6). With this program one might thus write terms in system F
and verify if they are Ptime and obtain a time upper bound. It should in par-
ticular be useful to study further properties of DLAL and to experiment with
reasonable size programs.

The point 3 stressed previously about expressivity of the system remains an
issue which should be explored further. Indeed the DLAL typing discipline will
in particular rule out some nested iterations which might in fact be harmless for
Ptime complexity. This is related to the line of work on the study of intensional
aspects of Implicit computational complexity ([MM00, Hof03]).

However it might be possible to consider some combination of DLAL with
other systems which could allow for more flexibility, and we think a better un-
derstanding of DLAL and in particular of its type inference, is a necessary step
in that direction.

Related work. Inference problems have been studied for several ICC systems
(e.g. [Ama05], [HJ03]). Elementary linear logic (EAL, [Gir98, DJ03]) in partic-
ular is another variant of Linear logic which characterizes Kalmar elementary
time and has applications to optimal reduction. Type inference for propositional
EAL (without second-order) has been studied in [CM01],[CRdR03],[CDLRdR05]
and [BT05] which gives a polynomial time procedure. Type inference for LAL
was also investigated, in [Bai02, Bai04]. To our knowledge the present algorithm
is however the first one for dealing with polymorphic types in a EAL-related
system, and also the first one to infer light types in polynomial time.

Due to space constraints some proofs are omitted in this paper, but can be
found in [ABT06].
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2 From System F to DLAL

The language LF of system F types is given by:

T, U ::= α | T → U | ∀α.T .

We assume that a countable set of term variables xT , yT , zT , . . . is given for
each type T . The terms of system F are built as follows (here we write MT to
indicate that the term M has type T ):

xT (λxT .MU )T→U ((MT→U )NT )U (Λα.MU )∀α.U ((M∀α.U )T )U [T/α]

with the proviso that when building a term Λα.MU , α may not occur free in the
types of free term variables of M (the eigenvariable condition). The set of free
variables of M is denoted FV (M).

It is well known that there is no sensible resource bound (i.e. time/space) on
the execution of system F terms in general. On the other hand, we are practically
interested in those terms which can be executed in polynomial time. Since the
class P of such terms is not recursively enumerable (as can be easily shown by
reduction of the complement of Hilbert’s 10th problem), we are naturally led to
the study of sufficiently large subclasses of P . The system DLAL gives such a
class in a purely type-theoretic way.

The language LDLAL of DLAL types is given by:

A, B ::= α | A � B | A ⇒ B | §A | ∀α.A .

We note §0A = A and §k+1A = §§kA. The erasure map (.)− from LDLAL to
LF is defined by: (§A)− = A−, (A � B)− = (A ⇒ B)− = A− → B−, and
(.)− commutes with the other connectives. We say A ∈ LDLAL is a decoration
of T ∈ LF if A− = T .

A declaration is a pair of the form xT : B with B− = T . It is often written
as x : B for simplicity. A judgement is of the form Γ ; ∆ � M : A, where M is
a system F term, A ∈ LDLAL and Γ and ∆ are disjoint sets of declarations.
When ∆ consists of x1 : A1, . . . , xn : An, §∆ denotes x1 : §A1, . . . , xn : §An.
The type assignment rules are given on Figure 1. Here, we assume that the
substitution M [N/x] used in (§ e) is capture-free. Namely, no free type variable
α occurring in N is bound in M [N/x]. We write Γ ; ∆ �DLAL M : A if the
judgement Γ ; ∆ �M : A is derivable.

An example of concrete program typable in DLAL is given in Section 6.
Recall that binary words, in {0, 1}∗, can be given in system F the type:

WF = ∀α.(α → α) → (α → α) → (α → α) .

A corresponding type in DLAL, containing the same terms, is given by:

WDLAL = ∀α.(α −◦ α) ⇒ (α −◦ α) ⇒ §(α−◦ α) .

The depth d(A) of a DLAL type A is defined by:

d(α) = 0, d(A � B) = max(d(A), d(B)), d(∀α.B) = d(B),
d(§A) = d(A) + 1, d(A ⇒ B) = max(d(A) + 1, d(B)).
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; xA−
: A 
 xA−

: A
(Id)

Γ ; xA−
: A, ∆ 
 M : B

Γ ; ∆ 
 λxA−
.M : A � B

(� i) Γ1; ∆1 
 M : A � B Γ2; ∆2 
 N : A

Γ1, Γ2; ∆1, ∆2 
 (M)N : B
(� e)

xA−
: A, Γ ; ∆ 
 M : B

Γ ; ∆ 
 λxA−
.M : A ⇒ B

(⇒ i) Γ ;∆ 
 M : A ⇒ B ; z : C 
 N : A

Γ, z : C; ∆ 
 (M)N : B
(⇒ e) (*)

Γ1; ∆1 
 M : A

Γ1, Γ2; ∆1, ∆2 
 M : A
(Weak)

x1 : A, x2 : A, Γ ;∆ 
 M : B

x : A, Γ ; ∆ 
 M [x/x1, x/x2] : B
(Cntr)

; Γ, ∆ 
 M : A

Γ ; §∆ 
 M : §A (§ i)
Γ1; ∆1 
 N : §A Γ2; x : §A, ∆2 
 M : B

Γ1, Γ2; ∆1, ∆2 
 M [N/x] : B
(§ e)

Γ ; ∆ 
 M : A

Γ ; ∆ 
 Λα.M : ∀α.A
(∀ i) (**)

Γ ; ∆ 
 M : ∀α.A

Γ ;∆ 
 (M)B− : A[B/α]
(∀ e)

(*) z : C can be absent.
(**) α does not occur free in Γ, ∆.

Fig. 1. Typing system F terms in DLAL

A type A is said to be Π1 if it does not contain a negative occurrence of ∀; like
for instance WDLAL.

The fundamental properties of DLAL are the following [BT04]:

Theorem 1

1. For every function f : {0, 1}∗ −→ {0, 1}∗ in DTIME[nk], there exists a
closed term M of type WDLAL −◦ §dWDLAL with d = O(log k) representing
f .

2. Let M be a closed term of system F that has a Π1 type A in DLAL. Then
M can be normalized in O(|M |2d

) steps by β-reduction, where d = d(A) and
|M | is the structural size of M . Moreover, the size of any intermediary term
occuring in normalization is also bounded by O(|M |2d

).

Although DLAL does not capture all Ptime algorithms P , the result 1 guarantees
that DLAL is at least expressive enough to represent all Ptime functions. In fact,
DLAL is as expressive as LAL even at the level of algorithms, because there
exists a generic translation from LAL to DLAL given by:

(!A)o = ∀α.((Ao ⇒ α) � α), (.)o commutes with other connectives than !.

See [Ter04b] for details.
The result 2 on the other hand implies that if we ignore the embedded types

occurring in M , the normal form of M can be computed in polynomial time (by
ordinary β-reduction; that is the difference from LAL).

Now, let MWF→WF be a system F typed term and suppose that we know
that it has a DLAL type WDLAL −◦ §dWDLAL for some d ≥ 0. Then, by the
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consequence of the above theorem, we know that the term M is Ptime. In fact,
given a binary word w ∈ {0, 1}∗, consider its Church coding w of type WDLAL.
Then we have that (M)w has type §dWDLAL, and can thus be evaluated in
O(|w|2d+1

) steps. Thus by assigning a DLAL type to a given system F term, one
can statically verify a polynomial time bound for its execution.

In order to use DLAL for resource verification of system F terms, we address
the following problem:

Problem 2 (DLAL typing). Given a closed term MT of system F, determine if
there is a decoration A of T such that �DLAL M : A.

(Here the closedness assumption is only for readability.)
In the sequel, we show that there is a polynomial time algorithm for solving

the DLAL typing problem.

3 Characterizing DLAL Typability

3.1 Pseudo-terms

To address the DLAL typing problem, it is convenient to introduce an inter-
mediary syntax which is more informative than system F terms (but not more
informative than DLAL derivations themselves).

First we decompose A ⇒ B into !A � B. The language LDLAL� of DLAL 
types is given by:

A ::= α | D � A | ∀α.A | §A , D ::= A | !A .

There is a natural map (.)� from LDLAL to LDLAL� such that (A ⇒ B)� =
!A� � B� and commutes with the other operations. The erasure map (.)− from
LDLAL� to LF can be defined as before. A DLAL type is called a bang type
if it is of the form !A, and otherwise called a linear type. In the sequel, A, B, C
stand for linear types, and D for either bang or linear types.

We assume there is a countable set of term variables xD, yD, zD, . . . for each
D ∈ LDLAL�. The pseudo-terms are defined by the following grammar:

t, u ::= xD | λxD .t | (t)u | Λα.t | (t)A | §t | §̄t,

where A is a linear type and D is an arbitrary one. The idea is that § corresponds
to the main door of a §-box (or a !-box) in proof-nets ([Gir87, AR02]) while §̄
corresponds to auxiliary doors. But note that there is no information in the
pseudo-terms to link occurrences of § and §̄ corresponding to the same box, nor
distinction between §-boxes and !-boxes.

There is a natural erasure map from pseudo-terms to system F terms, which we
will also denote by (.)−, consisting in removing all occurrences of §, §̄, replacing
xD with xD−

and (t)A with (t)A−. When t− = M , t is called a decoration of
M .

For our purpose, it is sufficient to consider the class of regular pseudo-terms,
given by:

t ::= §mu, u ::= xD | λxD.t | (t)t | Λα.t | (t)A ,
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where m is an arbitrary value in Z and §mu is § · · · §u (resp. §̄ · · · §̄u) with m
(resp. −m) occurrences of § (resp. §̄) if m ≥ 0 (resp. m < 0). So a pseudo-term
is regular if and only if it does not contain any subterm of the form §§̄u or §̄§u.

3.2 Local Typing Condition

We now try to assign types to pseudo-terms in a locally compatible way. A
delicate point in DLAL is that it is sometimes natural to associate two types to
one variable x. For instance, we have x : A;�DLAL x : §A in DLAL, and this
can be read as x : !A � x : §A in terms of DLAL types. We thus distinguish
between the input types, which are inherent to variables, and the output types,
which are inductively assigned to all pseudo-terms. The condition (i) below is
concerned with the output types. In the sequel, D◦ denotes §A if D is of the
form !A, and otherwise denotes D itself.

A pseudo-term t satisfies the local typing condition if the following holds:
(i) one can inductively assign a linear type to each subterm of t in the following

way (here the notation tA indicates that t has the output type A):

(xD)D◦ (§tA)§A (§̄t§A)A (λxD.tB)D�B

((tD�B)uD◦)B (Λα.tA)∀α.A ((t∀α.A)B)A[B/α] ,

(ii) when a variable x occurs more than once in t, it is typed as x!A,
(iii) t satisfies the eigenvariable condition.
We also say that t is locally typed.

Notice that when D is a bang type, there is a type mismatch between D and
D◦ in the case of application. For instance, (t!A�B)u§A satisfies (i) whenever t
and u do. This mismatch will be settled by the bang condition below. Observe
also that the local typing rules are syntax-directed.

3.3 Boxing Conditions

We now recall definitions and results from [BT05] giving some necessary condi-
tions for a pseudo-term to be typable (in [BT05] these conditions are used for El-
ementary Affine Logic typing). We consider words over the language L = {§, §̄}�
and ≤ the prefix ordering. If t is a pseudo-term and u is an occurrence of subterm
in t, let doors(t, u) be the word inductively defined as follows. If t = u, define
doors(t, u) = ε. Otherwise:

doors(§t, u) = § :: (doors(t, u)),
doors(§̄t, u) = §̄ :: (doors(t, u)),
doors(λyD.t1, u) = doors(Λα.t1, u) = doors((t1)A, u) = doors(t1, u),
doors((t1)t2, u) = doors(ti, u) where ti is the subterm containing u.

That is to say, doors(t, u) collects the modal symbols §, §̄ occurring on the path
from the root to the node u in the term tree of t. We define a map s : L → Z
by:

s(ε) = 0, s(§ :: l) = 1 + s(l), s(§̄ :: l) = −1 + s(l).
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A word l ∈ L is weakly well-bracketed if ∀l′ ≤ l, s(l′) ≥ 0, and is well-bracketed
if this condition holds and moreover s(l) = 0: think of § and §̄ resp. as opening
and closing brackets.

Bracketing condition. Let t be a pseudo-term. We say that t satisfies the
bracketing condition if:

(i) for any occurrence of free variable x in t, doors(t, x) is well-bracketed;
moreover for any occurrence of an abstraction subterm λx.v of t,
(ii) doors(t, λx.v) is weakly well-bracketed, and
(iii) for any occurrence of x in v, doors(v, x) is well-bracketed.

This condition is sufficient to rule out the canonical morphisms for dereliction
and digging, which are not valid in DLAL (nor in EAL):

(λx§A.§̄x)§A�A, (λx§A.§x)§A�§§A .

Since doors(§̄x, x) = §̄ and doors(§x, x) = §, they do not satisfy the bracketing
condition (iii).

Bang condition. A subterm u is called a bang subterm of t if it occurs as
(t′!A�B)u§A in t. We say that a locally typed pseudo-term t satisfies the bang
condition if for any bang subterm u of t,

(i) u contains at most one free variable x!C , having a bang type !C.
(ii) for any subterm v of u such that v �= u and v �= x, s(doors(u, v)) ≥ 1.

This condition is sufficient to rule out the canonical morphisms for monoidal-
ness !A⊗!B−◦!(A ⊗ B) and §A−◦!A which are not valid in LAL (the following
terms and types are slightly more complicated since LDLAL� does not explicitly
contain a type of the form A−◦ !B):

λx!(A�B).λy!B�C .λz!A.(y)§((§̄x)§̄z) , λx§A.λy!A�B .(y)§(§̄x) .

In the first pseudo-term, the bang subterm §((§̄x)§̄z) contains more than one
free variable. In the second pseudo-term, the bang subterm §(§̄x) contains a free
variable typed by a linear type. Hence they both violate the bang condition (i).

Λ-Scope condition. The previous conditions, bracketing and bang, would be
enough to deal with boxes in the propositional fragment of DLAL. For handling
second-order quantification though, we need a further condition to take into
account the sequentiality enforced by the quantifiers. For instance consider the
following two formulas (the second one is known as Barcan’s formula):

(1) §∀α.A � ∀α.§A , (2) ∀α.§A � §∀α.A .

Assuming α occurs free in A, formula (1) is provable while (2) is not. Observe
that we can build the following pseudo-terms which are locally typed and have
respectively type (1) and (2):

t1 = λx§∀α.A.Λα.§((§̄x)α) , t2 = λx∀α.§A.§Λα.§̄((x)α) .

Both pseudo-terms satisfy the previous conditions, but t2 does not correspond
to a DLAL derivation.



158 V. Atassi, P. Baillot, and K. Terui

Let u be a locally typed pseudo-term. We say that u depends on α if the
type of u contains a free variable α. We say that a locally typed pseudo-term t
satisfies the Λ-scope condition if: for any subterm Λα.u of t and for any subterm
v of u that depends on α, doors(u, v) is weakly well-bracketed.

Coming back to our example: t1 satisfies the Λ-scope condition, but t2 does
not, because (x)α depends on α and nevertheless doors(§̄((x)α), (x)α) = §̄ is not
weakly well-bracketed.

So far we have introduced four conditions on pseudo-terms: local typing,
bracketing, bang and Λ-scope. Let us call a regular pseudo-term satisfying these
conditions well-structured. It turns out that the well-structured pseudo-terms
exactly correspond to the DLAL typing derivations.

Theorem 3. Let M be a system F term. Then x1 : A1, . . . , xm : Am; y1 :
B1, . . . , yn : Bn �M : C is derivable in DLAL if and only if there is a decoration
t of M with type C� and with free variables x

!A�
1

1 , . . . , x
!A�

m
m , y

B�
1

1 , . . . , y
B�

n
n which

is well-structured.

The ‘only-if’ direction can be shown by induction on the length of the derivation.
To show the converse, we observe that whenever pseudo-terms λxD.t, (t)u, Λα.t,
(t)A are well-structured, so are the immediate subterms t and u. The case of §t
is handled by the following key lemma (already used for EAL� in [BT05]):

Lemma 4 (Boxing). If §(tA) is a well-structured pseudo-term, then there ex-
ist pseudo-terms vA, (u1)§B1 , . . . , (un)§Bn , unique (up to renaming of v’s free
variables) such that:
1. FV (v) = {xB1

1 , . . . , xBn
n } and each xi occurs exactly once in v,

2. §t = §v[§̄u1/x1, . . . , §̄un/xn] (substitution is assumed to be capture-free),
3. v, u1, . . . , un are well-structured.

As a consequence of Theorem 3, our DLAL typing problem boils down to:

Problem 5 (decoration). Given a system F term M , determine if there exists a
decoration t of M which is well-structured.

4 Parameterization and Constraints

4.1 Parameterized Terms and Instantiations

To solve the decoration problem (Problem 5), one needs to explore the infinite
set of decorations. This can be effectively done by introducing an abstract kind
of types and terms with symbolic parameters, and expressing the conditions for
such abstract terms to be materialized by boolean and integer constraints over
those parameters (like in the related type inference algorithms for EAL or LAL
mentioned in the introduction).

We use two sorts of parameters: integer parameters n,m, . . . meant to range
over Z, and boolean parameters b1,b2, . . . meant to range over {0, 1}. We also
use linear combinations of integer parameters c = n1 + · · · + nk, where k ≥ 0
and each ni is an integer parameter. In case k = 0, it is written as 0.
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The set of parameterized types (p-types for short) is defined by:

F ::= α | D � A | ∀α.A, A ::= §cF, D ::= §b,cF ,

where b is a boolean parameter and c is a linear combination of integer param-
eters. Informally speaking, in §b,cF the c stands for the number of modalities
ahead of the type, while the boolean b serves to determine whether the first
modality, if any, is § or !. In the sequel, A, B, C stand for linear p-types of the
form §cF , and D for bang p-types of the form §b,cF , and E for arbitrary p-types.

When A is a linear p-type §cF , B[A/α] denotes a p-type obtained by replacing
each §c′

α in B with §c′+cF and each §b,c′
α with §b,c′+cF . When D = §b,cF ,

D◦ denotes the linear p-type §cF .
We assume that there is a countable set of variables xD, yD, . . . for each bang

p-type D. The parameterized pseudo-terms (p-terms for short) t, u . . . are defined
by the following grammars:

t ::= §mu, u ::= xD | λxD.t | (t)t | Λα.t | (t)A .

We denote by parbool(t) the set of boolean parameters of t, and by parint(t)
the set of integer parameters of t. An instantiation φ = (φb, φi) for a p-term
t is given by two maps φb : parbool(t) → {0, 1} and φi : parint(t) → Z. The
map φi can be naturally extended to linear combinations c = n1 + · · · + nk by
φi(c) = φi(n1) + · · · + φi(nk). An instantiation φ is said to be admissible for a
p-type E if for any linear combination c occurring in E, we have φi(c) ≥ 0, and
moreover whenever §b,cF occurs in E, φb(b) = 1 implies φi(c) ≥ 1. When φ is
admissible for E, a type φ(E) of DLAL is obtained as follows:

φ(§cF ) = §φi(c)φ(F ), φ(§b,cF ) = §φi(c)φ(F ) if φb(b) = 0,
= !§φi(c)−1φ(F ) otherwise,

and φ commutes with the other connectives. An instantiation φ for a p-term t is
said to be admissible for t if it is admissible for all p-types occurring in t. When
φ is admissible for t, a regular pseudo-term φ(t) can be obtained by replacing
each §mu with §φi(m)u, each xD with xφ(D), and each (t)A with (t)φ(A).

As for pseudo-terms there is an erasure map (.)− from p-terms to system F
terms consisting in forgetting modalities and parameters.

A free linear decoration (free bang decoration, resp.) of a system F type T is
a linear p-type (bang p-type, resp.) E such that (i) E− = T , (ii) each linear
combination c occurring in E consists of a single integer parameter m, and (iii)
the parameters occurring in E are mutually distinct. Two free decorations T 1

and T 2 are said to be distinct if the set of parameters occurring in T 1 is disjoint
from the set of parameters in T 2.

The free decoration M of a system F term M (which is unique up to renam-
ing of parameters) is obtained as follows: first, to each type T of a variable xT

used in M , we associate a free bang decoration T , and to each type U occurring
as (N)U in M , we associate a free linear decoration U with the following proviso:
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(i) one and the same T is associated to all occurrences of the same variable xT ;
(ii) otherwise mutually distinct free decorations T 1, . . . , Tn are associated to

different occurrences of T .
M is now defined by induction on the construction of M :

xT = §mxT , λxT .M = §mλxT .M, (M)N = §m((M)N),
Λα.M = §mΛα.M, (M)T = §m((M)T ),

where all newly introduced parameters m are chosen to be fresh. The key prop-
erty of free decorations is the following:

Lemma 6. Let M be a system F term and t be a regular pseudo-term. Then t
is a decoration of M if and only if there is an admissible instantiation φ for M
such that φ(M ) = t.

Hence our decoration problem boils down to:

Problem 7 (instantiation). Given a system F term M , determine if there exists
an admissible instantiation φ for M such that φ(M) is well-structured.

For that we will need to be able to state the four conditions (local typing,
bracketing, bang, and Λ-scope) on p-terms; they will yield some constraints on
parameters. We will speak of linear inequations, meaning in fact both linear
equations and linear inequations.

4.2 Local Typing Constraints

First of all, we need to express the unifiability of two p-types E1 and E2. We
define a set U(E1, E2) of constraints by

U(α, α) = ∅, U(D1 � A1, D2 � A2) = U(D1, D2) ∪ U(A1, A2),
U(∀α.A1,∀α.A2) = U(A1, A2), U(§c1F1, §c2F2) = {c1 = c2} ∪ U(F1, F2),

U(§b1,c1F1, §b2,c2F2) = {b1 = b2, c1 = c2} ∪ U(F1, F2).

and undefined otherwise. It is straightforward to observe:

Lemma 8. Let E1, E2 be two p-types such that U(E1, E2) is defined, and φ be
an admissible instantiation for E1 and E2. Then φ(E1) = φ(E2) if and only if
φ is a solution of U(E1, E2).

For any p-type E, M(E) denotes the set {c ≥ 0 : c occurs in E} ∪ {b = 1 ⇒
c ≥ 1 : §b,cF occurs in E}. Then φ is admissible for E if and only if φ is a
solution ofM(E).

Now consider the free decoration M of a system F typed term M . We assign
to each subterm t of M a linear p-type B (indicated as tB) and a set M(t) of
constraints as on Figure 2. Notice that any linear p-type is of the form §cF .
Moreover, since t comes from a system F typed term, we know that F is an
implication when t occurs as (t§cF )u, and F is a quantification when t occurs
as (t§cF )A. The set U(D◦, A) used in M((t)u) is always defined, and finally, M
satisfies the eigenvariable condition.

Let Ltype(M) be M(M) ∪ {b = 1 : x§
b,cF occurs more than once in M}.
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(xD)D◦ M(x) = M(D)
(§mt§cF )§m+cF M(§mt) = {m + c ≥ 0} ∪ M(t)

(λxD.tA)§0(D�A) M(λxD.t) = M(D) ∪M(t)
((t§c(D�B))uA)B M((t)u) = {c = 0} ∪ U(D◦, A) ∪M(t) ∪M(u)

(Λα.tA)§0∀α.A M(Λα.t) = M(t)
((t§c∀α.B)A)B[A/α] M((t)A) = {c = 0} ∪M(A) ∪M(t)

Fig. 2. M(t) constraints

4.3 Boxing Constraints

In this section we need to recall some definitions from [BT05]. We consider the
words over integer parameters m, n . . . , whose set we denote by Lp.

Let t be a p-term and u an occurrence of subterm of t. We define, as for pseudo-
terms, the word doors(t, u) in Lp as follows. If t = u, define doors(t, u) = ε.
Otherwise:

doors(§mt, u) = m :: (doors(t, u)),
doors(λyD.t1, u) = doors(Λα.t1, u) = doors((t1)A, u) = doors(t1, u),
doors((t1)t2, u) = doors(ti, u) when ti is the subterm containing u.

The sum s(l) of an element l of Lp is a linear combination of integer parame-
ters defined by: s(ε) = 0, s(m :: l) = m + s(l). For each list l ∈ Lp, define
wbracket(l) = {s(l′) ≥ 0 | l′ ≤ l} and bracket(l) = wbracket(l) ∪ {s(l) = 0}.

Given a system F term M , we define the following sets of constraints:

Bracketing constraints. Bracket(M) is the union of the following sets:
(i) bracket(doors(M, x)) for each free variable x in M ,
and for each occurrence of an abstraction subterm λx.v of M ,
(ii) wbracket(doors(M, λx.v)),
(iii) bracket(doors(v, x)) for each occurrence of x in v.

Bang constraints. A subterm uA that occurs as (t§c′ (§b,cF�B))uA in M is
called a bang subterm of M with the critical parameter b. Now Bang(M) is
the union of the following sets: for each bang subterm u of M with a critical
parameter b,

(i) {b = 0} if u has strictly more than one occurrence of free variable, and
{b = 1 ⇒ b′ = 1} if u has exactly one occurrence of free variable x§

b′,c′F ′
.

(ii) {b = 1 ⇒ s(doors(u, v)) ≥ 1 : v subterm of u such that v �= u and v �= x}.
Λ-Scope constraints. Scope(M) is the union of the following sets:
(i) wbracket(doors(u, v)) for each subterm Λα.u of M and for each subterm v of

u that depends on α.
We denote Const(M) = Ltype(M)∪Bracket(M)∪Bang(M)∪Scope(M). Then:

Theorem 9. Let M be a system F term and φ be an instantiation for M . Then:
φ is admissible for M and φ(M) is well-structured if and only if φ is a solution
of Const(M). Moreover, the number of (in)equations in Const(M) is quadratic
in the size of M .
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5 Solving the Constraints

From a proof-net point of view, naively one might expect that finding a DLAL
decoration could be decomposed into first finding a suitable EAL decoration
(that is to say a box structure) and then determining which boxes should be !
ones. This however cannot be turned into a valid algorithm because there can
be an infinite number of EAL decorations in the first place.

Our method will thus proceed in the opposite way: first solve the boolean
constraints, which corresponds to determine which !-boxes are necessary, and
then complete the decoration by finding a suitable box structure.

5.1 Solving Boolean Constraints

We split Const(M) into three disjoint sets Constb(M), Consti(M), Constm

(M):

• A boolean constraint s ∈ Constb(M) consists of only boolean parameters. s is
of one of the following forms:
b1 = b2 (in Ltype(M)), b = 1 (in Ltype(M)),
b = 0 (in Bang(M)), b = 1 ⇒ b′ = 1 (in Bang(M)).

• A linear constraint s ∈ Consti(M) deals with integer parameters only. A
linear constraint s is of one of the following forms:
c1 = c2 (in Ltype(M)), c = 0 (in Ltype(M) and Bracket(M)),
c ≥ 0 (in Ltype(M), Bracket(M), Scope(M)).

• A mixed constraint s ∈ Constm(M) contains a boolean parameter and a linear
combination and is of the following form:
b = 1 ⇒ c ≥ 1 (in Ltype(M) and Bang(M)).

We consider the set of instantiations on boolean parameters and the exten-
sional order ≤ on these maps: ψb ≤ φb if for any b, ψb(b) ≤ φb(b).

Lemma 10. Constb(M) has a solution if and only if it has a minimal solution
ψb. Moreover one can decide in time polynomial in the cardinality of Constb(M)
if there exists a solution, and in that case provide a minimal one.

5.2 Solving Integer Constraints

When φb is a boolean instantiation, φbConstm(M) denotes the set of linear con-
straints defined as follows: for any constraint of the form b = 1 ⇒ c ≥ 1 in
Constm(M), c ≥ 1 belongs to φbConstm(M) if and only if φb(b) = 1. It is then
clear that (*) (φb, φi) is a solution of Const(M) if and only if φb is a solution of
Constb(M) and φi is a solution of φbConstm(M) ∪ Consti(M).

Proposition 11. Const(M) admits a solution if and only if it has a solution
ψ = (ψb,ψi) such that ψb is the minimal solution of Constb(M).

Proof. Suppose that Const(M) admits a solution (φb, φi). Then by the previ-
ous lemma, there is a minimal solution ψb of Constb(M). Since ψb ≤ φb, we
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have ψbConstm(M) ⊆ φbConstm(M). Since φi is a solution of φbConstm(M) ∪
Consti(M) by (*) above, it is also a solution of ψbConstm(M)∪Consti(M). This
means that (ψb, φi) is a solution of Const(M).

Coming back to the proof-net intuition, Proposition 11 means that given a syn-
tactic tree of term there is a most general (minimal) way to place ! boxes (and
accordingly ! subtypes in types), that is to say: if there is a DLAL decoration
for this tree then there is one with precisely this minimal distribution of ! boxes.

Now notice that ψbConstm(M)∪Consti(M) is a linear inequation system, for
which a polynomial time procedure for searching a rational solution is known.

Lemma 12. ψbConstm(M)∪Consti(M) has a solution in Q if and only if it has
a solution in Z.

Theorem 13. Let M be a System F term. Then one can decide in time poly-
nomial in the cardinality of Const(M) whether Const(M) admits a solution.

Proof. First decide if there is a solution of Constb(M), and if it exists, let ψb

be the minimal one (Lemma 10). Then apply the polynomial time procedure to
decide if ψbConstm(M) ∪ Consti(M) admits a solution in Q. If it does, then we
also have an integer solution (Lemma 12). Otherwise, Const(M) is not solvable.

By combining Theorem 3, Lemma 6, Theorems 9 and 13, we finally get:

Theorem 14. Given a system F term MT , it is decidable in time polynomial
in the size of M whether there is a decoration A of T such that �DLAL M : A.

6 Implementation

Overview. We designed an implementation of the type inference algorithm. The
program is written in functional Caml and is quite concise (less than 1500 lines).
A running program not only shows the actual feasibility of our method, but also
is a great facility for building examples, and thus might allow for a finer study
of the algorithm.

Data types as well as functions closely follow the previous description of the
algorithm: writing the program in such a way tends to minimise the number of
bugs, and speaks up for the robustness of the whole proof development.

The program consists of several successive parts:

1. Parsing phase: turns the input text into a concrete syntax tree. The input is
an F typing judgement, in a syntax à la Church with type annotations at the
binders. It is changed into the de Bruijn notation, and parameterized with
fresh parameters. Finally, the abstract tree is decorated with parameterized
types at each node.

2. Constraints generation: performs explorations on the tree and generates the
boolean, linear and mixed constraints.
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3. Boolean constraints resolution: gives the minimal solution of the boolean
constraints, or answers negatively if the set admits no solution.

4. Constraints printing: builds the final set of linear constraints.

We use the simplex algorithm to solve the linear constraints. It runs in O(2n),
which comes in contrast with the previous result of polynomial time solving,
but has proven to be the best in practice (with a careful choice of the objective
function).

Example of execution. Let us consider the reversing function on binary
words. It can be defined by a single higher-order iteration, and thus represented
by the following system F term, denoted rev:

λlW .Λβ.λsoβ→β .λsiβ→β .(l (β → β))
λaβ→β .λxβ .(a)(so)x
λaβ→β .λxβ .(a)(si)x (Λα.λzα.z)β

We apply it to : Λα.λsoα→α.λsiα→α.λxα.(si)(so)(si)(so)x, representing the word
1010, in order to force a meaningful typing. Since rev involves higher-order
functionals and polymorphism, it is not so straightforward to tell, just by looking
at the term structure, whether it works in polynomial time or not.

Given rev(1010) as input (coded by ASCII characters), our program pro-
duces 177 (in)equations on 79 variables. After constraint solving, we obtain the
result:

(λlW .Λβ.λso!(β−◦β).λsi!(β−◦β).
§(§̄((l (β −◦ β))
§λaβ−◦β .λxβ .(a)(§̄so)x
§λaβ−◦β .λxβ .(a)(§̄si)x)
(Λα.λzα.z)β)

Λα.λso!α→α.λsiα→α.§λxα.(§̄si)(§̄so)(§̄si)(§̄so)x
It corresponds to the natural depth-1 typing of the term rev, with conclusion
type WDLAL � WDLAL. The solution ensures polynomial time termination, and
in fact its depth guarantees normalization in a quadratic number of β-reduction
steps. Further examples and the program are available at:

http://www-lipn.univ-paris13.fr/~atassi/

7 Conclusion

We showed that typing of system F terms in DLAL can be performed in a feasible
way, by reducing typability to a constraints solving problem and designing a
resolution algorithm. This demonstrates a practical advantage of DLAL over
LAL, while keeping the other important properties. Other typing features could
still be automatically infered, like coercions (see [Ata05] for the case of EAL).

This work illustrates how Linear logic proof-net notions like boxes can give
rise to techniques effectively usable in type inference, even with the strong boxing
discipline of DLAL, which extends previous work on EAL. We expect that some
of these techniques could be adapted to other variants of Linear logic, existing
or to be defined in the future.
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MSO Queries on Tree Decomposable Structures

Are Computable with Linear Delay

Guillaume Bagan

Université de Caen, GREYC, Campus 2, F-14032 Caen cedex - France

Abstract. Linear-Delaylin is the class of enumeration problems com-
putable in two steps: the first step is a precomputation in linear time in
the size of the input and the second step computes successively all the
solutions with a delay between two consecutive solutions y1 and y2 that
is linear in |y2|. We prove that evaluating a fixed monadic second order
(MSO) query ϕ(X̄) (i.e. computing all the tuples that satisfy the MSO
formula) in a binary tree is a Linear-Delaylin problem. More precisely,
we show that given a binary tree T and a tree automaton Γ representing
an MSO query ϕ(X̄), we can evaluate Γ on T with a preprocessing in
time and space complexity O(|Γ |3|T |) and an enumeration phase with
a delay O(|S|) and space O(max|S|) where |S| is the size of the next
solution and max|S| is the size of the largest solution. We introduce a
new kind of algorithm with nice complexity properties for some algebraic
operations on enumeration problems. In addition, we extend the precom-
putation (with the same complexity) such that the ith (with respect to
a certain order) solution S is produced directly in time O(|S| log(|T |)).
Finally, we generalize these results to bounded treewidth structures.

1 Introduction

Determining how difficult it is to compute a query written in a given language
is an important task in theorical computer sciences. A language which has de-
served much attention is the monadic second order logic (MSO). It is well known
that a lot of NP-complete problems can be expressed as the model checking of
a MSO-sentence. Nevertheless, for particular kinds of structures, the complexity
can be improved. Classes of bounded treewidth structures are of particular in-
terest. Courcelle [6] proved that deciding if a MSO-sentence holds in a bounded
treewidth structure can be done in linear time in the size of the structure (with a
constant factor that highly depends of the size of the formula). Arnborg, Lager-
gren and Seese[2] proved that given a fixed MSO-formula ϕ(X̄) and a bounded
treewidth structure S, counting the number of solutions (i.e assignments of vari-
ables which satisfy the formula) can be done with the same complexity. Courcelle
and Mosbah [8] proved that enumerating all solutions which satisfy a MSO query
on a bounded treewidth structure can be done in time polynomial in the size of
the structure and the size of the output. Frick, Flum and Grohe [11] improved
this by proving that this can be done in linear time in the size of the structure
plus the size of the output.

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 167–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Recently, Durand and Grandjean [10] were interested in logical queries viewed
as enumeration problems and studied the delay between two solutions instead
of the global time of the algorithm.

They introduced the class Constant-Delaylin which consists of enumeration
problems computable in two steps: the first step is a precomputation which is
done in time and space complexity linear in the size of the structure, the second
step is the enumeration phase which outputs all the solutions with a constant
delay between two consecutive ones. They showed that evaluating FO-queries
on bounded degree structures is a Constant-Delaylin problem.

The main goal of this paper is to revisit the complexity of the evaluation of
MSO queries on bounded treewidth structures. Meanwhile, the class Constant-
Delaylin contains only problems where the size of each solution is bounded by a
constant. We introduce the class Linear-Delaylin which is a generalization of
Constant-Delaylin where the delay between two consecutive solutions is linear
in the size of the second one. The main result of this paper is that evaluating
MSO-queries on binary trees is a Linear-Delaylin problem. More precisely, by
using the well known translation of a MSO formula on binary trees into tree
automaton [15], we show, that given a tree T and a tree automaton Γ which
represent the formula ϕ(X̄), we can do a precomputation in time O(|Γ |3|T |)
and then output all the solutions (with respect to a certain order) with a delay
O(|S|) where |S| is the size of the next solution S to be computed (that depends
neither on the size of the structure nor on the size of the automaton) and space
O(max{|S| : S ∈ ϕ(T )}). As a consequence, it can be computed with a total
time O(|Γ |3|T |+ ‖ϕ(T )‖) (where ‖ϕ(T )‖ is the total size of the outputs that is∑
S∈ϕ(T ) |S|) and space O(|Γ |3|T |). To obtain this result, we use several tools.

First, we introduce some algebraic operations on enumeration problems. Then,
we express the problem of evaluation of a MSO-query as a combination of simple
enumeration problems by these operations. In addition, we introduce a new kind
of precise enumeration algorithm, called tiptop algorithm, which computes a
enumeration problem in a lazy way.

Another problem considered in this paper consists, given a MSO formula ϕ(X̄)
and a binary tree T of producing directly the ith solution S (with respect to the
same order than the evaluation problem). We show that this can be done in
two part: first we do a precomputation (that does not depend on i) in linear
time in the size of the structure and then for each input i, we can produce the
ith solution (using the precomputation) with time O(|S|log(|T |)). An immediate
consequence of this result is an algorithm for the uniform random generation of
solutions of a MSO-query with the below complexity.

Finally, we show that these two results can be generalized to structures of
bounded treewidth.

Notice that our results improve the similar results of a very recent paper by
Courcelle (submitted in Mars 2006 to a special issue of Discrete Mathematics
[7]) and have been proved independently and in the same period. By using a
notion of DAG structure (AND-OR structure), Courcelle obtains in particular
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an enumeration algorithm for evaluation of MSO-queries in binary trees with a
linear time delay but with a precomputation in O(|T |log(|T |)). Our results are
simpler and optimal.

The paper is organized as follows. First, basic definitions are given in section 1.
In particular, we define the class Linear-Delaylin. In section 2, we consider
the evaluation problem of MSO formulas over binary trees. In subsection 2.3, we
give an efficient implementation of a linear delay algorithm for this problem. In
particular, tiptop algorithms and algebraic operations on enumeration problems
are introduced. In section 3, we consider the problem of computing directly ith
element. Finally, in section 4, we show that these results can be generalized to
MSO-queries on bounded treewidth structures.

2 Preliminaries

The reader is expected to be familiar with first-order and monadic second order
logic (see e.g. [14]). We use in this paper the Random Access Machine (RAM)
model with uniform cost measure (see [1,13,12]).

2.1 Enumeration

Given a binary relation A, the enumeration problem enum−A associated with A
is the problem described as follows: For each input x, enum−A(x) = {y|(x, y) ∈
A}. We call enum − A(x) the set of solutions of enum − A on x. To measure
without ambiguity the complexity, we need to be more precise on the structure
of the output. We say that an algorithm A computes enum−A if

– for any input x, A writes sequentially the output #y1#y2#.....#yn# where
(y1, ..., yn) is an enumeration (without repetition) of the set enum−A(x),

– it writes the first # when its starts,
– it stops after writing the last #.

Let A be an enumeration algorithm and x be an input of A. Let timei(x)
denote the time when the algorithm writes the ith # if it exists. We define
delayi(x) = timei+1(x)− timei(x).

Definition 1. An enumeration algorithm A is constant delay if there is a con-
stant c such that for any input x and for any i, delayi(x) ≤ c and A uses space
O(|x|).

An enumeration algorithm A is linear delay if there is a constant c such that
for any input x and for any i, delayi(x) ≤ c|yi| and A uses space O(|x|).

An enumeration problem enum − A is said to be computable with linear de-
lay, which is denoted by enum − A ∈ Linear-Delay if there is a linear delay
algorithm A which computes enum−A.

An enumeration problem enum− A is Linear-Delaylin if it is reducible in
linear time to a problem in Linear-Delay.
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2.2 Trees and Tree Automata

A Σ-tree T is a pair (D, label) where the tree domain D is a subset of {1, 2}∗
that is prefix-closed and such that if s ∈ D then either s.1 and s.2 or none of
them belong to D (i. e. T is a locally complete tree) and label is a function from
D to Σ (the labelling function). s.1 and s.2 are the first child and the second
child of s. If x is a prefix of y then x is an ancestor of y and y is a descendant of
x. ε is the root of T . A leaf is a node without children and an internal node is a
node with two children. We denote by Leaves(T ) the set of leaves of T and by
root(T ) the root of T . Tx denotes the subtree of T rooted by x. Associate to each
alphabet Σ, the first-order signature the signature τΣ = (succ1, succ2, (Pa)a∈Σ).
We do a confusion between a Σ-tree and its encoding as a τΣ-structure T =
(D, succ1, succ2, (Pa)a∈Σ) where Pa is interpreted as {s ∈ D, label(s) = a} and
succi is interpreted as {(s, s.i)|s, s.i ∈ D}. We denote by Σ −Trees the set of
all Σ-trees.

We give some definitions on tree automata, for more details see [5]. A complete
deterministic bottom-up tree automaton (tree automaton for short) is a tuple
(Σ, Q, q0, δ, Qf) where Q is a finite set of states, q0 ∈ Q is the initial state,
Qf ⊆ Q is the set of final states, and δ : Q × Q × Σ → Q is the transition
function. We abbreviate δ(q0, q0, x) to δinit(x) Let Γ be a tree automaton and T
be a Σ-tree, the run of Γ on T , denoted by run(Γ, T ), is the mapping r : T → Q
defined by the following conditions.

– If x is a leaf then r(x) = δinit(label(x))
– If x is an internal node whose first and second children are y1 and y2 then

r(x) = δ(r(y1), r(y2), label(x)).

We say that the run r is accepting if r(root(T )) ∈ Qf . Γ accepts T if its run is
accepting. The set of trees accepted by Γ is called the language recognized by
Γ and is denoted by L(Γ ).

A language L is regular if there is a tree automaton Γ which recognizes L.

Theorem 1. [15] A language L is regular if and only if it is definable by an
MSO-formula. There is an algorithm which, given an MSO[τΣ ] formula which
defines the language L, computes a tree automaton that recognizes the same
language L.

2.3 MSO Queries

For a signature τ and a class of τ -structures C, we consider the following problem
Query(MSO, τ , C):

Input: a τ -structure S ∈ C and an MSO[τ ] formula ϕ(X̄, ȳ) where X̄ = (X1, . . . ,
Xk) and ȳ = (y1, . . . yl).
Parameter: ϕ
Output: ϕ(S) = {(Ā, b̄) ∈ P(D)k ×Dl|(S, Ā, b̄) |= ϕ(X̄, ȳ)} 1.

1 Here and below, a P(D) denotes the power set of the set D.
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We are interested in the parameterized complexity of the problem (see [9])
with the formula ϕ as parameter.

From now, we are interested in the specific problem Query(MSO, τΣ , Σ-
Trees).

Without loss of generality, we can restrict the problem to queries without first
order variable. Indeed, it suffices to consider a first order variable as a singleton
second order variable.

2.4 Specific Notations

For a vector v̄ = (v1, . . . , vk) let v̄ � i denote its ith component vi. Let S̄1 and
S̄2 be two k-tuples of sets, the combination of S̄1 and S̄2, denoted by S̄1 ⊕ S̄2,
is defined such that (S̄1 ⊕ S̄2) � i = (S̄1 � i) ∪ (S̄2 � i). Let A and B be two
sets of k-tuples of sets. The product of A and B, denoted by A ⊗ B is the set
{S̄1 ⊕ S̄2|S̄1 ∈ A, S̄2 ∈ B}. For an element x of S and a vector v ∈ {0, 1}k, we
denote by x̄v the k-tuple such that

x̄v � i =
{
{x} if v̄ � i = 1
∅ otherwise

3 Evaluation of MSO-Queries

Theorem 1 applies only to sentences. To adapt it to any MSO formula ϕ(X1, . . .
Xk), we consider the enriched alphabet Σ′ = Σ × {0, 1}k. For any Σ-tree
T = (D, labelT ) and any k-tuple of sets S̄ 2, we can associate the tree TS̄ =
(D, labelT ′) with same domain as T and such that labelT ′(x) = (labelT (x), v̄)
where v̄ is the characteristic vector of S̄ i.e. verifying v̄ � i = 1 if and only
x ∈ S̄ � i. Therefore, we can consider the language Lϕ such that TS̄ ∈ Lϕ if and
only if (T, S̄) |= ϕ(X̄). By abuse of notation, we do confusion between the pair
(T, S̄) and the tree TS̄.

For simplicity, we will restrict to Σ-trees whose internal vertices are labeled by
a dummy color @ and to formulas where interpretations of second order variables
are restricted to subsets of the leaves. The next lemma explains how to reduce
the general case to these conditions.

Lemma 1. Let Σ be a finite alphabet and set Σ′ = Σ ∪ {@}. There is an
algorithm which given a MSO[τΣ ]-formula ϕ computes a MSO[τΣ′ ]-formula ϕ′

and there is a linear time algorithm which given a Σ-tree T computes a Σ′-tree
T ′ such that

– Dom(T ) = Leaves(T ′)
– the internal nodes of T ′ are labeled by @
– ϕ(T ) = ϕ′(T ′)

2 Here and below, a k-tuple of sets, or for short, a k-tuple S̄ is a k-tuple of subsets of
the domain D of T .
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As internal nodes are labeled by @, we use the notation q1, q2 → q which
means δ(q1, q2, @) = q for the transition function δ of an automaton Γ .

We consider now an MSO-query ϕ(X̄) that defines a language Lϕ = {TS̄ :
(T, S̄) |= ϕ(X̄)}, Let Γ = (Σ′, Q, q0, δ, Qf) be a tree automaton on the alphabet
Σ′ = Σ×{0, 1}k which recognizes Lϕ. Let T = (D, label) be a Σ-tree. A config-
uration of (Γ, T ) is an element of D×Q. Let a k-tuple S̄ ∈ P(Leaves(T ))k, an S̄-
configuration is a configuration (x, q) such that r(x) = q where r = run(Γ, T, S̄):
it is the unique S̄-configuration of x.

We want to enumerate the tuples S̄ ∈ P(Leaves(T ))k such that r(root(T )) ∈
Qf for r = run(Γ, T, S̄). Clearly, this can be done in a recursive way. For any tuple
S̄ and any node x of T , let S̄x denote the restriction of S̄ to the subtree Tx. It is
clear that the state q = r(x) for r = run(Γ, T, S̄) only depends on S̄x. For any
configuration (x, q) let stuples(x, q) denote the set of tuples S̄ ∈ P(Leaves(Tx))k

such that r(x) = q for r = run(Γ, T, S̄).
Let us notice two easy but useful facts:
Let x be any internal node of T with children y1 and y2

1. It holds S̄x = S̄y1 ⊕ S̄y2 and (S̄y1 � i) ∩ (S̄y2 � i) = ∅ for any i = 1, . . . , k.
2. For each q ∈ Q, it holds

stuples(x, q) =
⋃

(q1,q2)∈Q2

q1,q2→q

stuples(y1, q1)⊗ stuples(y2, q2)

and this is a disjoint union.

Remark: The disjointness property in (2) is a straightforward consequence of
the determinism of the automaton Γ .

At the first glance, properties (1) and (2) above seem to give the very principle
of an efficient algorithm that enumerates the elements (i.e., k-tuples) of the set
stuples(x, q) for any given configuration (x, q). Unfortunately, this does not yield
the linear delay we hope between consecutive solutions. Indeed such a trivial
algorithm may lose much time in performing unions of empty sets, namely in
computing A ⊗ B when either of the operand sets A and B contains the k-
tuples of empty sets ∅̄ = (∅, . . . , ∅). To overcome this difficulty, we keep apart
the ”empty” k-tuple ∅̄ and classify the nodes of the tree T according to each
tuple S̄ ∈ P(Leaves(T ))k, for S̄ �= ∅̄.

Let S̄ ∈ P(Leaves(T ))k and x be a node of T . We say that x is an S̄-active
node if (S̄ � i)∩Leaves(Tx) �= ∅ for some i. We say otherwise that x is S̄-passive.
In case x is an internal node with children y1 and y2. Then x is S̄-transitive if it
is S̄-active and only one of its children is S̄-active. x is S̄-fork if its children y1

and y2 are both S̄-active. A node is S̄-useful if it is an S̄-fork node or an S̄-active
leaf. We give similar definitions for configurations. For example, a configuration
(x, q) is S̄-transitive if it is the S̄-configuration of an S̄-transitive node.

The reduced tree associated to (T, S̄) is the graph denoted by T useful

S̄
and

built as follows:



MSO Queries on Tree Decomposable Structures 173

1. The nodes of T useful
S̄

are the S̄-useful nodes of T
2. We put an edge from x to y if y is a descendant of x in T and there is no

S̄-useful nodes between them in T .

It is easily seen that T useful

S̄
is a binary tree.

We notice that, given any vertex x, the S̄-configuration (x, q) of x is the same
for any tuple S̄ such that x is S̄-passive. We call q the passive state of x and
(x, q) the passive configuration of x.

Example 1. We assume that S = {8, 13, 14, 15} for k = 1 (one predicate only).The
filled circles represent S-useful vertices, bold circles represent S-transitive ver-
tices and normal circles represent S-passive vertices.

1

2 3

4 5

8 13

14 15

6 7

9 10 11 12

1

2 13

8 10

14 15

Fig. 1. A tree TS̄ and its reduced tree T useful

S̄

Let (x, q), (y1, q1) and (y2, q2) be three configurations such that y1 and y2 are
the first and second children of x, and such that q1, q2 → q. We say that (x, q)
is empty-accessible from (y1, q1) if (y2, q2) is a passive configuration. Similarly
(x, q) is empty-accessible from (y2, q2) if (y1, q1) is a passive configuration We

use the notation (x′, q′) ∅�−→ (x, q) to mean that (x, q) is empty-accessible from
(x′, q′).

Let ∗�−→ denote the reflexive and transitive closure of the relation ∅�−→. If we
have (x′, q′) ∗�−→ (x, q) then we say that (x, q) is transitively accessible from
(x′, q′).

Lemma 2. 1) Let S̄ ∈ P(Leaves(T ))k and let (x, q) and (x′, q′) be two S̄-active
configurations such that x is an ancestor of x′. If there is no S̄-fork configuration
(except eventually (x′, q′)) in the unique path between (x, q) and (x′, q′) then
(x′, q′) ∗�−→ (x, q).
2) Let (x, q) and (x′, q′) be two configurations such that (x′, q′) ∗�−→ (x, q). Let
S̄ ∈ P(Leaves(Tx′))k. If (x′, q′) is the S̄-active configuration of x′ then (x, q) is
the S̄-configuration of x.

We denote by suseful(x, q) (resp sactive(x, q)) the set of tuples S̄ ∈ P(Leaves
(Tx))k such that (x, q) is a S̄-useful (S̄-active) configuration. We denote by senum
the set of tuples S̄ �= ∅̄ such that Γ accepts (T, S̄).

Lemma 3. Let (x, q) be a configuration.
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1. If x is a leaf then

suseful(x, q) =
⋃

v̄∈{0,1}k\{0}k

δinit(label(x),v̄)=q

{x̄v}

and this is a disjoint union.
2. If x is an internal node of first and second children y1 and y2.

suseful(x, q) =
⋃

(q1,q2)∈Q2

q1,q2→q

sactive(y1, q1)⊗ sactive(y2, q2) (2)

and this is a disjoint union.
3. It holds

sactive(x, q) =
⋃

(y,q′)∈D×Q
(y,q′) ∗�−→(x,q)

suseful(y, q′) (3)

and this is a disjoint union.
4. It holds

senum =
⋃
q∈Qf

sactive(root(T ), q) (4)

and this is a disjoint union

Equations (1-4) are not sufficient for our complexity purpose. We need to ensure
that we do only non empty unions. We say that a configuration (x, q) is poten-
tially active, (resp potentially useful) if there is a tuple S̄ ∈ P(Leaves(T ))k such
that (x, q) is S̄-active (resp S̄-useful). We denote by puseful the set of poten-
tially useful configurations. Let (x, q) be a configuration such that x is a leaf,
and define pinit(x, q) = {v̄ ∈ {0, 1}k−{0}kδinit(label(x), v̄) = q}. Let (x, q) be a
potentially fork configuration and let y1, y2 be the children of x. Let ppair(x, q)
denote the set of pairs of states (q1, q2) such that q1, q2 → q and (y1, q1) and
(y2, q2) are potentially active. We denote by pfinal the set of final states q such
that (root(T ), q) is potentially active. We can deduce by definition, refinements
of the above equations (1-4).

1. If x is a leaf then
suseful(x, q) =

⋃
v̄∈pinit(x,q)

{x̄v} (1’)

2. If x is a internal node with children y1 and y2 then

suseful(x, q) =
⋃

(q1,q2)∈ppair(x,q)

sactive(y1, q1)⊗ sactive(y2, q2) (2’)
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3. If (x, q) is a potentially active configuration then

sactive(x, q) =
⋃

(y,q′)∈puseful

(y,q′) ∗�−→(x,q)

suseful(y, q′) (3’)

4. It holds
senum =

⋃
q∈pfinal

sactive(root(T ), q) (4’)

3.1 Transition Tree

The transition tree denoted by T ∅ is a graph built as follows

– The domain of T ∅ is the set of configurations of (Γ, T ).
– We put an edge from c1 to c2 if c2

∅�−→ c1.

As Γ is a deterministic automaton, it is easily seen that T ∅ is a forest whose
set of roots is {root(T )} ×Q.

Notice that T ∅ is a (non necessarily binary) forest. As it is more convenient
to consider T ∅ as a tree, we can add to the graph a new dummy configuration
and connect it to the root configurations.

By definition of T ∅, note that the set of potentially useful configurations (y, q′)
such that (y, q′) ∗�−→ (x, q) is exactly puseful∩T ∅(x,q) where T ∅(x,q) is the subtree
of T ∅ of root (x, q). Consider a postfix order σ on the vertices of the tree T ∅. By
definition of a postfix order, it is easily seen that for every configuration (x, q),
the set of nodes of T ∅(x,q) is a segment of σ. Let puseful[i] denote the ith element
of puseful with respect to the order σ. For each potentially active configuration
(x, q), we call first(x, q) (resp last(x, q)) the least (resp the greatest) index i
such that puseful[i] belongs to T ∅(x,q). As (x, q) is potentially active, first(x, q)
and last(x, q) are always defined. Clearly, the potentially useful configurations
(x′, q′) such that (x′, q′) ∗�−→ (x, q) are exactly the configurations puseful[i]
such that first(x, q) ≤ i ≤ last(x, q). We obtain the following equation which is
equivalent to 3’.

For each potentially active configuration (x, q),

sactive(x, q) =
last(x,q)⋃

i=first(x,q)

suseful(puseful[i]) (3”)

3.2 Efficient Implementation of Our Enumeration Algorithm

Our final enumeration algorithm will implement efficiently the above equations
1’,2’,3”,4’ by additional technical tools:

1. two algebraic binary operations to compose enumeration problems and their
enumeration algorithms in a modular and uniform manner
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2. an efficient data structure to represent outputs : sets S ⊆ D or k-tuples of
sets S̄ ∈ P(D)k.

3. A new kind of precise enumeration algorithm called tiptop algorithm.

Let A and B be two problems of enumeration of k-tuples of sets verifying the
following conditions: for any input x and for any S̄1 ∈ A(x) and S̄2 ∈ B(x), it
holds (S̄1 � i) ∩ (S̄2 � i) = ∅. Then the product of A and B denoted by A⊗B is
defined as follows: (A⊗B)(x) = A(x)⊗B(x).

Let A and B be two enumeration problems such that

– A has two inputs x and y and B has one input x.
– for any x, y, we have A(x, y) �= ∅
– for any x, y, z such that y �= z, we have A(x, y) ∩A(x, z) = ∅

then the composition of A and B denoted by (A ◦ B) is defined as follows:
(A ◦B)(x) =

⋃
y∈B(x) A(x, y).

We rephrase the equations (1’-4’) by using our operations ⊗ and ◦ and by
introducing intermediate enumeration problems. We assume implicitly that all
the problems have an additionnal input that is the tree T and the automaton Γ .

pfinal = {q ∈ Qf : (root(T ), q) is potentially active}
accessible(x, q) = {puseful(i)|first(x, q) ≤ i ≤ last(x)}

pair(x, q) = {(y1, q1, y2, q2)|(q1, q2) ∈ ppair(x, q)}
where y1 and y2 are the first and second child of x

product(x1, q1, x2, q2) = sactive(x1, q1)⊗ sactive(x2, q2)
suseful(x, q) = sfork(x, q) if x is an internal node

= sleaf(x, q) otherwise
sleaf(x, q) = {x̄v|v̄ ∈ pinit(x, q)}
sfork(x, q) = product ◦ pair(x, q)

sactive(x, q) = suseful ◦ accessible(x, q)
senum = sactive ◦ pfinal

It is easily seen that senum computes all tuples S̄ �= ∅̄ such that Γ accepts
(T, S̄).

Definition 2. A tiptop algorithm A for an enumeration problem is an enumer-
ation (RAM) algorithm using two special instructions denoted by tip and top so
that for any input x with exactly m distinct outputs yi, i = 1, . . . , m

– A runs into exactly m phases, phase(yi) corresponding to the ith output yi

– phase(yi) includes exactly one tip instruction called tip(yi) and one top in-
struction that is the last one of the phase

– tip(yi) means that the ith output yi is available in the RAM memory (typi-
cally as a data structure using pointers)

– at the end of the run that is the mth top, all the RAM memory, except the
input memory, is empty
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Moreover A is a tiptop algorithm of delay D(n) and space S(n) if for each yi,
i = 1, . . . , n, time(phase(yi)) ≤ D(|yi|) and space(phase(yi)) ≤ S(|yi|).

The following lemma concerns the complexity of the enumeration problem
A⊗B. It uses in an essential manner an efficient representation of the outputs.
A set S will be represented by a binary tree whose leaves are labeled by the
elements of S. The size of this tree is linear in the size of S. A k-tuple of sets S̄
is represented by an array of binary trees. Using these representations, a disjoint
union of two sets A and B can be done in constant time (by creating a new
node which is connected to the roots of trees) without side effect and hence the
combination S̄ ⊕ S̄′ of two k-tuples of sets S̄ and S̄′ can also be computed in
constant time.

Lemma 4. Let A and B be two problems of enumeration of k-tuples of sets for
which A ⊗ B can be defined. Assume that A (resp B) can be enumerated by a
tiptop algorithm ϕA (resp ϕB) with delay f(S̄) and in space g(S̄) then A⊗B can
be computed by a tiptop algorithm such that each tuple S̄ = S̄1 ⊕ S̄2 is produced
with delay f(S̄1) + f(S̄2) + O(1) and in space g(S̄1) + g(S̄2) + O(1).

Lemma 5. Let A and B be two enumeration problems such that B◦A is defined.
Assume that A can be enumerated by a tiptop algorithm ϕA with constant delay
and in constant space and that B can be enumerated by a tiptop algorithm ϕB

such that an element y is produced with delay f(y) and in space g(y). Then B◦A
is enumerable by a tiptop algorithm ϕB◦A such that an element y is produced with
delay f(y) + O(1) and in space g(y) + O(1).

Lemma 6. There is an algorithm which given a Σ-tree T and a query ϕ(X̄)
represented by an automaton Γ = (Σ × {0, 1}k, Q, q0, δ, Qf), computes ϕ(|T |)
with a precomputation in time O(|Q|3|T |), with delay O(|S|) and in space O(|S|).

Proof. We give first the preprocessing phase called precomp:

1. compute the set puseful ⊆ D ×Q
2. compute the function ppair : D ×Q → P(Q2)
3. compute pinit : Leaves(T )×Q → P({0, 1}k \ {0}k)
4. compute the transition-tree T ∅

5. compute a postfix order σ of T ∅

6. order puseful with respect to σ
7. compute first(x, q) and last(x, q) for each configuration (x, q)

the set puseful can be computed in time O(|Q||T |) using a bottom-up approach.
Each set ppair(x, q) contains at most |Q|2 elements per configuration and can be
computed in time O(|Q|2). Therefore, the total time for computing the function
ppair is O(|Q|3|T |). The function pinit can be computed in O(2k|Q||T |). Lines
4,7 can easily be done in O(|Q||T |) by bottom up approach. A postfix order
can be computed in linear time O(|T ∅|) = O(|Q||T |) by depth first search. We
conclude that the time and space of the precomputation is O(|Q|3|T |).

The enumeration phase is described in the procedure eval. The correctness
is immediate. Clearly, with the below precomputation, the problems pfinal, ac-
cessible, pair and sleaf are computable with constant delay. We will prove by
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Algorithm 1. eval(T, Σ, I)
Require: a Σ-tree T , an automaton Γ , data I computed by precomp
Ensure: the set of tuples S̄ such that Γ accepts (T, S̄)
1: output #
2: start the procedure senum
3: while senum has not finished do
4: continue ϕ until the next tip
5: x̄ := output of senum
6: output the tuple of predicates pointed by x̄
7: continue senum until the next top
8: output #
9: end while

10: if Γ accepts (T, ∅̄) then
11: output ∅̄
12: output #
13: end if

a simultaneous induction that each element of sactive(x, q) is produced with
a delay a(4|S| − 2) and each element of suseful(x, q) is produced with a delay
a(4|S| − 3).

Let (x, q) be a potentially useful configuration. It is easily seen that the prop-
erty holds if x is a leaf. Assume that x is an internal node with first and second
children y1 and y2. Consider a tuple S̄ produced by suseful(x, q) with a delay d.
Assume that S̄ = S̄1 ⊕ S̄2 and S̄1 (resp S̄2) is produced by sactive(y1, q1) (resp
sactive(y2, q2)) with delay d1 (resp d2).

d ≤ d1 + d2 + O(1) by Lemmas 4 and 5
≤ a(4|S̄1| − 2) + a(4|S̄2| − 2) + O(1) by the induction hypothesis
≤ a(4|S̄| − 3)− a + O(1) for large enough a
≤ a(4|S̄| − 3)

Let (x, q) be a potentially active configuration. Let S̄ be a tuple produced by
sactive(x, q) with a delay d. Assume that S̄ is produced by suseful(x′, q′) with a
delay d′.

d ≤ d′ + O(1)
≤ a(4|S| − 3) + O(1) by the induction hypothesis
≤ a(4|S| − 2) for large enough a

A similar proof can be done for space complexity.

Remark: Although the complexity of the precomputation highly depends on the
size of the automaton, the enumeration phase has a delay which depend neither
on the size of T nor on the size of the automaton.

Theorem 2. The problem Query(MSO, τΣ , Σ-trees) is Linear-Delaylin

Proof. We give the complete algorithm:
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Data: An MSO[τΣ ]-formula ϕ(X̄, ȳ) and a τ -tree T

1. Compute a formula ϕ′(X̄, Ȳ ) without quantifier-free first-order variables that
is ”equivalent” to ϕ

2. Compute a (Σ ∪ {@})-tree T ′ and a formula ϕ′′(X̄) (as described in Lemma
1)

3. Compute a Σ′-tree automaton Γ associated to ϕ′′ i.e such that (TS̄ ∈ L(Γ )
if and only if (T, S̄) |= ϕ′′(X̄) (Σ′ = (Σ ∪ {@})× {0, 1}k)

4. Perform precomputation phase precomp
5. Call eval(Γ, T )

Corollary 1. Let Σ be an alphabet and ϕ be an MSO-[τΣ ] formula without
second-order free variable, then the evaluation ϕ on Σ-trees can be computed
with linear precomputation and constant delay.

4 Direct Generation of the ith Solution

We are interested, in this section, in producing directly the ith solution of a
query.

Equations 1’,2’,3”,4’ give us a characterization of senum which is the set of
all solution tuples (except the empty tuple). We want to view all sets (senum,
sactive(x, q), . . . ) as ordered lists. This can be done as follows:

– We give an arbitrary ordering for all finite sets ppair(x, q), pfinal, pinit(x, q)
– We consider all unions as ordered unions
– For any sets of k-tuples of sets A and B, C = A ⊗ B is viewed as a lexico-

graphic product (i.e. if C[x] = A[y] ⊕ B[z] and C[x′] = A[y′] ⊕ B[z′] then
x ≤ x′ if and only if (x, y) ≤lex (y′, z′) 3)

We denote

sumuseful(i) =
i−1∑
k=0

|suseful(puseful[k])|

sumpair(x, q, i) =
∑

k=0...i−1

(q1,q2)=ppair(x,q)[k]

|sactive(y1, q1)| × |sactive(y2, q2)|

sumfinal(x, q, i) =
i−1∑
k=0

|sactive(root(T ), pfinal[k])|

We are interested in finding, given an index i, the tuple S̄ = senum[i]. This
can be done by using the following lemma.

3 Here and below, A[i] denotes the ith element of the ordered list A (A[0] is the first
element).
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Lemma 7. 1. Let A and B be two ordered sets of k-tuples of sets and C =
A ⊗ B then C[i] = A[a] ⊕ B[b] where a and b are the quotient and the
remainder of the integer division of i by |B|.

2. Let i < |senum|. Then

senum[i] = sactive(root(T ), pfinal[j])[i− sumuseful(j)]

where j is the greatest k such that sumfinal(k) ≤ i.
3. Let (x, q) be a potentially active configuration and i < |sactive(x, q)|. Then

sactive(x, q)[i]=suseful(puseful[j])[i+sumuseful(first(x, q))−sumuseful(j)]

where j be the greatest k such that sumuseful(k) ≤ sumuseful(first(x, q))+i.
4. Let x be an internal node with children y1 and y2. Let i < |suseful(x, q)|.

Then
suseful(x, q)[i] = sactive(y1, q1)[a]⊕ sactive(y2, q2)[b]

where j is the greatest k such that sumpair(x, q, k) ≤ i, (q1, q2) =
ppair(x, q)[j] and a, b are the quotient and the remainder of the integer di-
vision of i− sumpair(x, q, j) by |sactive(y2, q2)|.

Theorem 3. Given a fixed MSO[τΣ ]-formula ϕ(X̄) and a Σ-tree T , we can do a
precomputation in time O(|T |) and then produce the ith solution S̄ (with respect
to the below order) in time O(|S̄| log(|T |)).
Proof. (sketch) The precomputation is an extension of the precomputation for
the evaluation problem. In addition, we need to compute sumuseful, sumpair,
sumfinal and the cardinality of suseful(x, q) and sactive(x, q) for each configura-
tion (x, q). This can be done in linear time by bottom-up approach. An algorithm
to find the ith element is a straightforward application of Lemma 7. We proceed
in a recursive way. We need to find given an integer x the greatest element lesser
than x in a non decreasing list, this can be done in time O(log(|T |)) by binary
search. As the number of recursive calls is linear in the size of the output, we
stay within the desired time bound.

5 Structures of Bounded Treewidth

The treewidth of a structure S is the least k such that S admits a tree decom-
position of width k (for more details, see [3]).

Lemma 8. [2] For any fixed k, there is an algorithm which given a MSO formula
ϕ computes a formula ϕ′ and an algorithm which given a structure S and a tree
decomposition of S of width k, computes in linear time a Σ-tree T , such that
ϕ(S) = ϕ′(T )

Bodlaender [4] gives an algorithm which given a structure S and a fixed k com-
putes a tree-decomposition of S of width k if it exists in linear time in the size
of the S.

Corollary 2. Let C be a class of τ-structures of bounded treewidth, then Query
(MSO, τ , C) is Linear-Delaylin.
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Abstract. We introduce a Floyd-Hoare-style framework for specifica-
tion and verification of machine code programs, based on relational para-
metricity (rather than unary predicates) and using both step-indexing
and a novel form of separation structure. This yields compositional, de-
scriptive and extensional reasoning principles for many features of low-
level sequential computation: independence, ownership transfer, unstruc-
tured control flow, first-class code pointers and address arithmetic. We
demonstrate how to specify and verify the implementation of a simple
memory manager and, independently, its clients in this style. The work
has been fully machine-checked within the Coq proof assistant.

1 Introduction

Most logics and semantics for languages with dynamic allocation treat the al-
locator, and a notion of what has been allocated at a particular time, as part
of their basic structure. For example, marked-store models, and those based on
functor categories or FM-cpos, have special treatment of locations baked in, as
do operational semantics using partial stores, where programs ‘go wrong’ when
accessing unallocated locations. Even type systems and logics for low-level pro-
grams, such as TAL [14], hardwire allocation as a primitive.

For high-level languages such as ML in which allocation is observable but
largely abstract (no address arithmetic, order comparison or explicit dealloca-
tion), building ‘well-behaved’ allocation into a model seems reasonable. But even
then, we typically obtain base models that are far from fully abstract and have to
use a second level of non-trivial relational reasoning to validate even the simplest
facts about encapsulation.

For low-level languages, hardwiring allocation is less attractive. Firstly, and
most importantly, we want to reason about the low-level code that actually im-
plements the storage manager. Secondly, in languages with address arithmetic,
such as the while-language with pointers used in separation logic, one is led to
treat allocation as a non-deterministic primitive, which is semantically problem-
atic, especially if one tries to reason about refinement, equivalence or imprecise
predicates [23,13]. Finally, it just doesn’t correspond to the fact that ‘machine
code programs don’t go wrong’. The fault-avoiding semantics of separation logic,
for example, is prescriptive, rather than descriptive: one can only prove anything
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about programs that never step outside their designated footprint, even if they
do so in a non-observable way.1

We instead start with a completely straightforward operational semantics for
an idealized assembly language. There is a single datatype, the natural numbers,
though different instructions treat elements of that type as code pointers, heap
addresses, integers, etc. The heap is simply a total function from naturals to
naturals and the code heap is a total function from naturals to instructions.
Computed branches and address arithmetic are perfectly allowable. There is no
built-in notion of allocation and no notion of stuckness or ‘going wrong’: the
only observable behaviours are termination and divergence.

Over this simple and permissive model, we aim to develop semantic (defined
in terms of observable behaviour) safety properties, and ultimately a program
logic, that are rich enough to capture the equational semantics of high-level types
as properties of compiled code and also to express and verify the behavioural
contracts of the runtime systems, including memory managers, upon which com-
piled code depends.

Our approach is based on four technical ideas. Firstly, following the interpre-
tation of types as PERs, we work with quantified binary relations rather than the
unary predicates more usual in program logics. Program properties are expressed
in terms of contextual equivalence, rather than avoidance of some artificial stuck
states. Secondly, we use a perping operation, taking relations on states to or-
thogonal relations on code addresses, to reason about first-class code pointers.
Thirdly, we reason modularly about the heap in a style similar to separation
logic, but using an explicit notion of the portion of the heap on which a relation
depends. Finally, we reason modularly about mutually-recursive program frag-
ments in an assume/guarantee style, using a step-indexing technique similar to
that of Appel et al [5,6,3] to establish soundness.

In this paper, we concentrate on the specification and verification of an ex-
tremely basic memory allocation module, and an example client. Although the
code itself may be simple, the specifications and proofs are rather less so, and
provide a non-trivial test case for our general framework, as well as constituting
a fresh approach to freshness.

Managing the mind-numbing complexity and detail of specifications and proofs
for machine code programs, not to mention keeping oneself honest in the face of
changing definitions, seems to call for automated assistance. All the definitions
and results presented here have been formalized and checked using the Coq proof
assistant.

1 For example, skip and [10] := [10] are, under mild assumptions, observationally
equivalent, yet do not satisfy exactly the same set of triples. One might reasonably
claim that machine code programs do go wrong – by segfaulting – and that this
justifies faulting semantics and the use of partial stores. But stuck states in most
operational semantics, even for low-level code, do not correspond exactly to the
places in which segfaults might really occur, and we’d rather not assume or model
anything about an operating system for the moment anyway.
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2 The Machine

Our idealized sequential machine model looks like:

s ∈ S
def= N→ N states

l,m, n, b ∈ N naturals in different roles

p ∈ Programs
def
= N→ Instr programs

〈p|s|l〉 ∈ Configs
def
= Programs × S× N

The instruction set, Instr, includes halt, direct and indirect stores and loads,
some (total) arithmetic and logical operations, and conditional and unconditional
branches.2 The semantics is given by an obvious deterministic transition relation
〈p|s|l〉 → 〈p|s′|l′〉 between configurations. We write 〈p|s|l〉 ⇓ if there exists n,l′,s′

such that 〈p|s|l〉 →n 〈p|s′|l′〉 with p(l′) = halt, and 〈p|s|l〉 ⇑ if 〈p|s|l〉 →ω.
The major idealizations compared with a real machine are that we have

arbitrary-sized natural numbers as a primitive type, rather than fixed-length
words, and that we have separated code and data memory (ruling out self-
modifying code and dynamic linking for the moment). Note also that we do not
even have any registers.

3 Relations, Supports and Indexing

We work with binary relations on the naturals, N, and on the set of states, S, but
need some extra structure. Firstly, the reason for using relations is to express
specifications in terms of behavioural equivalences between configurations:

〈p|s|l〉 ⇓ ⇐⇒ 〈p′|s′|l′〉 ⇓

and the relations on states and naturals we use to establish such equivalences
will generally be functions of the programs p and p′ (because they will refer to
the sets of code pointers that, in p and p′, have particular behaviours). Secondly,
to reason modularly about mutually recursive program fragments, we need to
restrict attention to relations satisfying an admissibility property, which we cap-
ture by step-indexing: relations are parameterized by, and antimonotonic in, the
number of computation steps available for distinguishing values (showing they’re
not in the relation). Formally, an indexed nat relation, is a function

r : Programs × Programs→ N→ P(N× N)

such that (r (p, p′) k) ⊆ (r (p, p′) j) whenever j < k.
For state relations, we also care about what parts of the state our relations de-

pend upon. Separation logic does this implicitly, and sometimes indeterminately,
via the existential quantification over splittings of the heap in the definition of
2 The Coq formalization currently uses a shallow embedding of the machine semantics,

so the precise instruction set is somewhat fluid.
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separating conjunction. Instead, we work with an explicit notion, introduced in
[9], of the support of a relation. One might expect this to be a set of locations,
but the support is often itself a function of the state (think, for example, of the
equivalence of linked lists). However, not all functions S → P(N) make sense
as supports: the function itself should not depend on the contents of locations
which are not in its result.3 Formally, we define an accessibility map to be a
function A : S→ P(N) such that

∀s, s′. s ∼A(s) s
′ =⇒ A(s′) = A(s)

where, for L ⊆ N and s, s′ ∈ S, we write s ∼L s′ to mean ∀l ∈ L.s(l) = s′(l).
Accessibility maps are ordered by A ⊆ A′ ⇐⇒ ∀s.A(s) ⊆ A′(s). Constant

functions are accessibility maps, as is the union A∪A′ of two accessibility maps,
where (A∪A′)(s) = A(s)∪A′(s). Despite the name, accessibility maps are about
relevance and not reachability. Indeed, reachability makes little sense in a model
without an inherent notion of pointer.

A supported indexed state relation R is a triple (|R|, AR, A′R) where

|R| : Programs× Programs→ N→ P(S× S)

satisfies (|R| (p, p′) k) ⊆ (|R| (p, p′) j) for all (j < k), AR and A′R are accessibility
maps and for all s1 ∼AR(s1) s2 and s′1 ∼A′

R(s′
1) s

′
2,

(s1, s
′
1) ∈ |R| (p, p′) k =⇒ (s2, s

′
2) ∈ |R| (p, p′) k.

We often elide the | · |. The constantly total and empty state relations are each
supported by any accessibility maps. The separating product of supported in-
dexed relations is given by

R1 ⊗R2 = (|R1 ⊗R2|, AR1 ∪AR2 , A
′
R1
∪A′R2

) where
|R1 ⊗ R2| (p, p′) k = (|R1| (p, p′) k) ∩ (|R2| (p, p′) k) ∩

{(s, s′) | AR1(s) ∩AR2(s) = ∅ ∧ A′R1
(s′) ∩A′R2

(s′) = ∅}

This is associative and commutative with the constantly total relation with
empty support, T∅, as unit. The partial order R1 . R2 on state relations is
defined as

∀(s, s′) ∈ |R1|. ((s, s′) ∈ |R2|) ∧ (AR2(s) ⊆ AR1(s)) ∧ (A′R2
(s′) ⊆ A′R1

(s′))

which has the property that if R1 . R2 then for any RI , |R1⊗RI | ⊆ |R2⊗RI |.
If R is a (supported) indexed state relation, its perp, R�, is an indexed nat

relation defined by:

R� (p, p′) k = {(l, l′) | ∀j < k.∀(s, s′) ∈ (R (p, p′) j).
(〈p, s, l〉 ⇓j =⇒ 〈p′, s′, l′〉 ⇓) ∧
(〈p′, s′, l′〉 ⇓j =⇒ 〈p, s, l〉 ⇓)}

3 In other words, the function should support itself.
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where ⇓j means ‘converges in fewer than j steps’. Roughly speaking, R� relates
two labels if jumping to those labels gives equivalent termination behaviour
whenever the two initial states are related by R; the indexing lets us deal with
cotermination as the limit (intersection) of a sequence of k-step approximants.

If q ⊆ N× N, write q for the indexed nat relation λ(p, p′).λk.q, and similarly
for indexed state relations. If L ⊆ N, AL is the accessibility map λs.L. We
write TL for the supported indexed state relation (S× S, AL, AL) and write sets
of integers {m,m + 1, . . . , n} just as mn. If r is an indexed nat relation and
n, n′ ∈ N, write (n, n′ �⇒ r) for the supported indexed state relation

λ(p, p′).λk. ({(s, s′) | (s(n), s′(n′)) ∈ r (p, p′) k}, λs.{n}, λs.{n′})

relating pairs of states that have values related by r stored in locations n and
n′. We write the common diagonal case (n, n �⇒ r) as (n �→ r). For M a program
fragment (partial function from naturals to instructions) define

|= M � l : R�
def
= ∀p, p′ ⊇ M.∀k. (l, l) ∈ (R� (p, p′) k)

where the quantification is over all (total) programs extending M. We are only
considering a single M, so our basic judgement is that a label is related to itself.
More generally, define li : R�

i |= M � l : R� to mean

∀p, p′ ⊇ M.∀k. (∀i.(li, li) ∈ (R�i (p, p′) k)) =⇒ ((l, l) ∈ (R� (p, p′) k + 1))

i.e. for any programs extending M and for any k, if the hypotheses on the labels
li are satisfied to index k, then the conclusion about l holds to index k + 1.

4 Specification of Allocation

The machine model is very concrete and low-level, so we have to be explicit
about details of calling conventions in our specifications. We arbitrarily designate
locations 0 - 9 as register-like and, for calling the allocator, will use 0 - 4 for
passing arguments, returning results and as workspace. An allocator module is
just a code fragment, Ma, which we will specify and verify in just the same way as
its clients. There are entry points for initialization, allocation and deallocation.

The code at label init sets up the internal data structures of the allocator.
It takes a return address in location 0, to which it will jump once initialization
is complete. The code at alloc expects a return address in location 0 and the
size of the requested block in location 1. The address of the new block will be
returned in location 0. The code at dealloc takes a return address in 0, the size
of the block to be freed in 1 and the address of the block to be freed in 2.

After initialization, the allocator owns some storage in which it maintains its
internal state, and from which it hands out (transfers ownership of) chunks to
clients. The allocator depends upon clients not interfering with, and behaving
independently of, both the location and contents of its private state. In par-
ticular, clients should be insensitive to the addresses and the initial contents
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of chunks returned by calls to alloc. In return, the allocator promises not to
change or depend upon the contents of store owned by the client. All of these
independence, non-interference and ownership conditions can be expressed using
supported relations. Furthermore, this can be done extensionally, rather than in
terms of which locations are read, written or reachable.

There will be some supported indexed state relation Ra for the private in-
variant of the allocator. The supports of Ra express what store is owned by
the allocator; this has to be a function of the state (rather than just a set of
locations), because what is owned varies as blocks are handed out and returned.
One should think of |Ra| as expressing what configurations of the store owned
by the allocator are valid, and which of those configurations are equivalent.

When init is called, the allocator takes ownership of some (infinite) part of
the store, which we only specify to be disjoint from locations 0-9. On return,
locations 0-4 may have been changed, 5-9 will be preserved, and none of 1-9 will
observably have been read. So two calls to init yield equivalent behaviour when
the return addresses passed in location 0 yield equivalent behaviour whenever
the states they’re started in are as related as init guarantees to make them.
How related is that? Well, there are no guarantees on 0-4, we’ll preserve any
relation involving 5-9 and we’ll establish Ra on a disjoint portion of the heap.
Thus, the specification for initialization is that for any nat relations r5,r6,. . . ,r9,

|= Ma � init :

((
0 �→ (Ra ⊗ T04 ⊗

9⊗
i=5

(i �→ ri))�
)
⊗

9⊗
i=5

(i �→ ri)

)�
(1)

When alloc is called, the client (i.e. the rest of the program) will already have
ownership of some disjoint part of the heap and its own invariant thereon, Rc.
Calls to alloc behave equivalently provided they are passed return continuations
that behave the same whenever their start states are related by Rc, Ra and in
each state location 0 points to a block of memory of the appropriate size and
disjoint from Rc and Ra. More formally, the specification for allocation is that
for any n and for any Rc

|= Ma � alloc : (Raparms(n,Ra, Ra)⊗ T24 ⊗Rc ⊗Ra)
� (2)

where

Raparms(n,Ra, Rc) =
((

0 �→ (Raret(n)⊗ T14 ⊗Rc ⊗Ra)�
)
⊗
(
1 �→ {(n, n)}

))
and Raret(n) =

(
{(s, s′) | s(0) > 9 ∧ s′(0) > 9}, Aaret(n), Aaret(n)

)
Aaret(n) = λs.{0} ∪ {s(0), . . . , s(0) + n− 1}

Raret guarantees that the allocated block will be disjoint from the pseudo-
registers, but nothing more; this captures the requirement for clients to behave
equivalently whatever block they’re returned and whatever its initial contents.
Aaret includes both location 0, in which the start of the allocated block is re-
turned, and the block itself; the fact that this is tensored with Ra and Rc in the
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precondition for the return address allows the client to assume that the block
is disjoint from both the (updated) internal datastructures of the allocator and
the store previously owned by the client. We can avoid saying anything explicit
about preservation of locations 5 to 9 here because they can be incorporated
into Rc.

When dealloc is called, Ra will hold and the client will have an invariant Rc
that it expects to be preserved and a disjoint block of store to be returned. The
client expresses that it no longer needs the returned block by promising that
the return address will behave equivalently provided that just Rc and Ra hold.
Formally, for any Rc and n,

|= Ma�dealloc :
((

0 �→ (T04 ⊗Rc ⊗Ra)
�
)
⊗
(
1 �→ {(n, n)}

)
⊗ T34 ⊗Rfb(n)

)�
(3)

where

Rfb(n) =
(
{(s, s′) | s(2) > 9 ∧ s′(2) > 9}, Afb(n), Afb(n)

)
Afb(n) = λs. {2} ∪ {s(2), . . . , s(2) + n− 1}

Writing the relations on the RHSs of (1), (2) and (3) as rin(Ra, r5, . . . , r9),
ral(Ra, n, Rc) and rde(Ra, n, Rc), respectively, the whole specification of an al-
locator module is therefore

∃Ra. |= Ma � (init : ∀r5, . . . , r9. rin(Ra, r5, . . . , r9))
∧(alloc : ∀n.∀Rc. ral(Ra, n, Rc))
∧(dealloc : ∀n.∀Rc. rde(Ra, n, Rc))

(4)

Note that the existentially-quantified Ra is scoped across the whole module
interface: the same invariant has to be maintained by the cooperating imple-
mentations of all three operations, even though it is abstract from the point of
view of clients.

Checking that all the things we have assumed to be accessibility maps and
supported relations really are is straightforward from the definitions.

5 Verification of Allocation

We now consider verifying the simplest useful allocation module, Ma, shown in
Figure 1. Location 10 points to the base of an infinite contiguous chunk of free
memory. The allocator owns location 10 and all the locations whose addresses
are greater than or equal to the current contents of location 10. Initialization
sets the contents of 10 to 11, claiming everything above 10 to be unallocated,
and returns. Allocation saves the return address in location 2, copies a pointer
to the next currently free location (the start of the chunk to be returned) into 0,
bumps location 10 up by the number of locations to be allocated and returns to
the saved address. Deallocation is simply a no-op: in this trivial implementation,
freed store is actually never reused, though the specification requires that well-
behaved clients never rely on that fact.
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init : [10] ← 11 // set up free ptr
init + 1 : jmp [0] // return

alloc : [2] ← [0] // save return address
alloc + 1 : [0] ← [10] // return value = old free ptr
alloc + 2 : [10] ← [10] + [1] // bump free ptr by n
alloc + 3 : jmp [2] // return to saved address

dealloc : jmp [0] // return (!)

Fig. 1. The Simplest Allocator Module, Ma

Theorem 1. The allocator code in Figure 1 satisfies the specification, (4), of
the previous section. '(
For this implementation, the relation, Ra, witnessing the existential in the spec-
ification is just

Ra
def
=
(
{(s, s′) | (s(10) > 10) ∧ (s′(10) > 10)}, Aa, Aa

)
where Aa is λs.{10}∪ {m|m ≥ s(10)}. The only invariant this allocator needs is
that the next free location pointer is strictly greater than 10, so memory handed
out never overlaps either the pseudo registers 0-9 or the allocator’s sole bit of
interesting private state, location 10 itself. Aa says what storage is owned by the
allocator.

The proof of Theorem 1 is essentially forward relational Hoare-style reason-
ing, using assumed separation conditions to justify the framing of invariants. In
particular, the prerelation for alloc lets us assume that the support Ac of Rc is
disjoint from both {0, . . . , 4} and Aa in each of the related states (s, s′) in which
we make the initial calls. Since the code only writes to locations coming from
those latter two accessibility maps, we know that they are still related by Rc,
even though we do not know anything more about what Rc is. More generally,
we have the following reasoning principle:

Lemma 1 (Independent Updates). For any p, p′, k, n, n′, v, v′, rold, rnew,
Rinv, s, s′,

(v, v′) ∈ (rnew (p, p′) k) and (s, s′) ∈ ((n, n′ �⇒ rold)⊗Rinv) (p, p′) k

implies (s[n �→ v], s′[n′ �→ v′]) ∈ ((n, n′ �⇒ rnew)⊗Rinv) (p, p′) k.

Proof. By assumption, the prestates s and s′ are related by |Rinv|, and the
supports Ainv(s) and A′inv(s′) do not include n and n′, respectively. Hence, by
the self-supporting property of accessibility maps, Ainv(s[n �→ v]) = Ainv(s),
and similarly for A′inv. Thus s[n �→ v] ∼Ainv(s) s and s′[n′ �→ v′] ∼A′

inv(s′) s′,
so the updated states are still related by |Rinv| by the saturation property of
supported relations, and the supports of the tensored relations in the conclusion
are still disjoint. '(
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We also use the following for reasoning about individual transitions:

Lemma 2 (Single Steps). For all p, p′, k, Rpre, lpre, l′pre, if for all j < k and
for all (spre, s′pre) ∈ (Rpre (p, p′) j)

〈p|spre|lpre〉 → 〈p|spost|lpost〉 and 〈p′|s′pre|l′pre〉 → 〈p′|s′post|l′post〉

implies there exists an Rpost such that

(spost, s′post) ∈ (Rpost (p, p′) j) and (lpost, l′post) ∈ (Rpost (p, p′) j)�

then (lpre, l′pre) ∈ (Rpre (p, p′) k)�. '(

For straight-line code that just manipulates individual values in fixed locations,
the lemmas above, together with simple rules of consequence involving ., are
basically all one needs. The pattern is that one applies the single step lemma to a
goal of the form (lpre, l′pre) ∈ (Rpre (p, p′) k)� , generating a subgoal of the form
‘transition implies exists Rpost such that post states are related and (lpost, l′post)
are in R�post’. One then examines the instructions at lpre and l′pre, which defines
the possible post states and values of lpost and l′post. One then instantiates Rpost,
yielding one subgoal that the post states (now expressed as functions of the
prestates) are related and one about (lpost, l′post). In the case that the instruction
was an update, one then uses the independent update lemma to discharge the
first subgoal, leaving the goal of proving a perp about (lpost, l′post), for which the
pattern repeats. Along the way, one uses consequence to put relations into the
right form for applying lemmas and assumptions.

In interesting cases of ownership transfer, the consequence judgements one
has to prove require splitting and recombining relations that have non-trivial
supports. This typically involves introducing new existentially quantified logi-
cal variables. For example, after the instruction at alloc+1 we split the state-
dependency of the support of Ra by deducing that there exist b, b′ ∈ N, both
greater than 10, such that the two intermediate states are related by(

0 �→ {b, b′}
)
⊗
(
10 �→ {b, b′}

)
⊗ (S× S, Aold, A

′
old)⊗ (S× S, Anew , A

′
new)⊗ · · ·

where Aold(s) = {m | m ≥ b + n}, A′old(s′) = {m | m ≥ b′ + n}, Anew(s) = {m |
b ≤ m < b + n} and A′new(s′) = {m | b′ ≤ m < b′ + n}. The first and fourth of
these then combine to imply Raret(n), so after the update at alloc+2 the states
are related by

Raret(n)⊗
(
10 �→ {b + n, b′ + n}

)
⊗ (S× S, Aold, A

′
old)⊗ · · ·

the second and third of which then recombine to imply Ra again, eliminating b
and b′ and establishing the precondition for the return jump at alloc+3.

6 Specification and Verification of a Client

We now specify and verify a client of the allocator, using the specification of
Section 4. Amongst other things, this shows how we deal modularly with linking,
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recursion and adaptation. The client specification is intended as a very simple
example of how one might express the semantics of types in a high-level language
as relations in our low-level logic, expressing the behavioural contracts of code
compiled from phrases of those types. In this case, the high-level language is
an (imaginary) pure first-order one that, for the purposes of the example, we
compile using heap-allocated activation records.

We concentrate on the meaning of the type nat→ nat. From the point of
view of the high-level language, the semantics of that type is something like the
predomain N → N⊥, or relationally, a PER on some universal domain relating
functions that take equal natural number arguments to equal results of type
‘natural-or-divergence’. There are many mappings from such a high-level se-
mantics to the low-level, reflecting many different correct compilation schemes.
We’ll assume values of type nat are compiled as the obviously corresponding
machine values, so the interpretation [[nat]] is the constantly diagonal relation
{(n, n) | n ∈ N}.

For functions we choose to pass arguments and return results in location 5,
to pass return addresses in 6, to use 7 to point to the activation record, and 0-4
as workspace.4 Since functions call the allocator, they will also explicitly assume
and preserve Ra, as well as some unknown frame Rc for the invariants of the rest
of the program. The allocator’s invariant is abstract from the point of view of
its clients, but they all have to be using the same one, so we parameterize client
specs by the allocator’s invariant. This leads us to define [[nat→ nat]] (Ra) as
the following indexed nat relation:

∀Rc.∀r7.
(
T04 ⊗ (5 �→ [[nat]])⊗ (7 �→ r7)⊗Rc ⊗Ra⊗(
6 �→ (T04 ⊗ (5 �→ [[nat]])⊗Rc ⊗Ra ⊗ T6 ⊗ (7 �→ r7))

�
))�

which one can see as the usual ‘equal arguments to equal results’ logical rela-
tion, augmented with extra invariants that ensure that the code respects the
calling convention, uses the allocator properly and doesn’t observably read or
write any storage that it shouldn’t. Although the high-level type is simple, the
corresponding low-level specification is certainly non-trivial.

As a concrete example of something that should meet this spec, we (pre-
dictably) take an implementation, Mf , of the factorial function, shown in Fig-
ure 2. The factorial code is mildly optimized: it calls the allocator to allocate its
activation record, but avoids the allocation if no recursive call is needed. After
a recursive call, the activation record is deallocated using a tail call: dealloc
returns directly to the caller of fact. The ability to reason about optimized code
is a benefit of our extensional approach compared with more type-like methods
which assume code of a certain shape.

The result we want about the factorial is that it satisfies the specification
corresponding to its type whenever it is linked with code satisfying the specifi-
cation of an allocator. Opening the existential package, this means that for any

4 This differs from the allocator’s calling convention because we need to call the allo-
cator to get some space before we can save the parameters to a function call.
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fact : brz [5] (fact+17) // jump to fact+17 if [5]=0

fact+ 1: [1] <- 3 // size of activation record

fact+ 2: [0] <- (fact+4) // return address for alloc

fact+ 3: jmp alloc // allocate activation record

fact+ 4: [[0]] <- [5] // copy arg to frame[0]

fact+ 5: [[0]+1] <- [6] // copy ret addr to frame[1]

fact+ 6: [[0]+2] <- [7] // copy old frame ptr to frame[2]

fact+ 7: [7] <- [0] // new frame ptr in 7

fact+ 8: [5] <- ([5]-1) // decrement arg

fact+ 9: [6] <- (fact+11) // ret addr for recursive call

fact+10: jmp fact // make recursive call

fact+11: [5] <- ([5]*[[7]]) // return value = (fact (n-1))*n

fact+12: [0] <- [[7]+1] // ret addr for dealloc tail call

fact+13: [2] <- [7] // arg for call to dealloc

fact+14: [7] <- [[7]+2] // restore old frame ptr

fact+15: [1] <- 3 // size of block for dealloc

fact+16: jmp dealloc // dealloc frame and tail return

fact+17: [5] <- 1 // return value = 1

fact+18: jmp [6] // return

Fig. 2. Code for the Factorial Function, Mf

Ma satisfying (4), there’s an Ra such that

|= (Ma ∪ Mf ) � (fact : [[nat→ nat]](Ra)) ∧ (alloc : ∀n.∀Rc. ral(Ra, n, Rc)) ∧ . . .

which is a consequence of the following, quite independent of any particular Ma:

Theorem 2. For any Ra,

init : ∀r5, . . . , r9. rin(Ra, r5, . . . , r9),
alloc : ∀n.∀Rc. ral(Ra, n, Rc),
dealloc : ∀n.∀Rc. rde(Ra, n, Rc) '(

|= Mf � fact : [[nat→ nat]](Ra)

This is another Hoare-style derivation, mostly similar to that of Theorem 1. Prov-
ing the calls, including the recursive one, requires the universal quantifications
over Rc, n and r7, occurring in the specifications of alloc, dealloc and fact,
to be appropriately instantiated (‘adapted’). For example, the instantiation of
Rc for the recursive call at label fact+10 is

R′c ⊗ (b, b′ �⇒ [[nat]])
⊗
(
b + 1, b′ + 1 �⇒ ((5 �→ [[nat]])⊗ T04 ⊗R′c ⊗Ra ⊗ T6 ⊗ (7 �→ r′7))�

)
⊗ (b + 2, b′ + 2 �⇒ r′7)

where R′c and r′7 were the instantiations of the outer call, and b and b′ are logical
variables standing for the addresses returned by the previous related calls to the
allocator at fact+3. This clearly expresses how the recursive call has to preserve
whatever the outer one had to, plus the frame of the outer call, storing the outer
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call’s argument and return address and the outer call’s caller’s frame pointer
from location 7.

Recursion is dealt with in the proof of Theorem 2 as one would expect, by
adding fact : [[nat→ nat]](Ra) to the context. This is sound thanks to our use
of indexing and interpretation of judgements:

Lemma 3 (Recursion). For any Γ , l, R and M, if Γ, l : R� |= M� l : R� then
Γ |= M � l : R�. '(

Lemma 3, proved by a simple induction, suffices for first-order examples but only
involves statically known labels.5 We will discuss ‘recursion through the store’
in detail in future work, but here give a trivial example to indicate that we
already have enough structure to deal with it. Consider independently verifying
the following code fragments, assuming that wantzero : (1 �→ {(0, 0)})�

silly : brz [1] wantzero knot : [0] <- silly
silly+1 : [1] <- [1]-1 knot+1 : jmp silly
silly+2 : jmp [0]

To show knot : (1 �→ [[nat]])�, there are various choices for the specification
assumed for silly (and proved of its implementation). An obvious one is that
silly expects to be passed itself in 0, but this may be an overspecification. Alter-
natively, we can use the recursive specification µr. ((0 �→ r)⊗ (1 �→ [[nat]]))�, the
semantics of which is given by well-founded induction: observe that the meaning
of R� at index k only depends on R at strictly smaller j. In general, we have a
fixpoint equation

µr. (R[r])� =
(
λ(p, p′).λk.R

[
µr. (R[r])� (p, p′) k

]
(p, p′) k

)�
letting us prove the following two judgements, which combine to give the result
we wanted about knot:

Theorem 3

1. wantzero :
(
1 �→ {(0, 0)}

)�
|= Msilly � silly : µr. ((0 �→ r)⊗ (1 �→ [[nat]]))�

2. silly : µr. ((0 �→ r)⊗ (1 �→ [[nat]]))� |= Mknot � knot : (1 �→ [[nat]])� '(

7 Discussion

As we said in the introduction, this work is part of a larger project on relational
parametricity for low-level code, which one might characterize as realistic real-
izability.6 It should be apparent that we are drawing on a great deal of earlier
work on separation logic [21], relational program logics [19,1,7,23], models and
5 This is equivalent to the more symmetric linking rule of our previous work [8].
6 Modulo the use of unbounded natural numbers, etc. Our computational model is

clearly only ‘morally’ realistic, but it’s too nice a slogan not to use. . .
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reasoning principles for dynamic allocation [18,20,9], typed assembly language
[14], proof-carrying code [15], PER models of types [2], and so on.

Two projects with similar broad goals to ours are the FLINT project at Yale
[11] and the Foundational Proof-Carrying Code project at Princeton [4]. The
Yale group started with a purely syntactic approach to types for low-level code,
and are now combining first-order Hoare-style reasoning using a semantic conse-
quence relation within a more syntactic framework. This is argued to be simpler
than techniques based on sophisticated constructions such as indexing, but the
treatment of code pointers in [16] seems no less complex, and possibly less useful,
than that of the present work. As the syntactic approach never says what types
(or higher-order assertions) are supposed to ensure (what they actually mean),
it seems more difficult to use it to combine proofs generated from different type
systems or compilers, link in hand-written and hand-proved fragments or prove
optimizations. The Princeton project takee a semantic approach, which is much
closer to ours (as we’ve said, the step-indexing idea that we use comes from work
on FPCC), but is still a fixed type system restricted to talking about a single
form of memory safety rather than a general logic. FPCC uses a hardwired and
rather limited form of allocation and has no deallocation at all [10].

There are other mechanized proofs of storage managers, including one by
Yu et al. [24], and one using separation logic by Marti et al. [12]. These both
treat more realistic implementations than we do here, but establish intensional
‘internal’ correctness properties of the implementations, rather than the more
extensional and abstract specification used here. In particular, note that our
specification uses no ‘model variables’ for recording the history of allocations.

Note that we make explicit use of second-order quantification over invariants,
such as Rc, in our specifications and proofs (this is rather like row-polymorphism
in record calculi). In separation logic, by contrast, the tight interpretation of pre-
conditions means that {P}C {Q} is semantically equivalent to ∀I.{P ∗I}C {Q∗
I} so universal quantification over predicates on store outside the footprint of
a command can be left implicit, but is still exploitable via the frame rule. Our
use of explicit polymorphism is arguably more primitive (especially since pro-
cedures and modules require second order quantification anyway), doesn’t rule
out any programs and is closed under observations. On the other hand, the more
modal-style approach of separation logic is simpler for simple programs and its
stronger intensional interpretation of separation, whilst being more restrictive,
has the significant advantage over ours that it extends smoothly to a concurrent
setting.

The proof scripts for the general framework plus the verification of the al-
locator code and the factorial client currently total about 8,500 lines, which is
excessively large. However, this really reflects my own incompetence with Coq,
rather than any inherent impracticality of machine-checked proofs in this style.
There are dozens of unused lemmas, variations on definitions, cut-and-pasted
proofs and downright stupidities that, having learnt more about both Coq and
the problem domain, I could now remove. The proofs of actual programs could
easily be made an order of magnitude shorter. We have an eye to using this kind
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of logic in PCC-style scenarios, for which mechanical checkability is certainly
necessary. But working in Coq also caught errors in definitions and proofs. For
example, we originally took |Raret(n)| to be simply S× S. The allocator does
satisfy that specification, but a failed proof of a simple client revealed that it
has a subtle flaw: if the block size is 1, the allocator can return location 0 itself
(in location 0) as the free block.

Theorem 2 is only a semantic type soundness result – it does not say that the
code actually computes factorials. In fact, only a couple of lines need tweaking to
add the functional part of the specification too. We presented a type soundness
result because that, rather than more general verification, is the direction of our
immediate future plans. Once we have refactored our Coq definitions somewhat,
we intend to investigate certified compilation of a small functional language in
this style. We will also prove a slightly more interesting allocator which actually
has a free list.

Although we have so far only focussed on proving a single program, a signif-
icant feature of the relational approach is that it can talk about equivalence of
low-level code modulo a particular contextual contract. For example, one might
hope to prove that all (terminating) allocators meeting our specification are ob-
servationally equivalent, or to verify the preservation of equational laws from
a high-level language. Previous work on modularity, simulation and refinement
in separation logic has run into some technical difficulties associated with the
non-deterministic treatment of allocation [23,13] which we believe are avoided
in our approach. We also need to look more seriously at the adjoint perping op-
eration, taking nat relations to nat×state relations [17,22]. Making all relations
be (·)��-closed validates more logical principles and may be an alternative to
step-indexing.

Thanks to Noah Torp-Smith for helping with an early version of this work,
Josh Berdine for many useful discussions about separation, and Georges Gonthier
for his invaluable advice and instruction regarding the use of Coq.

References

1. M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 121, 1993.

2. M. Abadi and G. D. Plotkin. A PER model of polymorphism and recursive types.
In Proc. 5th IEEE Symposium on Logic in Computer Science (LICS), pages 355–
365. IEEE Computer Society Press, June 1990.

3. A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In Proc. 15th European Symposium on Programming (ESOP), 2006.

4. A. Appel. Foundational proof-carrying code. In Proc. 16th IEEE Symposium on
Logic in Computer Science (LICS), 2001.

5. A. Appel and A. Felty. A semantic model of types and machine instructions for
proof-carrying code. In Proc. 27th ACM Symposium on Principles of Programming
Languages (POPL), 2000.

6. A. Appel and D. McAllester. An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(5), 2001.



196 N. Benton

7. N. Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In Proc. 31st ACM Symposium on Principles of Pro-
gramming Languages (POPL), January 2004. Revised version available from
http://research.microsoft.com/∼nick/publications.htm.

8. N. Benton. A typed, compositional logic for a stack-based abstract machine. In
Proc. 3rd Asian Symposium on Programming Languages and Systems (APLAS),
volume 3780 of Lecture Notes in Computer Science, November 2005.

9. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proc. 7th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA), volume 3461 of Lecture Notes in Computer Science, 2005.

10. J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back-end
optimization. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2003.

11. N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to
foundational proof-carrying code. Journal of Automated Reasoning, 31(3-4), 2003.

12. N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager of an
operating system using separation logic. In Proc. 3rd Workshop on Semantics, Pro-
gram Analysis and Computing Environments for Memory Management (SPACE),
2006.

13. I. Mijajlovic, N. Torp-Smith, and P. O’Hearn. Refinement and separation contexts.
In Proc. Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), December 2004.

14. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems (TOPLAS),
21(3), 1999.

15. G. Necula. Proof-carrying code. In Proc. 24th ACM Symposium on Principles of
Programming Languages (POPL), 1997.

16. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers.
In Proc. 33rd ACM Symposium on Principles of Programming Languages (POPL),
2006.

17. A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10, 2000.

18. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. In Higher Order Operational Techniques in Semantics. CUP, 1998.

19. G. D. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc. Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA), volume
664 of Lecture Notes in Computer Science, 1993.

20. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

21. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. 17th IEEE Symposium on Logic in Computer Science (LICS), 2002.

22. J. Vouillon and P.-A. Mellies. Semantic types: A fresh look at the ideal model for
types. In Proc. 31st ACM Symposium on Principles of Programming Languages
(POPL), 2004.

23. H. Yang. Relational separation logic. Theoretical Computer Science, 2004. Sub-
mitted.

24. D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC: Dynamic
storage allocation. Science of Computer Programming, 50, 2004.



Collapsibility in Infinite-Domain Quantified

Constraint Satisfaction

Manuel Bodirsky1 and Hubie Chen2

1 Institut für Informatik
Humboldt-Universität zu Berlin

Berlin, Germany
bodirsky@informatik.hu-berlin.de

2 Departament de Tecnologia
Universitat Pompeu Fabra

Barcelona, Spain
hubie.chen@upf.edu

Abstract. In this article, we study the quantified constraint satisfaction
problem (QCSP) over infinite domains. We develop a technique called
collapsibility that allows one to give strong complexity upper bounds
on the QCSP. This technique makes use of both logical and universal-
algebraic ideas. We give applications illustrating the use of our technique.

1 Introduction

The constraint satisfaction problem (CSP) is the problem of deciding the truth
of a primitive positive sentence

∃v1 . . .∃vn(R(vi1 , . . . , vik
) ∧ . . .)

over a relational signature, relative to a given relational structure over the same
signature. Informally, the goal in an instance of the CSP is to decide if there
exists an assignment to a set of variables simultaneously satisfying a collection
of constraints. Many search problems in computer science can be naturally for-
mulated as CSPs, such as boolean satisfiability problems, graph homomorphism
problems, and the problem of solving a system of equations (over some algebraic
structure). The CSP can be equivalently formulated as the relational homomor-
phism problem [14], or the conjunctive-query containment problem [18].

The ubiquity of the CSP in conjunction with its general intractability has
given rise to an impressive research program seeking to identify restricted cases
of the CSP that are polynomial-time tractable. In particular, much attention has
been focused on identifying those relational structures Γ such that CSP(Γ )–the
CSP where the relational structure is fixed to be Γ–is polynomial-time tractable.
In a problem CSP(Γ ), we call Γ the constraint language, and use the term domain
to refer to the universe of Γ . Many recent results have studied the problems
CSP(Γ ) for finite-domain constraint languages Γ , see for example [8,9,7,6,13]
and the references therein. However, it has been recognized that many natural
combinatorial problems from areas such as graph theory and temporal reasoning
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can be expressed as problems of the form CSP(Γ ) only if infinite-domain Γ are
permitted [1]. This has motivated the study of constraint satisfaction problems
CSP(Γ ) on infinite domains [1,2,4].

A recent subject of inquiry that builds upon CSP research is the quantified
constraint satisfaction problem (QCSP), which is the generalization of the CSP
where both existential and universal quantification is allowed, as opposed to
just existential quantification. As is well-known, the extra expressiveness of the
QCSP comes with an increase in complexity: the finite-domain QCSP is PSPACE-
complete, in contrast to the finite-domain CSP, which is NP-complete. Recent
work on the QCSP includes that of Börner, Bulatov, Krokhin, and Jeavons [5],
Chen [11,10,12], Gottlob, Greco, and Scarcello [15], and Pan and Vardi [20].

In this paper, we consider infinite-domain quantified constraint satisfaction.
Our contribution is to introduce, in the infinite-domain setting, a technique
called collapsibility that allows us to give complexity upper bounds on problems
of the form QCSP(Γ ), such as NP upper bounds, that are dramatically lower
than the “obvious” upper bound of PSPACE that typically applies. On a high
level, collapsibility allows one to show that, for certain contraint languages Γ , an
arbitrary instance of QCSP(Γ ) can be reduced to the conjunction of instances of
QCSP(Γ ) that are simpler in that they have only a constant number of (or no)
universally quantified variables; typically, such a conjunction can be cast as an
instance of CSP(Γ ′) for some constraint langauge Γ ′ with CSP(Γ ′) in NP, and
hence the reduction yields a proof that QCSP(Γ ) is in NP.

To develop our collapsibility technique, we make use of a universal-algebraic
approach to studying the complexity of constraint languages; this approach as-
sociates a set of operations called polymorphisms to each constraint language,
and uses this set of operations to derive information about complexity. While
the present work takes inspiration from technology that was developed in the
finite-domain setting [11,10] for similar purposes, there are a number of differ-
ences between the infinite and finite settings that necessitate the use of more
involved and intricate argumentation in the infinite setting. One is that, while
there is a canonical choice for the aforementioned simpler instances in the finite
setting, in the infinite setting there is no such canonical choice and indeed often
an expansion of the constraint language is required to achieve a reduction from
the QCSP to the CSP. Another is that, in the infinite setting, any assignment
or partial assignment f to variables induces, via the automorphism group of Γ ,
an orbit of assignments {σ(f) : σ is an automorphism of Γ}. The property of an
assignment satisfying constraints over Γ is orbit-invariant, but in the presence
of universal quantification, one needs to make inferences about the orbit of an
assignment in a careful way (see Lemma 3 and its applications).

2 Preliminaries

When A and B are sets, we use [A → B] to denote the set of functions mapping
from A to B. When f : A → B is a function and A′ is a subset of A, we use f |A′

to denote the restriction of f to A′. We extend this notation to sets of functions:
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when F ⊆ [A → B] and A′ is a subset of A, we use F |A′ to denote the set
{f |A′ : f ∈ F}. When f : A → B is a function, we use the notation f [a′ → b′]
to denote the extension of f mapping a′ to b′. We will use [k] to denote the first
k positive integers, {1, . . . , k}.

Relational structures. A relational language τ is a (in this paper always finite)
set of relation symbols Ri, each of which has an associated finite arity ki. A
(relational) structure Γ over the (relational) language τ (also called τ -structure)
is a set DΓ (the domain or universe) together with a relation Ri ⊆ Dki

Γ for each
relation symbol Ri from τ . For simplicity, we use the same symbol for a relation
symbol and the corresponding relation. If necessary, we write RΓ to indicate
that we are talking about the relation R belonging to the structure Γ . For a
τ -structure Γ and R ∈ τ it will also be convenient to say that R(u1, . . . , uk)
holds in Γ iff (u1, . . . , uk) ∈ R. If we add relations to a given structure Γ we call
the resulting structure Γ ′ an expansion of Γ , and Γ is called a reduct of Γ ′.

Homomorphisms. Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to
Γ ′ is a function f from DΓ to DΓ ′ such that for each n-ary relation symbol R in
τ and each n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈
RΓ

′
. In this case we say that the map f preserves the relation R. Isomor-

phisms from Γ to Γ are called automorphisms, and homomorphisms from Γ
to Γ are called endomorphisms. The set of all automorphisms of a structure
Γ is a group, and the set of all endomorphisms of a structure Γ is a monoid
with respect to composition. When referring to an automorphism of Γ , we
sometimes use the term Γ -automorphism to make clear the relational structure.
An orbit of k-tuples in Γ is a set of k-tuples of the form {(a(s1), . . . , a(sk)) :
a is an automorphism of Γ} for some tuple (s1, . . . , sk).

Polymorphisms. Let D be a countable set, and O be the set of finitary op-
erations on D, i.e., functions from Dk to D for finite k. We say that a k-ary
operation f ∈ O preserves an m-ary relation R ⊆ Dm if whenever R(xi

1, . . . , x
i
m)

holds for all 1 ≤ i ≤ k in Γ , then R
(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . , xk
m)
)

holds in
Γ . If f preserves all relations of a relational τ -structure Γ , we say that f is a
polymorphism of Γ . In other words, f is a homomorphism from Γ k = Γ× . . .×Γ
to Γ , where Γ1 × Γ2 is the (categorical- or cross-) product of the two relational
τ -structures Γ1 and Γ2. Hence, the unary polymorphisms of Γ are the endomor-
phisms of Γ .

Quantified constraint satisfaction. We define a τ -formula to be a quantified
constraint formula if it has the form Q1v1 . . .Qnvn(ψ1∧ . . .∧ψm), where each Qi

is a quantifier from {∀, ∃}, and each ψi is an atomic τ -formula that can contain
variables from {v1, . . . , vn}.

The quantified constraint satisfaction problem over a τ -structure Γ , denoted
by QCSP(Γ ), is the problem of deciding, given a quantified constraint formula
over τ , whether or not the formula is true under Γ . Note that both the universal
and existential quantification is understood to take place over the entire universe
of Γ . We use D throughout the paper to denote the universe of a constraint lan-
guage Γ under discussion. The constraint satisfaction problem over a τ -structure
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Γ , denoted by CSP(Γ ), is the restriction of QCSP(Γ ) to instances only including
existential quantifiers.

A constraint language is simply a relational structure; we typically refer to
a relational structure Γ as a constraint language when we are interested in the
computational problem QCSP(Γ ) or CSP(Γ ). We also refer to Γ as a template.

We will illustrate the use of our technique on examples drawn from the fol-
lowing two classes of constraint languages.

Equality constraint languages. An equality-definable relation is a relation
(on an infinite domain) that can be defined by a boolean combination of atoms
of the form x = y. An equality constraint language is a relational structure
having an countably infinite universe D and such that all of its relations are
equality-definable relations over D.

When Γ is an equality constraint language with domain D, any permutation
of D is an automorphism of Γ , that is, the automorphism group of Γ is the full
symmetric group on D. Observe that, if a tuple t = (t1, . . . , tk) is an element of an
equality-definable relation R ⊆ Dk, then all tuples of the form (π(t1), . . . , π(tk)),
where π is a permutation on D, are also contained in R. In studying equality
constraint languages, it is therefore natural for us to associate to each tuple
(t1, . . . , tk) the equivalence relation ρ on {1, . . . , k} where i = j if and only if
ti = tj . This is because, by our previous observation, a tuple t = (t1, . . . , tk) is in
an equality-definable relation R if and only if all k-arity tuples inducing the same
equivalence relation as t are in R. We may therefore view an equality-definable
relation of arity k as the union of equivalence relations on {1, . . . , k}.

It is known that for an equality constraint language Γ , CSP(Γ ) is polynomial-
time tractable if Γ has a constant unary polymorphism or an injective binary
polymorphism, and is NP-complete otherwise [4]. It is also known (and not
difficult to verify) that for every equality constraint language Γ , the problem
QCSP(Γ ) is in PSPACE [3]. In general, the quantified constraint satisfaction
problem for equality constraint languages is PSPACE-complete [3]; this is closely
related to a result of [21].

Temporal constraint languages. A temporal relation is a relation on the
domain Q (the rational numbers) that can be defined by a boolean combination
of expressions of the form x < y. A temporal constraint language is a relational
structure having Q as universe and such that all of its relations are temporal rela-
tions. As with equality constraint languages, it is known and not difficult to verify
that for every temporal constraint language Γ , the problem CSP(Γ ) is in NP, the
problem QCSP(Γ ) is in PSPACE, and there are temporal constraint languages
Γ such that QCSP(Γ ) is PSPACE-complete. Temporal constraint languages are
well-studied structures in model theory (e.g., they are all ω-categorical; see [16]).

3 Collapsibility

In this section, we present our collapsibility technology. We begin by introducing
some notation and terminology.
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When Φ is a quantified constraint formula, let V Φ denote the variables of Φ,
let EΦ denote the existentially quantified variables of Φ, and let UΦ denote the
universally quantified variables of Φ. When u ∈ V Φ is a variable of Φ, we use
V Φ<u to denote the variables coming strictly before u in the quantifier prefix of
Φ, and we use V Φ≤u to denote the variables coming before u (including u) in the
quantifier prefix of Φ. When S is a subset of V Φ, we say that S is an initial
segment of Φ if S = ∅ or S = V Φ≤u for a variable u ∈ V Φ.

Let us intuitively think of an instance of the QCSP as a game between two
players: a universal player that sets the universally quantified variables, and an
existential player that sets the existentially quantified variables. The existential
player wants to satisfy all of the constraints. We may formalize the notion of a
strategy for the existential player in the following way.

A strategy for a quantified constraint formula Φ is a sequence of partial func-
tions σ = {σx : [V Φ<x → D] → D}x∈EΦ. The intuition behind this definition is
that the function σx of a strategy describes how to set the variable x given a
setting to all of the previous variables. We say that an assignment f to an initial
segment of Φ is consistent with σ if for every existentially quantified variable
x in the domain of f , it holds that σx(f |V Φ

<x
) is defined and is equal to f(x).

Intuitively, f is consistent with σ if it could have been reached in a play of the
game under σ.

A playspace for a quantified constraint formula Φ is a set of mappings A ⊆
[V Φ → D]. We will often be interested in restrictions of a playspaceA of the form
A|V Φ

<u
orA|V Φ

≤u
; we will use the notationA〈<u〉 andA〈≤u〉 for these restrictions,

respectively. The quantified constraint formula Φ will always be clear from the
context. Likewise, for a function f defined on a subset of V Φ, we will use the
notation f〈<u〉 and f〈≤u〉 for the restrictions f |V Φ

<u
and f |V Φ

≤u
, respectively.

Intuitively, a playspace will be used to describe a restriction on the actions
of the universal player: an existential strategy will be a winning strategy for a
playspace as long as it can properly respond to all settings of variables that fall
into the playspace. We formalize this in the following way.

Let A be a playspace for a quantified constraint formula Φ, and let σ be a
strategy for the same formula Φ. We say that σ is a winning strategy for A if
the following two conditions hold:

– for every variable x ∈ EΦ and every assignment f ∈ A〈<x〉, if f is consistent
with σ, then σx(f) is defined and f [x → σx(f)] ∈ A〈≤x〉, and

– every assignment f ∈ A consistent with σ satisfies the constraints of Φ.

We call a playspace winnable if there exists a winning strategy for it.
Let us say that a playspace A (for a quantified constraint formula Φ) is ∀-free

(∃-free) if for every universally (existentially) quantified variable u ∈ V Φ, every
domain element d ∈ D, and every function f ∈ A〈<u〉, the function f [u → d]
is contained in A〈≤u〉. As a simple example illustrating these notions, observe
that for any quantified constraint formula Φ, the playspace [V Φ → D] is both
∀-free and ∃-free. The notion for ∀-freeness yields a characterization of truth for
quantified constraint formulas.
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Proposition 1. Let Φ be a quantified constraint formula Φ. The following are
equivalent:

1. Φ is true.
2. The ∀-free playspace [V Φ → D] has a winning strategy.
3. There exists a ∀-free playspace for Φ having a winning strategy.

Having given the basic terminology for collapsibility, we now proceed to develop
the technique itself. The following is an outline of the technique. What we aim to
show is that for certain templates Γ , an arbitrary instance Φ of QCSP(Γ ) is truth-
equivalent to (the conjunction of) a collection of “simpler” QCSP instances.
These simpler instances will always have the property that the truth of the
original instance Φ readily implies the truth of the simpler instances; what is
non-trivial is to show that the truth of all of the simpler instances implies the
truth of the original instance. We will be able to establish this implication in
the following way. First, we will translate the truth of the simpler instances
into winnability results on playspaces (for the original instance Φ). Then, we
will make use of two tools (to be developed here) that allow us to infer the
winnability of larger playspaces based on the winnability of smaller playspaces
and the polymorphisms of Φ. These tools will let us demonstrate the winnability
of a ∀-free playspace, which then implies the truth of Φ by Proposition 1.

We now turn to give the two key tools which allow us to “enlargen” playspaces
while still preserving winnability. To illustrate the use of these tools, we will use
a running example which will fully develop a collapsibility proof.

Example 2. As a running example for this section, we consider positive equality
constraint languages. Positive equality constraint languages are equality con-
straint languages where every relation is definable by a positive combination of
atoms of the form x = y, that is, definable using such atoms and the boolean
connectives {∨,∧}. A simple example of a positive equality constraint language
is Γ = (N, S), where S is the relation

S = {(w, x, y, z) ∈ N4 : (w = x) ∨ (y = z)}.

Any equality-definable relation R, viewed as the union of equivalence rela-
tions, can be verified to have the following closure property: every equivalence
relation ρ′ obtainable from an equivalence relation ρ from R by combining two
equivalence classes into one is also contained in R. In fact, from this observation,
it is not difficult to see that a positive equality constraint language has all unary
functions as polymorphisms. (Indeed, the property of having all unary functions
as polymorphisms is also sufficient for an equality constraint language to be a
positive equality constraint language, and hence yields an algebraic characteri-
zation of positive equality constraint languages.)

We will show that, for any positive equality constraint language Γ , the prob-
lem QCSP(Γ ) reduces to CSP(Γ ∪ {�=}). In particular, for an instance

Φ = Q1v1 . . .QnvnC
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of QCSP(Γ ), we define the collapsing of Φ to be the CSP(Γ ∪ {�=}) instance

Φ′ = ∃v1 . . .∃vn(C ∧
∧
{vi �= vj : i < j, Qj = ∀}).

That is, the collapsing of Φ is obtained from Φ by adding constraints asserting
that each universal variable y is different from all variables coming before y,
and then changing all quantifiers to existential. We will show that an instance
Φ of QCSP(Γ ) is true if and only if its collapsing is true. This gives a reduction
from a problem whose most obvious complexity upper bound is PSPACE, to a
problem in NP. The inclusion of this problem in NP has been previously shown by
Kozen [19]; we have elected it as our running example as we believe it allows us
to nicely illustrate our technique. Note that our reduction is tight in that there
are known NP-hard positive equality constraint languages [3]. (The existence
of such NP-hard constraint languages also implies that one cannot hope for a
reduction from QCSP(Γ ) to CSP(Γ ) which does not “augment the template”,
since for positive equality constraint languages Γ , the problem CSP(Γ ) is known
to be polynomial-time tractable [4].)

It is readily seen that if an instance Φ is true, then its collapsing Φ′ is true.
The difficulty in justifying this reduction, then, is in showing that if a collaps-
ing Φ′ is true, then the original instance Φ is true. Our first step in showing
this is to simply view the truth of Φ′ as a winnability result on a playspace.
Let a : {v1, . . . , vn} → D be an assignment satisfying the constraints of Φ′.
Clearly, the playspace {a} is winnable, via the strategy σ = {σx}x∈EΦ defined
by σx(a|V Φ<x) = a(x). We will use the winnability of this playspace to derive
the winnability of larger and larger playspaces, ultimately showing the winnabil-
ity of the largest playspace [V Φ → D], and hence the truth of the formula (by
Proposition 1). '(

The following lemma allows one to add, to a winnable playspace, tuples from
the orbits induced by the tuples already in the playspace, while maintaining the
property of winnability.

Lemma 3. (Orbit Lemma) Let A be a winnable playspace for a quantified con-
straint formula Φ over template Γ . Let y ∈ UΦ be a universally quantified vari-
able. There exists a winnable playspace A′ such that the following hold:

– for each t ∈ A〈≤y〉 and Γ -automorphism σ that fixes every point {t(u) : u ∈
A〈<y〉}, σ(t) is in A′〈≤y〉. Note that here, σ(t) is equal to t at all points
except (possibly) y.

– A ⊆ A′ ⊆ {τ(t) : t ∈ A, τ is a Γ -automorphism}.
– A〈<y〉 = A′〈<y〉.

Proof (idea). Let F be the set of all functions of the form σ(t) satisfying the
conditions of the first property, that is, t is in A〈≤y〉 and σ is a Γ -automorphism
that fixes every point {t(u) : u ∈ A〈<y〉}. For each element f ∈ F \A〈≤y〉, define
σf and tf to be such mappings so that f = σf (tf ). We define A′ to be

A∪ {σf (e) : f ∈ F \ A〈≤y〉, e ∈ A, e〈≤y〉 = tf}.
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Let {ρx} be a winning strategy for A. We assume without loss of generality
that the partial functions ρx are only defined on functions f ∈ A〈<x〉 that are
consistent with ρ. We need to extend the ρx so that they handle extensions of the
functions f ∈ F \A〈≤y〉. When g is an extension of such a f , we define ρ′x(g) as
σf (ρx(σ−1

f (g))). That is, we translate g back by σf and look at the response by
ρx, and apply σf to that response to obtain our response. It is straightforward
to verify that the {ρ′x} are a winning strategy for A′. '(

Example 4. We continue the discussion of positive equality constraint languages,
our running example. We have established the winnability of a size-one playspace
{a}, where for all universally quantified variables y, the value a(y) is different
from a(v) for all variables v coming before y in the quantifier prefix. Our goal is
to infer the winnability of the largest playspace [V Φ → D], using the winnability
of this playspace.

Let us say that a playspace A is �=-free if for every universally quantified
variable y ∈ V Φ, every function f ∈ A〈<y〉, and every value d ∈ D distinct
from all values in {f(u) : u ∈ V Φ<y}, the function f [y → d] is contained in
A〈≤y〉. Assuming that our original instance Φ contained at least one universally
quantified variable y, our playspace {a} is not �=-free: there is only one extension
of a〈<y〉 in {a}〈≤y〉, namely, a〈≤y〉. However, using the Orbit Lemma, we can
expand {a} into a �=-free playspace, as follows.

Let y1 be the first universally quantified variable of Φ. Applying the Orbit
Lemma to the playspace A = {a} and variable y = y1, we obtain a playspace
A1 that satisfies the �=-freeness condition at y1. We demonstrate this as follows.
If f is a function in A1〈<y1〉, we have f ∈ A〈<y1〉, since the Orbit Lemma
provides A〈<y〉 = A′〈<y〉. Let h = f [y1 → d] be any extension of f where
d is distinct from all values in the image of f . We want to show that h is
contained in A1〈≤y1〉. We know that there exists an extension f ′ = f [y1 → d′]
of f such that d′ is different from all values in the image of f . (This is because
f ∈ A〈<y1〉 = {a}〈<y1〉, and the function a assigns y1 to a value different from
all values assigned to preceding variables.) Let σ be a permutation on D (that is,
a Γ -automorphism) that fixes all points in the image of f , but maps d′ to d. The
Orbit Lemma provides that σ(f ′) = h is in A1〈≤y〉. Repeatedly applying the
Orbit Lemma to the universally quantified variables y1, y2, . . . of Φ, we obtain
an increasing sequence of winnable playspaces A1,A2, . . . whose last member is
�=-free.

Note that the Orbit Lemma provides, for each i,

Ai+1 ⊆ {τ(t) : t ∈ Ai, τ is a Γ -automorphism}

and hence, for each i,

Ai ⊆ {τ(t) : t ∈ A, τ is a Γ -automorphism}.

From this, we can see that each Ai has the property that for any universally
quantified variable yj and for any function f ∈ Ai〈<yj〉, any extension f [yj → d]
of f in Ai〈≤yj〉 has d distinct from all values in the image of f ; this is because
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A has this property, and this property is preserved by adding, to a playspace,
permutations of functions already in the playspace.

Summarizing, we have shown that the winnability of the size-one playspace
from Example 2 implies the winnability of a �=-free playspace. '(

The next theorem allows us to, roughly speaking, use a polymorphism g : Dk →
D of Φ to compose together k winnable playspaces to derive another winnable
playspace.

Let g : Dk → D be an operation. Let A,B1, . . . ,Bk be playspaces for a
quantified constraint formula Φ. We say thatA is g-composable from (B1, . . . ,Bk)
if for all universally quantified variables y ∈ UΦ, the following holds: if t ∈ A〈<y〉
and t1 ∈ B1〈<y〉, . . ., tk ∈ Bk〈<y〉 are such that t = g(t1, . . . , tk) pointwise, and
d ∈ D is a value such that t[y → d] ∈ A〈≤y〉, then there exist d1, . . . , dk ∈ D
such that d = g(d1, . . . , dk) and t1[y → d1] ∈ B1〈≤y〉, . . ., tk[y → dk] ∈ Bk〈≤y〉.

Theorem 5. Let Φ be a quantified constraint formula, and assume that g :
Dk → D is a polymorphism of all relations in Φ. Assume that A,B1, . . . ,Bk are
playspaces such that A is ∃-free and g-composable from (B1, . . . ,Bk). If each of
the playspaces B1, . . . ,Bk is winnable, then A is winnable.

Theorem 5 was inspired by machinery developed for finite-domain QCSPs pre-
sented in [10, Chapter 4]. Before giving the proof, we give an example application
that allows us to conclude our running example.

Example 6. For a QCSP instance Φ over a positive equality constraint language
Γ , we have shown, in Examples 2 and 4, the winnability of a �=-free playspaceA�=
based on the truth of the collapsing Φ′ of Φ; the collapsing Φ′ is a CSP instance
(over an equality constraint language). We now complete the justification of our
reduction by showing that the winnability of this �=-free playspace implies the
winnability of the “full” playspace [V Φ → D].

Let g : D → D be a surjective unary function such that g−1(d) is of infinite size
for every d ∈ D, that is, every point d ∈ D in the image of g is hit by infinitely
many domain points. As noted in Example 2, the function g is a polymorphism
of Γ . To show the winnability of the playspace [V Φ → D], we show that it is g-
composable fromA�=, from which its winnability follows by appeal to Theorem 5.

Why is the playspace [V Φ → D] g-composable from A�=? Let y ∈ UΦ be a
universally quantified variable, let t ∈ A〈<y〉, let t′ ∈ A�=〈<y〉 and suppose that
t = g(t′) pointwise. It suffices to show that for any value d ∈ D, there exists
d′ ∈ D such that d = g(d′) and t′[y → d′] ∈ A�=. This holds: one can pick d′ to be
any point in g−1(d) \ image(t′). This set is non-empty as it is the subtraction of
a finite set from an infinite set, and for any such d′ we have t′[y → d′] ∈ A�=〈≤y〉
by the �=-freeness of A�=. '(

Proof (Theorem 5). For each i ∈ [k], let σi be a winning strategy for the
playspace Bi. We define a sequence of mappings σ = {σx}x∈EΦ that consti-
tutes a winning strategy for A. We consider each initial segment one by one, in
order of increasing size. After the initial segment S has been considered, we will
have defined mappings {σx}x∈EΦ∩S having the following properties:
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(a) if S = V Φ|≤x for an existentially quantified variable x, then for any f ∈
A〈<x〉 consistent with σ, σx(f) is defined and f [x → σx(f)] ∈ A|S .

(b) if f ∈ A|S is consistent with σ, then there exist f1 ∈ B1|S , . . ., fk ∈ Bk|S
such that f = g(f1, . . . , fk) pointwise and fi is consistent with σi for all
i ∈ [k].

This suffices, since after the initial segment S = V Φ has been considered, the
sequence of mappings {σx} constitute a winning strategy. The first requirement
in the definition of a winning strategy holds because property (a) holds for all
possible initial segments S. The second requirement in the definition of a winning
strategy holds: by property (b), any assignment f ∈ A|V Φ consistent with σ is
equal to g applied point-wise to assignments f1 ∈ B1|V Φ , . . ., fk ∈ Bk|V Φ that are
consistent with σ1, . . . ,σk, respectively; since the σi are winning strategies, each
fi satisfies the constraints of Φ, and since g is a polymorphism of the relations
of Φ, f satisfies the constraints of Φ.

We now give the construction.
Let S′ = V Φ≤u be an initial segment of size |S′| ≥ 1, and let S = V Φ<u be the

initial segment of size |S′|−1. We may assume by induction that the construction
has been performed for S. To perform the construction for S′, we consider two
cases depending on the quantifier of the variable u.

Case 1: u is an ∃-quantified variable. We consider each mapping f ∈ A|S . If f
is not consistent with σ, then we leave σu(f) undefined. If f is consistent with σ,
then in order to satisfy property (a), we need to define σu(f). Since property (b)
holds on S, there exist the described mappings f1 ∈ B1|S , . . ., fk ∈ Bk|S with
f = g(f1, . . . , fk) pointwise and with fi consistent with σi for all i ∈ [k]. Since,
for each i ∈ [k], the σi are winning strategies, there is an extension f ′i ∈ Bi|S′

of f consistent with σi. We define σu(f) as g(f ′1(u), . . . , f ′k(u)). The mapping
f ′ = f [u → σu(f)] is in A|S′ by the ∃-freeness of A. Now, the mapping f ′

is consistent with σ, so we need to verify that property (b) holds on f ′. It is
straightforward to verify that the mappings f ′1, . . . , f

′
k serve at witnesses.

Case 2: u is a ∀-quantified variable. Clearly, property (a) is trivially satisfied
for S′, so we need only consider property (b). Suppose that f ′ ∈ A|S′ is consistent
with σ. We want to show the existence of the described mappings f ′1, . . . , f

′
k. Let

f = f ′|S . Since property (b) holds for the initial segment S, we know that there
exist f1 ∈ B1〈<u〉, . . . , fk ∈ Bk〈<u〉 such that f = g(f1, . . . , fk) pointwise and fi

is consistent with σi for all i ∈ [k]. By the definition of g-composable, there exist
extensions f ′1, . . . , f

′
k of f1, . . . , fk, respectively, to S′, satisfying the conditions

of property (b). '(

4 Applications

In the previous section, we developed some tools for giving collapsibility proofs,
and illustrated their use on positive equality constraint languages. We showed
that for any positive equality constraint language Γ , the problem QCSP(Γ ) is in
NP. In this section, we give further applications of our technique.
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4.1 Max-Closed Constraints

We consider temporal constraint languages that are closed under the binary
operation max : Q × Q → Q that returns the maximum of its two arguments.
We will demonstrate the following theorem.

Theorem 7. Let Γ be a temporal constraint language having the max operation
as polymorphism. The problem QCSP(Γ ) is in NP.

Example 8. Consider the temporal constraint language (Q, R) where R is the
relation {(x, y, z) ∈ Q3 : x < y or x < z}. This constraint language has the
max operation as polymorphism: suppose (a, b, c), (a′, b′, c′) ∈ R. We want to
show that (max(a, a′), max(b, b′), max(c, c′)) ∈ R. Let us assume without loss of
generality that a > a′. We know that either a < b or a < c. If a < b, then
a < max(b, b′) and we have max(a, a′) < max(b, b′). If a < c, then a < max(c, c′)
and we have max(a, a′) < max(c, c′). '(

We now prove this theorem. Let Φ be an instance of QCSP(Γ ) for a max-closed
template Γ . As in the collapsibility proof for positive equality constraint lan-
guages, we will show a reduction to a CSP. Whereas in the case of positive
languages we gave a direct reduction to a CSP, here, we give a reduction to
a conjunction of QCSP instances, each of which has one universally quantified
variable; we argue that this ensemble can be formulated as a CSP.

Denote Φ as Q1v1 . . .QnvnC. (We assume that Φ has at least one universally
quantified variable, otherwise, it is an instance of CSP(Γ ).) For a universally
quantified variable vi ∈ UΦ, we define the vk-collapsing of Φ to be the QCSP
instance

Φ′ = ∃v1 . . .∃vk−1∀vk∃vk+1 . . .∃vn(C ∧
∧
{vi > vj : i < j, j �= k, Qj = ∀}).

That is, the vk-collapsing of Φ is obtained from Φ by adding constraints asserting
that each universal variable y (other than vk) is less than all variables coming
before it, and changing all universal quantifiers to existential except for that of
vk. It is readily verifiable that if the original QCSP(Γ ) instance Φ was true, then
all of its y-collapsings (with y ∈ UΦ) are also true. We show that the converse
holds. This suffices to place QCSP(Γ ) in NP, by the following lemma.

Lemma 9. Let B ⊆ Q3 be the “different-implies-between” relation defined by
B = {(x, y, z) ∈ Q3 : (x �= z) → ((x < y < z) ∨ (x > y > z))}. Let Γ ′ be the
expansion of a temporal constraint language Γ with B and <. Given an instance
Φ of QCSP(Γ ), there exists an instance Φ′ of CSP(Γ ′) that is true if and only
if Φ is true. For every constant k, the mapping Φ → Φ′ can be computed in
polynomial time on those formulas Φ with |UΦ| ≤ k.

Lemma 9 can be viewed as a strong version of the well-known quantifier elimi-
nation property for temporal constraint languages.

We want to show that if all y-collapsings of an instance Φ are true, then Φ
itself is true. How will we do this? We will first translate the truth of each y-
collapsing into a winnability result on a playspace Ay for Φ. We will then show
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that each of these playspaces Ay can be expanded into a playspace A′y that
obeys a “freeness” condition but is still winnable. We then compose together the
playspaces A′y using Theorem 5 to derive the winnability of the full playspace
[V Φ → Q].

We translate the truth of the y-collapsings of Φ into winnability results on
playspaces, as follows. Let us say that a playspace A (for Φ) is ∀-free at z ∈ UΦ

if for every assignment f ∈ A〈<z〉, and every d ∈ D, the function f [z → d] is
contained in A〈≤z〉. For each y ∈ UΦ, it is readily verified that the truth of the
y-collapsing of Φ implies the winnability of a playspace Ay that is ∀-free at y,
and where for all t ∈ Ay it holds that t(a) > t(b) if b ∈ UΦ \ {y}, a ∈ V Φ, and a
comes before b in the quantifier prefix.

Let S ⊆ UΦ be a set of universally quantified variables. We define a playspace
A for Φ to be (S, <)-free if:

– for every variable y ∈ S, A is ∀-free at y, and
– for every variable y ∈ UΦ \S, and every assignment f ∈ A〈<y〉, there exists

an interval (−∞, dy] such that for every d ∈ (−∞, dy], the function f [y → d]
is contained in A〈≤y〉.

Our playspaces Ay are not ({y}, <)-free, but via repeated application of the
Orbit Lemma, from each playspace Ay we may obtain a winnable playspace A′y
that is ({y}, <)-free.

We prove by induction, on the size of S, that there is a winnable playspace
A′S that is (S, <)-free (for all S ⊆ UΦ). This suffices to show the winnability of a
(UΦ, <)-free playspace, which is ∀-free, implying the truth of Φ by Proposition 1.
Suppose k ≥ 1. By induction, we assume that we have constructed our A′S for
|S| ≤ k. Let S′ ⊆ UΦ be of size |S′| = k +1. We want to show the winnability of
a (S′, <)-free playspace. Pick any element s0 ∈ S′ and set S = S′\{s0}. Suppose
that A′s0 is ({s0}, <)-free with respect to {dy}y∈UΦ\{s0}, and that A′S is (S, <)-
free with respect to {ey}y∈UΦ\S . We show the winnability of the playspace A′S′

that is (S′, <)-free with respect to {min(dy, ey)}y∈UΦ\S′ , and also ∃-free. In par-
ticular, we prove that AS′ is max-composable from (A′s0 ,A′S). The winnability
of AS′ then follows from Theorem 5. Let y ∈ UΦ and consider t ∈ A′S′〈<y〉,
ts0 ∈ As0〈<y〉, tS ∈ AS〈<y〉 such that t = max(ts0 , tS) pointwise. Let d ∈ Q
be a value such that t[y → d] ∈ A′S′ . We want to find values d1, d2 such that
d = max(d1, d2) and ts0 [y → d1] ∈ As0〈≤y〉, and tS [y → d2] ∈ AS〈≤y〉. We split
into cases.

– y = s0: we select d1 = d and d2 to be a value such that d2 ≤ d and
d2 ≤ dy. The first inequality guarantees that d = max(d1, d2) and the second
guarantees that ts0 [y → d1] ∈ As0〈≤y〉.

– y ∈ S: we select d2 = d and d1 to be a value such that d1 ≤ d and d1 ≤ ey.
This case is similar to the previous one, except we use the ∀-freeness of AS
at y, whereas in the previous case, we used the ∀-freeness of As0 .

– y ∈ UΦ \ S′: we select d1 = d and d2 = d.
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4.2 Near-Unanimity Operations

A near-unanimity operation is an operation f : Dk → D of arity k ≥ 3 sat-
isfying the identities f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) for
all x, y ∈ D. Near-unanimity operations have been studied in the finite case
in [17,10]. We show that, for a constraint language Γ having a near-unanimity
operation as polymorphism, the problem QCSP(Γ ) essentially reduces to the
problem CSP(Γ ).

Theorem 10. Suppose that Γ is a constraint language having a near-unanimity
operation g : Dk → D as polymorphism. There exists a polynomial-time com-
putable mapping that, given an instance Φ of QCSP(Γ ), outputs a set S of in-
stances of QCSP(Γ ) such that:

– each instance in S has at most k − 1 universally quantified variables, and
– all instances in S are true if and only if the original instance Φ is true.

Proof. Let Φ be an instance of QCSP(Γ ). In this proof, we define a j-collapsing
of Φ to be an instance of QCSP(Γ ) obtained from Φ by selecting a subset S ⊆ UΦ

of universally quantified variables of size |S| = j, and changing the quantifiers
of the variables UΦ \ S to existential, and adding constraints {y = y′ : y, y′ ∈
UΦ \ S} equating all of the variables in UΦ \ S. (Note that these equalities can
subsequently be eliminated by renaming and removing variables.)

Clearly, if Φ is true, all of its j-collapsings are true. We show that if the j-
collapsings of Φ are true for all j ≤ k − 1, then Φ is true. This is obvious if Φ
has k − 1 or fewer universally quantified variables, so we assume that it has k
or more universally quantified variables. It is straightforward to verify that the
truth of the j-collapsing of Φ arising from the subset S ⊆ UΦ (with |S| = j)
implies the winnability of a playspace AS (for Φ) that is ∀-free at all y ∈ S and
such that f(y′) = a for all y ∈ UΦ \ S for a fixed constant a. (See the proof of
Theorem 7 for the definition of ∀-free at y.)

We prove that for all subsets S ⊆ UΦ, there is a winnable playspace AS
(for Φ) that is ∀-free at all y ∈ S. This suffices, since then AUΦ is a winnable
playspace that is ∀-free. We prove this by induction on |S|. We have pointed
out that this is true when |S| ≤ k − 1, so assume that |S| ≥ k. Select k distinct
elements s1, . . . , sk ∈ S. For each i ∈ [k], define Si = S \ {si}. We claim that the
playspace AS that consists of all functions f : V Φ → D such that f(y) = a for all
y ∈ UΦ \ S, is g-composable from (AS1 , . . . ,ASk

). The result then follows from
Theorem 5. We verify this as follows. Let y ∈ UΦ and suppose that t ∈ AS〈<y〉
and ti ∈ ASi〈<y〉 for all i ∈ [k] are such that t = g(t1, . . . , tk) pointwise, and d ∈
D is a value such that t[y → d] ∈ AS〈≤y〉. We want to give values d1, . . . , dk ∈ D
such that d = g(d1, . . . , dk) and ti[y → di] ∈ ASi〈≤y〉. We split into cases.

– If y = si for some i ∈ [k], we set di = a and dj = d for all other j, that is,
j ∈ [k] \ {i}.

– If y ∈ S \ {s1, . . . , sk}, we set di = d for all i ∈ [k].
– If y ∈ UΦ \ S, we set di = a for all i ∈ [k].

'(
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The following is an example application of Theorem 10. Define the operation
median : Q3 → Q to be the operation that returns the median of its three
arguments. The operation median is a near-unanimity operation of arity 3.

Theorem 11. Suppose that Γ is a temporal constraint language having the
median operation as polymorphism. The problem QCSP(Γ ) is in NP.

Proof. We use the reduction of Theorem 10 along with Lemma 9 to obtain a
reduction to CSP(Γ ′) for a temporal constraint language Γ ′. '(
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Abstract. We define a hierarchy of term systems T k by means of re-
strictions of the recursion schema. We essentially use a pointer technique
together with tiering. We prove T k ⊆ NCk ⊆ T k+1, for k ≥ 2. Special
attention is put on the description of T 2 and T 3 and on the proof of
T 2 ⊆ NC2 ⊆ T 3. Such a hierarchy yields a characterization of NC.

1 Introduction

The present work enters the field of Implicit Complexity. By Implicit, we mean
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sequences. Since the tiering condition we consider on programs is decidable, the
term systems can be used for static analysis of programs, that is for certification
of bounds on the time/space usage of programs. In an other context, such an ap-
proach has been established on the theoretical study of Hofmann [Hof99, Hof02]
which found applications in the Embounded Project1.

The present approach of Implicit Complexity is in the vein of Bellantoni-
Cook/Leivant, that is, we use some tiering discipline. Since the seminal papers
of Simmons [Sim88], Bellantoni-Cook [BC92], and Leivant-Marion [LM93], the
approach has shown to be fruitful. For instance, see Mairson and Neergaard
[Nee04] who propose a nice characterization of LOGSPACE by means of a tiering
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In this paper, we try to shape the form of recursion that corresponds to
NCk. In other words, we are working towards an implicit characterization of
the complexity classes NCk, k ∈ N. We discuss the term systems T k such that
T k ⊆ NCk ⊆ T k+1, for k ≥ 2. NCk is the class of languages accepted by uniform
boolean circuit families of depth O(logk n) and polynomial size with bounded
gates; and NC =

⋃
kNCk.

To motivate the definition of our system we look to NCk from the point of
view of Alternating Turing Machines (ATMs). The relation is established by the
following theorem.

Theorem 1 (Ruzzo, [Ruz81]). Let k ≥ 1. For any language L ⊆ {0, 1}∗, L is
recognized by an ATM in O(logk n) time and O(log n) space iff it is in (uniform)
NCk.

The underlying intuition for our implicit approach is to use ramified recursion
to capture the time aspect and recursion with pointers to capture the space
aspect. We use linear recursion in the sense of [LM00] in order to stratify the
degree of the polylogarithmic time, and recursion with pointers as in [BO04]. We
define term systems T k allowing k ramified recursion of which the lowest one is
equipped with pointers.

We work in a sorted context, in the vein of Leivant [Lei95]. For T k we use
k + 1 tiers:

– tier 0 with no recursion;
– tier 1 for recursion with pointers to capture the space aspect;
– tiers 2 to k for ramified recursions which deal with the time aspect.

There are two implicit characterization of NC1, one by Leivant-Marion using
linear ramified recurrence with substitution [LM00], and one by Bloch [Blo94] in
a Bellantoni and Cook [BC92] recursion setting. Clote [Clo90], using bounded re-
cursion schemes, gives a machine-independent characterization of NCk. Leivant’s
approach to NCk [Lei98] is machine and resource independent, however, it is not
sharp. It consists of term systems RSRk for ramified schematic recurrence. RSRk

characterizes NCk only within three levels:

RSRk ⊆ NCk ⊆ RSRk+2, k ≥ 2.

Our term systems reduce the unsharpness of the characterization of NCk to
two levels:

T k ⊆ NCk ⊆ T k+1, k ≥ 2.

As related work we mention here [LM95] where alternating computations was
captured bymean of ramified recursionwith parameter substitution. ForNC there
exists also an implicit characterizationby use of higher type functions in [AJST01].

The structure of the paper is briefly as follows. In Section 2, we present the
term systems and state some preliminary results. In Section 3, we describe the
upper bounds, that is the way of compiling the term systems in terms of circuits.
Section 4 is devoted to the lower bound.



214 G. Bonfante et al.

2 The Term Systems T k

The term systems T k are formulated in a k + 1-sorted context, over the tree
algebra T. The algebra T is generated by 0, 1 and ∗ (of arities 0, 0 and 2, respec-
tively), and we use infix notation for ∗. As usual, we introduce three additional
constants: l for the left destructor, r for the right destructor and c for the con-
ditional. They are defined as follows: l(0) = 0, l(1) = 1, l(u ∗ v) = u, r(0) = 0,
r(1) = 1, r(u ∗ v) = v, and c(0, x, y, z) = x, c(1, x, y, z) = y, c(u ∗ v, x, y, z) = z.

Following notation introduced by Leivant in [Lei95], we consider k + 1 copies
of T. Therefore, we formally have k + 1 copies of the constructors T, and k + 1
sorts of variables ranging over the different tiers. As usual, we separate different
tiers by semicolons.

As initial functions of T k one considers the constructors, destructors, condi-
tional and projection functions over the k+1 tiers. T k is closed under sorted com-
position over k + 1-tiers — f(xk; . . . ; x0) = h(gk(xk; . . . ; ); . . . ; g0(xk; . . . ; x0))
— and k schemes of sorted recursion as described below.

We start by define the recursion schemes of T 2 and T 3 and describe only
then the general case of T k. In what follows one should notice that, whenever
f is defined by recursion with step function h, h itself cannot be defined by
recursion over the same tier as f is defined. Therefore, in T k we allow, at most, k
(step-)nested recursions. However, in the base cases the function g can be defined
by a further recursion over the same tier as f is defined, i.e., no restriction is
imposed on the number of recursions constructed on top of each other (base-
nested recursions).

2.1 The Term System T 2

According to the underlying idea, the characterization of NC2 requires three
tiers:

– Tier 0: no recursion.
– Tier 1: recursion with pointers (space tier).
– Tier 2: recursion without pointers, modifying tier 1 (time tier).

Tier 1 recursion (with pointers)

f(; p, 0,x; w) = g(; p, 0,x; w),
f(; p, 1,x; w) = g(; p, 1,x; w),

f(; p, u ∗ v,x; w) = h(; ; w, f(; p ∗ 0, u,x; w), f(; p ∗ 1, v,x; w)).

Tier 2 recursion

f(0,y; x; w) = g(y; x; w),
f(1,y; x; w) = g(y; x; w),

f(u ∗ v,y; x; w) = h(; x; w, f(u,y; x; w)).
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Since h can use the variables of lower tier, x, to recurse on, we can nest
recursions.

In the tier 2 recursion, the recursion input is only used as a counter. In partic-
ular, the recursion only takes the height of the tree u∗v into account. Therefore,
it might be more natural to rewrite this scheme in form of a successor recursion:
If one uses in the following scheme the expression u+1 as some kind of schematic
variable for u ∗ v, where v is arbitrary, and 0 as a schematic expression for 1 or
the actual 0 (note that f(1,y; x; w) is defined as the same as f(0,y; x; w)), the
scheme can be written as follows:

Tier 2 recursion (successor notation)

f(0,y; x; w) = g(y; x; w),
f(u + 1,y; x; w) = h(; x; w, f(u,y; x; w)).

Later on, in the course of a definition of a function using successor notation,
x + 1 can be read as an abbreviation of x ∗ 1, and the schematic notation is in
accordance with the actual definition in terms of trees.

2.2 The Term System T 3

According to the underlying idea, T 3 has one more tier than T 2 for recursion
(without pointers). Note that the recursion for the tiers 1 and 2 differ from those
for T 2 only by the extra semicolon needed for the additional tier separation.

Tier 1 recursion (with pointers)

f(; ; p, 0,x; w) = g(; ; p, 0,x; w),
f(; ; p, 1,x; w) = g(; ; p, 1,x; w),

f(; ; p, u ∗ v,x; w) = h(; ; ; w, f(; ; p ∗ 0, u,x; w), f(; ; p ∗ 1, v,x; w)).

Tier 2 recursion

f(; 0,y; x; w) = g(; y; x; w),
f(; 1,y; x; w) = g(; y; x; w),

f(;u ∗ v,y; x; w) = h(; ; x; w, f(;u,y; x; w)).

Tier 3 recursion

f(0, z; y; x; w) = g(z; y; x; w),
f(1, z; y; x; w) = g(z; y; x; w),

f(u ∗ v, z; y; x; w) = h(; y; x; w, f(u, z; y; x; w)).

Again the recursion schemes for time can be rewritten in successor notation.
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Tier 2 recursion (successor notation)

f(; 0,y; x; w) = g(; y; x; w),
f(;u + 1,y; x; w) = h(; ; x; w, f(;u,y; x; w)).

Tier 3 recursion (successor notation)

f(0, z; y; x; w) = g(z; y; x; w),
f(u + 1, z; y; x; w) = h(; y; x; w, f(u, z; y; x; w)).

2.3 The Term Systems T k

The extension of the definition of T 2 and T 3 to arbitrary k, k ≥ 4 is straightfor-
ward. In each step from k − 1 to k we have to add another time tier, adapting
the notation of the existing recursion schemes to the new number of tiers and
adding one more nested recursion for the new tier k of the form:

Tier k recursion

f(0,xk; xk−1; . . . ; x1; w) = g(xk; xk−1; . . . ; x1; w)
f(1,xk; xk−1; . . . ; x1; w) = g(xk; xk−1; . . . ; x1; w)

f(u ∗ v,xk; xk−1; . . . ; x1; w) = h(; xk−1; . . . ; x1; w, f(u,xk; xk−1; . . . ; x1; w))

In successor notation this scheme reads as follows:

Tier k recursion (successor notation)

f(0,xk; xk−1; . . . ; x1; w) = g(xk; xk−1; . . . ; x1; w)
f(u + 1,xk; xk−1; . . . ; x1; w) = h(; xk−1; . . . ; x1; w, f(u,xk; xk−1; . . . ; x1; w))

2.4 The Term System T 1

T 1 is just the restriction of T 2 to two tiers only, and the single recursion scheme:

Recursion of T 1

f(p, 0,x; w) = g(p, 0,x; w)
f(p, 1,x; w) = g(p, 1,x; w)

f(p, u ∗ v,x; w) = h(; w, f(p ∗ 0, u,x; w), f(p ∗ 1, v,x; w)).

Lemma 2. T 1 ⊆ NC1.

Proof. Let us give the key argument of the proof. Writing H(t), the height of a
term t, it is the case that arguments in tier 1 encountered along the computation
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have all linear height in the height of the inputs. As a consequence, for a given
function, any branch of recursion for this symbol is done in logarithmic time in
the size of the inputs. We conclude by induction on the definition of functions: a
branch of the computation will involve only finitely many such function symbols,
and so, can be simulated in NC1.

By a straightforward induction on the definition of functions, one proves
the key fact, that is arguments have linear height in the height of the input.
In other words, when computing f(x1, . . . , xk; w), for all subcalls of the form
h(x′1, . . . , x

′
n; w

′), then ∀x′i : H(x′) ≤ O(
∑
i≤k H(xi)).

Since a function of T k which has no arguments in tiers greater than 1 can be
defined also in T 1 we have the immediate corollary:

Lemma 3. A function in T k using only arguments in tier 1 and tier 0 is defin-
able in NC1.

As an ad hoc designation, in the following, we call NC1 function to a function
using only argument in tier 1 and tier 0.

For NC1 functions we have simultaneous recursion:

Lemma 4. If f1, . . . , fn are defined by simultaneous recursion over tier 1, then
they are definable in T 1.

The proof is a straightforward adaptation of the corresponding proposition for
the system STT, characterizing NC, in [Oit04, Proposition 5].

3 The Upper Bound of T k

For the upper bound we model the computations of T k by circuits. We start
with the exemplary case of T 2.

Theorem 5
T 2 ⊆ NC2.

Proof Let f(y; x; w) be a function of T 2. We will show that there is a circuit in
NC2 which computes f(y; x; w).

The proof is done by induction on the definition of the function. The base
cases and composition are straightforward. Recursion for tier 1 only leads to
NC1 functions (Lemma 3). Therefore, we have to consider only the case that a
function defined by recursion for tier 2.

We consider first the case where we have only one argument in tier 2. It will
serve as a paradigm for the more general case.

Base case: f has only one argument of tier 2, i.e. it is defined by the following
scheme:

f(0; x; w) = g(; x; w),
f(u + 1; x; w) = h(; x; w, f(u; x; w)).
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where g are h already defined. By Lemma 3 they are both in NC1. That means
there are (uniform) circuits G and H both of polynomial size and O(log(n))
height that compute g and h. The circuit which computes f on (y; x; w) is given
in figure 1 (with n = |y|) .

Fig. 1. The circuit F computing f

First of all, observe that the circuit is uniform. Now, the size of this circuit is
|G| +

∑
i<|n|=log(n) |H |. As the height of the tree is bounded by O(log(n)), the

number of H circuits is logarithmic. Since H and G circuits are of polynomial
size, it is also the case for F . We end by noting that the height of the circuit is
O(log(n))×O(log(n)) = O(log2(n)) since it is tree of height O(log(n)) of circuit
of height O(log(n)). As a consequence, the circuit is in NC2.

Higher arities: f has � + 1 argument in tier 2, i.e. it is defined by the
following scheme:

f(0, y1, . . . , y�; x; w) = f ′(y1, . . . , y�; x; w),
f(u + 1, y1, . . . , y�; x; w) = h(; x; w, f(u, y1, . . . , y�; x; w)).

where f ′ and h are already defined. We already know that h is definable in NC1.
Suppose that the rule for f ′ is

f ′(u + 1, y2, . . . , y�; x; w) = h′(; x; w, f(u, y2, . . . , y�; x; w))

There is a circuit H ′ that computes h′ which is in NC1. As a base case, we have:

f ′(0, y2, . . . , y�; x; w) = f ′′(y2, . . . , y�; x; w)

and f ′′ will itself call h′′ and f ′′′, etc. After � steps, we get f � an NC1 function
as in the base case. Let us call it g as above.

The circuitry that computes f is analogous to that given in figure 1. But,
in that case, the circuit for F is made of a first layer of height O(log(n)) of H
circuit with one leaf (the base case) which is formed by a second layer of a tree
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of height O(log(n)) of H ′ circuit, and so on. The circuit remains uniform and its
size is of the form

∑
i<|y0| |H |+

∑
i<|y1| |H

′|+ · · ·+
∑
i<|y�| |H

(�)|+ |G|.
What is the height of the circuit? The first layer has height O(log(n)) ×

O(log(n)) as in the base case. The second layer has also height O(log(n)) ×
O(log(n)) for the same reason. More generally, the height of the tree is � ×
O(log(n)2) = O(log(n)2).

Concerning the size of the circuit. The first layer is formed of log(n) circuits
of size 2O(log(n)), that is bounded by a polynomial. Actually, all layers have
polynomial size. Since there is only a finite number of such layers, there is a
polynomial number of circuit of polynomial size.

Following the scheme of this proof, the result can be extended to arbitrary
k ≥ 2 and together with Lemma 2 we have:

Theorem 6. For every k ≥ 1:

T k ⊆ NCk.

4 The (Unsharp) Lower Bound

We adopt the description of NCk in terms of ATMs, cf. Theorem 1. Here ATMs
are assumed to have only one tape. Each machine has a finite number of inter-
nal states and each state is classified as either conjunctive, disjunctive, oracle,
accepting or rejecting. Oracle, accepting or rejecting states are halting states.
Conjunctive or disjunctive states are action states. Outputs are single bits —
no output device is required. A configuration is composed by the tape contents
together with the internal state of the machine.

As Leivant in [Lei98] we describe the operational semantics of an ATM M as
a two stage process: Firstly, generating an input-independent computation tree;
secondly, evaluating that computation tree for a given input. A binary tree T
of configurations is a computation tree (of M) if each non-leaf of T spawns its
children configurations. A computation tree of M is generated as follows: when
in a configuration with an action state, depending on the state and bit read, it
spawns a pair of successor configurations. These are obtained from the parent
by changing the read bit, or/and changing the internal state of the machine. We
will be interested in configuration trees which have the initial configuration of
M as a root. Each computation tree T maps binary representation of integers
(inputs) to a value in {0, 1,⊥}, where ⊥ denotes “undefined” — in our term
systems ⊥ will be represented by 0 ∗ 0. This map is defined accordingly points 1
and 2, below.

1. If T is a single configuration with state q then:
(a) if q is an accepting [rejecting] state, the returned value is 1 [respectively,

0];
(b) if q is an action state, the returned value is ⊥;



220 G. Bonfante et al.

(c) if q is an oracle state (i, j), where i is a symbol of the machine’s alphabet
— 0 or 1 — and j ranges over the number of oracles, the returned value
is 1 or 0 depending on whether the nth bit of the jth oracle is i or not,
where n is the integer binary represented by the portion of the tape to
the right of the current head position.

2. If T is not a single configuration, then the root configuration has a con-
junctive or a disjunctive state. We define the value returned by T to be
the conjunction, respectively the disjunction, of the values returned by the
immediate subtrees.

Conjunctive and disjunctive states may diverge, indicated by the “undeter-
mined value” ⊥; one understands 0 ∨ ⊥ = ⊥, 1 ∨ ⊥ = 1, 0 ∧ ⊥ = 0, 1 ∧ ⊥ = ⊥.

Theorem 7
NC2 ⊆ T 3.

Proof The proof runs along the lines of the proof of [BO04, Lemma 5.1].
Let M be a ATM working in O(log2 n) time and O(log n) space. Let us say

that, for any input X, M runs in time TM = t0�x� + t1 and space SM =
s0�x�+s1, where x is a minimal balanced tree corresponding to X, as in [BO04].

The proof is now based on the idea of configuration trees. A configuration tree
for M contains as paths all possible configuration codes of M .2 A configuration
tree for time t will code on the leafs the values at level t in the bottom-up
labeling of the computation tree.

Now, the proof can be split in several steps.

Coding Configurations. A configuration of M is given by a sequence of triples
which encode the content of the tape together with information about the posi-
tion of the head, and, in addition, a encoding of the current state. Padding the
tapes with blanks we can assume that we have fixed tape length l. To code the
three symbols 0, 1 and blank we will use two bits, (0, 1), (1, 1), and (0, 0) respec-
tively. Now a triple xi = (ai, bi, ci) in the sequence x0, . . . , xl codes the symbol
of cell l by al and bl, and cl is 1 only for the position of the head at the current
state and 0 for all other cells. Finally we add a code w for the current state
at the end of this sequence, such that a configuration is uniquely determine by
the bit string x0, . . . , xl, w which has a fixed length for all configurations. In the
sequent by configuration we mean the path containing the configuration code as
described above.

The label0 function. Given a configuration p and an input x, the function
label0(; ; p, x; ) returns 1, 0 or 0∗0 depending on the configuration and the input
x: 1 if the configuration leads to the acceptance of x, 0 if it leads to rejection,
and 0 ∗ 0 if p is a non-halting configuration. label0(; ; p, x; ) can be defined by
composition and simultaneous recursion over tier 1. Since simultaneous tier 1
recursion can be simulated in T 1 (lemma 4), label0 is a NC1 function.
2 In fact, such a tree will have a lot of branches which do not represent configurations;

but these branches will not disturb.
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Configuration trees. The configuration tree of time 0 is a perfect balanced
tree of hight 3s0�x� + 3s1 + m, labeled by 0, 1, or 0 ∗ 0, according to label0,
where m is the length needed to represent w (the code of the state). Its branches
“contain” all possible configurations. A branch p is labeled by 1 if p accepts x,
by 0 if p rejects x, and by 0 ∗ 0 otherwise (i.e. if p has an action state or if it is
not a configuration).

We define ct0
3s0,3s1+m by meta-induction on the second index with a side-

induction on the first index in the base case. Note that this definition requires
space recursion, i.e., recursion in tier 1. It calls in the base case label0, which
also needs a space recursion. Since this is in the base case, we do not need
(step-)nested recursion here.

ct0
0,0(; ; p, u, x; ) = label0(; ; p, x; ), (1)

ct0
a+1,0(; ; p, 0, x; ) = ct0

a,0(; ; p, x, x; ), (2a)

ct0
a+1,0(; ; p, 1, x; ) = ct0

a,0(; ; p, x, x; ), (2b)

ct0
a+1,0(; ; p, u ∗ v, x; ) = ct0

a+1,0(; ; p ∗ 0, u, x; ) ∗ ct0
a+1,0(; ; p ∗ 1, v, x; ), (2c)

ct0
a,b+1(; ; p, u, x; ) = ct0

a,b(; ; p ∗ 0, u, x; ) ∗ ct0
a,b(; ; p ∗ 1, u, x; ). (3)

Case (1) and the cases of (2) define ct0
a,0 by meta-induction on a. Within this

definition, the cases (2a)–(2c) use tier 1 recursion. Finally, case (3) is the induc-
tion step for the definition of ct0

a,b by meta-induction on b.
Now, we define the initial configuration tree ct0 as follows.

ct0(; ;x; ) = ct0
3s0,3s1+m(; ; 0, x, x; ).

Notice, that ct0 is a NC1 function.
The idea is now to update this configuration tree along the time the machine

is running.

The label+1 function. One can define a function label+1 which for a configu-
ration p and a configuration tree z, returns 0, 1 or 0∗0 according as configuration
p is rejecting, accepting or undetermined, using the labels of the successor con-
figurations of p in z.

label+1 uses simultaneous tier 1 recursion.
Note, that label+1 is a NC1 function.

The update function. The aim of the function ct+1 is to update a configura-
tion tree for time t to the configuration tree at time t+1. Here, we need the space
recursion with step function ∗ and base function label+1, in order to build a
copy of the given configuration tree where the leaves are updated according to
label+1.

We define ct+1
a,b in analogy to ct0

a,b by meta-induction on a and b.

ct+1
0,0(; ; p, u, x; z) = label+1(; ; p, x; z)

ct+1
a+1,0(; ; p, 0, x; z) = ct+1

a,0(; ; p, x, x; z),
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ct+1
a+1,0(; ; p, 1, x; z) = ct+1

a,0(; ; p, x, x; z),

ct+1
a+1,0(; ; p, u ∗ v, x; z) = ct+1

a+1,0(; ; p ∗ 0, u, x; z) ∗ ct+1
a+1,0(; ; p ∗ 1, v, x; z),

ct+1
a,b+1(; ; p, u, x; z) = ct+1

a,b(; ; p ∗ 0, u, x; z) ∗ ct+1
a,b(; ; p ∗ 1, u, x; z).

The update of a configuration tree for time t is the configuration tree for time
t+ 1. For a given configuration tree z, such an update can be performed by the
function ct+1:

ct+1(; ;x; z) = ct+1
3s0,3s1+m(; ; 0, x, x; z).

Note, that ct+1 is a NC1 function.

The iteration. The iteration function iterates the update function t0�x�2 + t1
times.

We define it by use of two auxiliary functions it1 and it2. it1 iterates the
update function a�x� times; it2 iterate then it1 �x� times and add b more
iterations of the update function.

For a given natural number n, let ct+n(; ;x; z) be the ct+1 function com-
posed with itself n times. Thus, in an inductive definition of ct+n we have that
ct+(n+1)(; ;x; z) is defined as ct+1(; ;x;ct+n(; ;x; z)).

– it1 is defined by recursion in tier 2.

it1(; 0;x; z) = z,

it1(; y + 1;x; z) = ct+t0(; ;x; it1(; y;x; z)).

– it2 is defined by recursion in tier 3:

it2(0; y;x; z) = ct+t1(; ;x; z),
it2(u + 1; y;x; z) = it1(; y;x; it2(u; y;x; z)).

Note, that it1 and it2 are the only non NC1 functions needed in this proof.
Now, we just have to iterate the ct+1 function TM times, on the initial con-

figuration tree ct0, in order to obtain the configuration tree ctTM :

ctTM (x) = it2(x;x;x;ct0(; ;x; ))

Finally, recursing on x we can follow in ctTM the path corresponding to the
initial configuration and we read its label: 0 or 1.

5 Conclusion

Putting together the theorems 5 and 7 one gets:

Theorem 8
T 2 ⊆ NC2 ⊆ T 3.
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As stated in the proof of theorem 7, only the functions which are performing
the iteration are not NC1 functions. The higher tiers are used only for the
iteration. It is straightforward that one additional tier on top enables us to
define an iteration of the update function log(n) times the length of iteration
definable by use of the lower tiers. Together with the extension of the upper
bound to T k, stated in theorem 6, one gets:

Theorem 9. For k ≥ 2 we have:

T k ⊆ NCk ⊆ T k+1.

As a corollary we get another characterization of NC as the union of the the
term systems T k, k ∈ IN :

Corollary 10
NC =

⋃
k∈IN

T k.
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Abstract. Rational graphs are a family of graphs defined using labelled
rational transducers. Unlike automatic graphs (defined using synchro-
nized transducers) the first order theory of these graphs is undecidable,
there is even a rational graph with an undecidable first order theory.
In this paper we consider the family of rational trees, that is ratio-
nal graphs which are trees. We prove that first order theory is decid-
able for this family. We also present counter examples showing that this
result cannot be significantly extended both in terms of logic and of
structure.

1 Introduction

The algorithmic study of infinite object has achieved many success through the
use of finite automata. This concise and efficient model was first introduced to
characterize word languages in the late fifties, since then it has been extended
and generalized in order to define infinite words, relations, relational structures,
group structures, or graphs.

In 1960 Büchi, [Büc60], used finite automata to characterize infinite words,
and so proving the decidability of monadic second order logic of the integers with
the successor relation. Almost ten years later, this result was extended to the
complete binary tree by Rabin [Rab69]. For many years adhoc extensions were
proposed. Later on, around the year 1990 Muller and Schupp, then Courcelle and
finally Caucal proposed generalizations of Rabin’s result based on transformation
of the complete binary tree [MS85, Cou90, Cau96].

Another way of using finite automata in the theory of finitely presented infi-
nite objects was introduced by Hodgson [Hod83], simply using finite automata
to define relational structures, obtaining the decidability of first order logic.
Later on, nurturing from group theory [ECH+92], Khoussainov and Nerode for-
malized and generalized the notion of automatic structure (and graph) [KN94].
Independently Sénizergue, and later on Pelecq considered a slightly different
notion of automatic structure, involving an automatic quotient [Sén92, Pél97].
Several investigations, as well as an extension of first-order logic were conducted
by Blumensath and Grädel on automatic structures [BG00]. In 2000 the notion
of rational graphs was investigated [Mor00], this general family had already been
defined as asynchronous automatic by Khoussainov and Nerode, but it was not
very satisfactory from the logical point of view.

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 225–239, 2006.
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In most of these cases the decidability of the logic comes from the underlying
automaton, or more generally from closure properties. An interesting question
is to know whether some structural restriction of these families would yield
better decidability results. For automatic structures recently Khoussainov et alii
considered automatic trees [KRS05], and have been able to disclose properties
of these trees, like their Cantor-Bendixson rank, or the existence of a rational
infinite path.

In this paper we consider rational trees, that is rational graphs that are trees.
We first define carefully this family, state a few basic results, and give simple
examples. We then use Gaifman’s theorem and compositional methods [She75,
Zei94] to prove that their first order logic is decidable. As it is not the case for
general rational graphs, it heavily relies on the tree structure, and need a deep
investigation. Finally we explore the boundaries of this result by exhibiting a
rational directed acyclic graph with an undecidable first-order theory, and also
a rational tree with an undecidable first-order theory enriched with rational
accessibility.

2 Preliminaries

In this section we will recall the definition of the family of rational graphs.
More details can be found in [Mor00, MS01]. We also state some properties of
automatic graphs [KN94].

For any set E, its powerset is denoted by 2E ; if it is finite, its size is denoted
by |E|. Let the set of nonnegative integers be denoted by N, and {1, 2, 3, . . . , n}
be denoted by [n]. A monoid M is a set equipped with an associative operation
(denoted ·) and a (unique) neutral element (denoted ε). A monoid M is free
if there exist a finite subset A of M such that M = A∗ :=

⋃
n∈N

An and for
each u ∈ M there exists a unique finite sequence of elements of A, (u(i))i∈[n],
such that u = u(1)u(2) · · ·u(n). Elements of a free monoid will be called words.
Let u be a word in M , |u| denotes the length of u and u(i) denotes its ith
letter.

2.1 Rational Graphs

The family of rational subsets of a monoid (M, ·) is the least family containing
the finite subsets of M and closed under union, concatenation and iteration.

A transducer is a finite automaton labelled by pairs of words over a finite
alphabet X , see for example [AB88] [Ber79]. A transducer accepts a relation in
X∗×X∗; these relations are called rational relations as they are rational subsets
of the product monoid (X∗×X∗, ·).

Now, let Γ and X be two finite alphabets. A graph G is a subset of X∗×Γ×X∗.
An arc is a triple: (u, a, v) ∈ X∗ × Γ ×X∗ (denoted by u

a−→
G

v or simply u
a−→ v

if G is understood).
Rational graphs, denoted by Rat(X∗ × Γ × X∗), are extensions of rational

relations, characterized by labelled transducers.
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Definition 2.1. A labelled transducer T = (Q, I, F, E, L) over X , is composed
of a finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q,
a finite set of transitions (or edges) E ⊆ Q×X∗×X∗×Q and a mapping L from
F into 2Γ .

An arc u
a−→ v is accepted by a labelled transducer T if there is a path from a

state in I to a state f in F labelled by (u, v) and such that a ∈ L(f).

Definition 2.2. A graph in 2X∗×Γ×X∗
is rational if it is accepted by a labelled

rational transducer.

Let G be a rational graph, for each a in Γ we denote by Ga the restriction of G
to arcs labelled by a (it defines a rational relation between vertices); let u be a
vertex in X∗, we denote by Ga(u) the set of all vertices v such that u

a−→ v is an
arc of G.

Example 2.3. The graph on the right is generated by the labelled transducer
on the left.

p

q1

q2

r1

r2

r3

a

b

c

ε/0

0/1

1/⊥

1/ε

1/1

0/0 0/1

0/0

1/1

0/0

1/1

ε

⊥

0

1

00

01

11

000

001

011

111

a

a

a

b

b

b

b

b

b

c
c

c

The path p
0/0−−→ q1

0/1−−→ r2
1/1−−→ r2 accepts the couple (001, 011), the final

state r2 is labelled by b thus there is a arc 001 b−→ 011 in the graph.

The trace of a graph G from an initial vertex i to a final vertex f is the set of
path labels labelling a path from i to f . For example the trace of the graph from
Example 2.3 between ε and ⊥ is the set {anbncn | n > 0} .

Theorem 2.4 (Morvan, Stirling 01). The traces of rational graphs from an
initial to a final vertex is precisely the context-sensitive languages.

2.2 Automatic Graphs

A classical subfamily of rational graphs is formed by the set of automatic graphs
[KN94, Pél97, BG00].
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These graphs are accepted by letter-to-letter transducers with rational termi-
nal functions completing one side of the accepted pairs and assigning a label to
the arc.

As the terminal function is rational, it can be introduced in the transducer
adding states and transitions. A left-synchronized transducer is a transducer such
that each path leading from an initial state to a final one can be divided into two

parts: the first one contains arcs of the form p
A/B−−−→ q with A, B ∈ X while the

second part contains either arcs of the form p
A/ε−−→ q with A ∈ X or of the form

p
ε/B−−→ q with B ∈ X (not both). Right-synchronized transducers are defined

conversely.

Definition 2.5. A graph over X∗ × Γ ×X∗ is automatic if it is accepted by a
left-synchronized or right-synchronized labelled transducer T .

Example 2.6. The graph defined by Example 2.3 is automatic. The relation
Gb is synchronized. And the relations Ga and Gc are right-automatic.

The next result follows from the fact that automatic relations form a boolean
algebra.

Proposition 2.7. The first-order theory of automatic graphs is decidable.

The Theorem 2.4 was extended to automatic graphs by Rispal in [Ris02].

Theorem 2.8 (Rispal 02). The traces of rational graphs from an initial to a
final vertex is precisely the context-sensitive languages.

3 Rational Trees, Examples and Boundaries

Trees are natural structures in computer science. A lot of families of trees oc-
curred outside of the study of infinite graphs. For example, regular trees that
have only a finite number of sub-trees up to isomorphism, algebraic trees which
are the unfolding of regular graphs [Cau02], or also trees that are solutions of
higher order recursive program schemes [Dam77].

Definition 3.1. A rational tree is a rational graph satisfying these properties:

(i) it is connected;
(ii) every vertex is the target of at most one arc;
(iii) there is a single vertex with in-degree 1, called the root.

Each vertex of a rational tree is called a node. The leaves are vertices that are
not source of any arc.
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3.1 Elementary Results

The properties (ii) and (iii) from Definition 3.1 are easy to verify: (ii) consists
in checking that the relation

⋃
a∈Γ ( a−→)−1 is functional. This is solved using

Shutzenberger’s theorem, see among others [Ber79]. The condition (iii) consist
in checking that the rational set Dom(T ) \ Im(T ) has only one element.

In order to prove that it is undecidable to check whether a rational graph is
a tree, we use a variation of the classical uniform halting problem for Turing
machines.

Proposition 3.2. Given any deterministic Turing machine M , a deterministic
Turing machine M ′ may be constructed such that: M halts on ε if and only if
M ′ halts from any configuration.

Proposition 3.3. Given any deterministic Turing machine a rational (unla-
belled) graph G(M) may be constructed in such a way that: M halts from any
configuration if and only if G(M) is a tree.

Proof. Let us consider the deterministic Turing machine M = (Q, T, δ, q0), Q
is the set of states (with q0 ∈ Q the initial state), T the set of tape symbols
(including two special symbols $ and # denoting the extremities of the tape)
and δ : Q× T → Q× T × {l, r, p} the transition function.

We define the configuration of such a machine in the usual way: uqv, with
q ∈ Q, u ∈ $(T + �)∗, v ∈ (T + �)∗#, and � denoting the empty space.

We define G(M) in this way: the vertices are precisely the configuration of
the machine plus a special vertex $#.

The arcs consist of the transitions of the machine going backwards, and of
the set {$#} × {$uqAv# | (q, A) �∈ Dom(δ) ∧ u, v ∈ (T + �)∗}.

The vertex $# is the only vertex which is not the target of any arc (condition
(iii)), and as the machine is deterministic and the arcs go backward, this graph
satisfies also the condition (ii). Furthermore this graph is connected if and only
if the machine M reaches, from any configuration, a configuration in which there
is no possible transition. '(

From these two results considering a deterministic Turing machine we construct
a second one that halts on every input if the first one stops from the empty
word. Now using Proposition 3.3, we construct a rational graphs which is a tree
if and only if the second machine halts one every input. This proves the following
proposition.

Proposition 3.4. It is undecidable to know whether a rational graph is a tree.

We conclude this subsection by a simple result, which is a direct consequence of
the rationality of the inverse image of a rational relation, and the fact that all
vertices are accessible from the root.

Proposition 3.5. Given any rational tree, accessibility and rational accessibil-
ity are decidable for any given pair of vertices.
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3.2 The 2n-Tree

We give here a first example of rational tree. Indeed this tree is automatic. It is
defined by a line of a’s, and the nth vertex of this line is connected to a segment
of 2n b’s.

p

q1 r1

q2 r2

q3 r3

a

b

b

A/A

ε/0

A/0 0/ε

ε/ε

0/1

0/0

1/0

0/0

1/1
0/0

A

ε

A0 A00 A000

0

1

00
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10

11

000
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b

a a a

b

b

b

b

b

b

b

b

The encoding of the vertices of this tree relies on the fact that there are 2n

n-tuples over {0, 1}. The transducer performs the binary addition.

3.3 A Non-automatic Rational Tree

We now construct a rational tree of finite, yet unbounded, degree which is not
automatic.

This tree is obtained from a rational forest by the adjunction of a line connect-
ing the roots of each connected component. As these roots form a rational set
of words, the following lemma allows construct such a line while still obtaining
a rational tree.

Lemma 3.6. Given a rational language L, the graph whose vertices are the
words of L connected into a half line in length-lexicographic order is an automatic
graph.

This result is obtained by remarking that the length-lexicographic order (as a
relation on words) is an automatic relation, and using closure properties of these
relations.

Our example relies on the limit of the growth rate of automatic graphs of
finite degree. For such an automatic tree, an obvious counting argument ensures
that there exists p, q and s such that there are at most pqn+s vertices at distance
n of the root.

Therefore the tree (we call it simplexp) such that each vertex of depth n has 2n

sons, has precisely 2n(n−1)/2 vertices of depth n, and is therefore not automatic.
Still it is the connected component of a rational forest F and the tree con-

structed from F using the Lemma 3.6 has the same growth and therefore is not
automatic, up to isomorphism. For simplicity we only present the forest F and
a transducers generating it:
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p

r1

q r2

ε/A

A/AO
A/A1

ε/A

A/AO
A/A1

1/1
0/0

ε A0

A A00A A10A

A0A A1A

A00A0A A00A1A A10A0A A10A1A

In this forest the connected component of ε is simplexp. Each vertex of depth
n has precisely n occurrence of A and thus 2n sons. Furthermore this transducer
is co-functional, and strictly increasing, therefore each connected component is a
tree with root. We have, thus, constructed a rational tree of finite degree, which
is, up to isomorphism, not automatic.

4 First-Order Theory of Rational Trees Is Decidable

In this section we use Gaifman’s theorem (see, e.g., [EF95]) to prove that the
first-order theories of rational trees are decidable. This result, which is not
true for rational graphs in general, was conjectured in [Mor01]. We will see, in
Section 5, that there are no obvious extensions of this result.

4.1 Logical Preliminaries

We introduce basic notations on first-order logic over relational structures.
A relational signature Σ is a ranked alphabet. For every symbol R ∈ Σ, we

write |R| ≥ 1 the arity of R. A relational structure M over Σ is given by a
tuple (M, (RM)R∈Σ) where M is the universe of M and where for all R ∈ Σ,
RM ⊆M |R|.

Let V be a countable set of first-order variables. We use x, y, z . . . to range over
first-order variables in V and x̄, ȳ, z̄, . . . to designate tuples of first-order variables.
An atomic formula over Σ is either R(x1, . . . , x|R|) for R ∈ Σ and x1, . . . , x|R| ∈
V or x = y for x, y ∈ V . Formulas over Σ (Σ-formulas) are obtained by closure
under conjunction ∧, negation ¬ and existential quantification ∃ starting from
the atomic Σ-formulas. The bounded and free variables of a formula are defined
as usual. A formula without free variables is also called a sentence. We write
ϕ(x̄) to indicate that the free variables of ϕ belong to x̄.

For every relational structure M, any formula ϕ(x1, . . . , xn) and a1, . . . , an

in M , we write M |= ϕ[a1, . . . , an] if M satisfies the formula ϕ when xi is
interpretated as ai. If ϕ is a sentence, we simply write M |= ϕ. Two sentences
ϕ and ψ are logically equivalent if for all structureM,M |= ϕ iffM |= ψ.

The quantifier rank qr(ϕ) of a formula ϕ is defined by induction on the struc-
ture of ϕ by taking qr(ϕ) = 0 for ϕ atomic, qr(ϕ ∧ ψ) = max{qr(ϕ), qr(ψ)},
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qr(¬ϕ) = qr(ϕ) and qr(∃xϕ) = qr(ϕ) + 1. For a fixed signature Σ, there are
countably many Σ-sentences of a given quantifier rank. Up to logical equivalence
there are only finitely many such sentences, but this equivalence is undecidable.
A classical way to overcome this problem is to define a (decidable) syntactical
equivalence on formulas such that, up to this equivalence, there are only finitely
many formulas of a given quantifier rank (see e.g. [EF95]).

We define for all rank k ≥ 0 a finite set NormΣ
k of normalized Σ-sentences

such that for every Σ-sentence ϕ we can effectively compute a logically equivalent
sentence Norm(ϕ) in NormΣ

k . Note that this set is finite and computable.

ANAΣ(x̄) = {ϕ,¬ϕ | ϕ atomic over Σ with free variables in x̄ }
NormΣ

0 (x̄) =
{∨

R∈R
∧
ϕ∈R ϕ | R ⊆ 2ANAΣ(x̄)

}
NormΣ

k+1(x̄) =
{∨

R∈R
∧
ϕ∈R ϕ | R ⊆ 2{∃yϕ,∀yϕ | ϕ∈NormΣ

k (x̄,y)}
}

where y �∈ x̄.
The k-theory of a structureM over Σ is the finite set

Thmk(M) :=
{

ϕ | ϕ ∈ NormΣ
k andM |= ϕ

}
.

We write ThmΣ
k = 2NormΣ

k the set of all possible k-theories1.

4.2 Gaifman’s Theorem for Graph Structures

We now focus our attention on graph structures and particularly on trees. A
graph structure is a relational structure over a signature with symbols of arity
2. To every graph Σ-structure is associated a graph labelled by the symbols of
Σ. We say that a graph structure is a tree structure if the associated graph is a
tree. For all tree structure T , we write r(T ) ∈ T the root of T . For all u ∈ T ,
we write T/u the subtree of T rooted at u and for all n ≥ 0, T n

/u the tree T/u
restricted to the elements of depth at most n.

We recall Gaifman’s Theorem, which states that every first-order formula is
logically equivalent to a local formula.

In order to define local formulas, it is first necessary to define a notion of
distance. In the following, we write d(x, y) � n (resp. d(x, y) < n) the first-order
formula expressing that the distance, without taking the orientation of the arcs
into account, between x and y is less or equal to n (resp. less than n).

We denote by S(r, x) the ball of radius r centered at x: {y | d(x, y) � r}
We now need to restrict a formula ϕ(x) to a ball of radius r centered at x:

we denote by ϕS(r,x) the restriction of formula ϕ(x) to the ball of center x and
radius r. This notation is defined by renaming each bound occurrence of x in ϕ
by a new variable, and localizing each quantification:

[∃zϕ]S(r,x) := ∃z(d(x, z) � r ∧ ϕS(r,x))
1 Remark that Thmk contains elements that are not the k-theory of any structure.

For instance, an element of Thmk may contain both ϕ and ¬ϕ.
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A basic local formula is of the the form:

∃x1 . . .∃xn

∧
1�i<j�n

(d(xi, xj) > 2r ∧ ψS(r,xi)(xi))

A local sentence is a boolean combination of basic local sentences.

Theorem 4.1 (Gaifman). Every first-order sentence is logically equivalent to
a local sentence.

Note that the equivalence stated in this theorem is effective.

4.3 Compositional Results for Trees

We present basic compositional results for trees that will allow us to characterize
the center of the balls involved in the definition of basic local formulas. The
compositional method is a powerfull way to obtained decidability results mainly
developed in [She75] (see [Zei94, Rab06] for a survey). The results presented
here are not new and could, for example, be derived from the general templates
presented in [Zei94, Rab06].

For every tree structure T over the signature Σ = {E1, . . . , E	} and for every
k ≥ 1, we define the reduced tree of T , the structure < T >k over the monadic
signature <Σ>k:= {S1, . . . , S	}∪

{
PM |M ∈ ThmΣ

k

}
. The universe of <T >k

is the set of successors of the root of T . The predicats in <Σ >k are interpreted
as follows: for all i ∈ [�], u ∈ S<Σ>k

i iff (r(T ), u) ∈ ETi and for all M ∈ ThmΣ
k ,

u ∈ PM iff Thm(T/u) = M .

Example 4.2. In the following picture we illustrate a reduced tree.

T
r

q s t

1 1 2
<T >k

q
S1

PM1

s
S1

PM1

t
S2

PM2

The tree depicted on the left is defined over Σ = {E1, E2}, the reduced
tree < T >k is defined over < Σ >k:= {S1, S2} ∪

{
PM |M ∈ ThmΣ

k

}
; and

Thmk(T/q) = Thmk(T/s) = M1, Thmk(T/t) = M2

Lemma 4.3. For all tree structure T over Σ = {E1, . . . , E	} and all k ≥ 1,
Thmk(T ) can be effectively computed from Thmk(<T >k+1).
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Remark 4.4. As the signature of <T >k is monadic, every formula is equivalent
to a boolean combinaison of formulas of the form

∃x1, . . . , x	

∧
i�=j

xi �= xj ∧
∧

P∈R,i∈[	]

P (xi) ∧
∧

P �∈R,i∈[	]

¬P (xi).

where P ⊆<Σ>k. See, for example, the Exercise 2.3.12 of [EF95].

The following lemma allows to compute the theory of a ball in a tree from the
theories of some subtrees contained in that ball.

Lemma 4.5. For all tree T over a signature Σ = {E1, . . . , E	} and any vertex
u ∈ T with a path u0a1u1 . . .um (with um = u), from the root of T and any
rank k ≥ 1 and any depth n ≥ 0, there exists a constant p effectively computable
from m, n and k such that for any formula ϕ(x) with qr(ϕ) = k, we can decide
whether T |= ϕS(n,x)[u] from the sequence of labels a1 . . .am and from (Thmp(<
T n
/ui

>p))i∈[0,m].

4.4 First-Order Theory of Rational Trees

We now tackle the proof of the decidabilty of the first-order theories of rational
trees using Gaifman’s Theorem.

The first step is to use the results from Subsection 4.3 to prove that for all
r ≥ 1 and for all formula ϕ(x), the set of centers of a ball of radius r satisfying
ϕ(x) (where x is interpreted as the center of the ball) form a rational set of
words.

We start by showing that the set of roots of a subtree of a certain depth
having a given k-theory form a rational set of words. In order to apply Lemma
4.3, we need the following key lemma concerning rational trees.

Lemma 4.6. For all rational tree T labelled by Γ and over X∗, all i ∈ Γ and
L ∈ Rat(X∗), the set of u ∈ Dom(T ) having a least � successors by i in L is
rational and can be effectively constructed.

Proof (Sketch). The proof relies on the fact that the in-degree of a tree is of at
most one. We use the uniformazition of rational relations [Eil74, Ber79] which
states that for every transducer2 H there exists a functional transducer

−→
H such

that
−→
H ⊆ H and Dom(H) = Dom(

−→
H ). As the in-degree of T is at most one,

if we restrict Hi (the transducer accepting the i-labelled arcs of T restricted in
image to L) to the rational set X∗ \ Im(

−→
Hi) to obtain a transducer H ′

i, we have
decreased the out-degree of Hi by exactly 1. Hence the set of vertices having at
least 2 successors by i is Dom(H ′

i). The proof then follows by a straightforward
induction. '(

Remark 4.7. Note that this result does not hold when the in-degree is greater
than 1. Consider for example, the transducer H depicted bellow. The set of
2 We do not distinguish between the transducer and the relation it accepts.



On Rational Trees 235

words having exactly 1 image by H is the context-free language containing the
words having the same number of a’s and b’s.

q0 q1

a/ε, b/a a/a, b/ε

Lemma 4.8. For all rational tree T labelled by Γ = [�], all k 	 1, n 	 1, and
all sentence ϕ over Σ = {E1, . . . , E	} or over <Σ >k, the sets:

– Ln,k
ϕ := { u ∈ Dom(T ) | <T n

/u>k|= ϕ }
– Ln

ϕ := { u ∈ Dom(T ) | T n
/u |= ϕ }

are rational and effectively computable.

Proof (Sketch). We prove both properties simultaneously by induction on the
depth n.

For the basis case n = 0, remark that for all rational tree T , T 0 is reduced to
a single vertex and for all k 	 1, <T 0>k is empty. As these structures are finite,
we can decide for all formula ϕ if it is satisfied by the structure. Accordingly,
L0
ϕ and L0,k

ϕ are either the ∅ or Dom(T ).
For the induction step n+1. Let k 	 1 be a rank and ϕ be <Σ>k-sentence. By

Remark 4.4, we can restrict our attention to formulas stating there exists at least
m elements belonging to S<T>k

i and P<T>k

M for some i ∈ [�] and M ∈ ThmΣ
k .

Let m 	 0, i ∈ [�], M ∈ ThmΣ
k and ψ the corresponding formula. By induc-

tion hypothesis, the set of vertices X :=
{

u ∈ Dom(T ) | Thmk(T n
/u) = M

}
is

rational and computable. It is easy to check that for all u ∈ Dom(T ), <T n+1
/u >k

satifies ψ if and only if u has m successors by i belonging to X . By Lemma 4.6,
the set Ln+1,k

ψ is rational.
The second property follows then by Lemma 4.3. '(

It then follows by Lemma 4.5 and 4.8 that:

Lemma 4.9. For all rational tree T labelled by Γ = [�],all formula ϕ(x) over
Σ = {E1, . . . , E	} and n ≥ 1, the set

{
u ∈ Dom(T ) | T |= ϕS(n,x)[u]

}
is rational

and can be effectively computed.

Before applying Gaifman’s theorem we need a last property of rational trees.

Lemma 4.10. For all rational tree T with vertices in X∗,L ⊆ Dom(T ) ∈
Rat(X∗) and for all r ≥ 1, we can decide if there exists u1, . . . , um ∈ L such
that for all i �= j ∈ [m] d(ui, uj) > r.

We can now use Gaifman’s theorem to obtain the decidability of the first-order
theory of rational trees.

Proposition 4.11. Every rational tree has a decidable first-order theory.
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Proof. By Gaifman’s theorem 4.1, it is enough to decide basic local sentences. Let
T be a rational tree and ϕ = ∃x1 . . .∃xn

∧
1≤i<j≤n(d(xi, xj) > 2r∧ψS(r,xi)(xi))

be a basic local sentence.
By Lemma 4.9, the set L =

{
u ∈ Dom(T ) | T |= ψS(r,x)[u]

}
is rational.

To conclude, by Lemma 4.10, we can decide if there exists u1, . . . , un ∈ L such
that for all i �= j ∈ [n] d(ui, uj) > 2r.

Combinning these two results , we can decide wether T satisfy ϕ. '(

Due to the use of Gaifman’s Theorem, the complexity of this decision procedure
is non-elementary. However if we only consider rational trees of bounded out-
degree, we can obtain an elementary decision procedure using the same technic
as for the automatic graphs of bounded degree [Loh03].

5 Discussion on Extension of This Result

In this section, we illustrate that the result we have proved in previous section is
in some sense maximal. We will first show that first-order theory together with
rational accessibility is undecidable for rational trees. Then we will construct a
rational directed acyclic graph with an undecidable first-order theory.

5.1 Finding a Wider Decidable Logic

An obvious extension of first-order logic is first-order logic with accessibility,
which is simply first-order theory in the transitive closure of the original struc-
ture. A broader extension is first-order logic with rational accessibility. For every
rational language L ∈ Rat(Γ ∗) we add, to the first-order logic, a binary predi-
cate reachL meaning that the first vertex is connected to the second by a path
in L.

We now prove that, even though Proposition 3.5 states that accessibility and
rational accessibility are decidable for rational trees, first-order logic with ratio-
nal accessibility is undecidable.

We use the grid (a quarter plane), with backward arcs. It is a rational graph:

p

q1

q2

a

b

q3

q4

a

b

ε/A

ε/B

A/ε

B/ε

A/A

B/B

B/B

B/B

B/B

ε A A2

B AB A2B

B2 AB2 A2B2

a a

a a

a a

b

b

b

b

b

b

a a

a a

a a

b

b

b

b

b

b

We simulate two counters machines on the unfolding of this graph. As these
machines may test for zero, we add a loop on each vertex expressing that either
counter, both or none is empty (denoted respectively by #a, #b, #ab, #).
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In order to unfold the resulting graph we transform the transducer to add
the path leading to the vertex. Because the graph is both deterministic and co-
deterministic, this yields a deterministic rational forest. This forest is composed
of rooted connected components. The connected component with root ε is iso-
morphic to the unfolding of the grid with backward arcs (like each connected
component with root in

{
a, b, a, b

}∗
). The transducer for arcs labelled a is the

following:

p q1 r s a

x ∈
{

a, b, a, b, #a, #b, #ab, #
}

ε/A ε/ε ε/a

A/A B/B x/x

The transducers for b, a and b are similar. The transducers for #a, #b, #ab, # are
the identity for the first part, and correspond to empty A, B, both or none.

Now we have a rational forest. We simply have to transform it into a rational
tree. Again we use Lemma 3.6. Finally for each Minsky machine M we define a
rational language LM of its behaviour, and use this first-order formula to check
whether it reaches empty counters (which is undecidable):

∃u∃v(reachLM (u, v) ∧ root(u) ∧ ¬(∃w(v a−→ w ∨ v
b−→ w))).

We have, thus, found a rational tree with undecidable first-order theory with
rational accessibility.

Remark 5.1. Indeed it is possible to improve this result in creating an ad hoc
graph for encoding each machine. In this case it is first-order with accessibility
which is undecidable for the whole family (and not just a single graph). Also it
is possible to transform the tree in order to have an automatic tree.

5.2 Broaden the Graph Family

The first-order theory of rational graphs is undecidable. Indeed there are rational
graphs with an undecidable first-order theory. Now we construct such a graph
that is a directed acyclic graph (dag for short). This emphases the fact that the
decidability of first-order theory of rational trees is deeply connected to the tree
structure of these graphs.

Proposition 5.2. There exists a rational directed acyclic graph with an unde-
cidable first-order theory.

Proof (Sketch). The construction of this dag (denoted Gpcp) relies on an encoding
of every instance of the Post correspondence problem (pcp for short).

The precise construction of Gpcp is intricate. Thomas gives a similar con-
struction in [Tho02], he construct a rational graph with undecidable first-order
theory. It relies on the encoding of a universal Turing machine, and a simple
formula detecting a loop depending on the instance of pcp, this example does
not translate obviously for dag.
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An instance of pcp is a sequence ((ui, vi))i∈[n], and the problem is to determine
whether there is a word w such that w = ui1ui2 . . .uik

= vi1vi2 . . . vik
, for some

integer k, and a sequence (i	)	∈[k] of elements of [n].
The graph Gpcp is oriented so that no cycle can occur. There are three com-

ponents in this graph. The first one is the initialisation that produce all possible
sequence of indices. The second part, on one side substitutes k by uk simulta-
neously everywhere it occurs, on the other side substitutes k by vk. These two
paths are done separately. The third and final part of the graph joins the u
branches to the v branches.

Now for any instance of pcp we construct a first-order sentence whose satis-
faction in Gpcp implies the existence of a solution of pcp for the corresponding
instance. Indeed the formula ensures that the initialisation process is done, that
the correct ui’s and vi’s are followed, and that both path meet. '(

5.3 Conclusion

In this paper we have investigated some properties of rational trees. The main
result is that these graphs have a decidable first-order theory. This result is
interesting because it mostly relies on structural properties of this family.

It is well known that the first-order theory of automatic graphs is also decid-
able. It should be interesting to determine if there are larger families of rational
graphs with decidable first-order theory. It would also be interesting to be able
to isolate a family having first-order theory with accessibility decidable. It is
neither the case for automatic graphs, rational trees, and even automatic trees
(see Remark 5.1).

An unexplored aspect of this study is to consider the traces of these graphs.
The traces of automatic and rational graphs are context sensitive languages
[MS01, Ris02]. Our conjecture is that there are even context-free languages that
can not be obtained by rational trees, for instance the languages of words having
the same number of a and b.
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Abstract. A complete and decidable propositional logic for reasoning
about states of probabilistic sequential programs is presented. The state
logic is then used to obtain a sound Hoare-style calculus for basic prob-
abilistic sequential programs. The Hoare calculus presented herein is the
first probabilistic Hoare calculus with a complete and decidable state
logic that has truth-functional propositional (not arithmetical) connec-
tives. The models of the state logic are obtained exogenously by attach-
ing sub-probability measures to valuations over memory cells. In order
to achieve complete and recursive axiomatization of the state logic, the
probabilities are taken in arbitrary real closed fields.

1 Introduction

Reasoning about probabilistic systems is very important due to applications
of probability in distributed systems, security, reliability, and randomized and
quantum algorithms. Logics supporting such reasoning have branched in two
main directions. Firstly, Hoare-style [27,21,6] and dynamic logics [9,17] have been
developed building upon denotational semantics of probabilistic programs [16].
The second approach enriches temporal modalities with probabilistic bounds
[10, 13,23].

Our work is in the area of Hoare-style reasoning about probabilistic sequential
programs. A Hoare assertion [11] is a triple of the form {ξ1} s {ξ2} meaning that
if program s starts in state satisfying the state assertion formula ξ1 and s halts
then s ends in a state satisfying the state transition formula ξ2. The formula ξ1

is known as the pre-condition and the formula ξ2 is known as the post-condition.
For probabilistic programs the development of Hoare logic has taken primarily
two different paths. The common denominator of the two approaches is forward
denotational semantics of sequential probabilistic programs [16]: program states
are (sub)-probability measures over valuations of memory cells and denotations
of programs are (sub)-probability transformations.

The first sound Hoare logic for probabilistic programs was given in [27]. The
state assertion language is truth-functional, i.e., the formulas of the logic are in-
terpreted as either true and false and the truth value of a formulas is determined
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by the truth values of the sub-formulas. The state assertion language in [27] con-
sists of two levels: one classical state formulas γ interpreted over the valuations
of memory cells and the second probabilistic state formulas ξ which interpreted
over (sub)-probability measures of the valuations. The state assertion language
contain terms (

∫
γ) representing probability of γ being true. The language at

the probabilistic level is extremely restrictive and is built from term equality
using conjunction. Furthermore, the Hoare rule for the alternative if-then-else is
incomplete and even simple valid assertions may not be provable.

The reason for incompleteness of the Hoare rule for the alternative composi-
tion in [27] as observed in [27,17] is that the Hoare rule tries to combine absolute
information of the two alternates truth-functionally to get absolute information
of the alternative composition. This fails because the effects of the two alterna-
tives are not independent. In order to avoid this problem, a probabilistic dynamic
logic is given in [17] with an arithmetical state assertion logic: the state formu-
las are interpreted as measurable functions and the connectives are arithmetical
operations such as addition and subtraction.

Inspired by the dynamic logic in [17], there are several important works in
the probabilistic Hoare logic, e.g. [14,21], in which the state formulas are either
measurable functions or arithmetical formulas interpreted as measurable func-
tions. Intuitively, the Hoare triple {f} s {g} means that the expected value of
the function g after the execution of s is at least as much as the expected value
of the function f before the execution. Although research in probabilistic Hoare
logic with arithmetical state logics has yielded several interesting results, the
Hoare triples themselves do not seem very intuitive. A high degree of sophisti-
cation is required to write down the Hoare assertions needed to verify relatively
simple programs. For this reason, it is worthwhile to investigate Hoare logics
with truth-functional state logics.

A sound Hoare logic with a truth-functional state logic was presented in [6]
and completeness for a fragment of the Hoare-logic is shown for iteration-free
programs. In order to deal with alternative composition, a probabilistic sum
construct (ξ1+ξ2) is introduced in [6]. Intuitively, the formula (ξ1+ξ2) is satisfied
by a (sub)-probability measure µ if µ can be be written as the sum of two
measures µ1 and µ2 which satisfy ξ1 and ξ2 respectively. The drawback of [6]
is that no axiomatization is given for the state assertion logic. The essential
obstacle in achieving a complete axiomatization for the state language in [6] is
the probabilistic sum construct.

This paper addresses the gap between [27] and [6] and provides a sound Hoare
logic for iteration-free probabilistic programs with a truth-functional state as-
sertion logic. Our main contribution is that the Hoare logic herein is the first
sound probabilistic Hoare logic with a truth-functional state assertion logic that
enjoys a complete and decidable axiomatization.

We tackle the Hoare rule for the alternative composition in two steps. The first
step is that our alternative choice construct is a slight modification of the usual
if-then-else construct: we mark a boolean memory variable bm with the choice
taken at the end of the execution of the conditional branch. Please note that this
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does not pose any restriction over the expressiveness of the programming lan-
guage. This modification gives us a handle on the Hoare rule for the alternative
construct as all the choices are marked by the appropriate memory variable and
thus become independent. Please note that a fixed dedicated boolean register
could have been used to mark the choices. However, we decided to use a boolean
variable in the syntax because the Hoare rule for the alternative composition
refers to the marker.

The second step is that in our state assertion language, we have a conditional
construct (ξ/γ). Intuitively, the formula (ξ/γ) is satisfied by a (sub)-probability
measure µ if ξ is true of the (sub)-probability measure obtained by eliminating
the measure of all valuations where γ is false. The conditional formulas (ξ/bm)
and (ξ/(¬ bm)) in the state logic can then be used to combine information of
the alternate choices.

The state assertion logic, henceforth referred to as Exogenous Probabilistic
Propositional Logic (EPPL), is designed by taking the exogenous semantics ap-
proach to enriching a given logic–the models of the enriched logic are sets of
models of the given logic with additional structure. A semantic model of EPPL
is a set of possible valuations over memory cells which may result from execution
of a probabilistic program along with a discrete (sub)-probability space which
gives the probability of each possible valuation.

Unlike most works on probabilistic reasoning about programs, we do not
confuse possibility with probability: possible valuations may occur with zero
probability. This is not a restriction and we can confuse the two, if desired, by
adding an axiom to the proof system. On the other hand, this separation yields
more expressivity. The exogenous approach to probabilistic logics first appeared
in [24,25] and later in [7,1,20]. EPPL is an enrichment of the probabilistic logic
proposed in [20]: the conditional construct (ξ/γ) is not present in [20].

For the sake of convenience, we work with finitely additive, discrete and
bounded measures and not just (sub)-probability measures. In order to achieve
recursive axiomatization for EPPL, we also assume that the measures take val-
ues from an arbitrary real closed field instead of the set of real numbers. The first
order theory of such fields is decidable [12, 3], and this technique of achieving
decidability was inspired by other work in probabilistic reasoning [7, 1].

The programming language is a basic imperative language with assignment to
memory variables, sequential composition, probabilistic assignment (toss(bm, r))
and the marked alternative choice. The statement toss(bm, r) assigns bm to true
with probability r. The term r is a constant and does not depend on the state
of the program. This is not a serious restriction. For instance r is taken to be 1

2
in probabilistic Turing machines.

One of the novelties of our Hoare logic is the rule for toss(bm, r) which gives
the weakest pre-condition and is not present in other probabilistic Hoare logics
with truth-functional state logics. The corresponding rule in the arithmetical
setting is discussed in Section 6. We envisage achieving a complete Hoare logic
but this is out of the scope of this paper.
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The rest of the paper is organized as follows. The syntax, semantics and the
complete recursive axiomatization of EPPL is presented in Section 2. The pro-
gramming language is introduced in Section 3 and the sound Hoare logic is given
in Section 4. We illustrate the Hoare calculus with an example in Section 5. Re-
lated work is discussed in detail in Section 6. We summarize the results and future
work in Section 7. For lack of space reasons, the proofs in the paper are omit-
ted and are available at http://wslc.math.ist.utl.pt/ftp/pub/SernadasA/
06-CMS-quantlog08s.pdf. Acknowledgements. We would like to thank L. Cruz-
Filipe and P. Selinger for useful and interesting discussions. We will also like to
thank the anonymous referees whose useful comments have greatly benefited the
presentation.

2 Logic of Probabilistic States – EPPL

We assume that in our programming language, there are a finite number of
memory cells of two kinds: registers containing real values (with a finite range
D fixed once and for all) and registers containing boolean values. In addition to
reflecting the usual implementation of real numbers as floating-point numbers,
the restriction that real registers take values from a finite range D is also needed
for completeness results. Please note that instead of reals, we could have also
used any type with finite range.

Any run of a program thus probabilistically assigns values to these registers
and such an assignment is henceforth called a valuation. If we denote the set of
valuations by V then intuitively a semantic structure of EPPL consists of V ⊆ V ,
a set of possible valuations, along with a finitely additive, discrete and bounded
measure µ on ℘V , the power-set of V . A finitely additive, discrete and bounded
measure µ on ℘V is a map from ℘V to R+ (the set of non-negative real numbers)
such that: µ(∅) = 0; and µ(U1 ∪ U2) = µ(U1) + µ(U2) if U1 ∩ U2 = ∅. Loosely
speaking, µ(U) denotes the probability of a possible valuation being in the set
U . A measure µ is said to be a probability measure if µ(V) = 1. We work with
general measures instead of just probability measures as it is convenient to do
so. We will assume that impossible valuations are improbable, i.e., we require
µ(U) = 0 for any U ⊂ (V \ V ). Please note that µ(U) may be 0 for U ⊂ V .

Furthermore, in order to obtain decidability, we shall assume that the mea-
sures take values from an arbitrary real closed field instead of the set of real
numbers. An ordered field K = (K, +, ., 1, 0,≤) is said to be a real closed field if
the following hold: every non-negative element of the K has a square root in K;
any polynomial of odd degree with coefficients in K has at least one solution.

Examples of real closed fields include the set of real numbers with the usual
multiplication, addition and order relation. The set of computable real numbers
with the same operations is another example. A measure that takes values from
a real closed field K will henceforth be called a K-measure.

Any real closed field has a copy of integers and rationals. We can also take
square roots and n-th roots for odd n in a real closed field. As a consequence,
we shall assume that there is a fixed set R of “real constants” for our purposes.
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A semantic structure of EPPL thus consists of a set of possible valuations, a
real closed field K and a K-measure on ℘V . We will call these semantic structures
generalized probabilistic structures. We start by describing the syntax of the logic.

2.1 Language

The language consists of formulas at two levels. The formulas at first level, clas-
sical state formulas reason about individual valuations over the memory cells.
The formulas at second level, probabilistic state formulas, reason about general-
ized probabilistic structures. There are two kinds of terms in the language: real
terms used in classical state formulas to denote elements from the set D, and
probability terms used in probabilistic state formulas to denote elements in an
arbitrary real closed field. The syntax of the language is given in Table 1 using
the BNF notation and discussed below.

Table 1. Language of EPPL

Real terms (with the proviso c ∈ D)
t := xm � x � c � (t + t) � (t t)

Classical state formulas
γ := bm � b � (t ≤ t) � ff � (γ ⇒ γ)

Probability terms (with the proviso r ∈ R)
p := r � y � (

∫
γ) � (p + p) � (p p) � r̃

Probabilistic state formulae:
ξ := (
γ) � (p ≤ p) � (ξ/γ) � fff � (ξ ⊃ ξ)

Given fixed m = {0, . . . , m− 1}, there are two finite disjoint sets of memory
variables: xM = {xmk : k ∈ m} – representing the contents of real registers,
and bM = {bmk : k ∈ m} – representing the contents of boolean registers. We
also have two disjoint sets of rigid variables which are useful in reasoning about
programs: B = {bk : k ∈ N} – ranging over the truth values 2 = {ff, tt}, and
X = {xk : k ∈ N} – ranging over elements of D.

The real terms, ranged over by t, t1, . . ., are built from the sets D, xM and X
using the usual addition and multiplication1. The classical state formulas, ranged
over by γ, γ1, . . ., are built from bM, B and comparison formulas (p1 ≤ p2) using
the classical disjunctive connectives ff and ⇒. As usual, other classical connec-
tives (¬,∨,∧, ⇔) are introduced as abbreviations. For instance, (¬ γ) stands for
(γ ⇒ ff).

The probability terms, ranged over by p, p1, . . ., denote elements of the real
closed field in a semantic structure. We also assume a set of variables, Y = {yk :
1 The arithmetical operations addition and multiplication are assumed to be defined

so as to restrict them to the range D.
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k ∈ N}, ranging over elements of the real closed field. The term (
∫
γ) denotes

the measure of the set of valuations that satisfy γ. The denotation of the term
r̃ is r if 0 ≤ r ≤ 1, 0 if r ≤ 0 and 1 otherwise.

The probabilistic state formulas, ranged over by ξ, ξ1, . . ., are built from the
necessity formulas (
γ), the comparison formulas (p1 ≤ p2), and conditional
formulas (ξ/γ) using the connectives fff and ⊃. The formula (
γ) is true when
γ is true of every possible valuation in the semantic structure. Intuitively, the
conditional (ξ/γ) is true in a generalized probabilistic structure if it is true in
the structure obtained by restricting the possible states to the set where γ is true
and eliminating the measure of valuations which satisfy (¬ γ). Other probabilis-
tic connectives (",∪,∩,≈) are introduced as abbreviations. For instance, (" ξ)
stands for (ξ ⊃ fff). We shall also use (♦γ) as an abbreviation for ("(
(¬ γ))).
Please note that the 
 and ♦ are not modalities2.

The notion of occurrence of a term p and a probabilistic state formula ξ1 in
the probabilistic state formula ξ can be easily defined. The notion of replacing
zero or more occurrences of probability terms and probabilistic formulas can also
be suitably defined. For the sake of clarity, we shall often drop parenthesis in
formulas and terms if it does not lead to ambiguity.

2.2 Semantics

Formally, by a valuation we mean a map that provides values to the memory
variables and rigid variables– v : (xM → D, bM → 2, X → D, B → 2). The set of
all possible valuations is denoted by V . Given a valuation v, the denotation of
real terms [[t]]v and satisfaction of classical state formulas v �c γ are defined
inductively as expected. Given V ⊆ V , the extent of γ in V is defined as |γ|V =
{v ∈ V : v �c γ}.

A generalized probabilistic state is a triple (V,K, µ) where V is a (possibly
empty) subset of V , K a real closed field and µ is a finitely additive, discrete and
finite K-measure over ℘V such that µ(U) = 0 for every U ⊆ (V \ V ). We denote
the set of all generalized states by G.

Given a classical formula γ we also need the following sub-measure of µ:
µγ = λU. µ(|γ|U ). That is, µγ is null outside of the extent of γ and coincides
with µ inside it.

For interpreting the probabilistic variables, we need the concept of an assign-
ment. Given a real closed field K, a K-assignment ρ is a map from Y to K.

Given a generalized state (V,K, µ) and a K-assignment ρ, the denotation of
probabilistic terms and satisfaction of probabilistic state formulas are defined
inductively in Table 2. Please note that the semantics ensures that if V is empty,
then (V,K, µ)ρ � γ for any γ. The formula (
γ) is satisfied only if all v ∈
V satisfy γ. For non-empty V , the formula (p1 ≤ p2) is satisfied if the term
denoted by p1 is less than p2. The formula (ξ/γ) is satisfied by (V,K, µ) and ρ
if (|γ|V ,K, µγ) and ρ satisfy ξ. The formula (ξ1 ⊃ ξ2) is satisfied by a semantic
model if either ξ1 is not satisfied by the model or ξ2 is satisfied by the model.

2 We do not have formulas such as 
(
γ).
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Table 2. Semantics of EPPL

Denotation of probability terms
[[r]]ρ(V,K,µ) = r

[[y]]ρ(V,K,µ) = ρ(y)

[[(
∫

γ)]]
ρ

(V,K,µ)
= µ(|γ|V )

[[p1 + p2]]
ρ
(V,K,µ)

= [[p1]]
ρ
(V,K,µ)

+ [[p2]]
ρ
(V,K,µ)

[[p1p2]]
ρ
(V,K,µ) = [[p1]]

ρ
(V,K,µ) × [[p2]]

ρ
(V,K,µ)

[[r̃]]ρ
(V,K,µ)

= max(0, min(r, 1))

Satisfaction of probabilistic formulas
(V,K, µ)ρ � (
γ) iff v �c γ for every v ∈ V
(V,K, µ)ρ � (p1 ≤ p2) iff V = ∅ implies ([[p1]]

ρ
(V,K,µ) ≤ [[p2]]

ρ
(V,K,µ))

(V,K, µ)ρ � (ξ/γ) iff (|γ|V ,K, µγ)ρ � ξ
(V,K, µ)ρ � fff iff V = ∅
(V,K, µ)ρ � (ξ1 ⊃ ξ2) iff (V,K, µ)ρ � ξ2 or (V,K, µ)ρ � ξ1

Entailment is defined as usual: Ξ entails ξ (written Ξ � ξ) if (V,K, µ)ρ � ξ
whenever (V,K, µ)ρ � ξ0 for each ξ0 ∈ Ξ.

Please note that the K-assignment ρ is sufficient to interpret a useful sub-
language of probabilistic state formulas:

κ := (a ≤ a) � fff � (κ⊃ κ)
a := x � r � (a + a) � (aa) � r̃.

Henceforth, the terms of this sub-language will be called analytical terms and
the formulas will be called analytical formulas.

2.3 The Axiomatization

We need three new concepts for the axiomatization, one of valid state formula, a
second one of probabilistic tautology and the third of valid analytical formulas.

A classical state formula γ is said to be valid if it is true of all valuations
v ∈ V . As a consequence of the finiteness of D, the set of valid classical state
formulas is recursive.

Consider propositional formulas built from a countable set of propositional
symbols Q using the classical connectives ⊥ and →. A probabilistic formula ξ
is said to be a probabilistic tautology if there is a propositional tautology β over
Q and a map σ from Q to the set of probabilistic state formulas such that ξ
coincides with βpσ where βpσ is the probabilistic formula obtained from β by
replacing all occurrences of ⊥ by fff, → by ⊃ and q ∈ Q by σ(q). For instance,
the probabilistic formula ((y1 ≤ y2) ⊃ (y1 ≤ y2)) is tautological (obtained, for
example, from the propositional tautology q → q).

As noted in Section 2.2, if K0 is the real closed field in a generalized prob-
abilistic structure, then a K0-assignment is enough to interpret all analytical
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formulas. We say that κ is a valid analytical formula if for any real closed field K
and any K-assignment ρ, κ is true for ρ. Clearly, a valid analytical formula holds
for all semantic structures of EPPL. It is a well-known fact from the theory of
quantifier elimination [12, 3] that the set of valid analytical formulas so defined
is decidable. We shall not go into details of this result as we want to focus on
reasoning about probabilistic aspects only.

The axioms and inference rules of EPPL are listed in Table 3 and better
understood in the following groups.

Table 3. Axioms for EPPL

Axioms
[CTaut] 
 (
γ) for each valid state formula γ
[PTaut] 
 ξ for each probabilistic tautology ξ
[Lift⇒] 
 ((
(γ1 ⇒ γ2)) ⊃ (
γ1 ⊃ 
γ2))
[Eqvff] 
 ((
ff) ≈ fff)
[Ref∧] 
 (((
γ1) ∩ (
γ2)) ⊃ (
(γ1 ∧ γ2)))
[RCF] 
 κ{|y/p|} where κ is a valid analytical formula, y and p are sequences

of probability variables and probability terms respectively
[Meas∅] 
 ((

∫
ff) = 0)

[FAdd] 
 (((
∫
(γ1 ∧ γ2)) = 0) ⊃ ((

∫
(γ1 ∨ γ2)) = (

∫
γ1) + (

∫
γ2)))

[Mon] 
 ((
(γ1 ⇒ γ2)) ⊃ ((
∫

γ1) ≤ (
∫

γ2)))
[Dist⊃] 
 (((ξ1 ⊃ ξ2)/γ) ≈ ((ξ1/γ) ⊃ (ξ2/γ)))
[Elim1] 
 (((
γ1)/γ2) ≈ (
(γ2 ⇒ γ1)))

[Elim2] 
 (((p1 ≤ p2)/γ) ≈ ((♦γ) ⊃ ((p1 ≤ p2)|(
∫

γ1)

(
∫
(γ1∧γ))

)))

Inference rules
[PMP] ξ1, (ξ1 ⊃ ξ2) 
 ξ2

[Cond] 
 (ξ/γ) whenever 
 ξ

The axiom CTaut says that if γ is a valid classical state formula then (
γ)
is an axiom. The axiom PTaut says that a probabilistic tautology is an axiom.
Since the set of valid classical state formulas and the set of probabilistic tautolo-
gies are both recursive, there is no need to spell out the details of tautological
reasoning.

The axioms Lift⇒, Eqvff and Ref∧ are sufficient to relate (local) classical
state reasoning and (global) probabilistic tautological reasoning.

The term κ{|y/p|} in the axiom RCF is the term obtained by substituting all
occurrences of yi in κ by pi. The axiom RCF says that if κ is a valid analyti-
cal formula, then any formula obtained by replacing variables with probability
terms is a tautology. We refrain from spelling out the details as the set of valid
analytical formulas is recursive.

The axiom Meas∅ says that the measure of empty set is 0. The axiom FAdd
is the finite additivity of the measures. The axiom Mon relates the classical
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connectives with probability measures and is a consequence of monotonicity of
measures.

The axiom Dist⊃ says that the connective ⊃ distributes over the conditional
construct. The axioms Elim1 and Elim2 eliminate the conditional construct.
The probabilistic term (p1 ≤ p2)|(

∫
γ1)

(
∫
(γ1∧γ))

in Elim2 is the term obtained by
replacing all occurrences of (

∫
γ1) by (

∫
(γ1 ∧ γ)) for each classical state formula

γ1.
The inference rule PMP is the modus ponens for classical and probabilistic

implication. The inference rule Cond says that if ξ is an theorem. then so is
(ξ/γ). The inference rule Cond is similar to the generalization rule in modal
logics.

As usual we say that a set of formulas Γ derives ξ, written Γ � ξ, if we can
build a derivation of ξ from axioms and the inference rules using formulas in Γ
as hypothesis. Please note that while applying the rule Cond, we are allowed to
use only theorems of the logic (and not any hypothesis or any intermediate step
in the derivation).

Every probabilistic formula ξ is equivalent to a probabilistic formula η in
which there is no occurrence of a conditional construct:

Lemma 1. Let ξ be an EPPL formula. Then, there is a conditional-free formula
η such that � ξ ≈ η. Moreover, there is an algorithm to compute η.

Furthermore, the above set of axioms and rules form a recursive axiomatization:

Theorem 1. EPPL is sound and weakly complete. Moreover, the set of theo-
rems is recursive.

3 Basic Probabilistic Sequential Programs

We shall now describe briefly the syntax and semantics of our basic programs.

3.1 Syntax

Assuming the syntax of EPPL, the syntax of the programming language in the
BNF notation is as follows (with the proviso r ∈ R ):

– s := skip � xm← t � bm← γ � toss(bm, r) � s; s � bm–If γ then s else s.

The statements xm← t and bm← γ are assignments to memory cells xm and
bm respectively. For the rest of the paper, by an expression we shall mean either
the terms t or the classical state formulas γ. Please note that t and γ may contain
rigid variables (which may be thought of as input to a program).

The statement toss(bm, r) sets bm true with probability r̃. The command
s; s is sequential composition. The statement bm–If γ then s1 else s2 is the bm–
marked alternative choice: if γ is true then s1 is executed and bm is set to true
after the execution of s1 else s2 is executed and bm is set to false.
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3.2 Semantics

The semantics of the programming language is basically the forward semantics
in [17] adapted to our programming language. Given G, the set of generalized
probabilistic states, the denotation of a program s is a map [[s]] : G → G defined
inductively in Table 4. The definition uses the following notations:

– The denotation of a real term t given a valuation v can be extended to
classical state formulas as: [[γ]]v = tt if v �c γ otherwise [[γ]]v = ff.

– If m is a memory cell (xm or bm) and e is an expression of the same type (t or
γ, respectively) then the map δm

e : V → V is defined as δm
e (v) = vm

[[e]]v
, where

vm
[[e]]v

assigns the value [[e]]v to the cell m and coincides with v elsewhere. As
usual, (δm

e )−1 : ℘V → ℘V is defined by taking each set U ⊂ V to the set of
its pre-images.

– (V1,K, µ1) + (V2,K, µ2) = (V1 ∪ V2,K, µ1 + µ2).
– r(V,K, µ) = (V,K, rµ).

The denotation of classical assignments, sequential composition and marked al-
ternative are as expected. The probabilistic toss toss(bm, r,) assigns bm the value
tt with probability r̃ and the value ff with probability 1− r̃. Therefore, the de-
notation of the probabilistic toss is the “weighted” sum of the two assignments
bm← tt and bm← ff.

Table 4. Denotation of programs

[[skip]] = λ(V,K, µ). (V,K, µ)
[[xm ← t]] = λ(V,K, µ). (δxm

t (V ),K, µ ◦ (δxm
t )−1)

[[bm ← γ]] = λ(V,K, µ). (δbm
γ (V ),K, µ ◦ (δbm

γ )−1)
[[toss(bm, r)]] = λ(V,K, µ). ((1 − r̃) ([[bm ← ff]](V,K, µ))+

r̃ ([[bm ← tt]](V,K, µ)))
[[s1; s2]] = λ(V,K, µ). [[s2]] ([[s1]](V,K, µ))
[[bm–If γ then s1 else s2]] = λ(V,K, µ). ([[s1; bm ← tt]](|γ|V ,K, µγ)+

[[s2; bm ← ff]](|(¬ γ)|V ,K, µ(¬ γ)))

4 Probabilistic Hoare Logic

We are ready to define the Hoare logic. As expected, the Hoare assertions are :

– δ := ξ � {ξ} s {ξ}.

Satisfaction of Hoare assertions is defined as

– (V,K, µ)ρ �h ξ if (V,K, µ)ρ � ξ,
– (V,K, µ)ρ �h {ξ1} s {ξ2} if (V,K, µ)ρ � ξ1 implies [[s]](V,K, µ)ρ � ξ2.

Semantic entailment is defined as expected: we say that ∆ entails δ (written
∆ � δ) if (V,K, µ)ρ � δ whenever (V,K, µ)ρ � δ0 for each δ0 ∈ ∆.
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4.1 Calculus

A sound Hoare calculus for our probabilistic sequential programs is given in Ta-
ble 5. In the axioms ASGR and ASGB, the notation ξm

e means the formula
obtained from ξ by replacing all occurrences (including those in conditionals
and probability terms) of the memory variable m by the expression e. The ax-
ioms TAUT, SKIP, ASGR and ASGB are similar to the ones in the case of
sequential programs.

Table 5. Hoare calculus

Axioms
[TAUT] 
 ξ if ξ is an EPPL theorem
[SKIP] 
 {ξ} skip {ξ}
[ASGR] 
 {ξxm

t } xm ← t {ξ}
[ASGB] 
 {ξbm

γ } bm ← γ {ξ}
[TOSS] 
 {η |�γ

�(γbm
ff ∧γbm

tt )
|(
∫

γ)

(1−r̃)(
∫

γbm
ff )+r̃(

∫
γbm

tt )
} toss(bm, r) {η}

Inference rules
[SEQ] {ξ0} s1 {ξ1}, {ξ1} s2 {ξ2} 
 {ξ0} s1; s2 {ξ2}
[IF] {ξ0} s1; bm ← tt {ξ2}

{ξ1} s2; bm ← ff {ξ3} 
 {ξ0 �γ ξ1} bm–If γ then s1 else s2 {ξ2 �bm ξ3}
[CONS] ξ0 ⊃ ξ1, {ξ1} s {ξ2}, ξ2 ⊃ ξ3 
 {ξ1} s {ξ3}
[OR] {ξ0} s {ξ2}, {ξ1} s {ξ2} 
 {ξ0 ∪ ξ1} s {ξ2}
[AND] {ξ0} s {ξ1}, {ξ0} s {ξ2} 
 {ξ0} s {ξ1 ∩ ξ2}

For the axiom TOSS, we do not consider arbitrary probabilistic formulas.
Instead, we just have probabilistic formulas η which do not have any conditional
sub-terms. This is not a serious limitation as every EPPL formula is equivalent
to another EPPL formula without conditionals (see Lemma 1). Furthermore,
the formula η |�γ

�(γbm
ff ∧γbm

tt )
|(
∫

γ)

(1−r̃)(
∫

γbm
ff )+r̃(

∫
γbm

tt )
is the formula obtained from η by

replacing every occurrence of a necessity formula (
γ) by (
(γbm
ff ∧ γbm

tt )) and
every occurrence of a probability term (

∫
γ) by (1−r̃)(

∫
γbm

ff )+r̃(
∫

γbm
tt ). Here, the

formula γbm
e is obtained by replacing all occurrences of bm by e. The soundness

of this Hoare rule is a consequence of the following lemma:

Lemma 2 (Substitution lemma for probabilistic tosses). For any formula
η, ([[toss(bm, r)]] (V,K, µ))ρ � η iff (V,K, µ)ρ � η |�γ

�(γbm
ff ∧γbm

tt )
|(
∫

γ)

(1−r̃)(
∫

γbm
ff )+r̃(

∫
γbm

tt )
.

The inference rules SEQ, CONS, OR and AND are similar to the ones in
sequential programs. For the inference rule IF, ξ �γ ξ′ is an abbreviation for the
formula ((ξ/γ) ∩ (ξ′/¬ γ)). It follows from the definition of semantics of EPPL
that (V,K, µ)ρ � ξ�γ ξ′ if and only if (|γ|V ,K, µγ)ρ � ξ and (| ¬ γ|V ,K, µ¬ γ)ρ �
ξ′. We have:
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Theorem 2. The Hoare calculus is sound.

The completeness for the Hoare logic was being worked upon in collaboration
with Lúıs Cruz-Filipe at the time of submission of this paper. The Hoare rule
for probabilistic tosses is its weakest pre-condition form as a consequence of
the substitution lemma for probabilistic tosses (see Lemma 2 above). For the
alternative, we have shown that if ξ0 and ξ1 are weakest pre-conditions corre-
sponding to the two marked choices then so is ξ0 �γ ξ1. Furthermore, any EPPL
formula ξ is essentially equivalent to a disjunct of formulas of the kind ξ′ �γ ξ′′.
Roughly, two EPPL formulas are essentially equivalent if the semantic structures
satisfying them differ only in the K-assignment part.

5 Example

We illustrate our Hoare calculus on a variation of the quantum one-time pad. A
qubit is the basic memory unit in quantum computation (just as a bit is the basic
memory unit in classical computation). The state of a qubit is a pair (α, β) of
complex numbers such that |α|2+|β|2 = 1. A quantum one-time pad [2] encrypts
a qubit using two key (classical) bits in a secure way: observing the encrypted
qubit yields two results, both with equal probability. In the special case that α
and β are real numbers one bit key bmk suffices. We restrict our attention to
this special case. If the key bmk = 1 then the qubit is (unitarily) encrypted as
the pair (β,−α) otherwise it remains the same. The following program Sqenc
simulates this process by first generating a random key and then encrypting the
qubit (xm1, xm2): toss(bmk, 1

2 ); bm–If bmk then PauliXZ else skip, where PauliXZ
is xm3← xm1; xm1← xm2; xm2←−xm3

3.
Assume that the initial values of xm1 and xm2 are c1 and c2 respectively (with

c1 �= c2). It follows from quantum information theory that in order to prove the
security of the quantum one-time pad, it suffices to show that the probability
after the encryption of xm1 being c1 is 1

2 (and hence of xm1 being c2 is also
1
2 ). We can use our logic to show the above for Sqenc. In particular, assum-
ing ηI is 
((xm1 = c1) ∧ (xm2 = c2) ∧ (c1 < c2)), we derive the following in
our Hoare calculus: � {((

∫
tt) = 1) ∩ ηI}Sqenc {(

∫
(xm1 = c1)) = 1

2}. Abbreviat-
ing the statement bm–If bmk then PauliXZ else skip as IF, the derivation is:

1 {(
∫
(xm1 = c1)) = 1

2
} skip {(

∫
(xm1 = c1)) = 1

2
} SKIP

2 {(
∫
(c2 = c1)) = 0}PauliXZ {(

∫
(xm1 = c1)) = 0} ASGR, SEQ

3 (((
∫
tt) = 1

2
) ∩ ηI) ⊃ (

∫
(xm1 = c1)) = 1

2
TAUT

4 (((
∫
tt) = 1

2
) ∩ ηI) ⊃ (

∫
(c2 = c1)) = 0 TAUT

5 {(((
∫

tt) = 1
2
) ∩ ηI)�bmk(((

∫
tt) = 1

2
) ∩ ηI)} IF

{(
∫
(xm1 = c1)) = 1

2
�bm(

∫
(xm1 = c1)) = 0} IF, CONS 1-4

6 ((
∫
(xm1 = c1)) = 1

2
�bm(

∫
(xm1 = c1)) = 0) ⊃ (

∫
(xm1 = c1)) = 1

2
TAUT

3 The name PauliXZ has its roots in quantum mechanics.
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7 (ηI ∩ ((
∫

bm) = 1
2
) ∩ ((

∫
¬ bm) = 1

2
))⊃

(((
∫

tt) = 1
2
) ∩ ηI)�bmk (((

∫
tt) = 1

2
) ∩ ηI) TAUT

8 {(ηI ∩ ((
∫

bm) = 1
2
) ∩ ((

∫
¬ bm) = 1

2
))} IF {(

∫
(xm1 = c1)) = 1

2
} CONS 5,6,7

9 {((
∫

tt) = 1) ∩ ηI}{toss(bm, 1
2
)}

{(ηI ∩ ((
∫

bm) = 1
2
) ∩ ((

∫
¬ bm) = 1

2
))} TOSS, TAUT

10 {((
∫

tt) = 1) ∩ ηI}Sqenc {(
∫
(xm1 = c1)) = 1

2
} SEQ 8,9.

6 Related Work

The area of formal methods in probabilistic programs has attracted a lot of work
ranging from semantics [16, 15, 29, 22] to logic-based reasoning [9, 17, 27, 10, 13,
21,23,6].

Our work is in the field of probabilistic dynamic logics. Dynamic logic is a
modal logic in which the modalities are of the form 〈s〉ϕ where s is a program
and ϕ is a state assertion formula. For probabilistic programs, there are two
distinct approaches to dynamic logic. The main difference in the two approaches
is that one uses truth-functional state logic while the other one uses state logic
with arithmetical connectives.

The first truth-functional probabilistic state logic based works appear in the
context of dynamic logic [28, 18, 26, 9, 8]. In the context of probabilistic truth-
functional dynamic logics, the state language has terms representing probabilities
( e.g., (

∫
γ) represents the probability of γ being true). An infinitary complete

axiom system for probabilistic dynamic logic is given in [18]. Later, a complete
finitary axiomatization of probabilistic dynamic logic was given in [9]. However,
the state logic is second-order (to deal with iteration) and no axiomatization of
the state logic is achieved. In [8], decidability of a less expressive dynamic logic
is achieved.

Hoare logic can be viewed as a fragment of dynamic logic and the first proba-
bilistic Hoare logic with truth-functional propositional state logic appears in [27].
However, as discussed in Section 1, even simple assertions in this logic may not
be provable. For instance, the valid Hoare assertion (adapting somewhat the
syntax) {(

∫
tt) = 1} If x = 0 then skip else skip {(

∫
tt) = 1} is not provable in the

logic. As noted in [27,17], the reason for incompleteness is the Hoare rule for the
alternative if-then-else which tries to combine absolute information of the two
alternatives truth-functionally. The Hoare logic in [6] circumvents the problem
of the alternative by defining the probabilistic sum connective as already dis-
cussed in Section 1. Although this logic is more expressive than the one in [27]
and completeness is achieved for a fragment of the Hoare logic, it is not clear
how to axiomatize the probabilistic sum connective [6].

The other approach to dynamic logic uses arithmetical state logic instead of
truth-functional state logic [17,15,14,21]. For example, instead of the if-then-else
construct the programming language in [17] has the construct γ?s1 + (¬ γ)?s2

which is closely bound to the forward denotational semantics proposed in [16].
This leads to a probabilistic dynamic logic in which measurable functions are used
as state formulas and the connectives are interpreted as arithmetical operations.
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In the context of Hoare logics, the approach of arithmetical connectives is the
one that has attracted more research. The Hoare triple in this context naturally
leads to the definition of weakest pre-condition for a measurable function g and
a program s: the weakest pre-condition wp(g, s) is the function that has the
greatest expected value amongst all functions f such that {f} s {g} is a valid
Hoare triple. The weakest pre-condition can thus be thought of as a backward
semantics which transforms a post-state g in the context of a program s to a
pre-state wp(g, s). The important result in this area is the duality between the
forward semantics and the backwards semantics [14].

Later, [21] extended this framework to address non-determinism and proved
the duality between forward semantics and backward semantics. Instead of just
using functions f and g as pre-conditions and post-conditions, [21] also allows
a rudimentary state language with basic classical state formulas α, negation,
disjunction and conjunction. The classical state formula α is interpreted as the
function that takes the value 1 in the memory valuations where α is true and 0
otherwise. Conjunction and disjunction are interpreted as minimum and maxi-
mum respectively, and negation as subtraction from the constant function 1. For
example, the following Hoare assertion is valid in this logic: {r} toss(bm, r) {bm}.
Here r in the pre-condition is the constant function r and bm is the function
that take value 1 when bm is true and 0 otherwise. The validity of the above
Hoare assertion says that the probability of bm being true after the probabilistic
toss is at least r.

We tackle the problem of alternative if-then-else by marking the choices at
the end of the execution and by introducing the conditional construct (ξ/γ) in
the state logic. The state logic itself is the probabilistic logic in [20] extended
with the conditional construct. The logic is designed by the exogenous semantics
approach to probabilistic logics [24, 25, 7, 1, 20]. The main difference from the
logic in [20] is that the state logic herein has the conditional construct which
is not present in [20]. The axioms Dist⊃, Elim1 and Elim2 are used to deal
with this conditional construct. Using these, we can demonstrate that every
formula is equivalent to another formula without conditionals and the proof of
completeness then follows the lines of the proof in [20]. The other difference
is that the probabilities in [20] are taken in the set of real numbers and terms
contain real computable numbers. The proof of completeness is obtained relative
to an (undecidable) oracle for reasoning about reals.

Finally, one main contribution of our paper is the Hoare rule in the weak-
est pre-condition form for probabilistic toss in the context of truth-functional
state logic. The Hoare rule for probabilistic tosses does appear in the context of
arithmetical Hoare logics and takes the form

wp(toss(bm, r), α) = r × wp(bm← tt, α) + (1 − r)× wp(bm← ff, α).

7 Conclusions and Future Work

Our main contribution is a sound probabilistic Hoare calculus with a truth-
functional state assertion logic that enjoys recursive axiomatization. The Hoare
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rule for the if-then-else statement avoids the probabilistic sum construct in [6] by
marking the choices taken and by taking advantage of a conditional construct
in the state assertion language. Another important contribution is the axiom
for probabilistic toss which gives the weakest pre-condition in truth-functional
setting and is the counterpart of the weakest pre-condition for probabilistic toss
in Hoare logics with arithmetical state logics.

As discussed in Section 4, we are currently working towards complete ax-
iomatization for the Hoare-calculus for the iteration free language. We plan to
include the iteration construct and demonic non-determinsim in future work.
For iteration, we will investigate completeness using an oracle for arithmetical
reasoning.

Our long-term interests are in reasoning about quantum programs and pro-
tocols. Probabilities are inevitable in quantum programs because measurements
of quantum states yield probabilistic mixtures of quantum states. We aim to in-
vestigate Hoare-style reasoning and dynamic logics for quantum programming.
Towards this end, we have already designed logics for reasoning about individ-
ual quantum states [19,5] and a sound Hoare logic for basic quantum imperative
programs [4].
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Abstract. We study infinite stochastic games played by two-players
over a finite state space, with objectives specified by sets of infinite traces.
The games are concurrent (players make moves simultaneously and in-
dependently), stochastic (the next state is determined by a probability
distribution that depends on the current state and chosen moves of the
players) and infinite (proceeds for infinite number of rounds). The anal-
ysis of concurrent stochastic games can be classified into: quantitative
analysis, analyzing the optimum value of the game; and qualitative anal-
ysis, analyzing the set of states with optimum value 1. We consider con-
current games with tail objectives, i.e., objectives that are independent
of the finite-prefix of traces, and show that the class of tail objectives are
strictly richer than the ω-regular objectives. We develop new proof tech-
niques to extend several properties of concurrent games with ω-regular
objectives to concurrent games with tail objectives. We prove the posi-
tive limit-one property for tail objectives, that states for all concurrent
games if the optimum value for a player is positive for a tail objective
Φ at some state, then there is a state where the optimum value is 1 for
Φ, for the player. We also show that the optimum values of zero-sum
(strictly conflicting objectives) games with tail objectives can be related
to equilibrium values of nonzero-sum (not strictly conflicting objectives)
games with simpler reachability objectives. A consequence of our analy-
sis presents a polynomial time reduction of the quantitative analysis of
tail objectives to the qualitative analysis for the sub-class of one-player
stochastic games (Markov decision processes).

1 Introduction

Stochastic games. Non-cooperative games provide a natural framework to
model interactions between agents [13,14]. A wide class of games progress over
time and in stateful manner, and the current game depends on the history of in-
teractions. Infinite stochastic games [15,9] are a natural model for such dynamic
games. A stochastic game is played over a finite state space and is played in
rounds. In concurrent games, in each round, each player chooses an action from
a finite set of available actions, simultaneously and independently of the other
player. The game proceeds to a new state according to a probabilistic transi-
tion relation (stochastic transition matrix) based on the current state and the
joint actions of the players. Concurrent games (also known as Blackwell games)
subsume the simpler class of turn-based games, where at every state at most
one player can choose between multiple actions; and Markov decision processes

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 256–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(MDPs), where only one player can choose between multiple actions at every
state. Concurrent games also provide the framework to model synchronous re-
active systems [6]. In verification and control of finite state reactive systems
such games proceed for infinite rounds, generating an infinite sequence of states,
called the outcome of the game. The players receive a payoff based on a payoff
function that maps every outcome to a real number.

Objectives. Payoffs are generally Borel measurable functions [12]. For example,
the payoff set for each player is a Borel set Bi in the Cantor topology on Sω

(where S is the set of states), and player i gets payoff 1 if the outcome of the
game is a member of Bi, and 0 otherwise. In verification, payoff functions are
usually index sets of ω-regular languages. The ω-regular languages generalize
the classical regular languages to infinite strings, they occur in low levels of the
Borel hierarchy (they are in Σ0

3 ∩Π0
3), and they form a robust and expressive

language for determining payoffs for commonly used specifications. The simplest
ω-regular objectives correspond to safety (“closed sets”) and reachability (“open
sets”) objectives.

Zero-sum games, determinacy and nonzero-sum games. Games may be
zero-sum, where two players have directly conflicting objectives and the payoff
of one player is one minus the payoff of the other, or nonzero-sum, where each
player has a prescribed payoff function based on the outcome of the game. The
fundamental question for games is the existence of equilibrium values. For zero-
sum games, this involves showing a determinacy theorem that states that the
expected optimum value obtained by player 1 is exactly one minus the expected
optimum value obtained by player 2. For one-step zero-sum games, this is von
Neumann’s minmax theorem [18]. For infinite games, the existence of such equi-
libria is not obvious, in fact, by using the axiom of choice, one can construct
games for which determinacy does not hold. However, a remarkable result by
Martin [12] shows that all stochastic zero-sum games with Borel payoffs are
determined. For nonzero-sum games, the fundamental equilibrium concept is a
Nash equilibrium [10], that is, a strategy profile such that no player can gain
by deviating from the profile, assuming the other player continue playing the
strategy in the profile.

Qualitative and quantitative analysis. The analysis of zero-sum concur-
rent games can be broadly classified into: (a) quantitative analysis that involves
analysis of the optimum values of the games; and (b) qualitative analysis that
involves simpler analysis of the set of states where the optimum value is 1.

Properties of concurrent games. The result of Martin [12] established the
determinacy of zero-sum concurrent games for all Borel objectives. The determi-
nacy result sets forth the problem of study and closer understanding of properties
and behaviors of concurrent games with different class of objectives. Several in-
teresting questions related to concurrent games are: (1) characterizing certain
zero-one laws for concurrent games; (2) relationship of qualitative and quanti-
tative analysis; (3) relationship of zero-sum and nonzero-sum games. The re-
sults of [6,7,1] exhibited several interesting properties for concurrent games with
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ω-regular objectives specified as parity objectives. The result of [6] showed the
positive limit-one property, that states if there is a state with positive optimum
value, then there is a state with optimum value 1, for concurrent games with
parity objectives. The positive limit-one property has been a key property to
develop algorithms and improved complexity bound for quantitative analysis of
concurrent games with parity objectives [1]. The above properties can possibly be
the basic ingredients for the computational complexity analysis of quantitative
analysis of concurrent games.

Outline of results. In this work, we consider tail objectives, the objectives
that do not depend on any finite-prefix of the traces. Tail objectives subsume
canonical ω-regular objectives such as parity objectives and Müller objectives,
and we show that there exist tail objectives that cannot be expressed as ω-regular
objectives. Hence tail objectives are a strictly richer class of objectives than
ω-regular objectives. Our results characterize several properties of concurrent
games with tail objectives. The results are as follows.

1. We show the positive limit-one property for concurrent games with tail ob-
jectives. Our result thus extends the result of [6] from parity objectives to
a richer class of objective that lie in the higher levels of Borel hierarchy.
The result of [6] follows from a complementation argument of quantitative
µ-calculus formula. Our proof technique is completely different: it uses cer-
tain strategy construction procedures and a convergence result from measure
theory (Lévy’s zero-one law). It may be noted that the positive limit-one
property for concurrent games with Müller objectives follows from the pos-
itive limit-one property for parity objectives and the reduction of Müller
objectives to parity objectives [17]. Since Müller objectives are tail objec-
tives, our result presents a direct proof for the positive limit-one property
for concurrent games with Müller objectives.

2. We relate the optimum values of zero-sum games with tail objectives with
Nash-equilibrium values of non-zero sum games with reachability objectives.
This establishes a relationship between the values of concurrent games with
complex tail objectives and Nash equilibrium of nonzero-sum games with
simpler objectives. From the above analysis we obtain a polynomial time
reduction of quantitative analysis of tail objectives to qualitative analysis
for the special case of MDPs. The above result was previously known for the
sub-class of ω-regular objectives specified as Müller objectives [4,5,2]. The
proof techniques of [4,5,2] use different analysis of the structure of MDPs
and is completely different from our proof techniques.

2 Definitions

Notation. For a countable set A, a probability distribution on A is a func-
tion δ : A → [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probabil-

ity distributions on A by D(A). Given a distribution δ ∈ D(A), we denote by
Supp(δ) = {x ∈ A | δ(x) > 0} the support of δ.
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Definition 1 (Concurrent Games). A (two-player) concurrent game struc-
ture G = 〈S,Moves ,Mv1,Mv2, δ〉 consists of the following components:

– A finite state space S and a finite set Moves of moves.
– Two move assignments Mv1,Mv2 : S → 2Moves\∅. For i ∈ {1, 2}, assignment

Mv i associates with each state s ∈ S the non-empty set Mv i(s) ⊆ Moves of
moves available to player i at s.

– A probabilistic transition function δ : S × Moves × Moves → D(S), that
gives the probability δ(s, a1, a2)(t) of a transition from s to t when player 1
plays move a1 and player 2 plays move a2, for all s, t ∈ S and a1 ∈ Mv1(s),
a2 ∈ Mv2(s).

An important special class of concurrent games are Markov decision processes
(MDPs), where at every state s we have |Mv2(s)| = 1, i.e., the set of available
moves for player 2 is singleton at every state.

At every state s ∈ S, player 1 chooses a move a1 ∈ Mv1(s), and simultaneously
and independently player 2 chooses a move a2 ∈ Mv2(s). The game then proceeds
to the successor state t with probability δ(s, a1, a2)(t), for all t ∈ S. A state s
is called an absorbing state if for all a1 ∈ Mv1(s) and a2 ∈ Mv2(s) we have
δ(s, a1, a2)(s) = 1. In other words, at s for all choices of moves of the players the
next state is always s. We assume that the players act non-cooperatively, i.e., each
player chooses her strategy independently and secretly from the other player, and
is only interested in maximizing her own reward. For all states s ∈ S and moves
a1 ∈ Mv1(s) and a2 ∈ Mv2(s), we indicate by Dest(s, a1, a2) = Supp(δ(s, a1, a2))
the set of possible successors of s when moves a1, a2 are selected.

A path or a play ω of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states in
S such that for all k ≥ 0, there are moves ak

1 ∈ Mv1(sk) and ak
2 ∈ Mv2(sk) with

δ(sk, ak
1 , ak

2)(sk+1) > 0. We denote by Ω the set of all paths and by Ωs the set
of all paths ω = 〈s0, s1, s2, . . .〉 such that s0 = s, i.e., the set of plays starting
from state s.

Strategies. A selector ξ for player i ∈ { 1, 2 } is a function ξ : S → D(Moves)
such that for all s ∈ S and a ∈ Moves , if ξ(s)(a) > 0, then a ∈ Mv i(s). We
denote by Λi the set of all selectors for player i ∈ { 1, 2 }. A strategy for player 1
is a function τ : S+ → Λ1 that associates with every finite non-empty sequence
of states, representing the history of the play so far, a selector. Similarly we
define strategies π for player 2. We denote by Γ and Π the set of all strategies
for player 1 and player 2, respectively.

Once the starting state s and the strategies τ and π for the two players
have been chosen, the game is reduced to an ordinary stochastic process. Hence
the probabilities of events are uniquely defined, where an event A ⊆ Ωs is
a measurable set of paths. For an event A ⊆ Ωs we denote by Prτ,πs (A) the
probability that a path belongs to A when the game starts from s and the
players follow the strategies τ and π. For i ≥ 0, we also denote by Θi : Ω → S
the random variable denoting the i-th state along a path.

Objectives. We specify objectives for the players by providing the set of win-
ning plays Φ ⊆ Ω for each player. Given an objective Φ we denote by Φ = Ω \Φ,
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the complementary objective of Φ. A concurrent game with objective Φ1 for
player 1 and Φ2 for player 2 is zero-sum if Φ2 = Φ1. A general class of ob-
jectives are the Borel objectives [11]. A Borel objective Φ ⊆ Sω is a Borel
set in the Cantor topology on Sω. In this paper we consider ω-regular objec-
tives [17], which lie in the first 21/2 levels of the Borel hierarchy (i.e., in the
intersection of Σ0

3 and Π0
3) and tail objectives which is a strict superset of ω-

regular objectives. The ω-regular objectives, and subclasses thereof, and tail
objectives are defined below. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define
Inf(ω) = { s ∈ S | sk = s for infinitely many k ≥ 0 } to be the set of states that
occur infinitely often in ω.

– Reachability and safety objectives. Given a set T ⊆ S of “target” states,
the reachability objective requires that some state of T be visited. The set
of winning plays is thus Reach(T ) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
T for some k ≥ 0 }. Given a set F ⊆ S, the safety objective requires that
only states of F be visited. Thus, the set of winning plays is Safe(F ) = {ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ F for all k ≥ 0 }.

– Büchi and coBüchi objectives. Given a set B ⊆ S of “Büchi” states, the
Büchi objective requires that B is visited infinitely often. Formally, the set
of winning plays is Büchi(B) = { ω ∈ Ω | Inf(ω) ∩ B �= ∅ }. Given C ⊆ S,
the coBüchi objective requires that all states visited infinitely often are in C.
Formally, the set of winning plays is coBüchi(C) = { ω ∈ Ω | Inf(ω) ⊆ C }.

– Parity objectives. For c, d ∈ N, we let [c..d] = { c, c + 1, . . . , d }. Let p :
S → [0..d] be a function that assigns a priority p(s) to every state s ∈ S,
where d ∈ N. The Even parity objective is defined as Parity(p) = { ω ∈
Ω | min

(
p(Inf(ω))

)
is even }, and the Odd parity objective as coParity(p) =

{ ω ∈ Ω | min
(
p(Inf(ω))

)
is odd }.

– Muller objectives. Given a setM⊆ 2S of subset of states, the Müller objec-
tive is defined as Müller(M) = { ω ∈ Ω | Inf(ω) ∈ M }.

– Tail objectives. Informally the class of tail objectives is the sub-class of Borel
objectives that are independent of all finite prefixes. An objective Φ is a tail
objective, if the following condition hold: a path ω ∈ Φ if and only if for
all i ≥ 0, ωi ∈ Φ, where ωi denotes the path ω with the prefix of length i
deleted. Formally, let Gi = σ(Θi, Θi+1, . . .) be the σ-field generated by the
random variables Θi, Θi+1, . . .. The tail σ-field T is defined as T =

⋂
i≥0 Gi.

An objective Φ is a tail objective if and only if Φ belongs to the tail σ-field
T , i.e., the tail objectives are indicator functions of events A ∈ T .

The Müller and parity objectives are canonical forms to represent ω-regular
objectives [16]. Observe that Müller and parity objectives are tail objectives.
Note that for a priority function p : S → { 0, 1 }, an even parity objective
Parity(p) is equivalent to the Büchi objective Büchi(p−1(0)), i.e., the Büchi set
consists of the states with priority 0. Büchi and coBüchi objectives are special
cases of parity objectives and hence tail objectives. Reachability objectives are
not necessarily tail objectives, but for a set T ⊆ S of states, if every state s ∈ T
is an absorbing state, then the objective Reach(T ) is equivalent to Büchi(T ) and
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hence is a tail objective. It may be noted that since σ-fields are closed under
complementation, the class of tail objectives are closed under complementation.
We give an example to show that the class of tail objectives are richer than
ω-regular objectives.1

Example 1. Let r be a reward function that maps every state s to a real-valued
reward r(s), i.e., r : S → R. For a constant c ∈ R consider the objective Φc

defined as follows: Φc = {ω ∈ Ω | ω = 〈s1, s2, s3, . . .〉, lim infn→∞
1
n

∑n
i=1 r(si) ≥

c}. Intuitively, Φc accepts the set of paths such that the “long-run” average of the
rewards in the path is at least the constant c. The “long-run” average condition
lie in the third-level of the Borel-hierarchy (i.e., in Π0

3 and Π0
3-complete) and

cannot be expressed as an ω-regular objective. It may be noted that the “long-
run” average of a path is independent of all finite-prefixes of the path. Formally,
the class Φc of objectives are tail objectives. Since Φc are Π0

3-complete objectives,
it follows that tail objectives lie in higher levels of Borel hierarchy than ω-regular
objectives.

Values. The probability that a path satisfies an objective Φ starting from state
s ∈ S, given strategies τ, π for the players is Prτ,πs (Φ). Given a state s ∈ S and
an objective Φ, we are interested in the maximal probability with which player 1
can ensure that Φ and player 2 can ensure that Φ holds from s. We call such prob-
ability the value of the game G at s for player i ∈ { 1, 2 }. The value for player 1
and player 2 are given by the functions 〈〈1〉〉val (Φ) : S → [0, 1] and 〈〈2〉〉val (Φ) :
S → [0, 1], defined for all s ∈ S by 〈〈1〉〉val (Φ)(s) = supτ∈Γ infπ∈Π Prτ,πs (Φ)
and 〈〈2〉〉val (Φ)(s) = supπ∈Π infτ∈Γ Prτ,πs (Φ). Note that the objectives of the
player are complementary and hence we have a zero-sum game. Concurrent
games satisfy a quantitative version of determinacy [12], stating that for all
Borel objectives Φ and all s ∈ S, we have 〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Φ)(s) = 1.
A strategy τ for player 1 is optimal for objective Φ if for all s ∈ S we have
infπ∈Π Prτ,πs (Φ) = 〈〈1〉〉val (Φ)(s). For ε > 0, a strategy τ for player 1 is ε-optimal
for objective Φ if for all s ∈ S we have infπ∈Π Prτ,πs (Φ) ≥ 〈〈1〉〉val (Φ)(s) − ε. We
define optimal and ε-optimal strategies for player 2 symmetrically. For ε > 0, an
objective Φ for player 1 and Φ for player 2, we denote by Γε(Φ) and Πε(Φ) the
set of ε-optimal strategies for player 1 and player 2, respectively. Even in con-
current games with reachability objectives optimal strategies need not exist [6],
and ε-optimal strategies, for all ε > 0, is the best one can achieve. Note that the
quantitative determinacy of concurrent games is equivalent to the existence of
ε-optimal strategies for objective Φ for player 1 and Φ for player 2, for all ε > 0,
at all states s ∈ S, i.e., for all ε > 0, Γε(Φ) �= ∅ and Πε(Φ) �= ∅.

We refer to the analysis of computing the limit-sure winning states (the set
of states s such that 〈〈1〉〉val (Φ)(s) = 1) as the qualitative analysis of objective
Φ. We refer to the analysis of computing the values as the quantitative analysis
of objective Φ.
1 Our example shows that there are Π0

3-complete objectives that are tail objectives.
It is possible that the tail objectives can express objectives in even higher levels of
Borel hierarchy than Π0

3, which will make our results stronger.
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1/2
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Fig. 1. A simple Markov chain

3 Positive Limit-One Property

The positive limit-one property for concurrent games, for a class C of objectives,
states that for all objectives Φ ∈ C, for all concurrent games G, if there is a state
s such that the value for player 1 is positive at s for objective Φ, then there is
a state s′ where the value for player 1 is 1 for objective Φ. The property means
if a player can win with positive value from some state, then from some state
she can win with value 1. The positive limit-one property was proved for parity
objectives in [6] and has been one of the key properties used in the algorithmic
analysis of concurrent games with parity objectives [1]. In this section we prove
the positive limit-one property for concurrent games with tail objectives, and
thereby extend the positive limit-one property from parity objectives to a richer
class of objectives that subsume several canonical ω-regular objectives. Our proof
uses a result from measure theory and certain strategy constructions, whereas
the proof for the sub-class of parity objectives [6] followed from complementation
arguments of quantitative µ-calculus formula. We first show an example that the
positive limit-one property is not true for all objectives, even for simpler class
of games.

Example 2. Consider the game shown in Fig 1, where at every state s, we have
Mv1(s) = Mv2(s) = {1} (i.e., the set of moves is singleton at all states). From all
states the next state is s0 and s1 with equal probability. Consider the objective
©(s1) which specifies the next state is s1; i.e., a play ω starting from state s is
winning if the first state of the play is s and the second state (or the next state
from s) in the play is s1. Given the objective Φ = ©(s1) for player 1, we have
〈〈1〉〉val (Φ)(s0) = 〈〈1〉〉val (Φ)(s1) = 1/2. Hence though the value is positive at s0,
there is no state with value 1 for player 1.

Notation. In the setting of concurrent games the natural filtration sequence
(Fn) for the stochastic process under any pair of strategies is defined as

Fn = σ(Θ1, Θ2, . . . , Θn)

i.e., the σ-field generated by the random-variables Θ1, Θ2, . . . , Θn.

Lemma 1 (Lévy’s 0-1 law). Suppose Hn ↑ H∞, i.e.,Hn is a sequence of
increasing σ-fields and H∞ = σ(∪nHn). For all events A ∈ H∞ we have

E(1A | Hn) = Pr(A | Hn) → 1A almost-surely, (i.e., with probability 1),

where 1A is the indicator function of event A.
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The proof of the lemma is available in Durrett (page 262—263) [8]. An immediate
consequence of Lemma 1 in the setting of concurrent games is the following
lemma.

Lemma 2 (0-1 law in concurrent games). For all concurrent game struc-
tures G, for all events A ∈ F∞ = σ(∪nFn), for all strategies (τ, π) ∈ Γ ×Π, for
all states s ∈ S, we have

Prτ,πs (A | Fn) → 1A almost-surely.

Intuitively, the lemma means that the probability Prτ,πs (A | Fn) converges
almost-surely (i.e., with probability 1) to 0 or 1 (since indicator functions take
values in the range { 0, 1 }). Note that the tail σ-field T is a subset of F∞, i.e.,
T ⊆ F∞, and hence the result of Lemma 2 holds for all A ∈ T .

Notation. Given strategies τ and π for player 1 and player 2, a tail objective
Φ, and a state s, for β > 0, let

H1,β
n (τ, π,Φ) = { 〈s1, s2, . . . , sn, sn+1, . . .〉 | Prτ,πs (Φ | 〈s1, s2, . . . , sn〉) ≥ 1− β },

denote the set of paths ω such that the probability of satisfying Φ given the
strategies τ and π, and the prefix of length n of ω is at least 1− β; and

H0,β
n (τ, π,Φ) = { 〈s1, s2, . . . , sn, sn+1, . . .〉 | Prτ,πs (Φ | 〈s1, s2, . . . , sn〉) ≤ β }.

denote the set of paths ω such that the probability of satisfying Φ given the
strategies τ and π, and the prefix of length n of ω is at most β.

Proposition 1. For all concurrent game structures G, for all strategies τ and
π for player 1 and player 2, respectively, for all tail objectives Φ, for all states
s ∈ S, for all β > 0 and ε > 0, there exists n, such that Prτ,πs (H1,β

n (τ, π,Φ) ∪
H0,β

n (τ, π,Φ)) ≥ 1− ε.

Proof. Let us denote fn = Prτ,πs (Φ | Fn). It follows from Lemma 2 that fn → Φ
almost-surely as n → ∞. Since almost-sure convergence implies convergence in
probability [8], fn → Φ in probability. Formally, we have

∀β > 0. Prτ,πs (|fn − Φ| > β) → 0 as n →∞.

Equivalently we have

∀β > 0. ∀ε > 0. ∃n0. ∀n ≥ n0. Prτ,πs (|fn − Φ| ≤ β) ≥ 1− ε.

Thus we obtain that limn→∞ Prτ,πs (H1,β
n (τ, π,Φ)∪H0,β

n (τ, π,Φ)) = 1; and hence
the result follows.

Theorem 1 (Positive limit-one property). For all concurrent game struc-
tures G, for all tail objectives Φ, if there exists a state s ∈ S such that 〈〈1〉〉val (Φ)(s)
> 0, then there exists a state s′ ∈ S such that 〈〈1〉〉val (Φ)(s′) = 1.



264 K. Chatterjee

Proof. Assume towards contradiction that there exists a state s such that
〈〈1〉〉val (Φ)(s) > 0, but for all states s′ we have 〈〈1〉〉val (Φ)(s′) < 1. Let α =
1 − 〈〈1〉〉val (Φ)(s) = 〈〈2〉〉val (Φ)(s). Since 0 < 〈〈1〉〉val (Φ)(s) < 1, we have 0 <
α < 1. Since 〈〈2〉〉val (Φ)(s′) = 1 − 〈〈1〉〉val (Φ)(s′) and for all states s′ we have
〈〈1〉〉val (Φ)(s) < 1, it follows that 〈〈2〉〉val (Φ)(s′) > 0, for all states s′. Fix η such
that 0 < η = mins′∈S〈〈2〉〉val (Φ)(s′). Also observe that since 〈〈2〉〉val (Φ)(s) = α <
1, we have η < 1. Let c be a constant such that c > 0, and α·(1+c) = γ < 1 (such
a constant exists as α < 1). Also let c1 > 1 be a constant such that c1 · γ < 1
(such a constant exists since γ < 1); hence we have 1− c1 · γ > 0 and 1− 1

c1
> 0.

Fix ε > 0 and β > 0 such that

0 < 2ε < min{ η

4
, 2c · α,

η

4
· (1 − c1 · γ) }; β < min{ ε, 1

2
, 1− 1

c1
}. (1)

Fix ε-optimal strategies τε for player 1 and πε for player 2. Let H1,β
n = H1,β

n

(τε, πε,Φ) and H0,β
n = H0,β

n (τε, πε,Φ). Consider n such that Prτε,πε
s (H1,β

n ∪
H0,β

n ) ≥ 1 − ε
4 (such n exists by Proposition 1). Also observe that since β < 1

2
we have H1,β

n ∩H0,β
n = ∅. Let

val = Prτε,πε
s (Φ | H1,β

n ) · Prτε,πε
s (H1,β

n ) + Prτε,πε
s (Φ | H0,β

n ) · Prτε,πε
s (H0,β

n ).

We have

val ≤ Prτε,πε
s (Φ) ≤ val +

ε

4
. (2)

The first inequality follows since H1,β
n ∩ H0,β

n = ∅ and the second inequality
follows since Prτε,πε

s (H1,β
n ∪H0,β

n ) ≥ 1− ε4 . Since τε and πε are ε-optimal strategies
we have α− ε ≤ Prτε,πε

s (Φ) ≤ α + ε. This along with (2) yield that

α− ε− ε

4
≤ val ≤ α + ε. (3)

Observe that Prτε,πε
s (Φ | H1,β

n ) ≥ 1 − β and Prτε,πε
s (Φ | H0,β

n ) ≤ β. Let q =
Prτε,πε
s (H1,β

n ). Since Prτε,πε
s (Φ | H1,β

n ) ≥ 1 − β; ignoring the term Prτε,πε
s (Φ |

H0,β
n ) ·Prτε,πε

s (H0,β
n ) in val and from the second inequality of (3) we obtain that

(1− β) · q ≤ α + ε. Since ε < c · α, β < 1− 1
c1

, and γ = α · (1 + c) we have

q ≤ α + ε

1− β
<

α · (1 + c)
1− (1 − 1

c1
)

= c1 · γ (4)

We construct a strategy π̂ε as follows: the strategy π̂ε follows the strategy πε
for the first n − 1-stages; if a history in H1,β

n is generated it follows πε, and
otherwise it ignores the history and switches to an ε-optimal strategy. Formally,
for a history 〈s1, s2, . . . , sk〉 we have

π̂ε(〈s1, . . . , sk〉) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πε(〈s1, . . . , sk〉) if k < n;

or Prτε,πε
s (Φ | 〈s1, s2, . . . , sn〉) ≥ 1− β;

π̃ε(〈sn, . . . , sk〉) Prτε,πε
s (Φ | 〈s1, s2, . . . , sn〉) < 1− β, and

k ≥ n, where π̃ε is an ε-optimal strategy
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Since π̂ε and πε coincides for n−1-stages we have Prτε,π̂ε
s (H1,β

n ) = Prτε,πε
s (H1,β

n )
and Prτε,π̂ε

s (H0,β
n ) = Prτε,πε

s (H0,β
n ). Moreover, since Φ is a tail objective that is

independent of the prefix of length n; η ≤ mins′∈S〈〈2〉〉val (Φ)(s′) and π̃ε is an
ε-optimal strategy, we have Prτε,π̂ε

s (Φ | H0,β
n ) ≥ η − ε. Also observe that

Prτε,π̂ε
s (Φ | H0,β

n ) ≥ (η − ε) = Prτε,πε
s (Φ | H0,β

n ) + (η − ε− Prτε,πε
s (Φ | H0,β

n ))
≥ Prτε,πε

s (Φ | H0,β
n ) + (η − ε− β),

since Prτε,πε
s (Φ | H0,β

n ) ≤ β. Hence we have the following inequality

Prτε,π̂ε
s (Φ) ≥ Prτε,π̂ε

s (Φ | H1,β
n ) · Prτε,π̂ε

s (H1,β
n )+ Prτε,π̂ε

s (Φ | H0,β
n ) · Prτε,π̂ε

s (H0,β
n )

= Prτε,πε
s (Φ | H1,β

n ) · Prτε,πε
s (H1,β

n )+ Prτε,π̂ε
s (Φ | H0,β

n ) · Prτε,π̂ε
s (H0,β

n )

≥ Prτε,πε
s (Φ | H1,β

n ) · Prτε,πε
s (H1,β

n )+ Prτε,πε
s (Φ | H0,β

n ) · Prτε,πε
s (H0,β

n )

+ (η − ε− β) ·
(
1− q − ε

4
) (

as Prτε,πε
s (H0,β

n ) ≥ 1− q − ε

4
)

= val + (η − ε− β) · (1− q − ε

4
)

≥ α− 5ε
4

+ (η − ε− β) · (1 − q − ε

4
) (recall first inequality of (3))

> α− 5ε
4

+ (η − 2ε) · (1− q − ε

4
) (as β < ε by (1))

> α− 5ε
4

+
η

2
· (1− q − ε

4
) (as 2ε < η

2 by (1))

> α− 5ε
4

+
η

2
· (1− c1 · γ)− η

2
· ε
4

(as q < c1 · γ by (4))

> α− ε− ε

4
+ 4ε− ε

8
(as 2ε < η

4 · (1 − c1 · γ) by (1),
and η ≤ 1)

> α + ε.

The first equality follows since for histories in H1,β
n , the strategies πε and π̂ε

coincide. Hence we have Prτε,π̂ε
s (Φ) > α + ε and Prτε,π̂ε

s (Φ) < 1 − α − ε. This
is a contradiction to the fact that 〈〈1〉〉val (Φ)(s) = 1 − α and τε is an ε-optimal
strategy. The desired result follows.

Notation. We use the following notation for the rest of the paper:

W 1
1 = { s | 〈〈1〉〉val (Φ)(s) = 1 }; W 1

2 = { s | 〈〈2〉〉val (Φ)(s) = 1 }.

W>0
1 = { s | 〈〈1〉〉val (Φ)(s) > 0 }; W>0

2 = { s | 〈〈2〉〉val (Φ)(s) > 0 }.
By determinacy of concurrent games with tail objectives, we have W 1

1 = S\W>0
2

and W 1
2 = S \W>0

1 . We have the following finer characterization of the sets.

Corollary 1. For all concurrent game structures G, with tail objectives Φ for
player 1, the following assertions hold:
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1. (a) if W>0
1 �= ∅, then W 1

1 �= ∅; and (b) if W>0
2 �= ∅, then W 1

2 �= ∅.
2. (a) if W>0

1 = S, then W 1
1 = S; and (b) if W>0

2 = S, then W 1
2 = S.

Proof. The first result is a direct consequence of Theorem 1. The second result
is derived as follows: if W>0

1 = S, then by determinacy we have W 1
2 = ∅. If

W 1
2 = ∅, it follows from part 1 that W>0

2 = ∅, and hence W 1
1 = S. The result

of part 2 shows that if a player has positive optimum value at every state, then
the optimum value is 1 at all states.

4 Zero-Sum Tail Games to Nonzero-Sum Reachability
Games

In this section we relate the values of zero-sum games with tail objectives with
the Nash equilibrium values of nonzero-sum games with reachability objectives.
The result shows that the values of a zero-sum game with complex objectives can
be related to equilibrium values of a nonzero-sum game with simpler objectives.
We also show that for MDPs the value function for a tail objective Φ can be
computed by computing the maximal probability of reaching the set of states
with value 1. As an immediate consequence of the above analysis, we obtain
a polynomial time reduction of the quantitative analysis of MDPs with tail
objectives to the qualitative analysis. We first prove a limit-reachability property
of ε-optimal strategies: the property states that for tail objectives, if the players
play ε-optimal strategies, for small ε > 0, then the game reaches W 1

1 ∪W 1
2 with

high probability.

Theorem 2 (Limit-reachability). For all concurrent game structures G, for
all tail objectives Φ for player 1, for all ε′ > 0, there exists ε > 0, such that for
all states s ∈ S, for all ε-optimal strategies τε and πε, we have

Prτε,πε
s (Reach(W 1

1 ∪W 1
2 )) ≥ 1− ε′.

Proof. By determinacy it follows that W 1
1 ∪W 1

2 = S \ (W>0
1 ∪W>0

2 ). For a state
s ∈ W 1

1 ∪W 1
2 the result holds trivially. Consider a state s ∈ W>0

1 ∪W>0
2 and

let α = 〈〈2〉〉val (Φ)(s). Observe that 0 < α < 1. Let η1 = mins∈W>0
2
〈〈1〉〉val (Φ)(s)

and η2 = maxs∈W>0
2
〈〈2〉〉val (Φ)(s), and let η = min{ η1, 1 − η2 }, and note that

0 < η < 1. Given ε′ > 0, fix ε such that 0 < 2ε < min{ η
2 , η·ε′

12 }. Fix any
ε-optimal strategies τε and πε for player 1 and player 2, respectively. Fix β
such that 0 < β < ε and β < 1

2 . Let H1,β
n = H1,β

n (τε, πε,Φ) and H0,β
n =

H0,β
n (τε, πε,Φ). Consider n such that Prτε,πε

s (H1,β
n ∪H0,β

n ) = 1− ε
4 (such n exists

by Proposition 1), and also as β < 1
2 , we have H1,β

n ∩H0,β
n = ∅. Let us denote

by

val = Prτε,πε
s (Φ | H1,β

n ) · Prτε,πε
s (H1,β

n ) + Prτε,πε
s (Φ | H0,β

n ) · Prτε,πε
s (H0,β

n ).

Similar to inequality (2) of Theorem 1 we obtain that

val ≤ Prτε,πε
s (Φ) ≤ val +

ε

4
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Since τε and πε are ε-optimal strategies, similar to inequality (3) of Theorem 1
we obtain that α− ε− ε

4 ≤ val ≤ α + ε.
For W ⊆ S, let Reachn(W ) = { 〈s1, s2, s3 . . .〉 | ∃k ≤ n. sk ∈ W } de-

note the set of paths that reaches W in n-steps. We use the following nota-
tions: Reach(W 1

1 ) = Ω \ Reachn(W 1
1 ), and Reach(W 1

2 ) = Ω \ Reachn(W 1
2 ).

Consider a strategy τ̂ε defined as follows: for histories in H1,β
n ∩ Reach(W 1

2 ),
τ̂ε ignores the history after stage n and follows an ε-optimal strategy τ̃ε; and
for all other histories it follows τε. Let z1 = Prτε,πε

s (H1,β
n ∩ Reach(W 1

2 )). Since
η2 = maxs∈W>0

2
〈〈2〉〉val (Φ)(s), and player 1 switches to an ε-optimal strategy

for histories of length n in H1,β
n ∩ Reach(W 1

2 ) and Φ is a tail objective, it fol-
lows that for all ω = 〈s1, s2, . . . , sn, sn+1, . . .〉 ∈ H1,β

n ∩ Reach(W 1
2 ), we have

Prτ̂ε,πε
s (Φ | 〈s1, s2 . . . , sn〉) ≤ η2 +ε; where as Prτε,πε

s (Φ | 〈s1, s2 . . . , sn〉) ≥ 1−β.
Hence we have

val2 = Prτ̂ε,πε
s (Φ) ≤ Prτε,πε

s (Φ)−z1 ·(1−β−η2−ε) ≤ val +
ε

4
−z1 ·(1−β−η2−ε),

since with probability z1 the decrease is at least by 1 − β − η2 − ε. Since πε is
an ε-optimal strategy we have val2 ≥ α− ε; and since val ≤ α + ε, we have the
following inequality

z1 · (1− η2 − β − ε) ≤ 2ε +
ε

4
< 3ε

⇒ z1 <
3ε

η − β − ε
(since η ≤ 1− η2)

⇒ z1 <
3ε

η − 2ε
<

6ε
η

<
ε′

4
(since β < ε; ε <

η

4
; ε <

η · ε′
24

)

Consider a strategy π̂ε defined as follows: for histories in H0,β
n ∩ Reach(W 1

1 ),
π̂ε ignores the history after stage n and follows an ε-optimal strategy π̃ε; and
for all other histories it follows πε. Let z2 = Prτε,πε

s (H0,β
n ∩ Reach(W 1

1 )). Since
η1 = mins∈W>0

2
〈〈2〉〉val (Φ)(s), and player 2 switches to an ε-optimal strategy for

histories of length n in H0,β
n ∩Reach(W 1

1 ) and Φ is a tail objective, it follows that
for all ω = 〈s1, s2, . . . , sn, sn+1, . . .〉 ∈ H1,β

n ∩ Reach(W 1
1 ), we have Prτε,π̂ε

s (Φ |
〈s1, s2 . . . , sn〉) ≥ η1−ε; where as Prτε,πε

s (Φ | 〈s1, s2 . . . , sn〉) ≤ β. Hence we have
val1 = Prτε,π̂ε

s (Φ) ≥ Prτε,πε
s (Φ) + z2 · (η1 − ε− β) ≥ val + z2 · (η1 − ε− β),

since with probability z2 the increase is at least by η1 − ε − β. Since τε is an
ε-optimal strategy we have val1 ≤ α + ε; and since val ≥ α− ε+ ε

4 , we have the
following inequality

z2 · (η1 − β − ε) ≤ 2ε +
ε

4
< 3ε

⇒ z2 <
3ε

η − β − ε
(since η ≤ η1)

⇒ z2 <
ε′

4
(similar to the inequality for z1 <

ε′

4
)
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s1s0 1/21/2
s2

a,1
a,2a,2

Fig. 2. A game with Büchi objective

Hence z1 + z2 ≤ ε′
2 ; and then we have

Prτε,πε
s (Reach(W 1

1 ∪W 1
2 )) ≥ Prτε,πε

s (Reachn(W 1
1 ∪W 1

2 ) ∩ (H1,β
n ∪H0,β

n ))
= Prτε,πε

s (Reachn(W 1
1 ∪W 1

2 ) ∩H1,β
n )

+ Prτε,πε
s (Reachn(W 1

1 ∪W 1
2 ) ∩H0,β

n )
≥ Prτε,πε

s (Reachn(W 1
1 ) ∩H1,β

n )
+ Prτε,πε

s (Reachn(W 1
2 ) ∩H0,β

n )
≥ Prτε,πε

s (H1,β
n ) + Prτε,πε

s (H0,β
n )− (z1 + z2)

≥ 1− ε

4
+

ε′

2
≥ 1− ε′ (since ε ≤ ε′).

The result follows.

Theorem 2 proves the limit-reachability property for tail objectives, under ε-
optimal strategies, for small ε. We present an example to show that Theorem 2
is not true for all objectives, or for tail objectives with arbitrary strategies.

Example 3. Observe that in the game shown in Example 2, the objective was
not a tail objective and we had W 1

1 ∪ W 1
2 = ∅. Hence Theorem 2 need not

necessarily hold for all objectives. Also consider the game shown in Fig 2. In
the game shown s1 and s2 are absorbing state. At s0 the available moves for the
players are as follows: Mv1(s0) = { a } and Mv2(s0) = { 1, 2 }. The transition
function is as follows: if player 2 plays move 2, then the next state is s1 and s2

with equal probability, and if player 2 plays move 1, then the next state is s0.
The objective of player 1 is Φ = Büchi({ s0, s1 }), i.e., to visit s0 or s1 infinitely
often. We have W 1

1 = { s1 } and W 1
2 = { s2 }. Given a strategy π that chooses

move 1 always, the set W 1
1 ∪W 1

2 of states is reached with probability 0; however
π is not an optimal or ε-optimal strategy for player 2 (for ε < 1

2 ). This shows
that Theorem 2 need not hold if ε-optimal strategies are not considered. In the
game shown, for an optimal strategy for player 2 (e.g., a strategy to choose move
2) the play reaches W 1

1 ∪W 1
2 with probability 1.

Lemma 3 is immediate from Theorem 2.

Lemma 3. For all concurrent game structures G, for all tail objectives Φ for
player 1 and Φ for player 2, for all states s ∈ S, we have

lim
ε→0

sup
τ∈Γε(Φ),π∈Πε(Φ)

Prτ,πs (Reach(W 1
1 ∪W 1

2 )) = 1;

lim
ε→0

sup
τ∈Γε(Φ),π∈Πε(Φ)

Prτ,πs (Reach(W 1
1 )) = 〈〈1〉〉val (Φ)(s);
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lim
ε→0

sup
τ∈Γε(Φ),π∈Πε(Φ)

Prτ,πs (Reach(W 1
2 )) = 〈〈2〉〉val (Φ)(s).

Consider a non-zero sum reachability game GR such that the states in W 1
1 ∪W 1

2

are transformed to absorbing states and the objectives of both players are reach-
ability objectives: the objective for player 1 is Reach(W 1

1 ) and the objective for
player 2 is Reach(W 1

2 ). Note that the game GR is not zero-sum in the following
sense: there are infinite paths ω such that ω �∈ Reach(W 1

1 ) and ω �∈ Reach(W 1
2 )

and each player gets a payoff 0 for the path ω. We define ε-Nash equilibrium of
the game GR and relate some special ε-Nash equilibrium of GR with the values
of G.

Definition 2 (ε-Nash equilibrium in GR). A strategy profile (τ∗, π∗) ∈ Γ×Π
is an ε-Nash equilibrium at state s if the following two conditions hold:

Prτ
∗,π∗
s (Reach(W 1

1 )) ≥ sup
τ∈Γ

Prτ,π
∗

s (Reach(W 1
1 ))− ε

Prτ
∗,π∗
s (Reach(W 1

2 )) ≥ sup
π∈Π

Prτ
∗,π
s (Reach(W 1

2 ))−ε

Theorem 3 (Nash equilibrium of reachability game GR). The following
assertion holds for the game GR.

1. For all ε > 0, there is an ε-Nash equilibrium (τ∗ε , π∗ε) ∈ Γε(Φ)×Πε(Φ) such
that for all states s we have

lim
ε→0

Prτ
∗
ε ,π∗

ε
s (Reach(W 1

1 )) = 〈〈1〉〉val (Φ)(s)

lim
ε→0

Prτ
∗
ε ,π∗

ε
s (Reach(W 1

2 )) = 〈〈2〉〉val (Φ)(s).

Proof. It follows from Lemma 3.

Note that in case of MDPs the strategy for player 2 is trivial, i.e., player 2 has
only one strategy. Hence in context of MDPs we drop the strategy π of player 2.
A specialization of Theorem 3 in case of MDPs yields Theorem 4.

Theorem 4. For all MDPs GM , for all tail objectives Φ, we have

〈〈1〉〉val (Φ)(s) = sup
τ∈Γ

Prτs (Reach(W 1
1 )) = 〈〈1〉〉val (Reach(W 1

1 ))(s)

Since the values in MDPs with reachability objectives can be computed in poly-
nomial time (by linear-programming) [3,9], our result presents a polynomial time
reduction of quantitative analysis of tail objectives in MDPs to qualitative anal-
ysis. Our results (mainly, Theorem 1 and Theorem 2) can also be used to present
simple construction of ε-optimal strategies for ω-regular objectives in concurrent
games. These results will be presented in a fuller version of the paper.
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Abstract. We study infinite stochastic games played by n-players on
a finite graph with goals specified by sets of infinite traces. The games
are concurrent (each player simultaneously and independently chooses
an action at each round), stochastic (the next state is determined by a
probability distribution depending on the current state and the chosen
actions), infinite (the game continues for an infinite number of rounds),
nonzero-sum (the players’ goals are not necessarily conflicting), and undis-
counted. We show that if each player has an upward-closed objective,
then there exists an ε-Nash equilibrium in memoryless strategies, for ev-
ery ε > 0; and exact Nash equilibria need not exist. Upward-closure of an
objective means that if a set Z of infinitely repeating states is winning,
then all supersets of Z of infinitely repeating states are also winning.
Memoryless strategies are strategies that are independent of history of
plays and depend only on the current state. We also study the complexity
of finding values (payoff profile) of an ε-Nash equilibrium. We show that
the values of an ε-Nash equilibrium in nonzero-sum concurrent games
with upward-closed objectives for all players can be computed by com-
puting ε-Nash equilibrium values of nonzero-sum concurrent games with
reachability objectives for all players and a polynomial procedure. As a
consequence we establish that values of an ε-Nash equilibrium can be
computed in TFNP (total functional NP), and hence in EXPTIME.

1 Introduction

Stochastic games. Non-cooperative games provide a natural framework to
model interactions between agents [10]. The simplest class of non-cooperative
games consists of the “one-step” games — games with single interaction be-
tween the agents after which the game ends and the payoffs are decided (e.g.,
matrix games). However, a wide class of games progress over time and in stateful
manner, and the current game depends on the history of interactions. Infinite
stochastic games [13,6] are a natural model for such games. A stochastic game is
played over a finite state space and is played in rounds. In concurrent games, in
each round, each player chooses an action from a finite set of available actions,
simultaneously and independently of other players. The game proceeds to a new
� This research was supported in part by the NSF grants CCR-0225610 and CCR-

0234690, and by the SNSF under the Indo-Swiss Joint Research Programme.
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state according to a probabilistic transition relation (stochastic transition ma-
trix) based on the current state and the joint actions of the players. Concurrent
games subsume the simpler class of turn-based games, where at every state at
most one player can choose between multiple actions. In verification and control
of finite state reactive systems such games proceed for infinite rounds, generat-
ing an infinite sequence of states, called the outcome of the game. The players
receive a payoff based on a payoff function that maps every outcome to a real
number.

Objectives. Payoffs are generally Borel measurable functions [9]. The payoff
set for each player is a Borel set Bi in the Cantor topology on Sω (where S
is the set of states), and player i gets payoff 1 if the outcome of the game is
in Bi, and 0 otherwise. In verification, payoff functions are usually index sets
of ω-regular languages. The ω-regular languages generalize the classical regular
languages to infinite strings, they occur in low levels of the Borel hierarchy (in
Σ3∩Π3), and form a robust and expressive language for determining payoffs for
commonly used specifications. The simplest ω-regular objectives correspond to
safety (“closed sets”) and reachability (“open sets”) objectives.

Zero-sum games. Games may be zero-sum, where two players have directly
conflicting objectives and the payoff of one player is one minus the payoff of
the other, or nonzero-sum, where each player has a prescribed payoff function
based on the outcome of the game. The fundamental question for games is the
existence of equilibrium values. For zero-sum games, this involves showing a
determinacy theorem that states that the expected optimum value obtained by
player 1 is exactly one minus the expected optimum value obtained by player 2.
For one-step zero-sum games, this is von Neumann’s minmax theorem [17]. For
infinite games, the existence of such equilibria is not obvious, in fact, by using the
axiom of choice, one can construct games for which determinacy does not hold.
However, a remarkable result by Martin [9] shows that all stochastic zero-sum
games with Borel payoffs are determined.

Nonzero-sum games. For nonzero-sum games, the fundamental equilibrium
concept is a Nash equilibrium [8], i.e., a strategy profile such that no player
can gain by deviating from the profile, assuming the other player continues
playing the strategy in the profile. Again, for one-step games, the existence of
such equilibria is guaranteed by Nash’s theorem [8]. However, the existence of
Nash equilibria in infinite games is not immediate: Nash’s theorem holds for
finite bimatrix games, but in case of stochastic games, the strategy space is not
compact. The existence of Nash equilibria is known only in very special cases of
stochastic games. In fact, Nash equilibria may not exist, and the best one can
hope for is an ε-Nash equilibrium for all ε > 0, where an ε-Nash equilibrium
is a strategy profile where unilateral deviation can only increase the payoff of
a player by at most ε. Exact Nash equilibria do exist in discounted stochastic
games [7]. For concurrent nonzero-sum games with payoffs defined by Borel sets,
surprisingly little is known. Secchi and Sudderth [12] showed that exact Nash
equilibria do exist when all players have payoffs defined by closed sets (“safety
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objectives” or Π1 objectives). In the case of open sets (“reachability objectives”
or Σ1 objectives), the existence of ε-Nash equilibrium for every ε > 0, has
been established in [2]. For the special case of two-player games, existence of
ε-Nash equilibrium, for every ε > 0, is known for ω-regular objectives [1] and
limit-average objectives [15,16]. The existence of ε-Nash equilibrium in n-player
concurrent games with objectives in higher levels of Borel hierarchy than Σ1 and
Π1 has been an intriguing open problem; existence of ε-Nash equilibrium is not
even known even when each player has a Büchi objective.
Result and proof techniques. In this paper we show that ε-Nash equilibrium
exists, for every ε > 0, for n-player concurrent games with upward-closed objec-
tives. However, exact Nash equilibria need not exist. Informally, an objective Ψ
is an upward-closed objective, if a play ω that visits a set Z of states infinitely
often is in Ψ , then a play ω′ that visits Z ′ ⊇ Z of states infinitely often is also in
Ψ . The class of upward-closed objectives subsumes Büchi and generalized Büchi
objectives as special cases. For n-player concurrent games our result extends the
existence of ε-Nash equilibrium from the lowest level of Borel hierarchy (open
and closed sets) to a class of objectives that lie in the higher levels of Borel
hierarchy (upward-closed objectives can express objectives in Π2) and subsumes
several interesting class of objectives. Along with the existence of ε-Nash equilib-
rium, our result presents a finer characterization of ε-Nash equilibrium showing
existence of ε-Nash equilibrium in memoryless strategies (strategies that are in-
dependent of the history of the play and depend only on the current state). Our
result is organized as follows.

1. In Section 3 we develop some results on one player version of concurrent
games and n-player concurrent games with reachability objectives.

2. In Section 4 we use induction on the number of players, results of Section 3
and analysis of Markov chains to establish the desired result.

Complexity of ε-Nash equilibrium. Computing the values of a Nash equi-
libria, when it exists, is another challenging problem [11]. For one-step zero-sum
games, equilibrium values and strategies can be computed in polynomial time
(by reduction to linear programming) [10]. For one-step nonzero-sum games, no
polynomial time algorithm is known to compute an exact Nash equilibrium, even
in two-player games [11]. From the computational aspects, a desirable property
of an existence proof of Nash equilibrium is its ease of algorithmic analysis. We
show that our proof for existence of ε-Nash equilibrium is completely algorith-
mic. Our proof shows that the computation of an ε-Nash equilibrium in n-player
concurrent games with upward-closed objectives can be achieved by computing
ε-Nash equilibrium of games with reachability objectives and a polynomial time
procedure. Our result thus shows that computing ε-Nash equilibrium for upward-
closed objectives is no harder than solving ε-Nash equilibrium of n-player games
with reachability objectives by a polynomial factor. We then prove that an ε-
Nash equilibrium can be computed in TFNP (total functional NP) and hence in
EXPTIME.
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2 Definitions

Notation. We denote the set of probability distributions on a set A by D(A).
Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the
support of δ.

Definition 1 (Concurrent game structures). An n-player concurrent game
structure G = 〈S,A, Γ1, Γ2, . . . , Γn, δ〉 consists of the following components:

– A finite state space S and a finite set A of moves.
– Move assignments Γ1, Γ2, . . . , Γn : S → 2A \ ∅. For i ∈ { 1, 2, . . . , n }, move

assignment Γi associates with each state s ∈ S the non-empty set Γi(s) ⊆ A
of moves available to player i at state s.

– A probabilistic transition function δ : S ×A× A . . .×A → D(S), that gives
the probability δ(s, a1, a2, . . . , an)(t) of a transition from s to t when player i
plays move ai, for all s, t ∈ S and ai ∈ Γi(s), for i ∈ { 1, 2, . . . , n }.

We define the size of the game structure G to be equal to the size of the transition
function δ, specifically,

|G| =
∑
s∈S

∑
(a1,...,an)∈Γ1(s)×...×Γn(s)

∑
t∈S
|δ(s, a1, . . . , an)(t)|,

where |δ(s, a1, . . . , an)(t)| denotes the space to specify the probability distri-
bution. At every state s ∈ S, each player i chooses a move ai ∈ Γi(s), and
simultaneously and independently, and the game then proceeds to the successor
state t with probability δ(s, a1, a2, . . . , an)(t), for all t ∈ S. A state s is called an
absorbing state if for all ai ∈ Γi(s) we have δ(s, a1, a2, . . . , an)(s) = 1. In other
words, at s for all choices of moves of the players the next state is always s. For
all states s ∈ S and moves ai ∈ Γi(s) we indicate by Dest(s, a1, a2, . . . , an) =
Supp(δ(s, a1, a2, . . . , an)) the set of possible successors of s when moves a1, a2,
. . . , an are selected.

A path or a play ω of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states in S
such that for all k ≥ 0, there are moves ak

i ∈ Γi(sk) and with δ(sk, ak
1 , a

k
2 , . . . , ak

n)
(sk+1) > 0. We denote by Ω the set of all paths and by Ωs the set of all paths
ω = 〈s0, s1, s2, . . .〉 such that s0 = s, i.e., the set of plays starting from state s.

Randomized strategies. A selector ξi for player i ∈ {1, 2, . . . , n} is a function
ξi : S → D(A) such that for all s ∈ S and a ∈ A, if ξi(s)(a) > 0 then a ∈
Γi(s). We denote by Λi the set of all selectors for player i ∈ { 1, 2, . . . , n }.
A strategy σi for player i is a function σi : S+ → Λi that associates with
every finite non-empty sequence of states, representing the history of the play
so far, a selector. A memoryless strategy is independent of the history of the
play and depends only on the current state. Memoryless strategies coincide with
selectors, and we often write σi for the selector corresponding to a memoryless
strategy σi. A memoryless strategy σi for player i is uniform memoryless if the
selector of the memoryless strategy is an uniform distribution over its support,
i.e., for all states s we have σi(s)(ai) = 0 if ai �∈ Supp(σi(s)) and σi(s)(ai) =
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1
|Supp(σi(s))| if ai ∈ Supp(σi(s)). We denote by Σi, ΣM

i and ΣUM
i the set of all

strategies, set of all memoryless strategies and the set of all uniform memoryless
strategies for player i, respectively. Given strategies σi for player i, we denote
by σ the strategy profile (σ1,σ2, . . . ,σn). A strategy profile σ is memoryless
(resp. uniform memoryless) if all the component strategies are memoryless (resp.
uniform memoryless).

Given a strategy profile σ = (σ1,σ2, . . . ,σn) and a state s, we denote by
Outcome(s,σ) = { ω = 〈s0, s1, s2 . . .〉 | s0 = s, for k ≥ 0, for i = 1, 2, . . . , n.
∃ak

i . σi(〈s0, s1, . . . , sk〉)(ak
i ) > 0. and δ(sk, ak

1 , ak
2 , . . . , ak

n)(sk+1) > 0 } the set of
all possible plays from s, given σ. Once the starting state s and the strategies σi

for the players have been chosen, the game is reduced to an ordinary stochastic
process. Hence, the probabilities of events are uniquely defined, where an event
A ⊆ Ωs is a measurable set of paths. For an event A ⊆ Ωs, we denote by Prσs (A)
the probability that a path belongs to A when the game starts from s and the
players follow the strategies σi, and σ = (σ1,σ2, . . . ,σn).

Objectives. Objectives for the players in nonterminating games are specified
by providing the set of winning plays Ψ ⊆ Ω for each player. A general class
of objectives are the Borel objectives [9]. A Borel objective Φ ⊆ Sω is a Borel
set in the Cantor topology on Sω. The class of ω-regular objectives [14], lie
in the first 21/2 levels of the Borel hierarchy (i.e., in the intersection of Σ3

and Π3). The ω-regular objectives, and subclasses thereof, can be specified in
the following forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = { s ∈
S | sk = s for infinitely many k ≥ 0 } to be the set of states that occur infinitely
often in ω.

1. Reachability and safety objectives. Given a game graph G, and a set T ⊆ S
of target states, the reachability specification Reach(T ) requires that some
state in T be visited. The reachability specification Reach(T ) defines the
objective [[Reach(T )]] = { 〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥ 0. sk ∈ T } of winning
plays. Given a set F ⊆ S of safe states, the safety specification Safe(F )
requires that only states in F be visited. The safety specification Safe(F )
defines the objective [[Safe(F )]] = { 〈s0, s1, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F } of
winning of plays.

2. Büchi and generalized Büchi objectives. Given a game graph G, and a set
B ⊆ S of Büchi states, the Büchi specification Büchi(B) requires that states
in B be visited infinitely often. The Büchi specification Büchi(B) defines the
objective [[Büchi(B)]] = { ω ∈ Ω | Inf(ω) ∩ B �= ∅ } of winning plays. Let
B1, B2, . . . , Bn be subset of states, i.e., each Bi ⊆ S. The generalized Büchi
specification is the requires that every Büchi specification Büchi(Bi) be sat-
isfied. Formally, the generalized Büchi objective is

⋂
i∈{ 1,2,...,n } [[Büchi(Bi)]].

3. Müller and upward-closed objectives. Given a set M ⊆ 2S of Müller set of
states, the Müller specification Müller(M) requires that the set of states
visited infinitely often in a play is exactly one of the sets in M . The Müller
specification Müller(M) defines the objective [[Müller(M)]] = { ω ∈ Ω |
Inf(ω) ∈M } of winning plays. The upward-closed objectives form a sub-class
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of Müller objectives, with the restriction that the set M is upward-closed.
Formally a set UC ⊆ 2S is upward-closed if the following condition hold: if
U ∈ UC and U ⊆ Z, then Z ∈ UC . Given a upward-closed set UC ⊆ 2S ,
the upward-closed objective is defined as the set [[UpClo(UC )]] = { ω ∈ Ω |
Inf(ω) ∈ UC } of winning plays.

The upward-closed objectives subsumes Büchi and generalized Büchi objec-
tives. The upward-closed objectives also subsumes disjunction of Büchi objec-
tives. Since the Büchi objectives lie in the second level of the Borel hierarchy (in
Π2), it follows that upward-closed objectives can express objectives that lie in
Π2. Müller objectives are canonical forms to express ω-regular objectives, and
the class of upward-closed objectives form a strict subset of Müller objectives
and cannot express all ω-regular properties.

We write Ψ for an arbitrary objective. We write the objective of player i as
Ψi. The probability that a path satisfies a Müller objective Ψ starting from state
s ∈ S under a strategy profile σ is denoted as Prσs (Ψ).
Notations. Given a strategy profile σ = (σ1,σ2, . . . ,σn), we denote by σ−i =
(σ1,σ2, . . . ,σi−1,σi+1, . . . ,σn) the strategy profile with the strategy for player i
removed. Given a strategy σ′i ∈ Σi, and a strategy profile σ−i, we denote by
σ−i ∪ σ′i the strategy profile (σ1,σ2, . . . ,σi−1,σ

′
i,σi+1, . . . ,σn). We also use the

following notations: Σ = Σ1 × Σ2 × . . . × Σn; Σ
M

= ΣM
1 × ΣM

2 × . . . × ΣM
n ;

Σ
UM

= ΣUM
1 ×ΣUM

2 ×. . .×ΣUM
n ; and Σ−i = Σ1×Σ2×. . .Σi−1×Σi+1×. . .Σn.

The notations for Σ
M

−i and Σ
UM

−i are similar. For n ∈ N, we denote by [n] the
set { 1, 2, . . . , n }.
Concurrent nonzero-sum games. A concurrent nonzero-sum game consists
of a concurrent game structure G with objective Ψi for player i. The zero-sum
values for the players in concurrent games with objective Ψi for player i are
defined as follows.

Definition 2 (Zero-sum values). Let G be a concurrent game structure with
objective Ψi for player i. Given a state s ∈ S we call the maximal probability with
which player i can ensure that Ψi holds from s against all strategies of the other
players is the zero-sum value of player i at s. Formally, the zero-sum value for
player i is given by the function valGi (Ψi) : S → [0, 1] defined for all s ∈ S by
valGi (Ψi)(s) = supσ′

i∈Σi
infσ−i∈Σ−i

Prσ−i∪σ′
i

s (Ψi).

A two-player concurrent game structure G with objectives Ψ1 and Ψ2 for player 1
and player 2, respectively, is zero-sum if the objectives of the players are com-
plementary, i.e., Ψ1 = Ω \ Ψ2. Concurrent zero-sum games satisfy a quantitative
version of determinacy [9], stating that for all two-player concurrent games with
Müller objectives Ψ1 and Ψ2, such that Ψ1 = Ω \ Ψ2, and all s ∈ S, we have
valG1 (Ψ1)(s) + valG2 (Ψ2)(s) = 1. The determinacy also establishes existence of
ε-Nash equilibrium, for all ε > 0, in concurrent zero-sum games.

Definition 3 (ε-Nash equilibrium). Let G be a concurrent game structure
with objective Ψi for player i. For ε ≥ 0, a strategy profile σ∗ = (σ∗1 , . . . ,σ∗n) ∈
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Σ is an ε-Nash equilibrium for a state s ∈ S iff for all i ∈ [n] we have
supσi∈Σi

Pr
σ∗
−i∪σi

s (Ψi) ≤ Prσ
∗
s (Ψi) + ε. A Nash equilibrium is an ε-Nash equilib-

rium with ε = 0.

3 Markov Decision Processes and Nash Equilibrium for
Reachability Objectives

The section is divided in two parts: first we state some results about one player
concurrent game structures and then we state some results about n-player con-
current game structures with reachability objectives. The facts stated in this
section will play a key role in the analysis of the later sections.

Markov decision processes. We develop some facts about one player versions
of concurrent game structures, known as Markov decision processes (MDPs).
For i ∈ [n], a player i-MDP is a concurrent game structure where for all s ∈ S,
for all j ∈ [n] \ { i } we have |Γj(s)| = 1, i.e., at every state only player i
can choose between multiple moves and the choice for the other players are
singleton. If for all states s ∈ S, for all i ∈ [n], |Γi(s)| = 1, then we have
a Markov chain. Given a concurrent game structure G, if we fix a memory-
less strategy profile σ−i = (σ1, . . . ,σi−1,σi+1, . . . ,σn) for players in [n] \ { i },
then the game structure is equivalent to a player i-MDP Gσ−i

with transi-
tion function: δσ−i

(s, ai)(t) =
∑

(a1,a2,...,ai−1,ai+1,...,an) δ(s, a1, a2, . . . , an)(t) ×∏
j∈([n]\{ i }) σj(s)(aj), for all s, t ∈ S and ai ∈ Γi(s). Similarly, if we fix a

memoryless strategy profile σ ∈ Σ
M

for a concurrent game structure G, we ob-
tain a Markov chain, which we denote by Gσ. In an MDP, the sets of states that
play an equivalent role to the closed recurrent set of states in Markov chains are
called end components [3,4]. Without loss of generality, we consider player 1-
MDPs and since the set Σ−1 is singleton for player 1-MDPs we only consider
strategies for player 1.

Definition 4 (End components and maximal end components). Given
a player 1-MDP G, an end component (EC) in G is a subset C ⊆ S such that
there is a memoryless strategy σ1 ∈ ΣM

1 for player 1 under which C forms a
closed recurrent set in the resulting Markov chain, i.e., in the Markov chain Gσ1 .
Given a player 1-MDP G, an end component C is a maximal end component, if
the following condition hold: if C ⊆ Z and Z is an end component, then C = Z,
i.e., there is no end component that encloses C.

Graph of a MDP. Given a player 1-MDP G, the graph of G is a directed graph
(S, E) with the set E of edges defined as follows: E = { (s, t) | s, t ∈ S. ∃a1 ∈
Γ1(s). t ∈ Dest(s, a1) }, i.e., E(s) = { t | (s, t) ∈ E } denotes the set of possible
successors of the state s in the MDP G.

The following lemma states that in a player 1-MDP, for all strategies of
player 1, the set of states visited infinitely often is an end component with
probability 1. Lemma 2 follows easily from Lemma 1. Lemma 3 can be proved
using the properties of end components.
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Lemma 1 ([4,3]). Let C be the set of end components of a player 1-MDP G.
For all strategies σ1 ∈ Σ1 and all states s ∈ S, we have Prσ1

s ([[Müller(C)]]) = 1.

Lemma 2. Let C be the set of end components and Z be the set of maximal end
components of a player 1-MDP G. Then for all strategies σ1 ∈ Σ1 and all states
s ∈ S, we have Prσ1

s ([[Reach(L)]]) = 1, where L =
⋃

C∈C C =
⋃
Z∈Z Z; and

Lemma 3. Given a player 1-MDP G and an end component C, there is a uni-
form memoryless strategy σ1 ∈ ΣUM

1 , such that for all states s ∈ C, we have
Prσ1
s ({ ω | Inf(ω) = C }) = 1.

Nash equilibrium for reachability objectives. The existence of ε-Nash equi-
librium in memoryless strategies in n-player games with reachability objective
[[Reach(Ri)]] for player i, for Ri ⊆ S, was shown in [2]. The result can be ex-
tended to show the following theorem; we omit the technical details due to lack
of space.

Theorem 1 (ε-Nash equilibrium of full support). For every n-player game
structure G, with reachability objective [[Reach(Ri)]] for player i, for every ε > 0,
there exists a memoryless ε-Nash equilibrium σ∗ = (σ∗1 ,σ∗2 , . . . ,σ∗n) such that for
all s ∈ S, for all i ∈ [n], we have Supp(σ∗i (s)) = Γi(s).

4 Nash Equilibrium for Upward-Closed Objectives

In this section we prove existence of memoryless ε-Nash equilibrium, for all ε > 0,
for all n-player concurrent game structures, with upward-closed objectives for all
players. The key arguments use induction on the number of players, the results of
Section 3 and analysis of Markov chains and MDPs. We present some definitions
required for the analysis of the rest of the section.
MDP and graph of a game structure. Given an n-player concurrent game
structure G, we define an associated MDP G of G and an associated graph of G.
The MDP G = (S,A, Γ , δ), where all players unite as a single player, is defined
as follows:

– S = S; A = A×A× . . .×A = An; and Γ (s) = {(a1, a2, . . . , an) | ai ∈ Γi(s)}.
– δ(s, (a1, a2, . . . , an)) = δ(s, a1, a2, . . . , an).

The graph of the game structure G is defined as the graph of the MDP G.
Games with absorbing states. Given a game structure G we partition the
state space of G as follows:

1. The set of absorbing states in S are denoted as T , i.e., T = { s ∈ C |
s is an absorbing state }.

2. The set U of states that consists of states s such that |Γi(s)| = 1 for all i ∈ [n]
and (U ×S)∩E ⊆ U × T . That is at states in U there is no non-trivial choice
of moves for the players; thus for any state s in U the game proceeds to the set
T according to the probability distribution of the transition function δ at s.

3. C = S \ (U ∪ T ).
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Reachable sets. Given a game structure G and a state s ∈ S, we define
Reachable(s,G) = { t ∈ S | there is a path from s to t in the graph of G } as
the set of states that are reachable from s in the graph of the game structure.
For a set Z ⊆ S, we denote by Reachable(Z,G) the set of states reachable from
a state in Z, i.e., Reachable(Z,G) =

⋃
s∈Z Reachable(s,G). Given a set Z, let

ZR = Reachable(Z,G). We denote by G � ZR, the sub-game induced by the
set ZR of states. Similarly, given a set F ⊆ 2S , we denote by F � ZR the set
{ U | ∃F ∈ F . U = F ∩ ZR }.
Terminal non-absorbing maximal end components (Tnec). Given a game
structure G, let Z be the set of maximal end components of the MDP G of G.
Let L = Z \ T be the set of maximal non-absorbing end components and let
H =

⋃
L∈LL. A maximal end component Z ⊆ C, is a terminal non-absorbing

maximal end component (Tnec), if Reachable(Z,G)∩ (H \Z) = ∅, i.e., no other
non-absorbing maximal end component is reachable from Z.

We consider game structures G with upward-closed objective [[UpClo(UC i)]]
for player i. We also denote by Ri = { s ∈ T | { s } ∈ UC i } the set of the
absorbing states in T that are in UC i. We now prove the following key result.

Theorem 2. For all n-player concurrent game structures G, with upward-closed
objective [[UpClo(UC i)]] for player i, one of the following conditions (C1 or C2)
hold:

1. (Condition C1) There exists a memoryless strategy profile σ ∈ Σ
M

such that
in the Markov chain Gσ there is closed recurrent set Z ⊆ C, such that σ is
a Nash equilibrium for all states s ∈ Z.

2. (Condition C2) There exists a state s ∈ C, such that for all ε > 0, there
exists a memoryless ε-Nash equilibrium σ ∈ Σ

M
for state s, such that

Prσs ([[Reach(T )]]) = 1, and for all s1 ∈ S, and for all i ∈ [n], we have
Supp(σi(s1)) = Γi(s1).

The proof of Theorem 2 is by induction on the number of players. We first
analyze the base case.

Base Case. (One player game structures or MDPs) We consider player 1-MDPs
and analyze the following cases:

– (Case 1.) If there in no Tnec in C, then it follows from Lemma 2 that for
all states s ∈ C, for all strategies σ1 ∈ Σ1, we have Prσ1

s ([[Reach(T )]]) = 1,
and Prσ1

s ([[Reach(R1)]]) = Prσ1
s ([[UpClo(UC 1)]]) (recall R1 = { s ∈ T | { s} ∈

UC 1}). The result of Theorem 1 yields an ε-Nash equilibrium σ1 that satisfies
condition C2 of Theorem 2, for all states s ∈ C.

– (Case 2.) Else let Z ⊆ C be a Tnec.
1. If Z ∈ UC 1, fix a uniform memoryless strategy σ1 ∈ ΣUM

1 such that
for all s ∈ Z, we have Prσ1

s ({ ω | Inf(ω) = Z }) = 1 and hence
Prσ1
s ([[UpClo(UC 1)]]) = 1 (such a strategy exists by Lemma 3, since

Z is an end component). In other words, Z is a closed recurrent set
in the Markov chain Gσ1 and the objective of player 1 is satisfied with
probability 1. Hence condition C1 of Theorem 2 is satisfied.
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2. If Z �∈ UC 1, then since UC 1 is upward-closed, for all set Z1 ⊆ Z, Z1 �∈
UC 1. Hence for any play ω, such that ω ∈ [[Safe(Z)]], we have Inf(ω) ⊆ Z,
and hence ω �∈ [[UpClo(UC 1)]]. Since Z is a Tnec, for all states s ∈ Z
we have

sup
σ1∈Σ1

Prσ1
s ([[UpClo(UC 1)]]) = sup

σ1∈Σ1

Prσ1
s ([[Reach(R1)]]).

If the set of edges from Z to U ∪T is empty (recall S \C = U ∪T ), then
for all strategies σ1 we have Prσ1

s ([[UpClo(UC 1)]]) = 0, and hence any
uniform memoryless strategy can be fixed and condition C1 of Theorem 2
can be satisfied. Otherwise, the set of edges from Z to U∪T is non-empty,
and then for ε > 0, consider an ε-Nash equilibrium for reachability ob-
jective [[Reach(R1)]] satisfying the conditions of Theorem 1. Since Z is
an end component, for all states s ∈ Z, Supp(σ1(s)) = Γ1(s), and the
set of edges to Z to U ∪ T is non-empty it follows that for all states
s ∈ Z, we have Prσ1

s ([[Reach(T )]]) = 1. Thus condition C2 of Theorem 2
is satisfied.

We prove the following lemma, that will be useful for the analysis of the
inductive case.

Lemma 4. Consider a player i-MDP G with an upward-closed objective UpClo
ObjUC i for player i. Let σi ∈ ΣM

i be a memoryless strategy and Z ⊆ S be such
that for all s ∈ Z, we have Supp(σi(s)) = Γi(s) and Z is a closed recurrent set
in the Markov chain Gσi . Then σi is a Nash equilibrium (optimal strategy) for
all states s ∈ Z.

Proof. The proof follows from the analysis of two cases.

1. If Z ∈ UC i, then since Z is a closed recurrent set in Gσi , for all states s ∈ S
we have Prσi

s ({ω | Inf(ω) = Z }) = 1. Hence we have Prσi
s ([[UpClo(UC i)]]) =

1. The result follows.
2. We now consider the case such that Z �∈ UC i. Since for all s ∈ Z, we

have Supp(σi(s)) = Γi(s), it follows that for all strategies σ′i ∈ Σi and for
all s ∈ Z, we have Outcome(s,σ′i) ⊆ Outcome(s,σi) ⊆ [[Safe(Z)]] (since
Z is a closed recurrent set in Gσi). It follows that for all strategies σ′i we
have Prσ

′
i
s ([[Safe(Z)]]) = 1. Hence for all strategies σ′i, for all states s ∈ Z

we have Prσ
′
i
s ({ ω | Inf(ω) ⊆ Z }) = 1. Since Z �∈ UC i, and UC i is

upward-closed, it follows that for all strategies σ′i, for all states s ∈ Z

we have Prσ
′
i
s ([[UpClo(UC i)]]) = 0. Hence for all states s ∈ Z, we have

supσ′
i∈Σi

Prσ
′
i
s ([[UpClo(UC i)]]) = 0 = Prσi

s ([[UpClo(UC i)]]). The result fol-
lows.

Inductive case. Given a game structure G, consider the MDP G: if there are
no Tnec in C, then the result follows from analysis similar to Case 1 of the
base case. Otherwise consider a Tnec Z ⊆ C in G. If for every player i we have
Z ∈ UC i, then fix a uniform memoryless strategy σ ∈ Σ

UM
such that for all
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s ∈ Z, Prσs ({ω | Inf(ω) = Z }) = 1 (such a strategy exists by Lemma 3, since Z is
an end component in G). Hence, for all i ∈ [n] we have Prσs ([[UpClo(UC i)]]) = 1.
That is Z is a closed recurrent set in the Markov chain Gσ and the objective of
each player is satisfied with probability 1 from all states s ∈ Z. Hence condition
C1 of Theorem 2 is satisfied. Otherwise, there exists i ∈ [n], such that Z �∈ UC i,
and without loss of generality we assume that this holds for player 1, i.e., Z �∈
UC 1. If Z �∈ UC 1, then we prove Lemma 5 to prove Theorem 2.

Lemma 5. Consider an n-player concurrent game structure G, with upward-
closed objective [[UpClo(UC i)]] for player i. Let Z be a Tnec in G such that
Z �∈ UC 1 and let ZR = Reachable(Z,G). The following assertions hold:

1. If there exists σ1 ∈ ΣM
1 , such that for all s ∈ Z, Supp(σ1(s)) = Γ1(s), and

condition C1 of Theorem 2 holds in Gσ1 � ZR, then condition C1 Theorem 2
holds in G.

2. Otherwise, condition C2 of Theorem 2 holds in G.

Proof. Given a memoryless strategy σ1, fixing the strategy σ1 for player 1, we
get an n− 1-player game structure and by inductive hypothesis either condition
C1 or C2 of Theorem 2 holds.

– Case 1. Suppose there is a memoryless strategy σ1 ∈ ΣM
1 , such that for

all s ∈ Z, Supp(σ1(s)) = Γ1(s), and condition C1 of Theorem 2 holds in
Gσ1 � ZR. Let σ−1 = (σ2,σ3, . . . ,σn) be the memoryless Nash equilibrium
and Z1 ⊆ Z be the closed recurrent set in Gσ−1∪σ1 satisfying the condition
C1 of Theorem 2 in Gσ1 . Observe that (Z1,σ1) satisfy the conditions of
Lemma 4 in the MDP Gσ−1 . Thus an application of Lemma 4 yields that σ1

is a Nash equilibrium for all states s ∈ Z1, in the MDP Gσ−1 . Since σ−1 is
a Nash equilibrium for all states in Z1 in Gσ1 , it follows that σ = σ−1 ∪ σ1

and Z1 satisfy condition C1 of Theorem 2.
– For ε > 0, consider a memoryless ε-Nash equilibrium σ = (σ1,σ2, . . . ,σn)

in G with objective [[Reach(Ri)]] for player i, such that for all s ∈ S, for all
i ∈ [n], we have Supp(σi(s)) = Γi(s) (such an ε-Nash equilibrium exists from
Theorem 1). We now prove the desired result analyzing two sub-cases:
1. Suppose there exists j ∈ [n], and Zj ⊆ Z, such that Zj ∈ UC j , and Zj

is an end component in Gσ−j
, then let σ′j be a memoryless strategy for

player j, such that Zj is a closed recurrent set of states in the Markov
chain Gσ−j∪σ′

j
. Let σ′ = σ−j ∪ σ′j . Since Zj ∈ UC j , it follows that for

all states s ∈ Zj, we have Prσ
′
s ([[UpClo(UC j)]]) = 1, and hence player j

has no incentive to deviate from σ′. Since for all σi, for i �= j, and
for all states s ∈ S, we have Supp(σi)(s) = Γi(s), and Zj is a closed
recurrent set in Gσ′ , it follows from Lemma 4 that for all j �= i, σi is a
Nash equilibrium in Gσ′

−i
. Hence we have σ′ is a Nash equilibrium for all

states s ∈ Zj in G and condition C1 of Theorem 2 is satisfied.
2. Hence it follows that if Case 1 fails, for all i ∈ [n], all end components

Zi ⊆ Z, in Gσ−i
, we have Zi �∈ UC i. Hence for all i ∈ [n], for all s ∈ Z, for

all σ′i ∈ Σi, we have Prσ−i∪σ′
i

s ([[UpClo(UC i)]]) = Prσ−i∪σ′
i

s ([[Reach(Ri)]]).
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Since σ is an ε-Nash equilibrium with objectives [[Reach(Ri)]] for player i
in G, it follows that σ is an ε-Nash equilibrium in G with objectives
[[UpClo(UC i)]] for player i. Moreover, if there is an closed recurrent set
Z ′ ⊆ Z in the Markov chain Gσ, then case 1 would have been true
(follows from Lemma 4). Hence if case 1 fails, then it follows that there
is no closed recurrent set Z ′ ⊆ Z in Gσ, and hence for all states s ∈ Z,
we have Prσs ([[Reach(T )]]) = 1. Hence condition C2 of Theorem 2 holds,
and the result follows.

Inductive application of Theorem 2. Given a game structure G, with upward-
closed objective [[UpClo(UC i)]] for player i, to prove existence of ε-Nash equilib-
rium for all states s ∈ S, for ε > 0, we apply Theorem 2 recursively. We convert
the game structure G to G′ as follows.
Transformation 1. If condition C1 of Theorem 2 holds, then let Z be the closed
recurrent set that satisfy the condition C1 of Theorem 2.

– In G′ convert every state s ∈ Z to an absorbing state;
– if Z �∈ UC i, for player i, then the objective for player i in G′ is UC i;
– if Z ∈ UC i for player i, the objective for player i in G is modified to include

every state s ∈ Z, i.e., for all Q ⊆ S, if s ∈ Q, for some s ∈ Z, then Q is
included in UC i.

Observe that the states in Z are converted to absorbing states and will be inter-
preted as states in T in G′.
Transformation 2. If condition C2 of Theorem 2 holds, then let σ∗ be an
ε
|S| -Nash equilibrium from state s, such that Prσ

∗
s ([[Reach(T )]]) = 1. The state

is converted as follows: for all i ∈ [n], the available moves for player i at s is
reduced to 1, i.e., for all i ∈ [n], Γi(s) = { ai }, and the transition function δ′ in
G′ at s is defined as:

δ(s, a1, a2, . . . , an)(t) =

{
Prσ

∗
s ([[Reach(t)]]) if t ∈ T

0 otherwise.

Note that the state s can be interpreted as a state in U in G′.
To obtain an ε-Nash equilibrium for all states s ∈ S in G, it suffices to obtain

an ε-Nash equilibrium for all states in G′. Also observe that for all states in U∪T ,
Nash equilibrium exists by definition. Applying the transformations recursively
on G′, we proceed to convert every state to a state in U ∪ T , and the desired
result follows. This yields Theorem 3.

Theorem 3. For all n-player concurrent game structures G, with upward-closed
objective [[UpClo(UC i)]] for player i, for all ε > 0, for all states s ∈ S, there
exists a memoryless strategy profile σ∗, such that σ∗ is an ε-Nash equilibrium
for state s.

Remark 1. Upward-closed objectives are not closed under complementation.
Hence Theorem 3 is not a generalization of determinacy result for concurrent
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Algorithm 1. UpClCndC1

Input : An n-player game structure G and upward-closed objective [[UpClo(UC i)]]
for player i, for all i ∈ [n].

Output: Either (Z, σ) satisfying condition C1 of Theorem 2 or else (∅, ∅).
1. if n = 0,

1.1 if there is a non-absorbing closed recurrent set Z in the Markov chain G,
then return (Z, ∅).

1.2 else return (∅, ∅).
2. Z =ComputeMaximalEC(G)

(i.e., Z is the set of maximal end components in the MDP of G).

3. if there is no Tnec in G, return (∅, ∅).
4. if there exists Z ∈ Z such that for all i ∈ [n], Z ∈ UC i,

4.1. return (Z, σ) such that σ ∈ Σ
UM

and Z is closed recurrent set in Gσ.

5. Let Z be a Tnec in G, and let ZR = Reachable(Z,G).
6. else without loss of generality let Z ∈ UCn.

6.1. Let σn ∈ ΣUM
n such that for all states s ∈ ZR, σn(s) = Γn(s).

6.2. (Z1, σ) = UpClCndC1 (Gσn � ZR, n − 1, [[UpClo(UC i � ZR)]], i ∈ [n − 1])
6.3. if (Z1 = ∅) return (∅, ∅); else return (Z1, σ−n ∪ σn).

zero-sum games with upward-closed objective for one player. For example in con-
current zero-sum games with Büchi objective for a player, ε-optimal strategies
require infinite-memory in general, but the complementary objective of a Büchi
objective is not upward-closed. In contrast, we show the existence of memory-
less ε-Nash equilibrium for n-player concurrent games where each player has an
upward-closed objective.

5 Computational Complexity

In this section we present an algorithm to compute an ε-Nash equilibrium for
n-player game structures with upward-closed objectives, for ε > 0. A key result
for the algorithmic analysis is Lemma 6.

Lemma 6. Consider an n-player concurrent game structure G, with upward-
closed objective [[UpClo(UC i)]] for player i. Let Z be a Tnec in G such that
Z �∈ UCn and let ZR = Reachable(Z,G). The following assertion hold.

– Suppose there exists σn ∈ ΣM
n , such that for all s ∈ Z, Supp(σn(s)) = Γn(s),

and condition C1 of Theorem 2 holds in Gσn � ZR. Let σ∗n ∈ ΣUM
n such

that for all s ∈ Z we have Supp(σ∗n(s)) = Γn(s) (i.e., σ∗n is an uniform
memoryless strategy that plays all available moves at all states in Z). Then
condition C1 holds in Gσ∗

n
� ZR.

Lemma 6 presents the basic principle to identify if condition C1 of Theorem 2
holds in a game structure G with upward-closed objective [[UpClo(UC i)]] for
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Algorithm 2. NashEqmCompute

Input : An n-player game structure G and upward-closed objective[[UpClo(UC i)]]
for player i, for all i ∈ [n].

Output: Either (Z, σ) satisfying condition C1 of Theorem 2
or else (s, σ) satisfying condition C2 of Theorem 2.

1. Z =ComputeMaximalEC(G)

2. if there is no Tnec in G,
then return (s,ReachEqmFull(G, n, ε)) for some s ∈ C.

3. Let Z be a Tnec in G, and let ZR = Reachable(Z,G).
4. Let (Z1, σ) = UpClCndC1 (Gσn � ZR, n − 1, [[UpClo(UC i � ZR)]], i ∈ [n − 1])
5. if (Z1 = ∅) return (Z1, σ);
6. Let σ = ReachEqmFull(G, n, ε).
7. For s ∈ C, if σ is an ε-Nash equilibrium for s,

with objectives [[UpClo(UC i)]] for player i,
then return (s, σ).

player i. An informal description of the algorithm (Algorithm 1) is as follows: the
algorithm takes as input a game structure G of n-players, objectives [[UpClo(UC i)]]
for player i, and it either returns (Z,σ) satisfying the condition C1 of Theorem 2
or returns (∅, ∅). Let G be the MDP of G, and let Z be the set of maximal end
components in G (computed in Step 2 of Algorithm 1). If there is no Tnec
in G, then condition C1 of Theorem 2 fails and (∅, ∅) is returned (Step 3 of
Algorithm 1). If there is a maximal end component Z ∈ Z such that for all
i ∈ [n], Z ∈ UC i, then fix an uniform memoryless strategy σ ∈ Σ

UM
such that

Z is a closed recurrent set in Gσ and return (Z,σ) (Step 4 of Algorithm 1).
Else let Z be a Tnec and without of loss of generality let Z �∈ UCn. Let
ZR = Reachable(Z,G), and fix a strategy σn ∈ ΣUM

n , such that for all s ∈ ZR,
Supp(σn(s)) = Γn(s). The n − 1-player game structure Gσn � ZR is solved by
an recursive call (Step 6.3) and the result of the recursive call is returned. It
follows from Lemma 6 and Theorem 2 that if Algorithm 1 returns (∅, ∅), then
condition C2 of Theorem 2 holds for some state s ∈ C. Let T (|G|, n) denote the
running time of Algorithm 1 on a game structure G with n-players. Step 2 of the
algorithm can be computed in O(|G|2) time (see [5] for a O(|G|2) time algorithm
to compute maximal end components of a MDP). Step 4 can be achieved in
time linear in the size of the game structure. Thus we obtain the recurrence:
T (|G|, n) = O(|G|2) + T (|G|, n− 1). Hence we have T (|G|, n) = O(n · |G|2).

Basic principle of Algorithm 2. Consider a game structure G with objective
[[UpClo(UC i)]] for player i. Let σ be a memoryless strategy profile such that for
all states s ∈ S, for all i ∈ [n], we have Supp(σi(s)) = Γi(s), and (s,σ) satisfy
condition C2 of Theorem 2 for some state s ∈ C. Let Zs = Reachable(s,G).
It follows from the base case analysis of Theorem 2 and Lemma 5, that for all
i ∈ [n], in the MDP Gσ−i

� Zs, for all end components Z ⊆ Zs, Z �∈ UC i, and
hence in Gσ−i � Zs, the objective [[UpClo(UC i)]] is equivalent to [[Reach(Ri)]].
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It follows that if condition C2 of Theorem 2 holds at a state s, then for all
ε > 0, any memoryless ε-Nash equilibrium σ in G with objective [[Reach(Ri)]]
for player i, such that for all s ∈ S, for all i ∈ [n], Supp(σi(s)) = Γi(s), is
also an ε-Nash equilibrium in G with objective [[UpClo(UC i)]] for player i. This
observation is formalized in Lemma 7. Lemma 7 and Algorithm 1 is the basic
principle to obtain a memoryless ε-Nash equilibrium at a non-empty set of states
in C.

Lemma 7. For a game structure G with objective [[UpClo(UC i)]] for player i,
let σ be a memoryless strategy profile such for all states s ∈ S, for all i ∈ [n],
we have Supp(σi(s)) = Γi(s), and (s,σ) satisfy condition C2 of Theorem 2 for
some state s ∈ C. For ε > 0, any memoryless ε-Nash equilibrium σ′ in G for
state s with objective [[Reach(Ri)]] for player i, such that for all s ∈ S, for all
i ∈ [n], Supp(σ′i(s)) = Γi(s), is also an ε-Nash equilibrium in G for state s with
objective [[UpClo(UC i)]] for player i.

Description of Algorithm 2. We now describe Algorithm 2 that compute an
ε-Nash equilibrium at some state s of a game structure G, with upward-closed
objective [[UpClo(UC i)]] for player i, for ε > 0. In the algorithm the proce-
dure ReachEqmFull returns a strategy σ = (σ1,σ2, . . . ,σn) such that for all s,
Supp(σi(s)) = Γi(s), and σ is an ε-Nash equilibrium in G with reachability objec-
tive [[Reach(Ri)]] for player i, from all states in S. The algorithm first computes
the set of maximal end components in G. If there is no Tnec in G, then it in-
vokes ReachEqmFull. Otherwise, for some Tnec Z and ZR = Reachable(Z,G),
it invokes Algorithm 1 on the sub-game G � ZR. If Algorithm 1 returns a non-
empty set (i.e., condition C1 of Theorem 2 holds), then the returned value of
Algorithm 1 is returned. Otherwise, the algorithm invokes ReachEqmFull and
returns (s,σ) satisfying condition C2 of Theorem 2. Observe that the proce-
dure ReachEqmFull is invoked when: either there is no Tnec in G, or con-
dition C2 holds in G � ZR. It suffices to compute a memoryless ε

2 -Nash equi-
librium σ′ = (σ′1,σ′2, . . . ,σ′n) in G � ZR with reachability objective [[Reach(Ri)]]
for player i, and then slightly modify σ′ to a memoryless strategy σ to obtain
(s,σ) as desired. Hence it follows that the complexity of ReachEqmFull can be
bounded by the complexity of a procedure to compute memoryless ε-Nash equi-
librium in game structures with reachability objectives. Thus we obtain that the
running time of Algorithm 2 is bounded by O(n · |G|2) + ReachEqm(|G|, n, ε),
where ReachEqm is the complexity of a procedure to compute memoryless
ε-Nash equilibrium in games with reachability objectives.

The inductive application of Theorem 2 to obtain Theorem 3 using transfor-
mation 1 and transformation 2 shows that Algorithm 2 can be applied |S|-times
to compute a memoryless ε-Nash equilibrium for all states s ∈ S. For all con-
stants ε > 0, existence of polynomial witness and polynomial time verification
procedure for ReachEqm(G, n, ε) has been proved in [2]. It follows that for
all constants ε > 0, ReachEqm(G, n, ε) is in the complexity class TFNP. The
above analysis yields Theorem 4.
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Theorem 4. Given an n-player game structure G with upward-closed objective
[[UpClo(UC i)]] for player i, a memoryless ε-Nash equilibrium for all s ∈ S can
be computed (a) in TFNP for all constants ε > 0; and (b) in time O(|S| · n ·
|G|2) + |S| ·ReachEqm(G, n, ε).

6 Conclusion

In this paper we establish existence of memoryless ε-Nash equilibrium, for all
ε > 0, for all n-player concurrent game structures, with upward-closed objectives
for all players, and also present an algotihm to compute an ε-Nash equilibrium.
The existence of ε-Nash equilibrium, for all ε > 0, in n-player concurrent game
structures with ω-regular objectives, and other class of objectives in the higher
levels of Borel hierarchy are interesting open problems.
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2 CS, Université Libre de Bruxelles, Belgium
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Abstract. We study observation-based strategies for two-player turn-
based games on graphs with omega-regular objectives. An observation-
based strategy relies on imperfect information about the history of a
play, namely, on the past sequence of observations. Such games occur
in the synthesis of a controller that does not see the private state of
the plant. Our main results are twofold. First, we give a fixed-point
algorithm for computing the set of states from which a player can win
with a deterministic observation-based strategy for any omega-regular
objective. The fixed point is computed in the lattice of antichains of
state sets. This algorithm has the advantages of being directed by the
objective and of avoiding an explicit subset construction on the game
graph. Second, we give an algorithm for computing the set of states from
which a player can win with probability 1 with a randomized observation-
based strategy for a Büchi objective. This set is of interest because in the
absence of perfect information, randomized strategies are more powerful
than deterministic ones. We show that our algorithms are optimal by
proving matching lower bounds.

1 Introduction

Two-player games on graphs play an important role in computer science. In
particular, the controller synthesis problem asks, given a model for a plant, to
construct a model for a controller such that the behaviors resulting from the
parallel composition of the two models respects a given specification (e.g., are
included in an ω-regular set). Controllers can be synthesized as winning strate-
gies in a graph game whose vertices represent the plant states, and whose players
represent the plant and the controller [18,17]. Other applications of graph games
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include realizability and compatibility checking, where the players represent par-
allel processes of a system, or its environment [1,11,6].

Most results about two-player games played on graphs make the hypothesis of
perfect information. In this setting, the controller knows, during its interaction
with the plant, the exact state of the plant. In practice, this hypothesis is often
not reasonable. For example, in the context of hybrid systems, the controller ac-
quires information about the state of the plant using sensors with finite precision,
which return imperfect information about the state. Similarly, if the players rep-
resent individual processes, then a process has only access to the public variables
of the other processes, not to their private variables [19,2].

Two-player games of imperfect information are considerably more
complicated than games of perfect information. First, decision problems for
imperfect-information games usually lie in higher complexity classes than their
perfect-information counter-parts [19,14,2]. The algorithmic difference is often
exponential, due to a subset construction that, similar to the determinization of
finite automata, turns an imperfect-information game into an equivalent perfect-
information game. Second, because of the determinization, no symbolic algo-
rithms are known to solve imperfect-information games. This is in contrast to
the perfect-information case, where (often) simple and elegant fixed-point algo-
rithms exist [12,8]. Third, in the context of imperfect information, deterministic
strategies are sometimes insufficient. A game is turn-based if in every state one
of the players chooses a successor state. While deterministic strategies suffice
to win turn-based games of perfect information, turn-based games of imperfect
information require randomized strategies to win with probability 1 (see Exam-
ple 1). Fourth, winning strategies for imperfect-information games need memory
even for simple objectives such as safety and reachability (for an example see the
technical-report version of this paper). This is again in contrast to the perfect-
information case, where turn-based safety and reachability games can be won
with memoryless strategies.

The contributions of this paper are twofold. First, we provide a symbolic fixed-
point algorithm to solve games of imperfect information for arbitrary ω-regular
objectives. The novelty is that our algorithm is symbolic; it does not carry out
an explicit subset construction. Instead, we compute fixed points on the lattice
of antichains of state sets. Antichains of state sets can be seen as a symbolic
and compact representation for ⊆-downward-closed sets of sets of states.1 This
solution extends our recent result [10] from safety objectives to all ω-regular
objectives. To justify the correctness of the algorithm, we transform games of
imperfect information into games of perfect information while preserving the ex-
istence of winning strategies for every Borel objective. The reduction is only part
of the proof, not part of the algorithm. For the special case of parity objectives,
we obtain a symbolic Exptime algorithm for solving parity games of imperfect

1 We recently used this symbolic representation of ⊆-downward-closed sets of state
sets to propose a new algorithm for solving the universality problem of nondeter-
ministic finite automata. First experiments show a very promising performance;
(see [9]).



Algorithms for Omega-Regular Games 289

information. This is optimal, as the reachability problem for games of imperfect
information is known to be Exptime-hard [19].

Second, we study randomized strategies and winning with probability 1 for
imperfect-information games. To our knowledge, for these games no algorithms
(symbolic or not) are present in the literature. Following [7], we refer to winning
with probability 1 as almost-sure winning (almost winning, for short), in contrast
to sure winning with deterministic strategies. We provide a symbolic Exptime
algorithm to compute the set of almost-winning states for games of imperfect
information with Büchi objectives (reachability objectives can be obtained as a
special case, and for safety objectives almost winning and sure winning coincide).
Our solution is again justified by a reduction to games of perfect information.
However, for randomized strategies the reduction is different, and considerably
more complicated. We prove our algorithm to be optimal, showing that comput-
ing the almost-winning states for reachability games of imperfect information is
Exptime-hard. The problem of computing the almost-winning states for coBüchi
objectives under imperfect information in Exptime remains an open problem.

Related work. In [17], Pnueli and Rosner study the synthesis of reactive mod-
ules. In their framework, there is no game graph; instead, the environment and
the objective are specified using an LTL formula. In [14], Kupferman and Vardi
extend these results in two directions: they consider CTL∗ objectives and im-
perfect information. Again, no game graph, but a specification formula is given
to the synthesis procedure. We believe that our setting, where a game graph
is given explicitly, is more suited to fully and uniformly understand the role of
imperfect information. For example, Kupferman and Vardi assert that imperfect
information comes at no cost, because if the specification is given as a CTL (or
CTL∗) formula, then the synthesis problem is complete for Exptime (resp., 2Ex-
ptime), just as in the perfect-information case. These hardness results, however,
depend on the fact that the specification is given compactly as a formula. In our
setting, with an explicit game graph, reachability games of perfect information
are Ptime-complete, whereas reachability games of imperfect information are
Exptime-complete [19]. None of the above papers provide symbolic solutions,
and none of them consider randomized strategies.

It is known that for Partially Observable Markov Decision Processes
(POMDPs) with boolean rewards and limit-average objectives the quantitative
analysis (whether the value is greater than a specified threshold) is Exptime-
complete [15]. However, almost winning is a qualitative question, and our hard-
ness result for almost winning of imperfect-information games does not follow
from the known results on POMDPs. We propose in Section 5 a new proof of
the hardness for sure winning of imperfect-information games with reachability
objectives, and we extend the proof to almost winning as well. To the best of
our knowledge, this is the first hardness result that applies to the qualitative
analysis of almost winning in imperfect-information games. A class of semiper-
fect -information games, where one player has imperfect information and the
other player has perfect information, is studied in [4]. That class is simpler than
the games studied here; it can be solved in NP ∩ coNP for parity objectives.
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2 Definitions

A game structure (of imperfect information) is a tuple G = 〈L, l0, Σ, ∆,O, γ〉,
where L is a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet,
∆ ⊆ L ×Σ × L is a set of labeled transitions, O is a finite set of observations,
and γ : O → 2L\∅ maps each observation to the set of states that it represents.
We require the following two properties on G: (i) for all � ∈ L and all σ ∈ Σ,
there exists �′ ∈ L such that (�,σ, �′) ∈ ∆; and (ii) the set {γ(o) | o ∈ O}
partitions L. We say that G is a game structure of perfect information if O = L
and γ(�) = {�} for all � ∈ L. We often omit (O, γ) in the description of games
of perfect information. For σ ∈ Σ and s ⊆ L, let PostGσ (s) = {�′ ∈ L | ∃� ∈ s :
(�,σ, �′) ∈ ∆}.
Plays. In a game structure, in each turn, Player 1 chooses a letter in Σ, and
Player 2 resolves nondeterminism by choosing the successor state. A play in
G is an infinite sequence π = �0σ0�1 . . . σn−1�nσn . . . such that (i) �0 = l0,
and (ii) for all i ≥ 0, we have (�i,σi, �i+1) ∈ ∆. The prefix up to �n of the
play π is denoted by π(n); its length is |π(n)| = n + 1; and its last element is
Last(π(n)) = �n. The observation sequence of π is the unique infinite sequence
γ−1(π) = o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have �i ∈ γ(oi).
Similarly, the observation sequence of π(n) is the prefix up to on of γ−1(π).
The set of infinite plays in G is denoted Plays(G), and the set of corresponding
finite prefixes is denoted Prefs(G). A state � ∈ L is reachable in G if there
exists a prefix ρ ∈ Prefs(G) such that Last(ρ) = �. For a prefix ρ ∈ Prefs(G),
the cone Cone(ρ) = { π ∈ Plays(G) | ρ is a prefix of π } is the set of plays
that extend ρ. The knowledge associated with a finite observation sequence τ =
o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which a play can be after this
sequence of observations, that is, K(τ) = {Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) =
τ}. For σ ∈ Σ, � ∈ L, and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · �, let o	 ∈ O be the
unique observation such that � ∈ γ(o	). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩
γ(o	).

Strategies. A deterministic strategy in G for Player 1 is a function α : Prefs(G) →
Σ. For a finite set A, a probability distribution on A is a function κ : A → [0, 1]
such that

∑
a∈A κ(a) = 1. We denote the set of probability distributions on A

by D(A). Given a distribution κ ∈ D(A), let Supp(κ) = {a ∈ A | κ(a) > 0}
be the support of κ. A randomized strategy in G for Player 1 is a function
α : Prefs(G) → D(Σ). A (deterministic or randomized) strategy α for Player 1
is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), then
α(ρ) = α(ρ′). In the sequel, we are interested in the existence of observation-
based strategies for Player 1. A deterministic strategy in G for Player 2 is a
function β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and all σ ∈ Σ,
we have (Last(ρ),σ, β(ρ,σ)) ∈ ∆. A randomized strategy in G for Player 2 is a
function β : Prefs(G)×Σ → D(L) such that for all ρ ∈ Prefs(G), all σ ∈ Σ, and
all � ∈ Supp(β(ρ,σ)), we have (Last(ρ),σ, �) ∈ ∆. We denote by AG, AO

G, and
BG the set of all Player-1 strategies, the set of all observation-based Player-1
strategies, and the set of all Player-2 strategies in G, respectively. All results of
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this paper can be proved also if strategies depend on state sequences only, and
not on the past moves of a play.

The outcome of two deterministic strategies α (for Player 1) and β (for
Player 2) in G is the play π = �0σ0�1 . . . σn−1�nσn . . . ∈ Plays(G) such that
for all i ≥ 0, we have σi = α(π(i)) and �i+1 = β(π(i),σi). This play is denoted
outcome(G, α, β). The outcome of two randomized strategies α (for Player 1) and
β (for Player 2) in G is the set of plays π = �0σ0�1 . . . σn−1�nσn . . . ∈ Plays(G)
such that for all i ≥ 0, we have α(π(i))(σi) > 0 and β(π(i),σi)(�i+1) > 0. This
set is denoted outcome(G, α, β). The outcome set of the deterministic (resp.
randomized) strategy α for Player 1 in G is the set Outcomei(G, α) of plays π
such that there exists a deterministic (resp. randomized) strategy β for Player 2
with π = outcome(G, α, β) (resp. π ∈ outcome(G, α, β)). The outcome sets for
Player 2 are defined symmetrically.

Objectives. An objective for G is a set φ of infinite sequences of observations
and input letters, that is, φ ⊆ (O × Σ)ω. A play π = �0σ0�1 . . . σn−1�nσn . . . ∈
Plays(G) satisfies the objective φ, denoted π |= φ, if γ−1(π) ∈ φ. Objectives
are generally Borel measurable: a Borel objective is a Borel set in the Cantor
topology on (O × Σ)ω [13]. We specifically consider reachability, safety, Büchi,
coBüchi, and parity objectives, all of them Borel measurable. The parity objec-
tives are a canonical form to express all ω-regular objectives [20]. For a play
π = �0σ0�1 . . . , we write Inf(π) for the set of observations that appear infinitely
often in γ−1(π), that is, Inf(π) = {o ∈ O | �i ∈ γ(o) for infinitely many i’s}.

Given a set T ⊆ O of target observations, the reachability objective Reach(T )
requires that an observation in T be visited at least once, that is, Reach(T ) =
{ �0σ0�1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 · ∃o ∈ T : �k ∈ γ(o) }. Dually, the safety
objective Safe(T ) requires that only observations in T be visited. Formally,
Safe(T ) = { �0σ0�1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 · ∃o ∈ T : �k ∈ γ(o) }. The
Büchi objective Buchi(T ) requires that an observation in T be visited infinitely
often, that is, Buchi(T ) = { π | Inf(π) ∩ T �= ∅ }. Dually, the coBüchi objective
coBuchi(T ) requires that only observations in T be visited infinitely often. For-
mally, coBuchi(T ) = { π | Inf(π) ⊆ T }. For d ∈ N, let p : O → { 0, 1, . . . , d }
be a priority function, which maps each observation to a nonnegative integer
priority. The parity objective Parity(p) requires that the minimum priority that
appears infinitely often be even. Formally, Parity(p) = { π | min{ p(o) | o ∈
Inf(π) } is even }. Observe that by definition, for all objectives φ, if π |= φ and
γ−1(π) = γ−1(π′), then π′ |= φ.

Sure winning and almost winning. A strategy λi for Player i in G is sure winning
for an objective φ if for all π ∈ Outcomei(G, λi), we have π |= φ. Given a game
structure G and a state � of G, we write G	 for the game structure that results
from G by changing the initial state to �, that is, if G = 〈L, l0, Σ, ∆,O, γ〉,
then G	 = 〈L, �, Σ, ∆,O, γ〉. An event is a measurable set of plays, and given
strategies α and β for the two players, the probabilities of events are uniquely
defined [21]. For a Borel objective φ, we denote by Prα,β

	 (φ) the probability φ is
satisfied in the game G	 given the strategies α and β. A strategy α for Player 1
in G is almost winning for the objective φ if for all randomized strategies β for
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Fig. 1. Game structure G

Player 2, we have Prα,β
l0

(φ) = 1. The set of sure-winning (resp. almost-winning)
states of a game structure G for the objective φ is the set of states � such that
Player 1 has a deterministic sure-winning (resp. randomized almost-winning)
observation-based strategy in G	 for the objective φ.

Theorem 1 (Determinacy). [16] For all perfect-information game structures
G and all Borel objectives φ, either there exists a deterministic sure-winning
strategy for Player 1 for the objective φ, or there exists a deterministic sure-
winning strategy for Player 2 for the complementary objective Plays(G) \ φ.

Notice that deterministic strategies suffice for sure winning a game: given a ran-
domized strategy α for Player 1, let αD be the deterministic strategy such that
for all ρ ∈ Prefs(G), the strategy αD(ρ) chooses an input letter from Supp(α(ρ)).
Then Outcome1(G, αD) ⊆ Outcome1(G, α), and thus, if α is sure winning, then
so is αD. The result also holds for observation-based strategies and for perfect-
information games. However, for almost winning, randomized strategies are more
powerful than deterministic strategies as shown by Example 1.

Example 1. Consider the game structure shown in Fig. 1. The observations
o1, o2, o3, o4 are such that γ(o1) = {�1}, γ(o2) = {�2, �

′
2}, γ(o3) = {�3, �

′
3}, and

γ(o4) = {�4}. The transitions are shown as labeled edges in the figure, and the
initial state is �1. The objective of Player 1 is Reach({o4}), to reach state �4.
We argue that the game is not sure winning for Player 1. Let α be any deter-
ministic strategy for Player 1. Consider the deterministic strategy β for Player 2
as follows: for all ρ ∈ Prefs(G) such that Last(ρ) ∈ γ(o2), if α(ρ) = a, then in
the previous round β chooses the state �2, and if α(ρ) = b, then in the previous
round β chooses the state �′2. Given α and β, the play outcome(G, α, β) never
reaches �4. However, the game G is almost winning for Player 1. Consider the
randomized strategy that plays a and b uniformly at random at all states. Every
time the game visits observation o2, for any strategy for Player 2, the game visits
�3 and �′3 with probability 1

2 , and hence also reaches �4 with probability 1
2 . It

follows that against all Player 2 strategies the play eventually reaches �4 with
probability 1.



Algorithms for Omega-Regular Games 293

Remarks. First, the hypothesis that the observations form a partition of the
state space can be weakened to a covering of the state space, where observations
can overlap. In that case, Player 2 chooses both the next state of the game �
and the next observation o such that � ∈ γ(o). The definitions related to plays,
strategies, and objectives are adapted accordingly. Such a game structure G with
overlapping observations can be encoded by an equivalent game structure G′ of
imperfect information, whose state space is the set of pairs (�, o) such that � ∈
γ(o). The set of labeled transitions ∆′ of G′ is defined by ∆′ = {((�, o),σ, (�′, o′)) |
(�,σ, �′) ∈ ∆ } and γ′−1(�, o) = o. The games G and G′ are equivalent in the
sense that for every Borel objective φ, there exists a sure (resp. almost) winning
strategy for Player i in G forφ if and only if there exists such a winning strategy
for Player i in G′ for φ. Second, it is essential that the objective is expressed
in terms of the observations. Indeed, the games of imperfect information with
a nonobservable winning condition are more complicated to solve. For instance,
the universality problem for Büchi automata can be reduced to such games, but
the construction that we propose in Section 3 cannot be used.

3 Sure Winning

We show that a game structure G of imperfect information can be encoded by
a game structure GK of perfect information such that for all Borel objectives φ,
there exists a deterministic observation-based sure-winning strategy for Player 1
in G for φ if and only if there exists a deterministic sure-winning strategy for
Player 1 in GK for φ. We obtain GK by a subset construction. Each state in GK is
a set of states of G which represents the knowledge of Player 1. In the worst case,
the size of GK is exponentially larger than the size of G. Second, we present a
fixed-point algorithm based on antichains of set of states [10], whose correctness
relies on the subset construction, but avoids the explicit construction of GK.

3.1 Subset Construction for Sure Winning

Given a game structure of imperfect information G = 〈L, l0, Σ, ∆,O, γ〉, we
define the knowledge-based subset construction of G as the following game struc-
ture of perfect information: GK = 〈L, {l0}, Σ, ∆K〉, where L = 2L\{∅}, and
(s1,σ, s2) ∈ ∆K iff there exists an observation o ∈ O such that s2 = PostGσ (s1)∩
γ(o) and s2 �= ∅. Notice that for all s ∈ L and all σ ∈ Σ, there exists a set s′ ∈ L
such that (s,σ, s′) ∈ ∆K.

A (deterministic or randomized) strategy in GK is called a knowledge-based
strategy. For all sets s ∈ L that are reachable in GK, and all observations o ∈
O, either s ⊆ γ(o) or s ∩ γ(o) = ∅. By an abuse of notation, we define the
observation sequence of a play π = s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the
infinite sequence γ−1(π) = o0σ0o1 . . . σn−1onσn . . . of observations such that for
all i ≥ 0, we have si ⊆ γ(oi); this sequence is unique. The play π satisfies an
objective φ ⊆ (O ×Σ)ω if γ−1(π) ∈ φ. The proof of the following theorem can
be found in the technical-report version for this paper.
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Theorem 2 (Sure-winning reduction). Player 1 has a deterministic
observation-based sure-winning strategy in a game structure G of imperfect in-
formation for a Borel objective φ if and only if Player 1 has a deterministic
sure-winning strategy in the game structure GK of perfect information for φ.

3.2 Two Interpretations of the µ-Calculus

Form the results of Section 3.1, we can solve a game G of imperfect information
with objective φ by constructing the knowledge-based subset construction GK

and solving the resulting game of perfect information for the objective φ using
standard methods. For the important class of ω-regular objectives, there exists
a fixed-point theory —the µ-calculus— for this purpose [8]. When run on GK,
these fixed-point algorithms compute sets of sets of states of the game G. An
important property of those sets is that they are downward closed with respect
to set inclusion: if Player 1 has a deterministic strategy to win the game G when
her knowledge is a set s, then she also has a deterministic strategy to win the
game when her knowledge is s′ with s′ ⊆ s. And thus, if s is a sure-winning
state of GK, then so is s′. Based on this property, we devise a new algorithm for
solving games of perfect information.

An antichain of nonempty sets of states is a set q ⊆ 2L \ ∅ such that for all
s, s′ ∈ q, we have s �⊂ s′. Let C be the set of antichains of nonempty subsets of
L, and consider the following partial order on C: for all q, q′ ∈ C, let q � q′ iff
∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′. For q ⊆ 2L \ ∅, define the set of maximal elements of
q by 2q3 = {s ∈ q | s �= ∅ and ∀s′ ∈ q : s �⊂ s′}. Clearly, 2q3 is an antichain.
The least upper bound of q, q′ ∈ C is q ( q′ = 2{s | s ∈ q or s ∈ q′}3, and their
greatest lower bound is q ' q′ = 2{s ∩ s′ | s ∈ q and s′ ∈ q′}3. The definition of
these two operators extends naturally to sets of antichains, and the greatest
element of C is � = {L} and the least element is ⊥ = ∅. The partially ordered
set 〈C,�,(,',�,⊥〉 forms a complete lattice. We view antichains of state sets
as a symbolic representation of ⊆-downward-closed sets of state sets.

A game lattice is a complete lattice V together with a predecessor operator
CPre : V → V . Given a game structure G = 〈L, l0, Σ, ∆,O, γ〉 of imperfect
information, and its knowledge-based subset construction GK = 〈L, {l0}, Σ, ∆K〉,
we consider two game lattices: the lattice of subsets 〈S,⊆,∪,∩,L, ∅〉, where S =
2L and CPre : S → S is defined by CPre(q) = {s ∈ L | ∃σ ∈ Σ · ∀s′ ∈ L :
if (s,σ, s′) ∈ ∆K, then s′ ∈ q}; and the lattice of antichains 〈C,�,(,', {L}, ∅〉,

with the operator 2CPre3 : C → C defined by 2CPre3(q) = 2{s ∈ L | ∃σ ∈ Σ ·∀o ∈
O · ∃s′ ∈ q : Postσ(s) ∩ γ(o) ⊆ s′}3.

The µ-calculus formulas are generated by the grammar

ϕ ::= o | x | ϕ ∨ ϕ | ϕ ∧ ϕ | pre(ϕ) | µx.ϕ | νx.ϕ

for atomic propositions o ∈ O and variables x. We can define ¬o as a shortcut
for

∨
o′∈O\{o} o′. A variable is free in a formula ϕ if it is not in the scope of a

quantifier µx or νx. A formula ϕ is closed if it contains no free variable. Given
a game lattice V , a valuation E for the variables is a function that maps every
variable x to an element in V . For q ∈ V , we write E [x �→ q] for the valuation
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Lattice of subsets

[[o]]SE = {s ∈ L | s ⊆ γ(o)}

[[x]]SE = E(x)

[[ϕ1

{∨
∧
}

ϕ2]]
S
E=[[ϕ1]]

S
E
{∪
∩
}

[[ϕ2]]
S
E

[[pre(ϕ)]]SE= CPre([[ϕ]]SE )

[[
{

µ
ν

}
x.ϕ]]SE =

{∩
∪
}
{q | q =[[ϕ]]SE[x 
→q]}

Lattice of antichains

[[o]]CE= {γ(o)}

[[x]]CE= E(x)

[[ϕ1

{∨
∧
}

ϕ2]]
C
E=[[ϕ1]]

C
E
{�
�
}

[[ϕ2]]
C
E

[[pre(ϕ)]]CE=  CPre!([[ϕ]]CE )

[[
{

µ
ν

}
x.ϕ]]CE=

{�
�
}
{q | q =[[ϕ]]CE[x 
→q]}

that agrees with E on all variables, except that x is mapped to q. Given a game
lattice V and a valuation E , each µ-calculus formula ϕ specifies an element [[ϕ]]VE
of V , which is defined inductively by the equations shown in the two tables. If ϕ
is a closed formula, then [[ϕ]]V =[[ϕ]]VE for any valuation E . The following theorem
recalls that perfect-information games can be solved by evaluating fixed-point
formulas in the lattice of subsets.

Theorem 3 (Symbolic solution of perfect-information games). [8] For
every ω-regular objective φ, there exists a closed µ-calculus formula µForm(φ),
called the characteristic formula of φ, such that for all game structures G of
perfect information, the set of sure-winning states of G for φ is [[µForm(φ)]]S .

Downward closure. Given a set q ∈ S, the downward closure of q is the set
q↓ = {s ∈ L | ∃s′ ∈ q : s ⊆ s′}. Observe that in particular, for all q ∈ S, we
have ∅ �∈ q↓ and 2q3↓ = q↓. The sets q↓, for q ∈ S, are the downward-closed sets.
A valuation E for the variables in the lattice S of subsets is downward closed if
every variable x is mapped to a downward-closed set, that is, E(x) = E(x)↓.
Lemma 1. For all downward-closed sets q, q′ ∈ S, we have 2q ∩ q′3 = 2q3' 2q′3
and 2q ∪ q′3 = 2q3 ( 2q′3.
Lemma 2. For all µ-calculus formulas ϕ and all downward-closed valuations E
in the lattice of subsets, the set [[ϕ]]SE is downward closed.

Lemma 3. For all µ-calculus formulas ϕ, and all downward-closed valuations
E in the lattice of subsets, we have

⌈
[[ϕ]]SE

⌉
=[[ϕ]]C�E�, where 2E3 is a valuation in

the lattice of antichains defined by 2E3(x) = 2E(x)3 for all variables x.

Consider a game structure G of imperfect information and a parity objective φ.
From Theorems 2 and 3 and Lemma 3, we can decide the existence of a deter-
ministic observation-based sure-winning strategy for Player 1 in G for φ without
explicitly constructing the knowledge-based subset construction GK, by instead
evaluating a fixed-point formula in the lattice of antichains.

Theorem 4 (Symbolic solution of imperfect-information games). Let
G be a game structure of imperfect information with initial state l0. For every
ω-regular objective φ, Player 1 has a deterministic observation-based strategy in
G for φ if and only if {l0} �[[µForm(φ)]]C.
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Corollary 1. Let G be a game structure of imperfect information, let p be a
priority function, and let � be a state of G. Whether � is a sure-winning state in
G for the parity objective Parity(p) can be decided in Exptime.

Corollary 1 is proved as follows: for a parity objective φ, an equivalent µ-calculus
formula ϕ can be obtained, where the size and the fixed-point quantifier alter-
nations of ϕ is polynomial in φ. Thus given G and φ, we can evaluate ϕ in GK

in Exptime.

4 Almost Winning

Given a game structure G of imperfect information, we first construct a game
structure H of perfect information by a subset construction (different from the
one used for sure winning), and then establish certain equivalences between
randomized strategies in G and H . Finally, we show how the reduction can be
used to obtain a symbolic Exptime algorithm for computing almost-winning
states in G for Büchi objectives. An Exptime algorithm for almost winning for
coBüchi objectives under imperfect information remains unknown.

4.1 Subset Construction for Almost Winning

Given a game structure of imperfect information G = 〈L, l0, Σ, ∆,O, γ〉, we
construct game structure of perfect information H = Pft(G) = 〈Q, q0, Σ, ∆H〉
as follows: Q = { (s, �) | ∃o ∈ O : s ⊆ γ(o) and � ∈ s }; the initial state is q0 =
({l0}, l0); the transition relation ∆H ⊆ Q×Σ×Q is defined by ((s, �),σ, (s′, �′)) ∈
∆H iff there is an observation o ∈ O such that s′ = PostGσ (s)∩γ(o) and (�,σ, �′) ∈
∆. Intuitively, when H is in state (s, �), it corresponds to G being in state � and
the knowledge of Player 1 being s. Two states q = (s, �) and q′ = (s′, �′) of H
are equivalent, written q ≈ q′, if s = s′. Two prefixes ρ = q0σ0q1 . . . σn−1qn and
ρ′ = q′0σ

′
0q
′
1 . . . σ

′
n−1q

′
n of H are equivalent, written ρ ≈ ρ, if for all 0 ≤ i ≤ n,

we have qi ≈ q′i, and for all 0 ≤ i ≤ n − 1, we have σi = σ′i. Two plays
π, π′ ∈ Plays(H) are equivalent, written πH ≈ π′H , if for all i ≥ 0, we have
π(i) ≈ π′(i). For a state q ∈ Q, we denote by [q]≈ = { q′ ∈ Q | q ≈ q′ } the
≈-equivalence class of q. We define equivalence classes for prefixes and plays
similarly.
Equivalence-preserving strategies and objectives. A strategy α for Player 1 in
H is positional if it is independent of the prefix of plays and depends only on
the last state, that is, for all ρ, ρ′ ∈ Prefs(H) with Last(ρ) = Last(ρ′), we have
α(ρ) = α(ρ′). A positional strategy α can be viewed as a function α : Q → D(Σ).
A strategy α for Player 1 in H is equivalence-preserving if for all ρ, ρ′ ∈ Prefs(H)
with ρ ≈ ρ′, we have α(ρ) = α(ρ′). We denote by AH , APH , and A≈H the set of
all Player-1 strategies, the set of all positional Player-1 strategies, and the set
of all equivalence-preserving Player-1 strategies in H , respectively. We write
A≈(P )
H = A≈H ∩APH for the set of equivalence-preserving positional strategies.
An objective φ for H is a subset of (Q×Σ)ω, that is, the objective φ is a set

of plays. The objective φ is equivalence-preserving if for all plays π ∈ φ, we have
[π]≈ ⊆ φ.
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Relating prefixes and plays. We define a mapping h : Prefs(G) → Prefs(H) that
maps prefixes in G to prefixes in H as follows: given ρ = �0σ0�1σ1 . . . σn−1�n,
let h(ρ) = q0σ0q1σ1 . . . σn−1qn, where for all 0 ≤ i ≤ n, we have qi = (si, �i),
and for all 0 ≤ i ≤ n − 1, we have si = K(γ−1(ρ(i))). The following properties
hold: (i) for all ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), then h(ρ) ≈ h(ρ′); and
(ii) for all ρ, ρ′ ∈ Prefs(H), if ρ ≈ ρ′, then γ−1(h−1(ρ)) = γ−1(h−1(ρ′)). The
mapping h : Plays(G) → Plays(H) for plays is defined similarly, and has similar
properties.
Relating strategies for Player 1. We define two strategy mappings h : AH → AG

and g : AG → AH . Given a Player-1 strategy αH in H , we construct a Player-1
strategy αG = h(αH) in G as follows: for all ρ ∈ Prefs(G), let αG(ρ) = αH(h(ρ)).
Similarly, given a Player-1 strategy αG in G, we construct a Player-1 strategy
αH = g(αG) in H as follows: for all ρ ∈ Prefs(H), let αH(ρ) = αG(h−1(ρ)). The
following properties hold: (i) for all strategies αH ∈ AH , if αH is equivalence-
preserving, then h(αH) is observation-based; and (ii) for all strategies αG ∈ AG,
if αG is observation-based, then g(αG) is equivalence-preserving.
Relating strategies for Player 2. Observe that for all q ∈ Q, all σ ∈ Σ, and
all � ∈ L, we have |{ q′ = (s′, �) | (q,σ, q′) ∈ ∆H }| ≤ 1. Given a Player-2
strategy βH in H , we construct a Player-2 strategy βG = h(βH) as follows: for
all ρ ∈ Prefs(G), all σ ∈ Σ, and all � ∈ L, let βG(ρ,σ)(�) = βH(h(ρ),σ)(s, �),
where (s, �) ∈ PostHσ (Last(h(ρ))). Similarly, given a Player-2 strategy βG in G, we
construct a Player-2 strategy βH = g(βG) in H as follows: for all ρ ∈ Prefs(H),
all σ ∈ Σ, and all q ∈ Q with q = (s, �), let βH(ρ,σ)(q) = βG(h−1(ρ),σ)(�).

Lemma 4. For all ρ ∈ Prefs(H), for every equivalence-preserving strategy α
of Player 1 in H, and for every strategy β of Player 2 in H, we have Prα,β

q0

(Cone(ρ)) = Prh(α),h(β)
l0

(h−1(Cone(ρ))).

Lemma 5. For all ρ ∈ Prefs(G), for every observational strategy α of Player 1
in G, and for every strategy β of Player 2 in G, we have Prα,β

l0
(Cone(ρ)) =

Prg(α),g(β)
q0 (h(Cone(ρ))).

Theorem 5 (Almost-winning reduction). Let G be a game structure of im-
perfect information, and let H = Pft(G) be the game structure of perfect infor-
mation. For all Borel objectives φ for G, all observation-based Player-1 strategies
α in G, and all Player-2 strategies β in G, we have Prα,β

l0
(φ) = Prg(α),g(β)

q0 (h(φ)).
Dually, for all equivalence-preserving Borel objectives φ for H, all equivalence-
preserving Player-1 strategies α in H, and all Player-2 strategies β in H, we
have Prα,β

q0 (φ) = Prh(α),h(β)
l0

(h−1(φ)).

The proof is as follows: by the Caratheódary unique-extension theorem, a prob-
ability measure defined on cones has a unique extension to all Borel objectives.
The theorem then follows from Lemma 4.

Corollary 2. For every Borel objective φ for G, we have ∃αG ∈ AO
G · ∀βG ∈

BG : PrαG,βG

	0
(φ) = 1 if and only if ∃αH ∈ A≈H · ∀βH ∈ BH : PrαH ,βH

q0 (h(φ)) = 1.
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4.2 Almost Winning for Büchi Objectives

Given a game structure G of imperfect information, let H = Pft(G) be the game
structure of perfect information. Given a set T ⊆ O of target observations, let
BT = {(s, l) ∈ Q | ∃o ∈ T : s ⊆ γ(o)}. Then h(Buchi(T )) = Buchi(BT ) = {πH ∈
Plays(H) | Inf(πH) ∩BT �= ∅ }. We first show that almost winning in H for the
Büchi objective Buchi(BT ) with respect to equivalence-preserving strategies is
equivalent to almost winning with respect to equivalence-preserving positional
strategies. Formally, for BT ⊆ Q, let Q≈AS = { q ∈ Q | ∃α ∈ A≈H · ∀β ∈ BH · ∀q′ ∈
[q]≈ : Prα,β

q′ (Buchi(BT )) = 1 }, and Q
≈(P )
AS = { q ∈ Q | ∃α ∈ A≈(P )

H · ∀β ∈
BH · ∀q′ ∈ [q]≈ : Prα,β

q′ (Buchi(BT )) = 1 }. We will prove that Q≈AS = Q
≈(P )
AS .

Lemma 6 follows from the construction of H from G.

Lemma 6. Given an equivalence-preserving Player-1 strategy α ∈ AH , a prefix
ρ ∈ Prefs(H), and a state q ∈ Q, if there exists a Player-2 strategy β ∈ BH
such that Prα,β

q (Cone(ρ)) > 0, then for every prefix ρ′ ∈ Prefs(H) with ρ ≈
ρ′, there exist a Player-2 strategy β′ ∈ BH and a state q′ ∈ [q]≈ such that
Prα,β′
q′ (Cone(ρ′)) > 0.

Observe that Q \ Q≈AS = { q ∈ Q | ∀α ∈ A≈H · ∃β ∈ BH · ∃q′ ∈ [q]≈ :
Prα,β
q′ (Buchi(BT )) < 1 }. It follows from Lemma 6 that if a play starts in Q≈AS

and reaches Q\Q≈AS with positive probability, then for all equivalence-preserving
strategies for Player 1, there is a Player 2 strategy that ensures that the Büchi
objective Buchi(BT ) is not satisfied with probability 1.
Notation. For a state q ∈ Q and Y ⊆ Q, let Allow(q,Y ) = { σ ∈ Σ | PostHσ (q) ⊆
Y }. For a state q ∈ Q and Y ⊆ Q, let Allow([q]≈,Y ) =

⋂
q′∈[q]≈ Allow(q′,Y ).

Lemma 7. For all q ∈ Q≈AS, we have Allow([q]≈, Q≈AS) �= ∅.

Lemma 8. Given a state q ∈ Q≈AS, let α ∈ AH be an equivalence-preserving
Player-1 strategy such that for all Player-2 strategies β ∈ BH and all states
q′ ∈ [q]≈, we have Prα,β

q′ (Buchi(BT )) = 1. Let ρ = q0σ0q1 . . . σn−1qn be a prefix
in Prefs(H) such that for all 0 ≤ i ≤ n, we have qi ∈ Q≈AS. If there is a Player-
2 strategy β ∈ BH and a state q′ ∈ [q]≈ such that Prα,β

q′ (Cone(ρ)) > 0, then
Supp(α(ρ)) ⊆ Allow([q]≈, Q≈AS).

Notation. We inductively define the ranks of states in Q≈AS as follows: let Rank(0)
= BT ∩ Q≈AS, and for all j ≥ 0, let Rank(j + 1) = Rank(j) ∪ { q ∈ Q≈AS | ∃σ ∈
Allow([q]≈, Q≈AS) : PostHσ (q) ⊆ Rank(j) }. Let j∗ = min{ j ≥ 0 | Rank(j) =
Rank(j + 1) }, and let Q∗ = Rank(j∗). We say that the set Rank(j + 1) \Rank(j)
contains the states of rank j + 1, for all j ≥ 0.

Lemma 9. Q∗ = Q≈AS.

Equivalence-preserving positional strategy. Consider the equivalence-preserving
positional strategy αp for Player 1 in H , which is defined as follows: for a state
q ∈ Q≈AS, choose all moves in Allow([q]≡, Q≈AS) uniformly at random.
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Lemma 10. For all states q ∈ Q≈AS and all Player-2 strategies β in H, we have
Prαp,β
q (Safe(Q≈AS)) = 1 and Prαp,β

q (Reach(BT ∩Q≈AS)) = 1.

Proof. By Lemma 9, we have Q∗ = Q≈AS. Let z = |Q∗|. For a state q ∈ Q≈AS,
we have PostHσ (q) ⊆ Q≈AS for all σ ∈ Allow([q]≈, Q≈AS). It follows for all states
q ∈ Q≈AS and all strategies β for Player 2, we have Prαp,β

q (Safe(Q≈AS)) = 1.
For a state q ∈ (Rank(j + 1) \Rank(j)), there exists σ ∈ Allow([q]≈, Q≈AS) such

that PostHσ (q) ⊆ Rank(j). For a set Y ⊆ Q, let ♦j(Y ) denote the set of prefixes
that reach Y within j steps. It follows that for all states q ∈ Rank(j + 1) and all
strategies β for Player 2, we have Prαp,β

q (♦1(Rank(j))) ≥ 1
|Σ| . Let B = BT ∩Q≈AS.

By induction on the ranks it follows that for all states q ∈ Q∗ and all strategies
β for Player 2: Prαp,β

q (♦z(Rank(0))) = Prαp,β
q (♦z(B)) ≥

(
1
|Σ|

)z
= r > 0. For

m > 0, we have Prαp,β
q (♦m·z(B)) ≥ 1− (1− r)m. Thus:

Prαp,β
q (Reach(B)) = lim

m→∞
Prαp,β
q (♦m·z(B)) ≥ lim

m→∞
1−(1−r)m = 1. 

Lemma 10 implies that, given the Player-1 strategy αp, the set Q≈AS is never left,
and the states in BT ∩ Q≈AS are reached with probability 1. Since this happens
for every state in Q≈AS, it follows that the set BT ∩ Q≈AS is visited infinitely
often with probability 1, that is, the Büchi objective Buchi(BT ) is satisfied with
probability 1. This analysis, together with the fact that [q0]≈ is a singleton and
Corollary 2, proves that Q≈AS = Q

≈(P )
AS . Theorem 6 follows.

Theorem 6 (Positional almost winning for Büchi objectives under im-
perfect information). Let G be a game structure of imperfect information,
and let H = Pft(G) be the game structure of perfect information. For all sets
T of observations, there exists an observation-based almost-winning strategy for
Player 1 in G for the objective Buchi(T ) iff there exists an equivalence-preserving
positional almost-winning strategy for Player 1 in H for the objective Buchi(BT ).

Symbolic algorithm. We present a symbolic quadratic-time (in the size of H) algo-
rithm to compute the set Q≈AS. For Y ⊆ Q and X ⊆ Y , let Apre(Y, X) = {q ∈ Y |
∃σ ∈ Allow([q]≈,Y ) : PostHσ (q) ⊆ X } and Spre(Y ) = { q ∈ Y | Allow([q]≈,Y ) �=
∅ }. Note that Spre(Y ) = Apre(Y,Y ). Let φ = νY.µX.

(
Apre(Y, X) ∨ (BT ∧

Spre(Y )
)

and let Z =[[φ]]. It can be shown that Z = Q≈AS.

Theorem 7 (Complexity of almost winning for Büchi objectives under
imperfect information). Let G be a game structure of imperfect information,
let T be a set of observations, and let � be a state of G. Whether � is an almost-
winning state in G for the Büchi objective Buchi(T ) can be decided in Exptime.

The facts that Z = Q≈AS and that H is exponential in the size of G yield Theo-
rem 7. The arguments for the proofs of Theorem 6 and 7 do not directly extend
to coBüchi or parity objectives. In fact, Theorem 6 does not hold for parity
objectives in general, for the following reason: in concurrent games with parity
objectives with more than two priorities, almost-winning strategies may require
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infinite memory; for an example, see [5]. Such concurrent games are reducible
to semiperfect-information games [4], and semiperfect-information games are re-
ducible to the imperfect-information games we study. Hence a reduction to finite
game structures of perfect information in order to obtain randomized positional
strategies is not possible with respect to almost winning for general parity ob-
jectives. Theorem 6 and Theorem 7 may hold for coBüchi objectives, but there
does not seem to be a simple extension of our arguments for Büchi objectives to
the coBüchi case. The results that correspond to Theorems 6 and 7 for coBüchi
objectives are open.
Direct symbolic algorithm. As in Section 3.2, the subset structure H does not have
to be constructed explicitly. Instead, we can evaluate a fixed-point formula on a
well-chosen lattice. The fixed-point formula to compute the set Q≈AS is evaluated
on the lattice 〈2Q,⊆,∪,∩, Q, ∅〉. It is easy to show that the sets computed by
the fixed-point algorithm are downward closed for the following order on Q:
for (s, �), (s′, �′) ∈ Q, let (s, �) . (s′, �′) iff � = �′ and s ⊆ s′. Then, we can
define an antichain over Q as a set of pairwise .-incomparable elements of Q,
and compute the almost-sure winning states in the lattice of antichains over Q,
without explicitly constructing the exponential game structure H .

5 Lower Bounds

We show that deciding the existence of a deterministic (resp. randomized) obser-
vation-based sure-winning (resp. almost-winning) strategy for Player 1 in games
of imperfect information is Exptime-hard already for reachability objectives.
The result for sure winning follows from [19], but our new proof extends to
almost winning as well.
Sure winning. To show the lower bound, we use a reduction from the member-
ship problem for polynomial-space alternating Turing machines. An alternating
Turing machine (ATM) is a tuple M = 〈Q, q0, g, Σi, Σt, δ, F 〉, where Q is a finite
set of control states; q0 ∈ Q is the initial state; g : Q → {∧,∨}; Σi = {0, 1} is the
input alphabet; Σt = {0, 1, 2} is the tape alphabet and 2 is the blank symbol;
δ ⊆ Q×Σt ×Q×Σt × {−1, 1} is the transition relation; and F ⊆ Q is the set
of accepting states. We say that M is a polynomial-space ATM if there exists a
polynomial p(·) such that for every word w, the tape space used by M on input
w is bounded by p(|w|). Without loss of generality, we assume that the initial
control state of the machine is a ∨-state, and that transitions connect ∨-states
to ∧-states, and vice versa. A word w is accepted by the ATM M if there exists
a run tree of M on w all of whose leaf nodes are accepting configurations (i.e.,
configurations containing an accepting state); see [3] for details. The membership
problem is to decide if a given word w is accepted by a given polynomial-space
ATM (M, p). This problem is Exptime-hard [3].
Sketch of the reduction. Given a polynomial-space ATM M and a word w, we
construct a game structure of imperfect information, of size polynomial in the
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size of (M, w), to simulate the execution of M on w. Player 1 makes choices in
∨-states, and Player 2 makes choices in ∧-states. Player 1 is responsible for main-
taining the symbol under the tape head. His objective is to reach an accepting
configuration of the ATM.

Each turn proceeds as follows. In an ∨-state, by choosing a letter (t, a) in
the alphabet of the game, Player 1 reveals (i) the transition t of the ATM that
he has chosen (this way he also reveals the symbol that is currently under the
tape head), and (ii) the symbol a under the next position of the tape head. If
Player 1 lies about the current or the next symbol under the tape head, then he
should lose the game; otherwise the game proceeds. The machine is now in an ∧-
state and Player 1 has no choice: he announces a special symbol ε and Player 2,
by resolving the nondeterminism on ε, chooses a transition of the ATM that is
compatible with the current symbol under the tape head revealed by Player 1
at the previous turn. The state of the ATM is updated and the game proceeds.
The transition chosen by Player 2 is visible in the next state of the game, and
thus Player 1 can update his knowledge about the configuration of the ATM.
Player 1 wins whenever an accepting configuration of the ATM is reached.

The difficulty is to ensure that Player 1 loses when he announces a wrong
symbol under the tape head. As the number of configurations of the polynomial-
space ATM is exponential, we cannot directly encode the full configuration of
the ATM in the states of the game. To overcome this difficulty, we use the
power of imperfect information as follows. Initially, Player 2 chooses a position
k, where 1 ≤ k ≤ p(|w|), on the tape. The chosen number k, as well as the
symbol σ ∈ {0, 1, 2} that lies in the tape cell with number k, are maintained all
along the game in the nonobservable portion of the game states. The pair (σ, k)
is thus private to Player 2, and invisible to Player 1. Thus, at any point in the
game, Player 2 can check whether Player 1 is lying when announcing the content
of cell number k, and go to a sink state if Player 1 cheats (no other states can
be reached from there). Since Player 1 does not know which cell is monitored by
Player 2 (since k is private), to avoid losing, he must not lie about any of the
tape cells, and thus he must faithfully simulate the machine. Then, he wins the
game if and only if the ATM accepts the words w.
Almost winning. To establish the lower bound for almost winning, we can use
the same reduction. Randomization cannot help Player 1 in this game. Indeed,
at any point in the game, if Player 1 takes a chance in either not faithfully
simulating the ATM or lying about the symbol under the tape head, then the
sink state is reached. In these cases, the probability to reach the sink state is
positive, and so the probability to win the game is strictly less than one.

Theorem 8 (Lower bounds). Let G be a game structure of imperfect informa-
tion, let T be a set of observations, and let � be a state of G. Deciding whether �
is a sure-winning state in G for the reachability objective Reach(T ) is Exptime-
hard. Deciding whether � is an almost-winning state in G for Reach(T ) is also
Exptime-hard.



302 K. Chatterjee et al.

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications
of reactive systems. In ICALP, LNCS 372, pages 1–17. Springer, 1989.

2. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49:672–713, 2002.

3. A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28:114–133,
1981.

4. K. Chatterjee and T.A. Henzinger. Semiperfect-information games. In FSTTCS,
LNCS 3821, pages 1–18. Springer, 2005.

5. L. de Alfaro and T.A. Henzinger. Concurrent ω-regular games. In Proc. LICS,
pages 141–154. IEEE Computer Society, 2000.

6. L. de Alfaro and T.A. Henzinger. Interface automata. In Proc. FSE, pages 109–120.
ACM, 2001.

7. L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games.
In Proc. FOCS, pages 564–575. IEEE Computer Society, 1998.

8. L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to control:
Dynamic programs for ω-regular objectives. In Proc. LICS, pages 279–290. IEEE
Computer Society, 2001.

9. M. De Wulf, L. Doyen, T.A. Henzinger and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In CAV, LNCS (to appear).
Springer, 2006.

10. M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of
imperfect information. In HSCC, LNCS 3927, pages 153–168. Springer, 2006.

11. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. MIT Press, 1989.

12. E.A. Emerson and C.S. Jutla. Tree automata, µ-calculus, and determinacy. In
Proc. FOCS, pages 368–377. IEEE Computer Society, 1991.

13. A. Kechris. Classical Descriptive Set Theory. Springer, 1995.
14. O. Kupferman and M.Y. Vardi. Synthesis with incomplete informatio. In Advances

in Temporal Logic (H. Barringer et al., eds.), pages 109–127. Kluwer, 1999.
15. M.L. Littman. Algorithms for Sequential Decision Making. PhD Thesis, Brown

Univ., 1996.
16. D. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
17. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.

In ICALP, LNCS 372, pages 652–671. Springer, 1989.
18. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event

processes. SIAM J. Control and Optimization, 25:206–230, 1987.
19. J.H. Reif. The complexity of two-player games of incomplete information. J.

Computer and System Sciences, 29:274–301, 1984.
20. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages

(G. Rozenberg et al., eds.), volume 3, pages 389–455. Springer, 1997.
21. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems.

In Proc. FOCS, pages 327–338. IEEE Computer Society, 1985.



Relating Two Standard Notions of Secrecy�
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Abstract. Two styles of definitions are usually considered to express
that a security protocol preserves the confidentiality of a data s.
Reachability-based secrecy means that s should never be disclosed while
equivalence-based secrecy states that two executions of a protocol with
distinct instances for s should be indistinguishable to an attacker. Al-
though the second formulation ensures a higher level of security and is
closer to cryptographic notions of secrecy, decidability results and auto-
matic tools have mainly focused on the first definition so far.

This paper initiates a systematic investigation of situations where
syntactic secrecy entails strong secrecy. We show that in the passive
case, reachability-based secrecy actually implies equivalence-based se-
crecy for signatures, symmetric and asymmetric encryption provided that
the primitives are probabilistic. For active adversaries in the case of sym-
metric encryption, we provide sufficient (and rather tight) conditions on
the protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications. Since they are widely distributed in critical systems, their security
is primordial. In particular, verification using formal methods attracted a lot of
attention during this last decade. A first difficulty is to formally express the secu-
rity properties that are expected. Even a basic property such as confidentiality
admits two different acceptable definitions namely reachability-based (syntac-
tic ) secrecy and equivalence-based (strong) secrecy. Syntactic secrecy is quite
appealing: it says that the secret is never accessible to the adversary. For exam-
ple, consider the following protocol where the agent A simply sends a secret s
to an agent B, encrypted with B’s public key.

A → B : {s}pub(B)

An intruder cannot deduce s, thus s is syntactically secret. Although this no-
tion of secrecy may be sufficient in many scenarios, in others, stronger security
requirements are desirable. For instance consider a setting where s is a vote and
B behaves differently depending on its value. If the actions of B are observ-
able, s remains syntactically secret but an attacker can learn the values of the
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vote by watching B’s actions. The design of equivalence-based secrecy is tar-
geted at such scenarios and intuitively says that an adversary cannot observe
the difference when the value of the secret changes. This definition is essential to
express properties like confidentiality of a vote, of a password, or the anonymity
of participants to a protocol.

Although the second formulation ensures a higher level of security and is closer
to cryptographic notions of secrecy, so far decidability results and automatic
tools have mainly focused on the first definition. The syntactic secrecy preserva-
tion problem is undecidable in general [13], it is co-NP-complete for a bounded
number of sessions [17], and several decidable classes have been identified in
the case of an unbounded number of sessions [13,10,7,16]. These results often
come with automated tools, we mention for example ProVerif [5], CAPSL [12],
and Avispa [4]. To the best of our knowledge, the only tool capable of verifying
strong secrecy is the resolution-based algorithm of ProVerif [6] and only one de-
cidability result is available: Hüttel [14] proves decidability for a fragment of the
spi-calculus without recursion for framed bisimilarity, a related equivalence re-
lation introduced by Abadi and Gordon [2]. Also in [8], Borgström et al propose
an incomplete decision procedure based on a symbolic bisimulation.

In light of the above discussion, it may seem that the two notions of secrecy are
separated by a sizable gap from both a conceptual point of view and a practical
point of view. These two notions have counterparts in the cryptographic setting
(where messages are bitstrings and the adversary is any polynomial probabilis-
tic Turing machine). Intuitively, the syntactic secrecy notion can be translated
into a similar reachability-based secrecy notion and the equivalence-based no-
tion is close to indistinguishability. A quite surprising result [11] states that
cryptographic syntactic secrecy actually implies indistinguishability in the cryp-
tographic setting. This result relies in particular on the fact that the encryption
schemes are probabilistic thus two encryptions of the same plaintext lead to
different ciphertexts.

Motivated by the result of [11] and the large number of available systems for
syntactic secrecy verification, we initiate in this paper a systematic investigation
of situations where syntactic secrecy entails strong secrecy. Surprisingly, this
happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied
pi calculus [1]. We first treat in Section 2 the case of passive adversaries. We
prove that syntactic secrecy is equivalent to strong secrecy. This holds for sig-
natures, symmetric and asymmetric encryption. It can be easily seen that the
two notions of secrecy are not equivalent in the case of deterministic encryption.
Indeed, the secret s cannot be deduced from the encrypted message {s}pub(B)

but if the encryption is deterministic, an intruder may try different values for
s and check whether the ciphertext he obtained using B’s public key is equal
to the one he receives. Thus for our result to hold, we require that encryp-
tion is probabilistic. This is not a restriction since this is de facto the standard
in almost all cryptographic applications. Next, we consider the more challeng-
ing case of active adversaries. We give sufficient conditions on the protocols for
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syntactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that
the conditional tests are not performed directly on the secret since we have seen
above that such tests provide information on the value of this secret. We again
exhibit several counter-examples to motivate the introduction of our conditions.
An important aspect of our result is that we do not make any assumption on
the number of sessions: we put no restriction on the use of replication.

The interest of our contribution is twofold. First, conceptually, it helps to
understand when the two definitions of secrecy are actually equivalent. Second,
we can transfer many existing results (and the armada of automatic tools) de-
veloped for syntactic secrecy. For instance, since the syntactic secrecy problem
is decidable for tagged protocols for an unbounded number of sessions [16], by
translating the tagging assumption to the applied-pi calculus, we can derive a
first decidability result for strong secrecy for an unbounded number of sessions.
Other decidable fragments might be derived from [13] for bounded messages
(and nonces) and [3] for a bounded number of sessions.

2 Passive Case

Cryptographic primitives are represented by functional symbols. More specifi-
cally, we consider the signature Σ = {enc, dec, enca, deca, pub, priv, 〈〉, π1, π2,
sign, check, retrieve}. T (Σ,X ,N ), or simply T , denotes the set of terms built
over Σ extended by a set of constants, the infinite set of names N and the in-
finite set of variables X . A term is closed or ground if it does not contain any
variable. The set of names occurring in a term T is denoted by fn(T ), the set of
variables is denoted by V(T ). The positions in a term T are defined recursively
as usual (i.e. as sequences of positive integers), ε being the empty sequence. De-
note by N∗+ the set of sequences of positive integers. Pos(T ) denotes the set of
positions of T and Posv(T ) the set of positions of variables in T . We denote by
T |p the subterm of T at position p and by U [V ]p the term obtained by replacing
in U the subterm at position p by V . We may simply say that a term V is in a
term U if V is a subterm of U . We denote by ≤st (resp.<st) the subterm (resp.
strict) order. hU denotes the function symbol, name or variable at position ε in
the term U .

We equip the signature with an equational theory E:⎧⎨⎩π1(〈z1, z2〉) = z1 deca(enca(z1, pub(z2), z3), priv(z2)) = z1

π2(〈z1, z2〉) = z2 check(z1, sign(z1, priv(z2)), pub(z2)) = ok
dec(enc(z1, z2, z3), z2) = z1 retrieve(sign(z1, z2)) = z1

The function symbols π1, π2, dec, deca, check and retrieve are called destructors.
LetRE be the corresponding rewrite system (obtained by orienting the equations
from left to right). RE is convergent. The normal form of a term T w.r.t. RE is
denoted by T↓. Notice that E is also stable by substitution of names. As usual,
we write U → V if there exists θ, a position p in U and L → R ∈ RE such that
U |p = Lθ and V = U [Rθ]p.



306 V. Cortier, M. Rusinowitch, and E. Zălinescu

The symbol 〈 , 〉 represents the pairing function and π1 and π2 are the asso-
ciated projection functions. The term enc(M,K, R) represents the message M
encrypted with the key K. The third argument R reflects that the encryption
is probabilistic: two encryptions of the same messages under the same keys are
different. The symbol dec stands for decryption. The symbols enca and deca are
very similar but in an asymmetric setting, where pub(a) and priv(a) represent
respectively the public and private keys of an agent a. The term sign(M,K)
represents the signature of message M with key K. check enables to verify the
signature and retrieve enables to retrieve the signed message from the signature.1

After the execution of a protocol, an attacker knows the messages sent on
the network and also in which order they were sent. Such message sequences are
organized as frames ϕ = νñ.σ, where σ = {M1/y1, . . . ,

Ml/yl
} is a ground acyclic

substitution and ñ is a finite set of names. We denote by dom(ϕ) = dom(σ) =
{y1, . . . , yl}. The variables yi enable us to refer to each message. The names in
ñ are said to be restricted in ϕ. Intuitively, these names are a priori unknown
to the intruder. The names outside ñ are said to be free in ϕ. A term M is said
public w.r.t. a frame νñ.σ (or w.r.t. a set of names ñ) if fn(M) ∩ ñ = ∅. The set
of restricted names ñ might be omitted when it is clear from the context. We
usually write νn1, . . . , nk instead of ν{n1, . . . , nk}.

2.1 Deducibility

Given a frame ϕ that represents the history of messages sent during the execution
of a protocol, we define the deduction relation, denoted by ϕ � M . Deducible
messages are messages that can be obtained from ϕ by applying functional sym-
bols and the equational theory E.

νñ.σ � xσ
x ∈ dom(σ)

νñ.σ � m
m ∈ N\ñ

νñ.σ � T1 · · · νñ.σ � Tl

νñ.σ � f(T1, . . . , Tl)
νñ.σ � T T =E T ′

νñ.σ � T ′

Example 1. k and 〈k, k′〉 are deducible from the frame νk, k′, r.{enc(k,k′,r)/x, k′
/y}.

A message is usually said secret if it is not deducible. By opposition to our next
notion of secrecy, we say that a term M is syntactically secret in ϕ if ϕ ��M .

2.2 Static Equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Example 2. The set of deducible messages is the same for the frames ϕ1 =
νk,n1,n2,r1.

1 Signature schemes may disclose partial information on the signed message. To enforce
the intruder capabilities, we assume that messages can always be retrieved out of
the signature.
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{enc(n1,k,r1)/x,
〈n1,n2〉/y,

k/z} and ϕ2 = νk,n1,n2,r1.{enc(n2,k,r2)/x, 〈n1,n2〉/y,
k/z}, while

an attacker is able to detect that the first message corresponds to distinct nonces.
In particular, the attacker is able to distinguish the two “worlds” represented by
ϕ1 and ϕ2.

We say that a frame ϕ = νñ.σ passes the test (U, V ) where U, V are two terms,
denoted by (U = V )ϕ, if there exists a renaming of the restricted names in ϕ
such that (fn(U) ∪ fn(V )) ∩ ñ = ∅ and Uσ =E V σ. Two frames ϕ = νñ.σ and
ϕ′ = νm̃.σ′ are statically equivalent, written ϕ ≈ ϕ′, if they pass the same tests,
that is dom(ϕ) = dom(ϕ′) and for all terms U, V such that (V(U) ∪ V(V )) ⊆
dom(ϕ) and (fn(U) ∪ fn(V )) ∩ (ñ ∪ m̃) = ∅, we have (U = V )ϕ iff (U = V )ϕ′.

Example 3. The frames ϕ1 and ϕ2 defined in Example 2 are not statically equiv-
alent since (dec(x, z) = π1(y))ϕ1 but (dec(x, z) �= π1(y))ϕ2.

Let s be a free name of a frame ϕ = νñ.σ. We say that s is strongly secret in ϕ if
for every closed public terms M, M ′ w.r.t. ϕ, we have ϕ(M/s) ≈ ϕ(M ′

/s) that is,
the intruder cannot distinguish the frames obtained by instantiating the secret s
by two terms of its choice. For simplicity we may omit s and write ϕ(M) instead
of ϕ(M/s).

Of course an intended syntactical secret name s must be restricted, but when
talking about instances of s we must consider it (at least) a free name (if not a
variable). Hence we compare syntactic secrecy and strong secrecy regarding the
same frame modulo the restriction on the secret s. We use the notation νs.ϕ for
ν(ñ ∪ {s}).σ, where ϕ = νñ.σ. Thus s is syntactically secret if νs.ϕ � s.

2.3 Syntactic Secrecy Implies Strong Secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some
examples of frames that preserves syntactic secrecy but not strong secrecy. They
all rely on different properties.

Probabilistic encryption. The frame ψ1 = νk, r.{enc(s,k,r)/x, enc(n,k,r)/y} does
not preserve the strong secrecy of s. Indeed, ψ1(n) �≈ ψ1(n′) since (x = y)ψ1(n)
but (x �= y)ψ1(n′). This would not happen if each encryption used a distinct
randomness, that is, if the encryption was probabilistic.
Key position. The frame ψ2 = νn.{enc(〈n,n′〉,s,r)/x} does not preserve the strong
secrecy of s. Indeed, ψ2(k) �≈ ψ2(k′) since (π2(dec(x, k)) = n′)ψ2(k) but
(π2(dec(x, k)) �= n′)ψ2(k′). If s occurs in key position in some ciphertext, the
intruder may try to decrypt the ciphertext since s is replaced by public terms
and check for some redundancy. It may occur that the encrypted message does
not contain any verifiable part. In that case, the frame may preserve strong se-
crecy. It is for example the case for the frame νn.{enc(n,s,r)/x}. Such cases are
however quite rare in practice.
No destructors. The frame ψ3 = {π1(s)/x} does not preserve the strong secrecy
of s simply because (x = k) is true for ψ3(〈k, k′〉) while not for ψ3(k).
Retrieve rule. The retrieve(sign(z1, z2)) = z1 may seem arbitrary since not all
signature schemes enable to get the signed message out of a signature. It is ac-
tually crucial for our result. For example, the frame ψ4 = {sign(s,priv(a))/x, pub(a)/y}
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does not preserve the strong secrecy of s because (check(n, x, y) = ok) is true
for ψ4(n) but not for ψ4(n′).

In these four cases, the frames preserve the syntactic secrecy of s, that is
νs.ψi �� s, for 1 ≤ i ≤ 4. This leads us to the following definition.

Definition 1. A frame ϕ = νñ.σ is well-formed w.r.t. some name s if

1. Encryption is probabilistic, i.e. for any subterm enc(M,K, R) of ϕ, for any
term T ∈ ϕ and position p such that T |p = R we have p = q.3 for some
q and T |q = enc(M,K, R). In addition, if s occurs in M at a position p′

such that no encryption appears along the path from the root to p′ then R
must be restricted, that is R ∈ ñ. The same conditions hold for asymmetric
encryption. and

2. s is not part of a key, i.e. for all enc(M,K, R), enca(M ′,K ′, R′), sign(U, V ),
pub(W ), priv(W ′) subterms of ϕ, s /∈ fn(K,K ′, V,W,W ′, R, R′).

3. ϕ does not contain destructor symbols.

Condition 1 requires that each innermost encryption above s contains a restricted
randomness. This is not a restriction since s is meant to be a secret value and such
encryptions have to be produced by honest agents and thus contain a restricted
randomness.

For well-formed frames, syntactic secrecy is actually equivalent to strong
secrecy

Theorem 1. Let ϕ be a well-formed frame w.r.t. s, where s is a free name in ϕ.

νs.ϕ � s if and only if ϕ(M/s) ≈ ϕ(M ′
/s)

for all M, M ′ closed public terms w.r.t. ϕ.

Proof. We present the skeleton of the proof; all details can be found in a technical
report [18]. Let ϕ = νñ.σ be a well-formed frame w.r.t. s. If νs.ϕ � s, this
trivially implies that s is not strongly secret. Indeed, there exists a public term
T w.r.t. ϕ such that Tσ =E s (this can be easily shown by induction on the
deduction system). Let n1, n2 be fresh names such that n1, n2 /∈ ñ and n1, n2 /∈
fn(ϕ). Since Tσ(n1/s) =E n1 the frames ϕ(n1/s) and ϕ(n2/s) are distinguishable
with the test (T = n1).

We assume now that νs.ϕ � s. We first show that any syntactic equality
satisfied by the frame ϕ(M/s) is already satisfied by ϕ.

Lemma 1. Let ϕ = νñ.σ be a well-formed frame w.r.t. a free name s, U, V
terms such that V(U),V(V ) ⊆ dom(ϕ) and M a closed term, U , V and M
public w.r.t. ñ. If νs.ϕ � s then Uσ(M/s) = V σ(M/s) implies Uσ = V σ. Let T be
a subterm of a term in σ that does not contain s. If νs.ϕ � s then T = V σ(M/s)
implies T = V σ.

The key lemma is that any reduction that applies to a deducible term U where
s is replaced by some M , directly applies to U .
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Lemma 2. Let ϕ = νñ.σ be a well-formed frame w.r.t. a free name s such that
νs.ϕ � s. Let U be a term with V(U) ⊆ dom(ϕ) and M be a closed term in
normal form, U and M public w.r.t. ñ. If Uσ(M/s) → V , for some term V , then
there exists a well-formed frame ϕ′ = νñ.σ′ w.r.t. s

– extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms: νs.ϕ �W iff νs.ϕ′ �W ,
– and such that V = V ′σ′(M/s) and Uσ → V ′σ′ for some V ′ public w.r.t. ñ.

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two
public closed terms M, M ′. We can assume w.l.o.g. that M and M ′ are in nor-
mal form. Let U �= V be two public terms such that V(U),V(V ) ⊆ dom(ϕ)
and Uσ(M/s) =E V σ(M/s). Then there are U1, . . . , Uk and V1, . . . , Vl such that
Uσ(M/s) → U1 → . . . → Uk, V σ(M/s) → V1 → . . . → Vl, Uk = Uσ(M/s) ↓,
Vl = V σ(M/s)↓ and Uk = Vl.

Applying repeatedly Lemma 2 we obtain that there exist public terms U ′1, . . . ,
U ′k and V ′1 , . . . , V ′l and well-formed frames ϕui = νñ.σui , for i ∈ {1, . . . , k} and
ϕvj = νñ.σvj , for j ∈ {1, . . . , l} (as in the lemma) such that Ui = U ′iσ

ui (M/s),
U ′iσ

ui → U ′i+1σ
ui+1 , Vj = V ′j σ

vj (M/s) and V ′j σ
vj → V ′j+1σ

vj+1 .
We consider ϕ′ = νñ.σ′ where σ′ = σuk ∪ σvl . Since only subterms of ϕ have

been added to ϕ′, it is easy to verify that ϕ′ is still a well-formed frame and for
every term W , νs.ϕ �W iff νs.ϕ′ �W . In particular νs.ϕ′ � s.

By construction we have that U ′kσ
uk (M/s)=V ′l σ

vl(M/s). Then, by Lemma 1,
we deduce that U ′kσ

uk = V ′l σ
vl that is Uσ =E V σ. By stability of substitution

of names, we have Uσ(M ′
/s) =E V σ(M ′

/s). We deduce that ϕ(M/s) ≈ ϕ(M ′
/s).

3 Active Case

To simplify the analysis of the active case, we restrict our attention to pairing and
symmetric encryption: the alphabet Σ is now reduced to Σ = {enc, dec, 〈〉, π1, π2}
and E is limited to the first three equations.

3.1 Modeling Protocols Within the Applied Pi Calculus

The applied pi calculus [1] is a process algebra well-suited for modeling crypto-
graphic protocols, generalizing the spi-calculus [2]. We briefly describe its syntax
and semantics. This part is mostly borrowed from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q := processes
0 null process νn.P name restriction
P | Q parallel composition u(z).P message input
!P replication u〈M〉.P message output
if M = N then P else Q conditional

where n is a name, U , V are terms, and u is a name or a variable. The null process
0 does nothing. Parallel composition executes the two processes concurrently.
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Replication !P creates unboundedly new instances of P . Name restriction νn.P
builds a new, private name n, binds it in P and then executes P . The conditional
if M = N then P else Q behaves like P or Q depending on the result of the test
M = N . If Q is the null process then we use the notation [M = N ].P instead.
Finally, the process u(z).P inputs a message and executes P binding the variable
z to the received message, while the process u〈M〉.P outputs the message M and
then behaves like P . We may omit P if it is 0. In what follows, we restrict our
attention to the case where u is a name since it is usually sufficient to model
cryptographic protocols.

Extended processes are defined by the grammar:

A,B := extended processes
P plain process νn.A name restriction
A | B parallel composition νx.A variable restriction
{M/x} active substitution

Active substitutions generalize let , in the sense that νx.({M/x}|P ) corresponds to
let x = M in P , while unrestricted, {M/x} behaves like a permanent knowledge,
permitting to refer globally to M by means of x. We identify variable substi-
tutions {M1/x1 , . . . ,

Ml/xl
}, l ≥ 0 with extended processes {M1/x1}| . . . |{Ml/xl

}. In
particular the empty substitution is identified with the null process.

We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound
variables and free and bound names of A, respectively, defined inductively as
usual for the pi calculus’ constructs and using fv({M/x}) = fv(M) ∪ {x} and
fn({M/x}) = fn(M) for active substitutions. An extended process is closed if it
has no free variables except those in the domain of active substitutions.

Extended processes built up from the null process (using the given construc-
tions, that is, parallel composition, restriction and active substitutions) are called
frames2. To every extended process A we associate the frame ϕ(A) obtained by
replacing all embedded plain processes with 0.

An evaluation context is an extended process with a hole not under a replica-
tion, a conditional, an input or an output.

Structural equivalence (≡) is the smallest equivalence relation on extended
processes that is closed by α-conversion of names and variables, by application
of evaluation contexts and such that the standard structural rules for the null
process, parallel composition and restriction (such as associativity and commu-
tativity of |, commutativity and binding-operator-like behavior of ν) together
with the following ones hold.

νx.{M/x} ≡ 0 ALIAS

{M/x} |A ≡ {M/x} |A{M/x} SUBST

{M/x} ≡ {N/x} if M =E N REWRITE

If ñ represents the (possibly empty) set {n1, . . . , nk}, we abbreviate by νñ the
sequence νn1.νn2 . . . νnk. Every closed extended process A can be brought to
2 We see later in this section why we use the same name as for the notion defined in

section 2.
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the form νñ.{M1/x1}| . . . |{Ml/xl
}|P by using structural equivalence, where P is

a plain closed process, l ≥ 0 and {ñ} ⊆ ∪i fn(Mi). Hence the two definitions of
frames are equivalent up to structural equivalence on closed extended processes.
To see this we apply rule SUBST until all terms are ground (this is assured
by the fact that the considered extended processes are closed and the active
substitutions are cycle-free). Also, another consequence is that if A ≡ B then
ϕ(A) ≡ ϕ(B).

Two semantics can be considered for this calculus, defined by structural equiv-
alence and by internal reduction and labeled reduction, respectively. These se-
mantics lead to observational equivalence (which is standard and not recalled
here) and labeled bisimilarity relations. The two bisimilarity relations are
equal [1]. We use here the latter since it relies on static equivalence and it allows
to take implicitly into account the adversary, hence having the advantage of not
using quantification over contexts.

Internal reduction is the largest relation on extended processes closed by struc-
tural equivalence and application of evaluation contexts such that:

c〈x〉.P | c(x).Q → P | Q COMM

if M = M then P else Q → P THEN

if M = N then P else Q → Q ELSE

for any ground terms M and N such that M �=E N

On the other hand, labeled reduction is defined by the following rules.

c(x).P
c(M)−−−→ P{M/x} IN c〈u〉.P c〈u〉−→ P OUT-ATOM

A
c〈u〉−−−→ A′

νu.A
νu.c〈u〉−−−−−→ A′

u �= c OPEN-ATOM A
α−→ A′

νu.A
α−→ νu.A′

u does not
occur in α

SCOPE

A
α−→ A′

A|B α−→ A′|B
(*) PAR

A ≡ B B
α−→ B′ B′ ≡ A′

A
α−→ A′

STRUCT

where c is a name and u is a metavariable that ranges over names and variables,
and the condition (*) of the rule PAR is bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Definition 2. Labeled bisimilarity (≈l) is the largest symmetric relation R on
closed extended processes such that ARB implies:

1. ϕ(A) ≈ ϕ(B);
2. if A → A′ then B →∗ B′ and A′RB′, for some B′;
3. if A

α→ A′ and fv(α) ⊆ dom(ϕ(A)) and bn(α) ∩ fn(B) = ∅ then B →∗ α→→∗

B′ and A′RB′, for some B′.

We denote A ⇒ B if A → B or A
α→ B.

Definition 3. A frame ϕ is valid w.r.t. a process P if there is A such that
P ⇒∗ A and ϕ ≡ ϕ(A).
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Definition 4. Let P be a closed plain process without variables as channels and
s a free name of P , but not a channel name. We say that s is syntactically
secret in P if, for every valid frame ϕ w.r.t. P , s is not deducible from νs.ϕ.
We say that s is strongly secret if for any closed terms M, M ′ such that bn(P )∩
(fn(M) ∪ fn(M ′)) = ∅, P (M/s) ≈l P (M ′

/s).

LetMo(P ) be the set of outputs of P , that is the set of terms m such that c〈m〉
is a message output construct for some channel name c in P , and letMt(P ) be
the set of operands of tests of P , where a test is a couple M = N occurring in
a conditional and its operands are M and N . LetM(P ) =Mo(P ) ∪Mt(P ) be
the set of messages of P . Examples are provided at the end of this section.

The following lemma intuitively states that any message contained in a valid
frame is an output instantiated by messages deduced from previous sent
messages.

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P ⇒∗ A. There are l ≥ 0, an extended process B = νñ.σl|PB, where
PB is some plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B,
{ñ} ⊆ bn(P ), for every operand of a test or an output T of PB there is a message
T0 in P (a operand of a test or an output respectively), such that T = T0θσl,
and, σi = σi−1 ∪ {Miθiσi−1/yi}, for all 1 ≤ i ≤ l, where Mi is an output in P , θi

is a substitution public w.r.t. ñ and σ0 is the empty substitution.

The proof is done by induction on the number of reductions in P ⇒∗ A. Intu-
itively, B is obtained by applying the SUBST rule (from left to right) as much
as possible until there are no variables left in the plain process. Note that B is
unique up to the structural rules different from ALIAS, SUBST and REWRITE.
We say that ϕ(B) is the standard frame w.r.t. A.

As a running example we consider the Yahalom protocol:

A ⇒ B : A, Na

B ⇒ S : B, {A, Na, Nb}Kbs

S ⇒ A : {B,Kab, Na, Nb}Kas , {A,Kab}Kbs

A ⇒ B : {A,Kab}Kbs

In this protocol, two participants A and B wish to establish a shared key
Kab. The key is created by a trusted server S which shares the secret keys Kas

and Kbs with A and B respectively. The protocol is modeled by the following
process.

PY (kab)=νkas, kbs.(!PA)|(!PB)|(!νk.PS(k))|PS(kab) with

PA = νna.c〈a, na〉.c(za).[b = Ub].[na = Una ].c〈π2(za)〉
PB =c(zb).νnb, rb.c〈b,enc(〈π1(zb), 〈π2(zb), nb〉〉,kbs, rb)〉.c(z′b).[a = π1(dec(z′b, kbs))]
PS(x)=c(zs).νrs, r

′
s.c〈enc(〈π1(zs), 〈x,Vn〉〉,kas,rs), enc(〈Va,x〉,kbs, r′s)〉

and Ub = π1(dec(π1(za), kas)) Una = π1(π2(π2(dec(π1(za), kas))))
Va = π1(dec(π2(zs), kbs)) Vn = π2(dec(π2(zs), kbs)).
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For this protocol the set of outputs and operands of tests are respectively:

Mo(PY ) = {〈a, na〉, za,π2(za), 〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉, z′b,
enc(〈π1(zs), 〈x,Vn〉〉, kas, rs), enc(〈Va,x〉, kbs, r′s)} and

Mt(PY ) = {b,Ub, na,Una , a,π1(dec(z′b, kbs))}.

3.2 Our Hypotheses

In what follows, we assume s to be the secret. As in the passive case, destruc-
tors above the secret must be forbidden. We also restrict ourself to processes with
ground terms in key position. We consider the process
P1 = νk, r, r′.(c〈enc(s, k, r)〉 | c(z).c〈enc(a, dec(z, k), r′)〉). The name s in P1 is
syntactically secret but not strongly secret. Indeed,

P1 ≡ νk, r, r′.(νz.({enc(s,k,r)/z} | c〈z〉 | c(z).c〈enc(a, dec(z, k), r′)〉))
→ νk, r, r′.({enc(s,k,r)/z} | c〈enc(a, s, r′)〉) (COMM rule)

≡ νk, r, r′.(νz′.({enc(s,k,r)/z,
enc(a,s,r′)/z′} | c〈z′〉))

νz′.c〈z′〉−−−−−→ νk, r, r′.{enc(s,k,r)/z,
enc(a,s,r′)/z′} def= P ′1

and P ′1 does not preserve the strong secrecy of s (see the frame ψ2 of Section 2.3).
Without loss of generality with respect to cryptographic protocols, we assume

that terms occurring in processes are in normal form and that no destructor
appears above constructors. Indeed, terms like π1(enc(m, k, r)) are usually not
used to specify protocols. We also assume that tests do not contain constructors.
Indeed a test [〈M1, M2〉 = N ] can be rewritten as [M1 = N1].[M2 = N2] if N =
〈N1, N2〉, and [M1 = π1(N)].[M2 = π2(N)] if N does not contain constructors,
and will never hold otherwise. Similar rewriting applies for encryption, except
for the test [enc(M1, M2, M3) = N ] if N does not contain constructors. It can
be rewritten in [dec(N, M2) = M1] but this is not equivalent. However since
the randomness of encryption is not known to the agent, explicit tests on the
randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say
that an occurrence qenc of an encryption in a term T is an agent encryptions
w.r.t. a set of names ñ if t|qenc = enc(M,K,R) for some M,K,R and R ∈ ñ.

Definition 5. A process P is well-formed w.r.t. a name s if it is closed and if:

1. any occurrence of enc(M,K,R) in some term T ∈ M(P ) is an agent en-
cryption w.r.t. bn(P ), and for any term T ′ ∈ M(P ) and position p such that
T ′|p = T there is a position q such that q.3 = p and T ′|q = enc(M,K,R);

2. for every term enc(M,K,R) or dec(M,K) occurring in P , K is ground;
3. any operand of a test M ∈ Mt is a name, a constant or has the form

π1(dec(. . . πn(dec(πn+1(z),Kl)) . . . ,K1)), with l ≥ 0, where the πi are words
on {π1,π2} and z is a variable;

4. there are no destructors above constructors, nor above s.



314 V. Cortier, M. Rusinowitch, and E. Zălinescu

Conditional tests should not test on s. For example, consider the process P3 =
νk, r.(c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉) where a is a non restricted
name. s in P3 is syntactically secret but not strongly secret. Indeed, P3 →
νk, r.({enc(s,k,r)/z} | [s = a].c〈ok〉). The process P3(a/s) reduces further while
P3(b/s) does not. That is why we have to prevent hidden tests on s. Such tests
may occur nested in equality tests. For example, let

P4 = νk, r, r1, r2.(c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉
| c(z).[dec(dec(z, k), k′) = a].c〈ok〉)

→ P ′4 = νk,r,r1,r2.({enc(s,k,r)/z}|c〈enc(enc(a, k′, r2), k, r1)〉|[dec(s, k′) = a].c〈ok〉)

Then P4(enc(a,k′,r′)/s) is not equivalent to P4(n/s), since the process P ′4(
enc(a,k′,r′)/s)

emits the message ok while P ′4(n/s) does not. This relies on the fact that the de-
cryption dec(z, k) allows access to s in the test.

For the rest of the section we assume that z0 is a new fixed variable.
To prevent hidden tests on the secret, we compute an over-approximation of

the ciphertexts that may contain the secret, by marking with a symbol x all
positions under which the secret may appear in clear.

We first introduce a function fep that extracts the least encryption over s and
“clean” the pairing function above s. Formally, we define the partial function

fep : T × N∗+ ↪→ T × N∗+

fep(U, p) = (V, q) where V and q are defined as follows: q ≤ p is the posi-
tion (if it exists) of the lowest encryption on the path p in U . If q does not
exist or if p is not a maximal position in U , then fep(U, p) =⊥. Otherwise,
V is obtained from U |q by replacing all arguments of pairs that are not on
the path p with new variables. More precisely, let V ′ = U |q. The subterm
V ′ must be of the form enc(M1, M2, M3) and p = q.i.q′. Then V is defined
by V = enc(M ′

1, M
′
2, M

′
3) with M ′

j = Mj for j �= i and M ′
i = prune(Mi, q

′)
where prune is recursively defined by: prune(〈N1, N2〉, 1.r) = 〈prune(N1, r),xr〉,
prune(〈N1, N2〉,2.r) = 〈xr, prune(N2, r)〉 and prune(N, ε) = N .
For example, fep(enc(enc(〈〈a, b〉, c〉, k2, r2), k1, r1), 1.1.2)=(enc(〈zε, c〉, k2, r2), 1).

The function fe is the composition of the first projection with fep. With the
function fe, we can extract from the outputs of a protocol P the set of ciphertexts
where s appears in clear below the encryption.

E0(P ) = {fe(M [x]p, p) |M ∈Mo(P ) ∧ M |p = s}.

For example, E0(PY ) = {enc(〈z1, 〈x, z1.2〉〉, kas, rs), enc(〈z1, x〉, kbs, r′s)}, where
PY is the process corresponding to the Yahalom protocol defined in previous
section.

However s may appear in other ciphertexts later on during the execution
of the protocol after decryptions and encryptions. Thus we also extract from
outputs the destructor parts (which may open encryptions). Namely, we define
the partial function

fdp : T × N∗+ ↪→ T × N∗+
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fdp(U, p) = (V, q) where V and q are defined as follows: q ≤ p is the occurrence
of the highest destructor above p (if it exists). Let r ≤ p be the occurrence of
the lowest decryption above p (if it exists). We have U |r = dec(U1,U2). Then
U1 is replaced by the variable z0 that is V = (U [dec(z0,U2)]r)|q. If q or r do not
exist then fdp(U, p) =⊥.

For example, fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1.1.1.1) = (π1(dec(z0, k1)), 1).
The function fd is the composition of the first projection with fdp. By ap-

plying the function fd to messages of a well-formed process P we always ob-
tain terms D of the form D = D1(. . . Dn) where Di = πi(dec(z0,Ki)) with
1 ≤ i ≤ n, Ki are ground terms and πi is a (possibly empty) sequence of projec-
tions πj1 (πj2(. . . (πjl

) . . . )).
With the function fd, we can extract from the outputs of a protocol P the

meaningful destructor part:

Do(P ) = {fd(M, p) |M ∈Mo(P ) ∧ p ∈ Posv(M)}.

For example, Do(PY ) = {π2(dec(z0, kbs)),π1(dec(z0, kbs))}.
We are now ready to mark (with x) all the positions where the secret might be

transmitted (thus tested). We also define inductively the sets Ei(P ) as follows.
For each element E of Ei we can show that there is an unique term in normal
form denoted by E such that V(E) = {z0} and E(E)↓ = x. For example, let
E1 =enc(〈z1, 〈x, z2〉〉, kas, rs), then E1 = π1(π2(dec(z0, kas))). We define

Ei(P ) = {U | ∃E ∈ Ei(P ),U ≤st E and ∃q ∈ Pos(U),hU|q = dec},
Ei+1(P ) = {M ′[x]q | ∃M ∈ Mo(P ), p ∈ Posv(M) s.t. fep(M, p) = (M ′, p′),

fdp(M ′, p′′) = (D, q), p = p′.p′′, and D1 ∈ E i(P )}.

For example,
E0(PY ) = {π1(π2(dec(z0, kas))),π2(dec(z0, kas)), dec(z0, kas),

π2(dec(z0, kbs)), dec(z0, kbs)}
E1(PY ) = {enc(〈z1, 〈z1.2, x〉〉, kas)}
E1(PY ) = {π2(π2(dec(z0, kas))),π2(dec(z0, kas)), dec(z0, kas)}
and Ei(PY ) = ∅ for i ≥ 2.

Note that E(P ) = ∪i≥0Ei(P ) is finite up-to renaming of the variables since
for every i ≥ 1, every term M ∈ Ei(P ), Pos(M) is included in the (finite) set of
positions occurring in terms ofM0.

We can now define an over-approximation of the set of tests that may be
applied over the secret.

Ms
t (P )={M ∈Mt(P ) | ∃p ∈ Posv(M) s.t. D = D1(. . . Dn)=fdp(M, p) �=⊥,
and ∃E ∈ E(P ),∃i s.t. Di =πi(dec(z0,K)),E = enc(U,K,R) and x ∈ Di(E)↓}

For example, Ms
t(PY ) = {π1(π2(π2(dec(π1(za), kas))))}.

Definition 6. We say that a well-formed process P w.r.t. s does not test over s
if the following conditions are satisfied:
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1. for all E ∈ E(P ), for all D = D1(. . . Dn) ∈ Do(P ), if Di = πi(dec(z0),K)
and e = enc(U,K,R) and x ∈ Di(E)↓ then i = 1 and E �<st D1,

2. if M = N or N = M is a test of P and M ∈Ms
t (P ) then N is a restricted

name.

Note that E(P ) can be computed in polynomial time from P and that whether
P does not test over s is decidable. We show in the next section that the first
condition is sufficient to ensure that frames obtained from P are well-formed.
It ensures in particular that there are no destructors right above s. If some Di

cancels some encryption in some E and x∈Di(E)↓ then all its destructors should
reduce in the normal form computation (otherwise some destructors (namely
projections from Di) remain above x). Also we have i = 1 since otherwise a Di

may have consumed the lowest encryption above x, thus the other decryption
may block, and again there would be destructors left above x.

The second condition requires that whenever a operand of a test M = N is
potentially dangerous (that is M or N ∈ Ms

t(P )) then the other operand should
be a restricted name.

3.3 Main Result

We are now ready to prove that syntactic secrecy is actually equivalent to strong
secrecy for protocols that are well-formed and do not test over the secret.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have νs.ϕ � s for any valid
frame ϕ w.r.t. P if and only if P (M/s) ≈l P (M ′

/s), for all ground terms M, M ′

public w.r.t. bn(P ).

Proof. Again, we only provide a sketch of the proof. Showing that strong se-
crecy implies syntactic secrecy is simple so we concentrate here on the converse
implication. Let P be well-formed process w.r.t. a free name s with no test over
s and assume that P is syntactically secret w.r.t. s.

Let M, M ′ be to public terms w.r.t. bn(P ). To prove that P (M/s) and P (M ′
/s)

are labeled bisimilar, we need to show that each move of P (M/s) can be matched
by P (M ′

/s) such that the corresponding frames are bisimilar (and conversely).
By hypothesis, P is syntactically secret w.r.t. s thus for any valid frame ϕ
w.r.t. P , we have νs.ϕ � s. In order to apply our previous result in the passive
setting (Theorem 1), we need to show that all the valid frames are well-formed.
However, frames may now contain destructors in particular if the adversary sends
messages that contain destructors. Thus we first need to extend our definition
of well-formedness for frames.

Definition 7. We say that a frame ϕ = νñ.σ is extended well-formed w.r.t.
s if for every occurrence qs of s in T↓, where T = xσ for some x ∈ dom(σ),
there exists an agent encryption w.r.t. ñ above s. Let qenc < qs the occurrence
of the lowest encryption. It must verify that hT |q = 〈〉, for all positions q with
qenc < q < qs.
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This definition ensures in particular that there is no destructor directly above s.
Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Let ϕ be an extended well-formed frame w.r.t. s, where s is a
free name in ϕ. Then νs.ϕ � s iff ϕ(M/s) ≈ ϕ(M ′

/s) for all M, M ′ closed public
terms w.r.t. ϕ.

The first step of the proof of Theorem 2 is to show that any frame produced
by the protocol is an extended well-formed frame. We actually prove directly a
stronger result, crucial in the proof: the secret s always occurs under an honest
encryption and this subterm is an instance of a term in E(P ).

Lemma 4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be
a valid frame w.r.t. P such that νs.ϕ � s. Consider the corresponding standard
frame νñ.σ = νñ.{Mi/yi | 1 ≤ i ≤ l}. For every i and every occurrence qs of s in
Mi↓, we have fe(Mi↓, qs) = E[W/x] for some E ∈ E(P ) and some term W . In
addition νñ.σi↓ is an extended well-formed frame w.r.t. s.

The lemma is proved by induction on i and relies deeply on the construction
of E(P ).

The second step of the proof consists in showing that any successful test in
the process P (M/s) is also successful in P and thus in P (M ′

/s).

Lemma 5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid
frame for P such that νs.ϕ � s and θ a public substitution. If T1 = T2 is a test
in P , then T1θσ(M/s) =E T2θσ(M/s) implies T1θσ =E T2θσ.

This lemma is proved by case analysis, depending on whether T1,T2 ∈ Ms
t and

whether s occurs or not in fn(T1θσ) and fn(T2θσ).
To prove that P (M/s) and P (M ′

/s) are labeled bisimilar, we introduce the
following relation R between extended processes defined as follows: ARB if
there is an extended process A0 and terms M, M ′ such that P ⇒∗ A0, A =
A0(M/s) and B = A0(M ′

/s). Then we show that R satisfies the three points
of the definition of labeled bisimilarity using in particular Lemma 5. Hence we
have also R ⊆ ≈l. Since we have clearly that P (M/s)RP (M ′

/s), it follows that
P (M/s) ≈l P (M ′

/s).

3.4 Examples

We have seen in Section 3.2 that PY is a well-formed process w.r.t. kab and does
not test over kab. Applying Theorem 2, if PY preserves the syntactic secrecy of
kab, we can deduce that the Yahalom protocol preserves the strong secrecy of
kab that is PY (M/kab

) ≈l PY (M ′
/kab

) for any public terms M, M ′ w.r.t. bn(PY ).
We did not formally prove that the Yahalom protocol preserves the syntactic
secrecy of kab but this was done with several tools in slightly different settings
(e.g.[9,15]).

We have also verified that the Needham-Schroeder symmetric key protocol
and the Wide-Mouthed-Frog protocol are both well-formed process w.r.t. kab
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and do not test over kab, where kab is the exchanged key. Again, the syntactic
secrecy of kab has been proved by several tools (e.g. [9]) in slightly different
settings for both protocols. Using Theorem 2, we can deduce that they both
preserve the strong secrecy of kab.
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Abstract. We introduce a new class of multiplicative proof nets, J-proof
nets, which are a typed version of Faggian and Maurel’s multiplicative
L-nets. In J-proof nets, we can characterize nets with different degrees
of sequentiality, by gradual insertion of sequentiality constraints. As a
byproduct, we obtain a simple proof of the sequentialisation theorem.

1 Introduction

Proof nets have been introduced by Girard [10] as an abstract representation of
linear logic proofs; this representation has two main interests: to provide a tool
for studying normalization, and to give a canonical representation of proofs.

In proof nets, information about the order in which the rules are performed is
reduced to a minimum, only two kinds of information about sequentiality being
kept: the one corresponding to the subformula trees and the one providing the
axiom links.

To retrieve a sequent calculus derivation from a proof net, we need to recover
more information about sequentiality. A sequentialization procedure gives in-
structions on how to introduce this sequentiality. Such a procedure usually relies
on splitting lemmas, which are proved introducing the notion of empire.

In [11], Girard, as part of the correctness criterion for proof nets with quan-
tifiers, introduces a more direct way to represent sequentiality constraints in
a proof net, by using jumps: a jump is an untyped edge between two nodes
(rules) a, b, which expresses a dependency relation: a precedes b (bottom-up) in
the sequentialisation. Recently, the idea of using jumps as a way to represent
sequentiality information has been developed by Faggian and Maurel ([8]) in the
abstract context of the L-nets, a parallel variant of Ludics designs.

Here we define a representation of proofs where objects with different degree
of parallelism live together, in the spirit of [6,5]; for this purpose we introduce a
new class of multiplicative proof nets, J-proof nets, that can be considered as a
typed, concrete, version of multiplicative L-nets.
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We prove that by gradual insertion of jumps in a J-proof net, one can move
in a continuum from J-proof nets of minimal sequentiality to J-proof nets of
maximal sequentiality. The former are proof nets in the usual sense, the latter
directly correspond to sequent calculus proofs.

In this way, we realize, for the multiplicative fragment of Linear Logic, a
proposal put forward by Girard.

Moreover, our technique results into a very simple proof of the sequential-
isation theorem. Our main technical result is the Arborisation Lemma, which
provides the way to add jumps to a J-proof net up to a maximum.

2 Focalization, MLL and HS

In the first part of the paper we consider the multiplicative fragment of the
hypersequentialised calculus HS [12,13,9], which is a focussing version of Multi-
plicative Linear Logic (MLL), as we explain below.

We define proof nets for HS, and then introduce J-proof nets. The strong
geometrical properties of HS will allow us to uncover a simple sequentialisation
technique for the calculus. We will then be able to apply the same technique to
MLL.

2.1 Focalization and MLL

It has been proved by Andreoli [2] that the sequent calculus of Linear Logic en-
joys a property called focalization: a proof π of a sequent � Γ can be transformed
into a proof πfoc of the same sequent which satisfies a specific discipline, called
focussing discipline, which we describe below.

Here we stress that πfoc is obtained from π solely by permutation of the rules.
As a consequence, if we restrict our attention to MLL, there is no difference in
the proof net of π and πfoc. In fact, we have that:

1. π and πfoc are equivalent modulo permutation of the rules;
2. the proof net respectively associated to π and πfoc is the same;
3. an MLL proof net has always a focussing proof among its possible sequen-

tialisations.

(2.) is an immediate consequence of (1.), while (3.) is actually the easier way to
prove focalization for MLL (as first observed by Andreoli and Maieli in [1]). We
revise this below.

Focalization relies on a distinction of Linear Logic connectives into two fami-
lies, which are as follows.
Positive connectives: ⊗,⊕, 1, 0.
Negative connectives: �, &,⊥,�.

From now on, we only consider the multiplicative fragment of Linear logic;
the formulas are hence as follows



Jump from Parallel to Sequential Proofs: Multiplicatives 321

F ::= A | A⊥ | F�F | F ⊗ F

where A,A⊥ are atoms.
To understand focalization, it helps to think of MLL proof nets rather than

sequent calculus proofs.
Let us partition the nodes which are respectively typed by ⊗ and � into

maximal trees of nodes with the same type (resp. positive and negative trees). We
assume that there is at most one negative node which is conclusion of the proof
net (otherwise, we put together all negative conclusions by making use of �).

Consider now sequentialization. That is, we associate a sequent calculus proof
to a proof-net; to do this, essentially one has to “find a last rule”. The key result
in proof-net theory is that this is always possible; a ⊗ rule which can be removed
from the proof net (and taken as the last rule in the sequent calculus derivation)
is called a splitting ⊗. Let us now choose a specific sequentialization strategy,
based on the notion of hereditarely splitting ⊗, whose existence was proved in
([7]).

– It R has a negative conclusion, we choose that conclusion as last rule of the
sequent calculus proof, and remove it from the proof net. We persist until
the whole negative tree has been removed.

– If R has only positive conclusions, we choose an hereditarely splitting ⊗. This
means that we can choose a tree of ⊗, and persistently remove all the ⊗ until
the whole positive tree has been removed.

What we obtain is a sequent calculus derivation whose bottom-up construction
satisfies the focussing discipline below.

Definition 1 (Focussing proofs). A sequent calculus proof is called focussing
if its bottom-up construction satisfies the following discipline:

– First keep decomposing a negative formula (if any) and its subformulas, until
one get to atoms or positive subformulas;

– choose a positive formula, and keep decomposing it up to atoms or negative
subformulas.

2.2 Synthetic Connectives: HS

Focalization implies that we can consider a maximal tree of connectives of the
same polarity (positive or negative) as a single n-ary connective, called a syn-
thetic connective, which can be introduced by a specific rule.

In [12] Girard has introduced a new calculus, HS, which uses focalization
and synthetic connectives to force a “normal” form for MALL sequent calculus
proofs.

HS introduces a polarization on the atoms. This constraint correspond to a
hidden decomposition of the atoms, and does not introduce essential differences,
while making the geometrical structure strong and clear. For this reason, we will
first work with HS; in Section 8 we will then remove the polarization.
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3 From Proof Nets to J-Proof Nets

3.1 MHS Sequent Calculus

We indicate by MHS the multiplicative fragment of HS.

Formulas. The formulas of MHS are as follows:

N ::= A⊥ | �(P, . . . , P )
P ::= A | ⊗(N, . . . , N)

where A denotes a positive atom.

Rules. The rules for proving sequents are the following

� A, A⊥
(Ax)

� Γ, F � ∆, F⊥

� Γ, ∆
(Cut)

� Γ1, N1 . . . � Γn, Nn

� Γ1, . . . ,Γn, ⊗(N1, . . . , Nn)
(+)

� Γ, P1, . . .Pn

� Γ, �(P1, . . . , Pn)
(−)

� Γ � ∆

� Γ, ∆
(M ix)

where all context Γ,∆, . . . only contain P formulas.

Remark 1. The calculus admits a unary � (resp.⊗) which is a negative (resp.
positive) polarity inverter [13,14] This polarity inverter is usually called a nega-
tive (resp. positive) Shift and denoted by ↑ (resp. ↓).

Skeleton of a Sequent Calculus Proof. Let us give a first intuition of our
approach. Consider a cut-free proof π, and type each rule application with its
active formulas. Observe that if we forget everything but the types, we have a
tree, where the nodes are MHS formulas, and the leaves have the form {A,A⊥}.
We can think of this tree as the skeleton of the sequent calculus derivation.

Here we do not push this intuition further, but it is possible to characterizes
the trees which correspond to sequent calculus derivations, in the spirit of [13],
and extend the approach also to the cut rule.

3.2 MHS Proof-Nets

In this section we define proof-nets for MHS.
Proof-nets provide a graph representation of proofs. Each node represents a

rule of the sequent calculus, and it is only concerned with the active formulas.

Definition 2 (Typed structure). We call typed structure a directed acyclic
graph where:
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– the edges are possibly typed with MHS formulas
– the nodes (also called links) are typed either with a MHS formula or with a

pair of atoms {A,A⊥}.

Given a link, the incoming edges are called the premises of the link, and the
outgoing edges are called conclusions of the link. We call positive (resp. negative)
a link of type ⊗(N1, . . . , Nn) (resp. �(P1, . . . , Pn)).

We admit pending edges. An edge which has no target is called a conclusion
of the structure, and its source is called a terminal link.

Definition 3 (Proof structure). A proof structure is a typed structure where
the nodes are typed as the conclusions, and the typing satisfies the following
constraints:

+

..........N N1 n

&

P1 Pn
..........

−

(P  , ......, P    )

AxAx

A   A   Cut

T

T

 1  n( N   ,......., N    )
 1  n

F   F   

Moreover, we ask that there is at most one negative terminal link.

Definition 4 (Switching path and cycle). Given a proof-structure, a switch-
ing path is an unoriented path which never uses two premises of the same neg-
ative link.
A switching cycle is a switching path which is a cycle.

Definition 5 (Proof-nets). A proof structure R is called a proof-net if it has
no switching cycles.

Proposition 1. Given a sequent calculus proof π of MHS, we can associate to
it a proof net π∗.

Proof. We proceed in the standard way.

Definition 6 (Sequentialization). A proof structure R is sequentialisable iff
there exists a proof π of MHS (that we call a sequentialisation of R) s.t. π∗ = R.

3.3 J-Proof Nets

We enrich proof-nets with jumps, which will allow us to graduate sequentiality.

Definition 7 (J-proof structure)
A J-proof structure (jumped proof structure) is a proof structure added with
untyped edges called jumps, which connect a positive to a negative link (the
orientation is from positive to negative).
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Definition 8 (Switching path and cycle). Given a J-proof structure, a
switching path is an unoriented path which never uses two premises of the same
negative link (a jump is also a premise of its target); a switching cycle is a
switching path which is a cycle.

Definition 9 (J-Proof nets). A J-proof structure R is called a J- proof-net if
it has no switching cycles.

In Section A we sketch normalization of J-proof nets.
A proof-net is a special case of J-proof net. In the next section we will show

that a sequent calculus proof (or rather its skeleton) can also be seen as a
special case of J-proof net. This will allow us to define a new technique of
sequentialization.

Note. From now on, we only consider J-proof structures without cut links.
The cut can be smoothly dealt with essentially by identifying the cut node of
premises F,F⊥ with the node of which the positive formula is conclusion.

3.4 Partial Order Associated to a J-Proof Net

Since a J-proof net R is a d.a.g., we associate to R in the standard way a strict
partial order ≺R on the typed nodes.

We recall that we can represent a strict partial order as a d.a.g., where we
have an edge a ← b whenever a <1 b (i.e. a < b, and there is no c such that
a < c and c < b.) Conversely (the transitive closure of) a d.a.g. G induces a
strict partial order ≺G on the nodes of G.

We call skeleton of a directed graph G, denoted Sk(G), the minimal graph
whose transitive closure is the same as that of G. An edge a← b is transitive if
there is no node c such that a← c and c← b.

With a slight abuse, we often identify ≺G and the skeleton of G.
Given a J-proof net R, we call minimal (resp. maximal) a link c of R which

is minimal in ≺R, i.e. there is no node b such that b ← c (resp. c ← b). Notice
that, because of jumps, a node can be terminal, without being minimal.

We call predecessor of a node c, a node which immediately precedes c. Oth-
erwise, we speak of hereditary predecessor. Similarly for the successor.

A strict order r on a set A is arborescent when each element has a unique
predecessor.

If the order ≺R associated to a J-proof net R is arborescent, the skeleton of
R is a forest.

Finally, we observe that

Remark 2. Let R be a J-proof net.

– Sk(R) is obtained from R by removing the edges which are transitive.
– Only an edge which goes from positive to negative can be transitive.
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4 J-Proof Nets and Sequent Calculus

In the next section we will induce a sequentialisation of a proof net by adding
jumps. Let us start with an example. Consider the proof-net below. We add a
jump from the positive to the negative link, and consider the order induced on
the links. We obtain a tree, and such a tree is the skeleton of a sequent calculus
proof.

AxAx

AxAx
AxAx AxAx

AxAx

AxAx

+ −

A   B   
&

(A, B )
−

+

+ −

A   B   

&

(A, B )

T T

T T

A   B   

TT

A   B   

TT
(  A , B    )

(  A , B    )

To sequentialize a J-proof net, we will then consider the order associated to a
proof net as a directed acyclic graph, and add to it enough jumps, to make the
order arborescent, and hence proof-like (Lemma 1).

Let us show that if the order on the nodes of a J-proof net is arborescent, it
corresponds to a sequent calculus derivation. (A proof of this is given, in a more
general setting and with full details, in [5].)

Proposition 2. Let R be a J-proof net such that ≺R is arborescent.

(i) We can associate to R a proof πR in the sequent calculus MHS, possibly
making use of the Mix Rule.

(ii) Moreover, if the order has a minimum and each negative link has a unique
successor (i.e. if the skeleton is a tree which only branches on positive nodes)
then πR does not use the Mix rule.

Proof. The proof is by induction on the number of links. For brevity, we show
directly (ii).

1. n = 1: The only link of R is an Axiom link of conclusions A, A⊥, to which
we associate � A, A⊥

;



326 P. Di Giamberardino and C. Faggian

2. n > 1: we reason by cases, depending on the type of the minimal link c of
R.
– �(P1 . . .Pn) : let ≺R′ be the order obtained by erasing c. By induction we

associate a proof π′ to ≺R′ . π≺R is
π′

� Γ, �i∈{1...n}(Pi)
, whose last rule is

a − rule on P1, . . . , Pn ( P1, . . . , Pn are conclusions of π′ by construction);
– ⊗(N1, . . . , Nn) : let ≺R1 , . . . ,≺Rn be the n orders obtained by erasing c.

By induction we associate a proof π′i to each ≺Ri ; π≺R is
π′1 . . . π′n

� Γ1, . . . ,Γn, ⊗i∈{1...n}Ni
whose last rule is a + rule on N1, . . . , Nn

(by construction, N1, . . . , Nn are respectively among the conclusions of
π′1, . . . ,π

′
n ).

5 Sequentialization

Definition 10 (Saturated J-proof net). A J-proof net R is saturated if for
every negative link n and for every positive link p, adding a jump between n and
p creates a switching cycle or doesn’t increase the order ≺R. Given a J-proof net
R, a saturation RJ of R is a saturated J-proof net obtained from R by adding
jumps.

Our sequentialisation argument is as follows:

– If the order ≺R associated to a J-proof net R is arborescent, we can associate
to R a proof πR in the sequent calculus.

– The order associated to a saturated J-proof net is arborescent.
– Any J-proof net can be saturated.

Lemma 1 (Arborisation). Let R be a J-proof net. If R is saturated then ≺R

is arborescent. Any J-proof net can be saturated.

Proof. We prove that if ≺R is not arborescent, then there exists a negative link c
and a positive link b s.t. adding a jump between b and c doesn’t create switching
cycles and makes the order increase.

If ≺R is not arborescent, then in ≺R there exists a link a with two imme-
diate predecessors b and c (they are incomparable). Observe that b and c are
immediately below a in Sk(R) and also in R.

If a is an Axiom link, then necessarily b and c are respectively a positive link
and a negative link; we draw a jump between b and c, this doesn’t create a cycle
and the order increases.

Otherwise, a is a positive link, and b and c are two negative links; we distin-
guish two cases:

1. either b or c is terminal in R. Let assume that b is terminal; then c cannot be
terminal ( by definition of jumped proof structure), and there is a positive
link c′ which immediately precedes c. If we add a jump between b and c′,
this doesn’t create cycles and the order increases.
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2. Neither b or c are terminal in R. Each of them has an immediate positive
predecessor, respectively b′ and c′. Suppose that adding a jump from b′ to
c creates a cycle: we show that adding a jump from c′ to b cannot create a
cycle. If adding to R the jump b′ → c creates a cycle, that means that there
is in R a switching path r = 〈c, c′....b〉; if adding the jump c′ → b creates a
cycle then there is a switching path r′ = 〈b, b′...c〉 . Assume that r and r′ are
disjoint: we exhibit a switching cycle in R 〈c, c′...b, b′...c〉 by concatenation
of r and r′.This contradicts the fact that R is a proof net.
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Assume that r and r′ are not disjoint. Let x be the first node (starting from
b ) where r and r′ meets. Observe that x must be negative (otherwise there
would be a cycle). Each path uses one of the premises, and the conclusion
(hence the path meets also in the node below x). From the fact that x is the
first point starting from b where r and r′ meet it follows that: (i) r′ enters
in x from one of the premises, and exits from the conclusion; (ii) each of r
and r′ must use a different premise of x. Then we distinguish two cases:

- r enters x from one of the premises; we build a switching cycle taking the
sub path 〈b, ....,x〉 of r′ and the sub path 〈x, ...., b〉 of r.
- r enters x from the conclusion; then we build a switching cycle composing
the sub path of r 〈c, ...,x〉 , the reversed sub path of r′ 〈x, ..., b〉 and the path
〈b, a, c〉.          
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6 Properties

In this section we deal with three standard results one usually has on proof nets.
In 6.1 we get rid of the Mix rule, in 6.2 we give an immediate proof of the usual
splitting Lemma, in 6.3 we prove that the sequentialization we have defined is
correct w.r.t. Definition 6.

The novelty here is the argument. When adding jumps, we gradually transform
the skeleton of a graph into a tree. We observe that some properties are invariant
under the transformation we consider: adding jumps and removing transitive
edges. Our argument is always reduced to simple observations on the final tree
(the skeleton of RJ), and on the fact that each elementary graph transformation
preserves some properties of the nodes.

6.1 Connectness

Lemma 2. (i) Two nodes are connected in a d.a.g. G (i.e. there exists a se-
quence of connected edges between the two nodes) iff they are connected in the
skeleton of G.

(i) If two node are connected in R, then they are connected in RJ .
(iii) If R is connected as a graph so are RJ and Sk(RJ).

Proof. Immediate, because adding edges, or deleting transitive edges, preserves
connectness.

We now deal with a more peculiar notion of connectness, to get rid of the mix
rule, as is standard in the theory of proof-nets.

Definition 11 (Correction graph). Given a typed graph R, we call switching
a function s which associates to every negative node of R one of its premises
(again, jumps also are premises of their target); a correction graph s(R) is the
graph obtained by erasing for every negative node of R the premises not chosen
by s.

Definition 12 (s-connected). A J-proof net R is s-connected if given a switch-
ing of R, its correction graph is connected.

Remark 3. We only need to check a single switching. The condition that a proof
structure has not switching cycles is equivalent to the condition that all correc-
tion graphs are acyclic.

A simple graph argument shows that assuming that all correction graphs are
acyclic, if for a switching s the correction graph s(R) is connected, then for all
other switching s′ s′(R) is connected.

Proposition 3. If R is s-connected, then its skeleton is a tree which only bran-
ches on positive nodes (i.e., each negative link has a unique successor).

Proof. First we observe that:

– any switching of R is a switching of RJ , producing the same correction graph.
Hence if R is s-connected, RJ is s-connected.
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– Given a J-proof net G, any switching of its skeleton is also a switching of G,
because the skeleton is obtained by erasing the edges which are transitive.
A transitive edge can be premise only of a negative node.

As a consequence, any switching of Sk(RJ) induce a correction graph which is
connected. However, Sk(RJ) is a tree, so we cannot erase any edge. Hence each
negative link has a unique premise, and the graph has only one switching.

From Proposition 2, it follows that

Proposition 4. If R is s-connected, and RJ a saturation, we can associate to
it a proof πRJ

which does not use the Mix rule.

6.2 Splitting

Observe that a minimal link of S is a root of its skeleton.

Definition 13 (Splitting). Let R be a typed structure, c a positive link, and
b1, . . . , bn the nodes which are immediately above c (the premises of c have the
same type as b1, . . . , bn). We say that c is splitting for R if it is terminal, and
removing c there is no more connection (i.e. no sequence of connected edges)
between any two of the nodes bi.

Remark 4. Assume that R is a connected graph. It is immediate that if R is a
J-proof net whose terminal links are all positive, the removal of c splits R into n
disjoint connected components R1, . . . ,Rn, and each component is a J-proof net.

Lemma 3 (Splitting lemma). Let R be a J-proof net whose terminal nodes
are all positive, and RJ a saturation; the minimal link c of RJ (i.e. the root of
Sk(RJ)) is splitting for R.

Proof. Observe that c is obviously splitting in the skeleton of RJ , because c is
the root of a tree. Hence it is splitting in RJ , as a consequence of Lemma 2, (i).
Similarly, c must be splitting in R, as a consequence of Lemma 2, (ii).

6.3 Sequentialisation Is Correct

Proposition 5. Let R be a J-proof-net. For any saturation RJ of R, if π = πRJ

then (π)∗ = R.

Proof. For brevity, we assume that R is s-connected. Hence, the skeleton of RJ

a tree. The proof is by induction on the number of links of R.

1. n = 1: then R consists of a single Axiom link, and π is the corresponding
Axiom rule.

2. n > 1. We consider the minimal link k of RJ .
Observe that the last rule of π is the rule which correspond to the root k. Let
us call π1, . . . ,πn the premises of the rule, and RJ1 , . . . ,RJn the subnets ob-
tained from RJ by removing k. By definition, each πi is the proof associated
to an RJi .
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– Assume k is positive. By the splitting lemma, k is splitting in R.
RJ1 . . . ,RJn are obviously saturated (we have not erased any jump) so by
induction hypothesis on R1 . . . ,Rn which are the n sub nets obtained by
removing k from R, (πRJ

1 )∗ = R1, . . . , (πRJ
n)∗ = Rn; by composing all

the πRJ
i with the rule corresponding to k , we get a proof which is equal

to πRJ

and we find that R = (πRJ

)∗.
– Assume k is negative. Similarly, we remove k from R and apply induction

to obtain the conclusion.

7 Partial Sequentialisation and Desequentialization

The approach we have presented is well suited for partially introducing or re-
moving sequentiality, by adding (deleting) a number of jumps.

Actually, it would be straightforward to associate to a sequent calculus proof
π a saturated J-proof net. In this way, to π we could associate either a maximal
sequential or a maximal parallel J-proof net, on the lines of [6,5].

Given a J-proof net R, let us indicate with Jump(R) (DeJump(R)) a J-proof
net resulting from (non deterministically) introducing (eliminating) a number of
jumps in such a way that every time the order increases (decreases).

The following result apply to a J-proof net of any degree of sequentiality.

Theorem 1 (Partial sequentialisation/desequentialization). Let R,R′ be
J-proof nets.

If R′ = Jump(R) then there exists DeJump(R′) such that DeJump(R′) = R.
If R′ = Dejump(R) then there exists Jump(R′) such that Jump(R′) = R.

Proof. Immediate, since we can reverse any step...

8 MLL

Our sequentialisation proof can now be extended to MLL. It is straightforward
to translate an MLL proof net into MHS, however, here we prefer a more direct
approach (where the translation is implicit). We proceed in two steps, first by
introducing a variant of Andreoli’s focussing calculus based on synthetic connec-
tives, and then working directly with MLL.

8.1 MHS+

The polarization of HS makes the geometrical structure clean and clear. We now
eliminate the polarization constraints, still keeping the calculus focussing.

We call this calculus MHS+. The grammar of the formulas is the following:

N ::= A | A⊥ | �(P, . . . , P )
P ::= A | A⊥ | ⊗(N, . . . , N)
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Remark 5. Observe that now we have all the formulas of MLL, modulo cluster-
ing/declustering into synthetic connectives. For example, A�A⊥ is a formula of
MHS+.

The sequent calculus rules are (formally) the same as those of MHS. Observe
however that now we consider negative atoms also as P-formulas. This means
that the contexts Γ,∆, . . . may also contain negative atoms. Moreover, a negative
atom can appear in the premises of a negative rule, and a positive atom can
appear in the premises of a positive rule.

Proof nets. We modify the Axiom link, by introducing a (formal) decomposi-
tion of the atoms. Any atom A can be decomposed into A

√
, of opposite polarity

(technically, the A
√

has been introduced by Girard, and is used also by Laurent
in [14]). Hence we have:

Ax

A

p n

(A⊥)
√

A⊥

A
√

A
√

(A⊥)
√

To the identity axiom we associate

Ax

p n

A
√

(A⊥)
√

A A⊥

where the n and p links, respectively negative and positive, can be considered
as steps of decomposition of the atoms: we call these links hidden. They do not
appear in the sequent calculus, but provide space for the jumps.

The definitions of the previous sections can be applied to MHS+, with this
variant: when we associate an order ≺R to a J-proof net of MHS+, we ignore
the hidden links. It is straightforward to check that the results of the previous
sections (and in particular the Arborisation Lemma) still hold in this case.

Remark 6. MHS+ is a variant of MLLFoc: to a proof of MHS+ corresponds a
proof of MLLFoc, and vice-versa.

Similarly, the proof nets closely correspond to focussing proof nets, as defined
by Andreoli [3].

8.2 MLL

It is immediate now that we can

– transform an MLL proof net R into a MHS+ proof net R′;
– transform MHS+ sequent calculus derivation π into an MLL sequent calculus

derivation by “declustering” the rules. The sequent calculus derivation which
we obtain is focussing.
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Observe that this transformations can simply be “virtual”. To sequentialize an
MLL proof net R, we expand the axiom links, and treat each maximal tree of
⊗ as a + link, and each maximal tree of � as a − link. Using our procedure,
we obtain again an arborescent order on +, − and axiom links. Observe that we
can substitute each step in Proposition 2 with an expanded version.

9 Conclusions and Future Work

J-proof nets provide a representation of proofs where objects with different de-
grees of parallelism live together; furthermore, by the use of jumps as sequen-
tiality constraints, we can transform any proof net of MLL in a sequent calculus
proof, which seems a very natural way to approach sequentialisation.

Jumps are related with the notion of empire of a formula in a proof net;
we wish to investigate this relationship, in order to understand the differences
between our proof of sequentialisation and the traditional ones.

Also, we would like to understand the relation with work by Banach [4], where
the use of an order on the links of the proof net as a tool for sequentialization
has a precedent.

As a future research direction, we hope to be able to extend this work to
consider a larger fragments of linear logic; recent developements in the theory
of L-nets [6,5] seem to make plausible an extension to MALL.
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démonstration, Roma Tre, Octobre-Décembre 2004. Hermann Ed. Available at:
http://logica.uniroma3.it/uif/corso,

10. Girard, J.-Y. : Linear Logic. In Theoretical Computer Science, 50: 1-102, 1987.
11. Girard, J.-Y. : Quantifiers in Linear Logic II. In Nuovi problemi della Logica e della

Filosofia della scienza, 1991.
12. Girard, J.-Y. : On the meaning of logical rules II: multiplicative/additive case. In

Foundation of Secure Computation, NATO series F 175, 183-212. IOS Press, 2000.
13. Girard, J.-Y. : Locus Solum. In Mathematical Structures in Computer Science,

11:301-506, 2001.
14. Laurent, O. : Polarized Games. In Annals of Pure and Applied Logic, 130(1-3):79-

123, 2004.

A Normalization of J-Proof Nets

We can define cut elimination on J-proof nets in the same way as for L-nets:
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The procedure is confluent and strong normalizing, and preserves correction;
furthermore it preserves the order on the links (if a precedes b before the reduc-
tion, it still precedes b afterwards). Notice that cuts are oriented from negative
to positive: actually, we modify the orientation of the edges of the cut link when
we associate an order to a proof net, so to get the above good properties.
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Abstract. This paper investigates the complexity of query problem for
first-order formulas on quasi-unary signatures, that is, on vocabularies
made of a single unary function and any number of monadic predicates.

We first prove a form of quantifier elimination result: any query de-
fined by a quasi-unary first-order formula can be equivalently defined, up
to a suitable linear-time reduction, by a quantifier-free formula. We then
strengthen this result by showing that first-order queries on quasi-unary
signatures can be computed with constant delay i.e. by an algorithm
that has a precomputation part whose complexity is linear in the size
of the structure followed by an enumeration of all solutions (i.e. the
tuples that satisfy the formula) with a constant delay (i.e. depending
on the formula size only) between each solution. Among other things,
this reproves (see [7]) that such queries can be computed in total time
f(|ϕ|).(|S| + |ϕ(S)|) where S is the structure, ϕ is the formula, ϕ(S) is
the result of the query and f is some fixed function.

The main method of this paper involves basic combinatorics and can
be easily automatized. Also, since a forest of (colored) unranked tree is a
quasi-unary structure, all our results apply immediately to queries over
that later kind of structures.

Finally, we investigate the special case of conjunctive queries over
quasi-unary structures and show that their combined complexity is not
prohibitive, even from a dynamical (enumeration) point of view.

1 Introduction

The complexity of logical query languages is a well-studied field of theoretical
computer science and database theory. Understanding the complexity of query
evaluation for a given language is a good way to measure its expressive power. In
this context, first-order logic and its fragments are among the most interesting
and studied such languages.

In full generality, the data complexity of first-order queries is in AC0 hence
in polynomial time [15] (see also [11]). However, the size of the formula appears
as a major ingredient in the exponent of the polynomial. Hence, taking into
account the sizes of both the structure and the formula, the combined complexity
becomes highly intractable, even for small formulas. Nevertheless, tractability
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results have been obtained for natural query problems defined by restricting
either the logic or the set of structures. This is the case, for example, for acyclic
conjunctive queries [16,13], or for full first-order queries on relational structures
of bounded degree [14,5,12] or on tree-decomposable structures [8] (see also [7]).

A quasi-unary signature consists of one unary function and any number of
monadic predicates. First-order logic over quasi-unary structures has been often
studied and some of its aspects are quite well understood. The satisfiability
problem for this kind of first-order formulas is decidable, while by adding just
one more unary function symbol in the vocabulary we can interpret graphs,
and hence all the first-order logic. In particular, first-order logic over two unary
functions structures is undecidable (even for formulas with one variable [9]).
In [3], it is proved that the spectrum (i.e. the set of cardinalities of the finite
models) of formulas over one unary function are ultimately periodic. This result
has been generalized in [10] even to the case of spectra of monadic second-order
formulas.

In this paper, we continue the study of first-order logic on quasi-unary vo-
cabularies and show some new structural properties that have interesting con-
sequences on the complexity of query problems for such languages. Our first
result shows that it is possible to eliminate variables in first-order formulas on
quasi-unary vocabularies at reasonable cost while preserving the answers of the
queries. More precisely, given a quasi-unary structure S and a first-order formula
ϕ, one can construct a quantifier-free formula ϕ′ and, in linear time in the size
S, a new quasi-unary structure S′ such that the results of the queries ϕ(S) and
ϕ′(S′) are the same. The method used to prove this result is mainly based on
combinatorial arguments related to covering problems.

Then, as in [5], we explore the complexity of query evaluation from a dynam-
ical point of view: queries are seen as enumeration problems and the complexity
is measured in terms of delay between two successive outputs (i.e. tuples that
satisfy the formula). Such an approach provides very precise information on the
complexity of query languages: by adding up the delays, it makes it possible to
obtain tight complexity bounds on complexity evaluation (in the classical sense)
but also to measure how regular this process is. This latter kind of information
is useful, for example, for query answering “on demand”.

Taking as a starting point the quantifier elimination method, we show that a
first-order query ϕ on a quasi-unary structure S can be computed with constant
delay i.e. by an algorithm that has a precomputation part whose complexity is
linear in the size of the structure, followed by an enumeration of all the tuples
that satisfy the formula with a constant delay (i.e. depending on the formula size
only) between two of them. Among other things, this gives an alternative proof
that such queries can be computed in total time f(|ϕ|).(|S|+ |ϕ(S)|) where f is
some fixed function, hence the complexity is linear (see [7] remarking that the
graph of one unary function is of tree-width two). One nice feature of quasi-unary
structures is their proximity to trees: any forest of (colored) ranked or unranked
tree is a quasi-unary structure, hence, all our results immediately apply to queries
over trees. Several recent papers have investigated query answering from an
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enumeration point-of-view for monadic second-order logic on trees (see [1,2]).
They mainly prove that the results of MSO queries on binary trees or on tree-
like structures can be enumerated with a linear delay (in the size of the next
output) between two consecutive solutions. The methods used in these papers
rely on tree-automata techniques and some of these results apply to our context.
However, our goal in this paper, is to prove strong structural properties of logical
formulas (such as quantifier elimination) in this language and show how these
properties influence the complexity of query answering.

The paper is organized as follows. In Sect. 2, main definitions about query
problems, reductions and enumeration complexity are given. A normal form for
formula over quasi-unary vocabularies is also stated. In Sect. 3 the combinatorial
material to prove the main results are introduced. Then, in Sect. 4, the variable
elimination theorem for first-order formula on quasi-unary vocabulary is proved.
Section 5, is devoted to query evaluation and our result about enumeration of
query result is proved. Finally, in Sect. 6, the special case of conjunctive queries
is investigated.

2 Preliminaries

Definitions. All formulas considered in this paper belong to first-order logic,
denoted by FO. The FO-formulas written over a same signature σ are gathered
in the class FOσ. The arity of a first-order formula ϕ, denoted by arity (ϕ), is
the number of free variables occuring in ϕ. We denote by FO(d) the class of
FO-formulas of arity d. When the prenex form of a FO-formula ϕ involves at
most q quantifiers, we say that it belongs to FOq. Combining these notations,
we get for instance that FOE

0 (d) is the class of quantifier-free formulas of arity
d and of signature {E}.

Given a signature σ, we denote by struc(σ) the class of finite σ-structures.
The domain of a structure S is denoted by dom(S). For each S ∈ struc(σ) of
domain D and each ϕ ∈ FOσ(d), we set:

ϕ(S) = {(a1, . . . , ad) ∈ Dd : (S, a1, . . . , ad) |= ϕ(x1, . . . ,xd)}.

Two σ-formulas ϕ, ψ of same arity are said equivalent if ϕ(S) = ψ(S) for any
σ-structure S. We then write ϕ ∼ ψ.

Let C ⊆ struc(σ) and L ⊆ FOσ. The query problem for C and L is the
following:

Query(C,L)

input: A structure S ∈ C and a formula ϕ(x) ∈ L with free-variables x ;
parameter: the size |ϕ| of ϕ(x) ;
output: ϕ(S).

Instances of such a problem are thus pairs (S,ϕ) ∈ C×L. Most of the complexity

results of this paper will be expressed in terms of the structure size, considering
the size of the formula as a parameter. This explain the definition of a query
problem as a parameter problem.
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When ϕ has no free variable then the boolean query problem is also known as
the model-checking problem for L, often denoted by MC(L). Most of the time, C
will simply be the class of all σ-structures struc(σ) for a given signature σ and
restriction will only concern formulas. In this case, the query problem is denoted
Query(L) and its instances are called L-queries.

Reductions, complexity and enumeration problems. The basic model of compu-
tation used in this paper is standard Random Access Machine with addition. In
the rest of the paper, the big-O notation Ok(m) stands for O(f(k).m) for some
function f . Such a notation is used to shorten statements of results, especially
when k is a parameter whose exact value is difficult to obtain. However, when
this value can be made precise, we use the classical big-O notation. The definition
below specifies the notion of reductions between query problems.

Definition 1. We say that Query(C,L) linearly reduces to Query(C′,L′) if
there exist two recursive functions f : C × L → C′ and g : L → L′ such that:

– if (S,ϕ) ∈ C ×L and (S′,ϕ′) = (f(S,ϕ), g(ϕ)), then dom(S) = dom(S′) and
arity (ϕ) = arity (ϕ′);

– the results of the queries are the same: ϕ(S) = ϕ′(S′);
– the function f : (S,ϕ) �→ S′ is computable in time O|ϕ|(|S|).

(There is no requirement on g, but its computability.)

This reduction is a kind of fixed-parameter linear reduction with some additional
constraints. Notice that this definition differs from the usual notion of interpre-
tation: here, the interpretive structure S′ depends both on the structure S and
on the formula ϕ to be interpreted (notice also that, in the sequel, S′ will always
be an extension of S with only new additional monadic predicates).

In Sect. 5, query evaluation is considered as an enumeration problem. A non
boolean query problem Query(C,L) is enumerable with constant delay if one
can compute all its solutions in such a way that the delay beween the begin-
ning of the computation and the first solution, between two successive solutions,
and between the last solution and the end of the computation are all constant.
We denote by Constant-Delay the class of query problems which are enu-
merable with constant delay. This class is not robust: a problem which is in
Constant-Delay when represented with a given data-structure may not be in
this class anymore for another presentation. Nevertheless, this definition will be
relevant to forthcoming technical tasks. The complexity class that is of real in-
terest was first introduced in [5]: the class Constant-Delay(lin) collects query
problems that can be enumerated as previously described after a step of pre-
proccessing which costs a time at most linear in the size of the input. This class
is robust. A more formal definition of it is given in the following.

Definition 2. An query problem Query(C,L) is computable within constant
delay and with linear precomputation if there exists a RAM algorithm A which,
for any input (S,ϕ), enumerates the set ϕ(S) in the following way:
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1. A uses linear space
2. A can be decomposed into the two following successive steps

(a) precomp(A) which performs some precomputations in time O(f(ϕ).|S|)
for some function f , and

(b) enum(A) which outputs all elements in ϕ(S) without repetition within
a delay bounded by some constant delay(A) which depends only on |ϕ|
(and not on S). This delay applies between two consecutive solutions and
after the last one.

The complexity class thus defined is denoted by Constant-Delay(lin).

The following fact is immediate.

Fact 3. If Query(C,L) ∈ Constant-Delay(lin), then each query problem
that linearly reduces to Query(C,L) also belongs to Constant-Delay(lin).

Logical normalization. We now specify the kind of structures and formulas that
are considered in this paper. A unary signature contains only unary relation
symbols. A quasi-unary signature is obtained by enriching a unary signature
with a single unary function symbol. That is, quasi-unary signatures have the
shape {f,U}, where f is a unary function symbol and U is a tuple of unary
relation symbols.

For any signature σ, a unary enrichment of σ is a signature obtained from
σ by adding some new unary relation symbols. Therefore, unary enrichments of
quasi-unary signatures are also quasi-unary signatures. Structures over quasi-
unary (resp. unary) signatures are called quasi-unary (resp. unary) structures.

Notice that structures over one unary function are disjoint collections of
“whirlpools”: upside down trees whose roots come together at a cycle (see Fig. 1).
Therefore, considering the case where all the cycles consist of a single node, we
see that the set of quasi-unary structures includes that of (colored) forests and,
a fortiori, that of (colored) trees.

Let us consider a quantifier-free disjunctive formula ϕ over a quasi-unary
signature. For any y ∈ var(ϕ), we can “break” ϕ into two pieces ψ and θ, in
such a way that y does not occur in ψ while it occurs in θ in a very uniform
way. More precisely, each quantifier-free disjunctive formulas over a quasi-unary
signature can be written, up to linear reduction, under the form (1) below. This
normalization is formally stated in the next proposition. It will provide us with
a key tool to eliminate quantified variables in any first-order formulas of quasi-
unary signature.

Proposition 4. Let FOqu
0 [∨] be the class of quantifier-free disjunctive formulas

over a quasi-unary signature. Then, Query(FOqu
0 [∨]) linearly reduces to the

problem Query(L0), where L0 is the class of FOqu
0 [∨]-formulas that fit the shape:

ψ(x) ∨ [(fmy = fnz ∧ U(y))→
∨
i

fmi(y) = fni(x)], (1)

where ψ is a quantifier-free disjunctive formula, 0 ≤ m1 ≤ · · · ≤ mk ≤ m, z ∈ x
and U is a unary relation.
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Note that an essential consequence of this normalization is that on the left-hand
side of the implication, only one atomic formula involving function f and variable
y appears. This will make the elimination of variable y easier.

3 Acyclic Representation

Because of the normal form stated in Proposition 4, a corner-stone of our on-
coming results lies on the way we handle formulas of the type:

ϕ(x) ≡ ∀y : (fmy = a ∧ U(y))→
∨
i∈[k]

fmiy = ci (2)

where 0 ≤ m1 ≤ · · · ≤ mk ≤ m, U is a unary relation and a, c1, . . . , ck are
terms in x. In order to deal efficiently (from a complexity point of view) with
such formulas, we introduce in this section a data structure related to the tuple
f = (fm1 , . . . , fmk) and the set X = f−m(a) ∩ U . Then we show that this
structure allows for a fast computation of some combinatorial objects – the
samples of f over X – which are the combinatorial counterparts of the logical
assertion (2).

Until the end of this section, f denotes a unary function on a finite domain
D, X is a subset of D and 0 ≤ m1 ≤ m2 ≤ · · · ≤ mk are nonnegative integers.
Furthermore, f denotes the tuple (fm1 , . . . , fmk). We associate a labelled forest
to f and X in the following way (and we right now refer the reader to Fig. 1
and 2 to follow this definition):

– The set of vertices of the forest is partitioned into k + 1 sets L0,L1, . . . ,Lk
corresponding to the sets X, fm1(X), . . . , fmk(X).

– For each i, the label function � is a bijection from Li to fmi(X)
– There is an edge from y to x if and only if there exists i ∈ [0..k] such that:

x ∈ Li, y ∈ Li+1 and fmi+1−mi�(x) = �(y).

Then we enrich this labelled forest with the data root, next, back, height defined
from some depth-first traversal of the forest:

– root is the first root of the forest visited by the depth-first traversal.
– next(s) is the first descendent of s visited after s, if such a node exists.

Otherwise, next(s) = s.
– back(s) is the first node visited after s which is neither a parent nor a de-

scendant of s, provided that such a node exists. Otherwise, back(s) = s.
– height(s) is the height of s in F . That is, height(s) is the distance from s to

a leaf.

The resulting structure is called the acyclic representation of f over X . We
denote it by F(f , X). Besides, we denote by height(F) the height of F(f , X),
that is the maximum of the values height(s), for s in F , and we call branch of
the forest any path that connects a root to a leaf (i.e. any maximal path of a
tree of F).
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Fig. 1. A function f : [16] → [16]

Example 5. A function f : D → D, where D = {1, . . . , 16}, is displayed in
Fig. 1. The acyclic representation of f = (f, f, f2, f4, f5, f7) over the set D \
{3, 8, 10, 14, 16} is given in Fig. 2.

Fig. 2. The acyclic representation of a tuple f = (fm1 , . . . , fmk ) over a set X. Here,
f is the function drawn in Fig. 1, f is the tuple (f, f, f2, f4, f5, f7) and X is the set
[16] \ {3, 8, 10, 14, 16}. Each Li at the top of the figure corresponds both to the set
fmi(X) and to the set of nodes of height i in the forest.

We let the reader check that the following Lemma is true (the acyclic repre-
sentation can be easily built by sorting and running through image sets fmi(X),
for all i ≤ k).
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Lemma 6. The acyclic representation of f = (fm1 , . . . , fmk) over X can be
computed in time O(k.mk.|X |).

Let us come back to the combinatorial objects (the samples - this terminology
comes from the earlier papers [6,4]) mentioned at the beginning of this section.
For each m ≥ 0 and each c ∈ D, we denote by f−m(c) the set of pre-images of
c by fm. That is: f−m(c) = {x ∈ D | fmx = c}. We set:

Definition 7. Let P ⊆ [k] and (ci)i∈P ∈ DP . The tuple (ci)i∈P is a sample of
f over X if

X ⊆
⋃
i∈P

f−mi(ci).

This sample is minimal if, moreover, for all j ∈ P :

X �⊆
⋃

i∈P\{j}
f−mi(ci).

Notice that each sample contains a minimal sample: if (ci)i∈P is a sample of f
over X , then (ci)i∈P ′ is a minimal sample of f over X , where P ′ is obtained
from P by iteratively eliminating the j’s such that X ⊆

⋃
i∈P\{j} f−mi(ci).

Samples provide a combinatorial interpretation of some logical assertions. It
is easily seen that the assertion ∀y ∈ X :

∨
i∈[k] f

miy = ci exactly means that
(ci)i∈[k] is a sample of f over X . In particular, assertion (2) holds if, and only if,
(ci)i∈[k] is a sample of (fmi)i∈[k] over f−m(a) ∩ U . This equivalence will yields
the variable elimination result of Sect. 4.

Another characterization of samples connects this notion to that of acyclic
representation: Let (xi)i∈P be a sequence of pairwise distinct nodes in F(f , X),
where P ⊆ [k]. We say that (xi)i∈P is a minimal branch marking of F(f , X) if
each branch of the forest contains a unique xi and if, furthermore, each xi lies
on the level Li of the forest. Clearly, (xi)i∈P is a minimal branch marking of
F(f , X) iff the tuple (�(xi))i∈P is a minimal sample of f over X (recall �(x) is
the label of x in F(f , X)). Roughly speaking: minimal samples of f over X are
exactly sequences of values that label minimal branch markings of F(f , X).

The next lemma states that both the total number of minimal samples and
the time required to compute all of them can be precisely controlled. According
to the equivalence above, evaluating all minimal samples of f over X amounts
to compute all minimal branch markings of F(f , X). This underlies an efficient
procedure to carry out such an evaluation. We will not give the proof of the next
Lemma: it has already been proved in a more general context in [6,4].

Lemma 8. There are at most k! minimal samples of f over X and their set
can be computed in time Ok(|X |).

We now slightly modify the presentation of minimal samples in order to ma-
nipulate them more conveniently inside formulas. The levels (with a few other
information) of the acyclic representation are introduced explicitly.
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Definition 9. Let m be an integer, a ∈ D and Xa ⊆ f−m(a). The sets LP,h
i ,

with P ⊆ [k], h ≤ k! and i ∈ P , are defined as the minimal sets such that, for
all a ∈ fm(D) :

if (si)i∈P is the hth minimal sample of f over Xa then, for all i ∈ P , si ∈ LP,h
i .

Note that if the image set fm(D) is reduced to a single element i.e. fm(D) = {a},
then each LP,h

i contains at most one element. We will use this property in the
sequel. Note also that each x ∈ LP,h

i belongs to the level Li of the acyclic
representation of f : for fixed i, sets LP,h

i are refinements of level Li.
Not all sets LP,h

i for P ⊆ [k] and h ≤ k! are non empty and hence need to be
defined. We denote by Ph the set of such (P,h) for which the sets LP,h

i are not
empty (i ∈ P ). The following lemma details how to compute the sets LP,h

i .

Lemma 10. With the notation of Definition 9, the collection of sets LP,h
i for

i ∈ P and (P,h) ∈ Ph can be computed in time Ok(|D|).

Proof. We first set LP,h
i = ∅ for all P ⊆ [k],h ≤ k! and i ∈ P . By Lemma 8, for

each a ∈ fm(D), one can compute the set of the at most k! minimal samples
of Xa in time Ok(|Xa|) and assign a different number h ≤ k! to each. Now,
running through these samples, if (si)i∈P is the hth of them, one add each si to
set LP,h

i . This step needs to be repeated for each a ∈ fm(D). Since all sets Xa
are pairwise disjoints and since their union is included in D, the whole process
requires time Ok(|D|) which is the expected time bound. Note that, for indices
(P,h) �∈ Ph, the sets LP,h

i remain empty. '(

4 Variable Elimination

We are now in a position to eliminate quantifiers in a first-order formula to be
evaluated on a quasi-unary structure. As mentioned in Sect. 3, a first step must
be to eliminate y in a formula ϕ of the following form:

ϕ(x) ≡ ∀y : (fmy = a ∧ U(y))→
∨
i∈[k]

fmiy = ci

where 0 ≤ m1 ≤ · · · ≤ mk ≤ m, U is a unary relation and a, c1, . . . , ck are terms
in x. To deal with this task, we understand ϕ(x) as meaning:

(ci)i∈[k] is a sample of f over f−p(a) ∩ U .

That is, since every sample contains a minimal sample:

(ci)i∈[k] contains a minimal sample of f over f−m(a) ∩ U

or, equivalently:

∃P ⊆ [k] such that (ci)i∈P is a minimal sample of f over f−m(a) ∩ U

From the previous section, this assertion can now be stated as:



First-Order Queries over One Unary Function 343

∃h ≤ k! ∃P ⊆ [k] such that ∀i ∈ P : LP,h
i (ci) and fm−mici = a

This is more formally written:∨
(P,h)∈Ph

∧
i∈P

(LP,h
i (ci) ∧ fm−mici = a).

All predicates in this last assertion can be computed in linear time and the
disjunction and conjunction deal with a constant number (depending on k) of
objects. Variable y is now eliminated. This provides a general framework to
iteratively eliminate variables.

Lemma 11. Every FO1-query of the form (∀yϕ(x, y),S), where ϕ(x, y) is a
quantifier-free disjunctive formula over a quasi-unary signature σ, linearly re-
duces to an FO0-query over a quasi-unary signature.

Proof. Let S be a quasi-unary structure and ϕ(x, y) be a quantifier-free disjunc-
tive formula. Thanks to Proposition 4, ∀yϕ(x, y) may be considered, up to linear
reduction, as fitting the form:

ψ(x) ∨ ∀y[ (fpy = f qz ∧ U(y))→
∨
i∈[k] f

mi(y) = fni(x) ]

where z ∈ x ∪ {y}. Assume z �= y (otherwise the proof gets simpler). Denoting
f = (fm1 , . . . , fmk), the second disjunct simply means that (fni(x))i∈[k] is a
sample of f over f−p(f q(z)) ∩ U . From what has been said before, this implies
that there exists P ⊆ [k] such that (fni(x))i∈P is a minimal sample of f over
f−p(f q(z)). Recalling Definition 9 and the discussion that followed, one can
write:

〈S, (LP,h
i )Ph〉 |= ψ(x) ∨

∨
(P,h)∈Ph

∧
i∈P

LP,h
i (fni(x)) ∧ fp−mi+ni(x) = f q(z)

Variable y is well eliminated. From Lemma 10, the collection of sets LP,h
i are

linear time computable from structure S. This concludes the proof. '(

Theorem 12. Each non-Boolean (resp. Boolean) FO-query over a quasi-unary
signature linearly reduces to a FO0-query (resp. FO1-query) over a quasi-unary
signature.

Proof. The proof is by induction on the number k of quantified variables of the
query. Most of the difficulty already appears for the case k = 1. Let (ϕ(z),S) ∈
FOσ

1×struc(σ) and z be the nonempty tuple of free variables of ϕ. Since ∃y ψ is
equivalent to ¬(∀x ¬ψ), one may suppose that ϕ is of the form±∀yϕ(z, y) (where
± means that one negation ¬ may occur). The conjunctive normal form for the
matrix of ϕ must be computed, and, since universal quantification and conjunc-
tion commute, one can put the formula in the form ϕ(z) ≡ ±

∧
α ∀yϕα(z,x, y),

where each ϕα is a quantifier-free disjunctive formula. By Lemma 11, we know
that the query (

∧
α ∀yϕα(z, y),S) linearly reduces to a quantifier-free query

(ψ(z,x),S′) over a quasi-unary signature. This concludes this case.
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Assume the result for k ≥ 1 and prove it for k + 1. For the same reason as
above, ϕ(z) can be put under the form ϕ(z) ≡ Qx ±

∧
α ∀yϕα(z,x, y), where

each ϕα is a quantifier-free disjunctive formula and x is a tuple of k quantified
variables. Again, from Lemma 11 query (

∧
α ∀yϕα(z,x, y),S) linearly reduces to

a quantifier-free query (ψ(z,x),S′) and then, (ϕ(z),S) linearly reduces to the k
variable query (Qxψ(z,x),S′). '(

5 Query Enumeration

In this section we prove that each first-order query over a quasi-unary struc-
ture 〈D, f,U〉 can be enumerated with constant delay after a linear time pre-
processing step. The proof involves the cost of the enumeration of all the elements
of D whose images by different powers of f (i.e. by functions of the form f i)
avoid a fixed set of values. It appears that the elements thus defined can be
enumerated with constant delay, provided the inputs are presented with the ap-
propriate data structure. Let us formalize the problem, before stating the related
enumeration result.

Authorized Values

input: the acyclic representation of a k-tuple f = (fm1 , . . . , fmk) over
a set X ⊆ D, and a set of forbidden pairs F ⊂ [k]×D ;

parameter: k, |F| ;
output: the set A = {y ∈ X |

∧
(i,c)∈F

fmiy �= c}.

Lemma 13. Authorized Values ∈ Constant-Delay. Moreover, the delay
between two consecutive solution is O(k.|F|).

Proof. Each forbidden pair (i, c) ∈ F is either inconsistent (i.e. f−mi(c) = ∅) or
corresponds to a node s of F(f , X) such that height(s) = i and �(s) = c. If we
denote by forbid those nodes s of F(f , X) for which (height(s), �(s)) ∈ F, the
set A to be constructed is exactly the set of values y ∈ D that label leaves of
the forest whose branches avoid all forbidden nodes. Therefore, computing A
amounts to finding all the leaves described above.

This can be done by a depth-first search of the forest, discarding those leaves
whose visit led to a forbidden node. Furthermore, the search can be notably sped
up by backtracking on each forbidden node: indeed, such a node is the root of a
subtree whose all leaves disagree with our criteria. This algorithm clearly runs
in linear time. Let us show it enumerates solutions with constant delay:

Consider a sequence of p nodes s1, . . . , sp successively visited by the algorithm.
If p > k, the sequence must contain a leaf or a forbidden node. Indeed, if it
does not contain any node of forbid, the algorithm behaves as a usual DFS
between s1 and sp. Therefore, one node among s2, . . . , sk+1 has to be a leaf
since height(F(f , X)) = k.
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Now, if s, s′ are two leaves successively returned by the algorithm and if
f1, . . . , fp are the forbidden nodes encountered between these two solutions, then
the previous remark ensures that the algorithm did not visit more than k nodes
between s and f1, between fp and s′ or between two successive fi’s. The delay
between the outputs s and s′ is hence in O(pk) and therefore, in O(k|forbid|).
Furthermore, this reasoning easily extends to the delay between the start of the
algorithm and the first solution, or between the last solution and the end of the
algorithm. This concludes the proof. '(

Now we can prove the main result of this section.

Theorem 14. Query(FOσ) ∈ Constant-Delay(lin) for any quasi-unary sig-
nature σ.

Proof. Because of Theorem 12 and Fact 3, we just have to prove the result for the
quantifier-free restriction of FOσ. We prove by induction on d that every FOσ

0 (d)-
query can be enumerated with constant delay and linear time precomputation.
(Recall σ is a quasi-unary signature.)

The result is clear for d = 1: Given an instance (S,ϕ(x)) of Query(FOσ
0 (1)),

the set ϕ(S) can be evaluated in time O(|S|) since ϕ is quantifier-free. Therefore,
the following procedure results in a Constant-Delay(lin)-enumeration of ϕ(S):

Algorithm 1. Enumeration(1,ϕ(y))
1: compute ϕ(S)
2: enumerate all the values of ϕ(S)

Let us now suppose the induction hypothesis is true for d ≥ 1 and exam-
ine the case d + 1. This case is divided in several steps. Let (S,ϕ(x, y)) be a
FOσ

0 (d + 1)-query.

Step 1. By standard logical techniques, ϕ(x, y) can be written in disjunctive nor-
mal form as

∨
α θα(x, y), where the θα’s are disjoint conjunctive (quantifier-free)

formulas (i.e., θα(S)∩θβ(S) = ∅ for α �= β). And this normalization can be man-
aged in linear time. But it is proved in [5] that the class Constant-Delay(lin)
is stable by disjoint union. Therefore, we do not loose generality when focusing
on the Constant-Delay(lin)-enumeration of a query of the form (S, θα(x, y)).
Step 2. One can separate parts of formulas that depends exclusively on x, then
a conjunctive FO0(d+1)-formula θ(x, y) can be written θ(x, y) ≡ ψ(x)∧ δ(x, y).
It is essential to consider tuples x that satisfy ψ(x) but that can also be com-
pleted by some y such that δ(x, y) holds. Hence, one considers the equivalent
formulation :

θ(x, y) ≡ ψ(x) ∧ ∃yδ(x, y) ∧ δ(x, y)

If we set ψ1(x) ≡ ψ(x) ∧ ∃yδ(x, y), formula θ(x, y) can now be written, thanks
to Proposition 4:

θ(x, y) ≡ ψ1(x) ∧ δ(x, y), (3)
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where ψ1(x) is a conjunctive FO1(d)-formula and δ(x, y) is a conjunctive FO0(d+
1)-formula of the form fmy = fnx ∧ Uy ∧

∧
i∈[k] f

miy �= fnix.
The idea is to enumerate the (d+1)-tuples (x, y) satisfying θ by enumerating

the d-tuples x satisfying ψ1(x) and, for each such x, by enumerating the values
y fulfilling δ(x, y). Both these enumerations can be done with constant delay:
the first, by inductive hypothesis ; the second by Lemma 13. As we made sure
that any tuple satisfying ψ1(x) can be completed by at least one convenient y,
our enumeration procedure will not explore bad directions in depth. Next step
makes this precise.
Step 3. By induction hypothesis, there exists a Constant-Delay(lin)-enumeration
algorithm Enumeration(d,ϕ) for formulas ϕ of arity d. Then, we get the fol-
lowing Constant-Delay(lin)-enumeration algorithm for conjunctive formulas
of arity d + 1, together with its linear time precomputation procedure:

Algorithm 2. precomp(d + 1, θ(x, y)))
1: write θ under the form (3)
2: build the complete acyclic representation of f = (fm1 , . . . , fmk ) over X =

f−m(fnx) ∩ U
3: precomp(d, ψ1(x))

Notice that items 1 and 2 of the above algorithm are carried out in time
O(|X |), thanks to Proposition 4 and Lemma 6.

Algorithm 3. Enumeration(d + 1, θ(x, y))
1: precomp(d + 1, θ(x, y)))
2: for all x in enum(d,ψ1(x)) do
3: for all y in Authorized Values (f , X, (i, fni x)i∈[k]) do
4: return (x, y)

Finally, we get a complete Constant-Delay(lin)-enumeration algorithm for
FO0(d + 1)-formula by running successively the algorithms for the disjoint con-
junctive formulas θα(x, y) obtained in the first step. '(

6 Conjunctive Queries

So far, we proved that the first-order query problem over quasi-unary signature
is “linear-time” computable. However, in full generality the size of the constant
(depending on the formula) may be huge: this is essentially due to the variable
elimination process that, at each step, may produce an exponentially larger for-
mula. Notice that, once variables are eliminated in formulas, query answering
become tractable both in terms of formula and of structure sizes. However, it is
not straightforward to know in advance which kind of query admit equivalent
formulation in terms of a quantifier-free query of polynomially related size. This
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amounts to determine the number of expected minimal samples in different sit-
uations. This will be the object of further investigation in the extended version
of this paper.

In what follows, we examine the very easy particular case of conjunctive
queries.

Definition 15. A first-order formula is existential conjunctive if it uses con-
junction and existential quantification only. Conjunctive queries are queries de-
fined by existential conjunctive formulas.

Conjunctive queries (even union of conjunctive queries) over quasi-unary struc-
tures are more tractable from the point of view of answer enumeration. Enu-
meration of query result is tractable even from the point of view of the constant
size. The following result is easy to see by a direct algorithm.

Proposition 16. The conjunctive query problem over quasi-unary structures
belongs to the class Constant-Delay with a delay between two consecutive
tuples in O(|ϕ|).
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Abstract. Model-checking problems for PDL (propositional dynamic
logic) and its extension PDL∩ (which includes the intersection operator
on programs) over various classes of infinite state systems (BPP, BPA,
pushdown systems, prefix-recognizable systems) are studied. Precise up-
per and lower bounds are shown for the data/expression/combined com-
plexity of these model-checking problems.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in
1979 as a modal logic for reasoning about programs [10]. In PDL, there are two
syntactic entities: formulas and programs. Formulas are interpreted in nodes of
a Kripke structure and can be built up from atomic propositions using boolean
connectives. Programs are interpreted by binary relations over the node set of a
Kripke structure and can be built up from atomic programs using the operations
of union, composition, and Kleene hull (reflexive transitive closure). PDL con-
tains two means for connecting formulas and programs: Programs may appear
in modalities in front of formulas, i.e., if π is a program and ϕ is a formula, then
〈π〉ϕ is true in a node u if there exists a node v, where ϕ holds and which can be
reached from u via the program π. Moreover, PDL allows to construct programs
from formulas using the test operator: If ϕ is a formula, then the program ϕ?
is the identity relation on the node set restricted to those nodes where ϕ holds.
Since its invention, many different extensions of PDL were proposed, mainly
by allowing further operators on programs, like for instance the converse or in-
tersection operator, see the monograph [13] for a detailed exposition. Recently,
PDL, where programs are defined via visibly pushdown automata, was investi-
gated [18]. PDL and its variations found numerous applications, e.g., in program
verification, agent-based systems, and XML-querying. In AI, PDL received at-
tention by its close relationship to description logics and epistemic logic, see [16]
for references.

In the early days of PDL, researchers mainly concentrated on satisfiability
problems and axiomatization of PDL and its variants. With the emergence of
automatic verification, also model-checking problems for modal logics became
a central research topic, and consequently model-checking problems for PDL
attracted attention [16]. In this paper, we start to investigate model-checking
problems for PDL over infinite state systems. In recent years, verification of
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infinite state systems became a major topic in the model-checking community.
Usually, infinite state systems, like for instance systems with unbounded com-
munication buffers or unbounded stacks, are modeled by some kind of abstract
machine, which defines an infinite transition system (Kripke structure): nodes
correspond to system states and state transitions of the system are modeled by
labeled edges. Various classes of (finitely presented) infinite transition systems
were studied under the model-checking perspective in the past, see e.g. [25] for a
survey. In [22] Mayr introduced a uniform classification of infinite state systems
in terms of two basic operations: parallel and sequential composition. In this
paper, we will mainly follow Mayr’s classification.

We believe that model-checking of PDL and its variants over infinite state
systems is not only a natural topic, but also a useful and applicable research di-
rection in verification. PDL allows directly to express regular reachability proper-
ties, which were studied e.g. in [19,22,30] in the context of infinite state systems.
For instance, consider the property that a process can reach a state, where a
condition ϕ holds, via a path on which the action sequence a1a2 · · ·an is re-
peated cyclically. Clearly, this can be expressed in CTL (if ϕ can be expressed in
CTL), but we think that the PDL-formula 〈(a1 ◦a2 ◦ · · · ◦an)∗〉ϕ is a more read-
able specification. Secondly, and more important, the extension of PDL with the
intersection operator on programs [12], PDL∩ for short, allows to formulate nat-
ural system properties that cannot be expressed in the modal µ-calculus (since
they do not have the tree model property), like for instance that a system can
be reset to the current state (Example 2) or that two forking processes may
synchronize in the future (Example 3).

In Section 5 we study model-checking problems for PDL and its variants over
infinite state systems. For infinite state systems with parallel composition, PDL
immediately becomes undecidable. More precisely, we show that PDL becomes
undecidable over BPP (basic parallel processes), which correspond to Petri nets,
where every transition needs exactly one token for firing (Proposition 1). This
result follows from the undecidability of the model-checking problem for EF (the
fragment of CTL, which only contains next-modalities and the “exists finally”-
modality) for Petri nets [8]. Due to this undecidability result we mainly concen-
trate on infinite state systems with only sequential composition. In Mayr’s clas-
sification these are pushdown systems (PDS) and basic process algebras (BPA),
where the latter correspond to stateless pushdown systems. Pushdown systems
were used to model the state space of programs with nested procedure calls,
see e.g. [9]. Model-checking problems for pushdown systems were studied for
various temporal logics (LTL, CTL, modal µ-calculus) [1,9,15,28,29]. We also
include prefix-recognizable systems (PRS) into our investigation [3,5], which ex-
tend pushdown systems. Model-checking problems for prefix-recognizable sys-
tems were studied e.g. in [4,14]. The decidability of PDL and even PDL∩ for
prefix-recognizable systems (and hence also BPA and PDS) follows from the
fact that monadic second-order logic (MSO) is decidable for these systems and
that PDL∩ can be easily translated into MSO. But from the viewpoint of com-
plexity, this approach is quite unsatisfactory, since it leads to a nonelementary
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algorithm. On the other hand, for PDL (without the intersection operator) it
turns out that based on the techniques of Walukiewicz for model-checking CTL
and EF over pushdown systems [28], we can obtain sharp (elementary) com-
plexity bounds: Whereas test-free PDL behaves w.r.t. to the complexity of the
model-checking problem exactly in the same way as EF (PSPACE-complete in
most cases), PDL with the test-operator is more difficult (EXP-complete in most
cases).

The analysis of PDL∩ turns out to be more involved. This is not really sur-
prising. PDL∩ turned out to be notoriously difficult in the past. It does not have
the tree model property, and as a consequence the applicability of tree automata
theoretic methods is quite limited. Whereas PDL is translatable into the modal
µ-calculus, PDL∩ is orthogonal to the modal µ-calculus with respect to expres-
siveness. A very difficult result of Danecki states that satisfiability of PDL∩ is in
2EXP [7]. Only recently, a matching lower bound was obtained by Lange and Lutz
[17]. Our main result of this paper states that the expression/combined complex-
ity of PDL∩ (and also the test-free fragment of PDL∩) over BPA/PDS/PRS is
2EXP-complete, whereas the data complexity goes down to EXP. For the 2EXP
lower bound proof, we use a technique from [28] for describing a traversal of the
computation tree of an alternating Turing machine in CTL using a pushdown.
The main difficulty that remains is to formalize in PDL∩ that two configurations
of an exponential space alternating Turing machine (these machines character-
ize 2EXP) are successor configurations. For the upper bound, we transform a
PDL∩ formula ϕ into a two-way alternating tree automaton A of exponential
size, which has to be tested for emptiness. Since emptiness of two-way alternat-
ing tree automata can be checked in exponential time [27], we obtain a doubly
exponential algorithm. Most of the inductive construction of A from ϕ uses
standard constructions for two-way alternating tree automata. It is no surprise
that the intersection operator is the difficult part in the construction of ϕ. The
problem is that two paths from a source node s to a target node t, where the
first (resp. second) path is a witness that (s, t) belongs to the interpretation of
a program π1 (resp. π2) may completely diverge. This makes it hard to check
for an automaton whether there is both a π1-path and a π2-path from s to t.
Our solution is based on a subtle analysis of such diverging paths in pushdown
systems.

One might argue that the high complexity (2EXP-completeness) circumvents
the application of PDL∩ model checking for pushdown systems. But note that
the data complexity (which is a better approximation to the “real” complexity
of model-checking, since formulas are usually small) of PDL∩ over pushdown
systems is only EXP, which is the same as the data complexity of CTL [28].
Moreover, to obtain an exponential time algorithm for PDL∩ it is not really
necessary to fix the formula, but it suffices to bound the nesting depth of inter-
section operators in programs. One may expect that this nesting depth is small
in natural formulas, like in Example 2 or 3 (where it is 1). Table 1 gives an
overview on our results. Proofs can be found in the technical report [11].
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2 Preliminaries

Let Σ be a finite alphabet and let ε denote the empty word. Let Σε = Σ ∪ {ε}
and let Σ = {a | a ∈ Σ} be a disjoint copy of Σ. For a word w = a1 · · · an ∈ Σ∗

(a1, . . . , an ∈ Σ) let wrev = an · · ·a1. For L ⊆ Σ∗ let Lrev = {wrev | w ∈ L}.
Let R,U ⊆ A × A be binary relations over the set A. Then R∗ is the reflexive
and transitive closure of R. The composition of R and U is R ◦ U = {(a, c) ∈
A × A | ∃b ∈ A : (a, b) ∈ R ∧ (b, c) ∈ U}. Let f : A → C and g : B → C be
functions, where A ∩ B = ∅. The disjoint union f 4 g : A ∪ B → C of f and g
is defined by (f 4 g)(a) = f(a) for a ∈ A and (f 4 g)(b) = g(b) for b ∈ B. Let
AB = {f | f : B → A} be the set of all functions from B to A.

We assume that the reader is familiar with standard complexity classes like P
(deterministic polynomial time), PSPACE (polynomial space), EXP (determin-
istic exponential time), and 2EXP (deterministic doubly exponential time), see
[24] for more details. Hardness results are always meant w.r.t. logspace reduc-
tions. An alternating Turing machine (ATM) is a tuple M = (Q,Σ,Γ, q0, δ,
)
where (i) Q = Qacc 4 Qrej 4 Q∃ 4 Q∀ is a finite set of states Q which is par-
titioned into accepting (Qacc), rejecting (Qrej), existential (Q∃) and universal
(Q∀) states, (ii) Γ is a finite tape alphabet, (iii) Σ ⊆ Γ is the input alphabet, (iv)
q0 ∈ Q is the initial state, (v) 
 ∈ Γ \ Σ is the blank symbol, and (vi) the map
δ : (Q∃∪Q∀)×Γ → Moves×Moves with Moves = Q×Γ×{←,→} assigns to every
pair (q, γ) ∈ (Q∃∪Q∀)×Γ a pair of moves. If δ(q, a) = ((q1, a1, d1), (q2, a2, d2)),
then this means that if M is in state q and reads the symbol a, then the left
(right) successor configuration of the current configuration results by writing a1

(a2), the read-write head moves in direction d1 (d2), and the new state is q1 (q2).
A configuration of M is a word from Γ ∗QΓ+. A configuration c of M, where
the current state is q, is accepting if (i) q ∈ Qacc or (ii) q ∈ Q∃ and there exists
an accepting successor configuration of c or (iii) q ∈ Q∀ and both successor con-
figurations of c are accepting. The machineM accepts an input w if and only if
the initial configuration q0w is accepting.

3 Propositional Dynamic Logic and Extensions

Formulas of propositional dynamic logic (PDL) are interpreted over Kripke struc-
tures : Let P be a set of atomic propositions and let Σ a set of atomic programs.
A Kripke structure over (P, Σ) is a tuple K = (S, {→σ| σ ∈ Σ}, ρ) where (i) S
is a set of nodes, (ii) →σ⊆ S × S is a transition relation for all σ ∈ Σ and (iii)
ρ : S → 2P labels every node with a set of atomic propositions. Formulas and
programs of the logic PDL∩ (PDL with intersection) over (P, Σ) are defined by
the following grammar, where p ∈ P and σ ∈ Σ:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

π ::= σ | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π∗ | ϕ?

We use the abbreviations (ϕ1 ∧ϕ2) = ¬(¬ϕ1 ∨ ¬ϕ2) and [π]ϕ = ¬〈π〉¬ϕ. More-
over, a set {a1, . . . , an} ⊆ Σ of atomic programs is identified with the program
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a1 ∪ · · · ∪ an. The semantic of PDL∩ is defined over Kripke structures. Given
a Kripke structure K = (S, {→σ | σ ∈ Σ}, ρ) over (P, Σ), we define via mutual
induction for each PDL∩ program π a binary relation [[π]]K ⊆ S × S and for
each PDL∩ formula ϕ a subset [[ϕ]]K ⊆ S as follows, where σ ∈ Σ, p ∈ P, and
op ∈ {∪,∩, ◦}:

[[σ]]K =→σ [[p]]K = {s | p ∈ ρ(s)}
[[ϕ?]]K = {(s, s) | s ∈ [[ϕ]]K} [[¬ϕ]]K = S \ [[ϕ]]K
[[π∗]]K = [[π]]∗K [[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[π1 op π2]]K = [[π1]]K op [[π2]]K [[〈π〉ϕ]]K = {s | ∃t : (s, t) ∈ [[π]]K ∧ t ∈ [[ϕ]]K}

Note that [[〈ϕ?〉ψ]]K = [[ϕ ∧ ψ]]K. For s ∈ S we write (K, s) |= ϕ if and only
if s ∈ [[ϕ]]K. If the Kripke structure K is clear from the context we write [[ϕ]]
for [[ϕ]]K. PDL is the fragment of PDL∩, where the intersection operator ∩ on
programs is not allowed. Test-free PDL (resp. test-free PDL∩) is the fragment of
PDL (resp. PDL∩), where the test-operator “?” is not allowed. The size |ϕ| of
a PDL∩ formula ϕ and the size |π| of a PDL∩ program π is defined as follows:
|p| = |σ| = 1 for all p ∈ P and σ ∈ Σ, |¬ϕ| = |ϕ?| = |ϕ|+1, |ϕ∨ψ| = |ϕ|+ |ψ|+1,
|〈π〉ϕ| = |π|+|ϕ|, |π1 op π2| = |π1|+|π2|+1 for op ∈ {∪,∩, ◦}, and |π∗| = |π|+1.
The fragment EF of CTL (where only the next and “exists finally” modality
is allowed) can be defined as the fragment of test-free PDL, consisting of all
formulas ϕ such that every for every subformula of the form 〈π〉ψ, either π ∈ Σ
or π = Σ∗.

A PDL program π (where the intersection operator is not allowed) can be
viewed as a regular expression and translated into a finite automaton A, where
transitions are labeled by symbols from Σ and test formulas ϕ?. The semantic
[[A]] of this automaton is the union of all relations [[c1]]◦ · · · ◦ [[cn]], where c1 · · · cn
labels a path from the initial state of A to a final state; note that ci can be of
the form ϕ?. This PDL-variant is sometimes called APDL. For PDL∩ such a
translation does not exist. Moreover, PDL∩ neither possesses the finite model
property nor the tree model property in contrast to PDL [13].

Given a class C of Kripke structures and a logic L (e.g. PDL or PDL∩), the
model-checking problem asks: Given a Kripke structure K ∈ C, a node s of K,
and a formula ϕ ∈ L, does (K, s) |= ϕ hold. Following Vardi [26], we distinguish
between three measures of complexity:

– Data Complexity: The complexity of verifying for a fixed formula ϕ ∈ L,
whether (K, s) |= ϕ for a given Kripke structure K ∈ C and a node s of K.

– Expression Complexity: The complexity of verifying for a fixed Kripke struc-
ture K ∈ C and node s, whether (K, s) |= ϕ for a given formula ϕ ∈ L.

– Combined Complexity: The complexity of verifying (K, s) |= ϕ for a given
formula ϕ ∈ L, a given Kripke structure K ∈ C, and a node s.

Convention. In the rest of this paper, we will consider PDL∩ without atomic
propositions. A Kripke structure will be just a tupleK = (S, {→σ| σ ∈ Σ}) where
→σ⊆ S×S. Formally, we introduce the only atomic proposition true and define



354 S. Göller and M. Lohrey

[[true]]K = S. This is not a restriction, since a Kripke structure (S, {→σ| σ ∈
Σ}, ρ) (where ρ : S → 2P, Σ∩P = ∅) can be replaced by the new Kripke structure
(S, {→σ| σ ∈ Σ ∪ P}) where →p = {(s, s) | p ∈ ρ(s)} for all p ∈ P. For the
formalisms for specifying infinite Kripke structures that we will introduce in the
next section, we will see that (a finite description of) this propositionless Kripke
structure can be easily computed from (a finite description of) the original Kripke
structure. Moreover, in PDL∩ formulas, we have to replace every occurrence of
an atomic proposition p by the formula 〈p〉true.

4 Infinite State Systems

In this section, we consider several formalisms for describing infinite Kripke
structures. Let Σ be be a set of atomic programs and Γ be a finite alphabet.

A basic parallel process (BPP) is a communication free Petri net, i.e., a Petri
net, where every transition needs exactly one token for firing. By labeling tran-
sitions of a Petri net with labels from Σ, one can associate an infinite Kripke
structure K(N ) with a BPP N , see [21] for more details.

A basic process algebra (BPA) over Σ is a tuple X = (Γ,∆) where ∆ ⊆
Γε × Σ × Γ ∗ is a finite transition relation. The BPA X describes the Kripke
structure K(X ) = (Γ ∗, {→σ| σ ∈ Σ}) over Σ, where →σ= {(γw, vw) | w ∈
Γ ∗ and (γ,σ, v) ∈ ∆} for all σ ∈ Σ. The size |X | of X is |Γ |+|Σ|+

∑
(γ,σ,v)∈∆ |v|.

If (γ,σ, v) ∈ ∆, we also write γ
σ−→X v.

Example 1. For a finite alphabet Γ we will use the BPA TreeΓ = (Γ,∆) over
Γ ∪ Γ where ∆ = {(ε, a, a) | a ∈ Γ} ∪ {(a, a, ε) | a ∈ Γ}. Then K(TreeΓ ) is the
complete tree over Γ with backwards edges.

A pushdown system (PDS) over Σ is a tuple Y = (Γ, P,∆) where (i) P is a finite
set of control states, and (ii) ∆ ⊆ P×Γε×Σ×P×Γ ∗ is a finite transition relation.
The PDS Y describes the Kripke structure K(Y) = (PΓ ∗, {→σ| σ ∈ Σ}) over
Σ, where →σ= {(pγw, qvw) | w ∈ Γ ∗ and (p, γ,σ, q, v) ∈ ∆} for all σ ∈ Σ. The
size |Y| of Y is |Γ |+ |P |+ |Σ| +

∑
(p,γ,σ,q,v)∈∆ |v|. If (p, γ,σ, q, v) ∈ ∆, we also

write pγ
σ−→Y qv. Note that a BPA is just a stateless PDS.

Example 2. Let K = (S, {→σ| σ ∈ Σ}) be a deterministic Kripke structure, i.e.,
for every state s ∈ S and every σ ∈ Σ there is at most one t ∈ S with s →σ t.
For PDL over BPA and PDS, determinism is no restriction: it can be ensured by
choosing a possibly larger set Σ′ of atomic programs such that every transition
of the BPA (PDS) can be labeled with a unique σ′ ∈ Σ′. Every original atomic
program σ can be recovered as a union of some of these new atomic programs
(for PRS, this doesn’t work). We now want to express that the current state
s ∈ S is a recovery state of the system in the sense that wherever we go from s,
we can always move back to s. This property cannot be expressed in the modal
µ-calculus unless the state s is somehow uniquely marked, e.g., by a special
atomic proposition (but here, we want to define the set of all recovery states).
One can show that s is a recovery state if and only if
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(K, s) |= [Σ∗]
∧

σ∈Σ

(
〈σ〉true ⇒ 〈true? ∩ σ ◦Σ∗〉true

)
.

Note that true? defines the identity relation on S.

Example 3. Let us consider two PDS Yi = (Γ, Pi,∆i) (with a common pushdown
alphabet Γ ) over Σi (i ∈ {1, 2}), where Σ1 ∩ Σ2 = ∅, and such that K(Y1)
and K(Y2) are deterministic (which, by the remarks from Example 2, is not
a restriction). The systems Y1 and Y2 may synchronize over states from the
intersection P1 ∩ P2. These two systems can be modeled by the single PDS
Y = (Γ, P1 ∪ P2,∆1 ∪∆2) over Σ1 ∪Σ2. In this context, it might be interesting
to express that whenever Y1 and Y2 can reach a common node s, and from s,
Yi can reach a node si by a local action, then the two systems can reach from
s1 and s2 again a common node. This property can be expressed by the PDL∩

formula

[Σ∗1 ∩Σ∗2 ]
∧

a∈Σ1,b∈Σ2

(
〈a〉true ∧ 〈b〉true ⇒ 〈a ◦Σ∗1 ∩ b ◦Σ∗2 〉true

)
.

Note that [[a◦Σ∗1∩b◦Σ∗2 ]] is in general not the empty relation, although of course
a ◦Σ∗1 ∩ b ◦Σ∗2 = ∅ when interpreted as a regular expression with intersection.

A relation U ⊆ Γ ∗×Γ ∗ is prefix-recognizable over Γ , if U =
⋃n
i=1 Ri (n ≥ 1) and

Ri = {(uw, vw) | u ∈ Ui, v ∈ Vi, w ∈Wi} for some regular languages Ui,Vi,Wi ⊆
Γ ∗ (1 ≤ i ≤ n). We briefly write Ri = (Ui × Vi)Wi. A prefix-recognizable system
(PRS) (which should not be confused with Mayr’s PRS (process rewrite systems)
[21]) over Σ is a pair Z = (Γ,α) where α assigns to every atomic program σ ∈ Σ
a prefix-recognizable relation α(σ) over Γ , which is given by finite automata
Aσ

1 ,Bσ
1 , Cσ

1 , . . . ,Aσ
nσ

,Bσ
nσ

, Cσ
nσ

such that α(σ) =
⋃nσ

i=1(L(Aσ
i )×L(Bσ

i ))L(Cσ
i ). The

PRS Z describes the Kripke structure K(Z) = (Γ ∗, {α(σ) | σ ∈ Σ}) over Σ.
The size |Z| of Z is |Γ |+ |Σ|+

∑
σ∈Σ

∑nσ

i=1 |Aσ
i |+ |Bσ

i |+ |Cσ
i |, where |A| is the

number of states of a finite automaton A.
Our definition of BPA (resp. PDS) allows transitions of the form ε

σ−→X v

(resp. p
σ−→Y qv for control states p and q). It is easy to see that our definition

describes exactly the same class of BPA (resp. PDS) as defined in [20,21] (resp.
[2,21,29,28]), and there are logspace translations between the two formalisms.

Usually, in the literature a PDS Y describes a Kripke structure with atomic
propositions from some set P. For this purpose, Y contains a mapping � : P → 2P,
where P is the set of control states of Y, and one associates with the atomic
proposition η ∈ P the set of all configurations where the current control state p
satisfies η ∈ �(p). In our formalism, which does not contain atomic propositions,
we can simulate such an atomic propositions η by introducing the new transition
rule p

η→ p whenever η ∈ �(p), see also the convention from the end of Section 3.
Similar remarks apply to BPA and PRS.

Table 1 summarizes our complexity results for PDL and its variants.
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Table 1.

BPA PDS PRS

data P-complete EXP-complete
EF

expression PSPACE-complete
PDL\?

combined EXP-complete

data P-complete

PDL expression EXP-complete

combined

data
PSPACE-hard, in

EXP
EXP-complete

PDL∩
expression

PDL∩\?
combined

2EXP-complete

5 Model-Checking PDL over Infinite State Systems

It was shown in [8] that the model-checking problem of EF over (the Kripke
structures defined by) Petri nets is undecidable. A reduction of this problem to
the model-checking problem of test-free PDL over BPP shows:

Proposition 1. The model-checking problem for test-free PDL over BPP is un-
decidable.

Hence, in the following we will concentrate on the (sequential) system classes
BPA, PDS, and PRS. Our results for (test-free) PDL without intersection over
BPA/PDS/PRS mainly use results or adapt techniques from [2,22,28,29], see
Table 1. It turns out that PDL without test behaves in exactly the same way as
EF, and that adding the test operator leads in most cases to a complexity jump
up to EXP-completeness.

In the rest of the paper, we concentrate on PDL∩, for which we prove that the
expression and combined complexity over BPA/PDS/PRS is complete for 2EXP.
Our lower bound proof uses a technique from [28] for describing a traversal of the
computation tree of an alternating Turing machine in CTL using a pushdown.
The main difficulty that remains is to formalize in PDL∩ that two configurations
of an exponential space alternating Turing machine (these machines characterize
2EXP) are successor configurations. For doing this, we adjoin to every tape cell
a binary counter, which represents the position of the tape cell. This encoding of
configurations is also used in the recent 2EXP lower bound proof of Lange and
Lutz for satisfiability of PDL∩ [17].

Theorem 1. There exists a fixed BPA X such that the following problem is
2EXP-hard:
INPUT: A test-free PDL∩-formula ϕ.
QUESTION: (K(X ), ε) |= ϕ?
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Proof. Since 2EXP equals the class of all languages that can be accepted by an
ATM in exponential space [6], we can choose a fixed 2p(m) − 1 space bounded
ATM M = (Q,ΣM,ΓM, q0, δ,
) (where p(m) is a polynomial) with a 2EXP-
complete acceptance problem. The machine M satisfies the conventions of Sec-
tion 2. Let w ∈ Σ∗M be an input of length n. We construct a fixed BPA
X = X (M) = (Γ,∆) and a test-free PDL∩-formula ϕ = ϕ(w,M) each over
Σ = Σ(M) such that w ∈ L(M) if and only if (K(X ), ε) |= ϕ. Let N =
p(n) and Ω = Q ∪ ΓM. A configuration c of M is a word from the language⋃

0≤i≤2N−2 Γ iMQΓ 2N−1−i
M . We will represent c = γ0 · · ·γi−1qγi+1 · · · γ2N−1 by

the word

γ0[0] · · · γi−1[i− 1]q[i]γi+1[i + 1] · · ·γ2N−1[2
N − 1], (1)

where [k] denotes the binary representation of k (0 ≤ k ≤ 2N − 1) with N bits,
i.e., [k] = β0 · · ·βN−1 with βj ∈ {0, 1} and k =

∑N−1
j=0 2j · βj . A cell is a string

ω[i], where ω ∈ Ω and 0 ≤ i ≤ 2N − 1. Let Moves = Q× ΓM × {←,→} be the
set of moves ofM and let

Dir = {L(µ1, µ2),R(µ1, µ2) | (µ1, µ2) ∈ δ(Q∀,Γ )} ∪
{E(µ1),E(µ2) | (µ1, µ2) ∈ δ(Q∃,Γ )}

be the set of direction markers. These symbols separate consecutive configura-
tions of the form (1) on the pushdown. As in [28], direction markers are used in
order to organize a depth-first left-to-right traversal of the computation tree of
the ATM M on the pushdown. Let Γ = Ω ∪ {0, 1} ∪Dir and Σ = Γ ∪ Γ ∪ {λ},
which is a fixed alphabet. We define the fixed BPA X to be TreeΓ (see Ex-
ample 1) together with the rule (ε, λ, ε), which generates a λ-labeled loop at
every node. In order to define the PDL∩ formula ϕ, we need several auxiliary
programs:

– X =
⋃
x∈X x for X ⊆ Γ : Pops a single symbol x ∈ X from the pushdown.

– popi = {0, 1}i for all 0 ≤ i ≤ N : Pops i bits from the pushdown.
– cell = Ω ◦ popN : Pops a cell ω[i] from the pushdown.

– cell0 = Ω ◦ 0N : Pops a cell ω[0] from the pushdown.

– cell1 = ΓM ◦ 1N : Pops a cell γ[2N − 1] for γ ∈ ΓM from the pushdown.

Next, we define a program inc, which is executable only if on top of the pushdown
there is a word of the form ω[i]ω′[i + 1] for some ω, ω′ ∈ Ω and some 0 ≤ i <
2N − 1. The program inc pops ω[i] during it execution. In order to define inc
we will use the programs χj,β (0 ≤ j < N , β ∈ {0, 1}) which assure that, after
popping j bits of the current cell, a bit β can be popped that matches the bit that
can be popped after popping another j bits of the subsequent cell. Afterwards,
further bits may be popped:
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χj,β = popj ◦ β ◦ {0, 1}∗ ◦Ω ◦ popj ◦ β ◦ {0, 1}∗

inc = cell ∩
[
(cell ◦ cell) ∩ Ω ◦

N−1⋃
i=0

(
1i ◦ 0 ◦ {0, 1}∗ ◦ cell ∩

{0, 1}∗ ◦Ω ◦ 0i ◦ 1 ◦ {0, 1}∗ ∩
N−1⋂
j=i+1

(χj,0 ∪ χj,1)
)]
◦ Γ ∗

The next program conf is only executable if the top of the pushdown is a legal
configuration in the sense of (1), i.e.: A word of the form ω0[0]ω1[1] · · ·ω2N−1[2N−
1] is assumed to be on top of the pushdown, for exactly one 0 ≤ i ≤ 2N − 2
we have ωi ∈ Q, and for all other i we have ωi ∈ ΓM. This top configuration is
being popped during execution:

conf = (cell0 ◦ cell
∗
) ∩ (inc

∗ ◦ cell1) ∩ (ΓM ∪ {0, 1}
∗ ◦Q ◦ ΓM ∪ {0, 1}

∗
)

For all ω, ω′ ∈ Ω the program πω,ω′ is only executable if the top of the pushdown
is a certain suffix of a configuration ofM followed by a direction marker d ∈ Dir
and a complete configuration ofM. More precisely,

ωk[k] · · ·ω2N−1[2N − 1] dω′0[0] · · ·ω′2N−1[2
N − 1]

with ωk = ω and ω′k = ω′ must be on top of the pushdown. During its execution,
πω,ω′ pops ωk[k] from the pushdown:

πω,ω′ = cell ∩

⎛⎝N−1⋂
i=0

⋃
β∈{0,1}

ω ◦ popi ◦ β ◦ {0, 1}∗◦

cell
∗ ◦Dir ◦ cell

∗ ◦ ω′ ◦ popi ◦ β ◦ {0, 1}∗
)
◦ Γ ∗

The program π= =
⋃
ω∈Ω πω,ω checks whether the content of the top cell ω[k]

equals the content of the k-th cell of the subsequent configuration. Now we define
a program checkµ for µ ∈ Moves, which is only executable if cdc′ is on top of
the pushdown, where: (i) c and c′ are configurations of M in the sense of (1),
(ii) d ∈ Dir, and (iii) M moves from configuration c′ to configuration c by the
move µ. We restrict ourselves to the case where µ = (q, a,←):

λ ∩
(

conf ◦Dir ◦ conf ∩ π∗= ◦
⋃

p∈Q,b,c∈ΓM

(πq,c ◦ πc,p ◦ πa,b) ◦ π∗= ◦Dir ◦ conf
)
◦ Γ ∗

The rest of the proof is analogous to Walukiewicz’s proof for the EXP lower bound
for CTL over PDS [28]. Using the direction markers, we can define a program
traverse, whose execution simulates on the pushdown a single step in a depth-first
left-to-right traversal of the computation tree ofM. Using a program init, which
pushes the initial configuration on the pushdown, we get (ε, ε) ∈ [[init◦ traverse∗]]
if and only if the initial configuration q0w is accepting. '(
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In the rest of this paper, we sketch a 2EXP upper bound for the combined com-
plexity of PDL∩ over PRS. For this, we need the concept of two-way alternating
tree automata. Vardi and Kupferman [15] reduced the model-checking problem
of the modal µ-calculus over PRS to the emptiness problem for two-way alter-
nating tree automata, and thereby deduced an EXP upper bound for the former
problem, see also [4,29]. Our general strategy for model-checking PDL∩ over
PRS is the same.

Let Γ be a finite alphabet. A Γ -tree is a suffix-closed subset T ⊆ Γ ∗, i.e., if
aw ∈ T for w ∈ Γ ∗ and a ∈ Γ , then w ∈ T . Elements of T are called nodes. An
infinite path in the tree T is an infinite sequence u1, u2, . . . of nodes such that
u1 = ε and for all i ≥ 1, ui+1 = aiui for some ai ∈ Γ . A Σ-labeled Γ -tree, where
Σ is a finite alphabet, is a pair (T , λ), where T is a Γ -tree and λ : T → Σ is
a labeling function. The complete Γ -tree is the Γ 4 {⊥}-labeled Γ -tree (Γ ∗, λΓ )
where λΓ (ε) = ⊥ and λΓ (aw) = a for a ∈ Γ and w ∈ Γ ∗. For a finite set X ,
let B+(X) be the set of all positive boolean formulas over X ; note that true and
false are positive boolean formulas. A subset Y ⊆ X satisfies θ ∈ B+(X), if θ
becomes true when assigning true to all elements in Y . Let ext(Γ ) = Γ 4 {ε, ↓}
and define for all u ∈ Γ ∗, a ∈ Γ : εu = u, ↓au = u, whereas ↓ε is undefined.

A two-way alternating tree automaton (TWATA) over Γ is a triple T =
(S, δ,Acc), where S is a finite set of states, δ : S×(Γ ∪{⊥})→ B+(S×ext(Γ )) is
the transition function, and Acc : S → {0, . . . ,m} is the priority function, where
m ∈ N. Let u ∈ Γ ∗ and s ∈ S. An (s, u)-run of T (over the complete Γ -tree
(Γ ∗, λΓ )) is a (S × Γ ∗)-labeled Ω-tree R = (TR, λR) for some finite set Ω such
that: (i) ε ∈ TR, (ii) λR(ε) = (s, u), and (iii) if α ∈ TR with λR(α) = (s′, v) and
δ(s′, λΓ (v)) = θ, then there is a subset Y ⊆ S× ext(Γ ) that satisfies the formula
θ and for all (s′′, e) ∈ Y there exists ω ∈ Ω with ωα ∈ TR and λR(ωα) = (s′′, ev).
An (s, u)-run R = (TR, λR) of T is successful if for every infinite path w1, w2, . . .
of TR, min({Acc(s′) | λR(wi) ∈ {s′} × Γ ∗ for infinitely many i}) is even. Let
[[T , s]] = {u ∈ Γ ∗ | there is a successful (s, u)-run of T }. The size |T | of T
is |Γ | + |S| +

∑
θ∈ran(δ) |θ| + |Acc|, where |Acc| := max{Acc(s) | s ∈ S}. For

TWATAs Ti = (Si, δi,Acci) (i ∈ {1, 2}) over Γ let T1 4 T2 = (S1 4 S2, δ1 4
δ2,Acc1 4 Acc2) be their disjoint union. Note that in our definition a TWATA
over an alphabet Γ only runs on the complete Γ -tree. Hence, our definition is
a special case of the definition in [14,15,27], where also runs of TWATAs on
arbitrarily labeled trees are considered. Using [27], we obtain:

Theorem 2 ([27]). For a given TWATA T = (S, δ,Acc) and a state s ∈ S, it
can be checked in time exponential in |S| · |Acc| whether ε ∈ [[T , s]].

It should be noted that the size of a positive boolean formula that appears in the
transition function δ of a TWATA T = (Q, δ,Acc) can be exponential in |Q|, but
the size of δ only appears polynomially in the upper bound for emptiness (and
not exponentially, which would lead to a 2EXP upper bound for emptiness).

Let T = (S, δ,Acc) be a TWATA over Γ . A nondeterministic finite automaton
(briefly NFA) A over T is a pair (Q,→A) where Q is a finite state set and all

transitions are of the form p
a−→A q for p, q ∈ Q, a ∈ Γ ∪ Γ or p

T ,s−−→A q for
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p, q ∈ Q, s ∈ S. The latter transitions are called test-transitions. Let A↓ (resp.
A↑) be the NFA over T that results from A by removing all transitions with a
label from Γ (resp. Γ ), i.e., we only keep test-transitions and transitions with a
label from Γ (resp. Γ ). Let ⇒A ⊆ (Γ ∗ ×Q)× (Γ ∗ ×Q) be the smallest relation
with:

– (u, p)⇒A (au, q) whenever u ∈ Γ ∗ and p
a→A q

– (au, p)⇒A (u, q) whenever u ∈ Γ ∗ and p
ā→A q

– (u, p)⇒A (u, q) whenever u ∈ [[T , s]] and p
T ,s−−→A q

Let [[A, p, q]] = {(u, v) ∈ Γ ∗ × Γ ∗ | (u, p)⇒∗A (v, q)} for p, q ∈ Q.
We will inductively transform a given PDL∩-formula (resp. PDL∩-program)

into an equivalent TWATA (resp. NFA over a TWATA). In order to handle the
intersection operator on programs, we first have to describe a general automata
theoretic construction: Let T = (S, δ,Acc) be a TWATA over Γ and let A =
(Q,→A) be an NFA over T . Let hopA ⊆ Γ ∗ × Q × Q be the smallest set such
that:

– for all u ∈ Γ ∗ and q ∈ Q we have (u, q, q) ∈ hopA
– if (au, p′, q′) ∈ hopA, p

a→A p′, and q′
ā→A q, then (u, p, q) ∈ hopA

– if (u, p, r), (u, r, q) ∈ hopA, then (u, p, q) ∈ hopA
– if u ∈ [[T , s]], p

T ,s−−→A q, then (u, p, q) ∈ hopA

Intuitively, (u, p, q) ∈ hopA if and only if we can walk from node u of the complete
Γ -tree back to u along a path consisting of nodes from Γ ∗u. At the beginning
of this walk, the automaton A is initialized in state p, each time we move in the
tree from v to av (resp. av to u) we read a (resp. ā) in A, and A ends in state
q. Formally, we have:

Lemma 1. We have (u,p,q) ∈ hopA if and only if there exist n ≥ 1, u1, . . . , un ∈
Γ ∗u, and q1, . . . , qn ∈ Q such that u1 = un = u, q1 = p, qn = q, and (u1, q1)⇒A
(u2, q2) · · · ⇒A (un, qn).

The inductive definition of the set hopA can be translated into a TWATA:

Lemma 2. There exists a TWATA U = (S′, δ′,Acc′) with state set S′ = S 4
(Q × Q) such that (i) [[U , s]] = [[T , s]] for s ∈ S, (ii) [[U , (p, q)]] = {u ∈ Γ ∗ |
(u, p, q) ∈ hopA} for (p, q) ∈ Q×Q, and (iii) |Acc′| = |Acc|.

Define a new NFA B = (Q,→B) over the TWATA U by adding to A for every

pair (p, q) ∈ Q×Q the test-transition p
U ,(p,q)−−−−→ q.

Lemma 3. Let u, v ∈ Γ ∗ and p, q ∈ Q. Then the following statements are
equivalent:

– (u, v) ∈ [[A, p, q]]
– (u, v) ∈ [[B, p, q]]
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– there exist a common suffix w of u and v and a state r ∈ Q with (u,w) ∈
[[B↓, p, r]] and (w, v) ∈ [[B↑, r, q]]

Let dropB ⊆ Γ ∗ ×Q×Q be the smallest set such that:

– for all u ∈ Γ ∗ and p ∈ Q we have (u, p, p) ∈ dropB
– if (u, p′, q′) ∈ dropB, p

ā→B p′, and q′
a→B q, then (au, p, q) ∈ dropB

– if s′ ∈ S′, u ∈ [[U , s′]], p
U ,s′
−−→B r, and (u, r, q) ∈ dropB, then (u, p, q) ∈ dropB

– if s′ ∈ S′, u ∈ [[U , s′]], r
U ,s′
−−→B q, and (u, p, r) ∈ dropB , then (u, p, q) ∈ dropB

Lemma 4. We have (u, p, q) ∈ dropB if and only if there exist r ∈ Q and a
suffix v of u such that (u, v) ∈ [[B↓, p, r]] and (v, u) ∈ [[B↑, r, q]].

Again, the inductive definition of dropB can be translated into a TWATA:

Lemma 5. There exists a TWATA V = (S′′, δ′′,Acc′′) with state set S′′ =
S′ 4 (Q × Q) such that: (i) [[V , s′]] = [[U , s′]] for every state s′ ∈ S′ of U , (ii)
[[V , (p, q)]] = {u ∈ Γ ∗ | (u, p, q) ∈ dropB} for every state (p, q) ∈ Q×Q, and (iii)
|Acc′′| = |Acc|.

Let C = (Q,→C) be the NFA over the TWATA V that results from B by adding

for every pair (p, q) ∈ Q × Q the test-transition p
V,(p,q)−−−−→ q. For u, v ∈ Γ ∗ let

inf(u, v) the longest common suffix of u and v.

Lemma 6. Let u, v ∈ Γ ∗ and p, q ∈ Q. Then the following statements are
equivalent:

– (u, v) ∈ [[A, p, q]]
– (u, v) ∈ [[C, p, q]]
– there exists r ∈ Q with (u, inf(u, v)) ∈ [[C↓, p, r]] and (inf(u, v), v) ∈ [[C↑, r, q]]

Now we are ready to prove the announced 2EXP upper bound for the combined
complexity of PDL∩ over PRS. Let Z = (Γ,α) be a PRS and ϕ be a PDL∩

formula each over Σ. We translate Z and ϕ into a TWATA T = (S, δ,Acc) over
Γ together with a state s ∈ S such that (K(Z), ε) |= ϕ if and only if ε ∈ [[T , s]].
The number of states of T will be exponentially in the size of the formula ϕ and
polynomially in the size of Z and the size of the priority function Acc will be
linear in the size of ϕ, which proves a 2EXP upper bound by Theorem 2. From
now on any occurring TWATA is implicitly over Γ and the size of the priority
function is at least 1. The construction of T is done inductively over the structure
of the formula ϕ. More precisely, (i) for every subformula ψ of ϕ we construct a
TWATA T (ψ) together with a state s of T (ψ) such that [[ψ]] = [[T (ψ), s]] and (ii)
for every program π that occurs in ϕ we construct an NFA A(π) over a TWATA
T (π) such that [[π]] = [[A(π), p, q]] for states p and q of A(π).

The case ψ = true is clear, the case ψ = ψ1 ∧ ψ2 can be skipped since
ψ1 ∧ ψ2 ⇔ 〈ψ1?〉ψ2. If ψ = ¬θ, then we apply the standard complementation
procedure [23], where all positive boolean formulas in the right-hand side of the
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transition function are dualized and the acceptance condition is complemented
by incrementing the priority of every state. If ψ = 〈π〉θ, then we have already
constructed A(π), T (π), and T (θ) such that [[π]] = [[A(π), p, q]] for two states p
and q of A(π) and [[θ]] = [[T (θ), s]] for a state s of T (θ). Basically, the TWATA
T (ψ) results from the disjoint union of A(π) and T (π)4T (θ), additionally T (ψ)
can move from state q to state s. It remains to construct A(π) and T (π) for a
PDL∩ subprogram π of ϕ.

Case π = ψ?: We can assume that there exists a TWATA T (ψ) and a state r
of T (ψ) such that [[ψ]] = [[T (ψ), r]]. The TWATA T (π) is T (ψ). The automaton

A(π) has two states p and q with the only transition p
T ,r−−→ q.

Case π = σ ∈ Σ: Assume that α(σ) =
⋃n
i=1(L(A′i) × L(B′i))L(C′i). Define the

homomorphism h : Γ ∗ → Γ
∗

by h(a) = a for all a ∈ Γ . From the representation
of α(σ) we can construct finite automata Ai, Bi, Ci such that L(Ai) = h(L(A′i)),
L(Bi) = L(B′i)

rev, and L(Ci) = h(L(C′i)). Basically, the automaton A(π) first
chooses nondeterministically an i ∈ {1, . . . , n} and then simulates the automaton
Ai, until a current tree node u ∈ Γ ∗ belongs to the language L(Ci). Then
it continues by simulating the automaton Bi. Whether the current tree node
u ∈ Γ ∗ belongs to L(Ci) has to be checked by the TWATA T (π), which can be
built from the automaton Ci.

Case π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗: We construct A(π) by using the
standard automata constructions for union, concatenation, and Kleene-star. We
set T (π1 ∪ π2) = T (π1 ◦ π2) = T (π1) 4 T (π2) and T (χ∗) = T (χ).

It remains to construct A(π1∩π2) and T (π1∩π2). For this, we use the hop/drop-
construction described above: Assume that the NFA A(πi) = (Qi,→i) (i ∈
{1, 2}) over the TWATA T (πi) = (Si, δi,Acci) is already constructed. Thus,
[[A(πi), pi, qi]] = [[πi]] for some states pi, qi ∈ Qi. We first construct the NFA C(πi)
over the TWATA V(πi) = (S′′i , δ

′′
i ,Acc′′i ) as described in Lemma 6. Note that the

state set of C(πi) is Qi (the state set of A(πi)) and that |S′′i | = |Si|+ 2 · |Qi|2.
Let T (π1 ∩ π2) = V(π1)4V(π2). The NFA A(π1 ∩ π2) is the product automaton
of C(π1) and C(π2), where test-transitions can be done asynchronously: Let
A(π1 ∩ π2) = (Q1 × Q2,→), where for a ∈ Γ ∪ Γ we have (r1, r2)

a→ (r′1, r
′
2) if

and only if ri
a→C(πi) r′i for i ∈ {1, 2}. Finally, for a state s of V(π1) 4 V(π1)

we have the test-transition (r1, r2)
T (π1∩π2),s−−−−−−−→ (r′1, r

′
2) if and only if for some

i ∈ {1, 2}: s is a state of V(πi), ri
V(πi),s−−−−−→C(πi) r′i, and r3−i = r′3−i.

Lemma 7. We have [[A(π1 ∩ π2), (p1, p2), (q1, q2)]] = [[π1 ∩ π2]]. Moreover, if
A(πi) = (Qi,→i), A(π1∩π2) = (Q,→), T (πi) = (Si, δi,Acci), and T (π1∩π2) =
(S, δ,Acc), then: |Q| = |Q1| · |Q2|, |S| = |S1| + |S2| + 2 · |Q1|2 + 2 · |Q2|2, and
|Acc| = max{|Acc1|, |Acc2|}.

Recall that we want to check (K(Z), ε) |= ϕ for the PRSZ and the PDL∩ formula
ϕ. A careful analysis of the constructions above allows to prove inductively:

Lemma 8. If |Z| and |ϕ| are sufficiently large, then:
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– For every subformula ψ of ϕ with T (ψ) = (S, δ,Acc) we have |S| ≤ |Z|2·|ψ|2

and |Acc| ≤ |ψ|.
– For every subprogram π of ϕ with A(π) = (Q,→) and T (π) = (S, δ,Acc) we

have |Q| ≤ |Z||π|, |S| ≤ |Z|2·|π|2 , and |Acc| ≤ |π|.

From our construction, Lemma 8, and Theorem 2 we get:

Theorem 3. It can be checked in 2EXP, whether (K(Z), ε) |= ϕ for a given PRS
Z and a given PDL∩ formula ϕ. For a fixed PDL∩ formula, it can be checked in
EXP, whether (K(Z), ε) |= ϕ for a given PRS Z.

For the data complexity of test-free PDL∩ over PDA we can prove a match-
ing EXP lower bound, by translating the fixed CTL formula from Walukiewicz’s
lower bound proof for the data complexity of CTL over PDS [28] into a fixed
test-free PDL∩ formula. For the data complexity of test-free PDL∩ over BPA
we can only prove a lower bound of PSPACE by a reduction from the universal-
ity problem from non-deterministic finite automata. Altogether, we obtain the
results for PDL∩ in Table 1.

One might ask, whether an elementary upper bound also holds for the model-
checking problem of PDL with the complement operator on programs over push-
down systems. But this model-checking problem allows to express emptiness for
a given extended regular expression (i.e., regular expression where the comple-
ment operator is allowed), which is a well known nonelementary problem.

6 Open Problems

On the technical side it remains to close the gap between PSPACE and EXP
for the data complexity of PDL∩ over BPA. Another fruitful research direction
might be to extend PDL∩ by a unary fixpoint operator. The resulting logic is
strictly more expressive than PDL∩ and the modal µ-calculus. We are confident
that our upper bounds for PDL∩ from Theorem 3 can be extended to this logic.
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Abstract. Bisimilarity ∼ and weak bisimilarity ≈ are canonical no-
tions of equivalence between processes, which are defined co-inductively,
but may be approached – and even reached – by their (transfinite)
inductively-defined approximants ∼α and ≈α. For arbitrary processes
this approximation may need to climb arbitrarily high through the in-
finite ordinals before stabilising. In this paper we consider a simple yet
well-studied process algebra, the Basic Parallel Processes (BPP), and
investigate for this class of processes the minimal ordinal α such that
≈ = ≈α.

The main tool in our investigation is a novel proof of Dickson’s
Lemma . Unlike classical proofs, the proof we provide gives rise to a tight
ordinal bound, of ωn, on the order type of non-increasing sequences of
n-tuples of natural numbers. With this we are able to reduce a long-
standing bound on the approximation hierarchy for weak bisimilarity ≈
over BPP, and show that ≈ = ≈ωω .

1 Introduction

There has been great interest of late in the development of techniques for decid-
ing equivalences between infinite-state processes, particularly for the question of
bisimilarity between processes generated by some type of term algebra. Several
surveys of this developing area have been published, beginning with [16], and
there is now a chapter in the Handbook of Process Algebra dedicated to the
topic [2], as well as a website devoted to maintaining an up-to-date comprehen-
sive overview of the state-of-the-art [20].

While questions concerning strong bisimilarity have been successfully ad-
dressed, techniques for tackling the question of weak bisimilarity, that is, when
silent unobservable transitions are allowed, are still lacking, and many open
problems remain. The main difficulty arising when considering weak bisimilar-
ity is that processes immediately become infinite-branching: at any point in a
computation, a single action can result in any number of transitions leading to
any one of an infinite number of next states. Common finiteness properties fail
due to this; in particular, bisimilarity can no longer be characterised by its finite
approximations in the way that it can for finite-branching processes. For arbi-
trary infinite-branching processes, we may need to climb arbitrarily high through
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the transfinite approximations to bisimilarity before reaching the bisimulation
relation itself.

In this paper we consider the problem of weak bisimilarity for so-called Basic
Parallel Processes (BPP), a simple yet well-studied model of concurrent pro-
cesses. These correspond to commutative context-free processes, or equivalently
to communication-free Petri nets. The question as to the decidability of weak
bisimilarity between BPP processes remains unsolved (though decidability re-
sults for very restricted classes of BPP have been established by Hirshfeld in [10]
and Stirling in [21]). It has recently been shown that the problem is at least
PSPACE-hard [19], even in the restricted case of so-called normed BPP, but this
sheds no light one way or the other as to decidability. Jančar suggests in [14]
that the techniques he uses there to establish PSPACE-completeness of strong
bisimilarity for BPP might be exploited to give a decision procedure for weak
bisimilarity, but three years later this conjecture remains unsubstantiated.

It has long been conjectured that for BPP, weak bisimilarity is characterised
by its (ω×2)-level approximation. Such a result could provide a way to a decision
procedure. However, no nontrivial approximation bound has before now been
established; the strength of the (ω×2)-conjecture remains rooted only in the
fact that no counterexample has been found. In this paper we provide the first
non-trivial countable bound on the approximation: for a BPP defined over k
variables, weak bisimilarity is reached by the ω2k level; weak bisimilarity is thus
reached by the ωω level for any BPP.

Our argument is based on a new constructive proof of Dickson’s Lemma which
provides an ordinal bound on the sequences described by the Lemma. This proof
is presented in Section 2 of the paper. After this, the definitions necessary for
the remainder of the paper are outlined in Section 3 along with a variety of
results, and our results on BPP are presented in Section 4. We finish with some
concluding observations in Section 5.

2 Ordinal Bounds for Dickson’s Lemma

In the sequel we shall use the following notation. We let x, y (with subscripts)
range over natural numbers N = {0, 1, 2, . . .}; �x, �y (with subscripts) range over
finite sequences (n-tuples) of natural numbers; and �X, �Y range over arbitrary
(finite or infinite) sequences of such n-tuples. We shall use angle brackets to de-
note sequences, such as �x = 〈x1, . . . ,xn〉 and �X = 〈�x1, �x2, . . .〉, and juxtaposition
to represent concatenation; e.g., if �X is a finite sequence of n-tuples then �X〈�x〉
is the longer sequence which has the extra n-tuple �x added to the end. Finally,
we shall use the notation (·)k to select the kth component from a sequence; for
example, if �xi= 〈x1, . . . ,xn〉 then (�xi)k = xk. (The parentheses are used to avoid
confusion with the subscripting allowed in the variable naming the sequence.)

One n-tuple �y = 〈y1, . . . , yn〉 of natural numbers dominates another such
n-tuple �x = 〈x1, . . . ,xn〉 if �x≤ �y, where ≤ is considered pointwise, that is, xi≤ yi
for each i∈{1, . . . , n}. A sequence of n-tuples is a non-dominating sequence
over Nn if no element of the sequence dominates any of its predecessors in the
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sequence. A tree – by which we mean a rooted directed graph with no undirected
cycles – with nodes labelled by n-tuples from Nn is a non-dominating tree over
Nn if the sequence of labels along any path through the tree is a non-dominating
sequence.

Dickson’s Lemma [6] asserts that there can be no infinite non-dominating
sequences.

Lemma 1 (Dickson’s Lemma). All non-dominating sequences are finite.
That is, given an infinite sequence of vectors �x1, �x2, �x3, . . . ∈ Nn, we can al-
ways find indices i, j with i < j such that �xi ≤ �xj.

The standard proof of this lemma uses a straightforward induction on n: for the
base case, any sequence of decreasing natural numbers must be finite; and for
the induction step, from an infinite sequence of n-tuples you extract an infinite
subsequence in which the last components are nondecreasing (either constant
or increasing), and then apply induction on the sequence of (n−1)-tuples which
arise by ignoring these last components.

The problem with this proof is that it is nonconstructive; in particular, it gives
no clue as to the ordinal bound on the lengths of non-dominating sequences.
The difficulty with determining an ordinal bound comes from the fact that the
domination order is not a total order on n-tuples (as opposed, for example, to
lexicographical order). We provide here an alternative constructive proof from
which we can extract an ordinal bound on the lengths of such sequences.

Theorem 1 (Constructive Dickson’s Lemma). The order type of the set of
non-dominating sequences of n-tuples of natural numbers with partial ordering

�X ≺ �Y
def⇔ �X strictly extends �Y

is ωn.

Proof. That the order type is at least ωn is clear: the order type of the set of
lexicographically descending sequences with respect to extension is ωn, and this
set is contained in the set of non-dominating sequences.

It remains to show that the order type is at most ωn. This result will follow
immediately from the construction of a function

fn : (Nn)+ → Nn

on non-empty finite sequences of n-tuples which satisfies the following property:

If �X〈�x〉 is a non-dominating sequence of n-tuples, and �X is itself non-empty,
then fn( �X〈�x〉)<lex fn( �X).

We shall inductively define these functions fn. The base case is straightforward:
we can define f1 by

f1(〈x1, . . . ,xk〉) def= xk.
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A non-dominating sequence of natural numbers is simply a decreasing se-
quence, which has ordinal bound ω.

For illustrative purposes we carry out the construction of the function f2 for
sequences of pairs, and later generalise our construction to sequences of n-tuples.

Given a non-empty finite sequence of pairs �X = 〈〈x1, y1〉, . . . , 〈xk, yk〉〉,
define

• minx( �X) def= min{ xi : 1 ≤ i ≤ k },

• miny( �X) def= min{ yi : 1 ≤ i ≤ k }, and

• S2( �X) def=
{
〈x, y〉 : minx( �X) ≤ x, miny( �X) ≤ y, and

〈xi, yi〉 �≤ 〈x, y〉 for all i : 1 ≤ i ≤ k
}
.

S2( �X) consists of the pairs with which the sequence �X can be extended without
altering the minx and miny values and yet while maintaining non-domination.
Note that S2( �X) must be finite: if we let i and j be such that xi = minx( �X)
and yj = miny( �X), then in order for 〈x, y〉 �≥ 〈xi, yi〉 and 〈x, y〉 �≥ 〈xj , yj〉 we
must have x < xj (since y ≥ yj) and y < yi (since x ≥ xi).

Suppose that �Y = �X〈〈x, y〉〉 is a non-dominating sequence, and that �X is
itself non-empty. Then clearly minx(�Y ) ≤ minx( �X) and miny(�Y ) ≤ miny( �X);
and if equality holds in both cases then S2(�Y ) � S2( �X), since S2(�Y ) ⊆ S2( �X)
yet 〈x, y〉 ∈ S2( �X) \ S2(�Y ). Thus |S2(�Y )| < |S2( �X)|.

We can then define the function f2 on non-empty sequences �X of pairs as
follows:

f2( �X) def= 〈minx( �X)+miny( �X), |S2( �X)| 〉

If �X〈〈x, y〉〉 is a non-dominating sequence and �X is itself non-empty, then by
the above argument we must have that f2( �X〈〈x, y〉〉)<lex f2( �X).

For the inductive construction of fn we assume we have constructed the func-
tion fn−1 as required. For 1 ≤ i ≤ n we define the function

π-i(〈x1, . . . ,xn〉)
def= 〈x1, . . . ,xi−1,xi+1, . . . ,xn〉

which simply deletes the ith component from the n-tuple 〈x1, . . . ,xn〉. Next,
given a non-empty finite sequence �X = 〈�x1, . . . , �xk〉 of n-tuples, we define the
set

nd-i( �X) def=
{
〈π-i(�xi1), . . . ,π-i(�xip)〉 : p > 0, 0 < i1 < · · · < ip ≤ k,

and 〈π-i(�xi1), . . . ,π-i(�xip)〉 is non-dominating
}

which consists of the non-dominating subsequences of (n−1)-tuples of �X in
which the ith components of the n-tuples have been deleted. Finally we make
the following definitions:
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• min-i( �X) def= min<lex{ fn−1(�Y ) : �Y ∈ nd-i( �X) }

• Sn( �X) def=
{

�x : min-i( �X) = min-i( �X〈�x〉) for all i : 1 ≤ i ≤ n,

and �xi �≤ �x for all i : 1 ≤ i ≤ k
}

Sn( �X) consists of the n-tuples with which the sequence �X can be extended
without altering the min-i values and yet while maintaining non-domination.
Note that Sn( �X) must be finite. To see this, let 1 ≤ i ≤ n and i1, . . . , ip be such
that

min-i( �X) = fn−1(〈π-i(�xi1), . . . ,π-i(�xip)〉),

and suppose that �x ∈ Sn( �X). If the sequence 〈π-i(�xi1), . . . ,π-i(�xip),π-i(�x)〉 is
non-dominating, then by induction we would get that

min-i( �X〈�x〉) ≤lex fn−1(〈π-i(�xi1), . . . ,π-i(�xip),π-i(�x)〉)
<lex fn−1(〈π-i(�xi1), . . . ,π-i(�xip)〉)
= min-i( �X)

contradicting �x ∈ Sn( �X). Therefore we must have that π-i(�x) ≥ π-i(�xij ) for
some j. But since �x �≥ �xij we must then have that (�x)i < (�xij )i.

Suppose that �Y = �X〈�x〉 is a non-dominating sequence, and that �X is itself
non-empty. Then min-i(�Y ) ≤ min-i( �X) for all i (since nd-i( �X) ⊆ nd-i(�Y )); and
if equality holds in all cases then Sn(�Y ) � Sn( �X) since Sn(�Y ) ⊆ Sn( �X) yet
�x ∈ Sn( �X) \ Sn(�Y ). Thus |Sn(�Y )| < |Sn( �X)|.

We can then define the function fn on non-empty sequences �X of n-tuples as
follows:

fn( �X) =
( n∑
i=1

min-i( �X)
)
〈|Sn( �X)|〉

where the sum is taken component-wise. (This sum is, if we identify 〈k1, . . . , kn〉
with ωn−1 ·k1 +ωn−2 ·k2 + · · ·+ω0 ·kn, the natural sum of ordinals.) If �X〈�x〉 is a
non-dominating sequence and �X is itself non-empty, then by the above argument
we must have that fn( �X〈�x〉)<lex fn( �X). 


2.1 Ordinal Bounds on Trees

Our constructive version of Dickson’s Lemma easily extends to trees, where we
take the following definition of the height of a well-founded tree (that is, a tree
with no infinite paths).

Definition 1. The height of a well-founded tree rooted at t is defined by

h(t)
def
= sup{ h(s) + 1 : t −→ s }.

(By convention, sup ∅ = 0.)
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Theorem 2. If t is (the root of) a non-dominating tree over Nn, then h(t) ≤ ωn.

Proof. For each node x of the tree, define �(x) ∈ Nn by �(x) = fn(πx), where
fn is as defined in the proof of Lemma 1, and πx is the non-dominating se-
quence of labels on the path from (the root) t to x. It will suffice then to prove
that h(x)≤�(x) (viewing �(x) as an ordinal, that is, interpreting the n-tuple
〈k1, . . . , kn〉 ∈ Nn as ωn−1k1 + ωn−2k2 + · · ·+ ω0kn) for all nodes x of the tree.
This is accomplished by a straightforward induction on h(x):

h(x) = sup{ h(y)+1 : x→ y }
≤ sup{ �(y)+1 : x→ y } (by induction)

≤ �(x). 


3 Processes and Bisimilarity

A process is represented by (a state in) a labelled transition system defined
as follows.

Definition 2. A labelled transition system (LTS) is a triple S=(S,Act ,→)
where S is a set of states, Act is a finite set of actions, and → ⊆ S ×Act × S
is a transition relation.

We write s
a→ t instead of (s, a, t) ∈ →, thus defining an infix binary relation

a→ = {(s, t) : (s, a, t) ∈ →} for each action a ∈ Act .
It is common to admit silent transitions to model the internal unobservable

evolution of a system. In standard automata theory these are typically referred
to as “epsilon” (or occasionally “lambda”) transitions, but in concurrency theory
they are commonly represented by a special action τ ∈ Act . With this, we can
then define observable transitions as follows:

s
τ⇒ t iff s ( τ→)∗ t and

s
a⇒ t iff s ( τ→)∗ · a→ · ( τ→)∗ t for a �= τ .

In general, a⇒ ⊇ a→; and over an LTS with no silent transitions, a⇒ = a→, and
in this case all the relations we define wrt ⇒ will be identical to the analogous
relations defined wrt →.

The notion of “behavioural sameness” between two processes (which we view
as two states in the same LTS) can be formally captured in many different ways
(see, e.g., [8] for an overview). Among those behavioural equivalences, bisimi-
larity enjoys special attention. Its formal definition is as follows.

Definition 3. Let S = (S,Act ,→) be an LTS. A binary relation R ⊆ S × S is
a bisimulation relation iff whenever (s, t) ∈ R, we have that

– for each transition s
a→ s′ there is a transition t

a→ t′ such that (s′, t′) ∈ R;
and

– for each transition t
a→ t′ there is a transition s

a→ s′ such that (s′, t′) ∈ R.
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Processes s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff
they are related by some bisimulation. Thus ∼ is the union, and ergo the largest,
of all bisimulation relations.

If we replace the transition relation → in this definition with the weak transi-
tion relation ⇒, we arrive at the definition of a weak bisimulation relation
defining weak bisimulation equivalence (weak bisimilarity), which we de-
note by ≈. In general, ≈ ⊇ ∼; and over an LTS with no silent transitions,
≈ = ∼.

The above definition of (weak) bisimilarity is a co-inductive one, but can be
approximated using the following inductively-defined stratification.

Definition 4. The bisimulation approximants ∼α, for all ordinals α ∈ O,
are defined as follows:

– s ∼0 t for all process states s and t.

– s ∼α+1 t iff

• for each transition s
a→ s′ there is a transition t

a→ t′ such that s′ ∼α t′;
and
• for each transition t

a→ t′ there is a transition s
a→ s′ such that s′ ∼α t′.

– For all limit ordinals λ, s ∼λ t iff s ∼α t for all α < λ.

The weak bisimulation approximants ≈α are defined by replacing the tran-
sition relation → with the weak transition relation ⇒ in the above definition.

The following results are then standard.

Theorem 3

1. Each ∼α and ≈α is an equivalence relation over the states of any LTS.

2. Given α < β, ∼α ⊇ ∼β and ≈α ⊇ ≈β over the states of any LTS; and in
general these define strictly decreasing hierarchies: given any ordinal α we
can provide an LTS with states s and t satisfying s ∼α t but s �∼α+1 t (and
s ≈α t but s �≈α+1 t).

3. s ∼ t iff s ∼α t for all ordinals α ∈ O, and s ≈ t iff s ≈α t for all ordinals
α ∈ O. That is, ∼ = ∩α∈O ∼α and ≈ = ∩α∈O ≈α.

Remark 1. For Part 2 of Theorem 3 we can define an LTS over a singleton
alphabet {a} (a �=τ) whose state set is γ for some ordinal γ (that is, each ordinal
smaller than γ is a state), and such that α

a→ β iff β < α. Then it is easy to
show that for α < β, α ∼α β but α �∼α+1 β. (First we show, by induction on α,
that if α ≤ µ, ν then µ ∼α ν; then we show, by induction on α, that if α < β
then α �∼α+1 β.) As this LTS does not have τ actions, and hence ≈=∼, this also
gives that α ≈α β but α �≈α+1 β.

If s �∼ t, we must have a least ordinal α ∈ O such that s �∼α+1 t, and for this
ordinal α we must have s ∼α t. (If s �∼λ t for a limit ordinal λ then we must
have s �∼α t, and hence s �∼α+1 t, for some α < λ.) We shall identify this value α
by writing s ∼!

α t. In the same way we write s ≈!
α t to identify the least ordinal

α ∈ O such that s �≈α+1 t.
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3.1 Bisimulation Games and Optimal Move Trees

There is a further approach to defining (weak) bisimilarity, one based on games
and strategies, whose usefulness is outlined in the tutorial [15]. We describe it
here for bisimilarity; its description for weak bisimilarity requires only replacing
the transition relation → with the weak transition relation ⇒, after which all
results stated will hold for the weak bisimilarity relations.

A game G(s, t) corresponding to two states s and t of an LTS is played between
two players, A and B; the first player A (the adversary) wants to show that the
states s and t are different, while the second player B (the bisimulator) wants to
show that they are the same. To this end the game is played by the two players
exchanging moves as follows:

– A chooses any transition s
a→ s′ or t

a→ t′ from one of the states s and t;

– B responds by choosing a matching transition t
a→ t′ or s

a→ s′ from the
other state;

– the game then continues from the new position G(s′, t′).
The second player B wins this game if B can match every move that the first
player A makes (that is, if A ever cannot make a move or the game continues
indefinitely); if, however, B at some point cannot match a move made by A then
player A wins. The following is then a straightforward result.

Theorem 4. s ∼ t iff the second player B has a winning strategy for G(s, t).
If s �∼ t, then s ∼!

α t for some α ∈ O, and this α in a sense determines how long
the game must last, assuming both players are playing optimally, before B loses
the game G(s, t):
– Since s �∼α+1 t, A can make a move such that, regardless of B’s response,

the exchange of moves will result in a game G(s′, t′) in which s′ �∼α t′; such
a move is an optimal move for A.

– For every β < α, regardless of the move made by A, B can respond in such
a way that the exchange of moves will result in a game G(s′, t′) in which
s′ ∼β t′.

With this in mind, we can make the following definition.

Definition 5. An optimal move tree is a tree whose nodes are labelled by
pairs of non-bisimilar states of an LTS in which an edge (s, t) −→ (s′, t′) exists
precisely when (s, t) is a node of the tree and the following holds:

In the game G(s, t), a single exchange of moves in which A makes an optimal
move may result in the game G(s′, t′)

The optimal move tree rooted at (s, t) is denoted by omt(s, t).

If (s, t) −→ (s′, t′) is an edge in an optimal move tree, then s ∼!
α t and s′ ∼!

β t′

for some α and β with α > β. Hence, every optimal move tree is well-founded.
Furthermore, the following result is easily realised.

Lemma 2. h(omt(s, t)) = α iff s ∼!
α t.
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3.2 Bounded Branching Processes

Over the class of finite-branching labelled transition systems, it is a standard
result that ∼ = ∼ω. We give here a generalisation of this result for infinite-
branching processes.

Definition 6. An infinite cardinal κ is regular iff it is not the supremum of
fewer than κ smaller ordinals.

Thus for example ω is regular as it is not the supremum of any finite collection
of natural numbers.

Definition 7. A process is <-κ-branching iff all of its states have fewer than
κ transitions leading out of them. A tree t is <-κ-branching iff all of its nodes
have fewer than κ children.

Theorem 5. If κ is a regular cardinal, and t is a well-founded <-κ-branching
tree, then h(t) < κ.

Proof. By (transfinite) induction on h(t). If t −→ s then h(s) < h(t); and by
induction h(s) < κ and hence h(s)+1 < κ. Since h(t) = sup{ h(s)+1 : t −→ s },
by the regularity of κ we must have that h(t) < κ. 


The most basic form of this result is König’s Lemma: any finite-branching well-
founded tree can only have finitely-many nodes (and hence finite height).

The next result follows directly from the fact that |A×A| = |A| for any infinite
set A.

Lemma 3. If s and t are non-equivalent states of a <-κ-branching process, then
omt(s, t) is <-κ-branching.

From the above, we arrive at a theorem on approximant collapse, which gener-
alises the standard result that ∼ = ∼ω on finite-branching processes as well as
a result in [22] concerning countably-branching processes.

Theorem 6. For regular cardinals κ, ∼ = ∼κ over the class of <-κ-branching
processes.

Proof. ∼ ⊆ ∼κ is a given. If on the other hand s �∼ t, then h(omt(s, t)) = α
where s ∼!

α t. Thus, by Lemma 3 and Theorem 5, α < κ, and hence s �∼κ t. 


4 Basic Parallel Processes

A Basic Process Algebra (BPA) process is defined by a context-free grammar
in Greibach normal form. Formally this is given by a triple G = (V,A,Γ ),
where V is a finite set of variables (nonterminal symbols), A is a finite set of
labels (terminal symbols), and Γ ⊆ V × A × V ∗ is a finite set of rewrite rules
(productions); it is assumed that every variable has at least one associated rewrite
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rule. Such a grammar gives rise to the LTS SG = (V ∗,A,→) in which the states
are sequences of variables, the actions are the labels, and the transition relation
is given by the rewrite rules extended by the prefix rewriting rule: if (X, a, u) ∈ Γ

then Xv
a→ uv for all v ∈ V ∗. In this way, concatenation of variables naturally

represents sequential composition.
A Basic Parallel Processes (BPP) process is defined in exactly the same fashion

from such a grammar. However, in this case elements of V ∗ are read modulo
commutativity of concatenation, so that concatenation is interpreted as parallel
composition rather than sequential composition. The states of the BPP process
associated with a grammar are thus given not by sequences of variables but
rather by multisets of variables.

As an example, Figure 1 depicts BPA and BPP processes defined by the same
grammar given by the three rules A

a→ AB, A
c→ ε and B

b→ ε.

A
a ��

c

��

AB
a ��

c

��

ABB
a ��

c

��

. . .

ε B
b

 BB
b

 . . .
b



A

a ��

c

��

AB
b

��
a ��

c

��

ABB
b

��
a

��

c

��

. . .

b

��

ε B
b

 BB
b

 . . .
b



Fig. 1. BPA and BPP processes defined by the grammar A
a→ AB, A

c→ ε, B
b→ ε

Decidability results for (strong) bisimilarity checking have been long estab-
lished for both BPA [5] and BPP [3,4]. For a wide class of interest (normed
processes) these problems have even been shown to have polynomial-time solu-
tions [11,12,13]. More recently, the decision problems for full BPA and BPP have
been shown to be PSPACE-hard [17,18].

Decidability results for weak bisimilarity are much harder to establish, mainly
due to the problems of infinite branching. While over BPA and BPP we have
∼ = ∩n∈ω ∼n, the infinite-branching nature of the weak transition relations
makes this result false. As an example, Figure 2gives a BPP process with states
P and Q in which P ≈n Q for all n∈ω yet P �≈ Q. In this case we have
P ≈!

ω Q, but from these we can produce BPP process states Xn and Yn such
that Xn ≈!

ω+n Yn by adding the following production rules to the defining
grammar:

X1
a→ P Xi+1

a→ Xi Y1
a→ Q Yi+1

a→ Yi

However, no example BPP states X and Y are known which satisfy X ≈!
ω×2 Y .

This leads to the following long-standing conjecture.

Conjecture (Hirshfeld, Jančar). Over BPP processes, ≈ = ≈ω×2.
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A
a→ A P

τ→ A Q
a→ ε

P
τ→ Q Q

τ→ QQ

P

τ

��

τ �� A a��

ε Q
a


τ ��

QQ
τ ��

a
 QQQ

τ
��

a
 . . .

a


Fig. 2. A BPP process with states P and Q satisfying P ≈!
ω Q

Remark 2. The situation is different for BPA, as noted originally in [22]: for
any α<ωω, we can construct BPA processes P and Q for which P ≈!

α Q. To see
this, we consider the grammar G = (V,A,Γ ) in which V = {X0, X1, . . . , Xn−1},
A = {a, τ}, and Γ consists of the following rules:

X0
a→ ε Xi

τ→ ε Xi+1
τ→ Xi+1Xi

For each α<ωn, with Cantor normal form

α = ωn−1an−1 + · · · + ω2a2 + ωa1 + a0,

let Pα = Xa0
0 Xa1

1 Xa2
2 · · ·X

an−1
n−1 . We can show that, for α<β<ωn, Pα ≈!

α Pβ.
This will follow from the following sequence of observations which demonstrate
a close analogy between the processes Pα and the ordinal processes α from Re-
mark 1:

– If P ≈ Q then RP ≈ RQ and PR ≈ QR. The first conclusion is true for
every BPA process, while the second conclusion is true for every BPA process
in which P

τ⇒ ε whenever P ≈ ε, which is certainly the case for the BPA
process under consideration since in this case P ≈ ε implies that P = ε.
(Proof: {(RP,RQ) : P ≈ Q} and {(PR, QR) : P ≈ Q} are easily verified to
be weak bisimulation relations.)

– For i>j: XiXj ≈ Xi. (Proof: by induction on i−j.)

– Every state P ∈ V ∗ is weakly bisimilar to some state Pα. (Proof: follows
directly from the above observations.)

– Xk
τ⇒ Pα for every α≤ωk. (Proof: easily verified.)

– Pα
τ⇒ Pβ for every β≤α. (Proof: generalisation of the above observation.)

– Pα
a⇒ Pβ for every β<α. (Proof: follows from the previous observation and

the fact that Pβ+1
a→ Pβ.)

– If Pα
τ⇒ P then P ≈ Pβ for some β≤α. (Proof: easily verified.)

– If Pα
a⇒ P then P ≈ Pβ for some β<α. (Proof: again easily verified.)

We thus arrive at the following important observations about the states Pα:

– Pα
τ⇒ Pβ for all β≤α, and if Pα

τ⇒ P then P ≈ Pβ for some β≤α; and

– Pα
a⇒ Pβ for all β<α, and if Pα

a⇒ P then P ≈ Pβ for some β<α.



376 W. Harwood, F. Moller, and A. Setzer

This suffices to deduce with little effort, analogously to Remark 1, that if α<β
then Pα ≈!

α Pβ. (The conjecture for BPA, though, is that the bound given by this
construction is tight: ≈ = ≈ωω .)

BPP processes with silent moves are countably-branching, and thus by Theo-
rem 6 ≈ = ≈ℵ1 . In [22] there is an argument attributed to J. Bradfield which
shows that the approximation hierarchy collapses by the level ≈ωCK

1
, the first

non-recursive ordinal. (The argument is made there for BPA but clearly holds as
well for BPP.) But this is to measure in lightyears what should require centime-
tres; we proceed here to a more modest bound, based on our ordinal analysis of
Dickson’s Lemma.

We assume an underlying grammar (V,A,Γ ) defining our BPP process, and
recall that a state in the associated process is simply a sequence u ∈ V ∗ viewed
as a multiset. With this, we make the important observation about weak bisim-
ulation approximants over BPP: besides being equivalences, they are in fact
congruences.

Lemma 4. For all u, v, w ∈ V ∗, if u ≈α v then uw ≈α vw.

Proof. By a simple induction on α. 


We next observe a result due to Hirshfeld [10].

Lemma 5. If u≈!
α v and uu′≈!

β vv′ with β < α then uu′≈!
β uv′ and vu′≈!

β vv′.

Proof. uu′ ≈β uv′ since uu′ ≈β vv′ ≈α uv′. On the other hand, if uu′ ≈β+1 uv′

then uu′ ≈β+1 uv′ ≈α vv′. Thus uu′ ≈!
β uv′. (vu′ ≈!

β vv′ can be shown similarly).



BPP processes, being multisets over the finite variable set V , can be represented
as |V |-tuples over N. Given non-equivalent BPP states u0 and v0, omt(u0, v0)
can then be viewed as a N2·|V |-labelled tree. In general this tree will not be non-
dominating, but the above lemma will enable us to produce a non-dominating
N2·|V |-labelled tree from omt(u0, v0)

Lemma 6. For BPP processes, if u0 ≈!
α v0 then there exists a N2·|V |-labelled

non-dominating tree of height α.

Proof. We apply the following substitution procedure to each successive level
of the weak-transition optimal move tree omt(u0, v0) (where the level of a node
refers to the distance from the root (u0, v0) to the node) by induction on the
levels:

For each node x at this level, if x dominates some ancestor node y, that is,
if there exists an ancestor node y = (u, v) where x = (uu′, vv′), then replace
the subtree rooted at x with either x′ = omt(uu′, uv′) (if u <lex v) or with
x′ = omt(vu′, vv′) (if v <lex u). (If this x′ itself then dominates an ancestor
node, repeat this action.)
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That <lex is a well-founded relation on N2·|V | means this repetition must halt;
and Lemma 5 implies that this is a height-preserving operation. 


Theorem 7. Over BPP processes, ≈ = ≈ωω

Proof. If u ≈ v then u ≈ωω v is a given. If, on the other hand, u �≈ v, then
u ≈!

α v for some α, and by the combination of Lemma 6 and Theorem 2 we must
have that α ≤ ω2·|V |. Thus, u �≈ωω v. 


5 Conclusions

In this paper we provide a bound on the level at which the bisimulation approx-
imation relations collapse over BPP. The bound we give of ωω is still a far cry
from the widely-accepted conjectured bound of ω×2, but it nonetheless repre-
sents the first nontrivial countable bound that has been discovered in the decade
since this conjecture was first uttered (originally by Hirshfeld and Jančar).

We arrive at our bound through a careful analysis of Dickson’s Lemma, and
in particular via a novel constructive proof which provides this ordinal bound
on non-dominating sequences of n-tuples. (Dickson’s Lemma itself merely de-
clares that such sequences are necessarily finite without actually identifying any
ordinal bound.) This approach does not immediately seem to be applicable to
strengthening the bound, given that this bound on Dickson’s Lemma is tight.
However, it seems equally likely that by taking into consideration the restricted
form of non-dominating sequences produced by BPP transitions we can identify
the missing ingredient for the proof of the tighter bound.

There have been other similar constructive proofs of Dickson’s Lemma in
the area of term rewriting. In particular, Sustik [23] provides a similar proof
using an ordinal mapping on sequences in order to mechanically prove Dickson’s
Lemma using the ACL2 theorem prover. However, the ordinal mapping defined
by Sustik gives an inferior bound to the one we provide; in particular, it requires
ωω already for sequences of pairs.

Blass and Gurevich have very recently (preprint March 2006) written a man-
uscript [1] in which they define the stature of a well partial ordering P to be the
order type of nondominating sequences of P , and (amongst other things) derive
the same tight bound of ωn as we have done. Their application of interest lies in
program termination, and their proofs, being of more general results, are more
complicated than the proof we provide. We therefore feel that our proof, which
appeared in an earlier mauscript [9], as well as our application to bisimulation
checking is of independent interest.

If the ω×2 bound for the weak bisimulation approximation relations over BPP
is resolved positively, this can potentially be exploited to resolve the decidability
of weak bisimilarity over BPP. Esparza in [7] has shown that weak equivalence
is semi-decidable, by demonstrating a semilinear witness of equivalence, so semi-
decidability of non-equivalence is all that is required. If ≈ω can be shown to be
decidable (which is likely a much simpler result to attain than for ≈) then it
would naturally be expected that the successor relations ≈ω+1,≈ω+1, . . . would
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also be decidable, which would give rise to a semi-decision procedure for �≈ω×2:
test each relation ≈ω+i in turn until one such test fails.
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Abstract. 1 Let i, j ≥ 1, and let Σi
j denote the class of the higher order

logic formulas of order i + 1 with j − 1 alternations of quantifier blocks
of variables of order i + 1, starting with an existential quantifier block.
There is a precise correspondence between the non deterministic expo-
nential time hierarchy and the different fragments of higher order logics
Σi

j , namely NEXP j
i = Σi+1

j . In this article we present a complete prob-
lem for each level of the non deterministic exponential time hierarchy,
with a very weak sort of reductions, namely quantifier-free first order
reductions. Moreover, we don’t assume the existence of an order in the
input structures in this reduction. From the logical point of view, our
main result says that every fragment Σi

j of higher order logics can be
captured with a first order logic Lindström quantifier. Moreover, as our
reductions are quantifier-free first order formulas, we get a normal form
stating that each Σi

j sentence is equivalent to a single occurrence of the
quantifier and a tuple of quantifier-free first order formulas. Our com-
plete problems are a generalization of the well known problem quantified
Boolean formulas with bounded alternation (QBFj).

Keywords: Lindström Quantifiers, Complete Problems, Higher Order
Logics.

1 Introduction

Descriptive complexity theory is one of the main research areas of finite model
theory. It studies the ritchness of logical languages which are needed for express-
ing computational problems. The starting point was the work by Büchi ([Bu60]),
and Fagin gave a decisive impulse to the field when he proved that Σ1

1 = NP ,
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that is, a class of finite models is definable by an existential sentence of second
order logic (SO) iff it is in NP ([Fag74]). Later, Stockmeyer generalized it to
the characterization of full SO ([Sto76]).

Complete problems for given complexity classes play an important role in
complexity theory. Complete problems with respect to first order reductions have
been previously studied by several authors. Immerman ([Imm83]) proved that,
in the presence of a linear order, deterministic transitive closure is complete for
LOGSPACE, transitive closure is complete for NLOGSPACE, and alternating
transitive closure is complete for PTIME with respect to quantifier free pro-
jections, which are weaker than quantifier free first order reductions. Stewart
([Ste91]) studied various NP complete problems, and proved that they remain
complete with respect to quantifier free first order reductions, assuming a linear
order on the structures.

There are complete problems for NP with respect to first order reductions
even without assuming linear order. Indeed, Dahlhaus ([Dah84]) proved that
satisfiability is such a problem. However, in the case of PTIME, it is not known
whether a complete problem with respect to quantifier free first order reductions
exists if order is not assumed. The existence of such a problem would solve the
famous open problem in finite model theory, whether PTIME can be captured
by an effective logic on the class of all finite models. Dawar ([Daw95]) was able
to prove the converse of this observation: if there is any effective logic capturing
PTIME, then there is a complete problem with respect to quantifier free first
order reductions without assuming order. On the other hand Grohe ([Gro95])
proved that there are complete problems for least fixed point logic and partial
fixed point logic with respect to quantifier free first order reductions.

In this paper, we are interested in the descriptive complexity of the classes
in the non deterministic exponential time hierarchy. This hierarchy is defined:

NEXP 0
i =

⋃
cNT IME(exp(i, O(nc))), and NEXP ji = NEXP 0

Σ
p
j−1

i , where
Σpj−1 is the (j−1)-th level of the polynomial hierarchy (PH), and (exp(i, f(n)))

is the exponential tower 22...2

of height i, and then topped with the function
f(n). The non deterministic exponential time hierarchy is captured by higher
order logics, in the same way as PH is captured by SO.

The correspondence between the non deterministic exponential time hierarchy
and the different fragments of higher order logics Σij , has been studied by Leivant
([Lei89]) and by Hull and Su ([HS91]), and more recently in ([HT03], [HT06])
where the exact correspondence was proved. That is, for each i, j ≥ 1, NEXP ji =
Σi+1
j .
From the point of view of complexity theory, our main result is the finding

of a complete problem for each level of the non deterministic exponential time
hierarchy, with a very weak sort of reductions, namely quantifier-free first order
reductions. Moreover, we don’t assume the existence of an order in the input
structures in this reduction.

On the other hand, from the logical point of view, our main result says that
every fragment Σij of higher order logics can be captured with a first order logic
Lindström quantifier. Moreover, as our reductions are quantifier-free first order
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formulas, we get a normal form stating that each Σij sentence is equivalent to
a single occurrence of the quantifier and a tuple of quantifier-free first order
formulas.

Our complete problems are a generalization of the well known problem quan-
tified Boolean formulas with bounded alternation (QBFj), which are known to
be complete for the corresponding level j of the polynomial hierarchy Σpj . And
hence, also complete for the fragment of second order logic Σ1

j (see [Imm99]).
The paper is organized as follows. In Section 2 we establish the notation and

we give the syntax and semantics of higher order logics. In Section 3 we prove
that, for every j ≥ 1, the Σij theory of the Boolean model is complete for Σ2

j under
PTIME reductions. The Boolean model is a two element structure of the Boolean
signature, i.e., a signature which has no relation (or function) symbols, and which
has two constants which are interpreted by the two elements, respectively.

In Section 4, we first define the extended syntax trees and the hyper extended
syntax trees as relational structures which we use to represent second order
formulas of the Boolean signature. Then we prove that, for every j ≥ 1, a
certain class of hyper extended syntax trees is complete for the fragment Σ2

j

of third order logic, under quantifier-free first order reductions. Finally, we use
those problems as the interpretations of (relativized) Lindström quantifiers, and
we give the normal form theorem for the fragments Σ2

j of third order logic.
In Section 5, we extend our results getting complete problems under quantifier-

free first order reductions for the fragments Σij of higher order logics of all finite
orders. Once again, we use those problems as the interpretations of corresponding
(relativized) Lindström quantifiers, and we give the normal form theorem for the
fragments Σij of all finite orders.

[HT05] is a Technical Report where the proofs of the results presented in this
article can be found.

2 Preliminaries

As usual ([EF99], [AHV95]), we regard a relational database schema, as a rela-
tional signature, and a database instance or simply database as a finite structure
of the corresponding signature. If A is a database or structure of some schema
σ, we denote its domain as dom(A). If R is a relation symbol in σ of arity r,
for some r ≥ 1, we denote as RA the (second order) relation of arity r which
interprets the relation symbol R in A, with the usual notion of interpretation.
We denote as Bσ the class of finite σ-structures, or databases of schema σ. In
this paper, we consider total queries only. Let σ be a schema, let r ≥ 1, and let R
be a relation symbol of arity r. We use the notion of a logic in a general sense. A
formal definition would only complicate the presentation and is unnecessary for
our work. As usual in finite model theory, we regard a logic as a language, that
is, as a set of formulas (see [EF99]). We only consider signatures, or vocabular-
ies, which are purely relational. We consider finite structures only. Consequently,
the notion of satisfaction, denoted as |=, is related to only finite structures. By
ϕ(x1, . . . ,xr) we denote a formula of some logic whose free variables are exactly
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{x1, . . . ,xr}. If ϕ(x1, . . . ,xk) ∈ Lσ, A ∈ Bσ, āk = (a1, . . . , ak) is a k-tuple over
A, let A |= ϕ(x1, . . . ,xk)[a1, . . . , ak] denote that ϕ is true, when interpreted by
A, under a valuation v where for 1 ≤ i ≤ k v(xi) = ai. Then we consider the set
of all such valuations as follows:

ϕA = {(a1, . . . , ak) : a1, . . . , ak ∈ dom(A) ∧A |= ϕ(x1, . . . ,xk)[a1, . . . , ak]}
That is, ϕA is the relation defined by ϕ in the structure A, and its arity

is given by the number of free variables in ϕ. Formally, we say that a formula
ϕ(x1, . . . ,xk) of signature σ, expresses a query q of schema σ, if for every database
A of schema σ, is q(A) = ϕA. Similarly, a sentence ϕ expresses a Boolean query
q if for every database A of schema σ, is q(A) = true iff A |= ϕ.

For every i ≥ 2, in the alphabet of a Higher Order Logic of order i, HOi,
besides the usual logical and punctuation symbols, we have a countably infinite
set of individual variables, and for every arity, and for every order 2 ≤ j ≤ i,
a countably infinite set of relation variables. We use calligraphic letters like X
and Y for relation variables, and lower case letters like x and y for individual
variables. Let σ be a relational vocabulary. We define the set of atomic formulas
on the vocabulary σ as follows: 1) If R is a relation symbol in σ of arity r,
for some r ≥ 1, and x0, . . . ,xr−1 are individual variables, then R(x0, . . . ,xr−1)
is an atomic formula; 2) If x and y are individual variables, then x = y is an
atomic formula; 3) If X is a relation variable of order 2, and of arity r, for
some r ≥ 1, and x0, . . . ,xr−1 are individual variables, then X (x0, . . . ,xr−1) is
an atomic formula; 4) If X is a relation variable of order j, for some 3 ≤ j ≤ i,
and of arity r, for some r ≥ 1, and Y0, . . . ,Yr−1 are relation variables of order
j−1, and of arity r, then X (Y0, . . . ,Yr−1) is an atomic formula; 5) Nothing else
is an atomic formula.

We define the set of well formed formulas as follows: 1) An atomic formula is
a well formed formulas; 2) If ϕ,ψ are well formed formulas, then the following
are also well formed formulas: (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ); 3) If ϕ is a well formed
formulas, and x is an individual variable, then the following are also well formed
formulas: ∃x(ϕ), ∀x(ϕ); 4) If ϕ is a well formed formulas, and X is a relation
variable, then the following are also well formed formulas: ∃X (ϕ), ∀X (ϕ); 5)
Nothing else is a well formed formula.

Let r ≥ 1. A second order relation of arity r is a relation in the classical
sense, i.e., a set of r-tuples of elements of the domain of a given structure. For
an arbitrary i ≥ 3, a relation of order i of arity r or an i-th order relation of
arity r is a set of r-tuples of relations of order i− 1. In general by higher order
relations we mean relations of order i, for some i ≥ 2. W.l.o.g., and for the sake
of simplicity, we assume that the arity of a higher order relation is propagated
downwards, i.e., the relations of order i−1 which form the r-tuples for a relation
of order i, are themselves of arity r, and so on, all the way down to the second
order relations, which are also of arity r. Note that we could also allow relations
of order < i − 1 to form r-tuples for relations of order i. Again, for the sake of
simplicity, and w.l.o.g., we choose not to do so.

We can now define the semantics for higher order logics. Let σ be a relational
vocabulary. A valuation v on a σ-structure A, is a function which assigns to each



384 L. Hella and J.M. Turull-Torres

individual variable x an element in dom(A), and to each relation variable X of
order j, for some 2 ≤ j ≤ i, and of arity r, for some r ≥ 1, a relation of order j
and of arity r on dom(A). Let v0, v1 be two valuations on a σ-structure A, and
let V be a variable of whichever kind, we say that v0 and v1 are V -equivalent if
they coincide in every variable of whichever kind, with the possible exception of
variable V . We also use the notion of equivalence w.r.t. sets of variables. Let A
be a σ-structure, and let v be a valuation on A.

Next, we define inductively the notion of satisfaction. Besides the usual rules
for FO, we have the following: 1) A, v |= X (x0, . . . ,xr−1), where X is a relation
variable of order 2 and of arity r, for some r ≥ 1, and x0, . . . ,xr−1 are individual
variables, iff the r-tuple (v(x0), . . ., v(xr−1)) belongs to the second order relation
v(X ); 2) A, v |= X (Y0, . . . ,Yr−1), where X is a relation variable of order j, for
some 3 ≤ j ≤ i, and of arity r, for some r ≥ 1, and Y0, . . . ,Yr−1 are relation
variables of order j − 1 and of arity r, iff the r-tuple of relations of order j − 1,
(v(Y0), . . . , (v(Yr−1)) belongs to the relation of order j v(X ); 3) A, v |= ∃X (ϕ),
where X is a relation variable, and ϕ is a well formed formula, iff there is a
valuation v′, which is X -equivalent to v, such that A, v′ |= ϕ; 4) A, v |= ∀X (ϕ),
where X is a relation variable, and ϕ is a well formed formula, iff for every
valuation v′, which is X -equivalent to v, A, v′ |= ϕ.

Let i, j ≥ 1, as it is usual in classical Logic we denote by Σij the class
of formulas ϕ ∈ HOi+1 of the form ∃X11 . . .∃X1s1∀X21 . . . ∀X2s2∃X31 . . .∃X3s3

. . . QXj1 . . . QXjsj (ψ), where ψ ∈ HOi, Q is either ∃ or ∀, depending on whether
j is odd or even, respectively, and for k ≥ 1 it is sk ≥ 1. That is, Σij is the class of
HOi+1 formulas with j−1 alternations of quantifiers blocks of variables of order
i+1, starting with an existential quantifier. Similarly, we denote by Πi

j the class
of formulas ϕ ∈ HOi+1 of the form ∀X11 . . .∀X1s1∃X21 . . . ∃X2s2∀X31 . . .∀X3s3

. . . QXj1 . . . QXjsj (ψ), where ψ ∈ HOi, Q is either ∀ or ∃, depending on whether
j is odd or even, respectively, and for k ≥ 1 it is sk ≥ 1. That is, Πi

j is the class
of HOi+1 formulas with j − 1 alternations of quantifiers blocks of variables of
order i+1, starting with an universal quantifier. We say that the formula ϕ is in
generalized Skolem normal form, or GSNF if it belongs to either Σij or Πi

j , for
some i, j ≥ 1. Note that, unfortunately, in the notations Σij and Πi

j the index i
denotes the order i + 1. The following lemma is well known.

Lemma 1. (folklore) For every i ≥ 2, and for every formula ϕ ∈ HOi there is
a formula ϕ̂ ∈ HOi which is in GSNF and which is equivalent to ϕ.

We define next the non-deterministic exponential hierarchy.

Definition 1. For every i ≥ 0, let NEXPH0
i =

⋃
c∈N NT IME(exp(i, O(nc)));

for every j ≥ 1, let NEXPHj
i = NEXPH0

i
Σp

j−1 , where Σpj−1 is defined as usual
in the Polynomial Hierarchy (i.e., Σp0 = P , and Σpj = NPΣ

p
j−1 , for j ≥ 1, see

[BDG95]). That is, NEXPHj
i is the class of non deterministic Turing machines

in the class NEXPH0
i with an oracle in Σpj−1.
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Theorem 1. ([HT03]) Let σ be a relational signature. For every i, j ≥ 1, the
classes of σ-structures which are finitely axiomatizable in Σij are exactly those
classes which belong to the complexity class NEXPHj−1

i−1 .

3 A Complete Problem for Σ2
j

3.1 Reduction of Structures to Formulas

Let φ be a formula of third order logic. W.l.o.g. and to simplify our exposition, we
assume that the arity of all third order and second order variables is r, for some
r ≥ 1 and moreover, the arity of all second order variables used as components
in third order atomic formulas is also r. All predicates in the signature of φ are
also of arity r. We also assume that no variable in φ is quantified more than
once.

We will define a translation function fφ that maps interpretations of φ into
formulas of second order logic. Recall that an interpretation for φ is a pair
A = 〈A,α〉, where A is a structure of the vocabulary τφ consisting of the relation
symbols and constant symbols occurring in φ, and α is a mapping that interprets
the free variables of φ in the domain A of A. For each model A, we define
fφ(〈A,α〉) by induction on φ simultaneously for the possible variable assignments
α. In addition we will define a function g that maps each interpretation A of φ
to an interpretation g(A) of the second order formula fφ(A).

Before going into the definitions of fφ(A) and g(A), we need to fix a mapping
that assigns for each higher order variable in φ a corresponding (sequence of)
variable(s) in fφ(A). We assign a first order variable xV,a for each second order
variable V in φ and each tuple a ∈ Ar. All these variables are assumed to be
distinct: xU,a = xV,b if and only if U = V and a = b. For each third order
variable T of φ we assign a distinct second order variable UT of arity r · |A|r.

We use the notation xV for the tuple (xV,a1 , . . . ,xV,am), where m = |A|r and
a1, . . . ,am is a fixed listing of the elements of Ar.

Let � be a sentence that is always true, and ⊥ a sentence that is always false
(e.g., � and ⊥ can be chosen to be ∀x (x = x) and ∃x (x �= x), respectively).

We are now ready to give the inductive definition for the function fφ. For
atomic formulas φ the definition is as follows: 1) if φ is s = t, where s and t
are terms, then fφ(A) := � if sA = tA, and ⊥ if sA �= tA; 2) if φ is R(t) for a
relation symbol R in τφ and a tuple t of terms, then fφ(A) := � if tA ∈ RA,
and ⊥ if tA �∈ RA; 3) if φ is V (t) for a second order variable V and a tuple t
of terms, then fφ(A) := (xV,a = 1), where a = tA; 4) if φ is T (V ) for a third
order variable T and a tuple of second order variables V = (V1, . . . ,Vr), then
fφ(A) := UT (xV1 , . . . ,xVr ).
Assume then that fψ has been defined for all subformulas ψ of φ. Then fφ is
defined as follows: 1) if φ is ¬ψ, then fφ(A) := ¬fψ(A); 2) if φ is ψ ∨ θ, then
fφ(A) := fψ(A) ∨ fθ(A); 3) if φ is ψ ∧ θ, then fφ(A) := fψ(A) ∧ fθ(A); 4)
if φ is ∃xψ, then fφ(A) :=

∨
a∈A fψ(A[a/x]); 5) if φ is ∀xψ, then fφ(A) :=∧

a∈A fψ(A[a/x]); 6) if φ is ∃V ψ, then fφ(A) := ∃xV fψ(A); 7) if φ is ∀V ψ,
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then fφ(A) := ∀xV fψ(A); 8) if φ is ∃T ψ, then fφ(A) := ∃UT fψ(A); 9) if φ is
∀T ψ, then fφ(A) := ∀UT fψ(A).

Note that the quantification used in this transformation for first order vari-
ables (∃xV and ∀xV ) is done in such a way that we always use the same order in
the occurrences of the individual variables in the block, which in turn is also the
order in which variables are used in the atomic formulas UT (xV1 , . . . ,xVr ). We
call these kind of formulas Block Quantified Boolean Formulas and we denote it
by BBF . Later we will make use of this property.

The interpretation for the second order formula fφ(A) is g(A) = 〈B, βA〉,
where B is the two-element model 〈{0, 1}, 0, 1〉 (i.e., both elements are interpre-
tations of constant symbols).

Before defining the interpretation βA of free variables we observe that each
relation S ⊆ Ar can be represented on the model B as a binary string bS =
(b1, . . . , bm) ∈ {0, 1}m, where for each j, bj = 1 ⇐⇒ aj ∈ S. And vice versa,
each binary string b ∈ {0, 1}m can be seen as a binary encoding of a relation
Sb ⊆ Ar.

The mapping βA is defined as follows: 1) for each second order variable V and
a ∈ Ar, βA(xV,a) = 1 if a ∈ V A, and 0 if a �∈ V A; 2) for each third order variable
T , βA(UT ) = {(bS1 , . . . , bSr) ∈ {0, 1}r·m | S1, . . . ,Sr ⊆ Ar and (S1, . . . ,Sr) ∈
T A}.

We make the following observations, which can be easily proved by induction
given the definitions of fφ(A) and g(A): 1) the interpretation g(A) does not
depend on the interpretations α(x) of first order variables: g(A[a/x]) = g(A)
for all a ∈ A; 2) the translation fφ(A) does not depend on the interpretations
α(U) and α(T ) of second and third order variables: fφ(A[S/U ]) = fφ(A) for all
S ⊆ Ar, and fφ(A[R/T ]) = fφ(A) for all R ⊆ (P(Ar))r.

Theorem 2. If φ is a third order formula and A is an interpretation for φ, then
A |= φ ⇐⇒ g(A) |= fφ(A). $

Corollary 1. For every j ≥ 1 Σ1
j -Th(B) is hard for Σ2

j under P reductions. $

Theorem 3. For every j ≥ 1 Σ1
j -Th(B) is in Σ2

j . $

4 Completeness with First Order Reductions

4.1 Interpretation of Formulas as Structures

In this subsection we will only consider second order formulas which are BBF
(see remark in previous subsection). Clearly each such second order Boolean
formula can be represented as a structure by describing its syntax tree with
suitable relations. In a straightforward description each variable corresponds to
a different unary relation. However, since our aim is to find a class of structures
that is complete for Σ2

j , we need a uniform representation of formulas in a fixed
signature. This can be achieved by representing variables by equivalence classes
of an equivalence relation. We also need to identify the position in which blocks of
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variables occur in a given atomic formula. That can be done by using a constant
number of special nodes as indices, and by then linking each block of variables
with the index which corresponds to the position in which the block occurs in
its respective atomic formula.

In addition we will need a binary relation that links each quantifier in a
formula to the (occurrences of) variables it binds. For this purpose we have to
work with an extended notion of syntax tree, in which each occurrence of a
variable is considered as a separate node. More precisely, if an atomic formula
X(x1, . . . ,xr) occurs in a formula ψ, then each block of variables xi, for 1 ≤
i ≤ r, is regarded as an immediate subformula of X(x1, . . . ,xr) in the extended
syntax tree of ψ. And furthermore each variable xij , for 1 ≤ i ≤ r and 1 ≤ j ≤ m,
is regarded as an immediate subformula of the block of variables xi of length
m. On the other hand, we will treat blocks of similar quantifiers as single nodes
in the extended syntax tree; for example ∃V1 . . .∃Vn θ corresponds to the node
∃V θ.

The formal definition of the translation of formulas into structures goes as
follows. Let ψ be a second order Boolean formula which is in negation normal
form. Then Cψ is the structure 〈Cψ,Sψ,Eψ,Rψ , Iψ,L1ψ

, . . . ,L15ψ
〉, where:

1) Cψ is the union of the set of all subformulas in the extended syntax tree
of ψ (different occurrences of the same subformula are considered as different
elements) and a set of nodes used as indices (see predicate L15 below);

2) Sψ ⊆ (Cψ)2 is the immediate subformula relation in the extended syntax
tree of ψ;

3) Eψ ⊆ (Cψ)2 is the set of all pairs (a, b) such that a and b are occurrences in
the extended syntax tree of ψ of either the same first order variable, or atomic
formulas with the same second order variable;

4) Rψ ⊆ (Cψ)2 is the set of all pairs (a, b) such that a is a subformula of ψ of
the form ∃V θ or ∀V θ, (∃x θ or ∀x θ) and b is an occurrence of an atomic formula
Vi(x) in a, where Vi is component of V (b is an occurrence of a component of x
in a, respectively);

5) Iψ ⊆ (Cψ)2 is the set of all pairs (a, b) such that a is a block of variables
x, b is the index node which we designated as the j-th index, and the block of
variables x occurs in position j in the atomic formula of which x is the immediate
subformula;

6) L1, . . . ,L15 are unary relations encoding the “labels” of the nodes: a) L1

is the set of all a that are of the form
∨
i∈I θi; b) L2 is the set of all a that are

of the form
∧
i∈I θi; c) L3 is the set of all a that are of the form ∃V θ; d) L4 is

the set of all a that are of the form ∀V θ; e) L5 is the set of all a that are of the
form ∃x θ; f) L6 is the set of all a that are of the form ∀x θ; g) L7 is the set of
all a that are of the form V (x); h) L8 is the set of all a that are of the form x;
i)L9 is the set of all a that are of the form x; j) L10 is the set of all a that are of
the form ¬θ; k) L11 is the set of all a that are of the form θ1 ∧ θ2; l) L12 is the
set of all a that are of the form θ1 ∨ θ2; m) L13 is the set of all a that are of the
form xi = xj ; n) L14 is the set of all a that are of the form xi = 1; o) L15 is the
set of index nodes.
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Lemma 2. Let C be an extended syntax tree such that there are Σ2
j sentences

φ1, φ2, of some vocabulary τφ, for some j ≥ 1, and τφ structures A1, A2, such
that C is isomorphic to both Cfφ1(A1) and Cfφ2(A2) . Then A1 |= φ1 ⇐⇒A2 |= φ2.$

4.2 A First Order Reduction

Let φ be a Σ2
j sentence, for some j ≥ 1, of vocabulary τφ. Let A be a τφ structure.

We will now sketch an interpretation of A which will define the extended syntax
tree of the Σ1

j sentence fφ(A), Cfφ(A). As the structure A is not necessarily
rigid, we cannot represent the nodes in Cfφ(A) as individual elements from A.
Instead, we will use identity types to distinguish the nodes of the syntax tree
of the original sentence φ. For a tuple v = (v1, . . . , vk), we denote as itp(v)
the identity type of v, that is, the (unique) quantifier free FO formula with
variables {x1, . . . ,xk}, which is a conjunction of equalities and inequalities, and
which is true when x1, . . . ,xk are substituted by v1, . . . , vk, respectively. Note
that Cfφ(A) has more nodes than the syntax tree of φ. To include them in the
interpretation, in addition to the identity types, we use three more tuples of
elements as coordinates, as follows.

With each node e in Cfφ(A) we associate tuples of elements (ve,ye, ze,we),
where v = (v1, . . . , vk), y = (y1, . . . , ym), z = (z1, . . . , zr), w = (w1, . . . , wt), m
is the quantifier rank of φ, and r is the arity of all relation variables in φ. k is
a positive integer, big enough to allow us to assign one identity type for each
node in the syntax tree of φ. For instance, if k = 3 we have the following identity
types: v1 = v2 = v3, v1 = v2 �= v3, v1 �= v2 = v3, v1 = v3 �= v2, and v1 �= v2 �= v3.
And t is a positive integer, big enough to allow us to have r identity types.

Note that for a given node in the syntax tree of φ, we might have more than
one node in Cfφ(A). This expansion can be originated in five different situations:

1) For each node a of type ∃x θ (∀x θ) in φ which is in the path from the root
to e in the syntax tree of φ, we have a node of type

∨
i∈I θi (

∧
i∈I θi) in Cfφ(A)

which has |A| successors. And all those nodes in Cfφ(A) which are originated
from the same node in the syntax tree of φ, have the same identity type of v.
The sub-tuple ye for a given node e, keeps track of the corresponding branch in
each node of type

∨
i∈I θi or

∧
i∈I θi in the path from the root to e in Cfφ(A).

The maximum number of such types of nodes in the path from the root to any
given node is given by the quantifier rank of φ (m).

2) For each node a of type T (V ) in φ, for a third order variable T and
a tuple of second order variables V = (V1, . . . ,Vr), we have a node of type
UT (xV1 , . . . ,xVr) in Cfφ(A). Furthermore, that node has r successors in Cfφ(A),
corresponding to the blocks of variables xV1 , . . . ,xVr , which in turn have each
|A|r successors, of type xVi,a, for each r-tuple a in A. We assign a different iden-
tity type of v for each of those three levels. The node of type UT (xV1 , . . . ,xVr)
in Cfφ(A) has one identity type of v. All the nodes of type xVi (that is, those
in the second level) have the same identity type of v, but different from the
one assigned to the node of type UT (xV1 , . . . ,xVr ). And all the nodes of type
xVi,a (that is, those in the third level) have the same identity type of v, but
different from the one assigned to the node of type UT (xV1 , . . . ,xVr ), and the
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one assigned to all its successor nodes of type xVi . The sub-tuple we for a given
node e of type xVi , keeps track of the corresponding branch in the node of
type UT (xV1 , . . . ,xVr ) of which e is successor in Cfφ(A). There are r branches
in such node. The sub-tuple ze for a given node e of type xVi,a, keeps track
of the corresponding branch in the node of type xVi of which e is successor in
Cfφ(A).

3) For each node a of type s = t in φ, if sA = tA we have a node of type ∀x θ
in Cfφ(A). Furthermore, that node has a successor in Cfφ(A), of type x = x,
which in turn has a successor, of type x. We assign a different identity type of
v for each of those three nodes.

4) For each node a of type s = t in φ, if sA �= tA we have a node of type
∀x θ in Cfφ(A). Furthermore, that node has a successor in Cfφ(A), of type ¬θ,
which has a successor of type x = x, which in turn has a successor, of type x.
We assign a different identity type of v for each of those four nodes.

5) For each node a of type V (t) in φ, where a = tA we have a node of type
xV,a = 1 in Cfφ(A). Furthermore, that node has a successor in Cfφ(A), of type
x. We assign a different identity type of v for each of those two nodes.

If c is a node in Cfφ(A) of type xV,a which is a successor of a node of type
xV,a = 1, we denote by yci1 , . . . , y

c
ir

the components in yc which correspond to
the components of the tuple a in A. Note that each of these components in yc
corresponds to a particular branch after a node of type

∨
i∈I θi or

∧
i∈I θi in the

circuit, and all together determine the tuple a.
As we are using identity types as a part of the identifiers of the nodes for

Cfφ(A), we are getting multiple copies of each node of Cfφ(A) in the structure
that we are actually defining with our reduction. Then we define the hyper ex-
tended syntax tree of the formula fφ(A), denoted by Hfφ(A) as a structure of
the same vocabulary as Cfφ(A), plus an additional binary relation symbol whose
interpretation is a congruence relation, such that the quotient under that con-
gruence relation, is isomorphic to the extended syntax tree of the formula fφ(A),
Cfφ(A).

Let b, c be two nodes in a structure Hfφ(A), for a given Σ1
j sentence fφ(A),

for some j ≥ 1, with identifiers (vb,yb, zb,wb) and (vc,yc, zc,wc), respectively.
We denote by yb

.=bc yc the fact that yb and yc agree in the first h components,
where h is the smaller number of nodes of type

∨
i∈I θi or

∧
i∈I θi which occur

in the path from the root to the nodes b, c in Cfφ(A), excluding the nodes b, c.
Note that if the nodes b, c are of type

∨
i∈I θi or

∧
i∈I θi (which in turn are

originated by a node of type ∃xθ and ∀xθ, respectively, in the original formula
φ) the value for yh is ignored in the relation yb

.=bc yc for the nodes b, c, but it
is considered in yb

.=bc yc for the successor nodes in Cfφ(A) (which correspond
to the sub-formula θ).

We now define the equivalence relation ≡ for Hfφ(A):
b ≡ c iff the following holds: 1) b, c are nodes of type index and itp(vb) =

itp(vc); 2) b, c are nodes of type xV,a, which are successors of corresponding nodes
of type xV in Cfφ(A), itp(vb) = itp(vc), yb

.=bc yc, zb = zc, and wb = wc; 3)
b, c are nodes of type xV,a, which are successors of corresponding nodes of type
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xV,a = 1 in Cfφ(A), itp(vb) = itp(vc), and yb
.=bc yc; 4) b, c are nodes of type

xV , itp(vb) = itp(vc), yb
.=bc yc, and wb = wc; 5) b, c are nodes of any other

type, itp(vb) = itp(vc), and yb
.=bc yc.

Note that the equivalence classes of ≡ can be mapped to elements of Cfφ(A)

in a cannonical way by using the identity types which form the tuples assigned
as identifiers to the nodes in Hfφ(A). Hence, we can define all the relations in
Hfφ(A) in a unique way such that the quotient structure Hfφ(A)/ ≡Hfφ(A) is
isomorphic to Cfφ(A).

Definition 2. For every j ≥ 1, we define the class H2
j as the class of all struc-

tures H in the vocabulary of the hyper extended syntax trees such that the quotient
structure H/ ≡H is isomorphic to Cfφ(A) for some φ ∈ Σ2

j , and τφ interpretation
A, such that 〈{0, 1}, 0, 1〉 |= fφ(A).

Theorem 4. For every j ≥ 1, the class H2
j is hard for Σ2

j under quantifier free
first order reductions. $

Theorem 5. For every j ≥ 1, the class H2
j is in Σ2

j . $

4.3 Capturing Σ2
j by a Lindström Quantifier

Observe that the classes H2
j , for every j ≥ 1, are by definition closed under

isomorphisms. Hence in the model theoretical setting they can be considered as
the interpretations of (relativized) Lindström quantifiers (see [EF99], [Lib04])
which we denote by Q2j. From Theorems 4 and 5 it follows that, for each j ≥ 1,
the extension of FO with the vectorized quantifiers Qk2j , for k ∈ ω, captures
Σ2
j . Thus it is possible to capture fragments of third order logic with first order

generalized quantifiers.
More precisely, as our reduction is quantifier-free, we obtain the following

normal form theorem for Σ2
j .

Corollary 2. Let j ≥ 1. For every signature τ , a class of τ structures is defin-
able in Σ2

j iff it is definable by a sentence of the form

Qk2j xC , . . . ,xL15(αC(xC), . . . ,αL15(xL15))

where k ≥ 1 and αC , . . . ,αL15 are quantifier-free FO formulas. $

Note that the formulas αC(x1), . . . ,αL15(xL15) in the previous corollary are
those used for the translation of τ structures to hyper extended syntax trees. In
particular, the formula αC defines the universe to which the quantifier Qk2j is
relativized.

The normal form is very strong, in the sense that there is a single application
of the quantifier Qk2j . If we consider the extension of FO as it is usually defined,
FO(Qω2j), then we get a logic which is probably stronger than Σ2

j . In particular,
FO(Qω2j), is closed under negations.
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5 Beyond Third Order Logic

5.1 Translation of the Formula

We will now see that actually all our results hold for all orders i ≥ 2. We will
sketch the alterations to the corresponding observations and proofs for the case
of fourth order. The generalization for all other orders then follows the same
strategy as for fourth order.

We will use X for a fourth order relation variable (of arity r), and 5 for a
fourth order relation (of arity r).

Let φ be a Σij sentence, for arbitrary i ≥ 2 and j ≥ 1. We also assume,
w.l.o.g., that all variables of all orders are of arity r, which in turn is propagated
downward to the corresponding lower order variables which form the atomic
formulas in φ. As we did before, we will define a translation function fφ that
maps interpretations of φ of the form A = 〈A,α〉, where A is a structure of the
vocabulary τφ, into formulas of Σi−1

j . We will also use a function g that maps
each interpretation A of φ to an interpretation g(A) of the Σi−1

j formula fφ(A).
In addition to our definitions in Section 2, we need the following (for fourth

order logic): for each fourth order variable X of φ we assign a distinct third order
variable TX of arity r.

For atomic formulas φ we need the following additional definition (for fourth
order logic): if φ is X (T ) for a fourth order variable X and a tuple of third order
variables T = (T1, . . . , Tr), then fφ(A) := TX (UT1 , . . . ,UTr), where the second
order variables UT1 ,. . .,UTr are all of arity r · |A|r (see Section 2).
Assume then that fψ has been defined for all subformulas ψ of φ. Then we need
the following additional definitions for fφ (for fourth order logic): 1) if φ is ∃X ψ,
then fφ(A) := ∃TX fψ(A); 2) if φ is ∀X ψ, then fφ(A) := ∀TX fψ(A).

For the mapping βA we need the following additional definition (for fourth
order logic): for each fourth order variable X ,

βA(TX ) = {(TR1 , . . . ,TRr) | R1, . . . ,Rr ⊆ (P(Ar))r and (R1, . . . ,Rr) ∈
XA}
where for each 1 ≤ i ≤ r,

TRi = {(bS1 , . . . , bSr) ∈ {0, 1}r·m | S1, . . . ,Sr ⊆ Ar and (S1, . . . ,Sr) ∈ Ri}.
We make the following additional observation (for fourth order logic), which can
be easily proved by induction given the definitions of fφ(A) and g(A):

the translation fφ(A) does not depend on the interpretations α(X ) of fourth
order variables: fφ(A[5/X ]) = fφ(A) for all 5 ⊆ [P [(P(Ar))r]]r.

Theorem 6. If φ is a HOi formula, for some i ≥ 3, and A is an interpretation
for φ, then A |= φ ⇐⇒ g(A) |= fφ(A). $

Corollary 3. For every i ≥ 1 and j ≥ 1 Σij-Th(B) is hard for Σi+1
j under P

reductions. $

Theorem 7. For every i ≥ 1 and j ≥ 1 Σij-Th(B) is in Σi+1
j . $
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5.2 Completeness with First Order Reductions

As to the defintion of the extended syntax tree for a fourth order sentence ψ,
we must do the following alterations to the relations in Cψ, where T is a third
order relation variable and V is an SO relation variable. Note that the extended
syntax tree will now also contain nodes for third order atoms and also nodes for
SO variables as successors of them.

1) Eψ ⊆ (Cψ)2: We must include the pairs (a, b) such that a and b are oc-
currences in the extended syntax tree of ψ of either the same SO variable, or
atomic formulas with the same third order variable, or a(b) is an atomic formula
with an SO variable V and b(a) is an occurrence of the variable V .

2) Rψ ⊆ (Cψ)2: We must include the pairs (a, b) such that a is a subformula
of ψ of the form ∃T θ or ∀T θ and b is an occurrence of an atomic formula Ti(V )
in a, where Ti is component of T . We must also include the pairs (a, b) such that
a is a subformula of ψ of the form ∃V θ or ∀V θ and b is an occurrence of the
variable V .

3) Iψ ⊆ (Cψ)2: We must include the pairs (a, b) such that a is an SO variable
V , b is the index node which we designated as the j-th index, and the vari-
able V occurs in position j in the atomic formula of which V is the immediate
subformula.

4) We must add the following ‘labels” of the nodes: a) L16 is the set of all a
that are of the form ∃T θ; b) L17 is the set of all a that are of the form ∀T θ; c)
L18 is the set of all a that are of the form V ; d) L19 is the set of all a that are
of the form T (V ).

The following result is immediate.

Lemma 3. Let i ≥ 1, and j ≥ 1. Let C be an extended syntax tree such that
there are Σi+1

j sentences φ1, φ2, of some vocabulary τφ, and τφ structures A1,
A2, such that C is isomorphic to both Cfφ1(A1) and Cfφ2(A2) . Then A1 |= φ1

⇐⇒ A2 |= φ2. $

As to the equivalence relation in the hyper extended syntax tree Hfφ(A), we
must consider an additional case (for fourth order logic): b, c are nodes of type
V , for a SO variable V , itp(vb) = itp(vc), yb

.=bc yc, and wb = wc.
Now we must generalize the definition of the classes H2

j .

Definition 3. For every i ≥ 1, and j ≥ 1, we define the class Hij as the class
of all structures H in the vocabulary of the hyper extended syntax trees such that
the quotient structure H/ ≡H is isomorphic to Cfφ(A) for some φ ∈ Σij, and τφ

structure A, such that 〈{0, 1}, 0, 1〉 |= fφ(A).

Theorem 8. For every i ≥ 1, and j ≥ 1, the class Hij is hard for Σij under
quantifier free first order reductions. $

Theorem 9. For every i ≥ 1, and j ≥ 1, the class Hij is in Σij. $
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5.3 Capturing Σi
j by a Lindström Quantifier

The observations we made before are also valid for the general case. Then, from
Theorems 8 and 9 it follows that, for each i ≥ 1, and j ≥ 1, the extension of FO
with the vectorized quantifiers which we now denote by Qkij , for k ∈ ω, captures
Σij . Thus, even fragments of i-th order logic, for an arbitrary order i, can be
captured with first order generalized quantifiers.

We also obtain in the general case a normal form theorem for Σij .

Corollary 4. For every i ≥ 1 there is a constant ni such that, for every j ≥ 1,
and every signature τ , a class of τ structures is definable in Σij iff it is definable
by a sentence of the form

Qkij x1, . . . ,xni(α1(x1), . . . ,αni(xni))

where k ≥ 1 and α1, . . . ,αni are quantifier-free FO formulas. $

Note that the formulas α1(x1), . . . ,αni(xni) in the previous corollary are those
used for the translation of τ structures to hyper extended syntax trees, so that
for every i ≥ 1, ni is the number of relation symbols in the vocabulary of the
hyper extended syntax trees for order i. In particular, the formula α1 defines the
universe to which the quantifier Qkij is relativized.

Also in the general case the normal form is very strong, in the sense that there
is a single application of the quantifier Qkij . If we consider the extension of FO
as it is usually defined, FO(Qωij), then we get a logic which is probably stronger
than Σij. In particular, FO(Qωij) is closed under negations.

References

[AHV95] Abiteboul, S., Hull, R. and Vianu, V., Foundations of Databases, Addison-
Wesley, 1995.
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Solving Games Without Determinization�

Thomas A. Henzinger and Nir Piterman

EPFL, Switzerland

Abstract. The synthesis of reactive systems requires the solution of
two-player games on graphs with ω-regular objectives. When the objec-
tive is specified by a linear temporal logic formula or nondeterministic
Büchi automaton, then previous algorithms for solving the game require
the construction of an equivalent deterministic automaton. However, de-
terminization for automata on infinite words is extremely complicated,
and current implementations fail to produce deterministic automata even
for relatively small inputs. We show how to construct, from a given non-
deterministic Büchi automaton, an equivalent nondeterministic parity
automaton P that is good for solving games with objective P . The main
insight is that a nondeterministic automaton is good for solving games
if it fairly simulates the equivalent deterministic automaton. In this way,
we omit the determinization step in game solving and reactive synthe-
sis. The fact that our automata are nondeterministic makes them sur-
prisingly simple, amenable to symbolic implementation, and allows an
incremental search for winning strategies.

1 Introduction

One of the most ambitious goals in formal methods is to automatically pro-
duce designs from specifications, a process called synthesis. We are interested in
reactive systems, i.e., systems that continuously interact with other programs,
users, or their environment (like operating systems or CPUs). The complexity
of a reactive system does not arise from computing a complicated function but
rather from the fact that it has to be able to react to all possible inputs and
maintain its behavior forever. There are two (essentially equivalent) approaches
to solving the synthesis problem. The first is by reducing it to the emptiness
problem of tree automata [Rab72], and the second, by reducing it to solving
infinite-duration two-player games [BL69]. We consider the second view. The
two players in the game are the system and its environment. The environment
tries to violate the specification and the system tries to satisfy it. The system
wins the game if it has a strategy such that all infinite outcomes satisfy the
specification. The winning strategy, the way in which the system updates its
internal variables, is then translated into an implementation that satisfies the
specification when interacting with any possible environment.

More formally, a game is a directed graph where the vertices are partitioned
between player 0 (system) and player 1 (environment). A play proceeds by mov-
ing a token along the edges of the graph. If the token is on a vertex of player
� This research was supported in part by the Swiss National Science Foundation.
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0, she gets to choose to which successor to move the token. If the token is on a
vertex of player 1, she chooses the successor. When they continue in this fashion
ad infinitum, the token passes an infinite sequence of vertices. We determine who
wins the play by looking at this infinite outcome. We define winning plays either
by conditions (such as parity or Rabin conditions) on the locations that occur
infinitely often along a play, or by recognizers (such as linear temporal logic
formulas or Büchi automata) of infinite words over the alphabet of locations. In
either case, we are interested in solving the game. That is, we wish to determine
from which locations of the game, player 0 has a winning strategy, i.e., a way to
resolve her decisions so that the resulting plays are winning. For example, when
the winning condition is a parity condition [EJ91], the problem of solving the
game is in NP∩co-NP [EJS93] and the current best complexity for solving such
games is O(t·g' k

2 (), where g, t, and k are the number of locations and transitions
in the game and priorities in the parity condition, respectively [Jur00, JV00].

In the context of synthesis, we consider an interaction of the system and the
environment as winning for the system if it satisfies the specification. Thus, it
makes more sense to consider games where the winning condition is given as a
linear temporal logic (LTL) formula or nondeterministic Büchi word automaton
(NBW). The way to solve such games is by reducing the problem to the solution
of simpler games such as parity or Rabin. As part of this reduction, before taking
the product of the game with the winning condition, we have to construct a de-
terministic automaton for the winning condition. This is because every sequence
of choices made in the game has to satisfy the specification.

The first problem we encounter when we come to determinize automata on in-
finite words is that the Büchi acceptance condition is not strong enough [Lan69].
We have to use stronger acceptance conditions like parity or Rabin. Indeed,
Safra suggested a determinization construction that takes an NBW and con-
structs a deterministic Rabin automaton [Saf88]. Recently, Piterman suggested
a variant of this construction with a smaller number of states that results in
a deterministic parity automaton [Pit06]. Specifically, starting from an NBW
with n states, he constructs a deterministic parity automaton with n2n+2 states
and 2n priorities. When we combine the game with the deterministic automa-
ton, we get a game with g·n2n+2 locations and t·n2n+2 transitions, where g
and t are the number of locations and transitions in the original game. The
overall complexity of solving this game, therefore, is O(t·n2n+2·(g·n2n+2)n).
This theory is not applicable in practice, because determinization is extremely
complex. Every state of the deterministic automaton is a tree of subsets of
states of the original automaton. A transition moves states between different
nodes of the tree, adds and removes nodes, and changes the names of the
nodes. Only recently, 16 years after the publications of Safra’s construction,
it was finally implemented [THB95, KB05, ATW05]. These implementations are
limited to determinize automata with approximately 10 states1. One possible

1 Piterman’s variant maintains the tree structure of Safra that proved hard to imple-
ment. It reduces the amount of information associated with every node, however, at
the price of giving the nodes dynamic names, which may prove hard to implement.
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solution is to consider restricted specifications that can be handled more effi-
ciently (cf. [RW89, RA03, KPP05]). Another possible solution is to use nondeter-
ministic specification automata, which make the approach sound but incomplete
[HRS05, JGB05].

Here we do pursue complete solutions for general ω-regular specifications.
While we cannot improve the worst-case complexity of synthesis, it is desirable
to have an algorithm that performs well in many cases that occur in practice,
even if they involve a large number of states. In particular, we wish to use
two heuristics that have had great success in formal verification, but cannot be
used when applying determinization. The first is to reason symbolically about
sets of states, rather than explicitly about individual states [McM93]. Using a
symbolic state representation in Safra’s construction seems difficult. Second, we
wish to be able to find a winning strategy in a game that uses a small amount of
memory, if such a strategy exists. The memory used by a strategy corresponds to
the number of states of a parity or Rabin specification automaton. Thus, small
memory is not possible if we construct the deterministic automaton as the first
step of the synthesis algorithm. Instead, we want to incrementally increase, as
much as necessary, the memory provided to strategies.

For this purpose we propose a general solution that does not involve deter-
minization. We define good for games automata (GFG, for short), which are the
class of nondeterministic automata that can be used in the context of games. The
main idea is that if an automaton can resolve its nondeterminism in a stepwise
fashion, then it is good enough for reasoning about games. The formal definition
of a GFG automaton considers a game played on the structure of the automaton
in which the opponent chooses input letters, one at a time, and the automa-
ton resolves its nondeterminism for each input letter. The automaton wins if
whenever the infinite word chosen by the opponent is in the language of the au-
tomaton, then the run chosen by the automaton is accepting. The automaton is
GFG if it has a winning strategy in this game. We show that a nondeterministic
specification automaton with this property can indeed be used for solving games
without prior determinization. That is, in the product of a game with a GFG
automaton, the winning states correspond to the winning states of the original
game. In order to check if an automaton is GFG, we give an alternative charac-
terization: an automaton is GFG iff it fairly simulates [HKR97] a deterministic
automaton for the same language.

Our main contribution is a construction that takes an NBW and produces a
GFG automaton for the same language. Given an NBW with n states, we con-
struct a nondeterministic parity automaton with 2n·n2n states and 2n priorities.
The resulting overall complexity is O(t·(2n·n2n)2·(g·2n·n2n)n) for synthesis. We
generalize the n! lower bound on determinization [Mic88] to the size of GFG
automata, establishing that our construction is essentially optimal.

The most important feature of our nondeterministic GFG automaton is its
simplicity. The automaton basically follows n different sets of subsets of the orig-
inal automaton. This leads to a simple structure and even simpler transitions,
which are amenable to symbolic implementations. Another attractive advantage
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of this approach is that it offers a natural hierarchy of nondeterministic au-
tomata of increasing complexity that converge to the full GFG solution. That
is, given a game and an NBW specification automaton, we can try first solving
the game with a small automaton for the winning condition. If we succeed, we
are done, having found a winning strategy with small memory for the particu-
lar game we are solving. If we fail, we increase the size of the automaton (and
thus the memory size we consider), and try again. In the worst case, we get
to the full GFG construction, whose memory suffices to win every game with
that winning condition. If the GFG automaton fails, then we know that the
original specification is not realizable. In Section 6, we give a family of game
graphs and winning conditions for which this incremental approach indeed leads
to considerable savings.

In addition, simple modifications of our construction lead to nondeterminis-
tic parity automata whose number of states ranges between n2n and n3n. Us-
ing the smallest possible automaton, the theoretical upper bound reduces to
O(t·(n2n)2·(g·n2n)n), which almost matches the upper bound using the deter-
ministic automaton. Recall that our automata are intended for symbolic imple-
mentation. Thus, it makes no sense to count the exact upper bound but rather
to check which variant of the construction works best in practice. In addition,
our hope for synthesis is that in many practical cases it would perform better
than the worst-case theoretical upper bound. Using our construction it is possi-
ble to search for smaller strategies. Indeed, even for small values of n the time
complexity O(n2n2

) is impossible.
Recently, Kupferman and Vardi suggested another construction that avoids

determinization in certain situations [KV05]. Their algorithm shows how to solve
the emptiness problem of alternating parity tree automata through a reduction
to the emptiness problem of nondeterministic Büchi tree automata. In order to
use their construction to solve games, one has to be able to express the winning
condition of the opponent by an NBW. Thus, their algorithm can be applied to
synthesis for LTL specifications, because given an LTL winning condition, we
negate the LTL formula to get the winning condition of the opponent. On the
other hand, when the winning condition is given as an NBW, there is no easy
way to complement it, and their algorithm cannot be applied. Furthermore, the
worst-case complexity of their algorithm may be quadratically worse, and the
size of the produced strategy may be exponentially larger than our algorithm.

2 Preliminaries

Nondeterministic Automata. A nondeterministic automaton is N =
〈Σ,S, δ, s0,α〉, where Σ is a finite alphabet, S is a finite set of states, δ :
S × Σ → 2S is a transition function, s0 ∈ S is an initial state, and α is an
acceptance condition to be defined below. A run of N on a word w = w0w1 . . .
is an infinite sequence of states t0t1 . . . ∈ Sω such that t0 = s0 and for all i ≥ 0,
we have ti+1 ∈ δ(ti, wi). For a run r = t0t1 . . ., let inf (r) = {s ∈ S | s =
ti for infinitely many i’s} be the set of all states occurring infinitely often in the
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run. We consider two acceptance conditions. A parity condition α is a partition
{F0, . . . ,Fk} of S. We call k the index of the parity condition. The run r is accept-
ing according to the parity condition α if for some even i we have inf (r)∩Fi �= ∅,
and for all j < i, we have inf (r)∩Fj = ∅. That is, the minimal set that is visited
infinitely often is even. A Büchi condition is a set F ⊆ S of states. The run r
is accepting according to the Büchi condition F if inf (r) ∩ F �= ∅. That is, the
run visits infinitely often states from F . A word w is accepted by N if there
exists some accepting run of N over w. The language of L(N ) is the set of words
accepted by N . Two automata N1 and N2 are equivalent if they have the same
language, i.e., L(N1) = L(N2).

Given a set S′ ⊆ S of states and a letter σ ∈ Σ, we denote by δ(S′,σ) the
set

⋃
s∈S′ δ(s,σ). The automaton N is deterministic if for every state s ∈ S and

letter σ ∈ Σ, we have |δ(s,σ)| = 1. In that case we write δ : S ×Σ → S.
We use the acronyms NBW, DPW, and NPW to denote automata. NBW

stands for nondeterministic Büchi word automaton, DPW for deterministic par-
ity word automaton, and NPW for nondeterministic parity word automaton.

Games. A game is G = 〈V,V0,V1, ρ,W 〉, where V is a finite set of locations, V0

and V1 are a partition of V into locations of player 0 and player 1, respectively,
ρ ⊆ V × V is a transition relation, and W ⊆ V ω is a winning condition.

A play in G is a maximal sequence π = v0v1 . . . of locations such that for all
i ≥ 0, we have (vi, vi+1) ∈ ρ. The play π is winning for player 0 if π ∈ W , or π
is finite and the last location of π is in V1 (i.e., player 1 cannot move from the
last location in π). Otherwise, player 1 wins.

A strategy for player 0 is a partial function f : V ∗×V0 → V such that if f(π·v)
is defined, then (v, f(π·v)) ∈ ρ. A play π = v0v1 . . . is f -conform if whenever
vi ∈ V0, we have vi+1 = f(v0 . . . vi). The strategy f is winning from a location
v ∈ V if every f -conform play that starts in v is winning for player 0. We say
that player 0 wins from v if she has a winning strategy from v. The winning
region of player 0 is the set of locations from which player 0 wins. We denote the
winning region of player 0 by W0. Strategies, winning strategies, winning, and
winning regions are defined dually for player 1. We solve a game by computing
the winning regions W0 and W1. For the kind of games considered in this paper,
W0 and W1 form a partition of V [Mar75].

We consider parity winning conditions. A parity condition α is a partition
{F0, . . . ,Fk} of V . The parity condition α defines the set W of infinite plays in
G such that the minimal set that is visited infinitely often is even, i.e., π ∈ W
if there exists an even i such that inf (π) ∩ Fi �= ∅, and for all j < i, we have
inf (π) ∩ Fj = ∅. The complexity of solving parity games is as follows:

Theorem 1. [Jur00] Given a parity game G with g locations, t transitions, and
index k, we can solve G in time O(t·g' k

2 ().

We are also interested in more general winning conditions. We define W us-
ing an NBW over the alphabet V (or some function of V ). Consider a game
G = 〈V,V0,V1, ρ,W 〉 and an NBW N over the alphabet V such that W = L(N ).
We abuse notation and write G = 〈V,V0,V1, ρ,N〉, or just G = 〈V, ρ,N〉.
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The common approach to solving such games is by reducing them to parity
games. Consider a game G = 〈V,V0,V1, ρ,W 〉 and a deterministic automaton
D = 〈V,S, δ, s0,α〉, whose alphabet is V such that L(D) = W . We define the
product of G and D to be the game G × D = 〈V × S,V0 × S,V1 × S, ρ′,W ′〉
where ((v, s), (v′, s′)) ∈ ρ′ iff (v, v′) ∈ ρ and s′ = δ(s, v) and W ′ contains all
plays whose projections onto the second component are accepting according to
α. A monitor for G is a deterministic automaton D such that for all locations v
of G, player 0 wins from v in G iff player 0 wins from (v, s0) in G×D.

The common way to solve a game G = 〈V, ρ,N〉 where N is an NBW, is by
constructing an equivalent DPW D [Pit06] and solving the product game G×D.
Unfortunately, determinization has defied implementation until recently, and it
cannot be implemented symbolically [THB95, ATW05, KB05]. This means that
theoretically we know very well how to solve such games, however, practically
we find it very difficult to do so. Formally, we have the following.

Theorem 2. Consider a game G whose winning condition N is an NBW with
n states. We can construct a DPW D equivalent to N with n2n+2 states and
index 2n. The parity game G ×D can be solved in time O(t·n2n+2·(g·n2n+2)n),
where g and t are the number of locations and transitions of G.

It is common wisdom that nondeterministic automata cannot be used for game
monitoring. In this paper we show that this claim is false. We define nondeter-
ministic automata that can be used for game monitoring; we call such automata
good for games (GFG). Our main result is a construction that takes an NBW
and produces a GFG NPW. Though our NPW may be slightly bigger than the
equivalent DPW (see Section 5), it is much simpler, amenable to symbolic imple-
mentation, and suggests a natural hierarchy of automata of increasing complexity
that lead to the full solution.

3 Good for Games Automata

In this section we define when an automaton can be used as a monitor for
games. In order to define GFG automata, we consider the following game. Let
N = 〈Σ,S, δ, s0,α〉 be an automaton. The monitor game for N is a game played
on the set S of states. The game proceeds in rounds in which player 1 chooses a
letter, and player 0 answers with a successor state reading that letter. Formally,
a play is a maximal sequence π = t0σ0t1σ1 . . . such that t0 = s0 and for all
i ≥ 0, we have ti+1 ∈ δ(ti,σi). That is, an infinite play produces an infinite word
w(π) = σ0σ1 . . ., and a run r(π) = t0t1 . . . of N on w(π). A play π is winning for
player 0 if π is infinite and, in addition, either w(π) is not in L(N ) or r(π) is an
accepting run of N on w(π). Otherwise, player 1 wins. That is, player 0 wins if
she never gets stuck and, in addition, either the resulting word constructed by
player 1 is not in the language or (the word is in the language and) the resulting
run of N is accepting.

A strategy for player 0 is a partial function f : (S×Σ)+→S such that if
f(π·(s,σ)) is defined, then f(π·(s,σ)) ∈ δ(s,σ). A play π = t0σ0t1σ1 . . . is f -
conform if for all i ≥ 0, we have ti+1 = f(t0 . . . σi). The strategy f is winning
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from a state s ∈ S if every f -conform play that starts in s is winning for player
0. We say that player 0 wins from s if she has a winning strategy from s. The
automaton N is good for games (GFG) if player 0 wins from the initial state s0.

We show how to use GFG automata for game monitoring. Consider a GFG
automaton N = 〈V,S, δ, s0,α〉 and a game G = 〈V,V0,V1,E,N〉. We construct
the following extended product game. Let G⊗M = 〈V ′,V ′0 ,V ′1 ,E′,W ′〉, where
the components of G⊗N are as follows:

– V ′ = V × S × {0, 1}, where V ′0 = (V × S × {0}) ∪ (V0 × S × {1}) and
V ′1 = V1 × S × {1}.
Given a location (v, s, i) ∈ V ′, let v ⇓

S
= s be the projection onto the state

in S. We extend ⇓
S

to sequences of locations in the natural way.
– E′={((v, s, 0), (v, s′, 1)) | s′ ∈ δ(s, v)} ∪ {((v, s, 1), (v′, s, 0)) | (v, v′) ∈ E}.
– W ′ = {π ∈ V ′ω | π ⇓

S
is accepting according to α}.

W.l.o.g., we assume that the acceptance condition of N is closed under finite
stuttering (which is true for Büchi and parity). When N is GFG, we can use
G⊗N to solve G.

Theorem 3. Player 0 wins from location v in the game G iff she wins from
location (v, s0, 0) in the game G⊗N , where s0 is the initial state of N .

A win in G⊗N is easily translated into a win in G by forgetting the N compo-
nent. In the other direction, a winning strategy in G is combined with a winning
strategy in the monitor game for N to produce a strategy in G⊗N . As the strat-
egy in G is winning, the projection of a resulting play onto the locations of G
is a word accepted by N . As the strategy in the monitor game is winning, the
projection of the play onto the states of N is an accepting run of N .

4 Checking the GFG Property

In this section we suggest one possible way of establishing that an automaton is
GFG. We prove that an automaton is GFG by showing that it fairly simulates
another GFG automaton for the same language. By definition, every determin-
istic automaton is GFG. This follows from the fact that player 0 does not have
any choices in the monitor component of the game. Hence, if an automaton fairly
simulates the deterministic automaton for the same language, it is GFG.

4.1 Fair Simulation

We define fair simulation [HKR97]. Consider two automata N=〈Σ,S, δ, s0,α〉
and R=〈Σ,T , η, t0, β〉 with the same alphabet. In order to define fair simulation,
we define the fair-simulation game. Let GN ,R=〈V,V0,V1, ρ,W 〉 be the game with
the following components:

– V = (S × T ) ∪ (S × T ×Σ), where V0 = S × T ×Σ and V1 = S × T .
– ρ = {((s, t), (s′, t,σ)) | s′ ∈ δ(s,σ)} ∪ {((s, t,σ), (s, t′)) | t′ ∈ η(t,σ)}.
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Given an infinite play π of GN ,R we define π1 to be the projection of π onto
the states in S and π2 the projection of π onto the states in T . Player 0 wins
a play π if π is infinite and whenever π1 is an accepting run of N , then π2 is
an accepting run of R (w.l.o.g., the acceptance conditions α and β are closed
under finite stuttering). If player 0 wins the fair-simulation game from a location
(s, t), then the state t of R fairly simulates the state s of N , denoted by s ≤f t.
If s0 ≤f t0 for the initial states s0 and t0, then R fairly simulates N , denoted
N ≤f R.

4.2 Proving an Automaton GFG

Here we show that if an automaton N fairly simulates a GFG automaton D for
the same language, then N is a GFG automaton as well.

Theorem 4. Let N be a nondeterministic automaton and D a GFG automaton
equivalent to N . Then D ≤f N implies N is GFG.

Proof. Let N=〈Σ, N, δ, n0,α〉 and D=〈Σ,D, η, d0, β〉. Assume that D ≤f N .
Let GD,N = 〈V,V0,V1, ρ,W 〉 be the fair-simulation game between D and N .
Let f : V ∗ × V0 → V be a winning strategy for player 0 in GD,N . We de-
note the monitor game for D by G1, and the monitor game for N by G2. Let
h : (D×Σ)+ → D be the winning strategy of player 0 in G1. We compose f and
h to resolve the choices of player 0 in G2: we use the choices of player 1 in G2

to simulate choices of player 1 in G1, and then h instructs us how to simulate
player 1 in GD,N , and the choice of f in GD,N translates to the choice of player
0 in G2. Accordingly, we construct plays in the three games that adhere to the
following invariants:

– The plays in GD,N and G1 are f -conform and h-conform, respectively.
– The projection of the play in G2 onto Σ is the projection onto Σ of the plays

in G1 and GD,N .
– The projection of the play in G1 onto the states of D is the projection of the

play in GD,N onto the states of D.
– The projection of the play in GD,N onto the states of N is the projection of

the play in G2 onto the states of N .

We call such plays matching. Consider the following plays of length one. The
initial position in G1 is d0, The initial position in G2 is n0, and the initial
position in GD,N is (d0, n0). Obviously, these are matching plays.

Let π2= n0σ0 n1σ1 . . . ni be a play in G2, let π1= d0σ0 d1σ1 . . . di be
a play in G1, and let πs= (d0, n0) (d1, n0,σ0) (d1, n1) . . . (di, ni) be a play
in GD,N . Assume that π1, π2, and πs are matching. Let σi be the choice of
player 1 in G2. We set di+1 to h(π1σi), and set π′1 = π1σidi+1. Let (di+1, ni+1)
be f(πs(di+1, ni,σi)), and set π′s = πs(di+1, ni,σi)(di+1, ni+1). Finally, we play
ni+1 in G2. By definition of GD,N , it follows that ni+1 ∈ δ(ni,σi). The plays
π′1, π′s, and π′2 are matching. Clearly, we can extend the plays according to this
strategy to infinite plays.
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Let π1, πs, and π2 be some infinite plays constructed according to the above
strategy. Let w be the projection of π2 onto Σ. If w /∈ L(N ), then player 0 wins
in G2. Assume that w ∈ L(N ). As h is a winning strategy in G1, we conclude
that the projection of π1 onto D is an accepting run of D. As f is a winning
strategy in GD,N , we conclude that the projection of πs onto N is also accepting.
As the projections of π2 and πs onto N are equivalent, we are done.

The above condition is not only sufficient, but also necessary. Given two equiv-
alent GFG automata, we can use the strategies in the respective monitor games
to construct a winning strategy in the fair-simulation game. In fact, all GFG
automata that recognize the same language fairly simulate each other.

5 Constructing GFG Automata

In this section we describe our main contribution, a construction of a GFG
automaton for a given language. We start with an NBW and end up with a
GFG NPW. In order to prove that our NPW is indeed a GFG, we prove that it
fairly simulates the DPW for the same language.

5.1 From NBW to NPW

The idea behind the construction of the NPW is to mimic the determinization
construction [Pit06]. We replace the tree structure by nondeterminism. We sim-
ply follow the sets maintained by the Safra trees without maintaining the tree
structure. In addition we have to treat acceptance. This is similar to the conver-
sion of alternating Büchi word automata to NBW [MH84]: a subset is marked
accepting when all the paths it follows visit the acceptance set at least once;
when this happens we start again. The result is a simple GFG NPW.

Let N = 〈Σ,S, δ, s0,α〉 be an NBW such that |S| = n. We construct a GFG
NPW P = 〈Σ, Q, η, q0,α

′〉 with the following components.
– The set Q of states is an n-tuple of annotated subsets of S.

Every state in a subset is annotated by 0 or 1. The annotation 1 signifies
that this state is reachable along a path that visited the acceptance set α
of N recently. When a state s is annotated 1, we say that it is marked, and
when it is annotated 0, we say that it is unmarked. Such an annotated subset
can be represented by an element C ∈ {0, 1, 2}S, where C(s) = 0 means that
s is not in the set, C(s) = 1 means that s is in the set and is unmarked, and
C(s) = 2 means that s is in the set and is marked. For simplicity of notation,
we represent such an annotated set C by a pair (A,B) ∈ 2S×2S of sets with
B ⊆ A, such that s ∈ B means C(s) = 2, s ∈ A − B means C(s) = 1, and
s /∈ A means C(s) = 0. We abuse notation and write (A,B) ∈ {0, 1, 2}S. We
write (A,B) ⊆ (C,D) to denote A ⊆ C and B ⊆ D. We sometimes refer to
an annotated set as a set.

In addition, we demand that a set is contained in the B part of some
previous set and disjoint from all sets between the two. If some set is empty,
then all sets after it are empty as well. Formally,
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Q =

⎧⎪⎪⎨⎪⎪⎩〈(A1,B1), . . . , (An,Bn)〉

∣∣∣∣∣∣∣∣
∀i . (Ai,Bi) ∈ {0, 1, 2}S,
∀i . Ai = ∅ implies Ai+1 = ∅,

∀i < j .

[
either Ai ∩Aj = ∅
or Aj ⊆ Bi

]
⎫⎪⎪⎬⎪⎪⎭ .

– q0 = 〈({s0}, {s0} ∩ α), (∅, ∅), . . . , (∅, ∅)〉.
That is , the first set is initialized to the set that contains the initial state

of N . All other sets are initialized to the empty set.
– In order to define the transition function η we need a few definitions.

For (A,B) ∈ {0, 1, 2}S, σ ∈ Σ, and i ∈ {0, 1}, let succ((A,B),σ, i) denote
the set defined as follows:

succ((A,B),σ, i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
(A′,B′)

∣∣∣∣A′ ⊆ δ(A,σ) and
B′ ⊆ (δ(B,σ) ∩A′) ∪ (A′ ∩ α)

}
If B �=A
and i=0{

(A′,B′)
∣∣∣∣A′ ⊆ δ(A,σ) and
B′ ⊆ A′ ∩ α

}
If B=A
and i=0{

(A′,B′)
∣∣∣∣A′ ⊆ δ(A,σ) and
B′ ⊆ A′

}
If i=1

That is, given a set (A,B) ⊆ {0, 1, 2}S, the possible successors (A′,B′) are
subsets of the states reachable from (A,B). We add to the marked states all
visits to α, and if all states are marked (that is, if A=B), then we unmark
them.2 In the case that i = 1, we are completely free in the choice of B′.

For (A,B), (C,D) ∈ {0, 1, 2}S and σ ∈ Σ, let trans((A,B),σ, (C,D)) be:

trans((A,B),σ, (C,D))=
{

succ((A,B),σ, 0) If A �= ∅
succ((C,D),σ, 1) If A = ∅

That is, we may choose a successor of either (A,B) or (C,D). We may use
(C,D) only if (A,B) is empty. In this case, we may choose to initialize the
set of markings as we wish. As succ((A,B),σ, i) includes every subset of
ρ(A,σ), it is always possible to choose the empty set, and in the next step,
to choose a subset of (the successors of) (C,D).

The transition function η is defined for every state q ∈ Q and letter σ ∈ Σ
as follows. Let q = 〈(A1,B1), . . . , (An,Bn)〉. Then:

η(q,σ) = Q ∩
n

Π
i=1

trans((Ai,Bi),σ, (A1,B1))

Intuitively, (A1,B1) holds the set of states that are reachable from the initial
state. The other sets correspond to guesses as to which states from (A1,B1)
to follow in order to ignore the non-accepting runs. Whenever one of the

2 The decision to allow the set B to decrease nondeterministically may seem counter-
intuitive. This is equivalent to ‘forgetting’ that some of the followed paths visited α.
This is more convenient and allows more freedom. It also simplifies proofs.
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sets becomes empty, it can be loaded by a set of successors of (A1,B1). It
follows that in order to change a guess, the automaton has to empty the
respective set and in the next move load a new set. Notice that emptying a
set forces the automaton to empty all the sets after it and load them again
from (A1,B1).

– Consider a state q = 〈(A1,B1), . . . , (An,Bn)〉. We define indE(q) to be the
minimal value k in [2..n] such that Ak = ∅, or n + 1 if no such value exists.
Formally, indE(q) = min{k, n + 1 | 1 < k ≤ n and Ak = ∅}. Similarly,
indF (q) is the minimal value k in [2..n] such that Ak = Bk and Ak �= ∅, or
n + 1 if no such value exists. Formally, indF (q) = min{k, n + 1 | 1 < k ≤
n and Ak = Bk �= ∅}.

The parity condition α′ is 〈F0, . . . ,F2n−1〉, where

• F0={q ∈ Q | A1=B1 and A1 �=∅};
• F2i+1={q ∈ Q | indE(q)=i+2 and indF (q)≥i+2};
• F2i+2={q ∈ Q | indF (q)=i+2 and indE(q)>i+2}.

As all sets greater than indE(q) are empty, the odd sets require that for all
sets Ai �= Bi or Ai = ∅. In these cases indF (q) = n + 1. Notice that we do
not consider the case that (A1,B1) is empty. This is a rejecting sink state.

This completes the definition of P .

We first show that N and P are equivalent. We show that L(P) contains
L(N ) by tracing the runs of N . For each run r of N , we use the first set in a
state of P to follow singletons from r. The proof that L(P) is contained in L(N )
is similar to the proof that the DPW constructed by Piterman is contained in
the language of N [Pit06].

Lemma 1. L(P) = L(N ).

Let D be the DPW constructed by Piterman [Pit06]. We show that P fairly
simulates D. The proof proceeds by showing how to choose a state of P that
maintains the same sets as labels of the nodes in Safra trees, but without main-
taining the parenthood function. In fact, D also fairly simulates P . This follows
immediately from the equivalence of the two and D being deterministic [HKR97].

Lemma 2. D ≤f P.

5.2 Complexity Analysis

We count the number of states of the GFG automaton P and analyze the com-
plexity of using it for solving games.

Theorem 5. Given an NBW N with n states, we can construct an equivalent
GFG NPW P with 2n·n2n states and index 2n.

Proof. We represent a state of P as a tree of subsets (or sometimes a forest). The
pair (Ai,Bi) is a son of the pair (Aj ,Bj) such that Ai ⊆ Bj . This tree structure
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is represented by the parenthood function p : [n] → [n] (here [n] is {1, . . . , n}).
We map every state of N to the minimal node in the tree (according to the
parenthood function) to which it belongs. Thus, the partition into A1, . . . ,An is
represented by a function l : S → [n]. Every state of N that appears in a pair
(Aj ,Bj) and also in some son (Ai,Bi) belongs to Bj . In addition, we have to
remember all states of N that appear in some set Ai, in no descendant of Ai,
and also appear in Bi. It suffices to remember the subset of all these states.

To summarize, there are at most nn parenthood functions, nn state labelings,
and 2n subsets of S. This gives a total of 2n·n2n states for P .

We note that the GFG NPW is larger than the DPW constructed in [Pit06] by
a factor of 2n. However, the NPW is much simpler than the DPW. Although
Piterman’s variant is slightly simpler than Safra’s construction, it still maintains
the tree structure that proved hard to implement. Existing implementations of
Safra’s construction [ATW05, KB05] enumerate the states. We believe that this
would be the case also with Piterman’s variant. The structure of the NPW above
is much simpler and amenable to symbolic methods. In order to represent a set
of NBW states, we associate a Boolean variable with every state of the NBW. A
BDD over n variables can represent a set of sets of states. In order to represent
tuples of n sets, we need a BDD over n2 variables.

We note that very simple modifications can be made to the NPW without
harming its GFG structure. We could remove the restrictions on the contain-
ment order between the labels in the sets, or tighten them to be closer to the
restrictions imposed on the trees in the DPW. This would result in increasing
or reducing the number of states between n2n and n3n. The best structure may
depend not on the final number of states, but rather on which structure is most
efficiently represented symbolically. It may be the case that looser structures
may have a better symbolic representation and work better in practice.

We compare the usage of our automata in the context of game solving to other
methods. Consider a game G = 〈V,V0,V1, ρ,W 〉, where W is given by an NBW
N = 〈V,S, δ, s0,α〉. Let |S| = n, and let g and t be the number of locations
and transitions of G, respectively. Using Piterman’s construction, we construct
a DPW P with n2n+2 states and index 2n. According to Theorem 1, we can solve
the resulting parity game in time O(t·n2n+2·(g·n2n+2)n). When we combine our
GFG NPW with the game G, the resulting structure may have t·(2n·n2n)2 tran-
sitions and g·2n·n2n states. That is, we can solve the resulting parity game in
time O(t·22n·n4n·(g·2n·n2n)n). Note also that the construction of Kupferman
and Vardi cannot be applied directly [KV05]. This is because Kupferman and
Vardi’s construction requires an NBW for the complement of the winning con-
dition. On the other hand, in the context of LTL games (i.e., games with LTL
winning conditions), Kupferman and Vardi’s construction can be applied. Their
construction leads to a time complexity of O(t·n2n+2·(g·n2n+2)2n), with 2n in the
exponent instead of n. The memory used by the extracted strategy is bounded
by 2O(n2) while it is bounded by 2n·n2n in our case.

We note that for checking the emptiness of alternating parity tree automata,
our GFG construction cannot be applied. The reason is similar to the reason
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why Kupferman and Vardi’s method cannot be used for solving games with
NBW winning conditions. In this case, we have to construct a GFG NPW for
the complement language, which we do not know how to do.

We can use the lower bound on the memory needed for winning strategies
to show that our construction is in some sense optimal. For this purpose, we
generalize Michel’s lower bound on the size of determinization [Mic88, Löd98].
That is, we construct a game with an NBW acceptance condition whose winning
strategies require n! memory. Given that our GFG automaton can be used as
the memory of a winning strategy and that the resulting game is a parity game
that requires no additional memory, this proves that every GFG automaton for
the given language has at least n! states.

6 Incremental Construction

Our automata have a natural incremental structure. We simply choose how many
sets of states to follow in a state of the GFG automaton. Consider a game G =
〈V, ρ,N〉, where N is an NBW. Let N ′ be a nondeterministic automaton such
that L(N ) = L(N ′) and let s0 be the initial state of N ′. It is simple to see that
if player 0 wins from (v, s0, 0) in G⊗N ′, then player 0 wins from v in G. Indeed,
this is the basis of the incomplete approaches described in [HRS05, JGB05].
Using this fact, we suggest the following incremental approach to solving games
with ω-regular winning conditions.

Let n be the number of states of N . We apply the construction from Section 5
on N but use only 2 sets (i.e., restrict the sets 3, . . . , n to the empty set), let
P1 denote this automaton. We then solve the game G⊗P1. It is simple to see
that P1 is equivalent to N . Thus, if (v, q0, 0) is winning for player 0 in G⊗P1

(where q0 is the initial state of P1), then v is winning for player 0 in G. It
follows, that by solving G⊗P1 we recognize a subset W ′

0 ⊆ W0 of the winning
region of player 0 in G. Sometimes, we are not interested in the full partition
of G to W0 and W1, we may be interested in a winning strategy from some
set of initial locations in G. If this set of locations is contained in W ′

0, then
we can stop here. Otherwise, we try a less restricted automaton with 3 sets,
then 4 sets, etc. For every number of sets used, the resulting automaton may
not be GFG, but it recognizes the language of N . A strategy winning in the
combination of G and such an automaton is winning also in the original game
G (with winning condition N ). If we increase the number of sets to n, and
still find that the states that interest us are losing, then we conclude that the
game is indeed lost. The result is a series of games of increasing complexity.
The first automaton has 2n·2n+2 states and index four, resulting in complexity
O(t·(2n·nn+2)2·(g·n2·nn+2)2), where g and t are the number of locations and
transitions in G, respectively. In general, the ith automaton has 2n·in+i states
and index 2i, resulting in complexity O(t·(2n·in+i)2·(g·2n·in+i)i).

We give a family of games and automata that require almost the full power
of our construction. Furthermore, we identify several sets of edges in each game
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Fig. 1. The game G3

such that removing one set of edges allows to remove one set from the GFG
automaton and identify the winning regions correctly.

We give a recursive definition of the game Gi. Let G0 be 〈V 0, ∅,V 0, ρ0,N 0〉,
where V 0 = S0 = {s0

0} and ρ0 = {(s0
0, s

0
0)}. The acceptance condition is given

with respect to a labeling of the states of the game, to be defined below. The game
Gi is 〈V i, ∅,V i, ρi,N i〉, where V i = V i−1 ∪ Si, and Si = {si

1, s
i
2, s

i
3}, and ρi =

ρi−1 ∪T i ∪Ri, and T i = {(si
1, s

i
2), (s

i
1, s

i
3), (s

i
2, s

i
2), (s

i
3, s

i
3)}∪ ((

⋃
j<i Sj)×{si

1}),
and Ri = {si

3} × (
⋃

j<i Sj). The labeling on the states of the game is defined as
follows. We set L(s0

0) = 0 and for all i ≥ 1, we set L(si
1) = 2i−1, L(si

2) = 2i−2,
and L(si

3) = 2i. The graph depicted in Figure 1 is G3. An edge from a rectangle
to a state s is a shorthand for edges from all states in the rectangle to s, and
similarly for edges from states to rectangles. Note that Gi−1 is contained in Gi.

The winning condition is N i = 〈[2i + 2], [2i + 2], η, 2i + 2, [2i + 2]
even〉 where

[n] is {1, . . . , n}, and [n]
even

= {i ∈ [n] | i is even}, and η is as follows:

η(2k, j) =

⎧⎪⎪⎨⎪⎪⎩
∅ j>2k
{2k} j=2k
{j, j+1, j+3, . . . , 2k−1} j<2k even
{j, j+2, . . . , 2k − 1} j<2k odd

η(2k + 1, j) =

⎧⎪⎪⎨⎪⎪⎩
∅ j>2k+2
{2k+2} j=2k+2
{j, j+1, j+3, . . . , 2k+1} j<2k+2 is even
{j, j+2, . . . , 2k+1} j<2k+2 is odd

It is also the case that Ni−1 is contained in Ni.
We show that for all i ≥ 0, player 0 wins from every state in Gi. Furthermore,

in order to use our GFG construction from Section 5, we have to use i+1 sets.
That is, if we take the product of the graph Gi with the GFG that uses i+1 sets
(denoted Pi), then player 0 wins form every state in the resulting parity game.
We further show that this does not hold for the GFG with i sets. That is, player
1 wins from some of the states in the product of Gi and Pi−1. Finally, the edges
in Gi are ρ0 ∪

⋃
j≤i T j ∪Rj . Consider a set of edges Rj for j < i. We show that

if we remove Rj from Gi, then we can remove one set from the GFG. If we now
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remove Rk for k < i, then we can remove another set from the GFG, and so on.
This is summarized in the following lemmata.

Lemma 3. For all i ≥ 0, the following are true:
– player 0 wins from every location in Gi,
– player 0 wins the parity game Gi⊗Pi, and
– if i ≥ 1, then player 1 wins from (s0

0, q0, 0) in Gi⊗Pi−1.

Consider some set I ⊆ [i] such that i ∈ I. Let G
I

i denote the game with loca-
tions Si and transitions (

⋃
i′≤i T

i) ∪ (
⋃

i′∈I Ri′). That is, G
I

i includes only the
transitions in Ri′ for i′ ∈ I.

Lemma 4. For all I ⊆ [i] such that i ∈ I and |I| = j the following are true:

– player 0 wins the parity game G
I

i⊗Pj, and
– player 1 wins from (s0

0, q0, 0) in GI
i × Pj−1.

7 Conclusion and Future Work

We introduced a definition of nondeterministic automata that can be used for
game monitoring. Our main contribution is a construction that takes an NBW
and constructs a GFG NPW with 2n·n2n states. In comparison, the DPW con-
structed by Piterman has n2n+2 states. However, the structure of the NPW is
much simpler, and we suggest that it be implemented symbolically.

We also suggest an incremental approach to solving games. The algorithm of
Kupferman and Vardi also shares this property [KV05] (though it cannot be used
directly for games with NBW winning conditions). In addition, their algorithm
allows to reuse the work done in the earlier stages of the incremental search. We
believe that the symmetric structure of our automata will allow similar savings.
Another interesting problem is to find a property of game graphs that determines
the number of sets required in the GFG construction.

Starting from a Rabin or a parity automaton, it is easy to construct an equiv-
alent Büchi automaton. This suggests that we can apply our construction to
Rabin and parity automata as well. Recently, it has been shown that tailored
determinization constructions for these types of automata can lead to great sav-
ings in the number of states. A similar question is open for GFG automata, as
well as for Streett automata.

Finally, we mention that our GFG automaton cannot be used for applications
like emptiness of alternating tree automata. The reason is that emptiness of al-
ternating tree automata requires co-determinization, i.e., producing a determin-
istic automaton for the complement of the original language. We are searching
for ways to construct a GFG automaton for the complement language.
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Abstract. Game quantification is an expressive concept and has been
studied in model theory and descriptive set theory, especially in relation
to infinitary logics. Automatic structures on the other hand appear very
often in computer science, especially in program verification. We extend
first-order logic on structures on words by allowing to use an infinite
string of alternating quantifiers on letters of a word, the game quantifier.
This extended logic is decidable and preserves regularity on automatic
structures, but can be undecidable on other structures even with decid-
able first-order theory. We show that in the presence of game quantifier
any relation that allows to distinguish successors is enough to define all
regular relations and therefore the game quantifier is strictly more ex-
pressive than first-order logic in such cases. Conversely, if there is an
automorphism of atomic relations that swaps some successors then we
prove that it can be extended to any relations definable with game quan-
tifier. After investigating it’s expressiveness, we use game quantification
to introduce a new type of combinatorial games with multiple players
and imperfect information exchanged with respect to a hierarchical con-
straint. It is shown that these games on finite arenas exactly capture
the logic with game quantifier when players alternate their moves but
are undecidable and not necessarily determined in the other case. In this
way we define the first model checking games with finite arenas that can
be used for model checking first-order logic on automatic structures.

1 Introduction

Game quantification, the use of infinite strings of quantifiers Q1x1Q2x2 . . . with
Qi = ∀ or ∃, is an intuitive and expressive concept and has interesting connec-
tions to model theory, infinitary logics and descriptive set theory [10]. A formula
with game quantifiers, e.g.

(∃x1∀y1∃x2∀y2 . . .)R(x1, y1,x2, y2, . . .),

where R is a set of infinite sequences, is normally interpreted using Gale-Stewart
games. In the corresponding game G(∃∀,R) two players alternatively choose
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elements of the structure and the first player wins (and the formula is true) if
the resulting sequence belongs to R.

Traditionally game quantification was investigated on open or closed sets
R, i.e. sets that are defined as infinite disjunctions or conjunctions of fini-
tary relations, R(x) =

∨
nRn(x1, . . . ,xn). In such cases the formulas with al-

ternating quantifiers can be identified with the monotone open game quanti-
fier G∃ or the dual closed game quantifier G∀. The duality of these quantifiers
(X ∈ G∃ ⇐⇒ X �∈ G∀) results from the determinacy of Gale-Stewart games for
open and closed sets [7], which was extended by Martin to any Borel set [11].

We are going to introduce game quantification for presentations of automatic
structures, i.e. for structures over finite or infinite sequences of letters chosen
from a finite alphabet where each relation R is recognised by a finite Muller
automaton. Automatic structures, for example Presburger arithmetic, are often
used in computer science. They appear in verification problems, have decid-
able first-order theory [4] and are actively investigated (see [9,1] and references
therein). Automatic relations are Borel, so we can use the duality result men-
tioned before, but we look more closely at the games that appear in this setting.
It turns out that we can not only bring the formulas to negation normal form,
but we can as well give a computable procedure to construct the automaton
recognising the set defined by any formula with game quantifiers and thus show
that such formulas are decidable.

The expressive power of game quantification is traditionally compared to in-
finitary logics over the structure of elements and is most evident in the formula
that allows to compare order types of two elements with respect to given order-
ings. In our case the alphabet is finite and therefore our reference point will be
first-order logic over finite or infinite sequences of letters, i.e. over the considered
presentation of an automatic structure. It turns out that a formula similar in
some way to the one comparing order types allows us to compare the length
of common prefixes of words. Using this we are able to show that on some au-
tomatic structures game quantification is indeed stronger than first-order logic
and we investigate its expressiveness in more detail. On the other hand, it fol-
lows from the decidability result that the logic with game quantifier collapses to
first-order logic on complete-automatic structures.

To gain deeper insight into definability in the presence of game quantifier on
weaker automatic structures we look for automorphisms of structures that are
invariant for the logic we study. Similar to the action of permutations of ω on
countable models of sentences in infinitary logic studied by invariant descriptive
set theory, we define a family of inductive automorphisms where permutation
of the alphabet is applied on each position separately and show that these are
invariant for the logic with game quantification. This completes the picture of
the dependency between expressibility in logic with game quantification and
possibility to distinguish different successors.

After analysing the logic with game quantifier we define a family of multi-
player Muller games with imperfect information shared in a hierarchical way.
Such games, even when played on a small arenas, can be used to model complex
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interactions between players and can be used for model checking. Expressing
the semantic of a logic by means of games has proved fruitful for developing
model checking algorithms [8], especially for µ-calculus which corresponds to
parity games [6]. Additionally, the game semantic is quite intuitive and we use
multi-player Muller games with imperfect information [2], which is interesting
as these types of games have so far not been widely used for model-checking.

We start investigating this class of games by showing that they are not nec-
essarily determined and undecidable if players are not forced to alternate their
moves. On the other hand, when players alternate moves we prove the exact cor-
respondence between the games and the logic with game quantification. More
precisely, the games can be used as model checking games on automatic struc-
tures for first-order logic with game quantifier and at the same time the winning
region can be defined in this logic. It follows that deciding the winner is non-
elementary in this case. Still, we argue that these games can give rise to efficient
algorithms for model checking on complex structures, since recently developed
algorithms for games with semiperfect information [5] could be used in practical
cases.

2 Preliminaries

In this paper we will be working mainly with structures on words, finite or
infinite sequences of letters from a finite alphabet Σ. We denote by Σ∗ the set
of finite words over Σ and by Σω the set of infinite words, Σ≤ω = Σ∗ ∪ Σω.
We normally assume that Σ is fixed and that it contains at least two elements,
in our examples usually Σ = {a, b}, and when we need an element not in the
alphabet we denote it by 
 �∈ Σ.

Let us fix the notation used for operations on words. For any sequence or word
w let us denote by w|n the finite word composed of the first n letters of w, with
w|0 = ε, the empty word or sequence, and by w[n] the nth letter or element of
w for n = 1, 2, . . .. We say that v � w if v is a prefix of w and in such case we
denote by w − v the word u such that v · u = w. For an infinite word w ∈ Σω

the set of letters that appear infinitely often in this word is denoted by Inf(w).
We sometimes extend all the notations presented here to vectors of words, so for
example if x is a tuple of words then x[n] is a tuple consisting of the nth letter
of each word in x.

2.1 Automatic Structures

We are going to analyse inductive structures modelled over finite and infinite
words, so formally we consider the following structure:

(Σ≤ω,R1, . . . ,RK),

where each relation Ri has arity ar(i), so Ri ⊆ (Σ≤ω)ar(i). Sometimes we want
the relations to be recognised by automata and in such cases we will consider
them as ω-languages over the tuple-alphabet extended with 
 for finite words,
⊗Ri ⊆ ((Σ ∪ {
})ar(i))ω.
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To define the relations ⊗Ri we have to compose infinite words over the tuple-
alphabet (Σ ∪ {
})ar(i) from finite and infinite words over Σ. In such case, if
we have a number of words w1 = x1

1x
1
2 . . . and so up to wk = xk1xk2 . . ., then we

denote the composed word by ⊗w =

w1 ⊗ . . .⊗ wk =

⎡⎢⎣x1
1
...

xk1

⎤⎥⎦
⎡⎢⎣x1

2
...

xk2

⎤⎥⎦ . . . ∈ ((Σ ∪ {
})k)ω,

whereas if some wl was finite, wl = xl1x
l
2 . . .xlL, then we prolong it with 
ω, i.e.

xlL+i = 
. This allows us to define⊗Ri with respect to Ri by Ri(w1, . . . , wk) ⇐⇒
⊗Ri(w1 ⊗ . . .⊗ wk).

To speak about presentations of ω-automatic structures we will use Muller
automata to recognise ω-regular languages. A (deterministic) Muller automaton
over Γ = Σ ∪ {
} is a tuple A = (Q, δ, q0,F) where Q is a finite set of states,
δ is a state transition function δ : Q× Γ → Q, q0 ∈ Q is the initial state and
F ⊆ P(Q) is the acceptance condition. A run of A on w ∈ Γω is a sequence

ρA(w) = q0, q1, . . . ∈ Qω such that qi = δ(qi−1, w[i]).

The word w is accepted by A if the set of states appearing infinitely often during
the run is in the acceptance condition, also when Inf(ρA(w)) ∈ F , and a language
L ⊆ Γω is ω-regular if there is a Muller automaton A that accepts exactly the
words w ∈ L. A structure is automatic, or actually, as we consider only structures
on words, is a presentation of an automatic structure, if for each relation Ri in
this structure the language ⊗Ri is ω-regular over (Σ ∪ {
})ar(i).

You should note that since we allow both finite and infinite words all our
words when interpreted over Σ∪{
} have the property that if a 
 appears then

ω follows.

2.2 Alternating Automata

We have introduced the standard notion of automata, but we still need to present
alternating Muller automata which are an important tool in our proofs. The in-
tuition behind alternating automata is that, unlike in the deterministic case
when only one run on a given word is possible, we have more possibilities of
transitions from each state for a given letter. Moreover, we do not only want to
accept when there exists an accepting run among all possible ones (nondetermin-
istic automata), or when all possible runs are accepting (universal automata),
but we want to be able to alternate the conditions with respect to states of the
automaton, also to have both existential and universal branching choices.

An alternating (Muller) automaton is formally a tuple A = (Q, δ, q0,F) where
as before Q is the set of states, q0 is the initial state, F ⊆ P(Q) is the acceptance
condition, but this time δ does not point to a single next state but specifies a
whole boolean condition, δ : Q× Γ → B+(Q), where B+(Q) denotes positive
boolean formulas over Q. Intuitively a correct run of A on a word w is an infinite
tree labelled with Q where the successors of each node form a satisfying set for
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the boolean condition related to the state in this node and to the corresponding
letter in w. We will not present this intuition in a more formal and complete
way here, let us only mention here that for every alternating automaton one can
find a deterministic Muller automaton accepting the same language [3]. This
deterministic automaton does not need to be bigger than double exponential in
the size of the alternating one [12].

3 Game Quantifier on Automatic Structures

We want to extend first-order logic to make explicit use of the inductive structure
of the words and therefore let us introduce �, the game quantifier. The meaning
of the formula �xy ϕ(x, y) is that ϕ can be satisfied when the arguments are
constructed stepwise by two players, i.e. first the first letter of x, then the first
letter of y given by the second player, another letter of x by the first player and
so on. Formally the play will be infinite so to capture finite words we have to
define it on Γ = Σ ∪ {
} by

�xy ϕ(x, y) ⇐⇒ (∃ well-formed f : Γ ∗ × Γ ∗ → Γ )

(∀ well-formed g : Γ ∗ × Γ ∗ → Γ ) ϕ(xfg , yfg),

where xfg and yfg are the Σ-words constructed inductively using f and g up to
the first appearance of 
,

xfg[n + 1] = f(xfg|n, yfg|n),

yfg[n + 1] = g(xfg|n+1, yfg|n),
and well-formedness means that if any of the functions f resp. g outputs 
 then
the word xfg resp. yfg is considered to be finite and the function must then
continue to output 
 infinitely, formally h is well-formed when

h(w, u) = 
 =⇒ (∀w′ 6 w) (∀u′ 6 u) h(w′, u′) = 
.

Please note that this direct definition coincides with the traditional one that
uses infinite string of quantifiers,

�xy ϕ(x, y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) ϕ(a1a2 . . . , b1b2 . . .).

Moreover, using our notation, �xy ϕ(x) is equivalent to ∃x ϕ(x) as we can always
forget opponent moves and play letters from x or conversely use any g to obtain
the witness x. Similarly �xy ϕ(y) is equivalent to ∀y ϕ(y). Thus, we do not need
to consider the standard quantifiers when the game quantifier is present.

On some structures it is possible to encode a pair of words into a single one,
but that is not always the case. Therefore we might sometimes need to use the
game quantifier with more variables:

�x1 . . .xky1 . . . ym ϕ(x, y) ⇐⇒
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(∃f : (Γ ∗)k × (Γ ∗)m → Γ k) (∀g : (Γ ∗)k × (Γ ∗)m → Γm) ϕ(xfg, yfg),

where again the functions must be well–formed in each column and

xfg[n + 1] = f(xfg|n, yfg|n), yfg[n + 1] = g(xfg|n+1, yfg|n).

As an example of the use of game quantifier let us consider the following
relation R given by the formula:

R(u,w, s, t) := �xy (y = u→ x = s) ∧ (y = w → x = t).

We claim, that R means that the common prefix of s and t is longer than the
common prefix of u and w. Denoting by v ' r the common prefix of v and r and
by |v| the length of v we can say, that

R(u,w, s, t) ≡ |u ' w| < |s ' t|

for u �= w and s �= t. The way we think about evaluating such formula is by
means of a game played by two players – the Verifier for x and the Falsifier for
y. To see the above equivalence, let us assume that indeed the common prefix of
s and t is longer than the common prefix of u and w. In this case the Falsifier
will have to choose y = u or y = w before the Verifier chooses if x = s or if
x = t, and therefore the Verifier is going to win. In the other case, the Falsifier
can make the formula false as he knows if x = s or if x = t before choosing
whether y = u or y = w.

3.1 Basic Properties of FO+�

The two most important properties of FO+� that interest us are the decidability
of it on ω-automatic structures and the existence of negation normal form, which
semantically corresponds to the determinacy of the underlying games.

To be able to clearly state the existence of negation normal form let us intro-
duce another variation of game quantifier, namely one where it is the Falsifier
who makes the moves first. Formally, let

�∀xy ϕ(x, y) ⇐⇒ (∃f : Γ ∗ × Γ ∗ → Γ ) (∀g : Γ ∗ × Γ ∗ → Γ ) ϕ(x∀fg, y
∀
fg),

where again the functions must be well-formed and this time the words are
constructed in reverse order,

y∀fg[n + 1] = g(x∀fg|n, y∀fg|n), x∀fg[n + 1] = f(x∀fg|n, y∀fg|n+1).

If we denote the game quantifier introduced before by �∃ then the intended
relation that leads to negation normal form can be stated as follows:

�∃xy ϕ(x, y) ≡ ¬�∀yx ¬ϕ(x, y).

Please note that when the relation of prefixing with a letter is present, the
quantifier �∀ is superfluous and can be eliminated by adding one arbitrary letter,

�∀xy ϕ(x, y) ⇐⇒ �∃zy ∃x z = ax ∧ ϕ(x, y).
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To verify this equivalence, please note that on the right side the Verifier must
start with an a and later play a strategy that satisfies ϕ, so the same strategy
without the first a can be used on the left side. Conversely, if Verifier’s strategy
on the left side is given then playing an a and later the same strategy is winning
for the right side.

To prove decidability and the existence of negation normal form we actually
need one crucial lemma, namely that if we begin with ω-regular relations then
anything defined in the FO+� logic remains ω-regular. The proof relies on the
fact that, when used on an automaton, the game quantifier indeed constructs a
game and changes the automaton to an alternating one.

Lemma 1. If the relation R(x, y, z) is ω-regular over x⊗y⊗z then the relation
S(z) ⇐⇒ �xy R(x, y, z) is ω-regular over ⊗z.

Proof. Let us take the deterministic automaton AR for R over x ⊗ y ⊗ z and
construct an alternating automaton AS for S over ⊗z in the following way. The
set of states, acceptance condition and initial state remain the same and the new
transition relation is defined by

δS(q, z) =
∨
x∈Γ k

∧
y∈Γ l

δR(q,x ⊗ y ⊗ z),

where k is the number of elements of x and l is the number of elements of y.
By definition, the semantic of the relation S is

S(z) ⇐⇒ (∃f : (Γ ∗)k×(Γ ∗)l → Γ k)(∀g : (Γ ∗)k×(Γ ∗)l → Γ l) ϕ(xfg, yfg, z).

One can see that the function f in this definition corresponds to the choice of
the letters for x in the boolean formula when selecting the run of the alternating
automaton and that the function g corresponds to the choice of the branch of
the run, as all need to be accepted.

This lemma immediately gives us decidability of FO+� on automatic structures
and also allows us to use determinacy of Muller games for the proof for game
quantifier inversion.

Corollary 1. FO+� is decidable on ω-automatic structures, all relations defin-
able in it are ω-automatic and for a fixed number of quantifier alternations it
has elementary complexity.

Corollary 2. For each FO+� formula ϕ on every automatic structure A

A, z |= �∃xy ϕ(x, y, z) ⇐⇒ A, z |= ¬�∀yx ¬ϕ(x, y, z).

The last corollary follows from the determinacy of finitely coloured Muller games.
You should note that because of z the game arena itself might be infinite, but
the number of colours depends only on the size of Muller automaton for ϕ and
is therefore finite. As was already mentioned the determinacy of Muller games
can be derived from a more general result by Martin [11] which can be used
to generalise the corollary to a wider class of structures, namely all where the
relations are Borel sets.
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4 Expressive Power of Game Quantification

Some automatic structures are known to be complete, meaning that every regular
relation over such structure can be defined in first-order logic. For structures over
finite and infinite words the canonical example of such structure is the binary
tree, T = ({a, b}≤ω,σa,σb,�, el), where σa and σb denote a and b-successors of
a finite word (i.e. σa(u, ua)), � is the prefix relation and el(x, y) means that x
and y have equal length. Each automatic and ω-automatic relation over {a, b}≤ω
can be described by an FO formula over this structure, so since FO+� relations
are automatic by Lemma 1, then FO+� is as strong as FO in such case.

This situation changes when � and el are not given as then FO+� can be
used to define them using just σa and σb and is therefore complete and stronger
than FO.

Fact 1. On the structure ({a, b}≤ω,σa,σb) the logic FO+� can define all regular
relations and is therefore stronger than FO.

The proof of this fact does not make any use of the successor relations to define �
and el. Let us now take a weaker structure, namely ({a, b}≤ω,Sa) where Sa(x, y)
is any relation with the property that for each x ∈ {a, b}∗ it holds Sa(x,xa) but
Sa(x,xb) does not hold. We did not specify how the relation Sa behaves on words
of bigger difference in length, but this can be compensated for using � and el.
Therefore with game quantifier the relation Sa is enough to express successors
in the following way:

|x| = |y|+ 1 ≡ |x| < |y| ∧ ∀z |z| < |y| → |z| ≤ |x|,

σa(x) = (y ≡ Sa(x, y) ∧ |y| = |x|+ 1), σb(x) = (y ≡ ¬Sa(x, y) ∧ |y| = |x|+ 1).

When one considers encoding natural numbers as binary words and analysing
such structure, it is necessary to have a relation EQ that defines the equality
between numbers as opposed to equality over words which might have redundant
zeros, EQ(x, y) ≡ (x = n0k and y = n0l). You can see that the relation EQ,
definable in the natural presentation of numbers, satisfies the constraints that we
put on S0. Therefore the game quantifier is enough to define all regular relations
in the binary presentation of (N,=). This can as well be used to define + in
such presentation so if we add some stronger non-regular relation then model
checking becomes undecidable.

Corollary 3. On the binary presentation of (N,=) the logic FO+� can define
all regular relations and therefore the binary presentations of
(N,=), (N, s), (N,<), (N,+) are complete-automatic for FO+�.

Corollary 4. The logic FO+� is undecidable on the binary presentation of
Skolem arithmetic (N, ·).
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4.1 Inductive Automorphisms

After analysing what can be expressed in FO+� we want to look for methods to
establish what relations can not be expressed in this logic. For example one could
ask if aω can be expressed in FO+� without any relations other than equality
of words. We are going to develop a general method to answer such questions
by showing that there is a class of automorphisms of a structure that extend to
all relations definable in FO+�.

First of all please note that not all automorphisms extend to relations defin-
able in FO+�. For example you can take the bijection of Σ≤ω that swaps aω

with bω and leaves other elements untouched. The relation |s ' t| < |u ' w| is
definable in FO+� just with equality, but you can see that this bijection does
not extend to an automorphism of the set with this relation as

|bω ' abω| < |aω ' abω| but |aω ' abω| > |bω ' abω|.

To define the class of inductive automorphisms that do extend to relations
definable in FO+� we are going to restrict the bijections of Σ≤ω only to a
special form.

Definition 1. The bijection π : Σ≤ω → Σ≤ω is inductive when it does not
change the length of the words, |π(u)| = |u| for every word u, and additionally
there exists a family of permutations

{πw}w∈Σ∗ πw : Σ → Σ,

so that for each word u with at least n letters the nth letter of π(u) is given by
the appropriate permutation

π(u)[n] = πu|n−1(u[n]).

Please note that the inverse automorphism φ−1 of any inductive automorphism
φ is again inductive as inverse permutations {π−1

w } can be used.
It turns out that if we restrict our attention only to an automorphism φ that

is an inductive bijection then the structure can be extended with any FO+�
definable relation and φ will still be an automorphism of the extended structure.

Theorem 1. If φ is an inductive automorphism of a structure (Σ≤ω,R1,. . . ,Rk)
and R is a relation definable by an FO+� formula, R(x) ⇐⇒ ϕ(x) for some ϕ ∈
FO+�, then φ is an automorphism of the extended structure (Σ≤ω,R1,. . . ,Rk,R).

Proof. Clearly when we proceed by induction on the structure of formulas it
is enough to consider the inductive step for game quantifier, i.e. to show that
if for a formula ϕ it holds that ϕ(x, y, z) ⇐⇒ ϕ(φ(x), φ(y), φ(y)) then for
ψ(z) = �xy ϕ(x, y, z) it holds ψ(z) ⇐⇒ ψ(φ(z)) (the converse follows with the
inverse automorphism φ−1).

To show the above let us first define for any strategies f of the Verifier and
g of the Verifier used in �xy ϕ(x, y, z) the transposed strategies fφ, gφ in the
following way:
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fφ(x, y) = πφ−1(x)h(φ−1(x), φ−1(y)), gφ(x, y) = πφ−1(y)h(φ−1(x), φ−1(y)),

where πw is the permutation for word w associated with φ. You should observe
that when the players play with strategies fφ, gφ then the resulting words are
exactly the images of the words that result from using f and g,

xfφgφ
= φ(xfg), yfφgφ

= φ(yfg).

In this way we can use the winning strategy f for the first player in ψ(z) and
play with fφ in ψ(φ(z)). If the opponent chooses to play g then at the end the
formula ϕ(xfφg, yfφg, φ(z)) will be evaluated, but

ϕ(xfφg, yfφg, φ(z)) ≡ ϕ(φ(xfg
φ−1 ), φ(yfg

φ−1 ), φ(z)) ≡ ϕ(xfg
φ−1 , yfgφ−1

, z),

which is true as f is winning against any strategy, in particular against gφ−1 .

The above theorem gives a general method to investigate definability in FO+�.
For example we can answer the question we stated at the beginning and say
that aω is not definable in FO+� just with equality, because a bijection of Σ≤ω

that swaps the first letter is an inductive bijections and moves aω to baω. To-
gether with the fact proved in the previous section that a relation distinguishing
successors is enough to define all regular relations in FO+� we get a detailed
picture of what can and what can not be defined in this logic.

5 Muller Games with Information Levels

To define model checking games that capture first-order and game quantification
on automatic structures we need to go beyond two-player perfect information
games and use multi-player games with imperfect information. Therefore these
games will be played by two coalitions, I and II, each consisting of N players,

Π = (1, I), (2, I), . . . , (N, I), (1, II), (2, II), . . . , (N, II),

taking actions described as letters in Σ. The arena of the game is therefore given
by the pairwise disjoint sets of positions belonging to each player V1,I, . . . ,VN,I,
V1,II, . . . ,VN,II and the function µ defining the moves. Positions of coalition I are
denoted by VI = V1,I∪. . .∪VN,I and of coalition II by VII = V1,II∪. . .∪VN,II with
all positions V = VI ∪ VII. In any position v the player can choose an action a
from Σ and then move to the position µ(v, a) as µ : V ×Σ → V . The objective
of the game is given by a Muller winning condition F .

The (general) Muller game with information levels or hierarchical Muller game
is therefore given by the tuple

(V1,I, . . . ,VN,I,V1,II, . . . ,VN,II, µ, F ⊆ P(V )).

In such game play actions are the sequence of actions taken by the players
during a play, so formally it is an infinite word α ∈ Σω. The play corresponding
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to play actions α and starting in position v0 is an infinite sequence of positions
resulting from taking the moves as described by α,

πα(v0) = v0v1 . . . ⇐⇒ vi = µ(vi−1,α[i]), i = 1, 2, . . . .

During the play πα(v0) we encounter a sequence of players that take the moves
and let us denote this sequence by Πα(v0) = p0p1 . . . ⇔ vi ∈ Vpi .

When we want to play the game each of the 2N players has to decide on a
strategy sp : Σ∗ → Σ. In a game with perfect information we would say that
play actions α are coherent with the strategy sp in a play starting in v0 when
for each move i taken by player p, also vi ∈ Vp, the action taken is given by the
strategy acting on the history of actions, α[i + 1] = sp(α|i).

But since the players do not have perfect information, we assume additionally
that for each player p there is a function νp that extracts from the history of play
actions the information visible for this player. More precisely νp : (Σ ×Π)∗ →
Σ∗ extracts the information visible to player p from the history of play actions
together with players that took the moves. Therefore play actions α in a play
starting in v0 are coherent with sp when for each i such that vi ∈ Vp it holds

α[i + 1] = sp(νp((a1, p0)(a2, p1) . . . (ai, pi−1))),

where α = a1, a2, . . . and Πα(v0) = p0, p1, . . ..
The above definition of views of play history is very general and we will

use only a concrete special case of hierarchical view functions. The hierarchical
information views are defined so that in each coalition the player i is able to
see the moves of players 1, . . . , i in both coalitions, but can not see the moves of
players with numbers j > i. More formally νi,c((a1, p0)(a2, p1) . . .) = ai1 , ai2 , . . .
when the indices ik are precisely those for which pik−1 = (j, d) with j ≤ i.

To define when coalition I wins such a hierarchical game we can not require
from coalition I to put forth their winning strategies before II does (as usual
in such definitions), because as you saw the player with higher numbers have
strictly more information and their advantage would be lost if they disclosed their
strategies too early. Therefore we use the following definition that requires that
strategies are given stepwise, level by level going through the levels of information
visibility.

Definition 2. Coalition I wins the hierarchical game

(V1,I, . . . ,VN,I,V1,II, . . . ,VN,II, µ, F)

starting from position v0 when the following condition holds. There exists a strat-
egy s1,I for player 1, I such that for each strategy s1,II of player 1, II there exists
a strategy s2,I such that for each strategy s2,II . . . there exists a strategy sN,I

such that for each strategy sN,II the play actions sequence α, starting from v0

and coherent with all strategies s1,I, s1,II, . . . , sN,I, sN,II, results in a play πα(v0)
winning for I, i.e. such that Inf(πα(v0)) ∈ F .

As you can expect, the definition for coalition II is dual, i.e. it says that there
exists a s1,II so that for all s1,I, . . ., the play is not winning, Inf(πα(v0)) �∈ F .
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In general, determining the winner of hierarchical games is undecidable, what
can be proved by reducing the Post correspondence problem. Let us state it as
a theorem.

Theorem 2. The question whether coalition I wins in a general Muller game
with information levels is undecidable.

We will improve the situation by restricting only to games where players al-
ternate their moves in the next section. We just want to note, that in general
hierarchical games are not even determined, but it is not the case when players
alternate their moves.

5.1 Model Checking with Hierarchical Games

To connect the logic FO+� to the games with information levels let us restrict
our attention only to such games where players alternate their moves in order of
information visibility. More precisely let an alternating game with information
levels be such a game, where for each letter a ∈ Σ and each level i = 1, . . . , N
the following alternation conditions hold:

vi ∈ Vi,I =⇒ µ(vi, a) ∈ Vi,II, vi ∈ Vi,II =⇒ µ(vi, a) ∈ V(i modN)+1,I.

In an alternating game every infinite play actions sequence can be divided into
sequences of 2N actions, each taken by a different player,

α = a1,I
1 a1,II

1 a2,I
1 a2,II

1 . . .aN,I
1 aN,II

1 a1,I
2 . . . aN,II

2 a1,I
3 . . . .

Let the 2N -split of these play actions be the tuple of words played by each of
the players,

split2N (α) = (a1,I
1 a1,I

2 . . . , {a1,II
i }, . . . , {aN,I

i }, {a
N,II
i }).

You should note that, since the set of plays starting from a fixed v0 that are
winning for I is ω-regular, then also the set of corresponding 2N -splits of play
actions is ω-regular. This can be seen by taking only each 2Nth state of the
Muller automaton recognising the plays and making a product with Σ2N to
store the states that were omitted from the path in the original automaton.
For an alternating hierarchical Muller game G let us denote the 2Nary relation
recognising the 2N -split of plays winning for I by

WG,v0
I (a1, . . . , a2N )⇔ ∀α (split2N (α) = (a1, . . . , a2N )⇒ Inf(πα(v0)) ∈ FG).

The definition for coalition II is analogous, just with Inf(πα(v0)) �∈ FG.
You can now note that the condition that coalition I (resp. II) wins in an al-

ternating hierarchical Muller game can be expressed in FO+� using the relation
WG,v0

I , which results in the following theorem.

Theorem 3. For any alternating game with information levels G and the rela-
tions WG,v0

I and WG,v0
II defined as above, coalition I (resp. II) wins the game G

starting from v0 exactly if the following formula holds in (Σω,WG,v0
I ):

�x1y1 . . . �xNyN WG,v0
I (x1, y1, . . . ,xN , yN ).
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After we captured winning in alternating games in FO+� let us do the converse
and construct a model checking game for a given FO+� formula on an automatic
structure. At first we will restrict ourself to formulas in the simple form

ϕ = �x1y1�x2y2 . . .�xNyN R(x1, y1, . . . ,xN , yN )

and just construct a game so that the split of the winning plays will allow us to
use the previous theorem.

The construction can be understood intuitively as prefixing each variable with
all possible letters in the order of information hierarchy and making a step of
the automaton when all variables are prefixed. To define these games precisely
let us take the automaton for R, namely AR = (Q, q0, δ,FR), and construct the
model checking game Gϕ for ϕ in the following way. For each even tuple of letters
c1, d1, c2, d2, . . . , cM , dM , with 0 ≤ M < N , and for every state q ∈ Q, we will
have in our game the position

Rq(c1x1, d1y1, . . . , cMxM , dMyM ,xM+1, . . . , yN ), (1)

and for each uneven tuple c1, d1, c2, d2, . . . , cM , dM , cM+1, 0 ≤ M < N , the
position

Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN ). (2)

In each of these positions the next move is made by the player corresponding to
the next variable that is not yet prefixed by a letter, e.g. in position 1 it is the
player M + 1 of coalition I who makes the move for xM+1 and in position 2 it is
the player M + 1 of coalition II. We can now formally define the set of positions
for players on each level i as Vi,I = Q×Σ2(i−1), Vi,II = Q×Σ2i−1.

The moves in Gϕ are defined in an intuitive way — the player chooses a letter
to prefix his variable with, so for 0 ≤M < N

µ(Rq(c1x1, . . . , dMyM ,xM+1, . . . , yN ), cM+1) =

= Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN ),

and for 0 ≤M < N − 1

µ(Rq(c1x1, . . . , cM+1xM+1, yM+1, . . . , yN ), dM+1) =

= Rq(c1x1, . . . , cM+1xM+1, dM+1yM+1,xM+2, . . . , yN).

The only special case is the final position Rq(c1x1, d1y1, . . . , cNxN , yN ). When
the player N, II chooses the final letter dN then it will not be appended, but
instead all the prefixing letters will be removed and the state of the automaton
will be changed (here α = c1d1 . . . cNdN ):

µ(Rq(c1x1, d1y1, . . . , cNxN , yN ), dN ) = Rδ(q,α)(x1, y1, . . . ,xN , yN ).

The winning condition F in the game is defined to correspond to the accep-
tance condition FR of the automaton for R in such way, that we look only at
the state component of each position.
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To see that the game Gϕ is indeed the model checking game for ϕ we can use
Theorem 3 again, just observe that the 2N -split of the winning paths in Gϕ is
exactly the relation R, W

Gϕ,R
q0 (x1,y1,...,xN ,yN )

I = R.
In this way we know how to construct the model checking game for formulas in

simple form. As we have seen, any formula in FO+� can be written in negation
normal form and additionally, by renaming variables, it can be reduced to prenex
normal form. Let us therefore consider now a general formula in the form ϕ =
�x1y1�x2y2 . . . �xNyN ψ(x1, y1, . . . ,xN , yN), where ψ is in negation normal form
and does not contain quantifiers. Let us construct the game Gϕ inductively with
respect to ψ.

In the case of ψ(x) = R(x) or ψ(x) = ¬R(x) the solution was already pre-
sented, when considering ¬R we just have to complement the acceptance condi-
tion of the automaton for R. Let us show how to construct the game for boolean
connectives, i.e. for ψ1 ∧ ψ2 and for ψ1 ∨ ψ2. We want to adhere to the usual
convention of model checking games and to have only one additional position
for any junctor. The game for ψ1 ◦ ψ2, where ◦ = ∧,∨, is therefore constructed
as follows: we take the two games for ψ1 and ψ2 and we add one more position
on higher level of information that has two possible moves — to the starting
position of ψ1 and to the starting position of ψ2. The new position belongs to
coalition I when ◦ = ∨ and to coalition II when ◦ = ∧ and in both cases the
other coalition does not play on that information level. With the construction
described above we face a problem, as the game is not strictly alternating any
more, but it is not a significant obstacle.

To formally prove that the resulting games are indeed model checking games
for formulas with boolean connectives you can just replace the connectives with
a new variable and the formula with one relation where only the first letter of
connective-variables is considered. Then the automata for such relation corre-
sponds to the defined game and Theorem 3 can be used again.

The exact correspondence of alternating hierarchical games and FO+� makes
it possible to use our knowledge about this logic. In particular we can transfer the
results about complexity including the non-elementary lower bound on deciding
first-order logic on automatic structures.

Corollary 5. The question whether coalition I (resp. II) wins in an alternat-
ing Muller game with information levels on a finite arena is decidable, non-
elementary when the number of levels is not fixed and it can be done in 2K-
EXPTIME for K information levels.

The possibility to get negation normal form for FO+� can as well be translated
and gives the proof of determinacy of alternating hierarchical games.

Corollary 6. Alternating Muller games with information levels are determined.

6 Conclusions and Future Work

We described how game quantification can be used on automatic structures and
the resulting logic turned out to be very interesting. It is decidable and the
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defined relations remain regular, which might be used in the study of presen-
tations of automatic structures. On the other hand the logic is strictly more
expressive than first-order on some weaker structures. Most notably on the bi-
nary tree and on presentations of natural numbers it is possible to define all
regular relations when game quantification is allowed. The methods that we
used, for example inductive automorphisms, might be extended to morphisms
between presentations of the same automatic structure and used to study intrin-
sic regularity.

On the other hand, it might be interesting to ask what is the expressive power
of FO+� on formulas with just one game quantifier, i.e. �xy ϕ(x, y) where ϕ
is quantifier-free. Such formulas may be more expressive than just existential
or universal fragment of first-order logic even on complete-automatic structures
and can be decided with double exponential complexity.

Game quantification made it possible to define an expressive class of model
checking games that we used for checking first-order logic on automatic struc-
tures. These games use multiple players and imperfect information in a novel way
and might be used to derive more efficient algorithms for verification, especially
if the efficient algorithms from [5] can be generalised to hierarchical games.
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Abstract. A letter e ∈ Σ is said to be neutral for a language L if it can
be inserted and deleted at will in a word without affecting membership
in L. The Crane Beach Conjecture, which was recently disproved, stated
that any language containing a neutral letter and definable in first-order
with arbitrary numerical predicates (FO [Arb]) is in fact FO [<] definable
and is thus a regular, star-free language. More generally, we say that a
logic or a computational model has the Crane Beach property if the only
languages with neutral letter that it can define/compute are regular.

We develop an algebraic point of view on the Crane Beach proper-
ties using the program over monoid formalism which has proved of im-
portance in circuit complexity. Using recent communication complexity
results we establish a number of Crane Beach results for programs over
specific classes of monoids. These can be viewed as Crane Beach theo-
rems for classes of bounded-width branching programs. We also apply
this to a standard extension of FO using modular-counting quantifiers
and show that the boolean closure of this logic’s Σ1 fragment has the
CBP.

We would like to dedicate this paper to the memory of Clemens Lautemann.
Clemens passed away in April 2005 after a battle with cancer. He raised many
of the questions underlying this paper but unfortunately did not live to see their
final resolution. He was also a founding member of the EACSL which organizes
the present conference. We will miss Clemens as a collaborator and as a friend.

1 Introduction

A number of results of the last ten years indicate that weak models of compu-
tation are considerably handicapped when they are used to recognize languages
with a so-called neutral letter. A letter e ∈ Σ is said to be neutral for the lan-
guage L ⊆ Σ∗ if it can be inserted and deleted at will in a word without affecting
membership in L, i.e. if for all u, v ∈ Σ∗ it holds that uv ∈ L ⇔ uev ∈ L. It is
natural to think that languages with neutral letters pose particular problems for
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models of computation that rely heavily on the precise location of certain input
bits or are too weak to preprocess their input by removing the blank symbols.

To the best of our knowledge, the first result along those lines appears in work
of Barrington and Straubing on short bounded-width branching programs: any
language recognized by a width k branching program of length o(n log log n) is
in fact regular and belongs to some well defined class Lk of regular languages [4].

In light of this result, Lautemann and Thérien conjectured that any language
with a neutral letter in the circuit class AC0 is in fact regular and star-free (i.e.
it can be defined by a regular expression built from the letters of the alphabet,
the empty set symbol, union and complementation but no Kleene star). This
statement, which came to be known as the Crane Beach conjecture, has a nice
logical formulation. A language is known to belong to AC0 iff it can be defined in
FO [Arb], i.e. by a first-order sentence using arbitrary numerical predicates [12].
Restrictions on the set of numerical predicates available can be interpreted as
uniformity restrictions on circuits [3,13,22] (see Section 2). When order is the
only available numerical predicate (FO [<]), the class of definable languages
corresponds exactly to the star-free regular languages (cf. [22,33]). Thus if Le
denotes the class of languages with a neutral letter, the Crane Beach conjecture
postulated that FO [Arb] ∩Le = FO [<]∩Le. The underlying intuition was the
apparent inability to take advantage of complicated numerical predicates in the
presence of a neutral letter. But the Crane Beach conjecture was refuted in [2].

On the other hand [2] show that the boolean closure of the Σ1 fragment of
FO [Arb] does have the Crane Beach property in the sense that BΣ1 [Arb]∩Le =
BΣ1[<] ∩ Le. Such Crane Beach results for fragments of FO are related to so-
called collapse results in database theory [8].

We also consider the logic FO+ MOD which is a standard extension of first-
order logic on words in which modular counting quantifiers are introduced. The
expressive power of FO+ MOD [<] is limited to a specific class of regular lan-
guages [25] whereas FO+ MOD [Arb] captures the circuit class ACC0.

We say that a logic or a computation model has the Crane Beach property
if all languages with a neutral letter that it can define or compute are regular.
We develop an algebraic point of view on the Crane Beach property by con-
sidering finite monoids as language recognizers. Two methods of recognition by
finite monoids have been introduced in the literature: recognition via morphisms
and recognition via programs over monoids. The first is more classical and is a
key ingredient in a number of major results concerning regular languages and
in particular about the expressive power of fragments of FO+ MOD [<]. Pro-
grams are more powerful and yield algebraic characterizations of AC0, ACC0

and NC1 [1,6].
The extra expressive power obtained by moving from recognition via mor-

phisms over monoids to recognition by programs over monoids is in many ways
similar to the extra power afforded to FO or FO+ MOD when we go from sen-
tences that use only < as a numerical predicate to sentences using arbitrary
numerical predicates. We show that there are classes of monoids for which the
presence of a neutral letter nullifies this advantage in the sense that any language
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with a neutral letter recognized by a program over a monoid in the class can in
fact be recognized by a morphism over a monoid in the same class.

These results allow us to show that the boolean closure of the Σ1 fragment of
FO+ MOD, which we formally denote as BΣ(s,p)

1 has the Crane Beach property,
i.e. BΣ(s,p)

1 [Arb] ∩ Le = BΣ(s,p)
1 [<] ∩ Le. They also provide some additional

insight into a possible dividing line between classes of monoids or fragments of
FO+ MOD which exhibit the Crane Beach property from those which do not.

We begin by reviewing in section 2 the necessary background in circuit com-
plexity, descriptive complexity and the study of finite monoids as language rec-
ognizers. In section 3 we obtain our results on the Crane Beach property for
programs over monoids and study their application to logic in section 4. We
conclude with a discussion on how our results fit with other results concerning
languages with a neutral letter.

Due to space limitations, some technical results have been omitted but an
extended version of the paper is available from the authors’ websites. One of our
results in section 4 is credited in [2] to an unpublished manuscript of Clemens
Lautemann and his former student Andrea Krol which we were not able to reach
during the preparation of the present paper.

2 Logic, Circuits, Programs over Monoids and Automata

2.1 Circuits

An n-input boolean circuit Cn is a directed acyclic graph with a single node of
out-degree 0 called the output gate. The input gates have in-degree 0 and are
labeled either with an input variable xi, its complement xi or one of the boolean
constants 0, 1. When the inputs are not boolean but take values in some finite
alphabet Σ, input nodes are labeled by xi = a for some a ∈ Σ. Finally, any
non-input gate g is labeled by some symmetric boolean function fg taken from
some predetermined set. Our focus will be on the case where these functions are
either the And or the Or function, or the function Modq which outputs 1 if
the sum of its entries is divisible by q. The depth and size of a circuit Cn are,
respectively, the longest path from an input node to the output node and the
number of gates. A circuit naturally computes a function fCn : Σn → {0, 1} and
we define the language accepted by Cn as LCn = {x : fCn = 1}. This language is
a subset of Σn: in order to recognize subsets of Σ∗ we use families of circuits
C = {Cn}n≥0 where each Cn is an n-input circuit which is used to process inputs
of that particular length. We can then consider the depth and size of C as a
function of n and study its asymptotics.

The class ACC0 consists of languages which can be accepted by a family of
circuits having polynomial-size and bounded-depth and constructed with And
gates, Or gates and Modq gates for some q ≥ 2. We further define AC0 as the
restriction of ACC0 where only And and Or gates are allowed and CC0 as the
restriction of ACC0 where only Modq gates (for some q ≥ 2) are used. All of
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these classes lie in the class NC1 of languages recognized by circuits of depth
O(log n) constructed with And and Or gates of bounded fan-in.

We have not imposed any sort of restriction on the effective constructibility
of the circuit families and the circuit classes are correspondingly dubbed ‘non-
uniform’. It makes sense to require that the nth circuit of a family C be con-
structible efficiently and such requirements are called uniformity conditions. For
any complexity class D, we say that a family of circuits C = {Cn} is D-uniform
if there is an algorithm in D which on input n computes a representation of Cn
(see e.g. [3] for a formal discussion). Dlogtime-uniformity is widely accepted as
the desired ‘correct’ notion of uniformity for subclasses of NC1: roughly speak-
ing it requires that there exists an algorithm which on input 〈t, a, b, n〉 can check
in time O(log n) whether the ath gate of Cn is of type t (i.e. which function it
computes) and feeds into the bth gate [3].

2.2 Logic over Words

We are interested in considering first-order logical sentences defining sets of finite
words over an alphabet Σ. We only briefly overview this logical apparatus and
refer the reader to [22,15] for a more thorough and formal discussion.

Let us start with an example. Over the alphabet {a, b} we view the sentence

∃x∃y Qax ∧Qby ∧ (y = x + x)

as defining the set of words in which there exists a position x holding an a such
that the position 2x holds a b. The variables in the sentence stand for positions
in a finite word and the access to the content of these positions is provided by
the unary predicates Qa and Qb.

More generally, for any alphabet Σ we construct sentences using two types of
atomic formulas. First, for each a ∈ Σ, we include a content predicate Qax which
is interpreted as true of a finite word w if the position x in w holds the letter a.
The second atomic formulas are numerical predicates P (x1, . . .xk). The truth of
P (x1, . . . ,xk) depends only on the values x1, . . . ,xk and on the length of w but
not on the actual letters in w. For a set P of numerical predicates, we denote as
FO[P ] the class of sentences which can be constructed from the atomic formulas
Qax and P (x1, . . . ,xk) with P ∈ P using existential and universal quantifiers
and boolean connectives. For φ ∈ FO [P ] we further denote as Lφ the language
in Σ∗ defined by φ i.e. the set of finite words such that w |= φ.

We also consider the case where first-order is extended by the introduction of
modular-counting quantifiers. The formula ∃i (mod p)x ψ(x) is true if the number
of positions x such that ψ(x) is equal to i modulo p. We denote as FO+ MOD [P ]
the class of sentences constructed from the atomic formulas, boolean connectives
and both modular and existential/universal quantifiers.

The case where P contains only the order relation < has been thoroughly
investigated [22,33,32]. A corollary of Büchi’s theorem about monadic second-
order logic over words establishes that FO+ MOD [<] contains only regular lan-
guages. In fact these can be characterized as languages whose syntactic monoid
is solvable (see next subsection). The expressive power of various fragments of



430 C. Lautemann, P. Tesson, and D. Thérien

FO+ MOD [<] can also be characterized using algebraic automata theory and
in particular FO [<] captures exactly the star-free languages which in turn cor-
respond to languages with aperiodic syntactic monoids.

On the other end of the spectrum, let Arb be the set of all numerical pred-
icates. The classes FO [Arb] and FO+ MOD [Arb] correspond exactly to non-
uniform AC0 and ACC0 respectively. Restrictions on the set of allowed numeri-
cal predicates translate in many natural cases into uniformity restrictions on the
circuits [3,7]. Most notably, FO [+, ∗] and FO+ MOD [+, ∗] correspond to the
dlogtime-uniform versions of AC0 and ACC0.

The class Reg of regular numerical predicates has also been the focus of some
attention. A numerical predicate is said to be regular if it can be defined by an
FO+ MOD [<] formula. By definition FO+ MOD [Reg] has the same expressive
power as FO+ MOD [<] and thus contains only regular languages. It is also
known that a language L is definable in FO [Reg] iff it is regular and can be
recognized by an AC0 circuit. In other words FO [Arb]∩REG = FO [Reg], where
REG denotes the class of regular languages. For a number of other fragments of
FO+ MOD it has been shown that when defining regular languages arbitrary
numerical predicates hold no expressive advantage over regular predicates.

For technical reasons it is convenient to have a quantifier-free description of
regular numerical predicates. For integers t ≥ 0 and q ≥ 2 and any n < t + q we
define a binary relation δn,t,q as follows: if n < t then x δn,t,q y if x−y = n and if
n ≥ n then x δn,t,q y if x−y ≥ t and x−y ≡ n mod q. We further define for any
n < t + q a unary relation κn,t,q by setting κn,t,q(x) ⇔ x δn,t,q 0. A numerical
predicate is regular iff it can be defined as a boolean combination of δn,t,q, κn,t,q
and < (see e.g. [17]).

2.3 Programs over Monoids

We now turn to an algebraic characterization of the circuit classes presented
earlier. We refer the reader to [31] for a more thorough discussion of the links
between complexity and the algebraic theory of regular languages.

A monoid is a set M equipped with a binary associative operation ·M and a
distinguished identity element 1M . A class of finite monoids forms a variety (or
more precisely a pseudovariety) if it is closed under direct product, formation of
submonoids and morphic images.

The free monoid Σ∗ over the alphabet Σ is the set of finite words over Σ with
concatenation as the monoid operation. The empty word ε acts as the identity
element in this case. With the exception Σ∗, all monoids considered in this paper
are finite and we view these algebraic objects as language recognizers.

We say that a language L ⊆ Σ∗ is recognized via morphism or simply recog-
nized by the finite monoid M if there exists a morphism φ : Σ∗ → M and a
set F ⊆M such that L = φ−1(M). This definition simply restates algebraically
the notion of acceptance by a finite automaton and a simple variant of Kleene’s
theorem shows that a language is regular if and only if it can be recognized by
some finite monoid. For every regular language L, the syntactic monoid M(L)
of L is the smallest monoid recognizing L and M(L) is in fact isomorphic to
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the transition monoid of L’s minimal automaton. For a variety V we denote as
L(V) the class of regular languages with syntactic monoids in V. These classes
(which form language varieties) are a natural unit of classification for regular
languages and are at the heart of the algebraic theory of regular languages [18].

We give a list of varieties that bear importance in this paper but also in other
applications of algebraic automata theory [18,31].

– The variety A consists of aperiodic or group-free monoids, i.e. monoids having
no non-trivial subgroup.

– The variety Gnil consists of nilpotent groups, i.e. groups which are direct
products of p-groups. An alternate and in our case more useful definition of
nilpotency can be given as follows. For a finite group G and any g,h ∈ G, the
commutator [g,h] of g and h is the element g−1h−1gh. For any subgroups
H1, H2 ⊆ G we denote as [H1, H2] the subgroup generated by the commu-
tators [h1,h2] with h1 ∈ H1 and h2 ∈ H2. Now define inductively the chain
of subgroups of G by G0 = G and Gi+1 = [G,Gi]. We say that a group is
nilpotent of class k if Gk is the trivial group and denote as Gnil,k the variety
of such groups. A group is nilpotent if it is nilpotent of class k for some k.
Note that a group is nilpotent of class 1 iff it is Abelian.

– The variety Gsol of solvable groups and the variety Msol of solvable monoids,
i.e. monoids whose subgroups are solvable.

– For any variety of groups H, we denote as H the variety of monoids whose
subgroups all belong to H.

– The variety DO consists of monoids which for some n ≥ 1 satisfy the identity
(xy)n(yx)n(xy)n = (xy)n.

– The variety DA consists of monoids which satisfy (xy)ny(xy)n = (xy)n for
some n. In fact DA is the intersection of DO and A.

– The variety J of J -trivial monoids consists of aperiodic monoids which sat-
isfy (xy)n = (yx)n for some n.

For any variety V in the above list, the corresponding class of regular lan-
guages L(V) admits nice descriptions [18,31] and the varieties DA,DO and
Gnil are often central in investigations in the complexity of regular languages
and their logical descriptions [29,30,32].

The program over monoid formalism introduced by Barrington and Thérien
provides a slight extension of a finite monoid’s computing power. An n-input pro-
gram φn over M of length � is a sequence of instructions φn : (i1, f1) . . . (i�, f�)
with 1 ≤ ij ≤ n and where each fi is a function from the input alphabet Σ to
M . Given an input w ∈ Σn a program produces a string of � monoid elements
φn(w) = f1(wi1 ) . . . f�(wi�) which are then multiplied in M . We abuse notation
and also denote as φn(w) the product f1(wi1 ) ·M · · · ·M f�(wi�). By specifying a
set of accepting elements F ⊆M we can use such a program to recognize a sub-
set of Σn and subsets of Σ∗ can be recognized through families of programs. As
is the case for circuits, one can consider uniformity restrictions on these families.

A result of Barrington [1] shows that a language L can be recognized by a
polynomial-length family of programs over a finite monoid iff L belongs to NC1.
We denote as P(V) the class of languages which can be recognized by a program
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of polynomial length over a monoid in V. Further refinements of Barrington’s
theorem appear in [6]: L belongs to AC0 iff L lies in P(A), L belongs to CC0

iff it lies in P(Gsol) and L belongs to ACC0 iff it lies in P(Msol). These results
are robust with respect to many standard uniformity restrictions [3].

A variety V of finite monoids forms a program-variety if every regular language
with a neutral letter in P(V) is in L(V). Alternatively, we can introduce the
notion as follows: say that the multiplication of a monoid M can be program-
simulated by a monoid N if for every element m ∈ M the language Lm ⊆ M∗

defined as Lm = {m1m2 . . .mn : m1 ·m2 · · · · ·mn = m} can be recognized by
a polynomial-length program over N . Now V forms a program-variety if any M
which can be simulated by some N ∈ V is in fact in V itself [16,23].

The lower bounds for AC0 circuits computing the Modp function [21] can be
rephrased as showing that the aperiodic monoids form a program-variety. Many
of the important questions in circuit complexity can similarly be rephrased in
algebraic terms: for instance ACC0 is strictly contained in NC1 iff the solvable
monoids form a program-variety.

Programs over finite monoids are closely related to bounded-width branching
programs (BWBP). An n-input BWBP of width k and length � over the input
alphabet Σ is a leveled directed graph with the following structure. Each level
1 ≤ i < � is associated with an input variable xji and contains k nodes that each
have |Σ| outgoing edges (to level i+1) labeled by the possible values of the input
variable xji . Moreover, the first level contains a distinguished start node while
the last level contains an accepting and a rejecting node. Any word w ∈ Σn

naturally traces out a unique path in this graph and the language accepted by
the BWBP is the set of w leading to the accepting node.

Note that in a BWBP a letter a ∈ Σ induces a function fi,a from the k
nodes of level i to the k nodes of level (i + 1). It is not hard to see that the
difference between BWBP and programs over monoids is essentially cosmetic
since a program over M can immediately be rewritten as a BWBP of width
|M | while, conversely, a BWBP of width k can be rewritten as a program over
the finite monoid generated by the functions fi,a. The algebraic point of view
provides a finer analysis of the BWBP model by parameterizing its power in
terms of the algebraic structure of the fi,a.

3 The Crane Beach Property

We say that a class L of languages has the Crane Beach property (or CBP) if
every language with a neutral letter in L is regular. As we mentioned in the
introduction, it was conjectured but later disproved [2] that FO [Arb] has the
CBP and one can infer from [4] that BWBP of length o(n log log n) have the
CBP.

For a class of languages having the Crane Beach property, it is also interesting
to understand exactly what regular languages with a neutral letter belong to the
class. In the case of a logical fragment of FO+ MOD using numerical predicates
in some class P we are often most interested in cases where the presence of
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the neutral letter reduces the expressive power to that obtained with the same
fragment but using < as the sole numerical predicate. For instance, BΣ1 [Arb]
has the CBP [2] and the regular languages with a neutral letter definable in this
fragment are exactly those definable in BΣ1[<]. We will usually refer to such
theorems as strong Crane Beach results.

3.1 A Communication Complexity Crane Beach Theorem

The “input on the forehead” model of communication complexity, first intro-
duced in [9] has found a wide variety of applications in numerous areas of com-
plexity theory [14]. It involves k parties wishing to compute a function f of k
variables x1, . . . ,xk: the ith player receives access to all the inputs except xi
so that one can conveniently picture this player as having xi written on his
forehead. The players want to minimize the number of bits that need to be ex-
changed when computing f on the worst-case input. When the function to be
computed is not explicitly given as a k variable function, we further assume that
input bits are partitioned in a way that is known to the different parties but
chosen adversarially. The k-party communication complexity of a language L is
the function Dk(L) : N→ N giving for each n the minimum number of bits that
k parties need to exchange to compute membership in L of the worst-case input
w of length n under the worst-case partition of the letters in w. The following
theorem which combines two results of [10] establishes a Crane Beach property
for the k-party model.

Theorem 1
a) If L is a language with a neutral letter such that Dk(L) = O(1) for some

fixed k ≥ 2 then L is regular.
b) If L is a regular language with a neutral letter then M(L) lies in DO∩Gnil

iff there exists some k such that Dk(L) = O(1).

We define the k-party communication complexity of a finite monoid M (denoted
Dk(M)) as the complexity for k parties to evaluate the product in M of n
elements m1, . . . ,mn distributed on their foreheads. Because the identity element
1M acts as a neutral letter for this problem, it can be shown that, up to a
constant factor, the worst input-partition in this case gives to player i access to
all elements except those with an index congruent to i modulo k. Underlying the
previous theorem is the result of [26] that a monoid lies in DO ∩Gnil iff there
exists a k s.t. Dk(M) = O(1).

Suppose that k players want to test if a word w of length n belongs to a lan-
guage L which is recognized by a program φ of length �(n) over a finite monoid
M . The output of an instruction querying bit xi can be computed privately by
any of the k − 1 players having access to xi and the output of the program
φ(w) can then be evaluated using a protocol which evaluates the product of
the monoid elements resulting from individual instructions. Hence, the k-party
communication complexity of L on inputs of length n is at most the communi-
cation complexity of M on strings of length �(n). These observations lead to the
following lemma [19,26]:
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Lemma 2. Let k ≥ 2 be some integer and let f : N → N be such that f =
O(logc n) for some c ≥ 0. The class V of monoids M such that Dk(M) = O(f)
is a program-variety.

We omit the proof. This lemma provides a way to use recent results on the
communication complexity of finite monoids [19,29,10,26] to identify program-
varieties.

Corollary 3. The following are program-varieties: DA,Gnil,DO ∩ Gnil and
Gnil,k for each k ≥ 1.

Proof (Sketch). It is not hard to see that the intersection of two program-varieties
also forms a program-variety. We know that aperiodic monoids form a program-
variety. Moreover, by Lemma 2, the class of monoids with 2-party communication
complexity O(log n) also forms a program-variety. By results of [29], an aperiodic
monoid has 2-party communication complexity O(log n) if it belongs to DA and
so DA is a program-variety.

The statement for DO ∩Gnil follows directly from lemma 2 and theorem 1.
The statement for Gnil is a consequence of the work of [5]. Once we have that

Gnil is a program-variety however, we can again use lemma 2 to obtain that
each Gnil,k is a program-variety because [19] shows that a group has bounded
k + 1-party communication complexity iff it is nilpotent of class k. '(

3.2 The Crane Beach Property for Programs over Monoids

Definition 4. A variety of monoids V is said to have the weak Crane Beach
property if P(V)∩Le ⊆ REG, where REG denotes the class of regular languages.
Furthermore, V has the strong CBP if P(V)∩Le ⊆ L(V), that is if polynomial
length programs over V are no more powerful than morphisms over V in the
presence of a neutral letter.

Note that if V has the weak CBP then any subvariety of V also has this property.
However, the same does not hold in general for the strong CBP but we prove
the following simple lemma in the full paper.

Lemma 5. If V has the weak CBP and W ⊆ V is a program-variety then W
has the strong CBP.

We can use the communication complexity results cited earlier to obtain:

Theorem 6. The variety DO ∩Gnil has the strong CBP.

Proof. The result for DO∩Gnil stems from Theorem 1. Indeed, we need to show
that any language L with a neutral letter which is recognized by a program φ
over some M ∈ DO∩Gnil is regular and has its syntactic monoid in DO∩Gnil.

Since L can be recognized by a program over a monoid that has bounded
k-party communication complexity for some k, it follows from our comments
preceding Lemma 2 that Dk(L) = O(1). Since L has a neutral letter part a)
of theorem 1 guarantees that L is regular. Now, using part b), L is a regular
language with a neutral letter and has bounded k-party complexity so we must
have M(L) ∈ DO ∩Gnil. '(
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In fact, this theorem is not the first indication that programs over DO ∩Gnil

are weak. It was shown in [26], building on work of [27] that this variety has the
polynomial-length property in the sense that any program φ over M ∈ DO∩Gnil
is equivalent to a program ψ over M that has polynomial length. In contrast, a
monoid M is said to be universal if any language can be recognized by some pro-
gram over M of possibly exponential length. A simple counting argument shows
that any monoid having the polynomial length property cannot be universal and
there are indications that the two notions are in fact dual [27].

A direct application of Corollary 3 and Lemma 5, the following subvarieties
of DO ∩Gnil also have the strong CBP.

Corollary 7. The following varieties have the strong CBP: Gnil,J,DA and
Gnil,k for any k ≥ 1.

It is possible to exhibit varieties that do not have even the weak CBP. In par-
ticular, a main result of [2] can be rephrased algebraically as stating that the
variety of aperiodic monoids does not have the weak CBP. Furthermore, Bar-
rington showed that polynomial length programs over any non-solvable group
are as powerful as NC1 which in particular contains languages with a neutral
letter which are not regular. We thus obtain:

Theorem 8. If V is a variety containing a non-solvable group or containing
the variety A of aperiodic finite monoids, then V does not have the weak CBP.

We conjecture that in fact any variety containing a universal monoid fails to
have the CBP. In particular, we believe that there are non-regular languages
with a neutral letter definable in Σ2 [Arb].

4 An Application to Logic

The study of Crane Beach properties was foremost motivated by logical consid-
erations and we use the results of the preceding section to describe fragments of
FO+ MOD which have the CBP.

For any s ≥ 0 and p ≥ 2 we denote as Σ(s,p)
1 the fragment of FO+ MOD which

consists of sentences of the form ∃t,i (mod p)(x1, . . . ,xk) φ(x1, . . . ,xk) where φ is
quantifier-free and where the quantifier ∃t,i (mod p), which ranges over k-tuples
of variables, is true if the number of k-tuples satisfying φ is either equal to t < s
or congruent to i modulo p. Note that if s = 0, this fragment does not have
the ability to simulate an existential quantifier. For a sentence φ ∈ BΣ(s,p)

1 , we
define the maximum arity of φ to be the maximum arity of any of the quantifiers
in φ.

The expressive power of the Σ(s,p)
1 fragment was studied in depth in [24].

In particular, it is recalled that a language L is definable in Σ(s,p)
1 [<] iff it is

regular and the syntactic monoid of L lies in J ∨Gnil, the variety generated by
J and Gnil. This is not surprising given the existing combinatorial descriptions
of languages in L(J ∨Gnil) which we describe next.
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We say that a word u = u1 . . . uk is a subword of w if w can be factorized as
w = Σ∗u1Σ

∗ . . . Σ∗ukΣ
∗ and we denote as

(
w
u

)
the number of such factorizations.

A language L is piecewise-testable if there exists a k such that membership of
w ∈ L depends only on the set of subwords of length at most k that occur in w.
It is not hard to see that L is a piecewise testable language iff it is definable in
BΣ1[<]. A theorem of Simon moreover shows that L is piecewise testable iff its
syntactic monoid lies in J.

Similarly, we say that a language L counts subwords of length k modulo p if
membership of a word w in L only depends on the values

(
w
u1

)
, . . . ,

(
w
un

)
modulo

p for some words u1, . . . , un of length at most k. Again, it is not hard to see that
L is of that form iff it can be defined in Σ(0,p)

1 [<]. It can also be shown that this
class corresponds to languages with syntactic monoids in Gnil,k.

We say that two words v and w have the same number of subwords of length
k up to threshold s and modulo p and write v ∼k,s,p w if for any u of length at
most k we have either

(
v
u

)
≤ s and

(
v
u

)
=
(
w
u

)
or
(

v
u

)
> t and

(
v
u

)
=
(
w
u

)
modulo

p. It can be shown that this relation is a congruence on Σ∗ and that a regular
language L has a syntactic monoid in J ∨Gnil iff L is a union of ∼k,s,p-classes
for some k, s, p (see e.g. [24]). Straubing also establishes the following:

Lemma 9 ([24]). If L is a regular language definable in BΣ(s,p)
1 [Arb] then L

is in fact definable in BΣ(s,p)
1 [Reg].

Note that the above statement does not assume that the language has a neutral
letter. A stronger result can be proved under that hypothesis and the next lemma
resolves an open problem of [24].

Lemma 10. If L is a regular language with a neutral letter and is definable in
BΣ(s,p)

1 [Arb] then it is in fact definable in BΣ(s,p)
1 [<].

Proof (Sketch). By lemma 9 we already know that L is definable in BΣ(s,p)
1 [Reg]

and we will furthermore show that it lies in BΣ(s,p)
1 [<] by proving that its

syntactic monoid M(L) belongs to J∨Gnil. Let φ be the BΣ(s,p)
1 [Reg] defining

L and let k be the maximum arity of any quantifier in φ. Further let r be
the maximum of s, p and any t or q occurring in any δn,t,q and any κn,t,q (see
section 2.2) needed to express the regular numerical predicates occurring in φ.

Let e ∈ Σ be a neutral letter for L and let v and w be two words in (Σ−{e})∗
such that v ∼k,s,p w. In particular, |v| = |w| up to treshold s and modulo p. We
claim that v is in L iff w is in L. This suffices to establish our result since L is
then a union of ∼ classes and M(L) thus lies in J ∨Gnil.

To establish the claim, we build words V = er!−1v1e
r!−1 . . . er!−1v|v|e

r!−1 and
W = er!−1w1e

r!−1 . . . er!−1w|w|e
r!−1. Since e is neutral v (resp. w) is in L iff

V (resp. W ) is in L. Let ψ(x1, . . . ,xk) be a quantifier-free formula constructed
from the content predicates, the order predicate and δn,t,q or κn,t,q predicates
with t, q ≤ r. We claim that the number of tuples (x1, . . . ,xk) s.t. ψ(x1, . . . ,xk)
is true on V is equal up to threshold s and modulo q to the number of tuples
such that ψ is true on W . This is sufficient to show that V and W satisfy the
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same sentences in BΣ(s,p)
1 sentences and are thus either both in L or both not

in L.
We can rewrite ψ(x1, . . . ,xk) as a boolean combination of formulas

φ(x1, . . . ,xk) :
∧
i

(Qaixi ∧ κni,ti,qixi) ∧
∧
i�=j

((xi ∗ xj) ∧ xiδnij ,tij ,qij xj)

where ai ∈ Σ; ti, tij , qi, qij ≤ r and ∗ is one of {<,>,=}.
Suppose for simplicity that for i < j the formula φ requires xi < xj . To

evaluate the number of tuples satisfying φ over V , we let I = {i : ai ∈ Σ − {e}}
and first choose values for the non-neutral positions xi, i.e. the xi such that
i ∈ I and such that position xi in V holds the desired non-neutral letter ai.
We denote as u the word of length |I| ≤ k formed by these letters. Note that
each non-neutral xi is congruent to 0 modulo r! because non-neutral letters only
occur at such positions. Hence, we can discard any δn,t,q predicates involving
two such xi and any κn,t,q involving one such xi.

Any tuple of non-neutral positions D in V corresponds naturally to a tuple of
positions d = (d1, . . . , d|I|) in the original word v which specifies an occurrence
of the subword u in v.

When |I| = k, the number of tuples satisfying φ(x1, . . . ,xk) is simply the
number of occurrences of the subword u = a1 . . . ak in v which is equal up to
threshold s and modulo p to

(
w
u

)
. When |I| < k then the number of tuples

satisfying φ over V depends not only on the number of occurrences of u in v
but also on the number of ways in which each choice of non-neutral positions
can be completed by a choice for the positions lying outside of I. It can be
shown that for any D, the number of such completions depends only on the
mod p signature of d, i.e. on the vector (d1, d2, . . . , d|I|) mod p. The sum of the
number of d of any possible signature is again

(
v
u

)
which is equal up to treshold s

and modulo p to
(
w
u

)
. This can be used to prove the claim that the total number

of tuples (treshold s, modulo p) (x1, . . . ,xk) satisfying φ(x1, . . . ,xk) over V is
some function of the number of occurrences threshold t modulo p of u in v. Since
the same holds for W and v ∼k,s,p w we have that V and W and thus v and w
either both lie in L or lie both outside L. '(

In the (k + 1)-party communication game, any k-tuple of input letters is fully
accessible to at least one of the k parties and this immediately yields the following
lemma whose simple proof is omitted.

Lemma 11. If L is definable by a boolean combination of sentences of the form
φ : ∃(t,i (mod p))(x1, . . . ,xk). ψ(x1, . . . ,xk) in which the quantifier has arity at
most k then the k + 1-party communication complexity of L is O(1).

Combining this result with theorem 1 and lemma 10 we obtain:

Theorem 12. The boolean closure of Σ(s,p)
1 has the strong CBP.

Proof. Let L be a language with a neutral letter definable in BΣ(s,p)
1 [Arb]. By

lemma 11, L has bounded k-party communication complexity for some k and
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thus, by theorem 1, L is regular. Finally, by lemma 10 any regular language with
a neutral letter definable in BΣ(s,p)

1 [Arb] is in fact definable in BΣ(s,p)
1 [<]. '(

As a corollary, we get an alternative proof of the following theorem of [2].

Corollary 13. The boolean closure of Σ1 has the strong CBP.

Proof. Let L be a language with a neutral letter definable in BΣ1 [Arb]. By The-
orem 12, L is regular and its syntactic monoid M(L) lies in J∨Gnil. Moreover,
the only regular languages with a neutral letter definable in FO [Arb] are those
whose syntactic monoid is aperiodic and so M(L) ∈ A. A simple semigroup-
theory argument shows that the intersection of J ∨Gnil and A is J. '(

Readers familiar with the Ehrenfeucht-Fräıssé approach of [2] might find it sur-
prising that our alternative proof seems to avoid the use of Ramsey-theoretic
arguments. In fact, the communication complexity result of [10] which is so cru-
cial in our method relies on the Ramsey-like theorem of Hales-Jewett.

Of course our main theorem also specializes to the other extreme case of Σ(s,p)

sentences in which existential and universal quantifiers do not appear: BΣ(0,p)
1 .

Moreover, the maximum arity of the quantifiers can be preserved.

Corollary 14. For each k ≥ 1, BΣ(0,p)
1 of max-arity k has the strong CBP.

Proof. One can show that programs over Gnil,k have exactly the same expressive
power as BΣ(0,p) [Arb] of maximum arity k while morphisms over Gnil,k have
exactly the same expressive power as BΣ(0,p)[<] of maximum arity k (see full
paper, or [26]). The statement of the corollary then follows simply by the fact
that each Gnil,k has the strong CBP. '(

5 Conclusion

The algebraic perspective on the Crane Beach property allows for a more detailed
study of the fine line separating computational models or logical fragments which
possess a Crane Beach-like property. Moreover it enables a systematic use of the
powerful communication complexity results of [10]. Theorem 12 about the Crane
Beach property of Σ(s,p)

1 can be obtained by an ad hoc argument using Ramsey
theory and Ehrenfeucht-Fräıssé games reminiscent of the techniques for the Σ1

case [2]. The proof given here is considerably simpler if less transparent.
Our results about varieties of monoids exhibiting the Crane Beach property

also provide a nice complement to previously existing work comparing the power
of programs and morphisms over finite monoids in the presence of a neutral letter.
Programs over monoids are generally much more expressive than morphism.
This extra power of programs stems from (or is limited by) three sources: the
algebraic structure of their underlying monoid, their length and their degree of
non-uniformity. However, in the presence of a neutral letter the advantages of
programs over monoids can disappear:
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– results of [4] show that length Ω(n log log n) is necessary to recognize non-
regular languages with a neutral letter, regardless of the underlying monoid
or the degree of non-uniformity;

– results of [2,20] show that in the presence of a neutral letter polynomial
length programs over solvable monoids which are too uniform cannot break
the regular barrier.

– Our results complete the picture: programs over monoids whose structure
is unsophisticated cannot recognize non-regular languages with a neutral
letter, regardless of their length or their degree of non-uniformity.

We have used the algebraic point of view on the CBP to extend the result
of [2] on the CBP for Σ1 to Σ(s,p)

1 . Some of the more general results of Section 3,
however, do not seem to have such simple logical applications. In particular, we
have shown that a number of important subvarieties of DO ∩ Gnil have the
CBP but these do not capture any significant logical fragment of FO+ MOD.
The case of the variety DA is particularly intriguing, given its importance in
applications of semigroup theory to complexity [28]. Programs over DA have
the same expressive power as decision trees of bounded-rank [11] and so this
model also has the CBP. The languages recognized via morphism by monoids
in DA are exactly those definable by both a Σ2[<] and a Π2[<] sentence and
also those definable in the restriction of FO [<] to sentences using only two
variables (FO2 [<]) but programs over DA are not known to correspond to the
intersection of Σ2 [Arb] and Π2 [Arb] or to FO2 [Arb]. The latter two classes are
important candidates for logical fragments of FO that may possess the CBP.
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D. Thérien. First-order expressibility of languages with neutral letters or: The
Crane Beach conjecture. J. Comput. Syst. Sci., 70(2):101–127, 2005.

3. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
J. Comput. Syst. Sci., 41(3):274–306, 1990.

4. D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-
width branching programs. J. Comput. Syst. Sci., 50(3):374–381, 1995.

5. D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over
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Abstract. Based on natural deduction, Pure Type Systems (PTS) can
express a wide range of type theories. In order to express proof-search
in such theories, we introduce the Pure Type Sequent Calculi (PTSC)
by enriching a sequent calculus due to Herbelin, adapted to proof-search
and strongly related to natural deduction.

PTSC are equipped with a normalisation procedure, adapted from
Herbelin’s and defined by local rewrite rules as in Cut-elimination, using
explicit substitutions. It satisfies Subject Reduction and it is confluent.
A PTSC is logically equivalent to its corresponding PTS, and the former
is strongly normalising if and only if the latter is.

We show how the conversion rules can be incorporated inside logical
rules (as in syntax-directed rules for type checking), so that basic proof-
search tactics in type theory are merely the root-first application of our
inference rules.

Keywords: Type theory, PTS, sequent calculus, proof-search, strong
normalisation.

1 Introduction

In this paper, we apply to the framework of Pure Type Systems [Bar92] the
insights into the relationship between sequent calculus and natural deduction as
developed in previous papers by Herbelin [Her94, Her95], the second author and
others [DP99b, PD00, DU03].

In sequent calculus the proof-search space is often the cut-free fragment, since
the latter usually satisfies the subformula property. Herbelin’s sequent calculus
LJT has the extra advantage of being closer to natural deduction, in that it is
permutation-free, and it makes proof-search more deterministic than a Gentzen-
style sequent calculus. This makes LJT a natural formalism to organise proof-
search in intuitionistic logic [DP99a], and, its derivations being close to the notion
of uniform proofs, LJT can be used to describe proof-search in pure Prolog and
some of its extensions [MNPS91]. The corresponding term assignment system
also expresses the intimate details of β-normalisation in λ-calculus in a form
closer to abstract (stack-based) machines for reduction (such as Krivine’s [Kri]).

The framework of Pure Type Systems (PTS) [Bar92] exploits and generalises
the Curry-Howard correspondence, and accounts for many systems already ex-
isting, starting with Barendregt’s Cube. Proof assistants based on them, such
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as the Coq system [Coq] or the Lego system [LP92], feature interactive proof
construction methods using proof-search tactics. Primitive tactics display an
asymmetry between introduction rules and elimination rules of the underlying
natural deduction calculus: the tactic Intro corresponds to the right-introduction
rule for the Π-type (whether in natural deduction or in sequent calculus), but
the tactics Apply in Coq or Refine in Lego are much closer (in spirit) to the
left-introduction of Π-types (as in sequent calculus) than to elimination rules of
natural deduction.

Although encodings from natural deduction to sequent calculus and vice-versa
have been widely studied [Gen35, Pra65, Zuc74], the representation in sequent
calculus of type theories is relatively undeveloped compared to the literature
about type theory in natural deduction. An interesting approach to Pure Type
Systems using sequent calculus is in [GR03]. Nevertheless, only the typing rules
are in a sequent calculus style, whereas the syntax is still in a natural deduction
style: in particular, proofs are denoted by λ-terms, the structure of which no
longer matches the structure of proofs.

However, proofs in sequent calculus can be denoted by terms; for instance,
a construction M · l, representing a list of terms with head M and tail l, is
introduced in [Her94, Her95] to denote the left-introduction of implication (in
the sequent calculus LJT):

Γ �M :A Γ ;B � l :C

Γ ;A → B �M ·l :C

This approach is extended to the corner of the Cube with dependent types
and type constructors in [PD00], but types are still built with λ-terms, so the
system extensively uses conversion functions from sequent calculus to natural
deduction and back.

With such term assignment systems, cut-elimination can be done by means
of a rewrite system, cut-free proofs being thus denoted by terms in normal form.
In type theory, not only is the notion of proof-normalisation/cut-elimination
interesting on its own, but it is even necessary to define the notion of typability,
as soon as types depend on terms.

In this paper we enrich Herbelin’s sequent calculus LJT into a collection of
systems called Pure Type Sequent Calculi (PTSC), capturing the traditional PTS,
with the hope to improve the understanding of implementation of proof systems
based on PTS in respect of:

– having a direct analysis of the basic tactics, which could then be moved into
the kernel, rather than requiring a separate type-checking layer for correct-
ness,

– opening the way to improve the basic system with an approach closer to
abstract machines to express reductions, both in type-checking and in exe-
cution (of extracted programs),

– studying extensions to systems involving inductive types/families (such as
the Calculus of Inductive Constructions).
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Inspired by the fact that, in type theory, implication and universal quantifica-
tion are just a dependent product, we modify the inference rule above to obtain
the left-introduction rule for a Π-type in a PTSC:

Γ �M :A Γ ; 〈M/x〉B � l :C
Π l

Γ ; ΠxA.B �M ·l :C

We use here explicit substitutions, whose natural typing rule are cuts [BR95].
From our system a version with implicit substitutions can easily be derived, but
this does not allow cuts on an arbitrary formula of a typing environment Γ .
Also, explicit substitutions allow the definition of a normalisation procedure by
local (small-step) rewrite rules in the spirit of Gentzen’s cut-elimination.

Derivability of sequents in a PTSC is denoted by �, while derivability in a PTS
is denoted by �PTS. We establish the logical equivalence between a PTSC and its
corresponding PTS by means of type-preserving encodings. We also prove that
the former is strongly normalising if and only if the latter is. The proof is based
on mutual encodings that allow the normalisation procedure of one formalism
to be simulated by that of the other. Part of the proof also uses a technique by
Bloo and Geuvers [BG99], introduced to prove strong normalisation properties
of an explicit substitution calculus and later used in [DU03].

In order to show the convenience for proof-search of the sequent calculus ap-
proach, we then present a system that is syntax-directed for proof-search, by
incorporating the conversion rules into the typing rules that correspond to term
constructions. This incorporation is similar to the constructive engine of [Hue89],
but different in that proof search takes Γ and A as inputs and produces a (nor-
mal) term M such that Γ � M : A, while the constructive engine takes Γ and
M as inputs and produces A. Derivability in the proof-search system is denoted
by �PS.

Section 2 presents the syntax of a PTSC and gives the rewrite rules for nor-
malisation. Section 3 gives the typing system with the parameters specifying the
PTSC, and a few properties are stated such as Subject Reduction. Section 4 es-
tablishes the correspondence between a PTSC and its corresponding PTS, from
which we derive confluence. Section 5 presents the strong normalisation result.
Section 6 discusses proof-search in a PTSC.

2 Syntax and Operational Semantics of a PTSC

The syntax of a PTSC depends on a given set S of sorts, written s, s′, . . ., and a
denumerable set X of variables, written x, y, z, . . .. The set T of terms (denoted
M, N, P, . . .) and the set L of lists (denoted l, l′, . . .) are inductively defined as

M, N,A,B ::= ΠxA.B | λxA.M | s | x l | M l | 〈M/x〉N
l, l′ ::= [] | M ·l | l@l′ | 〈M/x〉l

ΠxA.M , λxA.M , and 〈N/x〉M bind x in M , and 〈M/x〉l binds x in l, thus
defining the free variables of terms and lists as well as α-conversion. The set of
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free variables of a term M (resp. a list l) is denoted FV(M) (resp. FV(l)). We use
Barendregt’s convention that no variable is free and bound in a term in order
to avoid variable capture when reducing it. Let A → B denote ΠxA.B when
x �∈ FV(B).

This syntax is an extension of Herbelin’s λ [Her95] (with type annotations on
λ-abstractions). Lists are used to represent series of arguments of a function, the
terms x l (resp. M l) representing the application of x (resp. M) to the list of
arguments l. Note that a variable alone is not a term, it has to be applied to a
list, possibly the empty list, denoted []. The list with head M and tail l is denoted
M ·l, with a typing rule corresponding to the left-introduction of Π-types (c.f.
Section 3). Successive applications give rise to the concatenation of lists, denoted
l@l′, and 〈M/x〉N and 〈M/x〉l are explicit substitution operators on terms and
lists, respectively. They will be used in two ways: first, to instantiate a universally
quantified variable, and second, to describe explicitly the interaction between the
constructors in the normalisation process, which is adapted from [DU03] and
shown in Fig. 1. Side-conditions to avoid variable capture can be inferred from
the reduction rules and are ensured by Barendregt’s convention. Confluence of
the system is proved in section 4. More intuition about Herbelin’s calculus, its
syntax and operational semantics is given in [Her95].

B (λxA.M) (N ·l) −→ (〈N/x〉M) l

x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 M [] −→ M
B2 (x l) l′ −→ x (l@l′)
B3 (M l) l′ −→ M (l@l′)
A1 (M ·l′)@l −→ M ·(l′@l)
A2 []@l −→ l
A3 (l@l′)@l′′ −→ l@(l′@l′′)

xsubst:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 〈P/y〉λxA.M −→ λx〈P/y〉A.〈P/y〉M
C2 〈P/y〉(y l) −→ P 〈P/y〉l
C3 〈P/y〉(x l) −→ x 〈P/y〉l if x �= y
C4 〈P/y〉(M l) −→ 〈P/y〉M 〈P/y〉l
C5 〈P/y〉ΠxA.B −→ Πx〈P/y〉A.〈P/y〉B
C6 〈P/y〉s −→ s
D1 〈P/y〉[] −→ []
D2 〈P/y〉(M ·l) −→ (〈P/y〉M)·(〈P/y〉l)
D3 〈P/y〉(l@l′) −→ (〈P/y〉l)@(〈P/y〉l′)

Fig. 1. Reduction Rules

We denote by −→G the contextual closure of the reduction relation defined
by any system G of rewrite rules (such as B, xsubst, x). The transitive closure of
−→G is denoted by −→+

G , its reflexive and transitive closure is denoted by
−→∗

G , and its symmetric reflexive and transitive closure is denoted by←→∗
G .

The set of strongly normalising elements (those from which no infinite −→G -
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reduction sequence starts) is SNG. When not specified, G is assumed to be the
system B, x from Fig. 1.

A simple polynomial interpretation shows that system x is terminating. If we
add rule B, then the system fails to be terminating unless we only consider terms
that are typed in a particular typing system.

3 Typing System and Properties

Given the set of sorts S, a particular PTSC is specified by a set A ⊆ S2 and a
set R ⊆ S3. We shall see an example in section 5.

Definition 1 (Environments)

– Environments are lists of pairs from X × T denoted (x : A).
– We define the domain of an environment and the application of a substitu-

tion to an environment as follows:

Dom([]) = ∅ Dom(Γ, (x : A)) = Dom(Γ ) ∪ {x}
〈P/y〉([]) = [] 〈P/y〉(Γ, (x : A)) = 〈P/y〉Γ, (x : 〈P/y〉A)

– We define the following inclusion relation between environments:
Γ � ∆ if for all (x : A) ∈ Γ , there is (x : B) ∈ ∆ with A←→∗ B

The inference rules in Fig. 2 inductively define the derivability of three kinds of
judgement: some of the form Γ wf, some of the form Γ �M :A and some of the
form Γ ;B � l :A. In the latter case, B is said to be in the stoup of the sequent.
Side-conditions are used, such as (s1, s2, s3) ∈ R, x �∈ Dom(Γ ), A←→∗ B or
∆ � Γ , and we use the abbreviation ∆ � Γ wf for ∆ � Γ and Γ wf.

Since the substitution of a variable in an environment affects the rest of the
environment (which could depend on the variable), the two rules for explicit
substitutions Cut2 and Cut4 must have a particular shape that is admittedly
complex: thinning (Lemma 3) is built-in by allowing a controlled change of en-
vironment. This may appear artificial, but simpler versions that we have tried
failed the thinning property. More generally, typing rules for explicit substitu-
tions in type theory are known to be a tricky issue (see for instance [Blo01]),
often leading to the failure of subject reduction (Theorem 1). The rules here are
sound in that respect, but more elegant alternatives are still to be investigated,
possibly by enriching the structure of environments as in [Blo01].

The case analysis for C′ in the rule Cut4 is only necessary for Lemma 1.2 to
hold in the presence of top sorts (untyped sorts), and is avoided in [Blo01] by
not using explicit substitutions for types in sequents. Here we were appealed by
the uniformity of using them everywhere, the use of implicit substitutions for C′

and the stoup of the third premiss of Π l being only a minor variant.
There are three conversion rules convr, conv′r, and convl in order to deal with

the two kinds of judgements and, for one of them, convert the type in the stoup.
The lemmas of this section are proved by induction on typing derivations:
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empty
[] wf

Γ 
 A :s x /∈ Dom(Γ )
extend

Γ, (x :A) wf

Γ 
 A :s
axiom

Γ ;A 
 [] :A

Γ 
 ΠxA.B :s Γ 
 M :A Γ ; 〈M/x〉B 
 l :C
Π l

Γ ; ΠxA.B 
 M ·l :C

Γ ; C 
 l :A Γ 
 B :s A←→∗ B
conv′r

Γ ; C 
 l :B

Γ ; A 
 l :C Γ 
 B :s A←→∗ B
convl

Γ ; B 
 l :C

Γ ; C 
 l′ :A Γ ; A 
 l :B
Cut1

Γ ;C 
 l′@l :B

Γ 
 P :A Γ, (x :A),∆; B 
 l :C Γ, 〈P/x〉∆ " ∆′ wf
Cut2

∆′; 〈P/x〉B 
 〈P/x〉l :〈P/x〉C

Γ wf (s, s′) ∈ A
sorted

Γ 
 s :s′

Γ 
 A :s1 Γ, (x :A) 
 B :s2 (s1, s2, s3) ∈ R
Πwf

Γ 
 ΠxA.B :s3

Γ 
 ΠxA.B :s Γ, (x :A) 
 M :B
Πr

Γ 
 λxA.M :ΠxA.B

Γ ; A 
 l :B (x :A) ∈ Γ
Selectx

Γ 
 x l :B

Γ 
 M :A Γ 
 B :s A←→∗ B
convr

Γ 
 M :B

Γ 
 M :A Γ ;A 
 l :B
Cut3

Γ 
 M l :B

Γ 
 P :A Γ, (x :A),∆ 
 M :C Γ, 〈P/x〉∆ " ∆′ wf
Cut4

∆′ 
 〈P/x〉M :C′

where either (C′ = C ∈ S) or C ∈ S and C′ = 〈P/x〉C

Fig. 2. Typing rules of a PTSC

Lemma 1 (Properties of typing judgements). If Γ �M :A
(resp. Γ ;B � l : C) then FV(M) ⊆ Dom(Γ ) (resp. FV(l) ⊆ Dom(Γ )), and the
following judgements can be derived with strictly smaller typing derivations:
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1. Γ wf
2. Γ � A :s for some s ∈ S, or A ∈ S

(resp. Γ � B :s and Γ � C :s′ for some s, s′ ∈ S)

Corollary 1 (Properties of well-formed environments)

1. If Γ,x : A,∆ wf then Γ � A :s for some s ∈ S with x �∈ Dom(Γ ) ∪ Dom(∆)
and FV(A) ⊆ Dom(Γ ) (and in particular x �∈ FV(A))

2. If Γ,∆ wf then Γ wf.

Lemma 2 (Weakening). Suppose Γ,Γ ′ wf and Dom(Γ ′) ∩ Dom(∆) = ∅.

1. If Γ,∆ �M :B then Γ,Γ ′,∆ �M :B.
2. If Γ,∆;C � l :B, then Γ,Γ ′,∆;C � l :B.
3. If Γ,∆ wf, then Γ,Γ ′,∆ wf.

We can also strengthen the weakening property into the thinning property by in-
duction on the typing derivation. This allows to weaken the environment, change
its order, and convert the types inside, as long as it remains well-formed:

Lemma 3 (Thinning). Suppose Γ � Γ ′ wf.

1. If Γ �M :B then Γ ′ �M :B.
2. If Γ ;C � l :B, then Γ ′;C � l :B.

Using all of the results above, Subject Reduction can be proved (see [LDM]).

Theorem 1 (Subject Reduction in a PTSC)

1. If Γ �M :A and M −→ M ′, then Γ �M ′ :A
2. If Γ ;A � l :B and l −→ l′, then Γ ;A � l′ :B

4 Correspondence with Pure Type Systems

There is a logical correspondence between a PTSC given by the sets S, A and
R and the PTS given by the same sets.

We briefly recall the syntax and semantics of the PTS. The terms have the
following syntax:

t, u, v,T ,U,V, . . . ::= x | s | ΠxT .t | λxT .t | t u

which is equipped with the β-reduction rule (λxv.t) u −→β t{x = u}, in which
the substitution is implicit, i.e. is a meta-operation.

The terms are typed by the typing rules in Fig. 3, which depend on the sets S,
A and R. PTS are confluent and satisfy subject reduction and thinning [Bar92].

In order to encode the syntax of a PTS into that of a PTSC, it is convenient
to re-express the syntax of a PTS with a grammar closer to that of a PTSC as
follows:

w ::= s | ΠxT .U | λxT .t

t, u, v,T ,U,V, . . . ::= w | x
−→
t | w u

−→
t
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[] wf

Γ 
PTS T :s x /∈ Dom(Γ )

Γ, (x : T ) wf

Γ wf (x : T ) ∈ Γ

Γ 
PTS x :T

Γ wf (s, s′) ∈ A

Γ 
PTS s :s′

Γ 
PTS U :s1 Γ, (x : U) 
PTS T :s2 (s1, s2, s3) ∈ R

Γ 
PTS ΠxU .T :s3

Γ 
PTS ΠxU .V :s Γ, (x : U) 
PTS t :V

Γ 
PTS λxU .t :ΠxU .V

Γ 
PTS t :ΠxT .U Γ 
PTS u :T

Γ 
PTS t u :U{x = u}

Γ 
PTS t :U Γ 
PTS V :s U←→∗
β V

Γ 
PTS t :V

Fig. 3. Typing rules of a PTS

hw(s) = s

hw(Πxv.v′) = Πxh(v).h(v′)
hw(λxv .t) = λxh(v).h(t)
h(w) = hw(w)
h(x
−→
t ) = x hl(

−→
t )

h(w u
−→
t ) = hw(w) (h(u)·hl(

−→
t ))

hl(
−→
∅ ) = []

hl(−−−−−−→u1 . . . ui) = h(u1)·hl(−−−−−−→u2 . . . ui)

From a PTS to a PTSC

k(ΠxA.B) = Πxk(A).k(B)
k(λxA.M) = λxk(A).k(M)
k(s) = s
k(x l) = kz(l){z = x} z fresh
k(M l) = kz(l){z = k(M)} z fresh
k(〈P/x〉M ) = k(M){x = k(P )}
ky([]) = y
ky(M ·l) = kz(l){z = y k(M)} z fresh
ky(l@l′) = kz(l′){z = ky(l)} z fresh
ky(〈P/x〉l) = ky(l){x = k(P )}

From a PTSC to a PTS

Fig. 4. Mutual encodings between a PTS and a PTSC

where −→t represents a list of “t-terms” of arbitrary length. The grammar is sound
and complete with respect to the usual one presented at the begining of the
section, and it has the advantage of isolating redexes in one term construction
in a way similar to a PTSC.

Given in the left-hand side of Fig. 4, the encoding into the corresponding
PTSC, is threefold: hw applies to “w-terms”, h applies to “t-terms”, and hl to lists
of “t-terms”. The right-hand side of Fig. 4 shows the encoding from a PTSC to
a PTS. We prove the following theorem by induction on t and M :

Theorem 2 (Properties of the encodings)

1. h(t) is always an x-normal form, and 〈h(t)/x〉h(u)−→∗
x h(u{x = t}).

2. k(h(t)) = t
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3. If M is an x-normal form, then M = h(k(M))
4. M−→∗

x h(k(M))
5. If t −→β u then h(t)−→+ h(u)
6. If M −→ N then k(M)−→∗

β k(N)

Now we use Theorem 2 to prove the confluence of PTSC and the equivalence of
the equational theories.

Corollary 2 (Confluence). −→x and −→ are confluent.

Proof. We use the technique of simulation: consider two reduction sequences
starting from a term in a PTSC. They can be simulated through k by β-reductions,
and since a PTS is confluent, we can close the diagram. Now the lower part of
the diagram can be simulated through h back in the PTSC, which closes the
diagram there as well. The diagrams can be found in [LDM]. '(

Corollary 3 (Equational theories)
t←→∗

β u if and only if h(t)←→∗ h(u)
M←→∗ N if and only if k(M)←→∗

β k(N)

Regarding typing, we first define the following operations on environments:

h([]) = [] k([]) = []
h(Γ, (x : v)) = h(Γ ), (x : h(v)) k(Γ, (x : A)) = k(Γ ), (x : k(A))

Preservation of typing is proved by induction on the typing derivations:

Theorem 3 (Preservation of typing 1)

1. If Γ �PTS t :T then h(Γ ) � h(t) :h(T )
2. If (Γ �PTS ti :Ti{x1 = t1} . . . {xi−1 = ti−1})i=1...n

and h(Γ ) � h(Πx1
T1 .. . .Πxn

Tn .T ) :s
then h(Γ ); h(Πx1

T1 .. . .Πxn
Tn .T ) � hl(t1 . . . tn) :h(T {x1 = t1} . . . {xn = tn})

3. If Γ wf then h(Γ ) wf

Theorem 4 (Preservation of typing 2)

1. If Γ �M :A then k(Γ ) �PTS k(M) :k(A)
2. If Γ ;B � l :A then k(Γ ), y : k(B) �PTS ky(l) :k(A) for a fresh y
3. If Γ wf then k(Γ ) wf

5 Equivalence of Strong Normalisation

Theorem 5. A PTSC given by the sets S, A, and R is strongly normalising if
and only if the PTS given by the same sets is.

Proof. Assume that the PTSC is strongly normalising, and let us consider a well-
typed t of the corresponding PTS, i.e. Γ �PTS t :T for some Γ,T . By Theorem 3,
h(Γ ) � h(t) : h(T ) so h(t) ∈ SN. Now by Theorem 2, any reduction sequence
starting from t maps to a reduction sequence of at least the same length starting
from h(t), but those are finite.
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Now assume that the PTS is strongly normalising and that Γ � M : A in
the corresponding PTSC. We shall now apply Bloo and Geuvers’ technique
from [BG99]. By subject reduction, any N such that M−→∗ N satisfies Γ � N :A
and any sub-term P (resp. sub-list l) of any such N is also typable. By Theo-
rem 4, for any such P (resp. l), k(P ) (resp. ky(l)) is typable in the PTS, so it is
strongly normalising by assumption and we denote by �k(P ) (resp. �ky(l)) the
length of the longest β-reduction sequence reducing it.

We now encode any such P and l into a first-order syntax given by the fol-
lowing ordered infinite signature:

� ≺ i(_) ≺ ii(_, _) ≺ cutn(_, _) ≺ subn(_, _)

for all integers n. Moreover, we set subn(_, _) ≺ cutm(_, _) if n < m. The
order is well-founded, and the lexicographic path ordering (lpo) that it induces
on the first-order terms is also well-founded (definitions and results can be found
in [KL80]). The encoding is given in Fig 5. An induction on terms shows that
reduction decreases the lpo. '(

T (s) = 

T (λxA.M) = T (ΠxA.M) = ii(T (A),T (M))
T (x l) = i(T (l))

T (M l) = cut�k(M l)(T (M), T (l))

T (〈M/x〉N) = sub�k(〈M/x〉N)(T (M), T (N))
T ([]) = 

T (M ·l) = ii(T (M), T (l))
T (l@l′) = ii(T (l), T (l′))
T (〈M/x〉l) = sub�ky(〈M/x〉l)(T (M), T (l)) where y is fresh

Fig. 5. First-order encoding

Examples of strongly normalising PTS are the systems of Barendregt’s Cube,
including the Calculus of Constructions [CH88] on which the proof-assistant Coq
is based [Coq] (but it also uses inductive types and local definitions), for all of
which we now have a corresponding PTSC that can be used for proof-search.

6 Proof-Search

In contrast to propositional logic where cut is an admissible rule of sequent
calculus, terms in normal form may need a cut-rule in their typing derivation.
For instance in the rule Π l, a type which is not normalised (〈M/x〉B) must
appear in the stoup of the third premiss, so that cuts might be needed to type
it inside the derivation. However if we modify Π l by now using an implicit
substitution B{x = M}, normal forms can then be typed not using Cut2 and
Cut4, but still using Cut1 and Cut3.
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In this section we present a system for proof-search that avoids all cuts, is
complete and is sound provided that types are checked independently. In proof-
search, the inputs are an environment Γ and a type A, henceforth called goal,
and the output is a term M such that Γ � M :A. When we look for a list, the
type in the stoup is also an input. The inference rules now need to be directed by
the shape of the goal (or of the type in the stoup), and the proof-search system
(PS, for short) can be obtained by optimising the use of the conversion rules as
shown in Fig. 6. The incorporation of the conversion rules into the other rules is
similar to that of the constructive engine in natural deduction [Hue89, JMP94];
however the latter was designed for type synthesis, for which the inputs and
outputs are not the same as in proof-search, as mentioned in the introduction.

A←→∗ A′
axiomPS

Γ ; A 
PS [] : A′
D−→∗ ΠxA.B Γ 
PS M : A Γ ; 〈M/x〉B 
PS l : C

Π lPS
Γ ; D 
PS M ·l : C

C−→∗ s3 (s1, s2, s3) ∈ R Γ 
PS A : s1 Γ, (x : A) 
PS B : s2

ΠwfPS
Γ 
PS ΠxA.B : C

C−→∗ s′ (s, s′) ∈ A
sortedPS

Γ 
PS s : C

(x : A) ∈ Γ Γ ; A 
PS l : B
Selectx

Γ 
PS x l : B

C−→∗ ΠxA.B A is a normal form Γ, (x : A) 
PS M : B
ΠrPS

Γ 
PS λxA.M : C

Fig. 6. Rules for Proof-search

Notice than in PS there are no cut-rules. Indeed, even though in the original
typing system cuts are required in typing derivations of normal forms, they only
occur to check that types are well-typed themsleves. Here we removed those
type-checking constraints, relaxing the system, because types are the input of
proof-search, and they would be checked before starting the search. PS is sound
and complete in the following sense:

Theorem 6

1. (Soundness) Provided Γ � A :s, if Γ �PS M : A then Γ �M :A and M is a
normal form.

2. (Completeness) If Γ �M :A and M is a normal form, then Γ �PS M : A.

Proof. Both proofs are done by induction on typing derivations, with similar
statements for lists. For Soundness, the type-checking proviso is verified every
time we need the induction hypothesis. For Completeness, the following lemma
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is required (and also proved inductively): assuming A←→∗ A′ and B←→∗ B′,
if Γ �PS M : A then Γ �PS M : A′, and if Γ ;B �PS l : A then Γ ;B′ �PS l : A′.

'(
Note that neither part of the theorem relies on the unsolved problem of expansion
postponement [JMP94, Pol98]. Indeed, PS does not check types. When recovering
a full derivation tree from a PS one by the soundness theorem, expansions and
cuts might be introduced at any point, coming from the derivation of the type-
checking proviso.

The condition that A is in normal form in rule ΠrPS is not problematic for
completeness: whether or not the PTSC is strongly normalising, such a normal
form is given as the type annotation of the λ-abstraction, in the term M of
the hypothesis of completeness. On the other hand, the condition allows the
soundness theorem to state that all terms typable in system PS are normal forms.
Without it, terms would be in normal forms but for their type annotations in
λ-abstractions.

Basic proof-search can be done in the proof-search system simply by reducing
the goal, or the type in the stoup, and then, depending on its shape, trying to
apply one of the inference rules bottom-up.

There are three points of non-determinism in proof-search:

– The choice of a variable x for applying rule Selectx, knowing only Γ and B
(this corresponds in natural deduction to the choice of the head-variable of
the proof-term). Not every variable of the environment will work, since the
type in the stoup will eventually have to be unified with the goal, so we still
need back-tracking.

– When the goal reduces to a Π-type, there is an overlap between rules ΠrPS
and Selectx; similarly, when the type in the stoup reduces to a Π-type, there
is an overlap between rules Π lPS and axiomPS. Both overlaps disappear when
Selectx is restricted to the case when the goal does not reduce to a Π-type
(and sequents with stoups never have a goal reducing to a Π-type). This
corresponds to looking only for η-long normal forms in natural deduction.
This restriction also brings the derivations in LJT (and in our PTSC) closer
to the notion of uniform proofs. Further work includes the addition of η to
the notion of conversion in PTSC.

– When the goal reduces to a sort s, three rules can be applied (in contrast to
the first two points, this source of non-determinism does not already appear
in the propositional case).

The non-determinism is already present in natural deduction, but the sequent
calculus version conveniently identifies where it occurs exactly.

We now give the example of a derivation in PS. We consider the PTSC equiv-
alent to system F , i.e. the one given by the sets:
S = {Type, Kind}, A = {(Type, Kind)}, and R = {(Type, Type), (Kind, Type)}.

For brevity we omit the types on λ-abstractions, we abbreviate x [] as x
for any variable x and simplify 〈N/x〉P as P when x �∈ FV(P ). We also write
A ∧ B for ΠQType.(A → (B → Q)) → Q. Trying to find a term M such that
A : Type,B : Type �M : (A ∧B) → (B ∧A), we get the PS-derivation below:
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πB

Γ �PS NB : B

πA

Γ �PS NA : A
axiomPS

Γ ; Q �PS [] : Q
Π lPS

Γ ;A → Q �PS NA ·[] : Q
Π lPS

Γ ;B → (A → Q) �PS NB ·NA ·[] : Q
Selecty

Γ �PS y NB ·NA ·[] : Q
==================================================== ΠrPS
A : Type,B : Type �PS λx.λQ.λy.y NB ·NA ·[] : (A ∧B) → (B ∧A)

where Γ = A : Type,B : Type,x : A ∧ B, Q : Type, y : B → (A → Q), and πA is
the following derivation (NA = x A·(λx′ .λy′ .x′)·[]):

Γ ; Type �PS [] : Type

Γ �PS A : Type

Γ,x′ : A, y′ : B;A �PS [] : A

Γ,x′ : A, y′ : B �PS x′ : A
==========================
Γ �PS λx′ .λy′ .x′ : A → (B → A) Γ ;A �PS [] : A

Γ ; 〈A/Q〉(A → (B → Q)) → Q �PS (λx′ .λy′ .x′)·[] : A

Γ ;A ∧B �PS A·(λx′ .λy′ .x′)·[] : A

Γ �PS x A·(λx′ .λy′ .x′)·[] : A

and πB is the derivation similar to πA (NB = x B ·(λx′ .λy′ .y′)·[]) with conclusion
Γ �PS x B ·(λx′ .λy′ .y′)·[] : B.

This example shows how the non-determism of proof-search is sometimes quite
constrained by the need to eventually unify the type in the stoup with the goal.
For instance in πA (resp. πB), the resolution of Γ � Q : Type by A (resp. B)
could be inferred from the unification in the right-hand side branch.

In Coq [Coq], the proof-search tactic apply x can be decomposed into the
bottom-up application of Selectx followed by a series of bottom-up applications
of Π lPS and finally axiomPS, but it either delays the resolution of sub-goals or
automatically solves them from the unification attempt, often avoiding obvious
back-tracking.

In order to mimic even more closely this basic tactic, delaying the resolution
of sub-goals can be done by using meta-variables, to be instantiated later with
the help of the unification constraint. By extending PTSC with meta-variables,
we can go further and express a sound and complete algorithm for type inhabi-
tant enumeration (similar to Dowek’s [Dow93] and Muñoz’s [Mun01] in natural
deduction) simply as the bottom-up construction of derivation trees in sequent
calculus.

Proof-search tactics in natural deduction simply depart from the simple
bottom-up application of the typing rules, so that their readability and usage
would be made more complex. Just as in propositional logic [DP99a], sequent
calculi can be a useful theoretical approach to study and design those tactics, in
the hope to improve semi-automated reasoning in proof-assistants such as Coq.
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7 Conclusion and Further Work

We have defined a parameterised formalism that gives a sequent calculus for
each PTS. It comprises a syntax, a rewrite system and typing rules. In constrast
to previous work, the syntax of both types and proof-terms of PTSC is in a
sequent-calculus style, thus avoiding the use of implicit or explicit conversions
to natural deduction [GR03, PD00].

A strong correspondence with natural deduction has been established (re-
garding both the logic and the strong normalisation), and we derive from it the
confluence of each PTSC. We can give as examples the corners of Barendregt’s
Cube, for which we now have a elegant theoretical framework for proof-search:
We have shown how to deal with conversion rules so that basic proof-search
tactics are simply the root-first application of the typing rules.

Further work includes studying direct proofs of strong normalisation (such
as Kikuchi’s for propositional logic [Kik04]), and dealing with inductive types
such as those used in Coq. Their specific proof-search tactics should also clearly
appear in sequent calculus. Finally, the latter is also more elegant than natural
deduction to express classical logic, so it would be interesting to build classical
Pure Type Sequent Calculi.
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Universality Results for

Models in Locally Boolean Domains

Tobias Löw and Thomas Streicher

TU Darmstadt, Schloßgartenstraße 7, D-64289 Darmstadt

Abstract. In [8] J. Laird has shown that an infinitary sequential exten-
sion of PCF has a fully abstract model in his category of locally boolean
domains (introduced in [10]). In this paper we introduce an extension
SPCF∞ of his language by recursive types and show that it is universal
for its model in locally boolean domains.

Finally we consider an infinitary target language CPS∞ for (the) CPS
translation (of [18]) and show that it is universal for a model in locally
boolean domains which is constructed like Dana Scott’s D∞ where D =
{⊥,$}.

1 Introduction

In [5] Cartwright, Curien and Felleisen have shown that for SPCF, an extension
of PCF with error elements and a catch construct, one can construct extensional
fully abstract models whose induced theory in the finitary case (i.e. over base
type boolean) is still decidable and thus much simpler than the fully abstract
models for PCF (see [1,7,15]) as demonstrated by Loader’s result [11]. The model
of [5] consists of error-propagating sequential algorithms between concrete data
structures (with errors). About a decade later in [10] J. Laird has arrived at
a reformulation of this model in terms of a category LBD of locally boolean
domains (lbds) and sequential maps between them.

In the current paper we show that in LBD one can interpret an infinitary vari-
ant SPCF∞ of the language SPCF of [5]. Roughly speaking, the language SPCF∞
is an extension of simply typed λ-calculus by countable sums and products, er-
ror elements � for each type, a control construct catch and recursive types. For
SPCF∞ without recursive types it has been shown in [8] that the LBD model is
fully abstract, i.e. that all finite elements arise as denotations of programs. We
show that actually all elements of (possibly recursive) SPCF∞ types can be de-
notes by SPCF∞ terms, i.e. that SPCF∞ is universal for its LBD model. In the
proof we first show that every SPCF∞ type can be obtained as an SPCF∞ defin-
able retract of the first order type U = N→N (adapting an analogous result in
[12] for ordinary sequential algorithms without error elements) and then conclude
by observing that every element of U is (trivially) SPCF∞ definable.

In [18] it has been observed that 0∞, i.e. Scott’s D∞ with D = 0 = {⊥,�},
can be obtained as bifree solution (cf. [16]) of D = [Dω→0]. Since solutions of
recursive type equations are available in LBD (see section 2) we may consider also
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the bifree solution of the equation for D in LBD. Canonically associated with this
type equation is the language CPS∞ whose terms are given by the grammar

M ::= x | λ�x.M〈 �M〉 | λ�x.�

where �x ranges over infinite lists of pairwise disjoint variables and �M over infinite
lists of terms. Notice that CPS∞ is more expressive than (untyped) λ-calculus
with an error element � in the respect that one may apply a term to an infinite
list of arguments. Consider e.g. the term λ�x.x0〈�⊥〉 whose interpretation retracts
D to 0 (i.e. sends � to � and everything else to ⊥) whereas this retraction is not
expressible in λ-calculus with a constant �. We show that CPS∞ is universal for
its model in D. For this purpose we proceed as follows.

We first observe that the finite elements of D all arise from simply typed λ-
calculus over 0. Since the latter is universal for its LBD model (as shown in [8])
and all retractions of D to finite types are CPS∞ definable it follows that all finite
elements of D are definable in CPS∞. Then borrowing an idea from [9] we show
that the supremum of stably bounded elements of D is CPS∞ definable. Using
this we show that the supremum of every chain of finite elements increasing
w.r.t. ≤s is CPS∞ and thus every element of D is CPS∞ definable as well.

Although interpretation of CPS∞ in D is surjective it happens that inter-
pretation in D may identify terms with different infinite normal form, i.e. the
interpretation is not faithful. Finally, we discuss a way how this shortcoming can
be avoided, namely to extend CPS∞ with a parallel construct ‖ and refining the
observation type 0 to 0̃ ∼= List(0̃). This amounts to a “qualitative” reformulation
of a “quantitative” method introduced by F. Maurel in his Thesis [14].

2 Locally Boolean Domains

This section contains a short introduction to the theory of lbds and sequential
maps (cf. [10]).

Definition 1. A locally boolean order (lbo) is a triple A = (|A|,�,¬) where
(A,�) is a partial order and ¬ : |A| → |A| is antitonic and an involution (i.e.
x � y ⇒ ¬y � ¬x and ¬¬x = x for all x, y ∈ |A|) such that

(1) for every x ∈ A the set {x,¬x} has a least upper bound x� = x ( ¬x (and,
therefore, also a greatest lower bound x⊥ = ¬(x�) = x ' ¬x)

(2) whenever x � y� and y � x� (notation x ↑ y) then {x, y} has a supremum
x ( y and an infimum x ' y.

A is complete if (|A|,�) is a cpo, i.e. every directed subset X has a supremum⊔
X. A is pointed if it has a least element ⊥ (and thus also a greatest element
� = ¬⊥). $
We write x ↓ y as an abbreviation for ¬x ↑ ¬y, and x 7 y for x ↑ y and
x ↓ y. Notice that x 7 y iff x⊥ = y⊥ iff x� = y�. A subset X ⊆ A is called
stably coherent (notation ↑X) iff x ↑ y for all x, y ∈ X . Analogously, X is
called costably coherent (notation ↓X) iff x ↓ y for all x, y ∈ X . Finally, X is
called bistably coherent (notation 7X) iff ↑X and ↓X .
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Definition 2. For a lbo A and x, y ∈ A we define

stable order: x ≤s y iff x � y and x ↑ y
costable order: x ≤c y iff x � y and x ↓ y (iff ¬y ≤s ¬x)
bistable order: x ≤b y iff x ≤s y and x ≤c y $

For the definition of locally boolean domains we introduce the notion of finite
and prime elements.

Definition 3. Let A be a lbo.
An element p ∈ |A| is called prime iff

∀x, y∈A. ((x ↑ y ∨ x ↓ y) ∧ p � x ( y)→ (p � x ∨ p � y)

We write P(A) for the set {p ∈ |A| | p is prime} and P(x) for the set {p ∈
P(A) | p ≤s x}.
An element e ∈ |A| is called finite iff the set {x ∈ A | x ≤s e} is finite. We put

F (A) := {e ∈ |A| | e is finite} and F (x) := {e ∈ F (A) | e ≤s x} .

For handling finite primes, i.e. elements that are finite and prime, we define
FP(A) := P(A) ∩ F (A) and FP(x) := P(x) ∩ F (A). $

Definition 4. A locally boolean domain (lbd) is a pointed, complete lbo A such
that for all x ∈ A

(1) x =
⊔

FP(x) and
(2) all finite primes in A are compact w.r.t. � , i.e. for all p ∈ FP(A) and

directed sets X with p �
⊔

X there is an x ∈ X with p � x. $

One can show that stably coherent subsets X of a lbd A have a supremum
⊔

X
which is a supremum also w.r.t. ≤s. Moreover, if X is also nonempty then X
has an infimum

�
X which is an infimum also w.r.t. ≤s. For costably coherent

subsets the dual claims hold. Further, we have the following property of maximal
bistably coherent subsets.

Lemma 5. Let A be a lbd and x ∈ A. Then [x]) := {y ∈ A | y 7 x} with ', (
and ¬ restricted to [x]) forms a complete atomic boolean algebra.

The following lemma is needed for showing that our definition of locally boolean
domain is equivalent with the original one given by J. Laird in [10].

Lemma 6. Let x and y be elements of a lbd A then the following are equivalent

(1) x � y
(2) ∀p∈FP(x).∃q∈FP(y). p � q
(3) ∀c∈F (x).∃d∈F (y). c � d

Thus A is a coherently complete dI-domain (cf. [2]) w.r.t. the stable order ≤s.

Next we define an appropriate notion of sequential map between lbds.
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Definition 7. Let A and B be lbds. A sequential map from A to B is a Scott
continuous function f : (|A|,�) → (|B|,�) such that for all x 7 y it holds that
f(x) 7 f(y), f(x ' y) = f(x) ' f(y) and f(x ( y) = f(x) ( f(y). $

We denote the ensuing category of lbds and sequential maps by LBD. The
category LBD is cpo-enriched w.r.t. � and ≤s and order extensional w.r.t. �,
i.e. in particular well-pointed. In [10] J. Laird has shown that the category LBD
is equivalent to the category OSA of observably sequential algorithms which has
been introduced in [5] where it was shown that it gives rise to a fully abstract
model for the language SPCF, an extension of PCF by error elements and a
control operator catch.

The category LBD enjoys all the properties required for interpreting the
language SPCF∞ introduced subsequently in Section 3, namely that LBD is
cartesian closed, has countable products and bilifted sums and inverse limits of
ω-chains of projections. We just give the construction of these lbds, for a detailed
verification of their characterising properties see [13].

Cartesian Products. For each family of lbds (Ai)i∈I the cartesian product∏
i∈I Ai is constructed as follows: (

∏
i∈I |Ai|,�,¬) with � and ¬ defined

pointwise.
Exponentials. For lbds A, B the function space [A→B] is constructed as fol-

lows: |[A→B]| = LBD(A,B), the extensional order is defined pointwise and
negation is given by (¬f)(x) :=

⊔
{¬f(¬c) | c ∈ F (x)}.

Terminal Object. The object 1 is given by ({∗},�,¬).
Bilifted Sum. For each family of lbds (Ai)i∈I the bilifted sum

∑
i∈I Ai is con-

structed as follows: (
⋃
i∈I{i} × |Ai| ∪ {⊥,�},�,¬) with

x � y ⇔ x=⊥ ∨ y=� ∨ (∃i∈I.∃x′, y′∈Ai.x=(i,x′) ∧ y=(i, y′) ∧ x′�iy′)

and negation given by ¬⊥ = � and ¬(i,x) = (i,¬ix).
Natural Numbers. The data type N =

∑
i∈ω 1 will serve as the type of bilifted

natural numbers. More explicitly N can be described as the lbd (�∪{⊥,�},�
,¬) with x � y iff x = ⊥ or y = � or x = y, and negation is given by ¬⊥ = �
and ¬n = n for all n ∈ �.

Type of Observations. The type of observations 0 =
∑
i∈∅. More explicitly 0

can be described as the lbd ({⊥,�},�,¬) with ⊥ � � and ¬⊥ = �. Notice
that [A→0] separates points in A for any lbd A.

The exponential transpose of functions is defined as usual and since evaluation
is sequential it follows that the category LBD is cartesian closed.

Notice that for exponentials we cannot simply define negation of a sequential
map by (¬f)(x) = ¬f(¬x) as the following example shows that sequentiality
does not imply cocontinuity w.r.t. ≤c.

Example 8. Let F : [N→00]→ 0 be defined recursively as

F (f) = f(0)(F (λn.f(n+1))) .
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Let f = λn.id0 and fn(k) = id0 for k < n and f(k) = λn.� for k ≥ n. Obviously,
the set X := {fn |n ∈ �} is costably coherent, codirected w.r.t. ≤c and f =

�
X .

As f is a minimal solution of its defining equation we have F (f) = ⊥ and
F (fn) = � for all n. Thus, we have f(

�
X) = ⊥ whereas

�
f [X ] = �, i.e. F

fails to be cocontinuous w.r.t. ≤c.

Nevertheless we always have

Lemma 9. Let f : A → B be a LBD morphism and x ∈ A. Then (¬f)(x) �
¬f(¬x)

Proof. For all c ∈ F (x) we have ¬x � ¬c, thus, f(¬x) � f(¬c) and ¬f(¬c) �
¬f(¬x). Hence, it follows that (¬f)(x) =

⊔
{¬f(¬c) | c ∈ F (x)} � ¬f(¬x).

For the construction of recursive types in LBD we have to introduce an appro-
priate notion of embedding/projection pairs for lbds.

Definition 10. An embedding/projection pair (ep-pair) from X to Y in LBD
(notation (ι,π) : X → Y ) is a pair of LBD morphisms ι : X → Y and π : Y →
X with π ◦ ι = idX and ι ◦ π ≤s idY .

If (ι,π) : X → Y and (ι′,π′) : Y → Z then their composition is defined as
(ι′,π′) ◦ (ι,π) = (ι′ ◦ ι,π ◦ π′). We write LBDE for the ensuing category of
embedding/projection pairs in LBD. $

Notice that this is the usual definition of ep-pair when viewing LBD as order
enriched by the stable and not by the extensional order.

Next we describe the construction of inverse limits of ω-chains of ep-pairs
in LBD. The underlying cpos are constructed as usual. However, it needs some
care to define negation appropriately (since in general projections do not preserve
negation).

Theorem 11. Given a functor A : ω → LBDE its inverse limit of the projec-
tions is given by (A∞,�,¬) where

A∞ = {x ∈
∏
n∈ω

An | xn = πn,n+1(xn+1) for all n ∈ ω}

the extensional order � is defined pointwise and

(¬x)n =
	
k≥n

πn,k(¬xk)

for all n ∈ ω.

Notice that the full subcategory of countably based lbds, i.e. lbds A where FP(A)
is countable, is closed under the above constructions as long as products and
bilifted sums are assumed as countable.
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3 The Language SPCF∞

The language SPCF∞ is an infinitary version of SPCF as introduced in [5]. More
explicitly, it is obtained from simply typed λ-calculus by adding (countably) in-
finite sums and products, error elements, a control operator catch and recursive
types. For a detailed presentation of SPCF∞ see Table 1.

Table 1. The language SPCF∞

Types: σ ::= α | σ→σ | µα.σ | Σi∈Iσ | Πi∈Iσ with I countable,
� := Π∅, 0 := Σ∅, N := Σi∈ω�, σω := Πi∈ωσ

Environments: Γ ≡ x1 : σ1, . . . , xn : σn for closed types σi

Terms: t ::= x | (λx : σ.t) | (tt) | 〈ti〉i∈I | pri(t) | ini(t) | case t of (ini x ⇒ ti)i∈I |
fold(t) | unfold(t) | $ | catch(t)

Values v ::= (λx : σ.t) | 〈ti〉i∈I | ini(t) | fold(t) | $

Abbreviations / Combinators: n := inn〈〉 for all n ∈ ω

catchσ1→...→σn→N := λf. catch(λx : 0ω. case
f(e1(pr1 x), . . . , en(prn x))of (ini y ⇒ pri+n x)i∈ω)

with ei := λx : 0. case0,σi x of () for all i ∈ {1, . . . , n}
Yσ := k(foldτ (k)) with τ := µα.(α→(σ→σ)→σ)

and k := λx : τ.λf : σ→σ.f(unfoldτ (x)xf)

Typing rules:

Γ, x : σ, ∆ 
 x : σ Γ 
 $Σi∈I σi : Σi∈Iσi

Γ 
 t : 0ω→0

Γ 
 catch(t) : N

Γ, x : σ 
 t : τ

Γ 
 (λx : σ.t) : σ→τ

Γ 
 t : σ→τ Γ 
 s : σ

Γ 
 (ts) : τ

Γ 
 ti : σi for all i ∈ I

Γ 
 〈ti〉i∈I : Πi∈Iσi

Γ 
 t : Πi∈Iσi

Γ 
 pr
Πi∈Iσi
i (t) : σi

Γ 
 t : σ[µα.σ/α]

Γ 
 foldµα.σ(t) : µα.σ

Γ 
 t : µα.σ

Γ 
 unfoldµα.σ(t) : σ[µα.σ/α]

Γ 
 t : Σi∈Iσi Γ, x : σi 
 si : τ for all i ∈ I

Γ 
 caseΣi∈I σi,τ tof (ini x ⇒ si)i∈I : τ

Γ 
 t : σi

Γ 
 in
Σi∈I σi
i (t) : Σi∈Iσi

The operational semantics of SPCF∞ is given in Table 2. Notice that each
SPCF∞ term t which is not already a value has a unique decomposition into an
evaluation context E and a redex t′ with E[t′] ≡ t.

The interpretation of SPCF∞ in locally boolean domains can be found in
Table 3. The interpretation of recursive types is done as usual via inverse limits
whose existence is guaranteed by Theorem 11. One can prove adequacy of the
model like in [16,17].

Since by definition sequential maps preserve infima and suprema of bistably
coherent arguments a sequential map from 0ω to 0 is either constant (with value
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Table 2. Operational semantics of SPCF∞

Evaluation contexts:
E ::= [ ] | Et | pri(E) | unfold(E) | caseE of (ini ⇒ t)i∈I | catch(λx : 0ω.E)

Redex reduction:
(λx : σ.t)s →red t[s/x] case ini sof (ini x ⇒ ti) →red ti[s/x]

pri(〈ti〉i∈I) →red ti unfold(fold(t)) →red t

Evaluation context reduction:
E[t] →op E[t′] if t →red t′

E[$] →op $ if E = []

E[catch t] →op t〈E[n]〉n∈ω

⊥ or�) or is a projection πi : 0ω → 0. For this reason there exists an isomorphism
catch : [0ω→0]

∼=→ N with

catch(f) = i iff f is i-strict, i.e. f(x) = ⊥ ⇔ πi(x) = ⊥
which will serve as interpretation of the control operator catch of SPCF∞.

Table 3. Interpretation of SPCF∞

�x1 : σ1, . . . , xn : σn 
 xi : σi� := πi

�Γ 
 $ : Σi∈Iσi� := x�Γ� �→ $�Σi∈I σi�

�Γ 
 (λx : σ.t) : σ→τ� := curry�Γ�,�σ�(�Γ, x : σ 
 t : τ�)

�Γ 
 ts : τ� := eval ◦〈�Γ 
 t : σ→τ�, �Γ 
 s : σ�〉
�Γ 
 〈ti〉Πi∈I σi

i∈I : Πi∈Iσi� := 〈�Γ 
 ti : σi�〉i∈I

�Γ 
 pri(t) : σ� := πi ◦ �Γ 
 t : σ�

�Γ 
 caseΣi∈I τi,σ tof (ini x ⇒ ti) : σ� := case ◦〈�Γ 
 t�, 〈�Γ 
 (λx : τi.ti) : τi→σ�〉i∈I〉
�Γ 
 ini(t) : Σi∈Iσi� := ιi ◦ �Γ 
 t : σi�

�Γ 
 catch(t) : N� := catch ◦�Γ 
 t : 0ω→0�

�Γ 
 foldµα.σ(t) : µα.σ� := fold ◦�Γ 
 t : σ[µα.σ/α]�

�Γ 
 unfoldµα.σ(t) : σ[µα.σ/α]� := unfold ◦�Γ 
 t : µα.σ�

4 Universality for SPCF∞

In this section we show that the first order type U = N→N is universal for the
language SPCF∞ by proving that every type is a SPCF∞ definable retract of U.
Since all elements of the lbd �U� can be defined syntactically we get universality
of SPCF∞ for its model in LBD.

Definition 12. A closed SPCF∞ type σ is called a SPCF∞ definable retract of
a SPCF∞ type τ (denoted σ�τ) iff there exist closed terms e : σ→τ and p : τ→σ
with �p� ◦ �e� = id�σ�. $
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Theorem 13. Every SPCF∞ type appears as SPCF∞ definable retract of the
type U := N→N.

Proof. It suffices to show that for all I ∈ ω + 1 the types

U→U Πi∈IU Σi∈IU

are SPCF∞ definable retracts of U.
The SPCF∞ programs exhibiting Πi∈IU as definable retract of U are given

in Table 5. Using this we get Σi∈IU � U since obviously Σi∈IU � U×Σi∈I�.
By currying we have U→U ∼= (U×N)→N. As U×N � U×U � U it suffices

to construct a retraction U→N�U for showing that U→U�U holds. For this
purpose we adapt an analogous result given by J. Longley in [12] for ordinary
sequential algorithms without error elements. The programs establishing the
retraction are given in Table 6. The function p interprets elements of U as
sequential algorithms for functionals of type U→N as described in [12]. For a
given F : U→N the element �e�(F ) : N→N is a strategy / sequential algorithm
for computing F . This is achieved by computing sequentiality indices iteratively
using catch. '(

Since all sequential function from N to N can be programmed using a (countably
infinite) case analysis (available by the case-construct for index set ω) it follows
that

Theorem 14. The language SPCF∞ is universal for its model in LBD.

In a sense the elements denotable by finite SPCF terms may be considered as
the “computable” ones but it is not clear how this somewhat ad hoc notion
of computability can be rephrased in terms of recursive enumerability of finite
approximations (see [3] for a discussion).

Table 4. The language CPS∞

Contexts: Γ ≡ [xi | i ∈ I ] with I ∈ ω + 1

Terms: M ::= x | λ�x.t �x ≡ (xi)i∈ω

t ::= $ | M〈 �M〉 �M ≡ (Mi)i∈ω

Terms-in-context:

[xi | i ∈ I ] 
 xi Γ 
 λ�x.$

Γ ∪ [xi | i ∈ I ] 
 M Γ ∪ [xi | i ∈ I ] 
 Ni

Γ 
 λ�x.M〈 �N〉

Operational semantics:

$ ⇓ $

t[Mi/xi]i∈ω ⇓ $

(λ�x.t)〈 �M〉 ⇓ $
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Table 5. Retraction Πi∈IU � U

e := λf : Πi∈IU.λn : N. casepr0(β
∗
2n)of⎛⎜⎝ in0 x ⇒ catchN→N(pri f)

in1 x ⇒ case pr0(β
∗
I (pr1(β

∗
2n)))of

(j ⇒ (prj f)(pr1(β
∗
I (pr1(β

∗
2n)))))j∈I

⎞⎟⎠
p := λf : U.〈case f(β2〈0, i〉)of

(
in0 x ⇒ λn : N.f(β2〈1, βI〈i, n〉〉)

inj+1 x ⇒ λn : N.j

)
j∈ω

〉i∈I

with βI : ((Σi∈I�)×N)→N and β∗
I : N→((Σi∈I�)×N) satisfying β∗

I (βI〈i, n〉) = 〈i, n〉
for all i ∈ I and n ∈ ω

Table 6. Retraction U→N � U

e := λF : U→N.λn : N. caseα∗(n)of

0
BBBB@

in0 t ⇒ case catchU→N(F )of R

in1 t ⇒ α(in1(F (λx : N.t)))

in2 t ⇒ caseS of

 
in2i x ⇒ α(in1 i)

in2i+1 x ⇒ α(in2 i)

!
i∈ω

1
CCCCA

R :=

 
in0 x ⇒ α(in0 x)

ini+1 x ⇒ α(in1 i)

!
i∈ω

S := catch(λx : 0ω→0. caseF (λn : N.

case find(t, n)of

 
in0 s ⇒ s

in1 s ⇒ case0,N(pr2i+1 x)of ()

!
)

of (ini s ⇒ pr2i x)i∈ω)

p := λr : N→N.λf : N→N. case r(α(in0〈〉))of

 
in0 t ⇒ T

ini+1 t ⇒ i

!
i∈ω

T := case catchN→N(f)of

0
B@

in0 t ⇒ U(nil)

ini+1 t ⇒ caseα∗(r(α(in1 i)))of

0
B@

in0 t ⇒ ⊥
in1 t ⇒ t

in2 t ⇒ ⊥

1
CA
1
CA

i∈ω

U := YN→N(λh : N→N.λg : N. caseα∗(r(α(in2 g)))

of

0
B@

in0 t ⇒ ⊥
in1 t ⇒ t

in2 t ⇒ h(cons(g, (t, f(t))))

1
CA)

with α : ( +N+N)→N and α∗ : N→( +N+N) satisfying α∗(α(in0〈〉)) = in0〈〉 and
α∗(α(ini n)) = ini n for i = 1, 2 and n ∈ ω, and the following auxiliary list-handling
functions in Haskell-style where γ encodes lists of natural numbers as natural numbers

nil := γ([])

cons(g, (x, y)) := γ(cons((x, y), γ−1(g)))

find(g, x) := case γ−1(g) of

[] -> in1 0
((x, y) : r) -> in0 y
( : r) -> find(γ(r), x)
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5 Universality for an Infinitary Untyped CPS Target
Language CPS∞

The interpretation of the SPCF∞ type δ := µα.(αω→0) (where for arbitrary
types σ we henceforth write σω as an abbreviation for Πi∈ωσ) is the minimal
solution of the domain equation D ∼= [Dω→0]. Obviously, we have D ∼= [D→D].
Moreover, it has been shown in [18] that D is isomorphic to 0∞, i.e. what one
obtains by performing D. Scott’s D∞ construction in LBD when instantiating
D by 0.

We now describe an untyped infinitary language CPS∞ canonically associated
with the domain equation D ∼= [Dω→0]. The precise syntax of CPS∞ is given
in Table 4. We interpret CPS∞ terms in context Γ, i.e. a set of variables, as
sequential maps from DΓ to D in the obvious way.

The language CPS∞ is an extension of pure untyped λ-calculus since applica-
tions MN can be expressed by λ�x.M〈N,�x〉 with fresh variables �x and abstraction
λx.M by λx�y.M〈�y〉 with fresh variables �y. Thus, CPS∞ allows for recursion and
we can define recursion combinators in the usual way.

Notice that CPS∞ is more expressive than pure untyped λ-calculus since the
latter does not contain a term semantically equivalent to

λ�x.x0〈�⊥〉

which sends �D to �D and all other elements of D to ⊥D.1 Since the retraction
of D to 0 is CPS∞ definable all other retractions to the finite approximations of
D (which are isomorphic to simple types over 0) are definable as well.

Lemma 15. The lbds N and U are both CPS∞ definable retract of the lbd D.

Proof. Since we can retract the lbd D to the lbd 0 and [0ω→0] ∼= N it follows
that N is a CPS∞ definable retract of D. As [D→D] is a CPS∞ definable retract
of D it follows that U = [N→N] is a CPS∞ definable retract of D. '(

Thus, we can do arithmetic within CPS∞. Natural numbers are encoded by
n ≡ λ�x.xn〈�⊥〉 and a function f :�→� by its graph, i.e. f ≡ λx�y.x〈λ�z.f(i)〈�y〉〉i∈ω .
Notice that CPS∞ allows for the implementation of an infinite case construct.

Universality for CPS∞ will be shown in two steps. First we argue why all finite
elements of D are CPS∞ definable. Then adapting a trick from [9] we show that
suprema of chains increasing w.r.t. ≤s are CPS∞definable, too.

Lemma 16. All finite elements of the lbd D are CPS∞ definable.

Proof. In [8] Jim Laird has shown that the language Λ�⊥, i.e. simply typed λ-
calculus over the base type {⊥,�} is universal for its model in LBD. Thus, since
all retractions of D to its finitary approximations are CPS∞ definable it follows
that all finite elements of D are CPS∞ definable. '(
1 Since �λ�x.x0〈�⊥〉� is certainly “computable” pure λ-calculus with constant $ cannot

denote all “computable” elements.
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Next we show that for all f : A→ 0 in LBD the map f̃ : A→ [0→0] with

f̃(a)(u) :=

{
u if f(a�) = ⊥0 and
f(a) otherwise

(1)

is an LBD morphism as well.

Lemma 17. If f : A → 0 is a sequential map between lbds then the function
f̃ : A→ [0→0] given by (1) is sequential.

Proof. For showing monotonicity suppose a1, a2 ∈ A with a1 � a2 and u ∈ 0.
We proceed by case analysis on f(a�1 ).

Suppose f(a�1 ) = ⊥0. Thus, f̃(a1)(u) = u. If f(a�2 ) = ⊥0 then f̃(a2)(u) = u,
and we get f̃(a1)(u) = u = f̃(a2)(u). If f(a�2 ) = �0 then f̃(a2)(u) = f(a2). As
f(a�1 ) = ⊥0 it follows that f(¬a1) = ⊥0 and f(¬a2) = ⊥0 (because ¬a2 � ¬a1).
As �0 = f(a�2 ) = f(a2) ( f(¬a2) it follows that f(a2) = �0 as desired.

If f(a�1 ) = �0 then f̃(a1)(u) = f(a1). W.l.o.g. assume f(a1) = �0. Then
�0 = f(a1) � f(a2) � f(a�2 ). Hence, f(a2) = �0 = f(a�2 ) and we get f̃(a2)(u) =
f(a2) = �0.

Next we show that f̃ is bistable. Let a1 7 a2, thus (†) a�1 = a�2 = (a1 'a2)�.
If f(a�1 ) = f(a�2 ) = ⊥0 then f̃(a1) = id0 = f̃(a2). If f(a�1 ) = f(a�2 ) = �0

then f̃(ai) = λx:0. f(ai) for i ∈ {1, 2}. Since λx:0.⊥0 7 λx:0.�0 it follows that
f̃ preserves bistable coherence.

Finally we show that f̃ preserves bistably coherent suprema. If f((a1'a2)�) =
⊥0 then f̃(a1 ' a2)(u) = u = f̃(a1)(u) ' f̃(a2)(u) (since f(a�1 ) = f(a�2 ) = ⊥0

by (†)). Otherwise, if f((a1 ' a2)�) = �0 then f̃(a1 ' a2)(u) = f(a1 ' a2) =
f(a1)'f(a2) = f̃(a1)(u)' f̃ (a2)(u) (since f is bistable and f(a�1 ) = f(a�2 ) = �0

by (†)).
Analogously, it follows that f̃ preserves bistably coherent suprema. '(

The following observation is useful when computing with functions of the form f̃ .

Lemma 18. If f : A→ 0 is a LBD morphism then f̃(a)(⊥0) = f(a).

Proof. If f(a) = ⊥0 then f̃(a)(⊥0) = ⊥0 = f(a) since ⊥ and f(a) are the only
possible values of f̃(a)(⊥0). If f(a) = �0 then f(a�) = �0 and thus f̃(a)(⊥0) =
f(a) as desired.

If f ∈ D ∼= [Dω→0] the we write f̂ for that element of D with

f̂(d, �d) =

⎧⎨⎩f̃(�d)(�0) if d �= ⊥

f̃(�d)(⊥0) if d = ⊥

Lemma 19. For every finite f in D the element f̂ is also finite and thus CPS∞
definable.
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Proof. If A is a finite lbd then for every f : A→ 0 the LBD map f̃ : A→ [0→0]
is also finite. This holds in particular for f in the finite type hierarchy over 0.

Since embeddings of lbds preserves finiteness of elements we conclude that
for every finite f in D the element f̂ is finite as well. Thus, by Lemma 16 the
element f̂ is CPS∞ definable. '(

Lemma 20. For f, g : A→ 0 with f ≤s g it holds that g̃ = λa:A. f̃(a) ◦ g̃(a).

Proof. Suppose f ≤s g. Let a ∈ A and u ∈ 0. We have to show that g̃(a)(u) =
f̃(a)(g̃(a)(u)).

If g(a�) = ⊥0 then f(a�) = ⊥0 (since f ≤s g) and thus g̃(a)(u) = f̃(a)(g̃(a)
(u)).

Thus, w.l.o.g. suppose g(a�) = �0. Then g̃(a)(u) = g(a).
If f(a) = �0 then f(a�) = �0 = g(a) and, therefore, we have f̃(a)(g̃(a)(u)) =

f(a) = �0 = g(a) = g̃(a)(u).
Now suppose f(a) = ⊥0.
If g(a) = ⊥0 then we have f̃(a)(g̃(a)(u)) = f̃(a)(g(a)) = f̃(a)(⊥0) = ⊥0 where

the last equality holds by Lemma 18.
Now suppose g(a) = �0. We proceed by case analysis on the value of f(a�).

If f(a�) = ⊥0 then f̃(a)(g̃(a)(u)) = g̃(a)(u). We show that f(a�) = �0 cannot
happen.

Suppose f(a�) = �0 holds. Then by bistability we have �0 = f(a�) =
f(a) ( f(¬a) = ⊥0 ( f(¬a) = f(¬a) and thus also ¬f(¬a) = ⊥0. Since f ≤s g
we have g � f�. Moreover, by Lemma 9 we have (¬f)(a) � ¬f(¬a). Thus, we
have �0 = g(a) � f�(a) = f(a) ( (¬f)(a) = (¬f)(a) � ¬f(¬a) = ⊥0 which
clearly is impossible. '(

Now we are ready to prove our universality result for CPS∞.

Theorem 21. All elements of the lbd D are CPS∞ definable.

Proof. Suppose f ∈ D. Then f =
⊔

fn for some increasing (w.r.t. ≤s) chain
(fn)n∈ω of finite elements. Since by Lemma 19 all f̂n are CPS∞ definable there
exists a CPS∞ term F with �Fn� = f̂n for all n ∈ ω.

Since recursion is available in CPS∞ one can exhibit a CPS∞ term Ψ such
that

Ψg = λx. g(0)(Ψ(λn. g(n+1))x) =
⊔
n∈ω

(g(0) ◦ · · · ◦ g(n))(⊥)

Thus, the term Mf ≡ λ�x.Ψ(λy.λz.F 〈y, z, �x〉) denotes f since

Mf (�d) = Ψ(λy.λz.F (y, z, �d))

=
⊔
n∈ω

((λz.F0(z, �d)) ◦ · · · ◦ (λz.Fn(z, �d)))(⊥)

=
⊔
n∈ω

((λz.f̂0(z, �d)) ◦ · · · ◦ (λz.f̂n(z, �d)))(⊥)
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=
⊔
n∈ω

((λz.f̃0(�d)(z)) ◦ · · · ◦ (λz.f̃n(�d)(z)))(⊥)

=
⊔
n∈ω

(f̃0(�d) ◦ · · · ◦ f̃n(�d))(⊥)

=
⊔
n∈ω

(f̃n(�d))(⊥) (by Lemma 20)

=
⊔
n∈ω

fn(�d) (by Lemma 18)

= f(�d)

for all �d ∈ Dω. '(

6 Faithfulness of the Interpretation

In the previous section we have shown that the interpretation of closed CPS∞
terms in the lbd D is surjective. There arises the question whether the interpre-
tation is also faithful. Recall that infinite normal forms for CPS∞ are given by
the grammar

N ::= x | λ�x.� | λ�x.x〈 �N 〉

understood in a coinductive sense.

Definition 22. We call a model faithful iff for all normal forms N1, N2 if
�N1� = �N2� then N1 = N2. $

We will show that the LBD model of CPS∞ is not faithful. For a closed CPS∞
term M consider

M∗ ≡ λ�x.x0〈⊥, λ�y.x0〈M, �⊥〉, �⊥〉

Lemma 23. For closed CPS∞ terms M1,M2 it follows that �M∗
1 � = �M∗

2 �.
Proof. We will show that for all terms M the term M∗ is semantically equivalent
to λ�x.x0〈�⊥〉, i.e. for all �d ∈ Dω we have �M∗�(�d) = � iff d0 = �. Suppose d0 �= �.
Then d0 = ⊥ or there is an n such that d0 evaluates the n-th argument first. If
n = 1 then d0〈M, �⊥〉 = ⊥, thus

d0〈⊥, λ�y.d0〈M, �⊥〉, �⊥〉 = ⊥

which is also the case if n �= 1. '(

Suppose N1 and N2 are different infinite normal forms. Then N∗
1 and N∗

2 have
different infinite normal forms and we get �N∗

1 � = �N∗
2 � by the above consider-

ation. Thus, the LBD model of CPS∞ is not faithful.

Lemma 24. There exist infinite normal forms N1, N2 in CPS∞ that can not be
separated.
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Notice that in pure untyped λ-calculus different normal forms can always be
separated. (cf. [4])

We think that the lack of faithfulness of CPS∞ can be overcome by extending
the language by a parallel construct and refining the observation type 0 to 0′ ∼=
List(0′). The language CPS

‖
∞ associated with the domain equation D 8 DN → 0′

is given by

M ::= x | λ�x.t

t ::= � |M〈 �M〉 | 
 t ‖ . . . ‖ t �
the syntactic values are given by the grammar V ::= � | 
V ‖ . . . ‖V � operational
semantics of CPS

‖
∞ is the operational semantics of CPS∞ extended by the rule

(λ�x.ti)〈 �M 〉 ⇓ Vi for all i ∈ {1, . . . , n}
(λ�x.
 t1‖ . . . ‖tn �)〈 �M〉 ⇓ 
V1‖ . . . ‖Vn �

and the normal forms of CPS
‖
∞ are given by the grammar

N ::= x | λ�x.t

t ::= � | x〈 �N〉 | 
 t‖ . . . ‖t �
understood in a coinductive sense.

Obviously, separation of normal forms can be shown for an affine version of
CPS∞ by substituting the respective projections for head variables. Using the
parallel construct 
 . . . ‖ . . . � of CPS

‖
∞ we can substitute for a head variable quasi

simultaneously both the respective projection and the head variable itself. Since
the interpretation of CPS

‖
∞ is faithful w.r.t. the parallel construct 
 . . . ‖ . . . � we

get separation for CPS
‖
∞ normal forms as in the affine case. This kind of argu-

ment can be seen as as a “qualitative” reformulation of a related “quantitative”
method introduced by F. Maurel in his Thesis [14] albeit in the somewhat more
complex context of J.-Y. Girard’s Ludics.

In a sense this is not surprising since our parallel construct introduced above
allows one to make the same observations as with parallel-or. The only differ-
ence is that our parallel construct keeps track of all possibilities simultaneously
whereas the traditional semantics of parallel-or takes their supremum thus lead-
ing out of the realm of sequentiality. This is avoided by our parallel construct
at the price of a more complicated domain of observations. For an approach in
a similar spirit see [6].
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Abstract. Forbidden Patterns Problems (FPPs) are a proper generali-
sation of Constraint Satisfaction Problems (CSPs). However, we show
that when the input belongs to a proper minor closed class, a FPP
becomes a CSP. This result can also be rephrased in terms of expres-
siveness of the logic MMSNP, introduced by Feder and Vardi in relation
with CSPs. Our proof generalises that of a recent paper by Nešetřil and
Ossona de Mendez. Note that our result holds in the general setting of
problems over arbitrary relational structures (not just for graphs).

Keywords: Finite Model theory, Monadic Second Order Logic, Con-
straint Satisfaction, Graph Homomorphism and Duality.

1 Introduction

Graph homomorphisms and related problems have received considerable atten-
tion in the recent years not only as a topic in combinatorics and graph theory
but also in relation with constraint satisfaction. A lot of possible directions of
research in the area have been opened by different motivations, and have been
explored (the very recent monograph [1] serves as a good survey of the area).

The present work was motivated mainly by constraint satisfaction problems
(CSPs) and their generalisations, forbidden patterns problems (FPPs), intro-
duced in [2]. Our main result falls into the category of so-called (restricted)
duality theorems, and has the same flavour as results from combinatorics and
graph theory such as [3,4,5,6,7], (some of which will be explained shortly). Our
main result can also be presented in terms of the expressiveness of the logic
MMSNP, a fragment of monadic second order logic, that is closely related to
FPPs (every sentence of MMSNP expresses a finite union of FPPs). For arbi-
trary structures, MMSNP captures problems that are not CSPs. However, when
the input is restricted, it may be that MMSNP collapses to the class of CSPs
(with the same input restriction): for example, when the input is connected and
of bounded degree [6]. The main result of this paper states that this is also the
case when the input is connected and belongs to some proper minor closed class
(that is, a class that is defined by forbidding a finite set of graphs as minors, e.g.
planar graphs). In the rest of this introduction, we will need to elaborate on work
and ideas from two different areas, descriptive complexity and combinatorics.

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 471–485, 2006.
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Let us start with MMSNP, a fragment of monadic second order logic that was
introduced in [8], motivated by the search of a logic that exhibits a dichotomy
(every problem is either in P or NP-complete). It is still open whether MMSNP
has a dichotomy but Feder and Vardi proved that every problem Ω in MMSNP
is equivalent to a CSP Ω′ (recall that, for a fixed structure H , the Constraint
Satisfaction Problem with template H is the class of structures G such that
there exists a homomorphism from G to H). Feder and Vardi’s reduction from
Ω′ to Ω was randomised but has been recently derandomised by Kun [9]. Hence,
MMSNP has a dichotomy if, and only if, the class of CSPs has a dichotomy.
The dichotomy conjecture for CSPs is still open but is supported by numerous
results (see e.g. [10,11,12,13]). So, one could argue that MMSNP and the class of
CSPs are essentially the same. However, it is known that the logic MMSNP is too
strong and captures problems which are not CSPs [8,14]. Note also that in general
the signature of Ω′ is exponentially larger than the signature of Ω and that Kun’s
derandomised reduction involves gadgets that are built from graph-expanders
which are themselves obtained via the random method (and as such their size is
some unknown constant). Moreover, Bodirsky et al. [15,16] showed that problems
in MMSNP are in fact examples of CSPs with a countable template. So, in
the context of descriptive complexity, we argue that MMSNP and CSPs are
rather different. The combinatorial counterpart of MMSNP is directly related
to Forbidden Patterns Problems (FPPs): every sentence of MMSNP captures
a finite union of FPPs. In [17,2], an exact characterisation of FPPs that are
CSPs was proved: given a forbidden patterns problem, we can decide whether
it is a CSP with a finite or an infinite template and in the former case, we can
compute effectively this finite template. Since the transformation of a sentence
of MMSNP into a finite union of FPPs is also effective, as a corollary, we can
decide whether a given sentence of MMSNP captures a finite union of (finite)
CSPs, or captures a finite union of infinite CSPs. The characterisation of FPPs
that are finite CSPs subsumes the characterisation of duality pairs obtained
by Tardif and Nešetřil [3]. A duality pair is a pair (F, H) of structures such
that for every structure G, there is no homomorphism from F to G (we say
that G is F -mote) if, and only if, there is a homomorphism from G to H (we
say that G is homomorphic to H). The word duality is used in this context to
describe the inversion of the direction of homomorphisms. Forbidden patterns
problems generalise F -moteness by involving coloured structures (see Section 2
for definition and examples) and the property of F -moteness corresponds to
FPPs with a single colour and a single forbidden pattern (namely F ). So a
characterisation of duality pairs corresponds to a characterisation of those rather
restricted FPPs which are also CSPs. Using a similar language, we could describe
the characterisation of those FPPs that are CSPs as a coloured duality theorem.

Häggkvist and Hell [5] showed a different kind of duality result for graph
homomorphism (or CSPs for graphs). They built a universal graph H for the
class of F -mote graphs of bounded degree b. Thus, any degree-d graph G is F -
mote if, and only if, there is a homomorphism from G to H . Note that the usual
notion of universal graph, as used by Fräıssé [18] is for induced substructures, not
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homomorphism, and that the universal graph is usually infinite. In our context,
the word universal graph refers to a finite graph and is universal with respect
to the existence of homomorphisms. The result of Häggkvist and Hell can be
seen as a restricted form of duality, as they quantify only over bounded degree
graphs, rather than all graphs. This type of result is called a restricted duality
theorem. In the last decade, a series of papers built upon Häggkvist and Hell’s
technique. In particular, in [4], where the authors investigated more generally
the existence of universal graphs for the class of graphs that are simultaneously
F -mote and H-colourable. In [6], we recently extended this last result by proving
that FPPs restricted to connected inputs of bounded-degree become CSPs. This
result could be described as a restricted coloured duality theorem.

A well-known extension of monadic second order logic consists in allowing
monadic predicates to range over tuples of elements, rather than just elements
of a structure. This extension is denoted by MSO2 whereas the more standard
logic with monadic predicates ranging over elements only is denoted by MSO1.
In general, MSO2 is strictly more expressive than MSO1. However Courcelle [19]
proved that MSO2 collapses to MSO1, for some restriction of the input: for
graphs of bounded degree, for partial k-trees (for fixed k), for planar graphs
and, more generally for graphs belonging to a proper minor closed class (a class
K such that: a minor of a graph G belongs to K provided that G belongs to K;
and, K does not contain all graphs).

It is perhaps worth mentioning that in [6] and the present paper we assume a
definition of FPPs that is more general than the original one in [2] in that the
new definition allows colourings not only of the vertices but also of the edges
of the input graph. Essentially, this means that we are now considering prob-
lems related to MMSNP2, the extension of MMSNP with edge quantification
(for clarity, from now on, we denote by MMSNP1 the original logic, i.e. with-
out edge quantification). Thus, in [6] we obtain as a corollary that MMSNP1

and MMSNP2 collapse to CSP when restricted to connected inputs of bounded
degree.

Nešetřil and Ossona de Mendez [7] introduced the notion of tree-depth of a
graph and, using a result of De Vos et al. [20] on low tree-width decomposition for
proper minor closed class, they proved a similar result using tree-depth rather
than tree-width. This allowed them to prove a restricted duality theorem for
proper minor closed classes of graphs. In this paper, we prove a restricted coloured
duality theorem for proper minor closed classes: we extend the notion of tree-
depth to arbitrary structures and prove this theorem for arbitrary structures, not
only for graphs. As a corollary, we get the main result of this paper: we prove
that MMSNP1 and MMSNP2 collapse to CSP when restricted to connected
structures whose Gaifman graphs belong to a proper minor closed class. Note
that the proof of our previous result [6] uses a different technique: for bounded
degree d input, the construction of the universal graph relies on the fact that
every subgraph induced by the vertices at distance at most p from a given vertex
in a bounded degree graph is finite and its size depends only of d and p (p is a
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constant that is fixed according to the size of the forbidden patterns). This is
not the case when the input comes from a proper minor closed class.

The paper is organised as follows. In Section 2, we define CSPs, FPPs and
give some examples. Then, we define MMSNP1 and recall some known results
and extend them to MMSNP2. Next, we prove that problems in MMSNP2 are
also infinite CSP in the sense of Bodirsky. We conclude Section 2 by stating our
main result, the collapse to CSPs of MMSNP1 and MMSNP2 when restricted to
connected structures from a proper minor closed class. We illustrate this result by
a few examples. We also give a brief overview of the proof structure to guide the
reader in the following technical sections. In Section 3, we introduce the notion
of tree-depth for structures. Then, we show that coloured structures of bounded
tree-depth have bounded cores. Finally, we show that structures that belong
to a (fixed) proper minor closed class have a low tree-depth decomposition. In
Section 4, we build a finite universal coloured structure for forbidden patterns
for problems that are restricted to a class of structure that have a low tree-
depth decomposition. We conclude this section by a proof of our main result.
Most proofs have been omitted due to space restrictions and are available in the
online appendix [21].

2 Preliminaries

2.1 CSP and FPP

Let σ be a signature that consists of finitely many relation symbols. From now
on, unless otherwise stated, every structure considered will be a σ-structure.
Let S and T be two structures. A homomorphism h from S to T is a mapping
from |S| (the domain of S) to |T | such that for every r-ary relation symbol R
in σ and every elements x1,x2, . . . ,xr of S, if R(x1,x2, . . . ,xr) holds in S then
R(h(x1),h(x2), . . . ,h(xr)) holds in T .

Constraint Satisfaction Problems. The constraint satisfaction problem with
template T is the decision problem with,

– input: a finite structure S; and,
– question: does there exist a homomorphism from S to T ?

We denote by CSP the class of constraint satisfaction problems with a finite
template.

Example 1. The constraint satisfaction problem with template K3 (the clique
with three elements, i.e. a triangle) is nothing else than the 3-colourability prob-
lem from graph theory.

Let V (respectively, E) be a finite set of vertex colours (respectively, edge colours).
A coloured structure is a triple (S, sV, sE), where S is a structure, sV is a mapping
from |S| to V and sE is a mapping from E(S) to E where,

E(S) :=
⋃
R∈σ

{
(R,x1,x2, . . . ,xr) s.t. R(x1,x2, . . . ,xr) holds in S

}
.
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Let (S, sV, sE) and (S′, s′V, s′E) be two coloured structures. A colour-preserving
homomorphism h from S to S′ is a homomorphism from S to S′ such that
s′

V ◦ h = s and for every tuple t = (R,x1,x2, . . . ,xr) in E(S), s′
E(t′) = sE(t),

where t′ :=
(
R,h(x1),h(x2), . . . ,h(xr)

)
. When the colours are clear from the

context, we simply write that h preserves colours. Note that the composition of
two homomorphism that preserve colours is also a homomorphism that preserves
colours.

A structure S is connected if it can not be partitioned into two disjoint induced
substructures. A pattern is a finite coloured structure (F, fV, fE) such that F is
connected. In this paper, patterns are used to model constraints in a negative
fashion and consequently, we refer to them as forbidden patterns. Let F be a
finite set of forbidden patterns. We say that a coloured structure (S, sV, sE) is
valid with respect to F if, and only if, for every forbidden pattern (F, fV, fE) in
F, there does not exist any colour-preserving homomorphism h from F to S.

Forbidden Patterns Problems. The problem with forbidden patterns F is the
decision problem with,

– input: a finite structure S
– question: does there exist sV : |S| → V and sE : E(S) → E such that

(S, sV, sE) is valid with respect to F?

We denote by FPP1 the class of forbidden patterns problem with vertex colour
only (that is for which E has size one) and by FPP2 the class of forbidden
patterns problems.

Example 2. Let G be an undirected graph. It is usual to represent G as a rela-
tional structure with a single binary relation E that is symmetric. However, the
logics considered in this paper are monotone and we can not express that E is
symmetric and we use a different representation to encode graphs. We say that a
structure S with one binary relation symbol E encodes G, if |S| = V (G) and for
any x and y in V (G), x and y are adjacent in G if, and only if, E(x, y) or E(y,x)
holds in S. Note that this encoding is not bijective. Modulo this encoding, the
following graph problems are Forbidden Patterns Problems.

1. Vertex-No-Mono-Tri: consists of the graphs for which there exists a par-
tition of the vertex set in two sets such that no triangle has its three vertices
occurring in a single partition. It was proved in [8,14] that this problem is
not in CSP and in [22] that it is NP-complete.

2. Tri-Free-Tri: consists of the graphs that are both three colourable (tri-
partite) and in which there is no triangle. It was proved in [14] that this
problem is not in CSP.

3. Edge-No-Mono-Tri: consists of the graphs for which there exists a par-
tition of the edge set in two sets such that no triangle has its three edges
occurring in a single partition. It is known to be NP-complete (see [23]).
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2.2 MMSNP1 and MMSNP2

The class of forbidden patterns problems with colours over the vertices only,
corresponds to the problems that can be expressed by a formula in Feder and
Vardi’s MMSNP (Monotone Monadic SNP without inequalities, see [8,2]). Note
that allowing colours over the edges does not amount to drop the hypothesis of
monadicity altogether. Rather, it corresponds to a logic, let’s call it MMSNP2,
which is similar to MMSNP but allows first-order variables over edges (just like
Courcelle’s MSO (Monadic Second Order logic) and MSO2, see [19]).

This section is organised as follows: first, we introduce formally MMSNP1 and
recall some known results; and, secondly, we introduce MMSNP2 and prove that
it captures finite union of problems in FPP2. Finally, we prove that problems in
FPP2 are infinite CSP in the sense of Bodirsky [15].

Definition 3. Monotone Monadic SNP without inequality, MMSNP1, is the
fragment of ESO consisting of those formulae Φ of the following form:

∃M∀t
∧
i

¬
(
αi(σ, t) ∧ βi(M, t)

)
,

where M is a tuple of monadic relation symbols (not in σ), t is a tuple of (first-
order) variables and for every negated conjunct ¬(αi ∧ βi):

– αi consists of a conjunction of positive atoms involving relation symbols from
σ and variables from t; and

– βi consists of a conjunction of atoms or negated atoms involving relation
symbols from M and variables from t.

(Notice that the equality symbol does not occur in Φ.)

The negated conjuncts ¬(α ∧ β) correspond to (partially coloured) forbidden
structures (and this is the reason why we use such a notation in the defini-
tion rather than using implications or clausal form). To get forbidden patterns
problems, we need to restrict sentences so that negated conjuncts correspond
precisely to coloured connected structures. Such a restriction was introduced
in [2] as follows.

Definition 4. Moreover, Φ is primitive if, and only if, for every negated con-
junct ¬(α ∧ β):

– for every first-order variable x that occurs in ¬(α∧β) and for every monadic
symbol C in M, exactly one of C(x) and ¬C(x) occurs in β;

– unless x is the only first-order variable that occurs in ¬(α ∧ β), an atom of
the form R(t), where x occurs in t and R is a relation symbol from σ, must
occur in α; and,

– the structure induced by α is connected.

Theorem 5. [2] The class of problems captured by the primitive fragment of
the logic MMSNP1 is exactly the class FPP1 of forbidden patterns problems with
vertex colours only.



Universal Structures and the Logic of Forbidden Patterns 477

It is only a technical exercise to relate any sentence of MMSNP1 with its primitive
fragment.

Proposition 6. [2] Every sentence of MMSNP1 is logically equivalent to a
finite disjunction of primitive sentences.

Consequently, we have the following characterisation.

Corollary 7. Every sentence Φ in MMSNP1 captures a problem Ω that is the
union of finitely many problems in FPP1.

Remark 8. We have altered slightly the definitions w.r.t. [2]. We now require a
pattern to be connected and we have amended the notion of a primitive sentence
accordingly.

The logic MMSNP2 is the extension of the logic MMSNP1 where in each negated
conjunct ¬(α∧β), we allow a monadic predicate to range over a tuple of elements
of the structure, that is we allow new “literals” of the form M(R(x1,x2, . . . ,xn))
in β, where R is n-ary relation symbol from the signature σ. We also insists that
whenever such a literal occurs in β then R(x1,x2, . . . ,xn) appears in α. The
semantic of a monadic predicate M is extended and is defined as both a subset
of the domain and a subset of the set of tuples that occur in some input relation:
that is, for a structure S, MS ⊂ |S| ∪E(S). We say that a sentence of MMSNP2

is primitive if each negated conjunct ¬(α∧β) satisfies the same conditions as in
Definition 4 and a further condition:

– if R(x1,x2, . . . ,xn) occurs in α then for every (existentially quantified) mona-
dic predicate C exactly one of C(R(x1,x2, . . . ,xn)) or ¬C(R(x1,x2, . . . ,xn))
occurs in β.

It is only a technical exercise to extend all the previous results of this section
concerned with MMSNP1 and FPP1 to MMSNP2 and FPP2. In particular, we
have the following result.

Corollary 9. Every sentence Φ in MMSNP2 captures a problem Ω that is the
union of finitely many problems in FPP2.

2.3 Infinite CSP and MMSNP2

Bodirsky et al. have investigated constraint satisfaction problems, where the tem-
plate is infinite and have proposed restrictions that ensure that the problems are
decidable (and in NP): when the template is countable and homogeneous in [24],
and more recently to a more general case when the template is ω-categorical
in [15] (a countable structure Γ is ω-categorical if all countable models of its
first-order theory of Γ are isomorphic to Γ ). Denote by CSP� the set of con-
straint satisfaction problems that have a ω-categorical countable template and
belong to NP. Using a recent result due to Cherlin, Shelah and Chi [25], Bodirsky
and Dalmau proved the following result.
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Theorem 10. [16] Every non-empty problem in MMSNP1 that is closed under
disjoint union belongs to CSP�.

It follows directly from its definition that every problem in FPP1 is closed under
disjoint union. Hence, we get the following result.

Corollary 11. Every problem in FPP1 is in CSP�. Consequently, every problem
in MMSNP1 is the union of finitely many problems in CSP�.

Since the ω-categoricity is preserved by first-order interpretation, we can prove
the following.

Theorem 12. Every problem in FPP2 is in CSP�. Consequently, every problem
in MMSNP2 is the union of finitely many problems in CSP�.

Remark 13. As pointed out in [15], there are problems that are in CSP� but not
in MMSNP1. For example, the problem over directed graphs with template in-
duced by the linear order over Q. Unfortunately, this problem is not expressible
in MMSNP2 either. In fact, we do not know whether MMSNP1 is strictly con-
tained in MMSNP2. Indeed, to the best of our knowledge, none of the problems
used to separate MSO1 from MSO2 are expressible in MMSNP2. We suspect
that the problem Edge-No-Mono-Tri is not expressible in MMSNP1 and that
MMSNP1 is strictly contained in MMSNP2.

2.4 Main Result: Collapse of MMSNP1 and MMSNP2

Let S be a structure. The Gaifman graph of S, which we denote by GS is the
graph with vertices |S| in which two distincts elements x and y of S are adja-
cent if, and only if, there exists a tuple in a relation of S in which they occur
simultaneously. Given a class K of structures, we denote by GK the class of their
Gaifman graphs. A class of graphs G is said to be a proper minor closed class if
the following holds: first, for any graph G and any minor H of G, if G belongs
to G then so does H ; and, secondly G does not contain all graphs. Alternatively,
G is proper minor closed if it excludes at least one fixed graph as a minor, a
so-called forbidden minor. We say that a class of structures K is a proper minor
closed class if, and only if GK is a proper minor closed class.

The restricted duality theorem for proper minor closed classes of graphs proved
in [7] can be rephrased as follows.

Theorem 14. Let K be a proper minor closed class of graphs. Let F be a finite
set of connected graphs. There exists a universal graph U such that for any graph
G in K, the graph G is F -mote (there is no homomorphism from F to G) for
every graph F in F if, and only if, there exists a homomorphism from G to U .

We can use this result and ad hoc techniques from [6] to show that two of our
examples are CSP when restricted to a proper minor closed class K. Let U be
the universal graph for F = {K3}. Let U ′ be the product of U with K3. It is not
difficult to check that Tri-Free-Tri, restricted to K is the CSP with template
U ′. Similarly Vertex-No-Mono-Tri is the CSP with template U ′, where U ′′ is
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the graph that consists of two copies of U , such that every pair of elements from
different copies are adjacent. Note that technically, our problems being defined
over structures with a single binary relation E, we have not really expressed
them as a CSP. However, according to our encoding, replacing any two adjacent
vertices x and y in the above graphs by two arcs E(x, y) and E(y,x) provides
us with a suitable template. The last problem Edge-No-Mono-Tri is also a
CSP when restricted to a proper minor closed class. However, we do not know
how to get a template directly from the above result. For this, we need to use
the main result of this paper which is a restricted coloured duality theorem for
proper minor closed class and is formulated as follows.

Theorem 15. The logic MMSNP1 and MMSNP2 have the same expressive
power when restricted to any proper minor closed class K: they both express
finite union of (finite) CSPs. Furthermore, the logic MMSNP2 (and, a fortiori
MMSNP1) collapses to CSP, when restricted to connected structures that belong
to any proper minor closed class.

We wish to show that FPPs are CSPs when the input belongs to a proper
minor closed class (Theorem 15 follows directly from this fact using results of
Section 3). To prove this fact, given a forbidden patterns problem, we need to
build a structure U such that, for every input structure S (that comes from a
fixed proper minor closed class K), S is a yes-instance of the given forbidden
patterns problem if, and only if, S is homomorphic to U . So we wish to build
a structure U that is universal with respect to our forbidden patterns problem.
Recall that we use the word universal structure with a different meaning to that
of Fräıssé, in particular U has to be finite rather than infinite and is universal
w.r.t. the existence of homomorphisms rather than induced substructures (i.e.
existence of embeddings). Assume for now that the forbidden patterns problem
in question has a single colour. The key property to build such a finite U is that
of bounded tree-depth. It turns out that though the size of a structure of bounded
tree-depth may be arbitrarily large, the size of its core is bounded. The core of
a structure S is the smallest structure that is homomorphically equivalent to
S. Let Yp be the disjoint union of all cores of structures of tree-depth at most
p that are valid (w.r.t. our fixed forbidden patterns problem). Note that Yp is
finite and for any structure S of tree-depth at most p, S is homomorphic to Yp
if, and only if, S is valid. The reason why we impose that the input comes from
a proper minor closed class is that any such structure can be decomposed into a
finite number of parts, say q, so that any p ≤ q parts induce a structure of tree-
depth at most p. So, given some input S together with such a decomposition,
if the largest forbidden pattern has size p then it suffices to check that for any
choice of p parts of the input, the structure induced by these p-parts is valid,
or equivalently, that it is homomorphic to Yp. Finally, we use the key concept
of pth truncated product. This concept allows us to translate the existence of
homomorphisms to a structure T , for any p− 1 parts of a p partitioned input S,
to the existence of a homomorphism to the pth truncated product of T . Hence,
by taking a sequence of suitable truncated products of Yp, we get the desired
finite universal structure U . Note that we assumed that the forbidden patterns
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problem had a single colour. In order to get our result in general, we adapt the
above ideas and concepts to coloured structures.

3 Tree-Depth, Cores and Low Tree-depth Decomposition

3.1 Tree-Depth and Elimination Tree of a Structure

Following the theory of tree-depth of graphs introduced in [7], we develop ele-
ments of a theory of tree-depth for structures. Let S be a structure. We denote
by HS the hypergraph induced by S, that has the same domain as S and whose
hyperedges are the sets that consists of the elements that occur in the tuples of
the relations of S. If H is an hypergraph and r is an element of the domain of H

then we denote by H \ {r} the hypergraph obtained from H by deleting r from
the domain of H and removing r from every hyperedge in which it occurs (e.g.
{a, b, r} is replaced by {a, b}). A connected component Hi of HS \ {r} induces a
substructure Si of S in a natural way: Si is the induced substructure of S with
the same domain as Hi. If S is connected, then we say that a rooted tree (r, Y )
is an elimination tree for S if, and only if, either |S| = {r} and |Y | = r, or for
every component Si of S (1 ≤ i ≤ p) induced by the connected components Hi

of HS \ {r}, Y is the tree with root r adjacent to subtrees (ri, Yi), where (ri, Yi)
is an elimination tree of Si. Let F be a rooted forest (disjoint union of rooted
trees). We define the closure of F clos(F,σ) to be the structure with domain |F |
and all tuples Ri(x1,x2, . . . ,xri) such that the elements mentioned in this tuple
{xi|1 ≤ i ≤ ri} form a chain w.r.t. ≤F , where ≤F is the partial order induced
by F , i.e. x ≤F y if, and only if, x is an ancestor of y in F . The tree-depth of S,
denoted by td(S), is the minimum height of a rooted forest F such that S is a
substructure of the closure of F , clos(F,σ).

These notions are closely related.

Lemma 16. Let S be a connected structure. A rooted tree (r, Y ) is an elimina-
tion tree for S if, and only if, S is a substructure of clos(Y,σ). Consequently,
the tree-depth of S is the minimum height of an elimination tree.

3.2 Tree-Depth and Cores

We show that a coloured structures of bounded tree-depth K has a core of
bounded size. Recall that a retract of a structure S is an induced substructure
S′ of S for which there exists a homomorphism from S to S′. A minimal retract
of a structure S is called a core of S. Since it is unique up to isomorphism,
we may speak of the core of a structure [1]. This notion extends naturally to
coloured structures.

We say that a (colour-preserving) automorphism µ of a (coloured structure)
S has the fixed-point property if, for every connected substructure T of S, either
µ(T ) ∩ T = ∅ or there exist an element x in T such that µ(x) = x. We say that
µ is involuting if µ ◦ µ is the identity.

Theorem 17. There exists a function η : N × N → N such that, for any
coloured structure (S, sV, sE) such that |S| > η(N, td(S)) and any mapping g :
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|S| → {1, 2, . . . , N}, there exists a non-trivial involuting g-preserving automor-
phism µ of (S, sV, sE) with the fixed-point property.

Theorem 18. Let (S, sV, sE) be a coloured structure. If |S| > η(1, td(S)) then
(S, sV, sE) maps homomorphically into one of its proper induced substructure
(S0, s

V
0 , sE

0 ). Consequently, (S, sV, sE) has a core of size at most η(1, td(S)).

Thus, we get the following result.

Corollary 19. Let K be any set of coloured structures of bounded tree-depth k.
Then the set K′ of cores of structures from K (up to isomorphism) is finite.

3.3 Decomposition of Low Tree-Depth

In [20] De Vos et al. proved that for any proper minor closed class K and any
integer p ≥ 1, there exists an integer q such that for every graph G in K there
exists a vertex partition of G into q parts such that any subgraph of G induced
by at most j ≤ p parts has tree-width at most p − 1. Using this result, Neše-
třil and Ossona de Mendez prove a similar result for bounded tree-depth in [7],
which can be rephrased as follows.

Theorem 20. Let p ≥ 1. Let K be a proper minor closed class of graphs. There
exists an integer q such that any graph in K has a proper q-colouring in which
any p colours induce a graph of tree-depth at most p.

We extend this result to arbitrary structure using the following lemma.

Lemma 21. A rooted tree (r, Y ) is an elimination tree for a structure S if, and
only if, it is an elimination-tree for its Gaifman graph GS.

Corollary 22. Let p ≥ 1. Let K be a proper minor closed class of structures.
There exists an integer q such that for any structure S in K, there exists a
partition of |S| into q sets such that any substructure of S induced by at most p
of these sets has tree-depth at most p.

4 Restricted Coloured Dualities

4.1 Truncated Product

We extend the definition of truncated product and adapt two lemmas from [7]
to coloured structures. Let (S, sV, sE) be a coloured structure and p ≥ 2 be an
integer. We define the pth truncated product of (S, sV, sE), to be the coloured
structure (S′, s′V, s′

E) defined as follows.

– Its domain is a subset of
⋃p
i=1 W i where,

W i := {(x1,x2, . . . ,xi−1, �,xi+1, . . . ,xp) s.t.xk ∈ |S|, 1 ≤ k ≤ p, k �= i}

(� denotes a new element, i.e. � �∈ |S|).
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– We restrict further W i to W̃ i that consists of elements

wi = (x1,x2, . . . ,xi−1, �,xi+1, . . . ,xp)

of W i such that there exists v ∈ V such that for every 1 ≤ k ≤ p with k �= i
we have sV(xk) = v and we set |S′| := ∪pi=1W̃

i and s′
V(wi) := v.

– For every relation symbol R of arity r, and every tuple (wi1 , wi2 , . . . , wir )
where for every 1 ≤ k ≤ p, wik belongs to W̃ ik and

wik = (xik1 ,xik2 , . . . ,xikik−1, �,x
ik
ik+1, . . . ,x

ik
p )

satisfies,
• for every 1 ≤ k < k′ ≤ r, we have ik �= ik′ ;
• for every 1 ≤ i ≤ p, such that i �∈ {i1, i2, . . . , ir}, R(ti) holds in S, where

ti = (xi1i ,xi2i , . . . ,xiri ); and,
• there exists e ∈ E such that for every 1 ≤ i ≤ p, sE(ti) = e,

we set R(wi1 , wi2 , . . . , wir ) to hold in S′ and we set s′
E(wi1 , wi2 , . . . , wir ) :=

e.

We denote the pth truncated product by (S, sV, sE)⇑p.
This product has two important properties: it preserves validity w.r.t. a for-

bidden patterns problem (for a suitable p); and, the existence of all “partial”
colour-preserving homomorphisms is equivalent to the existence of a homomor-
phism to the truncated product (see Lemma 23 and Lemma 24 below).

Lemma 23. Let p ≥ 2. Let F be a set of forbidden patterns such that for every
(F, fV, fE) in F, we have |F | < p. If a coloured structure (S, sV, sE) is valid w.r.t
F then its p-truncated product (S′, s′V, s′E) is also valid w.r.t. F.

Lemma 24. Let (U, uV, uE) be a coloured structure and let p be an integer
greater than the arity of any symbol in σ. Let (S, sV, sE) be a coloured structure.
If there exists a partition V1,V2, . . . ,Vp of |S| such that for every substructure
(S̃i, s̃V, s̃E) of (S, sV, sE) induced by |S|\Vi there exist a colour-preserving homo-
morphism s̃i from (S̃i, s̃V, s̃E) to (U, uV, uE) then there exists a colour-preserving
homomorphism s̃ from (S̃i, s̃V, s̃E) to (U, uV, uE)⇑p.

Using the two previous lemma, we get the following result.

Proposition 25. Let p be an integer greater than the arity of any symbol in σ.
Let F be a set of forbidden patterns such that for every (F, fV, fE) in F, we have
|F | < p. Let q ≥ p. Let (U, uV, uE) be a coloured structure that is valid w.r.t F.
Let (S, sV, sE) be a coloured structure.

Assume that there exists a partition V1,V2, . . . ,Vq of |S| such that for every
substructure (S̃i, s̃V

i , s̃E
i ) of (S, sV, sE) induced by p subsets Vi1 ,Vi2 , . . . ,Vip there

exist a colour-preserving homomorphism s̃i from (S̃i, s̃V
i , s̃E

i ) to (U, uV, uE).
Then there exists a colour-preserving homomorphism s̃ from (S̃i, s̃V, s̃E) to

(U ′, u′V, u′
E) and (U ′, u′V, u′

E) is valid with respect to F, where

(U ′, u′V, u′
E) := (U, uV, uE)⇑(p+1)⇑(p+2)...⇑q.
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4.2 Universal Structure

We say that a coloured structure (U, uV, uE) is universal for a forbidden patterns
problem restricted to a class K of structures if for every valid coloured structure
there exists a colour-preserving homomorphism to (U, uV, uE), and vice versa.

Theorem 26. Let p be an integer greater than the arity of any symbol in σ. Let
F be a set of forbidden patterns such that for every (F, fV, fE) in F, we have
|F | < p. Let K be a proper minor closed class. There exists a universal coloured
structure (U, uV, uE) for the restriction to K of the forbidden patterns problems
with representation F.

Proof. Let (S, sV, sE) be a coloured structure such that S belongs to K. By
Corollary 22, there exists an integer N such that every structure S in K can be
partitioned into q parts, such that every p parts induce a substructure of S of
tree-depth at most p. By Theorem 18, the core of the coloured structure induced
by p parts is bounded. Let (U, uV, uE) be the disjoint union of all such cores that
are valid w.r.t. F (there are only finitely many). Since the forbidden patterns
have size at most p, it suffices to check every substructure of S of size at most
p and a fortiori (S, sV, sE) is valid w.r.t. F if, and only if, every of its coloured
substructure induced by p parts is valid, or equivalently if every such coloured
substructure maps homomorphically into (U, uV, uE).

By Proposition 25, if (S, sV, sE) is valid w.r.t. F then it is homomorphic to
(U, uV, uE)⇑(p+1)⇑(p+2)...⇑q; and, since (U, uV, uE)⇑(p+1)⇑(p+2)...⇑q is valid w.r.t.
F the converse holds as forbidden patterns problems are closed under inverse
homomorphism. '(

We have now all the elements to settle the problem of restricted coloured dualities
for proper minor closed class.

Corollary 27. Every forbidden patterns problem restricted to a proper minor
closed class is a CSP.

Proof. Let (U, uV, uE) be the universal coloured structure. We may take U as a
template. A homomorphism from a structure S to U induces mapping sV and
sE such that (S, sV, sE) is valid. Conversely, if S is not homomorphic to U then
for every colour maps sV and sE, there is no colour-preserving homomorphism
from (S, sV, sE) to (U, uV, uE) and (S, sV, sE) is not valid. '(

We are now ready to prove our main result.

Proof. (of Theorem 15). By Corollary 7 (resp. Corollary 9) every problem in
MMSNP1 (resp. MMSNP2) is equivalent to a finite union of problems from
FPP1 (resp. FPP2). By the previous theorem, when restricted to a proper minor
closed class , every forbidden patterns problem is a restricted CSP. This proves
that MMSNP1 and MMSNP2 collapse to finite union of CSP.

Moreover, if the problem is restricted to elements of a proper minor closed
class that are connected then by taking the disjoint union of the template of
each CSP, we get a template for our problem. '(
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5 Conclusion and Open Problems

We have proved that every forbidden patterns (with colours on both edges and
vertices) problem is in fact a constraint satisfaction problem, when restricted to
inputs that belong to a proper minor closed class. We derived from this result
that the logic MMSNP2 (and MMSNP1) coincides with the class of CSPs on
connected inputs that belong to a proper minor closed class. We proved, using a
different method, a similar result for bounded degree graphs in [6]. So, together
these results cover the restrictions considered by Courcelle in [19] under which
MSO1 and MSO2 have the same expressive power. However, we still have not
proved that for arbitrary input, MMSNP2 is more expressive than MMSNP1.

Another interesting open question is related to CSP�, the class of (well-
behaved) infinite CSPs. We know that any problem in MMSNP2 is a finite union
of problems from CSP�. However, there are problems in CSP� that are not ex-
pressible in MMSNP2, which yields the following question. Which extension of
MMSNP2 captures precisely CSP�?

Courcelle [26] has recently shown that MSO1 and MSO2 have the same ex-
pressiveness for uniformly k-sparse graphs. This notion subsumes the restrictions
from [19] mentioned above, which allows for a unified proof. Thus, it is reason-
able to ask ourselves the following question: Do MMSNP1 and MMSNP2 have
the same expressiveness over uniformly k-sparse graphs? And more precisely,
do forbidden patterns problems become constraint satisfaction problems when re-
stricted to uniformly k-sparse graphs? Nešetřil and Ossona de Mendez [27] have
recently unified the proofs of the restricted duality theorems for bounded degree
and proper minor closed classes using a more general concept, that of bounded
expansion. Moreover, it turns out that graphs of bounded expansion are exam-
ples of (very well behaved) sparse graphs. So if we cannot settle the previous
question in its full generality, we can at least hope to settle it in the case of
graphs of bounded expansion.

A final point concerns the notion of a proper minor closed class of structures.
In the present paper, we use the Gaifman graph to define this concept. However,
it would be more natural and perhaps preferable to define a notion of minor for
structures. The following definition seems reasonable. A minor of a structure S
is obtained from S by performing a finite sequence of the following operations:
taking a (not necessarily induced) substructure; and, identifying some elements,
provided that they all occur in some tuple of some relation. This new definition
subsumes the definition used in this paper and provokes our final question: Do
the results of this paper hold under this new definition?
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1. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press (2004)
2. Madelaine, F., Stewart, I.A.: Constraint satisfaction, logic and forbidden patterns.

submitted. (2005)
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27. Nešetřil, J., patrice Ossona de Mendez: Grad and classes with bounded expansion
iii. restricted dualities. Technical Report 2005-741, KAM-DIMATIA (2005)



On the Expressive Power of Graph Logic

Jerzy Marcinkowski

Institute of Computer Science,
University of Wroc�law,

Przesmyckiego 20, 51151 Wroc�law, Poland
jma@ii.uni.wroc.pl

Abstract. Graph Logic, a query language being a sublogic of Monadic
Second Order Logic is studied in [CGG02]. In the paper [DGG04] the
expressiveness power of Graph Logic is examined, and it is shown, for
many MSO properties, how to express them in Graph Logic. But despite
of the positive examples, it is conjectured there that Graph Logic is
strictly less expressive than MSO Logic. Here we give a proof of this
conjecture.

1 Introduction

1.1 Previous Work and Our Contribution

There are no good tools known for proving, for a given sublogic L of Monadic
Second Order Logic, that L is strictly less expressive than the whole MSOL.

Take for example the prefix subclasses of MSOL. The case of the so called
monadic NP, the class of properties expressible by formulas with the quan-
tifier prefix of the form

E∗(∀∃)∗, is well understood1, and several cute tech-
niques are known, for showing that an MSO Logic property is not in this class.
But this is no longer the case if more second order quantification is allowed.
In [AFS98] a programme was proposed of studying closed monadic NP, the
class of properties definable (on finite structures) by formulas with the pre-
fix of the form [

E∗(∀∃)∗]∗. Some complicated MSO properties not express-
ible in (∀∃)∗ E∗(∀∃)∗ were constructed in [AFS98]. In [M99] we answered a
question from [AFS98], showing that directed reachability is not expressible in
(∀∃)∗ E∗(∀∃)∗. In [JM01] a set of simple tools was presented for constructing
MSO properties not in the last class. Further simplification of the tools is pre-
sented in [KL04]. But, despite of many efforts, we are not even able to show
that there is any monadic second order property of finite structures not being
expressible by a formula with the quantifier prefix

E∗(∀∃)∗ E∗(∀∃)∗. The ques-
tion, whether closed monadic NP is closed under complementation, appears to
be well beyond our reach.
1 We use the symbols

E

and

A

for monadic second order quantifiers and the symbols
∃ and ∀ for first order quantifiers.
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Another sublogic of MSOL, called Graph Logic, is studied in [CGG02] and
in [DGG04]. The second order quantification is restricted here not in terms of
the quantifier prefix, but by the way the formula following a quantifier can be
written. Second order quantification in Graph Logic is always of the form: there
exists a set S of edges such that φ ∧ ψ, where φ can only concern edges2 in
S while ψ can only concern edges not in S. So, in a sense, each second order
quantifier splits the (set of edges of the) structure into two parts, which are invis-
ible from each other. This construction may appear strange, but it comes from
some sort of application: it is explained in [CGG02] how, and why, they want
to use Graph Logic as a query language. But does this restriction really change
anything? In [DGG04] the expressive power of this logic is studied. It turns out
that surprisingly many MSO properties are expressible in Graph Logic (although
the GL formulas usually turn out to be much longer than the respective MSOL
formulas), for example 2-colorability and 4-colorability are expressible (but 3-
colorability is not known to be). All regular word languages are expressible (but
regular tree languages are not known to be). There are also MSO properties
on any level of Polynomial Hierarchy3 which can be expressed in Graph Logic.
Another thing which is easy to show, is that all the properties concerning con-
nectivity, usually used to separate classes inside MSOL, are definable in GL.
Despite the positive results, the conjecture which was left open in [DGG04], is
that Graph Logic is strictly less expressive than Monadic Second Order Logic.
In this paper we give a proof of this conjecture.

There is however one more subtle point. For reasons coming from the in-
tended applications, the Graph Logic, as defined in [CGG02] uses an additional
construct: quantification over labels of edges. This is not what we usually have
in MSOL. In [DGG04] the authors want to treat GL as a sublogic of MSOL,
so they enrich Monadic Second Order Logic with the construct. In our paper
we call this richer logic MSO+. What is conjectured in [DGG04], and proved in
Section 3 of this paper, is exactly that MSO+ is strictly more expressive than
GL. Our believe is that already this proof is not quite trivial, but we admit that
the really interesting problem, and probably a more difficult one, would be to
separate Graph Logic without edge labeling (we call this logic GL–) from the
standard MSO Logic. In Section 4 we show why this cannot be done by a natural
modification of the technique from Section 3. A careful reader will notice that
the methods of Section 4 can also prove that MSO is exponentially more succinct
than GL–.

2 The signature here consists of a single graph relation, and the monadic quantification
is Courcelle style (see [C90]): we quantify over sets of edges rather than over sets of
vertices.

3 The second order quantification in GL, as we described it, is only existential, but we
can go beyond NP using negation on top of it, and nesting the quantifiers: the logic
is closed under all boolean connectives, under first order quantification and under
the restricted form of second order quantification.
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1.2 Informal Introduction to the Technical Part

As we said above, we are not even able to show that there is any Monadic
Second Order property of finite structures not expressible by a formula with the
quantifier prefix

E∗(∀∃)∗ E∗(∀∃)∗.
The reason of this humiliating state of affairs is that (almost) the only tech-

nique we know to prove non-expressibility of some property P is using
Ehrenfeucht–Fräıssé games. To use this technique, two structures A,B must
be constructed, with A having property P and B not having this property,
and a strategy for a player called Duplicator must be shown, allowing him to
pretend that A and B are isomorphic. The game consists of colouring rounds,
one round for each block of monadic second order quantifiers, and first order
rounds, one round for each first order quantifier. We understand quite well what
first order types are, and in what circumstances Duplicator will have a win-
ning strategy in a game consisting of first order rounds. But the same cannot
be said about second order types and colouring rounds. There are two ideas
known that can help the Duplicator’s case. One is called Ajtai-Fagin game. In
such a game Duplicator commits on the structure B only after the Spoiler’s
colouring of A is known. This works well, but only when the game begins with
a colouring round, and there are no more colouring rounds, which means that
this trick is exactly tailored for monadic NP. The second idea (from [M99]) is to
take A and B to be structures with many symmetries, so that Duplicator does
not need to commit, until the colouring round, which objects in B counterpart
which objects in A. Some of the symmetries are lost during the initial first order
rounds, but still with this trick we can afford first order rounds before a colour-
ing round. But again, the technique works only for games with a single colour-
ing round. After Spoiler colours the structure there is no way to preserve any
symmetries.

Imagine, for example, structures which are unions of no more than 2m disjoint
strings of length m, for some natural m. There are not many MSO properties
that can be defined on such structures, but Duplicator’s life is hard anyway:
consider a colouring round here. Before such a round is played, a structure has
plenty of automorphisms. But then Spoiler can colour each string in different
way, making the structure rigid (notice that if a first order round was played
instead, just one of the strings would get fixed, and all the automorphisms which
do not move this string would survive).

Actually, our proof in Section 3 is more or less about the above example. We
show (in Lemma 2 and Lemma 4) that if the colouring is understood in the
Graph Logic sense, as splitting the structure into two substructures which are
invisible from each other, then whatever Spoiler will do, each of the resulting
two substructures will have many symmetries. This observation is then iterated
(Lemma 5), and that gives a winning strategy for Duplicator in a monadic game
with arbitrarily many colouring rounds.
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2 Preliminaries

By a structure we will understand, until the end of Section 3, a triple G =
〈V,E,L〉, where V is a set of vertices, E ⊆ V × V is an edge relation, and L is
a family of subsets of V × V , called edge labels.4

Let G = 〈V,E,L〉 be a structure. We will use the notation G = G1|G2 to say
that:

1. G1 = 〈V,E1,L〉, G2 = 〈V,E2,L〉,
2. E1 ∩ E2 = ∅
3. E1 ∪ E2 = E

The notation E = E1|E2 will be used instead of G = G1|G2 if V and L are
clear from the context.

2.1 The Logics Under Consideration

Consider a language with 3 sorts of variables: standard first order variables (to
denote them we will use letters x, y, z and their variants), first order labeling
variables (denoted by l1, l2 . . .) and monadic second order variables (P,Q . . .).

All the logics we are going to consider are defined by the following constructs.

1. First order logic constructs. If x, y are first order variables then E(x, y),x = y
are atomic formulas, and x, y are free in them. If φ,ψ are formulas then φ∧ψ,
φ∨ψ, ¬ψ, ∃x φ and ∀x φ are formulas, with the usual convention concerning
free variables. Semantics of the constructions is standard.

2. Edge labeling. If x, y are first order variables and l is a first order labeling
variable then l(x, y) is a formula, with l,x, y being free variables. If l,x, y
are interpreted in a structure G as x̄, ȳ ∈ V , l̄ ∈ L then G |= l(x, y) if
[x̄, ȳ] ∈ E ∩ l̄, that is if ”the edge E(x̄, ȳ) exists and is labeled by l̄”.
If l is free in φ then ∃l φ is a formula, which is true if there exists a label in
L making φ true.

3. Graph logic quantification. If φ,ψ are formulas, then φ|ψ is a formula, whose
free variables are the variables which are free in φ or in ψ. G |= φ|ψ if there
exist G1 and G2 such that G = G1|G2, that G1 |= φ and that G2 |= ψ.

4. Monadic second order quantification. If x, y are first order variables and P is
a monadic second order variable then P (x, y) is a formula, with P,x, y being

4 We found it convenient to understand Graph Logic labels as sets of edges. But this
implies that our ”family of subsets” is itself a multiset: two different labels can be
equal as sets. (The names for) labels, as we define them, are not (as they are in
[CGG02]) elements of the signature. If they were, then Definition 1 would be even
more complicated: since individual names for labels would be available for Spoiler, he
would be able to force Duplicator, in some circumstances, to respond in his move in a
labeling round, with exactly the same label as Spoiler used for his move. That would
however not affect our non-expressibility proofs: our Duplicator always responds
with the Spoiler’s label in the labeling rounds anyway, keeping all his tricks for the
colouring rounds.



490 J. Marcinkowski

free variables. If φ is a formula, and P is free in φ then

E

P φ and

A

P φ are
formulas. The semantics is standard, but remember that what we consider
is monadic quantification over sets of edges. This means that we are only
allowed to quantify over existing edges, so P (x, y) can only be true is E(x, y)
is true.

By Graph Logic (GL) we will mean the logic defined by the constructs from
items (i)-(iii). By Monadic Second Order Logic (MSO) we will mean the logic
defined in items (i) and (iv). Notice that to make MSO and GL comparable, a
version of MSO where quantifiers range over sets of edges rather than sets of
vertices is used here. By Monadic Second Order Logic with Labeling (MSO+)
we will mean the logic defined in items (i),(ii) and (iv). By Weak Graph Logic
(GL–) we will mean the logic defined by the constructs from items (i) and (iii).

Example. Let ρ be the first order formula: ∀s, w, z ¬(E(s, w) ∧E(w, z)). Then
the GL– formula: ∃x �= y [(x and y are isolated ∧ρ)|ρ] defines, over the set of
all strings, the class of strings with odd number of edges.

The question left open by [DGG04], and answered in this paper, can be now
stated as: Is MSO+ strictly more expressive than GL?

2.2 Ehrenfeucht – Fräıssé Games for Graph Logic

In this subsection we define the Ehrenfeucht–Fräıssé style game for Graph Logic,
and state a lemma asserting the equivalence between logic and games. There is
nothing counterintuitive in the lemma for anyone having some experience with
games for Monadic Second Order Logic (see for example [EF95], and thus we
decided to skip its proof.

Game for graph logic is played by two players, Spoiler and Duplicator and
takes r rounds.

Each round is played according to a protocol, whose input and output are
of the form 〈G; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉, for some
p, q ≥ 0, where G = 〈V,E,L〉, and G′ = 〈V ′,E′,L′〉 are two structures, where
c1, c2, . . . cl ∈ V and c′1, c

′
2, . . . c

′
l ∈ V ′ and where l1, l2, . . . lq ∈ L and l′1, l

′
2, . . . l

′
q ∈

L′.
The following definition gives the protocol of a single round of the game for

graph logic GL. Nothing, possibly except of the description of the colouring
round, is going to surprise the reader here:

Definition 1. Each round is of one of four kinds: negation round or first order
round, or first order labeling round, or colouring round. At the beginning of each
round Spoiler decides which kind of round he wishes this one to be.

If the round is decided to be a negation round, then Spoiler gets a pair 〈G; c1, c2,
. . . cp; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉, and the output is the pair 〈G′; c′1,
c′2, . . . c

′
p; l′1, l′2, . . . l′q〉, 〈G; c1, c2, . . . cp; l1, l2, . . . lq〉. Duplicator does not move in a

negation round.
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If the round is decided to be a first order round, then Spoiler gets a pair
〈G; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉 as the input, and picks
one c ∈ V . Duplicator answers Spoiler’s move by picking one c′ ∈ V ′, and the
output is the pair: 〈G; c, c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′; c′, c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉.

If the round is a first order labeling round, then Spoiler gets, as the input, a
pair 〈G; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉, and picks one l ∈
L. Duplicator answers this move by picking one l′ ∈ L′. The output of the round
is then the pair: 〈G; c1, c2, . . . cp; l, l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′, l′1, l′2, . . . l′q〉.

Things are more complicated if the round is a colouring round. Spoiler gets a
pair 〈G; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉. He chooses a pair
of structures G1,G2, such that G = G1|G2. Duplicator answers with a pair of struc-
tures G′1,G′2, such that G′ = G′1|G′2. Then Spoiler decides if he wants the output of
the round to be the pair 〈G1; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′1; c′1, c′2, . . . c′p; l′1, l′2, . . .
l′q〉, or if he prefers it to be 〈G2; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′2; c′1, c′2, . . . c′p; l′1,
l′2, . . . l

′
q〉.

Definition 2. A pair 〈G; c1, c2, . . . cp; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′p; l′1, l′2, . . . l′q〉,
with G = 〈V,E,L〉, G′ = 〈V ′,E′,L′〉, is called a winning position for Duplicator
in the game for GL if:

– for each 1 ≤ i, j ≤ p it holds that E(ci, cj) if and only if E′(c′i, c
′
j);

– for each 1 ≤ i, j ≤ p such that E(ci, cj), and for each 1 ≤ k ≤ q it holds that
lk(ci, cj) if and only if l′k(c

′
i, c
′
j).

Once a protocol for a single round is defined, and the winning condition is stated,
the notion of a winning strategy for a player in an r-round game is clear. Game
for GL– is analogous to game for GL, with the only difference that Spoiler is not
allowed to use first order labeling rounds in the game for GL–.

Lemma 1. The property W of structures is non-expressible in graph logic GL
(in graph logic GL–) if and only if, for each natural number r, there exist two
structures G1,G2, such that G1 ∈ W, G2 �∈ W and Duplicator has a winning
strategy in the r-round game for GL (or, respectively, in the r-round game for
GL–) on 〈G1; ; 〉 and 〈G2; ; 〉.

We will sometimes write G instead of 〈G; ; 〉.

3 MSO+ vs. GL

We will use a sort of algebraic notation to talk about structures. Fix a natural
number m. Let M = {1, 2, . . .m} and let l1, l2 . . . lm be a fixed set of m names
for labels.

We will identify a set U ⊆ M with a structure5 whose vertices are u0, u1, . . .
um, whose edges are E(ui−1, ui) for each i ∈ U and whose label li consists of
the single pair 〈ui−1, ui〉.
5 The structure is defined up to isomorphism. We usually identify isomorphic struc-

tures.
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Definition 3. 1. Let U ⊆ M . Then (the structure identified with) U is an
m-fibre.

2. Each m-fibre is an m-fibre structure
3. Suppose S1,S2 are m-fibre structures, with S1 = 〈V1,E1, {l11, l12, . . . l1m}〉 and

S2 = 〈V2,E2, {l21, l22, . . . l2m}〉, such that V1 ∩ V2 = ∅
Then S = 〈V1∪V2,E1∪E2, {l11∪l21, l

1
2∪l22, . . . l

1
m∪l2m}〉 is an m-fibre structure

denoted by S1 +m S2. So S1 +m S2 is the structure, whose set of vertices,
set of edges, and each label are disjoint unions of the sets of vertices, sets of
edges, and the respective labels of S1 and S2.

4. If U1,U2, . . .Uk are isomorphic m-fibre structures, then we will write k∗mU1

instead of U1 +m U2 +m . . . +m Uk.
5. A structure is called a fibre structure if it is an m-fibre structure for some m.

Even if the names of labels l1, l2, . . . lm are not part of the language, having
them in the structure we can quantify over them, and express (by the formula
∃l l(a, b) ∧ l(c, d) ∧ a �= c) the property that edges E(a, b) and E(c, d) are ”in
the same place” in two fibres. The proof of Claim (i) of Theorem 1 will rely on
that.6

The following theorem states the separation result conjectured in [DGG04]:

Theorem 1. Let W be the set of fibre structures which are of the form s ∗mM ,
for some m and some s ≤ 22m . Then:

1. W is definable in MSO+, over the set of all fibre structures which are of the
form s ∗m M , for some m and some s.

2. W is not definable in GL over the set of all fibre structures which are of the
form s ∗m M , for some m and some s.

The property of being a fibre structure is definable in MSO+. It is also easy
to see that the property of being of the form s ∗m M , for some m and some s,
is first order definable over the set of all fibre structures. So, if we wanted, we
could state the first claim of the above theorem simply as ”W is definable in
MSO+”. We however do not need it for the separation result: to prove separation
result for two logics it is enough to prove that they differ on some fixed class of
structures.

Proof. Claim (i) of the theorem is very easy to show.
There are 2m ways of colouring M with a single predicate, and 22m ways if we

have two predicates. So in order to say, that there are no more than 22m copies
of M it is enough to write an MSO+ formula, with two existentially quantified
monadic second order variables P, P ′ saying that each copy of M in the structure
(a copy is represented by some edge from u to t) is coloured in a different way by
P and P ′ (and the edges labeled by ld are where the difference can be spotted).

6 Mathematics is about using definitions. But the way we exploit the definition of
GL here is a win on technicalities, so shameless that the author briefly considered
applying for a job in one of the Law Departments.
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One more predicate Q is needed to express the fact that two vertices are in the
same copy of M :E

P, P ′ ∀u �= u′ ∀t, t′, l ∃x, y,x′, y′, ld [l(u, t) ∧ l(u′, t′)]⇒
[ ld(x, y) ∧ ld(x′, y′)
∧ ¬([P (x, y)⇔ P (x′, y′)] ∧ [P ′(x, y)⇔ P ′(x′, y′)])
∧ E

Q Q is a path from u to y or Q is a path from x to t
∧ E

Q Q is a path from u′ to y′ or Q is a path from x′ to t′ ]

Where ”Q is a path from u to y” is the formula:
(u = y ∨ ∃x Q(x, y))

∧ ∀x1 ∀x2 �= y ∃x3 Q(x1,x2)⇒ Q(x2,x3)
∧ ∀x1 �= u ∀x2 ∃x0 Q(x1,x2)⇒ Q(x0,x1)

The rest of Section 3 will be devoted to the proof of Claim (ii).

3.1 Crosswords Lemma

A (k, n)-crossword is a matrix with k columns and n rows, and with each element
being either the constant white or the constant black.

For two (k, n)-crosswords C and C′ we say that they are one step equivalent
if one of the following two conditions holds:
Swapping. C′ is a result of swapping two rows in C.
Crossing-over. (see Fig. 1) There exist 1 ≤ i < k, 1 ≤ j < n such that:

1. C(i, j) = C(i, j + 1) �= C(i + 1, j) = C(i + 1, j + 1),
2. if j �= p �= j + 1 then C(q, p) = C′(q, p), for each 1 ≤ q ≤ k,
3. if q ≤ i then C(q, p) = C′(q, p), for each 1 ≤ p ≤ n
4. if q ≥ i + 1 then C(q, j) = C′(q, j + 1) and C(q, j + 1) = C′(q, j)

i i

j

Fig. 1. One step equivalence by crossing-over



494 J. Marcinkowski

Let R be the smallest equivalence relation containing one step equivalence.
The following lemma is going be our main tool:

Lemma 2. For each (k, n)-crossword C, with k ≤ 2s for some natural number
s, there exists a C′, such that R(C,C′) and that the first n

2ks rows of C′ are
equal to each other.

Proof. By induction on s. If s = 0 then k = 1 and there obviously are at least
n/2 equal rows in C.

Now the induction step. Without loss of generality we can assume that C(k/2,
p) is white for each p ≤ n/2. Now, for each p ≤ n/2 let left(p) be the greatest
q ≤ k/2 such that C(q, p) is black, and let right(p) be the smallest q ≥ k/2
such that C(q, p) is black. Let A(l, r) = {p ≤ n/2 : left(p) = l, right(p) = r}.
Obviously, since there are only k/2 possible choices for l and k/2 possible choices
for r, there must exist l and r, such that A(l, r) has some a ≥ 2n

k2 elements. Let
CA be the result of swapping, to the top of C, the rows of C with numbers from
A(l, r). Consider the (l − 1, a)-crossword CL defined as CL(i, j) = CA(i, j), and
the (k − r, a)-crossword CR defined as CR(i, j) = CA(i + r, j). One can imagine
CL and CR to be – respectively – in the top left and top right corner of CA (see
Fig. 2).

CC RL
a

l k−r

Fig. 2. The crossword CA from the proof of Lemma 2

By hypothesis there exist C′L and C′R such that R(CL,C′L), R(CR,C′R) and
that both C′L and C′R have all the first a

2(k/2)s−1 ≥ n
2ks rows equal. Let C′(i, j)

be CA(i, j) if j > a or if l ≤ i ≤ r. For j ≤ a and i < l define C′(i, j) as C′L(i, j),
and finally for j ≤ a and i > r define C′(i, j) as C′R(i + r, j). So C′ is CA with
CL substituted by C′L and with CR substituted by C′R. The top a

2(k/2)s−1 rows
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of C′ are equal. To finish the proof notice that l and r− 1 where both defined in
such a way that they can serve as the i from the crossing-over condition. From
this we can get that R(CA,C′) holds, and in consequence also that R(C,C′).

3.2 One Colouring Round

Let r be the number of rounds, as in Section 2.2. Take m such that m
log2m

≥ r,
which implies that 22m ≥ 2(2mlogm)r. Define S = 22m ∗m M and S′ = (22m +
1) ∗m M . Let E be the set of edges of S and E′ be the set of edges of S′. Of
course S ∈ W and S′ �∈ W .

What remains to be proved is that Duplicator has a winning strategy in the
r-round game on 〈S; ; 〉 and 〈S′; ; 〉.

To illustrate the idea of the strategy we consider a colouring round, played as
the first round of the game, on structures 〈S; ; 〉 and 〈S′; ; 〉. Spoiler commits
on some subset B ⊆ E. Notice that there is a natural bijection cross between
subsets of E and (m, 22m)-crosswords: for B ⊆ E the crosswords cross(B) is
such that cross(B)(i, j) is black if and only if the edge from ui−1 to ui, in the
j’th copy of M in S, is in B. For B ⊆ E let B̄ ⊆ E be such that E = B|B̄ (so
that cross(B̄) is a ”negative” of cross(B)).

To keep the notation light we will identify each subset of E (or of E′) with
an m-fibre structure, having the same vertices as S has (or as S′ has).

Lemma 3. If R(cross(B), cross(B0)) then the m-fibre structures B and B0 are
isomorphic. Also the m-fibre structures B̄ and B̄0 are isomorphic then.

Proof. By induction it is enough to prove that the lemma holds for one step
equivalence. Since +m is commutative, there is nothing to prove if cross(B)
and cross(B0) are one step equivalent by swapping. If they are equivalent by
crossing-over, then notice that we can make use of the following observation: if
A1,A2 ⊆ {1, 2, . . . l − 1}, A3,A4 ⊆ {l + 1, l + 2 . . .m} for some natural number
l, then (A1 ∪A3) +m (A2 ∪A4) is isomorphic to (A1 ∪A4) +m (A2 ∪A3).

From the last lemma and from Lemma 2 we get:

Lemma 4. For each B ⊆ E there exists a set B0 ⊆ E such that: the m-fibre
structures B and B0 are isomorphic, the m-fibre structures B̄ and B̄0 are iso-
morphic, and that B0 = (l∗mA)+mD for some m-fibre A, some m-fibre structure
D and some l ≥ 22m

2mlog m

Notice that, if B0 is as in the lemma, then B̄0 = (l ∗m (M \ A) +m F , for some
F .

The strategy of Duplicator is now straightforward. Remember that he wants
to hide the fact that, compared to S, there is an extra copy of a fibre in S′. Given
the Spoiler’s choice of B, B̄, Duplicator takes B0 as in last lemma and answers
with a pair B′, B̄′ such that B′|B̄′ = E′ and B′ = ((l + 1) ∗m A) +m D. Now
Spoiler decides whether he wants to continue the game on B,B′ or if he likes
the pair B̄, B̄′ more. But, by last lemma this means playing either on B0,B

′
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or B̄0, B̄′ respectively. So whatever choice Spoiler makes, the input to the next
round is a pair of the form 〈(l ∗mA)+mD; ; 〉, 〈((l+1)∗mA)+mD; ; 〉. This is
good news for Duplicator: there is still huge crowd of isomorphic fibres in which
the additional copy of A can melt.

3.3 Beyond the First Round

Now we extend the idea from Section 3.2 beyond the first round.
Let 〈G; c1, c2, . . . ct; l1, l2, . . . lq〉, 〈G′; c′1, c′2, . . . c′t′ ; l′1, l′2, . . . l′q′〉 be two m-fibre
structures with some distinguished vertices and labels (like the considered in Sec-
tion 2.2). By 〈G; c1, c2, . . . ct; l1, l2, . . . lq〉+m 〈G′; c′1, c′2, . . . c′t′ ; l′1, l′2, . . . l′q′〉 we will
denote the structure: 〈G+m G′; c1, c2, . . . ct, c

′
1, c

′
2, . . . c

′
t′ ; l1, l2, . . . lq, l

′
1, l
′
2, . . . l

′
q′〉.

This means that the distinguished vertices and labels are inherited from both
the structures joined by the operation +m.

Lemma 5. Duplicator has a strategy in which, after round p, the position of the
game is:

(k ∗m A) +m 〈D, c1, c2, . . . ct; l1, l2, . . . lq〉, (k′ ∗m A) +m 〈D, c1, c2, . . . ct; l1,
l2, . . . lq〉

for some m-fibre A, some m-fibre structure D with distinguished vertices and
labels, and some k ≥ 22m

2pmp log m . Moreover, k′ = k + 1 or k′ = k − 1.

Notice that, according to the lemma, the position after round p is winning for
Duplicator. So, once the lemma is proved, the proof of Claim (ii) of Theorem 1
will be finished.

Proof. By induction of p. Suppose the claim is true after p rounds, and the
position from the lemma is the input to round p + 1. We need to show how
Duplicator can make sure that the output of the round will be of the form (j ∗m
A′)+m 〈D′; c1, c2, . . . ct′ ; l1, l2, . . . lq′〉, (j′ ∗mA′)+m 〈D′; c1, c2, . . . ct′ ; l1, l2, . . . lq′〉
for some m-fibre A′, some m-fibre structure D′, some j ≥ 22m

2p+1m(p+1) log m , and
j′ = j + 1 or j′ = j − 1.

Negation round. Nothing happens here, just k and k′ are swapped.

First order labeling round. Again nothing interesting happens: Spoiler picks
a label in the first structure and Duplicator answers with the same label in the
second structure, so that q′ = q + 1 and nothing changes except of it.
First order round. If Spoiler picks a vertex from D then Duplicator answers
with a corresponding vertex in the isomorphic copy of D in his structure. If
Spoiler picks a vertex c in one of the copies of A, then Duplicator picks a cor-
responding vertex c in one of the copies of A in his structure and the output
of round p + 1 is: ((k − 1) ∗m A) +m 〈A; c; 〉 +m 〈D; c1, c2, . . . ct; l1, l2, . . . lq〉,
((k′−1)∗mA)+m 〈A; c; 〉+m 〈D; c1, c2, . . . ct; l1, l2, . . . lq〉, which clearly is of the
form we wanted.

Colouring round. Let B, B̄ be the Spoiler’s choice, for some B, B̄ such that
B|B̄ = (k ∗m A) +m D. Decompose B as BA +m BD, where BA ⊆ (k ∗m A) and
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BD ⊆ D. Since D is the same in both structures, Duplicator feels no need of
cheating there, and so his answer will be B′A +m BD, for some B′A ⊆ k′ ∗m A.

Let A1,A2 . . .Ad be all the connected components of A (which means here
that if i �= j and x ∈ Ai for some number x ∈ M , then none of x − 1,x,x + 1
can be in Aj , and if x ≤ y ≤ z and x, z ∈ Ai for some i then also y ∈ Ai). Let
ai = |Ai|−1 be the number of edges in Ai. We will repeat the construction from
Section 3.2 for each Ai.

BA = B1∪B2∪ . . .∪Bd for some sets such that Bi ⊆ k ∗mAi (for 1 ≤ i ≤ d).
Like in Section 3.2 we can view each Bi ⊆ k ∗m Ai as a (ai,k)-crossword, and
find Bi0, as in Lemma 4, with li = k

2a
log ai
i

≥ k
2mlog m equal fibres. Take j =

22m

2p+1m(p+1) log m . Then, by hypothesis, li ≥ j, for each i. So Bi0 = (j ∗m Fi) + Hi
for some fibre Fi and some fibre structure Fi. Since the sets Ai,for 1 ≤ i ≤ d
are pairwise not connected, the observation from the proof of Lemma 3 applies,
and BA is isomorphic to B0

A = (j ∗m F )+mH where F = F1 ∪F2 ∪ . . .∪Fd and
H = H1∪H2∪ . . .∪Hd. Also (k ∗mA)\BA is isomorphic to (k ∗mA)\B0

A. Now,
B′A, B̄′A, where B′A = (j + k′ − k) ∗m F +m H and B′A|B̄′A = (k′ ∗m A) +m D is
the answer which Duplicator was looking for.

4 MSO vs. GL–. Why a Counting Argument Fails

Our intuition behind the proof in Section 3 was that it exploits Graph Logic’s
poor ability to transmit information.

But maybe things are simpler than that, and what we really use in the proof
is just a counting argument?

Suppose we have n isomorphic copies of some structure of size m, and the
structures are such that we can address their edges in some monadic second
order way (as we could do, using the labels and the relation S, in the case of
the fibre structures of Section 3). For each fixed natural number k we can then
express, in MSO, the property that n = 2km. On the other hand, as one could
see in the proof of claim (ii) of Lemma 1, using GL we were not able to count
to any number higher than superpolynomial. Why was that? One could think
that there is a simple counting reason behind it: while in the game for MSO,
after r colouring rounds (in each round the players commit on one predicate),
the structure of size m can be coloured in 2rm ways, in the game for GL (or
GL–) after r rounds we get one of just 2m possible structures, regardless of r.
This is since the edges do not have colours in the game for GL. They simply, at
each stage of the game, either exist or do not exist.

If the above explanation were true, we could simplify the construction from
Section 3 getting rid of labels and using the same edges as the arena of counting
and as the mean of addressing. Such a simple construction is studied in this
Section.

All the structures considered in this Section will be bipartite graphs. Moreover,
they will be all directed in the sense that each vertex will be either isolated, or an
out-vertex (with in-degree 0 and non-zero out-degree ), or will be an in-vertex
(its out-degree will be 0, and in-degree will be non-zero). The out-vertices will,
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in some sense, play the role of fibres from Section 3, and the in-vertices will play
the role of labels. A structure will be called full if for each its out-vertex x and
each in-vertex y there is an edge from x to y. Notice, that a full structure can
still have some isolated vertices.

By m, n-structure we will mean a full structure with m out-vertices and n
in-vertices

For a function f : N → N define Wf(n) to be the set of all m, n-structures
with m ≤ f(n).

Of course we can use the method from the proof of Claim (i) of Theorem 1
to show that for each constant c the property W2cn is definable in MSO.

But it turns out that the analogue of Claim (ii) of Theorem 1 is no longer
true in this context, or at least it cannot be proved by an analogous argument.
This is since GL– can now count more than 2cn out-vertices for any fixed c. The
counting power of GL– equals the counting power of MSO.

Definition 4. Let g1(n) = 2n and let gr+1(n) =
∑n
k=0 gr(k)

(
n
k

)
.

Lemma 6. (i) rn ≤ gr(n)
(ii) gr(n) ≤ 2nrn

So, in other words, 2n log r ≤ gr(n) ≤ 2n(1+log r).

Proof. Both claims are proved by induction on r. The case r = 1 is obvious.

(i) The induction step follows from the fact that
∑n
k=0 rk

(
n
k

)
= (r + 1)n. To see

that the equality holds true, notice that its both sides represent the number of
ways in which a set of n elements can be split into r + 1 subsets (on the left
hand side we begin from selecting the first set , with n − k elements, and then
split the remaining elements into r sets).
(ii) gr+1(n) =

∑n
k=0 gr(k)

(
n
k

)
≤
∑n
k=0 2krk

(
n
k

)
≤ 2n

∑n
k=0 rk

(
n
k

)
= 2n(r +1)n

Theorem 2. For each fixed r, the property Wgr(n−1) is expressible in GL–.

We will write a GL– formula for Wgr(n−1), but need some taxonomy first:

Definition 5. Let G = 〈V,E〉 be a structure, and let c be a constant, interpreted
as an in-vertex c ∈ V .

1. An out-vertex x ∈ V is called proper if E(x, c) holds. G is proper if all its
out-vertices are proper.

2. For an out-vertex x ∈ V by Im(x) we mean the set {y �= c : E(x, y)}
3. Let x, y ∈ V be two out-vertices. We will say that x and y are G-equivalent

if Im(x) = Im(y). By Eq(x) we denote the equivalence class of x.
4. For a function f : N → N we say that G is f -sparse if |Eq(x)| ≤ f(|Im(x)|)

for each x ∈ V .

Lemma 7. For each natural r there exists formulas φr and ψr, (over the sig-
nature consisting of E and c) such that:
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1. φr expresses the property that G is a proper gr-sparse structure and all the
out-vertices of G are equivalent.

2. ψr expresses the property that G is a proper gr-sparse structure.

Proof. First, suppose that φr is defined. Then ψr is ρ ∧ ¬((ρ ∧ ρ1 ∧ ¬φr)|ρ),
where ρ is a first order formula, saying that the structure is proper, and ρ1 is
a first order logic formula, saying that all the out-vertices of the structure are
equivalent. In other words, ψr says that the structure is proper and it cannot be
split into two proper structures, the first of them being full and not gr-sparse.

We leave it as an exercise for the reader to see why we need the constant c,
and the notion of a proper structure here.

Now φr will be defined by induction on r.
Take φ1 as ρ ∧ ρ1 ∧ (φ0|ρ2) where φ0 says that there are no two equivalent

out-vertices in the structure, and ρ2 is a first order logic formula, saying that c
is isolated.

For the induction step, suppose that we have ψr. Then φr+1 is ρ1 ∧ (ρ2|ψr),
where ρ1 and ρ2 are as above. Notice how the definition of function g is used
here: if we have no more than gr+1(n) copies of some set A, with |A| = n, then
some elements can be removed from some of the copies in such a way that among
the resulting sets we do not have more than gr(m) copies of any subset of A with
m elements.

Proof of Theorem 2: It is easy to see that ∃c φr is the formula we wanted.

Notice, that we do not prove in Theorem 2 that W2cn can be expressed in the
logic GL–. Actually, we do not really know if it can be. What we show is just
that the non-expressibility proof cannot depend only on an argument of the sort
”the number 2cn is too big for GL–”.

On the other hand (and we leave it as an exercise for a careful reader to show
it7) a strategy for Duplicator can be constructed, proving that a GL– formula of
quantifier depth at least r is needed to express Wf(n) in GL–, for each function
f > gr. Since c+2 quantifiers are enough to express W2cn in MSOL, this implies,
by Lemma 6 that GL– is exponentially less succinct than MSO (see for example
[GS03] for definition of succinctness). Both the logics have the same power to
count, but GL needs exponentially more quantifiers to do it. As we said in Section
1.1, many MSO properties are defined in [DGG04] as Graph Logic properties,
but the GL formulas are much longer than their MSO counterparts. The last
result gives some sort of explanation of this phenomenon.
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Abstract. We present an abstraction of Hoare logic to traced symmetric
monoidal categories, a very general framework for the theory of systems.
We first identify a particular class of functors – which we call ‘verification
functors’ – between traced symmetric monoidal categories and subcat-
egories of Preord (the category of preordered sets and monotone map-
pings). We then give an abstract definition of Hoare triples, parametrised
by a verification functor, and prove a single soundness and completeness
theorem for such triples. In the particular case of the traced symmet-
ric monoidal category of while programs we get back Hoare’s original
rules. We discuss how our framework handles extensions of the Hoare
logic for while programs, e.g. the extension with pointer manipulations
via separation logic. Finally, we give an example of how our theory can
be used in the development of new Hoare logics: we present a new sound
and complete set of Hoare-logic-like rules for the verification of linear
dynamical systems, modelled via stream circuits.

1 Introduction

A few years ago one of the authors spent some time with an aeronautical engineer
learning how flight control systems are designed. Standard engineering tools like
Simulink represent the differential equations that model the system as a box-and-
arrow diagram, incorporating composition and feedback. The engineer’s informal
explanation of how an input signal is transformed to an output signal as it passes
through each component of the diagram was strikingly similar to a Hoare logic
presentation of a program proof, and inspired the development of a sound, if
ugly, ad-hoc Hoare-like logic for a fragment of linear differential equations [7].

So obvious questions (for us, if not the engineer) are how it is that such
disparate things as programs and differential equations can both support Hoare-
like logics, and whether there is a principled way of developing such logics in new
situations. This paper provides the answer: both are instances of a particular
kind of traced symmetric monoidal category, and for any such instance a sound
and complete set of Hoare-logic-like rules can be read off from the categorical
structure.

Under the general label of Hoare logic, the early work of Floyd [10] and Hoare
[12] on axiom systems for flowcharts and while programs has been applied to var-
ious other domains, such as recursive procedures [2], pointer programs [19], and

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 501–515, 2006.
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higher-order languages [4]. Our goal in this paper is to identify a minimal struc-
ture supporting soundness and (relative) completeness results, in the manner of
Cook’s presentation for while programs [8]. This is achieved via an abstraction
of Hoare logic to the theory of traced symmetric monoidal categories [13], a very
general framework for the theory of systems. Traced symmetric monoidal cate-
gories precisely capture the intrinsic structure of both flowcharts and dynamical
systems, namely: sequential and parallel ‘composability’, and infinite behaviour.
In fact, traced symmetric monoidal categories are closely related to Bainbridge’s
work [3] on the duality between flowcharts and networks. The scope of traced
symmetric monoidal categories, however, is much broader, being actively used,
for instance, for modelling computation (e.g. [21]) and in connection with Gi-
rard’s geometry of interaction (e.g. [11]).

The main feature of Hoare logic is the use of pre- and post-conditions to spec-
ify the behaviour of a program, and the order relation between pre- and post-
condition given by logical implication. Let Preord be the category of preordered
sets and monotone mappings. We first identify a particular class of functors –
which we call verification functors – between traced symmetric monoidal cate-
gories and subcategories of Preord. We then give an abstract definition of Hoare
triples, parametrised by a verification functor, and prove a single soundness and
completeness (in the sense of Cook) theorem for such triples. In the particular
case of the traced symmetric monoidal category of while programs (respectively,
pointer programs) this embedding gives us back Hoare’s original logic [12] (re-
spectively, O’Hearn and Reynolds logic [19]). In order to illustrate the generality
of our framework, we also derive new sound and complete Hoare-logic-like rules
for the verification of linear dynamical systems, in our case, modelled via stream
circuits.

In general, our abstraction of Hoare logic provides a ‘categorical’ recipe for
the development of new (automatically) sound and complete Hoare-logic-like
rules for any class of systems having the underlying structure of a traced sym-
metric monoidal category. Moreover, Hoare logic notions such as expressiveness
conditions, relative completeness [8] and loop invariants, have a clear cut corre-
spondence to some of our abstract notions.

The chief contributions of this paper are as follows: (i) The definition of a veri-
fication functor, between traced symmetric monoidal categories and the category
Preord (Section 3). (ii) An abstraction of Hoare triples in terms of verification
functors (Definition 3). (iii) Sound and complete rules for our abstract notion
of Hoare triples, over a fixed verification functor (Theorem 1). (iv) Three con-
crete instances of our abstraction, namely: while programs, pointer programs,
and stream circuits (Section 4). In Section 5, we discuss the link between our
work and other abstractions of Hoare logic.

For the rest of this article we will assume some basic knowledge of category
theory. For a readable introduction see [15]. Given a category S, we will denote
its objects by So and its morphisms by Sm. Composition between two morphisms
will be denoted as usual by (g ◦ f) : X → Z, if f : X → Y and g : Y → Z.
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Fig. 1. Trace diagrammatically

2 Traced Symmetric Monoidal Categories

A pair of a category S and a functor ⊗ is called a monoidal category if for
some particular object of S (the identity element of the monoid) ⊗ satisfies the
monoidal axioms of associativity and identity (for details, see Chapter 11 of
[15]). A monoidal category is called symmetric if there exists a family of natural
isomorphisms cX,Y : X ⊗ Y → Y ⊗ X satisfying the two braiding axioms plus
the symmetry axiom cX,Y ◦ cY,X = idX⊗Y .

In [13], the notion of traced symmetric monoidal category is introduced1, for
short tmc. A symmetric monoidal category is traced if for any morphism f :
X ⊗Z → Y ⊗Z there exists a morphism TrZX,Y (f) : X → Y satisfying the trace
axioms (see [13] for details). We will normally omit the decoration in TrZX,Y
whenever it is clear over which object the trace is being applied. Morphisms of
a tmc can be represented diagrammatically as input-output boxes, so that, if
f : X ⊗ Z → Y ⊗ Z then Tr(f) : X → Y corresponds to a feedback over the
‘wire’ Z, as shown in Figure 1.

The two most common examples of traced symmetric monoidal categories are
the category of sets and relations where ⊗ is either disjoint union, with trace
defined as

xTr(f) y :≡ ∃z(〈0,x〉f〈1, z0〉 ∧ . . . 〈1, zi〉f〈1, zi+1〉 . . . ∧ 〈1, zn〉f〈0, y〉)

or cartesian product, with trace defined as

xTr(f) y :≡ ∃z(〈x, z〉f〈y, z〉)

Note that we abbreviate a tuple of variables z0, . . . , zn ∈ Z by z.

Definition 1 (Basic morphisms). Let M ⊆ Sm be a subset of the morphisms
of a traced symmetric monoidal category S. We define cl(M), the traced sym-
metric monoidal closure of M , as the smallest subset of Sm containing M which
is closed under sequential composition, monoidal closure, and trace. If M is such
that cl(M) = Sm then M is called a set of basic morphisms for the category S.

Intuitively, we view each morphism in a tmc as representing a particular system.
The categorical composition models the sequential composition of systems, while
1 In fact, [13] introduces the theory of traces for a more general class of monoidal

categories, so-called balanced monoidal categories, of which symmetric monoidal
categories are a special case.
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the monoidal operation is related to the ‘parallel’ composition of two systems.
Finally, the trace corresponds to feedback, allowing infinite behaviour. The basic
morphisms represent the basic systems, out of which complex systems are built.
Note that the whole set of morphisms is trivially a set of basic morphisms. We are
interested, however, in tmc in which the set of basic morphisms (systems) forms
a strict subset of the set of all morphisms, as in the following three examples.

The categories we describe below are purely semantical. Nevertheless, we build
the categories in such a way that each syntactic while program or stream circuit
is denoted by a morphism in the category, and vice versa each morphism has a
representation as a syntactic while program or stream circuit.

2.1 Example 1: Flowcharts

The first example we consider is that of flowcharts. Let Store be the set of stores,
i.e. mappings ρ : Var → Z from program variables Var = {x, y, . . .} to integers.
Let Fo be the set (of sets) containing the empty set ∅ and Store, and closed under
disjoint union, i.e. Fo ≡ {∅, Store, Store4 Store, . . .}. Consider also the following
family of functions Fb between sets in Fo:

- Skip, id : Store→ Store
id(ρ) :≡ ρ

- Assignment, (x := t) : Store→ Store
(x := t)(ρ) :≡ (ρ)[tρ/x]

- Joining, ∆ : Store 4 Store→ Store
∆(ρ) :≡ proj(ρ)

- Forking, ∇b : Store→ Store 4 Store

∇b(ρ) :≡
{

inj0(ρ) if ¬bρ
inj1(ρ) otherwise

The conditional forking (∇b) and the assignment (x := t) are parametrised by
functions b and t (intuitively, expressions) from Store to the boolean lattice B
and Z, respectively, so that bρ and tρ denote their value on a given store ρ.
We use inj0 and inj1 for left and right injections into Store 4 Store, while proj
is the projection. We then close the set of basic functions Fb under sequential
composition of functions, disjoint union of functions and the standard trace for
disjoint union, to form the set of partial functions Fm. It is easy to see that
F ≡ (Fo,Fm,4,Tr) forms a tmc, if we add to the set of basic morphisms a
family of functions cX,Y : X 4 Y → Y 4 X , which simply flip the flag of the
disjoint union. Note that Fb is by construction a set of basic morphisms for F .

2.2 Example 2: Pointer Programs

The second example of tmc we consider is an extension of F to a category
of programs that manipulate both stores and heaps, which we will refer to as
the traced symmetric monoidal category of pointer programs P . Let State :≡
(Store × Heap) ∪ {abort}, where Store is as in the previous section and Heap
is the set of partial functions (from N to Z) with finite domain. We view the
elements of the heap as pairs consisting of a function h : N→ Z and a finite set
d ∈ Pfin(N) describing the valid domain of h. We then form the set (of sets) Po
as the set containing the empty set ∅ and State, and closed under disjoint union,
i.e. Po ≡ {∅, State, State 4 State, . . .}. Each of the basic functions of Fb can be
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lifted to the extended type structure, by simply ignoring the ‘heap’ component.
The set of functions Pb is an extension of the set of (the lifting of the) functions
Fb with the following family of functions:

– Look up, (x := [t]) : State→ State

(x := [t])(ρ,h, d) :≡
{

(ρ[h(tρ)/x],h, d) tρ ∈ d
abort otherwise

– Mutation, ([t] := s) : State→ State

([t] := s)(ρ,h, d) :≡
{

(ρ,h[tρ �→ sρ], d) tρ ∈ d
abort otherwise

– Allocation, x := new(t) : State→ State
(x := new(t))(ρ,h, d) :≡ (ρ[x �→ i],h[i + j �→ tj ], d 4 {i, . . . , i + n})

– Deallocation, disp(t) : State→ State

(disp(t))(ρ,h, d) :≡
{

(ρ,h, d\{tρ}) tρ ∈ d
abort otherwise

As done in the case of flowcharts above, we can then close the set of functions
Pb under sequential composition, disjoint union and trace, to form the set of
partial functions Pm. We are assuming that the functions are strict with respect
to abort, i.e. on the abort state all programs will return abort. The category
P ≡ (Po,Pm,4,Tr), with the standard trace for disjoint union, forms another
example of a tmc with the extra basic morphisms look up, mutation, allocation
and deallocation.

2.3 Example 3: Stream Circuits

Finally, we give an example of a tmc (the category of stream circuits) based on
cartesian product, rather than disjoint union. Let Σ denote the set of streams2 of
real numbers, i.e. all functions N→ R. Let Co be the set containing the singleton
set {ε} and Σ, and closed under cartesian product, i.e. Co ≡ {{ε}, Σ,Σ×Σ, . . .}.
Consider the following set Cb of functions between the sets in Co:
– Wire, id : Σ → Σ

id(σ) :≡ σ

– Scalars, (a×) : Σ → Σ
(a×)(σ) :≡ [aσ0, aσ1, . . .]

– Register, R : Σ → Σ
R(σ) :≡ [0,σ0,σ1, . . .]

– Copy, c : Σ → Σ ×Σ
c(σ) :≡ 〈σ,σ〉

– Sum, (+) : Σ ×Σ → Σ
(+)〈σ,σ′〉 :≡ [σ0+σ′0,σ1+σ′1, . . .]

We then form the set of relations Cm by viewing the basic functions Cb above
as relations (via their graph) and closing this set under relational composition,
cartesian product of relations, and the standard trace for the cartesian product
(cf. Section 2). The diagrams in Figure 2 illustrate two stream circuits which do
2 As shown in [9], much of mathematical analysis can be developed co-inductively

using streams: the stream corresponding to an analytic function f is just
[f(0), f ′(0), f ′′(0), . . .] which is related to the coefficients of the Taylor series ex-
pansion of f .
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Fig. 2. Stream circuits not defining functions

not define a function (but define a relation). In the circuit on the left there is no
fixed point for the input stream σa :≡ [a, a, . . .], for a �= 0. On the other hand,
in the circuit on the right any stream τ is a fixed point of the trace, so that
any input stream σ is related to an arbitrary (output) stream. In order to avoid
such pathological circuits (i.e. circuits not defining a function), one normally
puts a further restriction on the formation of stream circuits. A stream circuit
f : X → Y is called valid if in every sub-circuit of the form TrZX′,Y ′(f ′) : X ′ → Y ′

the path from X ′ to the output Z goes through a register. This requirement for
forming loops is standard in stream circuits (cf. [20]). Although C is a category
of relations, valid circuits are denoted by total functions, since the fixed points
of a valid circuit exist and are unique.

It is again easy to see that C ≡ (Co, Cm) forms a category. The category C
is symmetric monoidal, with the monoidal structure of cartesian product, if we
add to the set of basic morphisms the family of relations cX,Y : X×Y → Y ×X ,
which simply flip the two components of the input pair, i.e. 〈x, y〉cX,Y 〈y,x〉.
Finally, with the standard family of trace relations (defined in Section 2), C
forms a traced symmetric monoidal category.

3 Abstract Hoare Logic

In this section we present an abstraction of Hoare logic, including pre- and post-
conditions and Hoare triples as normally used in Hoare logic for while programs.
Our goal here is to isolate the minimal structure needed from these pre- and
post-conditions, for the development of a sound and complete Hoare logic.

Recall that a mapping f : X → Y between two preordered sets X,Y is called
monotone if P �X Q implies f(P ) �Y f(Q). Let Preord denote the category
of preordered sets and monotone mappings. It is easy to see that Preord can
be considered a symmetric monoidal category, with the monoidal operation as
cartesian product, since the cartesian product of two preordered sets X,Y forms
again a preordered set with the order on X × Y defined coordinatewise.

For the rest of this section, let S be a fixed tmc. A subset S′m of the morphisms
S is called subsystem closed if f, g ∈ S′m, whenever Tr(f), f ◦ g or f ⊗ g is in S′m.

Definition 2 (Verification functor). Let S′m be a subsystem closed subset of
Sm. A strict monoidal functor H : S → Preord is called a verification functor
for S′m if

H(Tr(f))(P ) � R ⇔ ∃Q ∈ H(Z)(H(f)〈P,Q〉 � 〈R, Q〉) (1)
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for all f : X ⊗Z → Y ⊗Z such that Tr(f) ∈ S′m, and P ∈ H(X), R ∈ H(Y ). If
S′m = Sm we simply call H a verification functor.

Let a verification functor H : S → Preord for S′m be fixed. For simplicity assume
S′m = Sm (see Remark 1). Each object X ∈ So corresponds to a preordered set
H(X), and each morphism f ∈ Sm corresponds to a monotone mapping H(f).

Definition 3 (Abstract Hoare Triples). Let f : X → Y be a morphism
(system) in S, P ∈ H(X) and Q ∈ H(Y ). Define abstract Hoare triples as

{P} f {Q} :≡ H(f)(P ) �H(Y ) Q (2)

Although we use the same notation as the standard Hoare triple, it should be
noted that the meaning of our abstract Hoare triple can only be given once
the verification functor H is fixed. The usual Hoare logic meaning of if P holds
before the execution of f then, if f terminates, Q holds afterwards will be one
of the special cases of our general theory. See Section 4 for other meanings of
{P} f {Q}.

Let a tmc S and verification functor H : S → Preord be fixed. Moreover, let
Sb be a set of basic morphisms for S. We will denote by H(S, H) the following
set of rules:

{P} f {Q} {Q} g {R}
(◦)

{P} g ◦ f {R}
(f ∈ Sb)

{P} f {H(f)(P )}

{P} f {Q} {R} g {S}
(⊗)

{〈P,R〉} f ⊗ g {〈Q,S〉}
{P} f {Q}

(
P ′ � P
Q � Q′

)
{P ′} f {Q′}

{〈P,Q〉} f {〈R, Q〉}
(Tr)

{P} TrS(f) {R}

The formal system H(S, H) should be viewed as a syntactic axiomatisation of
the ternary relation {P} f {Q}. The verification functor H gives the semantics
of the Hoare triples (and rules). By soundness and completeness of the system
H(S, H) we mean that syntax corresponds precisely to semantics, i.e. a syntactic
Hoare triple {P} f {Q} is provable in H(S, H) if and only if the inequality
H(f)(P ) � Q is true in Preord.

Theorem 1 (Soundness and completeness). The system H(S, H) is sound
and complete.

Proof. Soundness is trivially true for the axioms. The consequence rule is sound
by the monotonicity of H(f) and transitivity of �. Soundness of the compo-
sition rule also uses the monotonicity of H(g), the transitivity of � and the
fact that H respects composition, i.e. H(g)(H(f)(P )) = H(g ◦ f)(P ). Sound-
ness of the cartesian product rule uses that the functor H is monoidal, i.e.
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H(f ⊗ g)〈P,Q〉 = (H(f) ×H(g))〈P,Q〉 = 〈H(f)(P ), H(g)(Q)〉. For the sound-
ness of the trace rule, assume H(f)〈P,Q〉 � 〈R, Q〉. By the definition of a veri-
fication functor we have H(Tr(f))(P ) � R. We argue now about completeness.
By the consequence rule and the axioms it is easy to verify that all true state-
ments of the form {P} f {Q}, for f ∈ Sb, are provable. It remains to show that
if {P} f {Q} is true, for an arbitrary morphism f , then there exists a premise
of the corresponding rule (depending on the structure of f) which is also true.
If {P} g ◦ f {R} is true then so it is {P} f {H(f)(P )}, by the reflexivity of
the ordering, and {H(f)(P )} g {R}, by the fact that H respects composition.
If {〈P,R〉} f ⊗ g {〈Q,S〉} is true then so it is {P} f {Q} and {R} g {S},
by the fact that H is monoidal. Finally, if {P} Tr(f) {R} is true, then so is
{〈P,Q〉} f {〈R, Q〉}, for some Q, by the definition of a verification functor. �

The abstract proof of soundness and completeness presented above is both short
and simple, using only the assumption of a verification functor and basic prop-
erties of the category Preord. As we will see, the laborious work is pushed into
showing that H is a verification functor. That will be clear in Section 4.1, where
we build a verification functor appropriate for while programs, using Cook’s
expressiveness condition [8].

Remark 1. It is easy to see that all arguments in the proof of Theorem 1 will go
through if we restrict ourselves to a particular subsystem closed set of morphisms
S′m. This follows from the fact that in the completeness proof we simply use that
any morphism can be ‘generated’ from the basic morphisms, which is also true
for morphisms in S′m. If H is a verification functor for S′m ⊂ Sm, the rules
of H(S, H) should be restricted to morphisms in S′m. Similarly, the soundness
and completeness theorems apply only to systems in S′m. See Section 4.3 for an
instantiation of the general framework where a special class of systems S′m is
singled out.

4 Instantiations

We will now look at some concrete examples of verification functors for the
traced symmetric monoidal categories described in Section 2. For each of the
instantiations of tmc S we have described we present a monoidal functor H :
S → Preord and show that it satisfies condition (1).

First we will consider the traced symmetric monoidal categories of flowcharts
and pointer programs. These instantiations will produce, respectively, the origi-
nal Hoare logic [12], and Reynold’s [19] axiomatisation based on separation logic.
We then present a new variation of Hoare logic for stream circuits, obtained
through our abstraction.

4.1 Flowcharts (Forward Reasoning)

In this section we present a verification embedding of the tmc of flowchartsF (see
Section 2.1). This will give us soundness and (relative) completeness of Hoare’s
original verification logic [12] for partial correctness (using forward reasoning).
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Let us now define the monoidal functor H : F → Preord. Let a Cook-
expressive3 first-order theory L be fixed. On the objects X ∈ Fo we let H(X)
be the preordered set of formulas of L. The ordering P � R on the elements of
H(X) is taken to be L � P → R. On the morphisms (flowcharts) f ∈ Fm we let
H(f) be the predicate transformer producing strongest post-conditions for any
pre-condition P , i.e.

H(f)(P ) :≡ SPC(f, P )

where SPC(f, P ) is a formula expressing the strongest post-condition of f under
P . Such formula exists by our assumption that the theory L is Cook-expressive.
It is also easy to see what those are for the basic morphisms of F

SPC(id, P ) :≡ P

SPC(x := t, P ) :≡ ∃v(P [v/x] ∧ x = t[v/x])

SPC(∇b, P ) :≡ 〈P ∧ ¬b, P ∧ b〉
SPC(∆, 〈P,R〉) :≡ P ∨R

The functor H is monoidal because a formula P describing a subset of X04X1

can be seen as a pair of formulas 〈P0, P1〉 such that each Pi describes a subset
of Xi, i.e. H(X 4Y ) is isomorphic to H(X)×H(Y ). Similarly, there is a one-to-
one correspondence between strongest post-condition transformer for a parallel
composition of flowcharts f 4g and pairs of predicate transformers H(f)×H(g).
We argue now in two steps that H is also a verification functor.

Lemma 1 ([8]). Let f : X 4 Z → Y 4 Z in F and formulas P ∈ H(X) and
R ∈ H(Y ) be fixed. If SPC(Tr(f), P ) → R then SPC(f, 〈P,Q〉) → 〈R, Q〉, for
some formula Q.

Proof. We construct the formula Q such that it is a fixed point for f on
P , i.e. SPC(f, 〈P,Q〉) ↔ 〈R′, Q〉, for some formula R′. We also argue that
SPC(Tr(f), P ) ↔ R′. By our hypothesis SPC(Tr(f), P ) → R it follows that R′

implies R, as desired. The fixed point Q is essentially the strongest loop invariant,
and is constructed as follows. Given the partial function f we build a new partial
function f ′ : X 4Z → Y 4Z 4Z where the internal states of Z can be observed,
even after the trace is applied. Let f ′ :≡ (id4∇z=y)◦f (see Figure 3) where z is
the finite sequence of variables mentioned in f (by construction of the category
F , each morphism only changes finitely many variables), and y is a fresh tuple of
variables of same length. Notice that TrZX,Y ,Z(f ′) behaves almost as TrZX,Y (f)
except that Tr(f ′) might ‘terminate’ earlier (meaning that the fixed point se-
quence is shorter) if the state z matches y. Let SPC(Tr(f ′), P ) = 〈Q0, Q1(y)〉.
It is easy to see that the formula Q ≡ ∃y Q1(y) characterises the possible in-
ternal states z in the trace of f on an input satisfying P , i.e. Q is a fixed point for

3 Recall that a logic is Cook-expressive if for any program f and pre-condition P the
strongest post-condition of f under P is expressible by a formula in L (cf. [8]).
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f ′ Tr(f ′)

�

�
f

�

�
∇z=y
� �

�

X

Z

Y

Z

Z

�

�
f

�

�
∇z=y
� �

X Y

Z

Fig. 3. Cook’s construction

H(f) on P , SPC(f, 〈P,Q〉) ↔ 〈R′, Q〉, for some formula R′. It also follows that
SPC(Tr(f), P ) ↔ R′, since Q characterises precisely the internal states of the
trace Tr(f) on inputs satisfying P . �

Theorem 2. H : F → Preord, as defined above, is a verification functor.

Proof. By Lemma 1, it remains to be shown that whenever

(i) SPC(f, 〈P,Q′〉)→ 〈R, Q′〉,
for some formula Q′, then SPC(Tr(f), P )→ R. Assume (i) and SPC(Tr(f), P )(ρ),
for some store value ρ. We must show R(ρ). By the definition of the strongest
post-condition there exists a sequence of stores ρ′, ρ0, . . . , ρn such that P (ρ′) and

f〈0, ρ′〉 = 〈1, ρ0〉, . . . , f〈1, ρk〉 = 〈1, ρk+1〉, . . . , f〈1, ρn〉 = 〈0, ρ〉.
By a simple induction, using the assumption (i), we get that all ρk satisfy Q′

and that ρ satisfies R, as desired. �

The system H(F , H) obtained via our embedding H is a refinement of the system
given by Hoare in [12], i.e. Hoare’s rules are derivable from ours. See, for instance,
the case of the while loop rule in Figure 4, given that a while loop whileb(f)
can be represented in F as Tr((id 4 f) ◦ ∇b ◦∆). Moreover, the soundness and
(relative) completeness of the Hoare logic rules for while programs follow easily
from Theorems 1 and 2.

4.2 Pointer Programs (Backward Reasoning)

In the previous section we showed how one can obtain the standard Hoare logic
for while programs as an instantiation of our general framework. We have pre-
sented a verification embedding that gives rise to the usual Hoare triple semantics
for forward reasoning. In this section we show how the verification functor can
be changed so that one automatically gets Hoare logic rules for backward rea-
soning, from the same categorical rules presented in Section 3. We will illustrate
backward reasoning using an extension of the category of flowcharts, namely the
category of pointer programs P (see Section 2.2).

Consider the following functor H : P → Preord. On the objects X ∈ Po
the embedding H returns the preordered set of formulas (see below for the de-
scription of the logical language used) describing subsets of X\{abort}. The
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(∆ ∈ Fb)

{〈P, P 〉} ∆ {P}

(∇b ∈ Fb)

{P} ∇b {〈P ∧ ¬b, P ∧ b〉}

(id ∈ Fb)

{P ∧ ¬b} id {P ∧ ¬b} {P ∧ b} f {P}

{〈P ∧ ¬b, P ∧ b〉} id ( f {〈P ∧ ¬b, P 〉}

{P} (id ( f) ◦ ∇b {〈P ∧ ¬b, P 〉}

{〈P, P 〉} (id ( f) ◦ ∇b ◦ ∆ {〈P ∧ ¬b, P 〉}
(Tr)

{P} Tr((id ( f) ◦ ∇b ◦ ∆) {P ∧ ¬b}
(def)

{P} whileb(f) {P ∧ ¬b}

Fig. 4. Derivation of Hoare’s while loop rule in H(F , H)

preorder on H(X) is: R � P iff P → R, i.e. the logical equivalent of reverse set
inclusion. On the morphisms of P we define

H(f)(P ) :≡WPC(f, P )

where WPC(f, P ) is the weakest liberal pre-condition of the partial function f on
post-condition P . We are assuming the dual of Cook’s expressiveness condition,
namely, that weakest liberal pre-conditions are expressible in the language.

According to our definition, abort is not an element of H(X), which reflects
the fact that Hoare triples for pointer programs ensure that programs do not
crash (see [19]).

It has been shown in [17,19], that the weakest liberal pre-conditions for the
new basic statements can be concisely expressed in separation logic as (see [19]
for notation)

WPC(x := [t], P ) :≡ ∃v′((t �→ v′) ∗ ((t �→ v′)−∗P [v′/x]))

WPC([t] := s, P ) :≡ (t �→ −) ∗ ((t �→ s)−∗P )

WPC(x := new(t), P ) :≡ ∀i((i �→ t)−∗P [i/x])

WPC(disp(t), P ) :≡ (t �→ −) ∗ P

Similarly to Lemma 1 and Theorem 2, one can show that the H defined
above is a verification functor. The system H(P , H), which we then obtain from
our abstract approach is basically the one presented in Reynolds [19], for global
backward reasoning, using separation logic as an ‘oracle’ for the consequence rule.

4.3 Stream Circuits

In [7], a Hoare logic was suggested for the frequency analysis of linear control
systems with feedback, modelled as linear differential equations. Here we propose
a different approach, based on the modelling of linear differential equations as
stream circuits (also called signal flow graphs, see [20]).

We now present an embedding of the tmc C of stream circuits, described in
Section 2.3, into Preord. Let C′m be the set of (functions denoting) valid stream
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(id ∈ Fb)

{s} id {s} {s + t} f {t}
(×)

{〈s, s + t〉} id × f {〈s, t〉}

((+) ∈ Fb)

{〈s, t〉} (+) {s + t}
(◦)

{〈s, s + t〉} (+) ◦ (id × f) {s + t}

((c) ∈ Fb)

{s + t} (c) {〈s + t, s + t〉}
(◦)

{〈s, s + t〉} (c) ◦ (+) ◦ (id × f) {〈s + t, s + t〉}
(Tr)

{s} Tr((c) ◦ (+) ◦ (id × f) {s + t}
(def)

{s} fdback(f) {s + t}

Fig. 5. Derivation of feedback rule in H(C, H)

circuits. Notice that the class of valid circuits is closed under sub-circuits. We
will show that our embedding is a verification functor for C′m, so that for valid
circuits a set of sound and complete Hoare-logic-like rules is derived.

The monoidal functor H : C → Preord is defined as follows. For each of the
objects X ∈ Co (X is of the form Σ× . . .×Σ) we define H(X) as the preordered
set of all finite approximations (prefixes) of elements in X . We will use the
variables q, r, s, t to range over elements of the objects of Preord. The preorder
t � s on element of H(X) is defined as s . t on H(X), i.e. s is a prefix of t. The
top of the preorder is the (tuple of) empty stream(s) ε. Intuitively, each element
t of the preordered set corresponds to a subset of X having a common prefix
t, with ε corresponding to whole set X . On the morphisms (stream circuits)
f : X → Y in Cm and t ∈ H(X), we define H(f)(t) as

H(f)(t) :≡ LCP{σ : (τfσ) ∧ (t . τ)}

where, for a set of streams S, LCP(S) denotes the longest common prefix of all
streams in that set. H(f) is clearly a monotone function. For the basic morphisms
f of C, H(f) can be easily described as:

H(a×)[t0, . . . , tn] :≡ [at0, . . . , atn]

H(R)[t0, . . . , tn] :≡ [0, t0, . . . , tn]

H(c)[t0, . . . , tn] :≡ 〈[t0, . . . , tn], [t0, . . . , tn]〉
H(+)〈[t0, . . . , tn], [r0, . . . , rm]〉 :≡ [t0 + r0, . . . , tmin{n,m} + rmin{n,m}]

It is easy to check that H respects the monoidal structure of C, since the
prefixes of X × Y , i.e. H(X × Y ), can be seen as pairs of prefixes, i.e. elements
of H(X)×H(Y ). We now argue that H is also a verification functor.

Lemma 2. Let f : X × Z → Y × Z be such that Tr(f) ∈ C′m. Moreover, let
streams t ∈ H(X) and r ∈ H(Y ) be fixed. If r . H(Tr(f))(t) then, for some
q ∈ H(Z), 〈r, q〉 . H(f)〈t, q〉.

Proof. Notice that the mappings H(f) are continuous, i.e. a finite prefix of the
output only requires a finite prefix of the input. Moreover, by the condition that
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Tr(f) is a valid circuit, a finite prefix of the output of a trace only requires a
finite prefix of the fixed points in the following sense: for a fixed t ∈ H(X) the
increasing chain

– q0 :≡ ε
– qk+1 :≡ π2(H(f)〈t, qk〉)

where π2 denotes the second projection, is such that for some k we must have
〈r′, qk〉 . H(f)〈t, qk〉, where r′ = H(Tr(f))(t). By our assumption that r .
H(Tr(f))(t) this implies 〈r, qk〉 . H(f)〈t, qk〉, as desired. �

Theorem 3. H : C → Preord, as defined above, is a verification functor for
valid circuits.

Proof. By Lemma 2, it remains to be shown that if (i) 〈r, q′〉 . H(f)〈t, q′〉, for
some q′, then r . H(Tr(f))(t). Let τ be such that t ≺ τ . By the definition of
Tr(f) (and the fact that f is a valid circuit) there exists a unique fixed point σ
such that 〈τ,σ〉f〈ν,σ〉. By the uniqueness of the fixed point we have that q′ . σ
(otherwise q′ could be extended into a different fixed point). Finally, by our as-
sumption (i) it follows that r . ν (= Tr(f)(t)). �

This gives rise to a sound and complete Hoare-logic system for reasoning about
valid stream circuits. Notice that the rules would not be sound had we not
restricted ourselves to valid circuits. For instance, assuming that a �= 0 we have
that

{〈[a], ε〉} c ◦ (+) {〈ε, ε〉}

holds but it is not true that {[a]} Tr(c ◦ (+)) {ε}, as argued in Section 2.3.
In this instantiation, the Hoare triples {t} f {s} stand for s . H(f)(t). Given

that streams represent the Taylor expansion of analytic functions, in this partic-
ular example, the pre- and post-conditions in the Hoare logic range over partial
sums for these Taylor expansions. We have then categorically obtained a sound
and complete formal system H(C, H), for reasoning about valid stream circuits
and their input-output behaviour over classes of functions with a common par-
tial Taylor sum. Given that a feedback circuit fdback(f) can be represented in S
as Tr((c) ◦ (+) ◦ (id× f), a rule for stream circuit feedbacks can then be derived
(see Figure 5) in a similar fashion to the derivation of the rule for while loops
(cf. Figure 4).

5 Conclusion and Related Work

In this final section, we discuss other abstractions of Hoare logic in the light of
our work.

Kozen’s [14] Kleene Algebra with Test, KAT, consists essentially of a Kleene
algebra with a Boolean subalgebra. Hoare triples {P} f {Q} are modelled as
equations Pf = PfQ, using the multiplication of KAT. The rules of Hoare logic
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are then obtained as consequences of the equational theory of KAT. Although
our work is based on similar ideas (reducing Hoare triples to preorder statements)
there does not seem to be a clear cut connection between the two approaches.
Whereas Kozen relies on the rich theory of KAT to derive the usual rules of
Hoare logic, in our development we use a minimal theory of preordered sets for
obtaining soundness and completeness.

Kozen’s work is closely related to works on iteration theory [6,16] and dy-
namic logic [18]. All these, however, focus on the semantics of Hoare logic over
flowcharts and while programs, where the intrinsic monoidal structure is disjoint
union. As we have shown in Section 4.3, our approach is more general including
systems with an underlying cartesian structure as well.

Abramsky et al. [1] have also studied the categorical structure of Hoare logic,
using the notion of specification structures. It is easy to see that a tmc S together
with a verification functor H : S → Preord gives rise to a specification structure:
H maps objects X ∈ So to sets H(X), and H(f)(P ) � Q defines a ternary
relation H(X) × S(X,Y ) × H(Y ). The extra structure of preorder and trace,
however, allows us to prove an abstract completeness theorem, which does not
seem to be the focus of [1].

Blass and Gurevich [5] considered the underlying logic of Hoare logic. Since
Cook’s celebrated completeness result [8], Cook-expressive first-order logics have
been used in proofs of relative completeness for Hoare logic. Blass and Gurevich
have shown that existential fixed-point logic EFL is sufficient for proving Cook’s
completeness result, without the need for Cook’s expressiveness condition. EFL
contains the necessary constructions to ensure that the functor H(f)(P ) of Sec-
tion 4.1 (producing strongest post-conditions of f on P ) can be inductively built,
rather than assumed to exist. The fixed-point construction is used in order to
produce the fixed point Q of Lemma 1.

Much remains to be done: our main interest is in alternative verification em-
beddings H of the tmc C of stream circuits, which will allow other (hopefully
more practical) Hoare logics for dynamical systems. One instance of traced sym-
metric monoidal categories that we have not explored here is that of finite di-
mensional Hilbert spaces and bounded linear mappings, where trace is defined
as a generalisation of matrix trace. This seems significant given its connection
with quantum computing and Girard’s geometry of interaction [11].
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Abstract. IZF is a well investigated impredicative constructive version
of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with
Replacement, which we call IZFR, along with its intensional counterpart
IZF−

R. We define a typed lambda calculus λZ corresponding to proofs
in IZF−

R according to the Curry-Howard isomorphism principle. Using
realizability for IZF−

R, we show weak normalization of λZ by employing
a reduction-preserving erasure map from lambda terms to realizers. We
use normalization to prove disjunction, numerical existence, set existence
and term existence properties. An inner extensional model is used to show
the properties for full, extensional IZFR.

1 Introduction

Four salient properties of constructive set theories are:

– Numerical Existence Property (NEP): From a proof of a statement “there
exists a natural number x such that . . . ” a witness n ∈ N can be extracted.

– Disjunction Property (DP): If a disjunction is provable, then one of the
disjuncts is provable.

– Set Existence Property (SEP): If ∃x. φ(x) is provable, then there is a formula
ψ(x) such that ∃!x. φ(x)∧ψ(x) is provable, where both φ and ψ are term-free.

– Term Existence Property (TEP): If ∃x. φ(x) is provable, then φ(t) is provable
for some term t.

How to prove these properties for a given theory? There are a variety of meth-
ods applicable to constructive theories. Cut-elimination, proof normalization,
realizability, Kripke models. . . . Normalization proofs, based on Curry-Howard
isomorphism, have the advantage of providing an explicit method of witness and
program extraction from the proofs. They also provide information about the
behaviour of the proof system.

We are interested in intuitionistic set theory IZF. It is essentially what remains
of ZF set theory after excluded middle is carefully taken away. An important
decision to make on the way is whether to use Replacement or Collection axiom
schema. We will call the version with Collection IZFC and the version with
Replacement IZFR. In the literature, IZF usually denotes IZFC . Both theories
� Partly supported by NSF grants DUE-0333526 and 0430161.
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extended with excluded middle are equivalent to ZF. They are not equivalent
([1]). While the proof-theoretic power of IZFC is equivalent to ZF, the exact
power of IZFR is unknown. Arguably IZFC is less constructive, as Collection,
similarly to Choice, asserts the existence of a set without defining it.

Both versions have been investigated thoroughly. Results up to 1985 are pre-
sented in [2] and in [3], later research was concentrated on weaker subsystems,
in particular on predicative constructive set theory CZF. [4] describes the set-
theoretic apparatus available in CZF and provides further references.

We axiomatize IZFR, along with its intensional version IZF−R, using set terms.
We define typed lambda calculus λZ corresponding to proofs in IZF−R. We also
define realizability for IZF−R, in the spirit of [5]. We show weak normalization
of λZ by employing a reduction-preserving erasure map from lambda terms to
realizers. Strong normalization of λZ does not hold; moreover, we show that in
non-well-founded IZF even weak normalization fails.

With normalization in hand, the properties NEP, DP, SEP and TEP follow
easily. To show these properties for full, extensional IZFR, we define an inner
model T of IZFR, consisting of what we call transitively L-stable sets. We show
that a formula is true in IZFR iff its relativization to T is true in IZF−R. Therefore
IZFR is interpretable in IZF−R. This allows us to use properties proven for IZF−R.
More detailed proofs of our results can be found in [6].

The importance of these properties in the context of computer science stems
from the fact that they make it possible to extract programs from constructive
proofs. For example, suppose IZFR � ∀n ∈ N∃m ∈ N. φ(n,m). From this proof
a program can be extracted — take a natural number n, construct a proof IZFR

� n ∈ N. Combine the proofs to get IZFR � ∃m ∈ N. φ(n,m) and apply NEP
to get a number m such that IZFR � φ(n,m). We present in details program
extraction from IZFR proofs in [7].

There are many provers with the program extraction capability. However,
they are usually based on a variant of type theory, which is a foundational basis
very different from set theory. This makes the process of formalizing program
specification more difficult, as an unfamiliar new language and logic have to
be learned from scratch. [8] strongly argues against using type theory for the
specification purposes, instead promoting standard set theory.

IZFR provides therefore the best of both worlds. It is a set theory, with familiar
language and axioms. At the same time, programs can be extracted from proofs.
Our λZ calculus and the normalization theorem make the task of constructing
the prover based on IZFR not very difficult.

This paper is organized as follows. In section 2 we define IZFR along with
its intensional version IZF−R. In section 3 we define a lambda calculus λZ corre-
sponding to IZF−R proofs. Realizability for IZF−R is defined in section 4 and used
to prove normalization of λZ in section 5. We prove the properties in section
6, and show how to derive them for IZFR in section 7. Comparison with other
results can be found in section 8.
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2 IZFR

Intuitionistic set theory IZFR is a first-order theory. We postpone the detailed
definition of the logic to Section 3.2, stating at this moment only that equality
is not a primitive in the logic. IZFR is equivalent to ZF, if extended with ex-
cluded middle. It’s a definitional extension of term-free versions presented in [9],
[2] and [1] among others. The signature consists of one binary relational symbol
∈ and function symbols used in the axioms below. We will generally use letters
a, b, c, d, e, f to denote logic variables and t, u, s to denote logic terms. The re-
lational symbol t = u is an abbreviation for ∀z. z ∈ t ↔ z ∈ u and φ ↔ ψ
abbreviates (φ → ψ) ∧ (ψ → φ). Function symbols 0 and S(t) are abbreviations
for {x ∈ ω | ⊥} and

⋃
{t, {t, t}}. Bounded quantifiers and the quantifier ∃!a

(there exists exactly one a) are also abbreviations defined in the standard way.
The axioms are as follows:

– (PAIR) ∀a, b∀c. c ∈ {a, b}↔ c = a ∨ c = b
– (INF) ∀c. c ∈ ω ↔ c = 0 ∨ ∃b ∈ ω. c = S(b)
– (SEPφ(a,f)) ∀f∀a∀c. c ∈ Sφ(a,f)(a, f) ↔ c ∈ a ∧ φ(c, f)
– (UNION) ∀a∀c. c ∈

⋃
a ↔ ∃b ∈ a. c ∈ b

– (POWER) ∀a∀c. c ∈ P (a) ↔ ∀b. b ∈ c → b ∈ a
– (REPLφ(a,b,f)) ∀f∀a∀c.c ∈ Rφ(a,b,f)(a, f) ↔ (∀x ∈ a∃!y.φ(x, y, f))) ∧ ((∃x ∈

a. φ(x, c, f))
– (INDφ(a,f)) ∀f. (∀a.(∀b ∈ a.φ(b, f)) → φ(a, f)) → ∀a.φ(a, f)
– (Lφ(a,f)) ∀f , ∀a, b. a = b → φ(a, f) → φ(b, f)

Axioms SEPφ, REPLφ, INDφ and Lφ are axiom schemas, and so are the
corresponding function symbols — there is one for each formula φ. Formally, we
define formulas and terms by mutual induction:

φ ::= t ∈ t | t = t |. . . t ::= a | {t, t} | Sφ(a,f)(t, t) | Rφ(a,b,f)(t, t) |. . .

IZF−R will denote IZFR without the Leibniz axiom schema Lφ. IZF−R is an
intensional version of IZFR — even though extensional equality is used in the
axioms, it does not behave as the “real” equality.

Axioms (PAIR), (INF), (SEPφ), (UNION), (POWER) and (REPLφ) all assert
the existence of certain classes and have the same form: ∀a.∀c. c ∈ tA(a) ↔
φA(a, c), where tA is a function symbol and φA a corresponding formula for the
axiom A. For example, for (POWER), tPOWER is P and φPOWER is ∀b. b ∈
c → b ∈ a. We reserve the notation tA and φA to denote the term and the
corresponding formula for the axiom A.

3 The λZ Calculus

We present a lambda calculus λZ for IZF−R, based on the Curry-Howard isomor-
phism principle. The purely logical part is essentially λP1 from [10].
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The lambda terms in λZ will be denoted by letters M, N, O, P . Letters x, y, z
will be used for lambda variables. There are two kinds of lambda abstractions,
one used for proofs of implications, the other for proofs of universal quantifi-
cation. Since variables in the latter abstractions correspond very closely to the
logic variables, we also use letters a, b, c for them. Letters t, s, u are reserved for
IZFR terms. The types in the system are IZFR formulas.

M ::=x |M N | λa. M !| λx : φ. M | inl(M) | inr(M) | fst(M) |snd(M)| [t, M ]|M t

〈M, N〉 | case(M,x.N,x.O) | magic(M) | let [a,x : φ] = M in N | indφ(a,b)(M, t)

pairProp(t, u1, u2, M) | pairRep(t, u1, u2, M) | unionProp(t, u, M)

unionRep(t, u, M) | sepφ(a,f)Prop(t, u, u, M) | sepφ(a,f)Rep(t, u, u, M)

powerProp(t, u, M) | powerRep(t, u, M) | infProp(t, M) | infRep(t, M)

replφ(a,b,f)Prop(t, u, u, M) | replφ(a,b,f)Rep(t, u, u, M)

The ind term corresponds to the (IND) axiom, and Prop and Rep terms cor-
respond to the respective axioms. To avoid listing all of them every time, we
adopt a convention of using axRep and axProp terms to tacitly mean all Rep
and Prop terms, for ax being one of pair, union, sep, power, inf and repl. With
this convention in mind, we can summarize the definition of the Prop and Rep
terms as:

axProp(t, u, M) | axRep(t, u, M),

where the number of terms in the sequence u depends on the particular axiom.
The free variables of a lambda term are defined as usual, taking into account

that variables in λ, case and let terms bind respective terms. The relation of
α-equivalence is defined taking this information into account. We consider α-
equivalent terms equal. We denote all free variables of a term M by FV (M)
and the free logical variables of a term by FVL(M). Free (logical) variables of a
context Γ are denoted by FV (Γ ) (FVL(Γ )) and defined in a natural way.

3.1 Reduction Rules

The deterministic reduction relation → arises from the following reduction rules
and evaluation contexts:

(λx : φ. M)N → M [x := N ] (λa. M)t → M [a := t] fst(〈M, N〉) → M

case(inl(M),x.N,x.O) → N [x := M ] case(inr(M),x.N,x.O) → O[x := M ]

snd(〈M, N〉) → N let [a,x : φ] = [t, M ] in N → N [a := t][x := M ]

axProp(t, u, axRep(t, u, M)) → M

indφ(a,b)(M, t) → λc. M c (λb.λx : b ∈ c. indφ(a,b)(M, t) b)

[◦] ::= fst([◦]) | snd([◦]) | case([◦],x.M,x.N) | axProp(t, u, [◦])
let [a, y : φ] = [◦] in N | [◦] M | magic([◦])

In the reduction rules for ind terms, the variable x is new. In other words, the
reduction relation arises by lazily evaluating the rules above.
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Definition 1. We write M ↓ if the reduction sequence starting from M ter-
minates. We write M ↓ v if we want to state that v is the term at which this
reduction sequence terminates. We write M →∗ M ′ if M reduces to M ′ in some
number of steps.

We distinguish certain λZ terms as values. The values are generated by the
following abstract grammar, where M is an arbitrary term. Clearly, there are no
reductions possible from values.

V ::= λa. M | λx : φ. M | inr(M) | inl(M) | [t, M ] | 〈M, N〉 | axRep(t, u, M)

3.2 Types

The type system for λZ is constructed according to the principle of the Curry-
Howard isomorphism for IZF−R. Types are IZFR formulas, and terms are λZ
terms. Contexts Γ are finite sets of pairs (x1, φi). The range of a context Γ is
the corresponding first-order logic context that contains only formulas and is
denoted by rg(Γ ). The proof rules follow:

Γ,x : φ � x : φ

Γ �M : φ → ψ Γ � N : φ

Γ �M N : ψ

Γ,x : φ �M : ψ

Γ � λx : φ.M : φ → ψ

Γ �M : φ Γ � N : ψ

Γ � 〈M, N〉 : φ ∧ ψ

Γ �M : φ ∧ ψ

Γ � fst(M) : φ

Γ �M : φ ∧ ψ

Γ � snd(M) : ψ
Γ �M : ⊥

Γ � magic(M) : φ

Γ �M : φ

Γ � inl(M) : φ ∨ ψ

Γ �M : ψ

Γ � inr(M) : φ ∨ ψ

Γ �M : φ

Γ � λa. M : ∀a. φ
a /∈ FVL(Γ )

Γ �M : φ ∨ ψ Γ,x : φ � N : ϑ Γ,x : ψ � O : ϑ

Γ � case(M,x.N,x.O) : ϑ

Γ �M : ∀a. φ

Γ �M t : φ[a := t]

Γ �M : ∃a. φ Γ,x : φ � N : ψ

Γ � let [a,x : φ] := M in N : ψ
a /∈ FVL(Γ,ψ)

Γ �M : φ[a := t]
Γ � [t, M ] : ∃a. φ

The rules above correspond to the first-order logic. Formally, we define the first-
order logic we use by erasing lambda-terms from the typing judgments above
and replacing every context by its range. The rest of the rules corresponds to
IZF−R axioms:

Γ �M : φA(t, u)
Γ � axRep(t, u, M) : t ∈ tA(u)

Γ �M : t ∈ tA(u)
Γ � axProp(t, u, M) : φA(t, u)

Γ �M : ∀c. (∀b. b ∈ c → φ(b, t)) → φ(c, t)
Γ � indφ(b,c)(M, t) : ∀a. φ(a, t)

Lemma 1 (Curry-Howard isomorphism). If Γ � O : φ then IZF−R+rg(Γ ) �
φ. If IZF−R+Γ � φ, then there exists a term M such that {(xφ, φ) | φ ∈ Γ} �
M : φ.
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Proof. Straightforward. Use

λaλc.〈λx : c ∈ tA(a). axProp(c, a,x), λx : φA(c, a). axRep(c, a,x)〉

and λfλx : (∀a.(∀b. b ∈ a → φ(b, f)) → φ(a, f)). indφ(b,c)(x, f) to witness IZF−R
axioms.

Lemma 2 (Canonical forms). Suppose M is a value and �M : ϑ. Then:

– If ϑ = φ∨ψ, then (M = inl(N) and � N : φ) or (M = inr(N) and � N : ψ).
– If ϑ = ∃a. φ then M = [t, N ] and � N : φ[a := t].
– If ϑ = t ∈ tA(u) then M = axRep(t, u, N) and � N : φA(t, u).

Lemma 3 (Progress). If � M : φ, then either M is a value or there is a N
such that M → N .

Proof. By induction on �M : φ.

Lemma 4 (Subject reduction). If Γ �M : φ and M → N , then Γ � N : φ.

Proof. By induction on the definition of M → N , using appropriate substitution
lemmas on the way.

Corollary 1. If �M : φ and M ↓ v, then � v : φ and v is a value.

4 Realizability for IZF−
R

In this section we work in ZF.
We use terms of type-free version of lambda calculus for realizers. We call this

calculus λZ. The terms of λZ are generated by the following grammar and are
denoted by ΛZ . The set of λZ values is denoted by λZv.

M ::= x |M N | λx. M | inl(M) | inr(M) | magic(M) | fst(M) | snd(M) |〈M, N〉

case(M,x.N,x.O) | axRep(M) | axProp(M) | ind(M) | app(M, N)
The term app(M, N) denotes call-by-value application with the evaluation con-
text app(M, [◦]) and the reduction rule app(M, v) → M v. Essentially, λZ results
from λZ by erasing of all first-order information. This can be made precise by
the definition of the erasure map M from terms of λZ to λZ:

x = x M N = M N λa.M = M λx : τ.M = λx. M inl(M) = inl(M)

[t, M ] = M 〈M, N〉 = 〈M, N〉 inr(M) = inr(M) fst(M) = fst(M)

snd(M) = snd(M) magic(M) = magic(M) let[a, y] = M in N = app(λy. N, M)

axRep(t,u, M) = axRep(M) axProp(t, u, M) = axProp(M)

indφ(M, t, u) = ind(M)

We call a λZ reduction atomic if it is of the form (λa. M) t → M [a := t].
The reduction rules and values in λZ are induced in an obvious way from λZ,
so that if M → M ′ is a nonatomic reduction in λZ, then M → M ′, if M → M ′

is an atomic reduction in λZ, then M = M ′ and if M is a value in λZ not of the
form λa. N , then M is a value in λZ. In particular ind(M) → M (λx. ind(M)).
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Lemma 5. If M normalizes, so does M .

Proof. Any infinite chain of reductions starting from M must contain an infinite
number of nonatomic reductions, which map to reductions in M in a natural
way.

We now move to the definition of the language for the realizability relation.

Definition 2. A set A is a λ-name iff A is a set of pairs (v,B) such that
v ∈ λZv and B is a λ-name.

In other words, λ-names are sets hereditarily labelled by λZ values.

Definition 3. The class of λ-names is denoted by V λ.

Formally, V λ is generated by the transfinite inductive definition on ordinals:

V λ
α =

⋃
β<α

P (λZv × V λ
β ) V λ =

⋃
α∈ORD

V λ
α

The λ-rank of a λ-name A is the smallest α such that A ∈ V λ
α .

Definition 4. For any A ∈ V λ, A+ denotes {(M,B) | M ↓ v ∧ (v,B) ∈ A}.

Definition 5. A (class-sized) first-order language L arises by enriching the
IZFR signature with constants for all λ-names.

From now on until the end of this section, symbols M, N, O, P range exclusively
over λZ-terms, letters a, b, c vary over logical variables in the language, letters
A,B,C vary over λ-names and letter ρ varies over finite partial functions from
logic variables in L to V λ. We call such functions environments.

Definition 6. For any formula φ of L, any term t of L and ρ defined on all
free variables of φ and t, we define by metalevel mutual induction a realizability
relation M �ρ φ in an environment ρ and a meaning of a term [[t]]ρ in an
environment ρ:

1. [[a]]ρ ≡ ρ(a)
2. [[A]]ρ ≡ A
3. [[ω]]ρ ≡ ω′, where ω′ is defined by the means of inductive definition: ω′ is the

smallest set such that:
– (infRep(N),A) ∈ ω′ if N ↓ inl(O), O � A = 0 and A ∈ V λ

ω .
– If (M,B) ∈ ω′+, then (infRep(N),A) ∈ ω′ if N ↓ inr(O), O ↓ 〈M, P 〉,

P � A = S(B) and A ∈ V λ
ω .

It is easy to see that any element of ω′ is in V λ
α for some finite α and so

that ω′ ∈ V λ
ω+1.

4. [[tA(u)]]ρ ≡ {(axRep(N),B) ∈ λZv × V λ
γ | N �ρ φA(B, [[u]]ρ)}

5. M �ρ ⊥ ≡ ⊥
6. M �ρ t ∈ s ≡M ↓ v ∧ (v, [[t]]ρ) ∈ [[s]]ρ
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7. M �ρ φ ∧ ψ ≡M ↓ 〈M1, M2〉 ∧M1 �ρ φ ∧M2 �ρ ψ
8. M �ρ φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 �ρ φ) ∨ (M ↓ inr(M1) ∧M1 �ρ ψ)
9. M �ρ φ → ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N �ρ φ) → (M1[x := N ] �ρ ψ)

10. M �ρ ∀a. φ ≡ ∀A ∈ V λ. M �ρ φ[a := A]
11. M �ρ ∃a. φ ≡ ∃A ∈ V λ. M �ρ φ[a := A]

Note that M �ρ A ∈ B iff (M,A) ∈ B+.
The definition of the ordinal γ in item 4 depends on tA(u). This ordinal is

close to the rank of the set denoted by tA(u) and is chosen so that Lemma 8 can
be proven. Let α = rank([[u]]ρ). Case tA(u) of:

– {u1, u2} — γ = max(α1,α2)
– P (u) — γ = α + 1.
–
⋃

u — γ = α
– Sφ(a,f)(u, u) — γ = α1.
– Rφ(a,b,f)(u, u). Tedious. Use Collection in the metatheory to get the appro-

priate ordinal. Details can be found in [6].

Lemma 6. The definition of realizability is well-founded.

Proof. Use the measure function m which takes a clause in the definition and
returns a triple of integers, with lexicographical order in N3.

– m(M �ρ φ) = (“number of constants ω in φ”, “number of function symbols
in φ”, “structural complexity of φ”)

– m([[t]]ρ) = (“number of constants ω in t”, “number of function symbols in t”,
0)

Since the definition is well-founded, (metalevel) inductive proofs on the definition
of realizability are justified.

Lemma 7. If A ∈ V λ
α , then there is β < α such that for all B, if M �ρ B ∈ A,

then B ∈ V λ
β . Also, if M �ρ B = A, then B ∈ V λ

α .

The following lemma states the crucial property of the realizability relation.

Lemma 8. (M,A) ∈ [[tA(u)]]ρ iff M = axRep(N) and N �ρ φA(A, [[u]]ρ).

Proof. For all terms apart from ω, the left-to-right direction is immediate. For
the right-to-left direction, suppose N �ρ φA(A, [[u]]ρ) and M = axRep(N). To
show that (M,A) ∈ [[tA(u)]]ρ, we need to show that A ∈ V λ

γ . The proof proceeds
by case analysis on tA(u). Let α = rank([[u]]ρ). Case tA(u) of:

– {u1, u2}. Suppose that N �ρ A = [[u1]]ρ ∨ A = [[u2]]ρ. Then either N ↓
inl(N1) ∧N1 �ρ A = [[u1]]ρ or N ↓ inr(N1) ∧N1 �ρ A = [[u2]]ρ. By Lemma
7, in the former case A ∈ V λ

α1
, in the latter A ∈ V λ

α2
, so A ∈ V λ

max(α1,α2)
.

– P (u). Suppose that N �ρ ∀c. c ∈ A → c ∈ [[u]]ρ. Then ∀C. N �ρ C ∈ A →
C ∈ [[u]]ρ, so ∀C. N ↓ λx. N1 and ∀O. (O � C ∈ A) ⇒ N1[x := O] �ρ C ∈
[[u]]ρ. Take any (v,B) ∈ A. Then v �ρ B ∈ A. So N1[x := v] �ρ B ∈ [[u]]ρ.
Thus any such B is in V λ

α , so A ∈ V λ
α+1.
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–
⋃

u. Suppose N �ρ ∃c. c ∈ [[u]]ρ ∧A ∈ c. It is easy to see that A ∈ V λ
α .

– Sφ(a,f)(u, u). Suppose N �ρ A ∈ [[u]]ρ ∧ . . .. It follows that A ∈ V λ
α1

.
– Rφ(a,f)(u, u). Tedious. For details, see [6].

For ω, for the left-to-right direction proceed by induction on the definition of ω′.
The right-to-left direction is easy, using Lemma 7.

The following sequence of lemmas lays ground for the normalization theorem.
They are proven either by induction on the definition of terms and formulas or
by induction on the definition of realizability.

Lemma 9. [[t[a := s]]]ρ = [[t]]ρ[a:=[[s]]ρ] and M �ρ φ[a := s] iff M �ρ[a:=[[s]]ρ] φ.

Lemma 10. [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ and M �ρ φ[a := s] iff M �ρ φ[a :=
[[s]]ρ].

Lemma 11. If (M �ρ φ) then M ↓.

Lemma 12. If M →∗ M ′ then M ′ �ρ φ iff M �ρ φ.

Lemma 13. If M �ρ φ → ψ and N �ρ φ, then M N �ρ ψ.

5 Normalization

In this section, environments ρ map lambda variables to λZ terms and logic
variables to sets in V λ. Any such environment can be used as a realizability
environment by ignoring the mapping of lambda variables.

Definition 7. For a sequent Γ � φ, ρ |= Γ � φ means that ρ : FV (Γ, φ) →
(V λ∪ΛZ), for all a ∈ FVL(Γ, φ), ρ(a) ∈ V λ and for all (xi, φi) ∈ Γ , ρ(xi) �ρ φi.

Note that if ρ |= Γ � φ, then for any term t in Γ, φ, [[t]]ρ is defined and so is the
realizability relation M �ρ φ.

Definition 8. For a sequent Γ � φ, if ρ |= Γ � φ and M ∈ ΛZ , then M [ρ] is
M [x1 := ρ(x1), . . .,xn := ρ(xn)].

Theorem 1. If Γ �M : ϑ then for all ρ |= Γ � ϑ, M [ρ] �ρ ϑ.

Proof. For any λZ term M , M ′ in the proof denotes M [ρ] and IH abbreviates
inductive hypothesis. We proceed by metalevel induction on Γ � M : ϑ. We
show the interesting cases. Case Γ �M : ϑ of:

–
Γ �M : φA(t, u)

Γ � axRep(t, u, M) : t ∈ tA(u)

By IH, M ′ �ρ φA(t, u). By Lemma 10 this is equivalent to M ′ �ρ φA([[t]]ρ,

[[u]]ρ). By Lemma 8 (axRep(M ′), [[t]]ρ) ∈ [[tA(u)]]ρ, so axRep(M ′) �ρ t ∈
tA(u), so also axRep(t, u, M)[ρ] �ρ t ∈ tA(u).



Normalization of IZF with Replacement 525

–
Γ �M : t ∈ tA(u)

Γ � axProp(t, u, M) : φA(t, u)

By IH, M ′ �ρ t ∈ tA(u). This means that M ′ ↓ v and (v, [[t]]ρ) ∈ [[tA(u)]].
By Lemma 8, v = axRep(N) and N �ρ φA([[t]]ρ, [[u]]ρ). By Lemma 10, N �ρ

φA(t, u). Moreover, axProp(t, u, M) = axProp(M ′) →∗ axProp(axRep(N))
→ N . Lemma 12 gives us the claim.

–
Γ �M : φ

Γ � λa. M : ∀a. φ

By IH, for all ρ |= Γ � M : φ, M [ρ] � φ. We need to show that for all
ρ |= Γ � λa. M : ∀a. φ, λa. M = M [ρ] �ρ ∀a. φ(a). Take any such ρ. We
need to show that ∀A. M [ρ] �ρ φ[a := A]. Take any A. By Lemma 9, it
suffices to show that M [ρ] �ρ[a:=A] φ. However, ρ[a := A] |= Γ � M : φ, so
we get the claim by IH.

–
Γ �M : ∀a. φ

Γ �M t : φ[a := t]

By IH, M ′ �ρ ∀a. φ, so ∀A.M ′ �ρ φ[a := A]. in particular M ′ �ρ φ[a :=
[[t]]ρ], so by Lemma 10 M ′ = (M t)[ρ] �ρ φ[a := t].

–
Γ �M : ∀c. (∀b. b ∈ c → φ(b, t)) → φ(c, t)

Γ � indφ(b,c)(M, t) : ∀a. φ(a, t)

We need to show that ind(M ′) �ρ ∀a. φ(a, t), that is, that for all A, ind(M ′)
�ρ φ(A, t). We proceed by induction on λ-rank of A. Since ind(M ′) →
M ′ (λx. ind(M ′)), by Lemma 12 it suffices to show that M ′ (λx. ind(M ′)) �ρ

φ(A, t). By IH, we have M ′ �ρ ∀c. (∀b. b ∈ c → φ(b, t)) → φ(c, t), so for all
C, M ′ �ρ (∀b. b ∈ C → φ(b, t)) → φ(C, t). If we take C = A, then by
Lemma 13 it suffices to show that λx. ind(M ′) �ρ ∀b. b ∈ A → φ(b, t). Take
any B. It suffices to show that λx. ind(M ′) �ρ B ∈ A → φ(B, t). Take any
N �ρ B ∈ A. By Lemma 7, the λ-rank of B is smaller than the λ-rank of A
and so by inner inductive hypothesis ind(M ′) �ρ φ(B, t). Since x is new in
the reduction rule, ind(M ′) = ind(M ′)[x := N ] and we get the claim.

Corollary 2 (Normalization). If �M : φ, then M ↓.

Proof. By Theorem 1, for any ρ |= (�M : φ), we have M [ρ] �ρ φ. Take any such
ρ, for example mapping all free logic variables of M and φ to ∅. By Lemma 11,
M [ρ] ↓, and since M = M [ρ], M ↓. Lemma 5 gives us the claim.

As the reduction system is deterministic, the distinction between strong and
weak normalization does not exist. If the reduction system is extended to al-
low reductions anywhere inside of the term, the Corollary 2 shows only weak
normalization. Strong normalization then, surprisingly, does not hold. One rea-
son, trivial, are ind terms. However, even without them, the system would not
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strongly normalize, as the following counterexample, invented by Crabbé and
adapted to our framework shows:

Theorem 2 (Crabbé’s counterexample). There is a formula φ and term M
such that �M : φ and M does not strongly normalize.

Proof. Let t = {x ∈ 0 | x ∈ x → ⊥}. Consider the terms:

N ≡ λy : t ∈ t. snd(sepProp(t, 0, y)) y M ≡ λx : t ∈ 0. N (sepRep(t, 0, 〈x, N〉))

Then it is easy to see that � N : t ∈ t → ⊥, � M : t ∈ 0 → ⊥ and that M does
not strongly normalize.

Moreover, a slight (from a semantic point of view) modification to IZF−R, namely
making it non-well-founded, results in a system which is not even weakly nor-
malizing. A very small fragment is sufficient for this effect to arise. Let T be an
intuitionistic set theory consisting of 2 axioms:

– (C) ∀a. a ∈ c ↔ a = c
– (D) ∀a. a ∈ d ↔ a ∈ c ∧ a ∈ a → a ∈ a.

The constant c denotes a non-well-founded set. The existence of d can be
derived from separation axiom: d = {a ∈ c | a ∈ a → a ∈ a}. The lambda
calculus corresponding to T is defined just as for IZF−R.

Theorem 3. There is a formula φ and term M such that �T M : φ and M
does not weakly normalize.

Proof. It is relatively easy to find a term N such that �T N : d ∈ c. Take
φ = d ∈ d → d ∈ d. The term M below proves the claim.

O ≡ λx : d ∈ d. snd(dRep(d, c,x)) x M ≡ O (dProp(d, c, 〈N, O〉)).

We believe all these results could be formalized in IZFC (Collection seems to be
necessary for the definition of the realizability set corresponding to the Replace-
ment term in Section 4). Powell has shown in [11] that the notion of rank can
be defined meaningfully in intuitionistic set theories, so it should be possible to
carry out the developments in Section 4 with the notion of λ-rank which makes
sense in IZFC . We haven’t carried out the detailed check, though.

6 Applications

The normalization theorem provides immediately several results.

Corollary 3 (Disjunction Property). If IZF−R� φ ∨ ψ, then IZF−R� φ or
IZF−R� ψ.

Proof. Suppose IZF−R� φ∨ψ. By Curry-Howard isomorphism, there is a λZ term
M such that �M : φ ∨ ψ. By Corollary 1, M ↓ v and � v : φ ∨ ψ. By Canonical
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Forms, either v = inl(N) and � N : φ or v = inr(N) and � N : ψ. By applying
the other direction of Curry-Howard isomorphism we get the claim.

Corollary 4 (Term Existence Property). If IZF−R� ∃x. φ(x), then there is
a term t such that IZF−R� φ(t).

Proof. By Curry-Howard isomorphism, there is a λZ-term M such that � M :
∃x. φ. By normalizing M and applying Canonical Forms, we get [t, N ] such that
� N : φ(t). and thus by Curry-Howard isomorphism IZF−R� φ(t).

Corollary 5 (Set Existence Property). If IZF−R� ∃x. φ(x) and φ(x) is term-
free, then there is a term-free formula ψ(x) such that IZF−R� ∃!x. φ(x) ∧ ψ(x).

Proof. Take t from Term Existence Property. It is not difficult to see that there
is a term-free formula ψ(x), defining t, so that IZF−R� (∃!x. ψ(x)) ∧ ψ(t). Then
IZF−R� ∃!x. φ(x) ∧ ψ(x) can be easily derived.

To show NEP, we first define an extraction function F which takes a proof
�M : t ∈ ω and returns a natural number n. F works as follows:

It normalizes M to natRep(N). By Canonical Forms, � N : t = 0 ∨ ∃y ∈
ω. t = S(y). F then normalizes N to either inl(O) or inr(O). In the former
case, F returns 0. In the latter, � O : ∃y.y ∈ ω ∧ t = S(y). Normalizing O it
gets [t1, P ], where � P : t1 ∈ ω ∧ t = S(t1). Normalizing P it gets Q such that
� Q : t1 ∈ ω. Then F returns F (� Q : t1 ∈ ω) + 1.

To show that F terminates for all its arguments, consider the sequence of
terms t, t1, t2, . . . obtained throughout the life of F . We have IZF−R� t = S(t1),
IZF−R� t1 = S(t2) and so on. Thus, the length of the sequence is at most the
rank of the set denoted by t, so F must terminate after at most rank([[t]]) steps.

Corollary 6 (Numerical existence property). If IZF−R� ∃x ∈ ω. φ(x), then
there is a natural number n and term t such that IZF−R� φ(t) ∧ t = n.

Proof. As before, use Curry-Howard isomorphism to get a value [t, M ] such that
� [t, M ] : ∃x. x ∈ ω ∧ φ(x). Thus M � t ∈ ω ∧ φ(t), so M ↓ 〈M1, M2〉 and
�M1 : t ∈ ω. Take n = F (� M1 : t ∈ ω). It’s easy to see that patching together
in an appropriate way proofs obtained throughout the execution of F , a proof
of t = n for some natural number n can be produced.

This version of NEP differs from the one usually found in the literature, where in
the end φ(n) is derived. However, IZF−R does not have the Leibniz axiom for the
final step. We conjecture that it is the only version which holds in non-extensional
set theories.

7 Extensional IZFR

We will show that we can extend our results to full IZFR. We work in IZF−R.

Lemma 14. Equality is an equivalence relation.
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Definition 9. A set C is L-stable, if A ∈ C and A = B implies B ∈ C.

Definition 10. A set C is transitively L-stable (TLS(C) holds) if it is L-stable
and every element of C is transitively L-stable.

This definition is formalized in a standard way, using transitive closure, available
in IZF−R, as shown e.g. in [4]. We denote the class of transitively L-stable sets
by T . The statement V = T means that ∀A. TLS(A). Class T in IZF−R plays
a similar role to the class of well-founded sets in ZF without Foundation. By
∈-induction we can prove:

Lemma 15. IZFR� V = T .

The restriction of a formula φ to T , denoted by φT , is defined as usual, taking
into account the following translation of terms:

aT ≡ a {t, u}T ≡ {tT , uT } ωT ≡ ω (
⋃

t)T ≡
⋃

tT (P (t))T ≡ P (tT ) ∩ T

(Sφ(a,f)(u, u))T ≡ SφT (a,f)(u
T , uT ) (Rφ(a,b,f)(t, u))T ≡ Rb∈T∧φT (a,b,f)(t

T , uT )

The notation T |= φ means that φT holds. It is not very difficult to show:

Theorem 4. T |=IZFR.

Lemma 16. IZFR� φ iff IZF−R� φT .

Corollary 7. IZFR satisfies DP and NEP.

Proof. For DP, suppose IZFR� φ ∨ ψ. By Lemma 16, IZF−R� φT ∨ ψT . By DP
for IZF−R, either IZF−R� φT or IZF−R� ψT . Using Lemma 16 again we get either
IZFR� φ or IZFR� ψ.

For NEP, suppose IZFR� ∃x. x ∈ ω ∧ φ(x). By Lemma 16, IZF−R� ∃x. x ∈
T ∧x ∈ ωT . φT (x), so IZF−R� ∃x ∈ ωT . x ∈ T ∧φT (x). Since ωT = ω, using NEP
for IZF−R we get a natural number n such that IZF−R� ∃x. φT (x) ∧ x = n. By
Lemma 16 and n = nT , we get IZFR� ∃x. φ(x) ∧ x = n. By the Leibniz axiom,
IZFR� φ(n).

We cannot establish TEP and SEP as easily, since it is not the case that tT = t
for all terms t. However, a simple modification to the axiomatization of IZFR

yields these results too. It suffices to guarantee that whenever a set is defined, it
must be in T . To do this, we modify three axioms and add one new, axiomatizing
transitive closure. Let PTC(a, c) be a formula that says: a ⊆ c and c is transitive.
The axioms are:

(SEP’φ(a,f)) ∀f∀a∀c. c ∈ Sφ(a,f)(a, f) ↔ c ∈ a ∧ φT (c, f)
(POWER’) ∀a∀c.c ∈ P (a) ↔ c ∈ T ∧ ∀b. b ∈ c → b ∈ a
(REPL’φ(a,b,f)) ∀f∀a∀c.c ∈ Rφ(a,b,f)(a, f) ↔ (∀x ∈ a∃!y ∈ T.φT (x, y, f)) ∧

(∃x ∈ a. φT (x, c, f))
(TC) ∀a, c. c ∈ TC(a) ↔ (c ∈ a∨∃d ∈ TC(a). c ∈ d)∧∀d. PTC(a, d) → c ∈ d.
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In the modified axioms, the definition of T is written using TC and relativiza-
tion of formulas to T this time leaves terms intact, we set tT ≡ t for all terms t.

It is not difficult to see that this axiomatization is equivalent to the old one
and is still a definitional extension of term-free versions of [9], [2] and [1].We can
therefore adopt it as the official axiomatization of IZFR. All the developments
in sections 4-8 can be done for the new axiomatization in the similar way. In the
end we get:

Corollary 8. IZFR satisfies DP, NEP, TEP and SEP.

A different technique to tackle the problem of the Leibniz axiom bas been used
by Friedman in [12]. He defines new membership (∈∗) and equality (∼) relations
in an intensional universe from scratch, so that (V,∈∗,∼) interprets his intu-
itionistic set theory along with the Leibniz axiom. Our T , on the other hand,
utilizes the existing ∈, = relations. We plan to present an alternative normaliza-
tion proof, where the method to tackle the Leibniz axiom is closer to Friedman’s
ideas, in the forthcoming [13].

8 Related Work

In [9], DP, NEP, SEP are proven for IZFR without terms. TEP is proven for
comprehension terms, the full list of which is not recursive. It is easy to see
that IZFR is a definitional extension of Myhill’s version. Our results therefore
improve on [9], by providing an explicit recursive list of terms corresponding to
IZFR axioms to witness TEP.

In [14] strong normalization of a constructive set theory without induction
and replacement axioms is shown using Girard’s method. As both normalization
and theory are defined in a nonstandard way, it is not clear if the results could
entail any of DP, NEP, SEP and TEP for the theory.

[15] defines realizability using lambda calculus for classical set theory conser-
vative over ZF. The types for the calculus are defined. However, it seems that the
types correspond more to the truth in the realizability model than to provable
statements in the theory. Moreover, the calculus doesn’t even weakly normalize.

In [16], a set theory without the induction and replacement axioms is inter-
preted in the strongly normalizing lambda calculus with types based on Fω.2.
This has been extended with conservativeness result in [17].

In [18], DP and NEP along with other properties are derived for CZF using
a combination of realizability and truth. The technique likely extends to IZFC ,
but it does not seem to be strong enough to prove SEP and TEP for IZFR.
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Abstract. We give a geometric condition that characterizes MELL
proof structures whose interpretation is a clique in non-uniform coherent
spaces: visible acyclicity.

We define the visible paths and we prove that the proof structures
which have no visible cycles are exactly those whose interpretation is a
clique. It turns out that visible acyclicity has also nice computational
properties, especially it is stable under cut reduction.

1 Introduction

Proof nets are a graph-theoretical presentation of linear logic proofs, that gives
a more geometric account of logic and computation. Indeed, proof nets are in
a wider set of graphs, that of proof structures. Specifically, proof nets are those
proof structures which correspond to logically correct proofs, i.e. sequent calculus
proofs.

A striking feature of the theory of proof nets is the characterization by ge-
ometric conditions of such a logical correctness. In multiplicative linear logic
(MLL) Danos and Regnier give (see [1]) a very simple correctness condition,
which consists in associating with any proof structure a set of subgraphs, called
switchings, and then in characterizing the proof nets as those structures whose
switchings are connected and acyclic.

Later Fleury and Retoré relax in [2] Danos-Regnier’s condition, proving that
acyclicity alone characterizes those structures which correspond to the proofs of
MLL enlarged with the mix rule (Figure 4). More precisely, the authors define
the feasible paths as those paths which are ”feasible” in the switchings, then they
prove that a proof structure is associated with a proof of MLL plus mix if and
only if all its feasible paths are acyclic.

Proof structures are worthy since cut reduction is defined straight on them,
not only on proof nets. We can thus consider a concrete denotational semantics
for proof structures, as for example the relational semantics. Here the key notion
is that of experiment, introduced by Girard in [3]. Experiments allow to associate
with any proof structure (not only proof net) π a set of points �π� invariant under
the reduction of the cuts in π.
� This work has been partially supported by MIUR national project FOLLIA.

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 531–545, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



532 M. Pagani

In [4] Bucciarelli and Ehrhard provide a notion of coherence between the
points of the relational semantics, so introducing non-uniform coherent spaces
and non-uniform cliques. Such spaces are called non-uniform since the web of
their exponentials does not depend on the coherence relation, as it does instead
in case of usual (uniform) coherent spaces (see [3]).1

Hence we have a geometrical notion – feasible acyclicity – dealing with logical
correctness, and a semantical one – clique – defined in the framework of coherent
spaces. Such notions are deeply related in MLL: from [3] it is known that for any
proof structure π, if π is feasible acyclic then its interpretation �π� is a clique;
conversely Retoré proves in [5] that for any cut-free π, if �π� is a clique then π
is feasible acyclic.

Such results tighten the link between coherent spaces and multiplicative proof
nets: as a corollary we derive in [6] the full-completeness of coherent spaces for
MLL with mix.

What happens to this correspondence in presence of the exponentials, i.e. in
multiplicative exponential linear logic (MELL)?

The notion of feasible path can be easily extended to MELL (Definition 5).
In this framework feasible acyclicity characterizes the proof structures which
correspond to the proofs of MELL sequent calculus (Figure 3) enlarged with the
rules of mix and daimon (Figure 4). However the link between feasible acyclicity
and coherent spaces fails: there are proof structures which are associated with
cliques even if they have feasible cycles (for example Figure 5).

The main novelty of our paper is to find out a geometrical condition on MELL
proof structures, which recovers the missed link with coherent spaces. In Defini-
tion 6 we introduce the visible paths, which are an improvement of the feasible
paths in presence of exponentials. Then we prove in Theorems 2 and 3:

– for any MELL proof structure π, if π is visible acyclic, then �π� is a non-
uniform clique;

– for any MELL cut-free proof structure π, if �π� is a non-uniform clique then
π is visible acyclic.

Finally, it turns out that visible acyclicity has also nice computational proper-
ties, especially it is stable under cut reduction (Theorem 4), moreover it assures
confluence and strong normalization.

2 Proof Structures

The formulas of MELL are defined by the following grammar:

F ::= X | X⊥ | F�F | F ⊗ F | ?F | !F

As usual we set (A�B)⊥ = A⊥ ⊗ B⊥, (A ⊗ B)⊥ = A⊥�B⊥, (?F )⊥ =!F⊥

and (!F )⊥ =?F⊥. We denote by capital Greek letters Σ,Π, . . . the multisets of

1 Actually the difference between uniform and non-uniform spaces has a relevance only
in presence of exponentials: in MLL we can speak simply of coherent spaces and
cliques.
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formulas. We write A1: . . .:An−1:An for A1: (. . .: (An−1:An) . . .), where
: is � or ⊗.

Proof structures are directed graphs with boxes – highlighted subgraphs – and
pending edges – edges without target. Edges are labeled by MELL formulas and
nodes (called links) are labeled by MELL rules. Links are defined together with
both an arity (the number of incident edges, called the premises of the link)
and a coarity (the number of emergent edges, called the conclusions of the link).
The links of MELL are ax, cut, ⊗, �, !, ?d, ?c, ?w, as defined in Figure 1. The
orientation of the edges will be always from top to bottom, so that we may omit
the arrows of the edges.

ax

A A⊥ cut
A⊥A

⊗
A B

A ⊗ B

�

B

A�B

A

!

!A

A

?d

?A

A
?A?A

?c

?A

?w

?A

Fig. 1. MELL links

Definition 1 (Proof structure, [3]). A proof structure π is a directed graph
whose nodes are MELL links and such that:

1. every edge is conclusion of exactly one link and premise of at most one link.
The edges which are not premise of any link are the conclusions of the proof
structure;

2. with every link ! o is associated a unique subgraph of π, denoted by πo,
satisfying condition 1 and such that one conclusion of πo is the premise of o
and all further conclusions of πo are labeled by ?-formulas. πo is called the
exponential box of o (or simply the box of o) and it is represented by a dash
frame. The conclusion of o is called the principal door of πo, the conclusions
of πo labeled by ?-formulas are called the auxiliary doors of πo;

3. two exponential boxes are either disjoint or included one in the other.

The depth of a link in π is the number of boxes in which it is contained. The
depth of an edge a is 0 in case a is a conclusion of π, otherwise it is the depth
of the link of which a is premise.

The depth of π is the maximum depth of its links, the size of π is the number
of its links, the cosize of π is the number of its links ?c.

A link l is terminal when either l is a ! and all the doors of πl are conclusions
of π, or l is not a ! and all the conclusions of l are conclusions of π.

Proof structures are denoted by Greek letters: π,σ, . . ., edges by initial Latin
letters: a, b, c . . . and links by middle-position Latin letters: l,m, n, o . . .. We write
a : A if a is an edge labeled by the formula A.



534 M. Pagani

A proof structure without cuts is called cut-free. The cut reduction rules
are graph rewriting rules which modify a proof structure π, obtaining a proof
structure π′ with the same conclusions as π. We do not give here the cut reduction
rules, which are completely standard (see [3]). However we remark that at the
level of proof structures there exist cuts, called deadlocks, which are irreducible.
These are the cuts between the two premises of an axiom, and the cuts between
two doors of an exponential box (see Figure 2).

cut

ax

A A⊥
!

cut
!A

. . .
?Γ

?A⊥

πo

Fig. 2. Examples of deadlocks

We denote by π �β π′ whenever π′ is the result of the reduction of a cut in
π. As always, →β is the reflexive and transitive closure of �β and =β is the
symmetrical closure of →β .

3 Non-uniform Coherent Spaces

We recall that a multiset v is a set of elements in which repetitions can occur.
We denote multisets by square brackets, for example [a, a, b] is the multiset
containing twice a and once b. The plus symbol + denotes the disjoint union of
multisets, whose neutral element is the empty multiset ∅. If n is a number and v
a multiset, we denote by nv the multiset v + . . . + v︸ ︷︷ ︸

n times

. The support of v, denoted

by Supp(v), is the set of elements of v, for example Supp([a, a, b]) = {a, b}.
If C is a set, by M(C) (resp. Mfin(C)) we mean the set of all multisets (resp.

finite multisets) of C.

Definition 2 (Non-uniform coherent space, [4]). A non-uniform coherent
space X is a triple (|X |, �

� ,≡), where |X | is a set, called the web of X , while �
�

and ≡ are two binary symmetric relations on |X |, such that for every x, y ∈ X ,
x ≡ y implies x �

� y. �
� (resp. ≡) is called the coherence (resp. the neutrality) of

X .
A clique of X is a subset C of |X | such that for every x, y ∈ C, x �

� y.

Remark the difference from Girard’s (uniform) coherent spaces: we do not require
the relation �

� to be also reflexive.
We will write x �

� y [X ] and x ≡ y [X ] if we want to state explicitly which
coherent space �

� and ≡ refer to. We introduce the following notation, well-
known in the framework of coherent spaces:
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strict coherence: x �y [X ], if x �
� y [X ] and x �≡ y [X ];

incoherence: x �
� y [X ], if not x �y [X ];

strict incoherence: x �y [X ], if x �
� y [X ] and x �≡ y [X ].

Notice that we may define a non-uniform coherent space by specifying its web
and two well chosen relations among ≡, �

� , �, �
� , �.

Let X be a non-uniform coherent space, the non-uniform coherent model on
X (nuCohX ) associates with formulas non-uniform coherent spaces, by induction
on the formulas, as follows:

– with X it associates X ;
– with A⊥ it associates the following A⊥: |A⊥| = |A|, the neutrality and

coherence of A⊥ are as follows:
• a ≡ a′

[
A⊥

]
iff a ≡ a′ [A],

• x �
� y

[
A⊥

]
iff x �

� y [A];
– with A⊗B it associates the followingA⊗B: |A⊗B| = |A|×|B|, the neutrality

and coherence of A⊗ B are as follows:
• < a, b >≡< a′, b′ > [A⊗ B] iff a ≡ a′ [A] and b ≡ b′ [B],
• < a, b > �

� < a′, b′ > [A⊗ B] iff a �
� a′ [A] and b �

� b′ [B];
– with !A it associates the following !A: |!A| = Mfin(|A|), the strict incoher-

ence and neutrality of !A are as follows:
• v �u [!A] iff ∃a ∈ v and ∃a′ ∈ u, s.t. a �a′ [A],
• v ≡ u [!A] iff not v �u [!A] and there is an enumeration of v (resp. of u)

v = [a1, . . . , an] (resp. u = [a′1, . . . , a
′
n]), s.t. for each i ≤ n, ai ≡ a′i [A].

Of course the space A�B is defined by (A⊥ ⊗ B⊥)⊥ as well as ?A is defined
by (!A⊥)⊥.

Remark that !A may have elements strictly incoherent with themselves, i.e.
�
� is not reflexive. For example, suppose a, b are two elements in A such that
a �b [A], then the multiset [a, b] is an element of !A such that [a, b] � [a, b] [!A].

For each proof structure π, we define the interpretation of π in nuCohX ,
denoted by �π�X , where the index X is omitted in case it is clear which coherent
space is associated with X . �π� is defined by using the notion of experiment,
introduced by Girard in [3].

We define an experiment e on π by induction on the exponential depth of π.2

Definition 3 (Experiment). A nuCohX experiment e on a proof structure π,
denoted by e : π, is a function which associates with every link ! o at depth 0 a
multiset [eo1, . . . , eok] (for k ≥ 0) of experiments on πo, and with every edge a : A
at depth 0 an element of A, s.t.:

2 Definition 3 is slightly different from the usual one (see for example [7]), namely e is
defined only on the edges at depth 0 of π. Such a difference however does not play
any crucial role in the proof of our result.
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– if a, b are the conclusions (resp. the premises) of a link ax (resp. cut) at
depth 0, then e(a) = e(b);

– if c is the conclusion of a link � or ⊗ at depth 0 with premises a, b, then
e(c) =< e(a), e(b) >;

– if c is the conclusion of a link ?d with premise a, then e(c) = [e(a)]; if c is
the conclusion of a link ?c with premises a, b, then e(c) = e(a) + e(b); if c is
the conclusion of a link ?w, then e(c) = ∅;

– if c is a door of a box associated with a link ! o at depth 0, let a be the
premise of o and e(o) = [eo1, . . . , e

o
k]. If c is the principal door then e(c) =

[eo1(a), . . . , eok(a)], if c is an auxiliary door then e(c) = eo1(c) + . . . + eok(c);

If c1, . . . , cn are the conclusions of π, then the result of e, denoted by |e|, is
the element < e(c1), . . . , e(cn) >. The interpretation of π in nuCohX is the set
of the results of its experiments:

�π�X =
{
|e| s.t. e is a nuCohX experiment on π

}
The interpretation of a proof structure is invariant under cut reduction:

Theorem 1 (Soundness of nuCohX ). For every proof structures π,π′, π =β π′

implies �π�X = �π′�X .

Proof (Sketch). It is a straightforward variant of the original proof given by
Girard in [3] for proof nets. '(

For concluding we explain why we choose the non-uniform variant of coherent
spaces for proving our result.

The main difference between uniform and non-uniform coherent spaces is in
the definition of the web of !A. The non-uniform web of !A contains all finite
multisets of elements in A, while the uniform web of !A contains only those finite
multisets whose support is a clique in A (see [3]).

Uniform webs thus have less elements than the non-uniform ones. Less ele-
ments means less experiments for proof structures. Indeed uniform experiments
must satisfy besides the conditions of Definition 3 also a uniformity condition,
namely the elements associated with edges of type !A (or ?A⊥) have to be in the
uniform web of !A (see [7]).

Concerning our result, we believe that the experiment eφ, defined in the proof
of Lemma 2, satisfies also the uniformity condition, but we haven’t proved yet.
Thus we conjecture that Theorem 3 holds also for uniform coherent spaces, but
the proof should be quite harder.3

3 Uniform coherent spaces are special cases of non-uniform spaces, where ≡ coin-
cides with the identity. Denote by �π�CohX (resp. �π�nuCohX ) the uniform (resp.
non-uniform) interpretation of π based on a space X . One can prove �π�CohX ⊆
�π�nuCohX . This means that if �π�nuCohX is a clique so is �π�CohX , while the vice-
versa does not hold in general. Hence remark that Theorem 3 (resp. Theorem 2) is
stronger (resp. weaker) when it refers to CohX instead of nuCohX .
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4 Paths and Acyclicity

In Figure 3 we present the sequent calculus for MELL. As we noticed in the
Introduction, sequent proofs can be translated into proof structures (see [3]).
Such a translation is the gate to a geometry of logic and computation, since it
makes possible to describe several properties of proofs by means of paths and
graph-theoretical conditions such as connectivity or acyclicity.

In this paper, in particular, we consider paths with the following features:

orientation: a path is oriented, i.e. it crosses an edge a either upward, from
the link a is conclusion to the link a is premise, or downward, from the link
a is premise to the link a is conclusion;

black-box principle: a path never crosses the frame of an exponential box,
i.e. for a path a box is a node, whose emergent edges are the doors of the
box.

ax


 X, X⊥ 
 Γ, A 
 ∆, A⊥
cut
 Γ, ∆


?Γ, A
!
?Γ, !A


 Γ, A
d
 Γ, ?A


 Γ, A 
 ∆, B
⊗


 Γ, ∆, A ⊗ B


 Γ, A, B
�


 Γ, A�B


 Γ
w


 Γ, ?A


 Γ, ?A, ?A
c


 Γ, ?A

Fig. 3. MELL sequent calculus

Definition 4 (Path). An oriented edge is an edge a together with a direction
upward, denoted by ↑ a, or downward, denoted by ↓ a. We write 7 a in case we
do not want to specify if we mean ↑ a or ↓ a. An oriented path (or simply path)
from 7 a0 to 7 an is a sequence of oriented edges <7 a0, . . . , 7 an > such that for
any i < n, 7 ai, 7 ai+1 have the same depth and:

– if 7 ai =↑ ai and 7 ai+1 =↑ ai+1, then ai is conclusion of a link l and ai+1

is premise of l;
– if 7 ai =↑ ai and 7 ai+1 =↓ ai+1, then either ai and ai+1 are different

conclusions of the same link ax l, or they are different doors of the same
exponential box associated with a link ! l;

– if 7 ai =↓ ai and 7 ai+1 =↓ ai+1, then ai is the premise of a link l and ai+1

is conclusion of l;
– if 7 ai =↓ ai and 7 ai+1 =↑ ai+1, then ai and ai+1 are different premises of

the same link l.

In any case we say that the path <7 a0, . . . , 7 an > crosses the edges ai, ai+1

and the link l. We denote by ∗ the concatenation of sequences of oriented edges.
A cycle is a path in which occurs twice 7 a for an edge a.
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Remark that ai and ai+1 must be different edges, i.e. we do not consider bouncing
paths as <↑ a, ↓ a >.

We denote paths by Greek letters φ, τ,ψ, . . .. We write 7 a ∈ φ to mean that
7 a occurs in φ.

4.1 Feasible Paths

Feasible paths have been introduced by Fleury and Retoré in [2] as the paths
”feasible” in a switching of a proof structure.

Definition 5 (Feasible path, [2]). A path is feasible whenever it does not
contain two premises of the same link � or ?c.

A proof structure is feasible acyclic whenever it does not contain any feasible
cycle.

Feasible acyclicity characterizes the proof structures which corresponds to the
proofs of MELL sequent calculus enlarged by the rules of mix and daimon of
Figure 4. The proofs of standard MELL instead are not easily characterizable
by a geometrical condition, because of the weakening link. We do not enter in
the details of the problem, for which we refer to [7].


 Γ 
 ∆
mix
 Γ, ∆

dai
?A

Fig. 4. Mix and daimon rules

Let us compare feasible acyclicity and coherent spaces. As written before, they
are tightly related in MLL by the following results:

Girard’s Theorem, [3]: let π be an MLL proof structure, X be a (uniform)
coherent space. If π is feasible acyclic, then �π�X is a clique.

Retoré’s Theorem, [5]: let π be a cut-free MLL proof structure, X be a (uni-
form) coherent space with x, y, z ∈ |X | s.t. x �y [X ] and x �z [X ]. If �π�X
is a clique, then π is feasible acyclic.

However the situation changes in MELL: it is still true that any feasible
acyclic proof structure is interpreted with a clique, but there are proof structures
associated with cliques even if they have feasible cycles. For example take the
proof structure π of Figure 5.

π has the feasible cycle <↑ a, ↓ b, ↑ a >, nevertheless �π�X is a clique for any
coherent space X . In fact, let e1, e2 be two experiments on π, we show that
|e1| �� |e2| [(?I⊗?I)�!?X ], where I = X�X⊥. Suppose e1(o) =

[
e1
1, . . . , e

n
1

]
and

e2(o) =
[
e1
2, . . . , e

m
2

]
. Remark that for any experiments eli, ehj , eli(a) �

� ehj (a) [?I]
as well as eli(b)

�
� ehj (b) [?I]. We split in two cases. In case n = m, then we de-

duce e1(a) �
� e2(a) and e1(b)

�
� e2(b), hence e1(c)

�
� e2(c). Of course e1(d) ≡ e2(d),
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ax

�

?d

ax

�

?d

⊗
!

?w

X X

?I⊗?I !?X

I I

?X

X⊥ X⊥

a

d

b

c

o

Fig. 5. Example of feasible cycle invisible by coherent spaces

thus |e1| �� |e2| [(?I⊗?I)�!?X ]. In case n �= m, then e1(d) �e2(d), thus |e1| �� |e2|
[(?I⊗?I)�!?X ]. We conclude that �π� is a clique.4

The failure of the correspondence between feasible acyclicity and coherent
spaces shows that these latter read the exponential boxes in a different way than
feasible paths do. Indeed the cycle <↑ a, ↓ b, ↑ a > is due to the box associated
with o: if we erase o and the frame of its box, we would get a feasible acyclic
proof structure. Coherent spaces do not read the boxes as feasible paths do, but
it is not true that they do not read the boxes at all. For example, consider the
proof structure π′ in figure 6.

ax

�

?d
!

?w

⊗

X

I

?X

X⊥

o

?I⊗!?X

b
a

c

Fig. 6. Example of feasible cycle visible by coherent spaces

π′ has the feasible cycle <↑ a, ↓ b, ↑ a >, which is due to the box of o, as in
the example before. However in this case the cycle is visible by coherent spaces,
i.e. �π′� is not a clique. In fact, let e1, e2 be two experiments on π′, s.t. e1(o) = ∅
and e2(o) = [e′], for an experiment e′ on the box of o. Clearly e1(a) �e2(a) [?I],
which implies e1(c) �e2(c) [?I⊗!?X ].

4.2 Visible Paths

Here is our main definition, that of visible paths (Definition 6).
4 Remark that the same argument applies for usual Girard’s coherent spaces.
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Let φ be a path, πo be a box associated with a link ! o. A passage of φ through
πo is any sequence <↑ a, ↓ b > in φ, for a, b doors of πo.

Notice that a feasible path can pass through an exponential box by means
of any pair of its doors; the following definition forbids instead some of such
passages:

Definition 6 (Visible path). Let π be a proof structure. By induction on the
depth of π, we define its visible paths:

– if π has depth 0, then the visible paths of π are exactly the feasible paths;
– if π has depth n + 1, let πo be a box associated with a link ! o, a, b be doors

of πo, we say that:

• a is in the orbit of o if either a is the principal door or there is a visible
path in πo from the premise of o to a;
• a leads to b if either b is in the orbit of o or there is a visible path in πo

from a to b;

then a visible path in π is a feasible path s.t. for any passage <↑ a, ↓ b >
through an exponential box, a leads to b.

A proof structure is visible acyclic whenever it does not contain any visible
cycle.

Visible paths introduce two noteworthy novelties with respect to the feasible
paths:

1. they partially break the black box principle: the admissible passages through
an exponential box depend on what is inside the box, i.e. changing the con-
tents of a box may alter the visible paths outside it;

2. they are sensitive to the direction: if φ is visible from a to b, the same path
done in the opposite direction from b to a may be no longer visible. For
example recall the proof structure of Figure 6: the path <↑ a, ↓ b, ↑ a > is
visible, but <↓ a, ↑ b, ↓ a > isn’t, since b does not lead to a.

Of course if π is feasible acyclic then it is visible acyclic, but the converse
does not hold. For example recall the proof structure of Figure 5, which is visible
acyclic although it contains a feasible cycle. However it is remarkable that the two
notions match in the polarized fragment of MELL, as we show in the following
subsection.

4.3 Feasible and Visible Paths in Polarized Linear Logic

The formulas of the polarized fragment of MELL are of two kinds, negatives
(N) and positives (P ), and are defined by the following grammar:

N ::= X | N�N | ?P
P ::= X⊥ | P ⊗ P | !N
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A proof structure π is polarized whenever all its edges are labeled by polarized
formulas. An edge of π is called positive (resp. negative) if it is labeled by a
positive (resp. negative) formula.

The notion of polarization has a key role in proof theory since it is at the
core of the translations of intuitionistic and classical logic into linear logic. We
do not enter in the details, for which we refer to [8]. We limit ourself to notice
the following proposition:

Proposition 1. Let π be a polarized proof structure. π is visible acyclic iff π is
feasible acyclic.

5 Visible Acyclicity and Coherent Spaces

In this section we present the main theorems of the paper, stating the link
between visible acyclicity and coherent spaces:

Theorem 2. Let π be a MELL proof structure, X be a non-uniform coherent
space.

If π is visible acyclic, then �π�X is a clique.

Theorem 3. Let π be a cut-free MELL proof structure, X be a non-uniform
coherent space with x, y, z ∈ |X | s.t. x �y [X ], x �z [X ] and x ≡ x [X ].

If �π�X is a clique, then π is visible acyclic.

Subsection 5.1 (resp. 5.2) gives a sketch of the proof of Theorem 2 (resp.
Theorem 3).

5.1 Proof of Theorem 2

Theorem 2 is an immediate consequence of the following lemma:

Lemma 1. Let π be a visible acyclic proof structure. If d : D is a conclusion
of π and e1, e2 are two experiments s.t. e1(d) �e2(d) [D], then there is a visible
path φ from ↑ d to a conclusion of π ↓ d′ : D′ s.t. e1(d′) �e2(d′) [D′].
Proof (Sketch). Let e1(d) �e2(d) [D]. The lemma is proved by induction on the
depth of π. The proof provides a procedure which defines a sequence of visible
paths φ1 ⊂ φ2 ⊂ φ3 ⊂ . . ., such that φ1 is exactly <↑ d >, and for each φj :

1. φj is a visible path at depth 0;
2. for every edge c : C, if ↑ c ∈ φj then e1(c) �e2(c) [C], if ↓ c ∈ φj then

e1(c) �e2(c) [C].

Since π is visible acyclic, no φj is a cycle. Hence the sequence φ1, φ2, φ3, . . .
will meet eventually a conclusion d′ of π, so terminating in a path φk satisfying
the lemma. '(
A straight consequence of Lemma 1 is that whenever π is visible acyclic, the
results of the experiments on π are pairwise coherent, i.e. �π� is a clique.

We underline that the proof of Lemma 1 is a generalization in the framework
of visible paths of the proof of the Compatibility Lemma (Lemma 3.18.1 in [3]).
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5.2 Proof of Theorem 3

The proof of Theorem 3 is based on the key Lemma 2. In some sense Lemma 2
is the converse of Lemma 1: Lemma 1 associates with two experiments e1, e2 a
visible path proving |e1| �� |e2|; Lemma 2 instead is used in the proof of Lemma 3
to associate with a visible cycle (morally) two experiments s.t. |e1| �|e2|.

However Lemma 2 has to take care of a typical difficulty of the links ?c.
In order to prove the lemma we need to manage the coherence/incoherence
relationship between the values of e1 and e2. Unfortunately the links ?c soon
make such a relationship unmanageable. In fact, if l is a link ?c with conclusion
c and premises a, b, the incoherence e1(c)

�
� e2(c) holds if and only if e1(a) �

� e2(a),
e1(a) �

� e2(b), e1(b)
�
� e2(a) and e1(b)

�
� e2(b) hold: such an exponential explosion

of the number of incoherences soon becomes unmanageable.
Luckily there is a solution that avoids this problem. Namely we noticed that

one of the two experiments e1, e2 can be chosen to be very simple, i.e. e1 can be
a (x, n)-simple experiment (see Definition 9). The key property of a (x, n)-simple
experiment is that all of its possible values on an arbitrary edge of type A are
semantically characterized, precisely they are (x, n)-simple elements of A with
degree less or equal to wnd, where d is the depth of π and w is the cosize of π
(Definition 8 and Proposition 2). In this way we may define the second experi-
ment e2 not by looking at the particular value that e1 takes on an edge of type
A, but by referring in general to the (x, n)-simple elements of A with degree less
or equal to wnd. So whenever we consider the premises a :?A, b :?B of a link
?c, instead of taking care of the four incoherences e1(a) �

� e2(a), e1(a) �
� e2(b),

e1(b)
�
� e2(a) and e1(b)

�
� e2(b), we will check only that for each (x, n)-simple el-

ement v ∈?A with degree less or equal to wnd, v �
� e2(a) and v �

� e2(b).

Definition 7 ([7]). Let C be the nuCohX interpretation of a formula C and
v ∈ C. For every occurrence of a subformula A of C we define the projection of
v on A (denoted as |v|A) as the multiset defined by induction as follows:

– if C = A, then |v|A = [v];
– if C = D�E or C = D ⊗ E, v =< v′, v′′ > and A is a subformula of D

(resp. of E), then |v|A = |v′|A (resp. |v|A = |v′′|A);
– if C =?D or C =!D, v = [v1, . . . , vn] and A is a subformula of D, then
|v|A = |v1|A + . . . + |vn|A.

Definition 8. Let n ∈ N, x be an element of a non-uniform coherent space X
and C be the nuCohX interpretation of a formula C. An element v ∈ C is a
(x, n)-simple element if:

1. for any atomic subformula X, X⊥ of C, Supp(|v|X) = Supp(|v|X⊥) = {x};
2. for any !-subformula !A of C, if u ∈ |v|!A then u = n [u′];

Moreover v is stable if also:

3. for any ?-subformula ?A of C, if u ∈ |v|?A then u = n [u′].
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The degree of a (x, n)-simple element v, denoted by d(v), is the number:

d(v) = max {m | ∃?A subform. of C, ∃u ∈ |v|?A s.t. u = [u1, . . . , um]}

Remark that an element is (x, n)-simple in both C and C⊥ only if it is also stable.
Moreover, notice that for any formula C, there is only one stable (x, n)-simple
element in C.

Definition 9 ([7]). Let π be a proof structure, n ∈ N, x be an element of a
non-uniform coherent space X . The (x, n)-simple experiment on π, denoted by
eπ
(x,n), is defined as follows (by induction on the depth of π):

– for each conclusion a : A of an axiom at depth 0, eπ
(x,n)(a) = s, where s is

the stable (x, n)-simple element of A;
– for each link ! o at depth 0, let πo be the box of o, eπ

(x,n)(o) = n
[
eπo

(x,n)

]
.

Proposition 2. Let π be a proof structure of depth d and cosize w. Let eπ
(x,n)

be the (x, n)-simple experiment on π. For any edge c : C at depth 0, eπ
(x,n)(c) is

a (x, n)-simple element of C with degree at most wnd.

Lemma 2. Let nuCohX be defined from a coherent space X s.t. ∃x, y, z ∈ X ,
x ≡ x [X ], x �y [X ] and x �z [X ].

Let π be a cut-free proof structure, k be the maximal number of doors of a box
of π. Let φ be a visible path at depth 0 from a conclusion ↑ a to a conclusion ↓ b,
s.t. φ is not a cycle.

For any n,m ∈ N, m ≥ n ≥ k, there is an experiment eφ : π, s.t. for any edge
c : C at depth 0 and any (x, n)-simple element v in C with degree less or equal
m:

1. if there is c′ equal or above c s.t. 7 c′ ∈ φ, then eφ(c) �≡ v [C];
2. if ↓ c /∈ φ, then eφ(c) �

� v [C].

Proof (Sketch). The lemma is proved by induction on the depth of π. The proof
is divided in two steps: firstly, eφ is defined by giving its values on the links ax
and ! at depth 0; secondly, eφ is proved to satisfy conditions 1, 2 for any edge c,
by induction on the number of edges at depth 0 above c. '(

Lemma 3. Let nuCohX be defined from a coherent space X s.t. ∃x, y, z ∈ X ,
x ≡ x [X ], x �y [X ] and x �z [X ].

Let π be a cut-free proof structure with conclusions Π, k be the maximal
number of doors of an exponential box in π. If π has a visible cycle, then for
any n,m ∈ N, m ≥ n ≥ k, there is an experiment e : π, such that for any
(x, n)-simple element v in �Π with degree less or equal to m, |e| �v [�Π ].

Proof (Sketch). The proof is by induction on the size of π. The induction step
splits in seven cases, one for each type of link (except cut). The crucial case deals
with the link ⊗, since removing it may erase visible cycles. In this case Lemma
2 will be used. '(
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The proof of Theorem 3 is straight once we have Lemma 3. Let π be a cut-free
proof structure with conclusions Π , depth d, cosize w and let k be the maximal
number of doors of a box of π. If π has a visible cycle then by Lemma 3 there is
an experiment e : π such that for any (x, n)-simple element v in �Π with degree
less or equal to m, |e| �v [�Π ], where n = k, m = wnd.

Let eπ
(x,n) be the (x, n)-simple experiment on π. By Proposition 2, |eπ

(x,n)| is a
(x, n)-simple element in �Π with degree less or equal to m. So |e| �|eπ

(x,n)| [�Π ],
i.e. �π�X is not a clique in �Π .

6 Visible Acyclicity and Cut Reduction

It turns out that visible acyclicity has also nice computational properties, espe-
cially it is stable under cut reduction:

Theorem 4 (Stability). Let π,π′ be MELL proof structures. If π →β π′ and
π is visible acyclic then π′ is visible acyclic.

Proof (Sketch). Indeed if π �β π′, then every visible cycle in π′ is the ”residue”
of a visible cycle in π. '(

Remark that a proof structure with deadlocks is not visible acyclic, hence The-
orem 4 assures that the cut reduction of visible acyclic proof structures never
produces deadlocks.

Moreover, visible acyclicity guarantees also confluence and strong normaliza-
tion of →β . Here we give only the statements of the theorems, which will be
treated in details in a forthcoming paper:

confluence: let π be a visible acyclic MELL proof structure, if π →β π1 and
π →β π2 then there is π3 s.t. π1 →β π3 and π2 →β π3;

strong normalization: let π be a visible acyclic MELL proof structure, there
is no infinite sequence of proof structures π0, π1, π2, . . . s.t. π0 = π and
πi �β πi+1.

!
cut

!

cut

?c

l

m

π′ π′′

Fig. 7. Counter-example of confluence and strong normalization of cut reduction on
proof structures

Remark that both confluence and strong normalization are false on proof
structures with visible cycles. For example consider the proof structure π in
Figure 7. If you reduce the cut link l, then m becomes a deadlock, while if you
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reduce the cut link m and its residues m1,m2, l becomes a deadlock: i.e. π is
a counter-example to the confluence. Concerning strong normalization, notice
that reducing m, then l, then a residue of m, then a residue of l and so on . . . we
get an infinite sequence of cut reductions.
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Abstract. The following problem is known as the Church Synthesis
problem:

Input: an MLO formula ψ(X, Y ).

Task: Check whether there is an operator Y = F (X) such that

Nat |= ∀Xψ(X, F (X)) (1)

and if so, construct this operator.

Büchi and Landweber proved that the Church synthesis problem is decid-
able; moreover, they proved that if there is an operator F which satisfies
(1), then (1) can be satisfied by the operator defined by a finite state
automaton. We investigate a parameterized version of the Church syn-
thesis problem. In this version ψ might contain as a parameter a unary
predicate P . We show that the Church synthesis problem for P is com-
putable if and only if the monadic theory of 〈Nat , <, P 〉 is decidable. We
also show that the Büchi-Landweber theorem can be extended only to
ultimately periodic parameters.

1 Introduction

Two fundamental results of classical automata theory are decidability of the
monadic second-order logic of order (MLO) over ω = (Nat ,<) and computability
of the Church synthesis problem. These results have provided the underlying
mathematical framework for the development of formalisms for the description of
interactive systems and their desired properties, the algorithmic verification and
the automatic synthesis of correct implementations from logical specifications,
and advanced algorithmic techniques that are now embodied in industrial tools
for verification and validation.

Büchi [Bu60] proved that the monadic theory of ω = 〈Nat ,<〉 is decidable.
Even before the decidability of the monadic theory of ω has been proved, it
was shown that the expansions of ω by “interesting” functions have undecid-
able monadic theory. In particular, the monadic theory of 〈Nat ,<,+〉 and the
monadic theory of 〈Nat ,<, λx.2 × x〉 are undecidable [Rob58, Trak61]. There-
fore, most efforts to find decidable expansions of ω deal with expansions of ω by
monadic predicates.

Elgot and Rabin [ER66] found many interesting predicates P for which MLO
over 〈Nat ,<,P〉 is decidable. Among these predicates are the set of factorial
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numbers {n! : n ∈ Nat}, the sets of k-th powers {nk : n ∈ Nat} and the sets
{kn : n ∈ Nat} (for k ∈ Nat ).

The Elgot and Rabin method has been generalized and sharpened over the
years and their results were extended to a variety of unary predicates (see e.g.,
[Ch69, Th75, Sem84, CT02]). In [Rab05] we provided necessary and sufficient
conditions for the decidability of monadic (second-order) theory of expansions
of the linear order of the naturals ω by unary predicates.

Let Spec be a specification language and Pr be an implementation language.
The synthesis problem for these languages is stated as follows: find whether for
a given specification S(I,O) ∈SPEC there is a program P which implements it,
i.e., ∀I(S(I,P(I)).

The specification language for the Church Synthesis problem is the Monadic
second-order Logic of Order. An MLO formula ϕ(X,Y ) specifies a binary rela-
tion on subsets of Nat . Note that every subset P of Nat is associated with its
characteristic ω-string uP (where uP (i) = 1 if i ∈ P and otherwise uP (i) = 0).
Hence, ϕ(X,Y ) can be considered as a specification of a binary relation on ω-
strings.

As implementations, Church considers functions from the set {0, 1}ω of ω-
strings over {0, 1} to {0, 1}ω. Such functions are called operators. A machine
that computes an operator at every moment t ∈ Nat reads an input symbol
X(t) ∈ {0, 1} and produces an output symbol Y (t) ∈ {0, 1}. Hence, the output
Y (t) produced at t depends only on inputs symbols X(0), X(1), . . . , X(t). Such
operators are called causal operators (C-operators); if the output Y (t) produced
at t depends only on inputs symbols X(0), X(1), . . . , X(t−1), the corresponding
operator is called strongly causal (SC-operator). The sets of recursive causal
and strongly causal operators are defined naturally; a C-or a SC-operator is a
finite state operator if it is computable by a finite state automaton (for precise
definitions, see Subsection 2.3).

The following problem is known as the Church Synthesis problem.

Church Synthesis problem
Input: an MLO formula ψ(X,Y ).
Task: Check whether there is a C-operator F such that

Nat |= ∀Xψ(X,F (X)) and if so, construct this operator.

The Church Synthesis problem is much more difficult than the decidability prob-
lem for MLO over ω. Büchi and Landweber [BL69] proved that the Church
synthesis problem is computable. Their main theorem is stated as follows:

Theorem 1. For every MLO formula ψ(X,Y ) either there is a finite state C-
operator F such that Nat |= ∀Xψ(X,F (X)) or there is a finite state SC-operator
G such that Nat |= ∀Y ¬ψ(G(Y ), Y ). Moreover, it is decidable which of these
cases holds and a corresponding operator is computable from ψ.

In this paper we consider natural generalizations of the Church Synthesis
Problem over expansions of ω by monadic predicates, i.e., over the structures
〈Nat ,<,P〉.
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For example, let Fac = {n! : n ∈ Nat} be the set of factorial numbers,
and let ϕ(X,Y,Fac) be a formula which specifies that t ∈ Y iff t ∈ Fac and
(t′ ∈ X)↔ (t′ ∈ Fac) for al all t′ ≤ t. It is easy to observe that there is no finite
state C-operator F such that ∀Xϕ(X,F (X),Fac). However, there is a recursive
C-operator H such that ∀Xϕ(X,H(X),Fac). It is also easy to construct a finite
state C-operator G(X,Z) such that ∀Xϕ(X,G(X,Fac),Fac). It was surprising
for us to discover that it is decidable whether for a formula ψ(X,Y,Fac) there
is a C-operator F such that ∀Xϕ(X,F (X),Fac) and if such an operator exists,
then it is recursive and computable from ψ.

Here is the summary of our results. We investigate a parameterized version of
the Church synthesis problem. In this version ψ might contain as a parameter
a unary predicate P . Below five synthesis problems with a parameter P ⊆ Nat
are stated.

Synthesis Problems for P ⊆ Nat
Input: an MLO formula ψ(X,Y, P ).
Problem 1: Check whether there is a C-operator Y = F (X,P ) such that

Nat |= ∀Xψ(X,F (X,P),P) and if there is such a recursive operator
- construct it.

Problem 2: Check whether there is a recursive C-operator Y = F (X,P )
such

that Nat |= ∀Xψ(X,F (X,P),P) and if so - construct this operator.
Problem 3: Check whether there is a recursive C-operator Y = F (X) such

that Nat |= ∀Xψ(X,F (X),P) and if so - construct this operator.
Problem 4: Replace “recursive” by “finite state” in Problem 2.
Problem 5: Replace “recursive” by “finite state” in Problem 3.

We show

Theorem 2. Let P be a subset of Nat. The following conditions are equivalent:

1. Problem 1 for P is computable.
2. Problem 2 for P is computable.
3. Problem 3 for P is computable.
4. The monadic theory of 〈Nat ,<,P〉 is decidable.
5. For every MLO formula ψ(X,Y, P ) either there is a recursive C-operator F

such that Nat |= ∀Xψ(X,F (X),P) or there is a recursive SC-operator G
such that Nat |= ∀Y ¬ψ(G(Y ), Y,P). Moreover, it is decidable which of these
cases holds and the (description of the) corresponding operator is computable
from ψ.

The difficult part of this theorem is the implication (4)⇒(5). In [BL69] a re-
duction of the Church synthesis problem to infinite two-player games on finite
graphs was provided. Our proof is based on a reduction of the Church synthesis
problem with parameters to infinite two-player games on infinite graphs. The
main part of the proof shows that the reduction is “uniform” in the parameters
and the corresponding infinite graph can be interpreted in (Nat ,<,P). Lemma
13 from [Rab05] also plays a key role in this proof.
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The trivial examples of predicates with decidable monadic theory are ulti-
mately periodic predicates. Recall that a predicate P is ultimately periodic if
there is p, d ∈ Nat such that (n ∈ P↔ n + p ∈ P) for all n > d. Ultimately pe-
riodic predicates are MLO definable. Hence, for these predicates computability
of Problems 1-5 can be derived from Theorem 1.

We prove that the Büchi-Landweber theorem can be extended only to ulti-
mately periodic parameters.

Theorem 3. Let P be a subset of Nat. The following conditions are equivalent
and imply computability of Problem 4:

1. P is ultimately periodic.
2. For every MLO formula ψ(X,Y,P) either there is a finite state C-operator F

such that Nat |= ∀Xψ(X,F (X,P),P) or there is a finite state SC-operator
G such that Nat |= ∀Y ¬ψ(G(Y,P), Y,P).

The paper is organized as follows. In Section 2 notations are fixed and standard
definitions and facts about automata and logic are recalled. In Section 3 parity
games and their connection to the synthesis problems are discussed. Büchi and
Landweber [BL69] used the determinacy of such games as one of the main tools
to prove computability of the Church synthesis problem and derive Theorem 1.
We prove here that the question about the existence of a C-operator F such
that Nat |= ∀Xψ(X,F (X,P),P) can be effectively reduced to the decidability
of monadic theory of 〈Nat ,<,P〉.

In Section 4 a proof of Theorem 2 is provided. In Section 5 finite state synthesis
problems with parameters are considered and Theorem 3 is proved. Finally, in
Section 6 some open problems are stated and related works are discussed.

2 Preliminaries

2.1 Notations and Terminology

We use k, l, m, n, i for natural numbers; Nat for the set of natural numbers
and capital bold letters P, S, R for subsets of Nat . We identify subsets of a set
A and the corresponding unary (monadic) predicates on A.

The set of all (respectively, non-empty) finite strings over an alphabet Σ is
denoted by Σ∗ (respectively, by Σ+). The set of ω-strings over Σ is denoted by
Σω.

Let a0 . . . ak . . . and b0 . . . bk . . . be ω-strings. We say that these ω-strings
coincide on an interval [i, j] if ak = bk for i ≤ k ≤ j. A function F from Σω1 to
Σω2 will be called an operator of type Σ1→Σ2. An operator F is called causal
(respectively, strongly causal) operator, if F (X) and F (Y ) coincide on an interval
[0, t], whenever X and Y coincide on [0, t] (respectively, on [0, t)). We will refer
to causal (respectively, strongly causal) operators as C-operators (respectively,
SC-operators).

Every SC-operator F of type Σ→Σ has a unique fixed point, i.e., there is a
unique X ∈ Σω such that X = F (X).
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Let G : Σω→∆ω be an operator. In the case Σ is the Cartesian product
Σ1 ×Σ2 we will identify F with the corresponding operator F : Σω1 ×Σω2→∆ω .
An operator F : Σω1 × Σω2→∆ω is said to be SC-operator (C-operator) if G is
SC-operator (respectively, C-operator).

There exists a one-one correspondence between the set of all ω-strings over the
alphabet {0, 1}n and the set of all n-tuples 〈P1, . . . ,Pn〉 of unary predicates over
the set of natural numbers. With an n-tuple 〈P1, . . . ,Pn〉 of unary predicates
over Nat , we associate the ω-string a0a1 . . . ak . . . over alphabet {0, 1}n defined
by ak =def 〈bk1 , . . . bkn〉 where bki is 1 if Pi(k) holds and bki is 0 otherwise. Let Q =
{q1, . . . , qm} be a finite set of state. There is a natural one-one correspondence
between subset of Q×Nat and the set of m-tuples of unary predicates over Nat :
with U ⊆ Q× Nat we associate the m-tuple 〈P1, . . . ,Pm〉 defined as i ∈ Pj iff
U(qj , i) (for i ∈ Nat and j ≤ m).

Similarly, there is a one-one correspondence between the set of all strings of
length m over the alphabet {0, 1}n and the set of all n-tuples 〈P1, . . . ,Pn〉 of
unary predicates over the set {0, . . . ,m− 1}.

A linearly ordered set will be called a chain. A chain with n monadic predicates
over its domain will be called an n-labelled chain; whenever n is clear from the
context, n-labelled chains will be called labelled chains.

We will sometimes identify an n-labelled chain M = 〈Nat ,<,P1, . . . ,Pn〉
with the ω-string over the alphabet {0, 1}n which corresponds to the n-tuple
〈P1, . . . ,Pn〉; this ω-string will be called the characteristic ω-string (or ω-word)
of M . Similarly, we will identify finite n-labelled chains with corresponding
strings over {0, 1}n.

2.2 Monadic Second-Order Logic and Monadic Logic of Order

Let σ be a relational signature. Atomic formulas of the monadic second-order
logic over σ are R(t1, ..., tn), t1 = t2, and t1 ∈ X where t1, . . . , tn are individual
variables, R ∈ σ is an n-are relational symbol, and X is a set variable. Formulas
are obtained from atomic formulas by conjunction, negation, and quantification
∃t and ∃X for t an individual and X a set variable. The satisfaction relation
M, τ1, . . . τk;S1, . . . ,Sm |= ϕ(t1, . . . , tk;X1, . . . , Xm) is defined as usual with the
understanding that set variables range over subsets of M .

We use standard abbreviations, e.g., we write X ⊆ X ′ for ∀t. X(t)→X ′(t); we
write X = X ′ for ∀t. X(t) ↔ X ′(t); symbols “∃≤1” and “∃!” stands for “there
is at most one” and “there is a unique”.

If a signature σ contains one binary predicate < which is interpreted as a
linear order, and all other predicates are unary, the monadic second-order logic
for this signature is called Monadic Logic of Order (MLO). The formulas of
MLO are interpreted over labelled chains.

The monadic theory of a labelled chain M is the set of all MLO sentences
which hold in M .

We will deal with the expansions of ω by monadic predicates, i.e., with the
structures of the form M = 〈Nat ,<,P1, . . . ,Pn〉. We say that a chain M =
〈Nat ,<,P1, . . . ,Pn〉 is recursive if all Pi are recursive subsets of Nat .
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An ω-language L is said to be defined by an MLO formula ψ(X1, . . . , Xn) if
the following condition holds: an ω string is in L iff the corresponding n-tuple
of unary predicates satisfies ψ.

2.3 Automata

A deterministic transition system D is a tuple 〈Q, Σ, δ, qinit〉, consisting of a set
Q of states, an alphabet Σ, a transition function δ : Q×Σ→Q and initial state
qinit ∈ Q. The transition function is extended as usual to a function from Q×Σ∗

to Q which will be also denoted by δ. The function δinit : Σ∗→Q is defined
as δinit (π) = δ(qinit ,π). A transition systems is finite if Q and Σ are finite. D
is recursive if (1) the sets of states and the alphabet are at most countable and
(2) there are enumerations of the sets of states Q = {qi : i ∈ Nat} and the
alphabet Σ = {ai : i ∈ Nat} such that the function λiλj.δ(qi, aj) is recursive.

A finite deterministic automaton A is a tuple 〈Q, Σ, δ, qinit ,F 〉, where
〈Q, Σ, δ, qinit 〉 is a finite deterministic transition system and F is a subset of
Q. A string π ∈ Σ∗ is accepted by A if δinit (π) ∈ F . The language accepted (or
defined) by A is the set of string accepted by A.

A Mealey automaton is a tuple 〈Q, Σ, δ, qinit ,∆, out〉, where 〈Q, Σ, δ, qinit〉 is
a deterministic transition system, ∆ is an alphabet and out : Q→∆ is an output
function. With a Mealey automaton A = 〈Q, Σ, δ, qinit ,∆, out〉 we associate a
function hA : Σ∗→∆ and an operator FA : Σω→∆ω defined as follows:

hA(a0 . . .ai−1) = out(δinit (a0 . . .ai−1))

FA(a0 . . . ai . . . ) = b0 . . . bi . . . iff bi = hA(a0 . . . ai−1))

It is easy to see that an operator is strongly causal (SC-operator) iff it is definable
by a Mealey automaton. We say that a SC-operator F : Σω→∆ω is finite state
(respectively, recursive) iff it is definable by a finite state (respectively, by a
recursive) Mealey automaton.

A (deterministic) parity automaton A is a finite Mealey automaton 〈Q, Σ,→
, δ, qinit ,∆, col〉, where the output alphabet ∆ is a (finite) subset of Nat ; the
output function col is usually named coloring function.

With an ω-string a0a1 . . .ai · · · ∈ Σω we associate the ω-sequence
δinit (a0)δinit (a1) . . . δinit (qi) . . . of states and the set Inf of all q ∈ Q that ap-
pear infinitely many times in this sequence. An ω-string is accepted by A if the
minimal element of the set {col(q) : q ∈ Inf} is even. The ω-language accepted
(or defined) by A is the set of all ω-strings accepted by A.

Sometimes the alphabet Σ of A will be the Cartesian product Σ1 ×Σ2 ×Σ3

of other alphabets. In this case we say that A defines a relation RA ⊆
Σω1 × Σω2 × Σω3 ; a triplet 〈a, b, c〉 of ω-strings is in RA iff the ω string
(a0, b0, c0)(a1, b1, c1) . . . (ai, bi, ci) . . . is accepted by A.

Here is the classical theorem due to Büchi, Elgot and Trakhtenbrot.

Theorem 4. 1. A language is accepted by a finite deterministic automaton iff
it is definable by an MLO formula.

2. An ω-language is accepted by a parity automaton iff it is definable by an
MLO formula.
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3. Moreover, there is an algorithm which for every formula ϕ(X1, . . . , Xm) com-
putes an equivalent deterministic automaton A i.e., the language definable
by ϕ is accepted by A. There is an algorithm which for every determinis-
tic automaton A computes an equivalent MLO formula. Similarly, there are
translation algorithms between formulas and deterministic parity automata.

A Moore automaton is a tuple 〈Q, Σ, δ, qinit ,∆, out〉, where 〈Q, Σ, δ, qinit 〉 is a
deterministic transition system, ∆ is an alphabet and out : Q × Σ→∆ is an
output function.

With a Moore automaton A = 〈Q, Σ, δ, qinit ,∆, out〉 we associate a function
hA : Σ+→∆ and an operator FA : Σω→∆ω defined as follows:

hA(a0 . . . , ai) = out(δinit (a0 . . . ai−1), ai)

FA(a0 . . . ai . . . ) = b0 . . . bi . . . iff bi = hA(a0 . . . , ai)

It is easy to see that an operator is causal (C-operator) iff it is definable by a
Moore automaton.

We say that a C-operator F : Σω→∆ω is finite state (respectively, recursive)
iff it is definable by a finite state (respectively, by a recursive) Moore automaton.

3 Parity Games and the Synthesis Problem

In the next subsection we provide standard definitions and facts about infinite
two-player perfect information games. In [BL69] a reduction of the Church syn-
thesis problem to infinite two-player games on finite graphs was provided. In
subsection 3.2 we provide a reduction of the Church synthesis problem with pa-
rameters to infinite two-player games on infinite graphs; this reduction is “uni-
form” in the parameters. The main technical results needed for the proof of
Theorem 2 are Lemmas 8 and 9 which roughly speaking state that and the
corresponding infinite graph can be interpreted in (Nat ,<,P).

3.1 Parity Games

We consider here two-player perfect information games played on graphs in which
each player chooses in turn a vertex adjacent to a current vertex. The presenta-
tion is based on [PP04].

A (directed) bipartite graph G = (V1,V2,E) is called a game arena if the
outdegree of every vertex is at least one. If G is an arena, a game on G is defined
by an initial node vinit ∈ V1 and a set of winning ω-paths F from this node.

Player I plays on vertices in V1 and Player II on vertices in V2. A play from
a node v is an infinite path in G which starts at v. Player I wins if the play
belongs to F .

A strategy f for Player I (Player II) is a function which assigns to every
path of even (odd) length a node adjacent to the last node of the path. A play
vinitv2v3 . . . is played according to a strategy f1 of Player I (strategy f2 of
Player II) if for every prefix π = vinitv2 . . . vn of even (odd) length vn+1 = f1(π)
(respectively, vn+1 = f2(π)). A strategy is winning for Player I (respectively, for
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Player II) if all the plays played according to this strategy are in F (respectively,
in the complement of F). A strategy is memoryless if it depends only on the last
nodes in the path.

Parity games are games on graphs in which the set of winning paths are defined
by parity conditions. More precisely, let G = (V1,V2,E) be a game graph and
let c : V1 ∪ V2→{0, 1, . . .m} be a coloring.

Let ρ = v1v2 . . . be a play. With such a play ρ, we associate the set of colors
Cρ that appear infinitely many times in the ω-sequence col(v1)col(v2) . . . ; a
play ρ is winning if the minimal element of Cρ is odd. The following theorem
[EJ91, GTW02, PP04] is fundamental:

Theorem 5. In a parity game, one of the players has a memoryless winning
strategy.

3.2 Games and the Church Synthesis Problem

Let A = 〈Q, Σ, δA, qinit , col〉 be a deterministic parity automaton over the al-
phabet Σ = {0, 1} × {0, 1} × {0, 1}, let RA ⊆ {0, 1}ω × {0, 1}ω × {0, 1}ω be the
relation definable by A and let P be a subset of Nat . We will define a parity
game GA,P such that

1. Player I has a winning strategy in GA,P iff there is a SC-operator
G : {0, 1}ω→{0, 1}ω such that RA(G(Y ), Y,P) holds for every Y .

2. Player II has a winning strategy in GA,P iff there is a C-operator
F : {0, 1}ω→{0, 1}ω such that ¬RA(X,F (X),P) holds for every X .

The arena G(V1,V2,E) of GA,P is defined as follows:

1. V1 = Q×Nat and V2 = Q× {0, 1} ×Nat .
2. From 〈q, n〉 ∈ V1 there exit two edges; one to 〈q, 0, n〉 ∈ V2, and the second

to 〈q, 1, n〉 ∈ V2. We will assign labels to these edges. The first one will be
labeled by 0 and the second one will be labeled by 1. These edge labels play
no role in the game on our graph; however, it will be convenient to refer to
them later.

3. From 〈q, a, n〉 ∈ V2 there exit two edges defined as follows: Let c be 1 if
n ∈ P and 0 if n �∈ P; and for b ∈ {0, 1} Let qb be δA(q, 〈a, b, c〉). One edge
from 〈q, a, n〉 is connected to 〈q0, n + 1〉 and the second one to 〈q1, n + 1〉.
We label the first edge by 0 and the second one by 1.

The color of a node of the arena is defined by the color of its automaton’s
component, i.e., c(〈q, n〉) = c(〈q, a, n〉 = col(q).

Every node of the game graph for GA,P has two successors. The subsets of V1

(respectively, of V2) can be identified with the memoryless strategies of Player I
(respectively, of Player II). For a subset U1 ⊆ V1, the corresponding memoryless
strategy fU1 is defined as

fU1(〈q, n〉) =
{
〈q, 1, n〉 if 〈q, n〉 ∈ U1

〈q, 0, n〉 otherwise
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In other words, for v ∈ V1 the strategy fU1 chooses the nodes reachable from v
by the edge with label U1(v).

To a subset U1 ⊆ V1, correspond a function hU1 : {0, 1}∗→V1 and a SC-
operator FU1 : {0, 1}ω→{0, 1}ω. First, we provide the definition for hU1 , and
later for FU1 .

hU1 is defined as follows:

hU1(ε) = 〈qinit, 0〉

For π ∈ {0, 1}∗ and b ∈ {0, 1} : hU1(πb) = 〈δA(q, a, b, c), n + 1〉, where

〈q, n〉 = hU1(π), a = 1 iff 〈q, n〉 ∈ U1 and c = 1 iff n ∈ P.

Some explanation might be helpful at this point. Let GU1 be the subgraph of
GA,P obtained by removing from every node v ∈ V1 the edge labeled by ¬U1(v)
and removing the label from the other edge exiting v. In this graph every V1

node has outdegree one and every V2 node has two exiting edges; one is labeled
by 0 and the other is labeled by 1. For every π in {0, 1}∗ there is a unique path
from 〈qinit, 0〉 to a state v1 ∈ V1 such that π is the sequence of labels on the
edges of this path; this node v1 is hU1 image of π.

Now a SC-operator FU1 : {0, 1}ω→{0, 1}ω which corresponds to U1 is defined
as follows. Let π = b0b1 . . . be an ω-string. There is a unique ω-path ρ from
〈qinit, 0〉 in GU1 such that π is the sequence labels on the edges of this path.
Let v1v2 . . . be the sequence of V1 nodes on ρ and let ai = 1 if vi ∈ U1 and 0
otherwise. The ω sequence a0a1 . . . is defined as the FU1 image of π.

Similarly, U2 ⊆ V2 corresponds to a memoryless strategy fU2 for Player II and
C-operator FU2 . The following lemmas are easy

Lemma 6. 1. Let U1 be a subset of V1. The memoryless strategy defined by U1

is winning for Player I iff RA(FU1 (Y ), Y,P) holds for every Y .
2. Let U2 be a subset of V2. The memoryless strategy defined by U2 is winning

for Player II iff ¬RA(X,FU2(X),P) holds for every X.

Lemma 7. If P is recursive, then the game GA,P is recursive. If in addition
U1 ⊆ Q × Nat (respectively, U2 ⊆ Q × {0, 1} × Nat) is recursive, then the
corresponding operator FU1 (respectively, FU2) is recursive.

Recall that every subset U of Q × Nat corresponds to a tuple W1, . . . ,W|Q| of
subsets of Nat such that 〈q,m〉 ∈ U iff m ∈Wq.

The next Lemma shows that the set of winning memoryless strategies for each
of the players in GA,P is definable in the structure 〈Nat ,<,P〉.

Lemma 8. Let A = 〈Q, Σ, δA, qinit, col〉, be a deterministic parity automaton
over the alphabet Σ = {0, 1} × {0, 1} × {0, 1}.

1. There is an MLO formula WinA(Z1, . . . , Z|Q|, Z) such that for every P ⊆
Nat and W1, . . . ,W|Q| ⊆ Nat:
Nat |= WinA(W1, . . . ,W|Q|,P) iff the corresponding subset U ⊆ Q×Nat

defines a winning memoryless strategy for Player I in GA,P.
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2. There is an MLO formula LoseA(Z1, . . . , Z|Q|, Z
′
1, . . . , Z

′
|Q|, Z) such that for

every P ⊆ Nat and W1, . . . ,W|Q|,W
′
1, . . . ,W

′
|Q| ⊆ Nat:

Nat |= LoseA(W1, . . . ,W|Q|,W
′
1, . . . ,W

′
|Q|,P) iff the corresponding subset

U ⊆ Q×{0, 1}×Nat defines a winning memoryless strategy for Player II in

GA,P.
3. Moreover, there is an algorithm that computes formulas WinA and LoseA

from A.

Proof. (Sketch) The game arena GA,P can be considered as a logical structure
M for the signature τA = {Ri : i ∈ Q∪Q×{0, 1}}∪{P,E0,E1}, where Ri and
P are unary predicates and E0, E1 are binary predicates with the interpretation

RM
i =

{
{〈q, j〉 : j ∈ Nat} for i = q ∈ Q
{〈q, a, j〉 : j ∈ Nat} for i = 〈q, a〉 ∈ Q × {0, 1}

PM = {〈q,m〉 : m ∈ P} ∪ {〈q, a,m〉 : a ∈ {0, 1} and m ∈ P}

EM0 (v1, v2) (respectively, EM1 (v1, v2)) holds

iff there is an edge labeled by 0 (respectively, by 1) from v1 to v2.

Every set S of nodes in M corresponds to the tuple 〈. . . ,Wi, . . . 〉 where i ∈
Q∪Q×{0, 1}) of subsets of Nat such that 〈q,m〉 ∈ S iff m ∈Wq and 〈q, a,m〉 ∈ S
iff m ∈W〈q,a〉.

It can be shown that there is an algorithm which for every formula ψ(X)
in the second order monadic logic over the signature τA with a free monadic
variable X constructs a formula ϕ(Y, . . . , Zi, . . . ) with free monadic variables
{Y } ∪ {Zi : i ∈ Q ∪ Q × {0, 1}}, such that for every P ⊆ Nat and a tuple
〈. . . ,Wi, . . . 〉 where i ∈ Q∪Q×{0, 1}) of subsets of Nat the following equivalence
holds:

Nat |= ϕ(P, . . . ,Wi, . . . ), iff M |= ψ(S),

where S is the subset of nodes in GA,P, which corresponds to 〈. . . ,Wi, . . . 〉.

Lemma 8 follows from the existence of the above algorithm and from the obser-
vation that the set of subsets of GA,P which correspond to memoryless winning
strategies for Player I (respectively, Player II) in GA,P can be defined by a sec-
ond order monadic formula ψ(X). '(

Finally, note that the operator λ〈U1, X〉.FU1(X) is causal both in U1 and in X
and its construction is uniform in P. More precisely,

Lemma 9. 1. Let A = 〈QA, Σ, δA, qinit , col〉 be a finite parity automaton over
the alphabet Σ = {0, 1} × {0, 1} × {0, 1}. There is a finite state Mealey
automaton B = 〈QB, ΣB, δB, q

′
init ,∆, out〉, where ΣB = {0, 1}|QA| × {0, 1} ×

{0, 1} and ∆ = {0, 1}, such that for every P ⊆ Nat and every subset U1 ⊆
QA ×Nat of the first Player’s positions in the game GA,P
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the SC-operator λY.FU1 (Y ) defined by U1 in GA,P is the same as the
operator λY.FB(W1,W2, . . . ,W|QA|, Y,P), where the tuple

W1, . . . ,W|QA| ⊆ Nat corresponds to U1.

Moreover, B is computable from A.
2. The assertion similar to (1) for the C-operators defined by the subsets of the

second Player’s positions.

4 Proof of Theorem 2

Our proof of Theorem 2 is organized as follows:

1. The implications (1)⇒(4), (2)⇒(4) and (3)⇒(4) follow from Lemma 11.
2. The implication (4)⇒(5) follows from Theorem 14.
3. The implications (5)⇒(1), (5)⇒(2) and (5)⇒(3) are proved in Lemma 15.

First note

Theorem 10. For every P ⊆ Nat and every MLO formula ψ(X,Y, Z) either
there is a C-operator F such that Nat |= ∀Xψ(X,F (X),P) or there is a SC-
operator G such that Nat |= ∀Y ¬ψ(G(Y ), Y,P).

Proof. Let A be a parity automaton equivalent to ¬ψ(Y,X,Z). By Theorem 5,
one of the players has a memoryless winning strategy in the game GA,P. A
memoryless winning strategy U of Player I (respectively, of Player II) defines
SC-operator (respectively, C-operator) FU . Hence, by Lemma 6, either there is
a C-operator F such that Nat |= ∀Xψ(X,F (X),P) or there is a SC-operator G
such that Nat |= ∀Y ¬ψ(G(Y ), Y,P).

Lemma 11. If one of the Problems 1-5 is computable for P, then the monadic
theory of 〈Nat ,<,P〉 is decidable.

Proof. Let β(P ) be a sentence in MLO and let ψβ(X,Y, P ) be defined as(
β→(Y = {0})

)
∧
(
¬β→(X = ∅)

)
.

Observe that Nat |= β(P) iff there is a C-operator F such that Nat |=
∀Xψβ(X,F (X,P),P) iff Nat |= ∀Xψβ(X,H(X,P),P) where H is a constant
C-operator defined as H = λ〈X,P 〉.10ω

Hence, if one of the Problems 1-5 is computable for P, then we can decide
whether Nat |= β(P). '(
The proof of Lemma 11 also implies that if the following Problem 1′ is decidable
for P, then the monadic theory of 〈Nat ,<,P〉 is decidable.

Decision Problem 1′ for P ⊆ Nat
Input: an MLO formulas ψ(X,Y, P ).
Question: Check whether there is a C-operator Y = F (X,P ) such that

Nat |= ∀Xψ(X,F (X,P),P).

Problem 1′ is actually Problem 1 without construction part.
The implication (4)⇒(5) of Theorem 2 is its difficult part. Its proof relies on

the following Lemmas:
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Lemma 12. If the monadic theory of M = 〈Nat ,<,P1, . . . ,Pn〉 is decidable,
then P1, . . . ,Pn are recursive.

Lemma 13. If M = 〈Nat ,<,P1, . . . ,Pn〉 is recursive and M |=
∃X1 . . .∃Xmα(X1, . . . , Xm), then there are recursive sets S1, . . . ,Sm such that
M |= α(S1, . . . ,Sm). Moreover, if the monadic theory of M is decidable, then
there is an algorithm for computing (programs for) S1, . . . ,Sm from α.

Lemma 12 is trivial. Lemma 13 is stated by Siefkes (cf. Lemma 3 [Sie75]) with-
out “Moreover clause”. It was shown in [Sie75] that there is no algorithm that
computes programs for S1, . . . ,Sm from programs for P1, . . . ,Pn and α. The
“Moreover clause” was proved in [Rab05]. The algorithm in [Rab05] can even
cover arbitrary unary predicates P1, . . . ,Pn and not only the recursive ones. It
is effective when given an oracle which supplies the truth values of any MLO
sentence on M .

Now the implication (4)⇒(5) is a consequence of Lemma 12 and the following

Theorem 14. Let P be a unary recursive predicate over Nat. For every
MLO formula ψ(X,Y,P) either there is a recursive C-operator F such that
Nat |= ∀Xψ(X,F (X),P) or there is a recursive SC-operator G such that
Nat |= ∀Y ¬ψ(G(Y ), Y,P). Moreover, if the monadic theory of 〈Nat ,<,P〉 is
decidable, then it is decidable which of these cases holds and the (description of
the) corresponding operator is computable from ψ.

Proof. Let ϕ(X,Y, Z) be the formula obtained from ψ(X,Y, P ) when the pred-
icate name P is replaced by variable Z. Let A = 〈Q, Σ, δA, qinit, col〉, be a de-
terministic parity automaton equivalent to ϕ. By Theorem 5, one of the players
has a memoryless winning strategy in the parity game GA,P.

Assume that Player I has a memoryless winning strategy. Then by Lemma
8(2), there are W1, . . . ,W|Q| ⊆ Nat such that Nat |= WinA(W1, . . . ,W|Q|,P).
By Lemma 13, there are recursive W1, . . . ,W|Q| ⊆ Nat such that Nat |=
WinA(W1, . . . ,W|Q|,P). Moreover, programs for W1, . . . ,W|Q| are computable
from ψ. Hence, the corresponding winning strategy U1 for Player I in GA,P is re-
cursive. Therefore, by Lemma 7, FU1 is recursive and Nat |= ∀Y ¬ψ(G(Y ), Y,P)
holds by Lemma 6 and the definition of A.

Similar arguments show that in the case when Player II has a memory-
less winning strategy, there is a recursive C-operator FU2 such that Nat |=
∀Xψ(X,F (X),P). '(

Finally, we have

Lemma 15. The implications (5)⇒(1), (5)⇒(2) and (5)⇒(3) hold.

Proof. Let ψ(X,Y, P ) be a formula. By (5) either there is a recursive C-operator
F such that Nat |= ∀Xψ(X,F (X),P) or there is a recursive SC-operator G such
that Nat |= ∀Y ¬ψ(G(Y ), Y,P). Moreover, it is decidable which of these cases
holds and the corresponding operator is computable from ψ.

In the first case, the answer to Problems 1-3 is positive and F is a correspond-
ing operator.
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In the second case, the answer to Problems 1-3 is negative.
Indeed, for the sake of contradiction, assume that there is a C-operator (even

non-recursive) F such that Nat |= ∀Xψ(X,F (X,P),P). Observe that F is a C-
operator and G is a SC-operator. Hence, H = λX.G(F (X,P) is a SC-operator.
Every SC-operator has a fixed point. Let X0 be a fixed point of H and let
Y0 = F (X0,P). Then we have: X0 = G(Y0). Therefore, we obtain

Nat |= ψ(X0,Y0,P)

because Nat |= ∀Xψ(X,F (X,P),P), and Nat |= ¬ψ(X0,Y0,P) because Nat |=
∀Y ¬ψ(G(Y ), Y,P). Contradiction. '(

5 Finite State Synthesis Problems with Parameters

Recall that a predicate P ⊆ Nat is ultimately periodic if there is p, d ∈ Nat such
that (n ∈ P↔ n+p ∈ P) for all n > d. Ultimately periodic predicates are MLO
definable. Hence, for every ultimately periodic predicate P the monadic theory
of 〈Nat ,<,P〉 is decidable.

The next theorem implies Theorem 3 and shows that Theorem 1 can be ex-
tended only to ultimately periodic predicates.

Theorem 16. Let P be a subset of Nat. The following conditions are equivalent
and imply computability of Problem 4:

1. P is ultimately periodic.
2. For every MLO formula ψ(X,Y,P) either there is a finite state C-operator

F such that Nat |= ∀Xψ(X,F (X,P),P) or there is a finite state C-operator
G such that Nat |= ∀Y ¬ψ(G(Y,P), Y,P).

3. P satisfies the following selection condition:
For every formula α(X,P) such that Nat |= ∃Xα(X,P) there is
a finite state C-operator H : {0, 1}ω→{0, 1}ω such that Nat |=
α(H(P),P).

Proof. The implication (1)⇒ (2) follows from Theorem 1 and the fact that every
ultimately periodic predicate is definable by an MLO formula. The implication
(2)⇒(3) is trivial.

The implication (3)⇒(1) is derived as follows. Let α(X,P ) be ∀t
(
X(t) ↔

P (t + 1)
)
. Note Nat |= ∃Xα(X,P) for every P ⊆ Nat . Therefore, if P satisfies

selection condition, then there is C-operator H : {0, 1}ω→{0, 1}ω such that
Nat |= α(H(P),P).

Assume that a finite state Moore automaton A computes H and has n states.
We are going to show that P is ultimately periodic with period at most 2n+1. For
i ∈ Nat let ai be one if i ∈ P and ai be zero otherwise. Let q0q1 . . . q2n+1 . . . be
the sequence states passed byA on the input a0a1 . . .a2n+1 . . . . There are i < j <
2n such that ai = aj and qi = qj . Observe that qi+1 = δA(qi, ai) = δA(qj , aj) =
qj+1 and ai+1 = outA(qi, ai) = outA(qj , aj) = aj+1. And by induction we get
that qi+m = qj+m and ai+m = aj+m for all m ∈ Nat . Therefore, P is an
ultimately periodic with a period j − i < 2n.
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Note that this theorem does not imply that Problem 4 is computable only for
ultimately periodic predicates. The next theorem can be established by the same
arguments.

Theorem 17. The following conditions are equivalent and imply computability
of Problem 5:

1. P is ultimately periodic.
2. For every MLO formula ψ(X,Y, P ) either there is a finite state C-operator

F such that Nat |= ∀Xψ(X,F (X),P) or there is a finite state SC-operator
G such that Nat |= ∀Y ¬ψ(G(Y ), Y,P). Moreover, it is decidable which of
these cases holds and the corresponding operator is computable from ψ.

6 Conclusion and Related Work

We investigated the Church synthesis problem with parameters. We provided
the necessary and sufficient conditions for computability of Synthesis problems
1-3.

Rabin [Rab72] provided an alternative proof for computability of the Church
synthesis problem. This proof used an automata on infinite trees as a natural tool
for treating the synthesis problem. A C-operator F : {0, 1}ω→{0, 1}ω can be
represented by a labelled infinite full binary tree 〈T2,<,S〉, where S is a subset
of the tree nodes. Namely, the branches of the tree represent X ∈ {0, 1}ω and
the sequence of values assigned by S to the nodes along the branch X represents
F (X) = Y ∈ {0, 1}ω. Also, the fact that S represents a C-operator F which
uniformizes ϕ(X,Y ) can be expressed by an MLO formula ψ(Z) (computable
from ϕ(X,Y )): T2 |= ψ(S) iff Nat |= ∀ϕ(X,FS(X)) , where FS is the C-operator
that corresponds to S. Hence, the question whether there exists a C-operator
which uniformizes ϕ is reduced to the problem whether T2 |= ∃Zψ(Z). Now, the
Rabin basis theorem states that if T2 |= ∃Zψ(Z) then there is a regular subset
S ⊆ T2 such that T2 |= ψ(S). The C-operator which corresponds to a regular set
S is computable by a finite state automaton. Hence, the Büchi and Landweber
theorem is obtained as a consequence of the decidability of the monadic logic of
order of the full binary tree and the basis theorem.

One could try to apply the Rabin method to the Church synthesis problem
with parameters. The reduction which is similar to Rabin’s reduction shows that
the decidability of Problem 1′ for P ⊆ Nat is reduced to the decidability of the
monadic theory of the labelled full binary tree 〈T2,<,Q〉 where a node is in Q,
if its distance from the root is in P. The decidability of the latter problem can
be reduced by Shelah-Stupp Muchnick Theorem [Shel75, Wal02, Th03] to the
decidability of 〈Nat ,<,P〉. Now in order to establish computability of problems
1-3, one can try to prove the basis theorem for 〈T2,< .Q〉. Unfortunately, ar-
guments similar to the proof of Theorem 16 show that for P,Q, as above, the
following version of the basis theorem

for every ψ(Z,Q) such that T2 |= ∃Zψ(Z,Q) there is a finite state op-
erator F (Y,U) such that the set which corresponds to the C-operator
λXF (X,P) satisfies ψ(Z,Q)
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holds only for ultimately periodic P. Our proof of Theorem 2 implies that if the
monadic theory of 〈Nat ,<,P〉 is decidable, then “finite state” can be replaced
by “recursive” in the above version of the basis theorem.

Open Question: Are the following assertions equivalent?

1. The monadic theory of 〈T2,< S〉 is decidable.
2. For every ψ(Z,U) such that T2 |= ∃Zψ(Z,S) there is a recursive set Q ⊂ T2

such that T2 |= ψ(Q,S).

Siefkes [Sie75] proved that there is a recursive set S for which the second assertion
fails.

The conditions of Theorem 16 and Theorem 17 are sufficient, but are not
necessary for computability of Synthesis problems 4-5. For example, let Fac =
{n! : n ∈ Nat} be the set of factorial numbers. We can show that Problems
4-5 are computable for this predicate Fac [Rab06]. These computability results
can be extended to the class of predicates for which decidability of the monadic
theory of 〈Nat ,<,P〉 was shown by Elgot and Rabin [ER66]. Among these pred-
icates are the sets of k-th powers {nk : n ∈ Nat} and the sets {kn : n ∈ Nat}
(for k ∈ Nat ). We can also show that Problems 4-5 are computable for each
unary predicate in the class K considered by Carton and Thomas [CT02].

It is an open question whether decidability of 〈Nat ,<,P〉 is a sufficient con-
dition for computability of Synthesis problems 4-5.

Games over pushdown graphs and operators computable by pushdown au-
tomata were recently studied in the literature [Th95, Wal01, CDT02, GTW02,
Se04]. It is a natural question to consider the synthesis Problems 1-3 where
“recursive” is replaced by “computable by pushdown automata”.

Kupferman and Vardi [KV97] considered the synthesis problem with incom-
plete information for the specifications described by temporal logics LTL and
CTL∗. Their main results deal with the complexity of this synthesis problem.
The decidability of the synthesis problem with incomplete information for LTL
(respectively, for CTL∗) can be easily derived from the Büchi-Landweber (re-
spectively, Rabin) theorem. It seems that there are no interesting connections
between the synthesis problems with incomplete information and the synthesis
problems with parameters considered here.

In [RT98] a program for the relativization of finite automata theory was pro-
posed. Our results can be seen as the first step in this direction. This step
corresponds to the case where oracles are C-operators without inputs.

Acknowledgments. I would like to thank Wolfgang Thomas for bringing to
my attention the paper by D. Siefkes [Sie75]. I am grateful to the anonymous
referees for their suggestions.
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Abstract. Expansions of the natural number ordering by unary predi-
cates are studied, using logics which in expressive power are located be-
tween first-order and monadic second-order logic. Building on the model-
theoretic composition method of Shelah, we give two characterizations
of the decidable theories of this form, in terms of effectiveness condi-
tions on two types of “homogeneous sets”. We discuss the significance of
these characterizations, show that the first-order theory of successor with
extra predicates is not covered by this approach, and indicate how anal-
ogous results are obtained in the semigroup theoretic and the automata
theoretic framework.

1 Introduction

In [1], Büchi showed that the monadic theory of the ordering (N,<) of the natural
numbers is decidable. Many authors studied the question for which expansions
of (N,<) this decidability result can be preserved. For most examples of natural
functions or binary relations it turned out that the corresponding monadic theory
is undecidable, usually shown via an interpretion of first-order arithmetic. This
applies, for instance, to the double function λx.2x ([9,20]).

For the expansion of (N,<) by unary predicates, the situation is different:
Many examples P of such predicates are known such that the monadic theory of
(N,<, P ) is decidable, among them – as shown by Elgot and Rabin [5] – the set of
factorial numbers, the set of powers of k and the set of k-th powers (for fixed k).
A larger class of such predicates was presented in [3,4]; another comprehensive
study is [11]. Contrary to the case of functions, no “natural” recursive predicate
P is known such that the monadic theory of (N,<, P ) is undecidable. Moreover,
it is known that in the cases where undecidability holds, the undecidability proof
cannot be done via an interpretation of first-order arithmetic (see [2,16]).
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The approach introduced by Elgot and Rabin [5] for showing decidability of
the monadic theory of a structure (N,<, P ) is built on a method to decompose
this structure in a “periodic” way, together with the translation of monadic
formulas to Büchi automata. By this translation, the monadic theory of (N,<
, P ) is decidable iff the following decision problem AccuP is decidable for the
characteristic ω-word uP associated with P (where uP (i) = 1 if i ∈ P and
otherwise uP (i) = 0):

(AccuP ): Given a Büchi automaton A, does A accept uP ?

Considering the predicate F of factorial numbers as an example, Elgot and Rabin
defined for a given Büchi automaton A a “contraction” c(uF ) of uF which is
accepted by A iff uF is accepted by A. The contraction cA(uF ) is obtained
from uP by applying a pumping argument to the 0-segments between successive
letters 1. The word cA(uF ) has 0-segments of bounded length and turns out to be
ultimately periodic; so one can decide whether A accepts cA(uF ) and hence uF .
Also the method of [3,4] follows this pattern: Decidability of AccuP is reduced to
the question whether, given a finite semigroup (replacing the Büchi automaton
as used by Elgot and Rabin), one can compute a representation of an ultimately
periodic word which can replace uP for answering the question about uP . An
abstract version of this “effective reduction to ultimately periodic predicates”
is given in our main theorem below. As a key tool we use Ramsey’s Theorem
on the existence of homogeneous sets over colored orderings of order type ω (as
already Büchi did in [1]).

In [8] this “non-uniform” procedure of reducing uP to ultimately periodic
sequences, depending on the monadic formula, the Büchi automaton, or the
semigroup under consideration, was replaced by a “uniform” periodicity condi-
tion on P , thus settling a conjecture raised in [4]. The main result of [8] states
that the monadic theory of (N,<, P ) is decidable iff a recursive predicate P ′

exists which is “homogeneous for P”. This predicate captures, in some sense,
all the ultimately periodic structures that arise from the non-uniform approach
mentioned above.

The purpose of the present paper is to give a streamlined proof of the result
of [8], clarifying the connection to the “non-uniform” method, and at the same
time generalizing it from monadic logic to a class of logics between first-order
logic and monadic logic. We also discuss the case where the successor relation S
is considered instead of the ordering < (a modification which is irrelevant when
monadic logic is considered). As in [8], we present the proofs in a logical frame-
work, avoiding the use of automata or semigroups, and building on composition
theorems in the spirit of Shelah [12] (see also [6,18]). As explained in Section 4.3,
however, the arguments do not depend on this framework and can be transferred
easily to the domains of automata, respectively semigroups.

The present work represents a merge of ideas of the two independently written
and so far unpublished papers [8,15] (of 2005 and 1975, respectively).

In the subsequent section we introduce the background theory and state the
main result. Section 3 is devoted to the proof. In Section 4, we discuss several
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aspects of the main theorem: its significance, its failure for the first-order theory
of successor, and the alternative frameworks of semigroups and automata in
place of logic. A summary and outlook conclude the paper.

2 Logical Background and Main Result

The structures considered in this paper are of the form M = (N,<, P1, . . . , Pm)
with Pi ⊆ N. We call them m-labelled ω-chains. These structures are in one-
to-one correspondence with ω-words over the alphabet {0, 1}m. The ω-word
uP = uP (0)uP (1) . . . corresponding to P = (P1, . . . , Pm) has value 1 in the
j-th component of uP (i) iff i ∈ Pj . By an m-labelled chain we mean a linear
ordering (A,<, P1, . . . , Pm) with finite A or A = N.

Let us recall some standard logical systems; here we assume that the signature
is chosen according to the type of structure above (and in our notation we do
not distinguish, for example, between the relation < and the relation symbol
denoting it). The system of first-order logic FO[<] has, besides equality, the
mentioned relation symbols <, P1, . . . , Pm. The atomic formulas are of the form
x = y,x < y, Pi(x) with first order variables x, y. Formulas are built up using
boolean connectives and the first-order quantifiers ∃, ∀. In the first-order logic
FO[S], the successor relation S is used in place of <.

It is known that over labelled chains one can increase the expressive power
of first-order logic by adjoining “modular counting quantifiers” ∃r,q (with 0 ≤
r < q), where ∃r,qxϕ(x) means that the number of elements x satisfying ϕ is
finite and equal to r modulo q. We denote this logic by FO[<]+MOD. A detailed
introduction is given in [13].

Still more expressive are the logical systems MSO of monadic second-order
logic and WMSO of weak monadic second-order logic. They arise from FO[<] by
adding unary second-order variables X,Y, . . . and corresponding atomic formulas
(written X(y) etc.). In MSO, quantification over set variables ranges over the
subsets of N, in WMSO only over the finite subsets of N. Over labelled ω-
orderings, WMSO and MSO have the same expressive power, which however
exceeds that of FO[<]+MOD (cf. [17,13]).

In the sequel the letter L stands for any of the logics introduced above. The
L-theory of (N,<, P ) is the set of L-sentences which are true in (N,<, P ).

For the analysis of the L-theory of (N,<, P ) we use the composition method
which was developed by Shelah [12] for monadic second-order logic. We recall
the facts underlying the composition method.

Two m-labelled chains M,M ′ are called k-equivalent for L (written: M ≡Lk
M ′) if M |= ϕ ⇔ M ′ |= ϕ for every L-sentence ϕ of quantifier depth k. This
is an equivalence relation between labelled chains; its equivalence classes are
called k-types for L (and for the given signature with < and m unary predicate
symbols). Let us list some fundamental and well-known properties of k-types for
any of the logics L above; here we suppress the reference to L for simplicity of
notation.
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Proposition 1. 1. For every m and k there are only finitely k-types of m-
labelled chains. (In the case of FO[<]+MOD, we assume that also a maximal
divisor q is fixed in advance.)

2. For each k-type t there is a sentence (called ”characteristic sentence”) which
defines t (i.e., is satisfied by a labelled m-chain iff it belongs to t). For given
k and m, a finite list of characteristic sentences for all the possible k-types
can be computed. (We take the characteristic sentences as the canonical rep-
resentations of k-types. Thus, for example, transforming a type into another
type means to transform sentences.)

3. Each sentence ϕ is equivalent to a (finite) disjunction of characteristic sen-
tences; moreover, this disjunction can be computed from ϕ.

The proofs of these facts can be found in several sources, we mention [12,18,19]
for MSO and FO, and [13] for FO[<]+MOD.

As a simple consequence we note that the L-theory of an m-labelled chain M
is decidable iff the function which associates to each k the k-type of M for L is
computable.

Given m-labelled chains M0,M1 we write M0 + M1 for their concatenation
(ordered sum). In our context, M0 will always be finite and M1 finite or of order
type ω. Similarly, if for i ≥ 0 the chain Mi is finite, the model Σi∈NMi is obtained
by the concatenation of all Mi in the order given by the index structure (N,<).

We need the following composition theorem on ordered sums:

Theorem 2 (Composition Theorem). Let L be any of the logics considered
above.

(a) The k-types of m-labelled chains M0,M1 for L determine the k-type of the
ordered sum M0 + M1 for L, which moreover can be computed from the k-
types of M0,M1.

(b) If the m-labelled chains M0,M1, . . . all have the same k-type for L, then this
k-type determines the k-type of Σi∈NMi, which moreover can be computed
from the k-type of M0.

Part (a) of the theorem justifies the notation s + t for the k-type of an m-chain
which is the sum of two m-chains of k-types s and t, respectively. Similarly, we
write t ∗ ω for the k-type of a sum Σi∈NMi where all Mi are of k-type t.

Let us call a logic L compositional if the Composition Theorem above with
parts (a) and (b) holds. All logics L listed above are compositional. For FO[<]
and WMSO this goes back to Läuchli, for MSO to Shelah [12], and for FO[S]
and FO[<]+MOD one may consult [13].

The fundamental fact which enters all decidability proofs below (and which
underlies also Büchi’s work [1]) is the following: The two parts (a) and (b)
of the Composition Theorem suffice to generate the k-types of arbitrary (even
non-periodic) m-labelled chains M = (N,<, P1, . . . , Pm). This is verified by de-
composing M into segments such that all of them except possibly the first one
have the same k-type. The elements (numbers) that separate the segments of
such a decomposition form a “homogeneous set”. Given M = (N,<, P ), let us
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write M [i, j) for the m-labelled chain with domain [i, j) = {i, . . . , j− 1} and the
predicates < and P restricted to [i, j).

Definition 3 (k-homogeneous set). A set H = {h0 < h1 < . . .} is called
k-homogeneous for M = (N,<, P ) with respect to L, if all segment models
M [hi,hj) for i < j (and hence all segment models M [hi,hi+1) for i ≥ 0) have
the same k-type for L.

In the main theorem below, a stronger notion of homogeneity [8] enters:

Definition 4 (uniformly homogeneous set). A set H = {h0 < h1 < . . .} is
called uniformly homogeneous for M = (N,<, P ) with respect to L if for each k
the set Hk = {hk < hk+1 < . . .} is k-homogeneous with respect to L.

The existence of uniformly homogeneous sets will be shown in the next section,
while the existence of k-homogeneous sets is well-known (see e.g. [17]):

Proposition 5 (Ramsey). Let f be a function from N2 into a finite set C.
Then there is c ∈ C and an infinite set H such that f(i, j) = c for all i < j ∈ H.

In particular, if L is a logic satisfying item 1 of Proposition 1, and M an
m-labelled ω-chain, there is a k-homogeneous set for M with respect to L.

Given a k-homogeneous set H = {h0 < h1 < . . .} for M = (N,<, P ) with respect
to L, the Composition Theorem implies that the k-type for L of M = (N,<, P )
can be computed from the k-types for L of M [0,h0) and of M [h0,h1); note that
all the segment models M [hi,hi+1) have the same k-type for L.

For two k-types s, t (for L) of m-labelled chains consider the following
condition:

HomL
s,t:

There is a k-homogeneous set H = {h0 < h1 < . . .} with respect to L such
that M [0,h0) has k-type s and M [h0,h1) has k-type t for L.

If HomLs,t is true in M = (N,<, P ), the k-type of M = (N,<, P ) for L is com-
putable as the type s + t ∗ ω. Thus, Ramsey’s Theorem reduces the decision
problem for the L-theory of M = (N,<, P ) to the problem of deciding, for each
k and k-types s, t, whether the statement HomLs,t holds in M . Ramsey’s Theorem
guarantees that for given M and k such a pair (s, t) of k-types exist.

For an m-labelled ω-chain M , let RecRamseyL(M) be the following condition:

RecRamseyL(M):
There is a recursive function assigning to each k a pair of k-types s and t
for L such that HomLs,t holds in M .

We call the logic L expressive for the existence of homogeneous sets if for any
k-types s, t for L, there is an L-sentence which expresses HomLs,t.

We can now state our main result.

Theorem 6. Let L be a logic which is both compositional and expressive for the
existence of homogeneous sets. Then the following are equivalent for any given
m-labelled ω-chain M = (N,<, P ) with recursive sets P :
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1. The L-theory of M is decidable.
2. RecRamseyL(M).
3. There is a recursive uniformly homogeneous set for M with respect to L.

Let us verify that the theorem covers all the logics L mentioned above, excepting
FO[S]. For this it remains to show that FO[<], FO[<]+MOD, WMSO, MSO are
expressive for the existence of homogeneous sets.

This is obvious for MSO; in a straightforward formalization of HomLs,t one
uses an existential set quantifier ∃X and relativizes the characteristic sentences
for s and t to the segments from 0 to the first element of X , respectively to the
segments enclosed by successive X-elements. For the remaining logics it suffices
to show the following (see e.g. [17]).

Proposition 7. FO[<] is expressive for the existence of homogeneous sets.

Proof. We write Tk[x, y) = t for a formula expressing that the k-type of the
segment [x, y) (for FO[<]) is t. The proof covers all logics L considered here
which extend FO[<]; in our notation we suppress the reference to FO[<] or to
such L. Note that Homs,t can only hold for a k-type t with t = t + t. We show
that Homs,t holds iff

∃x(Tk[0,x) = s ∧ ∀y ∃zz′ ( y < z < z′ ∧ Tk[x, z) = t ∧ Tk[z, z′) = t )

The direction from left to right is trivial; take, e.g., for x the minimal element
of the homogeneous set given by the assumption.

For the direction from right to left choose a number x as given by the formula,
and apply its latter clause by choosing a sequence of numbers z1 < z′1 < z2 <
z′2 < . . . such that Tk[x, zi) = Tk[zi, z′i) = t and hence (note that t + t = t)
Tk[x, z′i) = t. We shall find a subsequence z1 < zi1 < zi2 . . .of z1 < z2 < . . . such
that Tk[x, zim) = Tk[zim , zin) = t for all m < n ∈ N.

Define a coloring col from N2 to the set Tk of all k-types as follows: col(i, j) =
Tk[z′i, zj). By Ramsey’s theorem there is t1 ∈ Tk and an infinite set i1 < i2 . . .
such that col(im, in) = t1 for all m < n. Note that for m < n ∈ N:

t = Tk[x, zin) = Tk[x, z′im) + Tk[z′im , zin) = t + t1

Hence,

Tk[zim , zin) = Tk[zim , z′im) + Tk[z′im , zin) = t + col(im, in) = t + t1 = t.

�

Let us address the relation of Theorem 6 to the main result of [8]. It is shown
there that the following conditions are equivalent:

1. The monadic (second-order) theory of M = (N,<, P ) is decidable.
2. There is a recursive uniformly homogeneous set for M with respect to the

monadic (second-order) logic.
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The proof of the implication (1)⇒(2) in [8] relies on the expressive power of MSO-
logic and proceeds as follows. For k = 1, 2, . . . an MSO-formula Hk(X,Y, P )
is constructed (effectively from k and the number of predicates in P ) which
defines for any infinite subset Y of M = (N,<, P ) an infinite set X ⊆ Y which
is k-homogeneous for M . (The uniqueness proof for X requires a nontrivial
uniformization result, using [7].) Hence, the set Q1 such that M |= H1(Q1, N, P )
is 1-homogeneous for M , and more generally the set Qk+1 such that M |=
Hk+1(Qk+1, Qk, P ) is (k + 1)-homogeneous for M . The sets Q1 ⊇ Q2 ⊇ . . . are
definable by formulas and therefore are recursive (in the monadic theory of M).
Hence, the set H = {ak : ak is k-th element of Qk} is recursive and uniformly
homogeneous for M .

In the present paper, the proof of Theorem 6 relates the conditions of non-
uniform and uniform homogeneity in a direct way, covers more logics (between
FO[<] and MSO) than MSO, and is somewhat simpler since it does not involve
the uniformization result of [7].

3 Proof of Theorem 6

For the conditions

(1) The L-theory of M is decidable
(2) RecRamseyL(M)
(3) There is a recursive uniformly homogeneous set for M with respect to L

we show the implication chain (3) ⇒ (2) ⇒ (1) ⇒ (3).

(3)⇒(2). Assume that H = {h0 < h1 < . . .} is recursive and uniformly homo-
geneous for M with respect to L.

Let k be a natural number. If s is the k-type of M [0,hk) and t is the k-type of
M [hk,hk+1) then M |= HomL

s,t. Let ti be the k-type of one element chain M [i, i].
Note that ti is computable because M is recursive. The k-type of M [0,hk) is
s =

∑i=hk−1
i=0 ti and the k type of t = M [hk,hk+1) is

∑i=hk+1−1
i=hk

ti. These sums
are computable from the Composition Theorem.

(2)⇒(1). Let ψ be a sentence. In order to check whether ψ holds in M we
proceed as follows:

1. Let k be the quantifier depth of ψ.
2. By RecRamseyL(M) we can compute k-types s and t for L such that M |=

HomL
s,t.

3. Hence, the k-type t1 of M can be computed as t1 = s + t ∗ ω.
4. In order to check whether t1 → ψ is valid, we can compute a finite disjunction

of k-characteristic sentences which is equivalent to ψ, and note that t1 → ψ
holds iff t1 is one of these disjuncts.

5. Finally, t1 → ψ iff ψ holds in M .

(1)⇒(3) Assume that the L-theory of M is decidable. We present an algorithm
which enumerates in increasing order the numbers of a recursive homogeneous
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set H = {n1 < n2 < n3 < . . .} for M . We use TLk for the (finite) set of k-types
of the language L.

Algorithm

Basis

1. Find t1, s1 ∈ TL1 such that t1 = t1 + t1 and M |= HomL
s1,t1 . Note that

such s1 and t1 exist by the Ramsey Theorem. Moreover, there is an
algorithm to find s1 and t1, because of finiteness of TL1 , the assumption
that HomL

s1,t1 is expressible in L, and decidability of the L-theory of M .
2. Let n1 be the minimal n such that

s1 is the 1-type of M [0, n) and (1)

M [n,∞) |= HomL
t1,t1 (2)

This number n1 can be computed as follows. Let αs(v) be a formula
which expresses Tk[0, v) = s, and let βt(v) be a formula obtained from the
sentence Homt,t by relativizing all quantifiers to the interval [v,∞). It
is clear that n1 defined above is the unique natural number that satisfies

γ(v) =def αs1(v) ∧ βt1(v) ∧ ∀u((0 < u < v)→ ¬(αs1 (u) ∧ βt1(u))).

From the fact that the L theory of M is decidable and that every natural
number n is defined by an L formula ψn(v) (computable from n) we
can compute this n1 by finding the minimal number n such that M |=
∃v
(
ψn(v) ∧ γ(v)

)
.

Inductive step k �→ k + 1

1. Find tk+1, sk+1 ∈ TLk+1 such that tk+1 → tk and sk+1 → tk are valid
and tk+1 = tk+1 + tk+1 and M [nk,∞) |= HomL

sk+1,tk+1
. The arguments

similar to the arguments in the step 1 of the basis show that tk+1, sk+1

are computable.
2. Let nk+1 be the minimal n > nk such that

sk+1 is the k+1 type of M [nk, n) and (3)

M [n,∞) |= HomL
tk+1,tk+1

(4)

The arguments similar to the arguments in the step 2 of the basis show
that tk+1, sk+1 and nk+1 are computable.

It is clear that the set H = {n1 < n2 < . . .} generated by our algorithm is
recursive. We show that it is uniformly homogeneous:

By our construction for every k the k-type of M [nk, nk+1) is tk.
Since si → tk and ti → tk for i > k we obtain that the k-type of M [ni, ni+1)

is also tk for all i > k. Since tk + tk = tk, we obtain that the k type of M [ni, nj)
is also tk for all j > i > k. This proves the uniform homogeneity of H .
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4 Discussion

4.1 Comments on Uniform Homogeneity

The main theorem provides two reductions of the decision problem for the L-
theory of a structure M = (N,<, P ): With the first reduction one can transform
the question “Is the sentence ϕ true in M?” to a problem to determine a decom-
position of M into a sequence of segments, which depends only on the complexity
k of ϕ. This decomposition gives two L-types sk and tk from which one can infer
by a an algorithmic procedure whether ϕ is implied. The decision problem for the
L-theory of M is thus reduced to the question whether the function k �→ sk, tk
is recursive.

The second reduction captures this recursiveness by the recursiveness of a sin-
gle decomposition of M into segments. This single decomposition results from an
infinite refinement process of the types sk, tk mentioned above, and correspond-
ingly it leads to a sequence of decomposition segments which satisfy k-types for
larger and larger k.

In a more general formulation on the existence of uniformly homogeneous
sets we can cover arbitrary unary predicates P rather than just recursive ones.
Consider an m-chain M = (N,<, P ). Note that the Algorithm of Section 3 is
effective when given an oracle which can supply the truth value of any condition
HomLs,t. So we obtain the following result from the proof of the Theorem 6:

Theorem 8. Let L be compositional and expressive.

1. For each structure M = (N,<, P ) there is a uniformly homogeneous set H
which is recursive in the L-theory of M .

2. For each structure M = (N,<, P ) and each uniformly homogeneous set H for
M , the L-theory of M is recursive in the recursion theoretic join of (P ,H).

We can refine this result by a bound on the recursion theoretic complexity of H
relative to P . By Proposition 7, HomLs,t is a Σ0

3 statement over the recursion-
theoretic join of the predicates in P , which implies that HomLs,t is recursive
in P

′′′
, the third jump of the recursion-theoretic join of the predicates in P .

(For recursion theoretic terminology see [10].) Thus in the first part of Theorem
8, H can be chosen to be recursive in P

′′′
. As shown in [2,17], the quantifier

structure of the formula that expresses HomLs,t can be simplified even to a boolean
combination of Σ0

2 -formulas. So the recursion theoretic bound on H can be
sharpened to “truth-table reducible to P

′′
”. By [16] this is optimal in the sense

that bounded truth-table reducibility does not suffice.
While our main theorem provides two characterizations of the decidable L-

theories of structures (N,<, P ), it is not easily applicable in order to find interest-
ing predicates P such that, say, the first-order or the monadic second-order the-
ory of (N,<, P ) is decidable. Let us first compare the condition RecRamseyL(M)
with the classical method of Elgot and Rabin [5], taking the factorial predicate
F as an example. Elgot and Rabin proposed a deterministic procedure to trans-
form F into an ultimately periodic predicate, depending on the given formula



Decidable Theories of the Ordering of Natural Numbers 571

(or automaton). The condition RecRamseyL(M) only involves the existence of a
procedure and does not provide one in concrete examples. However, the decom-
position ensured by RecRamseyL(M) is “stronger” in the sense that it provides
an ultimately constant (and not just periodic) sequence of types.

The uniformly homogeneous sets given by the third clause of the theorem also
do not settle (immediately) the decision problem for concrete theories of struc-
tures (N,<, P ). A prominent example is the predicate P of the prime numbers.
The open twin prime hypothesis is easily expressible already in FO[<] (we use
here for simplicity also the successor relation S, which is definable in FO[<]):

ϕ0 := ∀x∃y0∃y1∃y2(x < y0 ∧ P(y0) ∧ S(y0, y1) ∧ S(y1, y2) ∧ P(y2))

Now k = 5 is the quantifier depth of an FO[<]-sentence which avoids this ab-
breviation with S. Taking the uniformly homogeneous set H for P with respect
to FO[<], one could decide ϕ0 by inspecting the segment from the 5-th to the
6-th element of H : There are infinitely many twin primes iff a pair of primes of
distance 2 occurs in this segment; otherwise all twin primes would be included
in the initial segment before. It is clear that H encodes this information not only
about the twin primes but all other conceivable configurations of primes that are
MSO-definable, for instance patterns within segments of some bounded length.
Thus H encodes a lot of known and unknown number theory.

4.2 The Successor Theory

In the main result Theorem 6 we excluded the logic FO[S]. For example, the
proof of Proposition 7, which shows that FO[<] is expressive for the existence of
homogeneous sets, uses the < relation in an essential way. Indeed, we can show
that the main theorem fails for FO[S].

It turns out that a recursive uniformly homogeneous set H encodes more
information than needed for deciding FO[S]-sentences. While H supplies infor-
mation about the infinite occurrence of certain segment types, FO[S]-sentences
can only express such occurrences in numbers up to a certain finite bound. In-
deed, it is well-known that the FO-theory of M = (N,S, P ) is decidable iff for
each isomorphism type τ of finite segments and each m, one can decide whether
τ occurs ≥ m times in M (see, e.g., [16,19]).

Theorem 9. There is a recursive predicate P such that the FO-theory of (N,S,
P ) is decidable but there is no recursive uniformly homogeneous set for (N,S, P ).

Proof. We use a predicate P , presented in [16], for which the FO-theory of
(N,S, P ) is decidable whereas the FO-theory of (N,<, P ) is undecidable.

Suppose P is a procedure which runs through all pairs (i, j) of natural numbers
in some order; we write (in, jn) for the n-th pair in this order. P generates a bit
sequence as follows: When treating (in, jn), it checks whether the in-th Turing
machine runs for at least jn steps when started on the empty tape. P outputs
10n10in in this case, and otherwise generates just 10n. The resulting bit sequence
u is obtained as the concatenation of the P-outputs. Clearly u is recursive, and
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it has the property that for each given w ∈ {0, 1}∗ and threshold number m
one can decide whether w occurs m times in u. (To verify this, note that by
construction of u, the only segment types that occur infinitely often are in the
languages 0∗, 0∗10∗, and, for certain values of i, 0∗10i10∗. To test whether a
segment of the latter type occurs m times, check the output of procedure P up
to the m-th treatment of Turing machine Mi.) From this fact one infers that the
first-order theory of (N,S, P ) is decidable (cf. [16]).

By construction of u, the i-th Turing machine does not halt on the empty
tape iff the segment 10i1 occurs infinitely often in u. We show that the latter
can be decided if there is a recursive uniformly homogeneous set H for (N,S, P ).

Let H = {h0 < h1 < . . .} be a recursive uniformly homogeneous set for
(N,S, P ). Given i choose k large enough such that from a k-type of a 1-labelled
chain one can infer whether the following holds:

(∗) there is a sequence of i + 2 successive elements such that its first
and last element are in P but the others are not.

Consider the segment M [hk,hk+1), which can be obtained effectively by recur-
siveness of H . M [hk,hk+1) satisfies (∗) iff 10i1 occurs infinitely often in u. �

4.3 Algebraic and Automata Theoretic Types

In this section we discuss alternative ways of introducing “k-types”, using semi-
groups or automata rather than formulas to describe properties of words. When
referring to a logic L, we assume that it is compositional and expressive for the
existence of homogeneous sets.

Recall that for such a logic L, for each k the set TLk of k-types of L with the +
operation is a finite semigroup. Let SL be the family of finite semigroups defined
as follows:

S ∈ SL iff there is k ∈ N and a semigroup homomorphism from T kL onto S

Note that SWMSO = SMSO is the family of all finite semigroups and that SFO
is the family of finite aperiodic semigroups.

Let S be a family of finite semigroups. Define an equivalence relation ∼Sk on
Σ+ as follows:

w1 ∼Sk w2 iff h(w1) = h(w2) for every S ∈ S of size at most k and for
every morphism h : Σ+ → S.

The following lemma is technical but straightfoward.

Lemma 10. 1. For every k ∈ N there is m ∈ N computable from k such that
if w1 ∼SL

m w2 then w1 ≡Lk w2.
2. For every m ∈ N there is k ∈ N computable from m such that if w1 ≡Lk w2

then w1 ∼SL
m w2.

As representations of such semigroups one may take the transformation semi-
groups of finite automata extended by information about visited states. Then
the parameter k can be set to be the cardinality of automata rather than of
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semigroups. Formally, one refers to a class A of finite automata and uses the
congruences ∼Ak over Σ+ defined as follows: For w1, w2 ∈ Σ+, define w1 ∼Ak w2

iff for any automaton A ∈ A with k states, any states p, q of A and any set P of
states of A, there is a run of A on w1 from p to q with states forming the set P
iff this holds for w2.

Definition 11. An ω-word u is effectively homogeneous for a family S of finite
semigroups if there is a recursive ω-sequence w1, w2, . . . of finite words such that
u = w1w2 . . . and for every k ∈ N and semigroup S ∈ S of size at most k and
morphism h : Σ+ → S there is s ∈ S such that h(wi) = s for all i > k.

The following theorem is an immediate corollary of Theorem 6 and Lemma 10.

Theorem 12. Let L be a logic which is both compositional and expressive for
the existence of homogeneous sets. The L-theory of an ω-word u is decidable iff
u is effectively homogeneous for SL.

Hence we have

Corollary 13. The FO-theory of an ω-word u is decidable iff u is effectively
homogeneous for the family of finite aperiodic semigroups. The WMSO-theory
and the MSO-theory of an ω-word u is decidable iff u is effectively homogeneous
for the family of finite semigroups.

5 Conclusion

We analyzed, for some natural logics L including first-order and monadic second-
order logic, the decision problem for the L-theories of structures M = (N,<, P )
where P is a tuple of unary predicates. Our main result gave two characteri-
zations of the decidable theories of this form, using recursiveness conditions on
two different versions of “homogeneous sets”.

As already mentioned, it seems hard to apply the main theorem of this paper
as a tool to find new predicates P where, say, the monadic-second theory of
(N,<, P ) is decidable, or to establish even an interesting predicate where this
theory is undecidable.

Another kind of application, left open in this paper, is the generation of con-
crete classes of predicates P (by certain closure properties) such that say the
MSO theory of (N,<, P ) is decidable. This kind of application would yield de-
cidability results via the transformation of uniformly homogeneous sets.
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Abstract. Separation Logic is a sub-structural logic that supports local
reasoning for imperative programs. It is designed to elegantly describe
sharing and aliasing properties of heap structures, thus facilitating the
verification of programs with pointers. In past work, separation logic
has been developed for heaps containing records of basic data types.
Languages like C or ML, however, also permit the use of code pointers.
The corresponding heap model is commonly referred to as “higher-order
store” since heaps may contain commands which in turn are interpreted
as partial functions between heaps.

In this paper we make Separation Logic and the benefits of local
reasoning available to languages with higher-order store. In particular,
we introduce an extension of the logic and prove it sound, including
the Frame Rule that enables specifications of code to be extended by
invariants on parts of the heap that are not accessed.

1 Introduction and Motivation

Since the beginning of program verification for high-level languages [7], pointers
(and the aliasing they cause) have presented a major stumbling block for formal
correctness proofs. Some of the pain of verifying pointer programs has been
removed in recent years with the introduction of Separation Logic, developed by
Reynolds, O’Hearn and others [25,9,14]. This is a variant of Hoare logic where
assertions may contain the separation conjunction: The assertion P ∗ Q states
that P and Q hold for disjoint parts of the heap store – in particular, there
is no sharing between these regions. The separation connective allows for the
elegant formulation of a frame rule which is key to local reasoning: In a triple
{P} c {Q}, the assertions P and Q need to specify the code c only in terms of the
heap cells that are actually used (the “footprint”). Clients can add invariants R
for disjoint heap areas in a modular fashion, to obtain {P ∗R} c {Q ∗R} without
reproving c.

Some impressive results have been obtained within this formalism, including
the verification of several algorithms operating on heap-based graph structures
such as the Schorr-Waite graph marking algorithm [29,4]. Separation logic has
been extended in several directions, covering shared-variable concurrent pro-
grams [13], modules [16] and higher-order procedures [5]. However, in all cases
only values of basic data types can be stored. On the other hand, languages like
C, ML, Scheme, and (implicitly) Java provide code pointers. In object-oriented
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programs, stored procedures are commonly used as callbacks. Moreover, code
pointers “also appear in low-level programs that use techniques of higher-order
or object-oriented programming” [25].

In this paper we address the problem of extending Separation Logic to lan-
guages that allow the storage of procedures. Reynolds emphasized the impor-
tance of code pointers in [25], speculating that the marriage of separation logic
with continuation semantics could provide a way to reason about them. A step
in this direction has been taken in [28] (although mutual dependencies of stored
procedures were initially excluded) and [12]. Building on our results in [23,22,21]
we suggest a much more direct extension of Separation Logic, by using a deno-
tational semantics instead of an operational one. This allows us to model code
pointers by means of a higher-order store, i.e., as a (mixed-variant) recursively
defined domain where stores map locations to basic values or to state transform-
ers (denoting partial maps from store to store).

The starting point for our work is [23] where a Hoare-style logic for a language
with higher-order store is presented. This language assumes a global store and
does not provide explicit means to allocate or dispose memory. The logic in [23]
extends traditional Hoare logic by rules to reason about the (mutual) recursion
through the store that becomes possible with command storage [10].

We extend the language of [23] with memory allocation constructs, and the
logic with the rules of Separation Logic. The semantics of dynamically allocated
memory raises a subtle point in connection with Separation Logic: soundness
of the frame rule relies on the fact that the choice of a fresh location made
by the allocation mechanism is irrelevant, as far as the logic is concerned. To
the best of our knowledge, in all previous approaches this requirement has been
enforced by making allocation non-deterministic so that valid predicates can-
not possibly depend on assumptions about particular locations. However, in the
presence of higher-order store where we have to solve recursive domain equations
we found the use of (countable) non-determinism quite challenging (for instance,
programs would no longer denote ω-continuous functions, see also [6,2]). Stan-
dard techniques [18] for proving the existence of recursively defined predicates
over recursively defined domains are not immediately applicable.

Instead, our technical development takes place in a functor category so that
the semantic domains are indexed by sets w of locations. Intuitively, w contains
all the locations that are in use, and we can define a deterministic memory
allocator. Non-determinism is not needed, due to the following observations:

– A renaming f : w → w′ between location sets gives rise to a corresponding
transformation in the semantics of programs.

– We can identify a class of predicates (over stores) that are invariant under
location renamings. This property captures the irrelevance of location names.

In contrast to previous uses of possible worlds models [24,17,15,11] our seman-
tics is not “tight” in the sense that stores may have allocated only a subset of the
locations in w. Thus runtime errors are still possible by dereferencing dangling
pointers. Memory faults are unavoidable because the language includes a free
operation that may create dangling pointers. Moreover, once stores are “taken
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Table 1. Syntax of expressions and commands

x, y ∈ Var variables
b, e ∈ Exp ::= true | false | e1≤e2 | ¬b | b1 ∧ b2 | . . . | boolean expressions

0 | −1 | 1 | . . . | x | e1 + e2 | . . . | integer expressions
‘c’ quote (command as expression)

c ∈ Com ::= skip | c1;c2 | if b then c1 else c2 fi | no op, composition, conditional
let x = new e in c | free x | memory allocation, disposal
[x]:=e | let y=[x] in c | assignment, lookup
eval e unquote

apart” according to the separation conjunction, the concept of incomplete stores
is convenient, even in the context of a statically typed language [20]. Neverthe-
less, with respect to the logic, proved programs do not yield memory faults.

In summary, we extend Separation Logic to higher-order store, thereby facili-
tating reasoning about code pointers. Technically, this is achieved by developing
a functor category semantics that provides explicit location renamings, instead
of using a non-determistic computation model. We believe this latter aspect is
also of interest independently of the presence of higher-order store.

Structure of the paper. In Section 2 we present the syntax of programming lan-
guage and logic, along with the proof rules. Section 3 develops the necessary
background to interpret the language and logic, the semantics itself is given in
Section 4. Section 5 concludes with an outlook on related and future work.

2 Programming Language and Logic

We present a variant of the language considered by Reus and Streicher [23], but
extended with constructs for the dynamic allocation and disposal of memory
cells. Two assumptions on the language simplify our presentation: Firstly, we
follow [5] in the slightly non-standard adoption of (ML-like) immutable identi-
fiers. That is, all mutation takes place in the heap, whereas the stack variables
are immutable. Secondly, expressions only depend on the stack but not on the
heap. As a consequence there is no need for modifies clauses in the proof rules.

2.1 Programming Language

The syntax of the language is given in Table 1. The set Exp of expressions
includes boolean and integer expressions. Additionally, a command c can be
turned into an expression (delaying its execution), via the quote operation ‘c’.

The set Com of commands consists of the usual no op, sequential composi-
tion, and conditional constructs. Because stack variables are not mutable, new
memory is allocated by let x = new e in c that introduces an identifier with local
scope c that is bound to (the location of) the new memory cell. We stress that
the initial contents e may be a (quoted) command. This is also the case for an
update, [x]:=e. The command free x disposes the memory cell that x denotes,
and let y=[x] in c introduces a new stack variable y bound to the cell contents.
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Table 2. Syntax of assertions

A,B ∈ pAssn ::= true | e1 ≤ e2 | pure basic predicates
¬A | A ∧ B | ∀x.A predicate logic connectives

P, Q ∈ Assn ::= x �→ e | emp | P ∗ Q | separation logic connectives
A | P ∧ Q | P ∨ Q | ∀x. P | ∃x. P predicate logic connectives

Table 3. Specific proof rules

Frame
{P} c {Q}

{P ∗ R} c {Q ∗ R}
Free

{x �→ } free x {emp}

New
{P ∗ x �→ e} c {Q}

{P} let x = new e in c {Q}x/∈fv(e, P, Q)

Eval
{P} c {Q}

{P} eval ‘c’ {Q}
Assign

{x �→ } [x] := e {x �→ e}

Deref
{P ∗ x �→ e} c[e/y] {Q}

{P ∗ x �→ e} let y = [x] in c {Q}
Rec∧

1≤i≤n {P1} eval x1 {Q1} . . . {Pn} eval xn {Qn} 
 {Pi} ci {Qi}
{Pj [‘c’/x]} eval ‘cj ’ {Qj [‘c’/x]} 1 ≤ j ≤ n

Finally, eval e is the “unquote” command, i.e., if e denotes a quoted command
c then c is executed. We give a formal semantics of this language in Section 4,
after developing the necessary machinery in Section 3.

Note that Table 1 does not include any looping constructs – recursion can be
expressed “through the store” [10]. Here is a simple example of a non-terminating
command: [x]:=‘let y=[x] in eval y’; let y=[x] in eval y.

2.2 Assertions and Proof Rules

The assertions used in Hoare triples are built from the formulae of predicate
logic and the additional separation logic assertions that describe the heap ( �→ ,
emp describing the empty heap, and P ∗Q; cf. [25]). Note that in our language
variables can also be bound to quoted code. The syntax of the assertions is given
in Table 2. It is important to note that we distinguish between “pure” assertions
pAssn, i.e., those that do not depend on the heap, and normal assertions Assn
which do depend on the heap. Only the former allow negation. The reason for
this will become clear when we give the semantics in Section 4.1. As usual,
assertion e1 ≤ e2 ∧ e2 ≤ e1 is abbreviated e1 = e2 and assertion ∃z.x �→ z
is abbreviated to x �→ . For pure assertions pAssn the predicate false and
connectives ∨, ⇒, and ∃x.A can be derived as usual using negation.

The inference rules of our program logic contain the standard Hoare rules
(for skip, conditional, sequential composition, weakening and substitution), a
standard axiomatization of predicate logic as well as an axiomatization of the
Separation Logic connectives stating associativity and symmetry of ∗, neutrality
of emp with respect to ∗, and some distributive laws (see e.g. [25]). The rules
specific to our programming language are given in Table 3.
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The frame rule extends triples by invariants for inaccessible parts of the heap.
Rules (Free) and (Assign) specify the corresponding heap operations “tightly”.
The inferences (New) and (Deref) combine heap allocation and dereferencing,
resp., with local variable definitions (and hence are not tight). Unlike [5] our
(New) permits (non-recursive) initializations (and self-reference can be intro-
duced by assignment as in Section 2.3). Substitution on c is used in the premiss
of (Deref) to avoid equations of the form y = e that would be problematic when
e is a stored procedure. Rule (Eval) is reminiscent of standard non-recursive
procedure call rules; it expresses that evaluating a quoted command has the same
effect as the command itself. Indeed, (Eval) is a degenerated case of rule (Rec)
that deals with recursion through the store. It is similar to the standard rule for
Hoare-calculus with (mutually) recursive procedures, but since procedures are
stored on the heap, they have to be accounted for in the assertions which leads
to the substitution in the conclusion.

2.3 Example

Let Σn be the sum
∑

0≤i≤n i, let cP be the command

let !y= [y] in let !x= [x] in if !x≤0 then skip else [y]:=!y+!x; [x]:=!x−1; let c= [f ] in eval c fi

and observe that !x and !y are stack variable names representing the values in
the cells denoted by (pointers) x and y, respectively. If cP is stored in f , the
program is defined by recursion through the store since cP calls the procedure
stored in heap cell f . This is also referred to as a “knot in the store.” We prove
below that cP adds to !y the sum Σ!x of natural numbers up to and including !x.
In the presentation we omit various applications of the weakening rule (which
are easy to insert).

Seq

Frame
Assign {f �→‘skip’} [f ]:=‘cP ’ {f �→‘cP ’}

{x �→n ∗ y �→0 ∗ f �→‘skip’} [f ]:=‘cP ’ {x �→ ∗ y �→0 ∗ f �→‘cP ’}

Deref

Subst

Rec
α

{x �→n ∗ y �→m ∗ f �→‘cP ’} eval ‘cP ’ {x �→ ∗ y �→Σn+m ∗ f �→‘cP ’}
{x �→n ∗ y �→0 ∗ f �→‘cP ’} eval ‘cP ’ {x �→ ∗ y �→Σn ∗ f �→‘cP ’}

{x �→n ∗ y �→0 ∗ f �→‘cP ’} let c= [f ] in eval c {x �→ ∗ y �→Σn ∗ f �→‘cP ’}
{x �→n ∗ y �→0 ∗ f �→‘skip’} [f ]:=‘cP ’; let c= [f ] in eval c {x �→ ∗ y �→Σn ∗ f �→‘cP ’}

{x �→n ∗ y �→0} let f=new ‘skip’ in [f ]:=‘cP ’; let c= [f ] in eval c {x �→ ∗ y �→Σn ∗ f �→‘cP ’}

Here, the last inference is by (New). For the derivation tree α we let xP denote
‘cP ’ and assume

{x�→n ∗ y �→m ∗ f �→xP } eval xP {x�→n ∗ y �→Σn+m ∗ f �→xP } (†)

and prove {x�→n ∗ y �→m ∗ f �→xP } cP {x�→0 ∗ y �→Σn+m ∗ f �→xP }.

If
βt βf

{x �→n ∗ y �→m ∗ f �→xP} if n≤0 then skip else . . . fi {x �→ ∗ y �→Σn+m ∗ f �→xP}
{x �→n ∗ y �→m ∗ f �→xP } let !y= [y] in . . . [y]:=!y+!x . . .︸ ︷︷ ︸

cP

{x �→ ∗ y �→Σn+m ∗ f �→xP}
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The final inference is by two applications of (Deref), and βt and βf , resp., are:

Weak
Skip {x �→n ∗ y �→m ∗ f �→xP ∧ n ≤ 0} skip {x �→n ∗ y �→m ∗ f �→xP ∧ n ≤ 0}

{x �→n ∗ y �→m ∗ f �→xP ∧ n ≤ 0} skip {x �→ ∗ y �→Σn+m ∗ f �→xP}

Seq2
γ δ ε

{x �→n∗y �→m∗f �→xP ∧ n>0} [y]:= . . . ; [x]:= . . . ; let. . . {x �→ ∗y �→Σn+m∗f �→xP }

The derivations γ, δ and ε are as follows:

Frame
Assign {y �→m} [y]:=m+n {y �→m+n}

{x �→n ∗ y �→m ∗ f �→xP} [y]:=m+n {x �→n ∗ y �→m+n ∗ f �→xP}

Frame
Assign {x �→n} [x]:=n−1 {x �→n−1}

{x �→n ∗ y �→m+n ∗ f �→xP } [x]:=n−1 {x �→n−1 ∗ y �→m+n ∗ f �→xP}

Deref

Subst
(†) ≡ {x �→n ∗ y �→m ∗ f �→xP } eval xP {x �→ ∗ y �→Σn+m ∗ f �→xP }
{x �→n−1 ∗ y �→m+n ∗ f �→xP} eval xP {x �→ ∗ y �→Σn+m ∗ f �→xP}

{x �→n−1 ∗ y �→m+n ∗ f �→xP} let c= [f ] in eval c {x �→ ∗ y �→Σn+m ∗ f �→xP}

Note how the Frame Rule is used to peel off those predicates of the assignment
rule that do not relate to the memory cell affected.

3 A Model of Dynamic Higher-Order Store

This section defines the semantic domains in which the language of Section 2
finds its interpretation. The semantic properties (safety monotonicity and frame
property) that programs must satisfy to admit local reasoning [25] are rephrased,
using the renamings made available by the functor category machinery. Due to
the higher-order character of stores, these predicates are recursive and their
existence must be established. The framework of Pitts is used [18,11].

3.1 Worlds

Fix a well-ordered, countably infinite set L of locations (e.g., the natural num-
bers). Let W be the category consisting of finite subsets w ⊆ L as objects and
injections f : w1 → w2 as morphisms. We call the objects w of W worlds. The
intuition is that w ∈W describes (a superset of) the locations currently in use; in
particular, every location not in w will be fresh. The inclusion w ⊆ w′ is written
ιw

′
w , and the notation f : w1

∼→ w2 is used to indicate that f is a bijection.
The injections formalise a possible renaming of locations, as well as an exten-

sion of the set of available locations because of allocation.

3.2 Semantic Domains: Stores, Values and Commands

Let pCpo be the category of cpos (partial orders closed under taking least upper
bounds of countable chains, but not necessarily containing a least element) and
partial continuous functions. For a partial continuous function g we write g(a)↓ if
the application is defined, and g(a)↑ otherwise. By g; h we denote composition in
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diagrammatic order. Let Cpo be the subcategory of pCpo where the morphisms
are total continuous functions. For cpos A and B we write A ⇀ B and A→ B
for the cpos of partial and total continuous functions from A to B, respectively,
each with the pointwise ordering. For a family (Ai) of cpos,

∑
iAi denotes their

disjoint union; we write its elements as 〈i, a〉 where a ∈ Ai.
For every w ∈W we define a cpo of w-stores as records of values whose domain

is a subset of w (viewed as discrete cpo). The fields of such a store contain values
that may refer to locations in w:

St(w) = Recw(Val(w)) =
∑
w′⊆w

(w′ → Val(w)) (1)

We abuse notation to write s for 〈w′, s〉 ∈ St(w); we set dom(s) = w′ and may use
record notation {|l = vl|}l∈dom(s) where s(l) = vl. The order on (1) is defined in
the evident way, by r � s iff dom(r) = dom(s) and r(l) � s(l) for all l ∈ dom(r).

A value (over locations w ∈ W) is either a basic value in BVal , a location
l ∈ w, or a command, i.e.,

Val(w) = BVal + w + Com(w) (2)

We assume BVal is a discretely ordered cpo that contains integers and booleans.
Commands c ∈ Com(w) operate on the store; given an initial store the com-

mand may either diverge, terminate abnormally or terminate with a result store.
Abnormal termination is caused by dereferencing dangling pointers which may
refer to memory locations that either have not yet been allocated, or have al-
ready been disposed of. Thus, in contrast to [23] where store could not vary
dynamically, we need to have a defined result error to flag undefined memory
access. The possibility of dynamic memory allocation prompts a further refine-
ment compared to [23]: a command should work for extended stores, too, and
may also extend the store itself.

Formally, the collection of commands is given as a functor Com : W −→ Cpo,
defined on objects by

Com(w) =
∏

i:w→w′
(St(w′) ⇀ (error +

∑
j:w′→w′′

St(w′′))) (3)

and on morphisms by the obvious restriction of the product,

Com(f : w1 → w2)(c)i:w2→w3 = c(f ;i)

Viewing commands this way is directly inspired by Levy’s model of an ML-like
higher-order language with general references [11].

By considering BVal as constant functor, and locations as the functor W −→
Cpo that acts on f : w1 → w2 by sending l ∈ w1 to f(l) ∈ w2, Val can also be
seen as a functor W −→ Cpo. Note that, by expanding the requirements (1), (2)
and (3), Val is expressed in terms of a mixed-variant recursion. In Section 3.3
we address the issue of well-definedness of Val .
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One might want to exclude run-time memory errors statically (which is pos-
sible assuming memory is never disposed, so that there is no way of introducing
dangling pointers from within the language). An obvious solution to model this
is by defining w-stores as

∏
w Val(w), i.e., all locations occurring in values are

guaranteed to exist in the current store. However, this approach means that there
is no canonical way to extend stores, nor can values be restricted to smaller lo-
cation sets. Consequently St is neither co- nor contravariantly functorial1. In
contrast, our more permissive definition of stores (that may lead to access er-
rors) does allow a functorial interpretation of St , as follows. For an injection
f : w1 → w2 we write f−1 : imf → w1 for the right-inverse to f , and let

St(f) : Recw1(Val(w1))→ Recw2(Val(w2))

St(f) = λ〈w ⊆ w1, s〉. 〈fw, f−1; s;Val(f)〉

The case where f is a bijection then corresponds to a consistent renaming of the
store and its contents. We will make some use of the functoriality of St in the
following, to lift recursively defined predicates from values to stores.

For s1, s2 ∈ St(w) we write s1 ⊥ s2 if their respective domains w1, w2 ⊆ w are
disjoint. In this case, their composition s1 ∗ s2 ∈ St(w) is defined by conjoining
them in the obvious way, it is undefined otherwise. Observe that for f : w → w′

we have St(f)(s1 ∗ s2) = St(f)(s1) ∗ St(f)(s2); the right-hand side is defined
because f is injective.

3.3 Domain Equations and Relational Structures on
Bilimit-Compact Categories

This section briefly summarises the key results from [11,27] about the solution
of recursive domain equations in bilimit-compact categories. We will make use of
the generalisation of Pitts’ techniques [18] for establishing the well-definedness
of (recursive) predicates, as outlined in [11].

Definition 1 (Bilimit-Compact Category [11]). A category C is bilimit-
compact if

– C is Cpo-enriched and each hom-cpo C(A,B) has a least element ⊥A,B such
that ⊥ ◦ f = ⊥ = g ◦ ⊥;

– C has an initial object; and
– in the category CE of embedding-projection pairs of C, every ω-chain ∆ =

D0 → D1 → . . . has an O-colimit [27]. More precisely, there exists a cocone
(en, pn)n<ω : ∆→ D in CE such that (n<ω(pn; en) = idD in C(D,D).

It follows that every locally continuous functor F : Cop×C −→ C has a minimal
invariant, i.e., an object D and isomorphism i in C such that i : F (D,D) ∼= D
(unique up to unique isomorphism) and idD is the least fixed point of the

1 Levy [11] makes this observation for a similar, typed store model.
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Table 4. Solving the domain equation: FVal , FCom : Cop × C −→ C and FSt : C −→ C

On C-objects A−, A+, B, worlds w, w′ ∈ W and f : w → w′,
FVal(A

−, A+)(w) = BVal + w + FCom(A−, A+)(w)

FVal(A
−, A+)(f) = λv.

⎧⎪⎨⎪⎩
v if v ∈ BVal

f(v) if v ∈ w

FCom(A−, A+)(f)(v) if v ∈ FCom(A−, A+)(w)

FCom(A−, A+)(w) =
∏

i:w→w′ (FSt(A
−)(w′) ⇀ (error +

∑
j:w′→w′′ FSt(A

+)(w′′)))
FCom(A−, A+)(f) = λcλi. c(f ;i)

FSt (B)(w) =
∑

w1⊆w(w1 → B(w))

FSt(B)(f) = λ〈w1, s〉. 〈fw1, f
−1; s;B(f)〉

On C-morphisms h = (hw) : B− .
⇀ A− and k = (kw) : A+ .

⇀ B+,

FVal(h, k)w = λv.

{
v if v ∈ BVal or v ∈ w

FCom(h, k)w(v) if v ∈ FCom(A−, A+)

FCom(h, k)w = λcλi:w → w′λs.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

undefined if FSt(h)w′ (s)↑
or FSt (h)w′(s)↓ ∧ ci(FSt(h)w′(s))↑
or ci(FSt(h)w′ (s)) = 〈j : w′ → w′′, s′〉 ∧ FSt(k)w′′ (s′)↑

error if FSt(h)w′ (s)↓ ∧ ci(FSt(h)w′ (s)) = error
〈j, FSt(k)w′′ (s′)〉 if ci(FSt (h)w′(s)) = 〈j : w′ → w′′, s′〉 ∧ FSt (k)w′′(s′)↓

FSt(k)w = λ〈w1, s〉.
{
〈w1, s; kw〉 if ∀l ∈ w1. kw(s(l))↓
undefined otherwise

continuous endofunction δ : C(D,D)→ C(D,D) defined by δ(e) = i−1; F (e, e); i
[18]. To ease readability the isomorphism i is usually omitted below.

To solve the domain equation of the preceding subsection we shall be inter-
ested in the case where C denotes the category [W,Cpo] of functors W −→ Cpo
and partial natural transformations, i.e., a morphism e : A

.
⇀ B in C is a

family e = (ew) of partial continuous functions ew : A(w) ⇀ B(w) such that
A(f); ew′ = ew; B(f) for all f : w → w′.

Lemma 1 (Bilimit-Compactness [11]). C = [W,Cpo] is bilimit-compact.

Thus, for well-definedness of Val it suffices to show that requirements (1), (2)
and (3) induce a locally continuous functor Cop × C −→ C for which Val is the
minimal invariant. Table 4 defines such a functor FVal in the standard way [18],
by separating positive and negative occurrences of St in (3).

Lemma 2 (Minimal Invariant). FVal : Cop × C −→ C is locally continuous.
In particular, the minimal invariant Val = FVal (Val ,Val) exists.

From this we can then define Com = FCom(Val ,Val) and St = FSt (Val) which
satisfy (3) and (1). The minimal invariant in fact lives in the category of functors
W −→ Cpo and natural transformations that are total, i.e., those e = (ew) :
A

.→ B where each ew is a total continuous function A(w) → B(w). This is



584 B. Reus and J. Schwinghammer

because FVal restricts to this category, which is sub-bilimit-compact within C in
the sense of [11]. A (normal) relational structure R on C in the sense of Pitts [18]
is given as follows.

Definition 2 (Kripke Relational Structure). For each A : W −→ Cpo
let R(A) consist of the W-indexed families R = (Rw) of admissible predicates
Rw ⊆ A(w) such that for all f : w → w′ and a ∈ A(w),

a ∈ Rw =⇒ A(f)(a) ∈ Rw′ (KripkeMon)

For each natural transformation e = (ew) : A
.

⇀ B and all R ∈ R(A), S ∈ R(B),

e : R ⊂ S :⇐⇒ ∀w ∈W ∀a ∈ A(w). a ∈ Rw ∧ ew(a)↓ =⇒ ew(a) ∈ Sw

Note that (KripkeMon) in particular covers the case where f : w → w is a
bijection, i.e., the Kripke relations are invariant under permutation of locations.

For an object A : W −→ Cpo and R-relation R = (Rw) ∈ R(A) we let
St(R) ∈ R(FSt (A)) be the relation where s ∈ St(R)w if and only if s(l) ∈ Rw
for all l ∈ dom(s). It is easy to check admissibility and (KripkeMon). Two
elementary properties are stated in the following lemma.

Lemma 3 (Relations over St). Let A,B : W −→ Cpo, R ∈ R(A), S ∈
R(B). Let e : A

.→ B and w ∈W.

1. If e : R ⊂ S then FSt (e) : St(R) ⊂ St(S).
2. If s1, s2 ∈ FSt (A)(w) and s1 ⊥ s2 then s1 ∈ St(R)w and s2 ∈ St(R)w if and

only if s1 ∗ s2 ∈ St(R)w.

Theorem 1 (Invariant Relation [18]). Let FVal be the locally continuous
functor for which Val is the minimal invariant. Suppose Φ maps R-relations to
R-relations such that for all R,R′,S,S′ ∈ R(Val) and e � idVal ,

e : R′ ⊂ R ∧ e : S ⊂ S′ =⇒ F (e, e) : Φ(R,S) ⊂ Φ(R′,S′)

Then there exists a unique ∆ ∈ R(Val) such that Φ(∆,∆) = ∆.

Proof. By [11], the proof of Pitts’ existence theorem [18, Thm. 4.16] gener-
alises from Cppo (pointed cpos and strict continuous maps) to arbitrary bilimit-
compact categories. Since the R-relations of Definition 2 are admissible in the
sense of [18] andR has inverse images and intersections, the theorem follows. '(

3.4 Safety Monotonicity and Frame Property

Safety monotonicity is the observation that if executing a command in heap h
does not result in a memory fault, then this is also true when running the com-
mand in a heap that extends h. The second key semantic principle underlying
separation logic is the observation that if execution of a command does not re-
sult in a memory fault (i.e., no dangling pointers are dereferenced), then running
the command in an extended heap does not influence its observable behaviour
— in particular, the additional heap region remains unaffected. The frame prop-
erty [25] formalises this idea. Since the actual results of these executions may
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differ in the action of the memory allocator, the choice of locations is taken into
account.

As the store may contain commands itself (which may be executed), both
safety monotonicity and frame property must already be required to hold of the
data in the initial store. In order to give a sufficiently strong induction hypothesis
later, we additionally require that the properties are preserved by the execution
of commands. Unfortunately, we cannot adopt separate definitions for safety
monotonicity and frame property (like [25]) but have to combine them. The
reason is that safety monotonicity is not preserved by composition of commands,
unless commands additionally satisfy the frame property.2 Because of the higher-
order store, both properties are expressed by mixed-variant recursive definitions,
and existence of a predicate satisfying these definitions requires a proof. It is in
this proof that both properties are needed simultaneously.

For this reason the following property LC (for “local commands”) is proposed,
subsuming both safety and frame property: For R,S ∈ R(Val) let Φ(R,S) be
the W-indexed family of relations where

c ∈ Φ(R,S)w :⇐⇒ c ∈ Com(w) =⇒
∀f :w→w2 ∀i:w2

∼→w′2 ∀g:w2→w3 ∀s1, s2 ∈ St(R)w2 ∀s′ ∈ St(w3). s1 ⊥ s2 =⇒
cf (s1)↑ =⇒ cf ;i(St(i)(s1 ∗ s2))↑
∧ cf (s1 ∗ s2) = error =⇒ cf ;i(St(i)(s1)) = error

}
safety mon.

∧ cf (s1) �= error ∧ cf (s1 ∗ s2) = 〈g, s′〉 =⇒
∃g′:w′2→w′3 ∃j:w′3

∼→w3 ∃s′1 ∈ St(w′3)∃s′2 ∈ St(w2).
cf ;i(St(i)(s1)) = 〈g′, s′1〉 ∧ s′2 � s2 ∧ i; g′; j = g
∧ s′ = St(j)(s′1 ∗ St(i; g′)(s′2)) ∧ s′ ∈ St(S)w3

⎫⎪⎪⎬⎪⎪⎭ frame property

and define the predicate LC ∈ R(Val) on values as the fixpoint LC = Φ(LC ,LC )
of this functional.

This definition is complex so some remarks are in order. Besides combining
safety and frame property, Φ strengthens the obvious requirements by allowing
the use of a renaming i on the initial store as well. This provides a strong
invariant that we need for the proof of Theorem 2 below in the case of sequential
composition. To obtain the fixed point of Φ, Lemma 4 appeals to Theorem 1
which forced us to weaken the frame property to an inequality (s′2 � s2). This
extends conservatively the usual notion of [25] to the case of higher-order stores.

Lemma 4 (Existence). LC is well-defined, i.e., there exists a unique LC ∈
R(Val) such that LC = Φ(LC ,LC ).

Proof. One checks that Φ maps Kripke relations to Kripke relations, i.e. for all
R,S ∈ R(Val), Φ(R,S) ∈ R(Val). By Theorem 1 it remains to show for all
e � idVal , if e : R′ ⊂ R and e : S ⊂ S′ then FVal (e, e) : Φ(R,S) ⊂ Φ(R′,S′). '(
2 As pointed out to us by Hongseok Yang, this is neither a consequence of using a de-

notational semantics, nor of our particular formulation employing renamings rather
than non-determinism; counter-examples can easily be constructed in a relational
interpretation of commands.
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4 Semantics of Programs and Logic

Table 5 contains the interpretation of the language. Commands and expressions
depend on environments because of free (stack) variables, so that E�e� : Env .→
Val and C�c� : Env .→ Com where the functor Env is ValVar. The semantics of
boolean and integer expressions is standard and omitted from Table 5; because of
type mismatches (negation of integers, addition of booleans,. . . ) expressions may
denote error. The semantics of quote refers to the interpretation of commands
and uses the injection of Com into Val . Sequential composition is interpreted
by composition in the functor category but also propagates errors and non-
termination. Conditional and skip are standard. The semantics of the memory
commands is given in terms of auxiliary operations extend and update.

The following theorem shows the main result about the model: commands of
the above language satisfy (and preserve) the locality predicate LC .

Theorem 2 (Locality). Let w ∈W and ρ ∈ Env(w) such that ρ(x) ∈ LCw for
all x ∈ Var. Let c ∈ Com. Then �c�w ρ ∈ LCw.

Proof. By induction on c. The case of sequential composition relies on LC taking
safety monotonicity and frame property into account simultaneously. '(

4.1 Interpretation of the Logic

The assertions of the logic are interpreted as predicates over St that are compati-
ble with the possible-world structure. In contrast to theR-relations of Section 3.3
they depend on environments, and downward-closure is required to prove the
frame rule sound. This is made precise by the following relational structure S.

Definition 3 (dclKripke Relational Structure). Let S consist of the W-
indexed families p = (pw) of predicates pw ⊆ Env(w) × St(w) such that for all
f : w→ w′, ρ ∈ Env(w) and s ∈ St(w),

Kripke Monotonicity if (ρ, s) ∈ pw then (Env(f)(ρ),St(f)(s)) ∈ pw′ ;
Downward Closure {s ∈ St(w) | (ρ, s) ∈ pw} is downward-closed in St(w).

For each natural transformation e = (ew) : Val .
⇀ Val and p, q ∈ S we write

e : p ⊂ q if for all w ∈W, ρ ∈ Env(w) and s ∈ St(w),

(ρ, s) ∈ pw ∧ (FEnv(e)w(ρ)↓ ∨FSt (e)w(s)↓) =⇒ (FEnv(e)w(ρ),FSt (e)w(s)) ∈ qw

where FEnv(e) = FVal
Var(e, e).

Assertions P ∈ Assn are interpreted by S-relations A�P �. Some cases of the
definition are given in Table 6. All assertions are indeed downward-closed in the
store component, and pure assertions denote either true or false since they do
not depend on the heap. The interpretation shows that ≤ is not supposed to
compare code (but yield false instead). Correspondingly, we assume the non-
standard axiom ¬(‘c1’ ≤ e2) ∧ ¬(e1 ≤ ‘c2’) for the comparison operator.

We can now give the semantics of Hoare triples. Correctness is only ensured
if the command in question is run on stores that contain local procedures only.
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Table 5. Semantics of expressions and commands

E�e� : Env
.→ Val + error where f : w → w′

E�‘c’�w ρ = C�c�w ρ

C�c� : Env
.→ Com where f : w → w′ and s ∈ St(w′)

(C�skip�w ρ)f (s) = 〈id , s〉

(C�c1;c2�w ρ)f (s) =

⎧⎪⎨⎪⎩
undefined if (C�c1�w ρ)fs↑
error if (C�c1�w ρ)fs = error
(C�c2�w ρ)(f ;g)s

′ if (C�c1�w ρ)fs = 〈g, s′〉

(C�if b then c1 else c2�w ρ)f (s) =

⎧⎪⎨⎪⎩
(C�c1�w ρ)fs if E�b�w ρ = true

(C�c2�w ρ)fs if E�b�w ρ = false

error otherwise

(C�let x=new e in c�w ρ)f (s) = (C�c�w′′ (Env(f ; ιw′′
w′ )(ρ))[x:=l])ids′; shift

(f ;ιw′′
w′ )

where

l= min L\w′, w′′=w′∪{l}, s′=tw′,l(Val(f)(E�e�w ρ), s)

(C�free x�w ρ)f (s) =

⎧⎪⎨⎪⎩
〈id , {|l′ = s(l′)|}l′∈dom(s), l′ �=l〉

if ∃l ∈ w. E�x�w ρ = l and f(l) ∈ dom(s)

error otherwise

(C�[x]:=e�w ρ)f (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈id , updatew′ (f(l), s, Val(f)(E�e�w ρ))〉

if ∃l ∈ w. E�x�ρ = l and f(l) ∈ dom(s)

and E�e�w ρ ∈ Val(w)

error otherwise

(C�let y = [x] in c�w ρ)f (s) =

⎧⎪⎨⎪⎩
(C�c�w′ (Env(f)(ρ))[y := s(f(l))])id (s); shiftf

if ∃l ∈ w. E�x�w ρ = l and f(l) ∈ dom(s)

error otherwise

(C�eval e�w ρ)f (s) =

{
(E�e�w ρ)fs if E�e�w ρ ∈ Com(w)

error otherwise

shiftf : (error +
∑

g′:w′→w′′ St(w′′)) → (error +
∑

g:w→w′′ St(w′′))

shiftf (v) =

{
error if v = error
〈f ; g′, s′〉 if v = 〈g′, s′〉

tw,l : Val(w) × St(w) → St(w ( {l})
tw,l(v, s) = St(ι

w∪{l}
w )(s) ∗ {|l = Val(ι

w∪{l}
w )(v)|}

updatew : w × St(w) × Val(w) → St(w)
updatew(l, s, v) = {|l=v|} ∗ {|l′=s(l′)|}l′∈dom(s),l′ �=l

Definition 4 (Validity). Let w ∈W, ρ ∈ Env(w), s ∈ St(LC )w, c ∈ Com(w)∩
LCw and p, q ∈ S. An auxiliary meaning of “semantical triples” with respect to
a fixed world, written (ρ, s) |=w {p} c {q}, holds if and only if for all f : w → w1,

∀g : w1 → w2 ∀s′ ∈ St(w2). (Env(f)(ρ),St(f)(s)) ∈ pw1 ∧
cf (St(f)(s)) = 〈g, s′〉 =⇒ (Env(f ; g)(ρ), s′) ∈ qw2

Observe that {p} c {true} means that, assuming p for the initial state, the com-
mand does not lead to a memory fault. Validity of syntactic triples in context
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Table 6. Interpretation of assertions

A�P � : S
(ρ, s) ∈ A�true�w :⇐⇒ true
(ρ, s) ∈ A�e1 ≤ e2�w :⇐⇒ E�ei�w ρ /∈ Com(w) ∧ E�e1�w ρ ≤ E�e2�w ρ
(ρ, s) ∈ A�¬A�w :⇐⇒ (ρ, s) /∈ A�A�w

(ρ, s) ∈ A�P ∧ Q�w :⇐⇒ (ρ, s) ∈ A�P �w ∧ (ρ, s) ∈ A�Q�w

(ρ, s) ∈ A�∀x. P �w :⇐⇒ ∀v∈Val(w). (ρ[x �→ v], s) ∈ A�P �w

(ρ, s) ∈ A�emp�w :⇐⇒ dom(s) = ∅
(ρ, s) ∈ A�P1 ∗ P2�w :⇐⇒ ∃s1, s2 ∈ St(w). s = s1 ∗ s2 ∧ (ρ, si) ∈ A�Pi�w

(ρ, s) ∈ A�x �→ e�w :⇐⇒ dom(s) = {ρ(x)} ∧ s(ρ(x)) " E�e�w ρ

of assumptions is written |= {P1} c1 {Q1} , . . . , {Pn} cn {Qn} � {P} c {Q} and
holds if and only if for all w ∈W,

∀ρ∈Env(w)∀s∈St(LC )w.
∧

1≤i≤n
(ρ, s) |=w {A�Pi�} C�ci�w ρ {A�Qi�}

=⇒ (ρ, s) |=w {A�P �} C�c�w ρ {A�Q�}
For an empty context we simply write |= {P} c {Q} instead of |= � {P} c {Q}.

Theorem 3 (Soundness). The logic presented in Section 2.2 is sound with
respect to our semantics.

Proof. Lack of space permits only a sketch for the two most interesting rules.

Soundness of the frame rule (Frame). Except for exploiting the renaming of
locations the proof uses the standard argument: Suppose {P} c {Q} is valid, let
w1 ∈ W, ρ ∈ Env(w1) and s ∈ St(LC )w1 such that (Env(f)(ρ),St(f)(s)) ∈
A�P ∗R�w2

and cf (St(f)(s))↓, where f : w1 → w2. Thus, St(f)(s) = s1 ∗ s2 for
some s1, s2 with (Env(f)(ρ), s1) ∈ A�P �w2

and (Env(f)(ρ), s2) ∈ A�R�w2
.

Now if cf (St(f)(s)) = error then, by assumption c ∈ LCw, also cf (s1) = error
which contradicts validity of {P} c {Q}. Thus, cf (St(f)(s)) = 〈g, s′〉 for some
g : w2 → w3 and s′ ∈ St(w3). By c ∈ LCw there exist g′ : w2 → w′3, j : w′3

∼→ w3,
s′1 ∈ St(w′3) and s′2 ∈ St(w2) such that s′2 � s2, cf (s1) = 〈g′, s′1〉 and

s′ = St(j)(s′1) ∗ St(g′; j)(s′2) (4)

Downward-closure of A�R� entails (Env(f)(ρ), s′2) ∈ A�R�w2
, and therefore

(Env(f ; g′; j)(ρ),St(g′; j)(s′2)) ∈ A�R�w3
by Kripke monotonicity. By validity of

{P} c {Q} we have (Env(f ; g′)(ρ), s′1) ∈ A�Q�w′
3
. Kripke monotonicity of A�Q�

and (4) entail (Env(f ; g)(ρ), s′) ∈ A�Q ∗R�w3
, proving |= {P ∗R} c {Q ∗R}.

Soundness of the recursion rule (Rec). This is proved along the lines of [23]:
Pitts’ technique (cf. Theorem 1) is used to establish existence of a suitable re-
cursive S-relation containing the commands defined by mutual recursion. As in
[23] one shows for all assertions P that A�P � ∈ S satisfies the following prop-
erties: for all w ∈ W, the set {s | (ρ, s) ∈ A�P �w} is downward closed, the set
{ρ | (ρ, s) ∈ A�P �w} is upward closed, and e : A�P � ⊂ A�P � for all e � idVal .
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The first property is built into the definition of S-relations, the latter two can
be established by induction on assertions. Note that the way x �→ e and e1 ≤ e2

are defined in Table 6 is essential for this result. In particular, e1 ≤ e2 had to
be defined differently in [23] where the extra level of locations was absent. '(

5 Conclusions and Further Work

We have presented a logic for higher-order store that admits a local reasoning
principle in form of the (first-order) frame rule. Soundness relies on a denota-
tional semantics employing powerful constructions known from domain theory.

Our reasoning principle for recursion through the store (Rec) is based on
explicitly keeping track of the code in pre- and postconditions. Instead of code,
Honda et al. [8] use abstract specifications of code, in terms of nested triples
in assertions. Their logic is for programs of an ML-like imperative higher-order
language, with dynamic memory allocation and function storage. In contrast
to our work, it builds on operational techniques and does not address local
reasoning. Consequently, an improvement of our logic would be the integration
of nested triples in assertions while admitting a frame rule that is proved sound
employing the semantical approach presented here.

Stored procedures are particularly important for object-oriented program-
ming, and we are currently investigating how a separation logic for higher-order
store can be extended to simple object-based languages like the object calculus
to obtain a logic that combines the power of local reasoning with the principle
ideas of Abadi and Leino’s logic [1,21]. To achieve that, our results need to be
generalised from Hoare triples to more general transition relations. Separation
conjunction in such a framework has been considered in [19].

There are several possibilities for further improvements. It would be inter-
esting to see if the FM models of [26,3], rather than a presheaf semantics, can
simplify the semantics. It also needs to be investigated whether a higher-order
frame rule can be proven sound in our setting analogous to [16,5].
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Abstract. This paper presents a decision procedure for the alternating-
time µ-calculus. The algorithm is based on a representation of
alternating-time formulas as automata over concurrent game structures.
We show that language emptiness of these automata can be checked in
exponential time. The complexity of our construction meets the known
lower bounds for deciding the satisfiability of the classic µ-calculus. It
follows that the satisfiability problem is EXPTIME-complete for the
alternating-time µ-calculus.

1 Introduction

In the design of distributed protocols, we are often interested in the strategic
abilities of certain agents. For example, in a contract-signing protocol, it is im-
portant to ensure that while Alice and Bob can cooperate to sign a contract,
Bob never has a strategy to obtain Alice’s signature unless, at the same time,
Alice has a strategy to obtain Bob’s signature as well (cf. [10]). Such properties
can be expressed in the alternating-time µ-calculus (AMC) [1], which extends
the classic µ-calculus with modalities that quantify over the strategic choices of
a group of agents. The models of AMC are a special type of labeled transition
systems, called concurrent game structures, where each transition results from a
set of decisions, one for each agent.

In this paper, we present the first decision procedure for the satisfiability
of AMC formulas. The satisfiability problem asks for a given AMC formula ϕ
whether there exists a concurrent game structure that satisfies ϕ. Previous re-
search has focused on the model checking problem [1,2], which asks whether a
given concurrent game structure satisfies its specification. By contrast, our pro-
cedure checks whether a specification can be implemented at all. For example,
we can automatically prove the classic result that it is impossible to implement
fair contract-signing without a trusted third party [6].

We introduce an automata-theoretic framework for alternating-time logics.
Automata over concurrent game structures (ACGs) are a variant of alternating
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tree automata, where the atoms in the transition function do not refer to in-
dividual successors in the input structure, but instead quantify universally or
existentially over all successors that result from the agents’ decisions. Specifi-
cally, a universal atom (
,A′) refers to all successor states for some decision of
the agents in a set A′, and an existential atom (♦,A′) refers to some successor
state for each decision of the agents not in A′. In this way, the automaton can run
on game structures with arbitrary, even infinite, branching degree. Every AMC
formula can be translated into an automaton that accepts exactly the models
of the formula. Satisfiability of AMC formulas thus corresponds to language
nonemptiness of ACGs.

The core result of the paper is the finite model property for ACGs. We first
prove that, given any game structure accepted by an ACG G, we can find a
bounded game structure that is also accepted by G. In the bounded game struc-
ture, the number of possible decisions of each agent is limited by some constant
m, determined by the size of G.

The emptiness problem of ACGs thus reduces to the emptiness problem of
alternating tree automata and, since non-empty automata over finitely-branching
structures always accept some finite structure [15,14], there must exist a finite
game structure in the language of G. The drawback of this reduction is that the
trees accepted by the alternating tree automaton branch over the decisions of all
agents: the number of directions is therefore exponential in the number of agents.
Since the emptiness problem of alternating tree automata is exponential in the
number of directions, this results in a double-exponential decision procedure.

We show that it is possible to decide emptiness in single-exponential time.
Instead of constructing an alternating automaton that accepts exactly the
m-bounded game structures in the language of the ACG, we construct a uni-
versal automaton that only preserves emptiness. Unlike alternating automata,
universal automata can be reduced to deterministic automata with just a single
exponential increase in the number of states. For deterministic automata, the
complexity of the emptiness problem is only linear in the number of directions.

Our approach is constructive and yields a tight complexity bound: the satis-
fiability problem for AMC is EXPTIME-complete. If the AMC formula is sat-
isfiable, we can synthesize a finite model within the same complexity bound.
Since AMC subsumes the alternating-time temporal logic ATL* [4,1], we obtain
a decision procedure for this logic as well.

Related work. The automata-theoretic approach to the satisfiability problem
was initiated in the classic work by Büchi, McNaughton, and Rabin on monadic
second-order logic [3,13,15]. For linear-time temporal logic, satisfiability can be
decided by a translation to automata over infinite words [18]; for branching-time
logics, such as CTL* and the modal µ-calculus, by a translation to automata
over infinite trees that branch according to inputs and nondeterministic choices
[12,5,11,20]. For alternating-time temporal logics, previous decidability results
have been restricted to ATL [17,19], a sublogic of ATL*.

Automata over concurrent game structures, introduced in this paper, pro-
vide an automata-theoretic framework for alternating-time logics. Automata
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over concurrent game structures extend symmetric alternating automata [20],
which have been proposed as the automata-theoretic framework for the classic
µ-calculus. Symmetric automata branch universally into all successors or exis-
tentially into some successor.

2 Preliminaries

2.1 Concurrent Game Structures

Concurrent game structures [1] generalize labeled transition systems to a set-
ting with multiple agents. A concurrent game structure (CGS) is a tuple
C = (P,A,S, s0, l,∆, τ), where

– P is a finite set of atomic propositions,
– A is a finite set of agents,
– S is a set of states, with a designated initial state s0 ∈ S,
– l : S → 2P is a labeling function that decorates each state with a subset of

the atomic propositions,
– ∆ is a set of possible decisions for every agent, and
– τ : S ×∆A → S is a transition function that maps a state and the decisions

of the agents to a new state.

A concurrent game structure is called bounded if the set ∆ of decisions is finite,
m-bounded if ∆ = Nm = {1, . . . ,m}, and finite if S and ∆ are finite.

Example. As a running example, we introduce a simple CGS C0 with an
infinite number of states and an infinite number of possible decisions. In every
step, two agents each pick a real number and move to the state d2

2 − d1
2,

where d1 is the decision of agent a1 and d2 is the decision of agent a2. We
use two propositions, p1 and p2, where p1 identifies the non-negative numbers
and p2 the rational numbers. Let C0 = (P,A,S, s0, l,∆, τ), with P = {p1, p2},
A = {a1, a2}, S = R, s0 = 0, p1 ∈ l(s) iff s ≥ 0, p2 ∈ l(s) iff s ∈ Q, ∆ = R,
and τ : (s, (d1, d2)) �→ d2

2 − d1
2. It is easy to see that in all states of this CGS,

agent a1 can enforce that p1 eventually always holds true. Additionally, if agent
a1 decides before agent a2, agent a2 can always respond with a decision such
that p2 holds in the following state.

2.2 Alternating-Time µ-Calculus

The alternating-time µ-calculus (AMC) extends the classical µ-calculus with
modal operators which express that an agent or a coalition of agents has a
strategy to accomplish a goal. AMC formulas are interpreted over concurrent
game structures.

AMC Syntax. AMC contains the modality 
A′ϕ, expressing that a set A′ ⊆ A
of agents can enforce that a property ϕ holds in the successor state, and the
modality ♦A′ϕ, expressing that it cannot be enforced against the agents A′ that
ϕ is violated in the successor state. Let P and B denote disjoint finite sets of
atomic propositions and bound variables, respectively. Then
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– true and false are AMC formulas.
– p, ¬p and x are AMC formulas for all p ∈ P and x ∈ B.
– If ϕ and ψ are AMC formulas then ϕ ∧ ψ and ϕ ∨ ψ are AMC formulas.
– If ϕ is an AMC formula and A′ ⊆ A then 
A′ϕ and ♦A′ϕ are AMC formulas.
– If x ∈ B and ϕ is an AMC formula where x occurs only free, then µx.ϕ and

νx.ϕ are AMC formulas.

The set of subformulas of a formula ϕ is denoted by sub(ϕ) and its alternation
depth by alt(ϕ) (for simplicity we use the syntactic alternation of least and
greatest fixed-point operators).

AMC Semantics. An AMC formula ϕ with atomic propositions P is inter-
preted over a CGS C = (P,A,S, s0, l,∆, τ). ‖ϕ‖C ⊆ S denotes the set of states
where ϕ holds. A CGS C = (P,A,S, s0, l,∆, τ) is a model of a specification ϕ
with atomic propositions P iff s0 ∈ ‖ϕ‖C.

– Atomic propositions are interpreted as follows: ‖false‖C = ∅ and
‖true‖C = S, ‖p‖C = {s ∈ S | p ∈ l(s)} and ‖¬p‖C = {s ∈ S | p /∈ l(s)}.

– Conjunction and disjunction are interpreted as intersection and union, re-
spectively: ‖ϕ ∧ ψ‖C = ‖ϕ‖C ∩ ‖ψ‖C and ‖ϕ ∨ ψ‖C = ‖ϕ‖C ∪ ‖ψ‖C.

– A state s ∈ S is in ‖
A′ϕ‖C iff the agents A′ can make a decision υ ∈ ∆A
′

such that, for all decisions υ′ ∈ ∆A�A′
, ϕ holds in the successor state:

‖
A′ϕ‖C = {s ∈ S | ∃υ ∈ ∆A
′
. ∀υ′ ∈ ∆A�A′

. τ(s, (υ, υ′)) ∈ ‖ϕ‖C}.
– A state s ∈ S is in ‖♦A′ϕ‖C iff for all decisions υ ∈ ∆A�A′

of the agents not
in A′, the agents in A′ have a counter decision υ′ ∈ ∆A

′
which ensures that

ϕ holds in the successor state:
‖♦A′ϕ‖C = {s ∈ S | ∀υ′ ∈ ∆A�A′

. ∃υ ∈ ∆A
′
. τ(s, (υ, υ′)) ∈ ‖ϕ‖C}.

– The least and greatest fixed points are interpreted as follows:
‖µx.ϕ‖C =

⋂
{Sx ⊆ S | ‖ϕ‖CSx

x
⊆ Sx}, ‖νx.ϕ‖C =

⋃
{Sx ⊆ S | ‖ϕ‖CSx

x
⊇ Sx},

where CSx
x = (P ∪{x},A,S, s0, l

Sx
x ,∆, τ) denotes the modified CGS with the

labeling function lSx
x : S → 2P∪{x} with lSx

x (s) ∩ P = l(s) and x ∈ lSx
x (s)⇔

s ∈ Sx ⊆ S. Since the bound variable x occurs only positive in ϕ, ‖ϕ‖CSx
x

is
monotone in Sx and the fixed points are well-defined.

AMC contains the classic µ-calculus with the modal operators 
 and ♦, which
abbreviate 
∅ and ♦A, respectively. AMC also subsumes the temporal logic
ATL* [1], which is the alternating-time extension of the branching-time temporal
logic CTL*. ATL* contains the path quantifier 〈〈A′〉〉, which ranges over all paths
the players in A′ can enforce. There is a canonical translation from ATL* to
AMC [4].

Example. As discussed in Section 2.1, the example CGS C0 has the property
that in all states, agent a1 can enforce that p1 eventually always holds true, and
agent a2 can respond to any decision of agent a1 with a counter decision such
that p2 holds in the following state. This property is expressed by the AMC
formula ψ = νx.(µy.νz.
{a1}(p1 ∧ z ∨ y)) ∧♦{a2}p2 ∧ ♦∅x.
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2.3 Automata over Finitely Branching Structures

An alternating parity automaton with a finite set Υ of directions is a tuple
A = (Σ,Q, q0, δ,α), where Σ is a finite alphabet, Q is a finite set of states,
q0 ∈ Q is a designated initial state, δ is a transition function, and α : Q→ C ⊂ N
is a coloring function. The transition function δ : Q × Σ → B+(Q × Υ ) maps
a state and an input letter to a positive boolean combination of states and
directions.

In the context of this paper, we consider alternating parity automata that
run on bounded CGSs with a fixed set P of atomic propositions (Σ=2P ), a fixed
set A of agents and a fixed finite set ∆ of decisions (Υ=∆A). The acceptance
mechanism is defined in terms of run trees. As usual, an Υ -tree is a prefix-closed
subset Y ⊆ Υ ∗ of the finite words over the set Υ of directions. For given sets
Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Y, l〉, consisting of a tree Y ⊆ Υ ∗ and a
labeling function l : Y → Σ that maps every node of Y to a letter of Σ. If Υ
and Σ are not important or clear from the context, 〈Y, l〉 is called a tree.

A run tree 〈R, r〉 on a given CGS C = (P,A,S, s0, l,∆, τ) is a Q×S-labeled
tree whose root is decorated with r(ε) = (q0, s0), and for each node n ∈ R
decorated with a label r(n) = (q, s), there is a set An ⊆ Q × Υ that satisfies
δ(q, l(s)), such that (q′, υ) is in An iff some child of n is decorated with a label
(q′, τ(s, υ)).

A run tree is accepting iff all infinite paths fulfill the parity condition. An infi-
nite path fulfills the parity condition iff the highest color of the states appearing
infinitely often on the path is even. A CGS is accepted by the automaton iff
it has an accepting run tree. The set of CGSs accepted by an automaton A is
called its language L(A). An automaton is empty iff its language is empty.

The acceptance of a given CGS C can also be viewed as the outcome of a game
played over Q×S, starting in (q0, s0). When the game reaches a position (q, s),
player accept first chooses a set A ⊆ Q×Υ of atoms that satisfies δ(q, l(s)).
Player reject then chooses one atom (q′, υ) from A and the game continues
in (q′, τ(s, υ)). An infinite sequence (q0, s0)(q1, s1)(q2, s2) . . . of game positions
is called a play. A play is winning for player accept iff it satisfies the parity
condition. A strategy for player accept (reject) maps each history of decisions of
both players to a decision of player accept (reject). A pair of strategies determines
a play. A strategy for player accept is winning iff, for all strategies of player reject,
the play determined by the strategies is winning for player accept. The CGS C
is accepted iff player accept has a winning strategy.

An automaton is universal iff the image of δ consists only of conjunctions,
nondeterministic iff the image of δ consists only of formulas that, when rewritten
into disjunctive normal form, contain in each disjunct exactly one element of
Q×{υ} for each υ ∈ Υ , and deterministic iff it is universal and nondeterministic.

For nondeterministic automata, emptiness can be checked with an emptiness
game over Q where, instead of considering the letter l(s) on some state s of
a given CGS, the letter is chosen by player accept. The nondeterministic au-
tomaton is non-empty iff player accept has a winning strategy in the emptiness
game.
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3 Automata over Concurrent Game Structures

In this section, we introduce automata over concurrent game structures (ACGs)
as an automata-theoretic framework for the alternating-time µ-calculus. The
automata over finitely branching structures described in Section 2.3 do not suf-
fice for this purpose, because they are limited to bounded CGSs. Generalizing
symmetric automata [20], ACGs contain universal atoms (
,A′), which refer
to all successor states for some decision of the agents in A′, and existential
atoms (♦,A′), which refer to some successor state for each decision of the agents
not in A′. In this way, ACGs can run on CGSs with an arbitrary, even infinite,
number of decisions.

An ACG is a tuple G = (Σ,Q, q0, δ,α), where Σ, Q, q0, and α are defined as
for alternating parity automata in the previous section. The transition function
δ : Q×Σ → B+(Q× (({
,♦}×2A)∪{ε})) now maps a state and an input letter
to a positive boolean combination of three types of atoms: (
,A′) is a universal
atom, (♦,A′) is an existential atom, and ε is an ε-transition, where only the
state of the automaton is changed and the state of the CGS remains unchanged.
If an ACG has no ε-transitions, it is called ε-free.

A run tree 〈R, r〉 on a given CGS C = (P,A,S, s0, l,∆, τ) is a Q×S-labeled
tree where the root is labeled with (q0, s0) and where, for a node n with a label
(q, s) and a set L = {r(n · ρ) |n · ρ ∈ R} of labels of its successors, the following
property holds: there is a set A ⊆ Q × ({
,♦} × 2A ∪ {ε}) of atoms satisfying
δ(q, l(s)) such that

– for all universal atoms (q′,
,A′) in A, there exists a decision υ ∈ ∆A
′

of the agents in A′ such that, for all counter decisions υ′ ∈ ∆A�A′
,

(q′, τ(s, (υ, υ′))) ∈ L,
– for all existential atoms (q′,♦,A′) in A and all decisions υ′ ∈ ∆A�A′

of
the agents not in A′, there exists a counter decision υ ∈ ∆A

′
such that

(q′, τ(s, (υ, υ′))) ∈ L, and
– for all ε-transitions (q′, ε) in A, (q′, s) ∈ L.

As before, a run tree is accepting iff all paths satisfy the parity condition, and a
CGS is accepted iff there exists an accepting run tree.

The acceptance of a CGS can again equivalently be defined as the outcome of
a game over Q× S, starting in (q0, s0). Each round of the game now consists of
two stages. In the first stage, player accept chooses a set A of atoms satisfying
δ(q, l(s)), and player reject picks one atom from A. If the result of the first stage
is an ε-transition (q′, ε), then the round is finished and the game continues in
(q′, s) with the new state of the automaton. If the result of the first stage is
a universal atom (q′, (
,A′)), the second stage begins by player accept making
the decisions υ ∈ ∆A

′
for the agents in A′, followed by player reject making the

decisions υ′ ∈ ∆A�A′
for the remaining agents. Finally, if the result of the first

stage is an existential atom (q, (♦,A′)), the order of the two choices is reversed:
first, player reject makes the decisions υ′ ∈ ∆A�A′

for the agents in A�A′;
then, player accept makes the decisions υ ∈ ∆A

′
for the players in A′. After the

decisions are made, the game continues in (q′, τ(s, (υ, υ′))).
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A winning strategy for player accept uniquely defines an accepting run tree,
and the existence of an accepting run tree implies the existence of a winning
strategy. The game-theoretic characterization of acceptance is often more con-
venient than the characterization through run trees, because parity games are
memoryless determined [5]. A CGS is therefore accepted by an ACG iff player
accept has a memoryless winning strategy in the acceptance game, i.e., iff she
has a strategy where her choices only depend on the state of the game and the
previous decisions in the current round.

As an additional complexity measure for an ACG G, we use the set atom(G) ⊆
Q×{
,♦, ε}×2A of atoms that actually occur in some boolean function δ(q,σ).
The elements of atom(G) are called the atoms of G.

Example. The CGSs that satisfy the AMC formula ψ = νx.(µy.νz.
{a1}(p1∧
z ∨ y)) ∧ ♦{a2}p2 ∧ ♦∅x from Section 2.2 are recognized by the ACG Gψ =
(Σ,Q, q0, δ,α), where Σ = 2{p1,p2} and Q = {q0, qµ, qν , qp2}. The transition
function δ maps

– (qp2 ,σ) to true if p2 ∈ σ, and to false otherwise,
– (qµ,σ) and (qν ,σ) to (qν ,
, {a1}) if p1 ∈ σ, and to (qµ,
, {a1}) otherwise,

and
– (q0,σ) to δ(qµ,σ) ∧ (qp2 ,♦, {a2}) ∧ (q0,♦, ∅).

The coloring function α maps qµ to 1 and the remaining states to 0.
Consider again the example CGS C0 from Section 2.1, which satisfies ψ. In the

acceptance game of Gψ for C0, player accept has no choice during the first stage
of each move, and can win the game by making the following decisions during
the second stage:

– If one of the atoms (qµ,
, {a1}) or (qν ,
, {a1}) is the outcome of the first
stage, agent a1 makes the decision 0.

– If the atom (qp2 ,♦, {a2}) is the outcome of the first stage and agent a1 has
made the decision d1, agent a2 chooses d2 = d1.

– For all other atoms (q, ◦,A′), the decision for all agents in A′ is 0.

3.1 From AMC Formulas to Automata over Concurrent Game
Structures

The following theorem provides a translation of AMC formulas to equivalent
ACGs. It generalizes the construction for the modal µ-calculus suggested in [20]
and can be proved analogously.

Theorem 1. Given an AMC formula ϕ, we can construct an ACG Gε
ϕ =

(2V , sub(ϕ),ϕ, δ,α) with |sub(ϕ)| states and atoms and O(|alt(ϕ)|) colors that
accepts exactly the models of ϕ.

Construction: W.l.o.g., we assume that the bound variables have been con-
sistently renamed to ensure that for each pair of different subformulas λx.ψ and
λ′x′.ψ′ (λ, λ′ ∈ {µ, ν}) of ϕ, the bound variables are different (x �= x′).
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– The transition function δ is defined, for all free variables p and all bound
variables x, by
• δ(p,σ) = true, δ(¬p,σ) = false ∀p ∈ σ;
• δ(¬p,σ) = true, δ(p,σ) = false ∀p ∈ P � σ;
• δ(ϕ ∧ ψ,σ) = (ϕ, ε) ∧ (ψ, ε) and δ(ϕ ∨ ψ,σ) = (ϕ, ε) ∨ (ψ, ε);
• δ(
A′ϕ,σ) = (ϕ, (
,A′)) and δ(♦A′ϕ,σ) = (ϕ, (♦,A′));
• δ(x,σ) = (λx.ϕ, ε) and δ(λx.ϕ,σ) = (ϕ, ε) λ ∈ {µ, ν}.

– The coloring function α maps every subformula that is not a fixed point
formula to 0. The colors of the fixed point formulas are defined inductively:
• Every least fixed point formula µp.ψ is colored by the smallest odd color

that is greater or equal to the highest color of each subformula of ψ.
• Every greatest fixed point formula νp.ψ is colored by the smallest even

color that is greater or equal to the highest color of each subformula
of ψ. '(

3.2 Eliminating ε-Transitions

Given an ACG Gε = (Σ,Q, q0, δ,α) with ε-transitions, we can find an ε-free ACG
that accepts the same language. The idea of our construction is to consider
the sequences of transitions from some position of the acceptance game that
exclusively consist of ε-transitions: if the sequence is infinite, we can declare the
winner of the game without considering the rest of the game; if the sequence is
finite, we skip forward to the next non-ε-atom.

The construction is related to the elimination of ε-transitions in ordinary
alternating automata [20] and will be included in the full version.

Lemma 1. Given an ACG Gε with n states, c colors and a atoms, we can
construct an equivalent ε-free ACG with at most c · n states, c colors and c · a
atoms. '(

4 Bounded Models

We now show that for every ACG G there exists a bound m such that G is empty
if and only if G does not accept any m-bounded CGSs. Consider an ε-free ACG
G and a CGS C = (P,A,S, s0, l,∆, τ) accepted by G. In the following, we define a
finite set Γ of decisions and a transition function τ ′ : S×ΓA → S, such that the
resulting bounded CGS C′ = (P,A,S, s0, l,Γ, τ ′) is also accepted by G. Before
we formally define the construction in the proof of Theorem 2 below, we first
give an informal outline.

Let us begin with the special case where all atoms of G are of the form
(q,
, {a}), i.e., a universal atom with a single agent. We use the set of atoms as
the new set of decisions of each agent. The new transition function is obtained
by first mapping the decision of each agent in C′ to a decision in C, and then
applying the old transition function.

To map the decisions, we fix a memoryless winning strategy for player accept
in the acceptance game for C. After an atom (q,
, {a}) has been chosen in the
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first stage of the acceptance game, player accept begins the second stage by
selecting a decision da for agent a. We map each decision (q,
, {a}) in C′ to this
decision da in C.

Player accept wins the acceptance game for C′ with the following strategy:
In the first stage of each move, we apply the winning strategy of player accept
in the acceptance game for C. In the second stage, we simply select the atom
(q′,
, {a′}) that was chosen in the first stage as the decision for agent a′. Since
the strategy for C wins for all possible decisions of the agents in A�{a′}, it wins
in particular for the decisions selected in the transition function.

Suppose next that we still have only universal atoms (q,
,A′), but that the
set A′ of agents is not required to be singleton. There is no guarantee that the
decisions of the agents in A′ are consistent: an agent a may choose an atom
(q,
,A′) where A′ does not contain a or contains some other agent a′ who
made a different decision. For the purpose of computing the transition function,
we therefore harmonize the decisions by replacing, in such cases, the decision of
agent a with a fixed decision (q0,
, {a}).

To win the acceptance game for C′, player accept selects, after an atom
(q,
,A′) has been chosen in the first stage, this atom (q,
,A′) for all agents in
A′. The selection is therefore consistent for all agents in A′. Since the strategy
wins for all decisions of the agents in A � A′, it does not matter if some of their
decisions have been replaced. Note that, this way, only decisions of player reject
are changed in the harmonization.

Finally, suppose that G contains existential atoms. If an existential atom
(q,♦,A′) is the outcome of the first stage of the acceptance game, player ac-
cept only decides after the decisions of the agents in A � A′ have been made by
player reject. To implement this order of the choices in the computation of the
transition function, we allow the player who chooses the last existential atom to
override all decisions for existential atoms of his opponent. We add the natural
numbers ≤ |A| as an additional component to the decisions of the agents. For
a given combined decision of the agents, the sum over the numbers in the deci-
sions of the agents, modulo |A|, then identifies one favored agent a0 ∈ A. In this
way, whichever player chooses last can determine the favored agent. Given the
decision of agent a0 for some atom (q′′,♦,A′′) or (q′′,
,A′′), we replace each
decision for an existential atom by an agent in A � A′′ by the fixed decision
(q0,
, {a}).

To win the acceptance game for C′, the strategy for player accept makes the
following choice after an atom (q′,♦,A′) has been chosen in the first stage and
player reject has made the decisions for all agents in A� A′: for all agents in A′,
she selects the atom (q′,♦,A′), combined with some number that ensures that
the favored agent a0 is in A′.

Example. Consider again the CGS C0, which is accepted by the ACG Gψ

with the winning strategy for player accept described in Section 3.1. The new
transition function consists of two steps:

In the first step, we harmonize the given combined decision of the agents by
replacing the inconsistent decisions. In the acceptance game, this may change
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the decisions of the agents controlled by player reject. If, for example, the atom
(qp2 ,♦, {a2}) is the outcome of the first stage of the acceptance game and player
reject makes the decision (q0,♦, ∅, 1) for agent a1, player accept responds by
making the decision (qp2 ,♦, {a2}, 1) for agent a2. The sum of the natural num-
bers (1+1) identifies agent a2, and all existential choices for groups of agents not
containing a2 are overridden. The resulting choices are (q0,
, {a1}) for agent a1

and (qp2 ,♦, {a2}) for agent a2.
In the second step, the decisions of the agents are mapped to decisions in the

CGS C0. First, the universal choices are evaluated: The winning strategy maps
(q0,
, {a1}) to the decision d1 = 0 for agent a1. Then, the existential choice is
evaluated: The winning strategy maps (qp2 ,♦, {a2}) and the decision d1 = 0 for
agent a1 to the decision d2 = d1 = 0 for agent a2.

The resulting bounded CGS is very simple: the new transition function maps
all decisions to state 0.

Theorem 2. An ε-free ACG G = (Σ,Q, q0, δ,α) is non-empty iff it accepts a
(|atom(G)| · |A|)-bounded CGS.

Proof. If C = (P,A,S, s0, l,∆, τ) is accepted by the ε-free ACG G =
(2P , Q, q0, δ,α), then player accept has a memoryless winning strategy in the
acceptance game for C. We fix such a memoryless strategy and use it to con-
struct the bounded CGS C′ = (P,A,S, s0, l,Γ, τ ′).

Decisions. For convenience, we assume that the set A of agents is an initial
sequence of the natural numbers. The new set of decisions Γ = atom(G) × A
consists of pairs of atoms and numbers. If the first component is an existential
atom (q,♦,A′), then the sum of the second components of the decisions of all
agents is used to validate the choice.

We say that two decisions d1, d2 ∈ Γ are equivalent if they agree on their first
component: (a1, a

′
1) ∼ (a2, a

′
2) :⇔ a1 = a2.

We say that a combined decision υ ∈ ΓA favors an agent a ∈ A, υ � a, if the
sum of the second arguments, modulo |A|, of this combined decision is equal to a.

We say that the decision da ∈ Γ of agent a prevails in the combined decision
υ ∈ ΓA if the following conditions hold for da = ((q, ◦,A′), a′′), ◦ ∈ {
,♦}:

– a ∈ A′,
– all agents a′ ∈ A′ have made a decision da′ ∼ da equivalent to the decision

of a, and
– if ◦ = ♦, then a cooperates with the agent favored by the combined decision

υ (υ � a′ ∈ A′).

Harmonization. Let A = Q × {
,♦} × 2A. The harmonization h : ΓA → AA

maps the decision of the agents to a harmonic decision. Harmonic decisions are
elements of AA such that

– each agent a ∈ A chooses an atom (q, ◦,A′) with q ∈ Q, ◦ ∈ {
,♦}, and
a ∈ A′ ⊆ A,
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– if an agent a ∈ A chooses an atom (q, ◦,A′) ∈ A, then all agents a′ ∈ A′

choose the same atom, and
– if an agent a ∈ A chooses an existential atom (q,♦,A′) ∈ A, then all agents

a′ /∈ A′ choose universal atoms.

For prevailing decisions, the harmonization h only deletes the second compo-
nent. Non-prevailing decisions of an agent a are replaced by the fixed decision
(q0,
, {a}) (which is not necessarily in atom(G)).

Direction. We define the function fs : AA → ∆A that maps a harmonic decision
to a direction υ ∈ ∆A in C. fs depends on the state s ∈ S of C and is determined
by the second stage of the fixed memoryless strategy.

First, the universal decisions are evaluated: if an agent makes the harmonic
decision (q,
,A′), then υ′ ∈ ∆A

′
is determined by the choice of player accept

in the second stage of the winning strategy in state s, when confronted with
the atom (q,
,A′).

Then, the existential decisions are evaluated: If an agent makes the harmonic
decision (q,♦,A′) then υ′ ∈ ∆A

′
is determined by the choice of player accept

in the second stage of the winning strategy in state s, when confronted with
the atom (q,♦,A′) and the decision υ′′ ∈ ∆A�A′

fixed by the evaluation of the
universal harmonic decisions.

The new transition function τ ′ : S × ΓA → S is defined as
τ ′ : (s, υ) �→ τ(s, fs(h(υ))).

Acceptance. In the acceptance game for C′, player accept has the following
strategy: in the first stage of each round, she applies the winning strategy of
the acceptance game for C. The strategy for the second stage depends on the
outcome of the first stage:

– If an atom (q,
,A′) is chosen in the first stage, player accept fixes the
prevailing decision ((q,
,A′), 1) for all agents a ∈ A′.

– If an atom (q,♦,A′) with A′ �= ∅ is chosen in the first stage and player
reject has made the decisions da for all agents a /∈ A′, player accept fixes
the prevailing decisions ((q,♦,A′), na) for the agents a ∈ A′ such that an
agent a′ ∈ A′ is favored.

– If an atom (q,♦, ∅) is chosen in the first stage, then player accept does not
participate in the second stage.

We now show that the run tree 〈R′, r′〉 defined by this strategy is accepting.
Let 〈R, r〉 be the run tree defined by the winning strategy in the accep-
tance game for C. In the following, we argue that for each branch labeled
(q0, s0) (q1, s1) (q2, s2) . . . in 〈R′, r′〉, there is an identically labeled branch in
〈R, r〉. Since all branches of 〈R, r〉 satisfy the parity condition, 〈R′, r′〉 must be
accepting as well.

The root of both run trees is labeled by (q0, s0). If a node labeled (qi, si) in
〈R′, r′〉 has a child labeled (qi+1, si+1), then there must be an atom (qi+1, ◦,A′) ∈
Q×{
,♦}× 2A in the set of atoms chosen by player accept, such that following
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holds: for the decision υ′ ∈ ΓA
′

defined by the strategy of player accept, there
is a decision υ′′ ∈ ΓA�A′

such that si+1 = τ ′(si, (υ′, υ′′)) = τ(si, fsi(h(υ′, υ′′))).
Now consider a node labeled (qi, si) in 〈R, r〉. Since the strategy of player

accept in the first stage of each round is identical for the two acceptance games,
the atom (qi+1, ◦,A′) is also included in the set of atoms chosen by player
accept in the acceptance game for C. Player reject can enforce the decision
υ = fsi(h(υ′, υ′′)) as follows:

– If ◦ = 
, player accept chooses the ∆A
′
part of υ under the fixed memoryless

strategy for the acceptance game of C, and player reject can respond by
choosing the ∆A�A′

part of υ.
– If ◦ = ♦, player reject can choose the ∆A�A′

part of υ, and player accept
will react by choosing the ∆A

′
part of υ under the fixed memoryless strategy

for the acceptance game of C, guaranteeing that υ = fsi(h(υ′, υ′′)).

In both cases, the new state si+1 = τ(si, υ) is chosen. The node labeled (qi, si)
in 〈R, r〉 must therefore have a child labeled (qi+1, si+1). '(

5 Satisfiability and Complexity

An AMC formula is satisfiable if and only if the language of its ACG is nonempty.
A simple procedure for deciding emptiness of ACGs is immediately suggested
by Theorem 2: since we can restrict our attention to m-bounded CGSs with
fixed m = |atom(G)| · |A|, we can replace (q, (
,A′)) and (q, (♦,A′)) by the cor-
responding positive boolean combinations: the resulting automaton accepts ex-
actly the m-bounded concurrent game structures in the language of G. To decide
emptiness, we nondeterminize the automaton [7,14] and then solve the empti-
ness game. The complexity of this construction is double-exponential: solving the
emptiness game of the nondeterministic automaton is exponential in the number
of directions, which is already exponential in the number of agents (m|A|).

We now describe an alternative algorithm with only single-exponential com-
plexity. Instead of going through an alternating automaton to a nondeterministic
automaton, we go through a universal automaton to a deterministic automaton.
The advantage of solving the emptiness game for a deterministic automaton in-
stead of for a nondeterministic automaton is that the set of atoms chosen by
player accept is uniquely determined by the input letter; this reduces the num-
ber of choices from exponential in the number of directions to linear in the size
of the input alphabet.

The construction of the universal automaton is based on the observation that
the winning strategy of player accept that we defined in the previous section can
be represented by assigning a function fs : Q → 2atom(G) to each state s of C.
The set fs(q) contains the atoms that player accept chooses in the first stage of
the game at position (q, s). Since the strategy for the second stage depends only
on the chosen atom and not on the states of C and G, fs determines the entire
strategy of player accept.

The universal automaton runs on bounded CGSs that are annotated by this
function fs; i.e., we extend the alphabet from Σ to Σ × (Q → 2atom(G)) and
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a CGS is accepted iff fs identifies a winning strategy for player accept in the
acceptance game of the ACG. The construction does not change the set of states
and increases the input alphabet by an exponential factor in the number of states
and atoms of the ACG.

Lemma 2. Given an ε-free ACG G = (Σ,Q, q0, δ,α) and a set A of agents, we
can construct a universal parity automaton U = (Σ×(Q→ 2atom(G)), Q, q0, δ

′,α)
on Σ× (Q→ 2atom(G))-labeled CGSs with the set atom(G)×A of decisions such
that U has the following properties:

– If U accepts a CGS C = (P,A,S, s0, l×strat1, atom(G)×A, τ) then G accepts
its Σ projection C′ = (P,A,S, s0, l, atom(G)×A, τ).

– If U is empty, then G is empty.

Proof. We denote with strat2 the function that maps each atom a of G to the
set D ⊆ (atom(G) × A)A of decisions that are the outcome of the second stage
of the acceptance game for some strategy of player reject, when the outcome of
the first stage is a and player accept follows the simple strategy for the second
stage described in the proof of Theorem 2. Generalizing strat2 to sets of atoms,
we define the transition function δ′ of U by setting δ′(q; σ, s) to false if s(q) does
not satisfy δ(q,σ), and to a conjunction over strat2(s(q)) otherwise.

If U accepts a CGS C = (P,A,S, s0, l × strat1, atom(G) × A, τ), then player
accept has a winning strategy for C′ = (P,A,S, s0, l, atom(G) × A, τ) in the
acceptance game of G, where the strategy in the first stage is defined by strat1

and the strategy in the second stage is as defined in the proof of Theorem 2.
If G accepts a CGS C, then there exists, as described in the proof of The-

orem 2, a CGS C′ = (P,A,S, s0, l, atom(G) × A, τ), such that player ac-
cept wins the acceptance game using some memoryless strategy strat1 in the
first stage and the canonical strategy in the second stage. The CGS C′′ =
(P,A,S, s0, l × strat1, atom(G)×A, τ) is accepted by U . '(

We transform the universal parity automaton U into a deterministic parity au-
tomaton by first transforming U into a universal co-Büchi automaton with O(c·n)
states and then using Safra’s construction [16,7].

Lemma 3. Given a universal automaton U with n states and c colors, we can
construct an equivalent deterministic parity automaton D with nO(c·n) states and
O(c · n) colors. '(

Our transformation of the ACG to the deterministic automaton D thus increases
both the number of states and the size of the input alphabet to at most expo-
nential in the number of states of the ACG. The emptiness game of D is solved
in polynomial time both in the number of states and in the size of the input
alphabet, providing an exponential-time procedure for deciding emptiness of an
ACG.

Lemma 4. Given a deterministic parity automaton D = (Σ,Q, q0, δ,α) with
n states and c colors, we can, in time (n · |Σ|)O(c), decide emptiness and, if
L(D) �= ∅, construct a finite CGS C ∈ L(D).
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Proof. The emptiness problem can be reduced to a bipartite parity game with
n·(1+|Σ|) positions and c colors: Player accept owns the positions Q and chooses
a label σ ∈ Σ. Player reject owns the resulting pairs Q×Σ and can move from
a position (q,σ) with δ(q,σ) =

∧
υ∈Υ (qυ , υ) to a position qυ (intuitively by

choosing a direction υ ∈ Υ ). The colors of the positions owned by player accept
are defined by the coloring function α, while all states owned by player reject
are colored by the minimum color in the mapping of α. This parity game can be
solved in time (n · |Σ|)O(c) [8].
D is empty iff player reject has a winning strategy, and the Σ-projection of

a memoryless winning strategy for player accept defines a CGS in the language
of D. '(

Combining Lemma 1, Theorem 2, and Lemmata 2, 3 and 4, we obtain the finite
model property of automata over concurrent game structures.

Theorem 3. Every non-empty ACG with n states, c colors, a atoms and a′

agents accepts some finite CGS with a · a′ directions and at most nO(c3·n2·a2·a′)

states, which can be constructed in time nO(c3·n2·a2·a′). '(

Combining Theorem 3 with Theorem 1, we furthermore obtain the finite model
property for the alternating-time µ-calculus:

Theorem 4. Given an AMC formula ϕ with alternation depth d, n subformulas,
and a agents, we can decide satisfiability of ϕ and, if ϕ is satisfiable, construct
a model of ϕ in time nO(d3·n4·a). '(

Matching lower bounds for the AMC satisfiability and synthesis problems are
given by the lower bounds for the classic µ-calculus [9,11].

Corollary 1. The satisfiability and synthesis problems for the alternating-time
µ-calculus are EXPTIME-complete. '(
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Abstract. We introduce a typed functional programming language for
logarithmic space. Its type system is an annotated subsystem of Hof-
mann’s polytime LFPL. To guide the design of the programming lan-
guage and to enable the proof of logspace-soundness, we introduce a
realisability model over a variant of the Geometry of Interaction. This
realisability model, which takes inspiration from Møller-Neergaard and
Mairson’s work on BC−

ε , provides a general framework for modelling
space-restricted computation.

1 Introduction

Many important complexity classes can be captured by programming languages
and logics [11]. Such implicit characterisations of complexity classes are desir-
able for many reasons. For instance, one may want to avoid technical details
in the construction and manipulation of Turing Machines, or one may want to
get insight into which kinds of high-level programming principles are available
in certain complexity classes. It has also become apparent that implicit char-
acterisation of complexity classes can help in devising methods for analysing
the resource-consumption of programs and in finding compilation strategies that
guarantee certain resource bounds [19].

In this paper we address the question of how to design a functional program-
ming language that captures logspace. Existing functional characterisations of
logspace, such as [18,17,4,13,14], are all minimal by design. Although minimal
languages are well-suited for theoretical study, they tend not to be very conve-
nient for writing programs in. Here we take the first steps towards extending the
ideas in loc. cit. to a less minimal programming language for logspace. One of
the main issues in carrying out such an extension lies in the manageability of the
computation model. While for the small languages in loc. cit. it is possible to
show logspace-soundness by considering the whole language, this becomes in-
creasingly difficult the more constructs are added to the programming language.
Hence, an important goal in the design of a language for logspace is to capture
its compilation in a modular, compositional way.

1.1 Modelling Space-Efficient Computation by Interaction

In this paper we give a compositional account of space-efficient computation,
which is based on modelling computation by interaction. Our approach is

Z. Ésik (Ed.): CSL 2006, LNCS 4207, pp. 606–621, 2006.
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motivated by the logspace-evaluation of Møller-Neergaard and Mairson’s func-
tion algebra BC−ε [17]. The evaluation of BC−ε may be thought of as a ques-
tion/answer dialogue, where a question to a natural number n is a number i,
which represents the number of the bit to be computed, and an answer is the value
of the bit at position i in the binary representation of n. Importantly, this ap-
proach admits a space-efficient implementation of recursion. Suppose h : N→ N
is a function we want to iterate k times. In general this will not be possible in
logspace, as we cannot store intermediate results. However, it can be done if
h has the special property that to compute one bit of its output only one bit of
its input is needed. Suppose we want to compute bit i of hk(x). By the special
property of h, it is enough to know at most one bit of hd(x) for each d ≤ k.
Suppose we already know the right bit of hd(x) for some d < k. To compute the
bit of hd+1(x), we begin by asking hk(x) for bit i. This will result in a question
for some bit of hk−1(x), then a question for some bit of hk−2(x), and so on until
we reach hd+1(x). Finally, hd+1(x) will ask for one bit of hd(x), the value of
which we already know. By the special property of h, we can thus compute the
required bit of hd+1(x). By iteration of this process, the bits of hk(x) can be
computed, assuming we can compute the bits of x. Moreover, this process of
computing the bits of hk(x) can be implemented by storing only one bit of some
hd(x), its recursion depth d, the initial question i and the current question. Un-
der suitable assumptions, such as that k is polynomial in the size of the inputs,
such an implementation will be in logspace.

In this paper we introduce a model for logspace-computation in which such
an implementation of recursion is available. Our approach is based on modelling
computation by question/answer-interaction. Such models have been studied
extensively in the context of game semantics. We draw on this work, but since
we are interested not just in modelling dialogues but also in effectively computing
answers to questions, we are lead to considering the particular case of a Geometry
of Interaction (GoI) situation, see [2,8] for a general description and [3] for a the
connection to game semantics. In Sect. 3 we build a model on the basis of a
GoI situation. By building on this well-studied structure, we can hope to benefit
from existing work, such as that on the connections to abstract machines [6] or to
machine code generation [16], although we have yet to explore the connections.

As an example of the kind of programming language that can be derived from
the model, we introduce LogFPL, a simple functional language for logspace.

2 A Type System for Logarithmic Space

The type system for LogFPL is an annotated subsystem of LFPL [9]. In LogFPL
all variables are annotated with elements of Z:={1, ·,∞} × N. The intended
meaning of the annotations is that we may send arbitrarily many questions to
each variable marked with ∞, that we may send at most one question to each
variable marked with ·, and that we may send at most one question to all the
variables marked with 1. The second component of the annotations specifies
how many memory locations we may use when asking a question. We define an
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ordering on Z by letting 1 < · < ∞ and 〈z, i〉 ≤ 〈z′, i′〉 ⇐⇒ (z ≤ z′) ∧ (i ≤ i′).
We define an addition on Z by 〈m, i〉+ 〈m′, i′〉 = 〈max(m,m′), i + i′〉.

A context Γ is a finite set of variable declarations x
z
: A, where z ∈ Z, subject

to the usual convention that each variable is declared at most once. For z ∈ Z,
we write !zΓ for the context obtained from Γ by replacing each declaration x

u
: A

with x
u+z
: A. We write short !Γ for !〈1,1〉Γ . We write Γ ≥ z if u ≥ z holds for

all x
u
: A in Γ .

Small types AS ::= I | ♦ | B | SN | AS ∗ AS

Types A ::= AS | L(AS) | A × A | A ⊗1 A | A
·,i
−� A | A

∞,i
−−� A

Terms M ::= x | c | ∗ | λx. M | M M | M⊗1M | let M be x⊗1x in M

| M∗M | let M be x∗x in M | 〈M, M〉 | π1(M) | π2(M)

The small types are the unit type I, the resource type ♦, as known from LFPL [9],
the type of booleans B, the type of small numbers SN, and the type A ∗ B of
pairs of small types. Small types have the property that their elements can be
stored in memory. The type SN, for example, contains natural numbers that are
no larger than the size of the input, as measured by the number of ♦s. Using
binary encoding, such numbers can be stored in memory. Small types are such
that a single question suffices to get the whole value of an element. In contrast,
one question to a list, for example, is a question to one of its elements. Thus,
SN differs from the type L(I) of lists with unit-type elements.

The types are built starting from the small types and from lists L(A) over
small types. The function space −� has an annotation that indicates how many
questions a function needs to ask of its argument in order to answer a query to
its result. The second component of the annotations specifies how much data a

function needs to store along with a question. We often write −� for
·,i
−� and

∞
−�

for
∞,i
−−� when i is not important. The type A⊗1 B consists of pairs x⊗1y, which

we may use by asking one question either of x or of y. For instance, the type of
the constant cons below expresses that one question to the list cons(d, a, r) can
be answered by asking one question of either d, a or r.

We have the following constants for booleans, lists and small numbers:

Booleans tt, ff : B caseB : B
∞,k(A)
−−−−� (A × A)

·,0
−� A

Lists nil : L(A) hdtl : L(A)
·,1
−� ♦ ⊗1 A ⊗1 L(A)

cons : ♦ ⊗1 A ⊗1 L(A)
·,1
−� L(A) empty : L(A)

·,0
−� B

Small numbers zero : SN succ : ♦
·,0
−� SN

·,0
−� SN

caseSN : SN
∞,1+k(A)

−−−−−−� (A × (♦
·,i
−� SN

·,i
−� A))

·,1
−� A

The number k(A) is defined in Fig 1. We note that hdtl represents a partial

function undefined for nil . Furthermore, we have a constant discard : A
·,0
−� I for

each type A built without �, and a constant dupi : (A
·,i
−� B)

·,k(A)
−−−� A

·,0
−� (B∗A)

for each small type A.



Space-Efficient Computation by Interaction 609

The typing rules appear in Figs. 1–2. The rules for small types are based on
the fact that for small types we can get the whole value of an element with a
single question. Rule ∞-·, for instance, expresses that instead of asking a small
value many times, we may ask just one question, store the result and answer the
many questions from memory.

2.1 Soundness and Completeness

Writing ‖M‖ for the evident functional interpretation of a term M , we have:

Proposition 1 (Soundness). If � M : L(I)
∞,i
−−� L(B)

∞,i
−−� L(B) is deriv-

able, then there is a logspace-algorithm e, such that, for all x ∈ L(I) and all
y ∈ L(B), if ‖M‖(x, y) is defined then e returns ‖M‖(x, y) on input 〈x, y〉.

We construct the algorithm e in Sect. 3 by construction of a model.
First we sketch how logspace-predicates can be represented in LogFPL.

Assume a logspace Turing Machine over a binary alphabet. By a suitable
encoding of the input, we can assume that it never moves its input head beyond
the end of the input.

We encode the computation of the Turing Machine. Its input tape is given as
a binary string, i.e. as a list in L(B). We represent the position of the input head
by a value in SN. Access to the input tape is given by a zipper-like function
focus of type SN � L(B) � SN⊗1 L(B)⊗1 L(B), with the following meaning:

focus i 〈x0, . . . , xk〉 = i⊗1〈xi−1, . . . , x0〉⊗1〈xi, . . . , xk〉 0 ≤ i ≤ k

The function focus is defined as λl. (recSN base step) (omitting d for brevity).

l : L(B) 
 base :=zero⊗1nil⊗1l : SN ⊗1 L(B) ⊗1 L(B)


 step:=
λd. λr. let r be n⊗1h⊗1t in

let (hdtl t) be d′⊗1a⊗1t
′ in (succ d n)⊗1(cons d′ a h)⊗1t

′

: ♦ � SN ⊗1 L(B) ⊗1 L(B) � SN ⊗1 L(B) ⊗1 L(B)

To represent the work tape we use small numbers SN, since the work tape
has only logarithmic size and since SN is much more flexible than lists. To
encode the transitions of the TM, we use a number of helper functions. We
encode ‘bounded small numbers’ by pairs in SNB:=SN∗SN, where the first
component represents the value of the number and the second component con-
tains memory (in the form of ♦) that may be used for increasing the number.
For instance, the incrementation function maps m∗zero : SNB to m∗zero and
m∗succ(d, n) to succ(d,m)∗n. Using the rules for small types, we can represent
the evident functions null : SN � SNB, inc : SNB � SNB, dec : SNB � SNB,
double : SNB � SNB, half : SNB � SNB and even : SNB � B∗SNB .

We represent a state of the Turing Machine by a 4-tuple l∗r∗i∗s of type
SNB∗SNB∗SNB∗Bk, where l and r represent the parts of the work tape left
and right from the work head, i represents the position of the input head and s
represents the state of the machine. We abbreviate SNB∗SNB∗SNB∗Bk by S.
It should be clear how to use the above helper functions for implementing
the basic operations of a Turing Machine. For instance, moving the head on
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A′ ≤ A B ≤ B′ u ≤ v

(A
u−� B) ≤ (A′ v−� B′)

A ≤ A′ B ≤ B′

(A ⊗1 B) ≤ (A′ ⊗1 B′)

Axiom
x

z
: A 
 x : A

c : A
Const 
 c : A

Γ 
 M : A A ≤ B
Sub

Γ 
 M : B

II 
 ∗ : I
Γ 
 M : I ∆ 
 N : A

IE
Γ, ∆ 
 let M be ∗ in N : A

Γ, x
z
: A 
 M : B

�I z ≥ 〈·, 0〉
Γ 
 λx.M : A

z
−� B

Γ 
 M : A
z−� B ∆ 
 N : A�E

Γ, !z∆ 
 M N : B

Γ 
 M : A ∆ 
 N : B⊗1I
Γ, ∆ 
 M⊗1N : A ⊗1 B

Γ 
 M : A ⊗1 B ∆, x
〈1,i〉
: A, y

〈1,i〉
: B 
 N : C⊗1E

∆, !〈1,i〉Γ 
 let M be x⊗1y in N : C

Γ 
 M : A Γ 
 N : B×I
!〈∞,1〉Γ 
 〈M, N〉 : A × B

Γ 
 M : A × B×E1
Γ 
 π1(M) : A

Γ 
 M : A × B×E2
Γ 
 π2(M) : B

Recursion types R ::= AS | L(B) | R ⊗1 R

Γ 
 g : B 
 f : (B
·,j
−� Bk)

∞,i
−� ♦

·,i
−� A

∞,i
−� B

·,i
−� B ∆ 
 d : B

·,j
−� Bk

RL B ∈ R

Γ, !〈∞,s(i,B)〉∆ 
 recL(A) g f d : L(A)
∞,s(i,B)
−−−−−� B

Γ 
 g : B 
 f : (B
·,j
−� Bk)

∞,i
−� ♦

·,i
−� B

·,i
−� B ∆ 
 d : B

·,j
−� Bk

RSN B ∈ R

Γ, !〈∞,s(i,B)〉∆ 
 recSN g f d : SN
·,s(i,B)
−−−−� B

Here, s(i, A) = i+4+7·k(A), where k(A) = 1 for A ∈ {I , ♦, B,SN}, k(L(A)) = 2+k(A)

and k(A∗B) = k(A × B) = k(A ⊗1 B) = k(A
z−� B) = 1 + k(A) + k(B). The definition

of k(A) is such that any type A is k(A)-encodable, see Def. 6.

Fig. 1. General typing rules

In the following rules, A, B and C must be small types.

Γ 
 M : A ∆ 
 N : B∗I Γ ≥ 〈·, 0〉 ∨ ∆ ≥ 〈·, 0〉
!k(B)Γ, !k(A)∆ 
 M∗N : A∗B

Γ 
 M : A ∗ B ∆, x
〈·,i〉
: A, y

〈·,i〉
: B 
 N : C

∗E
!k(A∗B)∆, !〈·,i+k(C)〉Γ 
 let M be x∗y in N : C

∆, x
〈∞,i〉

: A 
 M : B∞-·
!k(A)∆, x

〈·,i+k(B)〉
: A 
 M : B

Fig. 2. Special rules for small types
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the work tape to the right is given by mapping a tuple l∗r∗i∗s to the value
(let even(r) be e∗r in (caseB e 〈double(l)∗half (r)∗i∗s, inc(double(l))∗half (r)∗i∗s〉)).
If, in addition to a 4-tuple in S, we have a function d : SN � B, such that
d(n) is the n-th character of the input tape, then, using dup, we can thus im-
plement the transition function of the Turing Machine. Hence, we can give the
transition function the type h : (SN � B)

∞
−� S −� S. Let g : S be the ini-

tial state of the machine. Since focus can be used to define an access function
t : L(B) � d : SN � B, we can model the computation of the machine by
g : S, t

∞
: L(B) � recSN g h d : SN � S. Now, in order to construct the initial

state g as well as an upper bound on the computation length, we need a polyno-
mial number of ♦s. We obtain these from a given list L(I), which we split in four
numbers in SN of equal size. Thus, we obtain a term s

∞
: L(I), t

∞
: L(B) � m : S,

which, if s is large enough, computes the final state of the TM for input t.

Proposition 2 (Completeness). Each logspace-predicate A ⊆ L(B) can be

represented by a term M : L(I)
∞,i
−−� L(B)

∞,i
−−� B in the following sense. There

exist natural numbers n and m, such that, for each a ∈ L(B) and each list
s ∈ L(I) that is longer than |a|n + m, we have ‖M‖(a, s) = tt if a ∈ A and
‖M‖(a, s) = ff if a /∈ A.

3 Modelling Space-Efficient Computation by Interaction

We compile LogFPL to logspace-algorithms by interpreting it in an instance of
the Geometry of Interaction situation [2]. We use an instance of the GoI situation
in which questions can be answered in linear space. This is motivated by the fact
that questions will typically be of logarithmic size (think of the bit-addresses of
an input number), so that to remain in logspace we can allow linear space in
the size of the questions.

3.1 Linear Non-size-increasing Functions

The underlying computational model is that of non-size-increasing linear space
functions. The restriction to non-size-increasing functions is needed for composi-
tion in G, defined below, to remain in linear space. To fix the computation model,
we work with multi-tape Turing Machines over some alphabet Σ. The machines
take their input on one designated tape, where they also write the output.

The objects of L are triples (X, c, l), where X is a underlying set, c : X → Σ∗ is
a coding function and l : X → N is an abstract length measure. An object must be
so that there exist constants m, n ∈ N such that ∀x ∈ X.m·l(x)+n ≤ |c(x)| holds,
i.e. the abstract length measure underestimates the actual size at most linearly. A
morphism from (X, cX , lX) to (Y, cY , lY ) is a partial function f : X → Y with the
property ∀x ∈ X. f(x) ↓ =⇒ lY (f(x)) ≤ lX(x), for which in addition there exists
a linear space algorithm e satisfying ∀x ∈ X. f(x) ↓ =⇒ e(cX(x)) = cY (f(x)).

The category L supports a number of data type constructions, much in the
style of LFPL [9]. We use the following constructions, of which we spell out only
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the underlying sets and the length functions. The disjoint union A + B of the
underlying sets of A and B becomes an object with lA+B(inl (a)) = lA(a) and
lA+B(inr(b)) = lB(b). The object A⊗B has as underlying set the set of pairs
of elements of A and B with length function lA⊗B(〈a, b〉) = lA(a) + lB(b). The
evident projections π1 : A ⊗ B → A and π2 : A ⊗ B → B are morphisms of L.
We also have booleans B = {ff, tt} with lB(ff) = lB(tt) = 0, lists L(A) = A∗

with lL(A)(〈a1, . . . , an〉) =
∑n
i=1 1 + lA(ai), and trees T(A) = A + T(A)⊗T(A)

with lT(A)(inl(a)) = lA(a) and lT(A)(inr (a, a′)) = 1 + lT(A)(a) + lT(A)(a′). An
abstract resource type ♦ is given by ♦ = {♦} with l(♦) = 1. It differs from the
unit object 1 = {∗} with l(∗) = 0 only in its length measure.

Given f : A+B → C +B, we define its trace tr(f) : A→ C by tr(f) = t◦ inl ,
where t : A + B → C is defined by t(x) = c whenever f(x) = inl(c) holds and
t(x) = t(f(x)) whenever f(x) = inl(b) holds for some b. Making essential use
of the fact that all morphisms in L are non-size-increasing and that the length
measure underestimates the real size at most linearly, it follows that tr(f) is
again a morphism in L. That the definition of tr(f) satisfies the equations for
trace, see e.g. [8, Def. 2.1.16], can be seen by observing that the forgetful functor
from L to the traced monoidal category Pfn of sets and partial functions, see
e.g. [8, Sec. 8.2], is faithful and preserves both finite coproducts and trace.

3.2 Linear-Space Interaction

Computation by interaction is modelled by a GoI situation over L. For space
reasons, we can only give the basic definitions. We refer to [2,8] for more details.

The category G has as objects pairs (A+,A−) of two objects of L. Here, A−

is thought of as a set of questions and A+ as a set of answers. A morphisms in G
from (A+,A−) to (B+,B−) is a L-morphism of type A+ +B− → A− + B+. We
will often use these two views of morphisms interchangeably. We write G(A,B)
for the set of morphisms in G from A to B. The identity on A is given by
[inr , inl ] : A+ + A− → A− + A+. Composition g · f of f : A→ B and g : B → C
is given by the trace of (A− + g) ◦ (f + C−) : A+ + B− + C− → A− + B− + C+

with respect to B−.
Of the structure of G, we spell out the symmetric monoidal structure ⊗, given

on objects by A⊗B = (A+ + B+,A− + B−) and on morphisms by using + on
the underlying L-morphisms. A unit for ⊗ is I = (∅, ∅). Note I⊗I = I. Note also
that morphisms of type I → A in G are the same as L-maps of type A− → A+

and that morphisms of type A→ I are the same as L-maps of type A+ → A−.
A monoidal closed structure � is defined on objects by (A � B) =

(B+ + A−,B− + A+). We write ε : (A � B) ⊗ A → B for the application
map and Λf : A→ (B � C) for the abstraction of f : A⊗B → C.

We use a storage functor !(−). For an object A, the object !A is given by
(A+ ⊗ S,A− ⊗ S), where S = B⊗ T(L(B)). The intention is that a store in S
is passed along with questions and answers. For each morphism f : A→ B, the
morphism !f : !A→ !B is given by the L-map f ⊗ S.
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3.3 Realisability and Co-realisability

As a way of formalising the compilation of functions into interaction-programs, we
define a category R. Its definition is parameterised over a commutative monoid
(M,+, 0), equipped with a pre-order ≤ that is compatible with +.

Objects. The objects are tuples (|A|,A∗,AG ,�,�∗) consisting of a set |A| of
underlying elements, a set A∗ of underlying co-elements, an object AG of G,
a realisation relation �⊆ M× G(I,AG) × |A| and a co-realisation relation
�∗⊆ M × G(AG , I) × A∗. The objects are required to have the following
properties.
1. For all a ∈ |A| there exist α and e such that α, e � a holds. Dually, for

all a∗ ∈ A∗ there exist α and c such that α, c �∗ a∗ holds.
2. If α, e � a and α ≤ β hold then so does β, e � a. Dually, if α, e �∗ a∗

and α ≤ β hold then so does β, e �∗ a∗.
Morphisms. A morphism from A to B consists of two functions f : |A| → |B|

and f∗ : B∗ → A∗ for which there exists a map r : AG → BG in G satisfying:

∀α ∈M, e : I → AG , x ∈ A. α, e �A x =⇒ α, r · e �B f(x),
∀β ∈M, c : BG → I, k ∈ B∗. β, c �∗B k =⇒ β, c · r �∗A f∗(k).

We also need the following more general form of morphism realisation.

Definition 1. A morphism r : AG → BG realises (f, f∗) with bound ϕ ∈ M if

∀α ∈M, e : I → AG , x ∈ A. α, e �A x =⇒ ϕ + α, r · e �B f(x),
∀β ∈M, c : BG → I, k ∈ B∗. β, c �∗B k =⇒ ϕ + β, c · r �∗A f∗(k).

While our definition of realisability is close to well-known instances of realisabil-
ity, such as e.g. [5,15], the definition of co-realisability deserves comment. The
main purpose for introducing it is for modelling recursion in the way described
in the introduction. To implement recursion in this way, we need to control how
often a realiser r : AG → BG of the recursion step-function sends a question to
its argument. Co-Realisability is a way of obtaining control over how r uses AG .
Suppose, for example, that both A and B have only a single co-element that is
co-realised by the empty function ∅. If r realises a morphism A → B then ∅ · r
must also be the empty function. Hence, whenever r receives an answer in A+

G ,
it cannot ask another question in A−G , since otherwise ∅ · r would not be empty.
Thus, for any e : I → AG and any q ∈ B−G , in the course of the computation of
(r · e)(q), only one query can be sent by r to e. This is the main example of how
we control the behaviour of realisers with co-realisability. More generally, co-
realisability formalises how an object A may be used. A co-realiser c : A+

G → A−G
explains which question we may ask after we have received an answer from A.

A symmetric monoidal structure ⊗ on R is defined by letting the underlying
set of |A ⊗ B| be the set of pairs in |A| × |B|. The realising object (A⊗ B)G is
AG ⊗BG , and the realisation relation is the least relation satisfying

(α, ex �A x) ∧ (β, ey �B y) =⇒ α + β, ex ⊗ ey �A⊗B 〈x, y〉
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in addition to the general requirements for objects of R (which from now on we
will tacitly assume). The set of co-elements and the co-realisation is defined by:

(A⊗B)∗ = {〈p : |A| → B∗, q : |B| → A∗〉 | ∃c, γ. (γ, c �∗A⊗B 〈p, q〉)}
γ, c �∗A⊗B 〈p, q〉 ⇐⇒ (∀α, e, a. (α, e �A a) =⇒ (γ + α), c · (e⊗ id) �∗B p(a))

∧(∀β, e, b. (β, e �B b) =⇒ (γ + β), c · (id ⊗ e) �∗A q(b))

A unit object for ⊗ may be defined by |I| = {∗}, I∗ = {∗}, IG = (1, 1), by letting
α, e �I ∗ hold if and only if e is the unique total function of its type, and by
letting α, c �∗I ∗ hold if and only if c : 1→ 1 is the empty function.

A monoidal exponent � for ⊗ is defined by letting |A � B| be the set of
pairs 〈f, f∗〉 in (|A| → |B|)× (B∗ → A∗) that are realised by some r with some
bound ϕ, by letting (A � B)∗ = |A| ×B∗ and (A � B)G = AG � BG , and by
letting the relations �A�B and �∗A�B be the least relations satisfying

ϕ,Λr �A�B f ⇐⇒ r : AG → BG realises f with bound ϕ,

(α, e �A a) ∧ (β, c �∗B b∗) =⇒ α + β, c · ε · (id ⊗ e) �∗A�B 〈a, b∗〉.
The co-realisation of ⊗ is such that both components of a pair A⊗B can be

used sequentially. This is not the only possible choice. Another useful choice is
captured by the monoidal structure ⊗1, where |A⊗1 B| = |A⊗B|, (A⊗1 B)G =
(A⊗B)G , �A⊗1B=�A⊗B, (A⊗1 B)∗ = A∗×B∗, and where �∗A⊗1B

is the smallest
relation satisfying (α, c �∗A a∗)∧(β, c′ �∗B b∗) =⇒ (α+β, c⊗c′ �∗A⊗1B

〈a∗, b∗〉).
It is instructive to consider the case of morphisms f : A⊗1 B → C, where A and
B have only one co-element that is co-realised by the empty function. In this
case, the realiser r of f may ask either one question from A or one from B. This
is in contrast to ⊗, where it would be legal to ask one question from A and then
another from B.

Lemma 1. There exists a natural map d : A⊗ (B ⊗1 C)→ B ⊗1 (A ⊗ C) with
d(a, 〈b, c〉) = 〈b, 〈a, c〉〉 and d∗(b∗, 〈p, q〉) = 〈λa. 〈b∗, p(a)〉, λ〈b, c〉. q(c)〉.
A further monoidal structure × is defined by |A × B| = |A| × |B|, (A × B)G =
AG ⊗ BG , (A×B)∗ = A∗ + B∗, where �A×B and �∗A×B are the least relations
satisfying

(α, ea �A a) ∧ (α, eb �B b) =⇒ α, ea ⊗ eb �A×B 〈a, b〉,
(α, ca �∗A a∗) =⇒ (α, ca ◦ π1 �∗A×B inl(a∗)),
(β, cb �∗B b∗) =⇒ (β, cb ◦ π2 �∗A×B inr(b∗)).

The object A × B is not quite a cartesian product, as is witnessed by rule ×I,
which has the context !〈∞,1〉Γ rather than Γ in its conclusion.

For the implementation of recursion, which requires that there is at most one
query to the recursion argument, the following smash-product ∗ is useful. It is
defined by |A ∗ B| = |A| × |B|, (A ∗ B)G = (A+

G ⊗ B+
G ,A−G ⊗ B−G ), (A ∗B)∗ =

A∗ ×B∗, �∗A∗B=�∗A⊗1B
,

γ, e �A∗B 〈x, y〉 ⇐⇒ ∃α, β, ex, ey.
(α + β ≤ γ) ∧ (α, ex �A x) ∧ (β, ey �B y)
∧∀qA, qB. (e(qA, qB) = 〈ex(qA), ey(qB)〉).
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We use the smash-product for example for booleans, where the full information
of B∗B can be obtained with a single question. Notice that with B⊗B we would
need two questions, while with B⊗1 B we could only ask for one component.

Often it is useful to remove the co-realisation-information. This can be done
with the co-monad 
(−) defined by |
A| = |A|, 
A∗ = G(AG , I), (
A)G = AG ,
��A=�A and (α, c �∗�A c′) ⇐⇒ c = c′.

As the final general construction on R, we define a lifting monad (−)⊥, which
we use for modelling partial functions. It is defined by |A⊥| = |A|+ {⊥}, A⊥

∗ =
A∗, (A⊥)G = AG , �∗A⊥=�∗A, (α, e �A⊥ a ∈ |A|) ⇐⇒ (α, e �A a), and (α, e �A⊥
⊥) always. There are evident morphisms A → A⊥, (A⊥)⊥ → A⊥, A • (B⊥) →
(A •B)⊥ for any • ∈ {⊗,⊗1,×, ∗}, and 
(A⊥)→ (
A)⊥.

We remark that the definition of R and the construction of its structure are
very similar to the double glueing construction of Hyland and Schalk [12].

3.4 An Instance for Logarithmic Space

We consider R with respect to the monoid M = {〈l, k,m〉 ∈ N3 | l ≤ m}
with addition 〈l, k,m〉+ 〈l′, k′,m′〉 = 〈l + l′,max(k, k′),max(l + l′,m,m′)〉. The
neutral element 0 is 〈0, 0, 0〉. For the ordering we use 〈l, k,m〉 ≤ 〈l′, k′,m′〉 ⇐⇒
(l ≤ l′)∧(k ≤ k′)∧(m ≤ m′). The intended meaning of a triple 〈l, k,m〉 is that l is
the abstract length of an object and 〈k,m〉 is a bound on the additional memory a
realiser may use. We will allow realisers to use k numbers with range {0, . . . ,m}.

We now consider the structure of R with respect to M, starting with an
implementation of the base types of LogFPL.

Definition 2. An object A is simple if it enjoys the following properties.

1. Whenever α, e � a holds, then there is a L-map e′ : A+
G → A−G with e′◦e = id.

2. A∗ is a singleton and whenever α, c �∗ a∗ holds, then c is the empty function
and 0, c �∗ a∗ holds as well.

3. Both A−G and A+
G have at least one element x with l(x) = 0.

We note that if A and B are simple then so are A ⊗1 B and A ∗ B, but not in
general A⊗B.

All the basic data types we now define are simple. Since the co-realisation
relation is uniquely determined by the definition of simpleness, we just show the
realisation part.

Diamond. |♦| = {♦}, ♦G = IG , (α + 〈1, 0, 1〉, e �♦ ♦) ⇐⇒ (α, e �I ∗)
Booleans. |B| = {ff, tt}, BG = ({ff, tt}, 1), (α, e �B b) ⇐⇒ (e(∗) = b)
Small Numbers. |SN| = N, SNG = (L(B),L(1)) and (〈l, k,m〉, e �SN n) holds

if and only if both (l ≥ n) holds and e(s) equals the last s bits of n in binary.
Lists. Let A be a simple object. Define the simple object L(A) to have as un-

derlying set |L(A)| the set of finite lists on |A|. The object L(A)G is given
by ((A+

G + A−G )⊗ L(B),A−G ⊗ L(B)). The intention of A−G ⊗ L(B) is that a
question consists of a pointer into the list, encoded in binary (without lead-
ing zeros) as an element of L(B), together with a question for the element
at the position pointed at.
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α, e � 〈a0, . . . , an〉 ⇐⇒

∃�α ∈Mn+1. ∃�e ∈ (I → AG)n+1.
(α ≥ 〈n + 1, 0, n + 1〉+ α0 + · · ·+ αn)
∧(∀i. i ≤ n =⇒ αi, ei �A ai)
∧(∀i, q. i ≤ n =⇒ e(q, i) = 〈inl(ei(q)), i〉)
∧(∀i, q. i > n =⇒ e(q, i) = 〈inr(q), i〉)

We note that L(A) as such is not yet very useful. For instance, there is no map
tail : L(A)→ L(A), as we do not always have enough space to map a question
〈qA, i〉 to 〈qA, i+1〉. We address this problem with the construction M below.

Data storage. Often when passing a question to an object, we also need to
store some data that we need again once the answer arrives. Such data storage
is captured by the functor !(−) defined as follows. The set of underlying ele-
ments of !A is inherited from A, i.e. |!A| = |A|. The realising object (!A)G is
!(AG) and the realisation relation is the smallest realisation relation satisfying
〈l, k,m〉, e �A a =⇒ 〈l, k + 1,m〉, !e �!A a in addition to the general require-
ments for objects in R. The set of co-elements is defined by (!A)∗ = |S| → A∗

and the co-realisation relation on !A is given by

α, c �∗!A a∗ ⇐⇒ ∀s ∈ |S|. ∃cs. (α, cs �∗A a∗(s)) ∧ (∀q. c(q, s) = 〈cs(q), s〉).
While there is a natural dereliction map !A → A, there is no digging map
!A → !!A, since we do not have an additional ♦ that we would need to encode
two trees in one.

Lemma 2. There are natural transformations 
!A→ !
A, (!A⊗!B)→ !(A⊗B)
and !(A⊥)→ (!A)⊥ as well as a natural isomorphism (!A⊗1 !B) ∼= !(A⊗1 B).

Memory allocation. We have defined the monoidM with the intuition that if
e realises some element with bound 〈l, k,m〉 then e can use k memory locations
of size log(m) + 1. However, the above definition of the data types is such that,
besides the question itself, no memory can be assumed. We now add a memory
supply to the data types.

Let A be a simple object such that for each a ∈ |A| there exist l, m and
e satisfying 〈l, 0,m〉, e �A a. To define a simple object MA, let |MA| = |A|,
(MA)∗ = A∗ and (MA)G = (A+

G⊗L(L(1)),A−G⊗L(L(1))). The intended meaning
of (MA)G is that a question in A−G comes with a sufficiently large block of
memory, viewed as an element of L(L(1)). This block of memory can be used
for computing an answer, but must be returned with the answer at the end of
the computation. We define memory blocks as follows.

Definition 3. Let k and m be natural numbers. The set L〈k,m〉 ⊆ L(L(1)) of
〈k,m〉-memory blocks is the least set containing all the lists x = 〈x1, . . . ,xn〉
with n ≥ k, such that each xi is a nonempty list in L(1) and the properties
∀i. (1 ≤ i ≤ n − 1) =⇒ l(xi) = <l(x)/n= and <l(x)/n= ≥ (log(m) + 1) and
l(xn) = (l(x) mod n) all hold.

In short, L〈k,m〉 provides enough space for at least k binary numbers with range
{0, . . . ,m}. Given a memory block x = 〈x1, . . . ,xn〉 ∈ L〈k,m〉, we refer to the
length of x1 as the size of memory locations in x. The definition of L〈k,m〉 is such
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that, for any two nonempty lists s, s′ ∈ L〈k,m〉, we have s = s′ if and only if both
l(s) = l(s′) and l(head(s)) = l(head(s′)) hold. This makes it easy to reconstruct
the original memory block after part of it has been used in a computation.

The realisation on MA is defined such that 〈l, k,m〉, e �MA a holds if and
only if ∀s ∈ L〈k,m〉. ∃es. (〈l, 0,m〉, es �A a) ∧ (∀q. e(q, s) = 〈es(q), s〉) holds. The
co-realisation relation is determined by the requirement that MA be simple.

Lemma 3. There are isomorphisms M(A⊗1B) ∼= MA⊗1MB and M(A∗B) ∼=
MA ∗MB for all objects A and B for which MA and MB are defined.

All the base types of LogFPL are interpreted by objects of the form MA, e.g. we
use ML(MB) as the interpretation of L(B). Some simplification is given by:

Lemma 4. There are maps ML(MA)→ML(A) and !ML(A)→ML(MA).

Proposition 3. For each morphism (f, f∗) : !kML(B) ⊗ !kML(I) → ML(B),
the function f is logspace-computable.

Proof (Sketch). We construct a Turing Machine T using a realiser r for (f, f∗).
From r we build a sub-routine of T , which on one work tape takes a (code for a)
question q ∈ (ML(B))−G and on the same tape returns an answer in (ML(B))+G .
The sub-routine works by running r, and whenever r returns a question for
its argument, the sub-routine reads the relevant part from the input tape and
passes the answer to r. Since r is a morphism in L, this uses only linear space in
the size of the question q. We now use this sub-routine to compute the output
of T . Write x, y for the two inputs to T . First we write a memory block in
L〈k,|x|+|y|〉 to one work tape. This can be done since k is constant and the block
has logarithmic size. Using this block, the sub-routine is used to compute the bits
of the output one-by-one. Since f is non-size-increasing, it suffices to continue
until bit number |x|+ |y|. Hence, we only need to consider questions as large as
log(|x|+ |y|) + 1. Since the space needed for answering questions is linear in the
size of the question, the whole procedure uses logarithmic space in the size of
the inputs x and y.

It remains to show correctness of this algorithm. Let x and y be the two in-
puts. We then have 〈|x|, 0, |x|〉, ex �ML(B) x and 〈|y|, 0, |y|〉, ey �ML(I) y, where
ex and ey are programs that answer the given question by reading the input
tape (note that x and y are now fixed, so that |x| and |y| appear as constants
in the space-usage of ex and ey). Since r realises the morphism (f, f∗), we have
〈|x|+ |y|, k, |x|+ |y|〉, r · (!kex ⊗ !key) �ML(B) f(x, y). Since the sub-routine de-
scribed above computes r · (!kex ⊗ !key), it then follows by the definition of the
realisation on ML(B), that the algorithm computes the correct output.

Next we implement the operations on lists. Operations on other types are omitted
for space reasons.

Lemma 5. Let A = MA′ and B = MB′ be simple objects. There are R-maps
cons : M♦⊗1A⊗1 !ML(A)→ML(A), hdtl : !ML(A)→ (M♦⊗1A⊗1ML(A))⊥
and empty : ML(A) → MB defined by cons(a,�a) = 〈a,�a〉, hdtl(〈〉) = ⊥,
empty(〈〉) = tt, hdtl(〈a,�a〉) = 〈♦, a,�a〉 and empty(〈a,�a〉) = ff.
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Fig. 3. Illustration of recursion

It remains to implement recursion for lists. The properties we need of the result
type of a recursion are captured by the following three definitions.

Definition 4. An object A has unique answers if, for all x ∈ |A| and all q ∈ A−G ,
there exists a unique a ∈ A+

G satisfying ∀α, e. (α, e � x) =⇒ e(q) = a.

The next definition expresses that we only need to consider small questions. For
instance, for an element x ∈ L(B) with 〈l, k,m〉, e � x, we only ever need to
consider questions q with l(q) ≤ log(m) + 1, since all larger questions will be
out of range. We use this property to ensure that we do not run out of memory
during a recursion.

Definition 5. An object A has n-small questions if there exist morphisms
cut : A−G ⊗ L(1) → A−G and expand : A−G ⊗ A+

G → A+
G , such that 〈l, k,m〉, e � x

implies l(cut(q, s)) ≤ l(s) and expand(q, e(cut(q, s))) = e(q) holds for all q ∈ A−G
and all s ∈ L(1) with l(s) ≥ n(log(m) + 1).

Finally, to implement recursion we must be able to store questions and answers.

Definition 6. An object A is n-encodable if, for each X ∈ {A−G ,A+
G }, there are

maps lenX : X → L(1), codeX : ♦n ⊗X → S and decodeX : S → ♦n ⊗X, with
the properties ∀x ∈ X. l(x) = l(lenX(x)) and decodeX ◦ codeX = id .

Each recursion type, as defined in Fig. 1, is simple and enjoys the properties of
these definitions. In general, this holds neither for A⊗B nor for A � B.

Proposition 4. Let R be a simple object with unique answers and kR-small
questions. Let R be kR-encodable. Let 〈0, k,m〉, eh �!i♦⊗(�!iMA)⊗!iMR�MR h.
Then the function fh : !4+7kRMR⊗
!i+4+7kRML(A)→MR with fh(g, 〈〉) = g
and fh(g, 〈x, �x〉) = h(♦,x, fh(g, �x)) is realised with bound 〈0, k + 4 + 7kR,m〉.

Let us explain the idea of the realiser for recursion informally. Suppose, for in-
stance, we want to compute fh(g, 〈a1, a1, a0〉) for certain elements g, a0 and a1.
Write h0 and h1 for the functions of type !MR � MR that arise from h by in-
stantiating the first argument with a0 and a1 respectively. Then, the algorithm
for computing fh(g, 〈a1, a1, a0〉) can be depicted as in Fig. 3. The edge labelled
with − represents an initial question. The edges labelled with !− represent ques-
tions of hj to the recursion argument, the answer to which is expected in the
!+-port of the same box. The presence of the modality ! expresses that along
with the question, hj may pass some store that must be returned unchanged
with the answer. Now, if we were to remember the store of each hj in the course
of the recursion then we would need linear space (in the length of the second
argument of f) to compute it. Instead, whenever hj sends a question !− to its
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recursion argument, we forget hj ’s local store (the value stored in the !) and just
pass the question to the next instance of hj . If g or some hj gives an answer in
its +-port, then we would like to pass this answer to the edge labelled with !+
into the next box to the left. However, we cannot go from + to !+, as there
is no way to reconstruct the store that we have discarded before. Nevertheless,
it is possible to recompute the store. We remember the answer in + and the
position of the box that gave the answer and restart the computation from the
beginning. During this computation, the question in !−, which is answered by
the saved answer, will be asked again. We can then take the store of the question
in !− and the saved answer in + to construct an answer in !+ and pass it on as
an answer to the question in !−. In this way, the local store of the step functions
hj can be recomputed. For the correctness of this procedure it is crucial that
each hj asks at most one question of the recursion argument, which follows from
the co-realisation information on h. It is instructive to check this property for
the step-function of focus in Sect. 2.1.

This description of the implementation of recursion can be formalised in G
by a map rec : !r(MR)G⊗!r(!i(♦G ⊗ (MA)G ⊗ (MR)G) � (MR)G)⊗!r!iL(A)G →
(MR)G , where r = 4 + 7kR. The morphism rec is defined such that, for all
〈lg, kg,mg〉, eg �MR g and 〈lx, kx,mx〉, ex �ML(A) x, the element fh(g,x) is re-
alised by rec ·(!reg⊗!reh⊗!r+iex) with bound α = 〈0, k + r,m〉+〈lg, kg + r,mg〉+
〈lx, kx + r + i,mx〉. Prop. 4 follows from this property.

Although we have to omit the details of the implementation of rec for space-
reasons, we outline how the r memory locations in the modalities !r are used
by rec. The definition of the realisation on MR is such that we can assume
that a question to rec · (!reg⊗!reh⊗!r+iex) comes together with a memory block
m ∈ L〈kα,mα〉. Since we know α = 〈lα,max(k, kg, kx + i) + r,max(m,mg,mx)〉,
we can thus assume at least r memory locations of size log(mα) + 1 and we can
assume that the rest of the memory is still large enough to satisfy the memory
requirements of g, h and x. We use the r = 4 + 7kR memory cells, to store
the following data: the initial question (startqn); the current question (qn); the
current recursion depth (d); whether some answer has already been computed
(store), the stored answer (sa) and its recursion depth (sd); a flag (xo) to record
how answers from the argument x should be interpreted. Since R has kR-small
questions and the questions and answers are kR-encodable, each of the fields
startqn, qn and sa can be stored using 2kR memory locations in m. The fields
store, d , sd and xo can each be stored in a single memory location in m, since
d and sd represent numbers in {0, . . . , |x|}. The remaining kR memory locations
provide enough memory for the current question/answer.

3.5 Interpreting LogFPL

The types of LogFPL are interpreted in R by the following clauses.

�A� = MA, where A ∈ {I,♦,B,SN}
�L(A)� = M(L(�A�)) �A ·,i

−� B� = !i�A� � �B�⊥
�A•B� = �A�•�B�, where • ∈ {∗,⊗1,×} �A ∞,i

−−� B� = 
!i�A� � �B�⊥
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Contexts are interpreted by �Γ � = �Γ �′ ⊗ �Γ �1, where �()�′ = �()�1 = I and

�Γ,x
〈∞,i〉

: A�′ = �Γ �′ ⊗
!i�A� �Γ,x
〈∞,i〉

: A�1 = �Γ �1
�Γ,x

〈·,i〉
: A�′ = �Γ �′ ⊗ !i�A� �Γ,x

〈·,i〉
: A�1 = �Γ �1

�Γ,x
〈1,i〉
: A�′ = �Γ �′ �Γ,x

〈1,i〉
: A�1 = �Γ �1 ⊗1 !i�A�.

Proposition 5. For each Γ � M : A, there is a map m : �Γ � → �A�⊥ in R,
such that the underlying function of m is the functional interpretation of M .

Proof. The proof goes by induction on the derivation of Γ � M : A. As
a representative case, we consider rule ⊗1E. The induction hypothesis gives
�Γ �→ (�A� ⊗1 �B�)⊥ and �∆′�′ ⊗ (�∆1�1 ⊗1 !i�A� ⊗1 !i�B�)→ �C�⊥ for appro-
priate ∆′ and ∆1 with ∆ = ∆′,∆1. With the isomorphism !(X⊗1 Y ) ∼= !X⊗1 !Y
and the operations on (−)⊥, we obtain a map �∆′�′⊗ (�∆1�1⊗1 !i�Γ �)→ �C�⊥.
Using the morphisms from Lemma 2, we obtain �!〈1,i〉Γ � → !i�Γ �. By use of
X⊗(Y ⊗1Z)→ Y ⊗1 (X⊗Z), we obtain �∆, !〈1,i〉Γ �→ �∆′�′ ⊗ (�∆1�1 ⊗1 !i�Γ �).
Putting this together gives the required �∆, !〈1,i〉Γ �→ �C�⊥.

To see that Prop. 4 is applicable for the interpretation of recursion, notice
that 〈l, k,m〉, e �A�MBk d implies 〈0, k,m〉, e �A�MBk d. This follows using the
definition of the realisation on �, since the same property holds by definition for
MBk. Furthermore, each recursion type A (as defined in Fig. 1) is interpreted by
a k(A)-encodable, simple object with unique answers and k(A)-small questions.
Thus Prop. 4 can be used for the interpretation of recursion. '(

With the interpretation, logspace-soundness (Prop. 1) now follows as in Prop. 3.

4 Conclusion and Further Work

We have introduced a computation-by-interaction model for space-restricted
computation and have designed a type system for logspace on its basis. We
have thus demonstrated that the model captures logspace-computation in a
compositional fashion. As a way of controlling the subtle interaction-behaviour in
the model, we have identified the concept of co-realisability. Using this concept,
we were able to formalise the subtle differences between types such as (
A)⊗B,
A⊗B and A⊗1 B in a unified way.

For further work, we plan to consider extensions of LogFPL. We believe that
there is a lot of structure left in the model that can be used to justify extensions.
For instance, we conjecture that it is possible to define first-order linear func-
tions by recursion. We expect that, using an argument similar to the Chu-space
approach of [10], co-realisability can be used to reduce recursion with first-order
functional result type to base-recursion with parameter substitution.

Other interesting directions for further work include to consider other complex-
ity classes such as polylogarithmic space and to further explore the connections
to linear logic. It may also be interesting to find out if recent work on algorithmic
game semantics, as in e.g. [7,1], can be utilised for our purposes. A referee raised
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the interesting question about the relation of our computation model based on
a GoI-situation to oracle-based computing in traditional complexity models. We
plan to consider this in further work.
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Background of the thesis. Modal logics are of fundamental importance in
many branches of computer science. They allow to tailor logical formalisms
so that they combine the expressive power needed in particular applications
with good algorithmic and model-theoretic properties. A fundamental feature of
modal logics is their invariance under notions of behavioural equivalence such as
bisimulation. Well-known and fundamental results in the model theory of modal
logic reveal that propositional modal logic is equivalent to the bisimulation-
invariant fragment of first-order logic, and that an analogous relationship holds
for the modal µ-calculus and monadic second-order logic.

In many applications, it is necessary or at least convenient to extend modal
logics with nominals (i.e., constants for naming elements of the underlying struc-
ture) and operators to handle them. These logics are called hybrid logics and
they relate to, say, first-order logic with constants in the same way as basic
modal logics relate to purely relational first-oder logic. Balder ten Cate’s thesis
is mainly a mathematical investigation into hybrid logics and other extended
modal logics. It encompasses a wide range of topics in the analysis of extended
modal logics, covering many new results on fundamental model theoretic fea-
tures of hybrid logics and other more expressive modal logics, and puts these
results into a wider framework of abstract modal model theory. For instance,
the celebrated Goldblatt-Thomason Theorem states that a first-order formula
defines a modally definable frame class if, and only if, it is preserved under tak-
ing generated subframes, disjoint unions and bounded morphic images, and its
negation is preserved under taking ultrafilter extensions. Many results in ten
Cate’s thesis are motivated by the question whether similar chracterisations can
be given for the frame classes definable in extended modal logics, such as hybrid
logics or modal logic with propositional quantifiers.

Abstract model theory studies model theoretic propertis of logics on a general,
abstract level. A fundamental result in this context is Lindström’s Theorem
stating that no proper extension of first-order logic has both the compactness and
the Löwenheim-Skolem property. Abstract model theory has been successful in
providing a unifying perspective of model-theoretic properties of logics, typically
of powerful extensions of first-order logic, but it does not really cover aspects
of computational logics. A more general perspective of ten Cate’s work is to
contribute to the development of an abstract model theory for computational
logics, devoted to logics that arise in computer science, and to those properties
that are relevant for their computational applications.

Ten Cate’s thesis. The thesis, entitled Model Theory for Extended Modal Lan-
guages is written with great lucidity and sophistication. It develops the abstract
model theory of hybrid languages in the spectrum running from the basic modal
language to full first-order logic. The results of the thesis are too numerous to
enumerate them, so let us just mention a few highlights.

– A systematic frame-definability theory for hybrid languages is developed,
including Goldblatt-Thomason style characterizations. This is a highly non-
trivial enterprise in terms of model-theoretic proof techniques, and new frame
constructions.
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– In this context, a very interesting, although negative, result is that the set
of first-order formulae preserved under ultrafilter extensions is highly unde-
cidable (Π1

1 -hard).
– The thesis contains a striking syntactic analysis of the ’Bounded Fragment’

first studied by Feferman and Kreisel, and later by Areces, Blackburn and
Marx, allowing us a much better grip on what it is and does.

– Balder ten Cate has proved a general interpolation theorem showing that
only very few hybrid logics have interpolation. This is one of the first major
classification results in the abstract model theory of fragments of first-order
logic (where standard proofs often do not work, as they presuppose the full
power of first-order encoding).

– He has contributed an interesting analysis of second-order formalisms such as
modal logic with propositional quantifiers, inside of which he characterises for
instance the standard modal fragment via finite depth and bisimulation in-
variance, and the intersection with first-order logic as the bounded fragment.

There is much more to the thesis. In addition, ten Cate makes complexity-
theoretic investigations of hybrid logics, suggesting a new style of abstract model
theory: mixing expressivity with concerns of computational complexity. In doing
so, he also provides a sustained study of satisfiability preserving translations
between various modal and hybrid logics.

A most striking impression when one reads this thesis is that of an unusual
mathematical maturity in research and writing. The results are embedded into
a convincing high-level account that provides perspective and contributes to a
coherent bigger picture. The exposition is very clear and admirably manages
to be concise and rigorous without becoming notationally or formally heavy. In
fact, the writing is skillful and to the point in an exemplary fashion.

Biographic Sketch. Balder David ten Cate was born on June 15, 1979 in
Amsterdam, the Netherlands. In 1998 he received his B.A. (Propedeuse) in Psy-
chology from the Vrije Universiteit of Amsterdam. In 2000 he received his M.Sc.
in Artificial Intelligence from the Vrije Universiteit of Amsterdam. Both degrees
were given cum laude (with distinction). In 2005 he received his Ph.D. from the
University of Amsterdam, under the supervision Johan van Benthem.

Balder ten Cate has done first research in natural language semantics, and
then in the model theoretic and computational aspects of various extensions of
modal logic. He now works on a project on the foundations of semi-structured
data and XML-query languages.

Stefan Milius

Citation. Stefan Milius receives the 2006 Ackermann Award of the European
Association of Computer Science Logic (EACSL) for his thesis

Coalgebras, Monads and Semantics,
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in which he advances considerably our understanding of category-theoretic meth-
ods in the study of a wide variety of recursive behavioural specifications in a
unified setting.

Background of the thesis. Recursive definitions are a central topic in Com-
puter Science. One major tradition in the field has been algebraic semantics,
which studies the structure of recursive program schemes, and their interpre-
tations. A more recent and currently very lively area of work is in coalgebraic
semantics, which uses category-theoretic methods to study a wide variety of
recursive behavioural specifications in a unified setting. These research direc-
tions have hitherto been rather separate, both from each other, and from other
approaches in semantics.

Milius’ thesis. This thesis contains a number of striking contributions, which
show a rich interplay between algebraic and coalgebraic methods, and open up
new directions in the study of recursion schemes. Moreover the treatment is
carried out in a general setting, unifying existing approaches, and allowing for
interesting new examples.

Some main contributions are as follows:

– A description of free iterative theories generated by an arbitrary finitary
endofunctor. This simplifies and substantially generalizes some of the main
results obtained by the Elgot school. The proof is an elegant combination of
methods of algebra and coalgebra.

– Elgot algebras. An elegant axiomatization is given of the algebras over the
monad corresponding to a free iterative theory. Again, there is a pleasing
interplay between algebraic and coalgebraic notions, e.g. in the result that
the Elgot algebras of a given “iteratable” functor are the Eilenberg-Moore
algebras of a certain monad related to final coalgebras.

– New insights and a powerful unifying perspectives are developed for the se-
mantics of recursive programs and program schemes. The treatment encom-
passes domain-theoretic and metric space based approaches, and includes
interesting examples such as fractals.

The thesis is based on a number of substantial journal papers, with a well-written
overview. The mathematical development is notable for its clarity and generality.
It seems likely that this work will stimulate further research, and open up some
new directions in the fruitful interplay of algebra and coalgebra, and in the study
of recursion.

Biographic Sketch. Stefan Milius was born on June 3, 1975 in Magdeburg,
Germany. In 2000, he received an MA in Mathematics from York University
Toronto, Canada and a Diploma in Computer Science from the Technical Univer-
sity of Braunschweig, Germany. He wrote his Ph.D. thesis under the supervision
of Prof. Jǐŕı Adámek and received his Ph.D. (Dr.rer.nat.) in October 2005 from
the Technical University of Braunschweig summa cum laude (with distinction).

From 1998 till 2000 he was a Fellow of the German National Academic Foun-
dation (Studienstiftung des Deutschen Volkes). In 2000 he was given the Award
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for excellent achievments as a student from the Technical University of Braun-
schweig. His work concentrates on category theoretic aspects of computer science.

The Ackermann Award

The EACSL Board decided in November 2004 to launch the EACSL Outstanding
Dissertation Award for Logic in Computer Science, the Ackermann Award,
The award1. is named after the eminent logician Wilhelm Ackermann (1896-
1962), mostly known for the Ackermann function, a landmark contribution in
early complexity theory and the study of the rate of growth of recursive func-
tions, and for his coauthorship with D. Hilbert of the classic Grundzüge der
Theoretischen Logik, first published in 1928. Translated early into several lan-
guages, this monograph was the most influential book in the formative years of
mathematical logic. In fact, Gödel’s completeness theorem proves the complete-
ness of the system presented and proved sound by Hilbert and Ackermann. As
one of the pioneers of logic, W. Ackermann left his mark in shaping logic and
the theory of computation.

The Ackermann Award is presented to the recipients at the annual confer-
ence of the EACSL. The jury is entitled to give more than one award per year.
The award consists of a diploma, an invitation to present the thesis at the CSL
conference, the publication of the abstract of the thesis and the citation in the
CSL proceedings, and travel support to attend the conference.

The jury for the Ackermann Award consists of seven members, three of
them ex officio, namely the president and the vice-president of EACSL, and
one member of the LICS organizing committee. The current jury consists of S.
Abramsky (Oxford, LICS Organizing Committee), B. Courcelle (Bordeaux), E.
Grädel (Aachen), M. Hyland (Cambridge), J.A. Makowsky (Haifa, President of
EACSL), D. Niwinski (Warsaw, Vice President of EACSL), and A. Razborov
(Moscow and Princeton).

The first Ackermann Award was presented at CSL’05 in Oxford, England.
The recipients were Miko�laj Bojańczyk from Poland, Konstantin Korovin from
Russia, and Nathan Segerlind from the USA. A detailed report on their work
appeared in the CSL’05 proceedings.

1 Details concerning the Ackermann Award and a biographic sketch of W. Ack-
ermann was published in the CSL’05 proceedings and can also be found at
http://www.dimi.uniud.it/ eacsl/award.html.



Author Index

Abel, Andreas 72
Abramsky, S. 622
Aehlig, Klaus 104
Alves, Sandra 119
Artemov, Sergei 135
Atassi, Vincent 150

Bagan, Guillaume 167
Baillot, Patrick 150
Benton, Nick 182
Bodirsky, Manuel 197
Bonfante, G. 212

Carayol, Arnaud 225
Chadha, R. 240
Chatterjee, Krishnendu 256, 271, 287
Chen, Hubie 197
Cortier, Véronique 303
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