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Abstract. In this paper we study the application of the Minimum De-
scription Length principle (or two-part-code optimization) to grammar
induction in the light of recent developments in Kolmogorov complexity
theory. We focus on issues that are important for construction of effec-
tive compression algorithms. We define an independent measure for the
quality of a theory given a data set: the randomness deficiency. This is a
measure of how typical the data set is for the theory. It can not be com-
puted, but it can in many relevant cases be approximated. An optimal
theory has minimal randomness deficiency. Using results from [4] and [2]
we show that:

– Shorter code not necessarily leads to better theories. We prove that,
in DFA induction, already as a result of a single deterministic merge
of two nodes, divergence of randomness deficiency and MDL code
can occur.

– Contrary to what is suggested by the results of [6] there is no funda-
mental difference between positive and negative data from an MDL
perspective.

– MDL is extremely sensitive to the correct calculation of code length:
model code and data-to-model code.

These results show why the applications of MDL to grammar induction
so far have been disappointing. We show how the theoretical results can
be deployed to create an effective algorithm for DFA induction. However,
we believe that, since MDL is a global optimization criterion, MDL based
solutions will in many cases be less effective in problem domains where
local optimization criteria can be easily calculated. The algorithms were
tested on the Abbadingo problems ([10]). The code was in Java, using
the Satin ([17]) divide-and-conquer system that runs on top of the Ibis
([18]) Grid programming environment.

1 Introduction: MDL and Grammar Induction

In the domain of machine learning pure applications of MDL are rare, mainly
because of the difficulties one encounters trying to define an adequate model
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code and data-to-model code. The field of grammar induction studies a whole
class of algorithms that aims at constructing a grammar by means of incremental
compression of the data set represented as a digraph. This digraph can be seen
as the maximal theory equivalent with the data set. Every word in the data set
is represented as a path in the digraph with the symbols either on the edges
or on the nodes. The learning process takes the form of a guided incremental
compression of the data set by means of merging or clustering of the nodes in
the graph. None of these algorithms makes an explicit estimate of the MDL
code. Instead they use heuristics to guide the model reduction. After a certain
time a proposal for a grammar can be constructed from the current state of
the compressed graph. Examples of such algorithms are SP ([15], [14]), EMILE
([8] [9]), ABL ([11]), ADIOS ([12]) and a number of DFA induction algorithms,
specifically evidence driven state merging (EDSM), ([10], [16]). In this paper we
present a sound theoretical basis to analyze the performance and idiosyncrasies
of these algorithms in an MDL context.

2 MDL as Two-Part Code Optimization

We give the traditional formulation of MDL:

Definition 1. The Minimum Description Length principle: The best the-
ory to explain a set of data is the one which minimizes the sum of

– the length, in bits, of the description of the theory and
– the length, in bits, of the data when encoded with the help of the theory

Let M ∈ M be a model in a class of models M, and let D be a data set. The
prior probability of a hypothesis or model M is P (M). Probability of the data
D is P (D). Posterior probability of the model given the data is:

P (M |D) =
P (M)P (D|M)

P (D)

The following derivation ([1]) illustrates the well known equivalence between
MDL and the selection of the Maximum A posteriori hypothesis in the con-
text of Shannon’s information theory. Selecting the Maximum A Posteriori
hypothesis(MAP):

MMAP ≡ argmaxM∈M P (M |D)

= argmaxM∈M (P (M)P (D|M))/P (D)

(since D is constant)

≡ argmaxM∈M (P (M)P (D|M))

≡ argmaxM∈M log P (M) + log P (D|M)

≡ argminM∈M − log P (M) − log P (D|M)
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where according to Shannon − log P (M) is the length of the optimal model-code
in bits and − logP (D|M) is the length of the optimal data-to-mode-code in bits.
Ergo:

MMAP ≡ MMDL

The formula argminM∈M− logP (M)− logP (D|M) indicates that a model that
generates an optimal data compression (i.e. the shortest code) is also the best
model. This is true even if M does not contain the original intended model as
was proved by [4].1 It also suggests that compression algorithms can be used
to approximate an optimal solution in terms of successive steps of incremental
compression of the data set D. This is not true as was shown by [2]. Yet this
illicit use of the principle of MDL is common practice.

In order to understand these results better we must answer two questions 1)
What do we mean by the length of optimal or shortest code and 2) what is
an independent measure of the quality of a model M given a data set D? The
respective answers to these questions are prefix-free Kolomogorov complexity and
randomness deficiency.

2.1 Kolmogorov Complexity

Let x, y, z ∈ N , where N denotes the natural numbers and we identify N and
{0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the
binary string x, not to be confused with the cardinality |S| of a finite set S. For
example, |010| = 3 and |ε| = 0, while |{0, 1}n| = 2n and |∅| = 0. The emphasis is
on binary sequences only for convenience; observations in any alphabet can be
encoded in a ‘theory neutral’ way. Below we will use the natural numbers and
the binary strings interchangeably. In the rest of the paper we will interpret the
set of models M in the following way:

Definition 2. Given the correspondence between natural numbers and binary
strings M consists of an enumeration of all possible self-delimiting programs
for a preselected arbitrary universal Turing machine U . Let x be an arbitrary bit
string. The shortest program that produces x on U is x∗ = argminM∈M(U(M) =
x) and the Kolmogorov complexity of x is K(x) = |x∗|. The conditional Kol-
mogorov complexity of a string x given a string y is K(x|y), this can be inter-
preted as the length of a program for x given input y. A string is defined to be
random if K(x) ≥ |x|.

This makes M one of the most general model classes with a number of very
desirable properties: it is universal since all possible programs are enumerated,
because the programs are self-delimiting we can concatenate programs at will,
1 This does not imply that MDL is always a good criterion for algorithmic approxi-

mation [5].
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in order to create complex objects out of simple ones we can define an a-priori
complexity and probability for binary strings. There are also some less desirable
properties: K(x) cannot be computed (but it can be approximated) and K(x)
is asymptotic, i.e. since it is defined relative to an arbitrary Turing machine U
it makes less sense for objects of a size that is close to the size of the definition
of U . Details can be checked in [3]. We have:

argminM∈M − log P (M) − log P (D|M) =

argminM∈MK(M) + K(D|M) = MMDL (1)

Under this interpretation of M the length of the optimal code for an object is
equivalent to its Kolmogorov complexity.

2.2 Randomness Deficiency

It is important to note that objects that are non-random are very rare. To make
this more specific: in the limit the density of compressible strings x in the set
{0, 1}≤k for which we have K(x) < |x| is zero. The overwhelming majority of
strings is random. In different words: an element is typical for a data set if and
only if it is random in this data set. In yet different words: if it has maximal
entropy in the data set. This insight allows us to formulate a theory independent
measure for the quality of models: randomness deficiency.

We start by giving some estimates for upper-bounds of conditional complexity.
Let x ∈ M be a string in a finite model M then

K(x|M) ≤ log |M | + O(1) (2)

i.e. if we know the set M then we only have to specify an index of size log |M |
to identify x in M . The factor O(1) is needed for additional ’syntactic sugar’ to
reconstruct x from M and the index. Its importance is thus limited. Let D ⊆ M
be a subset of a finite model M . We specify d = |D| and m = |M |. Now we have:

K(D|M, d) ≤ log
(

m

d

)
+ O(1) (3)

Here the term
(
m
d

)
specifies the size of the class of possible selections of d elements

out of a set of m elements. The term log
(
m
d

)
gives the length of an index for this

set. If we know M and d then this index allows us to reconstruct D.
A crucial insight is that the inequalities 2 and 3 become ’close’ to equalities

when respectively x and D are typical for M , i.e. when they are random in M .
This typicality can be interpreted as a measure for the goodness of fit of the
model M . A model M for a data set D is optimal if D is random in M , i.e. the
randomness deficiency of D in M is minimal. The following definitions formulate
this intuition. The randomness deficiency of D in M is defined by:

δ(D|M, d) = log
(

m

d

)
− K(D|M, d), (4)
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for D ⊆ M , and ∞ otherwise. If the randomness deficiency is close to 0, then
there are no simple special properties that single D out from the majority of
data samples to be drawn from M .

The minimal randomness deficiency function is

βD(α) = min
M

{δ(D|M) : M ⊇ D, K(M) ≤ α}, (5)

If the randomness deficiency is minimal then the data set is typical for the
theory and with high probability future data sets will share the same character-
istics, i.e. minimal randomness deficiency is also a good measure for the future
performance of models. For a formal proof of this intuition, see [4].

Learning as Incremental Compression. We now turn our attention to in-
cremental compression. Equation 1 gives the length of the optimal two-part-code.
The length of the two-part-code of an intermediate model Mi is given by:

Λ(Mi, d) = log
(

mi

d

)
+ K(Mi, d) ≥ K(D) − O(1) (6)

[2] have shown that the randomness deficiency not necessarily decreases with
the length of the MDL code, i.e. shorter code does not always give smaller
randomness deficiency, e.g. a better theory.

3 Using MDL for DFA Induction

In the rest of this paper we will study these theoretical results in the practical
context of DFA induction. We will follow the presentation in [13]. Below we show
that the model improvement between two consecutive compression states during
the execution of a DFA learning algorithm in general can not be computed.

We start with some relevant observations. We will restrict ourselves to lan-
guages in {0, 1}∗. The class of DFA is equivalent to the class of regular languages.
We call the set of positive examples D+ and the set of negative examples D−.
The complement of a regular language is a regular language. Consequently the
task of finding an optimal model given D+ is symmetric to the task of finding
an optimal model given D−. The task of finding the minimum DFA consistent
with a set of positive and negative examples is decidable. We can enumerate all
DFA’s according to their size and test them on the data set. Yet this minimum
DFA cannot be approximated within polynomial time ([7]).

The task of finding the smallest DFA consistent with a set of positive examples
is trivial. This is the universal DFA. Yet the universal DFA will in most cases
have a poor generalization error. MDL is a possible candidate for a solution here.
Suppose that we have a finite positive data set representing an infinite regular
language. The task is then to find a DFA with minimum expected generalization
error over the set of the set of infinite regular languages consistent with D+.
MDL identifies such a DFA. Yet, if our results above are relevant, MDL will not
help us to construct such a DFA in terms of a process of incremental compression
or expansion.
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Intuitively the MDL code would not give any guidance for compression (or
expansion) of a theory if we could show that the randomness deficiency behaves
independently of the MDL code: i.e the randomness deficiency could either grow
or shrink with a reduction of the length of the MDL code. Below we will show
that this is possible for any algorithm that merges or splits states in a DFA.
The crucial insight is that when we merge two states (i.e. reduce the complexity
of the model) the resulting index set for the data (i.e. the data-to-model code)
in general becomes more complex, but also can be more simple. The effects are
non-computable. This implies that MDL in the case of DFA is not a good guide
when compressing or expanding theories. Before we prove this we give some
definitions.

Definition 3. A partition π of a set X is a set of nonempty subsets of X such
that every element x in X is in exactly one of these subsets. B(x, π) ⊆ X
indicates the subset of the partition π of which x is an element.

Definition 4. Let A = (Q, Σ, δ, q0, F ) be a DFA, the quotient automaton A/π
= (Q′, Σ, δ′, B(q0, π), F ′) derived from A on the basis of a partition π of Q is
defined as follows:

– Q′ = Q/π = {B(q, π)|q ∈ Q},
– F ′ = {B ∈ Q′|B ∩ F �= ∅},
– δ′ : (Q′ × Σ) → 2Q′

: ∀B, B′ ∈ Q′, ∀a ∈ Σ, B′ ∈ δ′(B, a) iff ∃q, q′ ∈ Q, q ∈
B, q′ ∈ B′ and q′ ∈ δ(q, a).

We say that the states in Q that belong to the same block B are merged.

We give without proof:

Lemma 1. If an automaton A/πj is derived from an automaton A/πi by means
of a partition then L(A/πi) ⊆ L(A/πj).

The relevance of these definitions for grammar induction lies in the fact that
we can increase or decrease the generality of the automaton and the associated
language inclusion hierarchies by means of splitting and merging states.

Definition 5. Let A be a DFA. An index set for A is a set that associates a
unique natural number with each string that is accepted by A. The index set
relative to certain data set D ⊆ L(A) is ID = {i|i ∈ N, L(A)(i) ∈ D}. The
initial segment associated with an index set D and L(A) is the set I≤D = {i|i ∈
N, ∃j ∈ ID : j ≥ i}, i.e. the set of all natural numbers that are smaller than or
equal to an index in ID. The maximal entropy of ID in I≤D is log

(|I≤D |
|ID|

)
, where

|I≤D| is a measure for the total number of sentences in the language up to the
sentence in D with the highest index and |ID| is the size of D.

The notion of an initial segment is introduced to make the argument work for
infinite languages. We have K(D|A) ≤ K(ID) + O(1) ≤ log

(|I≤D |
|ID |

)
+ O(1).

Suppose that f is an accepting state of a DFA A, with index set I and that
D ⊆ L(A).
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Definition 6. The maximal state entropy of f given D is I≤D,f = log
(|I≤D,f |

|ID,f |
)
,

where I≤D,f and ID,f identify those indexes that are associated with strings that
are accepted in f .

Note that there are data sets of low complexity for which the strict inequality
K(ID|I≤D) <

∑
f∈F log

(|I≤D,f |
|ID,f |

)
< log

(|I≤D |
|ID |

)
holds. Yet for these data sets the

individual state entropies might be still high, since any set of low complexity can
be split into two sets of high complexity. For such data sets in general the data-
to-model code will be optimized when states are merged. On the other hand if
K(ID|I≤D) is ’close’ to log

(|I≤D |
|ID |

)
splitting of states is a better strategy.

According to our definition above M0 is not worse than M1 (as an explanation
for D), in symbols: M0 ≤ M1, if

– δ(D|M0, d) ≤ δ(D|M1, d); and
– Λ(M0, d) ≤ Λ(M1, d).

We will call these conditions the MDL-step-conditions. We have to remember
that δ(D|M, d) = log

(
m
d

)
−K(D|M, d) is the randomness deficiency and Λ(M) =

log
(
m
d

)
+ K(M, d) ≥ K(D) − O(1) is the total length of two-part code, or MDL

code, of D with help of model M and d. The step from M1 to M0 would violate
the MDL-step-conditions if:

K(D|M0, d)−K(D|M1, d) < log
(

m0

d

)
−log

(
m1

d

)
≤ K(M1, d)−K(M0, d) (7)

The following theorem states that these violations occur:

Theorem 1. There are combinations of DFA’s and data sets D, A/π0 and A/π1
such that D ⊆ L(A/π0) = L(A/π1) and A/π1 = (A/π0)/πstep that violate the
MDL-step-conditions. The characteristics of these violations can not be com-
puted. The δ function can fluctuate arbitrarily in a band-width of ±K(πstep) +
O(1).

Proof: Take an arbitrary DFA B. Construct two new DFA’s A/π0 and A/π1
along the following lines: A/π0 contains two copies of B, B1 and B0, the start
state q0 of A/π0 has two outgoing transitions, one labelled 1 to the start state
of B1 and one labelled 0 to the start state of B0. The language recognized by
A/π0 is (0 + L(B)) ∪ (1 + L(B)). A/π1 contains only one copy of B, the start
state q0 of A/π1 has two outgoing transitions labelled 1 and 0 to the start state
of B. The language recognized by A/π1 is {0, 1}+L(B). It is easy to verify that
{0, 1} + L(B) = (0 + L(B)) ∪ (1 + L(B)), thus L(A/π0) = L(A/π1). Also there
is a partition πstep such that A/π1 = (A/π0)/πstep: we simply merge B1 and B0
in A/π0 to get A/π1.

Take the terms of the inequality 7. Independent of any data set log
(
m0
d

)
−

log
(
m1
d

)
= 0 since L(A/π0) = L(A/π1). Furthermore there will be cases for which

K(A/π0, d) > K(A/π1, d), since K(A/π0) has strictly more states even if we
correct for the redundancy of having two copies of B, and there is no definition of
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Kolmogorov complexity that systematically defines higher complexity for DFA’s
with fewer states.

What we have to show is that, in these cases, there are data sets D for
which the term K(D|M0, d) − K(D|M1, d) can take any value (within a certain
bandwidth). Let I0 and I1 be index sets associated with respectively A/π0 and
A/π1. Note that I0 and I1 are not independent. Given I0, A/π0 and (A/π0)/πstep

we can reconstruct I1. Therefore K(I1|A/π0, I0) ≤ K(πstep) + O(1), i.e. the
maximal difference in complexity between I0 and I1 given A/π0 is K(πstep),
the complexity of the transformation between the two DFA’s. This distance
is symmetric within O(1). This limits the bandwidth of the expression K(D |
M0, d) − K(D|M1, d).

Now select an accepting state f1,{0,1} in A/π1 that is the result of merging two
corresponding accepting states f0,{0} and f0,{1} in A/π0. The related index sets
are I0,D,f0,{0} , I0,D,f0,{1} and I1,D,f1,{0,1} . The maximal state entropy for f0,{0}
is given by

log
(|I0,≤D,f0,{0} |

|I0,D,f0,{0} |

)

similarly for f0,{1} and f1,{0,1}. If these index sets are random then we have

K(I0,D,f0,{0}) + K(I0,D,f0,{1}) < K(I1,D,f1,{0,1})

since

log
(|I0,≤D,f0,{0} |

|I0,D,f0,{0} |

)
+ log

(|I0,≤D,f0,{1} |
|I0,D,f0,{1} |

)
< log

(|I1,≤D,f1,{0,1} |
|I1,D,f0,{0,1} |

)
=

log
(|I0,≤D,f0,{0} | + |I0,≤D,f0,{1} |

|I0,D,f0,{0} | + |I0,D,f0,{1} |

)

In this case we do not benefit from merging states. Note that we are com-
pletely free to select D in such a way that any binary partition of indexes from
I1,D,f1,{0,1} into corresponding indexes in I0,D,f0,{0} and I0,D,f0,{1} is realized. In
particular we can select a partition that is random in I0,D,f0,{0} and I0,D,f0,{1}

and highly non-random in I1,D,f1,{0,1} . In this case we have:

K(I0,D,f0,{0}) + K(I0,D,f0,{1}) > K(I1,D,f1,{0,1})

Here we do benefit from merging states. Note that a corresponding argument
holds for all triples f ′

1,{0,1}, f ′
0,{0} and f ′

0,{1}. By selecting appropriate data
sets we can create arbitrary fluctuations in the difference of the conditional
complexity of the index sets I0,D and I1,D of Mo and M1. Since K(D|M0, d) =
K(I0,D|M0, d) + O(1) and K(D|M1, d) = K(I1,D|M1, d) + O(1) we can give the
expression

K(D|M0, d) − K(D|M1, d)

any value in the bandwidth ±K(πstep). Note that we can define partitions of
any complexity so that the value of K(πstep) can be arbitrary large and that
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the fluctuations cannot be computed because they are based on the conditional
Kolmogorov complexity of the index sets.

End of proof.

Corollary 1. Given a sample D of a regular language and an arbitrary DFAD

consistent with D, the optimal DFAopt for D can not be approximated by means
of expanding or compressing states in DFAD. This holds if D = D+, D = D−

and if D = D+ ∪ D−.

Proof: Case: D = D+, is immediately implied by theorem 1. Case: D = D−,
is implied by the previous case and the fact that the complement of a regular
language is a regular language. The optimal automaton for the negative cases is
the same as the one for the positive cases, with the accepting and non-accepting
states exchanged, i.e. we try to construct an automaton with exactly the same
structure. Case: D = D+ ∪ D−, is implied by the previous two cases and the
fact that in the proof of theorem 1 the languages accepted by M0 and M1 are
the same. The positive randomness deficiency can fluctuate independent of the
influence of the negative examples. If the randomness deficiency in relation to
the positive examples fluctuates, then the randomness deficiency with respect
to the negative examples will also fluctuate, i.e. the total randomness deficiency
will fluctuate.

End of proof.

Discussion. It is worth noting that, given the results of [7] it was not to be
expected that there would exist an algorithm that finds the DFA with minimal
generalization error on the basis of D+ in polynomial time. Under the condition
that D+ is dense enough and given the results above, the optimal DFA in terms
of MDL will with high probability also be the minimal DFA consistent with D+

and an arbitrary D−. If we could find the optimal MDL DFA in polynomial time
then we could simply focus on D+, ignoring D−, in order to find the minimal
DFA consistent with D+ and D−. This would contradict the result of [7]. Note
also that the task of finding a minimal automaton consistent with D = D+∪D−

is in many cases much simpler than the task of finding the automaton with
optimal randomness deficiency, e.g. take the random case where there is only
one negative example.

Following [6] it is generally thought that a combination of positive and nega-
tive examples gives a better chance of learning a language than positive examples
alone. Corollary 1 shows that this is only the case in the limit when we can enu-
merate all solutions. Additional negative examples in general do not help us more
than additional positive examples when we want to construct better solutions
out of bad ones given a finite set D.

4 Implementing a Correct MDL Measure for DFA
Induction

Theorem 1 implies that MDL in general will not be a reliable guide for the
compression of a DFA. Yet there exist many DFA induction algorithms that use
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compression. In a lot of empirical cases this approach seems to work. The results
presented above suggest that it is possible to use MDL directly as an empirical
guidance for the merging of states in DFA induction. They also imply that we
can use the same MDL measure both on positive and on complete data sets. The
MDL data-to-model code formula below shows that this is indeed the case.

Suppose A is a DFA suggested as an explanation for a data set D. A has
i accepting states and j non-accepting states. Since we use both positive and
negative examples A must be functionally complete (i.e. have an outgoing arrow
for each element of the lexicon from each state). Suppose l is the maximal length
of a string in the Dataset D. D+ is the set of positive examples, D− the set of
negative examples. d+ is the number of positive examples, d− the number of
negative examples. There are 2l+1 − 1 binary strings with length ≤ l. Call this
set N , n+ is the number of strings accepted by A, n− is the number of strings
not accepted by A. A partitions N in two sets: N+ and N−. N+ is partitioned
in i subsets by the i accepting states of A and N− is partitioned in j subsets by
the j non-accepting states of A. The correct data-to-model code is:

log(
∏

i

(
n+

i

d+
i

)
×

∏
j

(
n−

j

d−j

)
) =

∑
i

(log
(

n+
i

d+
i

)
) +

∑
j

(log
(

n−
j

d−j

)
) (8)

One can read this as follows. The formula specifies an index for the data set
D given the data set N . There are i pieces of code for the positive states, and
j pieces of code for the negative states. If there are states that do not generate
elements for D then their contribution to the length of the code is 0. When
applying this formula to DFA induction one must estimate the values using
the Stirling formula or an integral over log n!2. Remember that from an MDL
perspective we are only interested in the length of the index, not its specific
value. The beautiful thing is that this index can always be used: for positive
examples, for complete examples and even for only negative examples.

5 Some Experiments

We have developed a framework for experimenting with various search heuristics.
The framework is built around the blue-fringe algorithm, which works as follows:3

We start with the prefix tree acceptor, derived from the sample. The root is
colored red, its children are colored blue, all other nodes are white. Then, we
apply the following actions:

– As long as there are blue states that cannot be merged with any red node,
we promote the shallowest of these states to red, and color its children blue.

– We compute the score for merging all blue/red pairs (see below for an ex-
planation of ‘score’).

2 The formula log
(

n
k

)
can be approximated by: log

(
n
k

)
≈

∫ n

n−k
logx dx −

∫ k

1 logx dx,
which is easy to compute. Already for k = 65 the error is less than 1% and rapidly
decreasing.

3 For details, see: ([10], [16]).
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– We merge the best scoring blue/red pair and color all children of red nodes
that are not red themselves blue.

We repeat these steps until no merges are possible.
The score for merging a red/blue pair is the search heuristic. When using

evidence driven state merging (EDSM) ([10], [16]), the score consists of the
number of matching state labels of merged states, the higher the better.

We have used several variants of MDL for the search heuristic. As MDL is the
sum of two parts, we describe these parts in detail below.

5.1 MDL Scoring

For an approximation of K(M), the model code, we used the following reasoning:
suppose a DFA A has n states, the alphabet Σ has |Σ| symbols, and A is
functionally complete. Then, there are n × |Σ| state transitions, each with n
possible destinations. This gives nn×|Σ| possibilities. Furthermore, each state is
either accepting or non-accepting. This gives 2n possibilities. Thus, assuming
that state 1 always is the start state, in total there are 2n × nn×|Σ| possible
functionally complete DFA’s with n states. However, there is a lot of redundancy
here, for each permutation of states 2...n there is an equivalent DFA. Thus, the
length of an index identifying a specific DFA is log(2n × nn×|Σ|/(n − 1)!) =
n + n × |Σ| × log(n) − log((n − 1)!).

We have experimented with several variations of data-to-model (K(D|M, d))
codes:

1. Simple MDL with only positives. This version uses log
(
m+

d+

)
.

2. Simple MDL with positives and negatives. This version uses log
(
m+

d+

)
+

log
(m−

d−

)
.

3. Simple MDL with positives and complement. This version uses log
(
m+

d+

)
+

log
((2l+1−1−m+

d−

)
.

4. MDL as in equation 8, with only positives.
5. MDL as in equation 8.

Note that there is no difference between MDL as in equation 8 with negatives
or complement.

We have tried all of the above variants on the problem set of the Abbadingo
DFA inference competition ([10]). All variants are able to solve problems A, B,
C, D, and R. In addition, all variants except for variant 1 can solve problem 1.
Variant 4 can also solve problem 2. In comparison, EDSM can solve all these
problems, and also problems 3, 4, 6, and S. So, indeed, it seems that MDL is not
a very reliable guide for the compression of a DFA. At least, EDSM is better.

But EDSM, on its own, fails too on some problems. To solve some of these
problems, we have extended our framework allowing it to search a (small) part
of the decision tree. The search is to a certain depth, and at each depth only
the most promising candidates are maintained in a list. Initially, we place the
prefix tree acceptor in the list. Then, for every candidate in the list, for all
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its red/blue merge candidates, apply the merge and then use the heuristic to
compress the DFA until no further merges are possible. Determine the score of
the resulting DFA (for EDSM, this is the number of states, for MDL, this is its
MDL). We store the DFA from the list, the first merge, and the resulting score
in a result list. When all candidates for the list are tried, the result list is sorted
according to the score, and only the most promising candidates are kept. For
these candidates, we apply its first merge, and store the result in the list for the
next depth.

As this process becomes quite compute-intensive, even for moderate values of
maximum search depth and list length, we have written this application in Java,
using the Satin ([17]) divide-and-conquer system that runs on top of the Ibis
([18]) Grid programming environment. Abbadingo problem 7 was solved using a
search depth of 5, a list length of 256, and EDSM as the search heuristic. We did
not find a solution when using MDL as the search heuristic. The MDL search
heuristic sometimes seems to indicate choices, much deeper in the decision tree,
that don’t lead to an optimal DFA. In fact, this is the reason why problem 3
is not solved with the MDL heuristic and why problem 2 is only solved by one
of the MDL variants: the first 15 or so decisions are decisions that the EDSM
heuristic also indicates (albeit in a different order), but then a decision is made
that makes a solution impossible. The MDL values of the solutions found with
EDSM are lower than the ones found by means of the MDL heuristic, so MDL
as a measure is good, but MDL as guidance is not. This suggests that we could
use EDSM as the search strategy and MDL as a judge of the result. Indeed,
Abbadingo problem 7 was solved with the same depth and list parameters as by
using the number of states as a judge of the result. The significance of this is
that using the number of states as a judge of the result is not an option when
there are only positive examples.

6 Conclusions and Further Work

We have studied MDL in terms of two-part code optimization and randomness
deficiency. In this framework we showed that 1) Shorter code not necessarily
leads to better theories, e.g. the randomness deficiency does not decrease mono-
tonically with the MDL code, 2) contrary to what is suggested by the results of
[6] there is no fundamental difference between positive and negative data from
an MDL perspective, 3) MDL is extremely sensitive to the correct calculation
of code length. We have proved that already as a result of a single merge the
divergence of randomness deficiency and MDL code can occur. Using these ideas
we have implemented a MDL variant of the EDSM algorithm ([10]). The results
show that although MDL works well as a global optimization criterion, it falls
short of the performance of algorithms that evaluate local features of the problem
space. MDL can be described as a global strategy for featureless learning.

Suggestions for further work are: the extension of these ideas to more complex
language classes, the implementation of a better estimate of the model code,
the development of strategies for hybrid MDL learning (MDL applied to local
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representations of the problem space to bypass local optima) and a more efficient
implementation of the algorithm on the grid.
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