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Abstract. Strings can be mapped into Hilbert spaces using feature
maps such as the Parikh map. Languages can then be defined as the pre-
image of hyperplanes in the feature space, rather than using grammars
or automata. These are the planar languages. In this paper we show that
using techniques from kernel-based learning, we can represent and effi-
ciently learn, from positive data alone, various linguistically interesting
context-sensitive languages. In particular we show that the cross-serial
dependencies in Swiss German, that established the non-context-freeness
of natural language, are learnable using a standard kernel. We demon-
strate the polynomial-time identifiability in the limit of these classes, and
discuss some language theoretic properties of these classes, and their re-
lationship to the choice of kernel/feature map.

1 Introduction

Formal languages, whether used in linguistics or in computer science, have tra-
ditionally been represented either by grammars or by various simple machine
formalisms. In linguistics context-free grammars have been widely used as a
representative tool. With the discovery of demonstrably non-context-free phe-
nomena in syntax, most famously in Swiss German ([Huy84, Shi85]), attention
switched away from grammatical formalisms based on CFG, such as GPSG, to
more powerful formalisms that were capable of modelling these phenomena: these
are generally restricted to the mildly context-sensitive languages (see [JS96] for
an overview).

From a linguistic point of view these formalisms have a number of desirable
properties, but from a learnability point of view they are far too unrestricted.
Even very simple classes of these formalisms, such as acyclic deterministic finite
state automata, are already unlearnable when using modern characterisations
of learnability, because intractable cryptographic problems can be embedded in
the learning of these tasks.

Chomsky correctly identified accounting for the learnability of language as
one of the principal challenges for linguistics. The Principles and Parameters
approach is one solution to this problem: by specifying a class of languages
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parametrised by a small set of parameters the learnability problem can be sim-
plified. Unfortunately problems of lexical acquisition, cross-language ambiguity
and the intertwining of parameter settings meant that no satisfactory theory of
parameter-based learning has ever been presented. In this paper, rather than
taking an overexpressive class of representations and trying to make it learnable
by imposing additional restrictions on it, we take an alternative route. We re-
strict ourselves to a class of representations that are inherently learnable from
positive data alone. At this point the class has a limited range, yet it is capable
of representing some classic examples of mildly context-sensitive languages.

We define the class of planar languages. These are languages that corre-
spond to planes in a feature space. Using standard linear algebra techniques
we are then able to learn the minimal plane that contains the data points from
positive data alone. This does not restrict us to (semi)linear languages: the
function that maps datapoints to feature vectors can, and generally will, do so
in a non-linear fashion. This geometrical representation of languages allows us
to apply the mature theory of linear algebra to the problems of grammatical
inference.

We give a simple example before giving formal definitions. Consider the lan-
guage L defined as the set of all strings containing equal numbers of as and
bs. If we define a feature map from this set of strings to a plane, where the
first coordinate is the number of as in the string and the second coordinate the
number of bs, so that aab is mapped to the point (2, 1) and so on, we see that
all of the strings in the language will be mapped to points that lie on the line
x = y, such as (1, 1), (2, 2) and so on. Additionally we can see that every string
whose image lies on this line is also in the language. Thus L can be defined
using a one-dimensional hyperplane in this feature space, and is thus a planar
language.

Obviously the feature mapping limits the class of languages that can be de-
fined, and with this trivial mapping, the Parikh map, only very few languages
can be characterised. A major reason for this is that the feature mapping is
not injective, i.e. there are pairs of distinct strings, such as ab and ba, that are
mapped to the same point in the feature space, (1, 1). In this paper we will
use the implicit feature maps defined by string kernels ([Wat99]), in particular
the gap-weighted kernel, that have the property of being injective for suitable
choices of the kernel hyperparameters.

In the rest of this paper we discuss the properties of planar languages. After
defining notation, we present simple examples of planar languages, as well as
examples of languages that are not planar languages. We then discuss the closure
properties of the class of planar languages, their relation to other well-studied
classes, learnability properties, and conclude with some directions for future
research. Our focus in this paper is on the learnability and language-theoretic
issues, so we won’t discuss the algorithmic/computational issues involved. We
have implemented and tested thoroughly all of the results presented here, see
[CCFWS06] for discussion.
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2 Planar Languages

We will use the following definitions and notation. We have a finite non-empty
set Σ, which we call the vocabulary. We consider the free monoid Σ∗ with
identity/empty string ε. A language L is a subset of Σ∗. We will write a, b . . .
for elements of Σ∗. We write |u| for the length of a string u, and we will write |u|v
for the number of occurrences of v as a substring of u. We will also write u[i] for
the ith character of u, where 1 ≤ i ≤ |u|. Sequences of indices are written i, and
s(i) will denote the non-contiguous substring of s composed of the characters at
the positions in s specified by i.

We will consider feature maps φ from Σ∗ into a possibly infinite dimensional
Hilbert space H . For the purposes of this paper we can consider these to be real
vector spaces, with the standard inner product which we will write as 〈u, v〉.
When the dimension of the Hilbert space is very high it can be prohibitively
expensive or impossible to calculate φ(x) directly. Accordingly for every φ we
can define a kernel function from Σ∗ × Σ∗ → R, which is defined as κ(u, v) =
〈φ(u), φ(v)〉. Thus such feature spaces can still be used with many machine
learning algorithms, since these are often based on the distance between points
in a feature space. This approach is sometimes called the kernel trick and was
first used in [ABR64], in the context of linear separators.

For the algorithms we discuss here it will be possible to compute κ(u, v) in
time polynomial in |u| and |v|. Details of the dynamic programming techniques
that make this possible can be found in [STC04]. It is possible to perform all of
the calculations described here using only the kernel computations rather than
working directly with the images of the strings in the Hilbert space.

2.1 Planarity

Given a particular kernel κ and associated feature map φ : Σ∗ → H we can give
the following definition.

Definition 1. A language L ⊆ Σ∗ is κ-planar if there is a finite set of strings
{u1, . . . , un} such that L = {w ∈ Σ∗ | ∃α1 . . . αi ∈ R :

∑n
i αi = 1∧

∑n
i αiφ(ui) =

φ(w)}.

Given a κ-planar language L we can define the rank of L to be the cardinality of
the smallest subset that defines the language. Note that this definition restricts
planar languages to those of finite rank, and secondly that we restrict ourselves
to affine combinations of strings ui. This has the effect of slightly increasing the
expressive power of the formalism, so that for example the languages do not
necessarily contain the preimage of the origin, where it exists.

Definition 2. For a language L ⊆ Σ∗, we define

H(L) = {h ∈ H | ∃n > 0, w1 . . . wn ∈ L, α1, . . . αn such that∑
i αi = 1,

∑
i αiφ(wi) = h}
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where H is the feature space. Thus H(L) is the smallest hyperplane that contains
the image of L.

For any finite set of strings U = {u1, . . . , un} and a test string v, and any
polynomially evaluable kernel κ with associated feature map φ, there is an algo-
rithm for deciding whether φ(w) ∈ H(u1, . . . , un), which runs in time polynomial
in n, |v| and

∑
i |ui|. This algorithm, based on standard techniques, described

in [STC04], involves computations only using the matrix of kernel values, and
proceeds by normalising this matrix, which has the effect of translating the data
in feature space so that the mean of the data lies in the origin, and performing
an eigendecomposition of this matrix; it is then easy to project the test point v
onto the perpendicular vectors to compute the distance in feature space of the
point from the plane formed by U . Neglecting the issue of the numerical stability
of these algorithms, which is beyond the scope of this paper, this distance will
be zero if and only if φ(v) lies in the plane H(L).

2.2 Kernels

We will now define the various kernels used in this paper. We will use the con-
vention [STC04] that i = (i1, . . . , i|u|) ranges over the set of all strictly ordered
tuples of indices. The following kernels are standard kernels in the literature.

Definition 3. The All-k-Subsequences kernel.
The feature space associated with the All-k-Subsequences kernel is indexed by
I = ∪k

i=0Σ
i, with the embedding given by φu(s) = |{i : u = s(i)}|, u ∈ I.

The Parikh kernel is simply the special case of All-k-Subsequences with k = 1.

Definition 4. The p-Spectrum kernel.
The feature space associated with the p-Spectrum kernel is indexed by I = Σp,
with the embedding given by φp

u(s) = |{(v1, v2) : s = v1uv2}|, u ∈ Σp. The
associated kernel is defined as κp(s, t) = 〈φp(s), φp(t)〉 = Σu∈Σpφp

u(s)φp
u(t).

We now define the schema kernel, which has not been discussed anywhere else
before. We do not use it directly but just as a means to prove the injectivity of
another kernel.

Definition 5. Let Σ′ = Σ ∪{?}. A schema is any sequence σ ∈ Σ′+. A gapped
schema is an element of Σ × {?}∗ × Σ, or an element of Σ.

Given a string u and a schema σ the count of the schema in a string is the
number of times it matches exactly, where ? matches any symbol. More formally:
|{i|∀j = 1, . . . |σ|, σ[i] =? or σ[i] = u[i + j]}|.

Definition 6. The gapSchemas kernel.
The gapped schema feature map (gapSchemas) maps strings to vectors, where
each feature is indexed by a gapped schema, and the value of the feature is the
count of the schema in the string. The gapped schema kernel is the kernel based
on the gapped schema feature map.
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Example 7. The feature vector obtained from φ(abba) assigns 2 to features a and
b, 1 to features ab, ba, bb, a?b, b?a, a??a, and 0 to all others.

Proposition 8. The gapSchemas kernel is injective.

Proof. By construction of the inverse function. Given an feature representation
h ∈ H , and a w ∈ Σ∗ such that φ(w) = h. Let l be the length of the longest
schema with a non-zero value in h, which will be unique. Clearly |w| = l.

1. The first character of the string is the first character of the longest schema.
2. The nth character (for n > 1) contributes as first character to one of the

schemas of length l − n + 1, but not to the schemas of length l − n + 2.
So, let Sn be the multiset enumerating just all first characters of schemas of
l − n + 1. Then the nth character is the only element of the set Sn − Sn−1.

�

Definition 9. The gap-weighted subsequences feature map (gapWeighted): All
non-contiguous subsequences of length p where each occurrence is weighted ex-
ponentially by the number of gaps. This is adjusted by a hyperparameter λ.
φu(s) =

∑
i:u=s(i) λl(i) where |u| = p. l(i) is defined as 1 + i|i| − i1.

The gap-weighted subsequences feature kernel is the kernel based on the gap-
weighted subsequences feature map.

Definition 10. The gap-weighted subsequences plus feature map
(gapWeighted+): Combines gapWeighted and the Parikh kernel times λ.1

We also define the associated kernel.

Example 11. For p = 2:

φ(bab) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a : λ
b : 2λ

aa : 0
ab : λ2

ba : λ2

bb : λ3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

2.3 Injectivity of the gapWeighted+ Kernel

The proof of the following proposition makes use of the existence of transcen-
dental numbers. A transcendental number is any complex number that is not
algebraic, that is, not the solution of a non-zero polynomial equation with inte-
ger (or, equivalently, rational) coefficients; some standard examples are π and e.
The intuition behind the proof is that there is a correspondence between gapped
schemas and the complex polynomials obtained from the gapWeighted+
kernel.
1 We could use the standard Parikh kernel here, the λ factor is purely for technical

reasons.
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Proposition 12. There exists an injective function f from gapSchemas fea-
ture representations to gapWeighted+ feature representations, for p = 2.

Proof. We write H1 for the space of gapSchemas representations and φ1 for
the associated feature map, and H2, φ2 for the space of gapWeighted+ feature
representations, and its map. We define f as follows: fa(h) = λha, fab(h) =
habλ

2 + ha?bλ
3 + . . . .

By construction we can see that φ2(w) = f(φ1(w)). Suppose we have two
elements h, h′ of H1, that lie in φ1(Σ∗), such that f(h) = f(h′). This means that
for every feature ab, we have fab(h) = fab(h′) and therefore habλ

2 + ha?bλ
3 +

. . . . = h′
abλ

2 + h′
a?bλ

3 + . . . . This means that λ is the root of the polynomial
(hab − h′

ab)λ
2 + (ha?b − h′

a?b)λ
3 + · · · = 0. Note that this is a polynomial since

we will only have finitely many non-zero feature values for images of strings.
Since λ is transcendental this means that all of the coefficients must be zero, i.e.
hab = h′

ab, ha?b = h′
a?b, . . . . Therefore h = h′ and the map is injective. �

An algorithm implementing f−1 exists: from the gapWeighted+ feature rep-
resentation the length of the string, l, and thus of the longest schema, can be
calculated. Consider the total sum of all the values from the gapWeighted+
feature representation. We can simply enumerate all possible values for this sum;
λ2 for l = 2, 2λ2+λ3 for l = 3, 3λ2+2λ3+λ4 for l = 4 etc, until we find one equal
or very close to the total sum (note this is an increasing sequence, so termination
is guaranteed).

Given the value of l and λ, the value vi of every coordinate i of the
gapWeighted+ feature representation can be matched against an exhaustive
list of all polynomials possible for a single coordinate: c1λ+c2λ

2+c3λ
3+· · ·+clλ

l,
where 0 ≤ c2 ≤ min(floor(vi/λ), l − 1), 0 ≤ c3 ≤ min(floor(vi/λ), l − 2), . . . , 0 ≤
cl ≤ min(floor(vi/λ), 1) (note that the length of this list is bounded by l). Each of
these polynomials corresponds to one unique combination of schemas, and from
the gapSchemas feature representation the string can easily be generated.

Proposition 13. The gapWeighted+ kernel is injective for any transcenden-
tal value for λ and p = 2.

Proof. Since there exists an injective function f from gapSchemas feature rep-
resentations to gapWeighted+ feature representations, and since the compo-
sition of two injective functions is also injective, the gapWeighted+ kernel is
injective. �

Note that the choice of value for λ is crucial, and that when λ → 0, for example,
the gapWeighted+ kernel is not injective. In this case the kernel behaves like
the p-Spectrum kernel, which is not injective: for p = 2, aaacaaa and aacaaaa
have the same image.

Note that the inclusion of the Parikh kernel in gapWeighted+ is necessary
only for dealing with languages containing strings of length 1. If we restrict
the domain to a class of languages whose shortest strings are of length at least
l, l > 1, then gapWeighted (and thus gapWeighted+) is injective for this
domain for any p ≥ 2.
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3 Generative Capacity

Clearly the generative capacity of a given class of planar languages depends
crucially on the kernel used. Consider the kernel κL(u, v) = 1 if u, v ∈ L and 0
otherwise, for any language L: using this trivial kernel L is κL-planar. Similarly,
planes in the feature space defined by the discrete kernel κ(u, v) = 1 if u = v
and 0 otherwise, are the images of the finite languages, where the rank is the
cardinality of the language.

The class of gapWeighted planar languages contains quite expressive lan-
guages. It contains the copy language with disjoint alphabet: given an alphabet
Σ split into two disjoint sets Σ1, Σ2, with a bijection f between them, it is de-
fined as {uv|u ∈ Σ∗

1 , v ∈ Σ∗
2 , v[i] = f(u[i])}. For example, with Σ = {a, b} and

Σ′ = {c, d}, f(a) = c, f(b) = d, abacdc is grammatical. Informally, the plane
corresponding to this language (given this kernel) is simply defined by |s|ba = 0
(for all b ∈ Σ2, a ∈ Σ1), |s|a = |s|c, |s|ab = |s|cd for all a, b ∈ Σ1, c, d ∈ Σ2.
This language is a direct model of the Swiss German crossing dependencies con-
struction mentioned in the introduction, the u substring represents a list of noun
phrases, the v part a list of verb phrases.

The language anbmcndm is planar for All-k-Subsequences, k = 2. It can be
expressed in linear constraints: |u|a = |u|c, |u|b = |u|d, |u|ba = |u|ca . . . = 0. It’s
easy to see that the MIX language (all permutations of anbncn for all n) and
dependent branches language (anbmcmdlel, n = m + l > 0) can be expressed in
similar fashion.

Some languages that can be easily expressed with linear constraints can be
expressed in more conventional formalisms only with very large grammars. For
example, [Asv06] shows that the size of context-free grammars in Chomksy nor-
mal form that generate finite languages containing all permutations of n different
symbols grow by a function exponential in n.

3.1 Planar Languages and the Chomsky Hierarchy

Planar languages cross-cut the Chomsky Hierarchy. Exactly what subset of each
degree of the hierarchy they include depends on the kernel used.

Example 14. The class of languages LAll2, all languages planar in the feature
space of the
All-k-Subsequences kernel with k = 2, contains:

1. Finite languages: both {a}, {a, ab} are in LAll2, but {abba} isn’t. The string
abba maps to a point in feature space that baab maps to as well, so {abba, baab}
is in LAll2.

2. Regular languages: {a∗} is in LAll2, but not Even, the language containing
all and only strings of even length.

3. Context-free languages: anbn is in LAll2, but not the bracket language.
4. Mildly context-sensitive languages: anbncn.
5. Non-mildly context-sensitive languages: anbncndnen, but not an2

.
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3.2 Relationship with k-testable Languages

The class of k-testable languages has been shown to be learnable, and have been
applied in bioinformatics, see [YK98].

If κp is the p-Spectrum kernel, then the k-testable languages are κp-planar,
which is obvious from the definitions. However, the converse does not hold, the
language with equal numbers of as and bs is κ1 planar but not locally testable.

4 Closure Properties of Planar Languages

Planar languages do not enjoy most of the well-known closure properties. It is
easy to see that for example the class of Parikh-planar languages is not closed
under concatenation: both a∗ and b∗ are Parikh-planar, but {a∗b∗} isn’t. Sim-
ilarly they are not closed under union, or homomorphism. Two exceptions are
the obvious property of being closed under reversal, and under intersection:

Proposition 15. The intersection of two κ-planar languages is κ-planar.

Proof. Suppose that L1 and L2 are κ-planar for some kernel κ. Consider H(L1 ∩
L2), the least plane that contains the image of the intersection of L1 and L2
(Recall Definition 2).

Suppose w ∈ L1 and w ∈ L2. Clearly φ(w) ∈ H(L1 ∩L2). Conversely suppose
we have a w such that φ(w) ∈ H(L1 ∩L2). Now H(L1 ∩L2) ⊂ H(L1) so φ(w) ∈
H(L1). Since L1 is planar, w ∈ L1. Similarly w ∈ L2. So, φ(w) ∈ H(L1 ∩ L2) if
and only if w ∈ L1 ∩L2. Since L1 and L2 are planar, H(L1) has finite dimension,
and thus so does H(L1 ∩ L2). Therefore L1 ∩ L2 is planar. �

Note also that the resulting hyperplane will be of lower dimensionality than
the intersecting planes (and will have the same dimensionality only if these are
identical).

5 Learnability

As was previously mentioned, the main motivation for studying κ-planar lan-
guages is their inherent learnability. There exists a simple and efficient algorithm
to learn any of them from positive data: just use as the representation all linear
combinations of the sample data, i.e. find the smallest hyperplane that contains
all data points. We define a slightly modified algorithm SPAN(σ) that checks for
any new data-point whether it is generated by the current hypothesis (this can
easily be determined, since distance from the plane can be computed in polyno-
mial time), and only changes its conjecture when necessary. The new conjecture
will have the new data-point added to the base description. Algorithm 1 presents
this more formally:

At any given point we have a set of strings that form a basis in feature space
for the plane. These strings will be linearly independent: |U | will be equal to the
rank of H(U). For any language L such that H(L) has finite rank r, we can see
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Algorithm 1. SPAN learning algorithm
Inputs: kernel κ, training data S = {w1, . . . wl}
U = {}
for i = 1 to i = l do

if φ(wi) �∈ H(U) then
U = U ∪ {wi}

end if
end for

that SPAN, will converge to a representation of the preimage of H(L) after at
most r mind changes.

The notion of learnability we will apply here is known as identification in
the limit ([Gol67]). Within this framework, a class of languages is considered
learnable if there exists a (computable) function over sequences of input data
that converges on a correct hypothesis after a finite amount of data (assuming
all data is presented eventually).

5.1 Resource-Based Constraints on Learners

Identification in the limit of a class guarantees the existence of learning algo-
rithms for that class, but the learning problem is not necessarily tractable. Since
we are interested in applications we need to specify further constraints on the
learner. Ideally we would use some notion of polynomial identification in the
limit. There are several around ([dlH95, Yok91] among others), but they are all
of a somewhat ad-hoc nature. The latter is one of the more restrictive ones and
thus suits our present purpose best. [Yok91] defines a class as polynomial-time
identifiable in the limit from positive data if there exists a learning algorithm
for that class such that both the number of explicit errors of prediction and the
computation time it needs for any sequence of data are bounded by polynomials
over the complexity of the representation (rank, in this case).

5.2 Behavioural Constraints on Learners

Identification in the limit provides criteria for the success of a learning process,
but grants total freedom to learners prior to convergence. Generally speaking
it’s desirable to be able to impose additional constraints, to guarantee ‘ratio-
nal’ behaviour of the learner. Formally this simply means choosing a subset of
possible learners.

Many different constraints have been studied in the literature, we define the
ones relevant to this discussion:

Definition 16. Consistent learning
A learning function ϕ is consistent on G if for any L ∈ L(G) and for any
finite sequence 〈s0, . . . , si〉 of elements of L, either ϕ(〈s0, . . . , si〉) is undefined
or {s0, . . . , si} ⊆ L(ϕ(〈s0, . . . , si〉)).
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Definition 17. (Strong) Monotonicity
The learning function ϕ is monotone increasing or strong monotonic if for all
finite sequences 〈s0, . . . , sn〉 and 〈s0, . . . , sn+m〉, whenever ϕ(〈s0, . . . , sn〉) and
ϕ(〈s0, . . . , sn+m〉) are defined, L(ϕ(〈s0, . . . , sn〉)) ⊆ L(ϕ(〈s0, . . . , sn+m〉)).

Definition 18. Incrementality
The learning function ϕ is incremental if there exists a computable function ψ
such that
ϕ(〈s0, . . . , sn+1〉) � ψ(ϕ(〈s0, . . . , sn〉), sn+1).

5.3 Learnability of Planar Languages

We are now in a position to demonstrate a strong learnability result for pla-
nar languages. Even under a combination of various constraints on the use of
resources and on behaviour this class is learnable:

Theorem 19. The class of κ-planar languages is identifiable in the limit, with
polynomial size characteristic set, a polynomial number of mind changes, and
polynomial computation, by a learner that is simultaneously consistent, mono-
tone increasing and incremental.

Proof. For any plane of rank r there is a set C of strings such that |C| = r and
for any enumeration e of C, |SPAN(e)| = r (trivial). It follows immediately that
for any enumeration e of C, SPAN(e) defines a plane for L, and thus that C is
a characteristic set for L.

Consider C′ = C ∪ S, where S is a finite subset of L. By definition of planar
language and SPAN, S is in the language defined by plane SPAN(e), so for any
enumeration e′ of C′, SPAN(e′) = SPAN(e), both define a plane for L.

Therefore the learning function based on SPAN will, after encountering all
elements from a characteristic set C, hypothesise L and will not diverge from
this hypothesis. This proves identifiability in the limit of the class of planar
languages.

The characteristic set has a size2 polynomial (in fact linear) in the rank of the
target plane, the learner need only change its mind as many times as the size of
the characteristic set, and SPAN can be implemented to run in polynomial time.

A learner for planar languages based on SPAN is consistent and monotone
increasing by definition. Incrementality is trivial: the plane is defined in terms of
the set of basis strings; this basis and the new data-point are enough to generate
a new hypothesis. �

5.4 Finite Elasticity

Learnability, and related properties like existence of a mind change bound, are
largely determined by topological properties of the class under consideration.
2 Here ‘size’ simply means cardinality of the set. It makes little sense to include the

length of the strings in this definition, since the class includes for example the finite
language with one element a10100

.
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One such property is the existence of an infinite ascending chain of languages.
This means that for L0, L1, . . . , Ln, . . . in that class, L0 ⊂ L1 ⊂ . . . ⊂ Ln ⊂ . . . .
This implies the weaker property known as infinite elasticity:

Definition 20. (In)finite elasticity[Wri89, MSW91]
A class L of languages is said to have infinite elasticity if there exists an infinite
sequence 〈sn〉n∈N of sentences and an infinite sequence 〈Ln〉n∈N of languages in
L such that for all n ∈ N, sn �∈ Ln, and {s0, . . . , sn} ⊆ Ln+1.

A class L of languages is said to have finite elasticity if it does not have
infinite elasticity.

Finite elasticity is a sufficient condition for learnability under two conditions, as
shown in [Wri89]:

Theorem 21. (Wright) Let G be a class of grammars for a class of recursive
languages, where G ∈ G is at least semi-decidable. If L(G) has finite elasticity,
then G is identifiable in the limit.

Thus one route to proving learnability of a class is demonstrating it has finite
elasticity, which has the added benefit of allowing one to easily define a conser-
vative learning algorithm. In this context this is not necessary, however we do
get nice closure properties for free.

Proposition 22. If the feature space defined by κ has finite dimension, then the
class of κ-planar languages has finite elasticity.

Proof. Suppose the class has infinite elasticity, with strings s1, . . . and languages
L1 . . . . If we define Sn = H({s0, . . . , sn}), then Sn−1 ⊆ Ln, and Sn �⊆ Ln.
Obviously, S0 ⊂ S1 . . ., which constitutes an infinite ascending chain. Since Sn

must be of greater rank than Sn−1, and every Sn is included in a language in
the class, there can’t be any bound on the rank of the planes for languages in
the class. This is in contradiction with the hypothesis that the feature space has
finite dimension. �

This does not hold for all planar languages. Any class of planar languages that
contains all finite languages (c.f. the kernel based on all substrings) has an infinite
ascending chain. It does hold for gapWeighted- and gapWeighted+ planar
languages.

It is straightforward to establish the following corollary (see [Wri89]):

Corollary 23. Any finite union of classes of κ-planar languages where κ is
finite dimensional has finite elasticity.

Thus planar languages can be generalised to larger classes of learnable languages.
Unfortunately, the naive learning algorithms for these classes will run in expo-
nential time.
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6 Conclusion

There is very little work to which the current approach can be compared. [Sal05]
presents some steps towards defining languages using constraints on subsequence
counts. [Kon04] discusses an approach to embedding languages in a feature space,
but using different techniques, and only modelling the locally testable languages.

Our approach has a number of limitations. First, while we can learn a number
of simple languages, it is not clear that this approach will scale to learning much
more complex languages. To get learnability for large scale problems, we will need
to combine these techniques with other, perhaps more traditional, grammatical
inference algorithms. Secondly, the size of the representations can be quite large,
particularly if we use kernels that involve longer substrings; in the worst case
this size can be |Σ|p where p is the length of the subsequences represented in
the kernel. Finally, though the algorithms are polynomial, their naive application
has a computational cost that is cubic in the number of examples. Thus it will be
difficult to solve problems with more than several thousand examples on current
workstations, without careful optimisations.

We have introduced the class of planar languages, an inherently learnable class
of languages with high expressive power, defined in term of string kernels. This is
the first application of this family of techniques to the problems of grammatical
inference. This class contains interesting context-sensitive languages, including
some classic examples from computational linguistics. We have carried out ex-
tensive experimental verification of the approach described here [CCFWS06] and
have confirmed the practical efficiency of these techniques. These classes are de-
fined in terms of planes in a feature space, which can be efficiently learned with
standard machine learning techniques from positive data alone. The choice of
kernel determines the expressive power and closure properties of the resulting
class. Two kernels have been shown to be injective (depending on the choice of
hyperparameters), a particular important property in the context of GI. We have
also shown that for some kernels, planar languages have the desirable property
of finite elasticity. This allows easy extension to richer classes of languages whilst
retaining good learnability properties.

Planar languages are a novel approach to GI, and it seems we have only
scratched the surface. An interesting topic for future research would be language
classes defined using linear inequalities, which would correspond to half-spaces
in the feature space. Such classes would allow the expression of natural language
phenomena such as Chinese number words. Another direction would be the defi-
nition of new string kernels for specific purposes. The kernels we have considered
are in most cases standard, well-studied kernels, so it is likely that new ones can
be designed that are better suited for grammatical inference.
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