
Learning DFA from Correction
and Equivalence Queries�

Leonor Becerra-Bonache1, Adrian Horia Dediu1,2, and Cristina Tı̂rnăucă1

1 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tárraco 1, 43005 Tarragona, Spain
2 Faculty of Engineering in Foreign Languages

University “Politehnica” of Bucharest
Splaiul Unirii 313, 060042 Bucharest, Romania

{leonor.becerra, adrianhoria.dediu, cristina.bibire}@estudiants.urv.es
http://www.grlmc.com

Abstract. In active learning, membership queries and equivalence que-
ries have established themselves as the standard combination to be used.
However, they are quite “unnatural” for real learning environments (mem-
bership queries are oversimplified and equivalence queries do not have a
correspondence in a real life setting). Based on several linguistic argu-
ments that support the presence of corrections in children’s language ac-
quisition, we propose another kind of query called correction query. We
provide an algorithm that learns DFA using correction and equivalence
queries in polynomial time. Despite the fact that the worst case complexity
of our algorithm is not better than Angluin’s algorithm, we show through
a large number of experiments that the average number of queries is con-
siderably reduced by using correction queries.

Keywords: Active learning, learning DFA, membership query, equiva-
lence query, correction query.

1 Introduction

A general theory regarding human learning mechanisms that underlie natural
language acquisition is still missing. Several questions arise from the beginning,
among others: how are children able to learn languages so fluently and effort-
lessly, without explicit instruction? To what kind of data are they exposed to?

There is no doubt that children learn a language in part by hearing sentences
of that language. However, there is an aspect of the child’s linguistic environment
which has been subject of a long debate and which is still an important research
topic for both linguists and formal language theoreticians. While it is accepted
that positive data are available to the child, the availability of another kind of
data has been widely argued.
� This work was possible thanks to the FPU Fellowships AP2001-1880, AP2004-6968

from the Spanish Ministry of Education and Science and to the grant 2002CAJAL-
BURV4, provided by the University Rovira i Virgili.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 281–292, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Taking into account that children do not receive only passive information and
they interact with their environment, we consider that active learning might be
useful to model several aspects of children’s language acquisition.

In active learning, the learner is allowed to ask queries to the teacher. Member-
ship queries (MQs) and equivalence queries (EQs) have established themselves
as the standard combination to be used. They were introduced by Angluin in
[1]. She proved that DFA can be inferred in polynomial time from this type of
queries (this algorithm is known as L∗). However, they are quite “unnatural” for
real learning environments. For instance, when the learner asks about a word in
the language, the teacher’s answer yes/no is oversimplified.

As there is a growing evidence that corrections are available to children [2,3], we
believe that they can play a complementary role in language learning, although
the main source of information received during the learning process is positive
data. Therefore, we propose another kind of query called correction query (CQ).

What should a good correction be like? It could be defined by some function
that given any string associates some string in the language. This function might
be deterministic or stochastic. In order to simplify the problem, we are going to
consider in this paper a deterministic correction, which consists of the smallest
string (in lex-length order) that attached to the end of the requested string will
give us a string in the language.

Considering the simplicity of DFA and their adequacy for various applications
of natural language processing (although regular languages have limited expres-
siveness), we consider that a starting point could be to apply corrections to
learn DFA. We design an algorithm called Learning from Corrections Algorithm
(LCA), which is able to infer a minimal complete DFA using CQs and EQs.

Although in the worst case our algorithm works as Angluin’s algorithm, we
show that in general LCA performs better. Therefore, we can see not only that
it is possible to learn DFA from corrections, but also that the number of queries
between the learner and the teacher until the discovering of the language is
reduced considerably. Moreover, there are some classes of languages for which
the number of EQs is reduced to only one (in this case, the conjectured DFA is
equivalent to the target one) and therefore, we can consider that EQs are not
necessary at all for these classes.

This paper is organized as follows. Formal preliminaries and several basic
remarks are presented in Section 2. In Section 3 we describe the observation table
as the main data structure of the algorithm, we give a proof for the correctness
of our algorithm and we present the algorithm along with the time analysis.
Section 4 contains a running example and Section 5 presents some comparative
results with Angluin’s algorithm, both theoretical and experimental. In Section
6 we present several concluding remarks.

2 Preliminaries

In this paper we follow standard definitions and notations in formal language
theory. Supplementary information for this domain can be found in [4,5].

Learning DFA from Correction and Equivalence Queries 283

Let Σ be a finite set of symbols called the alphabet and let Σ∗ be the set of
strings over Σ. A language L over Σ is a subset of Σ∗. The elements of L are
called words or strings. Let α, β, γ be strings in Σ∗ and |α| be the length of the
string α. λ is a special string called the empty string and has length 0. Given a
string α = βγ, β is the prefix of α and γ is the suffix of α.

A deterministic finite automata (DFA) is a 5-tuple A = (Q, Σ, δ, q0, F) where
Q is the (finite) set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ is a partial function that maps Q×Σ to Q.
This function can be extended to words by writing δ(q, λ) = q and δ(q, s · a) =
δ(δ(q, s), a), ∀q ∈ Q, ∀s ∈ Σ∗, ∀a ∈ Σ. A string s is accepted by A if δ(q0, s) ∈ F .
The set of strings accepted by A is denoted by L(A) and is called a regular
language.

We say that a DFA A = (Q, Σ, δ, q0, F) is complete if for all q in Q and a in
Σ, δ(q, a) is defined (that is δ is a total function). For any DFA A, there exists a
minimum state DFA A′, such that L(A) = L(A′). Without loss of generality, we
assume that the target DFA which is to be learned is a minimal complete DFA.

A state q is called a live state if there exist strings α and β such that δ(q0, α) =
q and δ(q, β) ∈ F . The set of all the live states is called the liveSet(A). A state
that is not in the liveSet is called a dead state. The set of all dead states is called
the deadSet(A). Note that for a minimal DFA A, deadSet(A) has at most one
element.

For a string α ∈ Σ∗, we denote the left quotient of L by α by Lα = {β|αβ ∈ L}
= {β|δ(q0, αβ) ∈ F}, where A = (Q, Σ, qo, δ, F) is any automaton accepting the
language L.

In a standard query learning algorithm, the learner interacts with a teacher
that knows the target language (a regular language L over a known alphabet)
and is assumed to answer correctly. The goal of the algorithm is to come up with
a DFA accepting L. The teacher has to answer two types of queries: MQs - the
learner asks if a string α is in L, and the teacher answers ”yes” or ”no”; EQs
- the learner makes a conjecture of the DFA; the teacher answers ”yes” if the
learner automaton is isomorphic with the target automaton and ”no” otherwise;
if the answer is ”no” a string α in the symmetric difference of L(A) and L is
returned (the counter example). See [1,6] for detailed explanations of the model.

We are going to propose another type of query called CQ. It is an extension
of the MQ; the difference consists in the type of answer that we receive from
the teacher. Instead of a yes/no answer, a string called the correctingString is
returned to the learner.

The correctingString of α with respect to L is the minimum word (in lex-
length order, denoted by �) of the set Lα. In the case that Lα = ∅ we set
the correctingString of α w.r.t. L to ϕ, where ϕ is a symbol which does not
belong to the alphabet Σ. With these considerations, for the sake of simplicity
in notations, we use C instead of correctingString. Hence, C is a function from
Σ∗ to Σ∗ ∪ ϕ. Note that C(α) = λ if and only if α ∈ L.

Remark 1. If α, β, γ are strings in Σ∗ such that C(α) = β · γ then C(α · β) = γ.

Remark 2. For any α, β ∈ Σ∗, if Lα = ∅ then Lα·β = ∅.

284 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Remark 3. For any α ∈ Σ∗, the following results hold:

1. If C(α) �= ϕ then C(α · C(α)) = λ.
2. If C(α) = ϕ then ∀β ∈ Σ∗, C(αβ) = ϕ.

3 Learning from Corrections Algorithm (LCA)

We describe the learning algorithm LCA and show that it efficiently learns an
initially unknown regular set from an adequate teacher. Let L be the unknown
regular set and let Σ be the alphabet of L.

3.1 Observation Tables

The information we have at each step of the algorithm is organized into an
observation table consisting of: a nonempty finite prefix-closed set S of strings, a
nonempty finite suffix-closed set E of strings, and the restriction of the mapping
C to the set ((S ∪ SΣ) · E). The observation table will be denoted (S, E, C).

An observation table can be visualized as a two-dimensional array with rows
labelled by elements of S ∪ SΣ and columns labelled by elements of E with the
entry for row s and column e equal to C(s ·e). If s is an element of (S ∪SΣ) then
row(s) denotes the finite function from E to Σ∗ ∪ {ϕ} defined by row(s)(e) =
C(s · e). By rows(S) we understand the set {row(s) | s ∈ S}.

The algorithm LCA uses the observation table to build a DFA. Rows la-
belled by the elements of S are the candidates for states of the automaton being
constructed, and columns labelled by the elements of E correspond to distin-
guishing experiments for these states. Rows labelled by elements of SΣ are used
to construct the transition function.

Closed, consistent observation tables. An observation table is called closed if
for every s in (SΣ − S) there exists an s′ in S such that row(s) = row(s′). An
observation table is called consistent if for any s1, s2 in S such that row(s1) =
row(s2), we have row(s1 · a) = row(s2 · a), ∀a ∈ Σ.

If (S, E, C) is a closed, consistent observation table, we define a corresponding
automaton A(S, E, C) = (Q, Σ, δ, q0, F), where Q, q0, F and δ are defined as
follows:
Q = {row(s) | s ∈ S}
q0 = row(λ)
F = {row(s) | s ∈ S and C(s) = λ}
δ(row(s), a) = row(s · a)

One can see that this automaton is well defined and that deadSet(A) =
{row(s) | s ∈ S and C(s) = ϕ} (from Remark 3 we know that C(s) = ϕ ⇒
C(s · a) = ϕ, ∀a ∈ Σ).

Definition 1. Assume that (S, E, C) is a closed and consistent observation ta-
ble. We say that the automaton A = (Q, Σ, δ, q0, F) is consistent with the func-
tion C if for every s in S ∪ SΣ and e in E, the following statements hold:

Learning DFA from Correction and Equivalence Queries 285

1. C(s · e) = ϕ ⇔ δ(q0, s · e) ∈ deadSet(A),
2. C(s · e) = t ⇔ (δ(q0, s · e · t) ∈ F and ∀t′ ∈ Σ∗ (δ(q0, s · e · t′) ∈ F ⇒ t � t′)).

The important fact about the automaton A(S, E, C) is the following.

Theorem 1. If (S, E, C) is a closed and consistent observation table, then the
automaton A(S, E, C) is consistent with the finite function C. Any other automa-
ton consistent with C but inequivalent to A(S, E, C) must have more states.

The theorem follows from the following sequence of straightforward lemmas.

Lemma 1. Assume that (S, E, C) is a closed and consistent observation table.
For the automaton A(S, E, C) and for every s in S ∪ SΣ, δ(q0, s) = row(s).

Lemma 2. If (S, E, C) is a closed and consistent observation table and the au-
tomaton A(S, E, C) is (Q, Σ, δ, q0, F), then for each s in S ∪ SΣ and all e ∈ E,
there exists s′ in S such that δ(q0, s · e) = δ(q0, s

′) and C(s · e) = C(s′).

Lemma 3. Assume that (S, E, C) is a closed and consistent observation table.
Then the automaton A = A(S, E, C) is consistent with the function C.

Lemma 4. Assume that (S, E, C) is a closed, consistent observation table. Sup-
pose the automaton A(S, E, C) has n states. If A′ = (Q′, Σ, δ′, q′0, F ′) is any
automaton consistent with C that has n or fewer states, then A′ is isomorphic
with A(S, E, C).

Now, the proof of Theorem 1 follows, since Lemma 3 shows that A(S, E, C)
is consistent with C, and Lemma 4 shows that any other automaton consistent
with C is either isomorphic to A(S, E, C) or contains at least one more state.
Thus, A(S, E, C) is the unique smallest automaton consistent with C.

3.2 The Learner LCA

The learner algorithm uses as its main data structure the observation table that
we described in the previous subsection. Initially S = E = λ. To determine C,
LCA asks CQs for λ and each a in Σ. This initial observation table may or may
not be closed and consistent.

The main loop of LCA tests the current observation table (S, E, C) in order
to see if it is closed and consistent. If (S, E, C) is not closed, then LCA adds
a new string to S and updates the table asking CQs for missing elements. If
(S, E, C) is not consistent, then LCA adds a new string to E and updates the
table using CQs for missing elements.

When the learner’s automaton is closed and consistent the learner asks an
EQ. The teacher’s answers can be ”yes” (in which case the algorithm terminates
with the output A(S, E, C)) or ”no”(in which case a counterexample is provided,
all its prefixes are added to S and the table is updated using CQs).

Correctness of LCA. If the teacher answers always correctly then if LCA ever
terminates its output is clearly the target one. Recall that the teacher’s last
answer to an EQ before halting is yes.

286 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Algorithm 1. Learning from Corrections algorithm
1: Initialize S and E with λ
2: Ask correction queries for λ and each a ∈ Σ
3: Construct the initial observation table (S, E,C)
4: repeat
5: while (S, E, C) is not closed or not consistent do
6: if (S, E,C) is not closed then
7: find s in S and a in Σ such that row(s · a) /∈ rows(S)
8: add s · a to S
9: extend C to (S ∪ SΣ)E using CQs

10: end if
11: if (S, E,C) is not consistent then
12: find s1,s2 ∈ S, a ∈ Σ and e ∈ E such that row(s1) = row(s2) and C(s1 · a ·

e) �= C(s2 · a · e)
13: add a · e to E
14: extend C to (S ∪ SΣ)E using CQs
15: end if
16: end while
17: Construct the conjecture A(S,E, C)
18: if the teacher replies with a counter example s then
19: add s and all its prefixes to S;
20: extend C to (S ∪ SΣ)E using CQs;
21: end if
22: until the teacher replies yes to the conjecture
23: Halt and output A(S, E, C)

Termination of LCA. To see that LCA terminates, notice that the injectivity
of function φ defined on Lemma 4 implies that for any closed and consistent
observation table (S, E, C), if n denotes the number of different values of row(s)
for s in S then any automaton consistent with C must have at least n states.
The proof follows the lines of Angluin’s paper [1].

Time analysis of LCA. The time complexity of LCA is polynomial in n and
m (n is the number of states in the minimum automaton accepting L and m
is the maximum length of any counterexample string presented by the teacher).
For the details of the proof, the reader is referred to [1].

4 Running Example

In order to simplify the automata description we introduced the linear transition
table that is a normal transition table with all the lines written on the same row.

We explain how our algorithm runs by tracing the evolution of the observation
table for a language over the alphabet Σ = {0, 1}, L = (0 + 110)+. We can see
a minimal automaton associated with the mentioned language in Figure 1.

We observe that the linear transition table for this automaton is (q1, q2, q1,
q2, q3, q4, q3, q3, q1, q3) and the set of final states is F = {q1}.

Learning DFA from Correction and Equivalence Queries 287

Fig. 1. Minimal automaton associated with the language L = (0 + 110)+

Initially the learner starts with S = {λ}, E = {λ} and the observation table
described as Table 1.

Table 1.

T1 λ

λ 0
0 λ(λ,λ)

1 10

We can observe that the information for the string 0 and the experiment λ is
known from the corresponding query for λ, since C(λ) = 0 implies C(0) = λ.

The table is not closed because row(0) and row(1) do not belong to rows(S).
We add the strings 0 and 1 to S and we extend the table using CQs. The
observation table is still not closed since row(10) does not belong to rows(S).
The algorithm adds the string 10 to S. We can notice that the corrections for
the strings 100 and 101 are already known, since C(10) = ϕ implies C(100) =
C(101) = ϕ. The current observation table is represented in Table 2.

Table 2.

T2 λ State
λ 0 q0

0 λ(λ,λ) q1 ∈ F
1 10 q2

10 ϕ q3

00 λ q1 ∈ F
01 10 q2

11 0(1,λ) q0

100 ϕ(10,λ) q3

101 ϕ(10,λ) q3

In this moment, we can see that the observation table is closed and consis-
tent and it follows an EQ. The conjectured automaton has the linear transition

288 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

table (q1, q2, q1, q2, q3, q0, q3, q3) and the set of final states F = {q1} and the
representation given in Figure 2.

Fig. 2. The automaton associated with Table 2

This is not the target automaton and hence the teacher answers with a counter
example. Suppose that the counter example returned is the string 11110. The
algorithm adds this string and all its prefixes to S and updates the table. The
current observation table is not consistent, since row(λ) equals row(11) but
C(λ · 1 · λ) �= C(11 · 1 · λ). The algorithm adds the string 1 to E.

As we can see, the current observation table (Table 3) is closed and consis-
tent and the conjectured automaton is isomorphic with the target one, so the
teacher’s answer to the EQ is positive. We notice that during the whole algo-
rithm’s execution, the learner asked only two EQs (the last one was successful)
and eight CQs.

Table 3.

T3 λ 1 State
λ 0 10(1,λ) q0

0 λ(λ,λ) 10(01,λ) q1 ∈ F

1 10 0(1,λ) q2

10 ϕ ϕ(10,λ) q3

11 0(1,λ) ϕ(111,λ) q4

111 ϕ ϕ(111,λ) q3

1111 ϕ(111,λ) ϕ(111,λ) q3

11110 ϕ(111,λ) ϕ(111,λ) q3

00 λ 10 q1 ∈ F

01 10 0(01,λ) q2

100 ϕ(10,λ) ϕ(10,λ) q3

101 ϕ(10,λ) ϕ(10,λ) q3

110 λ(1,λ) 10 q1 ∈ F

1110 ϕ(111,λ) ϕ(111,λ) q3

11111 ϕ(111,λ) ϕ(111,λ) q3

111100 ϕ(111,λ) ϕ(111,λ) q3

111101 ϕ(111,λ) ϕ(111,λ) q3

Learning DFA from Correction and Equivalence Queries 289

5 Comparative Results

In this section we present some theoretical and practical results. We prove that
there exist classes of languages for which the number of queries needed to learn
is lower for our algorithm. Using running tests we also show that in practice our
algorithm uses less queries.

5.1 Theoretical Results

We believe that in most of the cases LCA performs not worst that L∗ and that
there are several subclasses of regular languages for which our algorithm needs
smaller number of queries. In the sequel we present one of such subclasses.

Without loss of generality, the teacher is supposed to return the shortest
counterexample. Let L be the target language and m the size of the minimal
complete DFA accepting L.

Definition 2. By MQL(m) (CQL(m)) we denote the number of different words
submitted by the learner L∗ (LCA) to the teacher in order to identify L.

Theorem 2. There exists an infinite class of languages which require a polyno-
mial number of MQs but a linear number of CQs in order to be identified.

Let us consider SΣ the class of singletons over Σ, that is the languages which
contain only one string. The theorem follows from the following two lemmas.

Lemma 5. For any fixed alphabet Σ of length k and any language L in SΣ the
number of MQs needed by L∗ in order to identify L is:

MQL(m) = 2(k − 1)m2 − (4k − 7)m + 2k − 5 . (1)

Lemma 6. For any fixed alphabet Σ of length k and any language L in SΣ the
number of CQs needed by LCA in order to identify L is:

CQL(m) = (k − 1)(m − 1) + 2 . (2)

and the number of EQs is only one.

Corollary 1. For the one letter alphabet, the class SΣ needs a linear number of
MQs and a constant number of CQs. More precisely, given the language L, L∗

asks a total number of 3m − 3 MQs (where m is the size of its minimal DFA),
meanwhile LCA asks only 2 CQs.

5.2 Practical Results

Due to the coding of the states and to the embedded information within the
teacher’s answers, our practical results reflect the improvement brought by our
algorithm.

290 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

We tested L∗ and LCA on an randomly generated set of 209 DFA, all of
them on a two letter alphabet. To be able to visualize the comparison between
the efficiency of the two algorithms, we used the average value of the number
of queries for automata with the same number of states. For that purpose, we
needed a test set with equally distributed number of states (more precisely, we
randomly generated 11 automata having 2, 3,... up to 20 states).

In order to generate the DFA test set, we used the public package from
http://www.research.att.com/sw/tools/fsm/ having the documentation avail-
able in [7].

To generate random automata, we considered a maximum number of states
of 20 for our examples. Without loss of generality, the initial state is always
the state 0. Then we generate complete transition tables having the destination
states generated randomly between 0 and the maximum number of states. For
the number of final states, we generated a random number between 0 and the
maximum number of states -1. Then, we generated again randomly the final
states (without repeating twice the same state).

After minimizing, we checked the newly found DFA for non-equivalence with
the already generated automata. In case of equivalence, we generated new au-
tomata. Finally, we checked for completeness and then we loaded the automata
in our programs.

We generated two graphics for the results obtained with the two letters alpha-
bet. The first one, represented in Figure 3, contains the average values for the
number of EQs asked by L∗ and LCA respectively, the average being computed
for automata having the same number of states.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

States

L* EQs LCA EQs

Fig. 3. EQs average values for automata with the same number of states;

The second graphic, represented in Figure 4, contains the average values ob-
tained for the number of MQs and CQs, respectively, for automata with the
same number of states.

We also run tests on different size alphabets. The results obtained strengthen
our belief that the improvements of our algorithm are not limited to some small
class of languages.

Learning DFA from Correction and Equivalence Queries 291

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

States

MQs CQs

Fig. 4. MQs and CQs, average values for automata with the same number of states

6 Concluding Remarks

We propose a new paradigm for the computational learning theory, namely learn-
ing from corrections. Our algorithm based on Angluin’s L∗ learning algorithm
for regular languages uses an observation table with correcting strings instead
of 0s and 1s. In our running examples, generally, the number of EQs are less
or equal than in Angluin’s ones and the number of CQs is significantly smaller
than the number of MQs.

The empirical results show that in most of the cases the number of queries used
by LCA is smaller. We believe that this is related to the injectivity property: a
language is injective if any two non equivalent strings (using the standard Myhill-
Nerode equivalence) have different corrections. One can see that the rare cases
in which our algorithm performs worse, compared to L∗, is when this injectivity
property is far from being satisfied. On the other hand, when this property is
fulfilled, EQs are no longer needed.

Among the improvements previously discussed, we would like to mention here
the adequacy of CQs in a real learning process. They reflect in a more accurate
manner the process of children’s language acquisition. We are aware that this
kind of formalism is for an ideal teacher who knows everything and always gives
the correct answers and for practical applications our working hypothesis should
be adjusted.

Since there is no correspondence of an EQ in a real situation (a child will never
ask to the adult if her grammar is the correct one), as a future work we would
like to extend our results on singleton languages to a bigger class and hence to
enlarge the class of languages learnable from only CQs. Moreover, we will try
to find subsets of regular languages for which LCA performs always better than
L∗ and to identify a necessary and sufficient condition for a class of languages
to be faster learnable using our algorithm. We will also like to extend this result
to Context Free and Mildly Context Sensitive Languages, which are considered
more appropriate to model some aspects of natural language acquisition (prob-
ably another type of correction would be needed).

292 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Acknowledgements

Special thanks to professors Victor Mitrana, Colin de la Higuera and Dana An-
gluin for valuable advices and a careful review. Also many thanks to anonymous
reviewers for their remarks and suggestions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

2. Becerra-Bonache, L.: On the Learnability of Mildly Context-Sensitive Languages
using Positive Data and Correction Queries. Doctoral thesis, Rovira i Virgili Uni-
versity (2006)

3. Becerra-Bonache, L., Yokomori, T.: Learning mild context-sensitiveness: Toward
understanding children’s language learning. In: Proceedings of the 7th International
Colloquium on Grammatical Inference. (2004) 53–64

4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley (2001)

5. Yu, S.: Finite automata. In Martin-Vide, C., Mitrana, V., Paun, G., eds.: For-
mal Languages and Applications. Studies in Fuzzyness and Soft Computing 148.
Springer, Berlin (2004) 55–85 ISBN 3-540-20907-7.

6. Angluin, D.: Queries and concept learning. Machine Learning 2(4) (1988) 319–342
7. Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-state

transducer library. In: WIA ’97: Revised Papers from the Second International Work-
shop on Implementing Automata, London, UK, Springer-Verlag (1998) 144–158

	Introduction
	Preliminaries
	Learning from Corrections Algorithm $\ (LCA)$
	Observation Tables
	The Learner \LCA

	Running Example
	Comparative Results
	Theoretical Results
	Practical Results

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

